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ABSTRACT 

 

The New England Shelf Break’s (NESB) bathymetry and proximity to the Gulf Stream 

current make it one of the most complex ocean environments in the world. This makes it a 

valuable test case for algorithms designed to recognize patterns in large datasets. Empirical 

Orthogonal Function (EOF) analysis, or Principal Component Analysis (PCA), has historically 

been the standard statistical method for detecting spatiotemporal patterns in data. These patterns 

are used to reconstruct datasets accurately and efficiently. Recently, sparse dictionary learning 

methods like the K-SVD have begun to supplant EOF analysis for this application. Results from 

these techniques are valuable to underwater acoustic propagation models that require realistic 

environmental data input to produce useful approximations of the underwater soundscape. 

Using World Ocean Database (WOD) in situ Conductivity-Temperature-Depth (CTD) 

measurements taken at the NESB, two stochastic models were developed: one based on the K-

SVD, the other based on EOF analysis. Additionally, a new approach to representing sparse 

coefficients from the K-SVD as a normal random variable was developed. Both models were 

used to produce sound speed profile (SSP) ensembles. These SSP ensembles were used to 

calculate Transmission Loss (TL) ensembles from the Range-dependent Acoustic Model (RAM). 

A probability density function (PDF) of TL ensembles was produced to show the relative 

likelihood that a TL ensemble would fall within a certain range of TL.  

The EOF stochastic model produced SSP ensembles that reliably covered SSP spatial 

variability at the shelf. While the EOF model did not cover variability at the shelf break, the 

resulting ensemble envelope was consistent. The K-SVD ensemble envelope was 

nondeterministic and did not reliably cover SSP spatial variability at the shelf or the shelf break. 

The EOF stochastic model required that missing values be filled with the depth-wise mean to 

function, while the K-SVD flexibly handled the imputation of zeros to compensate for missing 

values. TL ensembles were successfully calculated using K-SVD SSP ensembles. Ultimately, 

EOF analysis showed more potential as the basis for a stochastic model to inform an underwater 

acoustic propagation model. 
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Chapter 1 

 

Introduction 

 

The acoustics of the oceans is an extensively studied physical property. The results are 

applicable to several fields of study including climatology [1], marine biology [2], and 

oceanography [3]. The oceans’ size, variability, and extreme ecosystems are a few of the factors 

that make it a challenging environment to measure, thus a difficult environment to model. This is 

especially the case in areas like the New England Shelf Break (NESB), where the combination of 

sharply varying bathymetry and the Gulf Stream current make it one of the most complex ocean 

regions [4]–[8]. In this research the choice to separate dictionaries as a function of bathymetry 

was made to address NESB variation. A cross section of the NESB is shown in Fig. 1.1 The shelf 

break jet (SBJ) coupled with the change in bathymetry at the shelf break front create a natural 

separation in the water between the shelf and the shelf break [9]. The differences between the 

two volumes of water include salinity, temperature, and flow direction. A complete description 

of the NESB is an ongoing research topic and new discoveries about its complex oceanography 

are still made as new data acquisition techniques are applied [10]. 
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Figure 1.1: Cross section of the ocean at the NESB that depicts the complicated oceanography found in 

this region [11]. 

 

Because of large datasets over time and space, methods to identify patterns in the mass of ocean 

measurements are essential to developing useful underwater acoustic models. For example, 

geoacoustic inversion is a computationally intensive inverse problem used to characterize the 

seabed by analyzing changes in known acoustic signals as they reflect off the ocean floor. The 

forward models used for this require information about the medium, such as sound speed, in 

which the signals propagate to accurately predict acoustic behavior [12], [13]. Inverting for 

sound speed would add another computationally expensive task to the geoacoustic inversion 

problem. This makes models that can accurately approximate environmental parameters 

valuable. 

Ocean temperature profiles are an invaluable source of information about the oceans. 

Vast efforts to sample the oceans spatially and temporally are made by organizations and 

governments worldwide [14], [15]. Devices like the Conductivity-Temperature-Depth (CTD) 

cast (Fig. 2.1) and Expendable Bathythermographs (XBTs) provide in situ temperature profile 

measurements of the oceans, as well as depth readings that correspond to each sample. CTD 
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casts include salinity measurements, which makes their data an ideal source for ocean sound 

speed equations [16]. These measurements are vital for effective underwater acoustic models. 

Further information on the data sources for this thesis can be found in chapter four.  

 

 

Figure 1.2: A Conductivity-Temperature-Depth (CTD) cast used for in situ temperature measurements in 

the ocean [17]. 

 

This research focuses on applying two stochastic models to ocean data from the NESB. 

The models were independently based on Empirical Orthogonal Functions (EOFs) and the K-

SVD, which is an unsupervised dictionary learning (DL) algorithm. The goal of this thesis is to 
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generate sound speed ensembles1 informed by the stochastic models and calculate transmission 

loss (TL) based on the SSP ensembles. 

Historically, EOF analysis is a typical second-order statistical method used in 

oceanography to identify patterns in high-dimensional data. In statistics, EOF analysis is referred 

to as Principal Component Analysis (PCA) [20], [21].  EOFs are most commonly used in 

meteorology [22] but are regularly used in other fields including geophysics [23] and 

climatology [24]. While EOFs are highly effective, machine learning algorithms have recently 

risen in prominence, primarily due to increases in computational capability. The K-SVD is an 

iterative method that is a generalization of K-means clustering. It is a two-step process that 

attempts to greedily find the best representations (coefficients) of an input signal, then update the 

initial dictionary, as well as the representations established in the first stage. It has been shown 

that the K-SVD can reconstruct sound speed profiles (SSPs) with greater accuracy, while using 

less information [25]. Similarly, this thesis investigates the performance of the DL-based 

stochastic model and the EOF-based stochastic model on data taken at the NESB. Detailed 

explanations of both these algorithms are given in later chapters.  

The forward model used here is the Range-dependent Acoustic Model (RAM) [26]. It is a 

Parabolic Equation (PE) model that remains an efficient and accurate option for wide-angle 

underwater acoustic propagation. An in-depth treatment of its theoretical basis can be found in 

chapter three. Its application in this project is to demonstrate the use of sound speed ensembles 

created by a stochastic model based on the K-SVD algorithm. This is done by generating TL 

ensembles as a function of K-SVD produced sound speed ensembles. The TL loss ensembles are 

also used to construct a TL probability density function that indicates the relative likelihood of a 

TL ensemble falling within a certain TL interval across the range.  

 

 

 

1 The term “ensembles” was first used in the field of statistical physics by J. Willard Gibbs [18]. Generally, it is 

defined as statistical microstates of a system [19]. 
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1. Chapter 2 

 

Empirical Orthogonal Functions and Dictionary Learning 

 

 

2.1 Empirical Orthogonal Functions 

 

Empirical Orthogonal Function (EOF) analysis is a widely used dimensionality reduction 

approach. The term “Empirical Orthogonal Functions” was coined in the context of atmospheric 

science [27], but it is used in various fields of study including underwater acoustics. At its core it 

is a statistical technique also known as Principal Component Analysis (PCA), where EOFs are 

the principal components (PCs) [20], [21], [28]. The goal is to compress a dataset while 

preserving as much variability as possible. EOFs of the dataset are new variables containing 

elements that represent variance, and thus represent a majority of the statistical information in 

the dataset. An alternative formulation of its purpose is to find spatiotemporal patterns in large 

datasets that capture the variance.  

In this application, given a dataset 𝒀 ∈  ℝ𝑚 × 𝑡, where 𝑚 is the spatial dimension (depth 

in this case) and 𝑡 is the number of discrete observations (SSPs), the depth-wise mean is 

subtracted from 𝒀. The EOFs are the left singular vectors of demeaned 𝒀 and are found by 

applying an eigendecomposition to the covariance matrix 𝒀𝒀𝑇  

 

 

where the diagonal elements of 𝚪𝟐 = [𝛾1
2, 𝛾2

2, … , 𝛾𝐿
2] ∈  ℝ𝐿 × 𝐿 are the eigenvalues (variances) of 

𝒀𝒀𝑇 and 𝑾 ∈  ℝ𝑚 × 𝐿 contains the eigenvectors of 𝒀𝒀𝑇. A basis is formed by [𝑤1, 𝑤2, … , 𝑤𝐿] 

when 𝐿 = 𝑚. This occurs when 𝑡 > 𝑚. A special property of the eigendecomposition of a 

diagonalizable covariance matrix, such as 𝒀𝒀𝑇, is that its eigenvectors are the singular vectors of 

the underlying data set, 𝒀. That is, 𝑾 and 𝑾𝑇 are the left and right singular vectors of 𝒀, 

𝒀𝒀𝑇 =  𝑾𝚪𝟐𝑾𝑇 , (1) 
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respectively, and 𝑾 contains EOFs. An additional special property of a diagonalizable 

covariance is that the square root of the eigenvalues 𝛾 are the singular values of 𝒀, which will be 

important for the stochastic model. 

The variance is used to determine the effectiveness of the leading-order EOFs. This 

measure is important in selecting the number of leading-order EOFs to retain when 

reconstructing 𝒀. The eigenvalues give how much variance is contained in the related 

eigenvector.  

 

2.2 Dictionary Learning 

 

Sparse Dictionary Learning is a form of unsupervised, representation learning used in 

many fields of study including compressed sensing ([29], [30]), signal recovery ([31], [32]), and 

image classification ([33], [34]). Generally, sparse dictionary learning finds an overcomplete set 

of vectors and their scalar weights to represent an input signal 𝒙 ∈  ℝ𝑀 efficiently. This set of 

vectors is referred to as a dictionary and comprises columns called atoms {𝒅𝑘}𝑘 =1
𝐾 . The atoms 

correspond to a vector containing coefficients 𝒂 ∈  ℝ𝐾 that are assumed to be sparse. The 

dictionary 𝑫 ∈ ℝ𝑀 × 𝐾 is considered overcomplete when 𝐾 > 𝑀, 𝐾 being the number of atoms. 

Redundancy in 𝑫 allows for a more accurate approximation of the input signal relative to an 

undercomplete (𝐾 < 𝑀) or complete basis (𝐾 = 𝑀); however, overcompleteness implies linear 

dependence. Given a set of signals {𝒙𝑗}
𝑗=1

𝑁
, where 𝑁 is the number of signals, dictionary learning 

algorithms attempt to solve the optimization problem 

 

𝑚𝑖𝑛𝑫,𝑨‖𝑿 − 𝑫𝑨‖𝐹
2  𝑠. 𝑡.  ∀ 1 ≤ 𝑗 ≤ 𝑁, ‖𝒂𝑗‖

0
 ≤ 𝑠0, (3) 

 

where 𝑿𝑀 × 𝑁 is a matrix of training data and 𝑨 ∈  ℝ𝐾 × 𝑁 is a sparse coefficient matrix with 

{𝒂𝑗}
𝑗 =1

𝑁
column vectors. The maximum number of nonzero coefficients in the representation is 

𝑠0. This constraint is expected to be small (i.e.,  𝑠0  ≪ 𝑀 < 𝐾). F denotes the Frobenius norm 
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[35]. Widely used algorithms for this purpose are Method of Optimal Directions (MOD) ([36], 

[37]), Online Dictionary Learning ([38], [39]), and the K-SVD [40].  

 

Much of what follows in this section is written to provide the reader with context 

surrounding the development of the K-SVD. Understanding how the K-SVD fits into the history 

of machine learning techniques encourages better understanding of its intricacies. Vector 

Quantization, K-Means, and Method of Optimal Directions are discussed as examples of early 

dictionary training algorithms that led to the K-SVD. Furthermore, section 2.2.3.1 includes 

descriptions of three progenitors to the sparse coding algorithm used in this thesis — Orthogonal 

Matching Pursuit (OMP) [41], Matching Pursuit (MP) [42], and Compressive Sampling Matched 

Pursuit (CoSAMP) [31]. The sparse coding algorithm used in this thesis is Coefficient Reuse 

Orthogonal Matching Pursuit (CoefROMP) [43].  

 

2.2.1 Vector Quantization and K-Means 

 

Vector Quantization (VQ) uses a codebook (dictionary) with 𝐾-codewords (columns) to 

represent a large set of signals [44]. K-means is the most used algorithm in VQ to solve the 

clustering problem ([45], [46]) — it is an iterative method that searches for the optimal codebook 

for VQ. The codebook is trained using K-means, which accomplishes the task by partitioning 

input signals into 𝐾-clusters by nearest neighbor. This is normally done using an 𝑙2-norm as a 

distance measure to assign signals to their respective cluster.  

 

It includes two steps: 1) sparse coding stage, where, given a codeword, assign signals to 

their nearest neighbor, and 2) update the new codeword to fit the signal. This structure illustrates 

its similarity to the K-SVD. How these two relate is explained further in section 2.2.3. 
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2.2.2 Method of Optimal Directions 

 

Method of optimal directions (MOD) is a pioneering method of dictionary training [36], 

[37], [47]. Like the K-SVD that came after it, it includes a sparse coding stage and a dictionary 

update stage. Sparse coding is accomplished iteratively through every signal and can be 

performed by any typical sparse coding technique. The algorithm is inspired by the Generalized 

Lloyd Algorithm (GLA) [44]. The major difference between MOD and GLA is that MOD does 

not require that each new dictionary perform better following an update. It attempts to minimize 

Eqn. (1) during the dictionary update, but the optimization problem is non-convex, which limits 

the optimum result to a local minimum. To optimize 𝑫, the algorithm solves 𝑫 = 𝒀𝑴+, where 

𝑴+is the Moore-Penrose pseudo-inverse [48]. It is important to note that every column of 𝑫 is 

required to be normalized. 

 

2.2.3 K-SVD 

 

The K-SVD algorithm is an iterative method that, given an initial ℓ2 normalized D, 

computes coefficients during a sparse coding stage as part of a sparse coefficient matrix. The 

atoms in D are then modified to best reduce mean squared error by a singular value 

decomposition. All of this to solve Eqn. (3). The K-SVD is a generalization of the K-means 

algorithm. K-means can be thought of as approximating a data set using a single atom and a 

coefficient that must equal one. However, in gain-shape VQ [44], the coefficient is allowed to 

vary. K-SVD is a generalization in the sense that signals can be approximated using a linear 

combination of several vectors. Furthermore, K-SVD allows for more than one coefficient, all of 

which can vary. The sparse coding stage and dictionary update stage in K-means are decoupled. 

This means that 𝑫 is fixed during the sparse coding stage, and 𝑨 is fixed during the dictionary 

update stage. The generalization of K-means extends to this constraint by allowing 𝑨 to update 

during the dictionary update stage. This is done to ensure the next column (atom) update is based 

on more relevant coefficients.  
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2.2.3.1 Sparse Coding 

  

Sparse coding is a computational method embedded within dictionary learning algorithms 

that attempts to represent an input vector 𝒙 as a linear combination of dictionary atoms 𝒅𝑘 and 

the associated weights 𝒂: 

 

The dictionary 𝑫 is assumed to be linearly dependent and redundant. The sparse coding problem 

is often formulated in one of two ways, 

 

𝑚𝑖𝑛𝒂𝑗
‖𝒙𝑗 − 𝑫𝒂𝑗‖

2

2
 𝑠. 𝑡. ‖𝒂𝑗‖ 0 ≤  𝑠0 (5) 

or 

𝑚𝑖𝑛𝒂𝑗
‖𝒂𝑗‖

0
 𝑠. 𝑡. ‖𝒙𝑗 − 𝑫𝒂𝑗‖

2

2
≤ 𝜀, (6) 

 

where 𝜀 denotes a fixed error threshold. This thesis is focused on Eqn. (5). This task is 

commonly completed by the pursuit algorithms mentioned in section 2.2. As a reminder, these 

are Orthogonal Matching Pursuit (OMP) [41], Matching Pursuit (MP) [42], and Compressive 

Sampling Matched Pursuit (CoSaMP) [31]. These methods are classified as greedy algorithms. 

Greedy algorithms sequentially select a locally optimal choice with the goal of a global solution. 

 

Matching Pursuit 

 

Matching Pursuit (MP) is a greedy algorithm that iterates through each signal 𝒙 in search 

of an estimate 𝒙 [42], [49]. A 𝐾 atom approximation takes the form of Eqn. (4). Like other 

pursuit algorithms, the goal is to approximately solve the sparse coding problem shown in Eqn. 

(5). Assuming 𝑫 is normalized, a dictionary atom that maximizes the absolute value of the inner 

product between the signal and each atom is selected. The residual 𝒓 = 𝒙 − 𝒅𝒉, where 𝒉 is the 

𝒙 =  ∑ 𝒂𝒌

𝑘

𝒅𝑘 . (4) 
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maximum absolute inner product, is computed, and these steps are repeated until a stopping 

criterion is met. MP may introduce a component that is non-orthogonal to the span of the first 

atom selected. This characteristic is removed from the orthogonal matching pursuit. The largest 

differences between MP and OMP are 1) OMP includes a more complicated approach to finding 

sparse representations and 2) as more coefficients are selected to represent the signal, the 

previously identified coefficients for that signal are updated. 

 

Compressive Sampling Matching Pursuit 

 

Compressive sampling matching pursuit (CoSaMP) is based on OMP [31], [41]. Like 

OMP, it is a greedy pursuit method, which means it builds a solution iteratively by finding a 

locally optimal choice at each step. The main idea in this method is the selection of the largest 

components of a signal. Separate from the iteration through signals is an iteration that is 

governed by some halting criterion. To initialize, the algorithm identifies the largest components 

of the original signal, solves a least-squares problem that approximates the signal, retains the 

largest 𝑠 (sparsity constraint) entries, and finds a residual. After this first iteration, a support 

(nonzero locations) merging step takes place after the largest signal component identification 

step. The supports from the previous iteration are merged with the new approximation supports 

until the halting criterion is met. This support preservation and a pruning step used in CoSaMP 

are carried over to the pursuit algorithm used in this thesis. They are explained further in the next 

section.  

 

Orthogonal Matching Pursuit and Coefficient Reuse Orthogonal Matching Pursuit 

 

To understand Coefficient Reuse Orthogonal Matching Pursuit (CoefROMP) [43], it is 

instructive to introduce OMP. OMP is one of the most commonly used pursuit algorithms 

available to solve the sparse coding problem. Its name is derived from the fact that residual after 

each iteration is orthogonal to the span of previously selected atoms. This avoids the problem of 

selecting linear dependent atoms observed in MP. The standard OMP begins by setting the 
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residual equal to the input vector 𝒓 = 𝒙. The maximum absolute value of the inner product 

between 𝒓 and 𝑫𝑇 is 

 

max
𝑗

|⟨𝒓, 𝑫𝑇⟩|. 
(7) 

 

The atoms in 𝑫 that correspond to this value are selected. The next step is to solve for 

coefficients using a least squares solver to approximate 𝒂 =  𝑫†𝒙, where 𝑫† is the Moore-

Penrose pseudoinverse [48]. The residual 𝒓 = 𝒙 −  𝑫𝒂 is calculated and examined by a halting 

criterion. If the halting criterion is not met, the next iteration begins. Pseudo code in Table 2.1 is 

a standard OMP example. 

 

OMP(𝑫, 𝒙, 𝑠) 

Input: Dictionary 𝑫, signal 𝒙, sparsity 𝑠  

Output: s-sparse representation 𝒂 of 𝒙 

Step 1: initialize residual 𝒓0 = 𝒙 and declare variable to hold indices 𝐼0 = 0  

for 𝑖 = 1, 2, … do 

Step 2: 𝐼𝑖 = 𝐼𝑖−1 ∪ 𝑎𝑟𝑔𝑚𝑎𝑥 |〈𝑫𝑇 , 𝒓𝑖−1〉|   
{merge indices of max absolute inner 

product} 

Step 3: 𝒂𝑖 = 𝑫𝐼𝒊

† 𝒙                                           {signal estimation by least-squares} 

Step 4: 𝒓𝑖 = 𝒙 − 𝑫𝐼𝒊
𝒂𝑖 {update residual} 

Step 5: if the stopping criterion is met, return. If not, continue 

end 

Table 2.1: OMP pseudo code.  

 

Halting criterion varies. An example is evaluating the sum of residual squared relative to an error 

threshold 𝜖: 

 

∑ 𝒓2 < 𝜖.  (8) 

 

CoefROMP improves the OMP by using an augmentation step and a pruning step from 

CoSaMP, as well as a “warm-start”. Pruning refers to storing the largest 𝑠 entries from the least-

squares solution. This ensures the best 𝑠-sparse approximation of 𝒂. The augmentation step adds 
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coefficients from a previous iteration to a new least squares approximation 𝒂𝑟 = 𝑫𝒓. A “warm-

start” considers the largest 𝑠/3 coefficients from the previous iteration. This is done because the 

objective function remains at the same height as the previous iteration. The improvements to 

convergence speed and RMSE brought by a warm-start are not observable without the 

augmentation and pruning steps [43]. 

 

2.2.3.2 Dictionary Update Stage 

 

 The dictionary update stage is more complicated than the sparse coding stage. The 

algorithm as it was originally devised [40] is explained first. For clarity, the following is a list of 

variables and what their associated indices represent: 

1) 𝒅𝑘 ≔ dictionary atom to update  

2) 𝒅𝑖 ≔ arbitrary dictionary atom  

3) 𝒂𝑘 ≔ coefficient matrix row vector corresponding to 𝒅𝑘 

4) 𝒂𝑖 ≔ coefficient row vector corresponding to 𝒅𝑖 

5) 𝒂𝑘
𝑆 ≔ nonzero coefficients in row 𝑘 

6) 𝒂𝑖
𝑆 ≔ nonzero coefficients in row 𝑖 

The 𝑘th atom is the dictionary atom undergoing an update, and the index 𝑖 refers to the counter 

variable. The variant of the algorithm used here is improved [43] from the original, which is also 

explained. To begin this discussion, it is important to be very clear about how the dimensions of 

𝑿, 𝑫, and 𝑨 are related to each other. Columns of dictionary 𝑫 (atoms) directly correspond to the 

rows of 𝑨. When nonzero coefficients are found, they are linked to a dictionary atom 𝒅𝑘. The 

subscript 𝑘 and superscript 𝑆 together refer to the nonzero coefficients in the 𝑘th row of 𝑨. The 

sparse representations 𝒂𝑗 in the 𝑗th column of 𝑨 are generated with respect to the signal 𝒙𝑗  they 

represent (hence the term representations) from the 𝑗th column of 𝑿. Keeping this in mind is 

important as one goes through the steps of the dictionary update stage outlined in Table 2.2. 

The K-SVD dictionary update stage updates the atoms {𝒅𝑘}𝑘 =1
𝐾  of 𝑫 sequentially at each 

𝑖 update step, as well as the coefficients 𝒂𝑗 ∈ 𝑨𝑖. The sought after improvement is finding an 
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updated 𝑫 and 𝑨 that best reduces mean-squared error. Rewriting the penalty term in the 

objective function (Eqn. (3)), the result is, 

 

‖𝑿 − 𝑫𝑨‖𝐹
2 =  ‖𝑿 − ∑ 𝒅𝑖𝒂𝑖

𝐾

𝑖=1

‖

𝐹

2

 

 

=  ‖𝑬𝑘 −  𝒅𝑘𝒂𝑘 ‖𝐹
2  , (9) 

 

where 

 

𝑬𝑘 =  𝑿 − ∑ 𝒅𝑖𝒂𝑖

𝑖 ≠ 𝑘

 . 

 

The summation term is a decomposition of the matrix multiplication 𝑫𝑨 into a summation of 𝐾 

rank-1 matrices. This is a sum of outer products. 𝑬𝑘 = [𝒆𝒊,𝟏, … , 𝒆𝒊,𝑵] ∈  ℝ𝑀×𝑁 is an error matrix 

that measures error between 𝑿 and its reconstructions when the 𝑘th atom is excluded. Sparsity is 

not enforced on the rows of 𝑿. Addressing the many zeros in 𝑬𝑘 and 𝒂𝑘 is necessary for the 

singular value decomposition (SVD) to effectively update 𝒅𝒌 and 𝒂𝑘. This is done by defining 

𝑬𝑘
𝑆  and 𝒂𝑘

𝑆  as nonzero elements of 𝑬𝑘 and 𝒂𝑘 

 

𝑬𝑘
𝑆 =  {𝒆𝒌,𝒍|∀𝑙, 𝒂𝑘

𝑙 ≠ 0} , 𝒂𝑘
𝑆 = {|∀𝑙 𝒂𝑘

𝑙 ≠ 0}. (10) 

 

This manipulation allows for the use of the SVD to decompose 𝑬𝑘
𝑆  into 𝑬𝑘

𝑆 = 𝑼𝚺𝑽𝑇, where the 

first column of 𝑼 is the updated dictionary atom �̂�𝑘 and the product of 𝚺(1,1) and the first 

column of 𝑽 is the updated coefficient row vector �̂�𝑘
𝑆. 
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Table 2.1: Pseudo code for the K-SVD algorithm. 

 

 

2.2.3.3 Improved Dictionary Update Stage 

 

The improved dictionary update stage found in CoefROMP includes Dictionary Update 

Cycles (DUCs). The earlier method iterates once through each dictionary to achieve 

convergence. The dictionary may go through several update cycles to further minimize Eqn. (3). 

When combined, the DUCs and the adjustments made in CoefROMP relative to OMP have been 

shown to produce faster convergence to a steady-state solution [43].  

 

 

 

 

 

 

 

 

 

K-SVD 

Goal:  Find a dictionary along with sparse representations that best approximate a training data set by solving 

 

𝑚𝑖𝑛𝑫,𝑨‖𝑿 − 𝑫𝑨‖𝐹
2  𝑠. 𝑡. ∀ 1 ≤ 𝑗 ≤ 𝑁, ‖𝒂𝑗‖

0
 ≤ 𝑠0 

 

Step 1: initialize 𝑫 with ℓ2 normalized columns 

for 𝑗 = 1, 2, … do until halting criterion 

Step 2: Sparse Coding Stage  use pursuit algorithm to solve the sparse coding problem for 𝑁 signals 

�̂�𝑗 =  𝑚𝑖𝑛𝒂𝑗
‖𝒙𝑗 − 𝑫𝒂𝑗‖

2

2
 𝑠. 𝑡. ‖𝒂𝑗‖

0
≤  𝑠0 for 𝑗 = 1, 2, . . . , 𝑁 

Step 3: Dictionary Update Stage  iterate through 𝐾 columns of 𝑫 for 𝑖 = 1, 2, . . . 𝐾 and update it by 

• Defining signals that use selected k atom 

• Determine error  𝑬𝒌 =  𝑿 − ∑ 𝒅𝑖𝑖≠𝑘 𝒂𝑖
𝑆 

• Choosing columns of 𝑬𝑘 that correspond to signals that use selected 𝑘 atom to get 𝑬𝑘
𝑅 

• Apply SVD decomposition and get 𝑬𝑘
𝑅 = 𝑼𝚺𝑽𝑇. 𝑼 is the updated dictionary atom �̂�𝑘 and 

𝑺(1,1)𝑽𝑇 is the updated sparse representation vector �̂�𝑘
𝑅 

end 
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2. Chapter 3 

 

Parabolic Equation 

 

3.1 Historical Background 

 

Application of Parabolic Equation methods (PE) to wave-propagation problems began 

with electromagnetic waves in the 1940s [50] to calculate diffraction caused by the spherical 

shape of the earth. Since this original use, the PE has been applied to problems in laser beam 

propagation [51], plasma physics [52], and seismic wave propagation [53]. It was extended to 

ocean acoustics in 1973 by Hardin and Tappert [54]. PEs fit into the family of marching partial 

differential equations, which makes them especially well-suited for range-dependent problems. 

The ultimate goal of PE approximation methods is to closely approximate the acoustic field 

during initial analysis to develop approximate equations that are ideal for efficient, high-speed 

computation. The PE is one of the most efficient and commonly used forward models for range-

dependent problems in ocean acoustics. 

 

The Standard Parabolic Equation (SPE) is an important steppingstone in the development 

of PE methods in underwater acoustics. There are different approaches that lead to the SPE; 

however, the derivation followed later in this document follows Tappert [55].  The SPE is 

important because it lends itself to efficient numerical solutions like the Split-Step Fourier 

algorithm (SSF), and thus efficient computation. The SSF algorithm allowed for larger range 

steps, which lead to less computation relative to commonly used finite-difference solutions. This 

solution is discussed further in section 3.3 of this chapter. The derivation begins with the 

frequency domain, elliptic wave equation — the Helmholtz equation — for a constant-density 

medium in cylindrical coordinates (𝑟, 𝜑, 𝑧): 
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𝜕2𝑝

𝜕𝑟2
+ 

1

𝑟

𝜕𝑝

𝜕𝑟
+  

𝜕2𝑝

𝜕𝑧2
+  𝑘0

2𝑛2𝑝 = 0. (11) 

 

The variable 𝑝(𝑟, 𝑧) is the acoustic pressure, the reference wavenumber is 𝑘0 =  
𝜔

𝑐0
, and the index 

of refraction is 𝑛(𝑟, 𝑧) =  
𝑐0

𝑐(𝑟,𝑧)
. The variables 𝑟 and 𝑧 represent range and depth, respectively. 

Assuming azimuthal symmetry (axisymmetric), there is no dependence on 𝜑, which is the 

coordinate related to circumferential change.  

 

 While the SPE is a powerful tool, its accuracy is only reliable for narrowband 

propagation angles relative to the horizontal. It is sometimes referred to as the standard narrow-

angle equation because of its reliance on the narrowband approximation. This assumes an angle 

of propagation less than 16° with respect to the horizontal. Alternatively, there are wide-angle 

propagation equations available using the Generalized Parabolic Equation (GPE). The derivation 

using the operator convention established in [56] provides a basis for many wide-angle 

approximations. The method used to develop RAM utilizes the GPE operator formalism, 

allowing it to handle wide-angle propagation. For a detailed review of the development of PEs 

within underwater acoustics up to 1982, refer to [56]. 

 

The forward model used here is the Range-dependent Acoustic Model (RAM) developed 

by Michael D. Collins [57]. While the model is range-dependent, the medium is split into range 

independent segments.   
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3.2 Standard PE and Generalized PE 

 

The development of the SPE rests on the following assumptions outlined in [58]: 

1) Constant-density medium 

2) Harmonic point source — exp (−𝑖𝜔𝑡) 

3) Azimuthal symmetry — no 𝜑 dependence 

4) An outgoing cylindrical wave solution that resembles the propagation of a single 

adiabatic mode — 𝑝(𝑟, 𝑧) =  𝜓(𝑟, 𝑧)𝐻0
(1)

(𝑘0𝑟) 

5) An envelope function that varies slowly with range — 𝜓(𝑟, 𝑧) 

6) Propagation takes place in the farfield — 𝑘0𝑟 ≪ 1 

7) The small-angle (paraxial) approximation — 
𝜕2𝜓

𝜕𝑟2 ≪ 2𝑖𝑘0
𝜕𝜓

𝜕𝑟
  

 

After applying the assumptions to Eqn. (11), the result is the SPE: 

 

2𝑖𝑘0

𝜕𝜓

𝜕𝑟
+  

𝜕2𝜓

𝜕𝑧2
+  𝑘0

2(𝑛2 − 1)𝜓 = 0. (12) 

 

These assumptions are carried into the derivation of the GPE except for the paraxial 

approximation. This is what separates the SPE from the GPE. The GPE is well-suited for wide-

angle propagation, in part, because it does not include the paraxial approximation. The derivation 

underlying RAM is similar to the GPE method referenced in the introduction [56]. To avoid 

redundancy the derivation of the GPE will be left for the RAM section. An abbreviated example 

is done here to illustrate the differences in the SPE and GPE. The derivation in [58] begins by 

defining the depth operator Q and a radial derivative P 

 

𝑄 = √𝑛2 +  
1

𝑘0
2

𝜕2

𝜕𝑧2
,  𝑃 =  

𝜕

𝜕𝑟
. 

 

 

Rewriting the elliptic equation using the operator gives  
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[𝑃2 + 2𝑖𝑘0𝑃 +  𝑘0
2(𝑄2 − 1)]𝜓 = 0. (13) 

 

To get to the one-way wave equation,  this expression is factored into outgoing and incoming 

components. This separation allows the selection of only the outgoing wave component. 

Assuming range-independent media where 𝑛 does not depend on 𝑟, a commuter term that 

materializes during factorization can be ignored. The expression becomes 

 

𝑃𝜓 = 𝑖𝑘0(𝑄 − 1)𝜓. (14) 

 

Substituting in the contents of the operators, the equation becomes 

 

 

𝜕𝜓

𝜕𝑟
= 𝑖𝑘0 (√𝑛2 +  

1

𝑘0
2

𝜕2

𝜕𝑧2
− 1) 𝜓. (15) 

 

What makes the GPE and its operator convention important is the many available 

approximations to the operator Q.  Jensen et al. [58] provide an example of how a series 

expansion of the operator can be used to derive the SPE. Retaining more expansion terms in Q 

allows for wide-angle propagation.  

 

3.3 Solutions to the PE  

 

3.3.1 Split-Step Fourier Algorithm 

 

The SSF algorithm was first introduced into ocean acoustics by Hardin and Tappert [54] 

for long-range, narrow-angle propagation. The split-step algorithm is desirable because of its 

efficiency relative to PE solutions like finite differences (FD). The efficiency of SSF refers to 

lower computational effort necessary to process large range steps versus the comparably fine 

range steps FD solutions require. The SSF compromise lies in the physics it must ignore to 

remain efficient. An example is the necessity to consider bottom interactions negligible. Strong 
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bottom interactions require the computational grid (∆𝑟, ∆𝑧) to be unreasonably fine. This 

negatively impacts the efficiency of the split-step, which is its primary advantage as a PE 

solution. The SSF also relies on sound speed varying weakly along the propagation path. 

 

As mentioned in the beginning of this section, SSF is used to solve the SPE, which 

includes the important small-angle approximation that separates it from the GPE; however, wide-

angle PE SSF solutions have been developed beginning with Chapman and Thomson [59]. They 

apply a square root operator approximation introduced by Feit and Fleck [60] to the split 

operator form outlined in the GPE derivation in section 3.2. 

 

Wide-angle propagation demands more computation and an algorithm that accurately 

handles short-range, deep-water problems. Shallow water problems also fall into this category. 

Finite differences or finite elements (FE) are the PE solvers typically used in these scenarios. 

While they do not exhibit the SSF’s computational efficiency, they can effectively model bottom 

interactions and wide-angle propagation. 

 

3.3.2 Split-Step Padé 

 

The Split-Step Padé solution is a finite difference solution that allows for wide-angle 

propagation [26]. When retaining just one series term, the Padé expansion includes the Claerbout 

approximation that was developed as the standard 40-degree PE [61]. Retaining more terms 

increases the accuracy relative to a wider propagation angle. The Split-Step Padé allows for 

larger range steps than other finite difference models, while maintaining acceptable phase errors 

[58]. A detailed derivation of the solution is done in section 3.4; however, a version of the 

solution is briefly introduced here to emphasize a point about its efficiency. The summation 

representation of the Split-Step Padé solution is 

 

𝑝(𝑟 + ∆𝑟) = 𝑝(𝑟) + ∑
𝑎𝑗,𝑚𝑋

1 + 𝑏𝑗,𝑚𝑋

𝑚

𝑗=1

𝑝(𝑟), (16) 
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where 𝑋 is the depth operator and 𝑎 and 𝑏 are Padé coefficients. The summation terms can be 

calculated independently, which enables parallel processing. This is an important factor that 

contributes to its efficiency. 

 

3.4 RAM 

 

In this section, notation is adjusted to follow Collins’ derivation [57]. RAM was selected 

because of its efficiency and accuracy, as well as its status as a physics-based model. RAM uses 

the Split-Step Padé solution introduced in section 3.3.2.  

The mathematics underlying RAM relies on two assumptions: 

1) Outgoing energy dominates (neglect backscattering) 

2) Azimuthal symmetry (no 𝜙 dependence) 

While RAM is a range-dependent model, each range step is solved as a range-independent 

problem. Using cylindrical coordinates, 𝑟 is the range from a point at source depth 𝑧0. The depth 

from the ocean surface is 𝑧, and 𝜙 represents azimuth. Each range-independent region begins 

with the frequency domain elliptical wave equation (note similarities to derivation of GPE). The 

farfield equation is satisfied by the complex acoustic pressure 𝑝 

 

𝜕2𝑝

𝜕𝑟2
+ 𝜌

𝜕

𝜕𝑧
(

1

𝜌

𝜕𝑝

𝜕𝑧
) + 𝑘2𝑝 = 0, (17) 

 

where 𝜌 is medium density, 𝑘 = (1 + 𝑖𝜂𝛽)
𝜔

𝑐
 is the complex wavenumber, 𝜔 is the angular 

frequency, and 𝑐 is the sound speed in the medium. In the expression for 𝑘, 𝜂 =  (40𝜋 log10 𝑒)−1 

and 𝛽 is sediment attenuation dB/𝜆. Considering only outgoing waves and neglecting 

backscattering after factoring, Eqn. (17) becomes 

 

𝜕𝑝

𝜕𝑟
= 𝑖𝑘0(1 + 𝑋)1/2𝑝, (18) 



   

 

21 

 

 

 

where 𝑋 =  𝑘0
−2 (𝜌

𝜕

𝜕𝑧

1

𝜌

𝜕

𝜕𝑧
+ 𝑘2 − 𝑘0

2 ) is the depth operator, 𝑘0 =
𝜔

𝜈
 is the representative 

wavenumber, and  𝜈 is the representative phase speed. The solution to Eqn. (18) is 

 

𝑝(𝑟 + ∆𝑟, 𝑧) = exp (𝑖𝑘0∆𝑟 (1 + 𝑋)
1

2) 𝑝(𝑟, 𝑧), (19) 

 

where ∆𝑟 is the range step. At this step the 𝑚-term rational, the Padé approximation is applied to 

get the product representation of the Padé solution:  

 

exp (𝑖𝑘0∆𝑟 (1 + 𝑋)
1
2) 𝑝(𝑟, 𝑧) ≅ 1 + ∑

𝑎𝑗,𝑚𝑋

1 + 𝑏𝑗,𝑚𝑋

𝑚

𝑗=1

 

=  ∏
1 + 𝜆𝑗,𝑚𝑋

1 + 𝜇𝑗,𝑚𝑋

𝑚

𝑗=1

 

𝑝(𝑟 + ∆𝑟, 𝑧) = exp(𝑖𝑘0∆𝑟) ∏
1 + 𝑎𝑗,𝑚𝑋

1 + 𝑏𝑗,𝑚𝑋

𝑚

𝑗=1

𝑝(𝑟, 𝑧). (20) 

 

This version of the solution is designed for single processor runs, as opposed to Eqn. (16). The 

Padé coefficients 𝑎𝑗,𝑚 and 𝑏𝑗,𝑚 [62] are  

 

𝑎𝑗,𝑚 =
2

2𝑚 + 1
sin2 (

𝑗𝜋

2𝑚 + 1
) (21) 

 

and 

 

𝑏𝑗,𝑚 =  cos2 (
𝑗𝜋

2𝑚 + 1
) , (22) 
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where 𝑚 is the number of expansion terms. 

 

The fields at the first range step are calculated using a PE self-starter. To avoid the singularity at 

the point source, the calculation starts at 𝑟 = 𝑥0, where 𝑥0 is on the order of a single wavelength. 

The expression for the self-starter is  

 

𝑝(𝑥0, 𝑧) =  
exp (𝑖𝑘0𝑥0(1 + 𝑋)

1
2)

𝑘0(1 + 𝑋)
1
2

𝛿(𝑧 − 𝑧0). (23) 

 

A more detailed treatment can be found in [57] and [63]. A modification to Eqn. (23) is required 

for a point source 

 

𝑝(𝑟0, 𝑧) =  
exp (𝑖𝑘0𝑟0(1 + 𝑋)

1
2)

𝑘0
−1/2(1 + 𝑋)

1
4

𝛿(𝑧 − 𝑧0). (24) 

 

For range-independent problems, Eqn. (20) is marched through each of the range-independent 

regions. In the case of range-dependent problems, conditions must be set at the vertical interface 

between each region. To do this, energy conservation is incorporated. To conserve energy a 

modified depth operator is required 

 

�̃� =  𝑘0
−2 (

𝜌

𝛼

𝜕

𝜕𝑧

1

𝜌

𝜕

𝜕𝑧
𝛼 + 𝑘2 − 𝑘0

2 ), (25) 

 

where 𝛼 =  (
𝜌

𝑘
)

1/2

. Stability constraints that are applied during the coefficient calculation phase 

resolve Gibbs oscillations due to the different quantities conserved at vertical and horizontal 

interfaces when sloping interfaces are encountered. The Gibbs oscillations are projected onto the 

evanescent spectrum. The discretization of the depth operator is done by Galerkin’s method 

detailed in [62]. The specifics of application, and the results are discussed in chapter four. 
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3. Chapter 4 

 

Experimental Setup, Results, and Discussion 

 

4.1 Data Acquisition and Curation 

 

The World Ocean Database (WOD) is the world’s largest public collection of ocean 

profile data [15]. Its quality control and uniform formatting made it an obvious choice for this 

thesis. The data consisted of in situ temperature, salinity, and depth measurements from 

Conductivity-Temperature-Depth (CTD) casts. Sound speed was calculated with temperature, 

salinity, and depth using the method from [16]. The data was selected using geographic 

coordinates and date. The date of measurements ranged from 1999 to 2022. To better capture 

ocean dynamics, the choice was made to segment the data and learn dictionaries as a function of 

meteorological seasons and bottom depth. This gave a total of eight datasets. The NESB was 

split into two segments defined as the shelf and shelf break. Table 4.1 shows the depths at which 

the dictionaries were defined. Depth information was chosen to be standard water depth (Table 

4.2) defined by the WOD. 
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Figure 4.1: All profiles were taken from the area defined by the green box [64]. 

 

 

Region Depth (m) 

Shelf 0 – 50 

Shelf Break 0 – 250 
Table 4.1: Depth range of each region. 

 

Many profiles did not reach the maximum depth in each region, which resulted in missing values 

throughout the dataset. This was handled differently for each algorithm. For the K-SVD, missing 

values (NaNs) were imputed with zeros. For EOFs, NaNs were imputed with the depth-wise 

mean sound speed. Table 4.3 contains the size of each seasonal dataset.  Further information 

about this choice and its implications were discussed in section 4.2. 
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Level # Depth (m) Level # Depth (m) Level # Depth (m) Level # Depth (m) 

1 0 36 475 71 2400 106 5900 

2 5 37 500 72 2500 107 6000 

3 10 38 550 73 2600 108 6100 

4 15 39 600 74 2700 109 6200 

5 20 40 650 75 2800 110 6300 

6 25 41 700 76 2900 111 6400 

7 30 42 750 77 3000 112 6500 

8 35 43 800 78 3100 113 6600 

9 40 44 850 79 3200 114 6700 

10 45 45 900 80 3300 115 6800 

11 50 46 950 81 3400 116 6900 

12 55 47 1000 82 3500 117 7000 

13 60 48 1050 83 3600 118 7100 

14 65 49 1100 84 3700 119 7200 

15 70 50 1150 85 3800 120 7300 

16 75 51 1200 86 3900 121 7400 

17 80 52 1250 87 4000 122 7500 

18 85 53 1300 88 4100 123 7600 

19 90 54 1350 89 4200 124 7700 

20 95 55 1400 90 4300 125 7800 

21 100 56 1450 91 4400 126 7900 

22 125 57 1500 92 4500 127 8000 

23 150 58 1550 93 4600 128 8100 

24 175 59 1600 94 4700 129 8200 

25 200 60 1650 95 4800 130 8300 

26 225 61 1700 96 4900 131 8400 

27 250 62 1750 97 5000 132 8500 

28 275 63 1800 98 5100 133 8600 

29 300 64 1850 99 5200 134 8700 

30 325 65 1900 100 5300 135 8800 

31 350 66 1950 101 5400 136 8900 

32 375 67 2000 102 5500 137 9000 

33 400 68 2100 103 5600   

34 425 69 2200 104 5700   

35 450 70 2300 105 5800   

Table 4.2: Standard Depths Levels defined by the World Ocean Database [65]. 
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Figure 4.2: Temperature at z = 20 m in each seasonal dataset. 

 

Region Season 
Rows 

(Depths) 

Columns 

(Profiles) 

Shelf 

Winter 11 669 

Spring 11 1582 

Summer 11 1462 

Fall 11 1482 

Shelf 

Break 

Winter 27 611 

Spring 27 1505 

Summer 27 1165 

Fall 27 1404 
Table 4.3: Each region and seasons' data array size. 
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4.2 Procedure and Analysis 

 

The goal of the procedure was to generate DL informed SSP ensembles as inputs into 

RAM to calculate TL ensembles. The EOF stochastic model was based on the equation  

 

𝒚(𝑧) =  �̅� +  ∑ 𝛾𝑖
2𝒘𝑖

𝑒

𝑖=1

 , (26) 

 

where 𝒚(𝑧) was a single sound speed ensemble, �̅� was the mean sound speed profile of the input 

SSP data, and 𝑒 was the number of leader-order EOFs. The summation terms 𝛾𝑖
2 and 𝒘𝑖 were the 

eigenvalues and eigenvectors (EOFs) of an eigendecompositon, respectively. In this research, e = 

3. The K-SVD parallel to this model was formulated as  

 

𝒙(𝑧) =  �̅� +  ∑ 𝑎𝑖𝒅𝑖

𝑠

𝑖=1

 , (27) 

 

where 𝑎𝑖 was a nonzero coefficient from the sparse matrix 𝑨, 𝒅𝑖 was a dictionary atom, and 𝑠 was 

the sparsity value.  

 To compute a matrix of SSP ensembles 𝑪𝐸𝑂𝐹, a normal random variable 𝑷𝐸𝑂𝐹  ∈  ℝ𝑒 ×𝑅 

was defined, where 𝑅 was the number of ensembles. This was formulated as 

  

𝑪𝐸𝑂𝐹 =  �̅� +  𝑾𝑒(𝑷𝐸𝑂𝐹 ⊙ 𝜸) , (28) 
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where 𝑾𝑒 contained the leading-order EOFs  and 𝜸𝑒 contained the standard deviations2 associated 

with leading-order EOFs. Similarly, the dictionary learning parallel to this equation was 

 

𝑪𝐷𝐿 =  �̅� +  𝑫𝒔(𝑷𝐷𝐿 ⊙ 𝜎) , (29) 

 

where the relevant dictionary atoms comprised 𝑫𝒔 and 𝜎 was the standard deviation of the relevant 

coefficients. 

A statistical analysis of the K-SVD algorithm’s inputs and outputs was completed to 

inform the development of the stochastic mode. The analysis was restricted to the summer 

season, but figures for other seasons were included in Appendix D and E. This analysis was done 

alongside results of the EOF stochastic model for comparison.  

 

4.2.1 K-SVD Analysis 

 

K-SVD parameters were primarily set based on recommendations in a previously 

referenced paper [43], as well as the statistical analysis in this section. This included the number 

of iterations through the algorithm, DUCs, and the number of atoms. Sparsity (𝑠) was determined 

by the statistical analysis explained in the K-SVD statistical analysis section that follows this 

section. The parameters were made available in Table 4.4, where nz was the number of depths.  

 

Ocean 

Region 
Atoms Sparsity Iterations DUCs 

Shelf 𝑛𝑧 × 3 3 30 2 

Shelf Break 𝑛𝑧 × 3 4 30 2 
Table 4.4: K-SVD parameters for each ocean region3. 

 

2 As mentioned in section 2.1, 𝛾2 is an eigenvalue of the covariance matrix 𝒀𝒀𝑇. The eigenvalues of covariance 

matrices are variances. The square root of variance is the standard deviation, and, given special properties of the 

eigendecomposition of a diagonalizable matrix, these standard deviations are also singular values.  

3 Changing these parameters may drastically change outcomes. This is especially true for sparsity and number of 

dictionary atoms.  
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K-SVD Statistical Analysis 

 

To create the DL informed ensembles, statistical analysis of the K-SVD sparsity input, and its 

outputs was required. Performing this analysis started with posing three questions: 

 

1) What is the optimal sparsity for this dataset? 

2) Which atoms are selected most frequently? 

3) What distribution do the nonzero coefficients related to these atoms follow? 

 

To answer these questions, the K-SVD was applied to a learning dataset to obtain a learned 

dictionary (LD). The learning dataset was defined as all profiles not used as elements of the 

initial dictionary. As a reminder, the dictionary was initialized by randomly sampling 𝑿. The 

random samples were removed to create the learning set. Atom selection begins with a single 

pass through the K-SVD, which outputs 𝑫 and 𝑨. The LD exhibits a distribution defined by the 

number of times each atom was selected to represent a profile. This number was equal to the 

total number of nonzero coefficients ‖𝒂𝑘
𝑆‖

0
 in a given row of the coefficient matrix 𝑨. Each row 

in the coefficient matrix A corresponds to an atom in D. The number of nonzero coefficients 

related to each individual atom was divided by the total number of nonzero coefficients in 𝑨 to 

get the probability that each atom was selected. This process determined which atoms were most 

likely to be selected by the K-SVD. Once these atoms were identified, the 𝑠-atoms used the most 

frequently were stored for SSP ensemble generation. The choice of atoms determined which 

nonzero coefficients were used by default. The distribution of the nonzero coefficients in the 

rows of 𝑨 were assumed to be normal to limit variation between the EOF stochastic model and 

the K-SVD stochastic model. 
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Optimal Sparsity 

 

The optimal sparsity value was determined by iterating through the algorithm 1000 times 

and observing the mean of root mean squared error (RMSE) over those iterations. The 

representation RMSE for each iteration was computed as 

 

 

where 𝑹𝑴𝑺𝑬𝑝𝑟 is a vector of root mean squared error between a profile 𝒙𝑗 and its estimate �̂�𝑗, 

and 

 

where 𝑅𝑀𝑆𝐸 is the mean of the root mean squared error across all profiles. 𝑅𝑀𝑆𝐸 is the y-axis 

value in Fig.  4.4. A high-performance computer (HPC) was used to apply the K-SVD 1000 

times to each seasonal dataset for every sparsity value 𝑠, where 𝑠 = 1,2, … 8. The mean of the 

1000 MSE values for each 𝑠 relative to a regional dictionary is shown in the figure below. Based 

on RMSE for each season, sparsity for the shelf was chosen to be 𝑠 = 3. Although [43] 

recommended 𝑠 = 1 based on the size of the depth dimension (Table 4.4), Fig.  4.4 showed that 

𝑠 = 1 gave significantly higher representation RMSE and often was not sufficient to capture 

variability (Fig. 4.3). Also, in Fig.  4.3 the 𝑠 = 8 example was included to demonstrate how 

ensemble generation behaved at the opposite extreme. 

 

𝑹𝑴𝑺𝑬𝑝𝑟 =  
1

𝑀𝑗
∑(𝒙𝑗 −  �̂�𝑗)

2
𝑁

𝑗=1

, (30) 

𝑅𝑀𝑆𝐸 =  
1

𝑁
∑ 𝑅𝑴𝑺𝑬𝑝𝑟 , (31) 
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Figure 4.3: Summer shelf K-SVD ensembles when s = 1 (top) and when s = 8 (bottom). The ensembles 

generated while s = 8 covered SSP variability at lower depths but still show lack of coverage at 30 m.  
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 Even as sparsity was increased, highly unpredictable behavior remained observable in K-

SVD ensembles. Over a large sample size, the RMSE in Fig. 4.4 demonstrated that K-SVD 

results converge to error patterns found in previous work ([25], [43]); however, ensemble 

behavior was nondeterministic. These issues were addressed in the K-SVD Ensembles section of 

this chapter. 

 

Figure 4.4: RMSE over 1000 iterations at each sparsity value. 
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Atom Selection 

 

The most frequently selected atoms were determined in the sparse coding stage by 

CoefROMP. They were identified by summing the number of nonzero coefficients in each row 

of 𝑨. The 𝑠-atoms that were selected most frequently were used to generate SSP ensembles. The 

number of times they were used to represent a signal is shown in Fig.  4.5, where the orange 

highlighted bars indicate the chosen atoms. All 33 atoms in the dictionary are plotted in Fig.  4.6 

to show their respective shapes. The green atoms are the atoms most frequently used. The atoms 

are arranged from highest to lowest usage, and the figure should be read from left to right in a 

snake pattern.  

 

 

Figure 4.5: Atom usage for summer with atom(s) used for ensemble generation highlighted in orange. 
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Figure 4.6: Dictionary atoms sorted according to most frequent usage. Green atoms were used most. 

Ordering moves from left to right in a snake pattern. 

 

Coefficient Distribution 

 

Coefficient values varied widely within each row of the coefficient matrix. This variation 

presented a challenge when trying to determine an acceptable distribution. Ultimately, to be 

consistent with the EOF stochastic model, the coefficients were assumed to show a normal 

distribution. Two methods to create the distribution were tried: 

 

Method 1:  Fit a distribution to each individual row of nonzero coefficients and determine the 

standard deviation for each.  

Method 2: Fit a distribution to all nonzero coefficients from each selected row in 𝑨 as a single 

vector and determine the standard deviation. 
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 The green points in Fig.  4.7 and Fig.  4.8 represent the combined normal coefficient 

distributions of each individual row of 𝑨 used to generate ensembles with Method 1 and Method 

2, respectively. These separate distributions each had their own mean and standard deviation 

related to the nonzero coefficients in the relevant rows of 𝑨. The purple points were the nonzero 

coefficients from the relevant rows of 𝑨. There were three observations made from this 

depiction: 1) the visible gaps in the purple points at zero were a result of sparsity and only 

selecting nonzero coefficients, 2) the normally distributed coefficients (green, Fig.  4.7) from 

Method 1 overrepresented high amplitude coefficients from 𝑨 (purple), and 3) the normally 

distributed coefficients (green, Fig.  4.8) did not capture some high amplitude nonzero 

coefficients from 𝑨. Method 2 gave a more centered, or narrowed, distribution of coefficients. 

While some of the outlier coefficients were not adequately represented, Method 2 gave a better 

representation of where the majority of nonzero coefficients (purple) lied. The Gaussian fit in 

Fig.  4.9 shows that the distribution lacked density around the mean. A distribution with greater 

kurtosis would improve coefficient coverage. For completeness, separate scatter plots of the 

coefficients from Method 2 were presented in Fig.  4.10.  
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Figure 4.7: Nonzero coefficients (purple) from 𝑨 that correspond to the most frequently selected atoms. 

The green dots were generated by a normal distribution with Method 1. 
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Figure 4.8: Nonzero coefficients from 𝑨 (purple) and coefficients from the normal distribution (green) 

generated with Method 2. 
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Figure 4.9: Method 2 gaussian fit to nonzero coefficients from summer shelf dataset. 
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Figure 4.10: Coefficients from the K-SVD (top), and coefficients generated with Method 2 (bottom). 

 

K-SVD Ensembles 

 

K-SVD ensembles shown in Fig. 4.11 and Fig. 4.12 were the result of ensembles 

generated during computation that also produced the TL ensembles found . This run will be 

referred to as TLRUN1 for the rest of the thesis. The ensembles depicted in Fig. 4.11 poorly 

represented variability in SSP measurements. The nondeterministic nature of the K-SVD 

ensemble envelope was an important focus. Fig. 4.12 pointed to the selected dictionary atoms as 

the driver of the ensemble envelope. While a more accurate distribution where outliers were 

represented fully would likely create a distribution with greater variability, the dictionary atoms 

were primarily responsible for the shape of the ensembles. Given the shape of the mean profile 

shown in Fig. 4.13, the expectation was that the algorithm would most frequently select atoms 

resembling that shape. Fig. 4.6 indicated the algorithm chose unexpected atoms. This also called 
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into question the atom selection method for the stochastic model, thus how atoms are selected to 

represent profiles during the sparse coding stage. In CoefROMP, like OMP, atoms are selected to 

approximate an input vector based on the maximum absolute inner product between the residual 

and the dictionary (Eqn. (7)). method of determining similarity may predispose the K-SVD to 

poor spatial variability representation.  

A fundamental difference between the K-SVD and EOF analysis is their respective goals. 

The goal of EOF analysis is to capture spatial variability by decomposing a covariance matrix, 

while the goal of the K-SVD can be summarized as order reduction by solving a minimization 

problem (Eqn. (3)). While EOF analysis is also a powerful tool for dimensionality reduction, the 

K-SVD has been proven to be superior in this respect; however, when EOF analysis is applied to 

a problem that suits its strength (spatial variability capture), it outperforms the K-SVD as applied 

in this thesis.  

For a more granular view of ensemble shape, fifty random samples of the ensembles and 

the dataset were selected to be shown in Fig. 4.14. The ensembles cluster toward the center of 

input data. Fig. 4.15 was an arbitrary run added to indicate how drastically the K-SVD ensembles 

can vary from run-to-run on the same dataset. Notice that the mean profile varied between these 

two examples, although they were from the same dataset. This was the consequence of removing 

profiles from the input dataset that were randomly selected during dictionary initialization. It is 

plausible to assume that if profile removal affected the mean profile, this could account for the 

unpredictability of the ensembles, but that was not the case. Nondeterministic behavior continued 

whether the profiles used for dictionary initialization were removed or not. The mean ensemble 

profile and the mean profile for the arbitrary run are shown in Fig. 4.16.  
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Figure 4.11: K-SVD ensembles from TLRUN1 with s = 3 overlayed onto original sound speed profiles. 

 

 



   

 

42 

 

 

 

Figure 4.12: These ensembles are the product of the selected dictionary atoms and a normal distribution 

with zero mean and standard deviation of 1. The genesis of the ensemble envelope in Fig. 4.11 was 

visible in this depiction. This illustrates that the shape of the ensembles was primarily influenced by the 

dictionary atoms. 
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Figure 4.13: Mean SSP ensemble and mean SSP profile from TLRUN1 (Fig. 4.5). 
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Figure 4.14: Fifty Random samples from TLRUN1. The K-SVD ensembles cluster toward the center of 

the input data. 
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Figure 4.15: K-SVD generated SSP ensembles (N = 5000) over the original summer shelf sound speed 

data. This was an arbitrary run of the K-SVD algorithm to demonstrate the nondeterministic behavior of 

the ensembles. 
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Figure 4.16: Mean SSP ensemble and mean SSP profile from arbitrary run in Fig. 4.8. 

 

 Similar to the shelf region, the K-SVD ensembles were unpredictable and did not cover 

variability. At deeper depths, SSP data was less dense, which contributed to the already 

sometimes narrow SSP variability coverage given by K-SVD ensembles (Fig. 4.17). 

 



   

 

47 

 

 

 

Figure 4.17: K-SVD ensembles with 𝑠 = 4 at the shelf break. As SSP profiles get less dense with an 

increase in depth, ensembles represent less of the variability of SSP profiles. 

 

4.2.2 EOF Analysis 

 

 EOF ensembles were generally more consistent than K-SVD ensembles in capturing SSP 

profile variability. For the case shown in Fig. 4.18, three leading-order EOFs were used. The 

EOF mean ensemble profile shown in Fig. 4.20 more consistently followed the input SSP 

measurement profile over the different seasons and regions, although this does come with a 

qualification. The EOF algorithm required that all missing values in the SSP measurement input 

be filled with its own depth-wise mean. This likely contributes to a bias with respect to mean 

ensemble profile fit to the mean profile; however, the algorithm simply does not work without 

this step. The difference between K-SVD (Fig. 4.16) and EOFs (Fig. 4.20) in mean profile 

replication was a typical result.  
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 To further illustrate the disparity in variability coverage between EOF and K-SVD 

ensembles, the mean absolute deviation (MAD)4 was computed as  

 

 

where 𝑅 is the number of ensembles, 𝒄𝑖 is an ensemble, and �̅� is the mean ensemble. 𝑴𝑨𝑫 for 

ensembles and original SSP data at the summer shelf are shown in Fig.  21. Accurate spatial 

variability coverage results in a 𝑴𝑨𝑫 curve that matches the 𝑴𝑨𝑫 of the SSP data. The EOF 

maximum absolute difference between the EOF ensemble 𝑴𝑨𝑫 and the SSP data 𝑴𝑨𝑫 was 1.2 

m/s, while the maximum absolute difference between the K-SVD ensemble 𝑴𝑨𝑫 and the SSP 

data 𝑴𝑨𝑫 was 5.5 m/s. This result was visible in Fig.  11, where the K-SVD ensembles overshot 

spatial variability at depths from 0 m to 10 m and did not cover variability at 20 m.  

  

 

4 Mean absolute deviation for the original SSP data was calculated using the same form.   

𝑴𝑨𝑫 =  
1

𝑅
∑ 𝒄𝑖 − �̅�

𝑅

𝑖=1

, (32) 
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Figure 4.18: EOF ensembles overlayed onto original SSP profiles. Three EOFs were used to generate 

ensembles. 
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Figure 4.19: Random sampling of fifty EOF ensembles and profiles. The individual ensembles do not 

converge to the cener like the K-SVD ensembles. 
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Figure 4.20: EOF mean SSP ensemble profile and mean SSP profile for summer shelf dataset. 
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Figure 4.21: Summer shelf mean absolute deviation (MAD) for EOFs (top) and the K-SVD (bottom). 

Degree of similarity between the lines indicates how well each algorithm covers spatial variability. EOF 

ensemble MAD closely matches SSP MAD, while K-SVD MAD shows a significant overrepresentation 

at some depths and underrepresentation at others.   
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 The three leading-order EOFs used for ensemble generation were identified in green in 

Fig. 4.22. The EOFs were ordered by greatest variance. Variability was largely captured in the 

first four EOFs, which was consistent with prior work on this subject [25]. The K-SVD 

performed as expected with variability distributed across atoms (Fig. 4.6). An observation of 

note was the atoms selected most frequently to represent data in the K-SVD. There was an 

expectation that the K-SVD might most frequently use dictionary atoms that resembled the 

leading order EOFs. This was not the case and likely contributed to the EOFs ensemble 

generation advantage. 

 

 

Figure 4.22: Summer shelf EOFs ordered by variance from left to right in a snake pattern. The three 

leading-order EOFs used for ensemble generation are shown in green. 

 

At the shelf break, four leading-order EOFs were used to represent the data. The EOF 

ensembles in Fig. 4.23 did not cover variability at depths beyond approximately 70 meters. The 

lack of variability coverage was due to a decrease in valid input data at deeper depths. As the 
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density of in situ measurements decreased with depth, more data points were necessarily filled 

with the depth-wise mean. The ensemble convergence toward the center of the original data at 

deeper depths was the result of this imputation choice.  

 

 

Figure 4.23: EOF ensembles at the shelf break. Four leading-order EOFs were used. 
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Figure 4.24: Summer shelf break EOFs sorted in order of descending variance. Green atoms represent the 

four leading-order EOFs used for ensemble generation. 

 

4.2.3 Transmission Loss Ensembles and Distributions 

 

RAM accepts several inputs that include frequency, source depth, range step, and an 

individual sound speed profile. For the summer shelf dataset, the source frequency was 𝑓𝑠 = 250 

Hz, and the environment was range-independent with a bottom boundary 𝑧𝑏 = 50 m and bottom 

density 𝜌𝑏 = 1800 kg/m3. Source depth 𝑧𝑠 and receiver depth 𝑧𝑟 were both 35.71 m. There are 

several more inputs into RAM that have been placed in Appendix C. The K-SVD SSP ensembles 

from the summer shelf dataset were used as inputs into RAM to calculate the TL ensembles in 

Fig. 4.25. SSP and TL ensembles were created for each meteorological season at both the shelf 
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and shelf break, but the focus on the summer shelf dataset continued here. The TL ensembles 

were used to compute the probability density function as a function of TL in Fig. 4.26. This was 

a measure of the relative likelihood that TL ensembles would fall within the defined area.  

 

 

Figure 4.25: Five thousand TL ensembles from summer shelf dataset with a source depth 𝑧𝑠 = 35.71 m 

and receiver depth 𝑧𝑟 = 35.71 m.  
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Figure 4.26: Transmission Loss probability density function for summer shelf, where Z was receiver 

depth. Source depth was 36 m. PDF(TL) was a measure of the relative likelihood a TL ensemble would 

fall within the observed TL boundaries.  
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4. Chapter 5 

 

Conclusion 

 

The main goal of this thesis was to generate SSP ensembles from a stochastic model and 

calculate TL ensembles. The TL ensembles were computed as a function of SSP ensembles 

generated from a K-SVD informed stochastic model. This stochastic model was inspired by an 

EOF stochastic model. A statistical analysis completed on K-SVD outputs determined the 

stochastic model inputs. The statistical analysis was motivated by answering three questions 

related to the K-SVD dictionary learning algorithm: 

 

1) What is the optimal sparsity for this dataset? 

2) Which atoms are selected most frequently? 

3) What distribution do the nonzero coefficients related to these atoms follow? 

 

The optimal sparsity was determined to be 𝑠 = 3 for data defined at the shelf, and 𝑠 = 4 for 

the shelf break. Representation RMSE (Eqn. (31)) for several values of 𝑠, ensemble coverage of 

original data at given sparsity, and recommendations from [43] were taken into account for this 

decision.  

Question two was answered by identifying which 𝑠 rows of 𝑨 contained the most nonzero 

coefficients. Because of the inherent relationship between the rows of 𝑨 and the columns (atoms) 

of 𝑫, the identified 𝑠 rows corresponded to the 𝑠 atoms most frequently used to represent input 

signals. This was not a deterministic property in the sense that which atoms were chosen most 

frequently changed with every completed K-SVD run.  

The coefficient distribution was assumed to be normal with standard deviation equal to 

the standard deviation of the coefficients in relevant rows. This was chosen to agree with the 

EOF stochastic model that assumes normally distributed singular vectors with a standard 

deviation equal to the square root of singular values to create ensembles. The normal distribution 
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applied to the K-SVD coefficients was not an ideal fit. A distribution that better captures outliers 

could help in stabilizing ensemble production.  

 The EOF stochastic model proved to cover SSP spatial variability reliably and with 

greater accuracy than the K-SVD stochastic model. Accuracy was quantified by computing the 

𝑴𝑨𝑫 of both algorithm’s ensembles and the SSP data (Fig. 4.21). The maximum absolute 

differences between the ensemble 𝑴𝑨𝑫 and SSP 𝑴𝑨𝑫 for the EOF and K-SVD were 1.2 m/s 

and 5.5 m/s, respectively. The K-SVD ensemble envelope exhibited nondeterministic behavior 

that resulted in erratic spatial variability coverage. Fig. 4.12 gave reason to believe dictionary 

atoms were responsible for ensemble envelope shape. The atom shapes did not appear 

representative of the mean SSP profile in the datasets examined. The leading-order EOF shapes 

were indicators of their success in generating consistent ensembles as they more closely 

resembled the mean SSP profile. A definitive explanation for the K-SVD behavior was not 

identified; however, key insights were made that may lead to a solution in the future. The most 

plausible reason that EOF analysis showed superior spatial variability coverage is that its explicit 

goal is to capture spatial variability. The K-SVD’s goal is to solve an optimization problem by 

minimizing Eqn. (3), which results in order reduction. The unexpected shapes of the most 

frequently selected dictionary atoms were a result of this goal.  Furthermore, the stochastic 

model developed in this thesis inherently favors EOF analysis. The stochastic models had access 

only to the 𝑒 leading-order EOFs and the analogous 𝑠 most frequently selected K-SVD atoms. 

This benefited EOF analysis because data variance was concentrated in the lead-order EOFs 

(Fig. 4.22), while data variance was distributed throughout the LD from the K-SVD (Fig. 4.6).  

Despite these drawbacks, the K-SVD did produce accurate mean ensemble profiles 

relative to the mean profile. The K-SVD also allowed for the imputation of zeros for missing 

values instead of filling missing data with the depth-wise mean like EOF analysis required.   

 Both the K-SVD and the EOF model poorly represented SSP variability at deeper depths 

in the shelf break region. This was primarily due to a decrease in SSP data density as depth 

increased.  

 Finally, the production of TL ensembles based on K-SVD SSP ensembles was 

accomplished. These TL ensembles were also used to construct a TL probability density function 

that has implications outside the scope of this thesis.  
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Future Work 

 

Identifying or developing a distribution that more accurately captures the behavior of 

coefficient selection is an intriguing direction for research. Weights that better represent the 

distribution of nonzero coefficients may contribute to more reliable K-SVD ensemble shapes.  

When missing values were present in the dataset, K-SVD representation RMSE showed 

anomalies of up to 3.19 m/s when 𝑠 = 3, while the mean over the entire sample size was 1.19 

m/s. The percentage of missing values relative to valid values has an effect on reconstruction. 

Research to determine a critical valid value percentage that a K-SVD input matrix is required to 

have for these anomalies to decrease in frequency is promising.  

Further study into the fundamental difference between EOF analysis and the K-SVD is 

another promising direction for research. The K-SVD is highly amenable to changes in 

parameters, as well as alternative sparse coding methods. A deeper understanding of the 

theoretical differences may lead to choices that strengthen the K-SVD’s ability to cover the 

spatial variability of input data.   

Using this stochastic model (K-SVD or EOF) has potential to contribute to estimating the 

probability of detecting marine mammal noise through passive acoustic monitoring using TL 

PDF information shown in Fig. 4.26. 
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Appendices 

 

Appendix A 

 

K-SVD Example 

 

To demonstrate the K-SVD’s versatility, it was applied as a means to compress and 

reconstruct ocean temperature profiles at the NESB. The dataset consisted of water temperature 

profiles retrieved by an Expendable BathyThermograph (XBT) at the NESB (same geographical 

location as the CTD data) shown in Fig. A.1. This is a compressive sensing application based on 

the principle that a signal can be reconstructed from much fewer samples than prescribed by the 

Nyquist-Shannon Sampling Theorem [29], [30], [32], [66]. All K-SVD parameters were set in 

accordance with [43]. Fig.  A.1 shows an example of an XBT device. Fig. A.2 shows the original 

and reconstructed data at a depth of 20 m, as well as the residuals between the two. The original 

dataset was stored in a .mat binary file with a size of 417 kilobytes. The dictionary, sparse 

coefficient matrix, and mean temperature profile required to reconstruct the data was 234 

kilobytes. This was a 43% decrease in file size.  
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Figure A.1: Expendable BathyThermograph (XBT) device used to measure water temperature (above). 

Inner-workings of the XBT device (right). 
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Figure A.2: Sample of ocean temperature profiles at the NESB for z = 20 m. Original data (left), K-SVD 

reconstruction (middle), and residual between the two (right). 
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Appendix B 

 

RAM Example 

 

The range-independent Pekeris waveguide solution was chosen as an ideal case to 

demonstrate the output of RAM. The Pekeris waveguide shown in Fig. B.1 is a horizontally 

stratified environment with an isovelocity water layer above an isovelocity fluid halfspace that 

simulates a simple bottom layer [67], [68]. By modeling the bottom layer as an infinite fluid 

halfspace, how energy leaks out of the waveguide becomes apparent. The modes that escape the 

waveguide surpass a critical angle of propagation relative to the horizontal and leak energy into 

the fluid halfspace. These are known as leaky modes. 

 

Figure B.1: Pekeris waveguide environment - isovelocity water layer above an isovelocity half space 

with a different sound speed. 
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Figure B.2: Colormap showing TL in the Pekeris waveguide with a source frequency of 50 Hz, and 

source and receiver depth of 50 m. The leaky modes are the three finger-like beams within 500 m (in 

range) of the source (above). TL at the receiver is shown at 50 m. 

 

They are visible near the source, penetrating the bottom layer in Fig. B.2. The source frequency 

is 50 Hz, and the source depth is 50 m. The receiver depth is also at 50 m. RAM models the 

Transmission Loss as a function of depth and range. 

As a benchmark for performance, a Pekeris waveguide example from [68] shown in Fig. 

B.3 with source frequency 𝑓𝑠 = 50 Hz, source depth (𝑧𝑠) and receiver depth (𝑧𝑟) equal to 36 m, 

sound speed in water 𝑐𝑤 = 1500 m/s, sound speed in the bottom layer 𝑐𝑏 = 1800 m/s, density of 

water 𝜌𝑤 = 1000 kg/m3, and density in bottom layer 𝜌𝑏 = 1800 kg/m3 was modeled in RAM (Fig. 

B.4). A visual inspection showed that they agree. 
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Figure B.3: Transmission Loss in a Pekeris waveguide of source with frequency 20 Hz and waveguide 

depth of 100 meters. The source depth and receiver depth are 36 meters (modified) [68]. Solid curve is TL 

at receiver depth of 36 m and dashed curve is TL at receiver depth of 46 m.  
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Figure B.4: RAM solution for Transmission Loss with identical parameters of solid curve in Fig. 5.5.
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Appendix C 

 

RAM Input Definitions 

 

Code snippet from ram.m function with input definitions.  
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Appendix D 

 

K-SVD Related Figures 

 

K-SVD representation error figures and ensemble figures for each season and region. 
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Winter Shelf Break 
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Summer Shelf Break 
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Empirical Orthogonal Function Related Figures 

 

EOF ensemble figures for each season and region. 
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