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ABSTRACT 

In the past decade artificial intelligence has undergone vast development thanks to deep 

learning techniques. However, the large computation overhead limits the application of AI in 

scenarios where area and energy consumption are limited. This is due to the mismatch in 

architecture between von Neumann hardware computing systems and deep learning algorithms. As 

a promising solution to the problem, neuromorphic computing has attracted great research interest. 

While there are efforts to build neuromorphic computing systems based on CMOS technology, 

memristors which provide intrinsic dynamics similar to synapses and neurons are also under 

exploration. Among different types of memristors, this dissertation focus on spintronic devices, 

which offer more plentiful neural or synaptic functionalities with a low operating voltage. The work 

in this dissertation consists of both simulation and experimental part. On simulation side, a 

stochastic neuron design based on magnetic tunnel junction utilizing magnetic-electro effect is 

proposed. The stochastic neurons are used to build spiking neural networks, which show improved 

spike sparsity with good test accuracy. Apart from spiking neural network, an all-spin Bayesian 

neural network is proposed, where intrinsic stochasticity of scaled devices is utilized for random 

number generation. Voltage controlled magnetic anisotropy effect-based magnetic tunnel junction 

is explored and utilized to solve write sneak path problem in crossbar array structure. On 

experiment side, Hall bars are fabricated on ferromagnetic/heavy metal materials stacks and utilized 

as neurons. Relations between Hall bar characteristics and size are explored. Hardware-in-loop 

training has been studied with Hall bar neurons. 
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Chapter 1 
 

Introduction 

In 1965, Gordon Moore stated the doubling of number transistors on microchips every 18 

months, which is known as Moore’s law and predicted the rapid development of processors and 

related computing systems in the last few decades [1]. However, due to physical limitation, Moore’s 

law is coming to its end. The conventional scaling of transistors is over due to prominent short-

channel effects in small transistors, which prevents the improvement of device performance by 

simply scaling down transistors [2]. Furthermore, the fabrication cost becomes unaffordable for 

chips with extremely small transistors. To continue improving computing efficiency, efforts have 

been made to explore new transistor architectures and materials to continue improving computing 

performance [3]–[5]. On the other hand, new computing methodologies are also being explored to 

overcome the limitation of digital circuits. Quantum computing [6], [7], stochastic computing [8], 

[9] and analogue computing [10] are some examples of new computing methodologies. Among all 

the branches under exploration, neuromorphic computing is one of the most promising areas and is 

the topic of exploration for this thesis, which aims to emulate the architecture and function of 

biological brain to achieve high computing efficiency. 

The idea of neuromorphic computing was proposed by Carver Mead in the 1980s [11]. 

With the rapid development of artificial intelligence (AI) and deep learning techniques in the past 

decade, neuromorphic computing is attracting more research interest since it provides a promising 

method to enhance the computing performance of AI systems.  

Deep learning techniques enable AI application in a large plethora of areas such as speech 

processing [12], [13], video object recognition [14] and financial fraud detection [15], among 

others. However, as the dimensions of dataset grow rapidly, the computational overhead for those 
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AI systems increases extensively. For example, Alpha Go from Google, which beat human world 

champion in a Go board game in 2016 [16], consumed ~MW of power with 1920 CPUs and 280 

GPUs. On the contrary, its opponent, human champion Lee, only needs tens of Watts for the same 

task. This stark contrast is attributed to the so-called von Neumann bottleneck, which arises from 

the data transportation between computing unit and memory unit in a von Neumann computer. 

1. Von Neumann Bottleneck 

A von Neumann computer mainly consists of CPU (central processing unit), memory and 

input/output devices. CPU, the computing unit, is separated from the memory, where instructions 

and data are stored. During the computation, the processor gets the instruction and required data 

from memory via data bus, which causes several limitations on the computing performance, as is 

shown in Figure 1-1. 

The first limitation is on the data processing speed, which is due to the throughput of data 

bus connecting CPU and memory as well as the processing speed mismatch between CPU and 

memory [[17]. The CPU data processing speed is faster than the maximum throughput of data bus. 

Also, the processor register (small memory cells within the CPU) works faster than memory. As a 

result, instead of the time required for calculation, the time to transfer data from memory to CPU 

accounts for most of the latency. Energy consumption is the second limitation. Most of the energy 

is consumed during data transporting between CPU and memory. For the same amount of data, the 

energy consumption during data transportation via data bus (~nJ) can be 1000 times larger than 

that required by CPU processing (~pJ) [17], [18]. These speed and energy limitations are known 

as von Neumann bottleneck since they result from the structure of von Neumann computers. 
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Figure 1-1: Von Neumann bottleneck results from the separation between CPU and 

memory, which causes limitation in energy consumption and latency. 

2. Advantages of Neuromorphic Computing 

As controlling energy and speed expense becomes more and more important for device 

application such as Internet of Things (IOT) [19], wearable devices [20], among others, where 

scaled chips with real-time responding capability are needed, neuromorphic computing as a 

computing paradigm inspired by biological brain is attracting more research interest for high energy 

efficiency. Neuromorphic computing paradigm avoids the aforementioned von Neumann 

bottleneck problem. Research has revealed that features provided by neuromorphic computers can 

be beneficial to deep learning techniques, as they share the same neuron-synapse computing 

structure. 

2.1. In-Memory Computation  

Figure 1-2 shows the neuron-synapse model of a neuromorphic computing system. 

Neurons (circles) are small computing units with a built-in non-linear activation function. Neurons 

are connected by synapses (lines), which are the memory units of the network. In-memory 

computation is actualized since the memory units and computing units have in-situ connection. In-
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memory computation eliminates the data transportation between the separate computing and 

memory units, which mitigates the latency and energy consumption caused by the von Neumann 

bottleneck [21]. 

 

Figure 1-2: Neuromorphic computing systems adopt neuron-synapse model. Computations 

are processed in a feedforward manner from input to output. In neuromorphic computing paradigm, 

multiple computations can be processed parallelly by different neurons in the same layer. 

2.2. Massively Parallel Computation 

The neuromorphic computing paradigm also enables massively parallel computation. 

Different from von Neumann systems, where the input instructions are processed sequentially, all 

neurons and synapses in a neuromorphic computer can process computations parallelly. Figure 1-

2 shows an example of parallel computation conducted by a simple fully connected network. The 

four neurons in the hidden layer perform their own calculations (denoted with different colors) at 

the same time. Research has shown that with this parallel computing feature, the training process 

of a large deep neural network with a billion weights can achieve 30000 × acceleration on a 

neuromorphic computing system compared to the state-of-the-art CPU/GPU system [22]. 
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2.3. Inherent Scalability 

The structure of neuron-synapse computing model inherently possesses scalability. Since 

neural networks can be enlarged by adding more neurons and synapses, it is possible to build a 

large neuromorphic computing system by integrating multiple small neuromorphic chips. This 

scalability has proven validity for hardware neuromorphic computers such as SpiNNaker [23], [24] 

and Loihi [25]. 

2.4. Event-Driven Computation 

Apart from the structure, neuromorphic computing paradigm also mimics the behavior of 

biological brain. Different from traditional analog neural networks (ANNs), where neurons encode 

and convey information in stable analog values, biological neurons have information encoded in 

binary spike trains with different temporal patterns [26]. The spike-based neural network is called 

the spiking neural network (SNN). In a spiking neural network, neurons and synapses are activated 

only when there are spikes to be generated or conveyed, which enables event-driven computation. 

Since devices are idle most of the time during computation where spikes are typically sparse, event-

driven computation leads to significant energy efficiency [27]. 

2.5. Stochasticity 

The spiking behavior of SNNs enables stochasticity, which is another feature different from 

standard ANNs. The generation and transmission of spikes in biological neurons and synapses 

contain randomness, which comes from the noise in the nervous system [28]. SNNs also mimics 

the probabilistic firing/transferring of spikes and enables stochastic computing, which converts 

noise in devices from a distractive factor to a computation source [29], [30]. 
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These advantages drive researchers to explore neuromorphic computing paradigms from 

both algorithm and hardware sides.   

3. Spiking Neural Network 

3.1. Algorithms Research 

Spiking neural network (SNN), as a third generation of artificial neural network (ANN), 

has attracted great research interest as it is able to capture the spike-based information processing, 

which is observed in biological brains [31]. Apart from the aforementioned low power consumption 

due to event-driven computing, SNNs also offer advantages in computing capacity and capability 

in dealing with information with temporal characteristics, compared to traditional ANNs which 

consist of perceptrons (first generation) or neurons with non-linear activation function (second 

generation). It has been proven that SNN is able to provide the same computing capability (if not 

better) as ANN with significantly fewer computing elements [32]. On the other hand, spikes-based 

computation is inherently beneficial for temporally distributed information, as spikes are 

propagated in a temporal manner. In order to build up a spike-based computing paradigm, 

information needs to be converted into spike trains. 

Researchers have not yet come to a conclusion about the best encoding scheme. In fact, 

different data forms may have their own most suitable encoding scheme. Various different 

encoding schemes have been observed in biological systems. For example, it is observed that frog 

muscle responds to external stretching in a rate encoding manner, in which the frequency of fired 

spike train is related to the applied stretching intensity [33]. While in some retinal, tactile and other 

systems, information is converted via temporal encoding scheme [34], [35]. Rate encoding and 

temporal encoding are the most popular schemes. Rate encoding refers to the scheme where the 
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firing rate of a spike train is utilized to encode information. Rate encoding is frequently used as it 

is an easy approach for ANN-SNN conversion. However, since a long spike train including spikes 

is required to obtain the precise firing rate, rate encoding is energy consuming and not suitable for 

high speed processing. Temporal encoding scheme utilizes the precise timing of spikes to encode 

information. Typical approaches are time-to-first-spike (TTFS), where time difference between the 

stimulus and the first fired spike is used, and latency/inter-spike-interval (ISI), where time 

difference between two spikes is used. Since temporal encoding only needs limited number of 

spikes, it is capable of high speed information processing [36]. 

Apart from the encoding scheme, the learning mechanism is also an open problem for SNN. 

The training process of a neural network is to update the weight values of synapses so that the 

network is able to generate desirable output after the process. The simplest approach is ANN-SNN 

conversion [37]–[39], where the weight values of a trained ANN is mapped to an SNN of the same 

size. ANN-SNN conversion is used in conjunction with the rate encoding scheme to convert the 

analog values in ANNs to spike trains required by SNNs. This results in the loss of temporal 

characteristics of SNN, leading to the advantages of SNN not being fully utilized. Online gradient-

based learning mechanisms are also developed. Standard ANN gradient descent approach meets 

difficulties in SNN training. Due to vanishing or exploding gradient, the training is limited to 

shallow SNNs and small datasets. Efforts have been made to address the problem. One possible 

solution include threshold-dependent batch normalization (tdBN) method, which is based on 

spatial-temporal backpropagation (STBP) [40]. In the work, 50-layer SNN was directly trained 

successfully, and achieved improved accuracy and reduced timestep on large datasets as well. Wei 

Fang and others induced learnable membrane time constant, which improved the accuracy on 

nearly all datasets (including large datasets) and reduced the training time [41]. Besides gradient-

based learning mechanisms, bio-plausible learnings mechanisms (supervised and unsupervised), 

which allow for localized learning, are also being explored [42]–[44]. Although the performance 
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on large-scale tasks is not yet good enough, SNNs trained with spike timing dependent plasticity 

(STDP) is reported to be desirable in finding clusters in unlabeled data [x]. 

Despite the challenges remaining in the field, SNNs have already been implemented in 

many applications such as gesture recognition [45], [46], speech processing [47], [48], bio-medical 

signal analysis [49], [50], among others. 

3.2. Hardware Research 

Neuromorphic research and application require the simulation of SNNs, which is time and 

power consuming on von Neumann architectures. For this reason, researchers are also searching 

for suitable hardware platform for SNNs. 

Standard ANN, which also encounter bottleneck problem when running on von Neumann 

computers, can be accelerated by graphic processing unit (GPU) or tensor processing unit (TPU). 

GPU provides parallel computation which alleviates the bottleneck by shifting between multiple 

instruction threads to avoid latency [51]. TPU reduces reads and writes via “systolic execution” 

and achieves acceleration and energy efficiency [52]. However, these options are not suitable for 

SNNs as they are not designed for multi-timestep processing. 

The hardware implementation of neuromorphic systems, known as neuromorphic 

engineering, originates from Carver Mead’s proposal, where he excogitated the idea of mimicking 

biological brain functionalities using analog circuits [11]. Soon after that, the first silicon neuron 

and silicon retina were implemented [53], [54]. Nowadays, a number of neuromorphic computing 

projects have been developed. In 2014, IBM proposed its TrueNorth digital chip, including 4096 

neural cores with 5.4 billion transistors [55]. The chip is able to compute a SNN with 1 million 

programmable spiking neurons and 256 configurable synapses. TrueNorth is an inference-only 

chip, which is suitable for multi-object detection and classification. Intel launched Loihi chip in 

2018 [25]. It contains 128 neural cores, each of which includes 1024 primitive spiking neural units, 
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leading to around 131 thousand neurons and roughly 130 million synapses in total. Loihi chip is 

capable of both learning and inferencing. There are also other neuromorphic projects such as 

Tianjic [56], SpiNNaker [23], [24], [57] , BrainScaleS [58], Neuronflow [59], etc. However, all 

these mentioned projects are still based on CMOS technology. However, CMOS transistors are not 

the best building block for neuromorphic computing platforms. Since transistors are quite different 

from neurons and synapses based on bottom-level functionalities, the structure of CMOS-based 

neuromorphic computing systems is complex, resulting in high power and area consumption. On 

the other hand, it is more and more difficult to scale down the feature size of transistors due to the 

physical limit, which slows down the reduction of computing power of CMOS-based systems. For 

this reason, memristors, which is one of the post-CMOS technologies, is attracting research interest. 

A memristor is a memory and a resistor concurrently. For this reason, it should be able to 

maintain multiple (at least two) resistances, as well as switch between the different resistances. 

Memristors are suitable for neuromorphic computing for several reasons: 1) Their intrinsic 

dynamics are similar to those of neurons and synapses [60]–[63]. This enables one memristor 

device to serve as one neuron or synapse in the system, which vastly reduces the structure 

complexity as well as area consumption thanks to the small device size; 2) The memristors are non-

volatile devices. This means no external energy is required to maintain the resistance in contrast to 

CMOS-based memories and is beneficial to power consumption; 3) In memory computing, which 

is the manner of working of biological brain, can be easily realized via crossbar array structure, 

which enables easy computing of dot-product via Kirchoff’s law [64], [65]. Several types of 

memristors have been proposed, such as resistive random-access memory (RRAM) [66]–[68], 

phase-change memory (PCM) [62], [65], [69], spintronic devices or in other word, 

magnetoresistive random-access memory (MRAM) [70]–[72], etc. Spintronic devices, compared 

to other memristor technologies, offers more plentiful neural or synaptic functionalities with a low 

operating voltage [71]–[77]. The basic building block of spintronic-based systems is magnetic 

tunnel junctions (MTJs), which consists of two ferromagnetic layers sandwiching a spacer oxide 
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layer. By applying spin current or magnetic field accordingly, neural and synaptic functionalities 

can be achieved by the same device structure, which is beneficial for a compatible system. These 

characteristics establish spintronic technology as a good candidate for neuromorphic computing. 

However, there are still novel physics in spintronic systems discovered but not yet 

introduced to neuromorphic computing applications. On the other hand, the algorithms developed 

also need to take those novel device characteristics into consideration. This dissertation aims to 

bridge the gap between device physics study (more specifically, spintronic device study) and 

algorithms study. 

4. Bayesian Neural Network 

Apart from the forementioned SNN, which offers power consumption and computing 

capacity improvement, there is another branch of improved ANN model called Bayesian neural 

network (BNN), which is beneficial for probabilistic inference, overfitting problem and decision 

interpretation [78]. 

Standard ANNs are not suitable for probabilistic inference tasks, which are essential in 

decision making process of biological brain, as they do not overtly contain uncertainty in the model. 

The predictions made by a standard ANN are based on point estimate, which means the network 

makes predictions with 100% confidence according to its built-in criterion (e.g., pick out the neuron 

with the minimum output value), even though sometimes several output neurons have close output 

values.  

Overfitting is another problem that may occur in standard ANN, which is likely to happen 

when a small dataset is fed to a network with too many synapses. Overfitting leads to degradation 

of network performance on test data while maintaining a good performance on training data. 

The lack of interpretation refers to the ignorance of the underlying decision making process 

in ANNs. Although people are able to develop training algorithms empirically, ANNs are still 
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black-box models and this prevents the application of ANN in high risk areas, as the results from 

ANNs are not considered reliable. 

BNNs provide improvement on standard ANNs regarding the aforementioned drawbacks. 

BNNs enable probabilistic inference by replacing point synapses with synapses of which the weight 

is described by a distribution. For a certain input, the output falls in a distribution decided by the 

weight distribution. This enables the network to provide not only the output result, but also how 

“confident” the network is towards the result. The training process of BNNs is according to Bayes’ 

theorem, which sheds light on how neural networks make decisions [79]. Overfitting problem also 

benefits from the Bayesian framework [80], which leads to natural regularization for model 

complexity. 

Though BNN model offers improvement to ANN in a different way, it also faces the same 

challenges as SNN model, which is the computing overhead on hardware platforms. This can also 

benefit from the aforementioned spintronic devices development. 

5. Dissertation Statement and Outline 

5.1. Dissertation Statement 

Neuromorphic computing is a large field involving researchers from many different areas 

including materials science, electrical engineering, and computer science. In such a large 

community, it is important to have information from different fields of study shared fluently so that 

new discovery in one field can benefit research in another field. This dissertation aims to bridge 

the gap between spintronic device study, where devices utilizing novel physics are explored, and 

algorithms study, where how spike-based network of devices is built and how training and 

inferencing are conducted are explored, from both bottom-up and top-down perspectives. Bottom-

up perspective refers to how neuromorphic devices are designed to implement novel physics and 
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how algorithms are modified to comply with the proposed design. Top-down perspective refers to 

how algorithms can benefit from the characteristics of novel devices. As a summary, the following 

dissertation statement is given: 

This dissertation explores how neuromorphic computing can benefit from novel 

device physics as well as what corresponding algorithm modifications are required to 

leverage device benefits. 

5.2. Dissertation Outline 

Chapter 1 is the introduction part. It clarifies why it is worthwhile to spend resources, time, 

and energy on neuromorphic computing, including SNN and BNN, as well as the current status of 

the area. 

In chapter 2, the basic knowledge required to understand the work and the methodology 

adopted in this dissertation will be delivered. 

Chapter 3-6 address the main work accomplished. Chapter 3 delivers a stochastic spintronic 

device proposal which enables independent control of state lifetime, which is used as spiking 

neurons in the network. The SNN is trained with a backpropagation-based algorithm and adopts 

temporal encoding. The results show that the proposed SNN achieves high accuracy on MNIST 

dataset with better spike sparsity compared to rate encoding SNN. Chapter 4 delivers an all-spin 

Bayesian neural network design, where device stochasticity is leveraged for Gaussian random 

number generation. Chapter 5 illustrates how synapses utilizing voltage-controlled magnetic 

anisotropy (VCMA) effect benefit sneak path issue in writing process in a crossbar array structure. 

Chapter 6 introduces an experimental work, where an SNN built with spin-based devices is used to 

illustrate the advantages of hardware-in-the-loop training. 

Chapter 7 is a summary of the dissertation and provides an outlook for future work. 
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Chapter 2  
 

Background Knowledge and Methodology 

This chapter covers the background knowledge from both algorithm and hardware sides 

required to understand the dissertation as well as the methodology applied. 

1. Standard Artificial Neural Network 

Before addressing the SNN, it is necessary to have a brief introduction of standard ANN. 

The structure of a one-hidden-layer ANN is shown in Figure 1-2. The first layer is an input layer, 

which only receives and passes input signals to the next layer through synapses without calculation. 

Synapses are the connection between neurons. Each synapse possesses a weight value, which is 

applied to the signal passing through. Neurons conduct calculations based on their built-in 

activation function and pass the result to synapse connecting the next layer. The last layer is the 

output layer where results are generated. The process of signals passing from input layer to output 

layer is called feed forward process. Equation 2.1 describes the calculation conducted by neurons: 

𝑦 = 𝑓 𝑤 , 𝑥  (2.1) 

In the equation, 𝑥  is the output from presynaptic neuron 𝑗. 𝑤 ,  is the weight value stored 

in the synapse between neuron 𝑗 and the postsynaptic neuron 𝑖. The summation ∑ 𝑊 , 𝑥  is the 

weighted sum from all connected presynaptic neurons. Function 𝑓  is the non-linear activation 

function of neuron 𝑖  and 𝑦  is the output of neuron 𝑖 . Several activation functions have been 

studied. In the first generation ANNs, perceptron neuron model is applied, where neuron output is 

binary, and the activation function is a step function shifted in 𝑥 direction for different thresholds 

[81]. Later research has adopted other functions such as sigmoid function [82], [83], ramp 

saturation function [84], rectified linear unit (ReLU) [85],  hyperbolic tangent function (tanh) [86], 
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etc. as the activation function with analog input and output values. These networks are viewed as 

second generation ANNs. The inference result via feed forward process is given by Equation 2.2: 

𝒈(𝒙) = 𝑓 𝑾 𝑓 (𝑾 … 𝑓 (𝑾 𝒙))  (2.2) 

In the equation, 𝒙 is the input data, which is a vector. 𝑾  is the weight matrix between layer 𝑖 − 1 

and layer 𝑖 . 𝑓  is the activation function of neurons in layer 𝑖 . 𝑁 is the total number of layers 

excluding input layer since the input layer does not include any calculation. 

 Feedforward process is the inference process of the ANNs. To generate desired output, 

ANNs need to be trained. The training of the network refers to updating the weight values of all 

synapses so that desired results can be generated by the network. The basic supervised training 

algorithm is backpropagation. 

In supervised training, the weight values are updated under the guidance of a loss function, 

𝐿(𝒈, 𝒚), which indicates the difference between current inference result, 𝒈(𝒙), which is given by 

Equation 2.2, and the correct answer, 𝒚, for the fed training data denoted by 𝒙. The training process 

refers to finding the weight values which minimize the loss function by gradient descent method, 

given by Equation 2.3: 

∆𝑤 , = −𝜂
𝜕𝐿

𝜕𝑤 ,
 (2.3) 

∆𝑤 ,  is the increment of weight 𝑤 , . 𝜂 is the learning rate, which is a modifiable constant. ∆𝑤 , , 

given by Equation 2.3, always decreases 𝐿 and enables the minimum of 𝐿 in a few steps. The 

derivative 
,

 can be obtained by Equation 2.4:  

𝜕𝐿

𝜕𝑤 ,

=
𝜕𝐿

𝜕𝑜

𝜕𝑜

𝜕 ∑ 𝑤 , 𝑜

𝜕 ∑ 𝑤 , 𝑜

𝜕𝑜
…

𝜕𝑜

𝜕 ∑ 𝑤 , 𝑜

𝜕 ∑ 𝑤 , 𝑜

𝜕𝑤 ,

 (2.4) 

𝑜  is the output of 𝑖th neuron in the 𝑘th layer, according to Equation 2.1, with 𝑜 = 𝑥 . 𝑤 ,  is the 

weight value of synapse connecting the 𝑗th neuron in the 𝑘th layer and 𝑖th neuron in the (𝑘 − 1)th 

layer. The loss function 𝐿 needs to be chosen properly so that the derivative is well defined. A 
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commonly used loss function is 𝐿 = ∑ (𝑦 − 𝑔 ) , where 𝑚 is the dimension of output. As is 

indicated by Equation 2.1, the derivatives are calculated from the last layer to the first layer, which 

is shown in Figure 2-1. For this reason, it is called a backpropagation process. 

 

Figure 2-1: Backpropagation process for weight updating is shown. 

2. Spiking Neural Network 

Compared to ANN model, SNN is a more bio-plausible model in which information is 

encoded and conveyed in binary spike trains. This leads to differences from the standard ANN 

model. For example, in ANN, computations are based on analog values synchronously propagating 

in the network, while neurons in SNNs receive and calculate spikes, which convey information and 

arrive at neurons asynchronously. For this reason, neuron models describing how spikes are 

generated by neurons and algorithms on how learning is conducted based on spikes are explored. 
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2.1. Neuron Models 

Biological neurons are complex. Typically, a biological neuron is composed of a soma to 

process information, an axon to transmit information to other neurons (output) and dendrites to 

receive electrochemical signals and transmit information to the soma (input). Among various 

models to describe the dynamic in a neuron, the Hodgkin-Huxley model proposed in 1952 is the 

most popular one [87]. In the Hodgkin-Huxley model, a neuron is viewed as a group of electrical 

elements (capacitor, conductance, current source, and voltage source) describing the dynamic of 

ion channels. Since the model consists of four non-linear differential equations, it is mainly used 

for neural systems modeling rather than neural network computing due to the complexity [88], [89]. 

On the other hand, in most of the ANNs, derivatives of the McCulloch-Pitts neuron (described by 

Equation 2.1) are adopted [90]. 

The Hodgkin-Huxley model and the McCulloch-Pitts neuron are at the two ends of the 

scale. The Hodgkin-Huxley model is highly bio-plausible but complex, while the McCulloch-Pitts 

neuron is simple but so abstract that it does not include the spiking behavior. Spiking neuron models 

for neuromorphic computing stand in the middle. For neuromorphic computing purposes, Integrate-

and-Fire (IF) model is widely used [43], [91], [92].  

2.1.1. Integrate-and-Fire (IF) and Leaky-Integrate-and-Fire (LIF) Model 

IF/LIF model is a simpler spiking neuron model which can be derived from the Hodgkin-

Huxley model [31]. The soma is modelled as the circuit structure shown in Figure 2-2, which 

receives input spike train 𝐼(𝑡) and generates the membrane voltage 𝑢(𝑡). The input spike train is 

split into 𝐼  and 𝐼 . Once there is an input pulse at time 𝑡, the capacitor is charged by 𝐼  and 

membrane voltage 𝑢(𝑡) builds up. When there is no input, the membrane voltage 𝑢(𝑡) is gradually 

lowered by the resistive current 𝐼 . 
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Figure 2-2: In LIF model, a neuron is viewed as two parallelly connected capacitor (𝐶) and resistor 

(𝑅) receiving input spike train 𝐼(𝑡). The membrane voltage 𝑢(𝑡) is the voltage across the capacitor. 

The corresponding behavior is described in Equation 2.5: 

𝜏
d𝑢(𝑡)

d𝑡
= −𝑢(𝑡) + 𝑅𝐼(𝑡) (2.5) 

In the equation, 𝜏 = 𝑅𝐶 is the membrane time constant. The first term describes the leakage of 

𝑢(𝑡) caused by resistor and the second term describes the integration of 𝑢(𝑡) due to the capacitor. 

 The generated membrane voltage 𝑢(𝑡) is be compared to a threshold voltage 𝜗. An output 

spike will be generated at time 𝑡  if 𝑢(𝑡 ) = 𝜗. After an output spike is fired, the neuron undergoes 

a refractory period ∆  , during which the soma does not respond to the input spikes. The 

refractory period is introduced to prevent a particular neuron from firing excessively. The 

membrane voltage is reset after output spike firing. Figure 2-3 illustrates the process for a neuron 

to generate an output spike from an input spike train. 
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Figure 2-3: The leaky-integrate-and-fire process is shown. The membrane voltage 𝑢(𝑡) builds up 

when an input spike arrives and decays when input is silent. Once 𝑢(𝑡) reaches the threshold value, 

an output spike is fired. After the spike is fired, the neuron undergoes a refractory period ∆ . 

 A generalization of LIF model is non-linear leaky-integrate-and-fire model, which can be 

achieved by replacing −𝑢(𝑡) and 𝑅 on the right-hand side of Equation 2.5 into non-linear function 

of 𝑢. 

2.1.2. Stochastic Neuron Model 

IF/LIF model is deterministic model, which means an input spike train leads to a certain 

output determined by the intrinsic parameters of the neuron. On the contrary, stochastic neuron 

model introduces randomness into spike generation process of a neuron [60], [93]. A stochastic 

neuron generates spikes based on a non-linear function of firing rate related to the neuron input, 

which is given in Equation 2.6: 

𝑃(𝑜 = 1) =
1

1 + 𝑒 ∑ ,
 (2.6) 

In the equation, 𝑜  is the binary output of neuron 𝑖. 𝑃(𝑜 = 1) is the probability to generate an 

output spike for neuron 𝑖 with the received input ∑ 𝑤 , 𝑜 , which is the weighted sum of all pre-

neuron signals 𝑜  connected by synapse weight 𝑤 , . Since the output spike train is generated in a 

stochastic manner, computations are usually conducted based on statistics such as the average 
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number of spikes in a period depending on the encoding framework adopted. To easily implement 

the stochastic neuron model, device noise needs to be leveraged. 

 

 Apart from the IF/LIF and stochastic neuron model, there are also other models such as 

Izhikevich model, Spike response model (SRM), etc. More information can be found in reference 

[31], [94]. 

2.2. Synapse Models 

Synapses are another important component of neural networks. In a nervous system, 

synapses outnumber neurons by several orders of magnitude. For this reason, synapse models for 

neuromorphic computing purposes tend to be simple. In most cases, synapses trained offline only 

serve as connections between neurons and provide fixed weight values (𝑤 ,  in Equation 2.1) for 

weighted-sum calculations during inference process. However, things are different when synaptic 

plasticity is considered. In unsupervised learning framework, spike-timing-dependent plasticity 

(STDP) is adopted widely as a bio-plausible synaptic learning mechanism [95], [96], where the 

close pre- and postsynaptic spikes results in large change of synapse weight, as is indicated in 

Figure 2-4. 

 

Neuron and synapse models discuss how spikes are generated and conveyed in the neural 

network. To endow the generated spike trains with meanings, information encoding frameworks 

are also explored. 
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Figure 2-4: The relation between synapse weight change and spike timing under STDP mechanism 

is shown. Spike timing (∆𝑡) refers to the spike time difference between postsynaptic spike (𝑡 ) 

and presynaptic spike (𝑡 ), i.e., ∆𝑡 = 𝑡 − 𝑡 . 

2.3. Information Encoding Frameworks 

Spike trains, in which information can be encoded, are ‘0’s and ‘1’s distributed in a period 

of time with different temporal patterns. In SNN computation, information encoding refers to how 

analog values are represented by different spike trains. Inevitably, errors will be induced during the 

encoding process, and there is always tradeoff between error and computation overhead such as 

time or energy consumption. Different information encoding frameworks have been studied, 

among which rate encoding and temporal encoding are the most popular ones [97]. 

2.3.1. Rate Encoding 

Rate encoding refers to the method where information is encoded in the firing rate of a 

spike train, which was shown in 1926 by E.D. Adrian and Y. Zotterman [33]. There are 3 

subcategories of rate encoding method: count rate encoding, density rate encoding and population 

rate encoding. 

Count rate encoding is the simplest method, where information is encoded in the average 

number of spikes in a period of time. This can be implemented via Poisson encoding, where the 

spike train is generated on several time steps [92], [98]. At each time step, the normalized analog 
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value to encode, 𝑥, is compared to a uniform random number, 𝑢~𝑈(0,1). The neuron fires if the 

analog value wins the comparison (𝑥 > 𝑢). To achieve high encoding accuracy, a long spike train 

is required for smaller discretization step size, which leads to high inference latency [39], [99]. 

Density rate encoding refers to the scheme where the same input is fed to a neuron multiple 

times to obtain the spike density defined as average number of spikes during the period for several 

runs. 

Population rate encoding requires the input to be fed to several neurons. Neurons do not 

need to have the same input-output relation. The firing rate refers to the average number of spikes 

during the period among all neurons. With a set of different neurons, analog values, vectors, and 

function fields can be encoded [100]. 

However, since the precise timing of spikes is not utilized in the encoding scheme, rate 

encoding is not beneficial to temporal information processing. 

2.3.2. Temporal Encoding 

Temporal encoding on the other hand, utilizes the precise timing of spikes to encode 

information. There are also several temporal encoding frameworks, of which the most common 

ones are global referenced encoding and latency encoding. 

In global referenced encoding scheme, the spike timing to encode information is in 

reference to a global signal. For example, in rank-order coding (ROC), information is encoded to 

the firing order of several neurons after the stimulus [36]. However, since only the order of spikes 

is critical, the timing of spikes is not fully used. This results in limited encoding capacity and poor 

noise tolerance. As an improvement of ROC, time to first spike (TTFS) coding avoids the problems 

by encoding the information in the interval between the beginning of stimulus and the first spike 

firing time of neurons [101], [102], which makes it a simple process and viable in a single-neuron 

system. TTFS is a bio-plausible coding scheme and has been observed in biological systems such 

as retinal pathway [34] and human tactile system [35].  
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With no global signal required, latency encoding or inter-spike-interval (ISI) encoding 

scheme has the information encoded in the time interval between spikes fired by a group of neurons. 

This encoding scheme has been found in pyramidal cells [103]. 

Compared to the rate encoding framework, temporal encoding offers better spike sparsity 

and encoding capacity. Other temporal encoding method like phase encoding, correlation and 

synchrony coding and etc. can be found in reference [104]. However, due to the lack of appropriate 

training algorithms, the performance of SNNs based on temporal encoding scheme is not as good 

as that of rate encoding based SNNs [102]. 

2.4. Network Models and Learning Algorithms 

With neurons and synapses, a network can be established, in which spikes coded with 

information are conveyed and computed. Network models describe the network topologies, that is, 

how neurons and synapses are connected and how information is conveyed in the network. Various 

kinds of network models have been developed, ranging from highly complicated models to mimic 

the behaviors of biological systems to simple non-spiking networks, for computing purposes. In 

neuromorphic computing study, the simplest adopted models are feedforward networks. 

Feedforward network can be a fully connected network, in which neurons in adjacent layers 

have an all-to-all connection, or a convolutional network, where only nearby neurons are 

connected, forming a “kernel” for convolution calculation. In the inferring process of feedforward 

networks, data go through the network unidirectionally from input layer to output layer. Supervised 

and unsupervised learning can be achieved in spiking-based feedforward neural networks. 

2.4.1. Supervised Learning Algorithms 

Supervised learning refers to the case where neural networks learn from labelled data, as 

is described in the previous section. Due to the spiking behavior of SNNs, the learning algorithms 

are different from those of standard ANNs. Several algorithms have been developed for SNNs. 
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2.4.1.1. ANN-SNN Conversion 

ANN-SNN conversion is an off-line learning algorithm for SNN, since the training is 

conducted on a standard ANN. In order to do ANN-SNN conversion, an ANN with ReLU neurons 

is trained first. After that, weight values of the trained ANNs are mapped to those of the target SNN 

with IF/LIF neurons. The reason that ReLU neurons and IF/LIF neurons are applied for ANN and 

SNN is that the input-output relation of ReLU neurons can be converted to spike rate of input and 

output spike trains of IF/LIF neurons if proper firing threshold is chosen [39]. ANN-SNN 

conversion enables SNN to achieve similar accuracy to that of ANN [37]–[39], [105]. However, 

since the firing threshold of IF/LIF neurons in SNN is related to both inference accuracy and 

inference latency, determining the optimal threshold value is a challenge. 

2.4.1.2. Spike-Based Backpropagation 

Backpropagation-based algorithms are also developed for SNNs. The main problem for 

spike-based backpropagation is that the spike train is nondifferentiable so that the derivative ( ) 

required in backpropagation algorithm is not well defined, as is indicated in Figure 2-5. The output 

signal encounters a step jump when firing condition is fulfilled, leading to a vanishing derivative 

with discontinuity at threshold membrane voltage. One solution to the problem is to introduce the 

surrogate gradients or pseudo-derivatives [46], [106], [107]. The derivative ( = × ) required 

for backpropagation can be calculated. Spike-based propagation has been applied in recent work 

[108], [109]. 
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Figure 2-5: The neuron output 𝑜 encounters a step jump when membrane voltage 𝑢 reaches the 

threshold value 𝜗  in an IF/LIF neuron, leading to vanishing derivative  for 𝑢 ≠ 𝜗  and a 

discontinuity point for 𝑢 = 𝜗 (solid line). To avoid the discontinuity, surrogate gradients/pseudo-

derivatives are introduced (dashed line). 

2.4.2. Unsupervised Learning Algorithm: Spike Timing Dependent Plasticity (STDP) 

Unsupervised learning, in contrast to supervised learning, refers to the case where neural 

networks recognize patterns from unlabeled data. A widely used unsupervised learning algorithm 

is spike timing dependent plasticity (STDP) learning rule [95], [110]. 

STDP rule states that the strength of synapses is related to the relative timing of spikes of 

pre- and post-synaptic neurons, as is indicated in Figure 2-4. The closer the timing of pre- and post-

synaptic spikes, the larger the change in synapse strength will be. The relation is described by 

Equation 2.7 [111]: 

∆𝑤 =
𝐴𝑒 , 𝑡 − 𝑡 ≤ 0 and 𝐴 > 0

𝐵𝑒 , 𝑡 − 𝑡 ≥ 0 and 𝐴 < 0

 (2.7) 

In the equation, ∆𝑤 is the change of weight value. 𝐴 and 𝐵 are constants. 𝜏 is the timing window. 

𝑡  is the timing of pre-synaptic spike and 𝑡  is the timing of post-synaptic spike. 

 While STDP has been applied in a large number of research [112]–[114], the accuracy for 

multi-layer SNNs with STDP is still limited. One possible reason is that the change of weight for 

each synapse only depends locally on its pre- and post-synaptic neurons, lacking interaction with 

other parts of the network. 
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3. Bayesian Neural Network 

BNN is another improvement from standard ANN targeting probabilistic inference. While 

standard ANNs possess deterministic weight values, Bayesian neural networks consider the 

weights of the network, 𝑾, to be latent variables characterized by a probability distribution, instead 

of point estimates, as is shown in Figure 2-6. More specifically, each weight in such a framework 

is a random number drawn from a posterior probability distribution (characterized by a mean and 

variance) that is conditioned on a prior probability distribution and the observed datapoints, 𝐷, 

which is the incoming patterns to the network. During inference, each incoming data pattern will 

propagate through synaptic weights, each of which is characterized by a probability distribution. 

Hence, as shown in Figure 2-6, the final output of the neurons of a particular layer will also be 

described by a probability distribution characterized by a mean and variance (the uncertainty 

measure).  

 

Figure 2-6: In a Bayesian framework, each synaptic weight is represented by a Gaussian probability 

distribution (shaded area), which is different from standard ANN, where synaptic weight values 
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are deterministic values (solid line). The core computing kernel for a particular layer during 

inference is a dot-product between the inputs and a synaptic weight matrix sample drawn from the 

individual probability distributions. Learning involves the determination of the mean and variances 

of the probability distributions using Bayes’ formulation. 

Bayesian neural networks correspond to the family of deep learning networks where the 

weights are “learned” using Bayes’ rule. The learning process here involves the estimation of the 

mean and variance of the weight posterior distribution. Following Bayes’ rule, the posterior 

probability can be written as: 

𝑃(𝑾|𝐷) =
𝑃(𝐷|𝑾)𝑃(𝑾)

𝑃(𝐷)
 (2.8) 

where 𝑃(𝑾) denotes the prior probability (probability of the latent variables before any data input 

to the network). 𝑃(𝐷|𝑾) is the likelihood, corresponding to the feedforward pass of the network. 

In order to make the above-mentioned posterior probability density estimation tractable, two 

popular approaches are variational inference methods [115] or Markov chain Monte Carlo methods 

[116]. 

Posterior distribution is usually difficult to compute analytically. Variational inference 

methods avoid calculating posterior distribution by approximating it by a Gaussian distribution, 

𝑞(𝑾, 𝜃), characterized by parameters, 𝜃 = (𝜇, 𝜎), where 𝜇 and 𝜎 represent the mean and standard 

deviation vectors for the probability distributions representing 𝑃(𝑾|𝐷) [117]. In this way, the 

problem of computing 𝑃(𝑾|𝐷) is converted to finding a set of 𝜇  and 𝜎  so that 𝑞(𝑾, 𝜃) well 

approximates 𝑃(𝑾|𝐷) . This is conducted by minimizing Kullback-Leibler (KL) divergence 

between 𝑞(𝑾, 𝜃) and 𝑃(𝑾|𝐷) given in Equation 2.9, which is the evaluation of similarity between 

two distributions. 

KL(𝑞(𝑾, 𝜃)‖𝑃(𝑾|𝐷)) = 𝑞(𝑾, 𝜃) log
𝑞(𝑾, 𝜃)

𝑃(𝑾|𝐷)
𝑑𝑾 (2.9) 
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Equation 2.9 can be reconstructed to Equation 2.10 [78], where the intractable marginal distribution 

𝑃(𝐷) is separated. 

KL(𝑞(𝑾, 𝜃)‖𝑃(𝑾|𝐷)) = −ℱ + log 𝑝(𝐷) (2.10) 

In Equation 2.10, ℱ = −KL(𝑞(𝑾, 𝜃)‖𝑃(𝑾)) + 𝔼 (log 𝑃(𝐷|𝑾)). Since log 𝑝(𝐷) is independent 

of 𝜃 = (𝜇, 𝜎), Equation 2.10 can be minimized by finding appropriate 𝜇 and 𝜎 via backpropagation 

process [118]. 

4. Hardware Platform: Spintronic Device System 

In this dissertation, the hardware study is focused on spintronic device system. The basic 

building block in spintronic hardware system is the magnetic tunnel junction (MTJ), which consists 

of two nanomagnets sandwiching a spacer layer (typically an oxide such as MgO), as is shown in 

Figure 2-7. One of the ferromagnetic layers is called “pinned layer” (PL) because its magnetization 

direction is “pinned” and does not change during operation. The other ferromagnetic layer is called 

“free layer” (FL) since its magnetization can be switched freely by an external stimuli like spin 

current or magnetic field. Depending on the relative orientation of the two magnets, the device 

exhibits a high-resistance anti-parallel (AP) state (when the magnetizations of the two layers have 

opposite direction) and a low-resistance parallel (P) state (when the magnetizations of the two 

layers have the same direction). The resistance difference between P and AP state is evaluated by 

TMR ratio, which is defined as 𝑇𝑀𝑅 = , in which 𝑅  (𝑅 ) is the electrical resistance in 

AP (P) state. These two states of the magnet are stabilized by an energy barrier determined by the 

anisotropy and magnet volume. 
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Figure 2-7: An MTJ structure is shown. Orange arrow indicates the applied spin current 𝐼 , and 

green arrow indicates the applied magnetic field 𝐻 . 𝑚  is the unit vector in the direction of 

magnetization direction of pinned layer/free layer, as indicated by purple arrows. Under 𝐼  or/and 

𝐻, free layer magnetization can rotate freely, while that of pinned layer is fixed. 

4.1. Resistance Difference in AP and P State 

One of the core characteristics of MTJ devices is the resistance difference in AP and P 

state. The state energy of different spins split due to the magnetic field in the system, as is shown 

in Figure 2-8a. In this case, one spin direction becomes dominating and most electrons in the layer 

possess spin in this direction. When there is an applied voltage, electrons are able to tunnel through 

the oxide spacer between two ferromagnetic layers. The resistance difference accrues from the 

density of state (DOS) relation between the two ferromagnetic layers. 

If the MTJ is in P state (Figure 2-8b), the two ferromagnetic layers have the same 

dominating spin direction. In this case, electrons can tunnel easily from free layer on the right to 

pinned layer on the left, since majority/minority spin electrons (spin-up/spin-down) in free layer 

can be accepted by majority/minority spin states in pinned layer (spin-up/spin-down). This leads to 

low electrical resistance. 

Things are different if the MTJ is in AP state (Figure 2-8c). In this situation, mismatch 

occurs in spin states in pinned layer and free layer. Majority spin electrons in free layer (spin-down) 
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can only be accepted by minority spin states in pinned layer (spin-up) and vice versa. This makes 

the electron tunneling from free layer to pinned layer difficult as most of electrons are deflected, 

which results in high electrical resistance. 

 A more detailed explanation can be found in reference [119]. 

 

Figure 2-8: Illustrative density of states (DOS) relation in an MTJ device is shown. 𝐸  refers to 

Fermi energy. (a) Energy of electrons in different spin directions splits due to magnetic field. (b) 

Electrons can easily tunnel from free layer (right) to pinned layer (left) because of the matching 

electron states, leading to low electrical resistance. (c) The mismatch in spin states makes it difficult 

for electrons to tunnel from free layer to pinned layer, which results in high electrical resistance. 

4.2. MTJs of Different Sizes 

The MTJs of different sizes have different behavior. 

4.2.1. Large MTJs: Deterministic Devices 

For a magnet with elongated shape, multiple domains can be stabilized in the FL, thereby 

leading to the realization of multiple stable resistive states. Such a domain-wall (DW) MTJ consists 
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of a DW separating the two oppositely magnetized regions and the DW position is programmed to 

modulate the MTJ resistance (due to the variation in the relative proportion of P and AP domains 

in the device) [120]. Figure 2-9 shows structure of a multi-domain device. In this device, the free 

layer contains two domains, which are filled with blue and yellow color with white arrow indicating 

the magnetization direction. 

In magnetic heterostructures with high perpendicular magnetocrystalline anisotropy (for 

example, the interface between ferromagnetic (FM) layer and heavy metal (HM) layer in Figure 2-

9), spin–orbit coupling and broken inversion symmetry stabilizes the chiral DWs through 

Dzyaloshinskii–Moriya interaction (DMI) [121], [122]. Such an interfacial DMI at the magnet–

HM interface results in the formation of a Néel DW. When an in-plane charge current is injected 

through the HM, the accumulated spins at the magnet–HM interface results in the Néel DW motion. 

 

Figure 2-9: A multi-domain MTJ device is shown. 𝐽 is the magnitude of current flowing through 

HM. Δ𝐺 is the change in conductance between T1 and T3 results from 𝐽. 

As shown in Figure 2-10(a), for a given programming time duration, the current flowing 

through the HM underlayer causes the DW displacement proportional to its magnitude. The DW 

position determines the magnitude of the MTJ conductance. The MTJ conductance varies linearly 

with the DW position since it determines the relative proportion of the area of the parallel and 

antiparallel domains of the MTJ [see Figure 2-10(b)]. Since such a device can be programmed to 

multilevel resistive states and is characterized by low switching current requirements and linear 
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device behavior (device conductance change varies in proportion to the magnitude of programming 

current), they are an ideal fit for implementing crossbar-based “in-memory” computing platforms. 

Experimentally, a multilevel DW motion-based resistive device was recently shown to exhibit 15–

20 intermediate resistive states [123]. 

 

Figure 2-10: Device characteristics are shown. (a) Programming current versus domain wall 

displacement profile and (b) device conductance versus domain wall position profile are shown for 

a 20-nm-wide and 0.6-nm-thickmagnet calibrated to experimental measurements [121]. The device 

characteristics illustrate that the programming current magnitude is directly proportional to the 

amount of conductance change [120]. 

4.2.2. Scaled MTJs: Stochastic Devices 

When devices scale down, there can only be one domain in free layer. Also, barrier height 

which stabilizes AP and P states also decreases since it is volume-related. As a result, when barrier 

height is so small that it can be overcome by thermal noise alone, free layer magnetization no longer 

stays in a certain AP or P state. Instead, it exhibits stochastic switching behavior between the two 

states. Figure 2-11 depicts the temporal magnetization dynamics of a ~2𝑘 𝑇 (𝑘  is the Boltzmann 

constant and 𝑇 is the absolute temperature) barrier height magnet. The magnet resides in the P and 
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AP states with characteristic lifetimes 𝜏  and 𝜏 . The lifetime of the device in each state can be 

controlled by the magnitude or direction of an external current flowing through the magnetic stack 

[124]. At zero bias, the lifetimes are equal and determined by the magnet barrier-height, as is 

indicated by Figure 2-11(a). Note that this is a first-order modeling. In practical device 

implementation, 50% switching probability may not be achieved exactly at zero bias current due 

to the presence of device imperfections, stray fields, and other non-idealities. With the application 

of an external “write” current (induced by 𝑉  in Figure 2-11b), the magnitude of the firing rate of 

the neuron, 𝜏 = , gets modulated. The rate of spiking of the neuron varies in a nonlinear 

sigmoid fashion with respect to the input current [125]. 

 

Figure 2-11: Stochastic switching of free layer magnetization for a ~2𝑘 𝑇 barrier height magnet 

is shown. 𝑀  is the easy axis direction component of normalized free layer magnetization. (a) P 

and AP state lifetime 𝜏  and 𝜏  are equal under zero bias. (b) The state lifetime can be modified 

by external bias. 

4.3. Simulation: Landau–Lifshitz–Gilbert Equation 

The behavior of magnetization under applied external stimuli (magnetic field and/or spin 

current) can be simulated by Landau-Liftshiz-Gilbert (LLG) equation, which is given in Equation 

2.11: 
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𝑑𝒎

𝑑𝑡
= −𝛾(𝒎 × 𝑯 ) + 𝛼 𝒎 ×

𝑑𝒎

𝑑𝑡
+

1

𝑞𝑁
(𝒎 × 𝑰 × 𝒎) (2.11) 

where 𝒎 is the unit vector of free layer magnetization, 𝛾 =
ℏ

 is the gyromagnetic ratio for 

electron (𝜇  is Bohr magneton and 𝜇  is vacuum magnetic permeability), 𝛼 is Gilbert’s damping 

ratio, 𝑯  is the effective magnetic field including thermal noise, shape anisotropy field for elliptic 

disks and applied magnetic field. Thermal field is modeled as 𝑯 = B

S
𝐺 , , 

where 𝐺 ,  is a Gaussian distribution with zero mean and unit variance and 𝛿  is the simulation 

time step [126]. 𝑁 = is the number of spins in free layer of volume 𝑉  (𝑀  is saturation 

magnetization), and 𝑰  is the input spin current. The equation describes the motion of  𝒎 via 
𝒎

, 

which is the velocity of  𝒎 on unit sphere. The terms on the right hand side are three contributions 

to 
𝒎

. The first term describes how magnetic field manipulates the motion of 𝒎. The second term 

is a damping term, which represents the tendency of 𝒎 to slow down and return to the stable state 

(i.e. the easy axis direction). The third term describes the contribution caused by spin current. By 

feeding appropriate device parameters, such as saturation magnetization, size, etc., LLG equation 

is able to provide free layer magnetization behavior verified by experiment. 

4.4. Crossbar Array Structure 

Multiple MTJs or other memristors can be mounted to a crossbar array structure, which 

enables easy calculations of dot-product [72], [127], [128]. Assuming each synapse to be 

represented by a MTJ, as shown in Figure 2-12, they can be arranged in a crossbar structure. Each 

row of the array is driven by an analog voltage [output of digital-to-analog converters (DACs)] that 

corresponds to the magnitude of the input. The current flowing through each synapse is scaled by 
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the conductance of the device and due to Kirchhoff’s law (Equation 2.12), and all these currents 

get summed up along the column, thereby realizing the dot-product kernel.  

𝐼 = 𝑉 ∙ 𝐺 ,  (2.12) 

In the equation, 𝑉  is the input voltage signal, 𝐼  is the output current signal, and 𝐺 ,  is the 

conductance of MTJs in the array. Dot-products can be inherently calculated. 

Note that negative synaptic weights can also be mapped by using two horizontal lines per 

input (driven by “positive” and “negative” supply voltages). In case a particular synaptic weight is 

“positive” (“negative”), then the corresponding conductance in the “positive” (“negative”) line is 

set in accordance with the weight. The resultant currents get summed up along the column and pass 

as the input “write” current through the neurons in the next layer. 

 

Figure 2-12: Crossbar array structure is shown. Each MTJ possesses conductance 𝐺 , . The input is 

provided by voltage signals 𝑉  from horizontal bars. The output is generated by current signals 𝐼 =

∑ 𝑉 ∙ 𝐺 ,  from vertical bars.  
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5. Device Characterization Techniques 

This dissertation also includes experimental study, which is based on Hall bar structure. 

5.1. Test Structure: Hall Bars 

The Hall bar device structure, shown in Figure 2-13, consists of an HM layer and a FM 

layer. When a charge current flows through the HM/FM structure, spin current is generated due to 

primarily two effects – 1) Spin Hall effect in the HM and 2) the Rashba effect at the FM/HM 

interface [129], [130]. The spin Hall effect originates from both intrinsic sources such as band 

structures and extrinsic sources like Mott scattering by impurities [131], [132]. Additionally, 

electrons moving in the interfacial electric field at HM/FM interface experience a magnetic field, 

known as the Rashba field, which introduces a spin-orbit term in the system Hamiltonian. The 

induced spin-orbit interaction splits the band of different spins, which enables non-zero net spin 

accumulation under applied electric field [133]–[135]. The generated spin current induces FM 

magnetization switching when charge current reaches switching current [136]. In this way, Hall bar 

devices possess the same underlying physics for switching behavior, which makes it a perfect test 

structure for spintronic device study. Due to thermal noise, the switching is probabilistic rather than 

deterministic when pulse current is applied. Thus, at any given time, the switching probability 

depends on the magnitude of the pulse current, which follows a sigmoidal function. This provides 

the non-linearity required for the operation of the neuron. 

5.2. Hall Bar Fabrication 

Hall bar devices are fabricated through a process including photolithography/Ebeam-

lithography, etching and contact pad deposition. The fabrication process starts with samples with 
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deposited materials stack (Si/SiO2(300nm)/Ta (5nm)/CoFeB (1nm)/MgO (2.5nm)/Ta (2.5nm 

/5nm)). Bars with ≥ 1µm width are defined by photolithography, using SPR-3012 as photoresist. 

Hall bars with bar sizes smaller than 1µm are defined by E-beam lithography, using polymethyl 

methacrylate (PMMA) as resist layer. The defined patterns are etched by Ar until the Si/SiO2 

substrate. The residual resist after etching is removed by soaking in PRS-3000 under 80℃ water-

bath. Ti (5nm)/Au (100nm) stack are deposited as contact layer by E-beam evaporation after bars 

are fabricated. 

5.3. Four-Probe Measurement 

To characterize the devices, four-probe measurements are conducted. As is shown in 

Figure 2-13, the write/read current pulses are applied through current channel and voltage 

difference is measured between voltage terminals. Current pulses are generated by Keithley 6221. 

The read current is set to be 50μA so as not to disturb the device state. The voltage difference is 

due to anomalous Hall effect (AHE) and measured by Keithley 2000 Multimeter. Hall resistance is 

defined by Equation 2.13, 

𝑅 =
𝑉

𝐼
 (2.13) 

Here, 𝑉  is the voltage difference across the two voltage terminals, and 𝐼  is the read 

current pulse amplitude flowing through the current channel. 

 The whole measuring system is placed on a probe station which is able to isolate 

environmental vibration. 
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Figure 2-13: Hall bar device structure is shown. To conduct a four-probe measurement, a read 

current 𝐼Channel is passed through the current channel, and the voltage difference caused by AHE 

𝑉  is measured. 

5.4. Magnetic Anisotropy Field Estimation 

Magnetic anisotropy can be estimated by sweeping the applied in-plane magnetic field. 

The device magnetization gently tilts under the applied in-plane field, which causes a small 

deviation in Hall resistance. The deviating Hall resistance results in a bending hysteresis loop, 

which can be used to estimate magnetic anisotropy field. Figure 2-14(a) shows the geometry of the 

sample surface, magnetization, and applied field. Figure 2-14(b) shows a typical hysteresis loop for 

𝑯  sweeping measurement. The magnetization direction under in-plane field can be calculated by 

Equation 2.14,  

𝜕𝐸

𝜕𝜃
= 0 (2.14) 

Here, 𝐸 = −𝐾 cos 𝜃 − 𝑀 𝑯 𝑐𝑜𝑠𝜃 is the magnetic energy density. 𝑯  is the applied in-plane 

field, 𝜃 is the angle between magnetization direction 𝑚 and 𝑧 direction, 𝐾  is the perpendicular 

magnetic anisotropy (PMA) energy density and 𝑀  is the saturation magnetization. This leads to 

the following equation: 
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𝑅

𝑅
= 1 −

1

2

1

𝐻
𝑯  (2.15) 

Here, 𝐻 =  is defined as the anisotropy field, 𝑅  is the Hall resistance when 𝑯 =0 

and R is the Hall resistance during field sweeping. 𝐻  can be estimated by fitting the equation to 

the obtained data, as is shown in Figure 2-14(c). 

 

Figure 2-14: (a) The directions of applied magnetic field, sample plane and sample magnetization 

are shown. 𝑚 is the unit vector in the direction of sample magnetization. 𝑯  is the applied in plane 

field. 𝑧 is the normal direction of sample surface and 𝜃 is the angle between 𝑧 direction and 𝑚. 𝑥 

and 𝑧 are in the same direction as indicated in Figure 2-13. (b) The measured hysteresis loop is 

shown. The tilting of magnetization causes the bending of the curve. (c) The fitting process between 

data and the curve given by Equation 2.15. 
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Chapter 3 
 

Leveraging Probabilistic Switching in Superparamagnets for 
Temporal Information Encoding in Neuromorphic Systems 

Brain-inspired computing - leveraging neuroscientific principles underpinning the 

unparalleled efficiency of the brain in solving cognitive tasks - is emerging to be a promising 

pathway to solve several algorithmic and computational challenges faced by deep learning today. 

Nonetheless, current research in neuromorphic computing is driven by our well-developed notions 

of running deep learning algorithms on computing platforms that perform deterministic operations. 

In this chapter, it is argued that taking a different route of performing temporal information 

encoding in probabilistic neuromorphic systems may help solve some of the current challenges in 

the field. The chapter considers superparamagnetic tunnel junctions as a potential pathway to 

enable a new generation of brain-inspired computing that combines the facets and associated 

advantages of two complementary insights from computational neuroscience – how information is 

encoded and how computing occurs in the brain. Hardware-algorithm co-design analysis 

demonstrates 97.41%  accuracy of a state-compressed 3-layer spintronics enabled stochastic 

spiking network on the MNIST dataset with high spiking sparsity due to temporal information 

encoding. 

1. Motivation 

As is discussed in the previous chapters, SNN, as a neuromorphic computing paradigm, is 

promising for enabling low-power, asynchronous “compute only when needed” neuromorphic 

hardware. While SNNs have shown initial promise as such alternative computing paradigm, 

significant challenges remain from both the algorithms and hardware perspective to ensure 

scalability in terms of key performance metrics like recognition accuracy, hardware power, energy 
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and area efficiency. Most prior studies have used smaller sub-problems or have converted non-

spiking Deep Neural Networks (DNNs) to SNNs [92] - a non-optimal approach in demonstrating 

the abilities of SNNs. Currently, SNNs remain very similar to non-spiking networks with the analog 

neural computation in DNNs distributed as binary information over time in the case of a spiking 

neuron – with the temporal aspect remaining largely unexploited. This has significantly limited 

SNN efficiency in large-scale problems [137]. In order to address these limitations, the solution is 

formulated against two complementary backdrops. 

1.1. Information Encoding (Goal - Enhanced Sparsity and Reduced Latency) 

The vast majority of SNN algorithm formulations have been based on rate coding [46], 

[138]. However, in temporal-encoding, the precise time duration required to spike is believed to 

encode the neuron output information. The principal advantages of using temporal encoding [139] 

for modelling spiking behavior are multiple. Since information is now transmitted in precise spike 

timings instead of the signal rate, such neural codes can be sparse and much faster to avoid 

temporal-averaging effect. 

1.2. Computing Paradigm (Goal - State-Compressed Hardware) 

The computing perspective is motivated by a bottom-up hardware viewpoint that emerging 

technologies like spintronics exhibit stochastic switching behavior (due to thermal noise) at room 

temperature, especially at aggressively scaled dimensions [71], [140]. The potential benefits of 

such a computing framework from the hardware implementation perspective is that they allow 

multi-level neural/synaptic state compression to single bit (in turn, leading to scaled device 

implementations) due to the additional probabilistic encoding of information. However, such 

stochastic SNNs have been mostly utilized in the rate encoding framework. 
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In order to leverage the benefits of increased information capacity in SNNs for enhanced 

power, latency and energy metrics and simultaneously to utilize the advantages of state-compressed 

hardware enabled by these nanomagnetic devices, this chapter explores a device-algorithm co-

design approach – where we explore the implementation of spintronics enabled stochastic SNNs 

bearing temporal domain encoding of information. 

2. Leveraging the Dynamic Temporal Behavior of MTJs 

As is discussed in previous chapter, due to thermal noise and low barrier height, 

aggressively scaled MTJs, which are superparamagnets, lose non-volatility and exhibit spontaneous 

stochastic switching behavior that can be characterized by P and AP state lifetime 𝜏  and 𝜏AP and 

spike rate 𝑅 = AP

AP P
. The main advantage of transitioning to a superparamagnetic system would 

lie in the faster operating speeds and asynchronous operation [125]. However, careful peripheral 

circuitry design, sensitivity to noise and variations remain open challenges. In addition to 

neuromorphic applications [71], [74], [125], [141]–[143], stochasticity inherent in magnetic 

devices (superparamagnets or higher barrier height magnets) have been leveraged to implement 

true random number generators [144], and even for other unconventional computing platforms like 

Ising computing, quantum-inspired algorithms, combinatorial optimization problems, on-chip 

temperature sensors, among others [140], [145]–[147]. While the intrinsic temporal dynamics of 

superparamagnets have been utilized in certain applications like Ising computing, the vast majority 

of neuromorphic SNN applications have primarily leveraged the superparamagnetic device 

characteristics in the rate encoding regime, i.e. the continuous-time dynamic behavior of 

superparamagnets have been ignored and the time-averaged behavior has been used from the 

computing perspective. This leads us to the question - Can the unique probabilistic switching 
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behavior of superparamagnetic devices be utilized for temporal information encoding in stochastic 

SNNs? 

The answer to this question is yes. In order to design a magnetic device where the intrinsic 

physics is able to support temporal information encoding, one needs to precisely control the device 

lifetimes 𝜏  and 𝜏AP. This is difficult in a superparamagnet under sole external current stimulation. 

As shown in Figure 2-10, the external current magnitude (modified by 𝑉 ) controls the time 

averaged firing rate of the device and both the device lifetimes get modulated together with change 

in the external current magnitude. Under the application of 𝑉 = 10mV, 𝜏  changes from 3.10ns 

to 0.68ns and 𝜏  changes from 3.14ns to 7.60ns. 

However, as explained in LLG equation (Equation 2.11), the magnetization dynamics is a 

function of both external current and external magnetic field which opens up the possibility of 

tuning the two device lifetimes by two separate independent control knobs. When an external 

“write” voltage is applied to the MTJ (resulting in spin-torque) along with an external magnetic 

field, the lower MTJ resistance in the P state results in much larger modulation of 𝜏  than 𝜏  due 

to an external voltage, as is shown in Figure 3-1. Consequently, the external spin current can be 

used to control 𝜏 . On the other hand, the magnetic field can be used to tune 𝜏  by manipulating 

the energy profile. In this manner, under certain conditions [148], independent control of 𝜏  and 

𝜏AP  can be realized by adjusting the externally applied magnetic field and current. Recent 

experiments [149] and theoretical modelling [148] have shown that such a controlling scheme can 

be realized in a CoFeB MTJ stack within a range of applied field and current. 

However, using an external tunable magnetic field to bias MTJ spiking neurons is not 

feasible from the scalability perspective for neuromorphic computing applications. Significant 

energy consumption would be required to generate the field. Additionally, since a tuned magnetic 

field is required for each specific neural magnet, this would limit the magnet spacing to avoid stray 
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field effects. A potential alternative path can be to design novel device structures exploiting 

emerging devices physics like the magnetoelectric effect [150]. 

 

Figure 3-1: (a) In the absence of a magnetic field, the device spiking rate is modulated by 

the spin-torque generated by an external “write” current. (b) Application of a magnetic field and 

spin-torque allows for independent control knobs for the individual device lifetimes. 

2.1. Magnetoelectric Effect 

Recent experiments on multilayered stacks consisting of a multiferroic material lying 

underneath a magnetic layer have revealed that a transverse magnetic field is induced in the 

nanomagnet lying on top due to the application of a voltage across the multi-ferroic material. This 

is attributed to Magneto-electric Effect (ME) [151]. ME generates from coupling between the spin 

polarization and the electric polarization of the material [152]. The coupling is induced by 

Dzyaloshinskii–Moriya (DM) interaction, bringing an additional Hamiltonian given in Equation 

3.1 via a DM vector: 

𝐻 , = 𝑫 , ∙ 𝑺 × 𝑺  (3.1) 
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In the equation, 𝐻 ,  is the Hamiltonian of spin 𝑺  and 𝑺 . 𝑫 ,  is the DM vector for 𝑺  and 𝑺  

system. To minimize the total energy of the system, the spins are canted for a small angle, which 

gives rise to a weak ferromagnetism, as is indicated in Figure 3-2. 

 

Figure 3-2: The DM interaction on a two-spin (𝑺  and 𝑺 ) system is shown. The DM vector 

causes a small canting angle from the original direction of spins. 

DM interaction occurs in crystal structures with certain symmetries [153], [154]. ME has 

been observed in multiferroic materials such as BiFeO3 [155]. The applied electric field causes the 

displacement of bismuth ions inside BiFeO3, followed by the rotation of oxygen octahedra. The 

shift of the ions results in the direction switching of ferroelectric polarization and magnetization. 

The switching of magnetization of BiFeO3 acts as a bias to the contacting nanomagnet via exchange 

bias at the interface. Note that this is just one possible route for realizing ME based devices. Other 

types of ME induced switching mechanisms [150] can be potentially leveraged for our device 

design. 

The probabilistic switching characteristics of an MTJ under the application of spin current 

and ME can be analyzed by the LLG equation given in Equation 2.11. The spin current favors the 

AP state and is induced by an electric field applied across the MTJ stack, 𝐼S =
MTJ

 , where 𝑉  is the 

applied voltage to generate spin current, 𝐼S, and 𝑅MTJ is the resistance of the MTJ stack. ME effect 

is usually modeled by considering the effect of an external magnetic field acting on the magnet. 

The magnitude of the field is directly proportional to the applied voltage [152], [156], [157], with 
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the proportionality factor being a material property. Note that this is agnostic to the underlying 

origin of ME and such a first-order relationship between applied voltage and induced magnetic 

field dependency has been extensively used for modeling and benchmarking magneto-electric 

devices [152], [156], [157]. The applied magnetic field which favors P state due to the ME effect 

is given by Equation 3.2: 

𝑯 = 0, 0,
1

𝜇
𝛼ME

𝑉ME

𝑡ME
  (3.2) 

where 𝛼ME is the ME constant, 𝑡ME is the thickness of ME layer, and 𝑉ME is the voltage across the 

ME layer. This ME field 𝑯  is considered a component of the effective magnetic field 𝑯  in 

Equation 2.11. It is worth noting here that the resistance of P state is smaller than that of AP state. 

Hence, the spin current is larger in the P state than in the AP state with the same applied 𝑉 . Thus, 

a small variation in 𝑉  leads to a large change in spin current in P state. As a result, the 𝑉  (𝑉ME) 

control knob dominates 𝜏P (𝜏AP) variation. The asymmetric impact of each external voltage on 𝜏P 

and 𝜏AP  enables the independent control of the device lifetimes by applying two independent 

external control voltages. Note that the device can be still used to perform rate encoding by not 

utilizing the 𝑉ME control knob. 

2.2. Device Design 

The magneto-electric effect can therefore be exploited to envision three-terminal device 

structures shown in Figure 3-3. The device consists of an MTJ stack lying on top of an ME oxide 

layer (for instance, BaTiO3 or BiFeO3). Sufficient voltage (𝑉ME) applied across the ME oxide 

induces an effective magnetic field on the nanomagnet lying on top. On the other hand, the voltage 

applied across the MTJ, 𝑉 , controls the device lifetime 𝜏P. Typical device simulation parameters 

for a 2𝑘B𝑇  barrier height magnet have been used from prior literature [125], [157], and are 

tabulated in Table 3-1. 
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Figure 3-3: The proposed ME-MTJ device and detect circuit are shown. (a) Concept of 

ME-MTJ device, driven by two independent inputs - (1) Voltage, 𝑉ME, applied across the ME-oxide 

modulates lifetime 𝜏AP, (2) Voltage, 𝑉 , applied across the MTJ modulates 𝜏P. (b) Circuit design to 

detect spikes. 𝐼Output indicates the MTJ state. 

The device state can be detected by a circuit shown in Figure 3-3 (b). The transistor 

working in saturation region provides a constant current, 𝐼Total. 𝑉  is the input voltage applied to 

the MTJ. The MTJ resistance modulates the current flowing through the MTJ, 𝐼MTJ, leading to the 

control of current flowing through the load resistance 𝑅 . As a result, the output current, 𝐼Output =

𝐼Total − 𝐼MTJ, will be an indicator of the MTJ state. 

The main distinguishing factors in this neuromimetic ME-MTJ design are as follows: (i) 

ME-MTJs have typically been considered to be switched by applying a voltage across the ME oxide 

Table 3-1:  Device parameters for LLG simulation are tabulated. 

Parameter Value 
TMR 200% 

Free-layer width, 𝑊  [125] 17nm 
Free-layer length, 𝐿  [125] 42.5nm 

Free-layer thickness, 𝑡  [125] 0.8nm 
Saturation magnetization, 𝑀  [125] 750kA/m 

Gilbert-damping factor, 𝛼 [125] 0.0122 
Temperature, 𝑇 300K 

ME constant, 𝛼ME [157] 5 × 10 s/m 
ME-layer thickness, 𝑡ME [157] 5nm 
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[158]. Here, the design in this work uses two independent inputs (𝑉ME and 𝑉 ). While the voltage 

applied across the ME oxide will produce the effect of an applied magnetic field (thereby 

modulating 𝜏AP), the external input current will be used to control 𝜏P. Independent control of these 

two parameters will enable the users to implement a stochastic nanoelectronic spiking neuron 

functionality that inherently performs temporal domain encoding of information, as explained 

previously. (ii) Most of the work on ME-MTJs is catered for usage of these devices in logic and 

memory applications [152], [156], [157], [159], [160]. This proposal involves utilizing ME for 

enabling neuromorphic applications, and in particular, for temporal-encoding of stochastic SNNs. 

2.3. Independent Control of 𝝉P and 𝝉AP 

Next, the device operation is characterized by varying the two external input voltages and 

measuring the average device lifetimes. It is worth noting here that from a system development 

perspective, the neurons will be interfaced with synaptic devices. Hence, achieving truly 

independent control of 𝜏P and 𝜏AP over a wide operating range of 𝑉  and 𝑉ME is crucial. We define 

a set of 𝑘 factors (given in Equation 3.3) to evaluate the impact of the two external bias signals on 

𝜏. 

𝑘AP(P),ME( ) =
𝜕𝜏AP(P)

𝜕𝑉ME( )
 (3.3) 

The value of 𝑘 depicts the amount of change in 𝜏 induced by a unit change in one of the biases (𝑉ME 

or 𝑉 ) with the other bias fixed. The total change of 𝜏 is expressed as 

Δ𝜏AP(P) = 𝑘AP(P),MEΔ𝑉ME + 𝑘AP(P), Δ𝑉  (3.4) 

To realize the independent control, the variation of s in one state should be dominated by 

only one of the biases, leading to the conditions: 

𝑘AP,ME

𝑘AP,
≫ 1,

𝑘P,

𝑘P,ME
≫ 1 (3.5) 
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Equation 3.5 implies that 𝜏AP is dominated by 𝑉ME and 𝜏P is dominated by 𝑉 . It should be noted 

that the ratios in Equation 3.5 are related to the slope of contour lines of 𝜏AP and 𝜏P for varying 𝑉ME 

and 𝑉 . Figure 3-4 depicts the contour map of 𝜏 in the two states. The contour lines in P state have 

a small slope (note that P,

P,ME
 is the reverse of the slope), indicating that the spin current has a 

dominant control on 𝜏P, while the slope of contour lines in AP state is large, which implies that ME 

is the leading control factor. 

 

Figure 3-4: Contour maps of 𝜏- 𝑉 relations are shown. (a) and (b) Contour map of 𝜏P and 

𝜏AP vs 𝑉  and 𝑉ME and (c) and (d) contour map of 𝜏P and 𝜏AP vs 𝑉  and 𝑉 . 

 However, in order to achieve truly independent control, the change of the dominant bias in 

one state should not make a prominent change on 𝜏 of the other state. For example, since 𝑉ME 

dominates 𝜏AP, Δ𝜏AP induced by Δ𝑉ME need to be much larger than Δ𝜏P induced simultaneously. As 

a result, another condition for the independent control is 
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𝑘AP,ME

𝑘P,ME
≫ 1,

𝑘P,

𝑘AP,
≫ 1 (3.6) 

Equation 3.6 indicates that 𝑉ME has a much larger impact on 𝜏AP than on 𝜏P, and 𝑉  has a larger 

impact on 𝜏P than on 𝜏AP. According to the definition of 𝑘, larger 𝑘 values result in more rapid 

change of 𝜏, leading to denser contour lines in the contour map. From this perspective, Equation 

3.6 states that our device operating region has to restricted in an area where the contour lines should 

be much denser (the spacing between adjacent contour lines is smaller) in the AP state going along 

the 𝑉ME axis, and concurrently the contour lines are much denser in the P state going along the 𝑉  

axis. As is shown in Figure 3-4, in the map of AP state, contour lines are denser in the top-left while 

in the P state, the denser area is in the bottom-right portion of the plot. This opposite nature of 𝑘 

factor variation severely limits the operating region of the device toward the middle diagonal region 

of the plot to compromise between the restrictions imposed by Equation 3.6. 

 Interestingly, it is observed that although the contour lines are not strictly horizontal or 

vertical, the slope of the lines is approximately constant throughout the range. Hence, to remove 

the limitation and expand the device operating region, one can introduce a set of new basis signals 

in the direction of the contour lines in Figure 3-4, denoted as < 𝑉 , 𝑉 >. No unwanted Δ𝜏 will be 

induced as s is fixed along the contour lines. The new basis signals can be mapped from the device 

inputs < 𝑉  , 𝑉 > through Equation 3.7: 

𝑉

𝑉
=

cos 𝛼 cos 𝛽
sin 𝛼 sin 𝛽

𝑉

𝑉
 (3.7) 

where 𝛼, 𝛽 are shown in Figure 3-4 (a) and (b). The contour map based on the new basis < 𝑉 ,

𝑉 > is plotted in Figure 3-4 (c) and (d). The neuron functionality can now be conceptualized as 

being driven by external inputs 𝑉  and 𝑉 . The actual inputs to the device, 𝑉  and 𝑉 , are a linear 

combination of the two external inputs, 𝑉  and 𝑉 , which can be easily implemented by voltage 

divider circuits. From a network perspective, these signals would be determined by current flowing 

though synaptic devices [120]. It is worth noting that such a simple transformation is made possible 
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due to the constant slope of contour lines throughout the plot. As observed in Figure 3-4 (c) and 

(d), the contour lines are approximately horizontal/vertical, thereby realizing independent control 

of device lifetimes over the entire operating region. 

3. Building SNNs with ME-MTJs 

3.1. Applying ME-MTJs as Spiking Neurons 

Given such a continuously switching device is available where the precise temporal 

dynamics can be controlled, the high level question to be addressed next is: Can we map the core 

device characteristics to compute primitives required in a functional stochastic SNN operation with 

temporal information encoding? Let us consider a particular network where all the neurons are 

driven by the same voltage corresponding to input 𝑉  such that the average device lifetime in the 

AP state equals the duration of a “timestep” in the system. Note that the duration of timestep” will 

be determined by circuit and architecture level constraints for simulating the SNN. If we interpret 

the device AP state as the “spike” of the neuron, then the average time to fire for that neuron will 

be given by 𝜏P, which can be controlled by the external neuron input 𝑉 . The spiking framework is 

illustrated in Figure 3-5. For an SNN inferring data based on temporal encoding, this time to fire 

will dictate the winning neuron. The neuron which fires earliest will be interpreted as the winning 

class and is based on time-to-first-spike encoding. Note that the SNN can be turned off after the 

first spike, thereby resulting in significant sparsity and latency benefits. Such a fine-grained control 

of time to fire is not possible in case of stochastic magnetic devices driven by only a single external 

input signal since both the device lifetimes will be modulated together. It is also worth mentioning 

here that while our proposal is based on the ME-MTJ device, the formulation can be easily extended 

to experimentally demonstrated stochastic devices operating under the influence of external spin 

current and magnetic field [148], [149]. In order to train the network, let us assume that we set the 
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winning class neuron to fire at timestep 𝑡  while the other neurons target a firing time 𝑡 . In order 

to infer with sufficient confidence margin, Δ𝑡 = 𝑡 − 𝑡  should be reasonably high. Note that Δ𝑡, 

𝑡  and 𝑡  are hyperparameters for our algorithm and user specified. In this work, we used a value 

of 𝑡 = 1ns and 𝑡 = 300ns. 

 

Figure 3-5: Supervised algorithm for stochastic SNNs with temporal information 

encoding where neuron input, 𝑉 , controls the time to fire is shown. 

3.2. Algorithm Formulation 

Fully connected neural network architectures with stochastic temporal encoding were 

trained on the MNIST dataset [161] based on algorithmic formulations described next. Since the 

real-time device lifetimes follow an exponential distribution in the low current regime [162], KL 

divergence is utilized to model the loss function. Assuming the target average device lifetime in 

the P state to be 𝜆 and the expected device lifetime due to the external input to be 𝑧, the KL 

divergence between the expected and target spike probability distributions is given by Equation 

3.8: 

𝐿 =
1

𝜆
𝑒 log

𝑧

𝜆
𝑒

∈

 (3.8) 
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where, 𝐴 is the probability space. From a network perspective, each neuron receives the weighted 

summation of synaptic inputs (∑ 𝑤 𝐼 ) as the input voltage 𝑉  (see Figure 3-5). Note that the output 

current in the spike detection circuit (see Figure 3-3(b)) can be used to charge a capacitor till the 

input neuron device spikes, thereby converting the timing information to an analog voltage input 

for the next layer. Assuming the intrinsic device function mapping from the synaptic dot product 

to the average P state device lifetime to be 𝑔(. ) (which can be formulated by the exponential 

variation shown in Figure 3-6), 

𝑧 = 𝑔 𝑤 𝐼 = 𝑔(𝑉 ) (3.9) 

 

Figure 3-6: Variation of the average device lifetimes as a function of the neuron input, 

𝑉 , which is equivalent to the weighted summation of synaptic inputs ∑ 𝑤 𝐼 . Device lifetime, 

𝜏AP, remains roughly constant over the input voltage range while the exponential variation of 

𝜏P with 𝑉  is considered to be the activation function of the neuron (𝑔(. ) in Equation 3.9). 

It is worth mentioning here that the output z represents the average value of P-state device 

lifetime under the influence of 𝑉 , although the real-time characteristics follow an exponential 

distribution [162]. The operating voltage range of the device is also chosen properly (Figure 3-6) 

such that the change in 𝜏P is much larger than 𝜏AP (assumed constant equal to spike duration in the 

algorithm formulation) within this working range. 
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Using gradient descent, the weights of the network can be learnt through the following 

relations, 

𝑤 = 𝑤 − 𝛼
𝜕𝐿

𝜕𝑤
;

𝜕𝐿

𝜕𝑤
=

𝜕𝐿

𝜕𝑧

𝜕𝑧

𝜕𝑤
 (3.10) 

where, 𝛼 is the learning rate. The term  can be obtained using Equation 3.9, while the term  

can be derived from Equation 3.8 by algebraic manipulations as, 

𝜕𝐿

𝜕𝑧
=

1

𝑧𝜆
𝑒 −

𝑎

𝑇 𝜆
𝑒  (3.11) 

3.3. Network Performance 

The activation function of the neurons, 𝑔(. ), given by the relationship between the P state 

lifetime, 𝜏P , and the applied voltage, 𝑉 , is obtained from stochastic-LLG simulations of the 

superparamagnetic MTJ device with a 2𝑘B𝑇  barrier height. A hybrid device-algorithm co-

simulation framework calibrated to experimental measurements was used to evaluate the 

performance of the network. The 784 × 10 network therefore consisted of LLG simulations of 10 

MTJ devices while the deeper 784 × 400 × 10 network consisted of 400 MTJs in the hidden layer 

and 10 devices in the output layer. Figure 3-7 gives an example of prediction of 784 × 10 network 

based on the precise time to spike. Neuron 6 fires the first spike at 𝑡 = 23ns while all neurons 

keep silent. In this case, the input figure is predicted to be digit 6. 
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Figure 3-7: The response of 10 neurons in the output layer for one input figure is 

shown. 

A test accuracy of 90.88% was observed for a network architecture of 784 × 10 neurons. 

However, since the realtime device operation is stochastic with exponential lifetime characteristics, 

there might be image instances which are inferred incorrectly if the decision is solely based on the 

first spike, as is indicated by Figure 3-8, where the trained 𝜏P  of winning neuron and failing 

neuron(s) are close. In this case, even though the network is correctly trained, failing neuron may 

spike prior to winning neuron due to the stochastic firing of spikes, which leads to an error 

prediction. 

 

Figure 3-8: Cause for stochasticity-related error is shown. 
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In that case, the robustness of the decision and the classification accuracy improves 

significantly if the inference process is based on the sum of multiple inter-spike intervals. As 

demonstrated in Figure 3-9, the accuracy of the hardware network approaches the ideal baseline 

software accuracy with only a 2/3-spike confidence for the winning neuron, thereby resulting in a 

highly sparse firing behavior of the neurons due to temporal information encoding. 

 

Figure 3-9: Prediction process and result based on multiple spikes are shown. (a) The 

prediction is based on multiple inter-spike intervals of each neuron (interval of 3 spikes in the 

figure). (b)Prediction based on multiple spikes show improved accuracy. Accuracy close to 

ideal baseline can be achieved with only 2 or 3 spikes. 

Similar observations were achieved when the network was scaled to a 3-layer 

architecture with 784 × 400 × 10 neurons. The network had a test accuracy of 97.41%, at 

par with iso-architecture standard deterministic networks (a conventional non-spiking 

network with rectified linear neuron units with 400 hidden layer neurons was observed to 

have a test accuracy of 97.03% after 20  epochs of training). Interestingly, even for this 

deeper network, the testing accuracy achieved near-maximum values with only 2 to 3 spikes 

being considered for both the hidden and output layers. This is a significant improvement 

over rate encoding methods and substantiates the advantages of spiking sparsity enabled by 
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temporal encoding. In rate encoding, each layer triggers the next layer by the average firing 

rate and therefore the spiking activity increases exponentially with layer depth (for instance, 

the maximum firing activity per neuron can range between 5 to 10 in deep rate encoded SNN 

architectures like VGG and ResNet [92]). In contrast for temporal encoding, since information 

transmission from one layer to another does not depend on average firing rate but rather on 

the time of firing, there is no dependency of spiking activity on network scaling. While the 

stochasticity causes the number of spikes for inference to slightly increase above 1 to 

maintain minimal accuracy drop, it enables the usage of binary state-compressed scaled 

neuron devices to encode multi-bit information, instead of complex device structures 

exhibiting spin textures like domain walls, skyrmions, among others [70]. In order to perform 

a benchmarking analysis, we compared the sparsity levels in our network against an iso-

accuracy rate-encoded stochastic MTJ network (implemented according to the proposal 

outlined in Ref. [60]). We observed 1.6 × reduction in spiking sparsity for the hidden layer 

and 3.77 × reduction in spiking sparsity for the output layer in the 784 × 400 × 10 neuron 

network. Scaling to deeper architectures is expected to improve the sparsity and latency 

benefits of such architectures along with providing accuracies at par with other 

implementations [46], [138]. 

4. Discussion and Outlook 

This work presents a unique perspective of designing efficient stochastic neuromorphic 

systems with temporal information encoding driven by an interdisciplinary perspective from 

devices to brain-inspired algorithm development. The work provides algorithmic formulations to 

leverage the stochastic temporal device characteristics of superparamagnetic devices and provides 

proof-of-concept demonstrations through extensive simulations. Such an end-to-end co-design 
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effort to leverage unique properties of neuromorphic computing is an ideal fit for application 

drivers characterized by temporal information (for instance, sparse data collected by event-driven 

sensors [163], [164], among others). 
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Chapter 4 
 

All-Spin Bayesian Neural Networks 

Probabilistic machine learning enabled by the Bayesian formulation has recently gained 

significant attention in the domain of automated reasoning and decision making. While impressive 

strides have been recently made to scale up the performance of deep Bayesian neural networks, 

they have been primarily standalone software efforts without any regard to the underlying hardware 

implementation. In this chapter, an “all-spin” Bayesian neural network is proposed where the 

underlying spintronic hardware provides a better match to the Bayesian computing models. To the 

best of our knowledge, this is the first exploration of a Bayesian neural hardware accelerator 

enabled by emerging post-CMOS technologies. An experimentally calibrated device-circuit-

algorithm simulation framework is developed and 24 × reduction in energy consumption against 

an iso-network CMOS baseline implementation is demonstrated. 

1. Motivation 

As is mentioned in previous chapters, probabilistic inference is at the core of decision-

making in the brain, which can be realized by BNNs due to the capabilities of making predictions 

based on Bayes’ theorem where probability distributions can be modeled by Gaussian distributions 

[165]. On the other hand, the development of spintronic devices shows a promising pathway 

towards a non-von Neumann hardware system, which avoids the bottleneck between memory and 

computing unit attributed to the in-memory computing framework and can be a hardware solution 

for BNN acceleration [70], [120], [141], [166], [167]. Moreover, scaled nanomagnetic devices 

operating at room temperature are characterized by thermal noise, resulting in probabilistic 

switching. These factors lead to the idea of leveraging the inherent device stochasticity of spintronic 

devices to generate the samples from Gaussian probability distributions by drawing insights from 
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a statistical central limit theorem. Furthermore, the work also elaborates on a cohesive design of a 

spintronic Bayesian processor that leverages the benefits of spin-based Gaussian random number 

generators (RNGs) and spintronic “in-memory” crossbar architectures to realize high-performance, 

energy-efficient hardware platforms. It is believed that the drastic reductions in circuit complexity 

(single devices emulating synaptic scaling operations, crossbar architectures implementing “in-

memory” dot-product computing kernels and leveraging device stochasticity to sample from 

probability distributions), and low operating voltages of spintronic devices make them a promising 

path toward the realization of probabilistic machine learning enabled by the Bayesian formulation. 

2. Hardware Design Space Concerns in Bayesian Neural Networks 

As is introduced in chapter 2, Bayesian neural networks consider the weights of the 

network, 𝑾, to be latent variables characterized by a probability distribution (shown in Figure 2-

6). During the inference process, weight values are sampled from a posterior distribution 𝑃(𝑾|𝐷). 

The sampled weight values join the dot-product calculation according to Equation 2.12. In this way, 

the uncertainty in weight values results in probabilistic inference. However, posterior distribution 

given by Equation 2.8 according to Bayes’ rule is intractable. For this reason, by adopting 

variational inference method, 𝑃(𝑾|𝐷) is approximated by a Gaussian distribution 𝑞(𝑾, 𝜃). To 

summarize, the calculation process gives rise to the main hardware design space concerns in BNNs 

categorized as follows. 

2.1. Gaussian Random Number Generation 

Central to the entire framework, both in the learning as well as the inference process, is the 

random number generation corresponding to the synaptic weights. Given the current large model 

sizes characterized by over a million synapses, coupled with the fact that random draws need to 
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perform multiple times for each synaptic weight, RNG circuits would contribute significantly to 

the total area and power consumption of the hardware. Furthermore, the random numbers need to 

be sampled from a Gaussian distribution, thereby increasing the complexity of the circuit. The 

hardware costs for CMOS implementations of such Gaussian RNGs will be discussed in the 

following sections along with their limitations, followed by the proposal of nanomagnetic RNGs 

that can serve as the basic building blocks of such Bayesian neural networks. 

2.2. Dot-Product Operation Between Inputs and Sampled Synaptic Weights 

A common aspect of any standard deep-learning framework is the fact that forward 

propagation of information through the network involves a significant amount of memory-intensive 

operations. The dot-product operation between the synaptic weights and the inputs for inference 

involves the compute energy along with memory access and memory leakage components. For 

large-scale problems and correspondingly largescale models, CMOS memory access and memory 

leakage can be almost ~50% of the total energy consumption profile [168]. 

The situation is further worsened in a Bayesian deep network since each synaptic weight 

is characterized by two parameters (mean and variance of the probability distribution), thereby 

requiring double memory storage. However, the dot-product operation does not occur directly 

between the inputs and these parameters. In fact, for each inference operation, the synaptic weights 

(typically assumed constant during inference for non-probabilistic networks and implemented by 

memory elements in hardware) are repeatedly updated depending on sampled values from the 

Gaussian probability distribution. Hence, the direct utilization of crossbar-based “in-memory” 

computing platforms enabled by nonvolatile memory technologies (discussed in detail later) for 

alleviating the memory access and memory fetch bottlenecks is not possible and therefore requires 

a significant rethinking. 
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In the following sections, the work sequentially expand on each of these points and propose 

a spin-based neural processor that merges the deterministic and stochastic devices as a potential 

pathway to enable Bayesian deep learning that can be orders of magnitude more efficient in contrast 

to state-of-the-art CMOS implementations. 

3. Spintronic Device Design 

3.1. Magnetic Tunnel Junction—True Random Number Generator Design 

The basic device structure under consideration is the MTJ introduced in chapter 2. Let us 

now consider the switching of the scaled magnet from one state to another by the application of an 

external current. The switching process is inherently stochastic at nonzero temperatures due to the 

thermal noise, as is shown in Figure 2-10 [126]. In the presence of an external current, the 

probability of switching from one state to the other is modulated depending on the magnitude and 

duration of the current. True RNG (TRNG) can be designed using such a device by biasing the 

magnet at the “write” current corresponding to a switching probability of 50%. Note that CMOS-

based TRNGs suffer from high-energy consumption and circuit design complexity [169]. Proposals 

and experimental demonstrations of MTJ-based TRNG have been shown [144]. MTJ-based 

TRNGs are characterized by low area footprint and compatibility with CMOS technology. 

In this work, a spin–orbit coupling-enabled device structure is considered (see Figure 4-1). 

It consists of the MTJ stack lying on top of a heavy-metal (HM) underlayer. The device “read” is 

performed through the MTJ stack between terminals T1 and T3. However, the device “write” is 

performed by passing current through the HM underlayer between terminals T2 and T3. Input 

current flowing through the HM results in spin injection at the interface of the magnet and HM due 

to spin-Hall effect (SHE) [131] and thereby causes switching of the MTJ FL [170]. The device has 

the following advantages. 
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1. The decoupling of “write” and “read” current paths is advantageous from the perspective 

of peripheral circuit design to avoid “read”– “write” conflicts since the associated circuits 

can be optimized independently.  

2. Such devices offer 1–2 orders of magnitude energy efficiency in comparison to standard 

spin-transfer torque MRAMs. This is due to the fact that in such spin–orbit coupling-based 

systems, every incoming electron in the “write” current path repeatedly scatters at the 

interface of the magnet and HM and transfers multiple units of spin angular momentum to 

the ferromagnet lying on top. 

 

Figure 4-1: TRNG device structure is shown. Reset current (𝐼 ) flowing through the HM 

results in in-plane spin current (𝐼 ) injection for the MTJ FL. After switching to the in-plane 

metastable position, the magnet relaxes to either of the two stable states with 50% probability. 

Usage of SHE-based switching enables us to use an alternative TRNG design [171], [172] 

that has the potential to produce high-quality random numbers in the presence of process, voltage, 

and temperature (PVT) variations. In the earlier scenario of a standard MTJ, device-to-device 

variations can result in deviations of the bias current required for 50% switching probability, 

thereby degrading the quality of the random number generation process. The scheme is shown in 

Figure 4-1, where a magnet with perpendicular magnetic anisotropy (PMA) lies on top of the HM. 

The device operation is divided into three stages. During an initial “Reset” stage, a current flowing 
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through the HM results in in-plane spin injection in the magnet and orients it along the hard axis 

for a sufficient magnitude of the “reset” current. The magnet is then allowed to relax to either of 

the two stable states in the presence of thermal noise—the switching probability being 50% since 

the hard axis is a metastable orientation point for the magnet. In this case, device-to-device 

variations only cause change in the critical current required for biasing the magnet close to the 

metastable orientation and does not skew the probability distribution to a particular direction (as in 

the standard MTJ case). Hence, by maintaining a worst case critical value of the HM “reset” current, 

the quality of the random number generation process can be preserved even in the presence of PVT 

variations. Furthermore, the “reset” current does not flow through the tunneling oxide layer (unlike 

the standard MTJ case), and therefore, the reliability of the oxide layer is not a concern in this 

scenario [171], [172]. Note that our device operation is validated by recent experiments of holding 

the magnet to its metastable hard-axis orientation for performing Bennett clocking in the context 

of nanomagnetic logic [173]. SHE-based energy-efficient switching also results in the reduction of 

the energy consumption involved in the random number generation process. 

The probabilistic switching characteristics of the MTJ can be analyzed by LLG equation 

(given in Equation 2.11) with additional term to account for the spin–orbit torque generated by the 

SHE at the ferromagnet–HM interface [124]. The spin current from HM layer can be modeled as 

𝑰 = 𝜃
𝐴

𝐴
𝐈  (4.1) 

In Equation 4.1, 𝐴  and 𝐴  are the MTJ and HM cross-sectional area. 𝜃  is the spin-Hall 

angle, and 𝐈  is the charge current flowing through the HM underlayer. 

The device parameters are mentioned in Table 4-1. Considering a worst case “reset” 

current of 140μA for a duration of 1ns, the energy consumption involved in using a 20𝑘B𝑇 barrier 

magnet (calibrated to experimental measurements reported in [174]) as a TRNG is ~57fJ/bit (𝐼 𝑅𝑡 

energy consumption) [171], which is almost 2 × lower than the standard MTJ-based TRNG. 
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3.2. Domain-Wall Motion-Based Magnetic Devices— Multilevel Non-Volatile Memory 
Design 

The DW motion-based MTJs (referred to as DW-MTJs) introduced in chapter 2 can be 

utilized as non-volatile memory devices since the device conductance is non-volatile and can be 

easily modified by applying charge current through HM layer, as is indicated in Figure 2-10. It is 

worth noting here that the device structure in Figure 2-9 can be used as a neuron by interfacing 

with a reference MTJ [see Figure 4-2] [120]. The resistive divider can drive a CMOS transistor 

where the output drive current would be a linear function of the input current flowing through the 

HM layer of the device, thereby mimicking the functionality of a saturated linear functionality by 

ensuring that the transistor operates in the saturation regime [120]. In this way, both memory and 

neurons are based on MTJs. The simulation parameters, provided in Table 4-2, were used for the 

rest of this text for DW-MTJ unless otherwise stated. The parameters were obtained magnetometric 

measurements of CoFe–Pt nanostrips [121]. 

Table 4-1: MTJ Device Simulation Parameters are tabulated. 

Parameter Value 
Free-layer width 40nm 

Heavy-metal thickness 2nm 
Saturation magnetization, 𝑀  [174] 1000kA/m 

Spin-Hall angle, 𝜃  [174] 0.3 
Energy barrier, 𝐸𝐵 20𝑘B𝑇 

Temperature, 𝑇 300K 



65 
 

 

Figure 4-2: DW-MTJs can be used as a neuron by interfacing with a reference MTJ. The 

current provided by the output transistor, 𝐼 , is a saturated linear function of the input current, 

𝐼 . 

Table 4-2: DW-MTJ Device Simulation Parameters are tabulated. 

Parameter Value 
Ferromagnetic thickness 0.6nm 

Grid size 4 × 1 × 0.6nm  
Heavy-metal thickness 3nm 

Domain wall width 7.6nm 
Saturation magnetization, 𝑀  [121] 700kA/m 

Spin-Hall angle, 𝜃  [121] 0.07 
Gilbert damping factor, 𝛼 [121] 0.3 

Exchange correlation constant, 𝐴 [121] 1 × 10−11J/m 
Perpendicular magnetic anisotropy, 𝐾𝑢2 [121] 4.8 × 105J/m3 

Effective DMI constant, 𝐷 [121] −1.2 × 10−3J/m2 
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4. All-Spin Bayesian Neural Networks 

4.1. Spin-Based Gaussian Random Number Generator 

Gaussian random number generation task is a hardware-expensive process. CMOS-based 

designs for Gaussian RNGs would usually require a large number of registers, linear feedback 

circuits, and so on. For instance, a recent work for a CMOS-based Gaussian RNG implementation 

reports 1780 registers and 528.69 − mW power consumption for a 64-parallel Gaussian RNG 

task [175]. 

Let us now discuss the proposal for spin-based Gaussian RNG. In last section, we discussed 

the design of spintronic TRNG. An array of TRNGs can be used for sampling from a uniform 

probability distribution. Note that each spin device can be considered to produce a sample from a 

Bernoulli distribution with a probability of 0.5. However, reading a particular row of the array 

provides a sample from a discrete uniform distribution. In order to generate a Gaussian probability 

distribution from a uniform one, we draw inspiration from the statistical central limit theorem, as 

discussed in Box 1. The key result of the central limit theorem that we utilize is that the sum of a 

large number of independent and identically distributed (i.i.d) random variables is approximately 

normal. 

 

Box 1: Central Limit Theorem 

Let {𝑋 , 𝑋 , … , 𝑋 }  be a random sample of 𝑛  i.i.d random variables drawn from a 

distribution (which may not be normal) of mean 𝜇 and variance 𝜎 . Then, the probability density 

function of the sample average 𝑆 = (𝑋 + 𝑋 + ⋯ + 𝑋 )/𝑛 approaches a normal distribution 

with mean 𝜇 and variance 𝜎 /𝑛 as 𝑛 increases. 
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Figure 4-3: Outline of a 2 × 2  array utilizing spin-based devices interfaced with an 

accumulator to implement a Gaussian RNG. 

The proposed design is shown in Figure 4-3, which depicts a possible array implementation 

[171] of our spin-based TRNGs. Each spin device is interfaced with an access transistor. Rows 

sharing a reset line can be driven simultaneously. Hence, random numbers can be generated in the 

entire array in parallel. The timing diagram is shown in Figure 4-3. Each row can be read by 

asserting a particular wordline (WL) and sensing the bitline (BL) voltage. For an 𝑚 × 𝑛 array, each 

row read produces an 𝑛 -bit number generated from a uniform probability distribution. By 

interfacing the array with an accumulator that averages all the generated random numbers, the array 

is able to produce random numbers drawn from a normal distribution. Note that the hardware 

overhead for this process would be high for applications that require precise sampling from 

Gaussian distributions since the convergence takes place only for infinite samples. However, for 

machine-learning workloads considered herein, the performance of such platforms is usually 

resilient to approximations in the underlying computations. For instance, Figure 4-4 shows that 

even with an 8-bit representation and three random variables drawn from the uniform probability 

distribution, an approximate Gaussian distribution can be achieved. While Gaussian probability 

distributions are primarily used in such algorithms, non-Gaussian weight distributions can also be 

designed by using the Gaussian function as a basis. Note that while Box 1 discussions are equally 
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valid for a CMOS-based TRNG, it will be an order of magnitude more area and power consuming 

than our proposed spin-based TRNG, as explained in previous section. 

 

Figure 4-4: The probability distributions of random numbers generated from such an array 

are shown in the extreme right by using a sum of N random variables (rows of the array). 8-bit 

representation and 100000 samples are used to plot the distribution. 

4.2. Dot-Product Operation Between Inputs and Sampled Synaptic Weights 

DW-MTJs can be implemented in crossbar arrays introduced in chapter 2 (see Figure 2-

12). Dot-products are calculated according to Kirchhoff’s law given in Equation 2.12 and the 

resulting current output is sent to spintronic neurons. Consecutive “write” and “read” cycles of the 

spin neurons will implement multiple iterations of the Bayesian network. The analog output current 

provided by the spin neuron is then converted to a digital format using the analog-to-digital 

converters (ADCs). The digital outputs can be latched to provide the inputs for the fan-out crossbar 

arrays. The energy efficiency of the system stems mainly from two factors as follows. 

1. The input write resistance of the spintronic neurons is low (being magnetometallic devices) 

and it inherently requires very low currents for switching. This enables the crossbar arrays 

of spintronic synapses to be operated at low terminal voltages (typically 100 mV). 

Furthermore, spintronic neurons are inherently current-driven and thereby do not require 

costly current to voltage converters, in contrast to CMOS and other emerging technology-
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based (resistive random access memory and phase-change memory, among others) 

implementations [176]. 

2. Since spin devices are inherently nonvolatile technologies, the ability to perform the costly 

multiply-accumulate operations in the memory array itself enables us to address the issues 

of von-Neumann bottleneck. 

However, in the context of Bayesian deep networks, even for the inference stage, the 

synaptic weights are not constant but are updated depending on sampled values from a Gaussian 

distribution. Assuming that we are able to generate samples from a normal distribution by using 

the device-circuit primitives proposed earlier, the computations in a Bayesian network can be 

partitioned in an appropriate fashion such that the benefits of spin-based “in-memory” computing 

can be still utilized. This is explained in Box 2. 

 

Figure 4-5: All-spin Bayesian neural network implementation. The two crossbar arrays 

behave as “in-memory” computing kernels, whereas the RNG unit provides the sampling operation 

from the Gaussian RNGs. 
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Realizing that a normal distribution with a particular mean and variance is equivalent to a scaled 

and shifted version of a normal distribution with zero mean and unit variance, we partition the 

inference equation, as shown in Equation 4.3. The constant parameters 𝜇  and 𝜎  represent the 

mean and variance of the probability distribution of the corresponding synaptic weight and can, 

Box 2: Computations Involved in Inference Operation 

Once all the posterior distributions are learned (𝜇  and 𝜎  parameters of the weight 

distributions), the network output corresponding to input, 𝒙, should be obtained by averaging 

the outputs obtained by sampling from the posterior distribution of the weights, 𝑾 [175]. The 

output of the network 𝑦 is therefore given by Equation 4.2. 

𝑦 = 𝔼 (𝑾| )[𝑓(𝒙, 𝑾)] ≈ 𝔼 (𝑾, )[𝑓(𝒙, 𝑾)] ≈
1

𝑆
𝑓 𝒙, 𝑾  (4.2) 

𝑓(𝒙, 𝑾) is the network mapping for input 𝒙 and weights, 𝑾. Using the variational inference 

method introduced in chapter 2, we approximate the weight distribution by Gaussian functions. 

The approximation is performed over 𝑆 independent Monte Carlo samples drawn from the 

Gaussian distribution 𝑞(𝑾, 𝜃). 

Considering just a single layer and neglecting the neural transfer function, 𝑓 𝒙, 𝑾  for 

the 𝑗th neuron can be decomposed into 

𝑓 𝒙, 𝑾 = 𝑥 ∙ 𝑁 𝜇 , 𝜎  

= 𝑥 ∙ 𝜇 + 𝜎 ∙ 𝑁(0,1)  

= 𝑥 ∙ 𝜇 + 𝑥 ∙ 𝑁(0,1) ∙ 𝜎  

(4.3) 

where 𝑘 is the dimensionality of the input 𝒙 and 𝑁 𝜇 , 𝜎  represents a particular sample 

drawn from a normal probability distribution with mean 𝜇  and variance 𝜎 . 
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therefore, be implemented by DW-MTJ-based memory devices from a hardware implementation 

perspective. The resultant system (see Figure 4-5) consists of two crossbar arrays for storing the 

mean and variance parameters. While the inputs of a particular layer are directly applied to the 

crossbar array storing the mean values, they are scaled by the random numbers generated from the 

RNG unit (outputs normalized to provide random numbers with zero mean and unit variance) 

described previously for the crossbar array storing the variance values. Typical CMOS 

neuromorphic architectures are characterized by much higher movement of weight data than input 

data to compute the inference operation [177]. This proposal of computation partition, explained in 

Box 2, enables us to leverage the “in-memory” computing primitives for storing the probability 

distribution parameters while parallelly computing energy-efficient dot products in situ between 

inputs and stochastic weights. It is worth noting here that the crossbar column outputs are computed 

and read sequentially in order to ensure that the random numbers sampled for the synaptic weights 

of each column are independent. 

5. Results and Discussion 

A hybrid device-circuit-algorithm co-simulation framework was developed to evaluate the 

performance of the proposed all-spin Bayesian hardware. The magnetization switching 

characteristics of the monodomain and multidomain MTJ was simulated in MuMax3, a GPU 

accelerated micromagnetic simulation framework [178]. The nonequilibrium Green’s function 

(NEGF)-based transport simulation framework [179] was used for modeling the MTJ resistance 

variation with oxide thickness and applied voltage. The obtained device characteristics from 

MuMax3 and SPICE simulation tools were used in an algorithm-level simulator, PyTorch, to 

evaluate the functionality of the circuit. The performance of this design was tested for a standard 

digit recognition problem on the MNIST data set [161]. A two-layer fully connected neural network 

was used, with each hidden layer having 200 neurons. The probability distributions were learned 
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using the “Bayes by Backprop” algorithm1 [118], which learns the optimal Gaussian distribution 

by minimizing the Kullback–Leibler (KL) divergence2 from the true probability distribution. The 

prior distribution on the weights used for training was a scaled mixture of two Gaussian functions. 

The network was trained offline to obtain the values of the mean and standard deviation of the 

probability distributions of the weights. Subsequently, they were mapped to the conductance values 

of the DW-MTJ devices. The baseline idealized software network was trained with an accuracy of 

98.63%  over the training set and 97.51%  over the testing set (averaged over ten sampled 

networks). 

The device parameters used in this article have been tabulated in Table 4-1 and Table 4-2; 

20𝑘B𝑇 barrier height magnet was used in the Gaussian RNG unit. 4-bit representation in the DW-

MTJ weights and 3-bit discretization in the neuron output are adopted. Note that the neuronal 

devices mimic a saturating linear functionality and our network was trained with such a transfer 

function itself, as is indicated in Figure 4-2. Considering a minimum sensing and programming 

displacement of 20nm for the DW location, the cross-point and neuronal devices were considered 

to be 320 and 160nm in length. From the micromagnetic simulations, it is observed that the critical 

current required to switch the neuronal device from one edge to the other is 4μA for a time duration 

of 10ns. The crossbar supply voltage was assumed to be 100mV for evaluating the crossbar power 

consumption. The crossbar resistance ranges (which can be varied by the oxide thickness) were 

designed to provide the critical current requirement for the spin neurons. A TMR of 300% was 

adopted in the DW-MTJ conductance values of the crossbar array. Considering such device-level 

behavioral characteristics, nonidealities, and constraints, the test accuracy of the network was 

 
1The related code can be found at https://github.com/nitarshan/bayes-bybackprop. 
2The KL divergence is a measure of the difference between two probability distributions. In this 

case, the KL divergence is between the true posterior 𝑃(𝑾|𝑋𝐷) and the approximated posterior 𝑞(𝑾, 𝜃). It 
can be shown that minimization of this difference function can be achieved by using the gradient descent 
method and iteratively updating the variational parameters, 𝜇 and 𝜎 [118]. This is referred to as the “Bayes 
by Backprop” algorithm. 
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96.98% (averaged over ten samples). Furthermore, nonideal DW programming can also impact 

the system accuracy. Five independent Monte Carlo runs of the network were performed with a 

10%  variation in each of the programmed crossbar device conductance values. The average 

accuracy degradation was observed to be insignificant − 96.74%. 

In order to estimate the system-level energy consumption, the core RNG and crossbar 

energy consumption were considered along with peripheral circuitry, such as ADC and DAC33. The 

energy consumption was evaluated for a single-image inference and a particular network sample. 

The crossbar read latency was assumed to be 10ns (for each column read). During each 10-ns 

column read, the power consumption for the DAC and the corresponding crossbar column was 

considered. Subsequently, the neuron device state was read and converted to a digital value using 

an ADC. The neuron is reset before every operation. For the RNG, DAC, and ADC units, 8-bit 

precision was adopted and three variables were used for the accumulation process in the normal 

distribution sampling. 8-bit precision was assumed for the energy calculations in order to achieve 

a fair comparison with numbers reported in [175] for an iso network CMOS architecture. However, 

from a functional viewpoint, lower bit-precision ~4 bits was observed to be sufficient. The total 

energy consumption of the proposed “all-spin” network was evaluated to be 790.2nJ  per 

classification, which is 24 × energy efficient in contrast to the baseline CMOS implementation 

[175]. The energy consumption of the RNG unit, including peripherals for adding the random 

numbers generated per row, was estimated to be 446.8nJ. Energy consumption of the crossbar 

array, including DAC, ADC, and multiplier peripherals, was 343.3nJ. The system-level energy 

efficiency stems from both the RNG design and utilization of the “in-memory” computing units. 

Note that resistive crossbars are usually characterized by limited fan-in—much smaller 

than neuron fan-in in typical deep networks due to nonidealities, parasitics, and sneak paths. Hence, 

 
3The energy consumption for the peripheral circuitry was included from typical numbers considered 

in the literature [180], [181], and can be found at https://github.com/Aayush-Ankit/puma-
simulator/blob/training/include/constants.py. 
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mapping a practically sized network requires mapping synapses of a neuron across multiple 

crossbars [180], [181]. Such architectural-level innovations can be easily integrated with the current 

proposal. 

6. Summary 

In summary, this work proposed the vision of an “all-spin” Bayesian neural processor that 

has the potential of enabling orders of magnitude hardware efficiency (area, power, and energy 

consumption) in contrast to state-of-the-art CMOS implementations. Computing frameworks, so 

far, have mainly segregated deterministic and stochastic computations. Standard deterministic 

deep-learning frameworks enabled by spintronic devices and other post-CMOS technologies have 

been explored. In such scenarios, device-level nonidealities are usually treated as a disadvantage. 

More recently, stochasticity inherent in such devices (for instance, probabilistic switching in the 

presence of thermal noise) has been exploited for computing to implement stochastic versions of 

their deterministic counterparts [60], [74]. Due to additional information encoding capacity in the 

switching probability, such devices can be scaled down to single bit instead of multibit 

representations. Device stochasticity has also been used in other unconventional computing 

platforms, such as Ising computing and combinatorial optimization problems, among others [142]. 

Note that prior work on using magnetic devices for Bayesian inference engines have been proposed 

[182], [183], which are mainly used for implementing Bayes’ rule for simple prediction tasks in 

directed acyclic graphs and do not have relevance or overlap with Bayesian deep networks. 

Bayesian deep learning is a unique computing framework that necessitates the merger of both 

deterministic (dot-product evaluations of sampled weights and inputs) and stochastic computations 

(sampling weights from probability distributions), thereby requiring a significant rethinking of the 

design space across the stack from devices to circuits and algorithms. 
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Chapter 5 
 

Leveraging Voltage-Controlled Magnetic Anisotropy to Solve 
Sneak Path Issues in Crossbar Arrays 

In crossbar array structures, which serves as an “in-memory” compute engine for artificial 

intelligence (AI) hardware, write sneak path problem causes undesired switching of devices that 

degrades network accuracy. While custom crossbar programming schemes have been proposed, 

device-level innovations leveraging nonlinear switching characteristics of the cross-point devices 

are still under exploration to improve the energy efficiency of the write process. In this work, a 

spintronic device design based on magnetic tunnel junction (MTJ) exploiting the use of voltage-

controlled magnetic anisotropy (VCMA) effect is proposed as a solution to the write sneak path 

problem. In addition, insights are provided regarding appropriate operating voltage conditions to 

preserve the robustness of the magnetization trajectory during switching, which is critical for proper 

switching probability manipulation. 

1. Motivation 

Crossbar array structure is the key computational primitive required in NN hardware 

acceleration. In a crossbar array, devices (i.e., synapses) are present at the junction points of the 

array, as is shown in Figure 2-12. The crossbar in the figure receives input voltage signals along 

the horizontal lines and produces output current signals along the vertical lines. Following 

Kirchhoff’s law, output current along the column is given by the Equation 2.12. Though the 

crossbar array structure is intrinsically efficient in dot-product calculation, errors may occur due to 

undesired “sneak path” problems [184]–[186]. Sneak path issue refers to the situation where an 

applied voltage causes undesired current flowing through devices that are not supposed to be 

read/written, which results in an error in the reading/writing process. For example, in Figure 5-1(a), 
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the blue current indicates the desired current, which passes through device 𝐷 , while there may also 

be the undesired red current along the other row, because there can be a voltage drop across devices 

𝐷 , , 𝐷 , , and 𝐷 , , since the other input and output terminals of the array are floating. While 

sneak path issue occurs both in the reading and writing process, write sneak path issue is a more 

challenging problem in “in-memory” dot-product calculation. To solve the sneak path issue, 

usually, a custom programming scheme is adopted for the write process [187]. As is shown in 

Figure 5-1(b), instead of just applying a voltage signal to terminals linked to the device to switch, 

all terminals receive a voltage input, such that the voltage difference is controlled, and sneak path 

current is mitigated. The device to switch is noted as the “selected cell” (𝐷 ) and applied a full set 

voltage, 𝑈 , and the devices noted as “half-selected cells” (𝐷 ) are under a half-set voltage, 

which is not sufficient enough for switching to occur. The remaining cells are “not-selected cells” 

(𝐷 ), which experience zero voltage drop. Though the sneak path issue can be reduced under this 

programming scheme, current flowing through half-selected cells contributes to unwanted energy 

consumption. For this reason, device-level innovations have been pursued to reduce the energy 

cost. 

Several device designs based on resistive random access memory (RRAM) have been 

proposed [188]–[190]. A typical RRAM device is composed of two metal electrodes and an 

insulating layer in between. In the insulating layer, a conducting filament (CF) can be formed and 

modulated when voltage signals are applied across the electrodes. Device conductance is 

determined by the state of the CF. Previous works have mainly proposed cell designs consisting of 

multiple devices, such as 1T-1M [191]–[193], 1D-1M [194], [195], and 1S-1M [196], [197], where 

an additional transistor (T), diode (D), or selector (S) is used to reduce or block the undesired 

current for half-selected cells. While the energy consumption is reduced due to the mitigation of 

undesired current, such cross-point designs with multiple devices are not area-efficient and have 

been succeeded by single-device cell design proposals that leverage intrinsic nonlinear 𝐼– 𝑉 
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characteristics of the cross-point device itself. The cell design exhibiting similar 𝐼– 𝑉 

characteristics as a 1S-1M cell is called a self-selective memristor [198]–[200], while that behaving 

similar to a 1D-1M cell is called a self-rectifying memristor [201], [202]. The nonlinear 𝐼– 𝑉 

characteristics of the single-device cell design enable the reduction of undesired current in a similar 

manner as the multiple-device cell structure along with a higher area efficiency. However, such a 

bit-cell proposal exploiting nonlinear 𝐼– 𝑉  characteristics of crosspoint devices has not been 

explored before for spintronic crosspoint arrays. 

 

Figure 5-1: (a) Sneak path current can be induced during reading and writing operations of 

the crossbar array. To read/write a selected cell 𝐷 , a voltage signal 𝑈  is applied to the device 

(𝑈  =  0), which leads to a read/write current (denoted by blue arrows). On the other hand, this 

voltage drop also results in sneak path current (denoted by red arrows) passing through other 

devices (𝐷 , , 𝐷 , , and 𝐷 , ), which causes errors in the reading and writing process. (b) Under 

the custom programming scheme, the selected device 𝐷  is under a full set voltage 𝑈 . The half-

selected devices 𝐷  are under 1/2𝑈  voltage drop. The not-selected devices 𝐷  are under zero 

voltage drop. 

Compared with other nonvolatile memory technologies, spintronic devices possess the 

advantage of lower operating voltage, which reduces energy consumption, faster read and write 
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processes, unlimited endurance, and compatibility to conventional CMOS-based systems, which 

makes it a promising choice to build the next generation hardware platform for neuromorphic 

computing systems [203]. However, the intrinsic nonlinear physics of emergent novel switching 

mechanisms of spintronic devices has not been leveraged before to mitigate the sneak path current 

issue in crossbar array-based systems. In this work, a single-device bit-cell solution leveraging 

voltage-controlled magnetic anisotropy (VCMA) effect is proposed. During the writing process, 

the full set voltage applied to selected cell switches the device via VCMA effect, while the 

switching of half-selected cells is still dominated by spin transfer torque (STT). Since the 

pulsewidth to achieve high switching probability by VCMA effect is much shorter, the pulsewidth 

of set voltage signal can be chosen properly, so that a high switching probability is achieved for 

selected cell, while the half-selected cells still have a low switching probability tending to zero. 

The sharp switching probability difference among half-selected cells and selected cells under the 

applied voltage signal enables a high write accuracy, since undesired switching of half-selected 

cells is restrained. More importantly, the sharp increase in switching probability is due to the change 

in the switching mechanism and is independent of the pulsewidth and can be achieved even with a 

short pulse in this proposed framework. Compared with the STT dominated mechanism, where the 

sharpness of switching probability increase with pulse amplitude is related to the pulsewidth [204], 

the proposed framework provides more design-time flexibility. Simultaneously, the proposed 

solution reduces the system-level energy consumption due to short pulse widths required by the 

VCMA effect for magnetic state switching. 
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2. Preliminaries 

2.1. Device Physics 

The device utilized in this work is based on MTJ introduced in chapter 2 (see Figure 2-7). 

The resistance between P and AP state of MTJ enables information encoding. STT induced by spin 

current can be used to switch the device state. But, to achieve a high switching probability, a long 

current pulse is required, since the switching probability increases with pulsewidth. To reduce the 

energy consumption, it is necessary to reduce the pulsewidth of applied pulses. A recent work has 

shown that short switching pulses can be achieved through VCMA effect [205]. VCMA effect 

enables manipulation of device magnetocrystalline anisotropy energy (MAE, which is the magnetic 

energy difference between perpendicular and in-plane direction) by an applied voltage via spin–

orbit interactions (which consists of two contributions, namely, angular momentum and magnetic 

dipole momentum [206], [207]). The orbital angular momentum dominates in strong ferromagnetic 

materials [208] and can be modulated by doping of charges with selective spin direction. On the 

other hand, magnetic dipole momentum modification (which results from intra-atomic electron 

redistribution) is the dominating mechanism in materials where spin–orbit interaction is not strong 

enough [209]. Such VCMA effect enables the change of magnetic anisotropy from perpendicular 

to in-plane direction. 

During the transition of magnetic anisotropy from perpendicular direction to in-plane 

direction, the FL magnetization performs precession along the in-plane easy axis, as is shown in 

Figure 5-2. Considering that the initial magnetization is at the south pole, the switching probability 

is high when the magnetization stops in the upper half of the unit sphere [region near point A in 

Figure 5-2] and low in the lower half [region near point B in Figure 5-2], such that the switching 

probability can be controlled by the pulsewidth. Prior work has reported that the VCMA-induced 

switching requires a shorter pulsewidth that STT-induced switching [205]. 
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The difference in required pulsewidth between VCMA-induced switching and STT-

induced switching leads to a possible solution to the sneak path problem based on the programming 

scheme illustrated in Figure 5-1(b). If the set voltage is chosen appropriately, such that the selected 

cell operates via the VCMA-induced switching mechanism (although STT is present in this case, 

the switching process is dominated by the VCMA effect), while half-selected cells operate via the 

STT-induced switching mechanism, the pulsewidth applied to switch the selected cell will only 

result in near-zero switching probability to half-selected cells. In this way, a sharp difference in 

switching probability of selected and half-selected cells can be achieved. 

 

Figure 5-2: Precession trajectory induced by VCMA effect along in-plane axis is shown. 

A high switching probability can be achieved if VCMA voltage pulse terminates when 

magnetization is at point A. The switching probability is low if VCMA pulse terminates when 

magnetization is at point B. 

2.2. Simulation Method 

The behavior of magnetization under an applied external voltage signal that causes STT 

and VCMA effect can be simulated by the LLG equation given in Equation 2.11. To model the 

VCMA effect on MTJ, an additional effective magnetic field 𝑯VCMA = ieff( )

FL
𝑚 �̂� is added to 
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𝑯  in Equation 2.11 [210], where 𝑡FL is the FL thickness, and 𝑚  is the 𝑧 component of unit 

magnetization of FL, 𝑚. 𝐾ieff(𝑈) = 𝐾 − 𝜉
OX

 is the expression of effective energy density for 

interface perpendicular anisotropy, where 𝐾  is the energy density of perpendicular anisotropy 

without applied voltage 𝑈, 𝜉 is the VCMA coefficient, and 𝑡OX is the oxide layer thickness. If not 

mentioned specifically, simulations are based on parameters mentioned in Table 5-1. The electrical 

resistance of the MTJ in the P and AP states is obtained from the modeling framework [211] 

benchmarked to experimental data reported previously in work [205]. 

3. Proposal 

3.1. Simulation Results 

Figure 5-3(a) shows the relation between MTJ switching probability and pulsewidth for 

0.7-V voltage pulses. The fluctuation in switching probability results from the precession along the 

in-plane axis. The peaks (valleys) are according to the cases where the voltage pulse terminates 

when the magnetization rotates to the top (bottom) positions of the trajectory. The peaks and valleys 

tend to be 50%  switching probability, as the magnetization gradually rotates to the in-plane 

direction with increasing pulsewidth, which is the new easy axis under VCMA effect. The 

Table 5-1:  Device Simulation Parameters are tabulated. 

Parameter Value 
Free-layer width, 𝑊MTJ 40nm 
Free-layer length, 𝐿MTJ 70nm 

Free-layer thickness, 𝑡MTJ 0.9nm 
Oxide layer thickness, 𝑡OX 1.3nm 

Saturation magnetization, 𝑀  [211] 1257.3kA/m 
Gilbert damping factor, 𝛼 0.075 

Temperature, 𝑇 300K 
VCMA coefficient,  𝜉 200fJ/V∙m 

Interfacial perpendicular anisotropy, 𝐾  [211] 0.9267mJ/m  



82 
 

switching probability is stable at 50% when the FL magnetization remains in the in-plane direction. 

The 92.1% switching probability at the first peak implies the viability to switch the device with a 

set voltage pulse as short as 1.8ns. Figure 5-3(b) shows the relation between switching probability 

and pulse amplitude for 1.8-ns wide switching pulses. The switching probability remains low for 

pulses with small amplitude (region A). The reason is that the VCMA effect induced by such low 

amplitude pulses is not strong enough. In this region, the STT dominates the switching event, which 

requires a longer pulse for high switching probability. The sharp increase of switching probability 

at 0.65V indicates that the VCMA effect induced by 0.65-V pulse is strong enough to change the 

magnetic anisotropy from perpendicular direction to in-plane direction. The 1.8-ns pulsewidth 

enables the magnetization to reach the top half of the trajectory (see Figure 5-2), resulting in a 

switching probability of 92.1% (region B). The switching probability again drops when the pulse 

amplitude is larger than 0.8V (region C). This can be explained by the magnetization trajectory 

robustness, which will be discussed in the next section. 

 

Figure 5-3: (a) Switching probability (P) changes with applied pulsewidth (Pw) for pulse 

magnitude 𝑈 = 0.7V. The precession of device magnetization results in the peaks and valleys. The 

highest peak depicts a switching probability of 92.1% for a pulsewidth of 1.8ns. (b) Variation of 
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switching probability with pulse amplitude is shown. The pulsewidth is fixed to be 1.8ns. (c) 

Switching probability—pulsewidth (following STT pulse) variation for combined pulsing scheme 

is given by the red curve, and that of a pure STT pulse is given by the blue curve. (d) Variation of 

selected cell (under 𝑈Set  voltage corresponding to VCMA-STT pulsing scheme) switching 

probability with the following STT pulsewidth is given by the red curve. Half-selected cell (under 

1/2𝑈Set voltage corresponding to VCMA-STT pulsing scheme) switching probability variation 

with the following STT pulsewidth is given by the blue curve. 𝑈Set is a VCMA-STT combined 

pulse (0.7-V, 1.8-ns VCMA pulse followed by 0.6-V STT pulse). 

To further increase the switching probability, another STT pulse can be applied after the 

VCMA pulse, as is proposed in prior literature [205]. In this work, the VCMA-STT combined pulse 

consists of a short VCMA pulse (0.7V, 1.8ns) and a following STT pulse (0.6V). The pulsewidth 

of the STT pulse can be fixed in accordance with the desired switching probability of the selected 

cell. In order to justify the contribution of VCMA switching to the proposal, we also compare 

against a pure STT pulsing scheme consisting of a first STT pulse (0.6V, 1.8ns) and a following 

STT pulse (0.6V). Figure 5-3(c) shows that the switching probability of the selected cell under 

VCMA-STT combined switching increases with the pulsewidth of the following STT pulse. The 

switching probability reaches 97% when the following STT pulse is longer than 9ns. On the other 

hand, the switching probability for the pure STT pulse scenario is much lower than that of VCMA-

STT combined pulse, which indicates that the VCMA-STT combined pulse can be much shorter 

(and, therefore, much more energy-efficient) than pure STT pulse to reach a high switching 

probability for the selected cell. 

On the other hand, in the programming scheme shown in Figure 5-1(b), there are also half-

selected cells that experience half-set voltage during the switching process. To avoid undesired 

switching, such half-selected devices should exhibit near-zero switching probability. As is shown 

in Figure 5-3(d), the switching probability remains near zero for the half-selected cell even when 
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the selected cell experiences a switching probability over 97%. The sharp difference in switching 

probability resulting from the VCMA effect makes it possible to ensure a high switching probability 

for selected cells and a near-zero switching probability for half-selected cells and, therefore, 

provides a solution to the sneak path problem for MTJ-based spintronic cross-point arrays. 

Unlike logic applications, neuromorphic computing applications are resilient to minor 

imprecision in hardware operation. While the maximum switching probability shown for AP to P 

switching was ≈ 97%  (note that P to AP switching will have a slightly reduced switching 

probability, since VCMA pulse is always of the same polarity, and STT pulse varies in polarity in 

the two cases), this did not have any significant impact at the system level. On-chip learning 

simulations were performed for a 784 × 10 network on the MNIST dataset. The ideal software 

accuracy was evaluated to be 91.13% (five epochs). The weight values in the network were 

implemented using 10 -bit resolution. The weight discretized network (considering 100% 

switching probability in the devices) had an accuracy of 90.35% (five epochs), while the hardware-

realistic simulation with slightly reduced switching probabilities had an accuracy of 89.34% (five 

epochs, averaged for five independent runs of the training process), which is only ≈ 1.01% lower 

than the network with no switching error. The training convergence time is not affected due to the 

hardware nonidealities and constraints (see Figure 5-4). 
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Figure 5-4: Accuracy of network with and without switching error has been obtained for 

different training epochs. Switching error only causes a reduction of 1.01% in accuracy after five 

epochs of training. 

3.2. Robustness 

It is observed that even when the magnetization motion is dominated by VCMA effect, 

switching probability may still be low, as is shown in Figure 5-3(b) (region C). This is due to the 

loss of magnetization trajectory robustness. The robustness refers to the uniqueness of the route of 

magnetization precession. The high switching probability results from the fact that every time the 

voltage pulse ends, the magnetization is right at the top of the trajectory, which only happens when 

the magnetization follows the same trajectory. If the magnetization precession trajectory is random, 

there is no determined relation between pulsewidth and final position of magnetization. In other 

words, a high switching probability can be ensured only when there is a certain magnetization 

trajectory (i.e., the robustness is preserved). 

In order to figure out how the robustness is preserved, it is necessary to study the motion 

of FL magnetization, 𝑚 . The FL magnetization motion can be characterized by the motion 

“velocity” on the unit sphere, , which is given by the LLG equation in Equation 2.11. The 

precession is mainly related to the first term, −𝑚 × 𝑯eff , where VCMA effect contributes by 
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adding an effective field 𝑯VCMA in the �̂�-direction. Denoting the total magnetic field along 𝑥 (short 

axis), 𝑦 (long axis), and �̂� (perpendicular axis) directions as 𝑯 , 𝑯 , and 𝑯  respectively, Figure 

5-5 shows the direction of the vector field −𝑚 × 𝑯 , −𝑚 × 𝑯 , and −𝑚 × 𝑯  under 𝑈 = 0.7V. 

Any component of 𝐻  (𝑖 ∈ 𝑥, 𝑦, 𝑧) forms a precession along axis 𝑖 solely. Note that since 𝑚 · 𝑯 <

0, there is also a component repelling 𝑚 from axis 𝑖. Direction of the total field depends on the 

magnitude relation among 𝑯 , 𝑯 , and 𝑯 . For example, at the position of point A, where 𝑯  is 

small and can be neglected, total field direction will be in the same direction as 𝑯  (𝑯 ) if |𝑯 | >

|𝑯 |  ( |𝑯 | < |𝑯 | ). For the same reason, total field at point B is dominated by the larger 

component between 𝑯  and 𝑯 . As a result, competition among |𝑯 |, 𝑯 , and |𝑯 | leads to a 

different total field. 

 

Figure 5-5: Field vectors −𝑚 × 𝑯 , −𝑚 × 𝑯 , and −𝑚 × 𝑯  under 𝑈 = 0.7V are plotted 

on the unit sphere. Each of the fields leads to a precession of the magnetization along the 

corresponding axis, with a repelling component. Since the field vectors have components along 

opposite directions in the adjacent region between any two pairs of the three fields, the direction of 

the total field depends on the relative magnitude of 𝑯 , 𝑯 , and 𝑯 . 
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Figure 5-6(a) shows the total  field for applied voltage 𝑈 = 0.7V around the south pole, 

which is the initial location of the device magnetization. In this situation, the magnitude of the 

magnetic field satisfies |𝑯 | < |𝑯 | < 𝑯 , which results in two symmetric exit windows. 

Magnetization trajectory robustness can be preserved since the precession starts from one of the 

two symmetric exit windows every time. Figure 5-6(b) shows the magnetization trajectories of ten 

LLG runs for 𝑈 = 0.7V. Magnetization leaves the north pole from one of the two exits every time 

and follows a certain trajectory. In this case, the switching probability can be controlled by the 

applied pulsewidth since the relation between the position of magnetization and pulsewidth is 

determined by the fixed trajectory. On the other hand, for larger applied voltage, the magnitude of 

magnetic field satisfies |𝑯 | < 𝑯 < |𝑯 |. Figure 5-6(c) shows the total  field for applied 

voltage 𝑈 = 0.8V. There is no definite exit points in the pole region in this situation, as is shown 

in Figure 5-6(d). The trajectories are random, and the switching probability cannot be controlled 

by the applied pulsewidth. On the other hand, although the magnetization trajectories are random 

in this case, the switching probability is still increasing with pulse amplitude, as is shown in Figure 

5-3(b). The reason is that the magnetic energy in the �̂�-direction increases with applied pulse 

amplitude due to increasing |𝑯 | caused by the VCMA effect. Due to larger magnetic energy, for 

larger pulse amplitude, the magnetization is more likely to leave the pole and switch to the other 

side when the pulse ends, leading to a higher switching probability. 

As a result, to enable a high switching probability, the applied voltage 𝑈 has to be in a 

range determined by device parameters. The relation is given by Equation 5.1. 

𝑡OX

𝜉

(𝑁 − 𝑁 )𝑀 𝜇 𝑡MTJ

2
+ 𝐾 < 𝑈 <

𝑡OX

𝜉

𝑁 − 𝑁 𝑀 𝜇 𝑡MTJ

2
+ 𝐾  (5.1) 

In the equation, 𝑁 , 𝑁 , and 𝑁  are demagnetization factors determined by the device shape. 

Other parameters are the same as the ones introduced in Table 5-1. Since VCMA is a surface effect 

occurring at the interface between the FL and the oxide layer, variations in FL thickness play a 
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critical role in ensuring that a given operating voltage range is robust enough to device variations. 

The robustness of the operating voltage range to device parameter variations implies that there 

should be an overlapping region in the operating voltage ranges of all devices in the system, such 

that they can be programed at the same voltage. To verify the operating voltage range robustness, 

the operating window of 1000 devices was calculated according to Equation 5.1 and 6𝜎 = 1.5% 

[210] variation in the FL thickness was considered. It was found that over 99% of all 1000 devices 

can work at the same applied voltage in the operating voltage range between 0.68 and 0.73V. It is 

worth mentioning here that other device, circuit, and system-level parameters, such as Gilbert’s 

damping ratio, input pulse shape waveform variations can also influence the magnetization reversal 

in the time domain [212]. 

 

Figure 5-6: (a) Total  field under applied voltage 𝑈 = 0.7V in the region around the 

south pole of the unit sphere. The relative magnitude of 𝑯 , 𝑯 , and 𝑯  results in two symmetric 

exit windows along diagonal directions in the XY plane. (b) Trajectories of ten LLG simulations 
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leave the pole area from the exit windows, which enables stable magnetization motion. (c) Total 

 field under applied voltage 𝑈 = 0.8V in the region around the south pole. In this situation, 𝑯  

dominates, and the total field does not form definite exit windows unlike the 𝑈 = 0.7-V case. (d) 

Trajectories of ten LLG simulations for applied voltage 𝑈 = 0.8V are almost random. 

4. Conclusion 

In this work, a spintronic device utilizing VCMA effect-induced switching scheme is 

proposed as a solution to the sneak path problem in neuromorphic non-volatile cross-point arrays. 

The required pulsewidth difference between VCMA-induced switching and STT switching leads 

to a sharp difference in switching probability (over 97% for VCMA-induced switching and ≈ 0% 

for STT switching) and, thereby, enables a potentially energy efficient solution to the write sneak 

path problem. In addition, it is also observed that ensuring a specific operating voltage range is 

critical for the VCMA effect to ensure high switching probability of selected cells, such that the 

effective magnetic field 𝑯  does not exceed 𝑯  , which leads to the loss of FL magnetization 

trajectory robustness. 
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Chapter 6 
 

Hardware in Loop Learning with Spin Stochastic Neurons 

Despite the promise of superior efficiency and scalability, real-world deployment of 

emerging nanoelectronic platforms for brain-inspired computing have been limited thus far, 

primarily because of inter-device variations and intrinsic non-idealities. In this work, it is 

demonstrated that mitigating these issues by performing learning directly on practical devices 

through a hardware-in-loop approach, utilizing stochastic neurons based on heavy 

metal/ferromagnetic spin-orbit torque heterostructures. The probabilistic switching and device-to-

device variability of our fabricated devices of various sizes are characterized to showcase the effect 

of device dimension on the neuronal dynamics and its consequent impact on network-level 

performance. The efficacy of the hardware-in-loop scheme is illustrated in a deep learning scenario 

achieving equivalent software performance. This work paves the way for future large-scale 

implementations of neuromorphic hardware and realization of truly autonomous edge-intelligent 

devices. 

1. Motivation 

Interest in bio-plausible devices and systems stems from the brain's unique ability to 

process real-world information effectively and efficiently. In recent times, although deep artificial 

neural networks have been able to come close and even surpass human-level performance in some 

cases, the energy and area cost associated with such systems are still many-folds over their 

biological counterparts [213]. Thus, in-memory computing paradigms akin to the brain designed 

with specialized electronics for intrinsic emulation of neuronal and synaptic functionalities have 

emerged as alternatives to the traditional von-Neumann architecture and complementary metal 

oxide semiconductor (CMOS) technologies [69], [214]–[218]. However, their adoption in large-
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scale neuromorphic hardware is scarce[219], relying rather on CMOS [25], [55]. A key factor 

behind this has been device-to-device variations and inherent non-idealities of these emerging 

devices [69], [220]–[222], requiring additional peripheral circuitry for reliable operation, eroding 

their area and energy advantage. 

While there have been efforts in literature to characterize device non-idealities and their 

impact on learning for artificial synapses of varied technologies [69], [223], [224], such studies for 

artificial neurons, specifically stochastic ones, have been rather limited [60]. The robust 

computational ability of the brain is largely attributed to its noisy probabilistic nature [225]. 

Additionally, to reach brain-like memory densities, continual scaling of these devices is needed. 

Although the energy and area advantages of scaling in CMOS is evident, it is not so straightforward 

for neuromorphic devices; non-idealities can become an insurmountable issue. Thus, for large-scale 

integration, it is pivotal to understand the interplay between device size and its impact on the 

variation and stochasticity of the neuronal dynamics. A systematic analysis through 

characterization of realistic devices identifying their categorical effect on network-level 

performance for deep learning applications has been missing. Similarly, various schemes for 

variation compensation exist, however, their potency has not been tested in experimental 

demonstrations for deep learning tasks such as pattern recognition. 

Spintronic devices with their nanosecond response capabilities, and compatibility with 

existing nanoelectronics are a great prospect for realizing neuromorphic frameworks [70]. 

Compared to other emerging technologies such as phase change, and resistive memories [69], 

[226], spintronic devices are more compact and require less operating energy. Prior works looking 

at the device-to-device variations of spin-based devices have either looked at them for inference 

only [227] or have not exploited the device stochasticity [228]. Additionally, previous stochastic 

hardware implementations and hardware-in-loop learning have focused more on probabilistic 

computing applications [229], [230] and associative learning [227], [230]. The more powerful and 

widely used neural networks employing backpropagation for training have only been demonstrated 
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in software [60], [231]. Moreover, these demonstrations have all lacked comprehensive 

characterization analysis of device properties. Our work tries to overcome all these issues through 

extensive experimental characterization of devices of varied dimensions and hardware 

demonstration of a cognitive task, namely recognition of handwritten digits, to present the true 

potential of stochastic spintronic devices. 

In this work, such an investigation has been demonstrated for spintronic stochastic neurons 

based on a heavy metal/ferromagnetic spin-orbit torque (SOT) hall-bar heterostructures [204] along 

with a proof-of-concept demonstration of hardware-in-loop learning offsetting intrinsic hardware 

variations for deep learning applications. The sigmoidal stochastic switching of the SOT devices 

and its variances for a wide range of device sizes, ranging from 5μm to 300nm have been studied. 

It has been found that the necessary bias current for switching decreases with decreasing size while 

the slope of the probabilistic switching characteristics increases, highlighting an intertwined inverse 

relationship between power consumption, accuracy and robustness in neural network scenarios. 

Finally, results of our experimental hardware-in-loop setup have been extrapolated to draw insights 

for large-scale neuromorphic implementations through a hardware-software co-analysis. 

2. Materials and Methods 

2.1. Materials and Devices Information  

In this work, the stochastic neurons displaying non-linear dependence to input current were 

realized with spintronic devices employing spin-orbit torque. The core device structure adopted is 

Hall bar (see Figure 2-13) fabricated through photo-/Ebeam-lithography. Details of fabrication 

process are described in chapter 2, section 5.1 and 5.2. The fabricated device and material stack is 

shown in Figure 6-1(a). A Hall bar structure is used, so that the device magnetization can be probed 

out using the anomalous Hall effect, where a voltage difference occurs across terminals 
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perpendicular to the flow of current by accumulation of electrons with different spin directions 

[132]. The characterization setup has been discussed in chapter 2, section 5.3. A magnetic field in 

out-of-plane direction is applied to obtain the hysteresis loop shown in Figure 6-1(b). The rectangle 

hysteresis loop indicates perpendicular magnetic anisotropy (PMA). 

 

Figure 6-1: (a) SEM image of the device structure is shown. Connections for measurement 

are annotated. The figure inset shows the material stack used for the device. (d) Magnetic hysteresis 

loop of a representative device with out-of-plane magnetic field (H field, Oe) is shown. The 

rectangular shape of the loop indicated perpendicular magnetic anisotropy (PMA) of the devices. 

Other than the hysteresis loop, the magnetic anisotropy field is also estimated for different 

Hall bars. In-plane magnetic field sweeping measurements can be conducted. The device 

magnetization gently tilts under the applied in-plane field, which causes a small deviation in Hall 

resistance. The deviating Hall resistance results in a bending hysteresis loop, which can be used to 

estimate magnetic anisotropy field. Details have been discussed in chapter 2, section 5.4. The 

estimated magnetic anisotropy field is uniform for Hall bars of different sizes (see Figure 6-2), 

which is reasonable since magnetic anisotropy field is a material-level characteristic. 
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Figure 6-2: Magnetic anisotropy field of bars with different sizes is shown. 

2.2. Hardware-in-Loop Training Methodology 

For the hardware-in-loop training, the images are converted to Poisson spike trains of 

length 100 time-steps. The feedforward network structure consists of 784 × 4 weight connections, 

which are randomly initialized. After modulation by the network, the impulses are scaled and 

biased according to the device characteristics obtained during characterization. A LabVIEW 

interface handles the generation of the proper pulsing scheme for the neuron devices with the help 

of the pulse current generator, Keithley 6221. The resultant Hall resistance is measured using a 

multimeter, Keithley 2000. Based on the resistance values after the reset and programming pulses, 

the interface counts the number of switching events for a single image. This is used to calculate the 

activation, by dividing it with the total time-steps, 100. The activation is then used for error and 

gradient calculations, followed by backpropagation through the network to ultimately calculate the 

weight updates for the feedforward network in software. The step is repeated for all the training 

images. During inference, the feedforward network is used, and the activations indicate the 

network’s ability to accurately identify the patterns. The confidence is calculated from the 

normalized inputs to the neurons from the network and the neuron with the highest confidence is 

assigned to that class. 
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3. Results 

In biological neural networks, neurons serve as the key computing unit. Inputs are 

propagated from pre-synaptic neurons to post-synaptic neurons, which integrate them and fire 

output spikes once a certain threshold is crossed. This kind of neurons are known as integrate-and-

fire neurons (see chapter 2, section 2.1.1). On the other hand, neurons, particularly in the cortex, 

have been observed exhibiting stochastic firing with nonlinear dependence on the resultant post-

synaptic current input to the neuron [232]. These are known as stochastic neurons (see chapter 2, 

section 2.1.2). Thanks to the underlying physics of the FM/HM materials (see chapter 2, section 

5.1), the stochastic firing behavior (given by Equation 2.6) can be obtained with FM/HM Hall bars 

when pulse current is applied. Previously, it has been shown that the average firing activity of such 

a stochastic neuron over time linearly approximates the sigmoid function used for computation in 

traditional neural networks [60]. Going beyond inference, reference [233] featured such a stochastic 

sigmoid used directly in training neural networks to eradicate the need for evaluating the network 

over time. 

3.1. Effect of dimension on device characteristics 

In order to characterize the switching and quantify the effect of dimension reduction, 

experiments are conducted on devices with bar widths of 5.0μm, 2.5μm, 2.0μm, 1.5μm, 1.0μm, 

0.9μm, 0.7μm, 0.5μm and 0.3μm. For each size, we studied the switching behavior of 4 different 

devices to identify the device-to-device variability. The measurement setup is shown in Figure 2-

13. A 200Oe in-plane magnetic field along the direction of current flow (𝑥-direction) is applied. 

The characterization begins by confirming the SOT induced magnetization switching of the devices 

by applying gradually increasing pulses. Again, the state of the device is probed by measuring the 

anomalous Hall resistance, 𝑅AHE, which is defined in Equation 2.13. It is observed that as the device 



96 
 

width is reduced, the hysteresis loop shrinks accordingly, i.e., the devices switch at lower 

magnitudes of pulse currents. Note, the current switching behavior is stochastic and thus next this 

behavior is characterized. For this, devices are applied with 100 iterations of reset-set cycles. In 

each iteration, the devices are first applied with a reset pulse with a pulse width of 100μs, to 

initialize the device state. The reset pulse must be large so that the device is in the ‘-1’ state. This 

is confirmed by reading out the 𝑅AHE. Afterwards, a set or write current pulse, 𝐼write, with pulse 

width 100μs is applied to switch the device. The magnitude of 𝐼write is increased to figure out the 

switching dynamics of the devices. As expected, the switching probability of devices shows 

sigmoid relation with pulse amplitude. The process of obtaining this relation is detailed in Figure 

6-3. In Figure 6-6(c-k), the switching dynamics of 4 individual devices of each of the 9 widths 

considered is shown. In order to fit the dynamics to that of an ideal sigmoid, the neuronal switching 

due to current can be thought of having two components: 

𝐼write = 𝐼bias + 𝐼syn (5.1) 

Here, 𝐼bias is the necessary current to the HM layer of the spin neuron to bias it at 50% probability, 

whereas 𝐼syn is the resultant input synaptic current to the neuron. Note, 𝐼syn needs to be normalized 

by a factor 𝐼 , which encodes the degree of dispersion of the neurons’ sigmoidal characteristics. 

Generally, it is found that smaller width corresponds to smaller dispersion or programming 

window. Additionally, it is also found that the dynamics of each individual spin neuron is quite 

stable over time (Figure 6-4).  Figure 6-5(a, b) summarizes the characterization results. It is 

observed that both the switching bias current, 𝐼bias and the programming window, which is defined 

by the pulse amplitude range between 0.01% and 99.9% switching probability, increase linearly 

with bar width. 
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Figure 6-3: The process of obtaining the sigmoidal characteristics of the neuronal devices 

is shown. The devices are given a specific write current for 100 iterations. Before each write 

current pulse, a reset current pulse is applied to reset the device to the high resistance state, as 

indicated by ‘+1’. After the write pulse is given, the state of the device is read again. If the device 

stays in the high resistive state (‘+1’), there is no switching. If it goes to the low resistive state 

(indicated by ‘-1’) then the device is considered to be switched. The total number of switches in 

the 100 iterations is counted to calculate the probability of switching of the devices. 

 

Figure 6-4: Persistence of neuronal dynamics is shown. The neuronal dynamics of the same 

device was measured after a week, and it showed similar switching characteristics, with no 

significant variation (~0.5%) in the bias switching current. 
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Figure 6-5: Impact of device dimension on neural dynamics is shown. (a) Relationship between the 

bias current, 𝐼bias and device width is shown. Switching current increases linearly with hall bar 

width. (b) Relationship between programming window and bar width is shown. Again, with 

decreasing bar size, it is observed that the programming window also decreases. Device-to-device 

variation of input-bias current. It is also observed that for the different sizes of the hall bars, we can 

have up to 25% variation from one device to another. 
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Figure 6-6: Neuronal dynamics characterization results are shown. (a) Programming pulse 

is shown. In each iteration, a 100μs reset pulse and a 100μs write pulse are applied. Read pulses 

of 500ms and 50μA are applied after each programming pulse to read the device state. The interval 

between pulses is 2s. (b) Normalized Hall resistance of the various sized devices as the write 

current is gradually swept. It is found that for sufficiently high switching current, the device 

switches from “-1” state to the “+1” state abruptly. It is found that the hysteresis loop became larger 

with increasing device size. (c-k) The experimental results of 4 devices each of different sizes of 
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spin neuron devices (5μm, 2.5μm, 2μm, 1.5μm, 1μm, 0.9μm, 0.7μm, 0.5μm, 0.3μm). Each 

device’s switching dynamics is fitted to that of a sigmoid, showing close resemblance.  

3.2. Proof-of-concept hardware-in-loop training 

The conspicuous impact of device-to-device variation was highlighted in the previous 

section with smaller devices being affected more than their larger counterparts. However, scaling 

is a highly desirable feature as it lowers the total energy cost significantly. Thus, it is essential to 

overcome these issues. Numerous approaches for repressing these issues have been outlined on the 

device-level [230], [234], [235] and network-level [192], [236], [237]. Here, proof-of-concept 

demonstration of a network-level approach is presented. The neuronal devices are included in the 

training process of a handwritten digit recognition problem, allowing the network to learn the 

desired patterns with the effect of device-to-device variations included. This is performed through 

a hardware-in-loop scheme, shown in Figure 6-8(a), where the incoming training images are 

converted to temporal spikes and are fed into the neuron hardware after modulation through a 

feedforward network. Based on the input, the spin neurons switch, which is used to calculate the 

activations and the subsequent errors, gradients and weight update in software and update the 

synaptic weights of the network. Further details are provided in the Methods section. 

For the hardware-in-loop learning, we use four spin neuron devices of size 0.5μm. The 

neuronal dynamics of the four devices are shown in Figure 6-8(b), along with the fitted sigmoid. 

As four neurons are used as the output, the network is trained on four classes from the MNIST 

dataset (“0”, “2”, “4” and “6”), with 4 images from each group. The network architecture is given 

in Figure 6-7. For testing, a single sample from each class was used. The network’s training loss 

was tracked during the training process, as illustrated in Figure 6-8(c). It can be observed that the 

loss gradually decreases. After training, the network was used for inference on the 4 test images 

and observe the network input for the 4 hardware neurons. As can be seen from Figure 6-8(d), the 
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network is able to differentiate between the classes and correctly identify 3 out of the 4 images. 

The failure to recognize the class “2” image can be attributed to the small size of training set and 

the apparent dissimilarity between the training samples and test sample of class “2” (Figure 6-7). 

To compare the hardware-in-loop performance with performance without hardware-in-loop 

training, the same network was trained in software with the same learning parameters and then used 

the spin stochastic neurons for inference only. In this scenario, we found that the network can 

identify only 1 sample correctly (Figure 6-8). This showcases the efficacy of the hardware-in-loop 

learning scheme. Additionally, as such neuromorphic hardware systems are expected to be 

employed in resource-constrained environments, we perform the same experiment with a single 

neuronal device, time-multiplexed to serve the function of two neurons. Here, we again see that 

such a network can achieve ideal accuracies, further corroborating the need for including hardware 

in training for edge intelligence applications (Figure 6-9). 

 

Figure 6-7: Training for the Hardware-in-loop scheme is shown. (a) The network architecture used 

for training in the hardware-in-loop scheme is shown. (b) Training images used for hardware-in-

loop learning is shown. 4 classes (“0”, “2”, “4” and “6”) with 4 images of each class were used. 
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Figure 6-8: Hardware-in-loop learning for the SOT Stochastic Spin Neuron Devices is 

shown. (a) The schematic of the hardware-in-loop (HIL) learning setup used for the experiments is 

shown. (b) Neuronal dynamics of the four-spin stochastic neuron used for HIL training is shown. 

As can be seen, the four neurons have differing biases and operation windows. Note, each neuron 

represents a different class and is represented with a different color. (c) The training loss of the 

network over the 16 training images from (4 each from four classes, ‘0’, ‘2’, ‘4’, ‘6’) the MNIST 

Handwritten Digit Dataset is shown. The training loss becomes low indicating the network is 

gradually learning. (d) The testing results are shown on 4 test images from the MNIST dataset 

when HIL is used. The network is able to successfully classify 3 out of the 4 digits. The confidence 

is calculated from the normalized inputs to the neurons from the network and the neuron with the 

highest confidence is assigned that corresponding class. (e) The testing results on 4 test images 

from the MNIST dataset when HIL is not used are shown. The software-trained network is only 

able to classify one image correctly, highlighting the need for including the hardware in training. 
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Figure 6-9: The results of training a single device with time-multiplexing to emulate 2 neurons 

through hardware-in-loop scheme are shown. (a) The training loss of the network over the training 

images is shown. (b) The testing results on 6 test images from the MNIST dataset are shown. The 

network achieves an accuracy of 100%. (c) Test samples used for the inference of the two classes 

(“0” and “2”) are shown. 

4. Conclusion 

This work presented a detailed analysis of SOT-based spintronic stochastic neurons – how 

their dynamics evolves with device dimension and how device-to-device variations impact 

performance on the network level for deep learning applications. The importance of hardware-

software co-design for neuromorphic hardware is demonstrated via the interplay between accuracy, 

and robustness for 36 devices of 9 varying sizes, ranging from 5μm to 0.3μm. In total, the co-

design analysis is corroborated by conducting over 20,000 different measurement steps for the 

various characterizations. How these variations can be compensated by in situ learning through a 

hardware-in-loop learning scheme is demonstrated for a model handwritten digit recognition 

problem. This shows how edge intelligence applications can be enabled by scaled hardware 

performing training natively. 
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Chapter 7 
 

Conclusions and Future Work 

1. Conclusions 

As discussed in the previous chapters, spintronic devices can be a promising option for 

building a post-CMOS neuromorphic computing hardware platform. Under this motivation, this 

dissertation has contributed to the field in the following points: 

In chapter 3, a 2-terminal ME-based scaled MTJ device design is proposed as stochastic 

neuron. The device design enables independent control of lifetime of the two states of MTJ (i.e. 𝜏P 

and 𝜏AP). Conditions for realizing independent control were also explored. The proposed device 

design was used to build SNNs (784 × 10 and 784 × 400 × 10). The network achieved a test 

accuracy of 90.88% for 784 × 10 network and 97.41% for 784 × 400 × 10 network with only 

2/3 spikes used in each layer for inference. It was observed that the spike sparsity is reduced by 

1.6 × for hidden layer and  3.77 × for output layer in 784 × 400 × 10 network compared to its 

rate-encoded counterpart. 

In chapter 4, a Bayesian Neural Network hardware accelerator design based on spintronic 

devices was proposed. DW-MTJs were used as programmable synapses and scaled MTJs, of which 

the intrinsic stochasticity due to thermal noise is utilized, were used to build the Gaussian random 

number generator. The network achieved a test accuracy of 96.98% with no device non-idealities 

and 96.74%  with 10%  variation in the programmed conductance values. This indicates the 

proposed network is able to compensate for the programming error due to device non-idealities.  

Compared to the CMOS-based network, the proposed design achieves a 24 × energy efficiency. 

In chapter 5, a solution for write sneak path problem in neuromorphic nonvolatile cross-

point arrays based on VCMA-MTJ devices was proposed. The pulsewidth difference between 

VMCA- and STT-induced switching mechanisms enables sharp difference in switching probability 
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(over 97% for VCMA-induced switching and ≈ 0% for STT switching). This offers an energy 

efficient solution for sneak path problem. The condition for applied voltage to ensure magnetization 

trajectory robustness was also explored. This is crucial to a high switching probability. 

In chapter 6, an illustration of hardware-in-loop training was demonstrated. The devices 

are Hall bar structures of different sizes (5μm, 2.5μm, 2μm, 1.5μm, 1μm, 0.9μm, 0.7μm, 0.5μm, 

0.3μm) fabricated on Si/SiO2(300nm)/Ta (5nm)/CoFeB (1nm)/MgO (2.5nm)/Ta (2.5nm /5nm) 

material stack. The relation between device characteristics and sizes was explored. It was observed 

that the bias current amplitude and size of programming window reduce with bar size. The devices 

are used to build networks for training and inferencing purposes (on MNIST dataset). It was found 

that the network is able to successfully classify 3 out of the total 4 test images, which is better 

compared to the software network where HIL is not included. 

2. Discussions 

2.1. Device Temperature 

The proof-of-principle simulations in this dissertation are conducted for room temperature 

cases. However, when current passes through devices, there is Joule heat generated during the 

process and device temperature rises consequently. The change in temperature affects the switching 

behavior of devices, as the thermal noise plays an important role [238]. For a further study, a 

comprehensive model for temperature change caused by current through the devices is required 

and in this way the temperature can be included in simulations in a real-time manner, which 

provides a more realistic result.  
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2.2. Crossbar Array Scale 

The work in this dissertation mainly focuses on device-level design and improvement. For 

this reason, circuit-level analysis was not considered in its entirety. However, as reported in 

references, in large-scale crossbar arrays, which is the typical situation for neuromorphic 

computation for complex problems, wire resistance becomes non-negligible and distorts the output 

signals [239], [240]. As a result, the read (write) margin, which is the available current/voltage 

operating window for an accurate read (write) operation is affected and the power consumption 

increases. Many approaches have been proposed on both hardware and algorithm sides to 

compensate for the problem [240]–[242]. Further studies on circuit level implications for novel 

device designs explored in this work need to be considered.   

3. Future Work 

Future work can be at 3 levels: 1) The bottom stack involves the material level, which 

means to work more closely with materials research community to explore novel device physics 

that can be beneficial to neuromorphic computing. 2) The second level can be the device-network 

level. This dissertation stays in this level, which studies how discovered physics can be beneficial 

to the network performance and what adjustment is required in algorithms to comply with the 

device physics. 3) The highest level is the circuit and architecture level. This level discusses the 

peripheral circuits and system organization that are required for the device network to work with 

the remaining units of the computing system. 
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