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Abstract

Classical technologies have been used for decades in the radar and communication
applications. While it is understood that classical radar and communication are functional,
we are approaching the limits to which they can be improved. As technology improvements
bring us close to these limits, it is necessary to utilize new approaches to stop counter
technologies from deeming it irrelevant. One of the solutions that has been proposed
to this problem is to use quantum correlations to improve the performance of classical
systems. Unlike classical systems, quantum systems have the ability to correlate at the
photon level due to the ability to generate two photons at the same time. This ability to
correlate waveforms at a photon level has been shown to have many dB of improvement
in the low signal-to-noise ratio regime over classical sensing systems.

This dissertation will analyze two types of quantum radar systems, bipartite and
tripartite. It will also explore the various correlation coe�cients for di�erent types of
quantum radar measurement schemes. For the bipartite system it will explore methods
such as: (i) immediate detection of the idler photon events to be used in post-processing
correlation with the signal photon events, (ii) immediate detection of the idler electric
field to be used in post-processing correlation with the signal electric field, (iii) immediate
detection of the idler quadratures to be used in post-processing correlation with the
signal quadratures. The thesis will also attempt to solve a tripartite correlation where
two lasers are used to created two signal photons and an idler photon. This system
will be explored with basic electric field measurements and a derivation of the photon
counting measurement. The showcased results compare the performance of these di�erent
methodologies for various environmental scenarios. This work is important at developing
the fundamentals behind quantum technologies that require covariance measurements and
will permit more accurate selection of the appropriate measurement styles for individual
systems
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Chapter 1 |

Introduction

Classical radar systems have been extensively employed since the early 20th century for
detection, targeting, and meteorology with the addition of laser radar systems (LIDAR)
in the early 1960’s. With the unceasing technological upgrades over the past 100 years,
new radar technologies have continued to outperform their precursors. However, current
technologies are approaching the limit that they can not overcome.

With the search for a way to bypass these limits, new technologies need to be explored.
Much like in computing and communication systems, the unique properties of quantum
mechanics drew the eye of researchers and led to what is known as quantum radar.
Quantum radar uses quantum e�ects such as spontaneous parametric down conversion
(SPDC) to create two low frequency photons from a single high frequency photon. There
are a few methods to determine if the signal photon has hit the target.The first is to
count the photons received from the idler and the signal paths, this is called quantum
illumination. [1] Another method I, and in future work my colleagues, seek to explore is
to measure the signal and idler using balanced homodyne detection to determine the IQ
data and determine correlations from this data.

Quantum systems have been shown to enhance the performance of both radar and
communication by improving the ability to discern weak received signals from the
noise or providing a secure propagation channel [2–9]. While there are many useful
properties intrinsic to quantum mechanics, the main ability to assist with this performance
improvement is through quantum entanglement. [10] This benefit of using down converted
photons over a normal LIDAR waveform is that the down converted photons will be
discernible due to the waves identical binary waveform. [4,11] With these binary waveforms,
a time correlation is able to be done to determine whether what was received by the
detector is the sent signal or thermal noise. Figure (1.1) is shown to give a better
understanding of how the photon waveforms enhance sensing. One can see that when
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Figure 1.1. The purpose of this image is to show that a beam splitter imparts a random 50:50
chance for each photon passing through it to pass into 1 of the 2 arms. This causes some of the
photons go one direction, and some of them go another, which causes the two waveforms to be
di�erent at the single photon level. An SPDC source creates two truly identical streams.

using a beamsplitter a random 50:50 chance is imparted on each photon that passes
through the beamsplitter. These photons will have an equal chance of going to one of two
arms, causing the photon waveform to be random and unequal. This is in comparison to
an SPDC source which creates two truly identical photon waveforms.

One detection scheme who’s correlation coe�cient has been explored is the optical
parametric amplifier (OPA) where upon return a non-linear crystal is used to combine
the signal and idler with a quantum covariance of

Ò
Ns(Ns + 1), where Ns is the mean

photon number per mode of the signal. [12] This method is referred to here as an analog
method and requires a delay line in the idler branch to allow the signal photon and
idler photon to interact in the non-linear medium (OPA) to obtain the correlation. This
correlation has been physically realized on the lab bench, but its viability outside a lab
environment due to the delay line may be low due to the unknown nature of the length
and the ability to generate a delay line long enough to math the signal.

Other detection schemes have been shown to work in the lab environment, but the
correlation for these experiments are still unknown. [13] The two-mode squeezing radar
creates entangled paths in the microwave regime using a Josephson parametric amplifier
and is shown to have a significant gain over a normal two-mode noise radar. After getting
passed between two horn antennas, the electric field of the signal is measured and is then
correlated with the immediately captured electric field measurement of the idler path.
This scheme can also be used in the optical regime through the use of balanced homodyne
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detection. Using this detection scheme, one can take many measurements and determine
the quadrature measurements of the quantum system. The reason that one must take
many measurements is due to the uncertainty principle between the phase of the electric
of the photon number where to know the phase of the electric field, the amount of photons
that are being measured is unknown. Using these quadrature measurements, the bulk
electric field measurement can be calculated by moving from phase space to the metric
space, but it would probably be wiser to just use the quadrature measurements.

While many quantum radar systems have been shown to work in the lab, the specific
correlation coe�cients of many of these methods have not been calculated. Without an
understanding of the maximum limit on the correlations, the ability to determine the
e�ectiveness of the lab setups is not possible.

1.1 A Need for Quantum Radar

The need for quantum radar is due to its increased enhancement in the low signal-to-noise
ratio regime. Now, one might theorize that using a coherent beam and a beamsplitter
that similar results can be obtained. To explore this theory, I will follow the mathematics
of Ref. [11]. Where we start with the coherent state written as a displaced vacuum:

|–Í e
–â†

c≠–úâc |0Í = D̂(–) |0Í (1.1)

where we use the beamsplitter relations:

âi = â0 + iâcÔ
2

, âi = iâ0 + âcÔ
2

(1.2)

Which are inverted:
â0 = âi ≠ iâsÔ

2
, âc = ≠iâi + âsÔ

2
(1.3)

Substituting these values into the displaced vacuum and simplifying:

e
—2â†

i ≠—ú
2 âie

—1â†
s+—ú

1 âse
2—ú

1 âs = D̂i(—2)D̂(—1) |0, 0Í (1.4)

where —1 = –Ô
2 and —2 = i–Ô

2 . From this we can see that each of the outputs from the
beamsplitter are a coherent state with a di�erent displacement.
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Now we use this wave function to determine the covariance between the two branches.

Cov( ˆ
A, B̂) = 1

2 È{Â, B̂}Í ≠ ÈÂÍ ÈB̂Í (1.5)

where Â = â
†
i âi and B̂ = â

†
sâs. From this we can calculate both terms and see that

1
2 È{Â, B̂}Í = ÈÂÍ ÈB̂Í and the covariance is zero.

This shows that to use photon level correlations for radar and communication systems,
that the photons for both paths need to be generated at the same time. Without this
simultaneous generation, the correlations for the idler and signal path will be zero and it
will be impossible to di�erentiate the signal path in a high noise environment. Due to
this we are also able to immediately detect the idler due to doing a waveform comparison
that does not require entanglement to be maintained.

1.2 A Need to Explore Alternate Quantum States

Currently, research is focused on bipartite states. These states are typically generated
with down conversion where a single photon is split into two, lower energy photons.
While these states have been shown to be e�ective for use in quantum radar, the current
technology and materials are not able to generate down converted photons at a high rate.
This is problematic because while quantum systems have been shown to work in the best
in the low SNR regime, the photon generation is not enough to get discernible returns
over long distances in atmosphere. While the analysis given in this paper is only looking
at the theoretical limits of the technology, the exploration of shorter term technologies
can also be explored in the same way as the bipartite states.

For this I propose a tripartite system that uses 85Rb atomic vapor to create three
entangled photons using four wave mixing [14]. With this system, two lasers are used,
doubling the initial photons put into the system and also doubling the chance of the
nonlinear e�ect occurring. With this analysis, I hope to determine the viability of
npartite systems currently and if they are able to make up the current shortcomings of
the bipartite technology.

1.3 A Need for a Measurement System Comparison

In current experiments, there are many ways to determine the correlation between the
signal and idler beams. These ways include photon counting, quadrature measurements,
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optical parametric amplifiers, and electric field measurements [2, 7, 8, 15]. While all of
these have shown an improvement over the classical system, which of these technologies
is the best has not been determined. Currently there only exists a calculation on the
optical parametric amplifier method, which requires the use of a delay line limiting its
ability for long range sensing [12].

The lack of a known comparison between the current state-of-the-art approaches to
measurements in the quantum radar space necessitates the calculation, analysis, and
comparison of these measurement types. The purpose of this dissertation is to remove
confusion of the best method for detection and ranging using down converted photons
for immediate idler detector strategies.

1.4 The Di�culties of Quantum Radar

Quantum radar has had many critics speak out against the technology due to the claims
of performance versus the current outcomes of the research. Current research relies on
the assumption that technology will be created that generates down converted photons
at a higher rate and also that is able to detect single photons events and distinguish
these events from noise accurately.

While there have been many critics, recent experiments in both the optical and
microwave regime have shown that quantum radar has viability for low-power sensing is
available. One such experiment uses a dilution refrigerator to allow a superconducting
Josephson Parametric Amplifier to generate entangled microwaves. In this experiment,
normal horn antennas are used to transmit these waves into free space and are their
electric field is measured. With this the quantum advantage was shown [16]. Another
experiment showcased entanglement-enhanced sensing that outperformed current classical
technologies in multiple areas [17]. Another experiment showcased that when using a
fiber setup, optical parametric amplifiers are able to obtain the correlation that has been
calculated [12, 15, 18]. These experiments showcase that quantum radar technology is
viable in the lab currently and will be able to provide an advantage when the technological
advancement happens. The purpose of this dissertation is to give the basis of knowledge
for this future technology, so that when the technology is viable, the information is
already there.
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1.4.1 Detection Theory and Counting Statistics for Optical Systems

This section looks to establish how detection e�ciency e�ects classic and quantum radar
systems. This is imperative because understanding how optical detection occurs starts
to bring forth the importance of using quantum sources to assist with detection and
ranging. This will follow Ref. [19]. The section will only touch on the major portions
of detection theory and counting statistics, for a more thorough understanding of this
concept please read the resource.

The basis of all photon counting statistics is photon flux:

� = IA

~Ê
= P

~Ê
photons≠1 (1.6)

where A is the cross sectional area of the detection surface, I is the intensity, and P is
the power in watts. Photon flux is a description of the number of photons in a second on
an area. With this photon flux and the quantum e�ciency, ÷, (the ratio of the photons
counted to the total number of photons that hit the area) we are able to determine the
average number of counts:

N(T ) = ÷�T = ÷PT

~Ê
(1.7)

where T is the period. It is found the average count rate is:

R = N

T
= ÷� = ÷P

~Ê
counts s≠1 (1.8)

While that tells us the average amount of photons we will obtain when sensing when
using coherent light, the reality is that di�erent sections of the beam will contain di�erent
amounts of photons. This requires the beam to broken up into segments and a probability
distribution to be created to determine the likelihood of each photon count. To do this
we find the average amount of photons in a section of length L.

n̄ = �L

c
(1.9)

where to determine the probability of obtaining n photons in that length of laser, we
find that the probability is a Poisson distribution:

P(n) = n̄
n

n
e

≠n̄, n = 0, 1, 2, ... (1.10)

Which matches a Poisson process as these processes generally refer to random events
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that can only generate whole numbers. Now there are three di�erent classification of
Poisson light. Super-Poisson where �n >

Ô
n̄, Poisson where �n =

Ô
n̄, and sub-Poisson

where �n <
Ô

n̄, where �n is the photon number variance.
With this is mind, we look at the quantum theory of photodetection and the relation-

ship between the variance in photocount number and the amount of photons hitting the
detector:

(�N)2 = ÷
2(�n)2 + ÷(1 ≠ ÷)n̄ (1.11)

where we can see with that if �N = �n that the photocount is perfectly reproduced.
This dissertation will focus on when the quantum e�ciency is perfect (÷ = 1):

(�N)2 = (�n)2 (1.12)

where we can see that for our sources, the variance in the amount of photons detected is
equivalent to the variance of the photons sent where for a Poisson process is equal to

Ô
n̄.

In the non-ideal cases, the mean photon number in a length of laser should be very low
due quantum radar focusing on the low power regime. It should also be noted that since
this variance is low, the occurrence of an error due to timing jitter is much more likely
to occur. Due to this the variance in quantum radar experiments should be negligible.

It should also be noted that while the overall creation of the photons from the pump
beam is a Poisson distribution, the immediate capture of the idler heralds the signal
and the Poisson distribution of the pump beam gives the randomization of the photon
waveform.

1.4.2 Jitter, Dark Count, Spatial Coherence, and Signal-Dependent

Noise

Other issues that could e�ect the correlations of the quantum radar systems is jitter and
dark count. Dark count is the amount of photons detected by the sensor without any
signal being reflected into the sensor. Dark count can be reduced in a multitude of ways,
such as cooling the sensor. For dark count, what is important is measuring it to have a
baseline of what amount of counts is signal versus noise.

Timing jitter is just the uncertainty of when the photon detection occurred. Jitter
cannot be fixed as its a symptom of using hardware to measure the photons, however
with the ability to compare the waveforms of the signal and idler some error correction
should be able to be done.
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This thesis will also not discuss spatial coherence because the discussed system will
have high spatial coherence as that is a property of laser light. It also would not have an
e�ect if there was not high spatial coherence because the system is only worried about
the heralded photons returning.

It should also be noted that signal-dependent noise will have an e�ect on the system
such as bullet photons. This will not be covered in this thesis as it is just a initial
exploration of the maximums of a quantum correlation system using a generalized noise
variable to allow for a clearer understanding of the system.

1.5 Outline

This dissertation is outlined as follows: First, the correlations for the bipartite state
is derived and simulated. This is for three separate measurement styles: electric field
measurement, electric field quadrature measurement, and photon counting. Following
this, an analysis of the tripartite state will be done. This includes a full derivation of the
covariance matrix and an in-depth simulation of the correlation factors. In this section,
a detector function will also be described that will allow for a direct comparison to the
bipartite system. Then the tripartite system will be again derived, but this time with
the number operator. Finally, future work on this topic will be discussed.

8



Chapter 2 |

Derivation of Bipartite Correlations

2.1 Introduction

Bipartite quantum radar has been a topic of discussion in research [16, 20], but a
direct comparison between the photon counting measurements and the electric field
measurement has not been evaluated. This chapter seeks to explain the theoretical
basis of current research. Namely, using quadrature measurements while also counting
photons and correlating them later. We seek to compare the correlation performance
of these new techniques. A general setup for one of these systems is seen in Figure
(2.1) More specifically, there has been recent work showcasing a quantum advantage
using classical measurements of electric field quadratures [13, 16] and by immediately
detecting the idler photon counts and correlating later with the signal counts [21]. These
methodologies are very similar to classical noise radar techniques done in the past [22].
The goal of this paper is to analyze the correlation performance of these type of systems
and determine which method performs the best for a given situation. It is important to
note that the calculations performed in this paper represent overall correlations from
large data sets consisting of separate and time-separated measurements of the signal
and idler streams. Indeed, electric field measurements necessarily involve many photon
measurements due to the inability to simultaneously measure the photon number and
electric field with arbitrary precision because of the operators not being commutable.
Here, we mathematically evaluate a two-mode squeezed vacuum acted on by the number
operator (photon counting), the electric field operator (electric field measurement),
and the electric field quadrature [23]. In our evaluation, we solve for all parts of the
covariance matrix and determine the covariance between the signal and idler beams for
each system [13,24]. Additionally, we show a comparison between the photon counting
and electric field temporal covariance. This chapter is structured as follows. Section
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Figure 2.1. The general experimental setup for the measurement schemes discussed. In all
cases, the idler photon is measured immediately and correlated with the returning signal photon
at a later point in time. The detectors can vary between single photon counters and electric
field sensors.

2.2 develops the mathematics associated with the electric field covariance. In Section
2.3, we develop the theory leading to the number operator covariance and compare the
results with the electric field covariance. Section 2.4 analytically formulates the electric
field quadrature covariance. In Section 2.5 a detailed analysis is presented of all three
covariance results for di�erent operational scenarios. Conclusions are presented in Section
2.6. It must be stated that this is looking to obtain the maximum limit of this technology
and therefore perfect reflection and a perfect quantum detector is assumed.

2.2 Electric Field Covariance

The electric field operator refers to the bulk measurement of the electric fields of the
signal and idler streams of photons. The correlation between the signal and immediately
detected idler would be found using a digitizer in the microwave regime or could be
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derived from the phase measurements in the optical regime. We begin with the electric
field operator defined by [25]:

E(r, t) =
ÿ

k
‘̂kEkâke

≠i‰ + ‘̂kEkâ
†
ke

i‰ (2.1)

where âk is the creation operator for the frequency mode, k, and ‰ is the phase (which
we can suppress by assuming that the signal and idler are aligned in time and space via
post processing), ‘̂k is a unit polarization vector, and

Ek =
A

~‹k
2‘0V

B 1
2

(2.2)

where ~ is Planck’s constant divided by 2fi, ‹k is the frequency associated with the
momentum mode k, ‘0 is the permittivity of free space, and V is the quantization volume.
Ek will be suppressed since it will be canceled in the final correlation calculations due to
the fact these correlations are normalized. This will allow for greater calculation simplicity
and easier to understand solutions. The integral formalism is also not required for the
solution as we assume the field is approximately monochromatic (a single momentum
mode) where future work will look at a full band signal. For an aligned signal and idler
measurement with a linear polarization, Equation (1) reduces to:

Ê = â + â
† (2.3)

We now begin with with a two-mode squeezed state:

|ÂÍ = “

Œÿ

n=0
—

n |n, nÍi,s (2.4)

where i and s stand for idler and signal respectively, “ =
Ò

1
Ns+1 , — =

Ò
Ns

Ns+1 , and Ns

is the mean photon number per mode. This state is entangled and is the output of a
continuous-wave pumped spontaneous parametric down-conversion (SPDC) source. To
find the covariance between the signal and idler, we need to derive the electric field
covariance matrix. It should be noted that the physically realizable version of this state
is a tensor product between Equation (2.4) and the thermal noise state. Formally, this
calculation is done with a density matrix approach, as a density matrix fully describes
a physical system’s quantum state, including its statistical mixture with surrounding
systems by including all possible projectors the system can collapse into, and their
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associated probabilities [26, 27]. We first define the density matrix for the two-mode
squeezed vacuum state:

flT MSV = |�Í È�| 1
Ns + 1

Œÿ

m=0

Œÿ

n=0

3
Ns

Ns + 1

4 n+m
2

|n, nÍ Èm, m| (2.5)

and the density matrix for the noise state [26]:

flT = 1
NT + 1

Œÿ

i=0

3
NT

NT + 1

4i

|iÍ Èi| (2.6)

where NT = 1
1≠ŸNB and NB is the mean photon number per mode in the noise path [12].

The return density matrix will be a tensor product between these two matrices:

flreturn = flT MSV ¢ flT (2.7)

= 1
NT + 1

1
Ns + 1

Œÿ

n=0

Œÿ

m=0

Œÿ

i=0

3
Ns

Ns + 1

4 n+m
2

◊
3

NT

NT + 1

4i

|n, n, iÍ Èm, m, i|

This can be used to find the expectation value of an arbitrary operator, Ô, by taking the
trace of this density matrix with the operator applied to it.

ÈÔÍ = tr(flreturnÔ) (2.8)

= Èm, m, j| 1
NT + 1

1
Ns + 1

Œÿ

n=0

Œÿ

m=0

Œÿ

i=0

3
Ns

Ns + 1

4 n+m
2

◊
3

NT

NT + 1

4i

|n, n, iÍ Èm, m, i| Ô |m, m, jÍ (2.9)

This formalism is only required when dealing with modes that include appreciable thermal
noise contributions, âB, this is due to the complete separation of the ensembles between the
noise and signal/idler modes. Therefore, for situations which have insignificant thermal
background noise contributions, such as quantities involving the stored idler stream
in the transceiver, we perform equivalent, but simpler in operation, state calculations.
Having determined the approach for performing the calculations, simplifications will be
introduced. First, the quantum covariance is defined as [28]:

Cov
1
Â, B̂

2
= 1

2
1
È{Â, B̂}Í ≠ ÈÂÍÈB̂Í

2
(2.10)
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For monochromatic fields, since the electric field operators between modes are commuta-
tive, i.e.:

[Ê1, Ê2] = Ê1Ê2 ≠ Ê2Ê1 = 0 (2.11)

this allows us to set ÈÊ1Ê2Í = ÈÊ2Ê1Í, thereby simplifying future calculations. It also
allows the quantum covariance shown in Equation (2.10) to be equivalent to the classical
covariance ÈABÍ ≠ ÈAÍÈBÍ. The state shown in Equation (4) is a zero mean Gaussian
state; therefore the covariance reduces to ÈABÍ. Consequently, we find the covariance
matrix to be:

V =

Q

ccca

ÈÊ2
s Í ÈÊsÊiÍ

ÈÊiÊsÍ ÈÊ2
i Í

R

dddb (2.12)

We now begin the calculations of the expectation values beginning with the idler mode:

E
2
i = â

2
i + â

†2
i + âiâ

†
i + â

†
i âi. (2.13)

Due to the orthogonality of the Fock state basis, we can determine the terms in the sum:

ÈÂ| âiâ
†
i |ÂÍ = “

2
Œÿ

n=0

Œÿ

m=0
—

n+m ÈmÕ
, n

Õ| â
2
i + â

†2
i + âiâ

†
i + â

†
i âi |m, nÍ (2.14)

which do not go to zero, starting with â
2
i .

ÈmÕ
, n

Õ| E
2
i |m, nÍ =

Ò
n(n ≠ 1) ÈmÕ

, n
Õ| m ≠ 2, nÍ

m
Õ = m ≠ 2

n
Õ = n

) ÈmÕ
, n

Õ| â
2
i |m, nÍ = 0 (2.15)

Now, we do the same for â
†2
i :

ÈmÕ
, n

Õ| â
†2
i |m, nÍ =

Ò
(n + 1)(n + 2) ÈmÕ

, n
Õ| m + 2, nÍ

m
Õ = m + 2

n
Õ = n
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) ÈmÕ
, n

Õ| â
†2
i |m, nÍ = 0 (2.16)

Next, we check âiâ
†
i :

ÈmÕ
, n

Õ| âiâ
†
i |m, nÍ = (n + 1) ÈmÕ

, n
Õ| m, nÍ

m
Õ = m

n
Õ = n

(2.17)

Due to the orthogonality of the Fock state basis, we can determine that the matrix
elements associated with the â

2
i and â

†2
i in the following sum:

ÈÂ| Ê
2
i |ÂÍ (2.18)

= “
2

Œÿ

n=0

Œÿ

m=0
—

n+m Èm, m| â
2
i + â

†2
i + âiâ

†
i + â

†
i âi |n, nÍ (2.19)

to be zero, leaving only the cross terms. The first cross term can be found in the following
manner:

ÈÂ| âiâ
†
i |ÂÍ = “

2
Œÿ

n=0

Œÿ

m=0
—

n+m Èm, m| âiâ
†
i |n, nÍ

= “
2 ÿ

n

3
Ns

Ns + 1

4n

n + “
2 ÿ

n

3
Ns

Ns + 1

4n

(2.20)

To evaluate this, we use the identity:

ÿ

n

x
n
n = x

(1 ≠ x)2 (2.21)

To find:

“
2 ÿ

n

3
Ns

Ns + 1

4n

n = 1
Ns + 1

Ns
Ns+11

1 ≠ Ns
Ns+1

22

= Ns (2.22)

14



and:

1
Ns + 1

ÿ

n

3
Ns

Ns + 1

4n

= 1 (2.23)

where we have used the standard geometric series summation formula in Equation (2.23).
Thus for Èâiâ

†
iÍ we obtain Ns + 1.

Following similar steps, the second cross term is found to be: ÈÂ| â
†
i âi |ÂÍ = Ns.

Combining all terms, we obtain:

e
E

2
i

f
= 2Ns + 1 (2.24)

For the correlation terms in the returned signal path, we have to additionally calculate
the contribution of the noise added by the free space channel. This is done by defining
âR, where âR equals

âR =
Ô

Ÿâs +
Ô

1 ≠ ŸâB (2.25)

where Ÿ is the transmissivity in the signal path and âB is the thermal noise mode. We
then use this to calculate the electric field in the returned mode, ÈE2

RÍ. These modes
contain a mean photon number of NB

1≠Ÿ .

ÊR = âR + â
†
R =

Ô
Ÿ(âs + â

†
s) +

Ô
1 ≠ Ÿ(âB + â

†
B)

Following a similar procedure to E
2
i , we find that the non-zero terms of E

2
R are:

Ê
2
R = Ÿ[âsâ

†
s + â

†
sâs] + (1 ≠ Ÿ)[âBâ

†
B + â

†
BâB]. (2.26)

Where the expectation value is evaluated and it is found to be:

e
Ê

2
R

f
= 2ŸNs + 2NB + 1 (2.27)

We note that if there exists no noise in the channel, i.e. NB = 0, and perfect transmission,
i.e. Ÿ = 1, then Equation (2.27) reduces to Equation (2.24). Next, we calculate the
covariance terms, which are of more importance for radar purposes as they quantify
the correlation between the returned and idler photons. More explicitly, we calculate
ÈEREiÍ where: EREi = âRâi + â

†
Râ

†
i + âRâ

†
i + â

†
Râi. In a similar manner to previous
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calculations, we begin by using the orthogonality Fock States to recognize that ÈaRa
†
iÍ

and Èa†
RaiÍ are equal to 0. Using similar steps as previous calculations it is determined

the cross-correlation term is ÈÊRÊiÍ = 2
Ò

ŸNs(Ns + 1), which finally yields the full
covariance matrix for the electric field:

Q

a2ŸNs + 2NB + 1 2
Ò

ŸNs(Ns + 1)
2

Ò
ŸNs(Ns + 1) 2Ns + 1

R

b (2.28)

Note how the covariance terms shown here are identical (up to a factor of 2) to those
of the OPA and phase conjugate receiver implementations [18]. Recall that in our case,
these o�-diagonal terms arise from taking two separate electric field measurements,
and correlating the stored data. This is significant because it provides mathematical
justification that using a delay line and performing a joint measurement of the signal and
idler modes is identical to immediately detecting the idler mode and correlating with later
receiver signal modes. This validates the procedures of recent experiments [16, 29]. This
result is due entirely to the fact that entanglement is destroyed, and a joint measurement
no longer is useful in obtaining a quantum benefit. This does not however mean that
the OPA or phase conjugate method should be abandoned. Using this analog method to
correlate is useful since it is di�cult to measure low power photon events of a realistic
noisy signal.

2.3 Number Operator Covariance

The number operator refers to photon counting experiments. This can be used in a
quantum radar system by immediately counting the photons of the idler beam and using
post processing to correlate this binary waveform with the signal beam after it has
returned [4, 30]. We begin this calculation by defining the number operator:

N̂ = â
†
â (2.29)

Similarly to the electric field derivation, we use the two-mode squeezed state that is
defined in Equation (2.4). Much like the electric field operator, the number operator is
also commutative:

[N̂1, N̂2] = N̂1N̂2 ≠ N̂2N̂1 = 0 (2.30)
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which allows ÈN̂1N̂2Í = ÈN̂2N̂1Í. Due to this and the number operator producing a
non-zero mean, the covariance matrix for the number operator is given by:

V =

Q

ccca

ÈN̂2
s Í ≠ ÈN̂sÍÈN̂sÍ ÈN̂RN̂iÍ ≠ ÈN̂RÍÈN̂iÍ

ÈN̂iN̂RÍ ≠ ÈN̂iÍÈN̂RÍ ÈN̂2
i Í ≠ ÈN̂iÍÈN̂iÍ

R

dddb (2.31)

Now we begin the calculations for the expectation value of the idler mode:

ÈN̂2
i Í ≠ ÈN̂iÍÈN̂iÍ (2.32)

where we first define:

N̂
2
i = â

†
i âiâ

†
i âi (2.33)

This term can be seen to be non-zero due to the orthogonality of the Fock State basis,
therefore it can be applied to the two-mode squeezed vacuum state:

ÈÂ| N̂
2
i |ÂÍ = “

2
Œÿ

n=0

Œÿ

m=0
—

n+m Èm, m| â
†
i âiâ

†
i âi |n, nÍ

= “
2 ÿ

n

3
Ns

Ns + 1

4n

n
2 (2.34)

Using the identity qŒ
n=0 x

n
n

2 = ≠x(1+x)
(x≠1)3 , we obtain:

ÈN̂2
i Í = ≠“

2 —(1 + —)
(— ≠ 1)3 = Ns(1 + 2Ns) (2.35)

It can also be seen that N̂i = â
†
i âi, where the expectation value was already calculated in

the previous section to be Ns, therefore:

ÈN̂2
i Í ≠ ÈN̂iÍ ÈN̂iÍ = Ns(1 + Ns) (2.36)

Next, the signal variance is evaluated and determined to be:

ÈN̂2
RÍ ≠ ÈN̂RÍ ÈN̂RÍ = Ÿ

2
Ns(1 + Ns) + NB(1 ≠ Ÿ + NB) (2.37)
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and the cross-correlation terms expectation values are found to be:

ÈN̂sN̂iÍ ≠ ÈN̂sÍ ÈN̂iÍ = ŸNs(1 + Ns) (2.38)

This gives the full covariance matrix for the number operator:

V =
Q

ccca

Ÿ
2
Ns(1 + Ns) + NB(1 ≠ Ÿ + NB) ŸNs(1 + Ns)

ŸNs(1 + Ns) Ns(1 + Ns)

R

dddb (2.39)

It is again seen that when the transmissivity is perfect (Ÿ = 1) and the system is noiseless
(NB = 0), then the on-diagonal terms are equal. Finally, it should be noted that the
cross correlation term for the number operator matches the covariance of the electric
field operator, except they are squared due to the quadratic nature in the field mode of
the number operator while the electric field operator is linear. In regards to comparing
to other systems, it can be problematic to directly compare covariances. It is more
appropriate to normalize the covariance to produce the correlation coe�cients. This is
done by simply dividing each covariance term by the product of the variances. This will
be done in Section 2.5.

2.4 Electric Field Quadrature Covariance

As a method to give a more direct comparison to some of the other research that has been
conducted in the field [13,16], we also discuss the electric field quadrature measurements.
To do this, we first define the covariance matrix:

V =

Q

cccccca

{Îi, Îi} {Îi, Q̂i} {Îi, ÎR} {Îi, Q̂R}
{Q̂i, Îi} {Q̂i, Q̂i} {Q̂i, ÎR} {Q̂i, Q̂R}
{ÎR, Îi} {ÎR, Q̂i} {ÎR, ÎR} {ÎR, Q̂R}
{Q̂R, Îi} {Q̂R, Q̂i} {Q̂R, ÎR} {Q̂R, Q̂R}

R

ddddddb
(2.40)

where {·, ·} represents the anti-commutator, I = 1
2(â† + â), and Q = i

2(â† ≠ â) and
the subscripts refer to the idler or return path. As done in previous sections, non-zero
terms are determined due to the orthogonality of the Fock state basis which is shown in
Equation (2.41). It can be noted that all of these terms have been calculated in previous
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V = 1
2

Q

cccccccccccccccccccccca

1
4(â†

i âi + âiâ
†
i ) i

4(âiâ
†
i ≠ â

†
i âi) 1

4(â†
i â

†
R + âiâR) i

4(â†
i â

†
R ≠ âiâR)

+1
4(âiâ

†
i + â

†
i âi) + i

4(â†
i âi ≠ âiâ

†
i ) +1

4(â†
i â

†
R + âiâR) + i

4(â†
i â

†
R ≠ âiâR)

i
4(â†

i âi ≠ âiâ
†
i ) 1

4(â†
i âi + âiâ

†
i ) i

4(â†
i â

†
R ≠ âiâR) ≠1

4(â†
i â

†
R + âiâR)

+ i
4(âiâ

†
i ≠ â

†
i âi) +1

4(â†
i âi + âiâ

†
i ) + i

4(â†
i â

†
R ≠ âiâR) + ≠ 1

4(â†
i â

†
R + âiâR)

1
4(â†

i â
†
R + âiâR) i

4(â†
i â

†
R + âiâR) 1

4(â†
RâR + âRâ

†
R) i

4(âRâ
†
R ≠ â

†
RâR)

+1
4(â†

i â
†
i + âiâR) + i

4(â†
i â

†
R ≠ âiâR) +1

4(â†
RâR + âRâ

†
R) + i

4(â†
RâR ≠ âRâ

†
R)

i
4(â†

i â
†
R ≠ âiâR) ≠1

4(â†
i â

†
R + âiâR) i

4(â†
RâR ≠ âRâ

†
R) 1

4(â†
RâR + âRâ

†
R)

+ i
4(â†

i â
†
R ≠ âiâR) ≠1

4(â†
i â

†
R + âiâR) + i

4(âRâ
†
R ≠ â

†
RâR) 1

4(â†
RâR + âRâ

†
R)

R

ddddddddddddddddddddddb

(2.41)

V =

Q

cccccca

1
4(2Ns + 1) 0 1

2

Ò
ŸNs(Ns + 1) 0

0 1
4(2Ns + 1) 0 ≠1

2

Ò
ŸNs(Ns + 1)

1
2

Ò
ŸNs(Ns + 1) 0 1

4(2ŸNs + 2NB + 1) 0
0 ≠1

2

Ò
ŸNs(Ns + 1) 0 1

4(2ŸNs + 2NB + 1)

R

ddddddb

(2.42)

sections. The evaluated covariance matrix is shown in Equation (2.42). Note how the
o�-diagonal elements of the covariance matrix matches the o�-diagonal elements of both
of the previous covariance matrices up to a multiplicative constant. For the quadrature
covariance, a 1/2 factor account for the fact the the correlations are split between I and
Q.

2.5 Analysis

As mentioned earlier, there is no commutation between the electric field operator and
the number operator, this means that if it is possible to determine the electric field with
certainty, there is no information known about the photon count and vice versa. The
claim of this chapter is not a dual-measurement of the photon count and the electric field
measurement, but to show the relationship between the covariance of these independent
measurements in separate systems. To make the electric field able to be compared directly
with the number operator and quadrature, the correlation coe�cient must be found for
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each. This correlation coe�cient can be found using:

rxy = cov(x, y)
Ô

‡x‡y
(2.43)

where ‡ represents the standard deviation. The necessary terms have already been
calculated for all three measurement schemes. Therefore, for the electric field:

rEsi = ÈÊsÊiÍÒ
ÈÊ2

s ÍÈÊ2
i Í

= 2
Ô

ŸNsÔ
2ŸNs + 2NB + 1

(2.44)

It is easily found that the correlation coe�cient for the quadrature method is identical
to that of the electric field. Although this implies identical performance, in practice,
multiple quadratures are being measured and they can be combined in various ways
to construct detector functions which yield di�ering performance [13, 16]. Therefore,
one would expect better performance overall simply by the nature of collecting more
information (multiple measurements). Here, we ignore these complexities and simply
show them to be equal as any single correlation between two quadratures will result in
identical performance. For photon counting, the correlation coe�cient is found to be:

rNsi = ÈN̂sN̂iÍÒ
ÈN̂2

s ÍÈN̂2
i Í

=
Ÿ

Ò
Ns(Ns + 1)

Ò
Ÿ2Ns(1 + Ns) + NB(1 ≠ Ÿ + NB)

(2.45)

To compare these correlation coe�cients, curves are generated for each one over a given
range of Ns, Ÿ, and the background noise photons per mode NB. In addition, each of
the three curves will have a small Ns and large Ns behavior that dictates its overall
performance. Due to all of these variables, there exist many possible scenarios where one
particular sensor out-performs the others in particular Ns regimes. We cannot possibly
showcase all of these scenarios, so we restrict the presentation of results to the most
important outcomes learned by our parametric sweeps and a small subset of plots which
we believe best represents these lessons. An expanded analysis of these many scenarios
will be done in future work. A summary of the most important results are given below.

1. For very low Ns, the electric field and quadrature measurements appear to always
outperform photon counting.

2. Photon-counting appears to be dominant as long as there are enough photons
returning to the radar. For low transmissivity (high noise), it performs the worst
out of all of the methods.
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3. If NB is not too small, changing its value does not appear to a�ect the general
behaviors of the curves, but rather, will simply change the Ns regimes with which
these behaviors occur.

Quantum radar applications focus in the regime where NB ∫ Ns. For the following
plots, we choose an NB of 10 with the understanding that entangled photon powers are
such that Ns is on the order of 1 ◊ 10≠3 [15]. Figure (2.2) shows the various correlation
coe�cients for a scenario in which Ÿ = 0.7 . Note how for very low Ns, the electric field
amplitude and quadrature measurements outperforms the photon counting method. For
larger values of Ns, the photon counting method becomes dominant. Again note that
the E-field and E-field quadrature curves are identical. However, as mentioned earlier,
in practice, using quadratures will improve the performance because there are simply
more measurements taking place and one can combine I and Q in various ways to obtain
di�ering performance [13,16]. Next, observe Figure 2.3 for a second scenario, one with

Figure 2.2. Correlation coe�cient of the various methods for Scenario 1. (Ÿ=.7, NB=10)
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the transmissivity much lower. In this case, there are not enough photons making it
back to the radar for low Ns and consequently photon counting is the worst performer
at this signal power. This is because at low signal powers and high background noise,
it is easier for the background noise to dominate the correlation with accidentals. As
Ns increases, more photons make it back to the receiver and photon counting becomes
dominant again. Figure 2.4 shows a correlation over a range of Ns that is more typical

Figure 2.3. Correlation coe�cient of the various methods for Scenario 2. (Ÿ=.1, NB=10)

of current SPDC power outputs to better illustrate the very low Ns regime performance.
Clearly the electric field measurements perform better in this regime.

2.6 Conclusion

In this chapter, the immediate idler, many measurement correlation of the two-mode
squeezed vacuum state has been evaluated, compared and contrasted for three di�erent
quantum radar measurement strategies, all of which are post-correlation techniques
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Figure 2.4. Correlation coe�cient for low Ns for scenario 1

(photon counting, E-field measurement, and quadrature measurement). It was found
that the most optimal measurement strategy is a function of the transmit power Ns,
background noise NB, and transmissivity Ÿ, depending on the regime of interest. Two
particularly interesting scenarios were presented to showcase the behavior of the curves.
One can experiment with the above equations for di�erent scenarios of interest for
trade-o� analysis of the approaches presented herein. The work presented here can help
to guide future experiments and applications in obtaining the most optimal design and
implementation strategy.
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Chapter 3 |

Analysis of Tripartite Electric Field

Correlation

3.1 Introduction

The previous chapter discussed a bipartite quantum radar design that uses spontaneous
parametric down conversion (SPDC) where one high energy photon is split into two
photons of half the original energy. With this, one of the photons created is kept as an idler
and the other is sent at the target as the signal. When the signal returns, a correlation
method is used to determine if the returning photons are from the original signal. This
bipartite quantum system has shown a 3-dB improvement in the error exponential which
means that it has better detection in high noise environments [12, 20, 22, 29, 31, 32].
Similarly to the two-photon method, the three-photon method looks to obtain a quantum
advantage through the use of signal and idler beams. However, with the tripartite state
we are able to transmit two signals that are correlated with a single idler. We believe
that this arrangement with a single idler could lead to benefits in correlation performance
in lossy channels. We seek to explore whether having more photons per generation leads
to correlation benefits of the returned beams. Conventional SPDC methods can only
create equal photon number states on each branch of the photon generation, namely one
photon each for the signal and idler, two photons each, three photons each, and so on [4].
These higher number states are increasingly less probable to generate and although they
would possess more photons per generation, there would be less photons overall. A state
specifically constructed to be tripartite (three-particles) can potentially alleviate this
problem by using a di�erent experimental setup entirely for the generation, keeping the
same detection paradigm as bipartite systems, namely, storing or detecting the idler
photon [3, 4, 10] and then later measuring the returned signal photons. However, in our
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tripartite case, each idler can correlate with two returning signal photons. In the setup
described here, this would be done with a single detector for the signals and another
detector to immediately detect the idler.

A basic setup of this is seen in Figure (3.1).

Figure 3.1. Basic setup for tripartite system with both signals staying together and the idler
being immediately detected. This setup is valid for both the electric field measurement and the
photon counting measurement.

Here, we mathematically evaluate a tripartite radar system using a coupled three
mode squeezed state introduced by Zhang and Glaser [14] which is generated through
the use of an Rb atomic vapor and a four-wave-mixing process. For this calculation, we
assume that the target is ideal (perfectly reflective). In this scheme, two lasers are used
with non-linear crystals and one path from each of the signal idler pairs are mixed to
create three part entanglement. In our evaluation, we solve for all parts of the covariance
matrix and determine the covariance between the signal and idler beams for the system.
Additionally, we simulate the correlation coe�cient to be able to directly compare to the
current literature. After we have determined the correlation coe�cients of each of the
path, we then compare it to the current bipartite system. To do this, we define a detection
scheme for the tripartite system that will allow for an apples-to-apples comparison.

Again, it must be stated that this is looking to obtain the maximum limit of this

25



technology and therefore perfect reflection and a perfect quantum detector is assumed.

3.2 Tripartite Derivation

The following tripartite derivation is made of two parts. First, we define the wave function
in terms of the mean photon number per mode for each of the paths to allow for an
easier comparison to transmit power. Secondly, the wave function in terms of the mean
photon number per mode is used to derive the covariance matrix for the system.

3.2.1 Wave function derivation in terms of mean photon number

per mode

We begin with a coupled three-mode squeezed vacuum state [14].

|�Í = 1
cosh(r)

Œÿ

n,l

(≠1)n+1
e

i(n◊1+l◊2)
3

r1
r

tanh(r))n(r2
r

tanh(r)
4l

Û
(n + l)!

n!l! |n, n + l, lÍs1,i,s2

(3.1)

where r1, and r2 are the squeezing factors, r =
Ò

r2
1 + r2

2, and ◊1 and ◊2 are the phase
terms.

The first task is to rewrite cosh(r) and tanh(r) in terms of the mean photon number
per mode as is commonly done for the bipartite two mode squeezed light frequently
used in quantum radar analysis [3, 4, 6, 12, 16]. In our case however, each branch will, in
general, be a di�erent mean photon number per mode, which we denote as Ns1 , Ns2 , and
Ni for signal 1, signal 2, and the idler respectively. This allows for the covariance to be
more directly comparable to the power level of each beam because these values directly
relate to the amount of photons transmitted.

Since the tripartite implementation consists of three beams, there are multiple
combinations of beams one can keep at the radar and send into free space. We propose
the following system which uses two of the photon paths as signals and one of the photon
paths as an idler. The reasoning behind this choice is to send as much energy into the
free space path as possible to increase transmit power. We also choose to use the electric
field which corresponds to the use of balanced homodyne detection.
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First, the evaluation of the mean idler photon number, Ni = â
†
i âi:

È�| âiâ
†
i |�Í = 1

cosh2(r)

Œÿ

m,k

Œÿ

n,l

e
i(n◊1+l◊2)

e
≠i(m◊1+k◊2)

A
r

n+m
1
r2 tanh(n+m)(r))(r

l+k
2
r2 tanh(l+k)(r)

B

◊
Û

(n + l)!
n!l!

Û
m! + k!

m!k! (n + l) Èm, m + k, k| n, n + l, lÍ (3.2)

Orthogonality causes m = n and k = l which yields:

È�| âiâ
†
i |�Í = 1

cosh2(r)

Œÿ

n,l=0
tanh2(n+l)(r)(n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l) (3.3)

The above double summation can be evaluated by first applying di�erent values of n to
the formula, then evaluating the resulting sums over l. Doing this for the first few values
of n gives (denoting each partial sum as Fn):

F0 = r
2sech2(r)r2

2 tanh2(r)
(r2 ≠ r2

2 tanh2(r))2

F1 = r
2sech2(r)r2

1(r2 tanh2(r) + r
2
2 tanh4(r))

(r2 ≠ r2
2 tanh2(r))3

F2 = r
2sech2(r)r4

1(2r
2 tanh4(r) + r

2
2 tanh6(r))

(r2 ≠ r2
2 tanh2(r))4

F3 = r
2sech2(r)r6

1(3r
2 tanh6(r) + r

2
2 tanh8(r))

(r2 ≠ r2
2 tanh2(r))5 (3.4)

Given the above pattern of partial sums, the general formula is found to be:

È�| âiâ
†
i |�Í = r

2

cosh2(r)

Œÿ

i=0

1
(r2 ≠ r2

2 tanh2(r))(i+2) r
2i
1

1
ir

2 tanh2i(r) + r
2
2 tanh2(i+1)(r)

2

(3.5)

The above sum can be evaluated and yields:

È�| âiâ
†
i |�Í = Ni = sinh2(r) (3.6)

Next, the mean photon number per mode of one of the signal beams is evaluated in a
similar manner as the previous case, which yields:

È�| âs1 â
†
s1 |�Í = Ns1 = sinh2(r)r2

2
r2 (3.7)
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Furthermore, evaluating âs2 â
†
s2 in a similar manner gives:

È�| âs2 â
†
s2 |�Í = Ns2 = sinh2(r)r2

1
r2 (3.8)

In order to write tanh(r) and cosh(r) in terms of Ni, Ns1 , and Ns2 , we start by solving
Equation (3.6) for cosh(r):

Ni = sinh2(r) = cosh2(r) ≠ 1 æ cosh(r) =
Ò

Ni + 1 (3.9)

We then solve for tanh(r) by dividing Equation (3.6) by Equation (3.9) which yields:
Û

NiNs1r2

N2
i r2

2 + Ns1r2 = tanh(r) (3.10)

One can also obtain this result in reference to the other signal beam by dividing Equation
(3.6) by Equation (3.8):

Û
NiNs2r2

N2
i r2

1 + Ns2r2 = tanh(r) (3.11)

Using the terms found for tanh(r) in (3.10) and for cosh(r) in (3.9), we can now write
the wave function in terms of the mean photon number per modes for the paths:

|�Í = 1Ô
Ni + 1

Œÿ

n,l

(≠1)n+1
e

i(n◊1+l◊2)
A

r1
r

◊
Û

NiNs1r2

N2
i r2

2 + Ns1r2

Bn A
r2
r

Û
NiNs1r2

N2
i r2

2 + Ns1r2

Bl

◊
Û

(n + l)!
n!l! |n, n + l, lÍs1,i,s2

(3.12)

where we will set – = 1Ô
Ni+1 and —(r) =

Ú
NiNs1 r2

N2
i r2

2+Ns1 r2 , making the wave function:

|�Í =–

Œÿ

n,l

(≠1)n+1
e

i(n◊1+l◊2)
3

r1
r

—(r)
4n 3

r2
r

—(r)
4l

Û
(n + l)!

n!l! |n, n + l, lÍs1,i,s2
(3.13)

3.2.2 Covariance Matrix

Now that we have obtained for the wave function in terms of the mean photon number
per modes for the individual beams, we can now calculate the terms in the covariance

28



matrix, namely:

V =

Q

ccca

ÈE2
i Í ÈEiER1Í ÈEiER2Í

ÈER1EiÍ ÈE2
R1Í ÈER1ER2Í

ÈER2EiÍ ÈER2ER1Í ÈE2
R2Í

R

dddb (3.14)

where Ex is the electric field operator for the idler, first signal path, or second signal
path (x = i, s1, and s2 respectively) defined by [25]:

E(r, t) =
ÿ

k
‘̂kEkake

≠i‰ + ‘̂kEka
†
ke

i‰ (3.15)

where âk is the frequency mode’s creation operator, k is the wave vector, and ‰ is the
phase (which we can suppress by assuming that the signal and idler are aligned in time
and space via shifting the data or using a delay line), ‘̂k is a unit polarization vector,
given by

Ek =
A

~‹k
2‘0V

B 1
2

(3.16)

where ~ is Planck’s constant divided by 2fi, ‹k is the frequency associated with the
momentum mode k, ‘0 is the permittivity of free space, and V is the quantization volume.
Ek will be suppressed since it will be canceled in the final correlation calculations due to
the fact these correlations are normalized. This will allow for greater calculation simplicity
and easier to understand solutions. The integral formalism is also not required for the
solution as we assume the field is approximately monochromatic (a single momentum
mode) where future work will look at a full band signal. For an aligned signal and idler
measurement with a linear polarization, Equation (4.4) reduces to:

Ê = â + â
† (3.17)

It should be noted that the physically realizable version of these calculations is a
tensor product between Equation (3.1) and the thermal noise state. Formally, this
calculation is done with a density matrix approach [18, 26], where we first determine the
density matrix for the coupled three-mode squeezed vacuum state:

flCT SV = 1
cosh2(r)

Œÿ

n,l,m,k

(≠1)n+m+2
e

i(n◊1+l◊2)
e

≠i(m◊1+k◊2)

◊
3

r1
r

—(r)
4m+n 3

r2
r

—(r)
4l+k

Û
(n + l)!

n!l!

Û
(m + k)!

m!k! |n, n + l, l, jÍ Èm, m + k, k, j| (3.18)
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and the density matrix for the thermal noise state [26,27]:

flT = 1
NT + 1

ÿ

i

3
NT

NT + 1

4i

|iÍ Èi| (3.19)

where NT is the mean photon number of the thermal state. The return density matrix is
defined as:

flreturn = flCT SV ¢ flT = 1
cosh2(r)

1
NT + 1

Œÿ

n,l,m,k

(≠1)n+m+2
e

i(n◊1+l◊2)
e

≠i(m◊1+k◊2)

◊
3

r1
r

tanh(r)
4m+n 3

r2
r

tanh(r)
4l+k

Û
(n + l)!

n!l!

Û
(m + k)!

m!k! |n, n + l, l, i, jÍ Èm, m + k, k, i, j|

(3.20)

which can be shown to be approximately valid in the high-noise regime.
The evaluation begins by looking at the on-diagonal terms for this matrix, which

amounts to the variance of the respective beams. Beginning with the E
2
i term:

E
2
i = â

2
i + âiâ

†
i + â

†
i âi + â

†2
i (3.21)

Using the Fock State basis we are able to determine terms that will become zero due to
orthogonality. To maintain conciseness within the main body these calculations have
been moved to Apendix (A). Now we begin evaluating the non-zero terms. To do this,
we find the recursion formula for the two terms by setting values for n and finding the
summations in terms of l. We then solve this recursion formula to obtain the value for
the covariance. We start with the âiâ

†
i term:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l + 1) (3.22)

F0 = –
2
r

4

(r2 ≠ —(r)2r2
2)2

F1 = 2–
2
—(r)2

r
4
r

2
1

(r2 ≠ —(r)2r2
2)3

F2 = 3–
2
—(r)4

r
4
r

4
1

(r2 ≠ —(r)2r2
2)4

F3 = 4–
2
—(r)6

r
4
r

6
1

(r2 ≠ —(r)2r2
2)5 (3.23)
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Here we can see the recursion formula will be of the form:

È�| âiâ
†
i |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

—(r)2i
r

2i
1 (i + 1)

= –
2

(≠1 + —(r)2)2 (3.24)

Now looking at the terms from â
†
i âi:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l) (3.25)

F0 = –
2
—(r)2

r
2
r

2
2

(r2 ≠ —(r)2r2
2)2

F1 = –
2
r

2
r

2
1(—(r)2

r
2 + —(r)4

r
2
2)

(r2 ≠ —(r)2r2
2)3

F2 = –
2
r

2
r

4
1(2—(r)4

r
2 + —(r)6

r
2
2)

(r2 ≠ —(r)2r2
2)4

F3 = –
2
r

2
r

6
1(3—(r)6

r
2 + —(r)8

r
2
2)

(r2 ≠ —(r)2r2
2)5 (3.26)

Here we can see the recursion formula will be of the form:

È�| â
†
i âi |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1 (i—(r)2i

r
2 + —(r)2(i+1)

r
2
2)

= –
2
—(r)2

(≠1 + —(r)2)2 (3.27)

We then combine Equations 4.73 and 3.27 to find:

E
2
i = –

2(1 + —(r)2)
(≠1 + —(r)2)2 (3.28)

Now we will look at the two signal paths beginning with E
2
s1 . These terms di�er from

the idler path because the signal paths will have an added noise terms as these beams
propagate in free space.

ER1 =
Ô

Ÿ(âs1 + â
†
s1) +

Ô
1 ≠ Ÿ(âB1 + â

†
B1)

E
2
R1 = Ÿ

1
â

2
s1 + â

2†
s1 + as1a

†
s1 + a

†
s1as1

2
+ (1 ≠ Ÿ)

1
a

2
B1 + a

†2
B1 + aB1a

†
B1 + a

†
B1aB1

2
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+
Ò

Ÿ(1 ≠ Ÿ)
1
âs1 âB1 + â

†
s1 â

†
B1 + âs1 â

†
B1 + â

†
s1 âB1 + âB1 âs1 + â

†
B1 â

†
s1 + âB1 â

†
s1 + â

†
B1 âs1

2

(3.29)

where as1 , as2 , and aB are the field mode operators for the signal 1, signal 2, and the
noise state respectively. Using the orthogonality conditions we determine that the only
non-zero terms are â

†
s1 âs1 , âs1 â

†
s1 , â

†
B1 âB1 , and âB1 â

†
B1 where the coe�cients generated

from the evaluation of the expectation creation and annihilation operators are n + 1, n,
NB1 + 1, and NB respectively. Therefore the expectation value to be evaluated composed
of non-zero terms takes the form:

È�| â
†
s1 âs1 + âs1 â

†
s1 + âB1 â

†
B1 + â

†
B1 âB1 |�Í (3.30)

Using the same process as Equations A.1-A.4 we determine that the only non-zero terms
are â

†
s1 âs1 , âs1 â

†
s1 , â

†
B1 âB1 , and âB1 â

†
B1 where the coe�cients generated from the evaluation

of the expectation creation and annihilation operators are n + 1, n, NB1 + 1, and NB

respectively. Therefore the expectation value to be evaluated composed of non-zero terms
takes the form:

È�| â
†
s1 âs1 + âB1 â

†
B1 + âB1 â

†
B1 + â

†
B1 âB1 |�Í (3.31)

The evaluation of this expectation value is separated into its four terms where the first
term evaluated is âs1 â

†
s1 :

Fn = Ÿ–
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + 1) (3.32)

F0 = Ÿ
–

2
r

2

r2 ≠ —(r)2r2
2

F1 = Ÿ
2–

2
r

2
—(r)2

r
2
1

(r2 ≠ —(r)2r2
2)2

F2 = Ÿ
3–

2
r

2
—(r)4

r
4
1

(r2 ≠ —(r)2r2
2)3

F3 = Ÿ
4–

2
r

2
—(r)6

r
6
1

(r2 ≠ —(r)2r2
2)4 (3.33)

Where the recursion formula will be of the form:

È�| âs1 â
†
s1 |�Í = Ÿ–

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

(i + 1)—(r)2i
r

2i
1

(3.34)
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which evaluates to:

È�| âs1 â
†
s1 |�Í = Ÿ

–
2(r2 ≠ —(r)2

r
2
2)

r2(≠1 + —(r)2)2 (3.35)

Next â
†
s1 âs1 is evaluated:

Fn = Ÿ–
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) n (3.36)

F0 = 0

F1 = Ÿ
–

2
r

2
—(r)2

r
2
1

(r2 ≠ —(r)2r2
2)2

F2 = Ÿ
2–

2
r

2
—(r)4

r
4
1

(r2 ≠ —(r)2r2
2)3

F3 = Ÿ
3–

2
r

2
—(r)6

r
6
1

(r2 ≠ —(r)2r2
2)4 (3.37)

Here the recursion formula is seen to be of the form:

È�| â
†
s1 âs1 |�Í = Ÿ–

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

i—(r)2i
r

2i
1

= Ÿ
–

2
—(r)2

r
2
1

r2(≠1 + —(r)2)2 (3.38)

Now we complete the noise terms together, âBâ
†
B + â

†
BâB term:

Fn = (1 ≠ Ÿ)–2
Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (2NT + 1) (3.39)

F0 = (1 ≠ Ÿ)–
2
r

2(1 + 2NT )
r2 ≠ —(r)2r2

2

F1 = (1 ≠ Ÿ)–
2
r

2
—(r)2(1 + 2NT )r2

1
(r2 ≠ —(r)2r2

2)2

F2 = (1 ≠ Ÿ)–
2
r

2
—(r)4(1 + 2NT )r4

1
(r2 ≠ —(r)2r2

2)3

F3 = (1 ≠ Ÿ)–
2
r

2
—(r)6(1 + 2NT )r6

1
(r2 ≠ —(r)2r2

2)4 (3.40)
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Here the recursion formula will be of the form:

È�| âBâ
†
B + â

†
BâB |�Í = (1 ≠ Ÿ)–2

r
2

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

(1 + 2NT )—(r)2i
r

2i
1

= ≠(1 ≠ Ÿ)–
2(1 + 2NT )

≠1 + —(r)2 (3.41)

To find the covariance term, Equations (3.34), (3.38), and (3.41) are combined:

È�| E
2
R1 |�Í = –

2((1 + —(r)2(≠1 + Ÿ ≠ 2NB2) + 2NB2)r2 + —(r)2
Ÿ(r2

1 ≠ r
2
2))

(≠1 + —(r)2)2r2 (3.42)

Similarly, the variance term of the second signal path can be found: âs2 â
†
s2 is the first

term to be evaluated:

Fn = Ÿ–
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (l + 1) (3.43)

F0 = Ÿ
–

2
r

2

(r2 ≠ —(r)2r2
2)2

F1 = Ÿ
–

2
r

2
r

2
1(—(r)2

r
2 + —(r)4

r
2
2)

(r2 ≠ —(r)2r2
2)3

F2 = Ÿ
–

2
r

2
r

4
1(—(r)4

r
2 + 2—(r)6

r
2
2)

(r2 ≠ —(r)2r2
2)4

F3 = Ÿ
–

2
r

2
r

6
1(—(r)6

r
2 + 3—(r)8

r
2
2)

(r2 ≠ —(r)2r2
2)5 (3.44)

Here we can see the recursion formula will be of the form:

È�| âs2 â
†
s2 |�Í = Ÿ–

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1 (—(r)2i

r
2 + i—(r)2(i+1)

r
2
2)

= Ÿ
–

2(r2 ≠ —(r)2
r

2
1)

(≠1 + —(r)2)2r2 (3.45)

Now solving the â
†
s2 âs2 term:

Fn = Ÿ–
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) l (3.46)

F0 = Ÿ
–

2
—(r)2

r
2
r

2
2

(r2 ≠ —(r)2r2
2)2

F1 = Ÿ
2–

2
—(r)4

r
2
r

2
1r

2
2

(r2 ≠ —(r)2r2
2)3
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F2 = Ÿ
3–

2
—(r)6

r
2
r

4
1r

2
2

(r2 ≠ —(r)2r2
2)4

F3 = Ÿ
4–

2
—(r)8

r
2
r

6
1r

2
2

(r2 ≠ —(r)2r2
2)5 (3.47)

Where the recursion formula will be of the form:

È�| â
†
s2 âs2 |�Í = Ÿ–

2
r

2
r

2
2

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1 —(r)2(i+1)(i + 1)

= Ÿ
–

2
—(r)2

r
2
2

(≠1 + —(r)2)2r2 (3.48)

Where the noise term, (3.41), is combined with Equations (3.45) and (3.48):

È�| E
2
R2 |�Í = –

2((1 + —(r)2(≠1 + Ÿ ≠ 2NB2) + 2NB2)r2 + —(r)2
Ÿ(≠r

2
1 + r

2
2))

(≠1 + —(r)2)2r2 (3.49)

Now we will look at the first cross-correlation term in our covariance matrix, but first
it should be noted that the final covariance matrix is simplified because it can be shown
that the electric fields between branches commute due to the di�ering mode operator
commutators. This allows us to simply solve for only three cross-correlation terms instead
of the six that are in the matrix, in other words, the covariance matrix is symmetric. We
now determine ER1ER2 , where we again use the orthonormality of the Fock state basis to
find the non-zero terms. These terms are found to be â

†
s1 âs2 and âs1 â

†
s2 with coe�cients

Ÿ

Ò
l(n + 1) and Ÿ

Ò
n(l + 1) respectively. Where we first evaluate âs1 â

†
s2 :

È�| âs1 â
†
s2 |ÂÍ = Ÿ–

2
Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l)

Ò
l(n + 1) (3.50)

we also see that the function for â
†
s1 âs2 is:

È�| â
†
s1 âs2 |ÂÍ = Ÿ–

2
Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l)

Ò
n(l + 1) (3.51)

These equations are not able to be solved trivially using the methods from Equations
(3.2) to (3.4). To solve this, we must numerically calculate the resulting expressions
because it does not have a closed form evaluation of the sums. We use the above results
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together to write:

È�| Es1Es2 |�Í = Ÿ–
2

Œÿ

n,l=0
�(n, l)

Ò
n(l + 1) +

Ò
l(n + 1) (3.52)

where we have defined:

�(n, l) = —(r)2(n+l) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+l) (3.53)

We now evaluate Es1Ei, where again the signal has an added noise term:

ER1 =
Ô

Ÿ(âs1 + â
†
s1) +

Ô
1 ≠ Ÿ(âB1 + â

†
B1)

Ei = âi + â
†
i

ER1Ei =
Ô

Ÿâs1 âi +
Ô

Ÿâ
†
s1 âi +

Ô
Ÿâs1 â

†
i +

Ô
Ÿâ

†
s1 â

†
i

+
Ô

1 ≠ ŸâB1 âi +
Ô

1 ≠ Ÿâ
†
B1 âi +

Ô
1 ≠ ŸâB1 â

†
i +

Ô
1 ≠ Ÿâ

†
B1 â

†
i (3.54)

We again use a general formula to solve this similar to Equation (3.4) and find the
solution to be:

È�| Es1Ei |�Í = Ÿ–
2

Œÿ

n,l=0
�(n, l)

3Ò
n(n + l) +

Ò
(n + 1)(n + l + 1)

4

Finally, we calculate Es2Ei and determine it to be:

È�| Es2Ei |�Í = Ÿ–
2

Œÿ

n,l=0
�(n, l)

3Ò
l(n + l) +

Ò
(l + 1)(n + l + 1)

4
(3.55)

Combining the solutions to these terms, and putting them into the covariance matrix
discussed earlier, we obtain the matrix seen in Equation (3.56).

V =

Q

ccca

ÈE2
i Í ÈEiEs1Í ÈEiEs2Í

ÈEs1EiÍ ÈE2
s1Í ÈEs1Es2Í

ÈEs2EiÍ ÈEs2Es1Í ÈE2
s2Í

R

dddb (3.56)

where for ease of reading, the elements of the matrix are listed below in Equation (4.98):

E
2
i = –

2(1 + —(r)2)
(≠1 + —(r)2)2
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E
2
s1 = –

2((1 + —(r)2(≠1 + Ÿ ≠ 2NB1) + 2NB1)r2 + —(r)2
Ÿ(r2

1 ≠ r
2
2))

(≠1 + —(r)2)2r2

E
2
s2 = –

2((1 + —(r)2(≠1 + Ÿ ≠ 2NB2) + 2NB2)r2 + —(r)2
Ÿ(≠r

2
1 + r

2
2))

(≠1 + —(r)2)2r2

Es1Ei = Ÿ–
2

Œÿ

n,l=0
�(n, l)

3Ò
n(n + l) +

Ò
(n + 1)(n + l + 1)

4

Es1Es2 = Ÿ–
2

Œÿ

n,l=0
�(n, l)

3Ò
n(l + 1) +

Ò
l(n + 1)

4

Es2Ei = Ÿ–
2

Œÿ

n,l=0
�(n, l)

3Ò
l(n + l) +

Ò
(l + 1)(n + l + 1)

4
(3.57)

3.3 Analysis

Now, that the tripartite covariance matrices has been derived, we plot the correlations at
various transmissivities in Figure 3.2. These correlations are solved using the covariances
and variances, ‡:

rxy = cov(x, y)
Ò

‡2
x‡2

y

(3.58)

where the horizontal and vertical axes are r1 and r2 respectively. Here one can see that

Figure 3.2. Correlations of the three path combinations in terms of r1 and r2, NB = 10.

the correlations between the idler and the individual signal paths are higher than just
the signal paths. This may be due to the idler being created through a mixing of the
signal paths and the signal paths being created through independent lasers.

Next, we define a detector function that will allow for the system to yield the best
possible performance. This detector function is designed to keep the two signals together
and correlate them both with the idler at the same time.

To define this system mathematically, we begin with the formula to determine the
correlation shown in Equation (3.58) and applying the tripartite system we obtain the
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detector function:
rdf = È(Es1 + Es2)EiÍÒ

ÈE2
i Í ÈE2

s1 + E2
s2 + Es1Es2Í

(3.59)

where each part of this function has been previously solved and is plotted in Figure
3.3 at Ÿ = .07, .4, and .7. Where one can see that as the environment becomes more

Figure 3.3. Correlations for for the tripartite system using the detector function at various
transmissivities, NB = 10.

transmissive (i.e., higher Ÿ), the correlation increases. One can also see based on the
correlations determined from the detector function, changing r1 independently does not
have the same e�ect on the correlation as r2. Due to this and the relationship between
the individual squeezing factors, one value of Ns can have multiple di�erent correlations.
For example, r1 = 1.5 and r2 = 1 has a di�erent correlation than r1 = 1 and r2 = 1.5,
but will have the same Ns. To alleviate these degeneracies in the plot, we show the case
where r1 = r2 in Figure 3.4 where it is plotted in comparison to the known bipartite
correlation coe�cient [33]. One can see that much like current quantum radar systems,
the system is more e�ective at lower signal powers; however, compared to the bipartite
system, it does not obtain as high of a correlation. One can also see that the bipartite
system continues at higher Ns to have the high correlation, while the tripartite system
falls o� at high Ns, which again may be due to how Ns is defined. This means that
for the tripartite system there is a finite region of significant correlation and increasing
the squeezing factor does not always increase the correlation, while the bipartite system
continues increasing as the squeezing factor increases until the correlation becomes 1.

3.4 Conclusion

In this paper we derived the electric field covariance matrix for the tripartite quantum
radar system. We then showed that with a combined electric field measurement we
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Figure 3.4. Correlations for the tripartite system when r1 = r2 versus the bipartite system,
NB=10

are able to obtain correlations between the di�erent beam paths where, like bipartite
quantum radar, the correlations are higher at lower power. However, at higher power
levels, these correlations seem to fall o�. While more research would have to be done
to fully prove these theories, the reason for the fall o� of these correlations may be do
to how the state is created. The correlation for the bipartite state increases due to the
simultaneous creation of the signal and idler photon, while the four-wave mixing that
occurs to create the tripartite state could potentially a�ect the symmetrical nature of
the photon waveforms.

From these correlations, it was found that all three paths have correlations with
each other which could be useful in creating new detection functions that could be used
within a radar or quantum communication system to prevent eavesdropping and increase
security.

Overall it seems that the tripartite quantum system is viable for use in correlation
based tasks, but lacks in comparison to the current two photon systems. Although, due
to the addition of the third photon, a tripartite system may be able to obtain higher Ns

compared to the bipartite system.
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Chapter 4 |

Derivation of the Tripartite Num-

ber Operator Correlation

4.1 Introduction

Much like the previous chapter, this chapter looks to explore the correlation of the
tripartite state. However, this section looks at the correlations of photon counting. Both
of these methods are extremely common as the measurement systems in quantum radar
experiments, so a comparison of their viability with the tripartite state is necessary to
have the greatest understanding. Although, this chapter is purely a derivation and the
simulation will be discussed as future work. Again, it must be stated that this is looking
to obtain the maximum limit of this technology and therefore perfect reflection and a
perfect quantum detector is assumed.

4.2 Derivation

We again begin with the coupled three-mode squeezed vacuum state [14]:

|�Í = 1
cosh(r)

Œÿ

n,l

(≠1)n+1
e

i(n◊1+l◊2)
3

r1
r

tanh(r))n(r2
r

tanh(r)
4l

Û
(n + l)!

n!l! |n, n + l, lÍs1,i,s2

(4.1)

where r1, and r2 are the squeezing factors, r =
Ò

r2
1 + r2

2, and ◊1 and ◊2 are the phase
terms.

Where we have redefined the wave function in terms of the mean photon number per
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mode in Equation (3.13), again stated here:

|�Í =–

Œÿ

n,l

(≠1)n+1
e

i(n◊1+l◊2)
3

r1
r

—(r)
4n 3

r2
r

—(r)
4l

Û
(n + l)!

n!l! |n, n + l, lÍs1,i,s2
(4.2)

where – = 1Ô
Ni+1 and —(r) =

Ú
NiNs1 r2

N2
i r2

2+Ns1 r2

We can now calculate the terms for the number operator for the covariance matrix.
Where unlike the electric field operator the number operator has a non-zero mean:

V =

Q

ccca

ÈN̂2
i Í ≠ ÈN̂iÍ ÈN̂iÍ ÈN̂iN̂R1Í ≠ ÈN̂iÍ ÈN̂R1Í ÈN̂iN̂R2Í ≠ ÈN̂iÍ ÈN̂R2Í

ÈN̂R1N̂iÍ ≠ ÈN̂R1Í ÈN̂iÍ ÈN̂2
R1Í ≠ ÈN̂R1Í ÈN̂R1Í ÈN̂R1N̂R2Í ≠ ÈN̂R1Í ÈN̂R2Í

ÈN̂R2N̂iÍ ≠ ÈN̂R2Í ÈN̂iÍ ÈN̂R2N̂R1Í ≠ ÈN̂R2Í ÈN̂R1Í ÈN̂2
R2Í ≠ ÈN̂R2Í ÈN̂R2Í

R

dddb

(4.3)
where N̂x is the number operator for the idler, first signal path, or second signal path
(x = i, s1, and s2 respectively) defined by [25]:

N̂(r, t) def= â
†
â (4.4)

where â
† is the creation operator and â is the annihilation operator.

Again a tensor product is done to find the physically realizable version of these
calculations, this tensor product is done between Equation (4.1) and the thermal noise
state. Formally, this calculation is done with a density matrix approach [18,26], where
we first determine the density matrix for the coupled three-mode squeezed vacuum state:

flCT SV = 1
cosh2(r)

Œÿ

n,l,m,k

(≠1)n+m+2
e

i(n◊1+l◊2)
e

≠i(m◊1+k◊2)

◊
3

r1
r

—(r)
4m+n 3

r2
r

—(r)
4l+k

Û
(n + l)!

n!l!

Û
(m + k)!

m!k! |n, n + l, l, jÍ Èm, m + k, k, j| (4.5)

and the density matrix for the thermal noise state [26,27]:

flT = 1
NT + 1

ÿ

i

3
NT

NT + 1

4i

|iÍ Èi| (4.6)

where NT is the mean photon number of the thermal state. The return density matrix is
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defined as:

flreturn = flCT SV ¢ flT = 1
cosh2(r)

1
NT + 1

Œÿ

n,l,m,k

(≠1)n+m+2
e

i(n◊1+l◊2)
e

≠i(m◊1+k◊2)

◊
3

r1
r

tanh(r)
4m+n 3

r2
r

tanh(r)
4l+k

Û
(n + l)!

n!l!

Û
(m + k)!

m!k! |n, n + l, l, i, jÍ Èm, m + k, k, i, j|

(4.7)

which can be shown to be approximately valid in the high-noise regime.
From the covariance matrix it can be seen there are 6 di�erent expectation values that

need to be solved: ÈN̂2
i Í, ÈN̂2

R1Í, ÈN̂2
R2Í ,ÈN̂iÍ, ÈN̂R1Í, and ÈN̂R2Í. We begin evaluating the

non-zero terms of ÈN̂2
i Í first:

N
2
i = â

†
i âiâ

†
i âi (4.8)

Where applying this as an operator on the wave function gives us the coe�cient:

Èm, m + k, k| â
†
i âiâ

†
i âi |n, n + l, lÍ = (n + l)2 (4.9)

which gives us the function:

È�| â
†
i âiâ

†
i âi |�Í = –

2
Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (n + l)2 (4.10)

which does not have a trivial solution, therefore we solve it with a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l)2 (4.11)

F0 = –
2
—

2
r

2
r

2
2(r2 + —

2
r

2
2)

(r2 ≠ —(r)2r2
2)3

F1 = –
2
r

2
r

2
1(—2

r
4 + 4—

4
r

2
r

2
2 + —

6
r

4
2)

(r2 ≠ —(r)2r2
2)4

F2 = –
2
r

2
r

4
1(4—

4
r

4 + 7—
6
r

2
r

2
2 + —

8
r

4
2)

(r2 ≠ —(r)2r2
2)5

F3 = –
2
r

2
r

6
1(9—

6
r

2 + 10—
8
r

2
r

2
2 + —

10
r

4
2)

(r2 ≠ —(r)2r2
2)6 (4.12)

42



Here we can see the recursion formula will be of the form:

È�| â
†
i âiâ

†
i âi |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+3

r
2i
1

1
i
2
—

2i
r

4 + (3i + 1)—2(i+1)
r

2
r

2
2 + —

2(i+2)
r

4
2
2

= –
2
—

2(1 + —
2)

(—2 ≠ 1)3 (4.13)

Now we look at solving ÈNiÍ:

È�| â
†
i âi |�Í = –

2
Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (n + l) (4.14)

which again is not trivially solvable:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l) (4.15)

F0 = –
2
—

2
r

2
r

2
2

(r2 ≠ —(r)2r2
2)2

F1 = –
2
r

2
r

2
1(—2

r
2 + 4—

4
r

2
2)

(r2 ≠ —(r)2r2
2)3

F2 = –
2
r

2
r

4
1(2—

4
r

2 + —
6
r

2
2)

(r2 ≠ —(r)2r2
2)4

F3 = –
2
r

2
r

6
1(3—

6
r

2 + —
8
r

2
2)

(r2 ≠ —(r)2r2
2)5 (4.16)

and gives the form:

È�| â
†
i âi |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1

1
i—

2i
r

2 + —
2(i+1)

r
2
2
2

= ≠ –
2
—

2

(—2 ≠ 1)2 (4.17)

To solve two signal paths we again have to include the thermal noise:

âR =
Ô

Ÿâs +
Ô

1 ≠ ŸâB (4.18)

Now looking at the number operator of the form â
†
RâR, we find:

N̂R =
1Ô

Ÿâ
†
s +

Ô
1 ≠ Ÿâ

†
B

2 1Ô
Ÿâs +

Ô
1 ≠ ŸâB

2

= Ÿâ
†
sâs +

Ò
Ÿ(1 ≠ Ÿ)(â†

sâB + â
†
Bâs) + (1 ≠ Ÿ)â†

BâB (4.19)
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where due to the orthogonality of the Fock State basis, the middle term is zero, and
therefore begin with solving ÈNR1Í:

È�| â
†
s1 âs1 |�Í = –

2
Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) n (4.20)

where we use the recursion relationship:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) n (4.21)

F0 = 0

F1 = –
2
—

2
r

2
r

2
1

(r2 ≠ —(r)2r2
2)2

F2 = 2–
2
—

4
r

2
r

4
1

(r2 ≠ —(r)2r2
2)3

F3 = 3–
2
—

6
r

2
r

6
1

(r2 ≠ —(r)2r2
2)4 (4.22)

finding the form to be:

È�| â
†
s1 âs1 |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

i—
2i

r
2i
1

= –
2
—

2
r

2
1

(—2 ≠ 1)2r2 (4.23)

Now we solve the noise portion, â
†
BâB:

È�| â
†
BâB |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) NT (4.24)

where using recursion:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) NT (4.25)

F0 = –
2
NT r

2

r2 ≠ —2r2
2

F1 = –
2
—

2
NT r

2
r

2
1

(r2 ≠ —2r2
2)2

F2 = –
2
—

4
NT r

2
r

4
1

(r2 ≠ —2r2
2)3
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F3 = –
2
—

6
NT r

2
r

6
1

(r2 ≠ —2r2
2)4 (4.26)

we find:

È�| â
†
BâB |�Í = –

2
r

2
NT

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

—
2i

r
2i
1

= –
2
NT

1 ≠ —2 (4.27)

therefore:
ÈNR1Í = Ÿ

–
2
—

2
r

2
1

(—2 ≠ 1)2r2 + (1 ≠ Ÿ) –
2
NT

1 ≠ —2 (4.28)

where NT = 1
1≠ŸNB and NB is the mean noise number per mode. Therefore we find:

ÈNR1Í = –
2

A
NB

1 ≠ —2 + —
2
Ÿr

2
1

(≠1 + —2)r2

B

(4.29)

Now we do the same steps with ÈNs2Í:

È�| â
†
s2 âs2 |�Í = –

2
Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) l (4.30)

using recursion:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) l (4.31)

F0 = –
2
—

2
r

2
r

2
2

(r2 ≠ —(r)2r2
2)2

F1 = 2–
2
—

4
r

2
r

2
1r

2
2

(r2 ≠ —(r)2r2
2)3

F2 = 3–
2
—

6
r

2
r

4
1r

2
2

(r2 ≠ —(r)2r2
2)4

F3 = 4–
2
—

8
r

2
r

6
1r

2
2

(r2 ≠ —(r)2r2
2)5 (4.32)

finding:

È�| â
†
s2 âs2 |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

(i + 1)—2(i+1)
r

2i
1
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= –
2
—

2
r

2
2

(—2 ≠ 1)2r2 (4.33)

Now while the noise experience by the signal paths will be di�erent, the atmosphere in
which the signals travel will be the same. Due to this we make a simplifying assumption
that NB1 = NB2 . Therefore we find:

ÈNR2Í = Ÿ
–

2
—

2
r

2
2

(—2 ≠ 1)2r2 + (1 ≠ Ÿ) –
2
NT

1 ≠ —2

= ÈNR2Í = –
2

A
NB

1 ≠ —2 + —
2
Ÿr

2
2

(≠1 + —2)r2

B

(4.34)

It should be noted that ÈNs1Í and ÈNs2Í are remarkably similar di�ering only by which
squeezing factor is used within the equation in the signal portion. Therefore if r1 is equal
to r2 the variance of these two terms is identical.

Similarly to the previous noisy terms, the squared terms, ÈNs1Í2 and ÈNs2Í2, have
non-zero terms due to the orthogonality of the Fock States Basis. To find these terms we
expand the form â

†
RâRâ

†
RâR:

N̂
2
R =

1Ô
Ÿâ

†
s +

Ô
1 ≠ Ÿâ

†
B

2 1Ô
Ÿâs +

Ô
1 ≠ ŸâB

2 1Ô
Ÿâ

†
s +
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1 ≠ Ÿâ

†
B

2 1Ô
Ÿâs +

Ô
1 ≠ ŸâB
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=
3

Ÿâ
†
sâs +

Ò
Ÿ(1 ≠ Ÿ)(â†

sâB + â
†
Bâs) + (1 ≠ Ÿ)â†

BâB

4
(4.35)

ú
3

Ÿâ
†
sâs +

Ò
Ÿ(1 ≠ Ÿ)(â†

sâB + â
†
Bâs) + (1 ≠ Ÿ)â†

BâB

4

where we eliminate the non-zero terms to simplify factoring:

ÈN̂2
RÍ = Ÿ

2
â

†
sâsâ

†
sâs + 2Ÿ(1 ≠ Ÿ)â†

sâs + (1 ≠ Ÿ)â†
BâB + Ÿ(1 ≠ Ÿ)(â†

sâBâ
†
Bâs + â

†
Bâsâ

†
sâB)
(4.36)

Now beginning to solve ÈNs1Í2 with the pure signal term:

È�| â
†
s1 âs1 â

†
s1 âs1 |�Í = –
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n,l=0
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2(n+1) (n + l)!
n!l!

r
2n
1 r
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2

r2(n+1) n
2 (4.37)

where we again use a recursion relation:

Fn = –
2
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r

2n
1 r

2l
2

r2(n+l) n
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F0 = 0
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which when evaluated finds:
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Now solving the mixed term:

È�| â
†
BâBâ
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2 1
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which does not have a trivial solution, therefore we solve it with a recursion relation:
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Here we can see the recursion formula will be of the form:
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another mixed term:
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n!l!

r
2n
1 r

2l
2

r2(n+1) (NT (n + 1)) (4.45)

which does not have a trivial solution, therefore we solve it with a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (NT (n + 1)) (4.46)

F0 = –
2
NT r

2

(r2 ≠ —2r2
2)

F1 = 2–
2
—

2
NT r

2
r

2
1

(r2 ≠ —2r2
2)2

F2 = 3–
2
—

4
NT r

2
r

4
1

(r2 ≠ —2r2
2)3

F3 = 4–
2
—

6
NT r

2
r

6
1

(r2 ≠ —2r2
2)4 (4.47)

Here we can see the recursion formula will be of the form:

È�| â
†
s1 âBâ

†
Bâs1 |�Í = –

2
r

2
NT

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

(i + 1)—2i
r

2i
1

= –
2
NT (r2 ≠ —

2
r

2
2)

(≠1 + —2)2r2 (4.48)

the final mixed term:

È�| â
†
Bâs1 â

†
s1 âB |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (n(NT + 1)) (4.49)

which does not have a trivial solution, therefore we solve it with a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n(NT + 1)) (4.50)

F0 = 0

F1 = –
2(—2

r
2
r

2
1 + —

2
NT r

2
r

2
1)

(r2 ≠ —2r2
2)2

F2 = 2–
2(—4

r
2
r

4
1 + —

4
NT r

2
r

4
1)

(r2 ≠ —2r2
2)3

F3 = 3–
2(—6

r
2
r

6
1 + —

6
NT r

2
r

6
1)

(r2 ≠ —2r2
2)4 (4.51)
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Here we can see the recursion formula will be of the form:

È�| â
†
Bâs1 â

†
s1 âB |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

i(NT + 1)—2i
r

2i
1

= –
2
—

2(1 + NT )r2
1

(≠1 + —2)2r2 (4.52)

Finally solving the pure noise term:

È�| â
†
BâBâ

†
BâB |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) NT (4.53)

which has a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) NT (4.54)

F0 = –
2
N

2
T r

2

r2 ≠ —2r2
2

F1 = –
2
—

2
N

2
T r

2
r

2
1

(r2 ≠ —2r2
2)2

F2 = –
2
—

4
N

2
T r

2
r

4
1

(r2 ≠ —2r2
2)3

F3 = –
2
—

6
N

2
T r

2
r

6
1

(r2 ≠ —2r2
2)4 (4.55)

which is solvable:

È�| â
†
BâBâ

†
BâB |�Í = –

2
r

2
N

2
T

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+1

—
2i

r
2i
1

= –
2
N

2
T

1 ≠ —2 (4.56)

Now combining these five terms:

ÈNs1Í2 = –
2
N

2
B

1 ≠ —2 + 2–
2
—

2
ŸNBr

2
1

(≠1 + —2)2r2 + –
4
—

2
Ÿ(≠1 + Ÿ ≠ NB)N2

Br
2
1(≠r

2 + —
2
r

2
2)

(≠1 + —2)2(≠1 + Ÿ)2r2

≠ –
2
—

2
Ÿ

2
r

2
1(r2 + —

2(r2
1 ≠ r

2
2)))

(≠1 + —2)3r4 (4.57)
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Now solving ÈN2
s2Í beginning with the only signal term:

È�| â
†
s2 âs2 â

†
s2 âs2 |�Í = –

2
Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) l
2 (4.58)

we solve it with a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) l
2 (4.59)

F0 = –
2
—

2
r

2
r

2
2 (r2 + —

2
r

2
2)

(r2 ≠ —(r)2r2
2)3

F1 = 2–
2
—

4
r

2
r

2
1r

2
2 (r2 + 2—

2
r

2
2)

(r2 ≠ —(r)2r2
2)4

F2 = 3–
2
—

6
r

2
r

4
1r

2
2 (r2 + 3—

2
r

2
2)

(r2 ≠ —(r)2r2
2)5

F3 = 4–
2
—

6
r

2
r

6
1r

2
2 (r2 + 4—

2
r

2
2)

(r2 ≠ —(r)2r2
2)6 (4.60)

finding the form:

È�| â
†
s2 âs2 â

†
s2 âs2 |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+3

(i + 1)r2i
1 —

2(i+1)
1
r

2 + (i + 1)—2
r

2
2
2

= ≠–
2
—

2
r

2
1 (r2 + —

2(≠r
2
1 + r

2
2))

(—2 ≠ 1)3r4 (4.61)

Now we calculate the mixed term:

È�| â
†
BâBâ

†
s1 âs1 |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) NT l (4.62)

which is not trivial, therefore:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) NT l (4.63)

F0 = –
2
—

2
NT r

2
r

2
2

(r2 ≠ —2r2
2)2

F1 = 2–
2
—

2
NT r

2
r

2
1r

2
2

(r2 ≠ —2r2
2)3

F2 = 3–
2
—

4
NT r

2
r

4
1r

2
2

(r2 ≠ —2r2
2)4
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F3 = 4–
2
—

6
NT r

2
r

6
1r

2
2

(r2 ≠ —2r2
2)5 (4.64)

finding:

È�| â
†
BâBâ

†
s1 âs1 |�Í = –

2
r

2
r

2
2NT

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

(i + 1)—2(i+1)
r

2i
1

= –
2
—

2
NT r

2
2

(≠1 + —2)2 (4.65)

another mixed term:

È�| â
†
s2 âBâ

†
Bâs2 |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (NT (l + 1)) (4.66)

which does not have a trivial solution, therefore we solve it with a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (NT (l + 1)) (4.67)

F0 = –
2
NT r

4

(r2 ≠ —2r2
2)

F1 = –
2
NT r

2
r

2
1(—2

r
2 + —

4
r

2
2)

(r2 ≠ —2r2
2)3

F2 = –
2
NT r

2
r

4
1(—4

r
2 + —

6
r

2
2)

(r2 ≠ —2r2
2)4

F3 = –
2
NT r

2
r

6
1(—6

r
2 + —

8
r

2
2)

(r2 ≠ —2r2
2)5 (4.68)

Here we can see the recursion formula will be of the form:

È�| â
†
s1 âBâ

†
Bâs1 |�Í = –

2
r

2
NT

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1 (—2i

r
2 + i—

2(i+1)
r

2
2)

= –
2
NT (r2 ≠ —

2
r

2
2)

(≠1 + —2)2r2 (4.69)

the final mixed term:

È�| â
†
Bâs2 â

†
s2 âB |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (l(NT + 1)) (4.70)
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which does not have a trivial solution, therefore we solve it with a recursion relation:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (l(NT + 1)) (4.71)

F0 = –
2(—2

r
2
r

2
2 + —

2
NT r

2
r

2
2)

(r2 ≠ —2r2
2)2

F1 = 2–
2(—4

r
2
r

4
2 + —

4
NT r

2
r

4
2)

(r2 ≠ —2r2
2)3

F2 = 3–
2(—6

r
2
r

6
2 + —

6
NT r

2
r

6
2)

(r2 ≠ —2r2
2)4

F4 = 4–
2(—8

r
2
r

8
2 + —

8
NT r

2
r

8
2)

(r2 ≠ —2r2
2)5 (4.72)

Here we can see the recursion formula will be of the form:

È�| â
†
Bâs1 â

†
s1 âB |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

(i + 1)(NT + 1)—2(i+1)
r

2i
1 r

2
2

= –
2
—

2(1 + NT )r2
2

(≠1 + —2)2r2 (4.73)

Combining these terms and the earlier noise term we find the solution to be:

ÈNs2Í2 = –
2
N

2
B

1 ≠ —2 + 2–
2
—

2
ŸNBr

2
2

(≠1 + —2)2r2 + –
4
—

2
Ÿ(≠1 + Ÿ ≠ NB)N2

Br
2
2(≠r

2 + —
2
r

2
1)

(≠1 + —2)2(≠1 + Ÿ)2r2

≠ –
2
—

2
Ÿ

2
r

2
2(r2 + —

2(≠r
2
1 + r

2
2)))

(≠1 + —2)3r4 (4.74)

Where when compared with the equation for ÈNs1Í there are only a few di�erences,
namely some switching of the squeezing factors. Now to calculate ÈN̂R1N̂iÍ we first define
the terms:

ÈN̂R1N̂iÍ = â
†
R1 âR1 â

†
i âi

= (Ÿâ
†
sâs +

Ò
Ÿ(1 ≠ Ÿ)(â†

sâB + â
†
Bâs) + (1 ≠ Ÿ)â†

BâB)(â†
i âi)

= Ÿâ
†
sâsâ

†
i âi + (1 ≠ Ÿ)â†

BâBâ
†
i âi (4.75)

First we solve the noiseless term:

È�| â
†
s1 âs1 â

†
i âi |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (n + l)n (4.76)
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which is solved with recursion:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l)n (4.77)

F0 = 0

F1 = –
2
r

2
r

2
1(—2

r
2 + —

4
r

2
2)

(r2 ≠ —2r2
2)3

F2 = 2–
2
r

2
r

4
1(2—

4
r

2 + —
6
r

2
2)

(r2 ≠ —2r2
2)4

F3 = 3–
2
r

2
r

6
1(3—

6
r

2 + —
8
r

2
2)

(r2 ≠ —2r2
2)5 (4.78)

finding:

È�| â
†
s1 âs1 â

†
i âi |�Í = –

2
r

2
Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1 i

1
i—

2i
r

2 + —
2(i+1)

r
2
2
2

= –
2
—

2(1 + —
2)r2

1
(≠1 + —2)3r2 (4.79)

Now the final term:

È�| â
†
BâBâ

†
i âi |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (n + l)n (4.80)

recursively:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l)NT (4.81)

F0 = –
2
—

2
NT r

2
r

2
2

(r2 ≠ —2r2
2)2

F1 = –
2
NT r

2
r

2
1(—2

r
2 + —

4
r

2
2)

(r2 ≠ —2r2
2)3

F2 = –
2
NT r

2
r

4
1(2—

4
r

2 + —
6
r

2
2)

(r2 ≠ —2r2
2)4

F3 = –
2
NT r

2
r

6
1(3—

6
r

2 + —
8
r

2
2)

(r2 ≠ —2r2
2)5 (4.82)

which takes the form:

È�| â
†
BâBâ

†
i âi |�Í = –

2
r

2
NT

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1

1
i—

2i
r

2 + —
2(i+1)

r
2
2
2
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= –
2
—

2
NT

(≠1 + —2)2 (4.83)

Combining these terms and substituting for NT :

ÈN̂R1N̂iÍ =
–

2
—

2
1

(≠1+—2)NBÔ
1≠Ÿ

≠ (1+—2)ÔŸr2
1

r2

2

(≠1 + —2)3 (4.84)

Now to calculate ÈN̂R2N̂iÍ we first define the terms:

ÈN̂R2N̂iÍ = â
†
R2 âR2 â

†
i âi

= (Ÿâ
†
s2 âs2 +

Ò
Ÿ(1 ≠ Ÿ)(â†

s2 âB + â
†
Bâs2) + (1 ≠ Ÿ)â†

BâB)(â†
i âi)

= Ÿâ
†
s2 âs2 â

†
i âi + (1 ≠ Ÿ)â†

BâBâ
†
i âi (4.85)

First we solve the noiseless term:

È�| â
†
s2 âs2 â

†
i âi |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) (n + l)l (4.86)

which is solved with recursion:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) (n + l)l (4.87)

F0 = –
2
—

2
r

2
r

2
2(r2 + —

2
r

2
2)

(r2 ≠ —2r2
2)3

F1 = 2–
2
—

4
r

2
r

2
1r

2
2(2r

2 + —
2
r

2
2)

(r2 ≠ —2r2
2)4

F2 = 3–
2
—

6
r

2
r

4
1r

2
2(3r

2 + —
2
r

2
2)

(r2 ≠ —2r2
2)5

F3 = 4–
2
—

8
r

2
r

6
1r

2
2(4r

2 + —
2
r

2
2)

(r2 ≠ —2r2
2)6 (4.88)

finding:

È�| â
†
s1 âs1 â

†
i âi |�Í = –

2
r

2
r

2
2

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+3

r
2i
1 —

2(i+1)(i + 1)
1
(i + 1)r2 + —

2
r

2
2
2

= –
2
—

2(1 + —
2)r2

2
(≠1 + —2)3r2 (4.89)

Combining this term with the previously calculated noise cross term in Equation
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(4.83) and substituting for NT :

ÈN̂R2N̂iÍ =
–

2
—

2
1

(≠1+—2)NBÔ
1≠Ÿ

≠ (1+—2)ÔŸr2
2

r2

2

(≠1 + —2)3 (4.90)

Now to calculate ÈN̂R1N̂R2Í we first define the terms:

ÈN̂R1N̂R2Í =â
†
R1 âR1 â

†
R2 âR2

=(Ÿâ
†
s1 âs1 +

Ò
Ÿ(1 ≠ Ÿ)(â†

s1 âB + â
†
Bâs1) + (1 ≠ Ÿ)â†

BâB)

(Ÿâ
†
s2 âs2 +

Ò
Ÿ(1 ≠ Ÿ)(â†

s2 âB + â
†
Bâs2) + (1 ≠ Ÿ)â†

BâB)

= Ÿ
2
â

†
s1 âs1 â

†
s2 âs2 + Ÿ(1 ≠ Ÿ)â†

s1 âs1 â
†
BâB + Ÿ(1 ≠ Ÿ)â†

s2 âs2 â
†
BâB + (1 ≠ Ÿ)2

â
†
BâBâ

†
BâB

(4.91)

Most of these terms have already been calculated previously, however Èâ†
s1 âs1 â

†
s2 âs2Í has

not been calculated.

È�| â
†
s2 âs2 â

†
i âi |�Í = –

2 1
NT + 1

Œÿ

n,l=0
—

2(n+1) (n + l)!
n!l!

r
2n
1 r

2l
2

r2(n+1) nl (4.92)

which is solved with recursion:

Fn = –
2

Œÿ

l=0
—(r)2(n+l) (n + l)!

n!l!
r

2n
1 r

2l
2

r2(n+l) nl (4.93)

F0 = 0

F1 = 2–
2
—

4
r

2
r

2
1r

2
2

(r2 ≠ —2r2
2)3

F2 = 6–
2
—

6
r

2
r

4
1r

2
2

(r2 ≠ —2r2
2)4

F3 = 12–
2
—

8
r

2
r

6
1r

2
2

(r2 ≠ —2r2
2)5 (4.94)

finding:

È�| â
†
s1 âs1 â

†
i âi |�Í = –

2
r

2
r

2
2

Œÿ

i=0

A
1

r2 ≠ —(r)2r2
2

Bi+2

r
2i
1 —

2(i+1)
i(i + 1)

= ≠ 2–
2
—

4
r

2
1r

2
2

(≠1 + —2)3r4 (4.95)

55



Combining all the terms:

ÈN̂R1N̂R2Í = ≠Ÿ
2 2–

2
—

4
r

2
1r

2
2

(≠1 + —2)3r4 + Ÿ(1 ≠ Ÿ)( –
2
—

2
NT r

2
2

(≠1 + —2)2 + –
2
—

2
NT r

2
1

(≠1 + —2)2 ) + (1 ≠ Ÿ)2 –
2
N

2
T

1 ≠ —2

= –
2(—2

Ÿr
2
1((≠1 + —

2)NBr
2 ≠ 2—

2
Ÿr

2
2) + (≠1 + —

2)NBr
2((1 ≠ —

2)NBr
2 + —

2
Ÿr

2
2))

(≠1 + —2)3r4

(4.96)

Now we combine the solutions to these terms, and put them into the covariance matrix,
we obtain the matrix seen in Equation (4.97).

V =

Q

ccca

ÈN̂2
i Í ≠ ÈN̂iÍ ÈN̂iÍ ÈN̂iN̂R1Í ≠ ÈN̂iÍ ÈN̂R1Í ÈN̂iN̂R2Í ≠ ÈN̂iÍ ÈN̂R2Í

ÈN̂R1N̂iÍ ≠ ÈN̂R1Í ÈN̂iÍ ÈN̂2
R1Í ≠ ÈN̂R1Í ÈN̂R1Í ÈN̂R1N̂R2Í ≠ ÈN̂R1Í ÈN̂R2Í

ÈN̂R2N̂iÍ ≠ ÈN̂R2Í ÈN̂iÍ ÈN̂R2N̂R1Í ≠ ÈN̂R2Í ÈN̂R1Í ÈN̂2
R2Í ≠ ÈN̂R2Í ÈN̂R2Í

R

dddb

(4.97)
where for ease of reading, the elements of the matrix are listed below in Equation (4.98):

ÈN̂2
i Í = ≠–

2
—

2(1 + —
2)

(—2 ≠ 1)3

ÈNs1Í2 = –
2
N

2
B

1 ≠ —2 + 2–
2
—

2
ŸNBr

2
1

(≠1 + —2)2r2 + –
4
—

2
Ÿ(≠1 + Ÿ ≠ NB)N2

Br
2
1(≠r

2 + —
2
r

2
2)

(≠1 + —2)2(≠1 + Ÿ)2r2

≠ –
2
—

2
Ÿ

2
r

2
1(r2 + —

2(r2
1 ≠ r

2
2)))

(≠1 + —2)3r4

ÈNs1Í2 = –
2
N

2
B

1 ≠ —2 + 2–
2
—

2
ŸNBr

2
1

(≠1 + —2)2r2 + –
4
—

2
Ÿ(≠1 + Ÿ ≠ NB)N2

Br
2
1(≠r

2 + —
2
r

2
2)

(≠1 + —2)2(≠1 + Ÿ)2r2

≠ –
2
—

2
Ÿ

2
r

2
1(r2 + —

2(r2
1 ≠ r

2
2)))

(≠1 + —2)3r4

ÈN̂iÍ = –
2
—

2

(—2 ≠ 1)2

ÈN̂R1Í = –
2

A
NB

1 ≠ —2 + —
2
Ÿr

2
1

(≠1 + —2)2r2

B

ÈN̂R2Í = –
2

A
NB

1 ≠ —2 + —
2
Ÿr

2
2

(≠1 + —2)2r2

B

ÈN̂R1N̂R2Í = –
2(—2

Ÿr
2
1((≠1 + —

2)NBr
2 ≠ 2—

2
Ÿr

2
2) + (≠1 + —

2)NBr
2((1 ≠ —

2)NBr
2 + —

2
Ÿr

2
2))

(≠1 + —2)3r4

ÈN̂R1N̂iÍ =
–

2
—

2
1

(≠1+—2)NBÔ
1≠Ÿ

≠ (1+—2)ÔŸr2
1

r2

2

(≠1 + —2)3
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ÈN̂R2N̂iÍ =
–

2
—

2
1

(≠1+—2)NBÔ
1≠Ÿ

≠ (1+—2)ÔŸr2
2

r2

2

(≠1 + —2)3 (4.98)

4.3 Conclusion

In this chapter we derived the photon counting covariance matrix for the tripartite
quantum radar system. A simulation similar to the electric field measurement for the
tripartite system was done, but only imaginary results were obtained. After a thorough
evaluation of the mathematics of the system, it is believed that the four-wave mixing
augments the spatial coherence of the idler waveform in such a way that the waveform is
no longer equivalent to a mixture of the two signal waveforms. This would cause the sign
changes to not lineup in the correlation coe�cients and give imaginary values, which are
physically realizable. More tests and alternate ways to correlate this signals should be
explored.
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Chapter 5 |

Conclusions and Future Work

This dissertation evaluated and analyzed the correlation coe�cients for a number of
measurement styles for both bipartite and tripartite radar systems. As quantum radar
continues to grow and evolve, so will our understanding of the underlying principles of the
technology. With the newfound focus on quantum materials in the search for quantum
supremacy, quantum radar has the chance to quickly surpass classical technologies.
With this analysis of the measurement and creation schemes of quantum radar systems,
hopefully a greater understanding on what carries the greatest viability is already
understood and able to quickly acted upon. Although all of these schemes have advantages,
the following should be known:

• The coupled-three mode state does not seem to be a viable option at increasing
the power over the bipartite state without increasing our understanding of current
technologies. Bipartite quantum radar seems to be vastly superior in every way,
including ease of use, and should be the focus of research until another way to
easily generate tripartite states is posited.

• In a low power bipartite quantum radar system, electric field measurements and
quadrature measurements appear to always outperform the photon counting mea-
surements. Although photon counting measurements seem to reach higher cor-
relations when a greater number of photons is achieved. With the current focus
on using quantum radar as a low-power substitute for classical systems, these
measurement schemes will be more e�ective.

• Within these bipartite system, changing NB does not seem to have an e�ect on the
overall correlations of the system. This seems to back the idea that the increase
in resolution in the low signal-to-noise ration regime is caused by the ability to
correlate the binary waveforms instead of just the macro waveforms.
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5.1 Future Work

Due to the ideal nature of the calculations done in this dissertation, future work is
proposed that evaluates the correlation loss of these systems without ideal assumptions.
The main assumption that should be addressed is the e�ect of scattering on photon
waveform correlations that are used in quantum radar systems. While scattering was
included within these calculations via the use of transmissivity, a simple percentage
may not realistically convey the system. If scattering has a great e�ect on the systems
that were derived in this paper than the long-term viability of quantum radar as a
long-distance, discrete sensing system may be called into question.
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Appendix A|

Evaluating the Fock State Basis

of the Tripartite State

A.1 Electric Field Operator

This section shows the Fock state analysis of each term in the tripartite electric field
analysis. We begin with â

2
i :

Èm, m + k, k| â
2
i |n, n + l, lÍ =

Ò
(n + l)(n + l ≠ 1) Èm, m + k, k| n, n + l ≠ 2, lÍ

m = n

m + k = n + l ≠ 2

k = l (A.1)

We see that these equations do not have a possible solution that would satisfy a nonzero
inner product, therefore È�| â

2
i |�Í = 0. Next we evaluate â

†2
i :

Èm, m + k, k| â
†2
i |n, n + l, lÍ =

Ò
(n + l + 1)(n + l + 2) Èm, m + k, k| n, n + l + 2, lÍ

m = n

m + k = n + l + 2

k = l (A.2)

It is again found that there is no solution to satisfy the inner product, which gives,
È�| â

†2
i |�Í = 0. Now, È�| âiâ

†
i |�Í. Now we evaluate âiâ

†
i :

Èm, m + k, k| âiâ
†
i |n, n + l, lÍ = (n + l + 1) Èm, m + k, k| n, n + l, lÍ
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m = n

m + k = n + l

k = l (A.3)

These equations do indeed yield a non-zero inner product, the details of which will be
given shortly. Finally, we look at È�| â

†
i âi |�Í:

Èm, m + k, k| â
†
i âi |n, n + l, lÍ = (n + l) Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.4)

This term also is non-zero.
E

2
R1 terms, â

2
12 :

Èm, m + k, k| â
2
s1 |n, n + l, lÍ =

Ò
n(n ≠ 1) Èm, m + k, k| n ≠ 2, n + l, lÍ

m = n ≠ 2

m + k = n + l

k = l (A.5)

which is zero, â
2†
s1 :

Èm, m + k, k| â
2
s1 â

2†
s1 |n, n + l, lÍ =

Ò
(n + 2)(n + 1) Èm, m + k, k| n + 2, n + l, lÍ

m = n + 2

m + k = n + l

k = l (A.6)

which is zero, âs1 â
†
s1 :

Èm, m + k, k| âs1 â
†
s1 |n, n + l, lÍ = (n + 1) Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.7)
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which is nonzero, â
†
s1 âs1 :

Èm, m + k, k| â
†
s1 âs1 |n, n + l, lÍ = n Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.8)

which is nonzero, â
2
B:

Èm, m + k, k, NP | â
2
B |n, n + l, l, NT Í =

Ò
NT (NT + 1) Èm, m + k, k, NP | n + 2, n + l, l, NT ≠ 2Í

m = n + 2

m + k = n + l

k = l

NP = NT ≠ 2 (A.9)

which is zero, â
2†
B :

Èm, m + k, k, NP | â
2†
B |n, n + l, l, NT Í =

Ò
(NT + 2)(M + T + 1) Èm, m + k, k, NP | n + 1, n + l, l, NT + 2Í

m = n + 2

m + k = n + l

k = l

NP = NT + 2 (A.10)

which is zero, âBâ
†
B:

Èm, m + k, k, NP | âBâ
†
B |n, n + l, l, NT Í = (NT + 1) Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.11)

which is nonzero, â
†
BâB:

Èm, m + k, k, NP | â
†
BâB |n, n + l, l, NT Í = NT Èm, m + k, k, NP | n, n + l, l, NT Í
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m = n

m + k = n + l

k = l

NP = NT (A.12)

which is nonzero, âBâ
†
s1 :

Èm, m + k, k, NP | âBâ
†
s1 |n, n + l, l, NT Í =

Ò
NT (n + 1) Èm, m + k, k, NP | n + 1, n + l, l, NT ≠ 1Í

m = n + 1

m + k = n + l

k = l

NP = NT ≠ 1 (A.13)

which is zero, â
†
Bâs:

Èm, m + k, k, NP | â
†
Bâs1 |n, n + l, l, NT Í =

Ò
n(NT + 1) Èm, m + k, k, NP | n ≠ 1, n + l, l, NT + 1Í

m = n ≠ 1

m + k = n + l

k = l

NP = NT + 1 (A.14)

which is zero, â
†
Bâ

†
s:

Èm, m + k, k, NP | â
†
Bâ

†
s1 |n, n + l, l, NT Í =

Ò
(n + 1)(NT + 1) Èm, m + k, k, NP | n + 1, n + l, l, NT + 1Í

m = n + 1

m + k = n + l

k = l

NP = NT + 1 (A.15)

which is zero, âBâs:

Èm, m + k, k, NP | âBâs1 |n, n + l, l, NT Í =
Ò

nNT Èm, m + k, k, NP | n ≠ 1, n + l, l, NT ≠ 1Í

m = n ≠ 1

m + k = n + l
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k = l

NP = NT ≠ 1 (A.16)

Which is zero.
Now we look at the E

2
R2 terms, â

2
s2 :

Èm, m + k, k| â
2
s2 |n, n + l, lÍ =

Ò
l(l ≠ 1) Èm, m + k, k| n, n + l, l ≠ 2Í

m = n

m + k = n + l

k = l ≠ 2 (A.17)

which is zero, â
2†
s2 :

Èm, m + k, k| â
2
s2 â

2†
s2 |n, n + l, lÍ =

Ò
(l + 2)(l + 1) Èm, m + k, k| n, n + l, l + 2Í

m = n

m + k = n + l

k = l + 2 (A.18)

which is zero, âs2 â
†
s2 :

Èm, m + k, k| âs2 â
†
s2 |n, n + l, lÍ = (l + 1) Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.19)

which is nonzero, â
†
s2 âs2 :

Èm, m + k, k| â
†
s2 âs2 |n, n + l, lÍ = l Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.20)

which is nonzero, â
2
B:

Èm, m + k, k, NP | â
2
B |n, n + l, l, NT Í =

Ò
NT (NT + 1) Èm, m + k, k, NP | n, n + l, l, NT ≠ 2Í
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m = n

m + k = n + l

k = l

NP = NT ≠ 2 (A.21)

which is zero, â
2†
B :

Èm, m + k, k, NP | â
2†
B |n, n + l, l, NT Í =

Ò
(NT + 2)(M + T + 1) Èm, m + k, k, NP | n, n + l, l, NT + 2Í

m = n

m + k = n + l

k = l

NP = NT + 2 (A.22)

which is zero, âBâ
†
B:

Èm, m + k, k, NP | âBâ
†
B |n, n + l, l, NT Í = (NT + 1) Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.23)

which is nonzero, â
†
BâB:

Èm, m + k, k, NP | â
†
BâB |n, n + l, l, NT Í = NT Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.24)

which is nonzero, âBâ
†
s2 :

Èm, m + k, k, NP | âBâ
†
s2 |n, n + l, l, NT Í =

Ò
NT (n + 1) Èm, m + k, k, NP | n, n + l, l + 1, NT ≠ 1Í

m = n

m + k = n + l
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k = l + 1

NP = NT ≠ 1 (A.25)

which is zero, â
†
Bâs:

Èm, m + k, k, NP | â
†
Bâs2 |n, n + l, l, NT Í =

Ò
l(NT + 1) Èm, m + k, k, NP | n, n + l, l ≠ 1, NT + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT + 1 (A.26)

which is zero, â
†
Bâ

†
s:

Èm, m + k, k, NP | â
†
Bâ

†
s2 |n, n + l, l, NT Í =

Ò
(l + 1)(NT + 1) Èm, m + k, k, NP | n, n + l, l + 1, NT + 1Í

m = n

m + k = n + l

k = l + 1

NP = NT + 1 (A.27)

which is zero, âBâs:

Èm, m + k, k, NP | âBâs2 |n, n + l, l, NT Í =
Ò

nNT Èm, m + k, k, NP | n, n + l, l ≠ 1, NT ≠ 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT ≠ 1 (A.28)

Which is zero.
Now we look at the EiER1 , âs1 âi:

Èm, m + k, k, NP | âs1 âi |n, n + l, l, NT Í =
Ò

n(n + l) Èm, m + k, k, NP | n ≠ 1, n + l ≠ 1, l, NT Í

m = n ≠ 1

m + k = n + l ≠ 1

k = l
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NP = NT (A.29)

which is nonzero, â
†
s1 â

†
i :

Èm, m + k, k, NP | â
†
s1 â

†
i |n, n + l, l, NT Í =

Ò
n + 1(n + l + 1) Èm, m + k, k, NP | n + 1, n + l + 1, l, NT Í

m = n + 1

m + k = n + l + 1

k = l

NP = NT (A.30)

which is nonzero, â
†
s1 âi:

Èm, m + k, k, NP | â
†
s1 âi |n, n + l, l, NT Í =

Ò
n + 1(n + l) Èm, m + k, k, NP | n + 1, n + l ≠ 1, l, NT Í

m = n + 1

m + k = n + l ≠ 1

k = l

NP = NT (A.31)

which is zero, âs1 â
†
i :

Èm, m + k, k, NP | âs1 â
†
i |n, n + l, l, NT Í =

Ò
n(n + l + 1) Èm, m + k, k, NP | n ≠ 1, n + l + 1, l, NT Í

m = n ≠ 1

m + k = n + l + 1

k = l

NP = NT (A.32)

which is zero, âBâi:

Èm, m + k, k, NP | âBâi |n, n + l, l, NT Í =
Ò

(n + l)NT Èm, m + k, k, NP | n, n + l ≠ 1, l, NT ≠ 1Í

m = n

m + k = n + l ≠ 1

k = l

NP = NT ≠ 1 (A.33)
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which is zero, â
†
Bâ

†
i :

Èm, m + k, k, NP | â
†
Bâ

†
i |n, n + l, l, NT Í =

Ò
(n + l + 1)(NT + 1) Èm, m + k, k, NP | n, n + l + 1, l, NT + 1Í

m = n

m + k = n + l + 1

k = l

NP = NT + 1 (A.34)

which is zero, â
†
Bâi:

Èm, m + k, k, NP | â
†
Bâi |n, n + l, l, NT Í =

Ò
n(NT + 1) Èm, m + k, k, NP | n, n + l ≠ 1, l, NT + 1Í

m = n

m + k = n + l ≠ 1

k = l

NP = NT + 1 (A.35)

which is zero, âBâ
†
i :

Èm, m + k, k, NP | âBâ
†
i |n, n + l, l, NT Í =

Ò
NT (n + 1) Èm, m + k, k, NP | n, n + l + 1, l, NT ≠ 1Í

m = n

m + k = n + l + 1

k = l

NP = NT ≠ 1 (A.36)

Now we look at the EiER2 , âs2 âi:

Èm, m + k, k, NP | âs2 âi |n, n + l, l, NT Í =
Ò

l(n + l) Èm, m + k, k, NP | n, n + l ≠ 1, l ≠ 1, NT Í

m = n

m + k = n + l ≠ 1

k = l ≠ 1

NP = NT (A.37)

68



which is nonzero, â
†
s2 â

†
i :

Èm, m + k, k, NP | â
†
s2 â

†
i |n, n + l, l, NT Í =

Ò
nl + 1(n + l + 1) Èm, m + k, k, NP | n, n + l + 1, l + 1, NT Í

m = n

m + k = n + l + 1

k = l + 1

NP = NT (A.38)

which is nonzero, â
†
s2 âi:

Èm, m + k, k, NP | â
†
s2 âi |n, n + l, l, NT Í =

Ò
l + 1(n + l) Èm, m + k, k, NP | n, n + l ≠ 1, l + 1, NT Í

m = n

m + k = n + l ≠ 1

k = l + 1

NP = NT (A.39)

which is zero, âs2 â
†
i :

Èm, m + k, k, NP | âs2 â
†
i |n, n + l, l, NT Í =

Ò
l(n + l + 1) Èm, m + k, k, NP | n, n + l + 1, l ≠ 1, NT Í

m = n

m + k = n + l + 1

k = l ≠ 1

NP = NT (A.40)

which is zero, âBâi:

Èm, m + k, k, NP | âBâi |n, n + l, l, NT Í =
Ò

(n + l)NT Èm, m + k, k, NP | n, n + l ≠ 1, l, NT ≠ 1Í

m = n

m + k = n + l ≠ 1

k = l

NP = NT ≠ 1 (A.41)
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which is zero, â
†
Bâ

†
i :

Èm, m + k, k, NP | â
†
Bâ

†
i |n, n + l, l, NT Í =

Ò
(n + l + 1)(NT + 1) Èm, m + k, k, NP | n, n + l + 1, l, NT + 1Í

m = n

m + k = n + l + 1

k = l

NP = NT + 1 (A.42)

which is zero, â
†
Bâi:

Èm, m + k, k, NP | â
†
Bâi |n, n + l, l, NT Í =

Ò
n(NT + 1) Èm, m + k, k, NP | n, n + l ≠ 1, l, NT + 1Í

m = n

m + k = n + l ≠ 1

k = l

NP = NT + 1 (A.43)

which is zero, âBâ
†
i :

Èm, m + k, k, NP | âBâ
†
i |n, n + l, l, NT Í =

Ò
NT (n + 1) Èm, m + k, k, NP | n, n + l + 1, l, NT ≠ 1Í

m = n

m + k = n + l + 1

k = l

NP = NT ≠ 1 (A.44)

Now we look at the ER1ER2 , âs1 âs2 :

Èm, m + k, k, NP | âs1 âs2 |n, n + l, l, NT Í =
Ô

nl Èm, m + k, k, NP | n ≠ 1, n + l, l ≠ 1, NT Í

m = n ≠ 1

m + k = n + l

k = l ≠ 1

NP = NT (A.45)
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which is zero, â
†
s1 â

†
s2 :

Èm, m + k, k, NP | â
†
s1 â

†
s2 |n, n + l, l, NT Í =

Ò
(n + 1)(l + 1) Èm, m + k, k, NP | n + 1, n + l, l + 0, NT Í

m = n + 1

m + k = n + l

k = l + 1

NP = NT (A.46)

which is zero, âs1 â
†
s2 :

Èm, m + k, k, NP | âs1 â
†
s2 |n, n + l, l, NT Í =

Ò
n(l + 1) Èm, m + k, k, NP | n ≠ 1, n + l, l + 1, NT Í

m = n ≠ 1

m + k = n + l

k = l + 1

NP = NT (A.47)

which is nonzero, â
†
s1 âs2 :

Èm, m + k, k, NP | â
†
s1 âs2 |n, n + l, l, NT Í =

Ò
l(n + 1) Èm, m + k, k, NP | n + 1, n + l, l ≠ 1, NT Í

m = n + 1

m + k = n + l

k = l ≠ 1

NP = NT (A.48)

which is nonzero, âB1 âB2 :

Èm, m + k, k, NP1 , NP2|âB1 âB2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT1NT2 Èm, m + k, k, NP1 , NP2|n, n + l, l, NT1 ≠ 1, NT2 ≠ 1Í

m = n

m + k = n + l

k = l

NP1 = NT1 ≠ 1NP2 = NT2 ≠ 1 (A.49)

71



which is zero, â
†
B1 â

†
B2 :

Èm, m + k, k, NP1 , NP2|â†
B1 â

†
B2 |n, n + l, l, NT1 , NT2Í

=
Ò

(NT1 + 1)(NT2 + 1) Èm, m + k, k, NP1 , NP2|n, n + l, l, NT1 + 1, NT2 + 1Í

m = n

m + k = n + l

k = l

NP1 = NT1 + 1NP2 = NT2 + 1
(A.50)

which is zero, âB1 â
†
B2 :

Èm, m + k, k, NP1 , NP2|âB1 â
†
B2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT1(NT2 + 1) Èm, m + k, k, NP1 , NP2|n, n + l, l, NT1 ≠ 1, NT2 + 1Í

m = n

m + k = n + l

k = l

NP1 = NT1 ≠ 1NP2 = NT2 + 1
(A.51)

which is zero, â
†
B1 âB2 :

Èm, m + k, k, NP1 , NP2|â†
B1 âB2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT2(NT1 + 1) Èm, m + k, k, NP1 , NP2 |n, n + l, l, NT1 + 1, NT2 ≠ 1Í

m = n

m + k = n + l

k = l

NP1 = NT1 + 1NP2 = NT2 ≠ 1
(A.52)

which is zero, âs1 âB2 :

Èm, m + k, k, NP1 , NP2|âs1 âB2 |n, n + l, l, NT1 , NT2Í

=
Ò

nNT2 Èm, m + k, k, NP1 , NP2|n ≠ 1, n + l, l, NT1 , NT2 ≠ 1Í
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m = n ≠ 1

m + k = n + l

k = l

NP1 = NT1

NP2 = NT2 ≠ 1 (A.53)

which is zero, â
†
s1 â

†
B2 :

Èm, m + k, k, NP1 , NP2|â†
s1 â

†
B2 |n, n + l, l, NT1 , NT2Í

=
Ò

(n + 1)(NT2 + 1) Èm, m + k, k, NP1 , NP2|n + 1, n + l, l, NT1 , NT2 + 1Í

m = n + 1

m + k = n + l

k = l

NP1 = NT1

NP2 = NT2 + 1 (A.54)

which is zero, âs1 â
†
B2 :

Èm, m + k, k, NP1 , NP2|âs1 â
†
B2 |n, n + l, l, NT1 , NT2Í

=
Ò

n(NT2 + 1) Èm, m + k, k, NP1 , NP2|n + 1, n + l, l, NT1 , NT2 + 1Í

m = n ≠ 1

m + k = n + l

k = l

NP1 = NT1

NP2 = NT2 + 1 (A.55)

which is zero, â
†
s1 âB2 :

Èm, m + k, k, NP1 , NP2|â†
s1 âB2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT2(n + 1) Èm, m + k, k, NP1 , NP2|n + 1, n + l, l, NT1 , NT2 ≠ 1Í

m = n + 1

m + k = n + l
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k = l

NP1 = NT1

NP2 = NT2 ≠ 1 (A.56)

which is zero, âB1 âs2 :

Èm, m + k, k, NP1 , NP2 |âB1 âs2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT1l Èm, m + k, k, NP1 , NP2 |n ≠ 1, n + l, l, NT1 ≠ 1, NT2Í

m = n ≠ 1

m + k = n + l

k = l ≠ 1

NP1 = NT1 ≠ 1

NP2 = NT2 (A.57)

which is zero, â
†
B1 â

†
s2 :

Èm, m + k, k, NP1 , NP2|â†
B1 â

†
s2 |n, n + l, l, NT1 , NT2Í

=
Ò

(NT1 + 1)(l + 1) Èm, m + k, k, NP1 , NP2|n + 1, n + l, l, NT1 + 1, NT2Í

m = n + 1

m + k = n + l

k = l + 1

NP1 = NT1 + 1

NP2 = NT2 (A.58)

which is zero, âB1 â
†
s2 :

Èm, m + k, k, NP1 , NP2|âB1 â
†
s2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT1(l + 1) Èm, m + k, k, NP1 , NP2|n ≠ 1, n + l, l, NT1 ≠ 1, NT2Í

m = n ≠ 1

m + k = n + l

k = l + 1

NP1 = NT1 ≠ 1

NP2 = NT2 (A.59)

74



which is zero, â
†
B1 âs2 :

Èm, m + k, k, NP1 , NP2|â†
B1 âs2 |n, n + l, l, NT1 , NT2Í

=
Ò

l(NT1 + 1) Èm, m + k, k, NP1 , NP2|n, n + l, l ≠ 1, NT1 + 1, NT2Í

m = n

m + k = n + l

k = l ≠ 1

NP1 = NT1 + 1

NP2 = NT2 (A.60)

A.2 Number Operator

This section shows the Fock state analysis of each term in the tripartite number operator
analysis. We begin with N̂R1 , â

†
s1 âs1 :

Èm, m + k, k| â
†
s1 âs1 |n, n + l, lÍ = n Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.61)

which is nonzero, â
†
s1 âB:

Èm, m + k, k, NP | â
†
s1 âB |n, n + l, l, NT Í =

Ò
NT (n + 1) Èm, m + k, k, NP | n + 1, n + l, l, NT ≠ 1Í

m = n + 1

m + k = n + l

k = l

NP = NT ≠ 1 (A.62)

which is zero, â
†
Bâs1 :

Èm, m + k, k, NP | â
†
Bâs1 |n, n + l, l, NT Í =

Ò
n(NT + 1) Èm, m + k, k| n ≠ 1, n + l, l, NT + 1Í

m = n ≠ 1

m + k = n + l
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k = l

NP = NT + 1 (A.63)

which is zero, â
†
BâB:

Èm, m + k, k, NP | â
†
BâB |n, n + l, l, NT Í = NT bram, m + k, k, NP n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.64)

which is nonzero.
Now looking at N̂R2 , â

†
s2 âs2 :

Èm, m + k, k| â
†
s2 âs2 |n, n + l, lÍ = l Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.65)

which is nonzero, â
†
s2 âB:

Èm, m + k, k, NP | â
†
s2 âB |n, n + l, l, NBÍ =

Ò
NT (l + 1) Èm, m + k, k, NP | n, n + l, l + 1, NT ≠ 1Í

m = n

m + k = n + l

k = l + 1

NP = NT ≠ 1 (A.66)

which is zero, â
†
Bâs2 :

Èm, m + k, k, NP | â
†
Bâs2 |n, n + l, l, NT Í =

Ò
l(NT + 1) Èm, m + k, k, NP | n, n + l, l ≠ 1, NT + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT + 1 (A.67)
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which is zero, â
†
BâB:

Èm, m + k, k, NP | â
†
BâB |n, n + l, l, NT Í = NT Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.68)

Now N̂
2
R1 , â

†
s1 âs1 â

†
s1 âs1 :

Èm, m + k, k| â
†
s1 âs1 â

†
s1 âs1 |n, n + l, lÍ = n

2 Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.69)

which is nonzero, â
†
s1 âs1 â

†
s1 âB:

Èm, m + k, k| â
†
s1 âs1 â

†
s1 âB |n, n + l, lÍ = n

Ò
NT (n + 1) Èm, m + k, k| n + 1, n + l, l, NT ≠ 1Í

m = n + 1

m + k = n + l

k = l

NP = NT ≠ 1 (A.70)

which is zero, â
†
s1 âs1 â

†
Bâs1 :

Èm, m + k, k, NP |â†
s1 âs1 â

†
Bâs1 |n, n + l, l, NT Í

= n

Ò
n(NT + 1) Èm, m + k, k, NP |n ≠ 1, n + l, l, NT + 1Í

m = n ≠ 1

m + k = n + l

k = l

NP = NT + 1 (A.71)
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which is zero, â
†
s1 âs1 â

†
BâB:

Èm, m + k, k, NP |â†
s1 âs1 â

†
Bâs1 |n, n + l, l, NT Í

= nNT Èm, m + k, k, NP |n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.72)

which is nonzero, â
†
s1 âBâ

†
s1 âB:

Èm, m + k, k, NP |â†
s1 âBâ

†
s1 âB |n, n + l, l, NT Í

=
Ò

(n + 1)(n + 2)NT (NT ≠ 1) Èm, m + k, k, NP |n + 2, n + l, l, NT ≠ 2Í

m = n + 2

m + k = n + l

k = l

NP = NT ≠ 2 (A.73)

which is zero, â
†
s1 âBâ

†
BâB:

Èm, m + k, k, NP |â†
s1 âBâ

†
s1 âB |n, n + l, l, NT Í

= NT

Ò
NT (n + 1) Èm, m + k, k, NP |n + 1, n + l, l, NT ≠ 1Í

m = n + 1

m + k = n + l

k = l

NP = NT ≠ 1 (A.74)

which is nonzero, â
†
Bâs1 â

†
BâB:

Èm, m + k, k, NP |â†
Bâs1 â

†
BâB |n, n + l, l, NT Í

= NT

Ò
n(NT + 1) Èm, m + k, k, NP |n ≠ 1, n + l, l, NT + 1Í

m = n ≠ 1

m + k = n + l
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k = l

NP = NT + 1 (A.75)

which is nonzero, â
†
s1 âBâ

†
Bâs1 :

Èm, m + k, k, NP |â†
s1 âBâ

†
Bâs1 |n, n + l, l, NT Í

= n(NT + 1) Èm, m + k, k, NP |n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.76)

which is nonzero, â
†
Bâs1 â

†
s1 âB:

Èm, m + k, k, NP |â†
Bâs1 â

†
s1 âB |n, n + l, l, NT Í

= NT (n + 1) Èm, m + k, k, NP |n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.77)

which is nonzero, â
†
Bâs1 â

†
Bâs1 :

Èm, m + k, k, NP |â†
Bâs1 â

†
Bâs1 |n, n + l, l, NT Í

=
Ò

n(n + 1)(NT + 1)(NT + 2) Èm, m + k, k, NP |n ≠ 2, n + l, l, NT + 2Í

m = n ≠ 2

m + k = n + l

k = l

NP = NT + 2 (A.78)

which is zero, â
†
Bâs1 â

†
Bâs1 :

Èm, m + k, k, NP |â†
BâBâ

†
BâB |n, n + l, l, NT Í

= N
2
T Èm, m + k, k, NP |n, n, l, NT Í
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m = n ≠ 2

m + k = n + l

k = l

NP = NT (A.79)

which is nonzero.
Now N̂

2
R2 , â

†
s2 âs2 â

†
s2 âs2 :

Èm, m + k, k| â
†
s2 âs2 â

†
s2 âs2 |n, n + l, lÍ = n

2 Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.80)

which is nonzero, â
†
s2 âs2 â

†
s2 âB:

Èm, m + k, k| â
†
s2 âs2 â

†
s2 âB |n, n + l, lÍ = n

Ò
NT (n + 1) Èm, m + k, k| n, n + l, l + 1, NT ≠ 1Í

m = n

m + k = n + l

k = l + 1

NP = NT ≠ 1 (A.81)

which is zero, â
†
s2 âs2 â

†
Bâs2 :

Èm, m + k, k, NP |â†
s2 âs2 â

†
Bâs2 |n, n + l, l, NT Í

= n

Ò
n(NT + 1) Èm, m + k, k, NP |n, n + l, l ≠ 1, NT + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT + 1 (A.82)

which is zero, â
†
s2 âs2 â

†
BâB:

Èm, m + k, k, NP |â†
s2 âs2 â

†
Bâs2 |n, n + l, l, NT Í

= nNT Èm, m + k, k, NP |n, n + l, l, NT Í
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m = n

m + k = n + l

k = l

NP = NT (A.83)

which is nonzero, â
†
s2 âBâ

†
s2 âB:

Èm, m + k, k, NP |â†
s2 âBâ

†
s2 âB |n, n + l, l, NT Í

=
Ò

(n + 1)(n + 2)NT (NT ≠ 1) Èm, m + k, k, NP |n, n + l, l + 2, NT ≠ 2Í

m = n

m + k = n + l

k = l + 2

NP = NT ≠ 2 (A.84)

which is zero, â
†
s2 âBâ

†
BâB:

Èm, m + k, k, NP |â†
s2 âBâ

†
s2 âB |n, n + l, l, NT Í

= NT

Ò
NT (n + 1) Èm, m + k, k, NP |n, n + l, l + 1, NT ≠ 1Í

m = n

m + k = n + l

k = l + 1

NP = NT ≠ 1 (A.85)

which is nonzero, â
†
Bâs2 â

†
BâB:

Èm, m + k, k, NP |â†
Bâs2 â

†
BâB |n, n + l, l, NT Í

= NT

Ò
n(NT + 1) Èm, m + k, k, NP |n, n + l, l ≠ 1, NT + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT + 1 (A.86)
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which is nonzero, â
†
s2 âBâ

†
Bâs2 :

Èm, m + k, k, NP |â†
s2 âBâ

†
Bâs2 |n, n + l, l, NT Í

= n(NT + 1) Èm, m + k, k, NP |n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.87)

which is nonzero, â
†
Bâs2 â

†
s2 âB:

Èm, m + k, k, NP |â†
Bâs2 â

†
s2 âB |n, n + l, l, NT Í

= NT (n + 1) Èm, m + k, k, NP |n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.88)

which is nonzero, â
†
Bâs2 â

†
Bâs2 :

Èm, m + k, k, NP |â†
Bâs2 â

†
Bâs2 |n, n + l, l, NT Í

=
Ò

n(n + 1)(NT + 1)(NT + 2) Èm, m + k, k, NP |n, n + l, l ≠ 2, NT + 2Í

m = n

m + k = n + l

k = l ≠ 2

NP = NT + 2 (A.89)

which is zero, â
†
Bâs2 â

†
Bâs2 :

Èm, m + k, k, NP |â†
BâBâ

†
BâB |n, n + l, l, NT Í

= N
2
T Èm, m + k, k, NP |n, n, l, NT Í

m = n

m + k = n + l
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k = l

NP = NT (A.90)

which is nonzero.
Now N̂iN̂R1 , â

†
i âiâ

†
s1 âs1 :

Èm, m + k, k| â
†
i âiâ

†
s1 âs1 |n, n + l, lÍ = l(n + l) Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.91)

which is nonzero, â
†
i âiâ

†
s1 âB:

Èm, m + k, k, NP | â
†
i âiâ

†
s1 âs1 |n, n + l, l, NT Í = (n + l)

Ò
NT ((l + l)) Èm, m + k, k, NP | n, n + l, l + 1, NT ≠ 1Í

m = n

m + k = n + l

k = l + 1

NP = NT ≠ 1 (A.92)

which is zero, â
†
i âiâ

†
Bâs1 :

Èm, m + k, k, NP | â
†
i âiâ

†
Bâs1 |n, n + l, l, NT Í = (n + l)

Ò
l((NT + l)) Èm, m + k, k, NP | n, n + l, l ≠ 1, NT + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT + 1 (A.93)

which is zero, â
†
i âiâ

†
BâB:

Èm, m + k, k, NP | â
†
i âiâ

†
BâB |n, n + l, l, NT Í = (n + l)NT Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.94)
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which is nonzero.
Now N̂iN̂R2 , â

†
i âiâ

†
s2 âs2 :

Èm, m + k, k| â
†
i âiâ

†
s2 âs2 |n, n + l, lÍ = n(n + l) Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.95)

which is nonzero, â
†
i âiâ

†
s2 âB:

Èm, m + k, k, NP | â
†
i âiâ

†
s2 âs2 |n, n + l, l, NT Í = (n + l)

Ò
NT ((n + l)) Èm, m + k, k, NP | n + 1, n + l, l, NT ≠ 1Í

m = n + 1

m + k = n + l

k = l

NP = NT ≠ 1 (A.96)

which is zero, â
†
i âiâ

†
Bâs2 :

Èm, m + k, k, NP | â
†
i âiâ

†
Bâs2 |n, n + l, l, NT Í = (n + l)

Ò
n((NT + l)) Èm, m + k, k, NP | n ≠ 1, n + l, l, NT + 1Í

m = n ≠ 1

m + k = n + l

k = l

NP = NT + 1 (A.97)

which is zero, â
†
i âiâ

†
BâB:

Èm, m + k, k, NP | â
†
i âiâ

†
BâB |n, n + l, l, NT Í = (n + l)NT Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.98)

which is nonzero.
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Now N̂R1N̂R2 , â
†
s1 âs1 â

†
s2 âs2 :

Èm, m + k, k| â
†
s1 âs1 â

†
s2 âs2 |n, n + l, lÍ = nl Èm, m + k, k| n, n + l, lÍ

m = n

m + k = n + l

k = l (A.99)

which is nonzero, â
†
s1 âs1 â

†
s2 âB:

Èm, m + k, k, NP | â
†
s1 âs1 â

†
s2 âB2 |n, n + l, l, NT Í = n

Ò
NT ((l + l)) Èm, m + k, k, NP | n, n + l, l + 1, NT ≠ 1Í

m = n

m + k = n + l

k = l + 1

NP = NT ≠ 1 (A.100)

which is zero, â
†
s1 âs1 â

†
Bâs2 :

Èm, m + k, k, NP | â
†
s1 âs1 â

†
Bâs2 |n, n + l, l, NT Í = n

Ò
l((NT + l)) Èm, m + k, k, NP | n, n + l, l ≠ 1, NT + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP = NT + 1 (A.101)

which is zero, â
†
s1 âs1 â

†
BâB:

Èm, m + k, k, NP | â
†
s1 âs1 â

†
BâB |n, n + l, l, NT Í = nNT Èm, m + k, k, NP | n, n + l, l, NT Í

m = n

m + k = n + l

k = l

NP = NT (A.102)

which is nonzero, â
†
s1 âBâ

†
s2 âs2 :

Èm, m + k, k|â†
s1 âBâ

†
s2 âs2 |n, n + l, lNT1 , NT2Í
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= l

Ò
NT1(n + 1) Èm, m + k, k|n + 1, n + l, l ≠ 1, NT1 ≠ 1, NT2Í

m = n + 1

m + k = n + l

k = l

NP1 = NT1 ≠ 1

NP2 = NT2 (A.103)

which is zero, â
†
s1 âBâ

†
s2 âB:

Èm, m + k, k, NP |â†
s1 âBâ

†
s2 âB2 |n, n + l, l, NT1 , NT2Í

=
Ò

NT1NT2(l + l)(n + 1) Èm, m + k, k, NP |n + 1, n + l, l + 1, NT1 ≠ 1, NT2 ≠ 1Í

m = n + 1

m + k = n + l

k = l + 1

NP1 = NT1 ≠ 1

NP2 = NT2 (A.104)

which is zero, â
†
s1 âBâ

†
Bâs2 :

Èm, m + k, k, NP |â†
s1 âBâ

†
Bâs2 |n, n + l, l, NT1 , NT2Í

=
Ò

nNT1((NT2 + l)(n + 1)) Èm, m + k, k, NP |n + 1, n + l, l ≠ 1, NT1 ≠ 1, NT2 + 1Í

m = n + 1

m + k = n + l

k = l ≠ 1

NP1 = NT1 ≠ 1

NP2 = NT2 + 1 (A.105)

which is zero, â
†
s1 âBâ

†
BâB:

Èm, m + k, k, NP |â†
s1 âBâ

†
BâB |n, n + l, l, NT1 , NT2Í

= NT2

Ò
NT1(n + 1) Èm, m + k, k, NP |n + 1, n + l, l, NT1 ≠ 1, NT2Í

m = n + 1
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m + k = n + l

k = l

NP1 = NT1 ≠ 1

NP2 = NT2 (A.106)

which is zero, â
†
Bâs1 â

†
s2 âs2 :

Èm, m + k, k|â†
Bâs1 â

†
s2 âs2 |n, n + l, lNT1 , NT2Í

= l

Ò
n(NT1 + 1) Èm, m + k, k|n ≠ 1, n + l, l ≠ 1, NT1 + 1, NT2Í

m = n ≠ 1

m + k = n + l

k = l

NP1 = NT1 + 1

NP2 = NT2 (A.107)

which is zero, â
†
Bâs1 â

†
s2 âB:

Èm, m + k, k, NP |â†
Bâs1 â

†
s2 âB2 |n, n + l, l, NT1 , NT2Í

=
Ò

nNT2(NT1 + 1)(l + 1) Èm, m + k, k, NP |n ≠ 1, n + l, l + 1, NT1 + 1, NT2 ≠ 1Í

m = n + 1

m + k = n + l

k = l + 1

NP1 = NT1 + 1

NP2 = NT2 ≠ 1 (A.108)

which is zero, â
†
Bâs1 â

†
Bâs2 :

Èm, m + k, k, NP |â†
Bâs1 â

†
Bâs2 |n, n + l, l, NT1 , NT2Í

=
Ò

nl(NT1 + 1)(NT2 + 1) Èm, m + k, k, NP |n ≠ 1, n + l, l ≠ 1, NT1 + 1, NT2 + 1Í

m = n + 1

m + k = n + l

k = l ≠ 1
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NP1 = NT1 ≠ 1

NP2 = NT2 + 1 (A.109)

which is zero, â
†
Bâs1 â

†
BâB:

Èm, m + k, k, NP |â†
Bâs1 â

†
BâB |n, n + l, l, NT1 , NT2Í

= NT2

Ò
n(NT1 + 1) Èm, m + k, k, NP |n ≠ 1, n + l, l, NT1 + 1, NT2Í

m = n ≠ 1

m + k = n + l

k = l

NP1 = NT1 + 1

NP2 = NT2 (A.110)

which is zero. which is zero, â
†
BâBâ

†
s2 âs2 :

Èm, m + k, k|â†
BâBâ

†
s2 âs2 |n, n + l, lNT1 , NT2Í

= lNT1 Èm, m + k, k|n, n + l, l, NT1 , NT2Í

m = n

m + k = n + l

k = l

NP1 = NT1

NP2 = NT2 (A.111)

which is nonzero, â
†
BâBâ

†
s2 âB:

Èm, m + k, k, NP |â†
BâBâ

†
s2 âB2 |n, n + l, l, NT1 , NT2Í

= NT1

Ò
NT2(l + 1) Èm, m + k, k, NP |n, n + l, l + 1, NT1 , NT2 ≠ 1Í

m = n

m + k = n + l

k = l + 1

NP1 = NT1

NP2 = NT2 ≠ 1 (A.112)
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which is zero, â
†
BâBâ

†
Bâs2 :

Èm, m + k, k, NP |â†
BâBâ

†
Bâs2 |n, n + l, l, NT1 , NT2Í

= NT1

Ò
l(NT2 + 1) Èm, m + k, k, NP |n, n + l, l ≠ 1, NT1 , NT2 + 1Í

m = n

m + k = n + l

k = l ≠ 1

NP1 = NT1

NP2 = NT2 + 1 (A.113)

which is zero, â
†
BâBâ

†
BâB:

Èm, m + k, k, NP |â†
BâBâ

†
BâB |n, n + l, l, NT1 , NT2Í

= NT2NT1 Èm, m + k, k, NP |n, n + l, l, NT1 , NT2Í

m = n ≠ 1

m + k = n + l

k = l

NP1 = NT1 + 1

NP2 = NT2 (A.114)

which is nonzero.
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Appendix B|

MATLAB Code

B.1 Tripartite Electric Field Operator Simulation

clc
clearvars

rmin = 0.1;
rmax = 6;
countr1 = 0;
countr2 = 0;
%k=.7;
NB =100;
step = .01;
rr1 = rmin:step:rmax;
for k = 0:.1:1
for r1 = rmin:step:rmax
countr1 = countr1 +1;
fprintf (�%d out of %d\n�, countr1 ,length(rr1));
for r2 = rmin:step:rmax
countr2 = countr2 +1;
r = sqrt(r1 ^2+ r2 ^2);
NS1(countr1 , countr2 ) = sinh(r)^2 * r2 ^2/r^2;
NS2(countr1 , countr2 ) = sinh(r)^2 * r1 ^2/r^2;
Ni(countr1 , countr2 ) = sinh(r)^2;
a=1/ sqrt(Ni(countr1 , countr2 )+1);
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b=sqrt ((Ni(countr1 , countr2 )*NS1(countr1 , countr2 )*r^2) /(Ni(
countr1 , countr2 )^2* r2 ^2+ NS1(countr1 , countr2 )*r^2));

II(countr1 , countr2 )=(a^2*(1+b^2))/(( -1+b^2) ^2);

S1S1(countr1 , countr2 )=(a ^2*((1+ b^2*( -1+k -2* NB)+2* NB)*r^2+b^2
*k*(r1^2 - r2 ^2)))/(( -1+b^2) ^2 *r^2);

S2S2(countr1 , countr2 )=(a ^2*((1+ b^2*( -1+k -2* NB)+2* NB)*r^2+b^2
*k*(-r1^2 + r2 ^2)))/(( -1+b^2) ^2 *r^2);

sumIS1 = 0;
sumIS2 = 0;
sumS1S2 = 0;
for n=1:20
for l=1:40
sumIS1=sumIS1+k*a^2*b^(2*(n+l)) * ( factorial (n+l)/( factorial

(n)* factorial (l))) * ((r1 ^(2*n)*r2 ^(2*l))/(r^(2*(n+l))))
*( sqrt(n*(n+l))+sqrt ((n+1) *(n+l+1)));

sumIS2=sumIS1+k*a^2*b^(2*(n+l)) * ( factorial (n+l)/( factorial
(n)* factorial (l))) * ((r1 ^(2*n)*r2 ^(2*l))/(r^(2*(n+l))))
*( sqrt(l*(l+n))+sqrt ((l+1) *(n+l+1)));

sumS1S2 = sumS1S2 +k*a^2*b^(2*(n+l)) * ( factorial (n+l)/(
factorial (n)* factorial (l))) * ((r1 ^(2*n)*r2 ^(2*l))/(r
^(2*(n+l))))*( sqrt(n*(1+l))+sqrt ((l)*(n+1)));

end
end
IS1(countr1 , countr2 )=sumIS1;
IS2(countr1 , countr2 )=sumIS2;
S1S2(countr1 , countr2 )= sumS1S2 ;
rhold(countr1 , countr2 )=r;
end
countr2 =0;
end
r1 = rmin:step:rmax;
r2 = rmin:step:rmax;
% imagesc (r1 ,r2 ,S1S2 ./ sqrt(S1S1 .* S2S2))
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imagesc (r1 (1 ,1:300) ,r2 (1 ,1:300) ,S1S2 (1:300 ,1:300) ./ sqrt(S1S1
(1:300 ,1:300) .* S2S2 (1:300 ,1:300)));

colorbar ;
caxis ([0 .4])
%caxis ([-1 1]);
title( sprintf (�S1 and S2 correlation , $\ kappa$ = %d�, k))
xlabel(�$r_1$�)
ylabel(�$r_2$�)

fixfig
figure (2)
imagesc (r1 (1 ,1:300) ,r2 (1 ,1:300) ,IS1 (1:300 ,1:300) ./ sqrt(S1S1

(1:300 ,1:300) .*II (1:300 ,1:300) ));
colorbar ;
caxis ([0 .4])
%caxis ([-1 1]);
title( sprintf (�S1 and I correlation , $\ kappa$ = %d�, k))
xlabel(�$r_1$�)
ylabel(�$r_2$�)

fixfig
figure (3)
imagesc (r1 (1 ,1:300) ,r2 (1 ,1:300) ,IS2 (1:300 ,1:300) ./ sqrt(S2S2

(1:300 ,1:300) .*II (1:300 ,1:300) ));
colorbar ;
caxis ([0 .4])
%caxis ([-1 1]);
xlabel(�$r_1$�)
ylabel(�$r_2$�)
title( sprintf (�S2 and I correlation , $\ kappa$ = %d�, k))
fixfig

save( sprintf (�data k= %d�,k));

countr1 = 0;
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end

B.2 Tripartite Number Operator Simulation

clc
clearvars

rmin = 0.1;
rmax = 1;
countr1 = 0;
countr2 = 0;
%k=.7;
NB =1;
step = .01;
rr1 = rmin:step:rmax;
for k = 0:.1:1
for r1 = rmin:step:rmax
countr1 = countr1 +1;
fprintf (�%d out of %d\n�, countr1 ,length(rr1));
for r2 = rmin:step:rmax
countr2 = countr2 +1;
r = sqrt(r1 ^2+ r2 ^2);
NS1(countr1 , countr2 ) = sinh(r)^2 * r2 ^2/r^2;
NS2(countr1 , countr2 ) = sinh(r)^2 * r1 ^2/r^2;
Ni(countr1 , countr2 ) = sinh(r)^2;
a=1/ sqrt(Ni(countr1 , countr2 )+1);
b=sqrt ((Ni(countr1 , countr2 )*NS1(countr1 , countr2 )*r^2) /(Ni(

countr1 , countr2 )^2* r2 ^2+ NS1(countr1 , countr2 )*r^2));

NumI2(countr1 , countr2 )=-(a^2*b^2*(1+b^2))/(b^2 -1) ^3;

NumR12(countr1 , countr2 )=-(a^2*(( -1+b^2) ^2* NB ^2*r^4+b^2*k*r1
^2*((k -2*( -1+b^2)*NB)*r^2+b^2*k*(r1^2-(r2 ^2)))))/(( -1+b
^2) ^3 *r^4);
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NumR22(countr1 , countr2 )=(a^2*( -( -1+b^2) ^2* NB ^2*r^4+b^2*k*r2
^2*((k -2*( -1+b^2)*NB)*r^2+b^2*k*(-(r1 ^2)+r2 ^2))))/(( -1+b
^2) ^3 *r^4);

NumI(countr1 , countr2 )=(a^2*b^2) /((b^2 -1) ^2);

NumR1(countr1 , countr2 )=a^2*((( NB)/(1-b^2))+((b^2*k*r1 ^2)
/(( -1+b^2) ^2*r^2)));

NumR2(countr1 , countr2 )=a^2*((( NB)/(1-b^2))+((b^2*k*r2 ^2)
/(( -1+b^2) ^2*r^2)));

NumR1R2 (countr1 , countr2 )=(a^2*(b^2*k*r1 ^2*(( -1+b^2)*NB*r^2 -
2*b^2*k*r2 ^2) +( -1+b^2)*NB*r^2*((1 -b^2)*NB*r^2+b^2*k*r2

^2)))/(( -1+b^2) ^3*r^4);

NumIR1(countr1 , countr2 )=(a^2*b^2*(((( -1+b^2)*NB)/( sqrt (1-k))
) -(((1+b^2)*sqrt(k)*r1 ^2)/r^2)))/(( -1+b^2) ^3);

NumIR2(countr1 , countr2 )=(a^2*b^2*(((( -1+b^2)*NB)/( sqrt (1-k))
) -(((1+b^2)*sqrt(k)*r2 ^2)/r^2)))/(( -1+b^2) ^3);

rhold(countr1 , countr2 )=r;
end
countr2 =0;
end

II=NumI2 -( NumI .* NumI);

S1S1=NumR12 -( NumR1 .* NumR1);

S2S2=NumR22 -( NumR2 .* NumR2);

IS1=NumIR1 -( NumI .* NumR1);
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IS2=NumIR2 -( NumI .* NumR2);

S1S2=NumR1R2 -( NumR1 .* NumR2);

B.3 Detector Function Simulation

clf
clear

load �datak7B100 .mat �
corr = (IS1+IS2)./ sqrt ((II .*( S1S1+S2S2 +2.* S1S2)));

imagesc (r1 (1:300) ,r2 (1:300) ,corr (1:300 ,1:300));
colorbar ;
caxis ([0 .45])
title(�Detector Function Correlation , $\ kappa$ = .4�)
xlabel(�$r_1$�)
ylabel(�$r_2$�)
fixfig
corrhold =zeros(length(r1) ,1);
r=rhold;
for i = 1: length(r1)
rNew(i)=rhold(i,i);
corrhold (i ,1)=corr(i,i);
Nshold = sinh(rNew).^2;
end

Ns=Nshold (1:225) ;

plot(Ns ,2* sqrt(k*Ns .*( Ns +1))./ sqrt ((2*k*Ns +2* NB +1) .*(2* Ns +1)
),�linewidth � ,2);

hold on

plot(Ns , corrhold (1:225) ,�linewidth � ,2)
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hold off

legend(�Bipartite �,�Tripartite �)
grid on
grid minor
ylabel(�Correlation �, �FontSize �, 15)
xlabel(�$N_s$�, �FontSize �, 15)
title(�Correlation of Tripartite Quantum Radar , $\ kappa$ =

.7, $N_B $=100 �, �FontSize �, 15)
fixfig
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