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ABSTRACT

The adjustment of a compressible, stably stratified atmosphere to sources of

hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is

produced by prescribed, time-dependent injections of mass, heat, or momentum that

model those processes considered “external” to the scales of motion on which the

linearization and other model assumptions are justifiable. Solutions are demonstrated in

response to localized warming characteristic of small isolated clouds, larger

thunderstorms, and convective systems in order to determine how the spatial and

temporal details of the injection affect the adjustment. The response to injections of

different type (e.g. mass versus heat versus momentum) is also demonstrated in order to

determine how the injection type affects the adjustment.

For a semi-infinite atmosphere, solutions consist of a set of vertical modes of

continuously varying wavenumber, each of which contains time dependencies classified

as steady, acoustic-wave, and buoyancy-wave contributions. Additionally, a rigid lower

boundary condition implies the existence of a discrete mode - the Lamb mode -

containing only a steady and acoustic-wave contribution. The forced solutions are

generalized in terms of a temporal Green’s function, which represents the response to an

instantaneous injection.

The partitioning of the energy among the acoustic, buoyancy, and Lamb waves

and the steady state is examined. The energy associated with each of these classes is

distinct and, after the external injection is shut off, constant in time. The characteristics of
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this partitioning depend on the spatial-temporal detail of the injection, as well as whether

the imbalance is generated by injection of heat, mass, or momentum.

Injections that generate identical potential vorticity distributions constitute an

interesting set of cases for comparison. Although the asymptotic steady state is identical

in these cases, the energy of such potential-vorticity-equivalent injections depends on the

manner by which the potential vorticity is introduced. If the potential vorticity is

introduced rapidly rather than slowly, then more high frequency waves will be generated.

Unlike the steady-state response, the transient response to a given injection may be very

different than that to its averaged injection.
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Chapter 1

Introduction

1.1 Definition of the Problem

Hydrostatic and geostrophic adjustment is the process by which a geophysical

fluid evolves toward a state of hydrostatic and geostrophic balance. The process involves

1) the production of a localized unbalanced state, 2) the communication of the imbalance

to the surrounding atmosphere by waves, and 3) the gradual establishment of a new

balanced state. For example, atmospheric convection is a source of such imbalance.

Viewed from the perspective of the larger-scale environment, rapid heating and the

vertical redistribution of mass, thermal, and momentum fields associated with

atmospheric convection generate an unbalanced configuration of the fields.

Consequently, a spectrum of buoyancy and compression waves is generated. The waves

propagate away from the source region and into the surrounding environment, adjusting

the mass, thermal, and momentum fields toward a hydrostatic and geostrophic state that

is in balance with the source region. This adjustment of the larger-scale environment to

the localized imbalance by the action of waves is the subject of this thesis.

There are several reasons for investigating this topic. Foremost, it is a basic

dynamical process of fundamental relevance to the theory of atmospheric dynamics.

Furthermore, because the adjustment problem is defined in such a general manner, the

theory may improve our understanding of a diverse range of phenomena. Such theoretical
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investigation is crucial to the design of numerical models that simulate or parameterize

these phenomena. Finally, the adjustment problem provides a convenient context for

analyzing the applicability and limitations of such basic concepts as the potential vorticity

and the spectral energy density.

This thesis adopts an analytic approach to investigate these issues. At the core of

the analytic approach is a linear model of the larger-scale environment in which the

adjustment takes place. The model is designed to provide insight into the aforementioned

general theoretical issues concerning hydrostatic and geostrophic adjustment while also

permitting demonstration of the dynamics of adjustment in specific cases.

1.2 Background

The hydrostatic and geostrophic adjustment problem has been the topic of many

previous analyses. These studies have been conducted in a variety of theoretical and

practical contexts with emphasis placed on a variety of features of the adjustment. Rossby

(1937, 1938) first considered the geostrophic adjustment problem - the mutual adjustment

of mass and velocity fields under the influence of the Earth’s rotation - in a shallow water

model subjected to a sudden, localized acceleration of the fluid. Rossby demonstrated

that this accelerated “strip” of fluid would be Coriolis deflected to the right in the

northern hemisphere, leading to an increase (decrease) in the fluid depth to the right (left)

of the current and the production of horizontal pressure gradients. The initial imbalance

between the mass and velocity fields generates surface gravity waves. Rossby solved for

the state of the flow after these waves had propagated away - a steady, balanced state in
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geostrophic balance characterized by a remainder of unconverted available potential

energy (i.e. horizontal pressure gradients balanced by the geostrophic currents). Obukhov

(1949) similarly considered the “adaptation” of a rotating fluid to an external disturbance,

noting the problem of geostrophic degeneracy and the need for potential vorticity

consideration in order to solve for the asymptotic steady state.  Lamb (1932) considered

the hydrostatic adjustment problem - the response of a fluid in the vertical direction to an

imbalance between the upward directed pressure gradient force and the weight of the

fluid column.  Lamb’s problem consisted of an initially resting, compressible atmosphere

subjected to a prescribed harmonic vibration in the vertical momentum field confined to a

horizontal plane (i.e. an infinitesimally deep disturbance). The disturbance was

communicated to the surrounding environment by rapid, vertically propagating acoustic

waves that displace the fluid vertically in order to establish hydrostatic balance.

 A series of papers followed Rossby’s seminal investigation of geostrophic

adjustment. Cahn (1949) contributed the time-dependent solution to Rossby’s adjustment

problem. The initial elevation and depression of the ocean surface were shown to

propagate away from the source region as gravity wave fronts with velocity (g D0)1/2,

(where D0 is the undisturbed depth of the ocean), leaving behind an inertial oscillation of

decaying amplitude superimposed on the steady state. Bolin (1953) further improved

upon Cahn’s solution by considering Rossby’s adjustment problem in a density-stratified

fluid with a depth-dependent basic state velocity profile. The initial imbalance generated

a spectrum of internal gravity waves whose propagation velocities are slightly smaller

than that of the external surface-gravity waves of Rossby’s adjustment. An examination

of the energetics of Rossby’s adjustment problem was performed by Veronis (1956). This
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analysis demonstrated that for a slowly generated imbalance a larger fraction of the added

energy is retained by the geostrophic motions of the steady state. For an impulsively

generated imbalance a minimum energy fraction of 26% is retained by the geostrophic

motion - the remaining 74% is lost to the inertia-gravity waves.

Following these benchmark studies, investigators have applied the hydrostatic and

geostrophic adjustment problem to a variety of particular geophysical flows. Blumen

(1972) and Gill (1982) have provided general reviews of the theoretical aspects of

adjustment, including classification and description of the transient features and

energetics. A compressible, density-stratified fluid under the influence of gravity, such as

the atmosphere, may contain acoustic waves, internal gravity waves, and hydrostatic

waves of compression, i.e. Lamb waves. Under the influence of Earth’s rotation, an

inertial oscillation interacts with these waves, limiting the maximum wave period to one

half of a pendulum day. The frequency of the internal gravity waves may not exceed the

buoyancy frequency, whereas the frequency of the acoustic waves may not be less than

the acoustic cut-off frequency.

The wide variety of physical circumstances addressed in investigations of

adjustment underscores the relevance of this problem to geophysical fluid dynamics.  The

specific physical circumstance addressed in a study is usually incorporated into the nature

of the initial imbalance. These localized sources of imbalance may be categorized as

momentum, mass, or heat injections. Although convenient for organizational purposes,

these strict categories do not uniquely or completely describe all physical circumstances

of interest. For example, convection may be modeled as either a mass or heat source.

Additionally, several investigators considered the response of a compressible atmosphere
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to localized energy sources (Pierce 1963, Cole and Greifinger 1969) such as those

generated by atomic blasts or volcanic eruptions.

An example of a momentum injection problem is the classic Rossby adjustment

problem, which models the initial response of an ocean to the sudden addition of

momentum to a “strip” of ocean by the surface wind stress. A recent example was that

considered by Vadas and Fritts (2001). The deposition of momentum into stratospheric

flow by breaking or dissipating gravity waves is hypothesized to be a secondary source of

gravity waves. Lane et al. (2001) demonstrated that the buoyancy waves emerging from a

numerically simulated convective storm originated primarily from terms in the vertical

momentum equation associated with the accelerating updraft. In fact, those sources were

much larger than those originating in the heat equation.

Examples of mass injection problems are found commonly throughout physical

oceanography. The rapid production of horizontal density gradients in large bodies of

water by “sudden convection” and the subsequent geostrophic adjustment has been

studied by a large number of investigators (e.g. Csanady 1971, Ou 1983, 1984, Gill 1982,

Glendening 1993, Blumen and Wu 1995a,b). An unbalanced horizontal density gradient

is imposed in each of these studies to represent the consequence of rapid overturning in a

differentially cooled body of water. The adjustment of an ocean to isolated convective

plumes has been modeled by McDonald (1990). Glendening (1993) describes these

investigations as complementary to Rossby’s geostrophic adjustment, which treat “...the

adjustment of a horizontally homogeneous momentum field to a horizontally varying

mass forcing.” Gill (1982) presents a complete discussion of the adjustment of an ocean

to an initially displaced ocean surface under the influence of rotation. The adjustment to
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mass sources has also been studied in atmospheric contexts. Bretherton (1988) suggests

that flow over fluid or rigid obstacles may be equivalently modeled as sources of mass.

Raymond (1983) investigated the effect of gravity waves generated by mass flux

divergence in cumulus clouds on the generation and maintenance of convection. Shutts

(1994) suggests that the convective redistribution of mass by large thunderstorms may be

modeled as a dipole of mass source/sink. Such a simple conceptualization of the effects

of convection on the larger scale environment is suggested as a potential cumulus

parameterization for coarse-resolution numerical models.

Convection embedded in a large-scale flow may also be modeled as a heat source,

such as that which may be the result of latent heating due to phase changes within a

cloud. The conceptualization of isolated convection as a “warm bubble” or region of

positive buoyancy rising from the surface is another justification for modeling convection

as a heat source. The adjustment to such localized heat sources as representations of

convection has been considered by a large number of authors (e.g. Lin and Smith 1986,

Raymond 1986, Bretherton and Smolarkiewicz 1989, Nicholls et al. 1991, Nicholls and

Pielke 1994a,b, Nicholls and Pielke 2000, Lane and Reeder 2001). Heat sources may also

be applied to model other disturbances. For example, Bannon (1995) suggests that the

rapid radiative heating of a stratus layer may be modeled as a horizontally homogeneous

heat source of finite vertical extent. Tjim and Van Delden (1999) consider the generation

of acoustic and gravity waves by the differential heating associated with the initiation of a

sea-breeze. Vadas and Fritts (2001) employ a heat source to model heating due to gravity

wave dissipation in the stratosphere. Given such a wide range of potential initial
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imbalance mechanisms, it is prudent to investigate the extent to which injection of

different types induce equivalent responses.

Another issue fundamental to the linear adjustment problem is the relationship

between the characteristics of the imbalance and that of the preferentially excited waves.

The vertical, horizontal, and temporal structures of a wave are given by an eigenvalue

(dispersion) equation. Vadas and Fritts (2001) demonstrated that an injection of duration

much longer than the characteristic period of a given buoyancy wave will not project a

significant proportion of energy onto such waves. Holton et al (2002) makes a similar

argument to challenge the popular notion that the dominant gravity waves generated by

convective heating have vertical wavelength equal to twice the depth of the heating.

These analyses are an improvement on many previous analyses that simply prescribe an

unbalanced initial condition. The latter design is tantamount to prescribing an impulsive

injection, overstates the role of particular wave modes in an adjustment process, and does

not adequately address the origin of the injection in the governing equations.

The overwhelming majority of studies have employed incompressible models.

Fully compressible models are inherently more complicated given the existence of

acoustic and Lamb waves. However, compressible numerical codes are growing in

popularity (e.g. Bryan and Fritsch, 2002). It is therefore necessary to analyze the potential

effects of compressibility on basic atmospheric processes such as geostrophic and

hydrostatic adjustment. Chagnon and Bannon (2001) demonstrated that the steady-state

solutions in anelastic and other sound filtering models exhibit significant differences

from a fully compressible model. Bannon (1995) theorizes that acoustic waves can

provide the vertical displacements necessary to adjust a heated cloud layer toward
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hydrostatic balance. In a fully compressible numerical simulation of an isolated

convective cloud, Nicholls and Pielke (2000) identified a Lamb wave propagating away

from the cloud containing internal and gravitational potential energy approximately equal

to the total latent heating within the cloud.

1.3 Statement of Intent

This thesis investigates the acoustic-, Lamb-, and buoyancy-wave response to

rapid, localized sources of hydrostatic and geostrophic imbalance. In particular, our goal

is to determine how the following qualities of a model affect the qualities of adjustment:

1) the spatial and temporal detail as well as type of injection, 2) fully compressible

dynamics with a rigid lower boundary. We intend to describe the transient response to a

given injection according to several regimes dominated by acoustic waves,

nonhydrostatic buoyancy waves, Lamb waves, or inertia-gravity waves. The association

of the various response regimes to a given imbalance generation mechanism may then be

examined in terms of the spatial and temporal detail and type of the injection.

The investigation consists of two primary parts: Chapter 3 presents the time-

dependent solution of a linear model in order to illustrate the various response regimes.

Chapter 4 examines the potential vorticity and total energy of the model, the latter of

which is partitioned among the various wave classes. Motivated by Nicholls and Pielke

(2000) and Chagnon and Bannon (2001), the model is fully compressible with a rigid

lower boundary and therefore contains Lamb and acoustic waves. We seek to determine
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under what circumstances the effects of compressibility may be significant to hydrostatic

and geostrophic adjustment.



Chapter 2

Analytic Approach

2.1 The Model

The framework for this investigation is a compressible, dry, inviscid model

atmosphere in Cartesian coordinates that is linearized on an f-plane about an isothermal,

resting base state and is homogeneous in the y-direction. This highly idealized model is

chosen for its tractability while maintaining many essential physical characteristics of

mid-latitude, large-scale atmospheric flows. The assumption of homogeneity in one

horizontal dimension conveniently separates the dynamic effects associated with the

divergent from the Coriolis-deflected portions of the horizontal motion. The

nonhomogeneous terms in the model represent injections of mass, momentum, and heat

by the smaller-scale and/or smaller amplitude disturbances. The governing equations are

rs 
∂u¢
∂t  =  - ∂p¢

∂x   +  rs f v¢  +  rsu  , (2.1a)

rs 
∂v¢
∂t  =  - rs f u¢ +  rsv   , (2.1b)

rs 
∂w¢
∂t   =  - ∂p¢

∂z   -  r¢ g  +   rsw  , (2.1c)

∂q¢
∂t   +   w ¢∂qs

∂z   =  Q  , (2.1d)

∂ r¢
∂ t   +   ∂

∂x rs u¢   +   ∂
∂z rs w¢   =  r   , (2.1e)

q¢
qs

  =  p¢
g ps

  -  r¢
rs

   , (2.1f)
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where g is the acceleration due to gravity, f is the constant Coriolis parameter, and g =

cp/cv = 1.4 is the ratio of specific heat capacities. A subscript s denotes a static, base-state

quantity, and a superscript prime denotes a perturbation from the base state. The base-state

quantities are assumed to be functions of height only [e.g. p(x, z, t)  =  ps(z)  +  p¢(x, z, t)

)]. The isothermal base state is described by

Ts  =  T*  ,
 

ps  =  p* exp(- z / Hs )  ,
 

rs  =  r* exp(- z / Hs )  ,
 

qs  =  q* exp(k z / Hs )  ,
(2.2)

where T* , p* , q* , and r* are constants satisfying the ideal gas law and Poisson’s relation.

Here, k = R/cp , and Hs =  RTs/g  is the density scale height in an isothermal atmosphere.

The rates of injection of x-momentum, y-momentum, z-momentum, potential temperature,

and density are represented by u,  v ,  w ,  Q,  and r, respectively and have arbitrary spatial

and temporal structure.

The model equations are simplified by the introduction of “field variables”, which

remove any height dependence of the coefficients in the system of partial differential

equations (Eckart 1960). The field variables are defined as

U  =  rs1/2  u¢   ,
P  =  1

 rs1/2
 p ¢    ,

R  =  1
rs1/2

 r ¢   ,

S  =  rs1/2

qs
 q¢    .

(2.3)

Applying (2.3) to (2.1) we obtain the simplified system of equations:
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∂c

∂t   +   A c  =  F   , (2.4)

where the solution state vector is c
T  =  U,  V ,  W,  S ,  P , the matrix operator A is given

by

A  =  

0 -f 0 0 ∂
∂x

f 0 0 0 0

0 0 0 -g ∂
∂z   +   G

0 0 k
Hs

0 0

cs2 ∂
∂x 0 cs2 ∂

∂z   -  G 0 0

      , (2.5)

where Eckart’s (1960) vertical expansion parameter is defined as

G  ≡  1
g   -  12  1

Hs
  , (2.6)

and the injection vector is F  =  U,  V ,  W,  S ,  P   where the mass-weighted injection

terms are given by

U, V, W   =  rs1/2  u, v, w  , R  =  rs-1/2  r   , 

 S  =  rs1/2

qs
 Q   .

(2.7)

The density field may be obtained via the transformed Poisson’s relation P = cs
2 (S + R).

The horizontal dependence of the fields is represented by a Fourier transform,

fk (k )  =  f (x) e-i k x   d x  
- •

•

    ,

 

f (x )  = 1
2 p  fk (k) ei k x   d k  

- •

•

    ,

(2.8)
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where i = - 1 .  Under the transform (2.8) the operator A becomes

A  =  

0 -f 0 0 ik

f 0 0 0 0

0 0 0 -g ∂
∂z   +   G

0 0 k
Hs

0 0

ik cs2 0 cs2 ∂
∂z   -  G 0 0

      .

 The subscript k  denoting the Fourier transform is hereafter dropped. Our goal is to solve

(2.4) subject to the initial condition that all of the fields are undisturbed for t < 0,

c  =  0  ,  t  <  0  , (2.9)

and the boundary conditions that w = 0  at heights z = 0, 2D ,

∂
∂z  +  G U  ,  ∂

∂z  +  G V  , W , S, ∂
∂z  +  G P    =  0T  , z  =  0, 2D   . (2.10)

The application of the homogeneous boundary condition (2.10) is valid when the injection

is zero on the boundaries. The structure of the solutions in the semi-infinite atmosphere is

identical to those in the finite atmosphere in the limit as D Æ •.  The practical application

of the solution procedure is restricted to a finite domain, which must be that of a finite

atmosphere. The rigid lower boundary condition implies the existence of a boundary wave

(i.e. a wave with maximum amplitude along the boundary whose existence is owed to the

presence of the boundary), which we identify as the Lamb wave (Lamb 1932, section

311a). We need not worry about a spurious boundary wave corresponding to the rigid

upper boundary, because g > Nscs  (Iga 2001) where Ns = (g/qs) dqs/dz is the buoyancy
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frequency. The Lamb wave is a hydrostatic, adiabatic, horizontally propagating wave that

responds to changes in the column pressure that act against the rigid lower boundary.

2.2 Homogeneous Solutions

Examination of the homogeneous solutions of (2.4) reveals the fundamental

dynamic components of the adjustment process. We look for separable solutions: c
T
= (

Un(t)fn(z), Vn(t)fn(z), Wn(t)gn(z), Sn(t)gn(z), Pn(t)fn(z) ). Two distinct vertical structure

functions fn and gn are sought to satisfy the distinct vertical boundary conditions in (2.10).

For W and S we require gn = 0 on the boundaries, and for U, V, and P we require [d/dz +

G]fn = 0 on the boundaries. Substituting the separable form of c into the homogeneous

form of (2.4) implies that the vertical structure functions must satisfy

f n¢¢(z)  +   m 2 fn (z)  =  0   , gn¢¢(z)  +   m 2 gn(z)  =  0  , (2.11a,b)

where the vertical decay scale m is a constant of proportionality between the vertical and

temporal structure equations. The simple form of (2.11) gives way to more complicated

forms when the base state is spatially varying (e.g. Fritts and Yuan 1989). Because (2.11)

are Sturm-Liouville boundary-value problems, the collection of linearly independent

solutions forms orthogonal basis sets between the boundaries. These sets are given by

f0 , f1 , f2 , f3 , ...   ;
 

f0  =  e- m z where m = G  ,   
fn  =  m cos m z    -  G sin m z    where   m = n p

2 D   ,
(2.12a)

and
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g0  =  0  , g1 , g2 , g3 , ...

gn  =  d
d z   +   G  fn  =  - m 2  +   G  2 sin m z    where   m = n p

2D   .
(2.12b)

Here and elsewhere, mode refers to a specific spatial structure given by the set (2.12)

with the Fourier transform. Note that in the semi-infinite limit the discrete wavenumber m

becomes continuous. The zeroth vertical mode f0 is the Lamb mode that is hydrostatic and

contains zero entropy and remains discrete in the semi-infinite limit. Figure 2.1 plots the

profile of the first three modes in (2.12). The modes describing the vertical velocity are

zero on the boundaries. With the exception of the Lamb mode, the modes describing the

pressure have equal magnitude on the upper and lower boundary but alternate between

equal and opposite signs. The solution may be written as a linear combination of the

vertical basis functions,

cT  =  Un fn , Vn fn ,Wn gn ,Sn gn ,Pn fn ∑
n = 0

•

  . (2.13)

The time dependence of the n-th mode must satisfy

dcn

dt   +   An  cn   =  0  , (2.14)

where cnT= ( Un, Vn, Wn, Sn, Pn ), and

An   =  

0 -f 0 0 i k

f 0 0 0 0

0 0 0 -g 1

0 0 k
Hs

0 0

i k  cs2 0 - cs2 m 2 +  G2 0 0

      .(2.15)

 The eigenvalues ofAn  are the five roots of the dispersion relation
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li li
4  +   a  l i

2  +   b   =  0   , (2.16)

where

a  =     cs2 k2 +   f2   +  cs2 G2  +   m 2   +   Ns2     ,  
 

b  = cs2 f2 G2  +   m 2   +  Ns2 cs2k2  +   f2      .

Solutions of (2.14) have temporal dependence e-lt, as will be demonstrated below. The

eigenvalue l1 = 0  corresponds to a steady solution. The four other eigenvalues are

complex: l2,3  = +/- i wa , l3,4 =  +/- i wb where wa and wb are frequencies characteristic

of acoustic and buoyancy waves, respectively. Figure 2.2 presents the dependence of the

frequencies on the horizontal k and vertical m wavenumbers. Equation (2.16) and Fig. 2.2

suggest three classes of time dependence for each mode: steady, acoustic-wave, and

buoyancy-wave. Here and elsewhere, class refers to these time dependencies. The Lamb

mode contains only two classes: steady and acoustic-wave (i.e. the Lamb wave). The

buoyancy frequency cannot exceed Ns, whereas the acoustic waves have lower bound Na

= cs/2Hs, the acoustic cut-off frequency. The lower bound on all oscillations is twice the

angular velocity of the coordinate frame f. A similar diagram exists in Gill (1982, Fig.

6.18) for the nonrotating case (f = 0), but is provided here as a convenient reference for

the interpretation of the solutions presented in chapter 3 and the energetics of chapter 4. 

The eigenvectors of Anare

ei
T  = Pn  i k li

li
2  +   f2

 , i k f
li

2  +   f2
 , li

li
2  +   Ns2

 , k / Hs

li
2  +   Ns2

 , 1    . (2.17)
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Figure!2.1

Figure!2.1: Vertical profiles of the first three vertical basis functions. The pressure and
horizontal velocity fields are described by fn. The potential temperature and vertical
velocity fields are described by gn. The Lamb mode is f0. Here, D = 15 km, Hs = 7.47
km.
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Let En  be the matrix whose columns vectors are the eigenvectors (2.17),

En   ≡  e1  :  e2  :  e3  :  e4  :  e5 n   . (2.18)

The matrix En-1 A n En  is the diagonal matrix containing the eigenvalues li .

Transforming cn  =  En ynimplies that dyn/dt  =   - En-1 An En yn . The i-th element of

yn  is therefore yi = Ci exp(-lit )  where Ci is constant. That is, the 5 elements of the

transformed solution vector correspond to steady, acoustic-wave, and buoyancy-wave

classes. The solution vector is therefore given by

cn   = 

 

0 -k wa
f2  -  wa2

k wa
f2  -  wa2

-k wb
f2  -  wb

2
k wb

f2  -  wb
2

i k 
f

i k f
f2  -  wa2

i k f
f2  -  wa2

i k f
f2  -  wb

2
i k f

f2  -  wb
2

0 i wa
Ns2  -  wa2

-i wa
Ns2  -  wa2

i wb
Ns2  -  wb

2
-i wb

Ns2  -  wb
2

1
g

k / Hs
Ns2  -  wa2

k / Hs
Ns2  -  wa2

k / Hs
Ns2  -  wb

2
k / Hs

Ns2  -  wb
2

1 1 1 1 1 n

 

C1

C2 e-i wa t

C3 ei wa t

C4 e-i wb t

C5 ei wb t n

 .

(2.19)

The constants Ci are determined by the initial conditions. The column vectors of En

describe the structure of the steady, acoustic-wave, and buoyancy-wave classes that

contribute to the homogeneous solution of the n-th mode. The first column vector gives

the structure of the hydrostatic and geostrophic contribution, which contains zero

contribution from the U and W fields. The next four column vectors indicate the structure
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of the acoustic and buoyancy waves. A 90 degree temporal phase difference exists

between the U,W and P,V,S fields. A 90 degree horizontal phase difference exists

between the U,V and P,W,S fields. Because the frequency of the acoustic and buoyancy

waves depend differently on the modal parameters m and k, the characteristics of energy

propagation will differ between these wave classes. In particular, the phase and group

velocities are orthogonal for the buoyancy waves and parallel for the acoustic waves.

 Figure!2.2

Figure!2.2: Dispersion curves for the first eight vertical modes m as a function of
the horizontal wavenumber k. Here, Ts = 255 K and the domain depth is 2D = 30
km. The acoustic cut-off frequency is Na = .0214 s-1 , the maximum buoyancy
frequency is Ns = .0194 s-1, and f = 10-4 s-1.
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2.3 Response to External Injection

We seek the solution to the nonhomogeneous form of (2.4) using the properties of the

homogeneous solutions. If the injection vector is expanded about the vertical basis

functions,

FT  =  st(t) sk(k) sU, n fn(z) , sV , n fn(z) , sW, n gn(z) , sS, n gn(z) , sP, n fn(z) ∑
n = 0

•

 , (2.20)

where st is the time dependence of the injection, sk is the Fourier transformed horizontal

dependence of the injection,  and the sc, n are the projections onto the vertical modes,  then

(2.4) may be written as

dcn

dt   +   An cn  =  Fn   , (2.21)

where FnT  =  st sk sU, n,  sV, n,  sW, n,  sS, n,  sP, n . The particular solution of (2.21) may be

expressed in terms of the temporal Green’s function cn  ,

cn t   =  cn t - t¢  st t¢  dt¢
0

t

  . (2.22)

The Green’s function is the particular solution of

dcn

dt   +   An cn  =  Fn   , (2.23)

where Fn
T  =  d t  sk sU, n,  sV, n,  sW, n,  sS, n,  sP, n  . We may look for a solution cn  of

(2.23) resembling that of the homogeneous problem given by (2.19), i.e. cn  =  En yn .

The conditions on the constants Ci of yn  are found by integrating (2.23) about an



21

infinitesimal region in time containing t = 0 and applying the initial condition that

cn  =  0 for t < 0 . The constants must therefore satisfy the linear system given by

limt Æ 0+ Enyn   = lime Æ 0 Fn dt
- e

e

  , (2.24)

which may be solved readily upon inverting the eigenvector matrix En . Appendix A

provides the solution of (2.24). Although the form of the coefficients given by (A1-A5) is

not extremely elegant, we may still recognize some physically meaningful properties. For

example, the coefficient of the steady contribution C1 is zero when the injection is by x-

velocity or vertical velocity, neither of which may generate potential vorticity (see

section 4.5). For these same injections C2 = -C3, C4 = -C5, which implies that the pressure

field varies like a sine in time and is initially zero. For an injection of y-velocity C2 = C3,

C4 = C5  which implies pressure varies like a cosine in time that is exactly offset by the

steady contribution initially. For injection of heat or mass the solution contains a steady

state (C1 nonzero) and varies like a cosine in time with nonzero initial perturbation.

The temporal convolution (2.22) may be expressed as cn t   =  En G n t   where

the i-th element of Gn t  is Gn,i = ci(t) exp(iwit) with

ci t   =  Ci e- i wi t¢ st t¢  dt¢
0

t

  . (2.25)

The kernel functions Ci exp(-iwit)  in (2.25) depend on the nature of the eigenvalue

spectrum and the spatial projection of the injection onto the modes. The time-dependent

coefficients ci(t), given by (2.25), may be calculated readily given the temporal structure
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of the injection st . The resulting solution in spectral space must be summed over the

vertical basis functions and inverse Fourier transformed to obtain the solution in physical

space. The field variables may then be transformed via (2.3) to remove the mass

weightings of the basic state.

2.4 Summary

This chapter presents an analytic model for investigation of hydrostatic and

geostrophic adjustment.  A fully compressible linear model is solved subject to external

injection of mass, momentum, or heat. The injection is intended to model the net effect of

processes with characteristic scales smaller than those on which the linear model is

justifiable. The spatial structure of solutions is described by a set of basis functions

satisfying the rigid lower boundary condition. One such structure is the Lamb mode that

decays exponentially from the lower boundary. Because the rigid lower boundary

condition is of a different form for the vertical velocity and pressure fields, there are two

sets of basis functions describing the solution state. Only the pressure and horizontal

velocity components contain the Lamb mode.

The time-dependence of each spatial mode is generalized in terms of a temporal

Green’s function. This function resembles a solution to the homogeneous problem, which

is solved as an eigenvalue-eigenvector problem. The eigenvalues correspond to steady,

acoustic-wave, and buoyancy-wave classes. The exception is the Lamb mode, which

contains only a steady and an acoustic class. When the heating is of finite duration, the
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time-dependence of each spatial mode may still be written as a sum of these distinct time-

dependencies except that the projections onto each of these classes are time dependent.



Chapter 3

Transient Dynamics

3.1 Experiment Description

The solution presented in the previous chapter consists potentially of a broad

spectrum of waves that accomplish a broad range of motions. The response to any given

injection is likely to excite preferentially a specific region of this spectrum.  We therefore

expect the characteristics of the response to depend on the spatial and temporal detail of

the injection. The series of experiments in section 3.2 examines this dependence and

demonstrates several stages of the adjustment process following a heat injection.  We also

anticipate the response to depend on the type of injection. Section 3.3 demonstrates the

manner by which the response to injections of mass and momentum differ from one

another and that of the heat injection of section 3.2.

In section 3.2, we consider the response to an injection of heat of the form

Q  = 2D q 
t  1

1  +   x
a

2
 H * z , d g, d +  d g  sin2 p

d z - dg  H * t , 0, t  sin2 p  t 
t    ,  (3.1)

where a is the heating half-width, d is the heating depth, dg is the heating elevation, t is

the heating duration, Dq is the heating amplitude, H*(x, x1, x2)  =  H(x - x1)  -  H(x - x2) is

the top-hat function between x = x1 and x = x2 and H is the Heaviside step function .

Figure 3.1 presents the spatial structure of this heating. The heating aspect ratio d = O(d /

2a)  and the duration t  are varied through a range of scales representing individual
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clouds to organized convective systems. For each of the experiments, the base state is

described by T* = 255 K, p* = 1000 mb, r* = 1.37 kg m-3, Ns = .0194 s-1, Hs = 7.48 km, cs

= 320 m s-1 , f = 10-4 s-1, and the heating amplitude is Dq = 1 K. The base state

temperature is chosen such that the scale height, buoyancy frequency, and sound speed

are representative of the middle troposphere. The base state pressure is chosen such that

the total column mass is of a typical atmospheric value. In each experiment 512

horizontal modes and 51 vertical modes are used to construct the solutions, and the

domain depth is taken to be several scale heights, 2D = 30 km. A Lanczos smoother

(Arfken, 1970) is applied to improve the convergence properties of derivatives of Fourier

transformed variables.

A useful quantity for examining the characteristics of the response is the parcel

displacement. The time-dependent parcel displacement fields (Dx, Dz) are found by

integrating the y-momentum (2.1b) and heat (2.1d) equations in time to yield,

Dx (t) =  - 1f  v¢  -   v dt
t0< 0

t

    ,

 

Dz (t) =  - g
qs Ns2

 q¢  -   Q dt
t0< 0

t

    .

(3.2)

Chagnon and Bannon (2001) discuss the salient features of this net displacement field at t

Æ •. The mechanism by which the net upper-level outflow, lower-level inflow, and

upward displacement of the heated column is achieved is demonstrated by observing the

time-dependent evolution of the displacement fields. In the following three experiments

of section 3.2, the size and duration of the heat injection are chosen to represent cumulus-

scale, mesoscale, and intermediate-scale injections.
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 Figure!3.1

Figure!3.1: Geometry of the heat injection, demonstrating the heating half-width a, the
depth d, the elevation dg, and domain half-depth D. A rigid upper boundary is placed at z
= 2D.



27

3.2 Transient Response to Injection of Heat

3.2.1 Cumulus-scale Heating

In the first experiment, we let a = 2 km, d = 5 km, dg = 1 km, and t Æ 0 such that

the heating is impulsive (i.e. Dirac delta function in time) with aspect ratio of unity.

Although the instantaneous heating is not physical, the solution is informative because it

represents the temporal Green’s function solution c but it overemphasizes the response

by the highest frequency waves. The characteristics of such an injection are most

representative of a small isolated convective cloud.

Figure 3.2 presents the time-dependent displacement field in the first minute

following the heat injection. The initial adjustment is dominated by acoustic waves

generated in the regions of heating gradient. The displacements occur in the direction of

energy propagation and accomplish a net expansion of the heated region. The portion of

the acoustic signal that propagates horizontally with maximum along the lower boundary

is the Lamb wave.

Figure 3.3 presents temporal cross sections of the pressure field. During the

acoustic stage, the initial pressure perturbation of 307 Pa is drastically reduced in

amplitude. Two distinct vertically propagating wave fronts are evident in Fig. 3.3a

emanating from the upper and lower halves of the heated region. The leading edge of

each front is a large high pressure perturbation, followed by a region of smaller amplitude
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negative perturbation. The approach of the upward propagating high (low) pressure

perturbation is associated with upward (downward) acceleration. The downward

propagating wave front is reflected off the lower boundary. The vertical profile of

pressure perturbation remaining after these waves have left the heated region differs

qualitatively from the steady state of Bannon (1995) in that a low pressure perturbation

exists below the heated region and is not strictly hydrostatically balanced. Figure 3.3b

demonstrates the horizontal propagation of the acoustic signal along the lower boundary

(i.e. the Lamb wave). Because the heating is elevated, the signal appears along the lower

boundary a few seconds following the heating. The wide signal that first appears on the

lower boundary consists of some vertically propagating acoustic waves. After these

waves have reflected off the lower boundary, the primary signal is the Lamb wave. In this

two-dimensional problem, the acoustic wave signal decays as t-1/2 (Lighthill 1978, section

1.4). However, the Lamb wave signal is essentially one-dimensional and therefore must

not exhibit any decay in order for its energy to be conserved. The one-dimensional Lamb

wave front consists of a large, narrow positive perturbation, whereas the two-dimensional

acoustic wave fronts consist of the leading positive perturbation and trailing negative

perturbation (Lighthill 1978, Fig. 20). The negative perturbation trailing the Lamb wave

in Fig. 3.3 is mainly due to a loss of mass in the heated column at the onset of the upper

level outflow and the buoyancy adjustment.

Figure 3.4 presents the time-dependent displacement field in the first twelve

minutes following the heat injection. This stage of adjustment is dominated by the

emergence of nonhydrostatic buoyancy waves. In the first minutes, these waves

accomplish a net upward displacement of the heated layer accompanied by a pattern of
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inflow/outflow. This initial circulation is evident at the end of the acoustic stage (see Fig.

3.2e,f). By the sixth minute an upper level pattern of inflow is established and sinking

takes place in the core of the heated column, and the circulation that initially developed

on the periphery of the heated region is propagating away from the heated column. The

interaction of the downward propagating waves with the lower boundary results in

localized circulation patterns confined to the lower boundary.
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Figure!3.2

Figure!3.2: Time-dependent displacement fields calculated over ten second intervals
ending (a) 10 (b) 20 (c) 30 (d) 40 (e) 50 and (f) 60 seconds following an impulsive heat
injection. When the heating amplitude is 1 K, a head-to-tail length vector is 3.1 m (5.1 m)
in the x- (z-) direction.
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Figure!3.3

Figure!3.3: Temporal cross section of the pressure field at (a) x = 0 as a function of
height z and time t and (b) at z = 0 as a function of distance x and time t following an
impulsive heat injection. The heating depth and elevation are d = 5 km and dg = 1 km
with the peak heating occurring at z = 3.5 km. The contour interval is 20 Pa for |p¢| < 60
Pa and 30 Pa otherwise. Here and elsewhere, negative contours are dashed.
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Figure!3.4

Figure!3.4: Time-dependent displacement fields calculated over two minute intervals
ending (a) 2 (b) 4 (c) 6 (d) 8 (e) 10 and (f) 12 minutes following an impulsive heat
injection. When the heating amplitude is 1 K, a head-to-tail length vector is 46.9 m (52.2
m) in the x- (z-) direction.
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Figure 3.5 presents a refined view of these lower boundary rotors as they propagate

through the region marked ‘A’ in Fig. 3.4 during the sixth to twelfth minutes. The

outflow associated with these rotors is approximately 4 km wide, 1 km deep, and

propagates at a horizontal speed of approximately 15 m/s. The rotors displace the location

of maximum horizontal convergence away from the heated core and elevate the inflow

region.

Figure 3.6 presents cross sections of the potential temperature field during the

nonhydrostatic buoyancy stage. Integration of the heat equation (2.1d) with respect to

time demonstrates that the potential temperature perturbation depends on the time-

integrated heating as well as the time-integrated advection of the base state potential

temperature. The time-integrated vertical advection is proportional to the net vertical

displacement.  Because the acoustic and Lamb waves do not produce very large vertical

displacements wheras the buoyancy waves do produce large vertical displacements, the

potential temperature perturbation effectively isolates the buoyancy waves. During the

buoyancy stage, the amplitude of the initial potential temperature perturbation is

drastically reduced. The shortest buoyancy period is tb = 2p/Ns ª 324 s, which

corresponds to a wave with zero horizontal group velocity (i.e. Fig. 2.2 indicates that as

the wave aspect m/k approaches zero, the slope of the dispersion curve in the buoyancy

class approaches zero and the frequency approaches Ns). This oscillation is evident in Fig.

3.6a. After a period tb following the heat injection, the potential temperature perturbation

is reduced by approximately 80%. Figure 3.6b demonstrates the continued emergence of

several wave fronts from the heated region during the nonhydrostatic buoyancy stage.
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The waves slowest to emerge from the heated region are of increasing vertical

wavenumber (see Fig.3.4).

The distinction between the acoustic and buoyancy stages of adjustment is

emphasized by examining vertical profiles (Fig. 3.7) of parcel trajectories on the

periphery of the heated regions. During the acoustic stage, air parcels are displaced

outward from the heated region. Aloft, the magnitude of the displacements is a

decreasing function of height. During the buoyancy stage, the displacements are an order

of magnitude larger and exhibit more detail than during the acoustic stage. Initially, air

parcels located below the level of mid-heating are drawn toward the heated column while

those located above are pushed outward. Sinking occurs at all levels below the top of the

heating. This is the signal associated with the lowest vertical wavenumber modes that are

in phase with the heating, described by Bretherton and Smolarkiewicz (1989). The lower

boundary constrains the ability of air parcels to accelerate downward in the vicinity the

boundary. Following the initial subsidence the air parcels accelerate upward toward their

initial position, which they overshoot, and are subsequently accelerated downward. While

this vertical oscillation occurs, air parcels located slightly above (below) the level of mid-

heating continue moving outward (inward) horizontally. In the vicinity of the lower

boundary, air parcels that initially are drawn inward are accelerated outward by the lower

boundary rotors demonstrated in Fig. 3.5. Aloft, air parcels oscillate both vertically and

horizontally about their initial position with amplitude decreasing with increasing height.
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Figure!3.5

Figure!3.5: Refined view of region A in Fig.6a containing the outwardly propagating
boundary rotor at times (a) 6 (b) 8 (c) 10 and (d) 12 minutes following an impulsive
heating. A head-to-tail length vector is 23.5 m (26.1 m) in the x- (z-) direction.
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Figure!3.6

Figure!3.6: Temporal cross section of the potential temperature field at (a) x = 0 as a
function of height z and time t and (b) at the level of mid-heating z = 3.5 km as a function
of distance x and time t following an impulsive heat injection. The contour interval is
.025 K for |q¢| < .1 K Pa and .1 K otherwise.
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Figure!3.7

Figure!3.7: Trajectories of parcels during (a) the first thirty seconds and (b) the first
twelve minutes at heights between z = .5 km and z = 11 km and at a horizontal distance
of 5 km east of the center of an impulsive heat injection of half-width a = 2 km, depth d
= 5 km, elevation dg = 1 km, and amplitude Dq = 1 K.
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3.2.2 Intermediate-scale Heating

In the second experiment, we let a = 25 km, d = 9 km, dg = 1 km, and t = 20 min

such that the aspect ratio is 0.1. Although the heating duration is much longer than an

acoustic wave period, an acoustic adjustment is still very discernible in this experiment,

as will be demonstrated. Such an injection models a large convective storm. The

maximum pressure perturbation of 27 Pa is much smaller than that generated by the

impulsive heating (307 Pa).

Figure 3.8 presents time-dependent displacement vectors computed over ten

minute intervals during the first hour following the onset of heating. The displacement

field is dominated by the action of buoyancy waves. As in Fig. 3.4, the injection initially

displaces the heated column upward and circulating patterns of inflow and outflow

emerge on the periphery of the heated column. The lower boundary rotors are again

evidenced by the outward and upward displacement of the inflow region established

initially beneath the heated core. The more complicated patterns of inflow and outflow

that emerged above the heated region in the cumulus scale  experiment are still present in

this experiment but of smaller magnitude relative to the lowest vertical wavenumber

circulation. The aspect ratio of the displacements is approximately 0.1, which implies that

the dominant buoyancy waves are weakly nonhydrostatic. Vertical profiles of parcel

trajectories along the periphery of the heated region resemble those presented in Fig. 3.7b

except for an order of magnitude decrease in the trajectory aspect ratio.
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Figure 3.9 presents temporal cross-sections of the potential temperature field,

similar to Fig. 3.6. The high frequency buoyancy oscillations present in Fig. 3.6a are not

present in Fig. 3.9a. These oscillations are not generated significantly by such long

duration injection. The regions of negative perturbation that emerge both above and

below the heated layer indicate upward vertical displacement (i.e. the advection of lower

base state values of potential temperature). This vertical advection limits the maximum

amplitude of the potential temperature perturbation to ~.55 K. Within twenty minutes of

the cessation of heat injection, these anomalies are removed by the propagation of

buoyancy waves. Figure 3.9b demonstrates the emergence of the waves from a location

in the middle of the heated layer.  The dispersive nature of the waves leads to a decay in

the amplitude of these signals of more than 80% after they have propagated 200 km away

from the heated region. Once again, the hydrostatic and geostrophic steady state towards

which this atmosphere adjusts is approximately trivial (i.e. the perturbations in the

asymptotic steady state are negligible compared to the initial and transient perturbations).

Figure 3.10a demonstrates the evolution of the vertical profile of pressure at x = 0

during the injection of heat. Vertically propagating acoustic waves are not evident as they

were in Fig.3.3a. Rather, a deep region of positive pressure perturbation emerges

smoothly above and throughout most of the heated region. The positive perturbation is

mainly a hydrostatic contribution from the net upward expansion of the column. The

negative perturbation along the lower boundary indicates the loss of mass from the

column due to upper level outflow. Compressibility effects may also influence the

pressure perturbation by encouraging a pressure increase/decrease in regions of

convergence/divergence. Figure 3.10b demonstrates the evolution of the horizontal
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profile of pressure along the lower boundary. Although the displacement field is

dominated by buoyancy wave motions and the heating duration is longer than the

acoustic wave period, a clearly discernible Lamb wave signal emerges from the heated

layer and propagates horizontally. Unlike that in Fig. 3.3b, the amplitude of the Lamb

wave signal increases in time. This amplification is the result of the accumulation of

continuously generated Lamb waves during the application of the finite-duration heating.
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Figure!3.8

Figure!3.8: Time-dependent displacement fields calculated over ten minute intervals
ending (a) 10 (b) 20 (c) 30 (d) 40 (e) 50 and (f) 60 minutes following a heat injection of
duration 20 minutes. When the heating amplitude is 1 K, a head-to-tail length vector is 312
m (39.7 m) in the x- (z-) direction.
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Figure!3.9

Figure!3.9: Temporal cross section of the potential temperature field at (a) x = 0 as a
function of height z and time t and (b) at the level of mid-heating z = 5.5 km as a function
of distance x and time t following a heat injection of duration 20 minutes. The contour
interval is .05 K.
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Figure!3.10

Figure!3.10: Temporal cross section of the pressure field at (a) x = 0 as a function of
height z and time t and (b) at z = 0 as a function of distance x and time t following a
heat injection of duration 20 minutes. The contour interval is (a) 4 Pa and (b) 4 Pa for
|p¢| < 12 Pa and 8 Pa otherwise.
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3.2.3 Mesoscale Heating

In the third experiment, we let a = 100 km, d = 9 km, dg = 1 km, and t = 2 hours

such that the aspect ratio is 0.01. Here the heating duration is longer than a typical

nonhydrostatic buoyancy wave period. Such an injection is intended to model a large

organized mesoscale convective system. While the individual convective elements that

comprise such a system are likely to excite a wave response similar to those presented

above, a response to the conglomerate system by the larger synoptic-scale environment is

likely to involve hydrostatic, rotating buoyancy waves, and a nontrivial hydrostatic and

geostrophic steady state.

The time-dependent displacement vectors are omitted for this experiment because

they resemble qualitatively those in Fig. 3.8 except on longer time and larger horizontal

spatial scales with maximum horizontal and vertical displacements Dx = O(1 km) and Dz

= O(10 m). The aspect ratio of these displacements is approximately 0.01 and the time

scale of the transients  is an order of magnitude longer than the maximum buoyancy wave

period. These two conditions imply that the transients are approximately hydrostatic. The

adjustment to the conglomerate system is therefore accomplished primarily by

hydrostatic buoyancy waves.

Figure 3.11 presents temporal cross-sections of the potential temperature field,

similar to Figs. 3.6 and 3.9. Unlike the previous two experiments, the potential

temperature perturbation adjusts toward a nontrivial geostrophic and hydrostatic state.

After approximately six hours the perturbation at z = 0 is comprised of this steady state
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and inertia-gravity waves. The steady state qualitatively resembles the solutions

presented in Chagnon and Bannon (2001). The lowest frequency waves form an inertial

oscillation of maximum period 2p/f ª 17.4 hours.

In spite of the long duration and large horizontal scale of this injection, a Lamb

wave signal is again discernible. Figure 3.12 presents temporal cross-sections of the

pressure perturbation in the first four hours following the onset of heat injection. The

magnitude of the Lamb signal is similar to that  in the previous experiment. The primary

difference is in the width of the signal, which is determined by the duration and width of

the injection. The sharpness of the leading and trailing edges of the Lamb signal is

determined by the time scale associated with the start-up and shut-off of the heat injection

(3.1). To illustrate this, we replace the temporally smooth sine-squared heating in (3.1)

with one that is a top-hat in time (of identical time-integrated amplitude). Figure 3.13

presents the temporal cross-sections of pressure following this “sharper” heat injection.

The leading and trailing edges of the Lamb wave signal in Fig. 3.13b are indeed more

abrupt than those generated by the sine-squared injection (see Fig. 3.12b). Figure 3.13a

demonstrates that the sudden shut-off produces a rapid decrease in the amplitude of the

profile at z = 0 at t = 2 hours. This indicates an acoustic adjustment accomplished by the

Lamb waves and is an example of the presence of multiple time scales associated with

the higher order derivatives of the injection.
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Figure!3.11

Figure!3.11: Temporal cross section of the potential temperature field at (a) x = 0 as a
function of height z and time t and (b) at the level of mid-heating z = 5.5 km as a
function of distance x and time t following a heat injection of duration 2 hours. The
contour interval is .05 K.
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Figure!3.12

Figure!3.12: Temporal cross section of the pressure field at (a) x = 0 as a function of
height z and time t and (b) at z = 0 as a function of distance x and time t following a heat
injection of duration 2 hours. The contour interval is (a) 2 Pa and (b) 2 Pa for |p¢| < 12 Pa
and 4 Pa otherwise.
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Figure!3.13

Figure!3.13: As in Fig. 3.12, except following a top-hat injection of heat.
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3.3 Transient Response to Injection of Mass and Momentum

The preceding section explored the dependence of the adjustment process on the

spatial and temporal details of a heat injection. This section examines how the type of

injection affects the characteristics of the adjustment. As in the case of heating, the

response to injection of mass and momentum involves acoustic-wave, Lamb-wave,

nonhydrostatic buoyancy-wave, and hydrostatic buoyancy-wave regimes. The

fundamental characteristics of these regimes are demonstrated in 3.2. The ability of the

various types of injection to excite these regimes is examined here.

3.3.1 Injection of Mass

Let us consider the response to an injection of mass of the form

r  = D r  2 p Hs
k d sin z¢  cos z¢   +  k + 1

k  cos2 z¢   H * z, dg, dg + d

¥  1
1  +  x

a
2

  H * t, 0, t
t  sin2 p  t 

t     .
(3.3)

The geometry of (3.3) (Fig. 3.14) is a vertical source/sink dipole representing the

transport of mass from lower levels to higher levels accomplished by a convecting cloud.

The mass injection (3.3) conserves the total mass and generates a potential vorticity

anomaly identical to that of the heating (3.1). The significance of potential-vorticity-

equivalent injections is examined in detail in section 4.5.
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Figure!3.14

Figure!3.14: The geometry of the mass source/sink dipole (3.3).
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The only significant observable difference between the response to this mass

injection and the heat injection (3.1) occurs during the acoustic regime. Figure 3.15

presents the acoustic response following an impulsive mass injection (compare to Fig.

3.3) whose amplitude Dr = 2.36 g/m3 which corresponds to a heating of amplitude Dq =

.1 K (one-tenth of that in section 2). The acoustic response to the mass injection differs

from the heat injection both quantitatively and qualitatively. The maximum pressure

perturbation in Fig. 3.15 is 465 Pa, which is larger than that generated by a heating of

amplitude Dq = .1 K in section 2. The magnitude of the pressure perturbation following

the mass injection is therefore an order of magnitude larger than that of the equivalent

heat injection. Such an extraordinary perturbation suggests that an instantaneous mass

injection on this scale is severely unphysical. For example, a mass injection representing

the vertical redistribution within a convecting cloud should have a time scale

characteristic of the advection by the updraft. The instantaneous mass injection is

therefore a severe approximation of this process. Four distinct wave fronts emerge from

the perturbed region, rather than the two observed in Fig. 3.3. Expansion occurs in the

upper source region while contraction occurs in the lower sink region, each of which

generates both upward and downward propagating wave fronts. The contraction in the

lower sink region initially generates a negative pressure perturbation on the lower

boundary (see Fig.3.15b). A larger positive perturbation next emerges on the lower

boundary as the downward propagating front originating from the source region reflects

off the boundary. The subsequent buoyancy-wave response is qualitatively

indistinguishable from that following the equivalent heat injection presented in section 2.
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Figure!3.15

Figure!3.15: Temporal cross section of the pressure field at (a) x = 0 as a function of
height z and time t and (b) at z = 0 as a function of distance x and time t following an
impulsive mass injection. The contour interval is 40 Pa for |p’| < 200 Pa and 100 Pa
thereafter.



53

3.3.2 Injection of x-momentum and z-momentum

Next we compare injection of x-momentum and z-momentum with geometry

identical to the heating (3.1) with velocity amplitude 1 m/s . This pair of injections makes

for an interesting comparison because neither is capable of generating a steady state

under the assumption of homogeneity in the y-direction (see section 4.2). The difference

between these injections therefore highlights many differences between adjustment in the

vertical and horizontal directions.

The differences during the acoustic adjustment are demonstrated by comparing

the evolution of the pressure field following impulsive injections of depth d = 5 km and

half-width a = 2 km. The acoustic response to the injection of x-momentum (Fig. 3.16) is

dominated by a positive (negative) eastward (westward) propagating Lamb wave. The

convergence (divergence) induced upstream (downstream) of the x-momentum injection

initially generates an elevated positive (negative) pressure perturbation. The subsequent

increase (decrease) in the total column mass is accompanied by a positive (negative)

perturbation along the lower boundary that propagates away horizontally as the Lamb

wave of approximate amplitude 50 Pa. On the other hand, the response to the injection of

z-momentum (Fig. 3.17) is dominated by vertically propagating acoustic waves. The

amplitude of the fronts is similar to those generated by the injection of x-momentum.

Once again, the waves originate from the regions of convergence and divergence. The

imposed updraft initially generates a large positive (negative) pressure perturbation in the

region of upper- (lower-) level convergence (divergence).
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The differences in the buoyancy adjustment are demonstrated by comparing the

evolution of the potential temperature field following impulsive injections of depth d = 5

km and half-width a = 2 km. The buoyancy wave response to the injection of x-

momentum (Fig. 3.18) is dominated by a horizontal propagation of energy. The phase of

these waves is primarily directed vertically because, unlike the acoustic waves, the phase

and group velocity of the buoyancy waves are orthogonal. If we recall that the evolution

of the potential temperature field depends on the vertical advection of the base state

potential temperature, then it follows that the initial positive perturbation in the upper

right quadrant and negative perturbation in the lower right quadrant indicate rising and

sinking motions, respectively. Without the addition of heat, the perturbations in potential

temperature are entirely attributed to advection of the base state. The buoyancy waves

originate in the region of vertical divergence (convergence) located upstream

(downstream) of the initial current that develops in response to the initial horizontal

convergence (divergence). In contrast, the response to the injection of z-momentum (Fig.

3.19) is dominated by upward propagating waves. The phase of such waves is primarily

oriented horizontally (e.g. see slope of dispersion curves in Fig.2.2). The waves originate

in the initial updraft that induces the initial negative potential temperature perturbation in

the updraft core. Because the response to the injection of z-momentum is primarily

vertical, increasing the duration of the injection effectively suppresses the transient

response, according to section 2.3. Recall that the nonhydrostatic buoyancy waves are of

highest frequency and therefore preferentially filtered from the solution. However, the

response to the injection of x-momentum is not as severely affected by the injection

duration. In fact, the response to an injection of duration twenty minutes with a = 25 km
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and d = 5 km (Fig. 3.20) is qualitatively similar to that generated by the impulsive

injection. Furthermore, the maximum amplitude of the transients following a twenty

minute injection of x-momentum are |Dx| = 931 m, |Dz| = 12.3 m, and |q¢| = .26 K,

whereas those following the extended injection of z-momentum are considerably smaller,

e.g. |Dx| = 15 m, |Dz| = 1.5 m, and |q¢| = .04 K .
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Figure!3.16

Figure!3.16: Contours of the pressure field at (a) 10 (b) 20 (c) 30 (d) 40 (e) 50 and (f) 60
seconds following an impulsive injection of x-momentum. The contour interval is 10 Pa.
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Figure!3.17

Figure!3.17: Contours of the pressure field at (a) 10 (b) 20 (c) 30 (d) 40 (e) 50 and (f) 60
seconds following an impulsive injection of z-momentum. The contour interval is 10 Pa.
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Figure!3.18

Figure!3.18: Contours of the potential temperature field at (a) 2 (b) 4 (c) 6 (d) 8 (e) 10
and (f) 12 minutes following an impulsive injection of x-momentum. The contour
interval is .02 K.
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Figure!3.19

Figure!3.19: Contours of the potential temperature field at (a) 2 (b) 4 (c) 6 (d) 8 (e) 10
and (f) 12 minutes following an impulsive injection of z-momentum. The contour
interval is .02 K.
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Figure!3.20

Figure!3.20: Contours of the potential temperature field at (a) 20 (b) 40 (c) 60 (d) 80 (e)
100 and (f) 120 minutes following an injection of x-momentum of duration 20 minutes.
The contour interval is .02 K.
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3.3.3 Injection of y-momentum

The injection of y-momentum induces a response quite different from that

induced by the injections of x- and z-momentum. The assumption of homogeneity in the

y-direction requires this injection to be nondivergent. The waves examined in section

3.3.2 were primarily generated in regions of convergence and divergence. Following an

injection of y-momentum, the slow deflection of the current by Coriolis forces produces

regions of convergence and divergence. The transient response to an injection of  y-

momentum is therefore expected to involve only the slowest class of waves.

Consider an injection of y-momentum with geometry given by (3.1) of depth d =

5 km, elevation dg = 1 km, half-width a = 25 km, duration t = 20 minutes, and amplitude

1 m/s. The initial imbalance associated with this injection resembles that of the classic

Rossby adjustment problem. Figure 3.21 presents the evolution of the pressure field in

the first two hours following the injection. Although the amplitude of the pressure field is

only O(1Pa), there is a discernable Lamb wave signal. A temporal cross section of the

pressure field along the lower boundary (Fig. 3.22) demonstrates the Lamb wave that

induces a far-field change in pressure. By the end of the first hour (Fig. 3.21c), a high

(low) pressure perturbation emerges on the right (left) periphery of the current. This

localized perturbation indicates the convergence associated with the deflected current.

The evolution of the potential temperature field (Fig. 3.23) demonstrates that vertical

divergence (convergence) compensates the horizontal convergence (divergence) on the

right (left) periphery of the current. Because the width of the current is very small

compared to the Rossby radius of deformation LR ª d Ns / f = 970 km, the current itself
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undergoes very little change.  This dependence is illustrated in Table 3.1 that lists the

amplitude of the steady-state current versus the half-width a. A wider current induces a

steady state of smaller amplitude. Conversely, as the width of the initial current is

increased, the amplitude of the transients also increases. This strange behavior is

explained in section 4.4.
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Figure!3.21

Figure!3.21: Contours of the pressure field at (a) 20 (b) 40 (c) 60 (d) 80 (e) 100 and (f)
120 minutes following an injection of y-momentum of duration 20 minutes. The contour
interval is .25 Pa.
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Figure!3.22

Figure!3.22: Temporal cross section of the pressure field at z = 0 as a function of
distance x and time t following an injection of y-momentum of duration 20 minutes. The
contour interval is .25 Pa.
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Figure!3.23

Figure!3.23: Contours of the potential temperature field at (a) 20 (b) 40 (c) 60 (d) 80 (e)
100 and (f) 120 minutes following an injection of y-momentum of duration 20 minutes.
The contour interval is .005 K.
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Table!3.1

3.4 Summary

Some basic properties of the adjustment process are demonstrated by considering

a localized injection of heat. The comparison of adjustment to heat injection of varying

spatial and temporal scales reveals the existence of several regimes comprising the

adjustment. Here, we summarize the qualitative aspects of these regimes.

An instantaneous heat injection generates acoustic waves, which are primarily

responsible for accomplishing an expansion of the heated region. With the exception of

Table!3.1: Maximum amplitude of the steady-state current (second column) as a function
of the half-width a of the initial current (first column) following an injection of y-
momentum of amplitude 1 m/s.

a (km) |vf| (m/s)
2 .99

25 .89
100 .70
250 .50

1000 .23
2500 .12
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the Lamb wave, acoustic waves are not excited by heating of duration exceeding several

minutes. Though much diminished in amplitude, the Lamb wave may be generated by

heating of a duration of several hours provided the horizontal scale is large. The parcel

displacements associated with the acoustic waves are small relative to the buoyancy

waves, though the pressure perturbation may be quite large.

An instantaneous heat injection also generates nonhydrostatic buoyancy waves,

provided the vertical-horizontal aspect ratio is not very small. Such waves propagate

much of their energy vertically and can accomplish a large vertical displacement of the

heated column. The lowest vertical wavenumber modes have the largest horizontal group

speed  and are the first to emerge from the heated region. The primary signal associated

with such waves is a vertical velocity (potential temperature) perturbation that is out of

(in) phase with the heating accompanied by a pattern of upper/lower level

outflow/inflow. Bretherton and Smolarkiewicz (1989)  identify this signal as that required

to remove the buoyancy excess associated with the cloud. As higher vertical wavenumber

modes emerge slowly from the cloud, more complicated patterns of inflow and outflow

are established both aloft and along the lower boundary. Chagnon and Bannon (2001)

demonstrate that the lowest vertical wavenumber pattern contributes most significantly to

the total displacement required to establish a balanced state. This balanced state is

approximately trivial when the horizontal scale of the heating is very small compared to

the Rossby deformation radius, which is O(1000km) for these experiments.

When the duration of heat injection is extended to twenty minutes and the aspect

ratio is decreased to one tenth the transient motions are only weakly nonhydrostatic and

occur on time scales longer than the shortest buoyancy period. Within two hours, the
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transients disperse from the heated region leaving behind an approximately trivial

balanced state. When the duration is extended to two hours and the aspect ratio is

decreased one hundredth, the transient response involves only low frequency, hydrostatic

buoyancy waves. After several hours the only transients remaining in the vicinity of the

heated region are inertia-gravity waves oscillating slowly about a nontrivial balanced

state.

The evolution of the inflow region beneath the heated core has some interesting

properties. Following the initial upward displacement of the heated core and the onset of

inflow, horizontally propagating rotors emerge along the lower boundary. The rotors

result from the interaction of downward propagating buoyancy waves with the lower

boundary. The velocity field associated with these rotors is directed opposite to the

inflow and forces an outward and upward displacement of the inflow layer. Because the

low-level inflow is believed to be essential to the self-aggregating properties of

convective systems via the wave-CISK mechanism (Lindzen 1974, Raymond,1976),

these lower boundary rotors could play a significant role in the evolution of organized

cloud clusters.

The extent to which the type of injection affects the adjustment has also been

examined. A vertical source/sink injection of mass induces an exaggerated acoustic

response relative to that generated by an equivalent heating. However, the response

during the buoyancy regime is indistinguishable from that following a heating. Injections

of x-momentum and z-momentum primarily induce responses in which the propagation of

energy is in the direction of momentum injection. For example, an injection of z-

momentum is an efficient generator of vertically propagating buoyancy waves. Because
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such buoyancy waves have relatively high frequency, i.e. approximately Ns, a long

duration injection of z-momentum generates only a very weak response. Furthermore, the

waves originate primarily from regions of convergence and divergence created by the

injection. The response to an injection of y-momentum is very different because of the

assumption of homogeneity in the y-direction. Convergence and divergence are generated

very slowly following the deflection of the current by Coriolis forces. The response is

therefore comprised mainly of hydrostatic, rotating buoyancy waves. The amplitude of

the transient motions relative to the initial disturbance is proportional to the width of the

initial disturbance. That is, unlike all of the other injection types, a smaller-scale injection

of y-velocity projects most efficiently onto the steady state, whereas a larger-scale

injection generates a maximum in wave energy.

Lamb’s problem (1932) considered the vertical  adjustment by a compressible

atmosphere to horizontally homogeneous perturbations. The numerous recent extensions

of Lamb’s problem (Bannon 1995, Bannon and Sotack 1999, Kalashnik 2000, Duffy

2003) offer a theory to explain how an atmosphere establishes and maintains hydrostatic

balance. Essentially, a warmed compressible atmosphere must expand vertically in order

to establish hydrostatic balance. If the perturbation is introduced rapidly, then acoustic

waves will provide most of the necessary displacement. The solution presented in this

chapter places this theory in the more general context of vertical and horizontal

adjustment. Strictly, Lamb’s hydrostatic adjustment by acoustic waves explains only the

horizontal wavenumber zero response. Nonhydrostatic buoyancy waves account for much

of the adjustment when the injection aspect ratio is large. The time scale of these waves,

and hence the time scale of hydrostatic adjustment, may be an order of magnitude longer
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than the vertical acoustic adjustment.  Furthermore, the acoustic adjustment is not

confined to the vertical. The presence of a rigid lower boundary requires an

increase/decrease in pressure throughout the depth of the atmosphere when the column

attempts to expand/contract against the fixed lower boundary. This signal is

communicated horizontally by the Lamb waves.

Any small set of experiments, such as those presented here, cannot adequately

explore the vast parameter space describing the detail of the injection. The experiments

involving a localized heat injection shown in this chapter describe the basic dynamics of

adjustment. The comparison of the response to injections of heat, mass, and momentum

indicate that the type of injection has a significant influence on the nature of the

adjustment. However, a broader perspective of the relationship between the details of the

injection and the response may be obtained by considering the potential vorticity

distribution and energetics of these solutions. In chapter 4, we examine these issues.



Chapter 4

Potential Vorticity Conservation and Energy Partitioning

4.1 Introduction

Chapter 2 presented the solution to a linear compressible model of hydrostatic and

geostrophic adjustment. In Chapter 3, the model solution was used to investigate the

transient response of the statically stable large-scale environment to a rapidly-produced,

localized imbalance. The imbalance is incorporated into the model as arbitrary

nonhomogeneous “injection” terms in the momentum, mass, and thermodynamic

equations. Specific solutions were demonstrated for idealized injection of heat of small,

intermediate, and large scale as well as for injections of different type (i.e. mass and

momentum).  The goal of this chapter is to present a general picture depicting the

relationship between the qualities of the imbalance generation mechanism and those of

the response.

Potential vorticity (PV) and energy are useful properties to describe the general

characteristics of an evolving geophysical flow. Both are globally conserved in the

absence of injection functions. The complex transient dynamics of the externally forced

solutions of chapter 3 and their dependence on the physical source (i.e. mass, momentum,

heat) and spatial-temporal detail of the injection may be summarized conveniently using

PV and energy.
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The PV has been utilized by previous investigators in order to determine the

steady hydrostatic and geostrophic response to an imbalance (e.g. Rossby 1938, Obukhov

1949, Schubert et al. 1980, Chagnon and Bannon 2001). In many applications, only the

“mean” response to a given imbalance is of physical interest. When the transient

dynamics on the f-plane are a matter of interest the application of PV must be made

carefully because it uniquely determines the steady state but does not uniquely determine

the transient character of the adjustment to that steady state.

Previous investigations of geostrophic adjustment have partitioned the energy

associated with a given imbalance among the buoyancy waves and steady state (e.g.,

Veronis 1956, Vadas and Fritts 2001). Likewise, investigations of hydrostatic adjustment

have partitioned the energy among acoustic waves and the steady state (Bannon 1995,

Sotack and Bannon 1999). The energy of the transients was inferred by taking the

difference between the energy of the initial imbalance and that remaining in the steady

state. In the solution presented in the previous chapters, two distinct classes of transients

are present: acoustic and Lamb waves and buoyancy waves. The previous method of

inferring the energy partitioning is therefore insufficient. Chagnon and Bannon (2001)

inferred the energy of the combined wave spectrum, but were unable to partition that

energy into separate acoustic- and buoyancy-wave classes. Dikiy (1969) suggests that

solutions of the type presented in chapter 2 can be written as a sum of distinct

contributions from the steady state, acoustic, and buoyancy waves. A rigorous analysis of

this assertion is given in appendix B that includes the injection terms.

This chapter examines the PV and energy of hydrostatic and geostrophic

adjustment of a compressible atmosphere on the f-plane. This investigation elucidates the



73

dependence of the adjustment on injection type (e.g. mass, heat, or momentum) and

spatial-temporal detail. Demonstration of the transient solution of chapter 3 is by itself

insufficient for examining the large parameter space of the injection mechanisms.

4.2 Potential Vorticity Conservation

 The PV is a scalar perturbation conserved by the compressible, homogeneous

system (2.4) that consists of relative zr and latent zl vorticity:

q  =  zr  +   zl   , (4.1)

where

zr  ≡  ∂v¢
∂x   -  ∂u¢

∂y    ,  zl  =  ze  +   zq  ≡  -f r¢
rs

  +   f
rs

 ∂
∂z  rs g q ¢

Ns2 qs
    . (4.2)

For the moment, we relax the assumption of homogeneity in the y-direction. The latent

(i.e. hidden or unrealized) vorticity is comprised of an elastic contribution ze as well as a

thermal stratification contribution zq . The elastic contribution is absent in the anelastic

and Boussinesq approximations. The conservation of each contribution to the PV is

described by

∂zr
∂t   =  - f ∂u¢

∂x   +   ∂v¢
∂y   +   ∂v

∂x  -  ∂u
∂y   , (4.3a)

 
∂ze
∂t   =   f ∂u¢

∂x   +   ∂v¢
∂y   +   f

rs
 ∂
∂z  rs w¢   -  f r

rs
   , (4.3b)

 
∂zq

∂t   =   -  f
rs

 ∂
∂z  rs w¢   +    f

rs
 ∂
∂z  rs g Q

 Ns2 qs
   . (4.3c)
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The sum of (4.3a-c) implies that in the absence of external injection the PV is conserved

locally: ∂q/∂t = 0 . In the presence of external injection, the PV satisfies

∂q
∂t   =  ∂v

∂x  -  ∂u
∂y    -  f r

rs
  +   f

rs
 ∂
∂z  rs g Q

Ns2 qs
   . (4.4)

Figure 4.1 depicts schematically the conservation of PV given by (4.3). Latent

vorticity may be generated by injection of heat or mass, and relative vorticity may be

generated by injection of horizontal momentum with vorticity. Following the initial

generation, vorticity is converted among the various contributions. For example, consider

an injection of heat. Initially, the injection of heat decreases/increases the thermal

stratification above/below the level of maximum heating. Consequently, there is

negative/positive latent vorticity in the region above/below the maximum heating. The

associated pressure gradient next drives an expansion of the heated column. This initial

expansion is primarily upward due to the restriction imposed by the rigid lower boundary

and the distribution of mass in the basic state, as was observed in chapter 3. [It should be

noted that some of the initial expansion occurs horizontally outward, accomplished by

Lamb waves.]  Below the maximum heating, the upward vertical expansion can result in

either 1) a decrease in the perturbation density or 2) horizontal convergence. In the first

case, some of the positive latent thermal-stratification vorticity is converted into positive

latent elastic vorticity. In the second case, there is a conversion of positive latent vorticity

to positive relative vorticity required by the conservation of absolute angular momentum.

We therefore expect an injection of heat to induce a cyclone below the level of maximum

heating whose strength is mitigated in part by the compressibility of the fluid. Similarly,

we expect an anticyclone to develop above the level of maximum heating. Such
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characteristics were observed in the steady state by Chagnon and Bannon (2001). Figure

4.1 does not by itself imply a causality relationship between the various injections,

conversion mechanisms, and latent and relative vorticity. Causality is inferred by

examining the complete dynamics of the system.

Equation (4.4) implies that injections of different type may generate equivalent

distributions of potential vorticity and therefore the same steady state. Furthermore, the

steady state depends only on the time integral of the injection and not its temporal details.

In section 4.5 we compare the energy of PV-equivalent injections in order to demonstrate

the extent to which they induce equivalent adjustment processes. The transient response

to such injections may be very dissimilar.

Applying the assumption made in chapter 2 that the model is homogeneous in the

y-direction, equation (4.4) implies that an injection of either x-momentum or z-

momentum does not generate any perturbation PV and therefore does not induce a

perturbation steady state. An injection of x-momentum and the subsequent deflection of

this current by Coriolis forces may not produce a pressure gradient in the y-direction.

Instead, the deflected current undergoes an inertial oscillation and there is no mechanism

for the retention of a horizontal mass gradient in the asymptotic steady state. Similarly, an

injection of z-momentum does not generate a response involving permanent changes to

the fluid center of gravity. Furthermore, the global PV [ defined as the total PV per unit

mass
rsq  d V

V ] remains constant if the injection mechanism on the right-hand side of

(4.4) satisfies several necessary conditions: an injection of heat must be zero on the upper

and lower boundaries; an injection of mass must conserve the total fluid mass; and an
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Figure!4.1: Schematic illustration of the potential vorticity balance. The potential
vorticity is comprised of latent and relative vorticity. The latent vorticity is in turn
comprised of a thermal stratification and an elastic contribution. Thick arrows denote
generation mechanisms. Thin arrows denote positive conversion mechanisms.
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 injection of momentum must not induce a net torque about the vertical direction. An

injection of momentum satisfying a periodic lateral boundary condition satisfies this

criterion.

The PV written in terms of the field variable transformation introduced in chapter

2 is

Q  ≡  rs1/2 q  =   ∂ V
∂x   +   f

k / Hs
 ∂
∂z   -  G  S  - f

cs2
 P   , (4.5)

which may be written in spectral space as

Qn  =   i k Vn  -  f  m 2  +   G2

k / Hs
  Sn  - f

cs2
 Pn    , (4.6)

where Q is expanded about the vertical basis function fn . Following the convention used

in chapter 2, the subscript k denoting the Fourier transform of the horizontal structure is

implied but omitted and solutions are assumed homogeneous in y-direction. It may be

verified readily that any transient solution (2.19) of the homogenous system (i.e. with

nonzero frequencywi ) contains no PV, Qn = 0 . This is not generally the case for models

in which the basic state contains nonzero gradients of PV. The perturbation in PV

introduced by the injection mechanism is therefore comprised only of the hydrostatic and

geostrophic (i.e. steady-state) class. In terms of Fig. 4.1, the buoyancy-wave, acoustic-

wave, and Lamb-wave classes contain no PV. That is, the waves contain portions of

relative and latent vorticity that are equal in magnitude but opposite in sign. For the

steady-state class, which we can refer to interchangeably as the PV-conserving class, we

may write (4.6) in terms of the steady contribution to the pressure field,

Qn  =   Qn , steady   =   - f m 2  +   G2  +   Ns2

f2
 k2  +   Ns2

cs2
 Pn , steady     . (4.7)
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The solution of (4.7) is a generalization of the solution presented in Chagnon and Bannon

(2001).

4.3 Energy Conservation

Chagnon and Bannon (2001) presented a discussion of the available energetics,

including the mechanisms of conversion between kinetic (KE), available potential (APE),

and available elastic (AEE) energies. Figure 4.2 generalizes Fig. 1 of Chagnon and

Bannon (2001) to include the additional injection types. Because the various types

initially generate different forms of energy, we anticipate the subsequent energy balance

and exchange to depend on the type. This dependence is the concern of section 4.4. The

purpose of this section is to assess the basic properties of the energetics of the time-

dependent solutions. The following will demonstrate that the energy is comprised of

distinct contributions from each of the spatial modes, which in turn are comprised of

distinct contributions from each class of transient. This kind of representation is not

always possible, such as in the case of certain sheared flows (Held 1985), and must

therefore be treated explicitly (see appendix B).

The energy density is

TE  =  12  U *U  +  V*V  +   W *W  +   g
2

Ns2
 S*S  +   1

cs2
 P*P   , (4.8)

where a superscript * denotes a complex conjugate. Equation (4.8), expressed in terms of

the field variable transformation, is the traditional available energy density whose general
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Figure!4.2
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Figure!4.2: Schematic illustration of the energy conversion between available potential
(APE), available elastic (AEE), and kinetic energy (KE). Thick arrows denote the
generation mechanisms. Thin arrows denote positive conversion mechanisms.
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conservation is represented in Fig.4.2. The first three terms comprise the KE, the fourth is

the APE, and the last is the AEE. The energy density is governed by

∂
∂t TE   +   —⋅ P U      =    U *U  +  V*V  +   W *W  +   g

2

Ns2
 S*S  +   1

cs2
 P*P    , (4.9)

where — ≡ ( ∂/∂x, ∂/∂y, ∂/∂z ) and U ≡ ( U, V, W ) . The global integral of the divergence

of the energy flux vector PU is zero for periodic or closed rigid boundaries. In the

absence of an injection, the energy is conserved globally.

Because the spatial modes (2.12) are orthogonal, we may consider the

conservation of the spectral energy density,

TEn  =  
D m 2  +   G2

2  Un*Un  +  Vn*Vn  +   m 2  +   G2 Wn*Wn  +   g
2

Ns2
 Sn*Sn   +   1

cs2
 Pn*Pn   .

(4.10)

The spectral energy density is dependent on the horizontal k and vertical wavenumber m

of the mode. Each mode is in turn comprised of acoustic-wave, buoyancy-wave, and PV-

conserving classes. Appendix B demonstrates that there is no interaction among these

distinct classes even in the presence of active injections. The spectral energy density may

therefore be partitioned among the classes:

TEn  =  TEnPV  +   TEna  +   TEnb  . (4.11)

Following the shut-off of the injection mechanisms, the distinct acoustic-wave,

buoyancy-wave, and PV-conserving (i.e. steady) contributions to the spectral energy

density are time-independent. Each of these contributions consists of KE, APE, and AEE

that undergo time-dependent conversions according to Fig. 4.2.

The spectral energy density excited by an injection may be generalized in terms of

the partitioning of the temporal Green’s function solution (i.e. the response to an
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instantaneous injection). Let the spectral energy density of the temporal Green’s function

be given by

TEn =  TEn
PV  +   TEn

a  +   TEn
b  . (4.12)

We may then write the time-dependent spectral energy density in terms of the spectral

energy density of the Green’s function

TEn t  =  r 0, t  TEn
PV  + r wa, t  TEn

a  +  r wb, t  TEn
b   , (4.13)

where the filtering function r depends on the frequency of the contribution and is given

by

r w , t   =  e- i w t¢ st t¢  dt¢
0

t

ei w t¢ st t¢  dt¢
0

t

   , (4.14)

and st(t) is a function describing the time-dependence of the injection function. Through

the representation of the energy partitioning (4.13) we may investigate separately the

effects of the spatial and temporal characteristics of the injection on the partitioning. The

temporal Green’s function energy partitioning contains the dependence of the spatial

characteristics as well as the type of injection. The filtering function (4.14) incorporates

all of the time-dependent effects. The result (4.13-4.14) is a generalization of the

buoyancy wave filtering demonstrated by Vadas and Fritts (2001).

Consider some examples of the filtering function. The first example is that of the

Dirac delta functionst(t) = d(t) , for which the filtering function is r(w,t) = 1. In this case

the partitioning is that of the temporal Green’s function, which is demonstrated in the

proceeding section. Another example is for a top-hat injection of duration t, st(t)  =



82

[H(t)-  H(t - t)]/t ,  where H is the Heaviside step function. The filtering function for this

injection is

r w, t   =  1
w t  /2 2

  
sin2 w t

2   ,  t < t

sin2 w t
2   ,  t ≥ t

   . (4.15)

An injection that is somewhat smoother in time such as st(t)  = 2[H(t)-  H(t - t)]sin2(p t /

t ) / t  has a filtering function given by

r w, t   =  1
w t  /2 2

 
2 p
t

2

w2  -  2 p
t

2

2

 
sin2 w t

2   ,  t < t

sin2 w t
2   ,  t ≥ t

   . (4.16)

Figure 4.3 presents the filtering functions (4.15-4.16) for t > t . Waves are filtered

relative to the Green’s function solution. The filtering is an increasing function of the

wave frequency and of the injection duration. For example, an injection of duration

exceeding several minutes should not generate much acoustic-wave energy. The sine-

squared in time provides a smoother filter with less energy remaining in the higher order

harmonics.
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Figure!4.3

Figure!4.3: (a) Top-hat (solid) and sine-squared (dashed) injection functions st (t) and
(b) their corresponding filtering functions for t > t plotted as a function of the injection
duration parameter t times the frequency w of the mode.
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4.4 Energy Spectrum

This section demonstrates some basic properties of the energy spectrum and its

partitioning. The presentation begins with the partitioning of each wave class among KE,

APE, and AEE as a function of the horizontal k and vertical wavenumber m of the mode.

The relative proportions of the time-averaged KE, APE, and AEE in each wave class are

a function only of the dispersion relation and are independent of the properties of the

injection mechanism.  Next, we examine the effect of the injection type on the

partitioning of the spectral energy density among each class (i.e. acoustic-wave,

buoyancy-wave, Lamb-wave and PV-conserving contributions) following instantaneous

injections. The qualities of the former partitioning are consistent with the characteristics

of the latter partitioning. As in chapter 3, the basic state parameters are chosen to

represent a typical stably-stratified, midlatitude, synoptic-scale environment: T* = 255 K,

p* = 1000 mb, r* = 1.37 kg m-3, Ns = .0194 s-1, Hs = 7.48 km, cs = 320 m s-1 and f = 10-4 s-1.

4.4.1  Partitioning of Energy in Each Class Among KE, APE, and AEE

For each time-dependent class of a given (spatial) mode, the relative proportions

of the time-averaged  KE, APE, and AEE are fixed. [Note: at any instant in time there is

an exchange between the energy terms according to Fig. 4.2, e.g. the KE may be zero at

one instant and nonzero at some later instant at the expense of APE.] The ratios of these

time-averaged energies, derived from the dispersion relation (2.16), are:
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APE : AEE  =  cs2 m 2  +   G2  Ns2

Ns2  -  w2 2
   , (4.17a)

 
KEz : APE  =  w2

Ns2
  ,  (4.17b)

 

KEx : APE  =  Ns2  - w2

f2  - w2

2
 w2  +   f2

Ns2
 k2

m 2  +   G2
  ,  (4.17c)

where an overbar denotes the unweighted time-average, and the KE is separated into

horizontal (KEx) and vertical (KEz) contributions. The overbar denoting the temporal

average is omitted from the following figures.

Figure 4.4 presents this partitioning for the PV-conserving, acoustic-wave, and

buoyancy-wave classes. For the PV class (Fig. 4.4a), the ratio of AEE to APE is largely

independent of horizontal scale over the range of scales presented. In the steady state, this

ratio depends on the magnitude of the pressure perturbation required to maintain a

hydrostatic balance versus the horizontal gradient of mass required to support a

geostrophic current. Except for the deep modes, the APE is much larger than the AEE in

the steady state. For the deep mode, the hydrostatic pressure perturbation is larger relative

to the density perturbation because the depth-scale of the vertical gradient is larger.  The

ratio of KEx to APE in the steady state (note that KEz = 0), implied by (4.17c) with w = 0,

is given by a modal Burger number, k2Ns
2/(m2 + G 2)f 2 . At small horizontal scales the

KEx is very large compared to the APE required to maintain geostrophic balance. At very

large horizontal scales the KEx is small compared to the APE because the magnitude of

horizontal gradients in APE is vanishingly small.
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Figure!4.4

Figure!4.4: Ratios of KE to AEE or APE (solid lines) and APE to AEE or its inverse
(dashed lines) for the (a) PV-conserving, (b) buoyancy-wave, and (c) acoustic-wave
classes as a function of horizontal wavenumber k. The first column gives the ratios for a
deep mode (m = 1/20 km)  and the second for a shallow mode (m = 1/1 km).
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For the buoyancy waves (Fig. 4.4b), AEE is only significant relative to the APE

for the widest structures. Such buoyancy waves produce parcel displacements that are

primarily horizontal and are approximately hydrostatic. The nonhydrostatic buoyancy

modes contain larger proportions of APE relative to AEE. The restoring force of these

waves is primarily the vertical buoyancy force. In the small horizontal scale limit, the

energetics involves primarily vertical KE and APE, i.e. as k Æ • , KEz:APE Æ 1. Such

waves approach pure buoyancy oscillations that induce strictly vertical parcel motions.

For the widest and shallowest structure, the KE associated with horizontal motions is

very large compared to the APE, i.e. as k Æ 0 , KEx:APE Æ •. Such buoyancy waves are

actually inertia gravity waves. Only through vertical motions are buoyancy waves able to

convert energy efficiently between KE and APE, i.e. as k Æ 0 , KEz:APE Æ f 2/Ns
2 << 1.

For the acoustic waves (Fig.4.4c), the AEE is very large compared to the APE

except for the deepest structures that contain approximately equal portions of APE and

AEE. Only for these deepest structures are the vertical displacements associated with the

acoustic waves large enough to affect a change in the potential temperature. Acoustic

waves are most efficient at converting energy between KE and AEE. For relatively deep

and narrow structures the particle motions are approximately horizontal and the acoustic

energy is comprised of approximately equal parts of vertical KE and AEE, and vice versa

for shallow and wide structures, i.e.  if m2 >> k2, then KEz:AEE ª 1 and if k2 >>m2 then

KEx:AEE ª 1.
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For the Lamb mode (not shown in Fig. 4.4), the partitioning consists of only AEE

and KEx. For the acoustic class of the Lamb mode, i.e. the Lamb wave, the average

proportions of these energies is

KEx :AEE  =  cs2k2  +   2 f2

cs2k2
  . (4.18)

At small horizontal scale, the Lamb wave contains approximately equal portions of AEE

and KEx. At large horizontal scale, the Lamb wave contains a much larger portion of KE.

For the steady class of the Lamb mode:

KEx :AEE  =  cs2k2

f2
  . (4.19)

As in Fig. 4.4a, the steady state contains a significant relative proportion of KEx only at

the narrowest horizontal scales. At such scales, only a small change in the horizontal

distribution of mass is required to balance an injected current.

The partitioning of the energy in each class among KE, APE, and AEE is useful

for explaining the partitioning of total energy associated with a given injection function

among the classes of time dependence. In order to establish a framework for the

following analysis, Fig. 4.5 schematically represents the partitioning of energy between

the transient and the PV classes during adjustment. The injection generates a perturbation

in the energy distributed in some manner between KE, APE, and AEE, denoted by the

large box on the left in Fig 4.5. The magnitude and proportions of these energies are

likely to differ from that of the PV-conserving class and an adjustment must take place.

Depending on the nature of this unbalanced configuration, some of this energy is

projected onto the acoustic, buoyancy, and Lamb waves as denoted by the boxes in the
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middle of Fig. 4.5. The time-averaged energy in each of these classes is distributed

among KE, APE, and AEE in a manner that depends on the modal partitioning in Fig.

4.4. Following the propagation and dispersion of the transients, the remaining energy is in

the steady state that, according to Fig. 4.4, is restricted in its ability to contain certain

average proportions of KE, APE, and AEE. These restrictions depend on the basic

physical properties of the wave, including the restoring and energy conversion

mechanisms.
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Figure!4.5
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Figure!4.5: Schematic illustration of the transition from the energy configuration of the
initial unbalanced state to the final balanced state. The boxes denote the total energy
contained in each state. The dashed lines represent the time-averaged proportions of
APE, KE, and AEE contributing to the total energy. The proportions drawn here are
arbitrary and are generally dependent on the details of the initial disturbance.
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4.4.2   Dependence of Energy Partitioning on Injection Type

The partitioning of energy among the PV, acoustic-wave, buoyancy-wave and

Lamb-wave classes depends strongly on the injection type. In this subsection, we

consider an instantaneous injection that projects equally onto all horizontal and vertical

modes such that energy contained in each mode is constant and the partitioning is that of

the temporal Green’s function (4.12). Such an injection is unphysical, but may be used to

demonstrate the dependence of the energy partitioning on the structure of the injections

and its type. Essentially, we are interested in the ratios

Rn
a  =  TEn

a

TEn
  ,  Rn

b  =  TEn
b

TEn
  ,  Rn

PV  =  TEn
PV

TEn
   , (4.20)

which, at a fixed horizontal wavenumber, are independent of the vertical structure of the

injection function for all but the case of a heat injection. Because a heating projects

initially onto both the pressure and potential temperature, which are represented by two

distinct nonorthogonal vertical structures, the partitioning is complicated for a heating.

We therefore construct two partitionings for the heat injection - one representing the

generation of APE and one for the initial generation of AEE that both contribute to the

actual partitioning associated with a heat injection. The actual partitioning is not a simple

sum of these two cases and it is actually impossible to construct an injection of heat that

generates nonzero APE and zero AEE. However, all other injections are capable of

generating one initial form of energy exclusively.



92

Figure 4.6a presents the partitioning (4.20) for an injection of x-momentum. The

injection of x-momentum generates no PV, and the partitioning consists only of acoustic

and buoyancy contributions. The acoustic waves dominate the energy spectrum when the

injection projects onto narrower, deeper structures, which may be understood by

considering the initial response to this injection. Initially, all the fields except x-

momentum are zero. Because the PV is zero, the horizontal KE associated with this

perturbation must be removed entirely by the transients. For shallow and wide structures,

buoyancy waves contain mainly horizontal parcel motions, while acoustic waves contain

vertical parcel motions. The initial horizontal KE therefore projects onto inertia-gravity

waves. For deep and narrow structures, horizontally propagating acoustic waves are more

efficient at carrying the initial KE.

Figure 4.6b presents the partitioning (4.20) for an injection of y-momentum. The

partitioning consists mainly of buoyancy waves dominant at low aspect ratio, and PV

dominant at high aspect ratio. Acoustic waves are not generated significantly [maximum

fraction < 10-3%). Initially, all the fields except y-momentum are zero. There is no

divergence associated with this current because the solutions are assumed homogeneous

in the y-direction. The slow deflection of this current by the Coriolis force generates

patterns of convergence and divergence and associated tendencies of pressure to the right

and left of the current. These transient motions are accomplished by low frequency

buoyancy waves, which are only efficiently excited when the injection aspect ratio is

small. For a narrow and deep injection, the PV component is dominant. Figure 4.4a

demonstrates that the ratio of KEx to APE required in the steady state is large on scales

that are narrow compared to the modal Rossby radius of deformation LR = Ns / f m. The
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initial distribution of KE therefore requires only a small change in APE to achieve the

steady state. In other words, at small horizontal scale (compared to LR), the pressure field

does not require significant adjustment to balance the initial velocity - i.e. only a small

change in APE is required to balance the KE associated with current. The small change in

the horizontal gradient of pressure may then be accomplished by waves of low energy

relative to the kinetic energy of the current.

Figure 4.6c presents the partitioning (4.20) for an injection of z-momentum. The

partitioning does not contain a steady contribution since the injection of z-momentum

does not generate any PV. Initially, all of the fields are zero except the vertical velocity.

The initial state consists entirely of KEz that must be removed by the transients. The

acoustic waves dominate the partitioning at small aspect ratio - a behavior somewhat

inverse to that of the x-momentum injection. Figure 4.4b,c demonstrates that acoustic

waves of small aspect ratio or buoyancy waves with large aspect ratio are most efficient

carrying a significant proportion of  KEz.

Figure 4.6d presents the partitioning (4.20) for an injection of mass. The

partitioning consists of a PV-conserving contribution at small aspect ratio, a buoyancy-

wave contribution at intermediate aspect ratio, and a very large acoustic-wave

contribution significant at all but dominating at large aspect ratio. Initially, all of the

fields are zero except the density and pressure. All of the initial energy is AEE. This

energy must be converted into APE and KE in the steady state (Fig. 4.4a), with larger

conversions for deeper structures. Only at very deep and wide scales may this energy

project directly onto the steady state. Much of the initial AEE must therefore project onto

the transients. Buoyancy waves are only generated significantly when the injection is
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deep because only such buoyancy waves contain very much AEE (Fig. 4.4b). Acoustic

waves are dominant otherwise since they consist largely of AEE (Fig. 4.4c).  Because the

acoustic waves primarily accomplish a vertical adjustment (i.e. have approximately equal

portions of AEE and KEz), much of the adjustment is dominated by vertically

propagating acoustic waves.

For the reasons discussed above, we must analyze an injection of heat differently.

We may consider heat injection in two parts: the initial generation of AEE (i.e. initial

projection onto the pressure) and the initial generation of APE (i.e. initial projection onto

potential temperature). The first is largest when the heating duration is short compared to

the acoustic adjustment time scale (i.e. > several minutes). This response to the initial

generation of AEE was treated above and is identical to the injection of mass. The

response to the initial generation of APE is presented in Fig. 4.6e. The partitioning

consists of a PV-conserving contribution that is large at wide scales and gives way to

buoyancy waves at narrower scales. Acoustic waves comprise a significant portion of the

spectrum only when the heating is deep and wide. To understand this partitioning, we

consider the required energy conversions. The steady state may not contain APE

exclusively (Fig. 4.4a). At wide and deep scales, the energy of the steady state consists of

approximately equal parts of AEE and APE. The transients that are most capable of

converting the initial APE in this manner are acoustic waves (Fig. 4.4c). At smaller scales

the energy of the steady state must contain a significant portion of KE. The transients

most capable of converting APE in this manner are buoyancy waves (Fig. 4.4b).

The Lamb mode is a distinct vertical structure and must be considered separately.

Figure 4.7 presents the partitioning for the Lamb mode, which contains only an acoustic-
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wave and steady class. Injections of x- and z-momentum (omitted from Fig. 4.7) do not

generate any PV, and the Lamb mode contains only an acoustic class (i.e. Lamb waves).

An injection of y-momentum (Fig. 4.7a) projects onto the steady state at narrow

horizontal scale compared to LR and the acoustic waves at wide horizontal scale. The

proportion of AEE to KE in the steady state is very small at narrow horizontal scale and

the initial current does not require very much conversion by the waves. At larger scales

this conversion is accomplished by waves under the influence of the background rotation

that we may refer to as inertia-Lamb waves. A heating or injection of mass (Fig. 4.7b)

projects onto acoustic waves at narrow horizontal scale and a steady state at wider

horizontal scale. Such injections generate a significant initial distribution of AEE. Only at

the very widest scales on which the magnitude of horizontal gradients is small may the

Lamb mode provide a significant steady-state contribution relative to its wave

contribution.
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Figure!4.6

Figure!4.6: Partitioning of the total energy among steady (S), acoustic-wave (A), and
buoyancy-wave (B) classes for injections of (a) x-momentum, (b) y-momentum, (c) z-
momentum, (d) mass/heat (AEE), and (e) heat (APE) that project equally onto all
horizontal modes. The solid lines mark the partitioning for a deep mode (m = 1/20 km),
the dashed for a shallow mode (m = 1/1 km), and the dotted for an intermediate mode (m
= 1/6.7 km).
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Figure!4.7

4.5  Energetics of PV-Equivalent Injections

Section 4.2 presented the conservation of PV and sections 4.3 and 4.4 presented

the energy partitioning for the hydrostatic and geostrophic adjustment problem. This

section considers the energy partitioning for localized injections of heat, mass, and y-

velocity that generate equivalent distributions of PV. Such injections generate adjustment

processes that asymptote toward identical steady states and therefore comprise an

interesting set of cases for comparison. While holding the steady state constant among

Figure!4.7: Partitioning of the total energy of the Lamb mode (m = iG ) among steady
(S) and acoustic-wave (A) classes for injections of (a) y-momentum, and (b) mass and
heat that project equally onto all horizontal modes. Injection of x- and z- momentum
generates only an acoustic-wave class in the Lamb mode.
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cases under examination, we are able to identify some basic similarities and differences

in the nature of the transient response to injections of different type.

The injection function projects preferentially onto the spatial modes according to

its geometry. Each of these modes may be separated into the classes of time

dependencies, as in (4.13). After summing over all of the modes, we may separate the

resulting “total” energy into the total of each class. Such is the partitioning presented

here.

We first consider an injection of heat of the form,

Q  = D q  cos2 z¢  H * z, dg, dg +  d  1
1  +   x

a
2

 H * t, 0, t
t   , (4.21)

where z¢  =  p ( z - dg - d/2 )/d , H*(x, x1,x2) = H(x - x1) - H(x - x2) and H is the Heaviside

step function. The mass-injection that generates an equivalent PV distribution is given by

r  = D r  2 p Hs
k d sin z¢  cos z¢   +   k +  1

k  cos2 z¢   H * z, dg, dg +  d

¥  1
1  +   x

a
2

  H * t, 0, t
t   ,

(4.22)

where Dr = rs Dq / qs . For the following presentation, the injection is of width a = 25

km, depth d = 9 km,  and elevation dg = 1 km. Figure 4.8a plots the geometry of the

potential vorticity anomaly induced by (4.21-4.22). The vertical dipole is similar to but

smoother than the distribution chosen in Chagnon and Bannon (2001).

Figure 4.9 presents the energy partitioning as a function of duration t . The

steady-state response to an injection of heat as in Fig. 4.9a is equivalent to that generated

by the mass source/sink dipole in Fig. 4.9b. The energy partitioning for these PV-

equivalent injections is quite different for short duration. When t < 102 s - the
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Figure!4.8

Figure!4.8: Geometry of the potential vorticity perturbation generated in (a) by either an
injection of heat (4.21) or mass (4.22) and in (b) by either an injection of heat (4.23) or
y-momentum (4.24).



100

 approximate duration of acoustic wave attrition - the response to a mass injection is

dominated by acoustic waves for the reasons described in section 4.4b. If we assume that

injections of short and long duration generate the same steady state, then the energy

associated with a short duration injection is much larger than that associated with a long

duration injection because the fraction of energy in the steady is state is much smaller for

a short duration injection. For example, the instantaneous injection of heat produces

approximately 5.8 times the total energy of a 10,000 second injection. In addition, the

total energy of a short duration mass injection is much larger than that of an equivalent

heat injection of similar duration. For example, an instantaneous injection of mass

produces approximately 33.2 times the total energy of an injection of heat. For longer

duration injection t > 102 s, the energy partitioning is very similar between the two cases.

On such time scales the waves that are not filtered by (4.14) are responsible primarily for

achieving a horizontal (geostrophic) adjustment, which is largely insensitive to the

manner by which the PV has been introduced.

Next we compare PV-equivalent heat and y-momentum injections. Consider a

heating of the form

Q  = D q   cos2 z¢  H * z, dg, dg +  d  2x / a
 1  +   x

a
2 2

  H * t, 0, t
t   , (4.23)

and the PV-equivalent injection of y-momentum,

v  = D v  2 p Hs
k d sin z¢  cos z¢   +   k +  1

k  cos2 z¢   H * z, dg, dg +  d

¥ 1
1  +   x

a
2

  H
* t, 0, t

t   ,
(4.24)
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Figure!4.9

Figure!4.9: Potential-vorticity-equivalent injections of (a) heat and (b) mass and their
corresponding total energy partitioning (c), (d) as a function of injection duration t.
Either injection produces the dipole potential vorticity distribution of Fig.4.8a.
Hereafter, the time-dependent classes contributing to the total energy (which is summed
over all spatial modes) are denoted acoustic wave (A), buoyancy wave (B), steady state
(S), and Lamb wave (L).
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where Dv = f a Dq / qs . The PV distribution associated with these injections, shown in

Fig. 4.8b, is quadrupolar (i.e. dipoles in both the vertical and horizontal directions).

Figure 4.10 presents the energy partitioning as a function of duration t.  The

steady-state response to an injection of heat with dipole structure in the horizontal (Fig.

4.10a) is the same as that generated by a y-momentum injection that is monopolar in the

horizontal but dipolar in the vertical (Fig. 4.10b). Qualitatively, the thermally direct

circulation developing from such heating in Fig. 4.10a may be expected to generate a y-

momentum field similar to that in Fig. 4.10b. Because the time-scale associated with the

latter injection is, in reality, much longer than that associated with the heating, the

transient response to these PV-equivalent injections is expected to be quite different on

shorter time scales. Indeed, for all but the longest duration t > 104 s, the energy

partitioning is very different. The response to the y-momentum injection involves only

the PV-conserving contribution and the low frequency inertia-gravity waves. Such

transients primarily accomplish a horizontal (geostrophic) adjustment. The response to a

heating is likely to involve a vertical adjustment by acoustic and nonhydrostatic

buoyancy waves, as was presented in part chapter 3. Because the steady-state generated

by these two injections is identical but the fraction of energy residing in the steady state

differs, the injection of heat generates a more energetic transient response than the PV-

equivalent y-momentum injection. For example, an instantaneous injection of heat

produces approximately 290 times the total energy of an injection of y-momentum. A

heat injection of duration 1000 seconds produces approximately 84.5 times the total

energy of the y-momentum injection, whereas a duration of 10,000 seconds produces
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Figure!4.10

Figure!4.10: Potential-vorticity-equivalent injections of (a) heat and (b) y-momentum
and their corresponding total energy partitioning (c), (d) as a function of injection
duration t. Either injection produces the quadrupole potential vorticity distribution of
Fig.8b.
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 approximately 2.98 times the total energy and a duration of 100,000 seconds produces

approximately no difference.

Another set of PV-equivalent injections that generate very different transient

responses are those with identical spatial structure, origin and time-integrated amplitude

but of different temporal dependence. For example consider the set of heat injections of

the form (4.21) with fixed depth d = 9 km,  and elevation dg = 1 km, of varying duration t

but whose horizontal geometry projects equally onto all horizontal modes (i.e. horizontal

white noise). Such heatings generate equivalent distributions of PV independent of t.

Varying t, however, strongly impacts the characteristics of the energy spectrum. Figure

4.11 presents the horizontal white noise spectra for durations ranging from one minute to

six hours. The PV of a given horizontal structure k is identical in each of the cases. The

filtering function (4.14) preferentially removes the highest frequency waves, such that

acoustic waves are generated only by injections of duration of several minutes or less.

The high frequency buoyancy waves, which are of narrowest horizontal scale, are

preferentially filtered such that waves of scale less than 10 km are not significantly

generated by a heat injection of one hour duration. Similarly, the narrowest horizontal

scale Lamb waves are preferentially filtered such that waves of scale less than 100 km are

not significantly generated by heating of one hour duration.
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Figure!4.11

Figure!4.11: Partitioning of the total energy (summed over all vertical modes) among the
time-dependent classes following an injection of heat of duration (a) 1 minute, (b) 20
minutes, (c) 1 hour, and (d) 6 hours that projects equally onto all horizontal modes and is
9 km deep and elevated 1 km above ground.
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4.6 Summary

Chapters 2 and 3 presented an analytic solution to a hydrostatic and geostrophic

adjustment problem. The model was constructed under the assumption that hydrostatic

and geostrophic imbalance may be generated rapidly and on small scales by such

phenomena as convection, and that the response to these disturbances by the larger-scale

environment is approximately linear. This notion has formed the basis for many

investigations into the relationship between the source and wave spectrum as well as the

function of waves in the adjustment process. The advantage of the present study is its

generality; it considers adjustment of a fully compressible atmosphere with a rigid lower

boundary to injections of various spatial and temporal scale and type. Chapter 4 exploits

a useful tool - the energy partitioning - to explore the vast parameter space associated

with the wave source. Additionally, the consideration of potential vorticity in the context

of energy partitioning clarifies some interesting relationships between adjustment

processes that asymptote toward identical steady states.

Depending on the type of the imbalance generation mechanism in the governing

equations (i.e. whether the imbalance is introduced via a prescribed injection of heat,

mass or momentum), the characteristics of the wave spectrum may be very different. For

example, we have demonstrated that nonhydrostatic buoyancy waves dominate the wave

spectrum at narrow horizontal scales when the injection is a rapid one of vertical

momentum. Lane et al (2001) were able to diagnose this same behavior in an anelastic

numerical simulation of convection. The present analysis demonstrates that the potential
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for the updraft to generate these buoyancy waves is largest for the deepest updrafts. A

rapid, deep injection of heat is also capable of generating these waves efficiently.

Wider, hydrostatic, rotating buoyancy waves are efficiently generated by the

injection of non-divergent horizontal momentum with vorticity. Such injections constitute

the imbalance generation mechanism of the classic Rossby adjustment problem. Strictly,

the classic Rossby adjustment problem is analogous to the injection of y-momentum of

the present problem. The injection of a divergent horizontal current generates a response

in the along current direction. Such an injection therefore does not efficiently generate

nonhydrostatic buoyancy waves whose group velocity is mainly directed vertically.

However, if introduced rapidly and on small scales, such an injection efficiently

generates horizontally propagating acoustic waves.

The rapid injection (or rapid redistribution) of mass is a very efficient generator of

acoustic waves. The large pressure perturbations associated with such injections are

directly removed by the acoustic waves. Similarly, a rapid heating generates a large

pressure perturbation to which acoustic waves may respond. The significance of these

sources in nature is much less than what one may conclude from the examination of the

temporal Green’s function energy spectra presented in section 4.4. A restriction is placed

on the ability of any injection to generate particular waves: the duration of the injection

must be less than or equal to the period of the waves. Vadas and Fritts (2001) presented a

similar conclusion with respect to Boussinesq buoyancy waves generated by time-

dependent sources of momentum and heat.  Sotack and Bannon (1999) conclude that

acoustic waves are not generated significantly by heating of duration exceeding two

minutes.
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In nature, the injections that generate imbalance have characteristic time, length,

and depth scales that are not mutually independent. The issue of the origin of the

injection function determines these qualities. The analysis presented in this thesis is not

suited to address this issue of origin. However, we can safely speculate about some

qualities of the imbalance origin. For example, the rapid redistribution of mass associated

with a convective updraft is not generated instantly but in an amount of time related to

the depth and speed of the updraft. For smaller turbulent eddies within a cloud, this time-

scale may be small enough to constitute a source of acoustic waves. However, for the

largest scales within the cloud, the redistribution of mass is too slow to generate acoustic

waves. The heating associated with phase changes occurs on very small spatial and short

time scales. However, the organization of this heating into finite regions within the cloud

is accomplished by the convecting updrafts. Thus, the ability of heating to generate

coherent acoustic signals from finite regions within the cloud is limited by the local

convective time scales. It is therefore expected that the acoustic signal emerging from a

cloud is only as coherent as the turbulent convective regions in which the waves are

generated.

The generation of acoustic waves is not the only potential consequence of

compressibility. The presence of a lower boundary restricts the ability of the perturbed

region to expand/contract in the vicinity of the boundary. Consequently, a Lamb wave

may propagate horizontally along the lower boundary when the injection induces

expansion near that boundary. Unlike internal acoustic waves, the Lamb waves may be

generated by injection of longer duration, as Nicholls et al (2000) have observed during

the numerical simulation of convection. Because the frequency of these waves decreases
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with increasing horizontal scale, a slow but wide convective cluster may generate a Lamb

wave signal.

Injections that have identical spatial structure but are applied slowly so as to not

generate acoustic waves must still be accompanied by the same net expansion or

compression required by the given total input of potential vorticity. Chagnon and Bannon

(2001) investigate the properties of the steady state corresponding to localized heating of

a compressible atmosphere. The current study emphasizes that the manner by which the

steady state is achieved depends strongly on the manner by which the potential vorticity

is introduced. This principle applies to the required generation of both buoyancy and

acoustic waves. The interpretation of this is simple: A very rapid injection generates a

severely unbalanced initial configuration. Such an unbalanced configuration requires the

production of a large amount of wave energy in order to accomplish the adjustment. A

injection that is more gradual generates a less severely unbalanced configuration

requiring much less wave energy to accomplish the adjustment. From the perspective of

the surrounding environment, the transient response to these injections is quite different.

If a heating is applied slowly enough such that acoustic waves and nonhydrostatic

buoyancy waves are not excited, then the air located above the heating will experience a

slow vertical displacement toward an equilibrium position rather than oscillations about

the equilibrium position.

Whether it is most appropriate to model the imbalance associated with a region of

convection as a heating or mass redistribution is ambiguous and returns us to the issue of

imbalance origin, the discussion of which is admittedly speculative. In reality, convection

can accomplish all of these injections and the process of convective adjustment has thus
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been modeled as a response to both heat and mass injection. In a Boussinesq model,

Shutts (1994) argues that the transient response to these injections should be precisely

equivalent.  A comparison of injections that generate equivalent distributions of potential

vorticity provides insight into the compatibility of these studies. The potential vorticity

associated with a warmed column of air is equivalent to that generated by a vertical mass

source/sink dipole. However, a very rapid injection of mass generates a much larger

acoustic response than does the heating. If the duration of the injection exceeds several

minutes, then the response to the PV-equivalent heating and mass injections are very

similar. It is therefore essential to carefully consider the time-scale associated with the

injection. For example, an instantaneous redistribution of mass on the cloud scale is

physically absurd.

The results of the current study may be used to comment on the notion that the

response to a given injection and the “averaged” injection are in some sense equivalent or

asymptotic. The steady state corresponding to the PV introduced by a given injection is

independent of the temporal characteristics of the injection. Furthermore, if we define a

reasonable spatial averaging operator, then it may be shown that the spatially averaged

steady-state response to a given injection is equivalent to the steady-state response to the

spatially averaged injection; that is, these averaging operators commute between the

injection and steady state. These properties do not hold for the transient response. We

have demonstrated that by “averaging” the temporal structure of a given injection we will

preferentially filter high frequency waves; by spatially averaging a given injection we

project less energy onto finer scale structures. As Holton et al (2002) have argued, the

mutual dependence of the spatial and temporal characteristics of the transients
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complicates matters. A temporal averaging operator acts, in some sense, as a spatial

averaging operator, and vice versa.  For applications in which the nature of the transients

is of primary concern, these matters must be taken into consideration.



Chapter 5

Conclusion

5.1 Contribution

The analysis presented in this thesis addresses some basic theoretical aspects of

hydrostatic and geostrophic adjustment. Section 1.2 summarizes the historical precedent

for this work. Beginning with the seminal work of Rossby (1937, 1938), Obukhov

(1949), and Lamb (1932), followed by the general reviews of Blumen (1972) and Gill

(1982) up to contemporary investigation of convective adjustment and gravity wave

generation, it has been well established that the adjustment of a geophysical fluid to

sources of hydrostatic and geostrophic imbalance is accomplished by inertia-buoyancy

waves; In a compressible atmosphere, acoustic and Lamb waves may also take part in the

adjustment. The interest in this process is often motivated by a desire to characterize the

wave spectrum, which may be relevant to another process (e.g. wave drag in the

stratosphere or the generation and organization of convection) or may be the subject of a

parameterization in a numerical model.

Most investigations prescribe some initial disturbance to which the numerical or

analytic model atmosphere must respond. This approach limits the capacity to analyze the

relationship between the source and wave spectrum that is a central issue of this thesis.

The spatial-temporal detail, type, and origin of the imbalance generation mechanism may

take a wide variety of forms in the atmosphere. For example, consider an imbalance in
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the synoptic-scale environment whose origin is a cluster of convection. Associated with

this convection may be heating due to phase changes, a rapid redistribution of the mass

field, and accelerations associated with the release of instability, all of which are realized

as “injections” of heat, mass, or momentum into the larger-scale environment.

Furthermore, these injections occur over a range of spatial and temporal scales. In reality,

the characteristics of the wave source may therefore be quite complicated. Until recently,

the parameter space of the imbalance generation mechanism has not been explored in

detail. Vadas and Fritts (2001) began examining this parameter space in a vertically-

infinite, linear Boussinesq model atmosphere. Holton et al (2002) warned that the

analysis is complicated by the fact that the spatial and temporal characteristics of the

waves are mutually dependent (i.e. via a dispersion relation).

This thesis improves the existing theory by providing a general picture of the

relationship between the source and the wave spectrum in a fully compressible, semi-

infinite model atmosphere. This relationship is demonstrated via the transient

characteristics of the response (chapter 3) as well as the potential vorticity conservation

and energy partitioning (chapter 4).  The results extend the notion advanced by Vadas

and Fritts (2001) that the excitation of particular waves is restricted by the period of the

wave relative to the duration of the injection. Furthermore, the results indicate that the

type of injection strongly affects the characteristics of the response. For example, an

injection of vertical velocity is a very efficient generator of nonhydrostatic buoyancy

waves provided the geometry and duration of the injection allow their generation.  A

useful way to contrast the response to injections of different type is to concoct injections

that generate equivalent distributions of potential vorticity. Such injections must generate
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responses that asymptote to the same hydrostatic and geostrophic state. The ways in

which the transient responses differ (presented in section 4.5) emphasizes the sensitivity

to the nature of the injection.

Finally, a significant contribution of this thesis is its treatment of compressible

dynamics. The previous work on the hydrostatic adjustment by acoustic waves (e.g.

Bannon 1995, Sotack and Bannon 1999, Duffy, 2003) was restricted to a horizontally

homogeneous atmosphere. Chagnon and Bannon (2001) presented the steady state in an

atmosphere with horizontal dependence, but did not include the transient solution. The

solutions presented here elaborate on this previous work by demonstrating the transient

dynamics in fully compressible, horizontally varying atmosphere. Appendix C provides

another elaboration on the problem of acoustic adjustment. Here, Bannon’s  (1995)

solution of Lamb’s problem is generalized to a moist atmosphere subject to injections of

heat, mass, and moisture of arbitrary vertical structure. It is shown that the steady state is

sensitively dependent on the vertical structure of the injection and that a moisture

injection induces a response that incorporates some features of the response to both mass

and heat injection.

5.2 Practical Implications

Acoustic waves present a challenge to designers of numerical models of the

atmosphere. The time-scale of acoustic waves is several orders of magnitude shorter than

the next fastest motions supported by the atmosphere (e.g. see Fig. 2.2). Consequently,

the existence of these waves places a severe restriction on the time step and resolution of
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stable finite-difference schemes (e.g. Durran 1999, chapter 2). The additional cost of the

increased computation time has led many designers to seek alternatives such as sound-

proof equations and time-splitting techniques. Unfortunately, the approximations

introduced by these alternatives are a potential source of error. Recent advancements in

computing methods and resources have made the integration of fully compressible

models more practical (e.g. Bryan and Fritsch 2002). In order to test the accuracy of these

models in simulating compressible flow, an analytic benchmark is required. The solutions

presented in this thesis could provide such a benchmark for fully compressible numerical

models. Furthermore, it is generally assumed that a fully compressible model is better

than an anelastic one. This may be the case sometimes, but is it always? How much of a

practical advantage is gained by using a fully compressible model rather than an anelastic

one?  In this manner, the solutions presented in this thesis may also provide a benchmark

for anelastic models. Appendix D provides an analytic framework for a comparison

between fully compressible and anelastic models.

Another practical issue in numerical modeling is subgridscale parameterization.

Processes that occur on temporal and spatial scales shorter and smaller than those

explicitly resolved by the model must be represented in some artificial but dependable

manner. In order to design effective parameterizations, some general relationship

between the small scale process and the larger, grid-resolved processes must be assumed.

The analytic solutions presented in this thesis may provide some insight into the design of

such parameterizations. For example, it is well known that gravity waves generated in the

troposphere play an important role in the dynamics of the stratosphere (see Kim et al.

2003 for a review). The sources that give rise to these gravity waves are often too fine to
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be resolved by global circulation models. The successful parameterization of wave drag

and secondary generation requires a description of the source spectrum. The solutions

presented in this thesis may provide some insight into these issues.

5.3 Shortcomings

In spite of the contributions to theory made by this thesis and the potential

applications thereof, there are several ways in which the analysis could be extended and

improved. As a conclusion to this thesis, it is appropriate to consider some of these

shortcomings and suggest improvements for future investigation.

The resting isothermal basic state prescribed in the model of chapter 2 is not

generally applicable to the real atmosphere. This choice simplifies the analysis, but has

the unrealistic property that wave velocity is independent of height. In reality, the vertical

temperature profile may be such that waves are refracted and potentially trapped within

ducts. These features may significantly affect the qualities of the transient solution

presented in chapter 3. A solution similar to the one presented here but against a

nonisothermal basic state would improve the practical value of the analysis. Duffy (2003)

performed such an analysis of the vertical hydrostatic adjustment and observed the same

qualitative behavior as in the isothermal case. However, when applied in a context as

general as the one in this thesis, such changes to the basic state profile significantly

increase the difficulty of the problem.

In this thesis, the origin of the initial imbalance is not addressed. We assume the

details of this imbalance are arbitrary quantities that may be specified by the user.
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Furthermore, we do not address the possibility that the waves generated by the imbalance

may interact with and influence the very mechanism that gave rise to the waves. This

nonlinear relationship between the waves and the source may be essential to describing

the evolution and organization of cloud systems (e.g. Lindzen 1975. Raymond 1976).
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Appendix A

Coefficients of the Temporal Green’s Function

Section 2.3 generalizes the forced solutions in terms of a temporal Green’s

function. The Green’s function is of the form cn  =  En yn  where the eigenvector matrix

En  and the vector of time dependencies yn  are provided in (2.19). Conditions on the

coefficients Ci of the temporal Green’s function are given by (2.24), which may be

written as the linear algebraic system En  Cn  = Fno  where the i-th element of Cn  is Ci and

the i-th element of Fno  is Fo
i = sksci . For example Fo

1 = sksU,n . Solving for the

coefficients involves inverting En  , the result of which is complicated and not obviously

meaningful. Rather than explicitly provide  En-1, we provide only the explicit solution for

the coefficients Ci :

C1  =  g f
wa wb x  

F2
o B42  - B44   +   F4

o B24  - B22   
+   F5

o E21 B42  - B44  +  E41 B22  - B24  +  wa wb x
g f

  , A1

C3  =  1
2 x  

F1
o E34   +   F2

o g f
wa wb

 B44   -  F3
o E14   -  F4

o g f
wa wb

 B24  

 +   F5
o g f

wa wb
 B24  E41   -  B44  E21

  , A2

C3  =  1
2 x  

-F1
o E34   +   F2

o g f
wa wb

 B44   +   F3
o E14   -  F4

o g f
wa wb

 B24  

 +   F5
o g f

wa wb
 B24  E41   -  B44  E21

  , A3
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C4  =  1
2 x  

-F1
o E32   -  F2

o g f
wa wb

 B42   +   F3
o E12   +   F4

o g f
wa wb

 B22  

 +   F5
o g f

wa wb
 B42  E21   -  B22  E41

  , A4

C5  =  1
2 x  

F1
o E32   -  F2

o g f
wa wb

 B42   -  F3
o E12   +   F4

o g f
wa wb

 B22  

 +   F5
o g f

wa wb
 B42  E21   -  B22  E41

  , A5

where

x  =  i k wa wb Ns2  -  f2  wb
2  -  wa2

Ns2  -  wa2  Ns2  -  wb
2  f2  -  wa2  f2  -  wb

2
  ,

and B22 = E22 - E21, B24 = E24 - E21 , B42 = E42 - E41, and B44 = E44 - E41 .



Appendix B

Orthogonality of the Energetics

Section 4.3 presents the characteristics of the energy which, as we assert, may be

partitioned distinctly among the orthogonal spatial modes which in turn may be

partitioned distinctly among the acoustic-wave, buoyancy-wave, and PV-conserving

time-dependent classes. This appendix proves these assertions by exploiting the qualities

of the solution presented in part chapter 2.

It is convenient to recall the form of the linear system of partial differential

equations,

∂c

∂t   +   A c  =  F   , (2.4)

where the solution state vector is c
T  =  U,  V ,  W,  S ,  P , the injection vector is

F  =  U,  V ,  W,  S ,  P  , and A  is a spatial matrix operator. The energy density (4.8) may

be written in terms of the solution vector c :

TE  =  12  c*T D c   , (B1)

where the diagonal matrix operator D is
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D  =  

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 g2

Ns2
0

0 0 0 0 1
cs2

   , (B2)

and the sum of the conversion terms is zero,

 
0

2D

c*T D A c dx dz 
- •

•

  =  0. (B3)

The energy is therefore governed by

∂
∂t  

0

2D

TE dxdz
- •

•

    =   
0

2D

c*T D F dx dz
- •

•

   . (B4)

Because the spatial modes are orthogonal, we may consider the conservation of the

spectral energy density (4.10):

TEn  =  12  cn*
T Dn cn Nn  , (B5)

where Nn is the domain integral of the n-th vertical basis function squared
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and

Dn  =  

1 0 0 0 0

0 1 0 0 0

0 0 m 2 +  G2 0 0

0 0 0 g2

Ns2
 m 2 +  G2 0

0 0 0 0 1
cs2

   .

(B6)

First, let us consider solutions of the homogeneous problem of the form (2.19)

cn  =  En yn
 where En   is the matrix of eigenvectors of An   . The spectral energy density

(B5) may be written as

TEn  =  12  yn*
T Mn yn Nn  . (B7)

The elements of the wave interaction matrix Mn  are

Mij  =  E1i
* E1j  +   E2i

* E2j  +   m 2  +   G2  E3i
* E3j   

+   g
2 m 2  +   G2

Ns2
 E4i

* E4j   +   E5i
* E5j    .

(B8)

Using the dispersion relation, it may be shown that Mij = 0 when i is not equal to j . The

wave interaction matrix Mn  is therefore diagonal, which implies that there is no

interaction among the distinct time-dependent contributions to the energy. The diagonal

elements of Mn  are
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Mii  =  1
cs2

  +   k
2 wi

2   +   f2

f2  -  wi
2  2

  +   m 2  +   G2  wi
2 Ns2

Ns2  -  wi
2 2 

   . (B9)

The spectral energy density may therefore be partitioned among the steady, acoustic, and

buoyancy contributions as in (4.11), TEn  =  TEnPV  +  TEna  +  TEnb, where

TEnPV  =  M11C1
*C1  ,

TEna  =  M22C2
*C2  +   M33C3

*C3   ,
TEnb  =  M44C4

*C4  +   M55C5
*C5  ,

(B10)  

and the Ci are the coefficients of the PV-conserving, acoustic-wave, and buoyancy-wave

contributions defined in (2.19). For solutions of the homogeneous problem, the distinct

PV-conserving, acoustic-wave, and buoyancy-wave contributions to the energy are time-

independent.

Next consider the energetics of solutions to the forced equation (2.4). Section 3 of

chapter 2 demonstrated the structure of these solutions to be of the general form

cn t   =  En G n t  where the i-th element of Gn  is Gi = ci(t) exp(iwit) with ci(t) defined in

(2.25). Following the analysis of the energetics of the homogeneous solutions, we may

also write the energy of the forced solution as

TEn=  12  Gn*
T Mn Gn Nn  . (B11)

The spectral energy density of the forced solutions may therefore be partitioned in a

manner similar to that of the homogeneous solutions. The spectral energy density of the

temporal Green’s function, denoted in (4.12) as TEn =  TEn
PV  +  TEn

a  +  TEn
b  , is given

by
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TEn
PV  =  M11C1

*C1  ,
TEn

a  =  M22C2
*C2  +   M33C3

*C3   ,
TEn

b  =  M44C4
*C4  +   M55C5

*C5   ,
(B12)

where the coefficients Ci are provided in (A1-A5). The representation (4.13) of time-

dependent spectral energy density of the forced solution (B11) in terms of the spectral

energy density of the Green’s function and a filtering function r(w,t) follows directly

from the relationship between the temporal Green’s function and the general solution of

the forced problem (2.22) given by (2.24) and (2.25).



Appendix C

Lamb’s Hydrostatic Adjustment of a Moist Atmosphere

Lamb (1932) originally considered the vertical adjustment of a compressible

atmosphere to localized sources of hydrostatic imbalance. Acoustic waves are generated

in the region of localized imbalance and propagate into the surrounding environment. The

displacements and net pressure change associated with the passage of the acoustic waves

are exactly those required to adjust the column to hydrostatic balance.

Lamb’s problem - in which the source of imbalance is a prescribed,

infinitesimally deep harmonic oscillation - was reformulated by Bannon (1995) for a

heating of finite depth wherein the acoustic waves are generated in regions of vertical

heating gradient. The motivation for this design is the conceptualization of a cumulus

cloud as a source of heating associated with phase changes within the cloud. Sotack and

Bannon (1999) demonstrated that a heating must be applied very rapidly (time scale of

less than 2 minutes) in order to generate a significant acoustic response. A finite-depth

heating of the kind employed by Bannon (1995) is only capable of modeling the averaged

or net cloud heating. The appropriate time scale of this net heating exceeds the critical

duration of several minutes, and is probably an inappropriate model source of acoustic

waves. The steady state however depends only on the time-integrated distribution of

potential vorticity. The steady state response to the averaged injection may therefore be

meaningful. Bannon (1995) only considered the steady state following a top-hat heating
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of a dry atmosphere. This appendix addresses Lamb’s problem in a moist atmosphere

following injection of heat, mass, and moisture of arbitrary geometry.

The vertical adjustment of a moist atmosphere to injection of mass, heat, and

momentum is studied via a horizontally homogeneous, compressible, moist set of

equations in which the liquid and ice phases as well as the multi-velocity nature of the

fluid are ignored. Linearizing the moist equations of Bannon (2002) about an isothermal,

dry, resting atmosphere yields the equations governing the perturbations,

∂w ¢
∂ t

  =  - 1
rs

 ∂ p ¢
∂z

  -  g r ¢
rs

  +  w , (C.1a)

 
∂r ¢
∂ t

  +  ∂

∂z
rs w   =  rph  +  rco  , (C.1b)

 
∂q  ¢
∂ t

  +  w d qs
dz   =  qs 

cv g Ts
 q  +  b q s

rs
 rph  , (C.1c)

 
p ¢
g ps

  =  r ¢
rs

  +  q ¢
qs

   , (C.1d)

where most variable have the same meaning as in section 2.1 except the moist air density

is r  =  ra (1 + r)  where ra is the dry air density, r is mixing ratio, g = cp / cv is the ratio

of specific heats for dry air, q  is the virtual potential temperature,b =1/ge - 1 is a

parameter of the heating due to the introduction of mass through phase change rph  , rco

represents mass redistribution by convective motions, q  is an external heating rate, and

w  is an injection of vertical velocity. The form of (C.1) is very similar to the horizontally

homogeneous limit of the dry set (2.1). The only significant differences are that 1) the

density and potential temperature are redefined, and 2) the injection of moisture is
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explicitly coupled to an injection of heat representing condensational warming or

evaporational cooling

As in section 2.1, it is convenient to introduce the mass-weighted field variable

transformation (2.3). The transformed injections are

W  =  rs1/2 w  ,   Rph  =  rs-1/2 rph  ,   Rco  =  rs-1/2 rco  ,  

 S  =  rs1/2

Cv m g Ts
 q   .

(C.2)

We now seek the steady-state solution to the nonhomogeneous system (C.1). The

statement of potential vorticity conservation for this system is

∂ Q
∂ t

  =  g  ∂

∂z
  -  1

2 Hs
 S   -  Ns2 Rco

+  b g  ∂

∂z
  -  1

2 Hs
  -  Ns2  Rph   ,

(C.3)

where mass-weighted PV (section 4.2) is defined here as

Q  = g ∂

∂z
  -  1

2 Hs
 S  -  Ns2 R   . (C.4)

In the one-dimensional Lamb’s problem, the injection of momentum does not generate a

PV anomaly. Integrating (C.2) over all time and using the hydrostatic and geostrophic

relations yields an equation governing the steady-state pressure,

d2

d z2
  -  1

4 Hs2
 Pf   =    ∂

∂z
  -  1

2 Hs
 S dt

0

•

   -  Ns2 Rco dt
0

•

 

 +  b g  ∂

∂z
  -  1

2 Hs
  -  Ns2  Rph dt

0

•

      .

(C.5)

The Green’s function of (C.5) satisfies
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d2

d z2
  -  1

4 Hs2
 gf z | z0    =  d z - z0    . (C.6)

The steady-state response to a generalized nonhomogeneous term on the right hand side

of (C.5) of the form sz is

Pf z   =  gf z | z0  sz z0  d z0
0

•

  . (C.7)

If we require that the steady state pressure field be bounded at z Æ •  and that w = 0 at z

= 0  , i.e.

d
d z  +  G  Pf  =  0   at  z = 0  , (C.8)

then the Green’s function is

gf z | z0   =  - Hs exp - z  -  z0
2 Hs

   -   Hs
k g  exp - z  +  z0

2 Hs
 . (C.9)

The second term in (C.9) represents the direct effect of the lower boundary at z = 0. If we

replace the rigid lower boundary condition with a boundedness condition at z Æ -•   then

we retrieve only the first term in (C.9). Suppose the time-integrated injection is given by

c dt
0

•

   =  Fc z     . (C.10)

Note that (C.10) isolates the vertical structure of the injection. Then we may generalize

the solution (C.7) as

Pf z   =  Kc z | z0  Fc z0  d z0
0

•

  , (C.11)
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where Kc (z | z0 ) is the kernel function for an external injection of the quantity c whose

time integrated vertical structure is given by Fc  . These kernel functions are determined

using (C.9)), the form of the operators acting on the injections in (C.5) , as well as the

requirement that the injection be zero on the boundary:

Kq z | z0   =  g H z  -  z0  exp - z  -  z0
2 Hs

  , (C.12a)
 

Kco z | z0   =  g  k  exp - z  -  z0
2 Hs

   +  g
g
 exp - z  +  z0

2 Hs
  , (C.12b)

 
Kph z | z0   =  b Kq z | z0   +  Kco z | z0    . (C.12c)

The second term in (C.12b) represents the effect of the lower boundary on the

acoustically adjusted state (AAS) following a mass injection. No such term exists in

(C.12a) because the AAS is insensitive to the existence of a lower boundary when forced

by heating. The simple reason for this is that a heating cannot change the total weight of

the fluid column in this one-dimensional adjustment problem. Similarly, the solution

(C.12) indicates that no pressure perturbation may develop beneath an injection of heat,

the reason for which is that the hydrostatic pressure perturbation is directly proportional

to the change in the total column mass. Similarly, a change in pressure may be induced

beneath a mass injection if and only if the mass injection does not conserve the total

column mass.

Figure C.1 presents some examples of the steady-state solution (C.12) following

injection of heat, “dry” mass, and moisture. The net vertical displacement x = Dz (t Æ•)

is computed in a manner similar to (3.2) . The first row of solutions in Fig C.1 represents

the response to a top-hat injection of depth 5 km elevated 2 km above the lower
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boundary. The response to each injection type is a positive pressure perturbation and a

net upward expansion of the disturbed region with maximum displacement aloft. The

maximum pressure perturbation following the heat injection is located at the top of the

heating, whereas that following a mass injection is located on the lower boundary. As

discussed above, the increase in the total weight of the column following the mass

injection contributes significantly to the steady state pressure. Furthermore, the heat

injection induces only net upward expansion with minimum at the bottom and maximum

at the top of the disturbed region. In contrast, the mass injection induces some sinking at

the bottom of the disturbed region. The response to injection of moisture incorporates

features of the response to both mass and heat injection

The second row of solutions in Fig C.1 represents the response to a sinusoidal

injection that is positive aloft and negative below. The steady state response is of smaller

magnitude than that which followed the top-hat injection. Because the sinusoidal mass

injection does not change the total weight of the column there is no surface pressure

perturbation in the steady state. The pressure perturbation following the heat injection is

negative with maximum amplitude in the center of the disturbed region - a much different

profile than that following the top-hat heating. Net sinking occurs within the disturbed

region with slighter sinking (rising) aloft following the heat (mass) injection. Unlike the

net vertical displacement following a top-hat moisture injection, the response to a

sinusoidal moisture injection is of larger amplitude than either the heat or mass injection

both inside and disturbed region and aloft.
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The small set of solutions represented in Fig. C.1 demonstrates several interesting

qualities of Lamb’s adjustment. The details of the hydrostatic steady state depend

sensitively on the details of the injection. Comparison of Fig C.1b to Fig C.1e indicates

that cooling located beneath a region of warming may completely reverse the sign of the

hydrostatic pressure perturbation from positive to negative. The response to a moisture

injection, which involves both heat and mass injection, is not always a simple

combination of the response to similar mass and heat injection. In fact, it is possible (Fig.

Ce,f) for the response to the moisture injection to be of larger amplitude than that

following either a similar mass or heat injection.



Figure C.1

 
Figure!C.1: Profiles of the steady-state (b,e) pressure field, and (c,f) vertical displacement
field following injection of heat (solid lines), mass (dashed lines), and moisture (dotted
lines) of amplitude 1 K and 2.5 g/m3 whose geometry is (a) a top hat and (d) sinusoidal.



Appendix D

Transient Response of an Anelastic Atmosphere to Sources of Hydrostatic and
Geostrophic Imbalance

The purpose of this appendix is to examine the response of an anelastic

atmosphere to rapid, localized injection of heat, mass, or momentum. In chapter 2, we

produced a prototypical solution of this adjustment problem in a fully compressible

model linearized about an isothermal, resting base state. Here, we make all the same

assumptions about the linearization procedure and qualities of the injection functions, but

we also make the anelastic approximation. This approach will allow for a direct

comparison between the transient solutions in the fully compressible and anelastic

contexts.

This analysis potentially has practical, technical value. Fully compressible

dynamics are being incorporated into the latest generation of numerical models of

atmospheric flow. Although such models are ideal in a theoretical sense, they also

potentially introduce a number of practical difficulties affecting the cost of integration

and clarity of results. An anelastic model could alleviate some of these problems, but

what are the specific costs of this approximation? Do they outweigh the gains? A detailed

analysis of the consequences of this approximation on the accurate representation of such

basic dynamical processes as hydrostatic and geostrophic adjustment is required. The

analysis presented in this appendix will not answer these questions completely, but will
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supply information with which an informed decision can be made regarding the prudence

of anelastic versus fully compressible models.

The formalism describing the evolution of perturbations about an isothermal

resting base state on an f-plane, excited by external injection of heat, mass, and

momentum is described in chapter 2. We therefore skip much of the introduction, and

will proceed to describe the anelastic approximation to this model. The mass

conservation and Poisson’s relations are respectively

da 
∂ r¢
∂ t   +   ∂

∂x rs u¢  +   ∂
∂z rs w¢   =  r   , (D.1a)

q¢
qs

  =  p¢
g* ps

  -  r¢
rs

   , (D.1b)

where da is a flag denoting the anelastic approximation [= 1, compressible; = 0, anelastic]

as is g* [= g = 7/5, compressible; = 1, anelastic]. The remaining equations in the

governing set of (2.1) are unchanged by the anelastic approximation. The meaning of the

field variable transformation is also unchanged by the anelastic approximation. The

boundary condition in terms of the field variable transformation is therefore

∂
∂z  +  G* U  ,  ∂

∂z  +  G* V  , W , S, ∂
∂z  +  G* P    =  0T  , z  =  0, 2D   , (D.2)

where Eckart’s (1960) vertical expansion coefficient is generalized as

G*  ≡  1
g*

  -  12  1
Hs

  . (D.3)

The expansion coefficient G* is larger in the anelastic approximation (1/2Hs) than in the

compressible model (.214/Hs). This implies that the gradient of the anelastic pressure

field in the vicinity of the boundary is larger than in the fully compressible case. This



140

may typically be realized as a larger pressure perturbation along the boundary. In the

anelastic atmosphere, any vertical mass convergence must immediately be compensated

by horizontal mass divergence. Therefore, the mass convergence that occurs in the

vicinity of the rigid boundary may produce an exaggerated pressure perturbation to

accomplish this horizontal mass divergence. In the compressible case, the vertical mass

convergence may result in a local increase in the density field.

The diagnostic form of the anelastic continuity equation (D.1a) reduces the order

of the linear system (2.4) from fifth order in time to third order. To demonstrate this

explicitly, we may derive a single equation from (2.4) with (D.1a,b) for the evolution of

the pressure field,

L ∂P
∂t   =  Mc Fc∑

c = S, U, V , W , R
, (D.4)

where

L  =  1
c*

2
 da 

∂2

∂t2
  +   f2   -  c*

2 k2   ∂2

∂t2
  +  Ns2    - ∂2

∂t2
  +   f2   ∂2

∂z 2
  - G  *2    ,(D.5a)

 
MS  =   ∂2

∂t2
  +   f2  d a 

∂2

∂t2
  +   Ns2    -  g ∂

∂z   -  G*
2    , (D.5b)

 
MU  =  - i k  ∂2

∂t2
  +   Ns2  ∂

∂t      , (D.5c)

 
MV  =   - i f k ∂2

∂t2
  +   Ns2     , (D.5d)

 
MR =    ∂2

∂t2
  +   Ns2  ∂2

∂t2
  +   f 2    , (D.5e)

 
MW =  -  ∂2

∂t2
  +   f 2   ∂

∂z   -  G*   ∂
∂t    , (D.5f)
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and c*
2 = g* R Ts .We could have just as well formulated the problem of chapter 2 in this

manner to solve for the pressure field subject to the injections. However, in this approach

the retrieval of the other fields from the pressure field is a difficult task. It is much

simpler to solve for the structure of the solution state vector via the eigenvector approach.

Such an approach is possible in the anelastic case when the system is written in terms of

the tendency of horizontal divergence, vertical vorticity, and potential temperature.

Nonetheless, we proceed with the solution of (D.4) subject to the initial and boundary

conditions (D.2) and (D.3) because it provides the most convenient framework for

comparing the anelastic to the fully compressible solution. An analogy to the structure of

the homogeneous solution state vector in the fully compressible case is made in order to

determine the structure of homogeneous solution state vector in the anelastic case.

Consider the properties of the homogeneous solutions of (D.4). We seek a

separable solution to the vertically and temporally dependent Fourier modes, e.g.

P (z , t )  =  f (z) h ( t )   . (D.6)

Here and subsequently we have dropped the notation that explicitly indicates dependence

on the parameter k of the Fourier transform. Substituting (D.6) into the homogeneous

form of (D.4), we obtain the vertical and temporal structure equations,

f ¢¢(z)  +   m 2 f (z)  =  0   , (D.7a)
 

da h¢¢¢¢(t)  +   a  h ¢¢(t)  +   b  h (t)  =  0   , (D.7b)

where

a  =     c*
2  k2 + da f2   + c*

2  G*
2   +  m 2   +  da Ns2     ,  

 
b  = c*

2  f 2 G*
2   +  m 2   + Ns2 cs2k2  + da f2      .

(D.8)
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Equation (D.7a) is identical to (2.11a). The structure equations are related by a vertical

decay scale, m. As in chapter 2, section 2, we identify equation (D.7a) with prescribed

boundary conditions as a Sturm-Liouville boundary-value problem. The set of all

solutions to the Sturm-Liouville problem is an orthogonal basis set for all piecewise

continuous functions between the boundary points. The homogeneous solution to (D.4)

may therefore be expressed as a linear combination of these basis functions. If we impose

the finite atmosphere boundary condition (D.3), then the vertical basis functions are,

f0 , f1 , f2 , f3 , ...   ;
 

f0  =  e- m z where m = G*  ,   
fn  =  m cos m z    -  G* sin m z    where   m = n p

2 D   .
(D.9a)

The set (D.9a) is identical to the set (2.11a) except for the definition of the expansion

coefficient G*, as explained above. Each of the functions in (D.9a) has a corresponding

temporal structure, h(t), which is a general solution to the temporal structure equation

(D.7b). The corresponding set of temporal structure functions is

h0, h1 , h2 , h3 , ...   ;
 

hn  =  C1  +  C2 e-i wa t   + C3 ei wa t  + da C4 e-i wb t   + C5 ei wb t  , (D.9b)

where the coefficients Ci have the same meaning as in (2.19) and are determined by

initial conditions, and wa and wb are the high and low positive roots, respectively, of the

dispersion relation

wa ,  b
2    =   12  a   ±   a2  -  4 b   . (D.10)

The higher root wa is characteristic of an acoustic wave and the lower root wb is

characteristic of a buoyancy wave. In the anelastic approximation only the lower root

exists. The frequency given by w0  with the corresponding vertical structure function f0
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defines the Lamb wave, which is absent in the anelastic approximation. The anelastic

approximation therefore completely filters acoustic waves from the solution.

Furthermore, the anelastic approximation affects the frequency of buoyancy waves

(particularly at high frequency).

The structure of the other fields are related to the pressure field by the set

∂2

∂t2
  +   f2  U  =  i k ∂P

∂t   +   ∂FU
∂t   +   f FV   , (D.11a)

 
∂2

∂t2
  +   f2  V  =  -i k f P  +   ∂FV

∂t   -  f FU   , (D.11b)

 
∂2

∂t2
  +   Ns2  W   =  - ∂

∂z   +   G*  ∂P
∂t   +   ∂Fw

∂t   +   g Fs   , (D.11c)

 
∂2

∂t2
  +   Ns2  S  =  Ns2

g  ∂
∂z   +   G*  P  +   ∂FS

∂t   -  Ns2

g  FW   . (D.11d)

In (D.11), the pressure terms are considered nonhomogeneous forcings in addition to the

injection terms. The homogeneous solutions to (D.11a,b) and (D.11c,d) are pure inertial

oscillations arising from the Coriolis and buoyancy forces, respectively. However, the

initial conditions (D.2) imply that the general solution to (D.11) includes only the

particular part. If we consider solutions to the homogeneous system (2.1) with (D.1), then

the solution is only comprised of the particular solution corresponding to the

nonhomogeneous pressure term. The homogeneous solutions for U and V are therefore

described by the same set of vertical basis functions as P  but those for S and W are

described by a new set of basis functions that are identically zero on the lower boundary

as in (2.12b),

g1 , g2 , g3 , ...
gn  =  d

d z   +   G*  fn  =  - m 2  +   G  *2 sin m z    where   m = n p
2D   .

(D.12)
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The anelastic approximation does not affect the structure of the individual modes

describing the vertical velocity and entropy fields (D.12).

For the compressible case, the structure of the homogeneous solution implied by

(D.11) must be the same as that given by the eigenvalue-eigenvector procedure in (2.19).

Because the system (D.11) is of the same general form for the anelastic approximation,

we conclude that the structure of the buoyancy-wave and steady classes must resemble

that in the compressible atmosphere. We may therefore generalize the homogeneous

solution state vector (2.19) to include the anelastic approximation:

cn  =  
 

0 -k wa
f2  -  wa2

k wa
f2  -  wa2

-k wb
f2  -  wb

2
k wb

f2  -  wb
2

i k 
f

i k f
f2  -  wa2

i k f
f2  -  wa2

i k f
f2  -  wb

2
i k f

f2  -  wb
2

0 i wa
Ns2  -  wa2

-i wa
Ns2  -  wa2

i wb
Ns2  -  wb

2
-i wb

Ns2  -  wb
2

1
g

k / Hs
Ns2  -  wa2

k / Hs
Ns2  -  wa2

k / Hs
Ns2  -  wb

2
k / Hs

Ns2  -  wb
2

1 1 1 1 1 n

 

C1

da  C2 e-i wa t

da  C3 ei wa t

C4 e-i wb t

C5 ei wb t n

 .

(D.13)

The solution state vector cn  is defined in chapter 2. In summary, the effect of the

anelastic approximation on the homogeneous solution is 1) elimination of the acoustic

and Lamb waves from the solution, 2) an increase in the magnitude of the vertical

expansion coefficient, and 3) a decrease in the frequency of high frequency buoyancy

waves.

Next, we consider solution of the nonhomogeneous system (2.4). In the general

context of this appendix, the system takes the form
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d
d t 

Un
Vn
Wn
Sn
dPn

  +   An cn  =  Fn   , (D.14)

where

 
An  =  

 
0 -f 0 0 i k

f 0 0 0 0

0 0 0 -g 1

0 0 k
Hs

0 0

i k c*
2 0 - c*

2 m2+  G*
2 0 0

   ,

(D.15)

and Fn  has the same meaning as in chapter 2 except in the anelastic approximation the

pressure injection does not contain a contribution from the heating, P  = c*
2 R  +  d  S   .

Let us consider the Green’s function solution of (D.14) where Fn  =  Fn d t  and d(t) is

the Dirac delta function. In the fully compressible atmosphere we obtain the solution

presented in chapter 3, section 3 and appendix A. The anelastic solution is not as

straightforward. Because the mass conservation equation is diagnostic, we are unable to

assume that the fields are bounded at t = 0. Rather, the instantaneous injection of mass

must be accompanied by an instantaneous mass divergence, according to (D.1a). We are

therefore unable to assume that the integral of An cn   about an infinitesimal region

containing t = 0 is zero.

Alternatively, we turn to the nonhomogeneous form of the pressure tendency

equation (D.4). In the same manner as before, we expand the injection terms about the
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vertical basis functions. The injection term acting on the n-th basis function has the

general form

Mn ,c Fn,  c    =  mn ,  c (t)  , (D.16)

where mn,c is depends on the injection type and geometry. The equation governing the

evolution of the n-th contribution to the pressure field is

1
c*

2
 da d2

dt2
  +   f2   +   c*

2 k2   d2

dt2
  +  Ns2    +   d2

dt2
  +   f2   m 2  +  G  *2  dP n(t)

d t    = 

   mn ,  c (t)   .
(D.17)

Because mn,c is a complicated function of the injection mechanism (D.5), it is most

convenient to solve (D.17) via a Laplace transform, e.g.

LT  f ( t )   =  fn (n )  =  f (t) e- n t dt
0

•

   ,

 

LT
-1  fn( n )   =  f ( t )  =  1

2 p i fn(n) e n t dn
c - i •

c + i •

  .

(D.18)

We now seek the temporal Green’s function solution Pn for which the nonhomogeneous

term in (C.17) is a function of higher order delta functions according to (D.5), which we

denote mn , c (t) . As in chapter 3, section 3, it may be shown that the solution

corresponding to an arbitrary temporal injection st is related to the Green’s function via

the convolution:

Pn (t)  =   Pn (t  -  t ¢) st (t ¢) dt ¢
0

t

     . (D.19)

The Laplace transformed solution for the Green’s function for the fully compressible

solution is given by
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 Pn
n(n)   =   c*

2 mn
n (n)

n  n2  +   wa2  n2 +  wb
2 

  ,    n  ≥ 1

 

   P0
n(n)   =   c*

2 m0
n (n)

n  n2  +   w0
2   n2  +  Ns2 

  ,    n  = 0  ,

(D.20a) 

and for the anelastic approximation is

 Pn
n(n)   =   c*

2 mn
n (n)

a  n  n2 +  wb
2 

  ,    n  ≥ 1

 

   P0
n(n)   =   c*

2 m0
n (n)

a n   n2  +   Ns2
  ,    n  = 0  .

(D.20b) 

The denominator of the solution (D.20a) indicates three potential sources of the solution:

a n = 0 source corresponding to the steady state, a n = iwa source corresponding to an

acoustic wave, and a n = iwb source corresponding to a buoyancy wave. For the Lamb

moden = iNs is not a source; the function in the numerator is proportional to this term.

These are precisely the eigenvalues we found in chapter 2, section 2. [Note: The function

in the numerator does not contain any singularities]. The acoustic-wave class is, once

again, filtered from the anelastic solution (D.20b). The inverse transform of (D.20)

indicates that the Green’s function resembles a solution to the homogeneous system,

Pn(t)  =  An  +  da Bn cos wa t   +   Cn sin wa t  
   +   Dn cos wb t   +   En sin wb t      , (D.21)

where the coefficients are provided in table D1. It may be shown that the solution for the

fully compressible atmosphere is identical to that obtained in section 2.3 and appendix A.

Consider a heat injection of the form (3.1) with geometry and duration the same

as that applied in section 3.2.1 (i.e. dg = 1km, d = 5 km, a = 2 km, t Æ 0 ). The anelastic

response to this cumulus-scale heating is compared to the fully compressible solution of
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section 3.2.1. The largest difference is apparent during the acoustic stage (Fig. D.1). The

initial anelastic pressure field is of considerably smaller amplitude (approximately 21

mb) than that generated in the fully compressible model (see Fig. 3.3).  The filtering of

the acoustic waves results in a smooth relaxation of the pressure field by the buoyancy

waves during the first several minutes following the heating. The buoyancy-wave

response in the anelastic model is compared to that in the compressible model by

examining the evolution of the potential temperature field (Fig. D.2). The remarkable

similarity between these models indicates that the anelastic model approximates the

shape and speed of the nonhydrostatic buoyancy-wave adjustment quite well, with slight

differences appearing in the wave amplitude.



Table D.1

Table!D.1:  Coefficients of the Green’s function solution for the field variable
transformation of pressure subject to injections of heat, mass, and momentum. To obtain
the coefficients of the Lamb mode, let m = iG and Dn = En = 0. When the anelastic
approximation is used, a- = -1 , a1 = a2 = a . When the model is compressible, a- = 1, a1

= wb
2 - wa

2 , a2 = wa
2 .

injection         steady state                           acoustic                                buoyancy
type

S An  =  da f2 Ns2  sn  +   g f2 m 2 +  G*
2  sn

a2 wb
2

Bn  =  f 2 - wa2  Ns2  -  wa2  sn  +  g  m 2 + G 2  sn

wa2 wa2  -  wb
2

 
Cn  =  0

Dn  =  f 2 - wb
2  da Ns2  -  wb

2  sn  +  g  m 2 + G*
2  sn

wb
2 a1

 a-

 
En  =  0

U An  =  0 Bn  = 0
 

Cn  =   i k Ns2  -  wa2  sn

wa wb
2  -  wa2

Dn  = 0
 

En  =   i k Ns2  -  wb
2  sn

wb a1

V An  = - i k f  Ns2 sn

a2 wb
2

 a- Bn  =  i k f   Ns2  -  wa2  sn

wa2 wa2  -  wb
2

 
Cn  =  0

Dn  =  i k f   Ns2  -  wb
2  sn

wb
2 a1

 
En  =  0

W An  =  0 Bn  = 0
 

Cn  =   f 2  -  wa2  m 2 + G 2  sn

wa wb
2  -  wa2

Dn  = 0
 

En  =  - f 2  -  wb
2  m 2 + G*

2  sn
wb  a1

 a-

R An  =  f
2 Ns2 sn

a2 wb
2 Bn  =  f 2  -  wa2  Ns2  -  wa2  sn

wa2 wa2  -  wb
2

 
Cn  =  0

Dn  =  f 2  -  wb
2  Ns2  -  wb

2  sn

wb
2 a1

 a-

 
En  =  0
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Figure!D.1

Figure!D.1: Temporal cross section of the anelastic pressure field at x = 0 as a function
of height z and time t following an impulsive injection of heat of amplitude 1 K. The
contour interval is 1 Pa.
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Figure D.2

 ! 
Figure D.2: Temporal cross section of the potential temperature field at x = 0 km as a
function of height z and time t following an impulsive heating in (a) a fully compressible
atmosphere and (b) an anelastic atmosphere. The contour interval is .025 K for |q¢| < .1
K and .1 K otherwise.
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