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ABSTRACT 

Functional additively manufactured parts necessitate variable material properties such as 

conduction or insulation, stiffness or compliance, or a range of any material response. This 

range of material responses can be achieved by using multiple materials, mixing materials, or 

as will be shown in this work, by controllably varying the properties of a particulate filled 

polymer matrix composite material via electromagnetic processing conditions. Past 

experimental and computational research has shown that, in this fashion, for a fixed pairing 

of matrix and filler, composite material properties can be tailored not only by changing the 

constituents’ volume fractions, but also by manipulating the microarchitecture that the filler 

materials self-organize into during the processing event. Organization occurs because 

applying external electric and magnetic fields causes particles to orient and align themselves 

as they react both to the external applied field and the stray fields of other nearby particles. 

These distinct distributions of particles affect the composite’s material properties in all 

domains including elastic, magnetic, and dielectric. Having this range of material properties 

available within a single print is crucial for the development of a universal 3-D printer. This 

work will establish the previously undetermined relationship between processing parameters 

and effective properties to optimize the constituent set for the largest range of possible 

properties, building a framework for materials design applications. 

Consequently, it is of particular interest to materials design to understand the relationship 

between the applied field and the resulting microarchitectures and thereby the resulting 

effective properties. This dissertation focuses on the key components to creating a framework 

that predicts those composite properties from processing parameters and constituent sets, and 

determines the processing parameters for a desired set of material properties (the inverse 
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problem). This identification of required processing parameters will be done by investigating 

the established homogenization techniques and their limits, developing a computational 

homogenization scheme, and incorporating modeling methods into optimization and data 

science structures, all to investigate the processing – constituent design space. 

In this work, particle dynamics simulations will form the basis for computational 

modeling methods by determining the particle microarchitectures formed from coupled 

electric and magnetic processing fields. This simulation will  create the representative 

volume element (RVE), which with proper boundary conditions and sufficient size, will yield 

bulk material properties (magnetic, elastic, and dielectric) via computational homogenization 

using  finite element analysis (FEA). With an established pathway from processing 

parameters to composite properties, the system can be optimized for the maximum and 

minimum properties and find the widest range possible, for any given set of constituents. 

With data collected, from experiments, computational simulations, and analytical modeling,  

data science techniques including regressions can be trained to augment the homogenization, 

and to solve the inverse problem of determining processing parameters for a selected material 

property. 

This work shows the path from processing parameters to effective properties and trains a 

model to effectively predict properties for use with an optimization scheme. The multi-

objective optimization scheme presented here finds the constituent set for which the 

combined range of elastic, magnetic, and dielectric properties is largest. Finally, the trained 

model is used to further explore the design space, generate Pareto fronts, and address the 

inverse problem by determining the processing parameters that would achieve desired 

properties. It was shown that the volume fraction determines the possible ranges and 
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tradeoffs between properties. The relative strength and directions of externally applied 

processing fields where shown to be critical for structures formed and therefore also resulting 

effective properties. It was determined that for use with optimization or materials design 

applications data science techniques are crucial for predicting system behavior for the 

feasibility of exploring the design space. This work presents the developed framework that 

models structures, determines properties, predicts composite behavior within the design 

space, and optimizes the constituent sets.  
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CHAPTER 1: Introduction 

1.1 Overview 

Additive manufacturing (AM), which can be classified into seven general categories as laid out 

by ASTM52900:201 [1] (see Figure 1-1), allows for the manufacturing of parts with complex 

functionality derived from incorporation of multiple materials in a single print. In response to 

growing demand for functional AM, materials providing a range of functionalities have been 

used concurrently within a single print to serve an array of applications. These methods include 

composite inks or filaments with additives to promote electrical conductivity, strength, ductility, 

magnetic permeability, or dielectric responses and more [2]–[7]. Here, the base material is 

enhanced with filler materials, producing a composite whose functional properties are tailored to 

the desired application. 

Of the seven types of additive manufacturing some lend themselves to printing multiple 

materials by using multiple nozzles[8]–[10], or nozzles specially designed for mixing feed 

materials [11], to selectively deposit material with desired properties on the 

part at desired locations. This includes material extrusion[8]–[11], material jetting[12], [13], 

powder bed fusion[2], [14], [15], and directed energy deposition for metals[2], [16]. Another 

method, vat photopolymerization, proves more challenging in terms of multi-material 

printing because there is a risk for cross contamination of materials, slowing down the process in 

the cases where it has been adapted to allow for switching between materials[2], [7], [17]. Sheet 

lamination and binder jetting are limited in the functionality of the final part due to compatible 

material limitations [2], [7]. 
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In contrast to these discrete source material printing methods, another approach to achieving 

multi-material properties in a monolithic print has been to process composite materials as they 

are printed in order to alter the material’s internal microarchitecture and thereby control bulk 

properties at the point of deposition [18]. Additive manufacturing methods such as material 

extrusion and material jetting, which have been popular methods for depositing composite 

materials that contain fiber or particle fillers[2], are amenable to such composite processing. For 

example, using these composite material approaches, curable magnetorheological fluids have 

been printed by Kokkinis et al. in the presence of a magnetic field to locally alter the material 

properties of the source material, achieving distinct changes in material properties with the same 

source material through changes in processing alone [18]. The ability to use a single set of 

constituents while still achieving multi-material properties within a print would be a clear 

advance in the additive manufacturing field.  

 

Figure 1-1: Categories of additive manufacturing as defined by ASTM52900:201 [1] with pros 
and cons of each method [2] 

 



3 

 

Consequently, this thesis proposes the development and validation of an optimization 

framework that utilizes the science underlying electromagnetic field processing of polymer 

matrix composites to investigate how a range of processing conditions applied to a fixed set of 

constituents affect the microarchitectures formed, and ultimately the material properties of the 

resulting composite. Electromagnetic field manipulation is chosen given its proven ability to 

direct particle responses [19]–[22], discussed further in Section 1.2.2. Moreover, the framework 

seeks to determine the widest range of resulting properties that can be achieved, for a particular 

particle-matrix material pairing, by varying this processing alone. Determining the set of 

constituents, which through processing alone yields the widest range of properties across 

thermal, mechanical, dielectric, etc., would prove an expensive, time consuming endeavor. 

Historically, effective material property prediction methods have arisen to fill this need, 

providing estimates of material response via knowledge of the constituents' properties and of the 

constituents' composite microarchitecture. This is done either via traditional effective medium 

theory or via homogenization techniques. Effective medium theory started by looking at various 

filler shapes and orientations for dilute systems and was later expanded to include some particle-

particle interactions but was limited in its ability to consider long range order. Homogenization 

took on this challenge by including distribution functions for particle shape and orientation in an 

RVE for shape effects, the interactions of particles within an RVE,  for short range effects, and 

consideration for periodic RVE's for interactions on a long range scale [23]. These models 

consider specific simplified shapes and are limited by the ability to describe the distribution 

analytically. Computational homogenization allows for shape diversity and any distribution of 

filler material as well as the ability to integrate processing parameters independent variables to 

establish the relationship to processing dependent effective properties [24]–[26]. 
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The methods developed can form the scientific basis for a universal printer by determining 

the processing conditions, for a given constituent set, that can provide the widest range of 

properties by varying processing alone. This can be accomplished using computational 

homogenization in conjunction with an optimization scheme such as gradient based optimization 

which is an efficient algorithm in systems with low degrees of non-linearity such as this. 

Additionally, Artificial Intelligence and Machine Learning play an integral role in the efficiency 

and reducing computational cost of searching this design space. A framework that links 

processing conditions and composite constituents to effective properties is critical in materials 

design research. 

1.2 Literature Survey 

1.2.1 Motivation: Multi-Material Additive Manufacturing 

Multi-material printing has been investigated and realized in two main ways: altering the source 

materials or altering the material processing environment [2], [18], [27], [28]. Commercially 

available printers with multiple material wells or reels are commonly used to switch materials 

during printing[8]–[10]. Alternatively processing conditions can be changed to alter the 

properties of the material itself, such as by changing the way the layers are built up [27] or by 

organizing filler material within composites[18], [28]. Both techniques can achieve functional 

prints with variable material properties but vary in process complexity. 

Different additive manufacturing techniques require different approaches to printing with 

multiple materials. Vat polymerization, for example, is potentially least suited to the task but has 

been adapted to allow for material changes during printing. The risk when switching between 

material wells is cross contamination of base materials and therefor slow manufacturing speeds 

when changing between materials during a print [2], [7]. Material extrusion methods are 
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frequently used to print with multiple materials with several commercially available multi-

material printers [8]–[10]. Custom printers have also been developed to combine multiple 

printing techniques to expand on multi-material printing options [29]. Given these challenges, 

adaptations to allow for localized material property control have been made to several printing 

methods, presented here, to improve the functionality possible with AM parts. 

In addition to printing monolithic parts containing segregated regions with different 

materials, vat photopolymerization has been used to fabricate traditional composite materials, a 

popular approach to improve on the mechanical properties of materials using well distributed 

inclusions. Vat photopolymerization offers better resolution in prints as compared to extrusion 

based methods that are limited by nozzle size and can be an excellent choice for precision prints 

and incorporating filler materials. Sano et al. have used Stereolithography (SLA), otherwise 

known as vat photopolymerization, to print fiber reinforced polymer composites to improve the 

tensile strength and modulus of the base polymer [4]. A Nobel 1.0 SLA printer was used with 

UV-cure epoxy resin containing glass powder ranging from 5-50 wt% or fibers added at 1wt% to 

demonstrate the improvements possible with composite materials in SLA printing. The 

distribution of the glass fibers was shown to be poor, with the majority of the fibers in the first 

layer but showed 7.2 and 11.5 times the strength and modulus, respectively. The glass powder 

was uniformly distributed, an advantage in using powder over fibers. However, the increase in 

strength and modulus at 50wt% were 2.1 and 6.4 times, respectively, over the resin, 2.6 times 

less than the fiber composite for higher filler content. The shape and distribution of the filler 

clearly play an important role in the resulting mechanical properties and print quality of such a 

composite. Alternatively, adding multiple feed materials requires additional modification 

including the use of multiple vats of resin. When moving a print to a new vat of feed material, it 



6 

 

needs to be cleaned to remove uncured remnants of the previous material [7]. This cleaning 

needs to happen each time the print is transferred between the various base material vats, a time 

consuming process. Zhou et al. have developed a method to reduce the surface area exposed to 

the resin that needs to be cleaned off before switching basins to improve on transition time to 

address this concern. Even this technique though still requires cleaning between switches that 

remains the bottleneck [30]. 

 Material extrusion techniques avoid the concerns for cross contamination of vat 

photopolymerization material wells by selectively depositing the material onto the print platform, 

while still being able to be used to print composites [2]. Multiple materials can easily be 

extruded through separate nozzles to build up a multi-material print. Khondoker et al. [11] 

proposed a bi-extruder capable of extruding two materials through the same nozzle with a static 

inter-mixer, also helping with bonding of the two materials (see Figure 1-2). 

 
Figure 1-2: Bi-extruder for FDM multi-material additive manufacturing a) exploded view of the 
bi-extruder, b) full assembly of the custom bi-extruder, c-i) CAD model of the inter-mixer, c-ii) 
fabricated inter-mixer, c-iii) inter-mixer assembled into bi-extruder channel [2], [11] 
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Nassar et al. incorporated flexible and conductive material into a print by adapting a commercial 

printer to allow extrusion of a conductive paste during printing to create flexible electronic 

components [31]. Multifunctional prints can also be achieved by using filler materials to make 

composite prints. Gandha et al. [3] and Li et al. [32] used magnetic composite pellets to print 

bonded magnets that were post processed to align filler material for improve magnetic properties. 

Using similar techniques, multi-material prints can be achieved with powder bed fusion by 

selectively placing and fusing powder [15]. 

Printers combining multiple additive techniques have been developed such as the m4 printer 

built by Roach et al., which combines fused filament fabrication (FFF), direct ink writing (DIW), 

ink jetting, and aerosol jetting in addition to robotic pick and place functionality. The 

development of a system such as the m4 printer hopes to drive more efficient manufacture, such 

as a soft actuator that was printed in just under 3% of the time it would have with taken with 

traditional techniques, such as embedded casting of lithography, for such a component. This 

printer also enables the addition of integrated components and combined techniques such as the 

inclusion of electronic leads in a flexible print. The use of multiple materials requires 

consideration in the design for material adhesion, thermal expansion coefficient differences, and 

interface geometry, all of which can affect the quality and effective material properties of the 

print. [29] 

Functionally graded materials offer additional control over material properties by using 

single or multiple materials, placed strategically, to achieve a spectrum of tailored properties 

[33]. With this technique, structure is used to alter effective material properties via voxel-based 

models [34] or function-based models [35] to define the material distribution throughout the 

design. Recall that while multiple materials are most often used for multifunctionality, that 
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multifunctionality is predicted only on multi-material properties, properties which can be 

achieved manipulating the process-structure-property relationships of single composition 

materials instead. 

Another method to achieve multi-material response involves, tuning properties of single-

constituent platform during printing in composite materials by altering the internal structure (or 

microarchitecture) of the filler material. The effects of electric and magnetic fields, detailed 

further in Section 1.2, applied to particle suspensions have been studied extensively, showing 

particle ordering and structuring [19], [22], [36]–[38].  

Kokkinis et al. made use of this control over local properties when printing with composite 

ink. Magnetized platelets suspended in a light-sensitive resin were aligned with a permanent 

magnet during printing. Curing the resin with the presence of the magnetic field locks in the 

microarchitecture, shown in Figure 1-3. Tensile tests showed that the alignment of particles 

parallel and perpendicular to the testing direction increased the elastic modulus by 52% for the 

parallel case as compared to the perpendicular case, highlighting the anisotropy and therefore 

range of properties possible from magnetic alignment alone [18]. 
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Figure 1-3: Gradient in platelet concentration and alignment as a result of varied volume 
fraction mixes and applied magnetic field during printing of the top (I-II) and bottom (III-VI) 

layer of the structure [18] 

 

Multi-field processing , using electric and magnetic fields synergistically, of bulk, filled 

matrix materials can reduce the complexity of machine setup compared to multi-material prints 

by simplifying the constituent materials while possibly expanding the range of properties with 

continuous property control via directed assembly of microarchitecture. Previous works have 

investigated the structures formed in magnetic and electric fields and have experimentally 

classified the change in composite property as a result of these microarchitectures [21], [39]–

[43]. However, the relationship between material property and applied field(s) is yet to be 

defined. The methods developed in this proposal can form the scientific basis for a multi-

material printer by determining the processing conditions, for a given constituent set, that can 

provide the widest range of properties by varying processing alone. 

1.2.2 Processing Magneto Active Polymers to Control the Microarchitecture Within 

Material systems consisting of filler material embedded in a matrix can be structurally modified 

to change several bulk properties, including those in the mechanical, magnetic, and electric 

domains [44]–[47]. Applying external fields causes particles to form microarchitectures which 

affect the bulk properties of the composite leading to an anisotropic response. This type of 

manufacturing will use vat photopolymerization due to the need for particle mobility. The 

processing and resulting properties of these composites have been extensively studied and 

characterized, as discussed below. 

It is known that application of a static magnetic field on a ferrofluid, which is a colloidal 

suspension of ferromagnetic particles in a carrier fluid, will result in a change in the internal 
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structure. On the macro-scale, these particle-particle interactions manifest in observable surface 

instabilities [48] (see Figure 1-4) or a change in viscosity [49], [50], which forms the basis for 

magnetorheological fluids 

 
Figure 1-4: Magnetic surface instabilities a) showing field lines that are compressed and 

uncompressed due to the peaks and valleys in the surface that minimize the magnetic energy as 
compared to a planar surface b) experimental instability shown for field versus wave number 

[48] 

 

Studies have also reported that particle polymer colloids can be manipulated to form chains 

with electric or magnetic fields [19], [22], [36], [38]. Bharti et al. show the effect of 

simultaneous electric and magnetic fields on superparamagnetic particles in a polystyrene matrix 

shown in Figure 1-5, where it can be clearly seen that the direction and intensity of the fields 

with respect to each other directly affect the microarchitectures formed [19]. Furthermore, recent 

studies have reported that a combination of magnetic and electric fields during the curing process 

of composites, arranging particles in multiple dimensions, creates a hierarchy of structure that 

can contain smaller-scale independently oriented structures [37]. Freezing microarchitectures 

such as these into place by curing the matrix around the particles can create an anisotropic 

composite whose properties are determined by the constituents and their spatial and orientational 

distributions. Moreover, this organization, most clearly seen in macroscopic chaining and surface 
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instabilities, extends to smaller length scales creating electromagnetically driven hierarchical 

structures. 

 
Figure 1-5: Bright field optical micrographs of superparamagnetic microspheres, effects of 

simultaneous electric versus magnetic field of varying strengths, demonstrating the chaining is 
determined by the direction and relative intensities of the applied fields. [19] 

 

Recent experimental work has illustrated the ability of electromagnetic fields 

to drive hierarchical particle self-organization using coupled electric and magnetic fields. An 

example with parallel electric and magnetic fields is shown in Figure 1-6 a-b), where the 

platelets are stacked through the magnetic easy axis and stacks align to form longer chains in line 

with the electric field. This is in contrast to Figure 1-6 c-d) where the stacks of particles are 

aligned in a perpendicular manner to form chains in the direction of the electric field [20]. 
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Figure 1-6: a-b) SEM image showing particle chain and Barium hexaferrite (BHF) stacks 

inside the chains, respectively, for parallel applied fields and c-d) SEM image showing part of a 
chain and BHF stacks inside the chains, respectively, for perpendicular applied fields adapted 

from [20] 

 

The microarchitectures formed without a field, with a 0.5T magnetic field, and with a 0.5T 

magnetic and 4kV/mm electric field were studied experimentally by Masud et al. [37] and are 

shown in Figure 1-7. Barium hexaferrite (BHF) particles, which are geometrically anisotropic 

platelets with a magnetic easy axis (and non-zero magnetic remanence) through the thickness, 

were suspended in heat curable polydimethylsiloxane (PDMS) at 5wt%. The magnetic field 

causes platelets to orient on their magnetic easy axis [51]. Past works such as by Bharti et al. 

[19], Bharti and Velev [38], and Masud et al. [37] have shown application of an electric field to a 

colloidal suspension to cause filler particles to form chains. An electric field applied in addition 

to a magnetic field was shown to produce longer chains than the magnetic field alone [37]. 
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Figure 1-8 shows the simulation results and the correlation to experimental findings, confirming 

the longer chains in the combined field case. Simulations account for dielectrophoresis (DEP), 

repulsive, hydrodynamic, and magnetic dipole interaction forces [37]. These simulations lay the 

groundwork for accounting for complexities in microarchitecture needed for assessing composite 

material properties that traditional effective medium, described further in Section 1.3, does not. 

The increased thickness of the chains in the experimental results of the magnetic only case 

(Figure 1-7 b) is not replicated the same way in the models in Figure 1-8 a. However, in Figure 

1-8 a the magnetic field only simulations show the shorter chains that are seen experimentally as 

well in Figure 1-7 b and longer chains in the Figure 1-8 b from the combined applied electric and 

magnetic fields observed also in Figure 1-7 c experimentally. 

 
Figure 1-7: Microarchitecture of Barium Hexaferrite in PDMS (a) before the application of any 
field, (b) after the application of a magnetic field, and (c) after the application of both electric 
and magnetic fields showing the increased ordering present with one and both applied fields, 

respectively [37]  

 
Figure 1-8: Simulation result for model with 200 particles a) magnetic field only and b) magnetic 

and electric field, showing the improved chaining for the combined field case [37] 
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Several studies have characterized the anisotropy and properties of magnetic active polymer 

composites [21], [39]–[42]. Select experimental studies, such as done by Varga et al. [41], show 

the relationship between elastomeric filler volume fraction and composite properties when 

processed in an externally applied field. The moduli parallel and perpendicular to the alignment 

direction were measure across 10, 20, and 30wt% spherical carbonyl iron in PDMS matrix 

aligned in a 400mT magnetic field. The moduli were measure in and out of plane with the 

alignment which quantified the anisotropy in aligned composites. Perpendicular to the chains the 

modulus did not increase outside of the range of experimental error, however, parallel to the 

chains at 30 wt% iron content the modulus increased by 250% [41]. Despite these promising 

results of the effects of volume fraction on modulus, the effect of varying the applied fields, and 

the resulting microarchitectures, on the composite’s properties is yet to be defined quantitatively. 

Creation of the self-organized structures that lead to changes in properties stems from 

particles in a colloidal suspension responding to both DC and AC fields in the form of 

electrophoresis and dielectrophoresis, respectively. Electrophoresis caused by an applied DC 

field will move charged particles toward the oppositely charged electrode[22], [36]. Applying an 

AC field results in particle motion if the field is nonuniform, this is known as dielectrophoresis. 

The induced dipole and field gradient give rise to a dielectrophoretic (DEP) force which is 

defined as 

𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷���������⃗ = 2π𝜀𝜀1𝑅𝑅𝑅𝑅|𝐾𝐾(𝜔𝜔)|𝑟𝑟3∇𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟
2  

 
(1-1) 

where 𝜀𝜀1 is the permittivity of the particle, r is the radius of the particle, ∇𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟
2  is the gradient of 

the field squared, and K is the Clausius-Mossotti function. The Clausius-Mossotti function is 
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important to understanding self-organization with respect to AC fields because it may cause 

repulsion or attraction. The function itself is given by 

𝑅𝑅𝑅𝑅|𝐾𝐾(𝜔𝜔)| =
𝜀𝜀2 − 𝜀𝜀1
𝜀𝜀2 + 2𝜀𝜀1

+
3(𝜀𝜀1𝜎𝜎2 − 𝜀𝜀2𝜎𝜎1)

𝜏𝜏𝑀𝑀𝑀𝑀(𝜎𝜎2 + 2𝜎𝜎1)2(1 + 𝜔𝜔2𝜏𝜏𝑀𝑀𝑀𝑀2 )
 

 

(1-2) 

𝜏𝜏𝑀𝑀𝑀𝑀 =
𝜀𝜀2 + 2𝜀𝜀1
𝜎𝜎2 + 2𝜎𝜎1

 (1-3) 

where 𝜀𝜀1 is the permittivity of the matrix and 𝜎𝜎1 and 𝜎𝜎2 are the conductivities of the particle and 

matrix, respectively. As shown in equation (1-2), the strength of the interaction is governed by 

the Clausius-Mossotti factor which will vary with frequency. Results of Masud et. al. also 

highlight the importance of frequency response as seen in Figure 1-9, where field strength 

improves chaining at low frequencies. Chaining ceased at high frequencies [20]. 

 
Figure 1-9: OM/SEM of frequency versus. peak-to-peak voltage showing difference structures as 
a function of field strength and frequency where increases in electric field improves the chaining 

response at low frequency, and for higher frequency chaining does not occur [20] 
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Dipoles induced in particles in a uniform field will interact with each other and lead to 

structuring in the form of chains along field lines. The chaining force is defined as 

Fchain = −Cπ𝜀𝜀1𝑟𝑟2𝐾𝐾2𝐸𝐸2 
 

(1-4) 

where the coefficient C depends on the distance between the particles, ranging from 3 to greater 

than 103 [22], [36]. The benefit of using an AC field is the potential for precise motion control 

via manipulation of parameters such as field strength and frequency as well as avoiding any 

water electrolysis [36]. Particles of the same type always align along field lines regardless of the 

media of the colloid [22]. 

 Similarly for magnetic fields, the force on a magnetic particle with magnetization 𝑀𝑀 in an 

applied field 𝑯𝑯 is defined as 

𝐅𝐅mag = ∇EH = −𝜇𝜇0𝑀𝑀𝑀𝑀(𝑯𝑯 ∙ 𝒅𝒅) 
 

(1-5) 

where 𝒅𝒅 dipole of the particle, 𝑉𝑉 is the particle volume, 𝜇𝜇0 is the permeability of free space, and 

𝐸𝐸𝐻𝐻 is the magnetic potential energy due to the applied magnetic field [52]. The magnetic field 

experienced by any particle is the sum of the external field and the field generated at the location 

of the particle by the surrounding particles. 

Simultaneously, external magnetic and AC electric fields acting on particles can be tuned 

to control the structures and networks formed. Particles can be coerced into forming directional 

chains or 2D networks with various field configurations. Figure 1-10 shows and example of the 

networks that can be formed in a combined field case for spherical particles [19]. The various 

inputs to a system including frequency of an applied field, dielectric properties of the particles 
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and the medium, particle size, shape, and volume fraction can be used to tune structures and 

control bulk material properties [38]. 

 
Figure 1-10: Microscope image at low (a) and high (b) magnification of particle network 

formed in the presence of perpendicular electric and magnetic fields [19] 

 

 As has been shown, the application of an external field and characterization of material 

properties has been studied in the literature. The effect of some input variable like filler volume 

fraction have also been investigated. The relationship between varying fields and effective 

composite properties is understood to exist and important to materials design [53], but no 

quantitative path from processing parameters and constituents to material properties has been 

established. This crucial step will enable selection of materials and processing setup when 

manufacturing designs using multi-field processed particle composites. In an AM context, this 

will allow future part designers to assign desired spatially variable material properties (within a 

possible range) alongside part geometry, ahead of fabrication on a multi-field processing print 

platform and provide critical machine parameters for manufacturing of prints. 

1.2.3 Estimating Composite Material Properties 

Estimating properties is important for composite manufacture. Several approaches exist for 

predicting effective properties based on constituent properties. These approaches can be 

categorized into effective medium approaches that provide a closed form solution and 
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homogenization which considers particle distributions with both analytical and computational 

methods. This section will present traditional effective medium theory and contrast it to 

homogenization techniques, then close by presenting an AI approach for an additional means of 

predicting composite properties. 

1.2.3.1 Effective Medium Theories (EMT) 

Effective medium theory and micromechanics models are powerful tools in estimating the 

properties of various composites from their constituents. Several models, including Mori-Tanaka 

and Halpin Tsai, take filler shape and orientation into account but do not include effects of long 

range ordering such as stack or chains formed by the application of external fields. The 

microarchitecture formed by the applied fields therefore cannot be accounted for with these 

models. Other analytical homogenization techniques, as detailed below, have considerations for 

orientation and distribution, but still do not account for stacks and chains in these distributions 

[23]. Precisely controlling microarchitecture is a crucial component for manipulating the 

properties of multi-field processed composite materials. The following section lays out basic 

effective medium theories, highlighting their shortcomings for this project, while concluding 

with a discussion of computational homogenization and how it can address the required 

hierarchical ordering. 

Elastic Response 

Effective medium theory, often derived from micromechanics models, is a well-accepted 

method of determining bulk material properties of many types of uniformly distributed 

composites. Basic models such as the Reuss and Voigt models can be useful for determining 

bounds on properties. In these approximation simplifying assumptions are made about the 
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stresses and strains, respectively, to determine the effective modulus, 𝐸𝐸∗. In the Reuss model 

uniform stresses are assumed throughout the volume which results in 

1
E∗

=
𝑣𝑣(𝑓𝑓)

𝐸𝐸(𝑓𝑓) +
𝑣𝑣(𝑚𝑚)

𝐸𝐸(𝑚𝑚) 
 

(1-6) 

where 𝑓𝑓 represents the filler phase, 𝑚𝑚 represents the matrix phase, v is the respective volume 

fraction, and E is the Young’s Modulus of the phase. The Voigt model, in contrast, assumes 

uniform strain throughout the volume which results in 

E∗ = 𝑣𝑣(𝑓𝑓)𝐸𝐸(𝑓𝑓) + 𝑣𝑣(𝑚𝑚)𝐸𝐸(𝑚𝑚) 
 

(1-7) 

While the two equations form the upper and lower bounds on the composite’s effective 

modulus as illustrated in Figure 1-11, neither account for relative spatial ordering of the filler, 

shape of the filler, or relative orientation of the filler. 

 

Figure 1-11: Voigt and Reuss model setting upper and lower bounds, respectively, for effective 
composite properties 

 

Popular higher fidelity methods such as the Mori-Tanaka [23], [54] and Halpin-Tsai 

[55]–[57] models relate the volume fraction, constituent properties, and filler shape to the 
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effective composite properties. However they make simplifying assumptions or experimentally 

defined correlations that do not allow them to compensate for microarchitecture. In one critical 

assumption, the Mori-Tanaka model, similar to the Eshelby [58] model it is based on, assumes 

the inhomogeneities are isolated enough to not account for effects of neighboring inclusions, the 

so-called dilute approximation. This approximation is shared by several prominent models 

including Eshelby, Mori-Tanaka, and Halpin-Tsai. The Mori-Tanaka model accounts for filler 

strain separately from matrix strain when determining the average strain on the volume, while 

the Eshelby assumes the average strain is the strain on the matrix [59]. The Halpin-Tsai model, 

like both Mori-Tanaka and Eshelby, defines a representative volume looking at a single inclusion 

in a volume of matrix but has a reinforcement term that can be determined from tabulated 

equations or experimentally correlated. The reinforcement factor, on its extremum, returns the 

upper and lower bounds of the Voigt and Reuss model [55], [60]. These models are laid out in 

further detail in Section 2.2.1. 

While these methods account for complex effects of the filler properties, orientation, and/ 

shape on the mechanics, each make simplifying assumptions or experimentally defined 

correlations that do not allow them to compensate for other aspect of microarchitecture, e.g. 

relative spatial orientation or ordering of the filler. In one critical assumption, the Mori-Tanaka 

model, similar to the Eshelby model it is based on, assumes the inhomogeneities are isolated 

enough to not account for effects of neighboring inclusions, the so-called dilute approximation. 

This approximation is shared by several prominent models including Eshelby, Mori-Tanaka, and 

Halpin-Tsai. Given that difference in physical long and short range ordering are expected, these 

models will not be sufficient to accurately describes the expected microarchitectures. 

Dielectric Response 
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Similarly, models have been established to predict dielectric properties based on constituent 

properties. Approximations for relative permittivity have been developed for various filler shapes 

and orientations. The mean field approximation proposed by Maxwell Garnett [61] served as a 

basis for low volume fraction approximations, which was further developed for various shapes 

including spheres by Wagner [62], oriented ellipsoids by Sillars [63], and randomly oriented 

ellipsoids by Fricke [64], [65]. Bruggeman lays out early models by Maxwell Garnett, Lorentz-

Lorenz, Raleigh, and Wiener in addition to presenting his own extension of these models that all 

assume random spatial distribution but do account for filler shape and orientation [66]. 

Bruggeman laid out 4 criteria for his models containing fillers of any shape: 

• The composite is comprised of 2 homogenous isotropic constituents 

• All aggregates are large compared to the atoms or molecules they are made up of 

• The aggregates are randomly distributed 

• The different constituents are of the same structure (no interspersion)  

His model served as a basis for further development [67] by Böttcher [68], Polder and Van 

Santen [69], and Hsu [70] for spheres, randomly oriented ellipsoids, and oriented ellipsoids, 

respectively, and could be used to approximate higher volume fraction values by assuming the 

inclusions were surrounded by an effective medium. The details of these models are presented in 

Section 2.2.2.  

Similar to the elastic models, these effective medium approaches to dielectric 

homogenization do not have means to account for microarchitecture and are limited to randomly 

distributed fillers. 
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1.2.3.2 Homogenization 

Homogenization aims to address the limitations on effective medium theory by incorporating 

effects of particle distributions. Approaches to homogenization are either analytical or 

computational, in both cases a representative volume is used that is prescribed specific boundary 

conditions. These boundary conditions can either be specific (e.g. stresses or strains for the 

elastic domain), which necessitate a large enough volume to average the properties, or periodic, 

which effectively model a continuous solid. 

Analytic Homogenization 

Analytic homogenization techniques use particle distribution functions to account for 

non-uniform distributions. This necessarily requires the distribution function to be represented by 

an expression. 

Building off of traditional effective medium theory, Ponte-Castaneda expanded the 

Hashin-Shtrikman model to allow for separation of the spatial and shape distributions of the 

inclusions, which allows for the evaluation of non-uniformly distributed composites. This is done 

to estimate the overall moduli of composites, consisting of a matrix with one or more types of 

inclusions [71]. The separation of these two factors, the inclusion type and the distribution of 

inclusions, is done by defining a probability density function that defines the probability of an 

inclusion being centered at a point given the location of another inclusion.  

𝑳𝑳𝑐𝑐 = 𝑳𝑳0{𝑰𝑰 − 𝑐𝑐1[〈𝑨𝑨1〉−1 + 𝑐𝑐1𝑺𝑺𝑉𝑉]−1} 
 

(1-8) 

where𝑳𝑳𝑐𝑐 is the modulus tensor of the composite, 𝑐𝑐1 is the volume fraction of inclusions, 𝐿𝐿0 is the 

modulus tensor of the matrix, 𝐿𝐿1 is the modulus tensor of the inclusions, 𝑺𝑺𝑉𝑉 is the Eshelby tensor 
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(defined in detail for an ellipsoidal inclusion in Section 2.2.1) for the double cell (see Figure 

1-12), and 𝐴𝐴1is the eigenstrain concentration tensor in the inclusion defined as 

𝑨𝑨1 = −[𝑺𝑺Ω − (𝑳𝑳0 − 𝑳𝑳1)−1𝑳𝑳0]−1 
 

(1-9) 

 
Figure 1-12: Double cell model for the Ponte-Castaneda model adapted from [23] 

 
where 𝑺𝑺Ω is the Eshelby tensor for the inclusion. It can be seen in Figure 1-12 that the Mori-

Tanaka model is a special case of the double inclusion model, where the inclusion and the double 

cell have the same shape and orientation, whereas for the Ponte Castaneda-Willis (PCW) model 

the double inclusion model is modified to fix the orientation of the double cell, but the 

distribution of the inclusions is not. The effective modulus tensor of the composite is therefore 

dependent on the characterization of the shape and on the distribution function of the filler [23]. 

In order to make use of this expanded model the distributions must be known. Computational 

approaches by contrast do not require an expression for the distribution function, but a modeled 

geometry instead, which is itself the realization of the distribution function. 

Computational Homogenization 

Analytical homogenization finds the solution of constraint equations on the representative 

volume which ensures strain compatibility. Computational homogenization solves these 

equations via discretization of the volume without the need to find a closed form representation 
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of the filler distribution. Using finite element analysis (FEA) with a computer generated 

geometry allows for arbitrary shapes, size, spatial and orientational distributions, and material 

properties. 

Geometries can be generated to distribute filler randomly [72]–[75], in an ordered 

manner [75], [76] , as a result of a particle dynamics simulation [19], [26], [77], or experimental 

reconstruction [78]. Within the physics based methods there are several packing algorithms that 

consider external forces such as gravity, particle interactions/collisions, and matrix properties 

such as viscosity. These techniques have been used to model fiber reinforced composites, 

densification, or even granules in a flow [78]. For analytical homogenization, using particle 

dynamics simulations to determine the filler distributions as a result of applied electric and 

magnetic fields, it would be difficult to represent the results in distribution functions required. 

However, since the particle dynamics simulations return a specific geometry, effectively 

sampling the distribution, several iterations are required to determine a mean and standard 

deviation on the resulting material properties. 

Once a model is realized, it can be used for homogenization, which is a mathematical 

approach of estimating the response of a representative volume element (RVE) to prescribed 

loading conditions on its boundaries which themselves are considered periodic. The solution of  

the resulting boundary value problem, with respect to its loadings, take the form differential 

equations governing the response of physics-based conjugate pairs (e.g. stress and strain; electric 

field and electric displacement; temperature and heat flux, etc.). Applying one side of the pair as 

a boundary condition and enforcing the appropriate physics on the contents of the RVE, allows 

solution of the problem with respect to the conjugate, thereby providing the constitutive 
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relationship between the two. Consequently, homogenization via finite element analysis requires 

proper selection of boundary conditions. 

In the mechanical domain discrete boundary conditions assume the volume to be fixed in 

space and anchor it so that loads can be applied whereas periodic boundary conditions assume a 

continuous medium and translate the resulting stresses or strains from one face to another as if 

the element were repeated on all sides as shown in Figure 1-13. 

 
Figure 1-13: Periodic element visualization showing repeating units to represent translation of 

boundary conditions to paired faces 

 

It has been shown that the periodic boundary conditions yield more accurate results and 

converge faster [24]. The size of the RVE used is a tradeoff between accuracy and computational 

cost. Larger models require more resources to converge to a solution but yield more accurate 

results. Pahlavanpour et al. [72] performed a convergence study on the effective modulus to 

determine the minimum size of RVE needed. For large discrepancies in constituent moduli larger 

RVE’s were required for convergence. In [72] it was shown that the minimum RVE size needed 

to be 5% larger when the difference between particle and matrix modulus is increased from 

approximately 9.5 to 13 times greater. Similar considerations for boundary conditions and RVE 

size need to be made for other domains such as magnetic and dielectric [79]. 
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Kanit et al. discuss three types of boundary conditions and their effect on the effective 

moduli of the composite. The volume can be subject to kinematically uniform (imposed 

displacement), statically uniform (prescribed traction), or periodic boundary conditions. When 

the volume is small, in this work around 10 particles, the kinematic and statically uniform 

boundary conditions logically tended toward the Voigt and Reuss bounds which make similar 

assumptions about stress and strain. The periodic boundary condition showed for sufficiently 

large volume there is little fluctuation in the computed effective modulus, which is in contrast to 

the other two methods that were still converging at 100 times larger model sizes [24]. 

 
Figure 1-14: Bulk and shear modulus, respectively, versus model size comparing kinematically 

uniform, statically uniform, and periodic boundary conditions to effective medium bound 
 (Voigt and Reuss) [24] 

 

Several factors contribute to the minimum RVE size needed for accurate results, including 

particle size, shape, distribution, and the difference in material properties between the particles 

and the matrix. Several studies have looked at these factors to determine the relationship between 

effective material properties and simulation size [24], [80]. Moumen et al. found that for 

ellipsoidal particles the RVE needed to be larger than for spherical particles, also concluding that 

the models with more heterogeneities needed to be larger, for the same accuracy in effective 

composite properties [80]. 
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Analytic homogenization expanded the capabilities of traditional effective medium by 

accounting for non-uniform distributions and long range order. However these methods require 

knowing the distribution of the particles. Computational homogenization generates composite 

geometries and solves the defined boundary value problems to determine effective material 

properties. This is a delicate balance of accuracy and computational expense and is affected by 

serval factors related to the constituents and selected boundary conditions. 

1.2.3.3 Using Artificial Intelligence to Predict Conductivity 

While computational homogenization methods provide a route to predictions of bulk properties 

from simulated high fidelity solid geometries, it may be possible to generate accurate predictions 

of some properties from lower fidelity descriptions of the predicted microarchitecture, e.g. from 

discrete particle location data alone using methods derived from AI and graph theory. If possible, 

this would constitute a less computationally expensive approach to computing effective 

properties. For example, magnetic remanence of hard magnetic materials can be estimated using 

a simple sum of their magnetization vectors normalized by the total volume in which they are 

contained [81].  While this does not account for particle-particle induced interactions, it can be 

used as an approximation where those either do not occur (dilute systems) or when the 

remanence is less affected by those interactions (high coercivity). Similarly, conductivity can be 

approximated by the response of an aggregate of discrete actors within appropriate contexts. 

Near the percolation threshold conductive-filled composites transition from dielectric 

response to conductive. The phenomena has been studied in the context of conductive polymer 

composites (CPCs), which have been extensively studied with special emphasis on this 

percolation threshold. The percolation threshold is the volume fraction at which enough filler 

material is present to form conductive pathways through the composite [82]. It has been of 
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interest to minimize the filler needed to achieve percolation in transparent conductive films to 

remain transparent [83]. 

There are several approaches that have been traditionally used to determine the 

conductivity or percolation threshold of a composite. This includes Monte Carlo percolation 

threshold methods [79], [84], [85], random resistor networks [86], electrical network modeling 

[87], finite element modeling, and analytic approaches [88], [89] such as effective medium 

theory. These models, except finite element methods, typically use a random distribution of filler 

volumes and look for points of contact to form conductive pathways through a volume. In the 

case of electrical network modeling these pathways are represented in a matrix of ones and zeros 

to denote inclusions that are in direct contact. Analytic models have been developed for 

determining the percolation threshold as a function of filler geometry [89], [90], material 

properties, and filler orientations [84]. Although the effects of field oriented fillers are 

considered, the networks and microarchitectures formed are not accounted for in these models. 

Previous approaches have provided good correlation for networks of uniformly distributed filler 

composite’s percolation thresholds and subsequent conductivity estimates. 

The Monte Carlo random walk algorithm is a classic solution for finding conductive 

pathways and determining percolation [84], [85]. The method can be used to populate electric 

network matrices [79] or to simulate current flux. Rahatekar et al. used the random walks to 

move a virtual electron and average the distance it traveled in a given time. When a percolating 

path existed the electron would travel a large distance compared to those that got trapped in a 

nonconnected node [91]. 

Another approach used in previous works is constructing a minimum spanning tree such as done 

by Dussert et al. [92]. A spanning tree is defined as the minimum edge weights connecting all 
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nodes. Thus by definition,  a minimum spanning tree (MST) will only contain optimal paths. 

This can be an effective means to determining percolation, classifying the degree of connectivity, 

and providing indicating metrics such as mean edge length and standard deviation of edge 

lengths. As it does not cover multiple paths between start and end nodes, minimum spanning 

trees are not a direct model for evaluating conductivity [92]. Spanning tree models would also 

include nodes that do not contribute to the conductivity since all nodes must be connected. 

Figure 1-15 contrasts the results of a spanning tree versus all connected paths without 

loops for the same fully connected graph, where gray lines are segments that are not considered, 

black lines are segments in the MST that do not connect the two terminals, and green lines show 

paths within each graph that would contribute to conductivity. In the MST model there are 

several paths that would not contribute to conductivity that would still be used in the 

approximation as well as paths that were not found. 

 
Figure 1-15: Diagram of a simple graph with both spanning tree paths as well as all relevant non-

looping connective paths (gray lines are segments that are not considered, black lines are 
segments that do not connect the two terminals, green lines show paths within each graph that 
connect the terminals) to demonstrate the excess segments counted as well as the paths missed 

by the spanning tree that would contribute to a conductive network 
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Graph search is a category within AI that uses efficient search algorithms that do not 

require exploring the entire graph to find the shortest paths. However, including non-optimal 

paths, which would be required to represent a physics based network, does require exploring 

more of the state space (in the context of computer science, state space refers to the set of all 

possible configurations of a system, similar to a design space in engineering), and, as a result, is 

more computationally expensive. Sorting, sampling, and pruning techniques can be incorporated 

into such an algorithm [93] to improve run times and extend the size of the simulation while 

minimizing costs. 

The graph is established from a discrete distribution of particle locations within an RVE 

from particle dynamics results. Conductive pathways are found using AI search algorithms, such 

as A*, to determine the conductive network. The conductivity of the RVE can then be calculated 

by finding the effective current and using Ohm’s Law with the applied voltage as a low cost 

method of material property prediction. 

1.2.4 Optimization via Traditional Gradient Based Techniques and Data Science Modeling 

At the crux of this work is the need to determine the set of input parameters, processing 

conditions and constituent set, that produce the widest range of material properties. The problem 

is located in a large design space, which, even when reduced to recreate experimental findings 

discussed in Section 3.3,  still consists of both the strength and relative orientation of applied  

electric and magnetic fields (processing conditions) and the volume fraction of the barium 

hexaferrite filler used (constituent set).  

In terms of optimization, we first wish to find both the maximum and minimum values 

for a property for a given constituent set and set of processing conditions. This dictates the 

widest property range possible for those conditions for a given property. Next, we wish to 
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determine, among all possible constituent sets, which set yields the widest possible range (again 

by varying processing alone). The optimization problem itself relies on a complex objective, the 

characterization of properties that result from constituents-processing combinations. Similarly 

complex optimization problems have been studied using both traditional gradient-based methods 

as well artificial intelligence techniques. The following section discusses several such 

techniques. 

Multi-objective optimizations have been solved using various techniques and algorithms 

including the broad categories of gradient-based [94], [95] and evolutionary techniques  [96]–

[98]. Commonly, evolutionary techniques, specifically genetic algorithms, have been used as 

they are particularly well suited for either problems with a large number of input variables, 

combinatorial problems, or problems with complex (or not well understood) topologies. The 

more traditional genetic algorithm techniques can be inefficient when the objective function is 

computationally intensive such as when an FEM model is required [95] as will be in this work. 

In recent years, however, incorporating  machine learning to improve the efficiency of 

performance evaluation has been investigated. The remainder of this section addresses how each 

method fairs with respect to the expected multivariate, objectively complex design space of this 

work. 

While genetic algorithms continue to be popular for discontinuous or complex design 

spaces [99], gradient based methods are efficient and used for materials and electromagnetics 

optimization and design [94], [95]. A popular method to extend the capabilities of gradient based 

methods in high dimensional design spaces is the adjoint method. Hughes et al. used the adjoint 

method to compute the gradient of an objective for design of a non-linear optical switch using 

only two full-field electric field simulations [95]. Michaels et al. also used a physics based 
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objective function to run a gradient based optimization scheme, noting that the time it takes to 

compute the gradient is significant since at least 2 simulations are required [94]. However, the 

computational expense of an evolutionary technique is significantly larger, since it requires 

multiple simulations for each generation, and is possibly why gradient based methods are used 

with physics based objective functions such as those discussed here. 

Within data and computer science there are several approaches to optimizing a complex 

design space which can be classified under two categories, deterministic and stochastic. 

Deterministic approaches are reproducible when given the same starting parameters. There is no 

randomness introduced in these algorithms. A classic example of this type of approach is the hill 

climbing algorithm, recognized in an optimization context as gradient methods but applicable to 

other computer science and combinatorial problems [93]. Stochastic approaches utilize pseudo-

random numbers and will be different each time they are run. Adapting simple models, such as 

the hill climb algorithm, with stochastic approaches can help avoid finding local minima only, at 

the cost of some convergence efficiency. Often times algorithms will draw on physical 

principles, such as in simulated annealing [93], or nature for solutions to complex issues to 

introduce some randomness in each new generation to find a global minimum [98]. Stochastic 

approaches can be used in conjunction with gradient based optimization to allow for more 

exploration of a more complex design space and avoid local minima, without incurring the 

complete cost of evolutionary techniques, such as genetic algorithms. 

On the other hand, artificial intelligence approaches have been used to characterize the 

response of complex systems [100], [101], enabling the input parameters that produce optimized 

or target outcome variables to be computed. Furthermore, Wang et al. used an artificial 

intelligence scheme to generate constitutive laws for the failure of particle composites [102]. In 
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these previous examples, artificial intelligence optimization techniques have been used to both to 

predict the outcome of complex systems, and to estimate material response. Consequently, there 

is evidence that not only could artificial intelligence approaches efficiently determine the optimal 

constituent set for a given design (e.g. assist with simulation the formation of the 

microarchitectures in this project) but also relate processing parameters to effective composites 

properties.   

Material modeling, optimization, and design all require a quick computationally 

inexpensive framework for answering any number of questions and satisfying varying 

constraints for which AI solutions have been of interest. Current approaches can be viewed as 

either forward modeling or as attempting to solve the inverse problem. Regressions, neural 

networks, and policy generating algorithms have all been used in various ways to predict 

material responses such as stress-strain curves [103], [104] and composite properties for systems 

that are more complex than effective medium theory accounts for [89], [103], [105]. These 

modeling approaches are classified as forward modeling, finding properties as outputs from 

some known input parameters. In contrast, the inverse problem attempts to find a set of 

independent variables for a desired dependent variable. Current approaches to inverse problems 

train models and implement guess and check type approaches, made quicker by the model. 

Inverse problems are an open challenge in the materials design literature [106], [107]. 

Machine learning has recently been used to attempt to answer both the forward and 

inverse problems. Chapman and Ramprasad [108] have developed a machine learning model 

trained to capture the temperature dependence of mechanical properties of platinum to augment 

dynamics simulations that are costly but more capable than semi-empirical methods. This model 

was also able to capture larger scale material phenomenon which would have previously been 
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too computationally expensive to model. Mohammadzadeh et al. [109] used gene expression 

programming to develop a closed form solution for predicting the compression index of fine 

grained soils based on other parameters. The model was developed from an experimental 

database of soil parameters and used to generate surface charts to predict the compression index. 

Machine learning and optimization have also been combined to make a hybrid model that 

optimally trains the model such as the neural network trained by Abdolrasol et al. [110] using 

population based optimization algorithms. Neural networks have been used to improve run times 

for optimization problems that require many datapoints, such as genetic algorithms [96], and to 

develop constitutive laws, such as for mechanical systems that can be computationally expensive 

to solve [102], [111], [112]. There is ample evidence that artificial intelligence and machine 

learning approaches can augment more traditional gradient and evolutionary optimization 

frameworks especially in the context of large, complex, computationally intensive design spaces 

such as the problem considered in this work. 

1.2.5 Artificial Intelligence and Machine Learning Models for Defining the Design Space 

Artificial Intelligence (AI) and Machine Learning (ML), a subcategory of AI, have grown in 

popularity in recent years for various applications ranging from classic image classification [113] 

to creating art [114]. At their base ML models serve one of two primary functions, classification 

and regression. Within this there are many different models with many methods of application, 

laid out in Figure 1-16. Classification is useful for many problems such as the classic example of 

a spam mail filtering that assigns a label, such as spam or not spam to each email, or input data. 

The use of ML models within materials design requires models that are best used with 

regressions to predict system behavior in an input-output relationship, rather than assigning a 

classifier. 
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Models have also been used for materials design [106], [107]. Herein, materials design is 

defined as the determination of the parameters needed to produce a material with a set of desired 

properties. Some of the most common (Decision Tree, Gaussian Process, Support Vector 

Machine (SVM), Bayesian Networks, Neural Networks (NN), and k Nearest Neighbor (kNN))) 

have been laid out in Figure 1-16 showing a qualitative comparison of the degree of non-linearity 

and number of variables for which they are best used [106], [107], [115]–[118]. 

The independent variables for the multi-objective optimization being considered in this 

work include the constituents, of which the only variable is volume fraction, and the applied 

fields which are electric and a magnetic either parallel or perpendicular (total 4 variables) which 

all range from 0 to a maximum experimentally achievable value. This would be considered a low 

number of input variables. Furthermore, the system is expected to behave in a similar fashion to 

effective medium theories, which can largely be expressed as linear combinations of constituent 

derived parameters. Although the effective medium models cannot capture the effect of the 

structures in the field processed composites the general trend of the response is expected to be 

similar and is therefore expected to have a low degree of non-linearity. 

 
Figure 1-16: Ideal problem domains for selected data science and AI techniques (Decision Tree, 
Gaussian Process, Support Vector Machine (SVM), Bayesian Networks, Neural Networks (NN), 

k Nearest Neighbor (kNN)) 
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In the context of regressions of material properties for material science and materials 

design NN are a common choice. One common type used is the feed forward neural network 

(FFNN), which uses layers of neurons that each compute an output based on inputs received 

from the previous layer [119]. An example of these layers is shown in Figure 1-17 with dense 

layers (all nodes in a layer are connected to every node in the previous layer). These types of 

models are trained by minimizing error between the prediction and the training data points by 

adjusting the weights between the layers. Each neuron in the layer is given an activation 

function, such as those shown in Figure 1-18, that is assigned to the whole layer [120]. The 

activation function calculates an output based on this function and feeds it to the next layer 

where the weights for each output determine the sum that is the input for each neuron in that 

following layer. This continues on to the output of the network. 

 

Figure 1-17: Example of a feed forward neural network (FFNN) showing inputs on the left, a 
dense layer in the middle, outputs on the right, and an example of the weighted sum of the input 

or any node’s previous layer. 
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Figure 1-18: Examples of activation functions for use with a neural network 

 

For example, Xiong et al. used a dense layer FFNN to model the relationship between 

processing parameters and weld bead geometry. The advantage of this approach is there is no 

need for making any simplifying assumptions as with an analytic approach, and the data can be 

used to determine correlations between input and output variables. This model was trained with 

experimental data and was shown to be able to predict bead geometry well and more efficiently 

than standard regression [121]. One reason this is a more useful approach is the elimination of 

fine adjustment to the base function because the connections between nodes, when they are not 

useful, can go to 0 over time, automatically making these adjustments. Once trained models such 

as this can be used to predict manufacturing outcomes in real time and can be used in control 

loops to adjust processes. Liu et al. used a numerical model to calculate the material property of 

a functionally graded material which was fed into a NN to be used for in-situ characterization of 

material properties. The system consisted of SiC with added carbon inclusions at various volume 

fractions, which are the independent variables of the system. The model was iteratively trained 

until converged to model the actual response of the system. This method was found to be 

effective and stable in characterizing the system, even in the presence of noise [105]. 
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The efficacy of each modeling methodology is highly dependent on the problem it is 

attempting to solve. Examples of classification approaches are shown in Figure 1-19 for an SVM 

and NN used to classify a set of data. The SVM identifies the boundary that is the furthest away 

from all of the data points, whereas the NN adjust the weights of a function to classify the data in 

the training set. It is seen then that the SVM generates a different boundary from the NN, which 

in this example can be seen to be more robust against misclassification of future datapoints. It is 

therefore clear that it is necessary to consider the nature of the data when selecting the model and 

validation is crucial. 

 
Figure 1-19: Distinction between SVM method (purple box)  and Neural Network (blue box) of 
classification showing the method used to draw the decision boundary leading to a more robust 

model (better avoids misclassification) with the SVM method (adapted from [118]) 
 

 Similar to Support Vector Machines, the model can be used for regressions. Support 

Vector Regressions determine weights by trying to minimize the weight vector while staying 

with in predefined acceptable error bounds (shown in Figure 1-19 as the grey lines), and by 

extension also minimize the error, or deviation of the true data from the prediction, of the points 

that do not fall within these error bounds. However, the model does not include a penalty for 

points that fall within these acceptable error bounds. This error term is important for the quality 

of fit and is one of the hyperparameters that needs to be set. Figure 1-20 shows a comparison 

between a classic Ordinary Least Squares regression (Figure 1-20 a) that minimizes the error 
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between the points and the fit and SVR (Figure 1-20 b). As the error goes to 0 the two solutions 

converge to the same regression, demonstrated in Figure 1-21. Even though the lines of the SVR 

fit get closer to the points as the error goes to 0, there is not a concern about the fit simply 

connecting the points and overfitting the data, due to the nature of the model also minimizing the 

weights of the function. In this example, 𝑒𝑒𝑖𝑖 = (𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)2 is the value of the error at a given 

data point i used for ordinary least squares regression, which is minimized. In both models, 𝒘𝒘 is 

the vector of weights in the fit function. The SVR minimizes this weight vector and the points 

outside of the allowable error bounds by the amount that they exceed this limit, 𝜉𝜉, with another 

hyperparameter, C, that weights how important this consideration for error is. 

 
Figure 1-20: a) Ordinary Least Squares (OLS) compared to b) Support Vector Regression (SVR) 

model (for linear, quadratic and polynomial functions) showing the different approaches to 
fitting data where the OLS method attempts to minimize the squared error between the fit and the 

data, as opposed to the SVR which minimizes the weights of the regression terms within 
specified bounds. 

 



40 

 

 
 

Figure 1-21: Linear Support Vector Regression fit as the allowed error goes to 0 
 
 

 Kurtoglu and Bakbak used SVR to model the shear strength of reinforced aerated 

concrete slabs, which consists of entrapped air voids in a cement matrix. 271 experimental data 

points were used in conjunction with several base functions to determine the best 

hyperparameters for the system. The experimental data was split into a training set to fit the base 

function and testing set to evaluate the model’s performance. The radial basis function was 

determined to be most effective with a 0.931 R2 value (or correlation coefficient) [122]. This 

study showed that SVR is a simple yet effective method for predicting material properties. 

ML models assume a base function(s), or kernel, and adjust weights to fit the function to 

the system response. It is logical to conclude that the system would behave in a predictable 

manner such as described by traditional effective medium theory. This behavior should be taken 

into consideration when selecting kernels or creating custom kernels for these models. Training a 

model that provides a closed-form solution to the effective composite properties as a function of 

processing parameters would solve the materials design problem, and more important to the 

implementation of multifield processing, it would solve the inverse. Furthermore, the model can 
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be used in conjunction with a gradient based optimization, including expansion of constraints 

and objective functions, such as the lowest energy cost or volume fraction or whatever metrics 

are relevant to the specific design problem. This method maps the behavior of the system to be 

used to augment expensive computational homogenization for the implementation of this 

framework to real world additive manufacturing problems. 

Recently researchers have been combining optimization and machine learning in two 

main ways [123]. The first is using a trained model to evaluate the objective function in order to 

speed up the optimization. The second uses the optimization to effectively train the model, 

adjusting the hyperparameters of the model itself to reduce error and converge quicker [124]–

[126]. A multifidelity method is proposed by Perdikaris et al. which uses low fidelity models to 

train a model and optimize the hyperparameters which can then be used in training a more 

computationally expensive model, or experimental values, and eliminate the optimization needed 

on the hyperparameters with the added expense [127]. A smart sampling algorithm has been 

proposed by Wang et al. to evaluate the initial dataset and sample new points that perform well 

on some fitness function [128]. Similar to a genetic algorithm a set is evaluated, and a subset of 

best performers is used to determine the next set of sampling points. The selection of where to 

sample however is based on distance in the design space to the best performers. This method still 

creates a full set of data before training a machine learning model. This begins to touch on the 

basis of AI search techniques, the balance of exploring the search space to learn, and exploiting 

the knowledge gained. What has yet to be seen is the evaluation of the training quality of the 

model as the data is being generated to determine when to stop exploring the design space and 

start exploiting the model’s knowledge. 



42 

 

1.3 Research Objectives and Tasks 

In this section, a set of research tasks, serving to fulfill objectives that are in turn required to 

reach the stated goal are outlined.  In the work below, barium hexaferrite and 

polydimethylsiloxane of varying volume fraction mixtures will be used as the composite material 

system for a multifield processed additive manufacturing application to locally tune properties 

with a single constituent set by varying processing conditions alone. 

Goal:  

Develop an optimization framework that enables the prediction of the Pareto front of the widest 

range of possible elastic, magnetic, and dielectric properties (objectives)  that can be achieved by 

varying the electromagnetic field processing conditions, alone, for a given constituent set (input 

variables)  

 
Objective 1: Computationally predict composite properties as a function of processing 

parameters (applied electric and magnetic fields) and constituents by simulating the processing 

event and computationally characterizing subsequent structures formed  

Task 1.1 Improve fidelity of existing particle dynamics simulations, which model the 

electromagnetic processing event, by addressing artifacts introduced by the 

assigned minimum separation distance, particle shape-induced field magnetic and 

electric field effects (demagnetizing and depolarizing fields), and shape-induced 

hydrodynamic effects 

 

Task 1.2 Develop framework to compute effective properties (mechanical, magnetic, and 

dielectric) using computational finite element  homogenization methods performed 
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on  representative volume elements generated from  arrangements of particles 

predicted in  Task 1.1 

Task 1.3 Compute conductivity and dielectric properties from arrangement of particles 

predicted in Task 1.1  using artificial intelligence-based graph exploration 

techniques 

Task 1.4 Validate the  properties predicted in Tasks 1.2–1.3 with experimental data taken 

from the literature and experiments performed by partner labs 

Objective 2:  Computationally determine the widest range possible of the target properties that 

can be achieved by varying processing conditions (characterized by by magnetic and electric 

field strengths and orientations) alone for a fixed combination of constituents (characterized by 

particle  volume  fraction)   

Task 2.1 Create an optimization framework to conduct a line search of a constituent set to 

find the pareto front that defines the maximum and minimum properties of that 

constituent set , determined from Objective 1, as a function of processing 

conditions  

Task 2.2 Incorporate results of Task 2.1 into a gradient based optimization scheme that 

determines the Pareto front of the widest range of target properties (objective 

functions) versus processing conditions and constituents (input variables) 

Objective 3:  Develop a machine learning approach to solve the inverse problem of predicting 

processing parameters and constituents as a function of composite properties 

Task 3.1 Collect data using computational homogenization of Objective 1 to develop 

machine learning models for the correlation between constituents/processing 

parameters and composite properties  
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Task 3.2 Incorporate trained model into the optimization scheme of Objective 2 to 

improve the efficiency of the computational homogenization framework 

Task 3.3 Validate the processing parameters chosen with experimentally measured 

composite properties 

1.4 Dissertation Outline 

The structure of the remained of this document is as follows. 

Chapter 2 presents the methods for each of the topics presented in this chapter. Homogenization 

techniques are explored and set up in a similar manner. The development of an AI approach to 

dielectric homogenization is laid out explaining the basis for the algorithm and a simple test case. 

Multi-objective optimization and several approaches to AI and machine learning are presented as 

possible options to incorporate into the optimization scheme to solve the inverse problem. 

Finally, various effective medium theories are laid out in detail noting assumptions and choices 

made in setting each up to best model the system in the context of verification. 

Chapter 3 presents the homogenization results and discusses the significance in the findings as 

well as some possible sources for error. This section lays out the results beginning with effective 

medium as verification. This is followed by FEA models and experimental results, compared in 

each section. Finally the AI search conductivity results are presented and compared with 

experimental results from literature. 

Chapter 4 introduces the multi-objective optimization that utilizes the homogenization 

framework presented. This include focuses on the results of a traditional gradient based 

optimization scheme and the drawbacks found with using this method alone. Additional results 

are presented showing the improvement from integration with machine learning models and an 
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augmented hybrid style scheme. The details for the machine learning models and the decisions 

made for the optimization presented here are further discussed in Chapter 5. 

Chapter 5 presents the results from training both Neural Networks and Support Vector 

Regression models. It presents the components used to integrate this method into the 

optimization scheme presented in Chapter 4, and the visualization of the trained models from 

simulation and experimental data. 

Chapter 6 discusses the conclusions from this work, the contributions to the field, and future 

work that can build off of this foundation.  
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CHAPTER 2: Methods 

This chapter describes the methods used for computational homogenization (from particle 

dynamics simulations of microarchitecture) to determine bulk material properties, and 

optimization of the constituent-processing design space to determine which combination 

provides the widest possible property range. The composite being considered is made of (micro) 

Barium hexaferrite (BHF) particles in a PDMS matrix. The framework for computational 

homogenization is also laid out describing the particle dynamics simulations, determination of 

RVE size, and FEM simulation methods and boundary conditions. An overview of classic 

effective medium models including equations and comparisons is given as a basis for validation 

of computational results. Using this framework to strategically explore the design space a 

machine learning model is developed to address the computational expense of the forward 

problem and to solve the inverse problem of determining the necessary processing conditions for 

a desired composite property. With both the forward and inverse problems addressed the best 

constituent set can be selected and tuning parameters can be set for local tuning of properties. 

2.1 Homogenization 

2.1.1 Particle Dynamics to Predict Microarchitecture 

The following section has been adapted from [25]. 

The effective material properties of a multi-field processed composite can be determined 

through simulations. Particle dynamics simulations can account for effects of applied fields and 

fluid dynamics to determine the microarchitecture formed during processing. The resulting 

structures can be modeled in 3D and solved via FEM to determine effective material properties. 

Key to success in this evaluation is proper definition of loading and efficient use of 

computational resources. 
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Colloidal suspension dynamics are governed by thermal, diffusive, electromagnetic, and 

hydrodynamic principles. However, it has been shown that for micrometer sized particles 

diffusion and thermal effects can be neglected [52], [129]–[131]. The forces considered acting on 

the particles in suspension therefore are, dielectrophoretic as shown in equation (1-1), magnetic 

as shown in equation (1-5), repulsive, and hydrodynamic. The BHF particles used in these 

simulations, and the experiments from which the simulations are derived, are hexagonal platelets 

with a permanent magnetic dipole through the face of the plate (e.g. normal to the plate surface). 

For the purposes of this work, the BHF particles are idealized as ellipsoidal particles (oblate 

spheroids in particular) due to the fact that this shape has been studied extensively and analytic 

forms of the electric and magnetic interactions are well understood [81]. The geometric 

representation of the idealized ellipsoid is shown in Figure 2-1. For the particles considered in 

this work the major axes, a and b, are set to 0.5 μm and the minor axis, c, is 0.15 μm and a 

permanent magnetic dipole moment in the direction of the c axis of 370,000 A/m. These values 

are warranted give that the nominal dimensions of real BHF particles have a mean size of 1 to 2 

μm. 

 
Figure 2-1: Idealized ellipsoidal representation of BHF showing major (a/b) and minor (c) axes 



48 

 

The field applied to each particle is a combination of the externally applied field and the 

response and effect of each of the other particles around it to that field. This combined electric 

and magnetic fields at the ith particle are defined as 

𝑬𝑬𝑖𝑖 = 𝑬𝑬𝟎𝟎 + �
1

4𝜋𝜋𝜀𝜀0𝑟𝑟𝑗𝑗3
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(2-2) 

respectively, where 𝜖𝜖0 is the permittivity of free space, 𝒓𝒓𝚥𝚥�  is the unit vector between the ith 

and jth particles, 𝑟𝑟𝑗𝑗 is the magnitude of the distance vector 𝒓𝒓𝚥𝚥� , 𝒑𝒑𝑗𝑗 is the dipole moment of the 

particle, 𝒆𝒆𝒋𝒋�
𝟑𝟑 is the direction component of the magnetic dipole, 𝑀𝑀 is the magnetization of the 

particle, and 𝑉𝑉 is the volume of the particle. The rotation of each particle is described by the 

torque defined as [52] 

�𝑻𝑻𝑑𝑑𝑑𝑑𝑑𝑑�𝑖𝑖 = 𝒑𝒑𝑖𝑖 × 𝑬𝑬𝑖𝑖 (2-3) 
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�𝐓𝐓mag�𝑖𝑖 = −𝜇𝜇0𝑀𝑀𝑀𝑀(𝒑𝒑𝑖𝑖 × 𝑯𝑯𝑖𝑖) (2-7) 

The electric field induce dipole moment, 𝒑𝒑𝑗𝑗, is a function of the particle shape. As noted above, 

the idealized ellipsoid used for the BHF particles have 2 axes of the same dimension, leading to 

the same depolarizing factor, 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦, in the a and b directions. The shorter minor axis, c, will 

have a smaller induced field as a result of this shape anisotropy, leading to a preferential 

orientation of the particles with either the a or b axis aligned with the externally applied electric 

field. 

The ability of the resulting torques to orient the particles with respect to externally 

applied fields, separate from net forces ordering particles into chains, allows for ordering within 

those particle chains, which is not possible with spherical particles. Spherical particles have no 

shape anisotropy, therefore within chains, differentiation of physical alignments of particles are 

not possible. However, it should also be noted that as mentioned the major axes have the same 

dielectric depolarizing factors such that both are equally preferential for aligning with the applied 

electric field. Consequently, these oblate spheroids develop preferential alignments along the 

applied field direction projected onto their a-b planes with respect to external electric fields. It is 

the electric field projected along this axis from which torques develop. Further shape anisotropy 

would change this behavior and the internal hierarchy of the particles within chains.   
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 The development of a preferred dielectric polarization axes and the resulting dielectric 

torque sits in contrast to the development of magnetic torque.  Magnetic torques will always be 

generated with respect to the fixed magnetic axis of the particle (given the particle is free to 

rotate).  Given that the magnetic axes lie along the minor axis of the particle, and that dielectric 

polarization develops in the plane of the major axes, the magnetic dipole and induced electric 

dipole will be orthogonal to each other, thus creating the ability to generate similarly orthogonal 

controlling torques. The orthogonality of these axes also leads to orthogonal ordering at the chain 

level as well as through dielectrophoretic and magnetophoretic force responses. In a broader 

sense, it is the orthogonality of the magnetic and dielectric axes, then, that lead to the ability to 

generate differentiated hierarchical ordering within chains. It is therefore expected that any 

particles whose easy magnetic and dielectric axes are orthogonal, and likely those which are 

simply not collinear, may also be amenable to varying degrees of similar orthogonal control and 

subsequent hierarchical ordering. 

As volume fraction increases some factors such as particle-particle interactions become 

more important. The particles’ mobility generally decreases, and it is more difficult to form 

structures. The matrix viscosity naturally is unchanged; however, this increase in particle-particle 

interactions increases the viscosity of the colloid, which forms the basis of magnetorheological 

fluids. The governing equations dictating forces and torques are necessarily driven by local 

particle-particle proximity. Equations (2-1)-(2-7) highlight how particle spacing affects the 

forces and moments acting on particles in the system. As the spacings decrease the influence of 

the electric or magnetic field between the particles increases and the attractive forces increase, 

however, the second term in (2-1) and (2-2) contain dependencies on relative particle alignments 
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that may affect the local fields. The overall effect is to minimize the space between particles and 

differences in orientation to minimize the energy in the system.  

From the literature it can be determined that the Reynolds number is on the order of 10−6 

[52]. This allows for the use of Stokes drag for determining the hydrodynamic force on the 

particles. For a given particle the force can be describes as 

�𝐅𝐅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑖𝑖 = −𝐷𝐷𝐱̇𝐱𝑖𝑖 (2-8) 

where D is the drag coefficient and 𝐱̇𝐱𝑖𝑖 is the velocity vector of that particle. For the simplified a 

spherical particle the drag coefficient can be described as 

𝐷𝐷 =  6𝜋𝜋𝜋𝜋𝜋𝜋 (2-9) 

where R is the hydraulic radius and is the η dynamic viscosity of the fluid. In this work, 

computations will assume the fluid medium itself maintains a constant uniform viscosity, which 

is physically reasonable. Particle mobility, however, will be affected by the electromagnetic and 

physical interaction of particles, both of which are addressed in simulations.  Electromagnetic 

interactions follow equations (2-1) and (2-2), while the physical interaction in simulation are 

governed by equation 2-8. Additionally particles are subject to a torque causing rotation. 

Hydrodynamic torque can be modeled as 

�𝐓𝐓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑖𝑖 = 8𝜋𝜋𝜂𝜂𝑅𝑅3𝛚𝛚𝑖𝑖 (2-10) 

where 𝛚𝛚𝑛𝑛 is the angular velocity of the particle. This angular velocity vector can be defined in 

terms of the particle orientation vector, 𝐝𝐝𝑖𝑖, and its time derivative, 𝐝𝐝𝚤𝚤̇ , as 𝛚𝛚𝑖𝑖 = 𝐝𝐝𝑖𝑖 ×  𝐝̇𝐝𝑖𝑖. 
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Particle repulsive forces are modeled via traditional hard sphere interactions to maintain 

some degree of separation between particles centers in a simulation environment [77], [132], 

[133] 

�𝐅𝐅𝑟𝑟𝑟𝑟𝑟𝑟�𝑖𝑖  =  �𝑄𝑄 ∗ 𝑒𝑒−𝛽𝛽(𝑟𝑟𝑚𝑚2𝑅𝑅−1)
𝑁𝑁

𝑗𝑗=1

𝐫𝐫�𝑗𝑗 

 

(2-11) 

where 𝑄𝑄 is a variable scaling factor adjusted to ensure stability of the simulations, 𝛽𝛽 > 0 is the 

repelling parameter, and 𝒓𝒓�𝑗𝑗  is the position unit vector between particles 𝑖𝑖 and 𝑗𝑗. 

Additional consideration for particle shape will be added to avoid large gaps in particle 

chains as shown in Figure 2-2 as a result of equation (2-11). This simplification is likely to skew 

simulation results for composite properties, particularly in the dielectric domain. 

 
Figure 2-2: magnetic alignment of ellipsoidal particles that are governed by a separation force 

assuming a spherical shape 

 

There are several other factors in the behavior of these particle systems that exist 

experimentally and could be revisited to remove additional error. On the microscale forces such 

as Van der Waals forces, diffusion, Brownian motion, steric repulsion due to surfactants, and 
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gravity also act on the particles. The degree to which they contribute to the overall motion of the 

particles in comparison to the applied is small and they are not considered in the models used. 

These governing equations, (2-1)-(2-11), are time integrated to solve for final positions 

and orientations of the particles. Details of the time integration techniques can be found in [26], 

[52]. The time steps are determined by the magnitude of the forces and torques such that the 

accelerations can reasonably be linearly approximated. The simulation is then run for a total of 

0.5 seconds of in-simulation time. 

Particle dynamics simulations provide a path from processing parameters to particle 

distributions that can be modeled for use with FEA. This type of definition for RVE’s provides 

the largest degree of flexibility with the constituent definition and accounting for the effects of 

the microarchitecture formed in applied fields, defining a clear pathway to determine material 

properties from processing parameters. 

Ellipsoidal Particle Spacing 

To improve simulation fidelity and thereby homogenization results the simplifying assumption 

of spherical distances between particles was investigated. The spherical distance assumed in 

equation (2-11) is modified by calculating the surface to surface distance between two ellipsoidal 

particles. The formula for this has been worked out by Paramonov and Yaliraki [134] using 

methods described by Cleaver et al. [135]. The ellipsoidal geometric values used to calculate the 

distance between the two surfaces are laid out as described in Figure 2-3. For the two particles 

the positions and orientations are known. 
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Figure 2-3: Geometric values used to calculate the surface to surface distance between two 

ellipsoids 𝑑𝑑𝑅𝑅 is the minimum distance between the surfaces, 𝑹𝑹 is the center to center vector 𝑥𝑥𝑎𝑎 
and 𝑥𝑥𝑏𝑏 are points on the surface of the two ellipsoids (A and B, respectively), and r and s are the 

center points of ellipsoids A and B, respectively 

 

The minimum distance between the two ellipsoidal surfaces is then described as  

𝑑𝑑𝑅𝑅(𝑨𝑨,𝑩𝑩) = 𝑅𝑅(1 − 𝐹𝐹(𝑨𝑨,𝑩𝑩)−
1
2) = 𝑅𝑅 − 𝜎𝜎𝑃𝑃𝑃𝑃(𝑨𝑨,𝑩𝑩) 

 

(2-12) 

where 𝑨𝑨 and 𝑩𝑩 are the ellipsoids, R is the magnitude of the vector between the two centers, 𝐹𝐹 is 

the elliptical contact function (defined in detail in [135]), 𝑓𝑓 is the result of normalizing 𝐹𝐹 by the 

magnitude of 𝑅𝑅, and 𝜎𝜎𝑃𝑃𝑃𝑃 is the Perram-Wertheim range parameter (which is a function of the 

orientations of the ellipsoids). The Perram-Wertheim range parameter is further defined as 
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(2-15) 
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𝑐𝑐𝑥𝑥 =
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𝑏𝑏𝑖𝑖2 + 𝑎𝑎𝑗𝑗2
 

(2-17) 

 

where a and b are the principal semi axes of the ellipsoids, 𝒖𝒖𝚤𝚤�  and 𝒖𝒖𝚥𝚥�  are the direction unit 

vectors of the ellipsoids A and B respectively, and 𝒓𝒓𝚤𝚤𝚤𝚤�  is the vector between the centers of the 

ellipsoids. 

 The ellipsoidal (surface to surface) distance is then used to find a repulsive force between 

the two ellipsoids such that an equilibrium would be found when the particles are just contacting 

but not overlapping. This is done by scaling the magnetic and dielectric forces between the 

particles, which is already being calculated as part of the particle dynamics simulations. Similar 

to the previously established hard particle contact formula, currently assuming spherical 

distances, an exponential function is used with this newly found ellipsoidal distance to scale the 

magnetic and dielectric forces with distance such that the repulsion quickly goes to zero as the 

particles move apart. 

�𝐅𝐅𝑟𝑟𝑟𝑟𝑟𝑟�𝑖𝑖  =  −𝐅𝐅𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒
−𝛽𝛽(1−𝒅𝒅𝒅𝒅𝒓𝒓 ) − 𝐅𝐅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒

−𝛽𝛽(1−𝒅𝒅𝒅𝒅𝒓𝒓 ) 
 

(2-18) 

where 𝐅𝐅𝑚𝑚𝑚𝑚𝑚𝑚 is the magnetic force vector between the two particles, 𝐅𝐅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the dielectric force 

vector between the two particles, 𝒅𝒅𝒅𝒅 is the distance between the two surfaces, 𝒓𝒓 is the distance 

between centers, and 𝛽𝛽 is a calibration term as before. 

2.1.2 Computational Finite Element Homogenization 

Once microarchitectures are predicted from particle dynamics simulations, the spatial location 

and orientation data may be used to construct solid models, shown in Figure 2-4, which are then 
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analyzed via finite element analysis. This analysis employs periodic boundary conditions on the 

predicted structures yielding homogenized responses from which effective properties may be 

drawn. 

 
Figure 2-4: RVE showing particle microarchitecture formed from applying various fields 

 

In the mechanical domain compliance entries were used to determine convergence. Once 

converged, the particle count is fixed, and a sweep of volume fractions can be used to determine 

the effect of volume fraction on material properties. This can then be compared to analytical 

solutions, such as the Mori-Tanaka model. 

The individual steps and concepts discussed in this section are brought together in a 

scripted workflow that uses processing parameters and constituent sets as independent variables 

to determine the microarchitecture of the RVE and determine the effective material properties in 

the selected domains as detailed in Figure 2-5. In the figure, the framework begins by selecting 

processing parameters and using the Particle dynamics simulations presented in Section 2.1.1 to 

determine the field dependent distributions within the RVE. The resulting particle distributions 

(positions and orientations) are then used to generate a 3-dimensional model which can be 

homogenized using methods presented in this section. The resulting properties are then used to 

determine the next set of processing parameters to be tested. The iterations over the various 
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independent variable combinations are determined by the resulting outputs and objective 

function, comprising this optimization framework. The framework being developed will be 

verified and validated for BHF particles in a PDMS matrix. However, as other types of 

composites, such as spherical particles or fibers, are expected to also follow the general trend of 

effective medium it is reasonable to expect the same could be done for other systems with the 

same methods. 

 
Figure 2-5: Scripting workflow from particle dynamics simulation to effective material 

properties 

 

2.1.2.1 Elastic Boundary Conditions and Effective Properties 

In the mechanical domain the stiffness matrix can be populated by isolating each of the stress 

responses to a prescribed strain case. In this case the composite is assumed to have orthotropic 

symmetry, such that three normal and three shear cases can be used to determine the non-zero 

entries of the stiffness matrix. With the chosen periodic boundary conditions, a small strain is 
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applied to opposite faces, and the stress-strain response is calculated. Each load case isolates a 

given stress and strain pair to solve the constitutive law shown below. 

𝝈𝝈 = 𝑪𝑪𝑪𝑪 (2-19) 

where 𝑪𝑪 is the 6 × 6 stiffness matrix, 𝝈𝝈 is the 6 × 1 stress vector, and 𝜺𝜺 is the 6 × 1 strain 

vector. We assume an orthotropic response given that alignment along a preferred axis is the 

ultimate goal with isotropy in the transverse plane an expected outcome. The full tensor for an 

orthotropic material is 

𝝈𝝈 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13 𝐶𝐶14 𝐶𝐶15 𝐶𝐶16
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23 𝐶𝐶24 𝐶𝐶25 𝐶𝐶26
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33 𝐶𝐶34 𝐶𝐶35 𝐶𝐶36
𝐶𝐶41 𝐶𝐶42 𝐶𝐶43 𝐶𝐶44 𝐶𝐶45 𝐶𝐶46
𝐶𝐶51 𝐶𝐶52 𝐶𝐶53 𝐶𝐶54 𝐶𝐶55 𝐶𝐶56
𝐶𝐶61 𝐶𝐶62 𝐶𝐶63 𝐶𝐶64 𝐶𝐶65 𝐶𝐶66

   

⎦
⎥
⎥
⎥
⎥
⎤

𝜺𝜺 

 

(2-20) 

where the pink entries represent the non-zero terms.  

To begin to analyze the RVE, we examine a load case 1 where we apply a small 

displacement only to a single face of our periodic RVE that yields a macroscopic strain 𝛿𝛿1. Note 

that this necessarily yields a stress 𝜎𝜎1 on that face and results in 𝜎𝜎2 = 𝜎𝜎3 = 0 on unloaded and 

unconstrained transverse faces. Then by examining only non-zero terms in 𝑪𝑪, equation (2-20) 

simplifies to 

𝜎𝜎1 = 𝐶𝐶11𝛿𝛿1 + 𝐶𝐶12𝜀𝜀2 + 𝐶𝐶13𝜀𝜀3 
 

(2-21) 

0 = 𝐶𝐶21𝜀𝜀1 + 𝐶𝐶22𝜀𝜀2 + 𝐶𝐶23𝜀𝜀3 (2-22) 

0 = 𝐶𝐶31𝜀𝜀1 + 𝐶𝐶32𝜀𝜀2 + 𝐶𝐶33𝜀𝜀3 
 

(2-23) 
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0 = 𝐶𝐶44𝜀𝜀4 
 

(2-24) 

0 = 𝐶𝐶55𝜀𝜀5 
 

(2-25) 

0 = 𝐶𝐶66𝜀𝜀6 
 

(2-26) 

where 𝛿𝛿1 is the imposed small strain, and 𝜀𝜀𝑖𝑖∀𝑖𝑖 = 2 … 6 are the expected resulting strains on the 

RVE, and 𝜎𝜎1 is the expected stress on the loaded face. This is illustrated in Figure 2-6. Solution 

of this boundary value problem leads to expressions (if analytical), or values if computational, 

for 𝜎𝜎1 and 𝜖𝜖𝑖𝑖∀𝑖𝑖 = 2 … 6. 

 
Figure 2-6: Load case 1 applied strain (yellow) and resulting strains (purple) for an RVE with 

periodic boundary conditions 

 

Looking at equations (2-21):(2-23), there are 3 equations and 9 unknowns. Considering the 

additional 6 equations from load cases 2 and 3, where 𝛿𝛿2 and 𝛿𝛿3 are applied to appropriate faces 

yielding 𝜎𝜎2 and 𝜎𝜎3 as the only non-zero quantities, respectively,  these three load cases are 

sufficient to solve the normal response portion of the stiffness matrix, e.g. 𝐶𝐶𝑖𝑖𝑖𝑖∀𝑖𝑖, 𝑗𝑗 = 1 … 3 . 

Similar small strain can be applied, and resulting stresses calculated, for the shear terms to solve 
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for all 12 unknown non-zero constants equation (2-20). The frequency response in the elastic 

domain will involve setting up additional load cases to capture time dependent values. This will 

also require a full response curve of the base materials, specifically the PDMS matrix material. 

Solution of the conservation of linear momentum for these boundary value problems is 

completed in COMSOL. The material response for all of the load cases is reported in a stiffness 

matrix, which can be inverted to find the compliance matrix, which is used to determine the 

elastic modulus for comparison with experimental values. The definition of compliance matrix, 

S, with elastic moduli, 𝐸𝐸, shear moduli, 𝐺𝐺, and Poisson’s ratios, 𝜈𝜈, for an orthotropic material is 

shown in (2-27). 

𝑺𝑺 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝐸𝑥𝑥

−𝜈𝜈𝑥𝑥𝑥𝑥
𝐸𝐸𝑦𝑦

−𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

0 0 0

−𝜈𝜈𝑥𝑥𝑥𝑥
𝐸𝐸𝑥𝑥

1
𝐸𝐸𝑦𝑦

−𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

0 0 0

−𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑥𝑥

−𝜈𝜈𝑦𝑦𝑦𝑦
𝐸𝐸𝑦𝑦

1
𝐸𝐸𝑧𝑧

0 0 0

0 0 0
1
𝐺𝐺𝑥𝑥𝑥𝑥

0 0

0 0 0 0
1
𝐺𝐺𝑥𝑥𝑥𝑥

0

0 0 0 0 0
1
𝐺𝐺𝑦𝑦𝑦𝑦

   

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(2-27) 

The computational homogenization scheme presented in this section is verified with traditional 

effective medium theory in Section 3.2.2 and validated with experimental values in Section 

3.3.1. The methods presented form the basis for determining the elastic response of multi-field 

processed composites based on constituents and processing parameters. 
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2.1.2.2 Dielectric Boundary Conditions and Effective Properties 

Similarly, dielectric load cases are constructed to determine the relative effective permittivity of 

the composite material. These load cases were designed to resemble experimental techniques. In 

each case there is an applied known voltage, and a resulting current is measured that can be post 

processed to determine dielectric properties for the composite. 

 Figure 2-7 shows an equivalent circuit for a dielectric material in an experimental test 

setup. The material can be represented as a capacitor and a conductor in parallel which represent 

the storage and loss components of the dielectric response. The test includes a known applied 

voltage and a measured resulting current, both as a function of time. A representative response of 

this type of system is plotted in Figure 2-8 which shows the input voltage and each component of 

the resulting current. It can be seen that the capacitive component contributes the phase shift 

component to the total output current which would not be present in a purely conductive 

material. 

 

Figure 2-7: Equivalent circuit for a dielectric material in an experiment test setup showing the 
applied voltage and resulting current 
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Figure 2-8: Theoretical response of a dielectric system whose equivalent circuit can be 

represented by Figure 2-7, showing the input voltage 𝑉𝑉𝑖𝑖𝑖𝑖, the total output current 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜, the 
capacitive component of the output current 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐, and the conductive component of the output 

current 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 

The details of this response are laid out in Appendix B. From the analysis presented in Appendix 

B, the phase angle is defined as the arctangent of the ratio of the imaginary, 𝐼𝐼𝐼𝐼[𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜], and real, 

𝑅𝑅𝑅𝑅[𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜], components of the complex current response to an AC voltage. 

𝜙𝜙 = tan−1 �
𝐼𝐼𝐼𝐼[𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜]
𝑅𝑅𝑅𝑅[𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜]

� 
(2-28) 

 

The phase angle is then used to determine the constants for resistance, R, and capacitance, C, 

using the known frequency, 𝜔𝜔, the known voltage input amplitude, 𝑉𝑉𝑖𝑖𝑖𝑖, and the measure output 

current amplitude 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜.  

1
𝑅𝑅

=
𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 sin(𝜙𝜙)

𝑉𝑉𝑖𝑖𝑖𝑖
 

(2-29) 

𝐶𝐶 =
Ioutcos(𝜙𝜙)
𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖

 
(2-30) 
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Similarly to the elastic case, we may examine the response of an RVE to load cases that apply 

current in each of three orthogonal directions, detailed in Figure 2-9. These load cases are again 

defined with periodic boundary conditions, in this case on 2 pairs of faces shown in Figure 2-9 b 

in pink. The periodic boundary conditions define voltage continuity across face pairs. The 

remaining faces, shown in Figure 2-9 a, have an applied voltage, 𝑽𝑽, defined on each face. The 

voltage is defined as a constant value and then varied with a harmonic perturbation in the 

frequency domain study of the model to evaluate the AC response. 

 
Figure 2-9: Representation of boundary conditions on the dielectric RVE a) electric field, 𝐸𝐸, 
from applied terminal voltage, 𝑉𝑉𝑖𝑖𝑖𝑖, and ground on the top and bottom faces, respectively b) 

periodic boundary conditions (pink) 

 

 The constitutive equations for the system use material property definitions for relative 

permittivity, 𝜀𝜀𝑟𝑟, and conductivity, 𝜎𝜎. 

𝑱𝑱 = 𝜎𝜎𝑬𝑬 + 𝑗𝑗𝑗𝑗𝑫𝑫 (2-31) 

𝑫𝑫 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝑬𝑬 + 𝑷𝑷 (2-32) 



64 

 

𝑱𝑱 is the complex current density, 𝑬𝑬 is the applied electric field, 𝑫𝑫 is the electric displacement, 𝜔𝜔 

is the frequency of the applied voltage, 𝜀𝜀0 is the permittivity of free space, and 𝑷𝑷 is the 

polarization of the dielectric material. The charge conservation equation is shown in (2-33) and 

the compatibility equation in (2-34) for the charge density, 𝑞𝑞. 

∇ ∙ 𝑱𝑱 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
(2-33) 

𝑬𝑬 = −∇𝑉𝑉 =
𝑞𝑞
𝜀𝜀0

 (2-34) 

The current density in the solution is integrated on the terminal face that the voltage was applied 

on. The resulting current, as mentioned previously, is a complex number for the AC voltage that 

was applied. This value is then used with the equations (2-28)-(2-30) to determine the effective 

capacitance and conductivity of the volume. Both of these values are geometry dependent. The 

RVE dimensions are then used to extract the material properties, permittivity and resistivity, 

from the capacitance and conductivity. 

𝑅𝑅 = 𝜌𝜌
𝐷𝐷
𝐴𝐴

 (2-35) 

𝐶𝐶 = 𝜀𝜀𝑟𝑟𝐶𝐶0 = 𝜀𝜀𝑟𝑟𝜀𝜀0(𝐴𝐴/𝐷𝐷) (2-36) 

where 𝜌𝜌  is the resistivity, 𝜀𝜀𝑟𝑟 is the relative permittivity, 𝜀𝜀0 is the permittivity of free space, A is 

the cross sectional area of the face, and D is the length between the two faces of the RVE. 

The boundary conditions shown in Figure 2-9 are used in COMSOL by Nilsson et al. [79] 

to solve Maxwell’s equations and subsequently for conductivity of a composite of short fibers in 

a DC case and by Lyngdoh et al. for spherical inclusions [136]. Nilsson et al. was not able to 

correlate FEM results with experimental results due to the computational expense for the fiber 

volume loading in the domain, which contained thousands of fibers due to aspect ratios and 
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volume fractions in experimental values, necessitating additional models, such as electrical 

networks modeling, to correlate to experimental values [79]. However, Lyngdoh et al. were able 

to achieve good correlation to experimental data found in the literature for spherical inclusions 

using this method [136], suggesting that an aspect ratio of a filler at (or near) unity can reduce 

computational costs . In the work of this thesis the aspect ratio of Barium hexaferrite (BHF) is 3 

compared to the 11-26 of the fibers in the study done by Nilsson et al. [79], which is expected to 

reduce the number of particles needed to a computationally feasible amount. Although the 

methods presented here work for the BHF particles considered in this work, more conductive 

fillers and higher aspect ratio fillers have been shown in the literature to have complications 

using similar methods as described. Therefore, an alternative method for calculating conductivity 

for composites with highly conductive filler material in Section 2.3. 

2.1.2.3 Magnetic Boundary Conditions and Effective Properties 

Similarly, magnetic models are setup to solve for the effective magnetization, 𝑴𝑴, of the 

representative volume. The faces here however do not have a periodic boundary condition 

applied since the field lines would not be permitted to leave the RVE in this case, which 

introduces a false conservation of flux. In this case then, the RVE is placed inside a sufficiently 

large volume of air. Gauss’ Law of Magnetism is then valid for the boundary of the air domain 

conserving the flux density, 𝑩𝑩. 

∇ ∙ 𝑩𝑩 = 0 
 

(2-37) 

A background field, 𝑯𝑯0, is applied to solve for the resulting magnetic flux density. The magnetic 

field is then defined by the background field and the magnetic scalar potential, the dependent 

variable in the solution. 
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𝑯𝑯 = −∇𝑉𝑉𝑚𝑚 + 𝑯𝑯0 
 

(2-38) 

Equation (2-39) shows the constitutive equation is given by Ampere’s Law, where 𝑯𝑯 is the 

applied magnetic field, and 𝜇𝜇0 is the permeability of free space. 

𝑩𝑩 = 𝜇𝜇0(𝑯𝑯 + 𝑴𝑴) 
 

(2-39) 

By applying a known 𝑯𝑯, one may solve for the resulting 𝑩𝑩 field. Each particle in the volume has 

a permanent magnetic dipole represented by a magnetic flux conservation condition applied in 

the direction of a given particle’s dipole moment, here normal to its surface. Lastly, from 

Ampere’s Law and the magnetostatic conditions it can be determined that there are no free 

currents, defined by equation (2-40). 

∇ × 𝐇𝐇 = 0 
 

(2-40) 

The field is then integrated over the volume to determine the magnetic dipole moment, 𝒋𝒋, which 

can be converted to mass magnetization [𝑒𝑒𝑒𝑒𝑒𝑒/𝑔𝑔] (shown in Appendix A) for comparison with 

experimental results. 

𝒋𝒋[𝑇𝑇𝑇𝑇3] = �𝑩𝑩 [𝑇𝑇] 𝑑𝑑𝑑𝑑  [𝑚𝑚3] (2-41) 

where 𝑩𝑩 is the local magnetic flux density and 𝑉𝑉 is the volume. The dipole moment is calculated 

using COMSOL, which accounts for the magnetization of the particles and the effect of the 

magnetization on neighboring particles. 

An alternative approach can be used to find an upper bound of mass magnetization by 

summing the dipole moment vectors of the particles in a volume and normalizing by the mass. 

We may start with 
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𝑀𝑀𝑖𝑖[𝑒𝑒𝑒𝑒𝑒𝑒] = 𝑚𝑚𝑖𝑖 �
𝑒𝑒𝑒𝑒𝑒𝑒
𝑐𝑐𝑚𝑚3� ∗ 𝑉𝑉𝑖𝑖[𝑐𝑐𝑚𝑚

3]  (2-42) 

where 𝑚𝑚 and 𝑉𝑉𝑖𝑖 are the magnetization and volume of the 𝑖𝑖𝑡𝑡ℎ particle, respectively, and 𝑀𝑀𝑖𝑖 is the 

resulting dipole moment of the 𝑖𝑖𝑡𝑡ℎ particle. Given that only the particles, and not the PDMS 

matrix, are affected by the magnetic field, the dipole moment of the entire volume is the sum 

magnetizations of all, N, of the dipole moments of the particle within the volume, 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

∑ 𝑀𝑀𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , which can then be mass normalized. 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑒𝑒𝑒𝑒𝑒𝑒]
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑔𝑔] 

= 𝜎𝜎[𝑒𝑒𝑒𝑒𝑒𝑒/𝑔𝑔∗] 

 
 

(2-43) 

where  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the total mass of only the particles in the sample composite, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖𝑁𝑁
𝑖𝑖=1  where 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖 is the mass of the 𝑖𝑖𝑡𝑡ℎ  particle. This method does not account for any 

particle-particle interactions which is why it is only considered as a bound. The effect of the 

particle interactions is apparent in Figure 2-10, which shows the full field solution determined 

via the computational homogenization laid out earlier in this section and the vector sum method. 

The difference in the mass magnetizations determined with these two methods illustrates the 

importance of the full scale homogenization technique which will therefore be used in the 

optimization framework presented in Section 2.4. 
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Figure 2-10: Mass magnetizations for Case 3 (Magnetic Field only, 100 particle RVE’s) for 

magnetic vector sum versus full field magnetization response illustrating the effect of the particle 
interactions accounted for in the COMSOL model but not in the vector sum method 

 

2.3 Artificial Intelligence Methods to Predict Conductivity 

In this section an alternate approach to COMSOL for computational homogenization for 

conductivity values is presented. The conductivity, 𝜎𝜎, corresponds to the real component of the 

complex current discussed in Section 2.1.2.2, simplifying the expression to 𝐽𝐽 = 𝜎𝜎𝜎𝜎. Discrete 

particle distributions from particle dynamics simulations are used to generate a graph network 

that is processed using AI search techniques to determine the conductivity of the RVE. 

In order to quantify the conductivity of the RVE, each percolating path is treated as a 

network of resistors in series whose resistances are based on the constituents material properties 

and the lengths of the paths through them. All percolating paths within the RVE are then treated 

as resistors in parallel to determine the effective resistance of the composite. By finding all of the 

conductive pathways through an RVE, a network of resistors can be created to calculate the 

effective resistance  and  characterize  the  conductivity  of  the  composite (see Figure 2-11). 
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These effective property values can then be compared to experimental data from the literature to 

validate the model and predict values for future experiments. 

This approach to modeling conductivity requires the Path Finding (Section 2.3.1) through 

the network of nodes, determination of the Cut Off Distance (Section 2.3.2) limiting which nodes 

may conduct, and calculation of the Effective Resistance (Section 2.3.3), which are discussed in 

more detail in the following sections. 

 

Figure 2-11: Diagram showing potential pathways between particles that can result in percolating 
paths used for calculating effective resistance of the RVE from connecting paths by treating the 

elements of one path as resistors in series and then combing all paths in parallel 

 

2.3.1 Path Finding 

In this section, methods of determining percolation paths are explored. Efficient search of the 

composite volume for conductive pathways, using AI search algorithms, improves upon previous 

random walk or exhaustive search methods. The proposed search algorithm, all paths search, 

uses a modified version of depth first search which is an AI search algorithm for efficiently 

traversing graphs. The all paths search will not only determine if conductive pathways exist but 

be used with homogenization techniques for electrical conduction presented in Section 2.3.3 to 

calculate the effective resistance of the composite. The connected network the all paths search 
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algorithm builds is the foundation for the framework proposed to determine conductivity for 

highly conductive or high aspect ratio fillers. 

Path finding is a classic AI graph search problem, that can be employed to find 

conductive networks of particles in a composite. There are different approaches, such as depth 

first and A* (a heuristic driven search) algorithms, that can be implemented for different types of 

graphs to efficiently search the graph for the goal nodes [93]. In the case of finding all 

conductive pathways through an RVE, it is of no benefit to search the graph for the purpose of 

exploration, such as breadth first search would do. Therefor a depth first search is implemented 

to find all possible paths through the RVE. The algorithm is modified to limit path lengths, 

which was found to be useful during testing, and to not allow looping back to a filler particle that 

has already been added to the current path. 

A test case model, an example problem with a known solution, is shown in Figure 2-12, 

where a graph is shown with nodes connected in either green (conducting to ground) or black 

(not connected to ground therefore nonconducting) representing pathways between the start 

(source) and finish (ground) nodes. The graphs represented in Figure 2-12 are shown analyzed 

using two methods: a) spanning tree (with connected paths in green) and b) the resulting paths 

(connecting paths again in green) using all paths search. In Figure 2-12 a, the spanning tree, 

which is meant to represent resistive pathways with respect to our percolating network, is shown 

to have several ‘dead’ branches, branches with no terminus at the finish (or ground) node. By 

contrast the graph shown in Figure 2-12 b shows only paths that connect the two terminals (start 

and finish) without any ‘dead’ branches. Additionally it find pathways that connect the start and 

finish that the spanning tree did not. Consequently, the all paths search method is chosen to 
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analyze conductive pathways in an RVE. While this example is shown for a finite path through a 

single RVE, future refinement will include periodic boundary conditions for increased accuracy. 

 

Figure 2-12: a.) Spanning tree representation of a graph b.) Graph showing only paths that span 
the start and finish nodes 

 

In the “all paths” method, each node that is visited in the search is expanded which 

returns a set of near-by nodes, as determined by the position in space, the size of the particles, 

and the maximum electron tunneling distance separating them. Each of these neighbors is then 

visited during the search. A detailed explanation of the algorithm and code is presented in 

Appendix C. This type of search builds the graph during the search, only visiting the nodes that 

are close enough to be a part of a conductive path. This saves in computational costs as 

compared to constructing a graph and then searching for conductive pathways. When the 

terminal node is reached the path that was travelled is saved as a series of resistors which allows 

the effective resistance to be calculated. This algorithm forms a full connected graph, excluding 

loops, and finds paths that would not have been considered in a minimum spanning tree 

algorithm. 
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2.3.2 Cutoff Distance 

The all paths search method requires use of a cutoff distance that determines suitable neighbors 

for every filler particle that is computed from the distance between particles and the matrix 

properties. Details of the cutoff method used herein are given in this section and used to find 

conductive pathways through the composite. The tunneling resistance through the matrix 

between two neighboring particles can be described via the current density [137] 

𝐽𝐽 =  �3 ∗
√2𝑚𝑚𝑚𝑚

2𝑑𝑑
� �

𝑒𝑒
ℎ
�2𝑉𝑉𝑒𝑒−4𝜋𝜋𝜋𝜋ℎ√2𝑚𝑚𝑚𝑚 

 

(2-44) 

where 𝑉𝑉 is the voltage, 𝑒𝑒 is a quantum of electricity (1.6𝑥𝑥10−19 𝐶𝐶), λ is the barrier height of the 

matrix [eV], ℎ is Planck’s constant, 𝑚𝑚 is the mass of an electron (9.109𝑥𝑥10−31𝑘𝑘𝑘𝑘), and 𝑑𝑑 is the 

tunneling distance (distance between conductors). The barrier height is related to the amount of 

energy required to move an electron through an insulator. Oskouyi et. al. plotted the results of 

λ=0.5,1.0,1.5eV, which showed that an increase in the barrier height decreased the conductivity 

quickly for a tunneling distance between 0.25 and 0.5 nm, after which the values all converge to 

0. This was used to select an initial pass of  λ=1, which will be explored further in the future 

refinement of this algorithm since it may need to be experimentally determined [138]. Equation 

(2-44) shows that as the distance between particles increases, the current density (which is 

inversely proportional to the resistance) exponentially decreases. The current density can be 

plotted vs separation distance between filler particles to select an appropriate cutoff distance. 

Large cutoff distances will increase the search time, as more and more permutations are possible 

with more particles included as neighbors for each step in the search. The proper distance for 

using equation (2-44) is yet to be determined in the literature [139]. For this work a point at 
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which the increase of cutoff distance is negligible to the effective conductivity will be chosen. 

The cutoff distance can also be tuned with experimental results to calibrate the model. 

2.3.3 Effective Resistance 

The effective resistance of the composite is calculated by constructing a network of resistors 

representative of the paths found by the all paths search algorithm to connect the filler particles. 

This resistor network takes into consideration the contributions from the matrix, the filler 

particles, and the relative distribution of the filler within the matrix. Using the differential 

equations previously discussed, and detailed in Appendix B, built into the MATLAB system of 

equations solvers in Simulink, the effective resistance can be determined for this network. This 

homogenization technique in conjunction with the all path search algorithm presented in Section 

2.3.1 can determine the conductivity for conductive particle composites, even in the cases where 

the conductivity of the filler is problematically large for traditional FEA techniques. 

The resistance of the material is considered to be comprised of the resistance of 

conducting paths through the matrix, as discussed in Section 2.3, and additional contributions for 

conduction through the filler particles. The effective resistance through the matrix can be 

calculated, as discussed for the cutoff distance. The resistance of each particle is a more complex 

solution that depends on the position of the surrounding particles. The closest points on the 

surface of the neighboring particles and the corresponding line segment through the middle 

particle is taken as the effective length through the particle and idealized as a short segment of 

wire to calculate the conductivity of this section of the total path as is illustrated in Figure 2-13. 
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Figure 2-13: Idealized conductive pathlength through a particle based on the position of 

neighboring particles 

 

The resistances through the matrix and through the filler particles are inputs to the 

resistor network that use the pathways found in Section 2.3.1. Each path is comprised of several 

particles and the matrix material between them. Iteration through this chain of components and 

calculation of the resistance of each segment is used to reconstruct the representative resistor 

model for the composite. A MATLAB script is used to populate a Simulink model as shown in 

Figure 2-14. This model is then solved in Simulink by applying a voltage across the top and 

bottom node which are placeholder components to represent electrical leads in an experimental 

setup. Figure 2-15 shows a simplified representation of this to illustrate the boundary conditions 

and the post processing of the model. The Simulink solution determines the current through the 

system for a known voltage. This can be used with the basic relationship between current, 

voltage, and resistance to determine the effective resistance of the composite. 
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Figure 2-14: Example of test case and Simulink model of resistors for determining effective 

composite resistance 

 
Figure 2-15: Simulink model showing boundary conditions used to determine effective 

resistance of composite where the composite resistance is shown as R_effective for simplicity 

 

An alternate approach to for computational homogenization for conductivity values was 

presented, using discrete particle distributions to generate a graph network of resistors to 

determine the conductivity of the RVE. This method uses AI search techniques to efficiently 

search for conductive pathways and a representative resistor network to solve for the effective 

resistance (or conductivity) of the particle filled composite. The framework presented here 
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expands on the capabilities of computational homogenization to allow conductivity to be 

determined for composites with highly conductive filler material, previously challenging and 

computationally expensive with traditional FEA.  

2.2 Estimating Composite Properties using Effective Medium Theory 

2.2.1 Elastic Domain Models 

In order to support rapid advancement in the development of new composite materials with 

enhanced properties, analytic models of composites with various filler types were developed to 

quickly predict the performance of such composites in a closed-form solution [140]. These 

models often build off each other and more interestingly can be related to one another when 

certain simplifying assumptions are made [23]. For example, simple bounds are established with 

the early Voigt and Reuss models, which later, self-consistent models fall within. The Halpin-

Tsai model gives an estimate for dilute composites with uniformly distributed filler. Eshelby and 

Mori-Tanaka also assume a dilute composite but address the average strain with different 

assumptions. The Eshelby model assumes the average strain of the volume to be equal to the 

average applied strain whereas the Mori-Tanaka model averages the strains for all of the phases 

in the volume. The double inclusion model builds off of the former two models to improve on 

the assumptions of average strain and account for particle-particle interactions and becomes the 

basis for the homogenization schemes of Ponte Castaneda and Willis [23]. In this section the 

Voigt and Reuss, Halpin Tsai, Eshelby, Mori-Tanaka, and Hashin-Shtrikman, and Double 

Inclusion Models are presented in further detail showing the assumptions, advantages, and 

shortcomings of these methods for estimating the effective modulus of composites. The Halpin 

Tsai model, accounting for shape and orientation of filler particles, will be used to bound the 

simulation results in Chapter 3 for verification. 
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Voigt and Reuss 

The Voigt and Reuss model, also referred to as the rule of mixtures, make simplifying 

assumptions as illustrated in Figure 2-16 on the strain and stress for the RVE and become the 

upper and lower bounds on modulus, respectively. Using energy methods, the bounds are 

determined by minimizing the potential and complementary energies for a volume, V, as defined 

in equations (2-45) and (2-46), respectively [59]. 

Π[𝑢𝑢𝑖𝑖] =
1
2
� 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑘𝑘,𝑙𝑙𝑢𝑢𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 − � 𝑡𝑡𝑖𝑖0𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑

𝑆𝑆𝑉𝑉
 

(2-45) 

Π�𝜎𝜎𝑖𝑖𝑖𝑖� =
1
2
� 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑘𝑘𝑘𝑘𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 − � 𝑢𝑢𝑖𝑖0𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗𝑑𝑑𝑑𝑑

𝑆𝑆𝑉𝑉
 

(2-46) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the stiffness tensor, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the compliance tensor, 𝑡𝑡𝑖𝑖0 and 𝑢𝑢𝑖𝑖0 are a prescribed traction and 

displacement boundary conditions, respectively, on the surface S, 𝜎𝜎 is stress, and 𝑛𝑛𝑗𝑗 is the unit 

vector normal to the surface. The boundary displacement is defined in equation (2-47), where 𝜀𝜀𝚤𝚤𝚤𝚤��� 

is the average strain on the surface and by the average strain theorem, the average strain in the 

volume. 

𝑢𝑢𝑖𝑖|𝑠𝑠 = 𝜀𝜀𝚤𝚤𝚤𝚤���𝑥𝑥𝑖𝑖 (2-47) 

To further evaluate the volume the following equilibrium, compatibility, and constitutive laws 

are used. 

𝜎𝜎𝑖𝑖𝑖𝑖,𝑗𝑗 = 0 (2-48) 

𝜀𝜀𝚤𝚤𝚤𝚤� =
1
2
�𝑢𝑢𝚤𝚤,𝚥𝚥� + 𝑢𝑢𝚥𝚥,𝚤𝚤�� (2-49) 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑘𝑘𝑘𝑘 (2-50) 

With no prescribed traction the potential and complementary energy expressions reduce to  
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Π[𝑢𝑢𝑖𝑖] = 𝜺𝜺�𝑪𝑪𝑉𝑉����𝜺𝜺� (2-51) 

Π�𝜎𝜎𝑖𝑖𝑖𝑖� = 2𝜺𝜺�𝝈𝝈� − 𝝈𝝈�𝑺𝑺𝑅𝑅���𝝈𝝈� = 𝜺𝜺�𝑪𝑪𝑅𝑅����𝜺𝜺� (2-52) 

𝑪𝑪𝑉𝑉 and 𝑺𝑺𝑅𝑅 are the Voigt stiffness tensor and Reuss compliance tensor, respectively. The average 

of these stiffness and compliance tensors is defined as the volume average of the integral over 

the volume. 

𝑪𝑪𝑹𝑹���� = �𝑺𝑺𝑅𝑅����
−𝟏𝟏

= �
1
𝑉𝑉
�𝑆𝑆𝑆𝑆𝑆𝑆

 

𝑉𝑉
�
−1

 
(2-53) 

𝑪𝑪𝑉𝑉���� =
1
𝑉𝑉
�𝐶𝐶𝐶𝐶𝐶𝐶

 

𝑉𝑉
 (2-54) 

The expressions from (2-51) and (2-52) are set as the upper and lower bounds, respectively, for 

the effective compliance of the composite. 

𝜺𝜺�𝑪𝑪𝑅𝑅����𝜺𝜺� ≤ 𝜺𝜺�𝑪𝑪�𝜺𝜺� ≤ 𝜺𝜺�𝑪𝑪𝑉𝑉����𝜺𝜺� (2-55) 

𝑪𝑪𝑅𝑅���� ≤ 𝑪𝑪� ≤ 𝑪𝑪𝑉𝑉���� (2-56) 

For a composite with volume fraction of filler, 𝑣𝑣𝑓𝑓, and matrix, 𝑣𝑣𝑚𝑚, integrals presented in (2-53) 

and (2-54) are then evaluated for the average composite stiffness. 

𝑪𝑪𝑉𝑉���� = 𝑣𝑣𝑓𝑓𝐶𝐶𝑓𝑓 + 𝑣𝑣𝑚𝑚𝐶𝐶𝑚𝑚 (2-57) 

𝑪𝑪𝑅𝑅���� = �𝑣𝑣𝑓𝑓𝑆𝑆𝑓𝑓 + 𝑣𝑣𝑚𝑚𝑆𝑆𝑚𝑚�
−1

 (2-58) 
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Figure 2-16: Diagram of strain and stress assumptions in Voigt and Reuss models respectively. 

 

The Voigt and Reuss model define the limits of effective modulus of the composite and serve as 

a first check on any system. Higher fidelity models, such as those of Eshelby, Mori-Tanaka, and 

Halpin Tsai, can offer further insight into properties based on additional information regarding 

the filler. 

Halpin Tsai  

Compared to Voigt and Reuss, the Halpin Tsai model has additional consideration for filler 

shape and orientation in an adjustment parameter. This model is a form of the Hill’s self-

consistent model with simplifications to for engineering analysis of composite materials. The 

model begins by assuming a cylinder in a matrix with a radial strain applied and a stress in the 

axial direction to maintain zero strain in the axial direction (plane-strain). It then uses 

generalized Hooke’s law to solve the constituent equations for the volume, shown in Hill’s 

notation in equations (2-59) and (2-60) [55], [57]. 

E2 = Em �
1 + 𝜉𝜉𝜉𝜉𝑣𝑣𝑓𝑓
1 − 𝜂𝜂𝑣𝑣𝑓𝑓

� 
(2-59) 
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η =

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
� − 1

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
� + 𝜉𝜉

 
(2-60) 

 

Em and Ef are the matrix and filler modulus respectively, 𝑣𝑣𝑓𝑓 is the volume fraction of the filler, 

and 𝜉𝜉 is the reinforcement parameter. There have been several investigations into the best 

reinforcement parameter, which is dependent on the geometry of the filler [60]. On the two 

extremes,  𝜉𝜉 = 0 and 𝜉𝜉 = ∞, the Reuss and Voigt bounds (discussed in Section 1.3) are 

recovered, respectively [55], [60]. Halpin discusses further variations on the reinforcement factor 

to account for inclusion geometry, particle packing, and loading conditions. Short, oriented fibers 

and non-spherical particles all have an aspect ratio term accounted for in the reinforcement factor 

equation. In the case of ellipsoidal particles the equation for the reinforcement parameter can be 

written as 

ξ = 2(a/b) + 40𝑣𝑣𝑓𝑓10 (2-61) 

where a and b are the major and minor axes of the ellipsoid. Note that the orientation is 

accounted for in this term in that a is axially aligned in the volume. Other examples of filler 

types and corresponding reinforcement factor equations are tabulated in Table 1, where  l, w, 

and t are the length (in the axial 1 direction for fibers or ribbons), width (in the transverse 2 

direction), and thickness ( in the 3 direction) of the particle, respectively [57]. For the case of 

oriented ribbons the effect of the aspect ratio is plotted in Figure 2-17. The reinforcement 

factor’s account for shape and orientation of the filler material sets a tighter bound than the Voigt 

and Reuss models previously presented, and are useful for verifying simulation results. However 
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the model cannot account for structuring effects on composite properties and is therefore limited 

to providing bounds for the composites studied in this work. 

Table 1: Reinforcement factor equations for various filler types with 𝟎𝟎 ≤ 𝒗𝒗𝒇𝒇 ≤ 𝟏𝟏 

Particulate Composites 𝜉𝜉𝐸𝐸 ≅ 2 + 40𝜈𝜈𝑓𝑓10 
𝜉𝜉𝐺𝐺 ≅ 1 + 40𝜈𝜈𝑓𝑓10 

Voids, foam, or porous solid 2 
Oriented continuous fibers 𝜉𝜉𝐸𝐸 ≅ 2 + 40𝜈𝜈𝑓𝑓10 

𝜉𝜉𝐺𝐺 ≅
1

4 − 3𝜈𝜈𝑚𝑚
 

Oriented discontinuous fibers 𝜉𝜉𝐸𝐸 = 2(𝑙𝑙/𝑑𝑑) + 40𝜈𝜈𝑓𝑓10 
𝜉𝜉𝐺𝐺 ≅ 1 + 40𝜈𝜈𝑓𝑓10 

Oriented continuous ribbon or lamellar-shaped 
reinforcements 

𝜉𝜉𝐸𝐸 ≅ 2(𝑤𝑤/𝑡𝑡) + 40𝜈𝜈𝑓𝑓10 
𝜉𝜉𝐺𝐺 ≅ (𝑤𝑤/𝑡𝑡)1.73 + 40𝜈𝜈𝑓𝑓10 

Oriented discontinuous ribbon (flake) 𝜉𝜉𝐸𝐸11 = 2(𝑙𝑙/𝑡𝑡) + 40𝜈𝜈𝑓𝑓10 
𝜉𝜉𝐸𝐸22 = 2(𝑤𝑤/𝑡𝑡) + 40𝜈𝜈𝑓𝑓10 

 
Figure 2-17: Effect of aspect ratio, w/t, on effective modulus, normalized to matrix modulus for 

the case of ellipsoidal filler . Results show that as 𝑤𝑤/𝑡𝑡  increases, 𝐸𝐸/𝐸𝐸𝑚𝑚 decreases, and the 
effective modulus become less dependent on volume fraction. 

 

Eshelby 

For the Eshelby method, the inclusions are considered to be far enough apart that they do not 

interact with each other and can be treated as single inclusions in a volume of matrix. In other 
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words, this method assumes a dilute volume fraction of filler material spread uniformly. For this 

case the average strain is defined as 

𝜺𝜺� =
1
𝑉𝑉
� 𝜺𝜺𝑑𝑑𝑑𝑑
𝑣𝑣

= 𝜺𝜺0 
(2-62) 

 

where 𝜺𝜺0 is the applied strain at the boundary, 𝜺𝜺 is the strain at a specific position within the 

volume 𝑉𝑉, and 𝜺𝜺� is the average strain in the RVE. The Eshelby model is a base for models such 

as the Mori-Tanaka model. 

Mori Tanaka 

Although the Mori-Tanaka method also assumes the inhomogeneities are isolated, it accounts for 

the average strain of all of the phases in the average strain of the volume. 

𝜺𝜺� =
1
𝑉𝑉
� 𝜺𝜺𝑑𝑑𝑑𝑑
𝑉𝑉

= �𝜺𝜺�𝑟𝑟

𝑁𝑁

𝑟𝑟=0

 
(2-63) 

𝝈𝝈� =
1
𝑉𝑉
� 𝝈𝝈𝑑𝑑𝑑𝑑
𝑉𝑉

= �𝝈𝝈�𝑟𝑟

𝑁𝑁

𝑟𝑟=0

 
(2-64) 

 

where 𝝈𝝈�𝑟𝑟 and 𝜺𝜺�𝑟𝑟 are the stress and strain tensors averaged over the rth inhomogeneity. This leads 

to the bulk and shear modulus of a composite with spherical inclusions defined as 

𝐾𝐾� = 𝐾𝐾0 +
𝑐𝑐1𝐾𝐾0(𝐾𝐾1 − 𝐾𝐾0)(3𝐾𝐾0 + 4𝜇𝜇0)

3𝐾𝐾0 + 4𝜇𝜇0 + 3(1 − 𝑐𝑐1)(𝐾𝐾1 − 𝐾𝐾0) 
(2-65) 

μ� = 𝜇𝜇0 +
5𝑐𝑐1𝜇𝜇0(𝜇𝜇1 − 𝜇𝜇0)(3𝐾𝐾0 + 4𝜇𝜇0)

5𝜇𝜇0(3𝐾𝐾0 + 4𝜇𝜇0) + 6(1 − 𝑐𝑐1)(𝜇𝜇1 − 𝜇𝜇0)(𝐾𝐾0 + 2𝜇𝜇0) 
(2-66) 
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where 𝐾𝐾0, 𝐾𝐾1, 𝜇𝜇0, and 𝜇𝜇1 are the bulk and shear modulus of the matrix and the inclusions, 

respectively [59]. 

The Halpin Tsai, Mori Tanaka, and Voigt and Reuss bounds are shown plotted in Figure 2-18 

(for ellipsoidal particles where applicable), showing the relationship of effective modulus to 

volume fraction for each model. Note that when the difference in modulus between the filler and 

matrix increases this difference in the models becomes amplified, which can be seen in Section 

3.1, Figure 3-1. 

 

Figure 2-18: Effective medium models moduli versus volume fraction showing the relationship 
of effective modulus to volume fraction for Halpin Tsai and Mori Tanaka models and Voigt and 

Reuss bounds 

 

Hashin-Shtrikman Bounds 

Where Voigt and Reuss assumed uniform admissible stress and strain fields, the Hashin-

Shtrikman bounds develop a statically admissible stress polarization tensor, 𝝉𝝉(𝒙𝒙), a constant 
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tensor on each inhomogeneity including the matrix. The stiffness tensor of the material is defined 

as 

𝑪𝑪(𝒙𝒙) = 𝑪𝑪ℎ + 𝑪𝑪𝑝𝑝(𝒙𝒙) (2-67) 

where 𝐶𝐶(𝑥𝑥) is a function of position 𝑥𝑥, 𝐶𝐶ℎ is the constant tensor describing a homogeneous 

material (the matrix without inclusions), and 𝐶𝐶𝑝𝑝 is the perturbation from the homogeneous 

material as a result of the heterogeneities (the difference between the matrix with and without 

inclusions). The corresponding stress field then becomes 

𝝈𝝈(𝒙𝒙) = 𝑪𝑪ℎ𝜺𝜺(𝒙𝒙) + 𝑪𝑪𝑝𝑝(𝒙𝒙)𝜺𝜺(𝒙𝒙) (2-68) 

where the strain field is 

𝜺𝜺(𝒙𝒙) =
1
2
�
𝜕𝜕𝑢𝑢𝑖𝑖(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑖𝑖

� 
(2-69) 

where 𝑢𝑢(𝒙𝒙) is the displacement field. The stress polarization tensor is taken from equation (2-69) 

𝝉𝝉(𝒙𝒙) = 𝑪𝑪𝑝𝑝(𝒙𝒙)𝜺𝜺(𝒙𝒙) (2-70) 

For the bounds it is assumed that the stress polarization tensor is a uniform piecewise function. 

This assumes that the stress is a piecewise field, constant on each inhomogeneity, 𝑟𝑟, in the 

domain Ω𝑟𝑟. 

𝝉𝝉�(𝒙𝒙)|𝑥𝑥∈Ωr = 𝝉𝝉�𝑟𝑟         𝑟𝑟 = 0,1,2, …𝑁𝑁 (2-71) 

The solution, and algebraic system of equations, of the constant tensor 𝝉𝝉𝑟𝑟 is written as 

𝝉𝝉𝑟𝑟 = 𝑹𝑹𝑟𝑟𝜺𝜺� (2-72) 

which can be used to define the composite effective stiffness 
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𝑪𝑪� = 𝑪𝑪ℎ + �𝑐𝑐𝑟𝑟𝑹𝑹𝑟𝑟

𝑵𝑵

𝒓𝒓=𝟎𝟎

 
(2-73) 

where 𝑐𝑐𝑟𝑟 is the volume fraction for the rth inhomogeneity. The lower bound is found by 

substituting 𝑪𝑪ℎ = 𝑪𝑪0 and the upper bound by substituting 𝑪𝑪ℎ = 𝑪𝑪1 if 𝑪𝑪1 > 𝑪𝑪0 where 0 and 1 are 

the matrix and inclusion phase, respectively. These bounds are more restrictive than the Voigt 

and Reuss bounds but requires the evaluation of a double integral over all inhomogeneities to 

find 𝜺𝜺�, which can be simplified with further assumptions [59].   

The models presented deal with dilute systems and do not account for particle-particle 

interactions but have a relatively easy to use form. 

Double Inclusion Model 

The double inclusion model was proposed to address the interactions between particles by 

extending the existing Mori-Tanaka and Eshelby models. Consequently, the double inclusion 

model can be reduced to the Eshelby and Mori-Tanaka models with specific conditions, namely 

setting the elasticity of the double-cell is set to equal that of the matrix material and excluding 

effect of other particles on the strain concentration tensor. The focus of the double inclusion 

model is to more accurately describe the average stress and strain fields, which had been 

previously expressed as constant throughout the volume [140]. The model considers ellipsoidal 

inclusions with common aspect ratios contained within the double-cell which contains both the 

matrix and inclusion phase. This double-cell is then embedded in an infinitely large medium 

under a uniform strain (𝜺𝜺∞) illustrated in Figure 2-19.  
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Figure 2-19: Double inclusion model diagram, inclusion phase Ω with elasticity 𝐶𝐶1 

embedded in the double-cell 𝑅𝑅 = Γ + Ω with elasticity 𝐶𝐶2 in infinite medium 𝐵𝐵 with 
elasticity 𝐶𝐶 [140] 

 

The double cells may be aligned or randomly oriented for a given composite. As in typical 

elasticity problems, we assume a symmetric stress tensor that satistifes conservation of static 

equilibrium as before, ∇ ∙ 𝜎𝜎 = 0. Additionally, on the outermost boundary the farfield strain 𝜀𝜀∞ 

is applied, with corresponding 𝜎𝜎∞. On the inner boundary between matrix and inclusions the 

boundary conditions are not known such that a supplementary problem of  a homogeneous 

volume is used, from which the average strain on the inclusions is estimated. Note that the 

average strain, 2-56, is a complex function of particle shape and orientaetion through the Eshelby 

tensor, but still does not account for interacation of multiple inclusions. The average stress and 

strain can then be found over all of the inclusions (see equations (2-74) and (2-75), respectively). 

Hooke’s law is then used to decribe the effective modulus of the composite (see equation (2-76)). 

𝝈𝝈� = 〈𝑳𝑳 + 𝑳𝑳[(𝑺𝑺𝑉𝑉 − 𝑰𝑰)(𝑨𝑨2 + 𝑐𝑐1𝑨𝑨1)]〉𝜺𝜺∞ (2-74) 

𝜺𝜺� = 〈𝑰𝑰 + 𝑺𝑺𝑉𝑉(𝑨𝑨2 + 𝑐𝑐1𝑨𝑨1)〉𝜺𝜺∞ (2-75) 

𝑳𝑳𝒄𝒄 = 〈𝑳𝑳 + 𝑳𝑳[(𝑺𝑺𝑉𝑉 − 𝑰𝑰)(𝑨𝑨2 + 𝑐𝑐1𝑨𝑨1)]〉〈𝑰𝑰 + 𝑺𝑺𝑉𝑉(𝑨𝑨2 + 𝑐𝑐1𝑨𝑨1)〉−1 (2-76) 
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where 𝑳𝑳 is the modulus tensor of the given phase, 𝑳𝑳𝒄𝒄 is the effective modulus tensor of the 

composite, 𝑨𝑨2 and (𝑨𝑨1 + 𝑨𝑨2) are the eigen strain concentration tensors of the matrix and 

inclusion, respectively; 𝑰𝑰 in the unit tensor, 𝑺𝑺𝑉𝑉is the fourth rank Eshelby tensor of the double cell 

, and 𝑐𝑐1 is the volume fraction [23]. The Eshelby tensor contains information relating how the 

shape and orientation of the filler, with respect to the local strain field, affects the local strain 

field and thereby the local compliance. For an ellipsoidal inclusion [59] the Eshelby tensor is 

defines as 

𝑆𝑆1111 =
3

8𝜋𝜋(1 − 𝜐𝜐)
𝑎𝑎12𝐼𝐼11 +

1 − 2𝜈𝜈
8𝜋𝜋(1 − 𝜈𝜈)

𝐼𝐼1 

𝑆𝑆1122 =
1

8𝜋𝜋(1 − 𝜐𝜐)
𝑎𝑎22𝐼𝐼12 −

1 − 2𝜈𝜈
8𝜋𝜋(1 − 𝜈𝜈)

𝐼𝐼1 

𝑆𝑆1133 =
1

8𝜋𝜋(1 − 𝜐𝜐)
𝑎𝑎32𝐼𝐼13 −

1 − 2𝜈𝜈
8𝜋𝜋(1 − 𝜈𝜈)

𝐼𝐼1 

𝑆𝑆1212 =
𝑎𝑎12 + 𝑎𝑎22

16𝜋𝜋(1 − 𝜐𝜐)
𝐼𝐼12 +

1 − 2𝜈𝜈
16𝜋𝜋(1 − 𝜈𝜈)

(𝐼𝐼1 + 𝐼𝐼2) 

 

 

 

(2-77) 

where 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 are the lengths of the  axes of the ellipsoid and 𝑎𝑎1 > 𝑎𝑎2 > 𝑎𝑎3, the constants 𝐼𝐼1, 

𝐼𝐼2, 𝐼𝐼11, and 𝐼𝐼22 are functions of  𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 and elliptical integrals over the volume of the 

ellipsoid. 

𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 = 4𝜋𝜋 

3𝐼𝐼11 + 𝐼𝐼12 + 𝐼𝐼13 = 4𝜋𝜋/𝑎𝑎12 

3𝑎𝑎12𝐼𝐼11 + 𝑎𝑎22𝐼𝐼12 + 𝑎𝑎32𝐼𝐼13 = 3𝐼𝐼1 

𝐼𝐼12 = (𝐼𝐼2 − 𝐼𝐼1)/(𝑎𝑎12 − 𝑎𝑎22) 

𝐼𝐼1 =
4𝜋𝜋𝑎𝑎1𝑎𝑎2𝑎𝑎3

(𝑎𝑎12 − 𝑎𝑎22)(𝑎𝑎12 − 𝑎𝑎32)1/2 �
𝑎𝑎2(𝑎𝑎12 − 𝑎𝑎32)1/2

𝑎𝑎1𝑎𝑎3
− 𝐸𝐸(𝜃𝜃, 𝑘𝑘)� 

𝐼𝐼3 =
4𝜋𝜋𝑎𝑎1𝑎𝑎2𝑎𝑎3

(𝑎𝑎22 − 𝑎𝑎32)(𝑎𝑎12 − 𝑎𝑎32)1/2 {𝐹𝐹(𝜃𝜃, 𝑘𝑘) − 𝐸𝐸(𝜃𝜃, 𝑘𝑘)} 
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𝐹𝐹(𝜃𝜃, 𝑘𝑘) = �
𝑑𝑑𝑑𝑑

(1 − 𝑘𝑘2 sin2 𝑤𝑤)1/2

𝜃𝜃

0
 

𝐸𝐸(𝜃𝜃, 𝑘𝑘) = � (1 − 𝑘𝑘2 sin2 𝑤𝑤)1/2𝑑𝑑𝑑𝑑
𝜃𝜃

0
 

𝜃𝜃 = sin−1 �1 −
𝑎𝑎32

𝑎𝑎12
�
1/2

 

𝑘𝑘 = �
𝑎𝑎12 − 𝑎𝑎22

𝑎𝑎12 − 𝑎𝑎32
�
1/2

 

 

(2-78) 

The double inclusion model has been used to study the effective properties of composites by 

adjusting the surrounding phase, R, to tune the model to experimental results where it was shown 

that the results are bounded by a minimum of the Mori-Tanaka model [141], [142]. 

The models presented in this section for the elastic domain vary in complexity and 

assumptions made, but all assume a uniform distribution of particles and do not have the ability 

to account for long range order. 

2.2.2 Dielectric and Magnetic Domain Models 

Similar models were laid out for dielectric and magnetic domains. A comparison of dielectric 

effective medium theory was laid out by Bánhegyi [67], summarized below for the Maxwell 

Garnett and Bruggeman models, which details the mean field and integration approaches to 

permittivity approximations of composites with various filler shapes. The following equations 

are presented for the dielectric domain but have an equivalent form in the magnetic domain. 

Maxwell Garnett (Mean Field) Approximation 

One method for determining the effective permittivity of a heterogenous material is by the 

definition of the electric displacement field using volume averaging. 
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〈𝐷𝐷〉 = 𝜀𝜀0𝜀𝜀〈̅𝐸𝐸〉 (2-79) 

where E is the electric field, D is the displacement, 𝜀𝜀0 is the vacuum permittivity, 𝜀𝜀 ̅is the 

effective permittivity of the heterogeneous system. This leads to the general expression for the 

effective permittivity of the heterogeneous system 

𝜀𝜀̅ = 𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝜐𝜐2
〈𝐸𝐸2〉
〈𝐸𝐸〉

 
(2-80) 

where 〈𝐸𝐸2〉 and 〈𝐸𝐸〉 are the field averages over the volume of the 2nd component and whole 

volume, respectively, 𝜀𝜀1 and 𝜀𝜀2 are the relative permittivity of the first and second phase (matrix 

and filler), respectively, and 𝜐𝜐2 is the volume fraction of the second phase. The ratio of the 

electric fields can be calculated exactly for dilute systems and approximated at higher volume 

fractions. This leads to the formula for fully aligned (2-81) and randomly (2-82) oriented (dilute) 

inclusions 

𝜀𝜀̅ = 𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝜐𝜐2
𝜀𝜀1

𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝐴𝐴𝑘𝑘
 (2-81) 

𝜀𝜀̅ = 𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)
𝜐𝜐2
3
�

𝜀𝜀1
𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝐴𝐴𝑘𝑘

3

𝑘𝑘=1

 
(2-82) 

respectively, where 𝐴𝐴𝑘𝑘 is the depolarization factor in the k direction (averaged for the randomly 

oriented case shown in equation (2-82) using the summation over all 3 directions). The 

depolarization factor is the derived from the shape of the dielectric particle that defines the 

directional components of the depolarizing field within the volume of the particle. The 

depolarizing field is a volumetric response to the surface polarization of a dielectric particle in an 

applied field and works in opposition to the applied external field [143]. 

For higher volume fractions this becomes 
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𝜀𝜀̅ = 𝜀𝜀1
𝜀𝜀1(1 − 𝜐𝜐2)(1 − 𝐴𝐴𝑘𝑘) + 𝜀𝜀2�𝜐𝜐2 + 𝐴𝐴𝑘𝑘(1 − 𝜐𝜐2)�

𝜀𝜀1 + 𝐴𝐴𝑘𝑘(1 − 𝜐𝜐2)(𝜀𝜀2 − 𝜀𝜀1)  
(2-83) 

𝜀𝜀̅ = 𝜀𝜀1
𝜀𝜀1(1 − 𝜐𝜐2) + 𝜀𝜀2𝜐𝜐2

3 ∑ 𝜀𝜀1
𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝐴𝐴𝑘𝑘

3
𝑘𝑘=1

1 − 𝜐𝜐2 + 𝜐𝜐2
3 ∑ 𝜀𝜀1

𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝐴𝐴𝑘𝑘
3
𝑘𝑘=1

 
(2-84) 

Bruggeman Model 

Another approach is to model the components of the two-phase mixture as ellipsoidal cells 

surrounded by an effective medium with the effective relative permittivity, 𝜀𝜀𝑚𝑚. For dilute system 

𝜀𝜀𝑚𝑚 can be replaced with 𝜀𝜀1 and for non-dilute (higher volume fractions) with 𝜀𝜀 ̅itself. For the 

non-dilute randomly oriented system this results in  

𝜀𝜀̅ = 𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)𝜐𝜐2
𝜀𝜀̅

𝜀𝜀 ̅+ (𝜀𝜀2 − 𝜀𝜀)̅𝐴𝐴𝑘𝑘
 (2-85) 

𝜀𝜀̅ = 𝜀𝜀1 + (𝜀𝜀2 − 𝜀𝜀1)
𝜐𝜐2
3
�

𝜀𝜀̅
𝜀𝜀̅+ (𝜀𝜀2 − 𝜀𝜀)̅𝐴𝐴𝑘𝑘

3

𝑘𝑘=1

 
(2-86) 

Note that equations (2-85) and (2-86) need to be solved for 𝜀𝜀.̅ This method was first proposed by 

Bruggeman and was later extended to other shapes by various authors. Bruggeman is also 

credited with the proposal for integral methods which assume dilute concentrations of filler. For 

this method the following differential equation is integrated. 

𝜀𝜀̅+ (𝜀𝜀2 − 𝜀𝜀)̅𝐴𝐴𝑘𝑘
𝜀𝜀(̅𝜀𝜀2 − 𝜀𝜀)̅ 𝑑𝑑𝜀𝜀̅ =

𝑑𝑑𝜐𝜐2′

1 − 𝜐𝜐2′
 

(2-87) 

The results of which is the classic Bruggeman approximation for spheres with 𝐴𝐴𝑘𝑘 = 1/3. 

�
𝜀𝜀̅ − 𝜀𝜀2
𝜀𝜀1 − 𝜀𝜀2

� �
𝜀𝜀1
𝜀𝜀̅
�
𝐴𝐴𝑘𝑘

= 1 − 𝜐𝜐2 
(2-88) 

For magnetic permeability the same approach can be used, by setting up the averages of the 

magnetic flux density, 𝐵𝐵, and the magnetic field, 𝐻𝐻. 
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〈𝐵𝐵〉 = 𝜇𝜇0𝜇̅𝜇〈𝐻𝐻〉 (2-89) 

where 𝜇𝜇0 is the permeability of free space, and 𝜇̅𝜇 is the effective permeability. This results in an 

analogous form to equation (2-80). 

𝜇̅𝜇 = 𝜇𝜇1 + (𝜇𝜇2 − 𝜇𝜇1)𝜐𝜐2
〈𝐻𝐻2〉
〈𝐻𝐻〉

 
(2-90) 

〈𝐻𝐻2〉 and 〈𝐻𝐻〉 are the magnetic field averages over the volume of the 2nd component and whole 

volume, respectively, 𝜇𝜇1 and 𝜇𝜇2 are the relative permeability of the first and second phase 

(matrix and filler), respectively. Equivalently, the basic Bruggeman model (non-dilute ellipsoidal 

two-phase cell model) can be used with permeability in the following way [144]. 

𝜇̅𝜇 = 𝜇𝜇1 + (𝜇𝜇2 − 𝜇𝜇1)𝜐𝜐2
𝜇̅𝜇

𝜇̅𝜇 + (𝜇𝜇2 − 𝜇̅𝜇)𝐴𝐴𝑘𝑘
 (2-91) 

Note that equation (2-91) needs to be solved for 𝜇̅𝜇. While these methods have proven adequate at 

predicting the effective properties of composites where self-organization exists among particles 

(e.g. ellipsoids with collinear semi-major/minor axes) they do not contain the needed fidelity to 

address hierarchical ordering (varying relative particle orientations within a chain of collinear 

particles, for example). 

2.4 Multi-Objective Optimization 

The objective of this work is to determine the maximum range of possible properties for a given 

constituent set as a function of processing parameters alone. In this way, in a manufacturing 

context, a single reservoir printing system may draw on a single constituent set, then process 

material at the point of deposition to access multi-material capabilities. This will be 

accomplished using a gradient based method, as the design space is not expected to be highly 

non-linear nor have multiple local minima.  
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2.4.1 Nested Optimization Structure 

Two optimization steps will be nested to search the design space. The nested structure of 

this optimization framework will consist of a primary outer loop and a secondary inner loop. The 

primary loop will search the design space for the constituent set, 𝒙𝒙1, with the largest range of 

effective material properties, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒. The secondary loop finds the minimum and maximum 

property to compute the range of possible properties for a given constituent set, by varying the 

applied processing conditions, 𝒙𝒙2. The processing parameters are bounded by the upper and 

lower limits of the applied fields (magnetic fields 𝐻𝐻𝐿𝐿 and 𝐻𝐻𝑈𝑈, and electric fields 𝐸𝐸𝐿𝐿 and 𝐸𝐸𝑈𝑈). The 

formal optimization statement for this framework is laid out in equation (2-92) and illustrated in 

Figure 2-20. 

 
 

 
 
 
 

(2-92) 

The objective functions in the secondary loop, 𝒇𝒇2𝑎𝑎 (minimizing properties) and 𝒇𝒇2𝑏𝑏 (maximizing 

properties) will use the computational homogenization presented in Section 2.1.2 to determine 

the effective properties of the composite for the given constituents (in this case volume fraction) 

and varying processing parameters. Note that the objective return from 𝒇𝒇2𝑏𝑏 will be a negative 

value from the optimization, such that for computing the range this value is added to the 

minimum 𝒇𝒇2𝑎𝑎. The objective function in the primary loop, 𝑓𝑓1, will use the maximum and 
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minimum properties returned from the secondary loop to determine the range. Note that because 

multiple properties are being evaluated that the property maxima and minima are vectors and that 

the evaluation of 𝑓𝑓1 uses the norm of the range. It is expected that the dielectric, elastic, and 

magnetic properties will have tradeoffs. For this reason, the properties are maximized and 

minimized individually such that the returned objective function values from 𝒇𝒇2𝑎𝑎 and 𝒇𝒇2𝑏𝑏 are not 

necessarily at the same applied fields. This is done to isolate the dependence of the individual 

properties on other properties when finding the extrema. 

 
 

Figure 2-20: Representative results of the two optimization loops shown for purposes of 
illustration: a) searching for the minimum and maximum effective property by varying 

representative processing field only yields the range. Dotted lines highlight max and min 
processing condition locations. The max and min also yield the range of possible properties. b) 

searching for the maximum range of possible properties by varying the constituent set, e.g. 
volume fraction. For a given volume fraction, varying processing leads to high and low (and 

intermediate) values from which a range is found for a given volume fraction. 
 

This process workflow is represented in Figure 2-21. Since the objective function 𝑓𝑓1 is 

dependent on the outputs of 𝒇𝒇2𝑎𝑎 and 𝒇𝒇2𝑏𝑏, it is necessary that the two be nested in the manner 

shown. The innermost level shows the computational homogenization for specific constituents 

and processing fields at each stage of the optimization. The second level out shows the iteration 
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over the computational homogenization for changing processing parameters and a specified 

constituent set, 𝒙𝒙1 to evaluate 𝒇𝒇2𝑎𝑎 and 𝒇𝒇2𝑏𝑏. The outermost level is the primary loop which 

iterates over the property optimization for various constituent sets to find the set with the largest 

range of properties using the objective function 𝑓𝑓1. The returned values from the optimization 

framework is the constituent set with the largest range of dielectric, elastic, and magnetic 

properties and the fields to achieve them. 

 
Figure 2-21: Workflow of nested optimization scheme showing the computational 

homogenization, property minimization and maximization, and the optimization of the 
constituent set to maximize the range of properties possible 

 
A visual representation of a design space is shown in Figure 2-22, where it can be seen that for 

each constituent set choice, 𝑥𝑥1
(1), 𝑥𝑥1

(2), 𝑥𝑥1
(3), 𝑒𝑒𝑒𝑒𝑒𝑒. in a), there exists a range of properties as a 

function of 𝑥𝑥2 in b), for which there exists a minimum and maximum effective material property. 

The dimension of this representation is reduced for visualization purposes. 

 The nested optimization scheme presented can be used to search this high order design 

space to find the set of constituents with the maximum and minimum material properties as to 

span the largest set of possible composite properties by varying processing parameters alone. The 
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fitness function, which has to consider various domains (elastic, dielectric, and magnetic), is 

discussed in the next section. 

 
Figure 2-22: Representation of multi-objective optimization space a) design space contour 

showing selection of specific constituent sets  𝑥𝑥1
(1), 𝑥𝑥1

(2), 𝑥𝑥1
(3) and b) plot of property evaluation 

vs processing parameters showing the minimum and maximum property for a single constituent 
set by varying processing parameters alone 

 
2.4.2 Combined Fitness Function and Pareto Front 

In order to consider multiple material properties simultaneously, a combined fitness, or 

objective, function must be defined. The distinctions of the nested combined functions are 

presented in this section in addition to the resulting design space search. It is expected that the 

materials properties in the elastic, magnetic, and dielectric domains will not respond the same 

way to the processing conditions and that there will be tradeoffs to consider. The resulting 

properties from all 3 homogenizations will be considered in the fitness function when 

determining the range of properties. Traditionally such a multi-objective fitness function can be 

handled with weighting the individual components. The resulting optimization scheme will 

generate a pareto front which can be used in specific design applications. 
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The nature of how to combine these separate objectives into one function is largely 

dependent on the application the optimization is being run for. For example in a specific design 

application the range of elastic modulus may be more important than the dielectric permittivity 

and would be weighted higher. Alternatively, the range of each individual property may be more 

important than their combined reach. This is a subtle but important distinction for the framework 

presented here and can be modified in the future to meet the needs of the specific application. It 

should be noted that because the properties can be, and in this case are, inversely affected by the 

structure, this interpretation is significant. For example, the elastic modulus would be higher 

when the particles are aligned in their major axis to form chains, this however, is less favorable 

for magnetization. Therefore the two maximums occur at different fields. If maximizing them 

simultaneously is important, this must be handled differently than maximizing each individual 

range. For the purpose of this work the “largest range of properties” will be interpreted to mean 

each individual property’s range. 

A machine learning model, presented in further detail in Section 2.5, will be used to 

augment the design space search to reduce the computational expense of the computational 

homogenization, particularly of the elastic properties. The model will be used to predict the 

points for the optimization. The extrema found will then be simulated for with their 

corresponding processing parameters and the effective properties will be found using the 

computational homogenization scheme presented in Section 2.1.2. For the presented combined 

objective function, a total of 6 points (predicted maximum and minimum for dielectric, elastic, 

and magnetic) will be predicted as the extrema. The 6 points then will be evaluated using the 

corresponding processing parameters and the computational homogenization scheme from 

Section 2.1.2. Evaluating 6 points will have a longer run time than if a single set of processing 
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parameters were return each for a combined maximum and minimum properties, totaling only 2 

points to test using computational homogenization. However, finding individual maxima and 

minima answers the purer form of the question, “which constituent set leads to the largest range 

of possible properties”, and will generate a pareto front between the individual property values. 

 Since this work is presenting a general framework for this type of optimization and not 

designing for a specific application the properties will all be considered with equal weights. 

There are several ways to apply weighting to the components of a multi-objective fitness 

function, some of which are tabulated in Table 2. For this framework the weighted exponential 

sum will be used and simplified by setting the exponents to 1, the result of which is shown in 

equation (2-93). 

Table 2: Multi-objective optimization fitness function weighting methods [145] 

Bridgman (1922): Product of Powers Weighted Exponential Sum Goal Programming 
 

 
  

 

For this work, the objective function used is given as  

𝑓𝑓 = 𝑤𝑤1(𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑤𝑤2(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑤𝑤3(𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚) (2-93) 

where 𝑤𝑤1−3 are the selected weights for each of the subcomponents of the fitness function, 𝑌𝑌 is 

the elastic modulus, 𝑀𝑀 is the mass magnetization, and 𝜀𝜀 is the relative permittivity. The minima 

and maxima are predicted values of the machine learning model presented in Section 2.3. . The 

weights will be set to sum to 1 and as mentioned previously will all be set equally for this 
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framework, e.g. 1/3 . Additionally multiple starting points will be sampled to ensure that the 

optimal points found are not local minima. 

For this work we will incorporate gradient based methods to produce successive trials points, 

each requiring the results of computational homogenization, leading to solution of the 

optimization problem in Section 2.4.1. The analysis will be carried out in Python using the scipy 

library for the optimization. The presented optimization framework will additionally be 

augmented by machine learning, also using Python. The presented application uses machine 

learning in a novel manner, similar to AI learning by using a growing data set as opposed to a 

previously generated static set to define the previously unknown relationship between processing 

conditions and effective composite properties. 

2.5 Artificial Intelligence and Machine Learning Models 

In most search problems there is a tradeoff between exploration and exploitation (using 

the model to predict the outcome). Finding a balance between these is at the heart of every AI 

approach. There are two methods for using AI presented in this work that capitalize on this 

concept differently. One approach is to use the data already collected to train a model on the 

design space, to address the inverse problem of finding processing parameters to manufacture a 

material with desired properties. The other is to augment the costly homogenization simulations 

with a model that, once trained sufficiently will be used to predict the remainder of the properties 

within the optimization search. Traditional data science applications apply a model to a 

generated data set, whereas the proposed solution is a novel design space search and 

simultaneous data generation framework which would apply the model iteratively to a growing 

data set. 
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Feed Forward Neural Networks (FFNN) train the model on a set of data that is randomly 

divided into batches that determine when to update the weights, and epochs that determine how 

many iterations through the training data set should be completed to train the model fully. Each 

iteration uses the paired input and output data to update the weights of the network. Early 

stopping criteria and adjusted learning can be specified such that the learning rate responds to the 

error in the model and terminates the iterations once the error no longer improves past a specific 

threshold. The model was tuned using additional arguments laid out in Table 3. Function 

parameters that specify the model’s learning behavior are sometimes referred to as 

hyperparameters, and can be optimized themselves for efficient model training [146]. The 

hyperparameters for this model were tuned manually by looking at the resulting data and making 

adjustments to reduce run time since this is not a process that would need to be repeated many 

times once tuned for this system. Even with the added parameters for adjusting the learning rate 

and early termination once no improvement is made, training the neural network can take a few 

minutes depending on the data. The stochastic nature of the neural network training algorithm 

can also require rerunning the training if the data random data partitioning results in a poorly 

trained model, potentially leading to several iterations of training and increasing the run time 

with each additional iteration. The training described here would need to be repeated whenever a 

new point is added to the dataset from the optimization framework presented in Section 2.4. 

In contrast, Support Vector Regression (SVR) performs an optimization to minimize the 

regressions coefficients and points outside of the acceptable error range, demonstrated in Figure 

2-23. The base function for the regression can be defined by built in regressions (kernel 

functions) or a custom function. As mentioned previously, this is advantageous because a custom 

function can be defined to resemble effective medium model and expected system behavior. 
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Table 3: Model Conditions that are additional arguments to be used to reduce run time and 
improve training efficiency of Neural Networks 

Learning Rate Adjustment 
(Reduce the learning rate if the monitored value 

plateaus) 

Early Stop Criteria 
(stop if there is no improvement in the results for 

computational expense reduction) 
• Monitor loss variable 
• (Reduction) factor = 0.1 
• 2 points without change define a plateau, 

patience = 2 

• Monitor loss variable 
• Minimum change in monitored value to 

qualify as an improvement, 
min delta = 1e-5 

• 9 points without change define a plateau, 
patience = 9 

 

In order to verify the model application and behavior a simple exponential function with 

random noise added was used to setup test cases (sample problems with known solutions to 

verify the coding framework). A linear base function was selected to observe the SVR behavior 

easily. Figure 2-24 shows the results of this noisy exponential test set and the linear SVR model 

with example error bounds drawn in to illustrate the manner in which the model fits the data. 

Figure 2-24 shows a few selected points from the data set in teal, rather than black. The teal 

points are the support vectors the model uses to define the regression. They are the points on or 

outside of the error bounds which need to be minimized along with the weights, 𝑤𝑤𝑖𝑖. The figure 

demonstrates the training method of the SVR (the model’s minimization scheme). 

Two approaches are developed and presented for incorporating machine learning into an 

optimization scheme and using a growing data set, optimization based search and SmartSearch. 

Optimization based search allows the gradient based optimization framework to choose points 

and learns passively about the system as the optimization progresses. With some convergence 

criteria, the physics based modeling can be substituted with the regression to predict the system’s 

response and eliminate further computational expense. Points are not spaced out to train the 
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model most effectively with this method, since the areas of higher sampling are near the 

minimum of the objective function. 

 
Figure 2-23: Example of error bounds, shown in pink, on a sample regression, represented as a 

blue dashed line, with data points that fall inside and outside of the bounds. The points outside of 
the shaded pink acceptable error bounds would be considered in the minimization of the SVR 

model training 

 
Figure 2-24: Support Vector Regression (SVR) of noisy exponential test function (black circles) 
showing the fitted function and sample error bounds lines to illustrate the objective function SVR 

uses to adjust the weights. Teal points are support vectors that define the regression 
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Alternatively, SmartSearch can learn actively. The machine learning model can be 

checked at every step and allowed to determine the next test point based off of the fit and spacing 

between test points. In the smart search algorithm the search areas where independent variables 

are spaced apart and the error between training data and predictions are large would be searched 

before points where the increments in independent variables are comparatively small and error is 

low. This method is demonstrated in Figure 2-25 with a succession of points checked to train the 

model. The steps in Figure 2-25  show the results of an SVR trained using smart search, 

indicating the points with the largest error and input spacing. The midpoint of the independent 

variables of these two points is found and used as the next test point. Such a self-selection 

method for determining training data has yet to be used with SVR and shows promise for 

efficiently searching the design space. 

 
Figure 2-25: Succession of point selection using SmartSearch with an SVR model (shown in 
purple) based on largest distance between independent variables and largest error in outputs 

(shown in teal) to define independent variables for the next test point (shown in blue) 
 

 Again, here is a choice of algorithms between a focus on exploration (of the design 

space) versus exploitation (of the model’s predictions). The optimization based search collects 
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data along the way focusing on the exploitation of the model more than the exploration of the 

design space. However, the exploration is key to a well-trained model that can be exploited 

effectively. The exploration, of the design space is a cost to pay, but will be an investment in a 

strong predictive model that reduces the overall computational cost as compared to a less 

balanced optimization based search method. For this reason the smart search method will be used 

in conjunction with the gradient based optimization to determine the best constituent set for the 

widest range of composite properties in a hybrid optimization scheme. 

 The hybrid optimization scheme will explore the design space to understand the behavior 

of the system and use this knowledge to optimize the input parameters. In the proposed method, 

the model will be initialized with test points, the initial exploration upfront cost to this method. 

The generated SVR model can then be used to evaluate the objective functions of the 

optimization scheme presented in Section 2.4. After an optimal point is found with the SVR 

model, the combination of independent variables for this point are then modeled using the 

particle dynamics and COMSOL simulations to determine the fit between the machine learning 

model and the simulation results. This is done using a simple error formula, for normalized 

values, where the simulation results are considered the actual value and the SVR prediction is the 

experimental value. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
(2-94) 

This evaluation of the fit of the predictions to the simulation data will be used to determine 

convergence of the machine learning model to the simulation results. If the error is outside of the 

bounds the model is retrained with this new point, checked again, and trained for an additional 

step if the fit is still too poor. This is repeated until the error is acceptably low and the optimum 

is found. The workflow presented here is laid out in Figure 2-26. Such a process reduces the 
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number of simulations run when evaluating the optimization function. The proposed scheme uses 

gradient based optimization, but it should be noted that with the anticipated cost savings, a more 

expensive optimization scheme, such as genetic algorithms, could feasibly be used. 

 
 

Figure 2-26: Hybrid optimization workflow (using smart search and gradient based optimization) 
 

 To further make use of the machine learning model generated through this search, the 

trained model can be saved and used to solve the inverse problem. This can be done by plotting 

the relationship between independent and dependent variables, or extracting the coefficients to 

construct a mathematical representation, and selecting the independent variables that best fit the 

desired properties or using this model to answer further optimization questions of searching for a 

desired property within some operating bounds, perhaps at the cost of other properties. The well 

trained SVR model is capable of reducing the computational expense to that of evaluating a 

mathematical expression within a search scheme. 
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2.6 Summary 

In this chapter methods for analytical and computational homogenization were presented. RVE 

selection, boundary conditions for each domain, and post processing of results were laid out with 

particular attention setting up for comparison with experimental results. A homogenization 

framework for conductivity using AI techniques was developed. The model proposed considers 

distances between particles and uses efficient data structures to determine effective conductivity. 

A general framework for optimization and machine learning was presented to improve the 

computational expense of the number of simulations needed to find the optima. The resulting 

model simultaneously addresses the inverse problem allowing processing parameters to be 

determined from desire properties.  
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CHAPTER 3: Computational Homogenization Results and Discussion 

The previous chapters have presented the historical approaches to homogenization including 

analytical and computational methods. Although analytic models, previously presented in 

Section 1.2.3.1, are a computationally inexpensive methods, they do not have the capability to 

account for changes in processing conditions and the resulting hierarchal microarchitectures. 

Therefore, computational homogenization is applied to this system, reserving analytical 

homogenization as a means to verify initial computational results. This chapter presents results 

from evaluating selected effective medium theories, computational homogenization, and 

comparison to experimental data. A convergence study and selection of RVE size are also 

presented. These results were presented, in part, at the ASME Conference on Smart Materials, 

Adaptive Structures, and Intelligent Systems in 2020, A Computational Framework for 

Predicting Properties from Multifield Processing Conditions in Polymer Matrix Composites 

[25]. 

3.1 Effective Medium Approaches 

The effective medium models of Chapter 2 were compared to each other with respect to volume 

fraction to show the bounds and expected trend of properties for changes in volume fraction 

alone, which can be used as a refence for determining convergence of the computational model. 

The results for modulus versus volume fraction for the Halpin-Tsai, Mori-Tanaka, and Voigt and 

Reuss bounds for the BHF and PDMS composites are presented in Figure 3-1. As expected, as 

volume fraction increases, moduli increase. The Voigt model returns substantially higher moduli 

because of its uniform strain assumptions especially when compared to the Reuss model at the 

other extreme, as expected these two present upper and lower bounds. Within these bounds, the 

longitudinal, z direction, Halpin-Tsai trends larger than Mori-Tanaka which trends larger than 
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the transverse, x/y direction, Halpin-Tsai. For the convergence study, the Halpin Tsai model will 

be used as targets for moduli to assess convergence of the elastic properties, since it can account 

for the transverse and longitudinal moduli.  

 
Figure 3-1: Effective medium models for BHF/PDMS from 1 to 10% volume fraction showing 

the bounds and expected trend of properties 

 

3.2 COMSOL Simulations and comparison to Effective Medium Theory 

In this section COMSOL simulation results are reported for convergence and comparison to 

effective medium theory. The Halpin Tsai model is used to aid in the determination of 

convergence of the mechanical model, as detailed in this chapter. Additionally, their degree of 

anisotropy as a result of ordering and alignment of particles due to applied fields is presented and 

discussed for both domains. All constituent material properties used for homogenization are laid 

out in Table 4. The results for the computational homogenization for elastic and dielectric 

response are compared to their respective effective medium theories and then presented for the 5 
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main field cases tested experimentally. The experimental cases are explained in Figure 3-2 and 

Table 5. 

 Elastic, dielectric, and magnetic material properties for both Barium Hexaferrite (BHF) 

and Polydimethylsiloxane (PDMS) are presented in Table 4. The properties laid out here are 

used in the computational homogenization of the composite RVE’s. Note that the elastic 

modulus, 𝐸𝐸, for the PDMS matrix was updated after initial results were obtained. The update of 

the matrix modulus was made after comparison with experimental values to calibrate the model, 

and the updated modulus (2.1 MPa) was used to train the machine learning model for which 

validation is presented in Section 3.3.1. The relative permeability, 𝜇𝜇𝑟𝑟, for PDMS was set to 1 

since it is not a magnetic material. For the BHF the relative permeability was set as 2 with 

comparison to values from the literature [147], [148]. The permeability of the BHF particles 

determines the effect of the interaction between particles, since the homogenization evaluated the 

“as cured” original remanent mass magnetization of the composite. The magnetization of the 

particles was set to 370000𝐴𝐴/𝑚𝑚 [26], [52]. The dielectric permittivity, 𝜀𝜀𝑟𝑟, set to 2.67 and 32 for 

the PDMS were BHF, respectively in accordance with values reported by Masud for 

experimental samples [20]. 

Table 4: Constituent Material Properties 

 PDMS Matrix BHF Particles 
Elastic 𝐸𝐸 =  270 𝑘𝑘𝑘𝑘𝑘𝑘 (initially) 

𝐸𝐸 =  2.1 𝑀𝑀𝑀𝑀𝑀𝑀 (updated) 
𝐸𝐸 = 152 𝐺𝐺𝐺𝐺𝐺𝐺 

Magnetic 𝜇𝜇𝑟𝑟 = 1 𝜇𝜇𝑟𝑟 = 2, 𝑀𝑀 = 370000𝐴𝐴/𝑚𝑚 
Dielectric 𝜀𝜀𝑟𝑟 = 2.67 𝜀𝜀𝑟𝑟 = 32 
 

Representative results of the particle arrangements resulting from particle dynamics simulations 

(following methods laid out in Chapter 2.1.1) are shown in Figure 3-2 for the five experimental 
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cases studied by Masud [20]. Case 1 is the reference case with no field applied. In this case 

particles align solely due to the magnetic interactions between particles. In Case 2, an electric 

field is applied, inducing an electric dipole that aligns particle along their major axes in the 

direction of the applied field. In Case 3, a magnetic field is applied which aligns the magnetic 

dipole moment of the particles (through their minor axis) with the field. Case 4 uses both electric 

and magnetic fields, applied perpendicular to one another. The addition of the magnetic field in 

Case 4, as compared to the electric field only Case 2, introduces additional ordering. Particles 

will align with their induced electric dipoles on the major axis with the electric field, while also 

aligning their permanent magnetic dipole with the magnetic field. Like Case 4, Case 5 also uses 

both electric and magnetic field, however, applied in the same direction, parallel to each other. 

The resulting alignment and orientation is dependent on the relative strengths of the applied 

fields, which is further discussed in Section 4.1. The field strengths used, electric and magnetic, 

in the respective cases are given in Table 4. 

The resulting microarchitecture of the 5 main cases of applied fields investigated are 

shown in Figure 3-2, demonstrated with 100 particles, for which the applied fields are laid out in 

Table 5. In the table, the field orientation column (column 2) has a symbolic representation of the 

field direction with colors corresponding to the particles for each case from Figure 3-2 for clear 

visualization of the 5 cases presented. Columns 3-5 show the magnitude of the components of 

the electric field vector and columns 6-9 show the magnitude of the components of the magnetic 

field vector for the applied processing fields for each case. The electric field for Case 5 was 

reduced compared to the field for Case 2 and Case 4 as a result of analysis of initial runs with the 

higher field. The applied electric and magnetic fields in Case 5 generate competing torques, 

further discussed in Section 4.1. The resulting particle orientations are dependent on the relative 



110 

 

strength of the two fields. The strength of the electric field used in the simulations was tuned to 

form structures that better resemble experimental results for Case 5. 

 

 
Figure 3-2: Cases 1-5 microarchitecture for simulations with 100 particles showing the effect of 

applied fields on the orientation, position, and microarchitecture of the particles 

 

Table 5: Applied fields for each of the 5 cases shown in Figure 3-2. 

 Field 
Orientation 

Electric Field Magnetic Field 
𝑬𝑬𝒙𝒙 𝑬𝑬𝒚𝒚 𝑬𝑬𝒛𝒛 𝑯𝑯𝒙𝒙 𝑯𝑯𝒚𝒚 𝑯𝑯𝒛𝒛 

Case 1 − 0 0 0 0 0 0 

Case 2 ↑ 0 0 1e8 V/m 0 0 0 

Case 3 ↑ 0 0 0 0 0 2.5e5 A/m 

Case 4 ⊥ 0 0 1e8 V/m 0 2.5e5 A/m 0 

Case 5 ∥ 0 0 1e6 V/m 0 0 2.5e5 A/m 

 

3.2.1 Convergence Study on Model Size for Elastic Properties 

In order to determine the appropriate size of the RVE, convergence was observed for a 

given volume fraction. Convergence is observed in the change in property with respect to model 

size (particle count). These results are then compared to effective medium theory which can 

serve as a baseline reference for the model, though the results are not expected to match due to 

the limitations of effective medium theory, namely particles distribution and concentration, on 
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system like this one being modeled here. Convergence studies are presented for elastic and 

dielectric properties. 

For the elastic property convergence study 10% volume fraction was used and particle 

counts were increased from 10 to 500. A 10% volume fraction sample would have decreased 

particle mobility as compared to a dilute model with, for example, 1% volume fraction, but is not 

limited beyond the ability to self-organize, and therefore represents a more challenging system in 

which to form structures (a worst case scenario). Herein, convergence was defined by the change 

in modulus with simulation size and relationship to the Halpin Tsai and Mori-Tanaka models. 

The compliance values were not expected to converge to the effective medium models directly 

since the RVE’s exhibit chaining, but the effective medium model values served as a bound for 

which in-plane (x/y) direction values should fall within and the chaining (z) direction should not. 

A volume fraction of 10% was chosen to ensure the system is not dilute and particles were able 

to form fully realized microarchitecture. Similar to Pahlavanpour et al. [72], the difference in the 

value of physical property found from simulation when compared to the expected value found 

using effective medium theory was considered when determining if the model was sufficiently 

large. For this convergence study the electrically aligned case was chosen as it would be the 

expected worst case scenario for RVE size due to the need to represent the microarchitecture 

formed. The elastic modulus for the electrically aligned case (Case 2) was considered the worst 

case because the major axis of the particles aligns with the applied electric field, resulting in 

longer chains per particle count, and thereby a larger RVE needed to contain the chain. 

As per the methods laid out in Chapter 2, the computational homogenization was 

conducted using the particle distributions found from the particle dynamics simulation. An 

electric field of 1e8 V/m, Case 2, was applied in the z direction of the RVE, with 10% volume 
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fraction, and increasing particle count from 10 to 500 particles to determine convergence. It is 

theorized that the structures formed in Case 2 will drive the elastic properties, and that at higher 

volume fractions larger models will be needed to represent the structures formed, making this the 

worst case scenario for convergence. The geometry was modeled in COMSOL using the 

positions and orientations found in the particle dynamics simulations.  

The visualization of simulation results of increasing volume of the RVE and 

microarchitecture represented by them are shown in Figure 3-3, showing the realization of the 

microarchitecture with increasing model size. Distinct chains can be identified in RVE’s with at 

least 100 particles but start to become more define only with at least 400 particles. 

 

Figure 3-3: Figures showing microarchitecture versus simulation size where chain formation 
becomes more well defined with increasing particle count 
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To determine the elastic response, periodic boundary conditions were assigned to all face 

pairs and using 6 load cases strains are applied to solve the conservation of linear momentum 

equations, as described in Section 2.2.2.1. Figure 3-4 shows the compliance in the longitudinal 

and transverse directions of the RVE for various sizes with comparison to effective medium 

models as reference for convergence. The transverse directions settle in near the Mori-Tanaka 

model and Halpin-Tsai lower bound, which is in good agreement with the expected behavior 

since the alignment of the chains is in the longitudinal direction. The chains are expected to be 

stiffer in the direction of the alignment, which can also be seen in the plot in Figure 3-4 for larger 

models, with the results exceeding the expected upper bound. The effective medium bounds are 

expected to be exceeded in this case since there are chains forming that the Halpin-Tsai model 

does not account for, which would increase the stiffness of the composite as compared to 

uniformly distributed particles that the model assumes. From the results presented in Figure 3-4 

it could be determined, by the settling out of the mean values and the convergence of the in-plane 

component to within the effective medium bounds (as expected) and the chaining direction (z-

direction) component converging to stiffer than the effective medium predictions, that the 

simulations for the mechanical domain should be at least 400 particles in size. However, due to 

computational expense smaller simulations, 100 particles, were run to explore the design space, 

understanding the error associated with these simulation sizes. The larger models, using 400 

particles, will be used to find the final optimized values once the smaller models have zeroed in 

on the solution. The behavior of the system at 100 particles still shows the anisotropy expected 

for an aligned case and the behavior seen at larger simulation sizes. 
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Figure 3-4: Convergence study of compliance versus simulation size (particle count) at 10% 

volume fraction of an electrically aligned case compared to effective medium theory 

For other material responses, convergence needs to once again be considered as it is a 

function not only of the geometrical representation but the effect that representation has on the 

specific domain. The dielectric response is compared to the Bruggeman effective medium model 

to determine convergence and to validate the model. These simulations were evaluated with a 

DC field. Later models use an AC field for comparison to experimental data, however the trends 

and behavior of these DC simulations is valuable for observing convergence and the effects of 

particle spacing. 

For this convergence study, the particles in the dynamics simulations were again aligned 

in a 1e8 V/m electric field applied in the z-direction, with 1% volume fraction, to compare a 

dilute system with the effective medium model that assume a dilute system, and all simulation 
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and material parameters as previously discussed. Solid models generated from the particle 

dynamics simulations were used in the periodic computational homogenization analyses 

discussed in Section 2.2.2 to generate relative permittivity, with the exception that these results 

were found with a DC field. 

For the dielectric properties, the results of the convergence study are presented in Figure 

3-5, showing the change in permittivity in the x, y, and z directions for increasing particle count 

(model size) for 1%, 5%, and 10% volume fraction. The direction of particle alignment is again, 

like the elastic convergence study, in the z direction. For the 1% volume fraction study (Figure 

3-5 a), the x and y direction permittivity is seen to converge and plateau quickly, settling out near 

2.72 at 100 particles. It should be noted that the orientation of the particles within the chains is 

not ordered in Case 2 (unlike Case 4) and that this potentially leads to some degree of variability 

in the x and y permittivity. The z direction permittivity is in line with the applied electric field 

and therefore chaining direction, which converges later at 150 particles settling in near 2.8. 

Comparing to the Bruggeman effective medium model, the x and y directions stay below the 

model’s prediction for spheres. The ellipsoidal particles are narrower in their minor axis than the 

assumed spheres of the Bruggeman model, and due to the lack of order in the Case 2 minor axis 

direction (without the application of a magnetic field to align the magnetic dipole moments of 

the particles) this smaller axis is distributed throughout the x and y directions, corresponding to 

the reported x and y direction values in Figure 3-5 a. The permittivity in the z direction only 

corresponds to the Bruggeman value at 10 particles for the 1% volume fraction study, which as 

seen in Figure 3-3 does not show any chaining or structuring. The computationally computed 

permittivity exceeds the prediction of the Bruggeman model, once large enough to represent the 
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resulting microarchitecture of the applied fields, which is expected due to the chaining and close 

proximity of the particles within the chains in this direction. 

Similar trends are shown in  Figure 3-5 b and  Figure 3-5 c for 5% and 10% volume 

fraction, respectively. The point where the z direction permittivity exceeds the Bruggeman model 

is at larger model sizes (particle count) for higher volume fractions, likely due to decrease in 

particle mobility and resulting difficulty forming structures. Although the absolute value of the 

permittivity converges only at larger model sizes, such as 200 for the 5% and 300 for the 10%, 

the anisotropy is consistent from 100 particles for 1% and 5% volume fraction and 150 particles 

for 10% volume fraction. The average permittivity values from  Figure 3-5 are plotted together in 

a line plot in Figure 3-6 to illustrate the anisotropy trends. From Figure 3-6 it can also be seen 

that convergence is slower for higher volume fraction, reinforcing the assumptions made for the 

elastic property convergence study shown previously. The relationship between permittivity and 

volume fraction is also apparent in Figure 3-6 with the observed increase in maximum 

permittivity as well as the increase in range between the z direction (alignment direction) and the 

x and y directions. The structure dependent value that the computational homogenization 

demonstrates, seen in the anisotropy of the Case 2 values presented here, is necessary for 

optimizing the constituent set to maximize the range of possible properties, and cannot be 

predicted with traditional effective medium models. 
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Figure 3-5: Dielectric convergence study showing relative permittivity in three directions for a) 
1% volume fraction b) 5% volume fraction and c) 10% volume fraction versus particle count 

(simulation size) and the trend with respect to the Bruggeman effective medium model (dashed 
red line) for reference to determine convergence at each volume fraction 
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Figure 3-6: Dielectric convergence study showing relative permittivity in three directions for 1%, 
5%, and 10% volume fraction versus particle count (simulation size) showing the anisotropy vs 

model size of each volume fraction tested 

 

For consistency with the elastic properties and an understanding of the expected error, a model 

with 100 particles will again be used with the dielectric homogenization models. The consistent 

model size allows for direct comparisons of the three properties investigated for the same RVE.  

 

3.2.2 Compliance and Moduli versus Volume Fraction 

This section presents effective elastic properties compared to traditional effective 

medium theory and experimental values. The effect of the changes in particles distribution as a 

function of applied processing fields captured by the computational homogenization scheme 

highlights the shortcomings of traditional effective medium theory when attempting to apply it to 

this type of problem. 
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Several iterations of each of the no field, the electric field only, and the magnetic field 

only cases are modeled at 1%, 5%, and 10% volume fraction. The stochastic nature of the 

particle dynamics simulations leads to variation in results, as shown by the error bars in Figure 

3-7. Recall that Case 1 does not have any applied fields, Case 2 has an electric field only (in this 

case 1e8V/m as stated above for the convergence study), and Case 3 has a magnetic field only (in 

this case 250,000 A/m). All other parameters are the same as those used for the results in Figure 

3-4. The effect of volume fraction and single fields on mechanical stiffness are shown in Figure 

3-7, demonstrating the anisotropy that can be achieved from altering processing conditions alone. 

 
Figure 3-7: Elastic modulus versus various volume fraction of no field (Case 1, green), electric 
field only (Case 2, blue), and magnetic field only (Case 3, red) cases having 100 particles each, 

showing the increased anisotropy for Case 2 which has chaining in the z direction 

 

The effect of the chains in Case 2 becomes very apparent in the anisotropy of the 

modulus, where chaining increases the stiffness of the composite in the direction of chaining. 

The ranges in error for each case and volume fraction also suggest that the Case 2 (electric field 

only) at 10% volume fraction should be the worst case scenario for convergence and the study 
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presented in Section 3.2.1 was accurately chosen as a representative condition. In contrast, Case 

1 is isotropic as a result of the uniform distribution of particle spacing and orientation within the 

RVE, leading to no increase in stiffness in any particular direction over another. Added stiffness 

in the composite comes from additional (stiffer) filler and the anisotropy, seen in Case 2, from 

preferentially distributing  and orienting that filler within the volume to increase its influence in a 

given direction over another, such as by chaining. The shape anisotropy of the BHF particles 

allows for the distributions of particle orientations to contribute to this change in properties. 

Spherical particles, for example, would be limited to spatial distribution contributions to 

stiffness, but not to any affects from changes in particle alignments (rotations) within random or 

aligned chain structures. 

A clear (and expected) trend for increasing stiffness with increasing volume fraction can 

be seen for all cases, noting that the one outlier (5% Case 2 in the z direction) has larger error 

bars that are likely due to the RVE size. The elastic modulus for the 10% volume fraction Case 2 

increased by 23% from the elastic modulus at 1% volume fraction of the same case. This 

increase is in comparison to a 7% and 10% increase in elastic modulus from 1% to 10% volume 

fraction for Case 1 and Case 3, respectively, demonstrating the impact of the chaining. The 

anisotropy for the electrically aligned Case 2 also become apparent and more pronounced with 

increased volume fraction. The 1% volume fraction Case 2 has a 20% increased stiffness in the 

chaining direction versus the transverse directions, increasing to 29% increase in stiffness in the 

chaining direction for 10% volume fraction. The increase in stiffness is expected due to the 

chaining in the same direction as the increased stiffness, with more or thicker chains in the 

higher volume fraction models. Though some amount of ordering can be seen in Case 3, the 

limitation in the results presented here stem from the particle dynamics simulations, which 
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created a spacing between the particles that works against this effect and could be a possible 

cause for the lack of anisotropy in the Case 3 data. This spacing can be seen in the Case 3 (red) 

simulated architecture compared to the Case 2 (green) simulated architecture. The particle 

collision avoidance method employed in these simulations creates an avoidance distance 

equivalent to the particle radius (major axis), which works well for Case 2 but not for Case 3 

(which should also collapse to near touching chains), as shown. The handling of the repulsive 

force and changes to particle distributions are addressed in Section 3.4. The distinction between 

Case 2 and Case 3 using the ellipsoidal particles, as opposed to geometrical isotropic particles, is 

seen in the orientation of the particle with respect to the applied fields and the resulting 

hierarchal structuring within chains. The orientation of particles from electric polarization and 

the permanent magnetic dipole of the BHF particles simulated here adds complexity and control 

to the structures formed, compared to the spherical particles used in previous work by Bharti et 

al, previously presented in Section 1.2.2 [19]. 

Figure 3-8 shows the same computational homogenization data in a scatter plot to 

compare it to effective medium theory (EMT) models described in Section 2.2.1. Due to the 

closeness of some of the data the error bars are left out for legibility, but have an average value 

across all data points of 4% with respect to the average modulus. 
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Figure 3-8: Elastic modulus versus various volume fraction of no field (Case 1, green), electric 

field (Case 2, blue), and magnetic field only (Case 3, red) cases (100 particles) compared to 
EMT (Halpin Tsai, Mori Tanaka, Reuss Bounds) showing the agreement of the computational 
data in the Ex/y directions and the increased stiffness as compared to the EMT models in the 

direction of the particle chaining for Case 2 (Z direction) 

 

Looking at the Case 2 data in Figure 3-8, the anisotropy can be seen again in the in plane 

(x-y direction) versus out of plane (z direction) stiffness. The Halpin Tsai model, which accounts 

for particle orientation, but not spatial distribution (chaining), does not recreate this effect, which 

underlines the need for modeling predicted hierarchies to fully understand the effect of these 

microarchitectures on the composite property. The Halpin-Tsai model for the x/y direction does 

show some correlation in trend for volume fraction, particularly with the magnetic only aligned 

case 3. However there is no factor for microarchitecture, as in chains created by applying 
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combined external fields, and therefore this method cannot predict composite properties as a 

result of processing parameters in the same way that the simulations presented herein are able to 

do. 

In this section, the elastic modulus in transverse orientation for three cases (no field (Case 

1) , electric field (Case 2) , and magnetic field (Case 3)) were presented and compared. The 

results showed that chaining due to electric field application increases the stiffness of the 

composite in the direction of the applied field in the computationally homogenized results. 

Computational homogenization simulation models were shown to have good agreement with 

effective medium theory in the case of no field or transverse to the alignment direction, 

validating the simulations and resulting computational homogenization, at last for those 

orientations. The hierarchical nature of the alignment in the field direction (e.g. particle 

orientation within chain orientation) may be a causal factor for the difference between the 

simulation results and the effective medium results; experimental fabrication and testing will be 

used as a comparison in Section 3.3 for the moduli in the alignment direction. 

3.2.3 Homogenized Anisotropic Dielectric Response versus Volume Fraction 

This section presents DC results to compare to effective medium theory. Section 3.3 will 

address the AC response in comparison to experimental data. The dielectric response here is 

presented for the 5 cases of applied fields (no field Case 1, electric field Case 2, magnetic field 

Case 3, electric and magnetic field perpendicular Case 4, and electric and magnetic field parallel 

Case 5). These results are compared to traditional effective medium theory for 1%, 5%, and 10% 

volume fraction for 100 particle size simulations using the material properties from Table 4, and 

methods presented in Section 2.1.2.2 and Section 2.2.2. The difference in DC response presented 
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here demonstrates the need for computational homogenization to predict the properties of various 

cases. 

The relative permittivity for the 5 main cases are shown in Figure 3-9 and Figure 3-10, 

demonstrating the effect of the single as well as combined fields and the increase in relative 

permittivity of cases that have that have chaining induced along the electric field dimension 

(cases 2 and 4). It should be noted, however, that particle spacing has a fixed minimum in the 

simulations, which may preference electric field alignment in the plane of the plate and bias 

these results towards increased permittivity in the electric field direction as opposed to the 

magnetic field direction. Again, here the effects of the shape anisotropy and the resulting internal 

hierarchal structuring is seen, particularly in the results for Case 2 and Case 4. Both cases are 

electrically aligned, however, Case 4 has additional ordering from a perpendicularly applied 

magnetic field. The ellipsoidal particles in Case 2 have no preferred in-plane orientation once 

one of the 2 major axes is aligned within the chains in the direction of the applied electric field, 

resulting in a distribution of orientations of the minor axis. The addition of the perpendicular 

magnetic field adds a preferential direction for the permanent magnetic dipole, along the minor 

axis of the ellipsoids, that aligns the particles further within the chains. This additional order 

reduces the permittivity in the direction of the magnetic field, in Figure 3-9 denoted as the y 

direction, and increases in in the perpendicular in-plane direction, in Figure 3-9 denoted as the x 

direction. The additional hierarchal ordering therefore also increases the anisotropy of Case 4 as 

compared to Case 2, seen in Figure 3-10. 
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Figure 3-9: Dielectric response (relative permittivity) versus volume fraction in the x, y, and z 
directions. Results show the increased relative permittivity for cases 2 and 4 that have dense 

chains along the electric field dimension, e.g. for 𝜖𝜖𝑧𝑧 
 

 
Figure 3-10: Ratio of maximum to minimum permittivity for each alignment case at 1, 5, and 

10% volume fraction, showing the degree of anisotropy of each case with varying volume 
fraction, where case 4 has the highest degree of anisotropy in relative permittivity because all of 

the particles are oriented and aligned in chains 
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Anisotropy in permittivity is calculated from simulation results directly by dividing the 

maximum permittivity by the minimum permittivity for each volume fraction and case, 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚

 . 

The results are shown in Figure 3-10. The increase in anisotropy of Cases 2-5, ranging from 2% 

(Case 3 1%) to 16% (Case 4 10%) increase, as compared to the no field case (Case 1) show the 

effect that any degree of alignment and chaining has in the dielectric domain. As a reminder 

Cases 2, 4, and 5 have applied electric fields that lead to chain formation and reorient the 

particles, and Cases 3, 4, and 5 have applied magnetic fields that reorient the particles within the 

RVE. The increase in anisotropy with volume fraction, particularly for Case 2 and 4, illustrate 

the effect of particle proximity when the composite is not considered to have a dilute volume 

fraction, underlining the need for such simulations that effective medium theory would not 

accurately represent by its own definition. The gap present in Cases 3 and 5 (magnetically 

aligned) between the particles is an artifact of the simulation as mentioned in Chapter 2 and will 

have a significant impact on the results in the dielectric domain. The particle spacing causing this 

separation is further discussed in Section 3.4. It is expected that removing the gap will allow 

more distinct chain formation and increase the degree of anisotropy as well as the permittivity in 

the direction of chaining, however the transverse direction in this instance is the plane of the 

platelet particles, therefore its geometry is also a driver of the anisotropy but here preferencing 

the transverse plane. 

The simulation results of the 5 cases at 1%, 5%, and 15% volume fraction are compared 

to the Bruggeman Effective Medium Model from equation (2-88) in Figure 3-11. The figure 

shows the general agreement between the effective medium model and the simulation results in 

general but does not capture the distinctions in effective properties from different particle 

distributions. The Bruggeman model used is simplified to assume uniformly distributed spherical 
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particles. The estimation made by this effective medium model is low for dilute volume 

fractions, such as 1%, with electric field chaining (Cases 2, 4, and 5), as expected. The 

Bruggeman model then begins to overestimate the effective permittivity of the model. From the 

convergence study shown in Figure 3-5 in Section 3.2.1, this is an expected result for the 100 

particle size models at higher volume fractions. The higher volume fraction models could require 

larger model sizes to accurate capture microarchitecture with decreased particle mobility. As 

shown in Figure 3-11, cases with electric field chaining (Cases 2,4, and 5) have higher 

permittivity than the cases without the electric field. The results of case 3 (magnetic field only) 

are lower than the effective medium model and the remaining cases, including the no field Case 

1, due to the spacing between particles, and the lack of chaining in this case. It can be seen then, 

that the Bruggeman model is useful for verifying the functionality of the simulations but cannot 

be used for further predictions in variation of permittivity due to changing processing conditions. 

 
Figure 3-11: DC dielectric Data for 5 cases in the z direction compared to Bruggeman Effective 

Medium Model for 1%, 5%, and 10% volume fraction 
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For both the elastic and dielectric domain, the agreement with effective medium theory in 

the no field case and the transverse direction in aligned cases verifies the model with respect to 

those theories. The deviation from EMT in the elastic response aligned direction demonstrates 

the need for computational homogenization for predicting composite properties for varying 

processing conditions, these hierarchical microarchitectures cause deviation from traditional 

theory. The trend in the dielectric response matches the expected results, showing higher 

permittivity values in models with chaining and general agreement with effective medium 

theory, though distinctions between cases where particle arrangements within chains vary, and 

that cannot be captured by Bruggeman type models, require computational homogenization. 

3.3 Comparison of Experimental Results versus Simulation Results 

Thus far computational homogenization results have been compared to analytical models to 

determine convergence and verify results. Important trends as a result of processing conditions 

and volume fraction have been presented and discussed in comparison to the effective medium 

models considered for verification. In the following subsections, the simulation results 

determined by the computational homogenization methods presented in Section 2.1.2 (and 

corresponding subsections) for elastic, dielectric, and magnetic properties are presented and 

compared to experimental results to validate the current computational homogenization model. 

3.3.1 Homogenized Anisotropic Elastic Response versus Volume Fraction 

Experimental data is used a reference point for validating simulated results and to understand the 

behavior of the system being modeled. As mentioned in Table 4, the elastic modulus of the 

PDMS matrix was modified, to 2.1MPa, after initial results were obtained (which were presented 

in comparison to effective medium theory in Section 3.2.2) to tune the model for comparison to 
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experimental values. To reduce the computational expense of predicting the effective elastic 

modulus of the 5 cases (from Table 5), existing simulation results with the updated PDMS 

modulus (2.1MPa) are used to train a machine learning model to predict the effective elastic 

properties of the 5 cases of applied fields. Computational homogenization simulation results are 

presented for the dielectric and magnetic properties in comparison with experimental results. 

Comparison of the predicted values to the experimental values presented here validate the 

computational homogenization process for effective elastic properties. 

 Experimental results for validation are presented in Figure 3-12 for 5wt% and 15 wt% 

filler content (0.91% and 2.84% volume fraction equivalent) for each of the 5 cases (no field 

(Case 1), electric field (Case 2), magnetic field (Case 3), electric and magnetic field 

perpendicular (Case 4), and electric and magnetic field parallel (Case 5)) for tension and 

compression testing. The y-axis shows the elastic moduli along the tensile or compressive 

direction determined at approximately 20-23% strain. 

A pink box is drawn on Figure 3-12 a to indicate typical values for pure PDMS, which 

can vary based on curing conditions and the amount of crosslinking [149]. For the 5wt% 

samples, all of the average values are below the lowest values of the typical PDMS range 

reported by Wang et al. in their crosslinking study [149]. The PDMS samples tested by Wang et 

al. use Sylgard 184, manufactured by Dow Corning, with base to curing agent ratios ranging 

from 5:1 to 33:1, degassing under vacuum, and curing at 65C for 1 hour, to make 2.5-3mm thick 

samples [149]. The PDMS-BHF samples used for in the experiments for the data presented here 

also use Sylgard 184 and a 10:1 curing agent ratio, cured at 70C for 12 hours then 120C for 6 

additional hours. For a 10:1 curing agent ratio Wang et al. report a 2.61 MPa average elastic 

modulus for pure PDMS [149]. 
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It would be expected that all cases should be at least as stiff as the pure PDMS samples, 

however Figure 3-12 a shows that the 5wt% samples are all below the lower limit of the pure 

PDSM, despite having (stiffer) BHF filler. Earlier simulation runs were conducted with a too low 

modulus for the PDMS matrix, set at 190kPa, which is shown for comparison with the 5wt% 

experimental samples in Figure 3-13. Taking into consideration the large error bars in Figure 

3-13 a) the behavior of the experimental samples show increased stiffness in the Case 2 and case 

5 samples with applied electric field. The experimental results for Case 4 are a bit of an outlier, 

and only have one sample with no tension data to compare to. It is to be expected that the results 

in Figure 3-13 b do not show an increased stiffness for Case 3 and Case 5 due to the previously 

mention spacing concern between particles. 

 
Figure 3-12: Experimental values (from separate samples) for elastic modulus in the direction of 

the applied electric field (z- direction) for compressive testing at 5 and 15 wt% (equivalent 
0.91% and 2.84% volume fraction, respectively) for a) Compression Tests (pink box highlights 

typical range of moduli for pure PDMS as reference, range reported by Wang et al. [149]) and b) 
Tensile Tests 
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Figure 3-13: Results to compare potentially lower matrix modulus effects on effective elastic 
results a) Experimental results for compression testing at 5wt% (0.91% volume fraction) b) 
computation homogenization simulation data from early models with PDMS modulus set to 

190kPa at 1%, 5%, and 10% volume fraction 
 

 After initial comparison to experimental values, the elastic modulus of the PDMS matrix 

was adjusted for the computational homogenization to 2.1MPa to tune the model for comparison 

to the experimental data. Due to the computational expense of the elastic simulations, a machine 

learning model was trained on simulation data (from the optimization framework presented in 

Chapter 2 for which results will be presented in Chapter 4). The design space for the machine 

learning model spans the full electric and magnetic field ranges and 1%-30% volume fraction, 

initialized with a Latin Hypercube sampling to uniformly test the various parameters’ (volume 

fraction and applied fields) impact on the effective properties. The fit of the model to the training 

data can be evaluated with an 𝑅𝑅2 value, commonly used for regressions. For the machine 

learning model used to predict the moduli in Figure 3-14 , the 𝑅𝑅2 value was 0.835, which 

compared to the 13-14% max error observed in the elastic data presented in Section 3.2.2 is 

representative of the expected error in the computational homogenization itself.  It was estimated 

that running 3 points for each case and volume fraction would take 720 hours to complete, but 

could be approximated from data already generated, with the updated PDMS elastic modulus, for 
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the optimization framework (in Chapter 4) in a matter of seconds. The results of the machine 

learning model predictions are shown in Figure 3-14 along with the experimental tension data 

previously presented above in Figure 3-12 b. Understanding that this machine learning model 

was also trained on simulation results with the particle spacing limited by a spherical distance, 

the lower results for Case 3 and Case 5 are expected. The no applied field case samples (Case 1) 

are higher in the machine learning model predictions than the experimental results. However, it 

should be noted that the error in the experimental results is quite high and could point to non-

uniformity, such as agglomeration, that is not seen in the simulated models. On a macro-scale, 

agglomerations could lead to variation in actual volume fraction when a test sample is cut from 

the full prepared material. Similarly, better comparison would be possible with a pure PDMS 

reference value for each sample tested. Interestingly, Case 4 is lower than Case 2, both in the 

machine learning predictions and the previous simulation results in Figure 3-13, pointing to a 

potential decrease in stiffness in Case 4 from the thinner chains that are formed with the 

additional structural ordering within chains as compared to the electric field only Case 2. 

 
Figure 3-14: Elastic modulus in the z-direction for 5 cases a) Experimental tension test data 

(5wt% and 15wt%, equivalent 0.91% and 2.84% volume fraction, respectively) 
b) Predicted data from machine learning model trained on simulation data 
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 Comparing the simulation results with the low PDMS modulus from Figure 3-13 and the 

SVR machine learning predictions in Figure 3-14 shows the relationship between of the 

properties not only to the matrix modulus itself but the effect of the difference in modulus 

between the matrix and the filler material. The increased stiffness from the electric alignment of 

Case 2 has a more pronounced impact in the simulations with the lower matrix modulus than 

predictions with the stiffer modulus. As the values of the matrix and filler moduli converge the 

sample would trend to one uniform property independent of structure. 

 In this section experimental values for elastic modulus of 5wt% and 15wt% were 

presented and compared to simulated values from the computational homogenization scheme 

presented in Chapter 2 and a machine learning model trained on the produced simulation results. 

Modeling efforts show good agreement with experimental values, with known deviations due to 

particle spacing and possible variation in matrix modulus in experimental samples. These results 

not only demonstrate the effectiveness of the computational homogenization but also show the 

efficiency and necessity of using a machine learning model to augment simulations for an 

optimization framework. 

3.3.2 Homogenized Anisotropic Dielectric Response versus Volume Fraction 

Using methods presented in Section 3.2, computational homogenization results of 

dielectric properties for architectures determined form particle dynamics simulations are 

presented in this section for validation against experimentally determined properties. All 5 cases 

are presented in this section for dielectric AC response for models with 100 particles and volume 

fractions at 1%, 5%, and 10%. Experimental filler content is shown at 5wt% and 15wt% which 

correspond to 0.91% and 2.84% volume fraction, respectively. 
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Figure 3-15a shows the results of experimental testing for 5wt% (0.91% volume fraction) 

in the z direction. Due to the thin nature of the samples this is the only direction that can be 

tested experimentally. The processing cases with chaining due to electric fields (Case 2, 4, and 5) 

have a 23-84% higher permittivity compared to Case 1. The permittivity for Case 3, with no 

electric field, is only 11% higher than that of Case 1. 

The simulation results in Figure 3-15b show the electric field only case (Case 2) and 

perpendicular field case (Case 4) have the highest values. Case 3 at 1% volume fraction has one 

outlier leading to the large error bars, this is likely exacerbated by the spacing between the 

particles, leading to one erroneous value that is less likely to occur at higher volume fractions. 

Case 3, which only has a magnetic field, and Case 5, which favors the magnetic field with the 

relative strengths used, both show lower permittivity in the magnetic field direction. This result 

is to be expected with the previously presented spherical spacing used in these runs to handle 

physical collisions between particles. This additional space between particles in chains in Case 5 

lowers the values compared to Case 2 and 4, seen in Figure 3-15b. The error bars are seen to 

collapse with higher volume fraction, likely due to reduced variation in possible particle 

arrangements from decreased mobility, reinforcing the notion that the permittivity is particularly 

sensitive to inter-particle spacing. At 10% volume fraction, where the error bars are small, the 

same trend of improved permittivity in cases with chaining (Case 2 and 4) over Case 1 that was 

seen in the experiments is seen, understanding that Case 5 has magnetic alignment where the 

particle spacing issue arises again. Additionally, there exists a trend showing increased 

permittivity with increased volume fraction in the simulation results that requires additional 

experimental data for comparison. Future work should also include dielectric loss in 

experimental results to compare the complex permittivity of the simulations results, laid out in 
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Section 2.1.2.2. Comparing the dielectric loss for the experimental and simulation results could 

give additional insight to the variation in magnitude of the results present in in Figure 3-15. 

 

Figure 3-15: Effective dielectric properties a) experimental (5wt%, ~1% volume fraction) 
showing higher permittivity values for electrically aligned cases (2, 4, and 5) and b) simulation 

(1,5, and 10% volume fraction) results in the z direction (electric field direction) 
 
 

Comparing the magnitude of the values between the experimental and simulation results, 

even for the random distribution of Case 1 it can be seen that the experimental value is lower 

than the simulation results. The particles are coated in a surfactant to prevent agglomeration 

which is not accounted for in the simulations, adding an extra layer of nonconductive material 

with its own permittivity value that could differ from the PDMS. As shown in (3-1) the 

polarization, 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 is a function of the difference in permittivity of the matrix and the filler 

material due to the buildup of charge on the surface of the material [143]. 

𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 =
4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

3
(𝜀𝜀2 − 𝜀𝜀1)𝑬𝑬− 

 
(3-1) 
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In equation (3-1) 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are the axes of the filler particle, and 𝑬𝑬−is the depolarization field, 

which is a shape dependent response of the particle to the applied field (further discussed in 

Section 4.1). The thickness of the sample also plays a crucial role in determining the 

experimental values, which can be adversely affected by non-uniformity in the thickness of the 

sample. Particle contact that is unique to experimental samples contributes to conduction or 

dielectric loss, also lowering the permittivity measured. 

Comparison of the experimental and simulation results serve to validate the simulations, 

outside of instances where known issues with model fidelity intrude. For example, Cases 1, 2, 

and 4 are able to recreate trends of increased permittivity with chaining for 10% volume fraction. 

Though magnitudes of permeabilities may differ between simulation and experiment, consistent 

trends suggests that he mechanisms of property evolution are accurate, and that these differences 

in absolute magnitude may stem from not accounting for surfactants and other chemical species 

clouding the pure PDMS-BHF properties used in the simulations. 

3.3.3 Homogenized Anisotropic Magnetic Response versus Volume Fraction 

The computational homogenization presented in Section 2.1.2.3 determines the unpoled 

magnetic response of a composite. Particle architectures used in the homogenization are 

determined from simulations containing 100 particles, where the particles and matrix have 

properties given in Table 4. The simulated values are compared to experimental data for 

validation. Experimentally the samples are exposed to an increasing magnetic field until the 

sample saturates (at applied fields on the order of 1.5MA/m) after which the field is reversed to 

map the hysteresis response, with remanent magnetization determined when the applied field 

returns to zero. This process poles the sample, resulting in an experimental remnant 

magnetization in contrast to the simulation’s magnetization that does not account for the history 
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of applied fields. The data presented here focuses on the trends for comparison and validation 

between the experiments and the simulations. 

Experimental samples can vary in actual volume fraction when a section is cut from a 

whole due to the non-uniformity of the particles throughout the sample. Figure 3-16 shows the 

remanent magnetization for 5 cases for 5 and 15wt% and saturation magnetization for cases 1,2,3 

and 5 with a target filler content of 15wt%. No Case 4 samples had been made for experimental 

testing at the time of this document. The observed differences in saturation, however, suggest 

that the filler content varies between the samples. From the vector sum method presented in 

Section 2.1.2.3, the idealized saturation for fully aligned magnetic domains has been calculated 

to be 70 emu/g*.  This property is normalized to particle mass and is therefore independent of 

volume fraction. Discrepancies between target filler content and actual filler content in a sample 

can occur from non-uniform distribution of filler, which when samples are cut into test 

specimens can result in an altered filler content for testing. Deviation from the target filler 

content manifests as reduced or increased saturation when experimental values are mass 

normalized with the target filler content value. The normalized value and the idealized value for 

the saturation magnetization can then be used to scale the experimental values to adjust for actual 

filler content in the prepared sample from the targeted weight percent. The data presented in 

Figure 3-16 b, experimental saturation magnetization normalized to the target particle mass, is 

used to adjust the raw data presented in Figure 3-16 a, remanent mass magnetization, to account 

for these differences in target versus actual filler content. The 5wt% data does not have 

saturation values available and therefore does not make this adjustment. To compare the remnant 

magnetization in experiments to the mass magnetization of the unpoled samples in simulation a 

difference between the z (out of plane) and x/y (in plane) direction components for each is 
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presented in Figure 3-17, noting that 5wt% and 15wt% are approximately 0.9% and 2.97% 

volume fraction, respectively. 

 
Figure 3-16: a) Remanent mass magnetization and b) Saturation magnetization for Case 1,2,3, 
and 5 for experimental samples with a target of 15wt% (2.84% volume fraction) filler content 

normalized to particle mass (g*) 
 

From Figure 3-17 a and b it can be seen that Cases 1 and 2 are nearly magnetically 

isotropic in both experiments and simulations compared to Cases 3,4, and 5, which all have some 

form of magnetic alignment during processing and a resulting enhanced anisotropy here. 

 

 
Figure 3-17: Comparison between the in plane and out of plane magnetization presented for a) 

adjusted experimental values for 5 and 15wt% and b) simulation results for 1,5, and 10% volume 
fraction 
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It should be noted that Case 4 is negative due to the x/y (in plane) direction having the 

applied magnetic field, and the values shown is the difference between the z direction and x/y 

direction. The varying orientations of the magnetic dipoles in case 1 and 2 (that do not have an 

externally applied magnetic field during processing) sums to 0 for the overall composite, 

resulting in an isotropic composite. In the case of the experimental samples for these two cases, 

some of the domains have been flipped during saturation when running through the full 

hysteresis loop and remain in a more ordered state than they started in, resulting in an overall 

remnant magnetization as presented in Figure 3-16a. It should also be noted that the simulations 

assume a single domain particle with a unidirectional magnetization. The purpose of these 

simulations is to predict trends in composite properties to maximize the range of properties 

possible by varying the applied electric and magnetic processing fields. The purpose of this 

validation is to show that this behavior is also seen in experiments. The simulations predict an 

anisotropic response in the cases with magnetic field processing (Cases 3, 4, and 5), which is 

also seen in the experimental results. Additionally the simulations predict a nearly isotropic 

response in Case 1 and Case 2 that were not processed with a magnetic field, which is again also 

seen in the experimental data. 

3.4 Particle Spacing and Resulting Model Fidelity 

Predicted effective properties are a direct result of the particle distributions found from the 

applied processing fields. In order to improve fidelity and agreement with experimental results, 

the issue of the spherical, initially employed, spacing was addressed. This section presents the 

resulting distributions of particles using the ellipsoidal spacing described in Section 2.1.2.5. 
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 Figure 3-18 shows the resulting distributions using the spherical (equation (2-11)) or 

ellipsoidal (equation (2-18)) distance in the repulsive force for models processed with a 1e8 V/m 

electric field and a 250,000 A/m magnetic field both applied in the z direction on a 1% volume 

fraction model with 100 particles. The values of 𝛽𝛽 are varied to see the effect of this calibration 

term (𝛽𝛽) on the resulting distribution. The results for the spherical distance in Figure 3-18 shows 

that at lower 𝛽𝛽 values, particularly for 𝛽𝛽 =2, the minimum spacing between particles tends 

towards radius of the sphere assumed in the repulsive force calculation of equation (2-11). The 

vertical gap between particles is essentially the particle’s in plane diameter. With larger values of 

𝛽𝛽, the repulsive force decays more quickly as the particles separate, allowing the particles to be 

closer than their in-plane (major) diameter. Although the closer spacing is an improvement for 

particles with aligned minor (out of plane) axes, particles would potentially overlap when aligned 

along their major axes, given the spacing is now less than that distance. 

Using the ellipsoidal distance in the repulsive force calculations, the particles’ 

orientations relative to one another are considered when calculating the repulsive force between 

them, e.g. the proximity of the nearest point on their ellipsoidal bounds. The distributions in 

Figure 3-18 for the ellipsoidal distance show that particles come closer together when aligned on 

their minor axes without universally reducing the spacing for all directions and orientations the 

way the spherical distance calculations do. The 𝛽𝛽 parameter is also shown to have less effect on 

the results than in the spherical distance case. 
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Figure 3-18: Particle distributions for calibration term 𝛽𝛽 at 2, 10, and 100 with spherical and 

ellipsoidal distance calculations for determine the repulsive force between contacting particles 

 

 These distributions are more representative of the way physical particles would interact 

with each other in a composite and show promise for bridging the gap between simulations and 

experiments where the spacing is critical to the effective property, such as in Case 3 samples as 

discussed in previous sections. The way the current particle dynamics simulation handles the 

particles positions and orientations and determines convergence leads to long run times with this 

new spacing, and becomes the bottleneck of the optimization framework. Incorporation of this 

new spacing into the current scheme requires reworking the particle dynamics simulation’s 

handling of convergence. 

 The effect of the distance and resulting repulsive force calculation on particle distribution 

was shown. The spherical distance usage results in separation between particles that is not 

representative of how ellipsoidal particles would interact when coming in contact. The new 

ellipsoidal distance calculation and proposed repulsive force show improvement in removing 
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arbitrary spacing between ellipsoidal particles but are more costly to run in the current particle 

dynamics scheme (going from roughly an hour to more than 12 hours to solve). The change in 

the repulsive forces alters the way time steps are determined within the particle dynamics 

simulation. Ultimately, manual calibration or reworking the framework’s handling of time 

discretization and convergence is required to incorporate the ellipsoidal distance force 

calculation. In the results presented thus far the spherical distance and force calculation is used 

and will also be used for the optimization framework in subsequent chapters due to the current 

added computational expense. Revisiting the particle dynamics simulation in future work to 

modify handling of time steps and convergence will improve this run time and allow the 

ellipsoidal spacing to be used in calculating repulsive forces between particles, ultimately 

improving the fidelity of the computational homogenization itself. 

3.5 Artificial Intelligence Framework for Predicting Conductivity 

The results for the approach to predicting conductivity presented in Section 2.3 are presented 

here as a reduced computational expense alternative to homogenization using FEA. The search 

algorithms efficiency and tunability are presented in comparison to an exhaustive search. The 

search algorithm is verified on a test case, to ensure the functionality of the framework to find 

conductive pathways as intended. Some sample points are presented to demonstrate the use of 

the framework in conductivity calculations and the dependency of the results on the physics 

used. The framework presented here lays the groundwork for homogenizing composites with 

highly conductive filler materials for which FEA is not well suited. 

 The goal of an AI pathfinding algorithm is to accurately represent the conductive 

pathway in an RVE. Graph representations such as the minimum spanning tree only capture the 

relative distances of the single closest neighbor to each particle, and do not capture the overall 
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connected nature of the network of filler particles. Similarly a random search such as with 

commonly used Monte Carlo techniques may miss key pathways, particularly near percolation. 

While an exhaustive search could be done, it would be limited to very few particles. Using a 

search algorithm and pruning, or terminating, search paths when there is no reasonable way 

forward is a powerful way to reduce the computation to a feasible run time. As an example of the 

computational strength of AI search in this application a volume of 100 particles is considered. 

Each pathway is a permutation of the particles in the RVE, choosing between 1 and all of the 

particles. The total number of possible paths to check then would be the sum of all of these 

permutations, 

 
 

(3-2) 

where n is the total number of particles. Expanding equation (3-2) out with the definition of the 

permutation formula, this yields equation (3-3). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑠𝑠 = �
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!

𝑛𝑛

𝑟𝑟=1

 
(3-3) 

For 100 particles equation (3-3) yields 3e158 possible pathways, which is unfeasible to check. If 

the path length is limited to 22 particles in length this would reduce the total pathways to check 

to 8e42, still unfeasibly large. If filtering is used and the network were reduced to the 61 particles 

of the 100 that are found to be within the cutoff distance, and the path length was still set to a 

maximum of 22, this would reduce the total number of pathways still only to 3e37. In order to 

reduce the possible pathways enough the path length would have to be limited to 8 or 9 that 

reduce the total pathways to 1e14 and 6e15, respectively. This would still take several hours to 

days to search through, as compared to the seconds for the AI search technique. The algorithm 
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presented here, all paths search (APS), is a modified depth first search that does not consider 

loops, finds nearest neighbors within a defined cutoff distance, and has the option to limit 

pathlength. APS is integrated into a framework that utilizes object oriented programing to allow 

for individual particles to have different properties, such as material or geometric properties. 

 To show the novel nature of this approach as opposed to spanning trees and Monte Carlo 

methods used previously to determine if percolation was achieved, the search algorithm 

presented here is demonstrated on an easy to follow graph test case previously presented in 

Section 2.3 and shown again here with a complimentary matrix form in Figure 3-19. The matrix 

form shown is used to communicate the connections that have been found in the search 

algorithm to the network construction function which utilizes MATLAB’s Simulink tool. The 

graph shown has green lines to represent the nodes that connect the start to the finish and would 

conduct electricity between these, while the gray lines connect nodes but do not conduct 

electricity between the start and finish nodes and are therefore not considered in the conductive 

paths results. This example will also ensure that there are no missing paths or early terminations 

once a path has been found by also requiring backtracking to the start node to continue finding 

paths. Finally, this test case was constructed specifically to test the functionality of the search 

algorithm and ensure that there are no loops returned, such as A-C-D-B-C-E, which is verified as 

shown. The test case ensured the functionality of the search algorithm by testing various failure 

modes. 
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Figure 3-19: Representations of all conductive pathways for simple test case a) connect graph 

showing all conductive pathways and b) equivalent matrix form of the solution 
 

The results of the search on this test case are shown in Figure 3-20 in command line 

output form. The algorithm correctly found all of the green paths highlighted in Figure 3-19 

while not returning any loops or nodes not connected by green lines. This validates the 

functionality of the search algorithm on this type of problem. The same framework is then used 

on 3 dimensional position data for spherical particles to find conductive pathways between 

electrodes on the top and bottom face of the RVE. The results for the APS framework on a 

particle network are shown in Figure 3-21. 

 
Figure 3-20: Results from simple test case showing the conductive pathways found by the 

search algorithm in command line output format 
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Figure 3-21: Pathfinding algorithm results showing "all paths" graph, where conductive paths are 
shown in green between particles whose centers are shown by the red points for an RVE with 

100 particles and 10% volume fraction 

 

The focus of this comparison is to understand the behavior the framework shows and 

evaluate the usefulness of the search algorithm incorporated in this workflow. To compare the 

results of this framework to experimental data a simple case was found in the literature. The 

samples selected were fabricated by Chen et al. and are Nickle Polystyrene particle composites 

which were tested for resistivity as a function of volume fraction [150]. For comparison, 14%, 

20%, and 30% volume fraction (60, 70, and 80 wt%, respectively) were simulated, assuming a 

random distribution of particles and 1nm diameter spheres. The conductivity of the particles was 

set to 6.4e-8 Ohm-m. The conductivity of the Polystyrene used was not indicated in the 

manufacturer’s specifications and estimated at 1e19Ohm-m. For each volume fraction 10 points 

are tested, the results of which are plotted in Figure 3-22. 
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Figure 3-22: Simulated resistivity results for 1nm diameter spherical Nickel-Polystyrene 
composite at 60, 70, and 80 wt% (14%, 20%, and 30% volume fraction, respectively) 

 

The experimental results from the literature for Nickle powder unaligned composites are 

shown in Figure 3-23, note this plot is on a log scale in the y-axis. From these results it can be 

seen that at lower filler content, such as 60 wt% and below, for the powder, the resistivity 

matches well with the simulated results, on the order of 1e8 Ohm-m. The values begin to quickly 

drop off in the experimental results to 1e6 Ohm-m at 70 wt% and below 1 Ohm-m at 80 wt%. 

When examining the image in Figure 3-23 for the 80 wt% particle distribution, it can be seen that 

the particles are not uniformly distributed and cluster together. It should also be noted that there 

are no error bars presented on this data to indicate variability between samples. 

 The simulation results show good agreement with the lower volume fraction cases such 

as 60 wt%. The effective resistivity found in both cases somewhat diverge at higher filler 

content, however. It should be noted that some RVE’s at 60 wt% did not have a conductive 

pathway found with the metrics used, suggesting also that this amount of filler content may be 

near the percolation threshold. In testing of the framework some instances of 80 wt% and higher 

were also noted to have particle arrangements that formed short circuits. This is an interesting 

distinction to note, particularly when comparing to the experimental results. The particle clusters 
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seen in the image in Figure 3-23 suggest a potentially similar mechanism in the experimental 

results as the short circuit values seen in simulation. These seemingly outlier simulation 

instances returned values less than 1 Ohm-m. The distributions that resulted in such low 

resistivity results were found during a separate test set, using different search parameters, from 

the data presented in Figure 3-22, and could therefore not be included there. It is possible then 

that the experimental results from Chen et al. show a rapid drop on resistivity with increased 

filler content because of nonuniform particle distribution and clustering. It would be necessary to 

study the experimental particle distributions to recreate similar clusters in simulated distributions 

for better comparison. The simulated results show the effect of increased filler content 

decreasing the resistivity, suggesting that the path finding algorithm finds connections between 

particles that are representative of the conductive network in the composites. The model size 

used was 100 particles and could also be investigated in the future with correlation to 

experimental distributions to ensure that the model size is able to represent any structuring or 

clustering found in experimental samples. 

  

Figure 3-23: Resistivity data from Chen et al. [150] showing the effect of volume fraction on 
resistivity of various Nickle-Polystyrene composite compositions used as a reference for 

comparison with simulated conductivity results 
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The simulated results presented in Figure 3-22 show good agreement with near 

percolation values and a drop in resistivity by 2 orders of magnitude from 60 to 80 wt% filler 

content. This framework shows potential for future integration into finding percolation paths and 

predicting conductivity of composites. The strengths of this framework are that the particles are 

controlled using individual objects that can be modified to have different sizes and shapes while 

efficiently searching for physics representative pathways through an RVE. 

3.6 Summary 

In this chapter the initial results for analytical and computational homogenization were presented 

and compared. Verification with effective medium theory has been shown for elastic results. 

Dielectric results have been compared to the Bruggeman model for the DC case. A convergence 

study was shown to quantify the effect of model size on the effective elastic properties. Elastic, 

AC dielectric, and magnetic simulation results were presented and validated with experimental 

data comparison. It was shown that the computational homogenization can determine trends in 

composite behavior, which is sufficient for optimization where the trends can still point to the 

design space extrema. However, the model can be further calibrated for specific values with 

further experimental data. Finally, the results of the novel All Paths Search (APS) framework 

incorporating AI search into a homogenization scheme for predicting conductivity was presented 

and compared to data from the literature. The homogenization results presented here are the 

foundation for the optimization framework presented in Chapter 4.  
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CHAPTER 4: Multi-Objective Optimization Results and Discussion 

This chapter uses the framework and methods described in Chapter 2 and the homogenization 

results presented in Chapter 3 to evaluate the multi-objective optimization scheme and determine 

the constituent set that will provide the largest range of possible properties by varying processing 

condition alone. The results presented in this chapter underline the need for such a framework 

that can search and determine the effective properties of multi-field processed composites. The 

effects of varying the respective orientation and magnitudes of processing fields show the non-

trivial nature of the design space. Additionally, results from the optimization scheme in this 

framework will be shown, both for single properties as well as a combined property multi-

objective optimization. Single property objective results were presented, in part, at the ASME 

Conference on Smart Materials, Adaptive Structures, and Intelligent Systems in 2022, Multi-

Objective Optimization of Predicted Magnetic Properties from Multifield Processing Conditions 

in Polymer Matrix Particle Composites [151]. 

Optimizing the possible range of properties fundamentally seeks to determine how to 

apply processing fields to achieve desired microarchitectures. Those field, in turn, act on particle 

to align them in the field direction at the chain and particle level.  These spatial rearrangement 

invariably involve rotations of particles due to the applied electric and magnetic fields. However, 

these fields may act in concert or in opposition, given the five processing Cases outlined in 

Section 3.2. The combined action of the two fields, when applied simultaneously, leads to the 

concept of a 'cross over torque', herein defined as the point at which the applied electric and 

magnetic field are equal and opposed to one another. The resulting microarchitecture changes on 

either side of this point, demonstrating the importance of tuning relative field strengths and 

orientations over the discrete five cases when optimizing the possible range of properties. 
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4.1 Crossover Torque 

The relative strength and orientation of the applied fields has been shown to affect the resulting 

particle distribution. Particularly when considering the electric and magnetic fields applied in the 

same direction. The shape of the ellipsoidal particle, specifically the shape anisotropy, leads to 

differences in the components of the polarization vector, which results in a torque on the particle 

to align with the applied electric field. Similarly, the permanent magnetic dipole of BFH results 

in a torque on the particle to align the dipole with the externally applied magnetic field. Each 

field attempts to align the particles as shown in Figure 4-1. When these fields are oriented in the 

same direction the torques generated oppose each other and the fields compete for preferential 

orientation. There then exists a point at which these competing torques equal each other, and the 

system is conditionally stable where small deviation from this point (orientation or field strength) 

favor one or the other. This point is therefore referred to as the crossover torque. The generated 

torques are a function of the applied field with respect to the particle, the material properties, and 

the geometry of the particle itself that are considered in this balance. The effect of the relative 

strengths of these competing fields drives the resulting particle distribution and therefore 

effective properties. 

The concept is further illustrated with simulation results in Figure 4-2, showing resulting 

particle distributions for 1%, 5%, and 10% volume fraction in sub columns with parallel applied 

magnetic and electric fields ranging in magnitude from 0-500,000 [A/m] down the rows and 0-

100 [MV/m] across grouped columns, respectively. The purpose of this figure is to demonstrate 

the changes in microarchitecture from changes in strengths of the two fields applied in parallel, 

demonstrating the principle and effects of the crossover torque.  
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Figure 4-1: Resulting torque from a) polarization from externally applied electric field and b) 

magnetization from magnetic dipole and applied magnetic field (vector quantities vary with the 
direction of the applied field with respect to the particle orientation) 

 

 
 

Figure 4-2: Particle distributions for systems with varying combinations of electric and magnetic 
field applied in the z direction (vertical direction in each figure), showing the competing nature 

of the torques generated from the two fields to orient the particles with the respective field 
 

An example of this change is seen by observing the middle row at H=250,000 A/m. The 

example holds for any of the volume fractions; however, 1% volume fraction is easiest to discern 

the particle orientations. In the first column (no electric field) and 1% volume fraction, for 
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250,000 A/m magnetic field, the particles align their magnetic dipole moment with the applied 

magnetic field. In the second grouped column (electric field of 1MV/m), the particle still align 

their magnetic dipole moment with the applied magnetic field despite the presence of an electric 

field, due to the magnitudes of the respective fields. In last grouped column (electric field of 

100MV/m), for the 1% sub column, the particles now align their major axis with the applied 

electric field due to the electric polarization induced in the particles by this field, despite the 

continued presence of the 250,000 A/m magnetic field, a change in the preferred orientation from 

the applied magnetic field direction toward the electric field direction. These same processing 

fields and the effect on particle distributions is repeated in Figure 4-3 to illustrate this change in 

closer detail. The change in particle orientation is clear in Figure 4-3 by increasing the electric 

field from 1 [MV/m] to 100 [MV/m]. The torque the electric field generated on these particles 

was strong enough to overcome the torque the magnetic field generates on the particles and the 

resulting orientations crossed over from magnetically aligned to electrically aligned. At a higher 

magnetic field of 500,000A/m it can be seen that this crossover is not as strong for the 100MV/m 

electric field because the larger magnetic field has a stronger torque that is able to compete better 

with the electric field. For this reason a continuous, rather than discrete, exploration of the design 

space is necessary, as the 5 general cases manufactured experimentally to date, do not cover the 

intricacies of the combined fields between the extrema. 
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Figure 4-3: Particle distributions example for 1% volume fraction with 100 particles a 250,000 

A/m magnetic field in the z-direction and increasing parallel electric field from 0-1e8 V/m 
showing the effect of field strength on microarchitecture and demonstrating the crossover torque 

 

To better understand the interaction between the effects of the two fields, the generated torques 

for the two fields can be calculated as a function of field strength and particle orientation to 

determine where this crossover point is. The resulting torques versus applied field are plotted in 

Figure 4-4, using equation (4-1) for the magnetic field generated torque and equations (4-2)-(4-5) 

for the electric field generated torque, using the magnetic dipole moment, 𝑴𝑴, the dimensions of 

the major axis, 𝑎𝑎 , and minor axes 𝑏𝑏 , and 𝑐𝑐, of the particles along with the matrix and particle 

relative permittivity, 𝜀𝜀1 and 𝜀𝜀2, respectively. 

𝑻𝑻𝑚𝑚 = 𝑴𝑴 × 𝑯𝑯0 
 (4-1) 

𝑻𝑻𝑒𝑒 = 𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑬𝑬0 
 (4-2) 

𝒑𝒑𝑒𝑒𝑒𝑒𝑒𝑒 =
4𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏

3
(𝜀𝜀2 − 𝜀𝜀1)𝑬𝑬− 

 
(4-3) 
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(4-5) 

It can be seen that when the fields are applied in the same direction �𝜃𝜃 = 𝜋𝜋
4
� that there is a 

crossover torque just above 6 × 107 [𝑉𝑉/𝑚𝑚] and 150,000 [𝐴𝐴/𝑚𝑚] electric and magnetic fields 

respectively. 

 
 

Figure 4-4: Theoretical electric and magnetic field generated torques vs applied field strength 
shown for 3 particle angles (0, 𝜋𝜋

4
, 𝜋𝜋
2
) 
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It should be noted that these torques are calculated for single particles systems and that 

nearby particles would have an effect on the actual field seen by the individual particle. It can be 

assumed however, that this serves as a good approximation for dilute systems and helps to guide 

experimental values toward a crossover point. What has been shown here is the importance of 

exploring relative direction and magnitude variations of applied electric and magnetic fields to 

tune particle distributions and thereby properties for materials design problems. 

4.2 Nested Optimization Framework 

The design space for this optimization is define by the volume fraction and the applied electric 

and magnetic fields, for which the bounds are laid out in Table 6. Searching for the optimal 

properties in this bounded design space is accomplished via the nested optimization framework 

laid out in Section 2.4.1. In the full scale framework, we seek to optimize the constituent set to 

maximize the combined range of magnetic, dielectric, and elastic effective material properties. 

The results presented in this section, however, are for magnetization only. These results for 

magnetization are used to demonstrate the nested framework and the effect of the constituent set 

on the range of properties. The range of properties with respect to constituent set is then used to 

optimize the constituent set itself to maximize the range of possible properties. Later, the 

combined objective function with elastic and dielectric properties additionally accounted for will 

be presented in Section 4.3. The magnetic properties are examined alone, specifically without the 

elastic properties, due to the large computational expense of the elastic homogenization and the 

lesser expense of the magnetic homogenization. The optimization framework presented in this 

Section uses traditional gradient based methods to optimize the constituent set using the methods 

presented in Section 2.4.1 for the nested optimization framework. 
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The elastic homogenization requires a more efficient search algorithm. Optimization of 

the combined objective function, presented in Section 4.3, is accomplished by using a machine 

learning model, namely SVR, to augment the optimization framework for improved efficiency. 

The results in this chapter underline the improvements found with the hybrid machine learning 

and optimization model to be presented in Section 4.3. 

 The bounds for the optimization, equation (2-92), are tabulated in Table 6. It should be 

noted that the lower bound of volume fraction is set to 1% to avoid issues with the particle 

dynamics simulation which would be unable to create a volume at 0% volume fraction. The 

upper bound on volume fraction is set to 30% which exceed the current experimental range, and 

is a high volume fraction but does not cause issues with the particle dynamics simulations seen at 

higher volume fractions. A physical limit is approached in initializing the RVE with particles 

whose collective volume approaches that of the cubic space they occupy, however the simulated 

limit far exceeds experimental limits and is therefor not an issue for these models. The electric 

and magnetic field ranges were determined previously to attempt to reproduce experimental 

particle distributions [26]. 

Table 6: Bounds on the optimization scheme independent variables (volume fraction and 
applied electric and magnetic fields). 

Input Variable Lower Bound Upper Bound 

Volume Fraction 1% 30% 

Electric Field 0 V/m 100 MV/m 

Magnetic Field 0 A/m 250,000 A/m 

 

Recall that the optimization seeks to determine the optimal constituent with the largest 

range of possible properties by varying processing conditions alone. The nested framework uses 
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the electric and magnetic fields, within in the ranges presented in Table 6, to tune the 

microarchitecture dependent effective material properties (in this Section, mass magnetization), 

finding the maximum and minimum properties for a given constituent set. The optimization 

framework then maximizes the range of properties, from this maximum and minimum set found, 

by varying the constituent set, in this case volume fraction. The nested optimization framework 

presented here used 4 independent variables in total, the volume fraction, the electric field, the 

magnetic field in parallel to the electric field, and the magnetic field perpendicular to the electric 

field to determine the constituent set with the largest range of possible properties. 

The results for this optimization run are plotted in Figure 4-5 where several points of 

interest are noted. In the Figure, the three axes represent the strengths of the applied processing 

fields, electric and magnetic, in the simulations along the axes shown. Additionally, the color bar 

at right expresses the strength of the mass normalized magnetization (by particle mass), the 

variable be optimized here. Five points are noted on the graph in different regions with respect to 

the axes; the axes themselves represent the strengths of the applied processing fields 𝐻𝐻𝑦𝑦, 𝐻𝐻𝑧𝑧, and 

𝐸𝐸𝑧𝑧 along their respective directions in the simulations. Consequently, the location of any point on 

the graph expresses its external field processing environment. Points 1 and 2 lie in regions of low 

processing fields overall.  In contrast, point 3 keeps the electric and magnetic fields in the z-

direction, 𝐸𝐸𝑧𝑧 and 𝐻𝐻𝑧𝑧 low, while the magnetic field along the y-axis, 𝐻𝐻𝑦𝑦 is increased. From here, 

point 4 increases the applied electric field, 𝐸𝐸𝑧𝑧, to a region that has high perpendicular electric and 

magnetic fields, 𝐸𝐸𝑧𝑧 and 𝐻𝐻𝑦𝑦. Finally, point 5 is in a highly explored region of the design space 

with high magnetic field only in the z-direction, 𝐻𝐻𝑧𝑧, and low electric field, 𝐸𝐸𝑧𝑧. Figure 4-6 is 

presented as a supplemental figure to Figure 4-5, showing the same three axes with the applied 



159 

 

electric and magnetic fields, but with the volume fraction represented in the color bar for 

visualization of the 4D design space to aid in interpretation of the optimization results.  

Results presented in Figure 4-5 shows how the gradient based optimization explores the 

design space for the maximum and minimum magnetizations. Recall that the mass magnetization 

presented is particle mass normalized to remove the effect of differing magnetic content across 

samples, allowing extraction of only the effects of the structures on the magnetization. It is of no 

surprise that magnetically aligned particles would yield better mass magnetization as compared 

to electrically aligned particles, seen between point 1 and 5 in Figure 4-5. It can be seen however 

that the change in volume fraction shown between the cluster at 3 and the point at 4 from Figure 

4-6 is significant, in the change in mass magnetization shown in Figure 4-5 since the mass 

magnetization decreases from point 3 to 4 despite the addition of the electric field perpendicular 

to the magnetic field. From the presentation of resulting torques in Section 4.1, the added electric 

field would aid in orienting the particles in a magnetically favorable orientation for the y-

direction in conjunction with the magnetic field. 

Figure 4-7 illustrates the results of the framework’s search of the design space while 

varying particle volume fraction; and applied electric and magnetic processing fields. In the 

figure, the x-axis tracks the volume fraction of the particles modeled in the simulations while the 

y-axis tracks the resulting mass normalized magnetization as the sole output metric. Recall that 

the mass magnetization presented in the figure is particle mass normalized to remove the effect 

of differing magnetic content across samples, allowing extraction of only the effects of the 

structures on the magnetization. At a given volume fraction, the mass normalized magnetization 

of multiple discrete volume fractions, sampled within the design space by the framework as it 

progresses, are presented. The presentation of simulation data in this format results in a vertical 
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columns of points that show the maximum, the minimum, and thereby the range of intermediary 

mass magnetizations that can be achieved by varying processing conditions at that volume 

fraction. To simplify the chart, the external field processing conditions used in the simulation to 

achieve that point in the design space are not expressed in this figure (however they are shown in 

Figure 4-5 and Figure 4-6). 

Figure 4-7 reports the mass magnetizations plotted versus volume fraction showing the 

nested nature of the search as well as the range of properties at each volume fraction selected by 

the outer loop of the optimization framework. In the figure, at a given volume fraction, it can be 

seen from this figure that the increase in volume fraction at 28% reduces the range of mass 

magnetization likely due to limited mobility of the particles in such a high volume fraction 

composite, inhibiting the favorable structures from being formed that contribute to increased 

mass magnetization in the lower volume fraction composites. 

Figure 4-7 also shows that the optimum volume fraction for the largest range of possible 

properties by varying processing conditions alone is at 10% volume fraction. The minimum and 

maximum points found across all volume fractions are shown in Table 7. The points are 

presented in descending order, so that the first minimum and first maximum listed are the 

respective extrema at 10% volume fraction. It was decided to show 3 points to illustrate the 

multiple processing fields that can achieve the optimum properties found. Since the final point is 

selected based on range, the largest and smallest values are considered, but when relating these 

to input fields for selecting the corresponding processing parameters any of these could be 

considered to yield the desired  properties. Selecting a single optimum point could require 

additional modification to the objective function to further reduce the processing fields. For 

example, minimizing the energy consumption would only reduce the valid results to the 
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processing fields with the lowest possible input energy to achieve the maximum or minimum 

property. 

 
Figure 4-5: Results of gradient based optimization for mass magnetization showing max mass 
magnetization vs applied electric and magnetic fields for all volume fractions, with points of 

interest marked 1-2) no change in magnetization with increased electric field only 3-4) 
decreasing maximum magnetization due to volume fraction change (left to right the points here 

are for 11, 10, 7 and 28% volume fraction where the magnetization decreases with increased 
volume fraction) 5) highly sampled region to determine maximum which is shown to be at 

magnetic field only, orienting the particles’ magnetizations with the applied field 
 

 
Figure 4-6: 4D design space representation of mass magnetization optimization results with 
applied field along the three axes and color representing volume fraction to demonstrate the 
exploration of the design space and supplement results in Figure 4-5, with the same points of 

interest marked for reference purposes 
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Figure 4-7: Results of gradient based optimization for mass magnetization showing all 

magnetizations found vs volume fraction to illustrate the range of possible properties as a 
function of the constituent set, noting the decrease in range at 28% volume fraction, likely due to 

lack of particle mobility in the composite to form favorable structures 
 

Table 7: Top 3 minimum and maximum points found at 10% volume fraction (3 points are 
shown to demonstrate the multiple processing conditions that yield the same optimum 
property) The first row for the minimums and maximums each are the respective optimum 
solution found 

 𝑬𝑬𝒛𝒛 𝑯𝑯𝒚𝒚 𝑯𝑯𝒛𝒛 𝑴𝑴𝒙𝒙 𝑴𝑴𝒚𝒚 𝑴𝑴𝒛𝒛 

MIN 

1000 0 0 -0.429 -0.490 -0.006 
0 0 250000 0.212 0.003 24.340 

0 1000 0 -0.649 -0.046 -0.003 

MAX 
108500 488 249512 0.110 0.013 24.628 

0 0 250000 0.088 -0.209 24.615 
724 177 249764 -0.076 0.186 24.586 

 

The nested optimization framework presented in Section 2.4.1 was implemented here to 

find the constituent set (in this case volume fraction) that has the largest range of mass 

magnetization by varying property conditions alone. The optimization framework demonstrated 

its ability to search various processing fields and determine effective material properties, using 



163 

 

computational homogenization, to determine the maximum and minimum properties possible for 

a given volume fraction. Using the extrema found the inner loop (determining the maximum and 

minimum properties), a range is computed for possible properties for a given constituent set. The 

outer loop then searches all possible volume fractions for the largest range of possible properties. 

The optimization framework revealed that there exist multiple processing conditions which can 

return the maximum or minimum property for a given constituent set. In future work, the 

objective function can be modified to include additional considerations such as input energy 

from applying electric and magnetic fields to simultaneously minimize the energy consumption, 

reducing the number of possible field combinations for achieving a specific property to a single 

result. 

4.3 Multi-Objective Optimization with Integrated Machine Learning 

Using the weighted combined objective function and the nested framework presented in Section 

2.4 the design space search was able to vary processing fields to maximize and minimize the 

effective composite properties by varying processing fields, to determine the widest range of 

possible properties by optimizing the constituent set. The design space consists of 4 independent 

variables, volume fraction, electric field, and 2 magnetic fields (parallel and perpendicular to the 

electric field), that can be varied continuously on the bounds presented in Table 6. Each point 

(set of volume fraction and applied processing parameters) within this design space must be 

evaluated for the effective properties using the computational homogenization presented in 

Section 2.1.2, taking approximately 16hrs to determine the elastic, dielectric, and magnetic 

properties of each point. To minimize the computational expense of finding the maximum range 

of properties using the optimization framework presented in Section 2.4.2 a machine learning 

model is implemented to train simultaneously with the design space search for the optima. The 
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model is used to predict the extrema and efficiently search the full design space for test points 

(set of volume fraction and applied processing parameters) to evaluate using computational 

homogenization. 

To begin the search of the design space for the optima the SVR machine learning model 

is initialized with 10 points that sample the design space efficiently. A Latin Hypercube 

initialization technique was used to sample the design space to train the support vector regression 

(SVR) machine learning model, presented in Section 2.5, used to find the optimum points in the 

design space [152]. Further investigation on the quality and efficiency of machine learning 

models is presented in Section 5.1 where the importance of the distribution of data on the quality 

of the model is observed. The results presented in this section use the model initialization points 

to train the SVR machine learning model and predict full design space processing field and 

volume fraction dependent responses to demonstrate the efficiency that can be achieved with the 

machine learning augmented optimization framework used. 

This augmented model was used to repeat the magnetic optimization presented in section 

4.2, the results of which are discussed further in Section 5.1 for determining the appropriate 

machine learning model. The augmented optimization scheme that was used was able to 

converge (the SVR machine learning model prediction is within 10% of the simulation results) 

on a solution in less than 1/10th the number of test points as the pure gradient based optimization 

scheme presented in Section 4.2. While the speed of convergence varies expectedly with the 

initialization points chosen, convergence is still achieved in roughly 1/10th the number of points 

when compared to not using a machine learning model with the optimization framework. To 

eliminate the random sampling a seed was assigned so that the optimization would be 

deterministic for future runs that may get interrupted and would need to be restarted.  
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For the optimization results presented in this section the points used are from a single run 

of the optimization framework to show the predictions of maximum and minimum properties 

used to compute the ranges of possible properties and the evaluation of the combined property 

objective function as the optimization framework would on its first run. Figure 4-8 shows the 

initialization points used in the predicted results (presented in Figure 4-9 and Figure 4-10 for the 

property ranges and combined property range objective function) and the fields for the maximum 

and minimum properties. Figure 4-8 shows the distribution of the training data used in the 

predicted results, both in applied field and volume fraction. The applied fields are, again, on the 

three axes with the volume fraction represented in the color bar. The machine learning 

optimization framework is able to predict minima and maxima without highly sampling the 

region of the design space near the extrema, which is critical in reducing the computational 

expense of finding the constituent set with the largest range of properties. 

 
Figure 4-8: Design space plot with applied fields on the three axes and volume fraction 

represented in the color bar, showing initialization points and predicted points where effective 
property minima and maxima occur 
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The trained model is capable of predicting constituent and processing field dependent 

effective material properties based off of the simulation values in the training set from the 

initialization. The predictions are used to evaluate the objective functions of the optimization 

framework to find the maxima and minima that are selected to be verified by subsequent 

simulations. The SVR machine learning model can predict a full range of responses and is used 

to predict the ranges of possible properties, which are shown in Figure 4-9. Each figure has the 

volume fraction along the x axis and the property (elastic, dielectric, and magnetic) along the y 

axis. The range of volume fractions was discretized and evaluated at each point using the SVR 

machine learning model. At each volume fraction the gradient based optimization from the inner 

loop of the optimization framework presented in Section 2.4.1 is used to determine the maximum 

and minimum properties possible at that volume fraction. The maximum and minimum values 

found then are used to bound a bar segment for each volume fraction, which makes up the plots 

shown in Figure 4-9. 

Figure 4-9 a shows the range of elastic modulus possible with varying volume fraction, 

where a steady range is shown with an overall shift to higher moduli with increased volume 

fraction is observed. The shift in range correlates to expected behavior with effective medium 

theory, where the case with the lowest possible modulus would necessarily still increase in 

modulus with increased volume fraction and can be tuned to form structures with a similarly 

larger maximum modulus. The prediction from the augmented optimization framework cannot 

be compared to the results from Section 4.2 for the elastic properties, because only magnetization 

was evaluated in the previous optimization. However, the predictions from the SVR machine 

learning model correlated to the expected behavior of the computational homogenization shown 

in Section 3.2.2 where the modulus was seen to increase in both the maximum (seen in the 
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results for Case 2 with electric field induced chaining) and the minimum (seen in the results for 

Case 1 with the no field and Case 3 with magnetic field only applied) with increased volume 

fraction.  

For magnetization in Figure 4-9 b, the range is shown to increasingly decrease with 

volume fraction. When comparing this to the previous optimization results from Section 4.2, the 

maximum would be at 1% rather than 10% volume fraction as was found previously. However, it 

should be noted that the ranges in Section 4.2 are a function of the minimum values since the 

maximums found were near 25 emu/g* and decreasing with an increase in volume fraction. This 

minimum dependent range calculation is important to note because the minimums are near 0 

emu/g* and for a random distribution will be a net 0 emu/g*, possible at any volume fraction. 

The change in minimum then, shown in Section 4.2 is likely due to error in the computational 

homogenization itself, and as noted in Table 7 should be considered effectively 0 for near 0 

values. Additionally the maximums shown in Figure 4-9 range from 22 emu/g* to 15 emu/g*, 

which is lower from the 25 emu/g* and 17 emu/g* found in Section 4.2. The lower values could 

be a function of both the error in the simulation results and the resulting fit. However, the trend 

of the maximum magnetization decreasing with increased volume fraction holds. It is therefore 

reasonable to conclude that the decreasing maximum seen in both the direct optimization, 

presented in the Section 4.2, and the augmented model, presented in this section, agree on the 

trend of the mass magnetization range with volume fraction, and that the maximum range for 

magnetization is at 1% volume fraction as shown in Figure 4-9. 

Figure 4-9 c shows the increase in range of permittivity with increased volume fraction. 

Since the permittivity is highly dependent on the distance between particles, the increase in 

shown in Figure 4-9 c is intuitive with decreasing space available for particles to separate in at 
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higher volume fractions. The dielectric results from Figure 4-9 c, like the elastic properties from 

Figure 4-9 a, can also not be compared to the previous optimization results that only evaluated 

magnetic properties. The effective medium result presented in Section 3.2.3 for the dielectric 

response looked at the DC response, whereas the results in Figure 4-9 c are predictions of the AC 

response. The results presented in Section 3.3.2 in conjunction with the experimental data can be 

compared to the predictions presented here. The overall range of effective relative permittivity 

predicted by the SVR machine learning model is shifted higher than the simulation results 

presented in Section 3.3.2, where average values were between 6 and 8.5 for the relative 

permittivity. The large error seen in the results for in Section 3.2.2 could lead to a poor fit as a 

result of uncertainty in the training data. Improvements to the error in computational 

homogenization could improve this correlation. 

The three properties explored in Figure 4-9 can be combined, in their normalized form, to 

show the behavior of the objective function with increased volume fraction. Figure 4-10 shows 

the summation of the normalized ranges using equation (2-93), where the largest range for all 

three properties combined is at 1% volume fraction. For design applications however, it will be 

important to also consider the absolute properties possible, not only their ranges if for example, a 

specific value is desired; the range must include that value and a simply large range may not 

suffice. 
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Figure 4-9: Maximums and minimum of a) modulus b) mass magnetization c) relative 

permittivity vs volume fraction as calculated by the trained SVR model showing the range of 
properties used by the objective function in the optimization framework 
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Figure 4-10: Predicted property range results for magnetic (orange), elastic (blue), dielectric 

(green), and the evaluation of the combined objective function (black) versus volume fraction 

 

 The results that have been presented in this section have been shown to agree well with 

simulations results and the previous magnetic property optimization run in Section 4.2 simply 

with the initialization points from the Latin Hypercube sampling. The machine learning 

augmented optimization framework can continue to learn and train while optimizing the 

constituent set for the maximum range of properties. The performance, and need to generate 

additional training data, of the SVR machine learning model’s predictions to augment the 

optimization framework is evaluated by an error term. The error evaluates the fit of the SVR 

machine learning model’s base (kernel) function to the tested simulation results within the design 

space. Similar to the error used to calculate an R2 value, the error, shown in equation (4-6), is 

defined as the distance of the prediction to the known value, using the already normalized results 

of the machine learning model. The simulation result is normalized by the same factor that the 

training data is normalized with for each property. 
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 
(4-6) 

The normalizing factors used were determined by estimating the maximum expected property 

after several iterations of simulations were run to best scale all of the data, and future data points, 

between 0 and 1, as required by the machine learning model. The error should be modified for 

specific applications with consideration of the error in the homogenization framework itself. 

However, for this demonstration of the augmented framework 0.1 was chosen, when considering 

the range of normalized results are from 0 to 1, this corresponds to 10%. 

Conventional use of data science models, such as the SVR used in this framework, have a 

given generated data set with input and output values. These values are separated into a training 

and a test set and used to train and evaluate the model chosen. In this work, a new way of 

training and evaluating the machine learning model had to be developed to run only the points 

needed to accurately model the design space to allow for training only as much as necessary, 

defined by the acceptable error. Using a growing data set, rather than a static one, lead to the 

development of the SmartSearch algorithm which is implemented when a point is tested with 

error outside of the allowed limit. The novel search algorithm presented in Section 2.5 is used to 

handle the design space sampling to minimize the computational expense in the exploration after 

the initialization of the design space. 

Figure 4-11 shows the design space position of the test points chosen throughout the 

machine learning augment optimization framework with the applied electric and magnetic field 

on the three axes, and the volume fraction in the color bar. The error calculation in these runs 

attempted to normalize the already normalized data, resulting in erroneously large values, 

prompting the optimization framework to continue training. This has since been corrected, 
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however the behavior of the optimization framework when searching for new points to use for 

training both via the optimization of the properties and the SmartSearch algorithm discussed in 

Section 2.5, is demonstrated here. The design space points of this preliminary run are plotted in 

Figure 4-11 with lines between points showing the search progression through the design space 

using the SVR machine learning model to augment the optimization framework. The first 10 

points from the Latin Hypercube initialization of the data set are shown but not connected with 

any lines since these are points generated as a set before the optimization begins. The points 

plotted in Figure 4-11 are the sets of volume fraction and processing conditions that selected by 

the machine learning augmented optimization framework and are either extrema of any of the 

three material properties of interest (elastic, dielectric, and magnetic), or points selected for 

training determined by the SmartSearch algorithm presented in Section 2.5. The points shown in 

Figure 4-11 are tested using the computational homogenization presented in Section 2.1 and are 

added to the training set that the SVR machine learning model is fit to. The SVR machine 

learning model is retrained each time a new data point is added to the training set. 

Figure 4-11 shows the exploratory nature of the search, particularly as compared to the 

results presented in Figure 4-5 which did not utilize the machine learning argument optimization 

framework. The spread of the data shown in Figure 4-11 is a demonstration of the machine 

learning augmented optimization framework to only test design space points (set of volume 

fraction and processing fields) using computational homogenization to check the validity of a 

found optimum (maximum and minimum) effective property, or to train the model in an area of 

the design space that is largely unexplored and has large error, to eliminate unnecessary 

sampling of a small region of the design space as was previously observed in the non-augmented 

optimization framework in Figure 4-5 presented in Section 4.2. 
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Figure 4-11: Design space search results from preliminary runs of the framework (that have since 

been modified), showing the applied fields on the major axes and the volume fraction in point 
color, to demonstrate the exploratory nature of the optimization framework when training. The 
lines indicate the order of the points tested, excluding the original 10 Latin Hypercube sample 
points to demonstrate the exploratory nature of the machine learning augmented optimization 

framework  

 

 The good agreement with previous simulation and optimization results of the SVR 

machine learning model predictions, using only 10 data points, demonstrates the improvement in 

searching the design space, from the previously presented simple gradient based search of 

magnetic properties in Section 4.2, which sampled 346 points before converging to a minimum. 

This is an improvement by an order of magnitude on points sampled, which is critical when 

considering the run time of the homogenization for elastic properties. Using this hybrid learning 

model with the novel SmartSearch algorithm presented in Section 2.5 allowed for broad search 

of this design space. Good agreement between the predicted trends and the previously simulated 

trends from Chapter 3 were shown. Additionally the predicted magnetization results showed 
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good agreement in maximum magnetization and change in possible range of properties with 

previous magnetic only optimization from Section 4.2. Future work will map the development of 

the results presented here, as additional points are added to the training set from the augmented 

optimization framework. The trained SVR machine learning model can also be used to display 

the pareto front of the properties and answer materials design questions. 

4.4 Pareto Front 

Due to the expected tradeoffs of microarchitecture driven properties (elastic, magnetic, and 

dielectric) a Pareto front can be generated between the three properties. Understanding this 

tradeoff is beneficial for specific design applications that may wish to find a balance between the 

properties. This section presents the pareto front for this design space using the trained SVR 

from Section 4.3, with all previously generated points, to demonstrate the behavior. For specific 

design applications, any points selected from analyzing the pareto front could again be tested 

using the homogenization simulation in a manner similar to the optimization algorithm, to verify 

the results for that application. The purpose of exploring the pareto front for this work, however, 

is to demonstrate the functionality, efficiency, and usefulness of the hybrid machine learning 

optimization framework presented. 

 Figure 4-12 shows the predicted properties for a full design space search using the 

constituent properties laid out in Table 4 and the design space bounds presented for the 

optimization scheme in Table 6. The design space was linearly discretized into 10 pieces on each 

of the 4 applied fields, with 4 selected volume fractions to represent the upper (30%) and lower 

(1%) limit as well as the remaining two volume fractions considered in Chapter 3, (5% and 

10%). The interval of discretization can easily be modified to sample more points, however, the 

discretization used in Figure 4-12 provides a good visual representation of the design space with 
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1,000 points at each volume fraction. Figure 4-12 shows the predicted properties for each of 

these points in three subfigures with two properties examined in each along the two axes. The 

applied fields were discretized and evaluated at 4 volume fractions, 1% (yellow), 5% (purple), 

10% (green), and 30% (magenta), generating a data set from which we can visualize Pareto 

curves. 

 
Figure 4-12: Design space representation from predicted SVR machine learning model results of 

a) elastic modulus vs magnetization, b) relative permittivity vs magnetization, c) relative 
permittivity vs elastic modulus showing the possible ranges of property combinations for 4 
volume fractions: 1% (yellow), 5% (purple), 10% (green), and 30% (magenta), showing the 

tradeoffs between properties 
 

There are several things to note in Figure 4-12 about the area of the design space (further 

analyzed in subsequent figures) and the change in properties with change in fields. The design 

space search was evenly discretized, in the manner discussed previously, for the plotted results. 

It therefore stands to reason that the areas with high point density have a small gradient of 

property with respect to field changes and that the less densely filled areas of this mapping have 

a higher gradient. Additionally, the design space areas shift in their placement within the 

property space of Figure 4-12, meaning that the change in volume fraction translates the possible 
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ranges of properties, as seen in the previous section as well. The sharp corners seen in each of the 

subfigures and volume fractions of the plots in Figure 4-12 are the design space limits, where the 

electric and magnetic field values are bounded and where the 5 main cases previously presented 

occur. 

Trends in the individual property relationships are also visualized in Figure 4-12. The 

tradeoff in the elastic modulus and magnetization is shown by the decrease in elastic modulus for 

increased magnetization in Figure 4-12 a. The chains that increase the stiffness from electric 

field application do not magnetically orient particles, which can have a random orientation 

within the chain, producing a lower magnetization for the increased stiffness. The range of 

elastic moduli is shown to shift, in agreement with previous SVR machine learning model 

prediction results presented in Section 4.3. The range of magnetizations does not shift, but 

decreases in width, also seen in Section 4.2 and Section 4.3. 

Figure 4-12 b relates the relative permittivity to the magnetization, where the shift in 

range of permittivity can be seen, increasing with increased volume fraction. Permittivity and 

magnetization require different microarchitecture for maximizing their respective values. 

However, both are affected by the particle spacing discussed in Section 3.4. The tradeoff 

between permittivity and magnetization is seen to swiftly drop off at higher magnetization values 

and spread to the full range for 30% volume fraction where points are more heavily distributed at 

higher permittivity within the area for that volume fraction. Increased volume fraction, and 

resulting reduced particle mobility, seems to favor higher permittivity likely due to particle 

proximity. 
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Figure 4-12 c shows the increase in both elastic modulus and relative permittivity with 

increased volume fraction. Both properties benefit from chaining in the same orientation and can 

be seen to have little tradeoff between the two. 

The ranges of the SVR predicted values show higher maximums than previously 

presented for the simulation results in Section 3.3.2 which only looked at the 5 main cases. The 

values presented here explore the full design space, and as mentioned previously, where the 

corners shown in Figure 4-12 correspond some of these cases (with a few falling within the 

plotted areas). Predicting only the results for the 5 cases shows relative permittivity maxima 

around 9.5 for Case 4 in the z direction at 10% volume fraction and minima of 8 for the z 

direction of Case 3 at 1% volume fraction. The values shown for the simulations of the 5 cases in 

Figure 3-15 have large error bars and variability at this model size, ranging from 6 to 8.5 in 

relative permittivity values for the 3 volume fractions and 5 cases presented. This difference in 

absolute values shows a shift in values (the predicted SVR values being high in both maximum 

and minimum), potentially due to the error in the simulations used to train the machine learning 

model and/or from the volume fractions selected by the Latin Hypercube sampling, with 

approximately 3%, 6%, and 8% being the lowest 3 volume fractions tested each with 20-50% of 

the full electric field range application. Additional points at low volume fraction and design 

space bounds, such as zero applied fields, would possibly help to adjust this prediction to better 

match the simulated values. Although there is a discrepancy between the predictions of the SVR 

machine learning model, the model shows the effect of volume fraction and applied processing 

fields on the resulting properties, which is necessary for the optimization scheme. 

The area of each design space is further illustrated in Figure 4-13, which outlines the 

point clusters for legibility. The area of these outlines is computed and tabulated in Figure 4-14, 
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where the change in possible combinations with respect to volume fraction is made clear. The 

trend in area shown in Figure 4-14 builds on the ranges of possible properties previously shown 

in Figure 4-9, showing the ranges of properties with respect to volume fraction and structure. 

 
Figure 4-13: Design space area representation from predicted SVR machine learning model 
results of a) elastic modulus vs magnetization, b) relative permittivity vs magnetization, c) 

relative permittivity vs elastic modulus showing the possible ranges of property combinations for 
4 volume fractions: 1% (yellow), 5% (purple), 10% (green), and 30% (magenta), showing the 

tradeoffs between properties 
 

 
Figure 4-14: Calculated percent comparison of design space area from Figure 4-13 for a) elastic 
modulus vs magnetization, b) relative permittivity vs magnetization, c) relative permittivity vs 
elastic modulus normalized to the minimum area for each property combination showing the 

range of possible property combinations with change in volume fraction 
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Figure 4-15 shows the overlaid pareto front on the mapped design space, demonstrating the 

property tradeoffs for maximizing each property with respect to another. The large fronts in 

Figure 4-15 a and b as compared to the smaller front in Figure 4-15 c is interesting and intuitive. 

The permittivity and modulus both would improve with particle chaining where spacing is 

decreased in the direction that the property increases, and both would therefore then also increase 

with larger volume fractions. The permittivity and elastic modulus would not be opposing 

properties to be achieved with different structures and therefore applied fields inherently, leading 

to a smaller pareto front. The tradeoffs between these two properties, elastic modulus and 

relative permittivity, and the magnetization, however, are apparent in Figure 4-15 a and b. The 

structures required for maximizing magnetization orient the minor axis of the particles (the 

magnetic easy axis), directly counter to the orientation and structuring that leads to higher 

modulus and permittivity values. The design space mappings presented in this section are 

important when considering the design space needs for a specific design application and will be 

key components in a design tool. 

 
Figure 4-15: Pareto front from SVR machine learning model predictions of  a) elastic modulus vs 

magnetization, b) relative permittivity vs magnetization, c) relative permittivity vs elastic 
modulus for 4 volume fractions: 1% (yellow), 5% (purple), 10% (green), and 30% (magenta), 

showing the tradeoffs between properties  
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4.5 Summary 

This chapter presented the effect of the relative orientation and strength of the applied fields on 

particle distributions and resulting properties. To work toward the goal of a universal 3D printer 

the design space is explored to determine the maximum possible range of properties for a single 

constituent set. This search is conducted via a nested optimization framework that uses a 

combined objective function to consider elastic, magnetic, and dielectric properties 

simultaneously. The computational expense of the simulation and subsequent homogenization is 

considered and addressed by presenting a machine learning augmented optimization framework 

that uses the model to select optima and effective training points to test using the computational 

homogenization presented in Section 2.1.2. The machine learning model trains while being used 

to search, optimize, and map the design space. The efficiency improvement was demonstrated by 

the comparison of magnetic results from the single property optimization framework results 

(using 346 points) in Section 4.2 and the magnetic portion of the augmented optimization 

framework results, showing good agreement to the single property optimization framework with 

only 10 points. The trained model was also able to be used to explore the design space and map 

Pareto fronts to demonstrate the structure driven tradeoffs between properties as well as the 

decrease in available properties with increased volume fraction. It was also shown that the 

considerations for optimizations with specific materials design applications should include 

further parameters in the objective function such as energy consumption, to reduce the number of 

possible field combinations that will produce the desired properties, and discrete properties, to 

find design specific feasible working ranges. For the current objective of finding only the 

constituent set with the largest range of possible properties by varying processing conditions 

alone, it was found that lower volume fraction has a larger possible range of properties. Having 
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established the relationship between processing conditions and resulting properties, the next 

chapter will use this model to address the inverse problem of finding processing conditions for 

desired target properties.  
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CHAPTER 5:  Machine Learning and the Inverse Problem 

5.1 Machine Learning Model Selection and Training 

The methods and results discussed in the previous chapter form the basis on which the 

overarching goal can be achieved, finding the constituent set with the largest possible range of 

effective elastic, dielectric, and magnetic properties. The computational expense of the 

simulations required to determine the processing parameter dependent material properties 

necessitates efficient search, which was achieved in Chapter 4 by augmenting the optimization 

framework with a machine learning model. The mode chosen was a Support Vector Regression 

(SVR) model. The model was selected after testing with against the performance of a Feed 

Forward Neural Network (FFNN), the details of which are presented in this section. Both models 

were selected for their applications to regression problems. Both machine learning models, SVR 

and FFNN, are capable of regression and classification with different approaches and solutions. 

The testing in this chapter is to demonstrate the consideration in ultimately selecting SVR for use 

with the machine learning augmented framework and showcasing the benefits in the application 

of mapping the design space in this work. 

The machine learning models considered in this work are the Feed Forward Neural 

Network (FFNN) and Support Vector Regression (SVR) for their applicability to similar 

problems. Both methods attempt to draw a boundary through a training set to classify data with 

specific labels or to define a regression equation by updating weights in a base (kernel) function. 

The manner in which weights are updated and the base (kernel) function is defined differ in the 

two approaches. Both machine learning models were setup with a test case to verify the 

functionality of the model to predict known behavior. Experimental and simulation data can be 

used to then train the machine learning models and map the design space entirely. The two 
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machine learning models have different training algorithms and are implemented differently in 

code. Ultimately, SVR is a more versatile model and is easily incorporated into the optimization 

scheme to augment the design space search and be used to solve the inverse problem. 

 A FFNN was trained on previously collected magnetization data on each of the 5 main 

cases to capitalize on the data that has already been collected and to test the machine learning 

model on the design space the optimization framework searches, the results of which are shown 

in Figure 5-1. Training the machine learning model on this data allows the model to predict the 

processing parameter dependent response of the composite. Training data is divided to reserve 

some data, the test data shown in Figure 5-1, for testing so that the models are not tested on data 

they have already seen, common in machine learning model approaches. The plot shows the 

applied magnetic fields in the y and z direction on the x and y axes with the z axis showing the 

resulting magnetization. Points are shown in black for the test data and the FFNN’s prediction in 

red. The activation functions chosen, as a result of adjusting the hyperparameters manually after 

training to improve the fit of the function, exponential linear unit (elu), exponential, sigmoid, and 

rectified linear unit (relu), examples of which were shown in Figure 1-8 and are laid out by 

equations (5-1)-(5-4) [153], [154].  

elu 
𝑦𝑦 = 𝑒𝑒𝑥𝑥 − 1 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0 

𝑦𝑦 = 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0 
(5-1) 

relu 𝑦𝑦 = max (0, 𝑥𝑥) (5-2) 

sigmoid 𝑦𝑦 =
1

1 + 𝑒𝑒−𝑥𝑥
 (5-3) 

exponential 𝑦𝑦 = 𝑒𝑒𝑥𝑥 (5-4) 
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The trained model accurately predicts the test data, but due to the lack of sampling between the 

points that were tested, it cannot accurately predict the behavior of the system there. This is a 

function of the quality of data used to train the model and the kernel which the model attempts to 

fit to that data. Adequate spacing of sampling data, such as presented in Section 4.3, using a 

Latin Hypercube method to sample the design space, addresses this concern. Further testing 

using larger data sets to attempt to overcome this challenge. 

The same hyperparameters were used again on data collected from an optimization run 

on magnetization, a larger data set, which has better sampling, to attempt to improve the fit of the 

machine learning model for the full design space. The results are illustrated in Figure 5-2 with a 

surface plot (for electric field of 0 V/m and 1% volume fraction) of the trained model, with the 

applied magnetic field in the y and z direction again on the x and y axes and the resulting 

magnetization on the z axis. The color bar in this plot shows the magnetization as well the better 

visualize the 3 dimensional space in the figure. It should be noted that the full design space 

includes the electric field and volume fraction as well, but that these have been collapsed for the 

plots of this model for simplicity which results in test data (grey points) not on the surface, which 

is a prediction without electric field. However, for the test points that do not fall on the surface 

the single predictions for that test data do match the expected results well (<10% error), seen by 

the red and gray points in Figure 5-2. 
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Figure 5-1: FFNN trained model vs test data for z direction magnetization as a function of 
magnetic fields (not shown are the applied electric field and volume fraction that are also 

independent variables in the design space and the FFNN) 
 

 
Figure 5-2: FFNN predictive surface (shown with colormap of Z axis value for visual clarity) 

overlaid on model test and predictive data points, showing the interpolated behavior defined by 
the kernel selection and availability of test points 

  
One issue that was found with the FFNN is that it is stochastic in nature. The weights in 

the python TensorFlow package used initialize the weight of the network using random numbers 

which can lead to the model plateauing with a high level of error remaining. One method that 
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was used to combat this was shuffling the random seed if the error level was not sufficiently low 

to accept the model as properly trained and try again. However, this is costly to run, requiring 

several iterations of comparatively slow training (dozens of iterations can take 10-30 minutes to 

run) to obtain a usable model. 

In contrast the SVR model runs very quickly (running for only a few seconds) and the 

hyperparameters relate to the fit of the model to the data and the amount of error directly. This 

could also be optimized in its own scheme but is not costly to run on even high fidelity models. 

Figure 5-3 shows the results of an SVR trained on the same optimization data used for the FFNN 

in Figure 5-2, with 20% of the data reserved for testing the model’s predictive capabilities. This 

model is deterministic in nature and is not dependent on the starting state as the FFNN. The 

results are much more predictable and robust than the FFNN shown above due to the 

deterministic nature of the training algorithm built into the SVR machine learning model. 

Additionally, due to its lower computational expense it can also be easily incorporated and 

optimization scheme to augment the costly physics based simulations and finite element 

homogenization methods. 

SVR is not as dependent on a high volume of training data. A model can therefore also be 

trained with experimental data. This is shown in Figure 5-4. It is important to note however that 

due to the small size of the data set, the entire set was used to train the model and is plotted for 

visualization. This model can be useful as serving as a training base for a hybrid optimization 

scheme in future work. 
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Figure 5-3: SVR Trained on 80% of magnetic data from an optimization run, 20% used for 

testing is shown in the grey and red points, the surface is for 0V/m electric field and 0.1 volume 
fraction (color scale for visualization of 3D space only) 

 
Figure 5-4: SVR Trained on an experimental data set, data points are shown in the grey and 
predictions in red points, the surface is for 0V/m electric field and 0.1 volume fraction (color 

scale for visualization of 3D space only) 
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SVR modeling has been shown to be a better option for the design space considered in 

this work due to the deterministic nature, low computational expense, and straight forward 

hyperparameters. The SVR training is integrated into the optimization framework presented in 

Section 2.4 and used to quickly find maxima and minima to test. The result of this hybrid method 

is that the number of points is drastically reduced to approximately 1/10th of the total number of 

points, which lowers the computational cost of optimizing the system while also building a 

model that can be used to address the inverse design problem. 

5.2 The Inverse Problem 

Mapping a forward flowing path from processing parameters to effective properties was 

done in Chapters 3 and 4. Understanding the ranges of properties and selecting a constituent set 

is useful for understanding the design space. Designing components to be manufactured requires 

the solution to the inverse problem, finding the processing conditions needed for a target 

property or combination of properties. Using the machine learning model trained for the 

optimization framework from Chapter 4, this inverse relationship can be defined. Two 

approaches are presented in this section. The first approach uses the radial basis function as ana 

analytic solution and attempts to invert the expression to solve for the processing conditions for 

desired properties. This inversion method is complex for the radial basis (kernel) function used. 

Therefore, an alternative solution method is presented which uses hash tables to store processing 

fields for specific properties that is quick to populate and query. Both methods presented use the 

SVR machine learning model trained in Chapter 4 to explore the design space and the 

relationship between processing conditions and effective material properties. 

The relationship between the independent and dependent variables of the SVR for a 

radial basis function is defined as 
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𝒚𝒚 = 𝑪𝑪𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙) + 𝜌𝜌 (5-5) 

where 𝒚𝒚 is the output of the model, 𝑪𝑪 is the coefficient matrix determined from training the 

model, 𝐾𝐾 is the radial basis function with feature vectors 𝒙𝒙𝑖𝑖 and intercept 𝜌𝜌 that map the 

independent variables, 𝒙𝒙, to the outputs. The radial basis function is defined as 

𝐾𝐾 = 𝑒𝑒−𝛾𝛾|𝑥𝑥𝑖𝑖−𝑥𝑥|2 (5-6) 

where 𝛾𝛾 is the hyperparameter from the model used for error bounds. This relationship shows the 

similarity between the support vectors and the independent variables to predict the corresponding 

output value. For the SVR machine learning model trained in Chapter 4 the independent 

variables are the volume fraction and the processing parameters (4 total); the outputs for the 

model are the resulting effective properties (9 total). 

 One approach to the inverse problem is reconstructing this equation from the trained 

model and solving the expression for the output 𝒚𝒚. The resulting expression is quite complex, as 

a function of 4 independent variables. For the SVR machine learning model trained in this work, 

the radial basis (kernel) function has up to 16 coefficients for one output (one property in one 

direction). A total of 9 radial basis (kernel) functions with varying coefficients represent the full 

design space, one for each property (elastic, magnetic, dielectric) and direction (x, y, and z 

directions). This equation was fed into a symbolic math package which ran for hours before 

terminating with a recursion depth limit error. Inverting this expression is not practical or 

perhaps even feasible. 

 Alternatively, the design space can be mapped, as was done in Chapter 4 for displaying 

the Pareto front and the range of properties using the SVR machine learning model. The 

properties found in this mapping can then be hashed to store the corresponding fields in a quick 
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to access list of possible processing parameters for that target property. The process is laid out in 

a diagram in Figure 5-5 that shows the iterative process to map the full design space and the 

results being stored in hash tables for quick access data querying. Hash table searches are 

computationally inexpensive and allow for non-integer indexing of values, useful for storing 

material properties as keys. Once populated the hash tables can be searched to find all of the 

possible fields for a desired property and filtered for combinations of properties. The returned 

processing conditions would report multiple fields and volume fractions if the combination 

desired can be achieved in multiple ways. 

 
Figure 5-5: Diagram showing the workflow of the HashLookUp algorithm, mapping the design 
space, storing properties as hash keys with corresponding processing condition values for quick 

access lookup 
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An example of the method to find processing conditions and the volume fraction for 

desired properties is presented in Figure 5-6. For this test case (a problem with a known 

solution), a set of processing fields and a volume fraction was chosen, and the properties 

predicted to generate a set of target properties, with known processing conditions, for testing the 

inverse problem solution method using hash tables (HashLookUp). The targeted properties are 

3.7 emu/g*, 2.77 MPa, and relative permittivity 8.3. Figure 5-6 shows that the method was able 

to find the (previously known test case solution) set of processing fields that would achieve the 

targeted properties.  

 
Figure 5-6: HashLookUp algorithm search results for solving the inverse problem 

 

 This method was repeated on one of the training points to compare to the known 

solution. The known test point chosen was 29% volume fraction, 75611216 V/m electric field in 

the z direction, 103535 A/m magnetic field in the y direction, and 7565 A/m magnetic field in 

the z direction with found properties (from a single datapoint) 0.28 emu/g*, 4.2 MPa, and 12.4 

relative permittivity. The target properties are taken from the support vector regression 

prediction of this region of the design space, as would be done in a materials design application, 

using the pareto fronts, shown in Figure 5-7. The solutions found demonstrate the ability to find 

multiple fields with the same predicted set of target properties, in addition to the fields found 

being in the range of the initial known test point processing parameters. The target properties 

found solutions at the targeted volume fraction with similarly high electric fields in the z 
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direction, high magnetic fields in the y direction, and low magnetic fields in the z direction as 

targeted. The discretization of the design space can be increased and the model can be trained 

with more data in regions of interest to better fit the model to the simulation data bringing the 

processing fields closer to the simulation averages. 

 
Figure 5-7: HashLookUp algorithm search results for solving the inverse problem 

 

The HashLookUp workflow presented in this section addresses the inverse design 

problem, relating the target properties to the processing parameters required to achieve them. It 

allows for a combination of parameters to be queried and returns all possible fields for the 

provided target properties. The HashLookUp method overcomes the issue of inverting a 

complicated expression in an efficient manner. In future work the algorithm can be incorporated 

into a user friendly tool along with the design space plots presented in Chapter 4, for use in 

design applications. 

5.3 Summary 

This section presented the inverse problem and solution methods using a trained machine 

learning model. The analytic expression (kernel function) relating independent variables to 

dependent variables is complex and difficult to invert, if possible. As a more efficient and 

practical approach an iterative search and data structure solution method, utilizing hash tables, 

was presented. The hash table method allows for multiple solutions to be determined, showing 

all possible field combinations. The quick solution time using this iterative method makes it 
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more practical and effective than inverting the kernel function. The solution to the inverse 

problem presented in this section and solving it efficiently will be important for future work in 

materials design applications and decisions utilizing multifield processed composites. 
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CHAPTER 6: Conclusion 

6.1 Conclusions 

The framework presented in this work has created a previously unestablished relationship for 

particulate composites processed using coupled electromagnetic fields between processing 

parameters of composite materials to their effective properties. This framework is the foundation 

for design and manufacture with a universal 3D printer, to tune the material properties locally 

without changing the stock material. The framework also demonstrated the ability to optimize 

the constituent for the largest range of possible properties. A machine learning augmented 

optimization framework was presented that showed good agreement with previous optimization 

runs using less than 1/10th of the number of test points. Furthermore, an inverse path is required 

to determine the processing parameters needed to achieve a target property or set of properties. 

This was addressed using the machine learning model incorporated into the optimization scheme. 

The solution to the inverse problem demonstrated the capability to determine the set of volume 

fractions and applied processing fields for any property or set of properties. The work presented 

here sets the basis for future development of additive manufacturing design tools for multi-

functional printing. 

 The relationship between processing parameters and effective material properties was 

determined using physics based particle dynamics simulations in conjunction with computational 

homogenization. The effective elastic, magnetic, and dielectric properties of barium hexaferrite 

(BHF) and polydimethylsiloxane (PDMS) composites processed in different applied electric and 

magnetic fields were found and compared to classic effective medium theory and experimental 

values to verify and validate the process. The link to effective properties for field processed 

composites with varying microarchitecture was previously undefined as a function of 
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constituents and processing parameters. The newly established homogenization scheme was then 

used to explore the design space. 

 An optimization framework was constructed utilizing gradient based techniques to 

efficiently explore the design space for the processing fields that yielded the maximum and 

minimum properties. These extrema were then used to find the range of properties possible for a 

specific constituent set. The framework demonstrated the ability to optimize the constituents for 

the largest range of combine elastic, dielectric, and magnetic properties. To reduce the 

computational expense of the combine optimization a machine learning model was used to 

augment the process, allowing for faster search for the maximum and minimum properties. The 

results of this model were compared to previous simulation results and experimental values. The 

trained model also serves as the basis for mapping the full design space, finding the pareto fronts 

for the three properties examined, and as a starting point for solving the inverse problem. 

 Important tradeoffs in relative permittivity, elastic modulus, and mass magnetization 

where shown. It was demonstrated that the microarchitecture formed by the applied electric and 

magnetic fields determine the effective properties of the composites and critically that the 

structures that improve one property, such as elastic modulus, may not also improve other 

properties, such as mass magnetization. The scripts and processing used to present these results 

are important components for designers when considering properties for specific design 

applications. It was also shown that the range of properties changes as a function of volume 

fraction and that for some properties this range may increase while decreasing for others. For 

example, in the samples run in this work it was seen that the range of magnetization decreases 

with increased volume fraction while the range of possible relative permittivity values increases. 

The range of properties, their discrete values, and the tradeoffs between properties are all 
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necessary considerations for component design and have been demonstrated using the 

framework presented in this work. 

 Methods for managing the computational expense of the optimization and integrated 

computational homogenization have been presented. A new dynamic model for intelligently 

exploring the design space and exploiting the results for optimization has been presented to most 

effectively use the cost required to map the design space. The model resulting from this search 

was also shown to be effective for addressing the inverse problem. An additional function was 

presented that maps the design space similar to the methods used to find the pareto front, with 

values stored in hash tables for quick and efficient recall of associated processing fields for target 

properties. A filtering technique was then used to present the constituent set and processing 

fields required to achieve a set of desired properties. 

 This work explored the relationship between processing conditions and effective 

properties in both the forward and inverse directions as a basis for additive manufacture and 

materials design. The framework presented here is able to demonstrate the relationship between 

properties and associated tradeoffs, properties ranges, and optimal points within the defined 

design space. Efficient algorithms are presented using AI and machine learning methods to 

augment computationally expensive processes required to explore the continuous design space. 

6.2 Contributions 

Contributions to the body of knowledge and field of mechanical engineering and material 

science by this work are: 
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• Construction of a framework that connects processing parameters to effective composite 

properties by integrating particle dynamics simulations and computational 

homogenization into a single workflow 

• Construction of a framework to collect, store, and recall datapoints used in optimization 

and data science schemes to augment the optimization scheme with a growing data set 

trained machine learning model 

• Development of a nested multi-objective optimization framework to search for the 

constituent set with the largest range of possible properties 

• Development of a machine learning augmented multi-objective optimization scheme to 

reduce computational expense to a feasible runtime (10% of the pure gradient based 

method), that coupled gradient based optimization with support vector regressions 

• Development of an artificial intelligence search algorithm (all paths search a modified 

depth first search algorithm) to find conductive pathways in a composite RVE to 

determine percolation and create physics based data structures used to calculate effective 

conductivity of composites with highly conductive fillers 

• Improved fidelity to particle dynamics simulations to account for non-spherical particle 

contacts by calculating ellipsoidal distances between particles 

6.3 Future Work 

The first working 3D printer is credited to Charles W. Hull in 1984, commercialized by 3D 

systems shortly thereafter. The early days of additive manufacturing to follow were defined by 

academic research, commercial patents, and general inaccessibility to the public. The future of 

this technology would drastically change starting in 2005 when patents expired. Adrian Bowyer 

and his team would release open-source printers in 2007 and again in 2009 as part of the RepRap 
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Project. Community contributions with accessible tools such as Arduino and the code repository 

GitHub fueled the development that led to the innovation in 3D printing technology available 

today. [155] 

The state of additive manufacturing today is a result of the collaboration and community 

contribution to the development of 3D printers. Open source printers matured at an accelerated 

rate due to the availability of the information  [155]. This access to information drives so many 

of the valuable open source tools like Wikipedia [156] and VLC [157]. Open-source hardware, 

such as the Raspberry Pi, have been used as educational tools to increase proficiency with 

computers and programming [158]. The community around such coding projects provides 

resources and lessons for people to become familiar with technology, fueling innovation and 

entrepreneurship. While efforts to make free and accessible tools for community use is 

foundational to furthering engineering development as a whole [159], it is also critical to make 

research as accessible as possible within the academic community and the general public it 

serves. This is echoed in efforts by the US government to make tax funded research accessible to 

taxpayers, with accessibility being only one aspect of the initiative. The push for free access 

extends to the underlying data behind publications as well as the articles themselves [160]. It can 

be argued that associated code falls within this scheme as well. 

Within the realm of open-source software, there are several packages that perform many 

of the tasks typically used within the engineering community. This includes CAD modeling 

[161], [162], finite element analysis [163], [164], and numerical computing [165]–[167]. These 

tools can be incorporated into the framework presented in this work to be made available to the 

engineering community for further development and implementation. 
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Future plans for the framework presented here also include reducing computational cost 

and improving efficiency.  Improvements include changing the particle dynamics simulations to 

be object oriented for particle shape and size distributions, using less memory- intensive and 

more efficient computations per iteration, and utilizing computer hardware optimally such as 

offloading matrix operations to GPU processing. These changes were not feasible on the server 

used for this work. 
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May 2023) 

Predicting Conductivity of Particle Filled Polymer Matrix Composites Using Artificial 
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APPENDIX A  

The magnetic dipole moment, 𝒋𝒋, can be converted into emu by dimensional analysis as shown 

below, where 𝒋𝒋 has units of [𝑇𝑇𝑚𝑚3] 

[Tm3] = [Wb m] 
 

[𝑊𝑊𝑊𝑊 𝑚𝑚]
[𝑒𝑒𝑒𝑒𝑒𝑒]

4𝜋𝜋10−10[𝑊𝑊𝑊𝑊 𝑚𝑚] = [𝑒𝑒𝑒𝑒𝑒𝑒] 

 
( A-1) 

 

This dipole moment can then be mass normalized by either the particle mass or the composite 

mass. 

𝑗𝑗 [𝑒𝑒𝑒𝑒𝑒𝑒]
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑔𝑔]

= 𝜎𝜎 �
𝑒𝑒𝑒𝑒𝑒𝑒
𝑔𝑔

� 
( A-2 ) 

𝑗𝑗 [𝑒𝑒𝑒𝑒𝑒𝑒]
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑔𝑔∗]

= 𝜎𝜎 �
𝑒𝑒𝑒𝑒𝑒𝑒
𝑔𝑔∗

� 
( A-3 ) 
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APPENDIX B  

With an AC voltage applied to the system the response will be a complex current. The circuit in 

Figure 2-7 can be analyzed via the state-space equations ( B-1 ) through ( B-3 ). 

𝑒𝑒𝐶𝐶 = 𝑒𝑒𝑅𝑅 ( B-1 ) 

𝑖𝑖𝐶𝐶 = 𝐶𝐶
𝑑𝑑𝑒𝑒𝐶𝐶
𝑑𝑑𝑑𝑑

 
( B-2 ) 

𝑅𝑅𝑖𝑖𝑅𝑅 = 𝑒𝑒𝑅𝑅 ( B-3 ) 

where 𝑒𝑒𝐶𝐶 and 𝑒𝑒𝑅𝑅 are the capacitor and resistor voltage respectively, 𝑖𝑖𝐶𝐶, 𝑖𝑖𝑅𝑅, and 𝑖𝑖𝑜𝑜 are the 

capacitor, resistor, and total output current respectively, C is the capacitance, and R is the 

resistance. These equations can be used to substituted into Kirchhoff’s first law, shown in 

equation ( B-6 ), to obtain the differential equation that describes the system’s response, shown 

in equation ( B-7 ). 

𝑖𝑖𝐶𝐶 + 𝑖𝑖𝑅𝑅 = 𝑖𝑖𝑜𝑜 ( B-4 ) 

𝐶𝐶
𝑑𝑑𝑒𝑒𝐶𝐶
𝑑𝑑𝑑𝑑

+
𝑒𝑒𝑟𝑟
𝑅𝑅

= 𝑖𝑖𝑜𝑜 
( B-5 ) 

( B-6 ) 

The transfer function between the input voltage and output current can be found by using a 

Fourier transform and solving for the ratio of the input to output, shown in equation ( B-6 ). This 

result of this function is a complex number can be used to determine the phase angle of the 

response as shown in equation ( B-7 ).  

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

= 𝑇𝑇(𝑗𝑗𝑗𝑗) = 𝑗𝑗𝑗𝑗𝑗𝑗 +
1
𝑅𝑅

 
( B-6 ) 

 

𝜙𝜙 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝐼𝐼𝐼𝐼(𝑇𝑇(𝑗𝑗𝑗𝑗))
𝑅𝑅𝑅𝑅(𝑇𝑇(𝑗𝑗𝑗𝑗))

� 
( B-7 ) 
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The steady state sinusoidal response of a system is defined as 

𝑦𝑦(𝑡𝑡) = |𝑇𝑇(𝑗𝑗𝑗𝑗)| sin(𝜔𝜔𝜔𝜔 + 𝜙𝜙) ( B-8) 

𝑖𝑖𝑜𝑜(𝑡𝑡) = |𝑇𝑇(𝑗𝑗𝑗𝑗)| sin(𝜔𝜔𝜔𝜔 + 𝜙𝜙) ( B-9) 

The output current is the sum of the capacitive and conductive components of the current. These 

are defined above in equations ( B-10) and ( B-11) and yield the following relationships for a 

sinusoidal input. 

𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝐶𝐶
𝑑𝑑 sin(𝜔𝜔𝜔𝜔)

𝑑𝑑𝑑𝑑
= 𝜔𝜔𝜔𝜔 cos(𝜔𝜔𝜔𝜔) 

( B-10) 

𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) =
1
𝑅𝑅

sin(𝜔𝜔𝜔𝜔) ( B-11) 

𝑖𝑖𝑜𝑜(𝑡𝑡) = 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) =
1
𝑅𝑅

sin(𝜔𝜔𝜔𝜔) + 𝜔𝜔𝜔𝜔 cos(𝜔𝜔𝜔𝜔) ( B-12) 

Relating equation ( B-12) to the solution presented in equation ( B-9) the material constants 𝑅𝑅 

and 𝐶𝐶 can be determined. 

𝑖𝑖𝑜𝑜(𝑡𝑡) =
1
𝑅𝑅

sin(𝜔𝜔𝜔𝜔) + 𝜔𝜔𝜔𝜔 cos(𝜔𝜔𝜔𝜔) = |𝑇𝑇(𝑗𝑗𝑗𝑗)| sin(𝜔𝜔𝜔𝜔 + 𝜙𝜙) ( B-13) 

1
𝑅𝑅

sin(𝜔𝜔𝜔𝜔) + 𝜔𝜔𝜔𝜔 cos(𝜔𝜔𝜔𝜔) = |𝑇𝑇(𝑗𝑗𝑗𝑗)| sin(𝜔𝜔𝜔𝜔) cos(𝜙𝜙) +|𝑇𝑇(𝑗𝑗𝑗𝑗)|cos(𝜔𝜔𝜔𝜔) sin(𝜙𝜙) ( B-14) 

1
𝑅𝑅

= |𝑇𝑇(𝑗𝑗𝑗𝑗)| sin(𝜙𝜙) and 𝜔𝜔𝜔𝜔 = |𝑇𝑇(𝑗𝑗𝑗𝑗)| cos(𝜙𝜙) ( B-15) 

In the case where the material properties are not known but the current response can be 

measured, and the voltage input is known the transfer function is defined by the measured value 

of the current and the voltage. 



214 

 

|𝑇𝑇(𝑗𝑗𝑗𝑗)| =
|𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)|
|𝑉𝑉𝑖𝑖𝑖𝑖(𝑡𝑡)|

 
( B-16) 

1
𝑅𝑅

=
𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 sin(𝜙𝜙)

𝑉𝑉𝑖𝑖𝑖𝑖
 

( B-17) 

𝐶𝐶 =
Ioutcos(𝜙𝜙)
𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖

 
( B-18) 
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APPENDIX C  

The search algorithm used to find all conductive pathways is presented here both in logic flow 

and the code used to execute the search.  

 

Figure 0-1: Flow Chart of All Paths Search Algorithm 

 

def depthFirstSearch(problem): 
    currentPath={} 
    Nodes={} 
    paths=[] 
    points=[] 
 
    ###Init problem with first node 
    topVertex=problem.start 
    currentNode=Node(topVertex,None) 
    Nodes[topVertex]=currentNode 
    movesStack=util.Stack() 
     
    ###Get my neighbors 
    currentPath[currentNode.state()]=currentNode 
    neighbors=expand(currentNode,problem,Nodes) 
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    while True: 
        ###Get my neighbors 
        neighbors=expand(currentNode,problem,Nodes)         
 
        if problem.isGoalState(currentNode.state()): 
            successfulPath=[] 
            for point in currentPath: 
                successfulPath.append(point) 
            points.append(successfulPath) 
             
            ###remove the current node (Goal) and backtrack to where there is a new path possible 
            currentPath.pop(currentNode.state(),None) 
            tempList=list(currentPath.items()) 
            if len(tempList)==0: 
                break 
            currentNode=tempList[len(tempList)-1][1] 
            [currentNode,currentPath]=backtrack(currentNode,currentPath,problem,Nodes) 
            neighbors=expand(currentNode,problem,Nodes) 
         
        elif currentNode.successors==None: 
            [currentNode,currentPath]=backtrack(currentNode,currentPath,problem,Nodes) 
            neighbors=expand(currentNode,problem,Nodes) 
         
        ###If we've backtracked to the top, end the search 
        if currentNode==None: 
            break 
           
        ###Save the current node and look for next step in path   
        previousNode=currentNode 
        ###Add the next neighbor to try 
        for vertex in neighbors: #for each neighboring node 
            printBool=(previousNode.state() in vertex.seenBy) 
            if not vertex.state() in currentPath and not (previousNode.state() in vertex.seenBy): #not 
already in the current path and not previously tried 
                vertex.seenBy.append(previousNode.state()) 
                currentPath[vertex.state()]=vertex 
                currentNode=vertex 
                break 
 
        ###If there were no new neighbors to add, backtrack 
        if currentNode.state()==previousNode.state(): 
            currentPath.pop(currentNode.state(),None) 
            resetChildren(currentNode,problem,Nodes,currentPath) 
            tempList=list(currentPath.items()) 
            if len(tempList)==0: 
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                break 
            currentNode=tempList[len(tempList)-1][1] 
            [currentNode,currentPath]=backtrack(currentNode,currentPath,problem,Nodes) 
            neighbors=expand(currentNode,problem,Nodes) 
        ###If we've backtracked to the top, end the search 
        if currentNode==None: 
            break 
 
    return Nodes,points; 
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APPENDIX D  

Code for running optimization and homogenization including MATLAB, python, and bash files 
for custom functions called in the optimization code 



from datetime import datetime as dt
import sqlite3 as sl
import os
import scipy.io as sio
import numpy as np
from sklearn.utils import shuffle
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
import random
import matplotlib.pyplot as plt
import imageio
import copy
import math
from scipy.optimize import minimize
from scipy.optimize import Bounds
import pickle
from numpy.linalg import norm
from scipy.stats import qmc
import subprocess
from os.path import exists
from sklearn.multioutput import MultiOutputRegressor

global coeffs
coeffs=[]
global con
global R2s
R2s=[]
global svr
global x1
global x2a
global x2b
global prop2a
global prop2b
global mor

"""
def readInData(dbName, sql):

#bookeeping
date_index=0
particle_index=1
volFrac_index=2
Ez_index=5
Hy_index=7
Hz_index=8
mag_x_index=9
mag_y_index=10
mag_z_index=11
mod_x_index=12
mod_y_index=13
mod_z_index=14
e_rel_x_index=15
e_rel_y_index=16
e_rel_z_index=17

con=sl.connect(dbName)
cursor=con.cursor()
with con:

dataPoints=con.execute(sql).fetchall()

modelInputs=np.zeros((len(dataPoints),4))
modelOutputs=np.zeros((len(dataPoints),3))
dateStamps=[]

magCounter=0
for i in range(0,len(dataPoints)):

data=dataPoints[i]
if not data[mag_x_index]==None:

dateStamps.append([data[date_index]][0])
modelInputs[magCounter,:]=np.array([data[volFrac_index]/100.0,data[Ez_index]/100000000.0,data[Hy_index]/250000.0,data[Hz_index]/250000.0])
modelOutputs[magCounter,:]=np.array([data[mag_x_index],data[mag_y_index],data[mag_z_index],data[mod_x_index],data[mod_y_index],data[mod_z_index],data[erel_x_index],data[e_rel_y_index],data[e_rel_z_index]])
magCounter=magCounter+1

scaledModelInputs=np.stack(modelInputs, axis=0)
modelOutputs=np.stack(modelOutputs, axis=0)

#sort data
# modelOutputs=sorting_of_element(modelOutputs.tolist(),dateStamps)
# modelInputs=sorting_of_element(modelInputs.tolist(),dateStamps)
zipped_lists = zip(dateStamps,scaledModelInputs[:,0],scaledModelInputs[:,1],scaledModelInputs[:,2],scaledModelInputs[:,3],modelOutputs[:,0],modelOutputs[:,1],modelOutputs[:,2], modelOutputs[:,3], modelOutputs[:,4], modelOutputs[:,5], modelOutputs[:,6], modelOutputs[:,7], modelOutputs[:,8])
sorted_pairs = sorted(zipped_lists)

tuples = zip(*sorted_pairs)
dateStamps, modelInputs[:,0], modelInputs[:,1],modelInputs[:,2],modelInputs[:,3], modelOutputs[:,0], modelOutputs[:,1], modelOutputs[:,2], modelOutputs[:,3], modelOutputs[:,4], modelOutputs[:,5], modelOutputs[:,6], modelOutputs[:,7], modelOutputs[:,8] = [ list(tuple) for tuple in  tuples]

#Scale transform data
# scaler = MinMaxScaler(feature_range=(0,1))
# scaledModelInputs = scaler.fit_transform(modelInputs)
# scaledModelOutputs = scaler.fit_transform(modelOutputs)

scaledModelInputs = modelInputs
scaledModelOutputs = modelOutputs

for i in range(len(scaledModelOutputs)):
for j in range(len(scaledModelOutputs[i,:])):

scaledModelOutputs[i,j]=round(scaledModelOutputs[i,j],4)
return scaledModelInputs, scaledModelOutputs

"""
def makeSVMPlot(X,y):

global pics
global coeffs
global mor
svr_rbf = SVR(kernel="rbf", C=1000, gamma='auto', epsilon=0.0001)
svr = svr_rbf
mor=MultiOutputRegressor(svr)
#print(X)
#print(y)
model=mor.fit(X, y)
R2=mor.score(X,y)

#convergence criteria
# print("svr.dual_coef_")
# print(svr.dual_coef_)
#temp=list(svr.dual_coef_[0])
#if len(temp)==0:
# temp=0
# print(temp)
#coeffs.append(temp)

print("R2: ", R2)
return R2

def checkConvergence(tolerance,convergeCount):
global R2s
flatCount=0
if len(R2s)>0 and R2s[len(R2s)‐1]>0.9:

for i in range(1,len(R2s)):
#if the length of coeffs increased reset count
slope=R2s[i]‐R2s[i‐1] #denominator=1
if slope<=tolerance:

flatCount=flatCount+1
if flatCount==convergeCount:

return True
else:

flatCount=0

return False

def poltCoeffs():
if len(coeffs)>0:

currentC=coeffs[len(coeffs)‐1]
if isinstance(currentC, list):

print(len(currentC))
# currentC=currentC[0]
axes.scatter(np.ones(len(currentC))*i,currentC,facecolor="c")

else:
axes.scatter(i,currentC,facecolor="m")

#OPTIMIZATION

def fun1(x):
global x1
global x2a
global x2b
global prop2a
global prop2b
weights=[1/3,1/3,1/3]
x1=x
f2Bounds = Bounds([0, 0, 0], [1, 1, 1])
x0a = x2a
x0b = x2b
res_max_mag = minimize(mag_max, x0a[0], jac='3point', method='SLSQP', bounds=f2Bounds, options={'eps':[1000/100000000,1000/250000,1000/250000],'ftol':.1})
res_max_mod = minimize(mod_max, x0a[1], jac='3point', method='SLSQP', bounds=f2Bounds, options={'eps':[1000/100000000,1000/250000,1000/250000],'ftol':.1})
res_max_erel = minimize(erel_max, x0a[2], jac='3point', method='SLSQP', bounds=f2Bounds, options={'eps':[1000/100000000,1000/250000,1000/250000],'ftol':.1})
res_min_mag = minimize(mag_min, x0b[0], jac='3point', method='SLSQP', bounds=f2Bounds, options={'eps':[1000/100000000,1000/250000,1000/250000],'ftol':.1})
res_min_mod = minimize(mod_min, x0b[1], jac='3point', method='SLSQP', bounds=f2Bounds, options={'eps':[1000/100000000,1000/250000,1000/250000],'ftol':.1})
res_min_erel = minimize(erel_min, x0b[2], jac='3point', method='SLSQP', bounds=f2Bounds, options={'eps':[1000/100000000,1000/250000,1000/250000],'ftol':.1})
x2a=[res_max_mag.x,res_max_mod.x,res_max_erel.x]
x2b=[res_min_mag.x,res_min_mod.x,res_min_erel.x]

mag_range_norm=(res_max_mag.fun‐res_min_mag.fun)/res_max_mag.fun
mod_range_norm=(res_max_mod.fun‐res_min_mod.fun)/res_max_mod.fun
erel_range_norm=(res_max_erel.fun‐res_min_erel.fun)/res_max_erel.fun

prop2a=[res_max_mag,res_max_mod,res_max_erel]
prop2b=[res_min_mag,res_min_mod,res_min_erel]

#weighted multi‐objective function
objectiveFunction=weights[0]*mag_range_norm+weights[1]*mod_range_norm+weights[2]*erel_range_norm
#print(objectiveFunction)
return ‐objectiveFunction

def mag_max(x2):
global x1
global mor

inputs=[[x1[0],x2[0],x2[1],x2[2]]]



# print(inputs)
properties=mor.predict(inputs)
#indexing below doesn't return upper bound, exclusive bounds
mags=properties[0,0:3]
mods=properties[0,3:6]
erels=properties[0,6:9]
max_vals=(max(mags)/25)+(max(mods)/2.1e6)+(max(erels)/2.67)
return ‐max(mags)

def mag_min(x2):
global x1
global mor

inputs=[[x1[0],x2[0],x2[1],x2[2]]]
# print(inputs)
properties=mor.predict(inputs)
#indexing below doesn't return upper bound, exclusive bounds
mags=properties[0,0:3]
mods=properties[0,3:6]
erels=properties[0,6:9]
min_vals=(min(mags)/25)+(min(mods)/2.1e6)+(min(erels)/2.67)
return min(mags)

def mod_max(x2):
global x1
global mor

inputs=[[x1[0],x2[0],x2[1],x2[2]]]
# print(inputs)
properties=mor.predict(inputs)
#indexing below doesn't return upper bound, exclusive bounds
mags=properties[0,0:3]
mods=properties[0,3:6]
erels=properties[0,6:9]
#min_vals=(min(mags)/25)+(min(mods)/2.1e6)+(min(erels)/2.67)
return ‐max(mods)

def mod_min(x2):
global x1
global mor

inputs=[[x1[0],x2[0],x2[1],x2[2]]]
# print(inputs)
properties=mor.predict(inputs)
#indexing below doesn't return upper bound, exclusive bounds
mags=properties[0,0:3]
mods=properties[0,3:6]
erels=properties[0,6:9]
#min_vals=(min(mags)/25)+(min(mods)/2.1e6)+(min(erels)/2.67)
return min(mods)

def erel_max(x2):
global x1
global mor

inputs=[[x1[0],x2[0],x2[1],x2[2]]]
# print(inputs)
properties=mor.predict(inputs)
#indexing below doesn't return upper bound, exclusive bounds
mags=properties[0,0:3]
mods=properties[0,3:6]
erels=properties[0,6:9]
#min_vals=(min(mags)/25)+(min(mods)/2.1e6)+(min(erels)/2.67)
return ‐max(erels)

def erel_min(x2):
global x1
global mor

inputs=[[x1[0],x2[0],x2[1],x2[2]]]
# print(inputs)
properties=mor.predict(inputs)
#indexing below doesn't return upper bound, exclusive bounds
mags=properties[0,0:3]
mods=properties[0,3:6]
erels=properties[0,6:9]
#min_vals=(min(mags)/25)+(min(mods)/2.1e6)+(min(erels)/2.67)
return min(erels)

def tryAgain(x,resultsFile,propertyToRun):
print("TRY AGAIN")
#for bookeeping and variable clarity the vector x is reassigned to more descriptive variables
numOfParticles=x[0]
volFrac=round(x[1],2)
Ex=0
Ey=0
Ez=round(x[2],0)
Hx=0
Hy=round(x[3],0)
Hz=round(x[4],0)
print(propertyToRun)
if propertyToRun=="magnetic":

qsub_command="""qsub ‐N job{1}_{0} ‐v numOfParticles={0},volFrac={1},Ex={2},Ey={3},Ez={4},Hx={5},Hy={6},Hz={7} SVMtryMagAgainJobscript.pbs""".format(numOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz)
if propertyToRun=="elastic":

qsub_command="""qsub ‐N job{1}_{0} ‐v numOfParticles={0},volFrac={1},Ex={2},Ey={3},Ez={4},Hx={5},Hy={6},Hz={7} SVMtryModAgainJobscript.pbs""".format(numOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz)
if propertyToRun=="dielectric":

qsub_command="""qsub ‐N job{1}_{0} ‐v numOfParticles={0},volFrac={1},Ex={2},Ey={3},Ez={4},Hx={5},Hy={6},Hz={7} SVMtryElecAgainJobscript.pbs""".format(numOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz)

if not qsub_command == None:
out=subprocess.Popen(qsub_command, shell=True, stdout=subprocess.PIPE)
jobID=out.communicate()[0]
jobIDnum=jobID.decode().split(".")
print(jobIDnum[0])

#This script checks to see if the comsol job is complete
bashCommand="""bash checkJobStatus.sh {0}""".format(jobIDnum[0])
out=subprocess.Popen(bashCommand, shell=True, stdout=subprocess.PIPE)
out.communicate()
return

print("Something Went Wrong")

def submitAndWait(x):
#for bookeeping and variable clarity the vector x is reassigned to more descriptive variables
numOfParticles=x[0]
volFrac=round(x[1],0)
Ex=0
Ey=0
Ez=round(x[2],0)
Hx=0
Hy=round(x[3],0)
Hz=round(x[4],0)

#check Database for prexisting results
sql="""SELECT * FROM SVM_COMBINED_OPTIMIZATION WHERE numberOfParticles={0} AND ROUND(volFrac,0)={1} AND ROUND(Ex,0)={2} AND ROUND(Ey,0)={3} AND ROUND(Ez,0)={4} AND ROUND(Hx,0)={5} AND ROUND(Hy,0)={6} AND ROUND(Hz,0)={7}""".format(numOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz)
#print(sql)
with con:

data=con.execute(sql).fetchall()
if not len(data)==0:

dateStamp=data[0][0]
modulus=[data[0][12]/1e6,data[0][13]/1e6,data[0][14]/1e6]
e_rel=[data[0][15],data[0][16],data[0][17]]
magnetization=[data[0][9],data[0][10],data[0][11]]

else:
#This function submits the server job to run the comsol script and returns the effective material properties
qsub_command="""qsub ‐N job{1}_{0} ‐v numOfParticles={0},volFrac={1},Ex={2},Ey={3},Ez={4},Hx={5},Hy={6},Hz={7} SVMoptimizeJobscript.pbs""".format(numOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz)
out=subprocess.Popen(qsub_command, shell=True, stdout=subprocess.PIPE)
jobID=out.communicate()[0]
jobIDnum=jobID.decode().split(".")
print(jobIDnum[0])

#This script checks to see if the comsol job is complete
bashCommand="""bash checkJobStatus.sh {0}""".format(jobIDnum[0])
out=subprocess.Popen(bashCommand, shell=True, stdout=subprocess.PIPE)
out.communicate()

#open results file and read in processed data
f=open(path+"/svmOptimizationRuns/results.txt","r")
resultsFile=f.readline().strip()
dateStamp=resultsFile.split("_")[0]

#check to make sure the simulation actually ran
#if the file doesn't exist
while not exists(path+"/svmOptimizationRuns/"+resultsFile+"/ElasticityMatrix.txt"):

#submit another of the same job and try again
magnetization=tryAgain(x,resultsFile,"elastic")

while not exists(path+"/svmOptimizationRuns/"+resultsFile+"/MagneticBHResponse.txt"):
#submit another of the same job and try again
magnetization=tryAgain(x,resultsFile,"magnetic")

while not exists(path+"/svmOptimizationRuns/"+resultsFile+"/ACResponse3.txt"):
#submit another of the same job and try again
magnetization=tryAgain(x,resultsFile,"dielectric")

#create .mat file
qsub_command="""qsub MakeMatFileScript.pbs""".format(numOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz)
out=subprocess.Popen(qsub_command, shell=True, stdout=subprocess.PIPE)
jobID=out.communicate()[0]
jobIDnum=jobID.decode().split(".")
print(jobIDnum[0])

#This script checks to see if the comsol job is complete
bashCommand="""bash checkJobStatus.sh {0}""".format(jobIDnum[0])
out=subprocess.Popen(bashCommand, shell=True, stdout=subprocess.PIPE)
out.communicate()

#read .mat file
mat=sio.loadmat(path+"/svmOptimizationRuns/"+resultsFile+"/"+resultsFile+".mat")
#populate variables to use in objective functions
e_rel=[mat['e_rel'][0,0],mat['e_rel'][0,1],mat['e_rel'][0,2]]
print(mat['Magnetization'])
magnetization=[mat['Magnetization'][0,0],mat['Magnetization'][0,1],mat['Magnetization'][0,2]]
modulus=[(mat['Ex'][0][0]/1e6),(mat['Ey'][0][0]/1e6),(mat['Ez'][0][0]/1e6)]
#Saving run to database
saveRun(dateStamp,numOfParticles,volFrac,0,0,Ez,0,Hy,Hz,magnetization,modulus,e_rel)

print(dateStamp)



print("simulation results: ",max(magnetization),", ",max(modulus),", ",max(e_rel))
return dateStamp,magnetization,modulus,e_rel

def saveRun(dateStamp,numberOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz,magnetization,modulus,e_rel):
print("saving data")
sql='INSERT INTO SVM_COMBINED_OPTIMIZATION(date_stamp,numberOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz,mag_x,mag_y,mag_z,modulus_x,modulus_y,modulus_z,e_rel_x,e_rel_y,e_rel_z)values(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)'
data=[(dateStamp,numberOfParticles,volFrac,Ex,Ey,Ez,Hx,Hy,Hz,magnetization[0],magnetization[1],magnetization[2],modulus[0]*1e6,modulus[1]*1e6,modulus[2]*1e6,e_rel[0],e_rel[1],e_rel[2])]

with con:
con.executemany(sql,data)

#sql="""SELECT * FROM SVM_MAG_OPTIMIZATION"""
#scaledInputs, scaledOutputs=readInData("COMSOL_RUNS_OPT.db",sql)

fig = plt.figure()
axes = fig.add_subplot()
lw = 2

i=1

#INIT MODEL SOMEHOW
def initModel():

#Latin Hypercube
sampler = qmc.LatinHypercube(d=4,seed=42)
sample = sampler.random(n=10)
numOfParticles=400
results=[]

#reshape for vol frac bounds
sample[:,0] = sample[:,0]*0.3+0.01
print("starting sampling")
for i in range(10):

print([numOfParticles,sample[i,0]*100,sample[i,1]*100000000,sample[i,2]*250000,sample[i,3]*250000])
[dateStamp,magnetization,modulus,e_rel]=submitAndWait([numOfParticles,sample[i,0]*100,sample[i,1]*100000000,sample[i,2]*250000,sample[i,3]*250000])
#Saving run to database
#saveRun(dateStamp,numOfParticles,sample[i,0]*100,0,0,sample[i,1]*100000000,0,sample[i,2]*250000,sample[i,3]*250000,magnetization,modulus,e_rel)
results.append([magnetization[0],magnetization[1],magnetization[2],modulus[0],modulus[1],modulus[2],e_rel[0],e_rel[1],e_rel[2]])

#print(mags)
results=np.array(results)

R2=makeSVMPlot(sample,results)

return sample, results

def optimizeSet():
global x1
global x2a
global x2b
global prop2a
global prop2b
f1Bounds = Bounds([0.01], [0.3])
x0=[.1]
x2a = [[0, 0, 0],[0, 0, 0],[0, 0, 0]]
x2b = [[0, 0, 1],[0, 0, 1],[0, 0, 1]]
res = minimize(fun1, x0, jac='3point', method='SLSQP', bounds=f1Bounds, tol=0.01, options={'eps':.2})

x1=res.x
print("Volume fraction with largest range: ",x1)
print("max mag: ", round(x2a[0][0]*10000000,1),round(x2a[0][1]*250000,1),round(x2a[0][2]*250000,1))
print("max mod: ", round(x2a[1][0]*10000000,1),round(x2a[1][1]*250000,1),round(x2a[1][2]*250000,1))
print("max erel: ", round(x2a[2][0]*10000000,1),round(x2a[2][1]*250000,1),round(x2a[2][2]*250000,1))
print("min mag: ", round(x2b[0][0]*10000000,1),round(x2b[0][1]*250000,1),round(x2b[0][2]*250000,1))
print("min mod: ", round(x2b[1][0]*10000000,1),round(x2b[1][1]*250000,1),round(x2b[1][2]*250000,1))
print("min erel: ", round(x2b[2][0]*10000000,1),round(x2b[2][1]*250000,1),round(x2b[2][2]*250000,1))

def smartSearch(X,y):
global mor
line=mor.predict(X)
spacing=[]
error=[]
searchTerm=np.zeros((len(y),len(y)))
searchX=[]

#checking the error from the regression to the data
#for each point
for i in range(len(X)‐1):

error.append(abs(np.subtract(line[i],y[i])))

#for each point find distance to the neighbor
for i in range(len(X)‐1):

for j in range(i,len(X)‐1,1):
xDist=norm(np.subtract(X[i,:],X[j,:]))
temp=(xDist*(norm(error[i])+norm(error[j])))
searchTerm[i,j]=temp

#find the max "error area"
maxArea=np.amax(searchTerm)
rowIndex,columnIndex=np.where(searchTerm==maxArea)
i=rowIndex[0]
j=columnIndex[0]
diff=np.subtract(X[i],X[j])/2
nextX=np.add(X[j],diff)

#get the next biggest "error area" if this point has already been added to the SVR
while nextX in X:

searchTerm[i,j]=0
maxArea=np.amax(searchTerm)
rowIndex,columnIndex=np.where(searchTerm==maxArea)
i=rowIndex[0]
j=columnIndex[0]
diff=np.subtract(X[i],X[j])/2
nextX=np.add(X[j],diff)

print("my two points are:")
print(X[i],X[j])

print("my next point is:")
print(nextX)

#run simulation
simSize=100
simArray=[simSize,nextX[0]*100,nextX[1]*100000000,nextX[2]*250000,nextX[3]*250000]
print(simArray)
[dateStamp,magnetization,modulus,e_rel]=submitAndWait(simArray)

results=np.zeros(9)
results[0:3]=magnetization
results[3:6]=modulus
results[6:9]=e_rel

#add new point to set
X=np.append(X,[nextX],axis=0)
y=np.append(y,[results],axis=0)

return X, y

def checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2,propString):
global mor
print('acceptableError: ',acceptableError)
#run simulation
simSize=100
simArray=[simSize,x1[0]*100,x2[0]*100000000,x2[1]*250000,x2[2]*250000]
print(simArray)
[dateStamp,magnetization,modulus,e_rel]=submitAndWait(simArray)
simulationResult=np.zeros(9)
simulationResult[0:3]=magnetization
simulationResult[3:6]=modulus
simulationResult[6:9]=e_rel

#predict values from SVR
inputs=[[round(x1[0],2),round(x2[0]*100000000,0)/100000000,round(x2[1]*250000,0)/250000,round(x2[2]*250000,0)/250000]]
modelResult=mor.predict(inputs)

#calculate error between simulation and SVR
tempError=abs(simulationResult‐modelResult)
if propString=='mag':

error=tempError[0][0:3]/30
elif propString=='mod':

error=tempError[0][3:6]/3
else:

error=tempError[0][6:9]/32

print("sim results: ", simulationResult)
print("svr results: ", modelResult)
print("error: ",error)

#determine if this error is acceptable
if error[0]<acceptableError and error[1]<acceptableError and error[2]<acceptableError:

print("matches, done!")
return True, scaledInputs, scaledOutputs

#(error wasn't ok)
#add this point to the model and check error again
results=[simulationResult]
scaledInputs=np.append(scaledInputs,inputs,axis=0)
scaledOutputs=np.append(scaledOutputs,results,axis=0)
model=mor.fit(scaledInputs, scaledOutputs)
modelResult=mor.predict(inputs)

tempError=abs(simulationResult‐modelResult)
if propString=='mag':

error=tempError[0][0:3]/30
elif propString=='mod':

error=tempError[0][3:6]/3
else:

error=tempError[0][6:9]/32

print("rechecked sim results: ", simulationResult)
print("rechecked svr results: ", modelResult)
print("rechecked error: ",error)



if error[0]<acceptableError and error[1]<acceptableError and error[2]<acceptableError:
print("improved enough to optimize again")
return False, scaledInputs, scaledOutputs

else:
print("need to train more")
scaledInputs, scaledOutputs=smartSearch(scaledInputs, scaledOutputs)
return False, scaledInputs, scaledOutputs

path = os.getcwd()
print(path)
con=sl.connect("COMSOL_RUNS_OPT.db")
optimumFound=False
scaledInputs,scaledOutputs=initModel()
#axes.scatter(scaledInputs[:,0],scaledOutputs)
# plt.show()

acceptableError=0.1
while not optimumFound:

optimizeSet()
print("Checking max vals found")
max_found_mag, scaledInputs, scaledOutputs=checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2a[0],'mag')
max_found_mod, scaledInputs, scaledOutputs=checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2a[1],'mod')
max_found_erel, scaledInputs, scaledOutputs=checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2a[2],'erel')
print("Checking min vals found")
min_found_mag, scaledInputs, scaledOutputs=checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2b[0],'mag')
min_found_mod, scaledInputs, scaledOutputs=checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2b[1],'mod')
min_found_erel, scaledInputs, scaledOutputs=checkOptimalPoint(acceptableError,scaledInputs,scaledOutputs,x1,x2b[2],'erel')
if max_found_mag and max_found_mod and max_found_erel and min_found_mag and min_found_mod and min_found_erel:

optimumFound=True
print("Doing another round of optimization")

print(scaledInputs[:,0])
axes.scatter(scaledInputs[:,0],scaledOutputs)

print("solution found in: ", len(scaledOutputs), "points")

# plt.show()



/* This script generates an FEA model for calculating effective medium properties for a particle composite
* It imports results from a particle dynamics simulation from text files and generates the resulting geometry
* Boundary conditions as appropriate load cases are generated
* Results are exported to text files in the model folder for selected properties
*
* Denise Widdowson
* MACS Lab
* The Pennsylvania State University
*/

import com.comsol.model.*;
import com.comsol.model.util.*;
import java.io.*;
import java.io.BufferedReader;
import java.util.Arrays;
import java.math.BigDecimal;

public class effectiveMediumModel{
public static String saveFileName;
public static int numOfParticles=10;

public static void main(String[] args)throws IOException{
ModelUtil.setDefaultGeometryKernel("cadps");
saveFileName=readInputArgs(); //first argument is the filename
Model model = initModel(saveFileName); //initialize model
String[][] dirArray = new String[3][];
String[][] posArray = new String[3][];
String[] initArray = new String[3];
model = setupMaterials(model); //define material properties for particles and medium

//read in data from particle simulation results
try{
System.out.printf("importing results...%n");

//positions
BufferedReader respos = new BufferedReader(new FileReader(saveFileName  + "_resPos.txt")); //opens result position file to read in particle positions
String tempLine = null;
for(int i=0; i<3; i++){ //only need 3 loops, file has 3 line x, y, and z positions

if((tempLine= respos.readLine()) != null){
posArray[i] = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
//System.out.println(Arrays.toString(posArray[i])); //use for debugging
}

}

//directions
BufferedReader resdir = new BufferedReader(new FileReader(saveFileName  + "_resDir.txt")); //opens result direction file to read in particle orientations
for(int i=0; i<3; i++){ //only need 3 loops, file has 3 line x, y, and z angles

if((tempLine= resdir.readLine()) != null){
dirArray[i] = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
//System.out.println(Arrays.toString(dirArray[i])); //use for debugging
}

}

//initilazion data
BufferedReader initData = new BufferedReader(new FileReader(saveFileName  + "_init_data.txt")); //opens result direction file to read in particle orientations

if((tempLine= initData.readLine()) != null){
initArray = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
System.out.println("init array");
System.out.println(Arrays.toString(initArray)); //use for debugging
}

}
catch(Exception e){} //necessary for java io operations

//get in medium dimensions
System.out.println("transforming data...");
double tempVal = new BigDecimal(initArray[2]).doubleValue();
System.out.println("transformed big decimal");
double boundaryLength = (tempVal+0.7e‐6)*2;
double mediumCenter = ‐boundaryLength/2;
double[] posCoord = {mediumCenter, mediumCenter, mediumCenter}; //spatial coordinate for generating RVE bounds
double[] blockSize = {boundaryLength, boundaryLength, boundaryLength}; //size of RVE in 3 dimensions
model = generateMedium(model, blockSize, posCoord); //generate the medium and assign material
System.out.println("boundary conditions...");
model = boundaryConditionsMech(model); //assign boundary conditions (do before generating particles because face numbers change)
model = generateEllipsoids(model, posArray, dirArray); //generate the particles and assign material
System.out.println("meshing...");
model = meshModel(model); //generate the mesh
System.out.println("solving...");
model = solveModel(model); //solve the model
System.out.println("exporting results...");
exportResults(model); //export effective material properties

System.exit(0);
}

public static Model initModel(String saveFileName){
Model model = ModelUtil.create("Model");
//model.modelPath("/storage/work/d/dqw5479/java_scripts/testModel");
//model.label("testModel.mph");
model.component().create("comp1", false);
model.component("comp1").geom().create("geom1", 3);
//model.component("comp1").geom("geom1").run();
saveMyModel(model, saveFileName);
return model;

}

public static Model setupMaterials(Model model){
model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material().create("mat2", "Common");
model.component("comp1").material("mat1").propertyGroup().create("Enu", "Young's modulus and Poisson's ratio");
model.component("comp1").material("mat2").propertyGroup().create("Enu", "Young's modulus and Poisson's ratio");

model.component("comp1").material("mat1").label("Fe ‐ Iron");
model.component("comp1").material("mat1").set("family", "iron");
model.component("comp1").material("mat1").set("groups", new String[][]{{"metals", "Metals"}});
model.component("comp1").material("mat1").propertyGroup("def").set("electricconductivity", new String[]{"10.2e6[S/m]", "0", "0", "0", "10.2e6[S/m]", "0", "0", "0", "10.2e6[S/m]"});
model.component("comp1").material("mat1").propertyGroup("def").set("thermalexpansioncoefficient", new String[]{"11.8e‐6[1/K]", "0", "0", "0", "11.8e‐6[1/K]", "0", "0", "0", "11.8e‐6[1/K]"});
model.component("comp1").material("mat1").propertyGroup("def").set("heatcapacity", "449[J/(kg*K)]");
model.component("comp1").material("mat1").propertyGroup("def").set("density", "7860[kg/m^3]");
model.component("comp1").material("mat1").propertyGroup("def").set("thermalconductivity", new String[]{"80.2[W/(m*K)]", "0", "0", "0", "80.2[W/(m*K)]", "0", "0", "0", "80.2[W/(m*K)]"});
model.component("comp1").material("mat1").propertyGroup("Enu").set("youngsmodulus", "152e9[Pa]");
model.component("comp1").material("mat1").propertyGroup("Enu").set("poissonsratio", "0.27");
model.component("comp1").material("mat2").label("PDMS ‐ Polydimethylsiloxane");
model.component("comp1").material("mat2").set("groups", new String[][]{{"polymers", "Polymers"}});
model.component("comp1").material("mat2").propertyGroup("def").set("thermalexpansioncoefficient", new String[]{"9e‐4[1/K]", "0", "0", "0", "9e‐4[1/K]", "0", "0", "0", "9e‐4[1/K]"});
model.component("comp1").material("mat2").propertyGroup("def").set("heatcapacity", "1460[J/(kg*K)]");
model.component("comp1").material("mat2").propertyGroup("def").set("relpermittivity", new String[]{"2.75", "0", "0", "0", "2.75", "0", "0", "0", "2.75"});
model.component("comp1").material("mat2").propertyGroup("def").set("density", "970[kg/m^3]");
model.component("comp1").material("mat2").propertyGroup("def").set("thermalconductivity", new String[]{"0.16[W/(m*K)]", "0", "0", "0", "0.16[W/(m*K)]", "0", "0", "0", "0.16[W/(m*K)]"});
model.component("comp1").material("mat2").propertyGroup("Enu").set("youngsmodulus", "2.1[MPa]");
model.component("comp1").material("mat2").propertyGroup("Enu").set("poissonsratio", "0.4");

System.out.println("periodic save...");
saveMyModel(model, saveFileName);

return model;
}

public static Model generateMedium(Model model, double[] blockSize, double[] posCoord){

System.out.println("generating medium...");
model.component("comp1").geom("geom1").create("blk1", "Block");
model.component("comp1").geom("geom1").feature("blk1").set("size", blockSize);
model.component("comp1").geom("geom1").feature("blk1").set("pos", posCoord);
model.component("comp1").geom("geom1").run(); 
model.component("comp1").material("mat2").selection().set(1);
System.out.println("periodic save...");
saveMyModel(model, saveFileName);

return model;
}

public static Model boundaryConditionsMech(Model model){
model.component("comp1").physics().create("solid", "SolidMechanics", "geom1");
model.component("comp1").physics("solid").create("cp1", "CellPeriodicity", 3);
model.component("comp1").physics("solid").feature("cp1").selection().all();
model.component("comp1").physics("solid").feature("cp1").set("BoundaryExpansion", "PrescribedStrain");
model.component("comp1").physics("solid").feature("cp1").set("EffectivePropertiese", "ElasticityMatrixStandard");
model.component("comp1").physics("solid").feature("cp1").set("eavgi", new String[][]{{"group.cp11"}, {"0.5*group.cp12"}, {"0.5*group.cp13"}, {"0.5*group.cp12"}, {"group.cp22"}, {"0.5*group.cp23"}, {"0.5*group.cp13"}, {"0.5*group.cp23"}, {"group.cp33"}});
model.component("comp1").physics("solid").feature("cp1").set("Dummy", "0"); //no idea what this does, it came from the scripting tool

model.component("comp1").physics("solid").feature("cp1").create("bp1", "BoundaryPair", 2);
model.component("comp1").physics("solid").feature("cp1").feature("bp1").selection().set(3, 4);
model.component("comp1").physics("solid").feature("cp1").create("bp2", "BoundaryPair", 2);
model.component("comp1").physics("solid").feature("cp1").feature("bp2").selection().set(1, 6);
model.component("comp1").physics("solid").feature("cp1").create("bp3", "BoundaryPair", 2);
model.component("comp1").physics("solid").feature("cp1").feature("bp3").selection().set(2, 5);

model.nodeGroup().create("cpgrp", "GlobalDefinitions");
model.group().create("cp11", "LoadGroup");
model.group().create("cp22", "LoadGroup");
model.group().create("cp33", "LoadGroup");
model.group().create("cp12", "LoadGroup");
model.group().create("cp23", "LoadGroup");
model.group().create("cp13", "LoadGroup");
model.nodeGroup("cpgrp").set("type", "group");
model.nodeGroup("cpgrp").placeAfter(null);
model.nodeGroup("cpgrp").add("group", "cp11");
model.nodeGroup("cpgrp").add("group", "cp22");
model.nodeGroup("cpgrp").add("group", "cp33");
model.nodeGroup("cpgrp").add("group", "cp12");
model.nodeGroup("cpgrp").add("group", "cp23");
model.nodeGroup("cpgrp").add("group", "cp13");

model.material().create("cp1mat", "Common", "");
model.material("cp1mat").propertyGroup().create("Anisotropic", "Anisotropic");
model.material("cp1mat").label("Homogeneous Material 1");
model.material("cp1mat").propertyGroup("Anisotropic").set("D", "");
model.material("cp1mat").propertyGroup("Anisotropic").set("eta_D", "");
model.material("cp1mat").propertyGroup("Anisotropic")

 .set("D", new String[]{"root.comp1.solid.cp1.D11", "root.comp1.solid.cp1.D12", "root.comp1.solid.cp1.D13", "root.comp1.solid.cp1.D14", "root.comp1.solid.cp1.D15", "root.comp1.solid.cp1.D16", "root.comp1.solid.cp1.D12", "root.comp1.solid.cp1.D22", "root.comp1.solid.cp1.D23", "root.comp1.solid.cp1.D24", 
"root.comp1.solid.cp1.D25", "root.comp1.solid.cp1.D26", "root.comp1.solid.cp1.D13", "root.comp1.solid.cp1.D23", "root.comp1.solid.cp1.D33", "root.comp1.solid.cp1.D34", "root.comp1.solid.cp1.D35", "root.comp1.solid.cp1.D36", "root.comp1.solid.cp1.D14", "root.comp1.solid.cp1.D24", 
"root.comp1.solid.cp1.D34", "root.comp1.solid.cp1.D44", "root.comp1.solid.cp1.D45", "root.comp1.solid.cp1.D46", "root.comp1.solid.cp1.D15", "root.comp1.solid.cp1.D25", "root.comp1.solid.cp1.D35", "root.comp1.solid.cp1.D45", "root.comp1.solid.cp1.D55", "root.comp1.solid.cp1.D56", 
"root.comp1.solid.cp1.D16", "root.comp1.solid.cp1.D26", "root.comp1.solid.cp1.D36", "root.comp1.solid.cp1.D46", "root.comp1.solid.cp1.D56", "root.comp1.solid.cp1.D66"});

model.material("cp1mat").propertyGroup("Anisotropic")
 .set("eta_D", new String[]{"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", 
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", 
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", 
"0", "0", "0", "0", "0", "0"});

model.component("comp1").physics("solid").feature("cp1").set("BoundaryExpansion", "PrescribedStrain");
model.component("comp1").physics("solid").feature("cp1").set("EffectivePropertiese", "ElasticityMatrixStandard");
model.component("comp1").physics("solid").feature("cp1").set("eavgi", new String[][]{{"group.cp11"}, {"0.5*group.cp12"}, {"0.5*group.cp13"}, {"0.5*group.cp12"}, {"group.cp22"}, {"0.5*group.cp23"}, {"0.5*group.cp13"}, {"0.5*group.cp23"}, {"group.cp33"}});

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
return model;

}



public static Model generateEllipsoids(Model model,String[][] posArray, String[][] dirArray){
System.out.println("generating ellipsoids...");
numOfParticles = posArray[1].length/2;
String[] selectionArray = new String[numOfParticles];
for (int particle = 0; particle<numOfParticles; particle++){

String particleString = "elp" + particle;
String mfcString = "Mymfc" + particle;
int particleIndex = particle+numOfParticles; //first half of indices are for starting posiion before particle dynamics simulation
String positionString = posArray[0][particleIndex] + ", " + posArray[1][particleIndex] + ", " + posArray[2][particleIndex];
String orientationString = dirArray[0][particleIndex] + ", " + dirArray[1][particleIndex] + ", " + dirArray[2][particleIndex];
//creates elipsoid at each coordinate
model.component("comp1").geom("geom1").create(particleString, "Ellipsoid");
model.component("comp1").geom("geom1").feature(particleString).set("pos", positionString);
model.component("comp1").geom("geom1").feature(particleString).set("semiaxes", new double[]{0.5e‐6, 0.5e‐6, 0.15e‐6});
model.component("comp1").geom("geom1").feature(particleString).set("axistype", "cartesian");
model.component("comp1").geom("geom1").feature(particleString).set("ax3", orientationString);

selectionArray[particle] = particleString;
}

model.component("comp1").geom("geom1").create("sel1", "ExplicitSelection");
model.component("comp1").geom("geom1").feature("sel1").selection("selection").init();
model.component("comp1").geom("geom1").feature("sel1").selection("selection").set(selectionArray);
model.component("comp1").geom("geom1").feature("sel1").set("selshow", "all");

model.component("comp1").material("mat1").selection().named("geom1_sel1_dom");

//generate geometry union and run
//model.component("comp1").geom("geom1").create("uni1", "Union");
//model.component("comp1").geom("geom1").feature("uni1").set("intbnd", false);
//model.component("comp1").geom("geom1").feature("uni1").selection("input").named("sel1");

//model.component("comp1").geom("geom1").create("uni1", "Union");
//model.component("comp1").geom("geom1").feature("uni1").set("intbnd", false);
//model.component("comp1").geom("geom1").feature("uni1").set("repairtoltype", "auto");
//model.component("comp1").geom("geom1").feature("uni1").set("absrepairtol", 1.0E‐8);
//model.component("comp1").geom("geom1").feature("uni1").selection("input").named("sel1");
model.component("comp1").geom("geom1").run();

saveMyModel(model, saveFileName);
return model;

}

public static Model meshModel(Model model){
System.out.println("meshing model...");
model.component("comp1").mesh().create("mesh1");
model.component("comp1").mesh("mesh1").create("ftet1", "FreeTet");
model.component("comp1").mesh("mesh1").create("ftet2", "FreeTet");
model.component("comp1").mesh("mesh1").feature("ftet1").create("size1", "Size");
model.component("comp1").mesh("mesh1").feature("ftet2").create("size1", "Size");

model.component("comp1").mesh("mesh1").feature("ftet1").selection().named("geom1_sel1_dom");
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("custom", "on");
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("hmin", 1.22E‐9);
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("hminactive", true);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("custom", "on");
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("hmin", 1.22E‐9);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("hminactive", true);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").selection().geom("geom1", 3);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").selection().set(1);

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
return model;

}

public static Model solveModel(Model model){
System.out.println("solving model...");
/*model.study().create("cpstd1");
model.study("cpstd1").create("cpstat1", "Stationary");
model.sol().create("cpsol1");
model.sol("cpsol1").study("cpstd1");
model.sol("cpsol1").attach("cpstd1");
model.sol("cpsol1").create("st1", "StudyStep");
model.sol("cpsol1").create("v1", "Variables");
model.sol("cpsol1").create("s1", "Stationary");
model.sol("cpsol1").feature("s1").create("p1", "Parametric");
model.sol("cpsol1").feature("s1").create("fc1", "FullyCoupled");
model.sol("cpsol1").feature("s1").feature().remove("fcDef");
*/
model.study().create("cpstd1");
model.study("cpstd1").create("cpstat1", "Stationary");
model.study("cpstd1").feature("cpstat1").set("useloadcase", true);
model.study("cpstd1").feature("cpstat1").setIndex("loadcase", "Load case 1", 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 0, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 0, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 0, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 0, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 0, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 0, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 0, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 0, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 0, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 0, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 0, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", true, 0, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadcase", "Load case 2", 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 1, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 1, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 1, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 1, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 1, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 1, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 1, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 1, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 1, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 1, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 1, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", true, 1, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadcase", "Load case 3", 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 2, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 2, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 2, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 2, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 2, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 2, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 2, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 2, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 2, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 2, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 2, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", true, 2, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadcase", "Load case 4", 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 3, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 3, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 3, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 3, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 3, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 3, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 3, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 3, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 3, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 3, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 3, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", true, 3, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadcase", "Load case 5", 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 4, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 4, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 4, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 4, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 4, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 4, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 4, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 4, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 4, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 4, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 4, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", true, 4, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadcase", "Load case 6", 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 5, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 5, 0);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 5, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 5, 1);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 5, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 5, 2);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 5, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 5, 3);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", false, 5, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 5, 4);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroupweight", "1.0", 5, 5);
model.study("cpstd1").feature("cpstat1").setIndex("loadgroup", true, 5, 5);

model.sol().create("cpsol1");
model.sol("cpsol1").study("cpstd1");
model.sol("cpsol1").attach("cpstd1");
model.sol("cpsol1").create("st1", "StudyStep");
model.sol("cpsol1").create("v1", "Variables");
model.sol("cpsol1").create("s1", "Stationary");
model.sol("cpsol1").feature("s1").create("p1", "Parametric");
model.sol("cpsol1").feature("s1").create("fc1", "FullyCoupled");
model.sol("cpsol1").feature("s1").feature().remove("fcDef");

model.sol("cpsol1").feature("s1").feature("dDef").set("linsolver", "mumps");
model.sol("cpsol1").feature("s1").feature("dDef").set("ooc", true);
model.study("cpstd1").feature("cpstat1").set("pdistrib", true);
model.sol("cpsol1").feature("s1").feature("p1").set("pdistrib", true);

model.sol("cpsol1").feature("s1").feature("aDef").set("convinfo", "detailed");

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
model.component("comp1").mesh("mesh1").run();
System.out.println("periodic save post meshing...");

//Reset kernel to decrease memory usage
//ModelUtil.setDefaultGeometryKernel("comsol");
model.study("cpstd1").run();
saveMyModel(model, saveFileName);
return model;

}

public static void exportResults(Model model){
model.result().table().create("tbl1", "Table");
model.result().numerical().create("gmev1", "EvalGlobalMatrix");
model.result().numerical("gmev1").set("probetag", "none");
model.result().export().create("tbl1", "Table");
model.result().numerical("gmev1").set("table", "tbl1");
model.result().numerical("gmev1").set("expr", "solid.cp1.D");
model.result().numerical("gmev1").set("unit", "Pa");



model.result().numerical("gmev1").set("descr", "Elasticity matrix");
model.result().numerical("gmev1").set("const", new String[][]{{"solid.refpntx", "0", "Reference point for moment computation, x coordinate"}, {"solid.refpnty", "0", "Reference point for moment computation, y coordinate"}, {"solid.refpntz", "0", "Reference point for moment computation, z coordinate"}});
model.result().numerical("gmev1").set("dataseries", "average");
model.result().numerical("gmev1").run();
model.result().numerical("gmev1").setResult();
model.result().export("tbl1").set("table", "tbl1");
model.result().export("tbl1").set("filename", "ElasticityMatrix.txt");

saveMyModel(model, saveFileName);

model.result().export("tbl1").run();
}

public static void saveMyModel(Model model, String saveFileName){
try{
model.save(saveFileName);
}
catch(Exception e){}
}

public static String readInputArgs(){
String fileName=null;
try{
BufferedReader argsFile = new BufferedReader(new FileReader("inputArgs.txt")); //opens file containing what should be commandline args
fileName = argsFile.readLine();

}catch(Exception e){}
return fileName;

}
}



/* This script generates an FEA model for calculating effective medium properties for a particle composite
* It imports results from a particle dynamics simulation from text files and generates the resulting geometry
* Boundary conditions as appropriate load cases are generated
* Results are exported to text files in the model folder for selected properties
*
* Denise Widdowson
* MACS Lab
* The Pennsylvania State University
*/

import com.comsol.model.*;
import com.comsol.model.util.*;
import java.io.*;
import java.io.BufferedReader;
import java.util.Arrays;
import java.math.BigDecimal;

public class dielectricACEffectiveMediumModel{
public static String saveFileName;
public static int numOfParticles=10;
//public static String additionalFolder = "Ex=0,Ey=0,Ez=100000000,Hx=50000,Hy=50000,Hz=50000";

public static void main(String[] args)throws IOException{
//ModelUtil.initStandalone(true);
saveFileName=readInputArgs(); //first argument is the filename
//saveFileName = additionalFolder + "/" + saveFileName;
System.out.println(saveFileName);
Model model = initModel(saveFileName); //initialize model
String[][] dirArray = new String[3][];
String[][] posArray = new String[3][];
String[] initArray = new String[3];
System.out.println("setup materials...");
model = setupMaterials(model); //define material properties for particles and medium

//read in data from particle simulation results
try{
System.out.printf("importing results...%n");
System.out.println(saveFileName);

//positions
BufferedReader respos = new BufferedReader(new FileReader(saveFileName +"_resPos.txt")); //opens result position file to read in particle positions
String tempLine = null;
for(int i=0; i<3; i++){ //only need 3 loops, file has 3 line x, y, and z positions

if((tempLine= respos.readLine()) != null){
posArray[i] = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
//System.out.println(Arrays.toString(posArray[i])); //use for debugging
}

}

//directions
BufferedReader resdir = new BufferedReader(new FileReader(saveFileName + "_resDir.txt")); //opens result direction file to read in particle orientations
for(int i=0; i<3; i++){ //only need 3 loops, file has 3 line x, y, and z angles

if((tempLine= resdir.readLine()) != null){
dirArray[i] = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
//System.out.println(Arrays.toString(dirArray[i])); //use for debugging
}

}

//initilazion data
BufferedReader initData = new BufferedReader(new FileReader(saveFileName + "_init_data.txt")); //opens result direction file to read in particle orientations

if((tempLine= initData.readLine()) != null){
initArray = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
System.out.println("init array");
System.out.println(Arrays.toString(initArray)); //use for debugging
}

}
catch(Exception e){} //necessary for java io operations

//get in medium dimensions
System.out.println("transforming data...");
double tempVal = new BigDecimal(initArray[2]).doubleValue();
System.out.println("transformed big decimal");
double boundaryLength = (tempVal+0.7e‐6)*2;
double mediumCenter = ‐boundaryLength/2;
double[] posCoord = {mediumCenter, mediumCenter, mediumCenter}; //spatial coordinate for generating RVE bounds
double[] blockSize = {boundaryLength, boundaryLength, boundaryLength}; //size of RVE in 3 dimensions
model = generateMedium(model, blockSize, posCoord); //generate the medium and assign material
System.out.println("boundary conditions...");
model = boundaryConditionsDielectric(model); //assign boundary conditions (do before generating particles because face numbers change)
model = generateEllipsoids(model, posArray, dirArray); //generate the particles and assign material
System.out.println("meshing...");
model = meshModel(model); //generate the mesh
System.out.println("solving...");
model = solveModel(model); //solve the model
System.out.println("exporting results...");
exportResults(model); //export effective material properties

System.exit(0);
}

public static Model initModel(String saveFileName){
Model model = ModelUtil.create("Model");
//model.modelPath("/storage/work/d/dqw5479/java_scripts/testModel");
//model.label("testModel.mph");
model.component().create("comp1", false);
model.component("comp1").geom().create("geom1", 3);
//model.component("comp1").geom("geom1").run();
saveMyModel(model, saveFileName);
return model;

}

public static Model setupMaterials(Model model){
model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material().create("mat2", "Common");

model.component("comp1").material("mat1").label("Barium hexaferrite");
model.component("comp1").material("mat1").propertyGroup("def")



 .set("relpermittivity", new String[]{"32", "0", "0", "0", "32", "0", "0", "0", "32"});
model.component("comp1").material("mat1").propertyGroup("def")

 .set("electricconductivity", new String[]{"6e‐7", "0", "0", "0", "6e‐7", "0", "0", "0", "6e‐7"});

model.component("comp1").material("mat2").label("PDMS");
model.component("comp1").material("mat2").propertyGroup("def")

 .set("electricconductivity", new String[]{"1e‐14", "0", "0", "0", "1e‐14", "0", "0", "0", "1e‐14"});
model.component("comp1").material("mat2").propertyGroup("def")

 .set("relpermittivity", new String[]{"2.67", "0", "0", "0", "2.67", "0", "0", "0", "2.67"});

System.out.println("periodic save...");
saveMyModel(model, saveFileName);

return model;
}

public static Model generateMedium(Model model, double[] blockSize, double[] posCoord){

System.out.println("generating medium...");
model.component("comp1").geom("geom1").create("blk1", "Block");
model.component("comp1").geom("geom1").feature("blk1").set("size", blockSize);
model.component("comp1").geom("geom1").feature("blk1").set("pos", posCoord);
model.component("comp1").geom("geom1").run(); 
model.component("comp1").material("mat2").selection().set(1);
System.out.println("periodic save...");
saveMyModel(model, saveFileName);

return model;
}

public static Model boundaryConditionsDielectric(Model model){
model.component("comp1").physics().create("ec", "ConductiveMedia", "geom1");

model.component("comp1").physics("ec").create("pc1", "PeriodicCondition", 2);
model.component("comp1").physics("ec").feature("pc1").selection().set(1, 6);
model.component("comp1").physics("ec").feature("pc1").active(false);
model.component("comp1").physics("ec").create("pc2", "PeriodicCondition", 2);
model.component("comp1").physics("ec").feature("pc2").selection().set(2, 5);
model.component("comp1").physics("ec").feature("pc2").active(false);
model.component("comp1").physics("ec").create("pc3", "PeriodicCondition", 2);
model.component("comp1").physics("ec").feature("pc3").selection().set(3, 4);
model.component("comp1").physics("ec").feature("pc3").active(false);

model.component("comp1").physics("ec").create("term1", "Terminal", 2);
model.component("comp1").physics("ec").feature("term1").selection().set(6);
model.component("comp1").physics("ec").feature("term1").set("TerminalType", "Voltage");
model.component("comp1").physics("ec").feature("term1").set("V0", 1);
model.component("comp1").physics("ec").feature("term1").active(false);
model.component("comp1").physics("ec").create("term2", "Terminal", 2);
model.component("comp1").physics("ec").feature("term2").selection().set(5);
model.component("comp1").physics("ec").feature("term2").set("TerminalType", "Voltage");
model.component("comp1").physics("ec").feature("term2").set("V0", 1);
model.component("comp1").physics("ec").feature("term2").active(false);
model.component("comp1").physics("ec").create("term3", "Terminal", 2);
model.component("comp1").physics("ec").feature("term3").selection().set(4);
model.component("comp1").physics("ec").feature("term3").set("TerminalType", "Voltage");
model.component("comp1").physics("ec").feature("term3").set("V0", 1);
model.component("comp1").physics("ec").feature("term3").active(false);

model.component("comp1").physics("ec").create("gnd1", "Ground", 2);
model.component("comp1").physics("ec").feature("gnd1").selection().set(1);
model.component("comp1").physics("ec").feature("gnd1").active(false);
model.component("comp1").physics("ec").create("gnd2", "Ground", 2);
model.component("comp1").physics("ec").feature("gnd2").selection().set(2);
model.component("comp1").physics("ec").feature("gnd2").active(false);
model.component("comp1").physics("ec").create("gnd3", "Ground", 2);
model.component("comp1").physics("ec").feature("gnd3").selection().set(3);
model.component("comp1").physics("ec").feature("gnd3").active(false);

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
return model;

}

public static Model generateEllipsoids(Model model,String[][] posArray, String[][] dirArray){
System.out.println("generating ellipsoids...");
numOfParticles = posArray[1].length/2;
String[] selectionArray = new String[numOfParticles];
for (int particle = 0; particle<numOfParticles; particle++){

String particleString = "elp" + particle;
String mfcString = "Mymfc" + particle;
int particleIndex = particle+numOfParticles; //first half of indices are for starting posiion before particle dynamics simulation
String positionString = posArray[0][particleIndex] + ", " + posArray[1][particleIndex] + ", " + posArray[2][particleIndex];
String orientationString = dirArray[0][particleIndex] + ", " + dirArray[1][particleIndex] + ", " + dirArray[2][particleIndex];
//creates elipsoid at each coordinate
model.component("comp1").geom("geom1").create(particleString, "Ellipsoid");
model.component("comp1").geom("geom1").feature(particleString).set("pos", positionString);
model.component("comp1").geom("geom1").feature(particleString).set("semiaxes", new double[]{0.5e‐6, 0.5e‐6, 0.15e‐6});
model.component("comp1").geom("geom1").feature(particleString).set("axistype", "cartesian");
model.component("comp1").geom("geom1").feature(particleString).set("ax3", orientationString);

selectionArray[particle] = particleString;
}

model.component("comp1").geom("geom1").create("sel1", "ExplicitSelection");
model.component("comp1").geom("geom1").feature("sel1").selection("selection").init();
model.component("comp1").geom("geom1").feature("sel1").selection("selection").set(selectionArray);
model.component("comp1").geom("geom1").feature("sel1").set("selshow", "all");

model.component("comp1").material("mat1").selection().named("geom1_sel1_dom");

//generate geometry union and run
//model.component("comp1").geom("geom1").create("uni1", "Union");
//model.component("comp1").geom("geom1").feature("uni1").set("intbnd", false);
//model.component("comp1").geom("geom1").feature("uni1").selection("input").named("sel1");

//model.component("comp1").geom("geom1").create("uni1", "Union");
//model.component("comp1").geom("geom1").feature("uni1").set("intbnd", false);
//model.component("comp1").geom("geom1").feature("uni1").set("repairtoltype", "auto");
//model.component("comp1").geom("geom1").feature("uni1").set("absrepairtol", 1.0E‐8);



//model.component("comp1").geom("geom1").feature("uni1").selection("input").named("sel1");
model.component("comp1").geom("geom1").run();

saveMyModel(model, saveFileName);
return model;

}

public static Model meshModel(Model model){
System.out.println("meshing model...");
model.component("comp1").mesh().create("mesh1");
model.component("comp1").mesh("mesh1").create("ftet1", "FreeTet");
model.component("comp1").mesh("mesh1").create("ftet2", "FreeTet");
model.component("comp1").mesh("mesh1").feature("ftet1").create("size1", "Size");
model.component("comp1").mesh("mesh1").feature("ftet2").create("size1", "Size");

model.component("comp1").mesh("mesh1").feature("ftet1").selection().named("geom1_sel1_dom");
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("custom", "on");
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("hmin", 1.22E‐9);
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("hminactive", true);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("custom", "on");
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("hmin", 1.22E‐9);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("hminactive", true);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").selection().geom("geom1", 3);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").selection().set(1);

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
return model;

}

public static Model solveModel(Model model){
System.out.println("solving model...");

model.study().create("std1");
model.study("std1").create("freq", "Frequency");

model.sol().create("sol1");
model.sol("sol1").study("std1");
model.sol("sol1").attach("std1");
model.sol("sol1").create("st1", "StudyStep");
model.sol("sol1").create("v1", "Variables");
model.sol("sol1").create("s1", "Stationary");
model.sol("sol1").feature("s1").create("p1", "Parametric");
model.sol("sol1").feature("s1").create("fc1", "FullyCoupled");
model.sol("sol1").feature("s1").create("i1", "Iterative");
model.sol("sol1").feature("s1").feature("i1").create("mg1", "Multigrid");
model.sol("sol1").feature("s1").feature().remove("fcDef");
model.study("std1").feature("freq").setIndex("plist", "100000", 0);

model.component("comp1").mesh("mesh1").run();

for (int i=1; i<=3; i++){
//reset

System.out.println("periodic save...");
System.out.println(i);
saveMyModel(model, saveFileName);
switch (i) {

case 1:
System.out.println("case 1...");
model.component("comp1").physics("ec").feature("pc1").active(false);
model.component("comp1").physics("ec").feature("pc2").active(true);
model.component("comp1").physics("ec").feature("pc3").active(true);

model.component("comp1").physics("ec").feature("term3").active(false);
model.component("comp1").physics("ec").feature("term2").active(false);
model.component("comp1").physics("ec").feature("term1").active(true);

model.component("comp1").physics("ec").feature("gnd3").active(false);
model.component("comp1").physics("ec").feature("gnd2").active(false);
model.component("comp1").physics("ec").feature("gnd1").active(true);

model.sol("sol1").runAll();
model.result().numerical().create("gev1", "EvalGlobal");
model.result().numerical("gev1").set("probetag", "none");
model.result().table().create("tbl1", "Table");
model.result().numerical("gev1").set("table", "tbl1");
model.result().numerical("gev1")

 .set("expr", new String[]{"ec.I0_1"});
model.result().numerical("gev1").set("unit", new String[]{"A"});
model.result().numerical("gev1").set("descr", new String[]{"I0"});
model.result().numerical("gev1").setResult();

break;

case 2:
System.out.println("case 2...");
model.component("comp1").physics("ec").feature("pc2").active(false);
model.component("comp1").physics("ec").feature("pc1").active(true);
model.component("comp1").physics("ec").feature("pc3").active(true);

model.component("comp1").physics("ec").feature("term1").active(false);
model.component("comp1").physics("ec").feature("term3").active(false);
model.component("comp1").physics("ec").feature("term2").active(true);

model.component("comp1").physics("ec").feature("gnd1").active(false);
model.component("comp1").physics("ec").feature("gnd3").active(false);
model.component("comp1").physics("ec").feature("gnd2").active(true);

model.sol("sol1").runAll();
model.result().numerical().create("gev2", "EvalGlobal");
model.result().numerical("gev2").set("probetag", "none");
model.result().table().create("tbl2", "Table");
model.result().numerical("gev2").set("table", "tbl2");
model.result().numerical("gev2")

 .set("expr", new String[]{"ec.I0_2"});
model.result().numerical("gev2").set("unit", new String[]{"A"});
model.result().numerical("gev2").set("descr", new String[]{"I0"});
model.result().numerical("gev2").setResult();



break;

case 3:
System.out.println("case 3...");
model.component("comp1").physics("ec").feature("pc3").active(false);
model.component("comp1").physics("ec").feature("pc1").active(true);
model.component("comp1").physics("ec").feature("pc2").active(true);

model.component("comp1").physics("ec").feature("term1").active(false);
model.component("comp1").physics("ec").feature("term2").active(false);
model.component("comp1").physics("ec").feature("term3").active(true);

model.component("comp1").physics("ec").feature("gnd1").active(false);
model.component("comp1").physics("ec").feature("gnd2").active(false);
model.component("comp1").physics("ec").feature("gnd3").active(true);

model.sol("sol1").runAll();
model.result().numerical().create("gev3", "EvalGlobal");
model.result().numerical("gev3").set("probetag", "none");
model.result().table().create("tbl3", "Table");
model.result().numerical("gev3").set("table", "tbl3");
model.result().numerical("gev3")

 .set("expr", new String[]{"ec.I0_3"});
model.result().numerical("gev3").set("unit", new String[]{"A"});
model.result().numerical("gev3").set("descr", new String[]{"I0"});
model.result().numerical("gev3").setResult();
break;

default: break;
}

}

saveMyModel(model, saveFileName);
return model;

}

public static void exportResults(Model model){

model.result().export().create("tbl1", "Table");
model.result().export("tbl1").set("table", "tbl1");
model.result().export("tbl1").set("filename", "ACResponse1.txt");
model.result().export("tbl1").run();
model.result().export().create("tbl2", "Table");
model.result().export("tbl2").set("table", "tbl2");
model.result().export("tbl2").set("filename", "ACResponse2.txt");
model.result().export("tbl2").run();
model.result().export().create("tbl3", "Table");
model.result().export("tbl3").set("table", "tbl3");
model.result().export("tbl3").set("filename", "ACResponse3.txt");
model.result().export("tbl3").run();

saveMyModel(model, saveFileName);
}

public static void saveMyModel(Model model, String saveFileName){
try{
model.save(saveFileName);
}
catch(Exception e){}
}

public static String readInputArgs(){
String fileName=null;
try{
BufferedReader argsFile = new BufferedReader(new FileReader("dielectricInputArgs.txt")); //opens file containing what should be commandline args
fileName = argsFile.readLine();

}catch(Exception e){}
return fileName;

}
}



/* This script generates an FEA model for calculating effective medium properties for a particle composite
* It imports results from a particle dynamics simulation from text files and generates the resulting geometry
* Boundary conditions as appropriate load cases are generated
* Results are exported to text files in the model folder for selected properties
*
* Denise Widdowson
* MACS Lab
* The Pennsylvania State University
*/

import com.comsol.model.*;
import com.comsol.model.util.*;
import java.io.*;
import java.io.BufferedReader;
import java.util.Arrays;
import java.math.BigDecimal;

public class magneticEffectiveMediumModel{
public static String saveFileName;
public static int numOfParticles=10;
//public static String additionalFolder = "Ex=0,Ey=0,Ez=100000000,Hx=50000,Hy=50000,Hz=50000";

public static void main(String[] args)throws IOException{
//ModelUtil.initStandalone(true);
ModelUtil.setDefaultGeometryKernel("cadps");
saveFileName=readInputArgs(); //first argument is the filename
//saveFileName = additionalFolder + "/" + saveFileName;
System.out.println(saveFileName);
Model model = initModel(saveFileName); //initialize model
String[][] dirArray = new String[3][];
String[][] posArray = new String[3][];
String[] initArray = new String[3];
System.out.println("setup materials...");
model = setupMaterials(model); //define material properties for particles and medium

//read in data from particle simulation results
try{
System.out.printf("importing results...%n");

//positions
BufferedReader respos = new BufferedReader(new FileReader(saveFileName +"_resPos.txt")); //opens result position file to read in particle positions
String tempLine = null;
for(int i=0; i<3; i++){ //only need 3 loops, file has 3 line x, y, and z positions

if((tempLine= respos.readLine()) != null){
posArray[i] = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
//System.out.println(Arrays.toString(posArray[i])); //use for debugging
}

}

//directions
BufferedReader resdir = new BufferedReader(new FileReader(saveFileName + "_resDir.txt")); //opens result direction file to read in particle orientations
for(int i=0; i<3; i++){ //only need 3 loops, file has 3 line x, y, and z angles

if((tempLine= resdir.readLine()) != null){
dirArray[i] = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
//System.out.println(Arrays.toString(dirArray[i])); //use for debugging
}

}

//initilazion data
BufferedReader initData = new BufferedReader(new FileReader(saveFileName + "_init_data.txt")); //opens result direction file to read in particle orientations

if((tempLine= initData.readLine()) != null){
initArray = tempLine.trim().split("\\s+"); //splits line from file using spaces as delimiters and creates an array of strings of numbers in scientific notation
System.out.println("init array");
System.out.println(Arrays.toString(initArray)); //use for debugging
}

}
catch(Exception e){} //necessary for java io operations

//get in medium dimensions
System.out.println("transforming data...");
System.out.println(initArray[2].toString());
double tempVal = new BigDecimal(initArray[2]).doubleValue();
System.out.println("transformed big decimal");
double boundaryLength = (tempVal+0.7e‐6)*2;
double mediumCenter = ‐boundaryLength/2;
double[] posCoord = {mediumCenter, mediumCenter, mediumCenter}; //spatial coordinate for generating RVE bounds
double[] blockSize = {boundaryLength, boundaryLength, boundaryLength}; //size of RVE in 3 dimensions
double[] airSize = {2*boundaryLength, 2*boundaryLength, 2*boundaryLength}; //size of RVE in 3 dimensions
model = generateMedium(model, blockSize, posCoord, airSize); //generate the medium and assign material
System.out.println("boundary conditions...");
model = boundaryConditionsMech(model); //assign boundary conditions (do before generating particles because face numbers change)
model = generateEllipsoids(model, posArray, dirArray); //generate the particles and assign material
System.out.println("meshing...");
model = meshModel(model); //generate the mesh
System.out.println("solving...");
model = solveModel(model); //solve the model
System.out.println("exporting results...");
exportResults(model); //export effective material properties

System.exit(0);
}

public static Model initModel(String saveFileName){
Model model = ModelUtil.create("Model");
//model.modelPath("/storage/work/d/dqw5479/java_scripts/testModel");
//model.label("testModel.mph");
model.component().create("comp1", false);
model.component("comp1").geom().create("geom1", 3);
//model.component("comp1").geom("geom1").run();
saveMyModel(model, saveFileName);
return model;

}

public static Model setupMaterials(Model model){
model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material().create("mat2", "Common");
model.component("comp1").material().create("mat3", "Common");



model.component("comp1").material("mat2").propertyGroup().create("Enu", "Young's modulus and Poisson's ratio");
model.component("comp1").material("mat2").propertyGroup().create("BHCurve", "B‐H curve");

model.component("comp1").material("mat1").label("Soft Iron (Without Losses)");
model.component("comp1").material("mat1").set("family", "iron");
model.component("comp1").material("mat1").propertyGroup("def")

 .set("electricconductivity", new String[]{"0[S/m]", "0", "0", "0", "0[S/m]", "0", "0", "0", "0[S/m]"});
model.component("comp1").material("mat1").propertyGroup("def")

 .set("relpermittivity", new String[]{"1", "0", "0", "0", "1", "0", "0", "0", "1"});
model.component("comp1").material("mat1").propertyGroup("def")

 .set("relpermeability", new String[]{"2", "0", "0", "0", "2", "0", "0", "0", "2"});

model.component("comp1").material("mat2").label("PDMS ‐ Polydimethylsiloxane");
model.component("comp1").material("mat2").set("groups", new String[][]{{"polymers", "Polymers"}});
model.component("comp1").material("mat2").propertyGroup("def")

 .set("thermalexpansioncoefficient", new String[]{"9e‐4[1/K]", "0", "0", "0", "9e‐4[1/K]", "0", "0", "0", "9e‐4[1/K]"});
model.component("comp1").material("mat2").propertyGroup("def").set("heatcapacity", "1460[J/(kg*K)]");
model.component("comp1").material("mat2").propertyGroup("def")

 .set("relpermittivity", new String[]{"2.75", "0", "0", "0", "2.75", "0", "0", "0", "2.75"});
model.component("comp1").material("mat2").propertyGroup("def").set("density", "970[kg/m^3]");
model.component("comp1").material("mat2").propertyGroup("def")

 .set("thermalconductivity", new String[]{"0.16[W/(m*K)]", "0", "0", "0", "0.16[W/(m*K)]", "0", "0", "0", "0.16[W/(m*K)]"});
model.component("comp1").material("mat2").propertyGroup("def")

 .set("relpermeability", new String[]{"1", "0", "0", "0", "1", "0", "0", "0", "1"});
model.component("comp1").material("mat2").propertyGroup("Enu").set("youngsmodulus", "25[MPa]");
model.component("comp1").material("mat2").propertyGroup("Enu").set("poissonsratio", "0.49");
model.component("comp1").material("mat2").propertyGroup("BHCurve").set("normB", "");
model.component("comp1").material("mat2").propertyGroup("BHCurve").set("normH", "");
model.component("comp1").material("mat2").propertyGroup("BHCurve").set("Wpm", "");
model.component("comp1").material("mat2").propertyGroup("BHCurve").set("normB", "0");
model.component("comp1").material("mat2").propertyGroup("BHCurve").set("normH", "0");
model.component("comp1").material("mat2").propertyGroup("BHCurve").set("Wpm", "0");
model.component("comp1").material("mat2").propertyGroup("BHCurve").addInput("magneticfield");
model.component("comp1").material("mat2").propertyGroup("BHCurve").addInput("magneticfluxdensity");

model.component("comp1").material("mat3").set("family", "air");
model.component("comp1").material("mat3").propertyGroup("def")

 .set("relpermeability", new String[]{"1", "0", "0", "0", "1", "0", "0", "0", "1"});

System.out.println("periodic save...");
saveMyModel(model, saveFileName);

return model;
}

public static Model generateMedium(Model model, double[] blockSize, double[] posCoord, double[] airSize){

System.out.println("generating medium...");
model.component("comp1").geom("geom1").create("blk1", "Block");
model.component("comp1").geom("geom1").feature("blk1").set("size", blockSize);
model.component("comp1").geom("geom1").feature("blk1").set("pos", posCoord);

model.component("comp1").geom("geom1").create("blk2", "Block");
model.component("comp1").geom("geom1").feature("blk2").set("size", airSize);
model.component("comp1").geom("geom1").feature("blk2").set("base", "center");
model.component("comp1").geom("geom1").feature("blk2").set("pos", new int[]{0, 0, 0});

model.component("comp1").geom("geom1").run(); 
model.component("comp1").material("mat2").selection().set(1);
model.component("comp1").material("mat3").selection().set(2);

System.out.println("periodic save...");
saveMyModel(model, saveFileName);

return model;
}

public static Model boundaryConditionsMech(Model model){
model.param().set("Hx", "0[A/m]", "background applied field");
model.param().set("Hy", "0[A/m]", "background applied field");
model.param().set("Hz", "0[A/m]", "background applied field");
model.param().set("Mc", "‐300[A/m]", "background applied field");

model.component("comp1").physics().create("mfnc", "MagnetostaticsNoCurrents", "geom1");
/*model.component("comp1").physics("mfnc").create("pc1", "PeriodicCondition", 2);
model.component("comp1").physics("mfnc").feature("pc1").selection().set(1, 6);
model.component("comp1").physics("mfnc").create("pc2", "PeriodicCondition", 2);
model.component("comp1").physics("mfnc").feature("pc2").selection().set(3, 4);
model.component("comp1").physics("mfnc").create("pc3", "PeriodicCondition", 2);
model.component("comp1").physics("mfnc").feature("pc3").selection().set(2, 5);
*/

model.component("comp1").physics("mfnc").create("mflx1", "MagneticFluxDensity", 2);
model.component("comp1").physics("mfnc").feature("mflx1").selection().set(4);
model.component("comp1").physics("mfnc").prop("BackgroundField").set("SolveFor", "ReducedField");
model.component("comp1").physics("mfnc").prop("BackgroundField").set("Hb", new String[][]{{"Hx"}, {"Hy"}, {"Hz"}});
model.component("comp1").physics("mfnc").feature("mfc1").set("materialType", "solid");
model.component("comp1").physics("mfnc").feature("mfc1").set("ConstitutiveRelationBH", "RelativePermeability");
model.component("comp1").physics("mfnc").feature("mflx1").set("Bn", 100);
model.component("comp1").physics("mfnc").feature("mflx1").active(false);

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
return model;

}

public static Model generateEllipsoids(Model model,String[][] posArray, String[][] dirArray){
double magetization=370000;//A/m
double mu_o=1.25663706e‐6;//permeability of free space
System.out.println("generating ellipsoids...");
numOfParticles = posArray[1].length/2;
String[] selectionArray = new String[numOfParticles];



String[] domainArray = new String[numOfParticles+1];
for (int particle = 0; particle<numOfParticles; particle++){

String particleString = "elp" + particle;
int particleIndex = particle+numOfParticles; //first half of indices are for starting position before particle dynamics simulation
String positionString = posArray[0][particleIndex] + ", " + posArray[1][particleIndex] + ", " + posArray[2][particleIndex];
String orientationString = dirArray[0][particleIndex] + ", " + dirArray[1][particleIndex] + ", " + dirArray[2][particleIndex];
//creates elipsoid at each coordinate
model.component("comp1").geom("geom1").create(particleString, "Ellipsoid");
model.component("comp1").geom("geom1").feature(particleString).set("pos", positionString);
model.component("comp1").geom("geom1").feature(particleString).set("semiaxes", new double[]{0.5e‐6, 0.5e‐6, 0.15e‐6});
model.component("comp1").geom("geom1").feature(particleString).set("axistype", "cartesian");
model.component("comp1").geom("geom1").feature(particleString).set("ax3", orientationString);
model.component("comp1").geom("geom1").feature(particleString).set("selresult", true);

selectionArray[particle] = particleString;
domainArray[particle] = particleString;

}
model.component("comp1").geom("geom1").run();

for (int particle = 0; particle<numOfParticles; particle++){
String particleString = "elp" + particle;
int particleIndex = particle+numOfParticles; //first half of indices are for starting position before particle dynamics simulation

model.component("comp1").physics("mfnc").create(particleString, "MagneticFluxConservation", 3);
model.component("comp1").physics("mfnc").feature(particleString).selection().named("geom1_"+particleString+"_dom");

model.component("comp1").physics("mfnc").feature(particleString).setIndex("materialType", "solid", 0);
model.component("comp1").physics("mfnc").feature(particleString).set("ConstitutiveRelationBH", "RemanentFluxDensity");
String xComp=Double.toString(magetization*Double.parseDouble(dirArray[0][particleIndex]));
String xMag="("+xComp+"*(Hz*"+dirArray[2][particleIndex]+">Mc)‐"+xComp+"*(Hz*"+dirArray[2][particleIndex]+"<Mc))*"+Double.toString(mu_o);
String yComp=Double.toString(magetization*Double.parseDouble(dirArray[1][particleIndex]));
String yMag="("+yComp+"*(Hz*"+dirArray[2][particleIndex]+">Mc)‐"+yComp+"*(Hz*"+dirArray[2][particleIndex]+"<Mc))*"+Double.toString(mu_o);
String zComp=Double.toString(magetization*Double.parseDouble(dirArray[2][particleIndex]));
String zMag="("+zComp+"*(Hz*"+dirArray[2][particleIndex]+">Mc)‐"+zComp+"*(Hz*"+dirArray[2][particleIndex]+"<Mc))*"+Double.toString(mu_o);
model.component("comp1").physics("mfnc").feature(particleString).set("Br", new String[]{xMag,yMag,zMag});

}

domainArray[numOfParticles]="blk1";

model.component("comp1").geom("geom1").create("sel1", "ExplicitSelection");
model.component("comp1").geom("geom1").create("sel2", "ExplicitSelection");

model.component("comp1").geom("geom1").feature("sel2").selection("selection").init();
model.component("comp1").geom("geom1").feature("sel2").selection("selection").set(domainArray);
model.component("comp1").geom("geom1").feature("sel2").set("selshow", "all");

model.component("comp1").geom("geom1").feature("sel1").selection("selection").init();
model.component("comp1").geom("geom1").feature("sel1").selection("selection").set(selectionArray);
model.component("comp1").geom("geom1").feature("sel1").set("selshow", "all");

model.component("comp1").material("mat1").selection().named("geom1_sel1_dom");

model.component("comp1").geom("geom1").run();

saveMyModel(model, saveFileName);
return model;

}

public static Model meshModel(Model model){
System.out.println("meshing model...");
model.component("comp1").mesh().create("mesh1");
model.component("comp1").mesh("mesh1").create("ftet1", "FreeTet");
model.component("comp1").mesh("mesh1").create("ftet2", "FreeTet");
model.component("comp1").mesh("mesh1").feature("ftet1").create("size1", "Size");
model.component("comp1").mesh("mesh1").feature("ftet2").create("size1", "Size");

model.component("comp1").mesh("mesh1").feature("ftet1").selection().named("geom1_sel1_dom");
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("custom", "on");
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("hmin", 1.22E‐9);
model.component("comp1").mesh("mesh1").feature("ftet1").feature("size1").set("hminactive", true);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("custom", "on");
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("hmin", 1.22E‐9);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").set("hminactive", true);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").selection().geom("geom1", 3);
model.component("comp1").mesh("mesh1").feature("ftet2").feature("size1").selection().set(1);

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
return model;

}

public static Model solveModel(Model model){
System.out.println("solving model...");

model.study().create("std1");
model.study("std1").create("stat", "Stationary");

model.sol().create("sol1");
model.sol("sol1").study("std1");
model.sol("sol1").attach("std1");
model.sol("sol1").create("st1", "StudyStep");
model.sol("sol1").create("v1", "Variables");
model.sol("sol1").create("s1", "Stationary");
model.sol("sol1").feature("s1").create("fc1", "FullyCoupled");
model.sol("sol1").feature("s1").create("i1", "Iterative");
model.sol("sol1").feature("s1").feature("i1").create("mg1", "Multigrid");
model.sol("sol1").feature("s1").feature().remove("fcDef");

model.sol("sol1").attach("std1");
model.sol("sol1").feature("s1").feature("i1").set("linsolver", "cg");
model.sol("sol1").feature("s1").feature("i1").feature("mg1").set("prefun", "amg");

System.out.println("periodic save...");
saveMyModel(model, saveFileName);
model.component("comp1").mesh("mesh1").run();



model.study("std1").run();

saveMyModel(model, saveFileName);
return model;

}

public static void exportResults(Model model){
model.result().table().create("tbl1", "Table");
model.result().numerical().create("int1", "IntVolume");
model.result().numerical("int1").selection().named("geom1_sel2_dom");
model.result().numerical("int1").set("expr", new String[]{"mfnc.Bx"});
model.result().numerical("int1").set("descr", new String[]{"Magnetic flux density, x component"});
model.result().numerical("int1").set("unit", new String[]{"kg*m^3/(s^2*A)"});
model.result().numerical("int1").setIndex("expr", "mfnc.By", 1);
model.result().numerical("int1").setIndex("expr", "mfnc.Bz", 2);
model.result().numerical("int1").set("table", "tbl1");
model.result().numerical("int1").setResult();

model.result().export().create("tbl1", "Table");
model.result().export("tbl1").set("table", "tbl1");
model.result().export("tbl1").set("filename", "MagneticBHResponse.txt");

saveMyModel(model, saveFileName);

model.result().export("tbl1").run();
}

public static void saveMyModel(Model model, String saveFileName){
try{
model.save(saveFileName);
}
catch(Exception e){}
}

public static String readInputArgs(){
String fileName=null;
try{
BufferedReader argsFile = new BufferedReader(new FileReader("magInputArgs.txt")); //opens file containing what should be commandline args
fileName = argsFile.readLine();

}catch(Exception e){}
return fileName;

}
}



function makeMatFiles(saveFile,folder)
% clear all %because matlab freaks out if something is saved from another run

% %%Read File
disp(saveFile)
info=split(saveFile,'_');
numOfParticles=str2num(info{3});
volFrac=str2num(info{5});

fields{1}=strcat('Ex=',num2str(0));
fields{2}=strcat('Ey=',num2str(0));
fields{3}=strcat('Ez=',info{7});
fields{4}=strcat('Hx=',num2str(0));
fields{6}=strcat('Hz=',info{9});

if length(info)>9
    fields{5}=strcat('Hy=',info{11});
else
    fields{5}=strcat('Hy=',num2str(0.0)); 
end
disp(fields)
%%
%%**************Elastic Response**************
elasticityMatrixFile=(strcat('/storage/work/d/dqw5479/java_scripts/',folder,'/',saveFile,'/ElasticityMatrix.txt'));%gets the full file string
fileID=fopen(elasticityMatrixFile);%opens the file for reading
if fileID~=‐1

for n=1:11 %reads the file line by line
        line=fgetl(fileID);

if(n>5)%after header of 5 lines
            tempArr=split(line,' ');%splits around whitespace that is exactly 5 spaces into vertical array
            tempArr = tempArr(~any(cellfun('isempty', tempArr), 2), :);

ElasticityString(n‐5,:)=tempArr.';%transposes the array back to original format in file
end

end
%Need to convert each field to a number
for i=1:6

for j=1:6
ElasticityData(i,j)=str2num(ElasticityString{i,j});

end
end
ComplianceMatrix=inv(ElasticityData);
Ex=1/ComplianceMatrix(1,1);
Ey=1/ComplianceMatrix(2,2);
Ez=1/ComplianceMatrix(3,3);

%             vxy=abs(ComplianceMatrix(1,2)/ComplianceMatrix(2,2));
%             vyz=abs(ComplianceMatrix(2,3)/ComplianceMatrix(3,3));
%             vxz=abs(ComplianceMatrix(1,3)/ComplianceMatrix(3,3));
else

ElasticityData=0;
Ex=0;
Ey=0;
Ez=0;

end
%%       
clear collection
%%**************Magnetic Repsonse
magneticResponseFile=(strcat('/storage/work/d/dqw5479/java_scripts/',folder,'/',saveFile,'/MagneticBHResponse.txt'));%gets the full file string
fileID=fopen(magneticResponseFile);%opens the file for reading
if fileID~=‐1

for n=1:6 %reads the file line by line
line=fgetl(fileID);
stringLength=size(line);
if(n>5 && stringLength(2)>1)%after header of 5 lines

tempArr=split(line,' ');
items=size(tempArr);
count=1;
for k=1:items(1)

content=char(tempArr(k));
stringLength=size(content);
if stringLength(2)>0

%collection(count,:)=str2num(tempArr{k})/(4*pi*1e‐10);
collection(count,:)=str2num(tempArr{k})/(4*pi*1e‐10*8.29e‐11);%emu/g* for 100 particles
count=count+1;

end
end
MagneticResponse(n‐5,:)=collection.';

        end
end

fclose(fileID);
else
    MagneticResponse=0;
end
%%
clear collection
%%**************Dielectric Response**************
%for loadCase=1:3
    %dielectricResponseFile=(strcat('/storage/work/d/dqw5479/java_scripts/',folder,'/',saveFile,'/DielectricResponse',num2str(loadCase),'.txt'));%gets the full file string
    %fileID=fopen(dielectricResponseFile);%opens the file for reading
    %if fileID~=‐1
        %for n=1:6 %reads the file line by line
            %line=fgetl(fileID);
            %if(n>5)%after header of 5 lines
               %tempArr=split(line,' ');
               %items=size(tempArr);
               %count=1;
               %for k=1:items(1)
                   %content=char(tempArr(k));
                   %stringLength=size(content);
                   %if stringLength(2)>0
                       %collection(count,:)=str2num(tempArr{k});
                       %count=count+1;
                   %end
               %end
               %DielectricResponse(loadCase,:)=collection.';

%end
%end



%fclose(fileID);
%else

%DielectricResponse=0;    
%end

%end
%if length(DielectricResponse)>1

%D=DielectricResponse(:,1:3).';
    %E=DielectricResponse(:,4:6).';

%x=linsolve(E,D);
%eps=8.85418782e‐12;
%e_rel=x/eps;

%else
%e_rel=0;

%end
%%
%%**************AC Response**************
initData=(strcat('/storage/work/d/dqw5479/java_scripts/',folder,'/',saveFile,'/',saveFile,'_init_data.txt'));%gets the full file string
fileID=fopen(initData);%opens the file for reading
if fileID~=‐1

line=fgetl(fileID);
tempArr=split(line,' ');
cap_dist=str2num(tempArr{3})

end

for loadCase=1:3
ACResponseFile=(strcat('/storage/work/d/dqw5479/java_scripts/',folder,'/',saveFile,'/ACResponse',num2str(loadCase),'.txt'));%gets the full file string
fileID=fopen(ACResponseFile);%opens the file for reading
if fileID~=‐1

for n=1:6 %reads the file line by line
line=fgetl(fileID);
if(n>5)%after header of 5 lines

tempArr=split(line,' ');
items=size(tempArr);
count=1;
for k=1:items(1)

content=char(tempArr(k));
stringLength=size(content);
if stringLength(2)>0

collection(count,:)=str2num(tempArr{k});
count=count+1;

end
end
ACResponse(loadCase,:)=collection.';
ACResponse(loadCase,2);

               Real=real(ACResponse(loadCase,2))
               Imag=imag(ACResponse(loadCase,2))
               I0=sqrt(Real^2+Imag^2);
               Phase=atan(Imag/Real);

e_rel(loadCase)=I0*sin(Phase)/(cap_dist*8.85e‐12*6.28e5);
sigma(loadCase)=I0*cos(Phase)/cap_dist;

            end
end

fclose(fileID);
else

        e_rel=0;
        sigma=0;
    end
end

%%        
%%**************Magnetization**************

%%CURENTLY SET TO 100 PARTICLES MASS MAG!!!!!!
lengths=size(MagneticResponse);
if lengths(2)==1
    Magnetization=0;
else
    Magnetization=MagneticResponse;
end

%%
%%Saves .mat files with all relevant data
matName=strcat('/storage/work/d/dqw5479/java_scripts/',folder,"/",saveFile,'/',saveFile,'.mat');
disp(matName)
save(matName,'fields','volFrac','Magnetization','e_rel','sigma','ElasticityData','Ex','Ey','Ez'); 

% clear MagneticResponse DielectricResponse ElasticityData;

exit



#!/bin/bash

#PBS ‐l nodes=1:ppn=6
#PBS ‐A open
#PBS ‐l pmem=100gb
#PBS ‐l walltime=12:00:00
#PBS ‐m n
#PBS ‐l feature=rhel7

#48 hrs 100gb nodes1 ppn6
#Move to submission directory
cd $PBS_O_WORKDIR

#Set environment
module use /gpfs/group/RISE/sw7/modules
module load comsol/5.4
module load matlab
echo $numOfParticles
#Run matlab

d=$(date +"%Y‐%m‐%d‐%H‐%M")
folderName=${d}_numOfParticles_${numOfParticles}_volFrac_${volFrac}_Ez_${Ez}_Hz_${Hz}_Hy_${Hy}
mkdir "$folderName"
saveFile="${folderName}/${folderName}"
echo $saveFile
#echo $saveFile>inputArgs.txt
#echo $saveFile>magInputArgs.txt
#echo $saveFile>dielectricInputArgs.txt

#Run matlab particle simulation
#matlab ‐nodesktop ‐nosplash ‐r "DPM3Dconv_run_file_New(${numOfParticles},${volFrac},${Ex},${Ey},${Ez},${Hx},${Hy},${Hz},'${saveFile}')"

#ellipsoidal distance
#matlab ‐nodesktop ‐nosplash ‐r "DPM3Dconv_run_file_NewForce(${numOfParticles},${volFrac},${Ex},${Ey},${Ez},${Hx},${Hy},${Hz},'${saveFile}')"

#Run java script to generate model
#comsol batch ‐mpirmk pbs ‐nnhost 3 ‐np 4 ‐mpidebug 10 ‐tmpdir ~/scratch/comsol_tmp ‐recoverydir ~/scratch/comsol_recovery ‐inputfile effectiveMediumModel.class ‐comsolinifile comsolclusterbatch.ini
comsol batch ‐mpirmk pbs ‐np 3 ‐np 2 $PBS_NUM_NODES ‐tmpdir ~/scratch/comsol_tmp ‐recoverydir ~/scratch/comsol_recovery ‐inputfile effectiveMediumModel.class ‐comsolinifile comsolclusterbatch.ini

#Run java script for magnetic model
comsol batch ‐mpirmk pbs ‐nnhost 3 ‐np 2 ‐tmpdir ~/scratch/comsol_tmp ‐recoverydir ~/scratch/comsol_recovery ‐inputfile magneticEffectiveMediumModel.class ‐comsolinifile comsolclusterbatch.ini

#Run java script for dielectric model
comsol batch ‐mpirmk pbs ‐nnhost 3 ‐np 2 ‐tmpdir ~/scratch/comsol_tmp ‐recoverydir ~/scratch/comsol_recovery ‐inputfile dielectricACEffectiveMediumModel.class ‐comsolinifile comsolclusterbatch.ini

#Run matlab script to make .mat file
matlab ‐nodesktop ‐nosplash ‐r "makeMatFile('${folderName}')"

#Add to Database
databaseName="EffectiveMedium"
tableName="Runs"
python addToDB.py ${folderName} ${tableName} ${databaseName}



from datetime import datetime as dt
import sqlite3 as sl
import os
import scipy.io as sio
import numpy as np
from sklearn.utils import shuffle
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
import random
import matplotlib.pyplot as plt
import imageio
import copy
import math
from scipy.optimize import minimize
from scipy.optimize import Bounds
import pickle
from numpy.linalg import norm
from scipy.stats import qmc
import subprocess
from os.path import exists
from sklearn.multioutput import MultiOutputRegressor
import pandas as pd

con=sl.connect('COMSOL_RUNS_OPT.db')
cursor=con.cursor()

def collectData():
#bookkeeping
date_index=0
particle_index=1
volFrac_index=2
Ez_index=5
Hy_index=7
Hz_index=8
mag_x_index=9
mag_y_index=10
mag_z_index=11
mod_x_index=12
mod_y_index=13
mod_z_index=14
e_rel_x_index=15
e_rel_y_index=16
e_rel_z_index=17

inputs=[]
results=[]
justPerm=[]
justMod=[]
justMag=[]

sql="""SELECT * FROM SVM_COMBINED_OPTIMIZATION"""
with con:

mySet=con.execute(sql).fetchall()

for data in mySet:
dateStamp=data[date_index]
modulus=[data[mod_x_index],data[mod_y_index],data[mod_z_index]]
e_rel=[data[e_rel_x_index],data[e_rel_y_index],data[e_rel_z_index]]
magnetization=[data[mag_x_index],data[mag_y_index],data[mag_z_index]]
#print(e_rel)

volFrac=data[volFrac_index]
Ez=data[Ez_index]
Hy=data[Hy_index]
Hz=data[Hz_index]
simulationResult=[abs(magnetization[0])/30,abs(magnetization[1])/30,abs(magnetization[2])/30,modulus[0]/3e6,modulus[1]/3e6,modulus[2]/3e6,e_rel[0]/32,e_rel[1]/32,e_rel[2]/32]
sims=[]
prediction=[]
for i in range(len(simulationResult)):

sims.append(round(simulationResult[i],2))

inputs.append([volFrac/30,Ez/100000000,Hy/250000,Hz/250000])
print([volFrac/30,Ez/100000000,Hy/250000,Hz/250000])
print([volFrac,Ez,Hy,Hz])
results.append(sims)
justPerm.append([e_rel[0]/15,e_rel[1]/15,e_rel[2]/15])
#print([e_rel[0]/15,e_rel[1]/15,e_rel[2]/15])
justMod.append([modulus[0]/3e6,modulus[1]/3e6,modulus[2]/3e6])
justMag.append([abs(magnetization[0])/30,abs(magnetization[1])/30,abs(magnetization[2])/30])

return inputs,results,justMod,justMag,justPerm

def mapDesignSpace():
global model_mod
global model_mag
global model_perm

discritization=21
volFrac=((np.linspace(0,1,discritization)*.29)+.01)/.3

Ez=np.linspace(0,1,discritization)
print(Ez)
Hy=np.linspace(0,1,discritization)
Hz=np.linspace(0,1,discritization)
svr_results=np.zeros((9))
myInputs=[]
x=[]
y=[]
z=[]
for i in range(len(Ez)):

for j in range(len(Hy)):
for k in range(len(Hz)):

for l in range(len(volFrac)):
inputs=[[volFrac[l],Ez[i],Hy[j],Hz[k]]]
mods=model_mod.predict(inputs)[0]
mags=model_mag.predict(inputs)[0]
erels=model_perm.predict(inputs)[0]
#mags,mods.erels ‐> [0][2],[0][5],[0][8]
x.append(mags[2]*30)
y.append(mods[2]*3)
z.append(erels[2]*15)
myInputs.append(inputs)

#barPlotBins(x)
mags, mods, erels = HashMapResults(x,y,z,myInputs)

#ax.scatter(x,y,z,label=str(volFrac))
#ax.set_xlabel("magnetization")
#ax.set_ylabel("modulus")
#ax.set_zlabel("erel")
return mags, mods, erels

def makePlot(plt,myMor):
fig = plt.figure()
ax = fig.subplots(1,3)
make2DSVMPlot(myMor,ax,0.3,"#a80a5c")
make2DSVMPlot(myMor,ax,0.1,"#078c28")
make2DSVMPlot(myMor,ax,0.05,"#6229c2")
make2DSVMPlot(myMor,ax,0.01,"#fa9200")



plt.show()

def barPlotBins(results):
bins=np.linspace(0,30,31)
x=[]
y=[]
for result in results:

x.append(result[2])
y.append(round(result[2]*30,0))

print(y)
df = pd.DataFrame({"x":x})

#bins= [0,0.35,0.7,1]
plt.hist(y, bins=bins, edgecolor="k")
#plt.hist(df.values*30, bins=bins, edgecolor="k")
#plt.hist(df.values, edgecolor="k")
plt.xticks(bins)

plt.show()

def HashMapResults(x,y,z,inputs):
mags={}
mods={}
erels={}
for i in range(len(inputs)):

magnetization=round(x[i],1)
#print(inputs[i][0],results[i][2]*30,magnetization)
if magnetization in mags:

mags[magnetization].append(inputs[i][0])
else:

mags[magnetization]=inputs[i]

modulus=round(y[i],1)
if modulus in mods:

mods[modulus].append(inputs[i][0])
else:

mods[modulus]=inputs[i]

permittivity=round(z[i],1)
if permittivity in erels:

erels[permittivity].append(inputs[i][0])
else:

erels[permittivity]=inputs[i]

#print(mags[4])
#print([0.01, 0.0, 0.5, 0.0] in mags[4])

return mags, mods, erels

inputs,results,justMod,justMag,justPerm = collectData()

svr_rbf_mod = SVR(kernel="rbf", C=1, gamma='auto', epsilon=0.1)
svr_rbf_mag = SVR(kernel="rbf", C=1, gamma='auto', epsilon=0.1)
svr_rbf_perm = SVR(kernel="rbf", C=1, gamma='auto', epsilon=0.1)

mor_mod=MultiOutputRegressor(svr_rbf_mod)
mor_mag=MultiOutputRegressor(svr_rbf_mag)
mor_perm=MultiOutputRegressor(svr_rbf_perm)

global model_mod
global model_mag
global model_perm
model_mod=mor_mod.fit(inputs, justMod)
model_mag=mor_mag.fit(inputs, justMag)
model_perm=mor_perm.fit(inputs, justPerm)

for estimator in model_mod.estimators_:
print(len(estimator.dual_coef_[0]))

for estimator in model_mag.estimators_:
print(len(estimator.dual_coef_[0]))

for estimator in model_perm.estimators_:
print(len(estimator.dual_coef_[0]))

#print(mor_new.score(inputs, results))
#makePlot(plt,mor)

mags, mods, erels = mapDesignSpace()
#testPoint=[0.01/.3,1,0,0]
testPoint=[0.96, 0.76, 0.41, 0.03]
print(testPoint)
testVal=[model_mag.predict([testPoint])[0][2],model_mod.predict([testPoint])[0][2],model_perm.predict([testPoint])[0][2]]
#print("mags: ",mags)
#print("mods: ",mods.keys())
#print("erels: ",erels.keys())
print("Target Properties: ")
print(round(testVal[0]*30,1),"[emu/g*], ",round(testVal[1]*3,1),"[MPa], ",round(testVal[2]*15,1))
#print(mags[9])
#print(mods[3])
#print(erels[8])

listOfFields=[]
#mags,mods,erels
desiredProp=[0.8,4.2,10.9]
while len(mags[desiredProp[0]])>0 and len(mods[desiredProp[1]])>0 and len(erels[desiredProp[2]])>0:

currentField=mags[desiredProp[0]].pop(0)

if (currentField in mods[desiredProp[1]]) and (currentField in erels[desiredProp[2]]):
listOfFields.append(currentField)
#because the item is an array and shared between the three props dictionaries, the remove function for this field on one, removes it for all.... like it destroyed the array or something, but cool ok
mods[desiredProp[1]].remove(currentField)

#print("Solution found? ‐>",[0.01/.3,1,0,0] in listOfFields)
print("Solution found? ‐>",testPoint in listOfFields)
print("Possible Volume Fractions and Processing Fields: ")
for ins in listOfFields:

print(round(ins[0]*30,0),"%, ",round(ins[1]*100000000,0),"[V/m], ",round(ins[2]*250000,0),"[A/m], ",round(ins[3]*250000,0),"[A/m]")
print("Properties Found:")
for ins in listOfFields:

testVal=[model_mag.predict([ins])[0][2],model_mod.predict([ins])[0][2],model_perm.predict([ins])[0][2]]
print(round(testVal[0]*30,1),"[emu/g*], ",round(testVal[1]*3,1),"[MPa], ",round(testVal[2]*15,1))



#!/usr/bin/env python
import subprocess
import scipy.io as sio
import os

path = os.getcwd()
print(path)

#submits the job
#qsub_command="""qsub test.pbs"""
#out=subprocess.Popen(qsub_command, shell=True, stdout=subprocess.PIPE)
#jobID=out.communicate()[0]
#jobIDnum=jobID.decode().split(".")
#print(jobIDnum[0])

#waits for the job to finish and return values
#bashCommand="""bash checkJobStatus.sh {0}""".format(jobIDnum[0])
#out=subprocess.Popen(bashCommand, shell=True, stdout=subprocess.PIPE)
#out.communicate()
#print("DONE")

#open results file and read in processed data
f=open(path+"/optimizationRuns/results.txt","r")
resultsFile=f.readline().strip()
print(path+"/"+resultsFile)
#read mat file in 
mat=sio.loadmat(path+"/"+resultsFile)
#populate variables to use in objective functions
e_rel=mat['e_rel']
magnetization=mat['Magnetization'][0]
print(e_rel)



#!/bin/bash

module load matlab

ID=${1}
echo $ID
#initialize the exit code
runCode=true

#while the run code is true check job status
while $runCode
do

#gets the job status full line
status=$(qstat ‐r $ID)
#echo $status
#splits the status string around whitespace
array=($status)
#gets the length of the array
length="${#array[@]}"
echo $length

#returns the second to last item which is the job status
myStatus=${array[$length‐2]}
#remove whitespace
myStatus=${myStatus// /}
echo $myStatus
if [[ $myStatus == *"C"* ]] #if the job is complete, exit this script

then
#matlab ‐nodesktop ‐nosplash ‐r "optimizationExportData('${saveFile}')"
runCode=false

fi
done
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