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Abstract
The recent discovery of topological phases of matter has revolutionized our understanding
of condensed matter systems. The information that describes these phases is stored
across the entire system, and as a result, some of their properties are protected from local
perturbations. These systems exhibit unique phenomena such as transport channels that
exist on their boundaries and features that are robust to disorder. Topological phases
were first discovered in condensed matter physics but the underlying principles were soon
extended to many wave systems such as photonic and acoustic systems. The field of
topological photonics aims to both realize novel topological phases in photonic systems
and develop applications based on their robust properties.

This dissertation aims to further our understanding of topological photonics and
lies at the intersection between photonic crystals and topological band theory. In the
first two parts of this dissertation, we present two studies that experimentally realize
charge-2 Weyl points and observe their splitting in three-dimensional chiral woodpile
photonic crystals. This is done at technologically-useful infrared wavelengths by using a
state-of-the-art 3D micro-printing technique that employs low loss materials.

In the next two parts, we focus on developing a complete topological classification of
bands in one- and two-dimensional photonic crystals under crystalline symmetries. Based
on this classification, we propose a strategy to diagnose and design a wide variety of
topological photonic crystals. We then use this framework to show that Chern insulators
can have a meaningful notion of relative polarization whose effects can be seen at the
boundary between two Chern insulators with the same Chern number.

In the last two parts, we explore miscellaneous topics in photonic crystals. In the first
of the two parts, we theoretically predict bound states in the continuum that are localized
to point defects in two-dimensional photonic crystals. This allows for the confinement of
light in the absence of photonic bandgaps. In the last part, we present the observation
of a localization transition in one-dimensional photonic quasicrystals. In addition, we
observe a surprising phenomenon that occurs in this system, a second transition of some
states to a delocalized regime upon further increasing the quasiperiodic disorder.
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Chapter 1 |
Introduction

1.1 Overview
We begin with a brief review of photonic crystals and their mathematical treatment,
followed by a review of some concepts from topological band theory that are central to
this dissertation. For additional details, see [3–5].

1.2 Photonic Crystals
Photonic crystals (PhCs) are periodic arrangements of dielectric materials that allow
for optical control and manipulation of light. The periodic dielectric profile in PhCs is
analogous to a periodic potential that is experienced by electrons in a solids and therefore,
many concepts from solid-state physics can be used to analyze and study PhCs. Here,
we will focus on systems where the dielectric permittivity is a scalar function of spatial
coordinates and the magnetic permeability of all materials is set to that of vacuum.
Under the further assumptions that the system is linear, the materials are isotropic and
that any frequency dependence of the dielectric function can be ignored, we can write
down the source-free Maxwell’s equations as:

∇ · H(r, t) = 0

∇ × E(r, t) + µ0
∂

∂t
H(r, t) = 0

∇ · [ϵ(r)E(r, t)] = 0

∇ × H(r, t) − ϵ0ϵ(r) ∂
∂t

E(r, t) = 0. (1.1)
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where H and E are the magnetic and electric fields respectively, ϵ(r) is the dielectric
function, and ϵ0 and µ0 are the vacuum permittivity and permeability respectively. We
next express the fields as spatial harmonic modes multiplied by a complex exponential
in time as H(r, t) = H(r)e−iωt and E(r, t) = E(r)e−iωt. The divergence equations
impose a transversality requirement for the solutions, i.e. that the field oscillations
are perpendicular to the direction of propagation. Keeping this in mind, the fields are
described by two second-order equations:

∇ ×
(

1
ϵ(r)∇ × H(r)

)
=
(
ω

c

)2
H(r)

∇ × ∇ × E(r) =
(
ω

c

)2
ϵ(r)E(r). (1.2)

The first equation above leads to an eigenvalue problem for the magnetic field H and
its corresponding frequency eigenvalue ω. The differential operator ∇ × ([1/ϵ(r)]∇×)
is linear, Hermitian and positive semi-definite. The second equation is a generalized
eigenvalue problem for the electric field E. We can choose to solve for just one of these
fields, usually the magnetic field, and compute the other field from the appropriate
Maxwell’s equation.

Type Photonic system
HHH Homogeneous medium
HHF Homogeneous dielectric slab
HFF Dielectric waveguide
HHP 1D PhC
HPP 2D PhC, 2D PhC fiber
HPF 1D PhC slab
PPP 3D PhC
PPF 2D PhC slab
PFF Periodic dielectric waveguide
FFF Dielectric resonator

Table 1.1. Various photonic systems depending on the whether they possess homogeneous,
periodic or finite dimensions

The dielectric function ϵ(r) can describe a variety of photonic systems depending on
the exact combination of homogeneous (H), periodic (P) or finite (F) dimensions that the
system possesses as shown in Table 1.1. The analysis of these systems can be simplified
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by exploiting translational symmetry along homogeneous or periodic dimensions. Along
homogeneous dimensions the system has continuous translational symmetry and the
solutions in those dimensions take the form of plane waves with a well-defined wavevector
(or momentum). Along periodic dimensions, the system has discrete translational
symmetry and the solutions in those dimensions take the form of plane waves modulated
by a periodic envelope. This is commonly known as Bloch’s theorem. In this case, the
solutions are characterized by a quasi wavevector (or quasi momentum) whose values
are restricted to a finite range called the Brillouin zone. If a system has one or more
finite dimensions and is surrounded by vacuum, in- and out-coupling of light becomes an
important consideration.

1.2.1 1D, 2D and 3D photonic crystals

A 1D PhC is characterized by a dielectric profile that is periodic along one direction (x)
and is uniform along the other two directions (y and z). The magnetic field eigenmode
can therefore be written as a plane wave solution in the y, z plane multiplied by an
x-dependent vector field, H(r) = eik∥·ρh(x), where k∥ is the momentum along the uniform
directions and ρ = yŷ + zẑ. However, when we are only concerned with propagation
along the periodic direction, k∥ = 0. Moreover, since the fields must be perpendicular to
the propagation direction, we can define two orthogonal polarizations where the vector
fields lie in the y, z plane. Without loss of generality and assuming isotropy, we can
take these polarized fields to be hz(x) = hz(x)ẑ and hy(x) = hy(x)ŷ. This leads to the
following 1D eigenvalue problem for the scalar fields, hξ=y,z(x),

Θ̂1hξ(x) =
(
ω

c

)2
hξ(x), Θ̂1 ≡ −∂x

(
1
ϵ(x)∂x

)
, (1.3)

where Θ̂1 is the 1D Maxwell operator that plays a role analogous to the Hamiltonian
in quantum mechanics. By exploiting the periodicity of the dielectric function, the
above equation can be solved using Bloch’s theorem. Specifically, the ansatz given by
hξ,n,kx(x) = eikxxuξ,n,kx(x), can be used to solve (1.3), where uξ,n,kx(x) is the periodic part
of the field defined over a unit cell and kx is the quasi momentum along the x-direction.
This yields field solutions distributed across discrete frequency bands labeled by the
index n and with their quasi momentum, kx, restricted to lie within the first BZ. It will
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also be useful to define the inner product between two fields over a unit cell (UC) as

⟨uξ,n1,k1|uξ,n2,k2⟩ =
∫

UC
u∗

ξ,n1,k1(x)uξ,n2,k2(x)dx. (1.4)

2D PhCs consist of a periodic patterning of the dielectric along two directions (x and
y) and a uniform dielectric profile along the third direction (z), with wave propagation
restricted to lie in the x, y plane. For such a system, the equations in (1.2) can be
simplified by exploiting the mirror symmetry through the x, y plane that sends z → −z.
This separates the states into two orthogonal polarizations: transverse electric (TE) with
E(r) = Ex(x, y)x̂+Ey(x, y)ŷ, H(r) = Hz(x, y)ẑ, which is even under the mirror symmetry,
and transverse magnetic (TM) with E(r) = Ez(x, y)ẑ, H(r) = Hx(x, y)x̂ + Hy(x, y)ŷ,
which is odd under the mirror symmetry. For these generally non-degenerate TE and
TM polarizations, the problem is most easily solved for the scalar fields Hz(x, y) and
Ez(x, y) respectively, using [4]

−
[
∂

∂x

1
ε(x, y)

∂

∂x
+ ∂

∂y

1
ε(x, y)

∂

∂y

]
Hz(x, y) =ω

2

c2 Hz(x, y)

− 1
ε(x, y)

[
∂2

∂x2 + ∂2

∂y2

]
Ez(x, y) =ω

2

c2 Ez(x, y) (1.5)

These equations can be succinctly written as

Θ̂2,TEHz(x, y) =ω
2

c2 Hz(x, y)

Θ̂2,TMEz(x, y) =ω
2

c2 Ez(x, y) (1.6)

Similar to the 1D case, these eigenvalue problems can be solved using Bloch’s theorem
using the ansatz: Hz(x, y) = eik·ruTE,n,k(x, y) (for TE) and Ez(x, y) = eik·ruTM,n,k(x, y)
(for TM). The solutions are distributed into frequency bands with their momenta (k),
being restricted to the first 2D BZ. The inner products between the fields take the form

⟨uTE,n1,k1|uTE,n2,k2⟩ =
∫

UC
u∗

TE,n1,k1(x, y)uTE,n2,k2(x, y)d2r

⟨uTM,n1,k1 |uTM,n2,k2⟩ =
∫

UC
ε(x, y)u∗

TM,n1,k1(x, y)uTM,n2,k2(x, y)d2r (1.7)

where uTE,n,k(x, y) is the periodic part of the scalar field Hz(x, y) (for TE) and uTM,n,k(x, y)
is the periodic part of the scalar field Ez(x, y) (for TM).
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3D PhCs consist of a periodic patterning of the dielectric in all three directions of
space and we are required to solve for the full vectorial fields in (1.2). As before, the
eigenvalue problem can be solved using Bloch’s theorem by the following ansatz for the
magnetic and electric fields respectively: H(r) = eik·ruH,n,k(r), E(r) = eik·ruE,n,k(r).
The inner products are then given by

⟨uH,n1,k1|uH,n2,k2⟩ =
∫

UC
u∗

H,n1,k1(r) · uH,n2,k2(r)d3r

⟨uE,n1,k1|uE,n2,k2⟩ =
∫

UC
ε(r)u∗

E,n1,k1(r) · uE,n2,k2(r)d3r

(1.8)

1.3 Topological systems
In this section, we briefly review central concepts relevant to the study of topological
systems. More details can be found in [5].

1.3.1 Berry phase, Berry curvature and Chern number

Consider a single isolated band of a 1D PhC with the periodic part of its field eigenmode
given by |un,k⟩. The relative phase between eigenmodes at two different momentum
points k1 and k2 is given by

eiθ12 = ⟨un,k1 |un,k2⟩
|⟨un,k1 |un,k2⟩|

. (1.9)

If we choose a closed contour in k-space that is discretized into N points, k1, k2, ..., kN

(and kN+1 = k1), the phase accumulated on this contour is given by

eiθB = ei(θ12+θ23+...+θN1) (1.10)

θB is a gauge-invariant quantity called the Berry phase. In the continuous limit of this
discretization, the Berry phase can be expressed in terms of an integral over the Berry
connection, A(k) = −i⟨un,k|∂k un,k⟩ along a closed contour C as

θB =
∮

C
A(k)dk. (1.11)
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The Berry connection and the Berry phase can be generalized to higher dimensions:
A(k) = −i⟨un,k|∇k un,k⟩, θB =

∮
C A(k) · dk. The Berry connection encodes information

about a state’s adiabatic transport in momentum space. The Berry phase then measures
the holonomy or phase acquired due to the “parallel” transport of a state along a closed
contour. Under inversion symmetry that sends r → −r, the value of Berry phase is
quantized to 0 or π, due to which the Berry phase can serve as a topological invariant
for such systems.

Instead of working with extended Bloch states, it is sometimes useful to switch to a
basis of localized states by taking an inverse Fourier transform. These localized states
also form a basis and are called Wannier functions. In 1D, they are given by

|wn,x0⟩ = a

2π

∫
BZ
e−ikx0|un,k⟩dk (1.12)

It can then be shown that the center of a Wannier function, defined as the diagonal
position operator matrix element, is related to the Berry phase via

x̃n = ⟨wn,0|x|wn,0⟩ = a

2πθB. (1.13)

This remarkable fact implies that the center of a Wannier function, referred to as a
“Wannier center”, is a gauge-invariant quantity. In solids, the Wannier center is the
location in each unit cell where the electronic charge density is sharply peaked. The
Wannier basis is therefore useful for defining concepts such as dipole moments and
polarization in solids. We shall see in future chapters that despite the lack of electronic
charges in PhCs, the Wannier centers are related to topological effects and observable
quantities.

In a 2D parameter space, such as a 2D Brillouin zone, the states of the system can be
used to define a generalized notion of a gauge-invariant curvature over this space. This
is known as the Berry curvature, which can be derived from the Berry connection as

Ω(k) = ∇k × A(k) (1.14)

The Berry curvature integrated over a closed surface, usually taken to be the 2D
Brillouin zone, is an integer called the Chern number:

C = 1
2π

∫∫
BZ

Ω(k) · d2k (1.15)
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The Chern number is a Z invariant that topologically characterizes the bands and is at
the heart of many physical phenomena in condensed matter physics such as the quantum
Hall effect. Under time-reversal symmetry, the Berry curvature is odd and the Chern
number vanishes. Therefore, for bands in 2D with non-zero Chern numbers, the breaking
of time-reversal symmetry is required.

The value of the Berry curvature a given point is equal to the limiting value of the
Berry phase acquired on a loop that encircles and shrinks to this point. Due to this
Stokes-theorem relationship, the Chern number can also be inferred from the winding
number of the Berry phase when computed as a function of one direction in momentum
space. Since the Berry phase is directly related to the locations of the Wannier centers,
a winding in the Berry phase indicates that the notion of Wannier centers is ill-defined
for bands with Chern numbers.

1.4 Outline
The rest of the dissertation is organised as follows: in chapter 2 and 3, we present
experimental studies on the realization of charge-2 Weyl points in 3D chiral woodpile
PhCs and the observation of its splitting under symmetry breaking. In chapter 4, we
develop a complete topological classification of bands in 1D and 2D PhCs under crystalline
symmetries. In chapter 5, we use this classification to show that Chern insulators can
have a well-defined notion of relative polarization, despite not having Wannier centers.
We demonstrate the boundary manifestations of this relative polarization using a 2D
Chern PhC. In Chapter 6, we show that point defects in 2D PhCs can support bound
states in the continuum, allowing for light confinement without the requirement of a
photonic bandgap. In chapter 7, we explore localization and delocalization transitions in
1D photonic quasicrystals.
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Chapter 2 |
Charge-2 Weyl points in chiral
woodpile photonic crystals

In this chapter, we discuss our experimental observation of a charge-2 Weyl point in a
three-dimensional chiral woodpile photonic crystal. The exploration of three-dimensional
topological photonic crystals has always been somewhat challenging due to the lack
of flexible fabrication methods. Here, we employ a state-of-the-art 3D micro-printing
technique to fabricate chiral woodpile structures that host charge-2 Weyl points at
near- and mid-infrared wavelengths. This chapter is based on work that was done in
collaboration with Jiho Noh, Alexander Cerjan, Christina Jörg, Georg von Freymann
and Mikael C. Rechtsman [6].

2.1 Overview
Over the past decade, topological materials have been studied extensively in the hopes
of harnessing properties such as protection from defects and scatter-free transport. The
simplest topological systems in three dimensions are Weyl materials, which possess a set
of point degeneracies in momentum space that act as sources of Berry curvature [7], and
are thus topologically protected against perturbations to the system. In this sense, Weyl
points are analogous to magnetic monopoles in momentum space and are associated with
a quantized topological charge. A direct consequence of their non-zero charge is that
perturbations that preserve periodicity cannot cause a gap to open at the Weyl point
but merely move it around in the band structure. Moreover, these materials exhibit
remarkable surface states that lie on Fermi arcs connecting Weyl points of opposite
charges. The necessary conditions for the existence of Weyl points are very general
and only require breaking either inversion symmetry, time-reversal symmetry or both.
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Since this can happen in a wide range of systems, Weyl points have been shown to
exist in solids [8–15], microwave [16, 17] and optical photonic crystals (PhC) [18], optical
waveguide arrays [19,20], circuit-based systems [21], mechanical crystals [22], phononic
crystals [23, 24], metamaterials [25], magnetized plasmas [26] and can also be realized
using synthetic dimensions [27].

If a Weyl material has additional spatial symmetries, it is possible for multiple Weyl
points of the same charge and between the same two bands to accumulate at high
symmetry points in the Brillouin zone leading to Weyl points with a higher topological
charge [28, 29]. For example, a parity-breaking chiral woodpile PhC made of stacked
layers of dielectric rods (n = 3.4) has been predicted to have charge-2 Weyl points [30]
that form due to the presence of a screw symmetry. This symmetry pins the location of
the ±2 charges to high symmetry points in the Brillouin zone of the PhC [29], which
implies that as long as the required spatial symmetries are present, these charge-2 Weyl
points must continue to exist regardless of index contrast. While other studies report
findings of higher-charged Weyl points, their implementations are limited to macroscopic
metallic PhCs that work in microwave frequencies [31] and acoustic structures [32].

In this chapter, we report the experimental observation of a charge +2 Weyl point
in the mid-infrared regime in a low-index (n = 1.52) chiral woodpile PhC fabricated
by two-photon polymerization and characterized using angle-resolved Fourier-transform
infrared (FTIR) spectroscopy. For such a low index contrast, there is only an incomplete
bandgap surrounding the Weyl point. Nevertheless, we show that this is sufficient to
directly observe the dispersion features associated with the Weyl point in the reflection
spectrum of the PhC. Furthermore, we numerically show the existence of topological
surface resonances, akin to Fermi arc states, associated with Weyl points that satisfy the
bulk-boundary correspondence in the absence of a bandgap. The prospect of lowering
the index contrast requirements for topological photonic structures is of importance since
it can allow for readily accessible fabrication techniques such as colloidal self-assembly
and two-photon polymerization as well as wider material choices.

2.2 Results

2.2.1 Chiral woodpile photonic crystal band structure

The specific PhC we use to realize a charge +2 Weyl point is a chiral woodpile as shown in
Fig. 2.1 (a), whose 3D unit cell consists of four layers of rectangular rods stacked on top

9



Figure 2.1. (a) The chiral woodpile structure made by stacking layers of rods with an in-plane
rotation of 45◦ between layers. (b) Band structure along Y − Γ − X showing bands 3 to 11.
The Weyl point of interest is the degeneracy between bands 4 and 5 at Γ (blue circle). The 3D
Brillouin zone of the PhC is shown in the inset. (c) Berry phase plot for band 4 around the Γ
point. The double winding indicates that the degeneracy has a topological charge of 2.

of each other with a relative 45◦ in-plane rotation. The width and height of the rods are
0.175a and 0.25a respectively, where a is the lattice constant in all three directions. The
spacing between the rods in the 45◦ and 135◦ layers is a/

√
2. The rods have a dielectric

constant (εrods) of 2.31, which corresponds to the material used in the experiment [33].
Using these parameters, the band structure of our PhC is numerically calculated using
MIT Photonic Bands (MPB) [2], and bands 3 to 11 along Y − Γ − X are shown in
Fig. 2.1 (b). The degeneracy at Γ between bands 4 and 5 is the Weyl point of interest.
These bands along Γ − Z direction in the Brillouin zone are very close in frequency but
convergence tests show that the degeneracy only occurs at the Γ point.

2.2.2 Berry phase winding around the Weyl points

To confirm the topological nature of this degeneracy, we directly calculate its topological
charge (Chern number) by using a discrete algorithm to compute Berry phase (θB) given
in Ref. [34]. The phase is calculated using magnetic field eigenmodes from MPB on
contours that are defined by constant kz and enclose the Weyl point. The topological
charge of the Weyl point is the number of times the phase winds around as a function of
kz as shown in Fig. 2.1 (c). A second Weyl point of charge −2 between the same two
bands is located at the R point in the Brillouin zone, which exhibits double winding of
Berry phase in the opposite sense as shown in Fig. Fig. 2.2 (d). Since this Weyl point is
located below the light line of air and as such is inaccessible without the use of gratings
or high-index fluids, we will focus on the Weyl point at Γ in our experiment.

The Berry phase is calculated on circular contours that lie on constant kz planes as
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shown in Fig. 2.2 (b). The topological charge of the Weyl point is the number of times
the Berry phase winds as a function of kz.

Figure 2.2. (a) Closed contours in k-space discretized into N points. (b) The Berry phase is
calculated on circular contours that enclose the Weyl point. Each contour lies on a constant kz

plane. (c), (d) Berry phase vs. kz plots for charge +2 and charge −2 Weyl points at Γ and R
respectively.

2.2.3 Experimental results

For the experiment, we fabricate the chiral woodpile PhC by 3D lithography (direct laser
writing, DLW [35]) using a DLW instrument (Photonic Professional GT, Nanoscribe
GmbH), which employs two-photon-polymerization of a liquid negative tone photoresist
(IP-DIP, Nanoscribe GmbH) (n = 1.52). Here, we use DLW in dip-in configuration [36],
where the microscope objective (63x, NA=1.4) for DLW is dipped into the photoresist
which is applied below the fused-silica substrate. The 3D structure is then written layer
by layer starting from the bottom surface of the substrate by moving the microscope
objective in z-direction. The structure is developed in propylene glycol monomethyl
ether acetate (PGMEA) for 20 minutes and then developed in isopropanol for 3 minutes.
The thickness of the rods is controlled by varying number of superpositions of individual
laser writing for each rod [37]. The sample has a lattice constant of 4 µm and rod width
and height equal to 700 nm and 1 µm respectively. We fabricate 20 unit cells in the
z-direction (80 layers) and 250 unit cells in x- and y-directions. An image of one such
sample taken by field emission scanning electron microscopy (FESEM) is shown in Fig.
2.3.

Reflection measurements are carried out using the Bruker Vertex 80 FTIR spectrome-
ter at wavelengths ranging from 4.2−6 µm with the frequency resolution set to 8 cm−1. A
variable angle reflection accessory (Seagull) is used to observe the angle-resolved spectra
from 0◦ to 15◦ along the Γ − X direction with a resolution of 1◦. The data for −15◦ to
0◦ is identical to the data for the corresponding positive angles since the structure is
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Figure 2.3. FESEM image of a parity-breaking chiral woodpile fabricated using two-photon
polymerization.

invariant under 180◦ rotational symmetry about the z-axis and hence we only measure
data for positive angle and reflect it for negative angles. A polarizer is used at the
output port to obtain spectra for 0◦ (s-), 45◦ and 90◦ (p-) polarizations. The spectrum
is normalized to the maximum value of reflection for each angle and interpolated. The
results from the experiment are shown in Fig. 2.4 (a), (b) and (c). We also numerically
simulate the reflection spectrum using rigorous coupled-wave analysis (RCWA) as im-
plemented in Stanford Stratified Structure Solver (S4) [38] where periodic
boundary conditions are imposed in the lateral directions and the structure is finite in
the z direction having 20 unit cells. The simulation results are shown in Fig. 2.4 (d),
(e) and (f) for comparison. As can be seen, the simulated and experimentally measured
spectra match very well and show sharp quadratic boundaries separating reflective and
transmissive regions that match each of the two relevant bulk Weyl bands in orthogonal
polarizations. As expected, the measurement for 45◦ polarization is a superposition of
measurements for s- and p-polarizations and shows clear signatures from both bands
forming the Weyl point at the degeneracy.

To provide additional evidence for the robust symmetry protection of the Weyl point,
we fabricate and measure another sample with significantly different parameters: rod
width of 300 nm and lattice constant of 2.1 µm. Fig 2.5 (a) shows a SEM image of the
sample, along with its transmission spectra. In this case, the transmission measurement
was performed using the Hyperion 3000 microscope attached to the FTIR with the
in-coupling Cassegrain objective covered except for a small pinhole of 2 mm diameter.
This resulted in better k-space resolution for the measurement. We see in Fig. 2.5 (b)
that the charge +2 Weyl point continues to exist, even for these different parameters,
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Figure 2.4. (a), (b), (c) Experimentally measured angle-resolved FTIR reflection spectra for
90◦ (p-), 0◦ (s-) and 45◦ polarizations respectively. The dotted lines in all plots are Weyl bulk
bands from MPB. (d), (e), (f) S4 (RCWA) simulation of the angle-resolved reflection spectra
for all three polarizations.

Figure 2.5. (a) A SEM image of the chiral woodpile PhC with rod width of 300 nm and
lattice constant 2.1 µm. (b) Experimentally measured transmission spectrum in the Γ − X
direction for the PhC shown in (a), overlaid with the bands calculated from MPB shown using
black dotted lines.

and now resides at a wavelength of 2.4 µm.

2.2.4 Coupling coefficients between incident plane waves and pho-
tonic crystal Bloch modes

Since the PhC investigated here has low index-contrast, there is no complete band
gap around the Weyl point, and therefore this relatively unobscured direct observation
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Figure 2.6. (a), (c) Angle-resolved RCWA simulation of reflection spectra for p and s
polarizations respectively as shown in Fig. 3 of the main text. (b), (d) Reflection spectrum
along the cut shown by the dashed line in (a) and (c) and the band structure showing bands 3
to 12 for k = (0.1, 0, 0) to (0.1, 0, 0.5) (2π/a). The color of the circular dots indicates the value
of Cs/p for the corresponding Bloch modes and their size is proportional to the value of κ.

warrants further explanation. When probing reflection through the chiral woodpile, we
make the assumption that the sample is effectively infinite in the x and y directions
(parallel to the surface) and truncated in the z-direction; we thus examine the projected
band structure, since kz is no longer conserved (but kx and ky still are). As such, the
projected band structure consists of states with both kz = 0 and kz ≠ 0 projected onto
the (kx, ky) plane. Thus, even though the Weyl point exists in an incomplete band gap
in the 3D Brillouin zone of our chiral woodpile PhC, in the projected band structure
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there are states from other bands which are now degenerate with the Weyl point in
frequency and with the same kx and ky, and one may expect that these overlapping
states would obscure the signature of the Weyl point in the reflection spectrum. However,
the agreement we observe between the 3D band structure calculations (Fig. 2.1 (b)
and dashed lines in Fig. 2.4) and the reflection spectrum (Fig. 2.4) suggests that this
measurement is relatively insensitive to these overlapping states. To further explore this
feature in our results, we calculate the modal overlaps between s- and p-polarized plane
waves and the Bloch modes of the PhC. Two parameters are defined using these modal
overlaps which measure the polarization of the Bloch modes and the overall in-coupling
of an arbitrarily polarized plane wave [39–42]. These parameters indicate that the modes
with kz ̸= 0 in the projected band structure, that would have otherwise obscured the
observation of the Weyl point, either have a polarization mismatch with the incident
light and/or have inefficient mode in-coupling. This leads to the observed features in the
reflection spectrum wherein the boundaries of highly reflecting regions correspond to the
kz = 0 Weyl bands, which we now explore in detail.

To understand the relationship between the observed spectral features and the bulk
bands, we calculate coefficients that measure the polarization of Bloch modes. For this,
we consider plane waves with s- and p- polarizations incident along the Γ − X direction
on the PhC-air interface and define the polarization coupling coefficients Cs and Cp and
mode coupling index κ [39–42]

κ = ηs,k,n + ηp,k,n; Cs/p = ηs/p,k,n

κ
(2.1)

ηp,k,n = |
∫∫∫

ŷ · Hk,n(x, y, z)dxdydz|2

V
∫∫∫

|Hk,n(x, y, z)|2 dxdydz
(2.2)

ηs,k,n = |
∫∫∫

(cos θx̂ − sin θẑ) · Hk,n(x, y, z)dxdydz|2

V
∫∫∫

|Hk,n(x, y, z)|2dxdydz (2.3)

where Hk,n(x, y, z) is the magnetic field eigenmode of the PhC with momentum k and
band index n, θ is the angle of incidence along Γ − X and all integrals are calculated over
a unit cell with volume V . κ goes from 0 to 1 and measures the strength of coupling to a
plane wave of any arbitrary polarization while Cs and Cp measure the overlap between s-
and p-polarized plane waves and the Bloch modes. Large reflection for a certain range
of angles and frequencies in the absence of band gaps can then be thought of as either
a polarization mismatch between the incident wave and the Bloch mode, indicated by
small Cs/p, and/or inefficient mode in-coupling, indicated by small κ.
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Figure 2.7. (a) The kz-projected band structure for the truncated chiral woodpile PhC
(εrods = 12, rod width = 0.175a, rod height = 0.25a) along a loop enclosing the M point
with radius 0.15 (2π/a) and parametric angle 0 ≤ t/2π ≤ 1. Solid colors are projections of
bulk bands, the solid red and blue lines are surface states localized to the top and bottom
surfaces respectively and the black dotted line marks the frequency of the Weyl point. (b)-(c)
Magnetic field intensity of the surface state at t/2π = 0.25 for εrods = 12 and 8 respectively. (d)
Magnetic field intensity of the surface resonance for εrods = 6 calculated using FDTD method
as implemented in MEEP [1].

In Fig. 2.6, we analyze a slice of the reflection spectrum that corresponds to Bloch
modes with momenta k = (0.1, 0, kz) (2π/a). As previously stated, the band structure
weighted by the coupling coefficients shows that there are wavelength ranges where
the states are nearly completely s- or p- polarized and/or have small mode coupling
index. We particularly point out the wavelength ranges ∼ 4.65 − 4.8 µm in Fig. 2.6
(b) and ∼ 5.0 − 5.15 µm in Fig. 2.6 (d) (highlighted in blue) which coincide with the
sharp increases in reflection. Moreover, the boundary separating the reflecting and
transmissive region coincides with band 4 at kz = 0 in s-polarization and band 5 at kz = 0
in p-polarization plots, which are the Weyl bulk bands of interest. Thus the signatures
of both bands and the Weyl point are present in simulations and measurements done
with 45◦ polarization.

2.2.5 Bulk-boundary correspondence and surface states

The topological charge associated with Weyl points gives rise to Fermi arc-like surface
states which are a direct consequence of the bulk-boundary correspondence. However, at
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low dielectric contrast, as in the present experiment, the overlapping states and the lack
of a bandgap imply that any surface states associated with the Weyl points are leaky
resonances that are degenerate with bulk eigenstates of the PhC. Even at high dielectric
contrast, the surfaces states associated with the Weyl point at Γ are resonances for two
reasons: (1) When the structure is truncated, surface states lie above the light line of air
and confinement on this side requires a trivial bandgap material and (2) the dispersion
of the bands for our structure does not allow the opening of a local bandgap around
the Weyl point. We have found that such resonances (if present) are too broadened
by leakage to be observable for the index contrast of the photonic crystal used here.
However, both these issues are resolved when examining a high-contrast version of our
PhC, in the vicinity of the charge −2 Weyl point at R [kx = ky = kz = 0.5 (2π/a)],
which we consider for the following numerical analysis.

In a chiral woodpile PhC with εrods = 12 and truncated in the z-direction, we examine
the surface band structure along a circular loop enclosing the projection of the Weyl
point (at M) [32, 43]. This loop has radius 0.15 (2π/a) and is parametrized by an
angle 0 ≤ t/2π ≤ 1. The surface band structure as plotted in Fig. 2.7 (a) reveals the
existence of Fermi arc surface states in the non-trivial gap formed along the loop. Due
to the bulk-boundary correspondence, the number of these surface states that cross
the bulk band gap is equal to the Chern number of the enclosed degeneracy, which in
this case is −2. The sign corresponds to the direction of motion of the surface states.
The magnetic field intensity of the surface state localized to the top edge is plotted in
Fig. 2.7 (b), which shows strong confinement to the PhC-air interface. We repeat these
calculations for progressively smaller values of dielectric contrast and find that a local
gap fails to open at εrods ∼ 6 around the loop considered here and at εrods ∼ 5, a local
gap fails to open for a loop of any radius. Examining the field intensity profile from a
finite-difference time-domain (FDTD) simulation [1], shown in Fig. 2.7 (d), reveals that
at εrods = 6, the surface state is now a leaky resonance with a Q-factor ∼ 103. As we
can see, the confinement of the surface state relies on the existence of at least a local
bandgap, which heavily depends on the dielectric contrast. For the dielectric contrast of
our experiment, namely εrods = 2.31, the resonances have broadened sufficiently to be
effectively unobservable. On the other hand, changing the dielectric contrast does not
break the screw symmetry in our structure and as such does not affect the existence of
the Weyl points, whether at the Γ or R-points. Therefore, although the surface states in
our low-contrast PhC have turned into resonances that extend into the bulk, the charge
±2 Weyl points have a continued existence due to their symmetry protection.

17



2.3 Conclusion
To summarize, in this chapter, we have presented the observation of a charge +2 Weyl
point in a 3D PhC in the mid-infrared regime. The fact that we have used a relatively
low refractive index polymer opens the door to exploring 3D topological phenomena in
the IR and into optical frequencies, where very high-index, low-loss materials may not
be available or amenable to 3D device fabrication. It will be of interest in the future to
explore surface resonances in 3D PhCs with Weyl points; these will have fundamentally
different properties compared to traditional surface states because of radiative loss, which
will give rise to non-Hermitian effects on the surface.
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Chapter 3 |
Charge-2 Weyl point splitting in
chiral woodpile photonic crystals

In this chapter, we theoretically and experimentally explore the splitting of the charge-2
Weyl point discussed in the previous chapter, into two charge-1 Weyl points. Using a
theoretical analysis rooted in symmetry arguments, we show that this splitting occurs
along high-symmetry directions in the Brillouin zone. This chapter is based on work
that was done in collaboration with Christina Jörg, Jiho Noh, Alexander Cerjan, Shyam
Augustine, Georg von Freymann and Mikael C. Rechtsman [44].

3.1 Overview
As discussed in the previous chapter, a Weyl point (WP) is a topological degeneracy
that can possess an arbitrary integer charge, m, and can be described by the generic
three-dimensional Hamiltonian of the form [45],

H(k) = k
|m|
+ σ+ + k

|m|
− σ− + kzσz + ω0I (3.1)

where k± = (kx ± iky), σ± = 1/2(σx ± iσy), σx,y,z are the Pauli matrices, I is the identity
matrix, and ω0 is the frequency at which the WP occurs in the spectrum. The eigenvalues
of H(k) describe the two bands in the vicinity of the WP and are given by

λ± = ω0 ±
√

(k2
x + k2

y)|m| + k2
z . (3.2)

From equation (3.2) it is evident that the leading order kx,y-dependence in the dispersion
around a WP is governed by its charge and henceforth in this chapter, charge-1 WPs
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will be referred to as “linear” and charge-2 WPs as “quadratic”.
While charge-1 WPs have been extensively studied in various systems, higher-charged

WPs have received relatively less attention. As explored in the previous chapter, higher-
charged WPs can occur in non-symmorphic crystals, such as the chiral woodpile structure,
due to the stabilization of multiple linear WPs at high symmetry points in momentum
space [46–48]. Such structures exhibit several additional symmetries and therefore provide
an ideal platform for tuning the locations of linear WPs that can form from splitting
a quadratic WP due to symmetry breaking [48, 49]. This tunability of WPs could be
of importance in the realization of three-dimensional large-volume, single-mode lasing
devices that rely on the vanishing photonic density of states at frequency-isolated linear
WPs [50].

In this chapter, we experimentally demonstrate that under careful symmetry breaking,
quadratic WPs can be split into two linear WPs of the same charge. We show by
analyzing the underlying symmetries of the structures that for certain choices of defects
this splitting occurs strictly along high symmetry directions in momentum space. We
also show that the momentum-space separation of the resulting linear WPs can be readily
controlled via geometric parameters of the structure. While WPs have mostly been
observed in large-scale structures with mm- or cm-scale lattice constants [51–53], our
platform of choice is a micron-scale three-dimensional photonic crystal (PhC), similar to
the one employed in the previous chapter, fabricated by a two-photon polymerization
process [54, 55]. This allows for the realization of WPs at near-infrared wavelengths that
we characterize using Fourier transform infrared (FTIR) spectroscopy.

3.2 Results

3.2.1 Simulations and symmetry analysis

The particular structure that we employ to realize this phenomenon is again a chiral
woodpile PhC whose unit cell consists of stacked and partially overlapping layers of rods
that have a relative 45◦ in-plane rotation between them as shown in Fig. 3.1 (a). The
lattice constant in all three directions is a = 2.1 µm. The four rods in the unit cell have
height h and widths w0, w45, w90, w135 where the subscripts identify the rods by their
angle of orientation with respect to the x-axis. The rods are made out of a nearly lossless,
non-magnetic dielectric material of dielectric constant ε = 2.31. Due to the chirality of
this structure, inversion symmetry is broken which allows WPs to exist. Furthermore,
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Figure 3.1. (a) An exploded view of the chiral woodpile PhC (one unit cell in z) and its
Brillouin zone. (b) Band structure of the chiral woodpile PhC, made out of dielectric rods
(ε = 2.31), with equal widths for all rods at ky = kz = 0 showing bands 3 to 8. The quadratic
WP at Γ is marked with a blue circle. The inset shows a plot of the Berry phase for band 4
around Γ. The double winding indicates that the degeneracy has a charge of 2. (c) The band
structure of the same chiral woodpile PhC in (b) but with increased rod width w0 in the blue
layer of each unit cell. The linear WPs that occur due to the splitting of the quadratic WP in
(b) are marked with blue circles. The inset shows a plot of the Berry phase for band 4 around
one of the degeneracies. The single winding indicates that the degeneracy has a charge of 1.

when all rod widths and heights are equal, this structure belongs to the non-symmorphic
space group P4222 (# 93), which has a screw axis along the z direction. This screw
symmetry, defined by a 90◦ rotation in the x-y plane and a/2 shift along the z direction,
results in the presence of a quadratic WP at the Brillouin zone center (Γ), as shown in
Fig. 3.1 (b) and corner (R).

Instead, when the rod width in one layer in the unit cell is taken to be different
from the widths of the other three layers, the screw symmetry is broken, resulting in
a splitting of the quadratic WP into two linear WPs as shown in Fig. 3.1 (c). For
example, when a width defect is introduced such that w45 = w90 = w135 = w and
w0 ̸= w, the space group of the structure is reduced to P222 (# 16). While this
subgroup does not contain the screw symmetry, it retains C2 rotations about the x, y
and z axes that restrict the splitting directions of the WPs to high symmetry lines in
momentum space. This can be argued as follows: Let the splitting associated with this
change in space group by a small perturbation result in two linear WPs, one of which
is located at a generic momentum point (kx, ky, kz). The location of both WPs can
be inferred from the symmetry operations of the space group P222 and time reversal
symmetry as they must either map to themselves or to each other under these operations.
Time reversal symmetry requires a WP to be located at (−kx, −ky, −kz). However, the
aforementioned C2 rotations require a WP to be located at (−kx, ky, −kz), (kx, −ky, −kz)
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and (−kx, −ky, kz). Since there are only two linear WPs that can occur from the splitting
of a single quadratic WP, at least two components of these momentum vectors must be
set to 0 or π/a such that they map to themselves under a sign flip. As a result, for the
quadratic WP at Γ, the symmetry-consistent directions of splitting are Γ − X, Γ − Y or
Γ − Z, and for the quadratic WP at R, the symmetry-consistent directions of splitting
are R − U, R − T or R − M. A similar analysis shows that the splitting can be made
to occur along diagonal directions in momentum space (e.g. along Γ − M for the WP
at Γ) when w45 or w135 is chosen to be different from the other three rod widths. In
the most general case where all four rod widths are different, the space group is further
reduced to P2 (#3) which retains C2 rotation about the z axis. This still restricts the
splitting to occur in the kz = 0 plane or along Γ − Z for the quadratic WP at Γ and
kz = π/a plane or along R − M for the quadratic WP at R. For the remainder of this
article, we will focus on the case where a width defect is introduced in a single layer in
each unit cell such that w45 = w90 = w135 = w and w0 ̸= w.

To demonstrate the topological nature of WPs in the split and unsplit cases, we
directly calculate their topological charges from the electromagnetic eigenmodes extracted
from MIT Photonic Bands (MPB) [56]. Since WPs act as sources or sinks of Berry
curvature, their charge can be obtained by integrating the Berry curvature over a closed
sphere enclosing the WP in momentum space. Alternatively, this can also be calculated
using a series of line integrals of Berry connection on closed contours that are sampled
from such a sphere. These line integrals represent the geometric phase, called the Berry
phase (θB), acquired by the eigenmodes as they are adiabatically transported around the
closed contours. These contours can be chosen to lie parallel to the kx-ky plane and θB

can therefore be plotted as a function of kz. The topological charge of the WP is the
winding number of θB(kz). The plots for θB for the split and unsplit cases are shown
in the insets of Fig. 3.1 (b)-(c) which confirm that the degeneracy at Γ is a quadratic
WP of charge +2 and the split degeneracies along the Γ − X direction are linear WPs of
charge +1 each.

3.2.2 Fabrication process

For the fabrication of the chiral photonic woodpile samples in the IP-Dip resist, we use a
Nanoscribe Professional GT at a scan speed of 20 mm/s and laser power of 62%, which
corresponds to 34 mW on the entrance lens of the objective. The structures are printed
onto Menzel cover slips (borosilicate glass). Since we use the dip-in configuration of
the Nanoscribe the cover slips need to be coated with approximately 13 nm of Al2O3
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Figure 3.2. False color SEM image of a typical chiral woodpile photonic crystal with
increased rod width w0 in the blue rods. (a) Top view, (b) side view.

in order to facilitate interface finding. The coated cover slips show a transmission of
greater than 75% for all wavelengths used in our measurements. After printing, the
sample is developed for 10 min in PGMEA and 10 min in isopropanol, subsequently. It
is then transferred to a solution of 150 mg Irgacure 651 in 24 ml of isopropanol and
illuminated for 60s with UV light from an Omnicure S2000 with 95% iris opening. This
post-print UV curing [57] increases the stability of the woodpile structure. In the end,
the sample is blow-dried in a stream of nitrogen. The complete footprint of the structure
is approximately 1 mm2 with 20 layers in height. To achieve such a large footprint within
reasonable writing time we use elaborate stitching: The structure is printed in portions
of 4 × 4 angled blocks between which the stage is moved for larger travel distance. Inside
each block and layer we print the sample using the galvanometer-scanning in combination
with piezo-stitching for reduced vignetting and more precise positioning. The alignment
of the stage, piezo and galvo axes is ensured by employing the axis transformation
implemented in NanoWrite. While the usual rods consist of just one printed line, the
defect rod width is increased by printing multiple lines at a hatching distance between
10 nm and 50 nm. We print several samples of this PhC with a lattice constant of 2.1 µm
with varying values of w0, while fixing w to 0.2 µm for the symmetry broken samples.
Due to the voxel’s height in z, adjacent layers overlap by approximately 50% of the rod
height. A scanning electron microscope (SEM) image of a typical sample is shown in
Fig. 3.2.

3.2.3 Experimental measurements

For characterizing the fabricated PhC, we measure the angle-resolved transmittance via
Fourier-transform infrared spectroscopy (FTIR). This measurement is performed using
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Figure 3.3. (a)-(e) Measured angle-resolved FTIR spectra of the chiral woodpile PhC with
varying values of the width w0. The locations of the WPs are marked with arrows. (f)-(j) The
corresponding RCWA simulated spectra of the chiral woodpile PhC. The dashed black lines are
the kz = 0 bulk bands calculated from MPB.

the Hyperion 3000 microscope attached to a Bruker Vertex v70 FTIR. The spectra are
taken in transmission mode with a halogen lamp and a Mercury-Cadmium-Telluride
(MCT) detector cooled by liquid nitrogen. To increase k-space resolution, the lower
15× Cassegrain objective is covered except for a pinhole of 1 mm in diameter, such
that we obtain a nearly collimated beam. We estimate the spread of this beam to
be approximately ±0.3° in the direction along which we measure (the kx direction in
Fig. 3.3), and approximately ±2° perpendicular to that [58]. The sample is then tilted
with respect to the beam along its x-axis, around the direction of perpendicular incidence
of the beam. This is done by tilting the sample holder in steps of approximately 0.4°.
As we cannot determine the position of perfect perpendicular incidence from the sample
positioning (within an error of approximately 5°), we take spectra for both positive
and negative tilting angles, and determine Γ from the symmetry of the measured angle
resolved transmittance spectra. All spectra are referenced to the transmission of the
used substrates, and individually scaled to their maximum at each angle. For each angle
we average over 64 measurements with an FTIR resolution set to 4 cm−1 in wavelength.
The small dip in transmittance around 2.8 µm wavelength is constant across angles and
is due to the absorption in the IP-Dip [59]. The spectra are post-processed to remove
fringes due to multiple reflections in the glass and Al2O3.

For the case of all equal rod widths, we observe a quadratic WP at 2.2 µm wavelength
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Figure 3.4. Spectra along Γ − Y: (a)-(e) Measured angle-resolved FTIR spectra of the
chiral woodpile PhC with varying values of the width w0. (f)-(j) The corresponding RCWA
simulated spectra of the chiral woodpile PhC. The dashed black lines are bulk bands calculated
from MPB. We see that the two bands that form the quadratic WP for w = w0 move apart on
increasing rod width w0.

at the Γ point (Fig. 3.3 (a)). As previously described, an increase in w0 splits the
WP along the Γ − X direction into two linear WPs. This splitting can be seen as a
spectral feature corresponding to the two involved bands piercing through each other
with the linear WPs occurring at their intersection points as shown in Fig. 3.3 (b)-(e).
Furthermore, the angular separation between the two linear WPs increases with w0. In
addition to the spectra taken along the Γ − X direction, we also performed measurements
and simulations along Γ − Y, which are shown in Fig. 3.4. We see here that the two
bands, which form the quadratic WP for equal rod widths in all layers, move apart upon
increasing w0 and are no longer degenerate. This is as expected since the linear WPs are
point degeneracies that only occur along the Γ − X direction.

To compare our experimental results with theory, we also perform RCWA (rigorous
coupled-wave analysis) simulations as implemented in Stanford Stratified Struc-
ture Solver (S4) [38], to obtain the transmission spectrum of this PhC. The simulated
spectra are plotted in Fig. 3.3 (f)-(j) and Fig. 3.4 (f)-(j) and show an excellent agreement
with the experimentally obtained data. Moreover, the sharp spectral features match the
kz = 0 Weyl bands obtained from MPB (dashed lines in Fig. 3.3 (f)-(j) and Fig. 3.4)
allowing for a direct observation of the splitting.

We extract the angular separation θ between the two linear WPs from the experimental
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Figure 3.5. The angular separation of WPs, θ, as a function of the symmetry-breaking
parameter, 1 − w/w0. All data points correspond to samples that were fabricated with the
same value of w.

data and plot it as a function of the symmetry-breaking parameter 1 − w/w0 in Fig. 3.5,
demonstrating the tunable nature of WP splitting in our experiments.

3.2.4 Accidental Charge-2 Weyl points

Figure 3.6. (a) Symmetry-protected quadratic WP for w0 = w. (b) This quadratic WP first
splits into two linear WPs along Γ − X upon increasing w0. (c) Further increasing w0 re-merges
the two linear WPs, leading to the formation of an accidental quadratic WP. (d) Increasing w0
beyond the re-merging point leads to a splitting of this quadratic WP along Γ − Y.

In our PhCs, the separation of WPs in momentum space is found to be a monotonic
function of the symmetry-breaking parameter, however we point out here that this is not
true in general. For higher dielectric contrast, the separation of the WPs can first increase
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and then decrease to zero for increasing values of the symmetry-breaking parameter.
This can lead to the formation of accidental quadratic WPs which are not symmetry
protected but are obtained on the fine tuning of parameters. We present an example of
an accidental quadratic WP which is formed due to the re-merging of the split linear
WPs on increasing the symmetry-breaking parameter. The band structure for a chiral
woodpile made out of Si rods (ε = 12) is shown in Fig. 3.6. For w0 = w we have the
quadratic WP, protected by screw symmetry (Fig. 3.6 (a)). As with the low-contrast
PhC in the experiment, upon increasing w0, this quadratic WP splits into two linear
WPs, whose separation first increases along the Γ − X direction (Fig. 3.6 (b)). However,
on increasing w0 further, their separation decreases to zero (Fig. 3.6 (c)), leading to the
formation of an accidental quadratic WP. Increasing w0 beyond this re-merging point
leads to a splitting of this quadratic WP along a different symmetry-allowed direction,
Γ − Y in this case (Fig. 3.6 (d)).

3.2.5 Interface states associated with Weyl points

Figure 3.7. Surface states associated with the WPs at the interface between two low-contrast
chiral woodpile PhCs with opposite chirality. (a) The ky-projected band structure along the
circular loop, parameterized by t, enclosing the quadratic WP at Γ. The non-trivial gap formed
along the loop contains two pairs of hybridized surface states (dashed lines) with even and odd
symmetry with respect to the mirror plane at the interface. The blue solid colors are projections
of the bulk bands. (b) The ky-projected band structure along the circular loop enclosing one of
the split linear WPs, showing only a single pair of even and odd surface states.

Perhaps the most direct physical manifestation of the non-trivial topology of a WP is
the presence of surface states that form Fermi arcs connecting WPs of opposite charges.
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In the previous chapter, we explored the surface states due to the Weyl point whose
momentum was below the light line of air. As a result, the surface states were confined
to the surface due to index guiding.

We now present a numerical exploration of the surface states associated with both
the quadratic and linear WPs in our structure that lie above the light line of air. Due to
their momentum being close to the Brillouin zone center, the surface states are leaky
resonances that radiate away from the surface with a finite lifetime. At low dielectric
contrast such as in our experiment, the lifetime of such resonances can be so low that they
are effectively unobservable in experiment and hard to extract and analyze numerically.
To overcome this difficulty, we consider an interface between two chiral woodpile PhCs
with opposite handedness for our analysis. This leads to a doubling of the number of
surface states due to the presence of WPs on both sides of the interface. Moreover,
the surface states originating from both structures are degenerate in frequency and
momentum and can therefore hybridize to form states with even and odd symmetry
with respect to the mirror plane at the interface. Nevertheless, the topological origin of
these surface states can be directly confirmed by examining the surface spectrum along a
circular contour that encloses the projection of the WPs.

We consider a system consisting of two chiral woodpile PhCs with opposite chirality
and equal rod widths in all layers that meet at an interface parallel to the y = 0 plane.
The surface band structure calculated along a circular loop in the kx-kz plane enclosing
the quadratic WP at Γ is shown in Fig. 3.7 (a). This loop has a radius of 0.05 (2π/a)
and is parametrized by a single angular variable 0 ≤ t/(2π) < 1. The surface band
structure reveals the existence of two pairs of hybridized states that cross the non-trivial
gap formed along the loop. Due to the bulk-boundary correspondence principle, the
number of surface states implies that the magnitude of charge of the enclosed WPs is 2.
Next, we consider the same simulation but for an increased rod width w0 that splits the
quadratic WP. The surface band structure along a loop of radius 0.033 (2π/a) enclosing
just one of the linear WPs is shown in Fig. 3.7 (b) which reveals only one pair of surface
states in the gap formed along the loop. This indicates that the charge of the enclosed
WP has magnitude of 1.

3.3 Conclusion
In conclusion, we have observed the splitting of a quadratic Weyl point into two linear
Weyl points in a low-contrast 3D PhC. We find that the splitting can be made to occur
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strictly along high-symmetry directions in momentum space, a consequence of controlled
symmetry breaking and that their separation can be readily tuned via the geometric
parameters of the crystal. The micron-scale periodicity of our structure allows us to access
Weyl points in the near-infrared optical spectrum. Our approach opens new avenues for
designing large-volume single-mode lasers [50], using Weyl points and exploring Fermi
arc surface states in microscale photonic structures, relevant to near-infrared optics.
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Chapter 4 |
Topological phases of photonic
crystals under crystal symmetries

In this chapter, we focus our attention on topological one- and two-dimensional photonic
crystals (PhCs). Such PhCs have recently emerged as a popular platform for realizing
various types of topological phases due to their flexibility, ease of fabrication, and potential
for device applications. Here, we develop a complete classification of topological bands
in one- and two-dimensional photonic crystals with and without time-reversal symmetry.
Our approach relies only on the symmetry representations of the field eigenmodes at
high-symmetry points in momentum space and therefore this approach can be used to
efficiently guide the design of a wide range of topological PhCs. In particular, we show
that the classification provided here is useful for diagnosing photonic crystal analogs
of obstructed atomic limits, fragile phases, and stable topological bands that include
Dirac semi-metals and Chern insulators. This chapter is based on work that was done
in collaboration with Ali Ghorashi, Thomas Christensen, Mikael C. Rechtsman and
Wladimir A. Benalcazar.

4.1 Overview
As we discussed in Chapter 1, Photonic crystals (PhCs) are periodically patterned
dielectric media that can be described by a Maxwell eigenvalue problem [3, 4]. The
periodicity of the dielectric medium acts analogously to a potential for electromagnetic
waves and the solutions take the form of Bloch functions that are distributed into
photonic bands. Similar to electronic states in conventional solids, PhC eigenmodes
can be characterized by topological indices that are global properties across momentum
space [60–62]. One of the physical manifestations of these topological indices is the
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existence of states that reside on the boundaries of the system, which are protected by
the bulk-boundary correspondence of these phases.

A wide variety of topological phases have been realized using PhC-based platforms
(as distinct from waveguide-arrays [63] or coupled-resonator [64] based realizations).
In one and two dimensions, this includes analogs of the SSH model with quantized
polarization [65–67], Chern insulators [68–72], quantum spin-Hall phases [73–77], Dirac
semi-metals [78–84], valley-Hall phases [85–87], bulk-obstructed higher-order topological
insulators (HOTIs) [88–93], including quadrupolar HOTIs [94–96], and fragile phases [97].
Several of these have also been proposed for photonic device applications such as for
lasing [67,98–100], harmonic generation [101,102] and light transport [103]. Moreover,
the flexibility of the PhC-based platform has made it possible to explore the effects of
non-linearity [104,105] and non-Hermiticity [106, 107] alongside topology – novel physics
that is difficult to realize in conventional solids.

Topological systems have been classified in the tenfold way [108, 109] by the presence
or absence of the three fundamental symmetries: time-reversal, chiral and particle-hole
symmetries. PhCs generally do not possess chiral and particle-hole symmetries and
therefore belong in either class A (TR-broken) or class AI (TR-symmetric) of the tenfold
way. However, the presence of crystalline symmetries enriches this classification and can
help identify finer topological phases within these classes.

There are three kinds of topological bands: (i) Obstructed “atomic limit” (OAL)
bands [110], that admit exponentially-localized Wannier functions [111] (such bands are
referred to as “Wannierizable”) (ii) fragile bands [112,113] that are non-Wannierizable
but become Wannierizable when combined with other atomic limit bands and (iii) stable
topological bands that are not Wannierizable. These bands are generally identified by
computing Berry phases (or more generally, Wilson loops) over the entire Brillouin zone.
In the presence of crystalline symmetries, it is possible to identify and distinguish a
subset of them by constructing symmetry-indicator invariants [114–116]. Compared
to Berry phases, this symmetry-based approach can be substantially less intensive for
computation since it only requires looking at the eigenmodes at high-symmetry points of
the Brillouin zone (BZ).

In this chapter, we build on previous works in electronic systems [114, 116] and
comprehensively develop a complete classification for topological bands in one- and
two-dimensional PhCs under crystalline symmetries with and without time-reversal
(TR) symmetry. For each point-group symmetry setting, we exhaustively calculate the
topological indices, defined using symmetry-indicator invariants, for the basis set of

31



atomic limits that span the space of all possible atomic limit bands via the procedure of
induction of band representations [117, 118]. This allows us to establish a bulk-boundary
correspondence for OAL bands in PhCs where we show that despite the the absence
of a Fermi level, the notion of a filling anomaly remains valid and can be used to
infer the topological origin of boundary states directly from their frequency spectrum.
Furthermore, this classification also allows us to diagnose topological bands that are not
OALs, namely fragile phases and bands with Dirac points and Chern numbers, which is
made possible by exploiting the algebraic structure of the classification. Based on this,
we propose a strategy to diagnose and design topological PhCs. Finally, we discuss the
PhC-based implementations of a few other topological systems that lie outside of this
framework but where symmetry plays an important role.

4.2 1D photonic crystals
Maxwell’s equations with no sources and for a medium that is linear, isotropic, and
lossless are [3, 4]

∇ · H(r, t) = 0

∇ × E(r, t) + µ0
∂

∂t
H(r, t) = 0

∇ · [ϵ(r)E(r, t)] = 0

∇ × H(r, t) − ϵ0ϵ(r) ∂
∂t

E(r, t) = 0. (4.1)

Expanding the temporal component of the electric and magnetic fields into harmonics as
H(r, t) = H(r)e−iωt, E(r, t) = E(r)e−iωt, these equations reduce to

∇ ×
(

1
ϵ(r)∇ × H(r)

)
=
(
ω

c

)2
H(r)

∇ × ∇ × E(r) =
(
ω

c

)2
ϵ(r)E(r). (4.2)

We can choose to solve only the equation for H(r) in (4.2) since E(r) can be found
from H(r) using the last equation in (4.1).

A 1D PhC, shown schematically in Fig. 4.1 (a), is a 3D material characterized by a
refractive index that is periodic along one direction (x) and is uniform along the other two
directions (y and z). The magnetic field eigenmode can therefore be written as a plane
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wave solution in the y, z plane multiplied by an x-dependent vector field, H = eik∥·ρh(x),
where k∥ is the momentum along the uniform directions and ρ = yŷ + zẑ. However, we
are only concerned with propagation along the periodic direction, which implies that
k∥ = 0. Moreover, since the fields must be perpendicular to the propagation direction,
we can define two orthogonal polarizations where the vector fields lie in the y, z plane.
Without loss of generality and assuming isotropy, we can take these polarized fields to
be hz(x) = hz(x)ẑ and hy(x) = hy(x)ŷ. This leads to the following eigenvalue problem
for the scalar fields, hξ=y,z(x),

Θ̂1hξ(x) =
(
ω

c

)2
hξ(x), Θ̂1 ≡ −∂x

(
1
ϵ(x)∂x

)
, (4.3)

where Θ̂1 is the 1D Maxwell operator that plays a role analogous to the Hamiltonian
in quantum mechanics. By exploiting the periodicity of the dielectric function, the
above equation can be solved using Bloch’s theorem. Specifically, the ansatz given by
hξ,n,kx(x) = eikxxuξ,n,kx(x), can be used to solve (4.3), where uξ,n,kx(x) is the periodic
part of the field defined over a unit cell. As a result of this, (4.3) can be written as

Θ̂1,kxuξ,n,kx(x) =
(
ωn

c

)2
uξ,n,kx(x), (4.4)

where

Θ̂1,kx ≡ −(∂x + ikx)
(

1
ϵ(x)(∂x + ikx)

)
. (4.5)

This yields field solutions distributed across discrete frequency bands labeled by the
index n and with their momentum, kx, restricted to lie within the first BZ, as shown in
Fig. 4.1 (b). It is also useful to define the inner product between two fields over a unit
cell (UC) as

⟨uξ,n1,k1|uξ,n2,k2⟩ =
∫

UC
u∗

ξ,n1,k1(x)uξ,n2,k2(x)dx. (4.6)

Similar to electrons in conventional solids, the introduction of frequency gaps allows
for a topological characterization of isolated individual photonic bands or a group of
bands, as discussed in the following section.
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4.2.1 Classification due to inversion symmetry

Figure 4.1. (a) Schematic of a 1D PhC made out of alternating layers of dielectric material of
dielectric constants εh and εl with lattice constant a. (b) Schematic of the dispersion of light in
a 1D PhC. (c) Wannier centers (solid circles) are located at the two possible maximal Wyckoff
positions for inversion-symmetric unit cells (squares). (d) Filling anomaly due to inversion
symmetry. The trivial system has a number of states equal to the number of unit cells and is
inversion symmetric. The topological system requires at least one more or one fewer state to
maintain inversion symmetry.

1D PhCs fall into class A or AI of the tenfold way, depending on whether they break
or preserve time-reversal symmetry (TRS), respectively. In either case, 1D PhCs are
topologically trivial in the absence of other symmetries. However, additional symmetries
enrich the classification. For example, inversion symmetry protects two topological phases
in both A or AI. The invariant for a single band in these phases is the Berry phase

θ =
∫

BZ
An,kdk (4.7)

where An,k = −i ⟨uξ,n,k |∂k|uξ,n,k⟩ is the Berry connection. Under an inversion-symmetric
choice of unit cell, the Berry phase is quantized to 0 or π. This quantization has an
intuitive interpretation: in 1D, all photonic bands admit maximally localized Wannier
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functions whose centers are gauge invariant quantities [119–125]. Due to inversion
symmetry, a single Wannier center (per unit cell) can only be located in two distinct
positions in the unit cell, as shown in Fig. 4.1 (c). These positions are called Maximal
Wyckoff positions and are labeled by 1a and 1b. The Berry phase in (4.7) of a single
non-degenerate band indicates the location of the (one) Wannier center within each unit
cell, where θ = 0 and π correspond to the Wannier center being located at the position
1a (middle of the unit cell) and 1b (edge of the unit cell), respectively.

The calculation of (4.7) involves an integral over the entire BZ, but it can be greatly
simplified by looking at the representations of the H or E fields at the high-symmetry
points (HSPs) of the BZ [126], which are Γ (kx = 0) and X (kx = π/a). Under inversion
symmetry I : r → −r, the 1D Maxwell operator obeys

ÎΘ̂1,kx Î−1 = Θ̂1,−kx , (4.8)

where Î is the inversion operator. (4.8) implies that Θ̂1,kx commutes with Î at Γ and
X, i.e., [Θ̂1,Γ, Î] = [Θ̂1,X, Î] = 0, since these HSPs map to themselves under a negative
sign, modulo a reciprocal lattice vector. Thus, the eigenmodes at these HSPs can be
labeled by the eigenvalues of Î, which are ±1 since Î2 = 1. To aid with generalization
to 2D later, we denote these eigenvalues at the HSP Π as Π1,2 = ±1. We can define the
symmetry-indicator invariant for a set of bands as

[X1] ≡ #X1 − #Γ1 ∈ Z, (4.9)

where #Π1 is the number of states at the HSP Π with I eigenvalue +1. The invariant
in (4.9) encodes the value of the Berry phase as [126,127]

θ

2π = 1
2[X1] mod 1, (4.10)

which provides a Z2 classification of dipole moments in crystalline structures. We note
that the Berry phase and the invariant in (4.9) depend on the choice of unit cell.

The bands that originate from localized and symmetric Wannier functions form a
representation of the crystal’s symmetry group, called a band representation [117]. The
values of [X1] for a single isolated band can be enumerated exhaustively by working out
the inverse problem, i.e., given a set of Wannier functions, we can calculate the band
representation that such a set leads to. This inverse problem of band topology has been
used to classify topological phases in insulators [117,118].

35



In the next section, we explore the physical consequence of a non-trivial invariant: the
presence of boundary states. However, as we shall explain shortly, the lack of chiral or
particle-hole symmetries to pin the boundary states means that they need not lie within
bandgaps, and the issue of bulk-boundary correspondence is somewhat more subtle in
PhCs.

4.2.2 Filling anomaly, counting mismatch and boundary states

Figure 4.2. (a) The photonic band structure of a 1D PhC with εh = 6.25, εl = 1 and d = 0.6a.
The two possible types of inversion-symmetric unit cells are shown in the inset. Eigenvalues of
I at the HSPs for both types of unit cells are labeled with +/− signs. The Berry phases for
both types of unit cells are shown in blue boxes. (b) The dielectric profile of a finite system of
size 61 unit cells with interfaces between the two types of unit cells. The inset highlights the
switch between the unit cell types across the boundary (c) The frequency spectrum for the
finite system shown in (b). An odd-integer counting mismatch per band leads to the presence of
topological end states in the first and third bandgaps. These end states may also be degenerate
with bulk bands, such as in the case of band 6. The photonic DoS is also shown in the same
figure. (d) The Ez mode profiles of one of the topological end states in the first and third gaps.

The existence of boundary states (“end” states in 1D) can be heuristically understood
by considering the effect of a boundary between two distinct topological phases. Since the
invariants are quantized and must change discretely, a gap-closing point at the boundary
is required, resulting in boundary states. For 1D systems with inversion symmetry, such
boundary states of topological origin are associated with a filling anomaly [114, 128, 129],
which we describe briefly.
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Consider a finite tiling of N inversion-symmetric 1D unit cells which creates two
inversion-symmetry-related sectors in real space with two ends as shown in Fig. 4.1 (d).
A single isolated band in the bulk gives rise to N states in this finite system. For a
trivial bulk band with [X1] = 0, the Wannier centers in the finite tiling must be placed
at the 1a position of the unit cell, and the number of states that correspond to this bulk
band is equal to N . However, for a topological bulk band with [X1] = ±1, the Wannier
centers in the finite tiling must be placed at the 1b position of the unit cell, which leads
to a difficulty: N states cannot maintain inversion symmetry due to the position of the
Wannier centers. Instead, either N − 1 or N + 1 (or more generally, N − 12 where 12 is
any integer congruent to 1 mod 2)) Wannier centers are necessary to be consistent with
inversion symmetry as shown in Fig. 4.1 (d). This inability to maintain both the correct
number of states and inversion symmetry leads to the quantization of fractional charge
at boundaries in electronic systems and fractional mode density in PhCs and is called
the filling anomaly.

The filling anomaly also presents a practical way to diagnose non-trivial topology by
counting states in the spectrum of a finite system [94, 130]. The spectral consequence
of the filling anomaly is that the states in the finite system within the frequency range
of a single topological bulk band must have an odd number (= 12) of missing states
as compared to the number of unit cells. These missing states are paired up with
missing states from a different topological band in a way that preserves the inversion
symmetry of the system and these typically reside inside the bandgap as boundary
states. However, due to a lack additional symmetries that pin these boundary states to
the middle of the gap, they could be pushed into a bulk band by inversion-symmetry
preserving perturbations to the boundaries. Since such perturbations act identically
on both boundaries of the system, the bulk band would gain an odd number of states.
Crucially, regardless of the details of the perturbation, the number of expected states
and the actual states within the frequency range of a single topological band will differ
by 12; we refer to this as a “counting mismatch”. In contrast, trivial boundary states,
such as defect states, originate from a single band and would give rise to a counting
mismatch of even (= 02) states for that band when there are two ends in the system
related by inversion symmetry. Therefore, the counting mismatch is a Z2 invariant that
can be determined directly from the frequency spectrum of the PhC and thus can reveal
the topological nature of bulk bands.

To summarize this argument, in the absence of chiral or particle-hole symmetry, the
bulk-boundary correspondence of topological 1D PhCs with inversion symmetry is subtle
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in that the end states may or may not appear within a bandgap. However, regardless
of their location in the frequency spectrum, the states within the frequency range of a
topological band in a finite system must exhibit an odd-integer counting mismatch.

We now consider an explicit example of a 1D PhC consisting of alternating layers of
TiO2 (ε = 6.25) and air (ε = 1). The TiO2 layer occupies a filling fraction d/a = 0.6 in
the unit cell with lattice constant a. The first six bands of this 1D PhC are shown in Fig.
4.2 (a). Two distinct types of inversion-symmetric unit cells are possible for this PhC, as
shown in the inset of Fig. 4.2 (a). The two types of unit cells are re-definitions of each
other, related by a shift of a/2 along the x direction. The eigenvalues of I at the HSPs
Γ and X for both types of unit cells as well as the Berry phase calculated using (4.7) are
shown in the same plot. These show that while the band structure is identical for the
two types of unit cells, the Berry phases and, correspondingly, the symmetry-indicator
invariants are different. This is consistent with the fact that the re-definition of the unit
cell shifts the Wannier center from the 1a position to the 1b position and, therefore, also
the Berry phase from 0 to π and vice versa. This implies that if a band in one of the
unit cell types is trivial, the corresponding band in the other type is topological.

Next, we simulate a large inversion-symmetric supercell with interfaces between the
two types of unit cells in a strip geometry as shown in Fig. 4.2 (b). This supercell has two
inversion-symmetry-related sectors with two ends and consists of a total of 61 unit cells.
Therefore we expect to find 61 states per band in the spectrum of this supercell which is
shown in Fig. 4.2 (c). However, due to the non-trivial topology of these bands (always
originating from the inner or outer PhCs in the strip geometry), each band exhibits a
counting mismatch of 12 states. For bands 1 to 4, we find the counting mismatch to be
one missing state each and that these mismatched states reside in the bandgaps as end
states whose field profiles are shown in Fig. 4.2 (d). For band 5, we find a counting
mismatch of three missing states, two of which reside in the fourth gap and are trivial
states since they originate from the same band. The remaining missing state is paired
with another state from band 6. However, we can see that this pair of mismatched states
does not lie inside a bandgap but is instead degenerate with band 6. As a result, we find
a counting mismatch of one additional state for band 6.

The in-gap topological end states discussed above have been directly observed in
experiments in 1D PhCs and 1D periodic-dielectric waveguides [65–67].

Having introduced the notion of topological bands in the presence of crystalline
symmetries in 1D, we now extend the topological classification and characterization of
photonic bands to 2D.
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4.3 2D photonic crystals
Two-dimensional PhCs consist of a periodic patterning of the dielectric along two
directions (x and y) and a uniform dielectric profile along the third direction (z), with
wave propagation restricted to lie in the x, y plane. For such a system, the equations in
(4.2) can be simplified by exploiting the mirror symmetry through the x, y plane that
sends z → −z. This separates the states into two orthogonal polarizations: transverse
electric (TE) with E(r) = Ex(x, y)x̂ + Ey(x, y)ŷ, H(r) = Hz(x, y)ẑ, which is even
under the mirror symmetry, and transverse magnetic (TM) with E(r) = Ez(x, y)ẑ,
H(r) = Hx(x, y)x̂ + Hy(x, y)ŷ, which is odd under the mirror symmetry. For these
generally non-degenerate TE and TM polarizations, the eigenvalue problem is most easily
solved for the scalar fields Hz(x, y) and Ez(x, y) respectively, using [4]

−
[
∂

∂x

1
ε(x, y)

∂

∂x
+ ∂

∂y

1
ε(x, y)

∂

∂y

]
Hz(x, y) =ω

2

c2 Hz(x, y)

− 1
ε(x, y)

[
∂2

∂x2 + ∂2

∂y2

]
Ez(x, y) =ω

2

c2 Ez(x, y) (4.11)

Similar to the 1D case, these eigenvalue problems can be solved using Bloch’s theorem,
and the solutions are distributed into frequency bands with their momenta being restricted
to the first 2D BZ. Since TE and TM polarizations are orthogonal, we restrict the
discussion to a single polarization of choice. We now characterize the topological phases
of 2D PhCs by first constructing the topological invariants that classify them under
different point group symmetries and then deriving bulk-boundary correspondences and
their associated index theorems.

In 2D, the classification of PhCs can be divided into whether they obey time-reversal
symmetry (TRS) (class AI) or not (class A). Without crystalline symmetries, class AI does
not host topological phases. In contrast, class A hosts topological phases characterized
by the Chern number (C ∈ Z) that encodes the number of chiral edge states at the
boundaries of a finite system. The Chern number also presents an obstruction to the
construction of exponentially localized Wannier functions, and hence such bands are
referred to as non-Wannierizable [5, 131]. However, when the Chern number vanishes,
and in the presence of crystalline symmetries, photonic bands may be associated with
Wannier centers fixed at maximal Wyckoff positions of the 2D unit cells (Fig. 4.3). If this
association is possible, each distinct configuration of Wannier centers uniquely identifies
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a topological phase protected by symmetry. As mentioned previously, such bands are
collectively called atomic limits; in particular, obstructed atomic limits (OAL) refer to
cases where the Wannier centers are displaced away from the center of the unit cell. Under
some circumstances, a Wannier representation of bands may not be possible despite
their vanishing Chern number. Such bands are termed fragile and have the property of
admitting a Wannier representation when considered as a set that includes additional
specific atomic limit bands.

Similar to 1D, the location of Wannier centers for 2D PhCs can be identified using
Berry phases. However, when bands are degenerate, they must be treated collectively,
which requires the use of Wilson loops [132,133]. The Wilson loop is defined as

W(C) = P exp
[(∫

C
A(k) · dk

)]
(4.12)

where C is a closed contour in k-space, P denotes a path ordering of the exponential and
A(k) is the multi-band Berry connection given by

A(k) ≡ Am,n(k) = −i ⟨uk,m |∇k|uk,n⟩ . (4.13)

When C is taken to be a straight line in the Brillouin zone, the Wilson loop eigenvalues
are proportional to the expectation values of the position operator in the same direction.
Therefore, similar to the Berry phase, the eigenvalues of the Wilson loop, when considered
in two linearly independent directions, indicate the locations of Wannier centers for a
group of OAL bands or indicate the non-Wannierizable nature of fragile bands or Chern
bands by their non-trivial winding [5,111]. The calculations of these Wilson loops are
also simplified by looking at the representations of the eigenmodes at the HSPs of the
BZ to diagnose each of these situations for a single band or group of bands.

4.3.1 Classification due to rotational symmetries

Consider a projector into the bands of interest given by Pk = ∑
j |uj,k⟩ ⟨uj,k|. The

eigenvalues of the rotation operator, r̂n, projected into the bands of interest at the HSP
Π, PΠr̂nPΠ, are

Π(n)
p = e2πi(p−1)/n, for p = 1, 2, . . . n. (4.14)
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Figure 4.3. Maximal Wyckoff positions for (a) C2 (b) C4 (c) C6 and (d) C3 symmetric unit
cells. (e) BZ of a square lattice with possible HSPs. (f) BZ of a triangular lattice with possible
HSPs.

Following previous studies on the characterization of the topology of energy bands in
condensed matter systems [114], we define the integer invariants

[Π(n)
p ] ≡ #Π(n)

p − #Γ(n)
p ∈ Z, (4.15)

where #Π(n)
p is the number of states in the frequency band(s) in question with rotation

operator eigenvalue Π(n)
p .

These invariants can be constructed for 2D lattices with Cn symmetry at all high
symmetry points shown in Fig. 4.3 (e) and (f). However, some of the invariants in (4.15)
are redundant for three reasons: (i) Rotation symmetry forces representations at certain
HSPs to be the same. Particularly, C4 symmetry forces equal representations at X and
Y, while C6 symmetry forces equal representations at M, M′, and M′′, as well as at K
and K′; (ii) the fact that the number of bands in consideration is constant across the BZ,
from which it follows that ∑p #Π(n)

p = ∑
p #Γ(n)

p , or ∑p[Π(n)
p ] = 0; and (iii) the existence

of TRS, which implies that the Chern number will be zero and that rotation eigenvalues
at Π(n) and −Π(n) are related by complex conjugation. This leads to [M (4)

2 ] = [M (4)
4 ]

(for C4), [K(3)
2 ] = [K ′(3)

3 ] (for C3), [K(3)
3 ] = [K ′(3)

2 ] (for C3), [K(3)
1 ] = [K ′(3)

1 ] (for C3) and
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[K(3)
2 ] = [K(3)

3 ] (for C6).
Therefore, in the presence of TRS (class AI in the tenfold way), the classification is

given by the following indices [114]

χ
(2)
T =

(
[X(2)

1 ], [Y (2)
1 ], [M (2)

1 ]
)

χ
(3)
T =

(
[K(3)

1 ], [K(3)
2 ]
)

χ
(4)
T =

(
[X(2)

1 ], [M (4)
1 ], [M (4)

2 ]
)

χ
(6)
T =

(
[M (2)

1 ], [K(3)
1 ]
)
. (4.16)

On breaking TRS, the classification of 2D Cn-symmetric PhCs must include the
Chern number since it can now admit non-zero values. Furthermore, breaking TRS
reduces the number of constraints on the invariants (i.e., condition (iii) above is relaxed)
and therefore increases the number of invariants required to identify topological phases
uniquely. Taking into account these considerations, the most general classification (class
A in the tenfold way) of 2D Cn-symmetric PhCs is given by the following indices

χ(2) =
(
C
∣∣∣∣ [X(2)

1 ], [Y (2)
1 ], [M (2)

1 ]
)

χ(3) =
(
C
∣∣∣∣ [K(3)

1 ], [K(3)
2 ], [K ′(3)

1 ], [K ′(3)
2 ]

)
χ(4) =

(
C
∣∣∣∣ [X(2)

1 ], [M (4)
1 ], [M (4)

2 ], [M (4)
4 ]

)
χ(6) =

(
C
∣∣∣∣ [M (2)

1 ], [K(3)
1 ], [K(3)

2 ]
)
, (4.17)

where C is the Chern number given by

C = 1
2π

∫
BZ

Tr[∇k × A(k)]d2k. (4.18)

Similar to the 1D case, we can exhaustively calculate the values of χ(n) (when C = 0) or
χ

(n)
T following the approach of induction of band representations. To perform this, we

require knowledge about the Wannier functions’ internal symmetry representation, known
as “site symmetry representation”, ρ(Cn), as well as the location of their gauge-invariant
centers, the Wannier centers. We summarize the results in Tables 4.1-4.4. Furthermore,
these tables also show the number of bands required to generate the corresponding
indices.

There are relations between the Chern number (4.18) and the symmetry-indicator
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# Bands WP Site symm. χ
(2)
T χ(2)

1 1a ρ(C2) = any (0, 0, 0) (0 | 0, 0, 0)
1 1c ρ(C2) = +1 (−1, 0,−1) (0 | − 1, 0,−1)
1 1c ρ(C2) = −1 (1, 0, 1) (0 | 1, 0, 1)
1 1d ρ(C2) = +1 (0,−1,−1) (0 | 0,−1,−1)
1 1d ρ(C2) = −1 (0, 1, 1) (0 | 0, 1, 1)
1 1b ρ(C2) = +1 (−1,−1, 0) (0 | − 1,−1, 0)
1 1b ρ(C2) = −1 (1, 1, 0) (0 | 1, 1, 0)

Table 4.1. C2 symmetry: Indices induced from all possible maximal Wyckoff positions.

# Bands WP Site symm. χ
(3)
T χ(3)

1 1a ρ(C3) = any (0, 0) (0 | 0, 0, 0, 0)
1 1b ρ(C3) = +1 (−1, 1) (0 | − 1, 1,−1, 0)
2 1b ρ(C3) = ei 2π

3 σz (1,−1) (0 | 1,−1, 1, 0)
1 1b ρ(C3) = ei 2π

3 - (0 | 0,−1, 1,−1)
1 1b ρ(C3) = ei 4π

3 - (0 | 1, 0, 0, 1)
1 1c ρ(C3) = +1 (−1, 0) (0 | − 1, 0,−1, 1)
2 1c ρ(C3) = ei 2π

3 σz (1, 0) (0 | 1, 0, 1,−1)
1 1c ρ(C3) = ei 2π

3 - (0 | 1,−1, 0,−1)
1 1c ρ(C3) = ei 4π

3 - (0 | 0, 1, 1, 0)

Table 4.2. C3 symmetry: Indices induced from all possible maximal Wyckoff positions.

# Bands WP Site symm. χ
(4)
T χ(4)

1 1a ρ(C4) = any (0, 0, 0) (0 | 0, 0, 0, 0)
2 2c ρ(C2) = +1 (−1,−1, 1) (0 | − 1,−1, 1, 1)
2 2c ρ(C2) = −1 (1, 1,−1) (0 | 1, 1,−1,−1)
1 1b ρ(C4) = +1 (−1,−1, 0) (0 | − 1,−1, 0, 0)
1 1b ρ(C4) = −1 (−1, 1, 0) (0 | − 1, 1, 0, 0)
2 1b ρ(C4) = iσz (2, 0, 0) (0 | 2, 0, 0, 0)
1 1b ρ(C4) = +i - (0 | 1, 0,−1, 1)
1 1b ρ(C4) = −i - (0 | 1, 0, 1,−1)

Table 4.3. C4 symmetry: Indices induced from all possible maximal Wyckoff positions.
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# Bands WP Site symm. χ
(6)
T χ(6)

1 1a ρ(C6) = any (0, 0) (0 | 0, 0, 0)
2 2b ρ(C3) = +1 (0,−2) (0 | 0,−2, 1)
4 2b ρ(C3) = ei 2π

3 σz (0, 2) (0 | 0, 2,−1)
2 2b ρ(C3) = ei 2π

3 - (0 | 0, 1,−2)
2 2b ρ(C3) = ei 4π

3 - (0 | 0, 1, 1)
3 3c ρ(C2) = +1 (−2, 0) (0 | − 2, 0, 0)
3 3c ρ(C2) = −1 (2, 0) (0 | 2, 0, 0)

Table 4.4. C6 symmetry: Indices induced from all possible maximal Wyckoff positions.

invariants in the classifications (4.17). These relations are given by

C = −[X(2)
1 ] − [Y (2)

1 ] − [M (2)
1 ] mod 2

C = −[K(3)
1 ] − 2[K(3)

2 ] + 2[K ′(3)
1 ] + [K ′(3)

2 ] mod 3

C = 2[M (4)
1 ] + [M (4)

2 ] − [M (4)
4 ] − 2[X(2)

1 ] mod 4

C = −8[K(3)
1 ] − 4[K(3)

2 ] + 3[M (2)
1 ] mod 6

(4.19)

The consequence of these relations is that the symmetry-indicator invariants provide a
fast and simple way to calculate the Chern number (mod n) for Cn-symmetric PhCs
with broken TRS.

4.3.2 Index theorems

Cn-symmetric PhCs with different χ(n) or χ(n)
T belong to different topological phases,

as they cannot be deformed into one another without closing the bulk energy gap or
breaking the symmetry [116, 134, 135]. Furthermore, for Wannierizable bands with
a vanishing Chern number, the Wannier center configuration directly determines the
existence of a filling anomaly and consequently the possible existence of in-gap edge
and corner states. Therefore, finding the symmetry-indicator invariants is useful in
establishing a bulk-boundary correspondence for such bands. The presence of edge states
is directly related to the dipole moment of the Wannier centers. In 1D, this takes the
form of (4.10) whereas in 2D, Ref. [114] showed that the bands have dipole moments
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indicated by

P(2) = 1
2
(
[Y (2)

1 ] + [M (2)
1 ]

)
a1 + 1

2
(
[X(2)

1 ] + [M (2)
1 ]

)
a2

P(4) = 1
2[X(2)

1 ](a1 + a2)

P(6) = 0, (4.20)

where the superscript n in P(n) labels the Cn symmetry. The dipole moments in (4.20)
are defined modulo 1 and are valid for both TR-symmetric and TR-broken PhCs, as
long as the Chern number vanishes. P is a Z2 × Z2 index for C2 symmetry and Z2 index
for C4 symmetry. In all cases, non-trivial P is associated with an edge-induced filling
anomaly.

We note that for 2D spinless systems, such as the PhCs considered here, I and
C2 have identical transformation properties and are isomorphic operations that send
x, y → −x,−y. Therefore, for C2, C4 and C6 symmetries, a non-trivial P is associated
with a counting mismatch of 12 in the edge spectrum since inversion symmetry (I)
is a subgroup of these rotations and an edge supercell (with one periodic direction)
can always be chosen such that I is maintained. In the case of C2 symmetry, the
counting mismatch is a Z2 × Z2 invariant as edge supercells in both directions must be
independently considered (i.e., finite-in-x, periodic-in-y or finite-in-y, periodic-in-x). In
the case of C4 symmetry, the edge spectrum is identical in both directions, and therefore
the counting mismatch is a Z2 invariant. In the case of C6 symmetry, both P and the
counting mismatch in the edge spectrum are always trivial.

In the case of C3 symmetry, the dipole moment is given by

P(3) = 2
3
(
[K(3)

1 ] + 2[K(3)
2 ]
)

(a1 + a2) (under TRS)

P(3) =
(

[K(3)
1 ] + [K(3)

2 ] − 2
3[K ′(3)

1 ] − 1
3[K ′(3)

2 ]
)

(a1 + a2) (under broken TRS), (4.21)

where P(3) is a Z3 index for C3 symmetry. Since I is not a subgroup of C3 symmetry, an
edge supercell can never be chosen such that I is maintained. Therefore, the counting
mismatch cannot distinguish between different values of P(3). Instead, in this case, the
fractionalization of energy density at the edges must be directly calculated using the
eigenmodes of a C3-symmetric finite system.

Additionally, some Wannier center configurations can lead to higher-order topological

45



states. In class AI, these phases are determined by the corner “charges”1

Q
(2)
corner,T = 1

4
(
−[X(2)

1 ] − [Y (2)
1 ] + [M (2)

1 ]
)

Q
(3)
corner,T = 1

3[K(3)
2 ]

Q
(4)
corner,T = 1

4
(
[X(2)

1 ] + 2[M (4)
1 ] + 3[M (4)

2 ]
)

Q
(6)
corner,T = 1

4[M (2)
1 ] + 1

6[K(3)
1 ], (4.22)

as shown initially in Ref. [114]. We extend this to class A, where they are

Q(2)
corner = 1

4
(
−[X(2)

1 ] − [Y (2)
1 ] + [M (2)

1 ]
)

Q(3)
corner = 1

3
(
[K(3)

1 ] + [K(3)
2 ] − [K ′(3)

1 ]
)

Q(4)
corner = 1

4

(
[X(2)

1 ] + 2[M (4)
1 ] + 3

2[M (4)
2 ] + 3

2[M (4)
4 ]

)
Q(6)

corner = 1
4[M (2)

1 ] + 2
3[K(3)

1 ], (4.23)

Q
(n)
corner,T (for TR-symmetric) or Q(n)

corner (for TR-broken), are Zn topological quantities
and are associated with a corner-induced filling anomaly, a counting mismatch of states
∈ {0n, . . . n− 1n} in a finite system with n symmetry-related sectors and possibly the
presence of in-gap corner-localized states. P and Q can simultaneously admit non-trivial
values, leading to both edge and corner states that may be degenerate with each other
and/or with the bulk bands. However, their associated counting mismatch remains
robust. We note that in fermionic systems, where insulating states rely on completely
filled bands, a quantization of corner charge requires P(n) = 0. In photonic systems,
however, we are only concerned with the existence of localized states, and the P(n) = 0
constraint can be relaxed.

We have assumed that the Chern number vanishes in the TR-broken case and that we
have OAL bands with well-defined Wannier centers that lead to corner charges. However,
it is possible for fractional charges to localize at disclinations in Cn-symmetric systems
with non-Wannierizable Chern bands. In such cases, the formulae for disclination charges
contain a Chern number contribution along with contributions from the symmetry-
indicator invariants [136]. We note that the formulae in (4.23) are consistent with the

1In PhCs, the analogous quantity to electronic charges that is fractionally quantized at corners is the
electromagnetic energy density.
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disclination charges given in Ref. [136] with a vanishing Chern number contribution, as
is expected.

4.4 Design and characterization of 2D topological pho-
tonic crystals
In the previous sections, we exhaustively built the topological classifications in class A
and AI and identified the indices that correspond to OAL phases via the induction of the
band representations from the symmetry representation of the Wannier functions and the
Wyckoff positions of their Wannier centers. This classification forms a linear algebraic
structure, such that when two bands of a Cn symmetric system, in phases χ1 and χ2

respectively, are combined, this set of bands is in the phase χ1 + χ2. This observation
forms the basis of a strategy we now propose to diagnose and design topological PhCs.

Given a PhC, our starting point is the calculation of the Cn symmetry representations
at HSPs for N bands to determine χ(n), which can always be expressed as the following
linear combination

χ(n) =
∑

p

αp χ
(n)
p (4.24)

where χ(n)
p correspond to the indices of OALs in Tables 4.1-4.4. Since the χ(n)

p for
different site symmetry representations for the same Wannier center configuration are
linearly dependent, the linear combination in (4.24) is non-unique, and all possible
linear combinations must be examined to obtain the correct topological characterization.
Furthermore, a comparison must be made between the number of bands in question
with the number of Wannierizable bands required to give rise to the index χ(n); this
comparison helps identify bands that are not Wannierizable.

The topology of this set of N bands can be inferred using the following guidelines: (i)
If the bands are in an OAL phase, at least one possible linear combination exists such
that the coefficients {αp} are all positive integers (converse is not true). Additionally,
for an OAL phase, the number of bands required to generate the index χ(n), as inferred
from the linear combination, must not exceed the total number of bands in question
(this accounts for the possibility of trivial atomic limit bands, with χ = 0, being counted
among the total number of bands but leaving χ(n) unchanged). (ii) If a linear combination
with an integer {αp} is not possible, the bands are either gapless under TRS, in which
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case we have a Dirac semi-metal phase, or are gapped and have a non-vanishing Chern
number under broken TRS. (iii) If all possible linear combinations are such that {αp}
are integers, but at least one coefficient is negative, the bands are in a fragile topological
phase. Alternatively, if {αp} are positive integers but the number of bands required to
generate χ(n) exceeds the total number of bands in question, the bands are also fragile.

In the following sections, we provide examples that illustrate these cases.

4.4.1 Example 1: OAL phase with four-fold rotation in class AI

We now show an example of an OAL phase and its associated boundary signatures in
a 2D PhC. Similar OAL phases have been widely implemented in PhCs [88–93,98,99].
Consider two PhCs with unit cells shown in the inset of Fig. 4.4 (a), which consist of four
dielectric square pillars in a C4v-symmetric configuration with ε = 12. These two unit
cell choices, referred to as “expanded” and “contracted”, are related to each other by a
half-lattice-constant shift along the x and y directions. We consider the first four TM
bands for the following analysis. The symmetry-indicator invariants can be computed
using the irreducible representations (irreps) of C4v and its little groups at the HSPs.
For the contracted unit cell, bands 1, 2 + 3 and 4, all have the index χ

(4)
T = (0, 0, 0)

which corresponds to Wannier centers located at the 1a Wyckoff position in the 2D unit
cell shown in Fig. 4.3 (b). For the expanded unit cell, bands 1 and 4 have the indices
χ

(4)
T = (−1,−1, 0) and χ

(4)
T = (−1,+1, 0) respectively. Bands 2 and 3 are degenerate

at Γ and M points and have the combined index χ(4)
T = (2, 0, 0). Each of these indices

corresponds to the Wannier centers at the 1b Wyckoff position. These indices lead to
P(4) = (1/2, 1/2) and Q(4)

corner,T = 1/4 for bands 1 and 4 and P(4) = 0 and Q(4)
corner,T = 1/2

for bands 2+3 .
Alternatively, in this case, it is also possible to extract the position of the Wannier

center and therefore their dipole moments and corner charges by using Wilson loops as
shown in Fig. 4.4 (b). Here, the Wilson loop eigenvalues for each band are calculated
by integrating the Berry connection along one momentum direction and plotting it as a
function of the other momentum. This indicates the locations of the hybrid Wannier
centers that are exponentially localized in one spatial direction but are de-localized
in the other spatial direction. For a C4-symmetric system, the Wilson loop spectrum
along kx is identical to that along ky. The plots for the contracted unit cell show that
the Wannier functions for the first four bands can be simultaneously localized in both
directions and that their Wannier centers are located at the 1a position in the 2D unit cell,
corresponding to the trivial atomic limit deformable to (Wx(ky),Wy(kx)) = (0, 0) [126].
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Similarly, for the expanded unit cell, the Wannier centers are located at the 1b position
in the 2D unit cell, corresponding to an OAL deformable to (Wx(ky),Wy(kx)) = (π, π).

Figure 4.4. (a) TM-polarized band structure of a C4v symmetric PhC with ε = 12. The
two possible types of C4-symmetric unit cells are shown in the insets along with the 2D BZ.
The little group irreps of the electromagnetic eigenmodes at HSPs are shown for the first four
bands. (b) Wilson loop eigenvalues Wy(Wx) for bands 1, 2 + 3 and 4 along kx(ky) for both
types of unit cells. (c) Edge spectrum consisting a total of 25 unit cells of the two types in a
strip configuration. An odd-integer counting mismatch per band leads to the presence of edge
states in the first and second TM bandgaps. (d) The dielectric and Ez mode profile of one of
the four corner modes in a finite system of size 15 × 15 unit cells consisting of the two types of
unit cells in a core-cladding configuration. (e) A schematic of the DoS for the structure in (d).
A counting mismatch of states for bands 1 to 4 leads to four degenerate corner states in the
first TM bandgap. The counting mismatch for the edge states depends on the system size for
such a finite configuration. (f) The spectrum in the vicinity of the first TM bandgap for the
finite system shown in (d). The bulk, edge, and corner states are identified with blue, red, and
green dots respectively.
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To see that the dipole moments lead to edge states, we simulate a finite system
consisting of the expanded and contracted unit cells in a strip geometry. The strip
geometry is a large supercell consisting of an inner domain with the expanded unit cell
and an outer domain with the contracted unit cell with periodic boundaries along both
directions. This supercell consists of 25 unit cells, and therefore the spectrum should
contain 25 states per band. However, due to the non-zero dipole moments, bands 1 and
4 have a counting mismatch of one missing state (= 12) each, whereas bands 2+3 have a
vanishing dipole moment and have a counting mismatch of two missing states (= 02) as
shown in the edge spectrum in Fig. 4.4 (c). Due to the equal dipole moments along x
and y directions and the symmetries of the system, the edge spectrum is identical along
both x and y directions.

The non-zero corner charges for bands 1 to 4 will similarly lead to a counting mismatch
and the presence of corner states in a finite system with corners. To explore this, we
simulate a finite C4-symmetric system in a core-cladding configuration as shown in Fig.
4.4 (d). This finite configuration has four symmetry-related sectors with four corners. A
schematic of the spectrum of the finite system, up to the frequency range of the first four
TM bands is shown in Fig. 4.4 (e). The bulk, edge, and corner states have been identified
from their localization and mode profiles. The finite system has a size of 15 × 15 = 225
unit cells, and therefore each band contributes 225 states to the spectrum. However, the
dipole moment of the Wannier centers leads to edge states on all edges, as seen previously
in Fig. 4.4 (c). In the finite configuration, these edge states have a size-dependent
counting mismatch: the 24 boundary unit cells in this example host 24 edge states. In
addition to this, the counting mismatch due to the corners is size-independent and is
identified as equal to one missing state (= 14) each for bands 1 and 4 and two missing
states for bands 2+3 (= 24). Even if a C4-preserving perturbation to the corners pushes
the four corner states into any of the bulk bands, the counting mismatch for these bands
remains unchanged. For example, if the four corner states were pushed into band 1, the
counting mismatch for band 1 would go from one missing state to three additional states,
both of which are equal modulo 4.

4.4.2 Example 2: Dirac semi-metal in class AI

Next, we show the topological characterization of a PhC with generic Dirac points in class
AI. Consider the PhC as shown in the inset of Fig. 4.5 (a), which consists of an elliptical
disc (ε = 12) with its semi-major and semi-minor axes oriented along the diagonals of a
square unit cell. This PhC exhibits two sets of Dirac points along the Γ − M direction
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Figure 4.5. (a) TM-polarized band structure of a C2v-symmetric PhC whose unit cell is shown
in the inset. The little group irreps of the electromagnetic eigenmodes at HSPs are shown for
the first four bands. (b) Wilson loop eigenvalues Wy(Wx) for the bands 2, 3 and 4 plotted
as a function of kx(ky). The discontinuities indicate the presence of Dirac points. (c) Edge
spectrum of this PhC showing edge states (marked with arrows) whose dispersion terminates
at Dirac points (marked with circles) on the left (red) and right (light red) edges. (d) Dirac
points are gap-closing points that separate 1D topological phases with different Berry phases.
They can be thought of as sources of Berry phase.

between TM bands 2, 3, and 4 as shown in Fig. 4.5 (a). These Dirac points separate
trivial and topological gapped phases of a 1D subsystem that is obtained by fixing one of
the momenta, say ky, while varying kx across its entire range, constituting a 1D Brillouin
zone. In this example, the C2v irreps at the HSPs indicate that bands 2 and 4 have
different C2 (and hence I) eigenvalues at the Γ and X points, corresponding to a 1D
topological phase at the ky = 0 cut with [X1] = 1 (or equivalently, θ = π). On the other
hand, these bands have the same C2 (and hence I) eigenvalues at the Y and M points,
corresponding to a trivial phase at the ky = π/a cut with [X1] = 0 (or equivalently, θ

51



= 0).
This change in topology of the one-dimensional subsystem at the Dirac points can

also be seen in the Wilson loop spectrum. The Wilson loop eigenvalues plotted in Fig.
4.5 (b) exhibit jump discontinuities from 0 to π at the momenta of the Dirac points,
which correspond to a switch in the value of [X1] from 0 to 1. Consequently, edge states
only appear in the portion of the 1D edge Brillouin zone that is topologically non-trivial.
Fig. 4.5 (c) shows the edge spectrum for the PhC with open boundaries along x and
periodic boundaries along y. Here we clearly see that the Dirac points separate 1D
topologically non-trivial and trivial phases, with and without edge states respectively.
This is compatible with the fact that Dirac points are sources of π Berry phase. Hence,
the Wilson loop eigenvalue along a closed contour enclosing a single Dirac point is equal
to π as shown schematically in Fig. 4.5 (d).

Since the bands 2, 3, and 4 are non-degenerate at HSPs, we can classify them by
constructing the 2D indices under TRS from table 4.1, which are respectively χ

(2)
T =

(−1,−1,−1), χ(2)
T = (0, 0, 0) and χ

(2)
T = (1, 1, 1). The indices for bands 2 and 4 are

not found in table 4.1, and expanding these in a linear combination of OALs results
in fractional coefficients {αp}. These are therefore stable topological bands and must
contain a gapless point somewhere in the BZ under TRS. In this example, we directly
see that the PhC has Dirac points located on high-symmetry lines as seen in Fig. 4.5 (a).
Band 3 is an example of a situation where stable topological bands could have the same
indices as atomic limit bands, in which case additional checks such as computing the
Wilson loop are required for a correct identification.

Relevant to PhC design, these invariants can be useful for finding spectrally-isolated
Dirac points for applications such as creating cavity states that are algebraically localized
to embedded point defects [81–84,137] or enabling large-area single-mode lasing [138,139].
Moreover, once such Dirac points are found, breaking TRS can open a gap at the Dirac
points and endow the two bands involved with a non-zero Chern number. Thus, the
symmetry-indicator invariants could aid in the discovery and design of topological PhCs,
especially in fast random searches that require only looking at eigenmodes at HSPs.

4.4.3 Example 3: Chern insulator in class A

Consider the PhC introduced in the previous section consisting of elliptical discs. We
break TRS for this PhC by introducing non-diagonal terms in the permeability tensor
which correspond to a response of a gyromagnetic material under a magnetic field applied
in the z-direction. This opens bandgaps at the Dirac points, and therefore bands 2, 3,
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Figure 4.6. (a) TM-polarized band structure of a C2v symmetric gyromagnetic PhC whose
unit cell is shown in the inset. The Chern numbers for the first four bands are also shown. (b)
Wilson loop eigenvalues Wy(Wx) for the bands 2, 3, and 4 plotted as a function of kx(ky). The
winding of the eigenvalues indicates the non-Wannierizablility of the bands and the winding
number is equal to the Chern number of the band. (c) Edge spectrum of this PhC showing
chiral edge states (marked with arrows) on the left (red) and right (light red) edges. (d) A
schematic of a pair of bands with a non-zero Chern number and the associated chiral edge
states.

and 4 are non-degenerate with the invariants χ(2) = (−1 | −1,−1,−1), χ(2) = (+2 | 0, 0, 0)
and χ(2) = (+1 | 1, 1, 1) respectively, where the first index is the Chern number. We
obtained these Chern numbers by examining the winding number of the Wilson loop
eigenvalues shown in 4.6 (b). These plots indicate that bands 2, 3, and 4 have Chern
numbers of −1, +2, and +1, respectively, consistent with the constraints imposed by the
symmetry-indicator invariants given in (4.19). The Chern number leads to chiral edge
states at the boundary of a finite system as shown in Fig. 4.6 (c). These edge states
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exhibit perfect unidirectional transport and have been observed in gyromagnetic PhCs
at microwave frequencies [69,72]. Furthermore, devices with topological slow-light modes
that significantly outperform their conventional counterparts in terms of bandwidth have
been proposed as an application of such chiral edge states in PhCs [140–142].

4.4.4 Example 4: Fragile phase in class AI

Fragile phases consist of bands that exhibit symmetry-protected non-trivial winding in
their Wilson loop spectrum, indicating that these bands are non-Wannierizable. However,
when considered as a set along with additional atomic limit bands, the full set becomes
Wannierizable, and accordingly, the Wilson loop winding is lost. They are characterized
by indices that can be written as a linear combination of the invariants in tables 4.1-4.4
with at least one negative integer coefficient. Alternatively, the coefficients could be all
positive integers, in which case the number of bands required to generate the invariant is
greater than the number of bands in question.

We now present a novel realization of fragile bands in a PhC with C4v symmetry
whose unit cell is shown in the inset of Fig. 4.7 (a). The PhC is made of three materials,
ε1 = 1 (white), ε2 = 16 (black) and ε3 = 4 (gray). We consider the two isolated bands,
bands 8 + 9 in the TE-polarized band structure of this PhC shown in Fig. 4.7 (a). Using
the little group irreps of the electromagnetic eigenmodes at the HSPs, we compute the
invariant for these bands to be χ(4)

T = (0, 2,−1). Since this invariant is not found in
table 4.3, we express it as the following linear combination of OALs from table 4.3:
χ

(4)
T = (0, 2,−1) = (1, 1,−1) + (−1, 1, 0). The coefficients in this linear combination,

{αp}, are positive integers. However, three atomic limit bands are required to give rise to
this invariant (two bands are required to generate (1, 1,−1) and one band is required to
generate (−1, 1, 0)) indicating that this set of two bands is fragile. The non-Wannierizable
nature of these bands is also evident from the Wilson loop spectrum in Fig. 4.7 (b) which
shows opposite winding of the two eigenvalues.

A different PhC realization of a fragile phase with C6 symmetry is reported in [97]
where TM bands 2 + 3 are found to be non-Wannierizable but bands 1 + 2 + 3 have
Wannier centers at the 3c position of the C6-symmetric unit cell. The invariant for bands
2 + 3 is χ(6)

T = (−2, 0). Similar to the example above, this invariant requires three bands
and therefore the set of two bands is fragile. Adding another atomic limit band (from
TM band 1) at the 1a position with invariant χ(6)

T = (0, 0) makes the set of three bands
Wannierizable with Wannier centers at the 3c position of the unit cell.

Such fragile PhCs host corner states resulting from the total corner charge of all
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Wannierizable components in their decomposition [114,143].

Figure 4.7. (a) TE-polarized band structure of a C4v symmetric PhC with lattice constant,
a, whose unit cell is shown in the inset. This unit cell consists of dielectric discs of ε1 = 1
(white) with r1 = 0.2a and ε2 = 16 (black) with r2 = 0.225a in a background material of ε3 = 4
(gray). The little group irreps of the electromagnetic eigenmodes at HSPs are shown for bands
8 and 9. (b) Wilson loop eigenvalues Wy(Wx) for the bands 8+9, plotted as a function of
kx(ky). The opposite winding of the eigenvalues indicates the non-Wannierizablility of the
bands, particularly that the bands are fragile.

4.5 Other topological phases
We now discuss other topological phases where crystalline symmetries play a crucial role,
but whose realization may not be directly inferred from the topological indices presented
here. This is because such systems mimic degrees of freedom of spinful systems or are
protected by mechanisms beyond bulk-obstructed topological phase transitions, both of
which lie outside of the presented classifications.

4.5.1 Quantum spin-Hall analogues

The electronic quantum spin-Hall effect (QSHE) can be thought of as being deformable
to two Chern insulators with opposite Chern numbers stacked on top of each other, one
for each spin degree of freedom [144–146]. This creates spin-polarized “helical” edge
states on the boundary of a finite sample and are protected against back-scattering
by Kramers’ degeneracy at a time-reversal-invariant momentum point. To construct a
PhC realization of the QSHE, a fermionic time-reversal operator is needed that squares
to −1, as opposed to the bosonic counterpart for classical electromagnetic waves that

55



squares to +1. This can be achieved by incorporating spatial symmetries, particularly C6v

symmetry, to construct a pseudo-TR operator. It can be shown that the bulk topology
of such a PhC is identical to that of the QSHE by explicit calculation of the pseudo-spin
polarized Wilson loop spectrum [147], where an opposite winding of the two eigenvalues
is observed. However, since this winding is enforced by a crystalline symmetry, it is
more appropriate to classify these PhCs as fragile phases than as true QSH systems.
Nevertheless, such PhCs have states with a well-defined pseudo-spin, analogous to the
spin of electrons [73–77]. A finite system of this kind has pseudo-spin polarized helical
edge states, similar to the QSHE, as shown in Fig. 4.8 (a). However, the presence of an
edge necessarily breaks the C6v symmetry of the bulk and therefore also the pseudo-TR
symmetry allowing for the hybridization of the edge states. This opens a gap in the edge
spectrum as shown in Fig. 4.8 (a) and allows for the back-scattering of the edge states.

4.5.2 Valley-Hall phases

As shown previously, Dirac points can be gapped by breaking TRS thereby creating
bands with a non-zero Chern number. Breaking inversion symmetry can also gap Dirac
points and introduce local Berry curvature with boundary manifestations. Reducing
C3v or C6 symmetry to C3 gaps the Dirac points that generically exist at the K(K′)
points of the BZ. This causes the Berry curvature to peak at the “valleys” formed at
the K(K′) points. Due to TRS, the total Berry curvature and the Chern number are
identically zero. However, the non-zero local Berry curvature at the K(K′) valleys can
be used to define valley Chern numbers such that CK = −CK′ . The bulk-boundary
correspondence for such a system is only well-defined at the boundary between two such
systems, one spatially inverted with respect to the other. The edge states that thus
emerge have a dispersion as shown in Fig. 4.8 (b) and can generally backscatter, unlike
the chiral edge states of a Chern insulator. However, it can be shown that certain types of
edge geometries and symmetry-preserving perturbations suppress inter-valley scattering,
leading to nearly perfect (but incidental) backscatter-free transport [86]. Such edge states
have been observed in PhC designs spanning orders of magnitudes in frequency [85–87].

4.5.3 Quadrupole and Octupole topological insulators

Quadrupole and octupole topological insulators (QTIs and OTIs, respectively) are also
crystalline symmetry-protected topological phases and host fractional corner charges,
similar to OAL insulators [148]. They are Z2 classified, with fractional charges quantized
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Figure 4.8. (a) Pseudo-spin polarized helical edge states of a quantum spin-Hall analog
PhC. (b) Edge states of a valley-Hall PhC. (c) Schematic of a PhC quadrupole insulator with
vanishing bulk dipole moment and non-zero bulk quadrupole moment.

to 1/2 (0) mod 1 in the topological (trivial) phases. The prototypical model is C4v

symmetric [149]. Under C4 symmetry, the QTI phase is bulk-obstructed and therefore
an atomic limit. However, relaxing C4v down to only reflection symmetries also protects
the quantization of corner charge, although their symmetry-indicator invariants due
to reflection symmetry vanish. Thus, the protection due to reflection symmetries is
more subtle than for OALs; they exhibit a gapped Wilson loop spectrum, not pinned
by symmetries, and the change in topology here is accompanied by a gap closing in the
Wilson loop spectrum, which implies a gap closing at the edges of the sample, instead of
in the bulk spectrum.

QTI and OTI phases require a set of anti-commuting spatial symmetries that can
be achieved by threading a π-flux in simple tight-binding models. However, PhCs
cannot be accurately described by such models and instead a quadrupole phase can be
achieved by breaking time-reversal symmetry while preserving the product of mirror and
time-reversal symmetries [94]. Alternatively, QTI phases can also be realized in PhCs
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with anti-commuting glide symmetries [95]. Topological indices that diagnose the QTI
and OTI topologies have been recently demonstrated [150,151], and follow the natural
extension of the index for dipole moments [152]. They have recently been used to show
that QTIs are also protected solely by chiral symmetry [153–155], which has led to the
discovery of a Z classification of higher-order topological insulators in 2D and 3D [156].

4.6 Discussion
In solids, the atomic ions form potentials that bind electronic orbitals. The electrons
in the crystal hop between these orbitals, giving rise to energy bands that can often
be accounted for by simplified tight-binding models, where the hopping terms in the
Hamiltonian are given by the overlap integrals between different orbitals. Photonic
analogs of solid-state lattices have been achieved in periodic arrays of coupled waveguide,
where each waveguide supports a guided mode so that the extended array can be thought
of as having inter-orbital hoppings that also lead to tight-binding descriptions [157]. As
a result, the electronic theory of non-interacting topological phases carries over directly
to this case. In contrast, the PhCs studied in this work are not well-described by simple
tight-binding models.

In the past several years, topological phenomena of various types have been found
in PhCs [60–62, 68], validating the notion that topological band theory is a wave phe-
nomenon and transcends the existence of bound orbital states present in electronic
systems. Motivated by these recent developments, we have rigorously extended the use of
symmetry-indicator invariants to classify one- and two- dimensional PhCs with crystalline
symmetries, with and without time-reversal symmetry. Through various examples, we
have also demonstrated that the bulk-boundary correspondence of topological band
theory carries over to these systems as well.

A further crucial difference between PhCs and solids is that PhCs host classical waves
as opposed to electrons, which are fermions. For topological band theory, this has two
consequences. First, there is no Kramers’ degeneracy for electromagnetic waves, and
thus there is no protection of helical edge states as in the QSHE phase of electronic
systems. As discussed in Section V, the edge states in the PhC versions of the QSHE
phase are not protected in the strictest sense. Second, there is a lack of a notion of
filling of bands and a more subtle notion of a filling anomaly in PhCs, the latter of
which results in the fractional quantization in the local density of states, as opposed to
charges [129]. We have demonstrated that such fractionalization comes from a counting
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mismatch of states (closely related to the filling anomaly in fermionic systems), and that
the boundary-localized states associated with it are the consequence of the conservation
of the number of degrees of freedom in the system, and do not require a Fermi level. We
have further demonstrated how the topological invariants based on symmetry indicators
relate to the presence of counting mismatches and their boundary states. Finally, we
have also presented a novel realization of fragile bands in a PhC with C4v symmetry.

Besides being an excellent platform for exploring the novel physics of topological
materials, we believe that topological phenomena in PhCs will lead to novel technologies
and design strategies. We expect that the algebraic structure of the classification presented
here would be useful in this domain.
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Chapter 5 |
Polarization in Chern insulators

Chern insulators are topologically characterized by Chern numbers that present an
obstruction to the construction of exponentially-localized Wannier functions and, as a
result, electric polarization is believed to be ill-defined in Chern insulators [158]. In
this chapter, we show that electronic boundary charges and currents can exist in Chern
insulators that are accounted for by a notion of relative polarization. We show further that
this relative polarization can be quantized in the presence of inversion symmetry, leading
to weak topological phases, similar to those in conventional insulators. A consequence of
this is the fractional quantization of charge along with concomitant topological states.
This chapter is based on work that was done in collaboration with Mikael C. Rechtsman
and Wladimir A. Benalcazar.

5.1 Introduction
In conventional insulators, the electric polarization P can be formulated in terms of Berry
phases along the non-contractible loops of the Brillouin zone or equivalently in terms of
the positions of the exponentially-localized Wannier functions, so-called Wannier centers,
of occupied bands [5]. In 2D crystalline insulators, the polarization P = P1a1 + P2a2,
where ai=1,2 are primitive lattice vectors, has components Pi = 1

2π

∮
d2kTr[Ai(k)], which

can be written as

Pi =
∮

dkjpi(kj), (5.1)

pi(kj) =
∮

dkiTr[Ai(k)] mod 1 (5.2)

for i, j = 1, 2; i ̸= j, and where Ai is the Berry connection with elements [Ai(k)]m,n =
−i ⟨um(k) |∂ki

|un(k)⟩ and |um(k)⟩ is the Bloch eigenstate of occupied band m.
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In Chern insulators, pi(kj) winds around the 1D Brillouin zone formed by kj ∈
[−π/aj, π/aj). This winding simultaneously reflects the difficulty in building exponentially-
localized Wannier functions and defining polarization in Eq. 5.1, as its value depends on
the starting point in the loop integral along kj. Furthermore in Chern insulators, the
existence of chiral edge states that cross the Fermi level also complicates establishing the
bulk-boundary correspondence to polarization because the boundary charge gets affected
by the partial occupation of its chiral edge states [159]. As such, whether the polarization
in Chern insulators is a meaningful quantity has remained elusive in topological band
theory.

In this chapter, we show that Chern insulators can exhibit boundary charges and
currents that can be accounted for by a notion of relative polarization. In the presence
of crystalline symmetries, the boundary charge is quantized similar to conventional
insulators. We generalize this principle and show that, similarly, corner charges and
states akin to those arising from higher-order topology are possible within Chern insulators.
Our central argument is based on the observation that boundaries do not respond to
the polarization of a bulk, but rather, to the difference in polarization across the two
domains separated by the boundary. In the case of polarization, the only meaningful bulk-
boundary correspondence at a boundary that separates regions r1 and r2 perpendicular
to n̂ is the existence of boundary charge σ given by

σ =
(
P(1) − P(2)

)
· n̂ mod 1, (5.3)

where we have set the unit cell lengths at all directions and regions to 1 for simplicity.
If for regions r1 and r2 we have C1 ≠ C2, n chiral edge states will appear at their
common boundary, with n = |C1 − C2|. This, in conjunction with the winding of
pi(kj), makes the definition of the polarization problematic. Coh and Vanderbilt studied
how a definition of the polarization might be saved in the case C1 = 1, C2 = 0, but
only with a knowledge of the wave vector at which the occupancy of the edge state is
discontinuous [159]. We instead consider the case in which C1 = C2 but nevertheless
regions r1 and r2 belong to different domains. To clearly present our case, we make
use of additional crystalline symmetries to force the two domains to belong to different
symmetry-protected weak topological phases. Imposing these crystalline symmetries not
only facilitates our argument, but also fractionally quantizes the response to polarization.
The two domains we choose are such that C1 = C2 and the difference p(1)

i (kj) − p
(2)
i (kj)

does not wind, even though p(α)
i (kj), for α = 1, 2, individually do. This property enables
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a well-defined bulk-boundary correspondence that probes the difference in polarization
at the boundary between r1 and r2. Similarly, we show the presence of an adiabatic
current when one domain is adiabatically varied with respect to the other domain such
that the relative polarization changes. This demonstrates that a well-defined, observable
response to polarization can exist in systems without a Wannier representation, deeming
the bulk polarization as the fundamental physical quantity regardless of whether a
Wannier representation is possible, and thereby displacing the existence of a Wannier
representation as a sufficient, but not necessary, criterion for bulk polarization, adiabatic
current, and boundary charge.

5.2 Results

5.2.1 Tight-binding model

We consider a tight-binding model of a Chern insulator described by the following
generalized Qi-Wu-Zhang (QWZ) Hamiltonian

hQWZ(k, θ) = sin kxσx + sin(ky + θ)σy + [m+ cos kx + cos(ky + θ)]σz, (5.4)

where k = (kx, ky) is the crystal momentum, σx,y,z are the Pauli matrices and m is a mass
term. For θ∗ = 0 and π, this Hamiltonian possesses inversion symmetry, Ih(k, θ∗)I =
h(−k, θ∗), with I = σz, as well as particle-hole symmetry Ξh(k, θ∗)Ξ−1 = −h(−k, θ∗)
with Ξ = iσyK (K is complex-conjugation). m governs the value of the Chern number (C)
of the two bands of this model. Specifically, for the lowest band, C = 1 for 0 < m < 2,
C = −1 for −2 < m < 0, and C = 0 otherwise. The plots of px(ky) for m = 0.25 and for
θ = 0 and π are shown in Fig. 5.1 (a) and (b), respectively.

Under open boundary conditions along one direction, i.e., with vacuum on the exterior,
the systems with θ = 0 and π host chiral edge states as shown in Fig. 5.1 (d) and (e).
However, due to the relative momentum-space shift between these models introduced by
θ, the chiral edge states cross the gap in different portions of the edge Brillouin zone.

5.2.2 Boundary charge and charge pumping

Next, we consider the boundary between two regions, r1 and r2 with Bloch Hamiltonians
hr1(k) = hQWZ(k, 0) and hr2(k) = hQWZ(k, π). We observe that hr1 and hr2 have distinct
windings in pi(kj) such that

∮
dki∆pi(kj) =

∮
dki[p(1)

i (kj) − p
(2)
i (kj)] = π, as shown in
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Figure 5.1. (a), (b) px(ky) for the occupied band of hQWZ(k, 0) and hQWZ(k, π) respectively,
for m = 0.25. (c) ∆px(ky) for hQWZ(k, 0) and hQWZ(k, π). (d), (e) Edge spectrum for hQWZ(k, 0)
and hQWZ(k, π) respectively, with open boundaries as depicted in the bottom panel. (f) Edge
spectrum for an inversion-symmetric configuration consisting of two domains described by
hQWZ(k, 0) and hQWZ(k, π).

Fig. 5.1 (c). Now let us consider a finite inversion-symmetric composite system that
consists of the two domains described by hr1 and hr2 as shown in orange and blue in the
schematic at the bottom of Fig. 5.1 (f). In this case, the hybridization of chiral edge
states of the two Chern insulators leads to the formation of bi-directional in-gap edge
states. As a result of this and the presence of inversion symmetry, quantized fractional
charges appear at each of the two boundaries at exactly half filling1, as shown in Fig. 5.2
(a).

The prescription above for determining the accumulation of boundary charge due to
polarization in Chern insulators also serves as a platform to probe adiabatic currents.
Since a Wannier center picture is not possible, the bulk currents are difficult to examine
directly. However, we can show the existence of these bulk currents indirectly, via their
effects on the boundary charges. To this end, we consider adiabatically evolving the
domain r2 in Fig. 5.1 (f), with respect to the parameter θ, i.e. hr2(k, θ) = hQWZ(k, θ)

1Inversion symmetry was infinitesimally broken to slightly lift the degeneracy between edge states
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for θ ∈ [0, 2π), while keeping r1 constant, i.e., hr1(k) = hQWZ(k, 0). The two domains
remain gapped in the bulk for the full cycle of the adiabatic parameter. In Fig. 5.2 (b),
we plot the boundary charges as a function of θ, where we clearly observe the pumping of
charges from one boundary of the system to the other boundary, as a result of adiabatic
currents in the bulk. The formation of adiabatic currents in the bulk can be attributed to
a change in the relative polarization between the two domains, leading to a measurable
response at their boundary.

Figure 5.2. (a) Fractionalization of boundary charge at half filling in the system shown in
Fig. 5.1 (f). Under inversion symmetry, these boundary charges are quantized to ±0.5. (b)
The change in the left and right boundary charges due to charge pumping as a function of the
adiabatic parameter θ. The system has inversion symmetry at θ = 0 and π.

5.2.3 Topological aspects and symmetry indicators

We next turn to a description of inversion-symmetric Chern insulators and atomic limits
using a symmetry-indicator approach, similar to that developed in the previous chapter.
Bands in class A under inversion symmetry are classified by a set of indices given by

χ =
(
C

∣∣∣∣ [X], [Y ], [M ]
)

(5.5)

where C is the Chern number, the symmetry indicators [Π] are defined as [Π] ≡ #Π−#Γ
where #Π is the number of states in the set of bands under consideration with inversion
eigenvalue +1, at the high-symmetry point (HSP) Π. When C = 0, polarization can be
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calculated as follows

P = 1
2 ([Y ] + [M ]) a1 + 1

2 ([X] + [M ]) a2, (5.6)

where a1 and a2 are the primitive lattice vectors. Additionally, some indices can lead to
higher-order topological corner states determined by the corner charge

Qcorner = 1
4 (−[X] − [Y ] + [M ]) (5.7)

Both P are Qcorner are defined modulo a unit electronic charge.
For two Chern insulators described by indices χ1, χ2 but with the same Chern number

C1 = C2 = C, the difference index, ∆χ = χ2 − χ1, defined as

∆χ =
(

0
∣∣∣∣ [X]2 − [X]1, [Y ]2 − [Y ]1, [M ]2 − [M ]1

)
, (5.8)

has a vanishing Chern component and therefore describes either an atomic limit or a
fragile phase. As a result, while P and Qcorner are ill-defined for χ1 and χ2 individually,
the relative polarization, ∆P, and relative corner charge, ∆Qcorner, can be defined using
∆χ as

∆P = 1
2 ([Y ]2 − [Y ]1 + [M ]2 − [M ]1) a1 + 1

2 ([X]2 − [X]1 + [M ]2 − [M ]1) a2, (5.9)

∆Qcorner = 1
4 [−([X]2 − [X]1) − ([Y ]2 − [Y ]1) + ([M ]2 − [M ]1)] . (5.10)

Consequently, edge and corner states would be expected to appear at the boundary
between the Chern insulators described by χ1 and χ2 when ∆P and ∆Qcorner are non-zero.
In the previous sections, we have already seen the appearance of such polarization-induced
edge states in the tight-binding model. We now demonstrate the the presence of these
edge states and corner states in experimentally realizable gyro-magnetic Chern photonic
crystals (PhCs).

5.2.4 Photonic crystal example

The unit cells of the proposed inversion-symmetric, two-dimensional PhCs are shown in
the inset of Fig. 5.3 (a), each of which consist of two dielectric discs made out of Yttrium-
Iron-Garnet (YIG), a strong magneto-optical material at microwave frequencies. These
two unit cells are related by a half-lattice-constant shift in both x and y directions and
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Figure 5.3. (a) The TM band structure of the PhCs with contracted and expanded unit cell
types shown in the inset. The high-symmetry points are labelled by inversion eigenvalues for
both unit cell types. The inset also shows the maximal Wyckoff positions for inversion-symmetric
unit cells. (b) px(ky) for band 3 for the contracted and (c) expanded unit cell. (d) The edge
spectrum of a composite inversion-symmetric system made of the two types of unit cells in a
strip geometry showing the presence of bi-directional edge states. (e) The Ez mode profile of
the corner states and dielectric profile of a finite system made of the two unit cell types in
a core-cladding configuration. The corner states shown here originate from the Chern bands
with their frequency lying inside the bandgap between bands 3 and 4. (f) A schematic of the
photonic density of states for bands 1 to 4 for the finite system in (e) with 11 × 11 unit cells.

we refer to them as “contracted” and “expanded”. On breaking time-reversal symmetry,
TM band 3 acquires a Chern number of +1 for PhCs with either unit cell type, as can
be seen from the windings in px(ky) shown in Fig. 5.3 (b) and (c). The relative shift in
the windings of px(ky) for the two unit cell types is similar to the shift previously seen in
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the QWZ Hamiltonians with θ = 0 and π in Fig. 5.1 (a) and (b).
Using the inversion eigenvalues at HSPs for contracted and expanded unit cell types,

we now calculate the χ indices, ∆χ, ∆P and ∆Qcorner for first four TM bands in the
table 5.1.

Band # χ2 (Contracted) χ1 (Expanded) ∆χ = χ2 − χ1 ∆P(∆χ) ∆Qc(∆χ)
Band 1 (0 | 0, 0, 0) (0 | − 1,−1, 0) (0 | 1, 1, 0) 1/2(a1 + a2) 1/2
Band 2 (0 | 0, 0, 0) (0 | 1, 1, 0) (0 | − 1,−1, 0) 1/2(a1 + a2) 1/2
Band 3 (1 | − 1,−1,−1) (1 | 0, 0,−1) (0 | − 1,−1, 0) 1/2(a1 + a2) 1/2
Band 4 (1 | 1, 1, 1) (1 | 0, 0, 1) (0 | 1, 1, 0) 1/2(a1 + a2) 1/2

Table 5.1. χ indices, ∆χ, ∆P and ∆Qcorner for first four TM bands of the PhCs with the
contracted and expanded unit cell typees.

From this analysis, we see that Bands 1 and 2 are atomic limit bands with Wannier
centers at the 1a position for the contracted unit cell, and at the 1b position for the
expanded unit cell.2 Bands 3 and 4 are Chern bands that do not have Wannier centers
but nevertheless have a non-zero relative polarization and corner charge between the two
unit cell types.

To explore the bulk-boundary correspondence of relative polarization and corner
charge, we first simulate a finite system consisting of an inner domain with the expanded
unit cell and an outer domain consisting of the contracted unit cell in a “strip geometry”
similar to the schematic in Fig. 5.1 (f). In Fig. 5.3 (d), we observe that the edge spectrum
contains bi-directional edge states similar to those found in the tight-binding model in
Fig. 5.1 (f). Next, we simulate a finite system in a “core-cladding” type of geometry and
find corner states as shown in Fig. 5.3 (e). Using a counting mismatch argument that
we developed in the previous chapter, we show that the edge and corner states originate
from multiple bands, suggesting a phenomenon analogous to the pairing of Wannier
centers due to a filling anomaly in obstructed atomic limits. The state counting and a
schematic of the photonic density of states (DoS) for the first four TM bands is shown
in Fig. 5.3 (f). We see here that the state counting for both edge and corner states is
identical for the obstructed atomic limit bands (bands 1 and 2), and Chern bands (bands
3 and 4), due to the identical values of ∆P and ∆Qcorner that they possess.

Along with the quantization of boundary charge and existence of adiabatic current in
the tight-binding model, the edge and corner states in the Chern PhCs demonstrate that

2For Wyckoff positions, see inset of Fig. 5.3 (a)
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a notion of a relative polarization is indeed well-defined for the Chern bands and the
bulk-boundary correspondence operates similarly to that in obstructed atomic limits.

5.3 Conclusion
In this chapter, we have proposed that a well-defined, observable response to polarization
can exist in systems without a Wannier representation, particularly in Chern insulators.
We have demonstrated the consequences of this, i.e., quantization of boundary charges
under inversion symmetry, and the presence of adiabatic currents, using a tight-binding
model. We have further demonstrated the existence of a bulk-boundary correspondence
resulting in edge and corner states in Chern photonic crystals that could lead to an
experimental realization of this phenomenon.
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Chapter 6 |
Point-defect-localized bound states
in the continuum

In this chapter, we show that point defects in two-dimensional photonic crystals can
support bound states in the continuum (BICs). The mechanism of confinement is a
symmetry mismatch between the defect mode and the Bloch modes of the photonic
crystal. These BICs occur in the absence of bandgaps and therefore provide an alternative
mechanism to confine light. Furthermore, we show that such BICs can propagate in
a fiber geometry and exhibit arbitrarily small group velocity which could serve as a
platform for enhancing non-linear effects and light-matter interactions in structured
fibers. This chapter is based on work that was done in collaboration with Wladimir A.
Benalcazar, Alexander Cerjan and Mikael C. Rechtsman [137].

6.1 Overview
Over the last three decades, photonic crystals (PhCs) have been shown to exhibit
exceptional confinement and transport properties that exploit the existence of a photonic
bandgap, a band of frequencies where no electromagnetic waves may propagate [3, 4,
160,161]. Photonic bandgaps can inhibit spontaneous emission of embedded quantum
emitters [162–165], facilitate slow-light through band-edge operation [166] or host localized
defect modes that can serve as high-Q resonators or waveguides. Confined defect modes
form the basis of many devices such as PhC fibers [167, 168], spectral filters, and
lasers [169,170] and to achieve near-perfect confinement, defect modes are constructed
to lie within photonic bandgaps so as to spectrally isolate them from the extended
states of the PhC. However, this necessitates the use of materials with a sufficiently
high refractive index to open complete gaps. An alternative mechanism for confinement
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could circumvent the need for bandgaps, enabling the use of many low-refractive index
materials such as glasses and polymers as well as increasing design flexibility for the
realization of PhC-based devices.

One possible way to achieve this is by using bound states in the continuum (BICs).
BICs are eigenmodes of a system that, despite being degenerate with a continuum of
extended states, stay confined – this confinement may result from a variety of mechanisms
[171]. For example, modes of a PhC slab that lie above the light line of vacuum and
therefore could radiate, can remain perfectly bound to the slab due to symmetry mismatch
or due to topological vortices in the far-field radiation [172–177]. Previous designs with
BICs have mostly shown confinement of a mode in one dimension lower than that of
the environment. Recently, corner-localized BICs were predicted and observed in two-
dimensional chiral-symmetric systems with higher-order topology [178,179]. However,
chiral (sub-lattice) symmetry is, in general, strongly broken in all-dielectric PhCs. Indeed,
confinement in the continuum has to this point not yet been achieved in point defects
embedded inside multi-dimensional PhCs.

In this chapter, we predict the existence of BICs that are exponentially confined to
point defects in a two-dimensional PhC environment. The defect cavity and bulk PhC
are designed such that radiation leakage is prohibited due to a symmetry mismatch
between the defect mode and the ambient continuum states. The BICs proposed here
are protected by the simultaneous presence of time-reversal symmetry (TRS) and the
point group of the lattice and as such are robust as long as these symmetries are
maintained. As an application for these BICs, we also show how they can circumvent
bandgap requirements and be used as propagating fiber modes with arbitrarily small
group velocity in a low-contrast slow-light PhC fiber.

We draw a distinction between our BICs and the previously reported defect modes
degenerate with Dirac points in 2D PhC [82–84, 180–182]. In the latter case, the
confinement of light to a defect site is due to a vanishing density of states at the Dirac
point, which is where that confined mode’s frequency lies. Characteristically, such defect
modes exhibit weak confinement due to the algebraic mode profile away from the defect
site. In contrast, the defect modes presented here are bona fide symmetry protected
BICs that are exponentially localized to the defect site.
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6.2 Results

6.2.1 Two-dimensional photonic crystals with spectrally-isolated two-
fold degeneracies

Figure 6.1. (a) The unit cell of a two-dimensional PhC consisting of circular discs. The
symmetry operators of the C4v point group are labelled. (b) The Brillouin zone of the PhC
showing its HSPs and the little groups under which the HSPs are invariant. The solid color
consists of all momenta that lie within the irreducible Brillouin zone.

Consider a two-dimensional PhC consisting of a square lattice of discs with dielectric
constant ε and radius r embedded in vacuum. This PhC, as shown in Fig. 6.1 (a) is
invariant under 90◦ rotations (C4, C2

4 , C−1
4 ), and reflections along the x, y axes and two

diagonals (σx, σy, σd1 , σd2). These symmetry operations constitute the C4v point group.
The irreducible Brillouin zone of this lattice contains three inequivalent high symmetry
points (HSPs), namely, Γ = (0, 0), X = (π/a, 0) and M = (π/a, π/a), as shown in
Fig. 6.1 (b). The HSPs Γ and M are invariant under the full C4v group, while X is
invariant only under the little group, C2v. Eigenmodes of the PhC at a HSP transform
according to the irreducible symmetry representations (irrep) of the group under which
the HSP is invariant. The X point has four possible one-dimensional irreps (a1, a2, b1, b2)
with character table as shown in Table 6.1. Similarly, the Γ and M points have four
one-dimensional irreps (A1, A2, B1, B2) and one two-dimensional irrep (E) with character
table as shown in Table 6.2 [4]. The eigenmodes of a C4v symmetric PhC that transform
according to the two-dimensional irrep (E) of the C4v point group, commonly manifest
as quadratic two-fold degeneracies at Γ and M in the presence of TRS. When C4v is
broken, this degeneracy splits into two Dirac points as long as inversion and TRS are
retained. However, breaking TRS can lift the degeneracy completely [183].
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C2v I C2 σx σy

a1 1 1 1 1
a2 1 1 −1 −1
b1 1 −1 1 −1
b2 1 −1 −1 1

Table 6.1. Character table for the C2v point group.

C4v I 2C4 C2 2σx,y 2σd1,d2

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Table 6.2. Character table for the C4v point group.

We now describe the general mechanism for creating defect-localized BICs. By
changing the geometric parameters of the lattice, the band dispersion of a C4v and
TRS-symmetric PhC can be designed such that the two-fold degeneracy at either Γ or
M is spectrally isolated from other bands. In a large system consisting of many unit
cells of such a PhC (a supercell), a single defect site with radius rd ̸= r is introduced
at the center. This creates modes with a significant support on the defect site that
generally radiate by hybridizing with the bulk states of the PhC, forming leaky resonances
that are characterized by a complex frequency with a negative imaginary part. The
frequency of such modes can be tuned by changing the parameters of the defect site
such as size or dielectric constant. When the real part of the frequency of the defect
mode exactly matches that of the spectrally-isolated two-fold degeneracy of the bulk, it
becomes a perfectly confined BIC provided that the defect mode transforms according
to a one-dimensional irrep that is orthogonal to the two-dimensional irrep of the bulk.
The presence of this BIC can be inferred from the vanishing of the imaginary part of the
frequency and hence a diverging quality factor, Q = −Re(ω)/2Im(ω), of the defect mode.

6.2.2 FDTD simulations

To demonstrate this, we simulate this system using finite-difference time domain method
(FDTD) as implemented in MEEP [1]. The bulk band requirements are easily met in
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Figure 6.2. (a) The TM bands and photonic DoS of a square lattice of dielectric discs of
ε = 4 and r/a = 0.275 calculated using MPB [2]. The spectrally-isolated two-fold degeneracy is
marked with an arrow. (b) Quality factor (Q) of the defect mode as a function of defect radius
(rd). The sharp divergence in Q indicates the existence of a BIC at rd/a = 0.224. The inset
shows the dependence of the defect mode frequency on rd. (c) The E-field intensity envelope of
the BIC showing exponential localization as a function of distance (along the y-axis) from the
defect site. The inset shows the z-component of the E-field of the BIC, extracted from FDTD
simulations. (d) The E-field intensity envelope of the resonance when the symmetry of the
supercell is reduced from C4v to C2v. The inset shows the z-component of the E-field of the
resonance, extracted from FDTD simulations.

a simple square lattice of discs with dielectric constant ε = 4 and radius r/a = 0.275,
where a is the lattice constant in both x- and y-directions. The chosen values of ε and
r/a allow the spectrally-isolated two-fold degeneracy to occur between TM bands 10 and
11 at the M point as shown in Fig. 6.2 (a). The photonic density of states (DoS), also
shown in the same figure, is given by DoS(ω) = ∑

n

∫
k∈BZ δ[ω − ωn(k)]dk, where ωn(k)

is the frequency eigenvalue at the momentum k and band index n. Since each band
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undergoes an extremum at the degeneracy, the DoS exhibits a jump-discontinuity-type
Van Hove singularity between two finite and non-zero values. The non-vanishing set of
states at the degeneracy forms the continuum within which a BIC can be created.

In a large supercell, we now introduce a defect by changing the radius (rd ≠ r) of
a single disc in the center of the supercell. As we scan the values of rd, a BIC emerges
for the specific value of the defect radius that corresponds to a mode with the exact
frequency of the bulk degeneracy. This is seen from the sharp divergence of the Q-factor
of the defect mode as shown in Fig. 6.2 (b). Examining the mode profile shown in the
inset of Fig. 6.2 (c) reveals that the defect mode transforms according to the irrep A1

which is prevented from mixing with the basis modes of the orthogonal two-dimensional
irrep, E, of the bulk. Moreover, the mode shows very strong exponential localization
to the defect site which can be seen by plotting the intensity envelope as shown in Fig.
6.2 (c). Another important feature of this BIC is its occurrence above ωa/2πc = 1. This
implies that the lattice constant of the bulk PhC is larger than the wavelength of the
BIC mode, a property which could prove useful for fabrication, because features sizes
would need not be subwavelength.

To conclusively show that this BIC is indeed symmetry protected, we change the
defect site from a disc to a filled ellipse, which reduces the symmetry of the supercell
from C4v to C2v. Due to this deformation, the degeneracy between the two modes that
formed the two-dimensional irrep, E, of C4v is very slightly lifted and the resultant
non-degenerate modes have the one-dimensional irreps b1 and b2 of C2v. This symmetry
breaking is achieved by changing the defect site from a circular disc to an elliptical disc
with semi-major and semi-minor axes lengths of 0.53a × td and 0.4a × td respectively
where a is the lattice constant and td is a tuning parameter which is varied. Fig. 6.3
shows a comparison of quality factors of the defect mode for the two cases and clearly
shows the lack of divergence of Q in the C2v symmetric supercell, indicating that the
defect mode is not a BIC but a resonance.

Indeed, the field pattern of the defect mode as shown in the inset of Fig. 6.2 (d),
transforms according to b2, which coincides with one of the irreps of the bulk enabling
the defect and bulk modes to couple and create a leaky resonance with a finite Q. This
is also evident from the intensity envelope of the resonance as shown in Fig. 6.2 (d) that
markedly demonstrates the lack of exponential confinement to the defect site.

To further assess the impact of symmetry breaking due to fabrication imperfections,
we consider the same 2D PhC system as discussed in Fig. 6.2. We then calculate the
Q-factor of the defect mode from FDTD simulations where the defect site is displaced
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Figure 6.3. (a) Quality factor of the defect mode (irrep A1) in a supercell with C4v symmetry.
The divergence in Q shows the appearance of a BIC. (b) Quality factor of a defect mode (irrep
b2) in a supercell with only C2v symmetry. The lack of divergence indicates that the defect mode
is a resonance. The insets show the defect mode profiles for parameter values corresponding to
the maximum Q.

Figure 6.4. (a) Displaced defect site inducing a symmetry breaking in the supercell. (b)
Quality factor of the defect mode as a function of the normalized displacement of the defect
site.

along the x-direction as shown in Fig. 6.4 (a). Fig. 6.4 (b) shows a plot of the Q-factor as
a function of the displacement, ∆x, normalized to the wavelength of the defect mode, λd.
As is expected for any symmetry-protected BIC, this perturbation degrades the Q-factor
of the BIC. However, we can see that the defect mode still exhibits high Q-factors for
typical PhC slab and fiber fabrication errors, which are much less than λd/10. Therefore,
any perturbations that are much smaller than the scale of the wavelength will still allow
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the system to exhibit an ultra-high-Q resonance.

6.2.3 Scheme for finding photonic crystals with desired properties

Figure 6.5. (a) The PhC design with three parameters: r1, r2, and r3 made out of a dielectric
material with ε = 2.8 (b) TM bands of the PhC shown in (a) for optimized values r1/a = 0.0924,
r2/a = 0.4066 and r3/a = 0.4238. The spectrally isolated degeneracy occurs at Γ and is marked
with an arrow.

The symmetry mismatch between the defect mode and bulk bands requires the
existence of a spectrally-isolated two-fold degeneracy in the bulk PhC, so the question
naturally arises: how easy is it to design this bulk band requirement? It is clear from our
findings that even simple C4v-symmetric PhC designs are able to satisfy the requirements
for reasonably low dielectric contrast and in fact, the feature in the TM bands of the
PhC discussed in Fig. 6.2 (a) persists down to ε = 3 for a slightly smaller value of r/a.
Furthermore, the search space can be expanded to include C3v and C6v point groups
since such quadratic degeneracies can also occur at the Γ point in those lattices, forming
two-dimensional irreps of the respective point groups.

We now describe a scheme for finding PhCs with the desired property of hosting
spectrally-isolated two-fold degeneracies. The software package MPB [2] outputs the
bandgap along a given trajectory in k-space and provides optimization routines to find
bandgaps given some free parameters. We can utilize this function to find isolated
degeneracies in PhCs. The idea is based on the fact that in a PhC where spectrally-
isolated degeneracies occur at HSPs, simply detuning away from HSPs by a small amount
∆k results in the opening of a small stop band proportional to ∆k2. The structural
parameters of the PhC can then be optimized to find these small stop bands.
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To demonstrate this, we consider the PhC shown in Fig. 6.5 (a) which consists of three
circular discs of radii r1, r2 and r3. The dielectric constant of the high-index material
(gray) is ε = 2.8 and that of the low-index material (white) is ε = 1. Using MPB, we run
an optimization function on the radii to find the aforementioned stop bands by computing
the band structure along the path (Γ + ∆k1) → X → (M + ∆k2) → (Γ + ∆k1) for
some small ∆k1, ∆k2. A stop band along the detuned path and hence the required
degeneracy is found between TM bands 7 and 8 at Γ for r1/a = 0.0924, r2/a = 0.4066
and r3/a = 0.4238, as shown in Fig. 6.5 (b).

6.2.4 BICs enabling slow light in low-contrast photonic crystal fibers

Figure 6.6. (a) The k∥-band structure of the defect-free PhC fiber at kz = 0.18 (2π/a∥). The
spectrally-isolated two-fold degeneracy is marked with an arrow. (b) D-field intensity profile of
a solid-core fiber BIC mode that occurs at kz = 0.18 (2π/a∥). (c) D-field intensity profile of a
hollow-core-like fiber BIC mode.

For traditional defect modes in 2D PhCs, it suffices to have a bandgap for one
polarization, either TE or TM, since they constitute orthogonal subspaces that do not
mix. However, for applications such as PhC fibers, (i.e., where the 2D pattern described
above is extruded in the third direction, z, and kz ̸= 0 generally), the distinction between
TE and TM is lost and one requires an overlapping bandgap for both polarizations
to confine defect modes. In particular, slow-light PhC fibers rely on the existence of
a complete bandgap at kz = 0 which persists for a small range of kz [184–186]. The
arbitrarily small group velocity of the propagating modes in such fibers is achieved by
operating near the kz = 0 band edge. These slowly-propagating modes can then be used
to strongly enhance interactions of light with either the dielectric material itself or an
infiltrated material [187,188], depending on whether the fiber hosts a solid or hollow core.
Thus, the design of these fibers requires a high dielectric contrast to open a complete
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bandgap at kz = 0. To the best of our knowledge, the smallest contrast for which a
complete bandgap exists for 2D PhCs is for ε = 4.41 [189]. We now extend the idea
of point-defect-localized BICs to propagating slow-light fiber modes, circumventing the
requirement for a complete bandgap.

The fiber design that we propose is identical to an extruded version of the 2D PhC
discussed before, now consisting of cylinders extended along the direction of propagation
in the fiber. However, since the distinction between TE and TM polarizations is lost, the
spectrally-isolated two-fold degeneracy of the bulk must occur in the full band structure
in order to create a BIC. This is easily achieved in our structure for a range of kz values
around 0. For instance, Fig. 6.6 (a) shows the band structure of the fiber with ε = 4,
r/a = 0.2755 at kz = 0.18 (2π/a∥), where a∥ is the lattice constant in the x, y plane. As
before, we introduce a defect site and tune the radius rd and find a BIC at rd/a = 0.230
for this particular value of kz. The field profile of the BIC is plotted in Fig. 6.6 (b),
forming a solid-core mode and displaying strong confinement to the defect site. Since
the spectrally-isolated two-fold degeneracy persists down to kz = 0, the group velocity of
this BIC along the length of the fiber (vgz = dω/dkz) can be made arbitrarily small with
an appropriate choice of rd. It is also possible to create a hollow-core-like fiber mode
where the BIC has reasonable support in the air region. To achieve this, we omit the
central defect site and instead tune the radius of the nearest eight sites uniformly so as
to maintain C4v and find a BIC as shown in Fig. 6.6 (c).

6.3 Outlook and Conclusion
In conclusion, we have proposed BICs that are exponentially localized to defects beyond
bandgaps in both 2D PhCs and structured fibers. The PhC slow-light fiber implementation
relaxes the need for bandgaps at kz = 0 and thus allows for a wider range of materials to
be used for their implementation. The results presented here have consequences for the
general design of PhC-based devices since the requirement for finding bandgaps could
potentially be replaced with finding isolated degeneracies at HSPs, which occur more
commonly, at lower dielectric contrast and at higher frequencies in the band structure.

The BICs presented here could be experimentally realized in a variety of systems.
For example, these principles could be applied to create high-Q nanocavities in gapless
PhC slabs where some vertical leakage is unavoidable but in-plane leakage could be
suppressed through the symmetry mismatch mechanism. Functionally, these modes
would behave similarly to run-of-the-mill PhC slab-based cavities that rely on a bandgap
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but could be realizable in alternative structures with potentially lower dielectric contrast.
Similarly, the PhC fiber design discussed here could be implemented straightforwardly by
complex fiber drawing techniques [168]. Furthermore, such isolated degeneracies are also
known to occur in 3D PhCs which could lead to true gapless confinement of light in all
directions such as in structures that are precursors to ones with Weyl points [6, 190–192].
Evidently, these BICs rely solely on symmetry considerations and can also be readily
realized using other periodic systems such as acoustic crystals, waveguides [179,193] and
coupled resonator arrays.
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Chapter 7 |
Reentrant delocalization transi-
tion in 1D photonic quasicrystals

Waves propagating in certain one-dimensional quasiperiodic lattices are known to exhibit
a sharp localization transition. In this chapter, we theoretically predict and experimen-
tally observe that the localization of light in one-dimensional photonic quasicrystals is
followed by a second delocalization transition for some states on increasing quasiperiodic
modulation strength - an example of a reentrant transition. We further propose that
this phenomenon can be qualitatively captured by a dimerized tight-binding model with
long-range couplings. This chapter is based on work that was done in collaboration with
Christina Jörg, Kyle Linn, Megan Goh and Mikael C. Rechtsman [194].

7.1 Overview
Anderson localization is a generic phenomenon of wave localization in randomly disordered
media [195]. The presence of localized states implies the cessation of all wave transport
in the thermodynamic limit and thus the Anderson model has provided deep insights into
the nature of metal to insulator transitions for electrons in disordered solids [196] as well
as for light propagating in disordered photonic structures [197]. Specifically in photonics,
localization has been proposed and observed in photonic crystals (PhCs) and waveguide
arrays, both in truly random [197–202] and quasicrystalline cases [203–205]. Furthermore,
this localization phenomenon can be employed for various photonic applications, such as
for random nanolasing [206], formation of photonic pseudogaps [207], formation of high
Q/V nanocavities [204,205,208,209] and for reducing the crosstalk between waveguides
in fiber arrays for endoscopy and telecommunications [210].

It can be shown that in one and two dimensions, an infinitesimal amount of random
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disorder causes wave localization but in three dimensions, a sharp transition occurs
between extended and localized regimes at a finite value of disorder strength [211,212].
Such a sharp transition between localized and extended regimes can also occur in one
dimension when the random disorder of lattice potentials is replaced by quasiperiodicity.
A model first proposed by Aubry and André consists of a one-dimensional lattice with
quasiperiodic on-site-energy modulation and nearest-neighbor couplings that exhibits
a sharp localization transition [213]. Specifically, the on-site potential for the n-th site
in a chain of atoms is modulated according to En = E0 + ξ cos(2πβn), where E0 is
the unperturbed on-site energy, β is an irrational number and ξ is the strength of the
quasiperiodic modulation. For this simple model, the localization transition occurs for
the entire spectrum at a single value of ξ due to a duality between the extended and
localized regimes [213].

Extensions of the Aubry-André model with long-range couplings [214–216] and non-
Hermiticity [217, 218] were investigated theoretically and found to possess single-particle
mobility edges and consequently intermediate regimes, where both extended and localized
states co-exist. Moreover, some dimerized tight-binding models [218–222] and driven
Aubry-André systems [223] were recently found to exhibit a second reentrant transition of
some states back to the same localization regime. Simple two-component one-dimensional
PhCs can be thought of as naturally dimer-like due to the patterning of their different
dielectrics and may exhibit non-Hermiticity from gain or radiative loss. They are therefore
a potentially useful platform for exploring the rich localization physics in complex models.

In this chapter, we experimentally demonstrate a surprising localization phenomenon
in multi-layer structures with quasiperiodic thickness modulation, i.e., one-dimensional
photonic quasicrystals (PhQCs). In particular, we observe that in addition to the
complete inhibition of transmission corresponding to a sharp localization transition,
there is a second transition to an extended regime upon increasing the quasiperiodic
modulation strength. The experimental signature of this is the complete recovery of
transmission through the structure as the quasiperiodic modulation increases beyond
the localized regime. This reentrant delocalization transition is not known to occur in
random potentials and is a unique feature of quasicrystalline systems. To further explore
the reentrant transition, we develop a tight-binding model inspired by our PhQCs, that
captures the physics of localization and delocalization in our system.
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7.2 Results

7.2.1 Photonic quasicrystal states, their localization measure and
transmission spectra

Figure 7.1. Schematic of multi-layer photonic structures made out of Si and SiO2 layers.
The structures have increasing quasiperiodic modulation of layer thicknesses (from left to right);
the leftmost structure is a perfect one-dimensional photonic crystal and the rest are photonic
quasicrystals.

The system considered here is shown in Fig. 7.1 and consists of a set of multi-layer
structures made out of two materials, silicon and silica (SiO2), with refractive indices
nSi = 3.5 and nSiO2 = 1.5, respectively. These layers are stacked along the z-direction
and define the dielectric function, ϵ(z). When propagation purely along the z-direction
is considered, this system is described by the following Maxwell eigenvalue problem for a
single scalar field H(z) [3, 4]:

−∂z

(
1
ϵ(z)∂z

)
H(z) =

(
ω

c

)2
H(z), (7.1)

where HTE = H(z)x̂ and HTM = H(z)ŷ are the TE- and TM-polarized magnetic field
solutions respectively, with frequency eigenvalue ω.

Motivated by the Aubry-André model, we modulate the thicknesses of each layer in a
unit cell, defined as a pair of neighboring Si and SiO2 layers, according to

tn = t0[1 + A cos(2πβn)], (7.2)

where n ∈ {1, 2, ..., N} identifies a pair of layers, 2N is the total number of layers, A
is the strength of the spatial modulation and β is the closest Diophantine (rational)
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approximation to the golden mean, ϕ = (1 +
√

5)/2, for a given value of system size, N .
When A = 0, all layers have the same thickness t0 and the system is a 1D PhC with

a lattice constant of a = 2t0, whereas for non-zero values of A, the integer sampling
frequency of the cosine term and the irrational modulation frequency β provide two
competing and incommensurate periods that result in a 1D PhQC. In the latter case,
the average lattice constant ⟨a⟩ = 2t0 provides a convenient length scale. We note that
since A modulates the thicknesses of layers, it is a bounded parameter with |A| ≤ 1.

Figure 7.2. (a) Eigenvalue spectrum of the PhQC states and their corresponding IPR as
a function of A for N = 89. (b) The transmission spectrum as a function of A for N = 89.
Localization of various states corresponds to sharp drops in transmission (white arrows). Some
states undergo a second delocalization transition around A = 0.8, which results in a sharp
recovery of transmission (blue arrow). (c) H(z)-field profiles of the state marked with the black
arrow in (a), for various values of A.

We obtain the states of our PhQCs using the plane-wave expansion method, as
implemented in the open source software package MIT Photonic Bands (MPB) [2], and
calculate their inverse participation ratios (IPR) given by

IPRp =
∫

|Hp(z)|4dz
[
∫

|Hp(z)|2dz]2
, (7.3)
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where Hp is the scalar field in (7.1), corresponding to the p-th state and the integral is
taken over the entire finite system. IPR is a measure of localization of states, where
small (large) values of IPR indicate extended (localized) states.

The results for a system size of N = 89 are shown in Fig. 7.2. Figure 7.2 (a) shows
a plot of the eigenvalue spectrum of the PhQC states as a function of A and their
corresponding IPR. In this plot, we focus on states corresponding to the second band in
the PhC limit (i.e., at A = 0), and convert their corresponding frequency eigenvalues
to dimensionless wavelength. For small values of A (A < 0.3), the states are extended
since the structure may be thought of as being crystalline with a small quasicrystalline
perturbation. For larger values of A, the states undergo transitions to a localized regime,
as indicated by a sharp increase in their IPR. However, as seen from Fig. 7.2 (a), these
transitions do not all occur at the same value of A. Moreover, for some states around
λ/⟨a⟩ = 3.2 and A = 0.8, we observe a sharp reduction in IPR on further increasing A,
marking a reentrant transition to a second extended regime for these states. In Fig. 7.2
(c), we also examine the H(z)-field profile for one such state that undergoes a reentrant
transition, marked by the arrow in Fig. 7.2 (a). The field profiles show the transition
from extended to localized and back to extended as A is increased.

Our system thus exhibits some crucial distinctions from the simple Aubry-André
model. Each pair of layers that forms a unit cell in our PhQCs is not well approximated as
a resonator or atomic potential that is evanescently coupled only to its nearest neighbors.
If the PhQC corresponds to a tight-binding model at all, it must be thought of as
possessing long-range couplings that can be accurately computed using Wannier-function
methods [224]. The presence of these effectively long-range couplings creates single-
particle mobility edges that result in intermediate regimes where both extended and
localized states co-exist [214]. In fact, we find that due to the bounded nature of the
quasiperiodic modulation strength via the parameter A, a large part of the spectrum of
the PhQC is in an intermediate regime [216]. Moreover, the states corresponding to the
lowest band of the PhC limit never localize for any value of A up to its bounds. This
is because PhQCs act as effectively homogeneous dielectric media at long wavelengths.
Finally, the presence of a reentrant transition suggests the breakdown of the duality
between the localized and extended regimes that exists in the simple Aubry-André model.

Since the localization of states causes the cessation of wave transport, we explore its
consequences in the transmission spectrum of the PhQCs. Fig. 7.2 (b) shows a plot of
the transmission spectrum of the PhQCs as a function of A, calculated using a transfer
matrix approach. We see that the localization transitions from Fig. 7.2 (a) correspond
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to the vanishing of transmission through the structures. This occurs because the system
size is larger than the localization length of the localized states and as such these states
are unable to form a transmission channel across the structures. Furthermore, we also
see a recovery of transmission around λ/⟨a⟩ = 3.2, which corresponds to the reentrant
transition of some of the states to an extended regime. This observation is not a finite size
effect and persists for much larger system sizes. PhQCs and their transmission spectra
therefore provide an accessible experimental setting in which to explore localization
phenomena in one-dimensional systems.

7.2.2 Experimental results

For the fabrication of 1D PhQCs, we employ the plasma-enhanced chemical vapor
deposition (PECVD) process to deposit alternating layers of silicon (Si) and silica (SiO2).
The layers are deposited onto a glass substrate (Corning 18 mm square microscope glass
cover slide). Si is deposited from Ar and SiH4 precursor gases at 220 °C and a pressure
of 4.5 Torr, while silica is deposited from N2O and SiH4 precursor gases at 300 °C and
pressure of 3.5 Torr. The thicknesses of the layers are controlled by the deposition
time. We fabricate a total of ten samples with ⟨a⟩ = 0.25 µm, t0 = 0.125 µm, N = 13,
β = 21/13 and varying values of A. A scanning electron microscope (SEM) image of a
typical sample is shown in Fig. 7.3 (a).

To characterize the fabrication imperfections in our system and show that the observed
features are robust against fabrication disorder, we extract the layer thicknesses of one of
the samples from SEM images and compare them with the targeted thicknesses given by
Eq. (2) in the main text. We observe random fluctuations in the layer thicknesses with
respect to the target thickness by a maximum of ±8% and an average of 2%. This is most
likely caused by the fabrication process, where the chemical reaction, and thus the layer
formation, is controlled purely by a timed precursor release into the chamber (a process
which inherently is prone to fluctuations). We find that these fabrication errors are not
large enough to cause any meaningful deviation of the observed localization features
compared to simulations.

For the measurements, a collimated, unpolarized laser beam is sent through the
PhQCs at normal incidence, and the transmitted power is measured via a powermeter
(Thorlabs S120c). To sweep through the wavelengths in the range of 690 nm to 1100 nm,
a SuperK EVO white light laser (NKT Photonics) and a SuperK Select filter box are used.
The transmitted power is normalized to that from the bare glass substrate. The measured
transmission spectrum is shown in Fig. 7.3 (b), along with the simulation results for
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Figure 7.3. (a) Scanning electron microscope (SEM) image of a cut through a typical one-
dimensional photonic quasicrystal fabricated by PECVD. Both layers in a pair of neighboring Si
and SiO2 layers have identical thicknesses. The thickness values of each such pair are modulated
according to Eq. (7.2). (b) Experimentally measured transmission spectrum as a function of A
for N = 13. (c) Simulated transmission spectrum as a function of A for N = 13. In (b) and
(c), the localization transitions are marked with white arrows and the reentrant delocalization
transition is marked with a blue arrow.

comparison in Fig. 7.3 (c). We find that despite the relatively small system size, the
localization transitions for states near λ ∼ 0.85 and 0.75 µm are clearly observed as the
sharp inhibition of transmission. Furthermore, the second transition to an extended
regime near λ ∼ 0.78 µm is observed as a sharp recovery of transmission for A > 0.8.
The states near λ ∼ 1 µm are localized for A > 0.5, however the system size in the
experiment is smaller than the localization length of these states and as such we measure
finite transmission around this wavelength. Therefore it would be possible in principle
to extract the localization length of states directly from the transmission spectrum of
PhQCs by varying the system size.
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7.3 Tight-binding model

Figure 7.4. (a) Schematic of the tight binding model. The dimerized unit cell for the
periodic system (α = 0) is highlighted. The solid (dotted) lines represent nearest-neighbor
(next-nearest-neighbor) couplings. (b) The energy spectrum and IPR of the corresponding
states of the model for Ei,A = 1, Ei,B = 2, tNN = 0.7, tNNN = 0.35 and N = 89. The states of
the second band exhibit a mobility edge and are localized for 0.25 < α < 0.6. Some states of
this band undergo a reentrant delocalization transition at α ∼ 0.6 (c) A plot of the ⟨IPR⟩ and
⟨NPR⟩ for the states of the second band. The highlighted areas indicate intermediate regimes,
where both ⟨IPR⟩ and ⟨NPR⟩ are non-zero, and localized and extended states co-exist.

To further explore the observed localization features, we develop a tight-binding
model that qualitatively captures the physics of localization in our PhQCs. In particular,
we consider a 1D quasiperiodic model with nearest and next-nearest neighbor couplings
given by the Hamiltonian

H =
∑

j=A,B

N∑
i=1

Ei,j [1 + α cos(2πβi)]ni,j

− tNN

N∑
i=1

(
c†

i,Aci,B + h.c.
)

− tNN

N−1∑
i=1

(
c†

i,Bci+1,A + h.c.
)

− tNNN
∑

j=A,B

N−1∑
i=1

(
c†

i,jci+1,j + h.c.
)
, (7.4)
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where c†
i,j, ci,j and ni,j are respectively the creation, annihilation and number operators

on site i of sublattice j = A,B. tNN, tNNN are the nearest- and next-nearest-neighbor
couplings respectively and Ei,j are the unperturbed on-site energies of site i of sublattice
j. This lattice of 2N sites is shown schematically in Fig. 7.4 (a). We choose Ei,A = 1 as
the energy scale and set β = (1 +

√
5)/2. α is an unbounded parameter that governs the

strength of the quasiperiodic modulation of the on-site energies and we choose Ei,B ̸= Ei,A

to introduce dimerization, akin to the two different layers in the PhQCs.
We plot the IPR of the states of this model for N = 89 in Fig. 7.4 (b), where we

observe some important qualitative similarities with our PhQCs. The states of the lower
band stay extended until a much larger value of α, compared to the upper band, similar
to the lowest two bands in the PhQCs. We also observe that the states of the upper band
exhibit mobility edges and an intermediate regime, before undergoing a transition to a
completely localized regime at α ∼ 0.25. Moreover, some states of this band undergo a
second transition at α ∼ 0.6 and remain extended for a range of α values. Eventually all
states of this model become localized for a large enough value of α (α > 2). We find that
these features are generic and persist for a range of parameters of the model.

We also calculate the average IPR and average normalized participation ratio (NPR)
for a set of M states, given by

⟨IPR⟩ = 1
M

M∑
n=1

2N∑
i=1

|ψn,i|4, (7.5)

⟨NPR⟩ = 1
M

M∑
n=1

(
2N

2N∑
i=1

|ψn,i|4
)−1

, (7.6)

where |ψn,i⟩ is the normalized n-th eigenstate of H and i labels the sites. The extended
regime is characterized by near-zero ⟨IPR⟩ and non-zero ⟨NPR⟩ and vice versa for the
localized regime. A non-zero value for both ⟨IPR⟩ and ⟨NPR⟩ implies the presence of
an intermediate regime in the spectrum. The plot of ⟨IPR⟩ and ⟨NPR⟩ for the states
of the upper band is shown in Fig. 7.4 (c). Comparing this plot with Fig. 7.4 (b), we
can see that the first intermediate regime arises due to a moblity edge and the second
intermediate regime arises due to a reentrant delocalization transition for the lowest lying
states of the band.

Through this model, we see that a combination of staggered potentials and long-range
couplings, competing with quasiperiodicity, can cause the delocalization of previously
localized states for a range of parameter values. These findings are consistent with other
models with similar qualities that are known to host reentrant transitions [219–221].
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7.4 Conclusion
In conclusion, we have observed a reentrant delocalization transition – a feature that is not
present in the standard Aubry-André model – in 1D PhQCs with an Aubry-André-type
quasiperiodic modulation by measuring their transmission spectra. The PhQCs and
their transmission spectra thus provide a means to experimentally explore more complex
models with richer localization physics, as compared with simple nearest-neighbor tight-
binding models. Inspired by the PhQCs, we have also explored the localization features
of our system in a tight-binding setting, in order to lend physical insight into the nature
of the transition. In the future, it will be interesting to explore localization in passive non-
Hermitian 1D PhQCs enabled via a patterning of lossy dielectric materials. Furthermore,
examining localized states in higher dimensional realizations of PhQCs is warranted since
it could lead to better-performing photonic nanocavities with lower index materials.

89



Chapter 8 |
Summary

In this dissertation, we presented a series of studies examining various phenomena in
photonic crystals. In chapter 1, we reviewed the mathematical treatment of photonic
crystals and elements of topological band theory.

In chapter 2, we presented the experimental realization of a charge-2 Weyl point in a
chiral woodpile photonic crystal. The three-dimensional photonic crystal was fabricated
using a state-of-the-art 3D micro-printing technique using the Nanoscribe Photonic
Professional GT printer. We showed that despite the absence of a band gap around
the Weyl point due to the low index contrast, it was possible to observe the dispersion
features associated with the Weyl point in the reflection spectrum of the photonic crystal.

In chapter 3, we observed the splitting of this charge-2 Weyl point into two charge-1
Weyl points by breaking the protecting non-symmorphic symmetry of the structure.
Rather than introducing random perturbations to the system, we carefully introduced
defects that preserved several other symmetries while breaking only the non-symmorphic
symmetry. This restricted the splitting to occur along high-symmetry directions in
momentum space and allowed for unprecedented control over the location of Weyl points
in photonic crystals. Moreover, the experiments were performed at technologically-
relevant near-infrared wavelengths.

In chapter 4, we developed a complete classification of topological bands in one-
and two-dimensional Cn-symmetric photonic crystals, with and without time-reversal
symmetry. Our approach followed previous works in electronic systems and relied
on constructing symmetry-indicator invariants that only require looking at symmetry
representations of the field eigenmodes at high-symmetry points in momentum space.
We then used this classification to proposed a strategy to diagnose and design a wide
variety of topological photonic crystals.

In chapter 5, we showed that Chern insulators can have a well-defined notion of relative
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polarization, despite their bands being non-Wannierizable. In particular, we showed
that electronic boundary charges and adiabatic currents can exist in Chern insulators
that are accounted for by a notion of relative polarization. We then demonstrated that
these boundary charges are quantized in the presence of inversion symmetry, similar to
conventional insulators. Using the classification developed in chapter 4, we predicted
that higher-order states induced by polarization should be present at the corners between
two Chern insulators with the same Chern number but different values of relative
polarization. We then numerically demonstrated the presence of these corner states in
an experimentally-realizable Chern photonic crystal.

In chapter 6, we predicted a new method for trapping light within nanocavities
embedded inside two-dimensional photonic crystals that do not possess band gaps. We
showed that it is possible to engineer the photonic crystal and nanocavity such that
light within the cavity is prohibited from leaking away due to a symmetry mismatch
with the photonic crystal’s modes. This state of light is an example of a “bound state
in the continuum” which is a perfectly localized state co-existing with a continuum of
propagating states of the photonic crystal. We then showed that the same state can also
be used to create slow-light modes in complex photonic crystal fibers with a low index
contrast. This opens up the possibility of constructing nanocavities within photonic
crystals that are made of lower-index versatile materials like glasses and polymers.

Finally, in chapter 7, we experimentally explored localization and delocalization
transitions in one-dimensional photonic quasicrystals. These structures were inspired
by the Aubry-André model which exhibits a singular sharp transition between extended
and localized regimes. In contrast to the model, we observed the presence of mobility
edges that separate the different localization regimes as well as a reentrant delocalization
transition that occurs upon increasing the quasiperiodic modulation strength.
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