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Abstract

The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic
differential operator. The topological index depends on a cohomology class that is constructed
from the principal symbol of the operator.

On contact manifolds, the naturally arising geometric operators are not elliptic, but subel-
liptic. A filtration on the algebra of differential operators that is adapted to these geometric
structures, naturally leads to a symbolic calculus that is noncommutative, and a corresponding
subelliptic theory can be developed.

For such subelliptic operators we construct a symbol class in the K-theory of a noncommu-
tative C∗-algebra naturally associated to the algebra of symbols. There is a canonical map from
this noncommutative K-theory to the ordinary cohomology of the manifold, which gives a class
to which the Atiyah-Singer formula can be applied. In this way we define the topological index
of a subelliptic operator, and we prove that it is equal to its analytic index.
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Chapter 1

Introduction.

The celebrated Atiyah-Singer Index Theorem gives a topological formula for the analytic index
of an elliptic differential operator P on a closed, smooth manifold M ,

Index(P ) =
∫
T ∗M

Ch([P ]) ∧ Td(M).

Developing an approach to index theory for contact manifolds found in the works of Melrose
and Epstein [Me], [EM], and Ponge [Po1], [Po2], we prove that the Atiyah-Singer formula can
be applied to compute the index of subelliptic operators P on contact manifolds. Our method
applies in more general cases, and, specifically, leads to a corresponding theorem for subelliptic
operators on foliations.

Subellipticity, like ellipticity, is a condition that implies hypoellipticity (which means that,
whenever Pu is smooth in an open set U ⊆ M for some distribution u, then u itself is smooth
in U). Hypoellipticity, in turn, implies that P is Fredholm, i.e., the analytic index,

Index(P ) = dim Ker (P )− dim Ker (P ∗),

is well defined. If P is subelliptic, however, the right hand side of the index formula—the so-
called ‘topological index’—poses problems. An important and difficult step has been to construct
the appropriate cohomology class Ch[P ] in this case.

1.1 Ellipticity and hypoellipticity.

Whereas hypoellipticity is a local property, ellipticity is an infinitesimal condition. Suppose P
is a differential operator that, in local coordinates, is given by

P =
∑
|α|≤d

aα(x)∂αx .

To study the behaviour of P in a small neighborhood of a point m ∈ M , choose coordinates x
such that x = 0 at m, and then ‘blow up’ these coordinates y = t−1x, letting t→ 0. Expressing
P in the y coordinates, we have

tdP = P0 + tP1 + t2P2 + · · · ,
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where Pj =
∑

|α|=d−j aα(ty)∂αy is the homogeneous order (d − j) part in P . As t → 0, we have
tdP acting on functions in the tangent space TmM as the operator,

Pm =
∑
|α|=d

aα(0)∂αy .

Thus, P determines a family {Pm} of homogeneous, constant coefficient operators on the fibers
of TM that, in some sense, captures the action of P on functions with ‘infinitesimal’ support.
An operator P is elliptic precisely if these approximations Pm are hypoelliptic. In this sense,
ellipticity is a condition of ‘infinitesimal’ hypoellipticity that guarantees local (and hence global)
hypoellipticity.

1.2 Subelliptic operators.

There are many examples of differential operators that are hypoelliptic, but not elliptic. The
best known example is the heat operator ∆ + ∂t on Rn+1. More generally, Hörmander has
shown that, if X0, . . . , Xp is a family of vector fields on a manifold, such that these vector fields,
together with their repeated brackets, span the tangent space at each point of the manifold,
then the operator

P = X0 +
p∑
i=1

X2
i ,

is hypoelliptic. Another important example is provided by the Heisenberg group, whose Lie
algebra is spanned by invariant vectorfields X,Y, Z, with [X,Y ] = Z. The operator

P = X2 + Y 2 + iαZ

is hypoelliptic, if and only if α is not an odd integer. All these examples show is that the lower
order part of the operator P plays an importand role in establishing hypoellipticity.

The infinitesimal approximation suited to the analysis of these types of operators was worked
out by Stein and his school in the 1970’s. In our work, we assume that P is an operator whose
characteristic directions form a locally trivial vector bundle N∗ ⊆ T ∗M . If H ⊆ TM denotes the
kernel of N∗, we may think of P as an operator that is ‘elliptic’ only in the H-directions (recall
that an operator is elliptic iff it has no characteristic directions). In most geometric examples,
subelliptic operators have a second order ‘elliptic’ part, and are of first order in the characteristic
directions. Typically, the bundle H ⊆ TM is associated to some geometric structure on M , as
in the case of contact manifolds, CR manifolds, or foliations.

Now, by a ‘blowing up’ procedure analogous to the one described for elliptic operators, but
this time blowing up by a factor t−1 in the H direction (where P is of order 2, say), and by a
factor t−2 in the N = TM/H direction (where P is of order 1), we obtain, in the limit, a family
of operators Pm on the fibers of H ⊕ N that are homogeneous in a graded sense (where H has
degree 1, N degree 2), and that are invariant for a certain nilpotent group structure on these
fibers. In other words, naturally associated to H ⊆ TM is a family of graded nilpotent groups
Gm = Hm ⊕ Nm, and P can be approximated, in an infinitesimal neighborhood of each point
m, by an invariant, homogeneous operator Pm on the group Gm.
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Rothschild and Stein [RS] (better reference?) showed that, just as in the elliptic case,
hypoellipticity of all ‘model operators’ Pm implies hypoellipticity of P . Hypoellipticity of the
invariant operators Pm is verified by considering their (noncommutative) Fourier transform
π(Pm), π ∈ Ĝ. A theorem by Helffer and Nourrigat [HN] states that the invariant homoge-
neous operator Pm is hypoelliptic iff π(Pm) is injective, for each π 6= 0. If Gm ∼= Rn is abelian,
with the trivial grading, this is just the usual condition for ellipticity.

Fredholm operators (Dirac operators, signature operators) have always played a crucial role
in noncommutative geometry, but in recent years elliptic theory has, in some instances, been
replaced by the more general, and more subtle analysis of subelliptic operators. As important
examples we mention the construction by Connes and Moscovici of a spectral triple for a gen-
eral foliation ([CM]), and the proof by Kasparov and Julg of the Baum-Connes conjecture for
subgroups of SU(n, 1) ([KJ]).

It is for subelliptic operators associated to a contact structure or foliation that we prove the
validity of the Atiyah-Singer formula. The classical theorem for elliptic operators corresponds
to the special case where H = TM .

It is likely that our appraoch could work for more general ‘Heisenberg structures’ (arbitary
subbundles H ⊆ TM), but we have not aimed for maximal generality, but have focused, instead,
on the examples of most practical significance. An advantage of our choice was that it allowed
us to avoid the use of the pseudodifferential calculus for Heisenberg structures, as developed, for
example, in [BG]. To deal with more general cases one might have to appeal to this theory.

1.3 A symbol for subelliptic operators.

One of the difficulties in working out an index formula for subelliptic operators is to find the
appropriate analog for the cohomology class,

ch([P ]) ∈ H∗(M).

In the classical case, the construction of this class relies crucially on the ellipticity of P . Atiyah
and Singer construct a class in topological K-theory, [P ] ∈ K0(T ∗M), whose Chern character
is the desired cohomology class. However, a different construction, due to Quillen, makes use of
the Cayley Transform of the self-adjoint operators(

0 P ∗m
Pm 0

)
,

to obtain an (equivalent) class in C∗-algebraic K-theory, [P ] ∈ K0(C0(T ∗M)). We have suc-
ceeded in generalizing the latter construction to the case of subelliptic operators P , this time,
however, obtaining a class [P ] in the K-theory of a noncommutative C∗-algebra.

Proving that the constructed object determines a well-defined K-theory element has been
one of the most challenging parts of the project. The (relatively straightforward) analysis used
for elliptic operators breaks down in this case, and we have made use of techniques involving
analysis on nilpotent groups, as can be found, for example, in [HN], [FS], [RS].
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1.4 Convolution algebras of groupoids.

Let THM denote the bundle of graded nilpotent groups Gm over M described above. As a space,
THM is diffeomorphic to TM , but, clearly, its fibers carry a different (generally non-abelian)
group structure. This object is an example of a smooth groupoid.

Expressed most succinctly, a groupoid is a small category with invertible arrows (or: a group
with ‘partial’ composition), and in a smooth groupoid all groupoid operations (composition,
inverses, etc.) are smooth. A bundle of groups, like TM or THM , is a simple example of a
groupoid. Another basic example is the pair groupoid M ×M , with composition (x, y)◦ (y, z) =
(x, z). Groupoids play a central role in noncommutative geometry.

Associated to a smooth groupoid is its convolution algebra, which generalizes the group
algebra known from representation theory. If G is a Lie group, and f, g ∈ C∞c (G), then the
convolution product of f and g is defined by,

(f ∗ g)(γ1) =
∫
f(γ1γ

−1
2 )g(γ2) dµ(γ2).

Elements f ∈ C∞c (G) can be represented as bounded operators π(f) on the Hilbert space L2(G),
by the formula π(f)g = f ∗ g. The (reduced) group C∗-algebra C∗r (G) is the completion in the
operator norm ‖f‖C∗ = ‖π(f)‖ of the convolution algebra C∞c (G).

For smooth groupoids, a similar construction exists. The main difference in the definition of
the convolution product is that integration does not take place over the entire groupoid G, but
only over the set of arrows γ2 ∈ G that have the same ‘source’ as the arrow γ1. As before, the
convolution algebra C∞c (G) is faithfully represented on a particular Hilbert space associated to
G. The operator norm completion of the convolution algebra with respect to this representation
is the (reduced) groupoid C∗-algebra C∗(G). (For details, see [Co], [Ma].)

The K-theory class associated to a subelliptic operator P , constructed on the basis of the
family of invariant operators {Pm} on the nilpotent groups Gm, is an element in the K-theory
of the (noncommutative) convolution C∗-algebra of the bundle THM ,

[P ] ∈ K0(C∗(THM)).

However, Connes’ Thom Isomorphism for bundles of nilpotent groups (see [Ni2]) gives a natural
identification

K0(C∗(THM)) ∼= K0(C∗(TM)) ∼= K0(C0(T ∗M)) ∼= K0(T ∗M),

which lands [P ] in K0(T ∗M). We can now take its chern class, and the right hand side of the
Atiyah-Singer formula makes sense for subelliptic operators. What remains to prove is equality
of the analytic and topological indices thus defined.

1.5 Tangent groupoid and deformation.

Our proof of the index theorem for subelliptic operators follows the approach developed by Alain
Connes in [Co], based on his notion of the tangent groupoid. The tangent groupoid formalises
the notion of ‘blowing up’ of coordinates that we outlined in our discussion of ellipticity.
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The tangent groupoid is obtained by glueing a parametrized family of pair groupoids M×M
to the tangent bundle TM . The tangent groupoid is thus the union of two manifolds,

TM ∪M ×M × (0, 1],

that are glued together by letting a triple (a(t), b(t), t) converge to a vector v ∈ TmM , as t ↓ 0,
if both a(t) and b(t) converge to m, while

t−1 ((a(t)− b(t)) → v

for some choice of coordinates. In this sense, the glueing ‘blows up’ the diagonal in M ×M .
The convolution algebra of the tangent groupoid is a field of C∗-algebras over the interval

[0, 1], where, at t = 0, we have the algebra C∗(TM) ∼= C0(T ∗M), while at each t > 0 we
have C∗(M × M) ∼= K(L2(M)), the algebra of compact operators on L2(M). This field of
algebras corresponds to the well known deformation quantization from C0(T ∗M) to the compact
operators, and, by a standard procedure, such a deformation induces a map in K-theory,

Indt : K0(C0(T ∗M)) ∼= K0(T ∗M) → K0(K) ∼= Z.

Alain Connes proves that this map is identical to the analytic index map (see [Co], Chapter II.5,
[Hi]).

Generalizing this procedure, we construct a groupoid whose t = 0 fiber is the convolution
algebra C∗(THM), from which we obtain a deformation that induces a map

Indq : K0(C∗(THM)) → Z.

We prove that,

IndexP = Indq ([P ]),

where [P ] denotes the class associated to a subelliptic operator P ,
Finally, by considering the so-called ‘adiabatic’ groupoid associated to our tangent groupoid

(which is a larger groupoid extending the tangent groupoid to a groupoid over the square [0, 1]×
[0, 1]), we have shown that the natural isomorphism K0(C∗(THM)) ∼= K0(T ∗M) commutes with
the two index maps Indt, Indq obtained from the respective deformations.

K0(T ∗M)
Indt

// Z

K0(C∗(THM))

∼=

OO

Indq

99

r

r

r

r

r

r

r

r

r

r

r

r

In other words, if we identify [P ] ∈ K0(C∗(THM)) with the naturally corresponding class in
K0(T ∗M), we see that the Atiyah-Singer formula computes the analytic index.
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Chapter 2

Heisenberg structures and osculating
groups.

2.1 Introduction.

Central to the analysis of subelliptic operators is a so-called Heisenberg structure. A Heisenberg
structure on a manifold M is determined by a distribution H, i.e., a locally trivial subbundle H
of the tangent space TM . In the literature it is usually assumed that H has codimension one in
TM (for example, see [BG]). But this restriction is unnecessary here.

Roughly speaking, given a subelliptic operator P , the distribution H is the bundle of direc-
tions in which P is elliptic. In applications, the bundle H is usually associated to the geometry
of the manifold M . For example, if M is foliated H is the bundle of longitudinal vectors, whereas
if M is a contact manifold the bundle H consists of vectors in the kernel of the contact form θ.
We will study these examples in more detail in section 2.7.

The purpose of this chapter is to construct a bundle of nilpotent Lie groups naturally associ-
ated to a Heisenberg structure (M,H). These groups were first introduced by Stein as a useful
aid in the analysis of the ∂̄b operator, and have subsequently played a key role in the literature
on hypoelliptic operators (see, for example, [RS], [BG]). Typically, one chooses local coordinates
U → Rn on an open set U ⊆ M , and defines a group structure on the coordinate space Rn by
means of an explicit formula. One shows that a change of coordinates on U induces a group
isomorphism, so that, up to isomorphism, the groups are well-defined.

There is a simple invariant definition of the associated Lie algebra. The basic equality,

[fX, gY ] = fg[X,Y ] + f(X.g)Y − g(Y.f)X,

shows that if X,Y are sections of H then, modulo H, the bracket value of the bracket [X,Y ](m)
at m ∈ M only depends on the values X(m) and Y (m) at m. In other words, the commutator
of vector fields induces a pointwise bracket,

Hm ⊗Hm → Nm : X ⊗ Y 7→ [X,Y ]modH,

where m ∈ M , and N = TM/H denotes the quotient bundle. This can be extended to a Lie
bracket on gm = Hm ⊕ Nm, by taking [gm, Nm] = 0. Clearly, the Lie algebra gm is 2-step
nilpotent. The osculating group Gm at m is the simply-connected nilpotent group associated to

6



gm. We will investigate how these invariantly defined groups can be identified with the local
groups structures on the coordinate space, as defined in the literature.

We will find it usefull to have a concrete geometric interpretation of the osculating groups,
independent of the Lie algebras. We develop an approach which identifies the group elements
with explicit geometric objects, which we call parabolic arrows. The name suggests an analogy
with tangent vectors (‘linear arrows’). We show how the group operation arises naturally from
the composition of flows associated to these arrows.

Notation. Throughout this chapter, M denotes a smooth manifold with Heisenberg structure
H ⊆ TM . We will write N = TM/H for the quotient bundle, and denote the fiber dimensions
by p = dimH, q = dimN , and n = p+ q = dimM . We will not assume that q = 1.

2.2 Parabolic arrows.

When studying a Heisenberg structure (M,H) it is convenient to work with a special type of
coordinates.

Definition 1 Let m be a point on M , and U ⊆M an open set in M containing m. A coordinate
chart φ : U → Rn, φ(m′) = (x1, . . . , xn) is called an H-coordinate chart at m, if φ(m) = 0, and
the first p coordinate vectors ∂/∂xi (i = 1, . . . , p) at the point m span the fiber Hm of H at m.

Tangent vectors can be defined as equivalence classes of smooth curves. By analogy, we
introduce an equivalence relation involving second-order derivatives.

Definition 2 Let c1, c2 : [−1, 1] → M be two smooth curves that are tangent to H at t = 0.
For such curves we say that c1∼Hc2 if c1(0) = c2(0) and if, choosing H-coordinates centered at
c1(0) = c2(0), we have

c′1(0)− c′2(0) = 0,
c′′1(0)− c′′2(0) ∈ H.

An equivalence class [c]H is called a parabolic arrow at the point c(0). The set of parabolic
arrows at m ∈M is denoted THMm, while

THM =
⋃
m∈M

THMm.

We can give THM the topology induced by the C2-topology on the set of curves, but for the
moment we just think of THM as a set.

Lemma 3 The equivalence relation ∼H is well-defined, i.e., independent of the choice of the
H-coordinates.

Proof. The condition that c′1(0) = c′2(0) is clearly invariant. We will show that, assuming
c′1(0) = c′2(0), the condition c′′1(0) − c′′2(0) ∈ H on the second derivatives is independent of the
choice of H-coordinates.

7



If ψ is a change of H-coordinates, then:

d2(ψ ◦ c)
dt2

=
d

dt

∑
j

∂ψ

∂xj
(c(t))

dcj

dt


=
∑
j,k

∂2ψ

∂xj∂xk
(c(t))

dcj

dt

dck

dt
+
∑
j

∂ψ

∂xj
(c(t))

d2cj

dt2
.

At t = 0 we assumed dc1/dt = dc2/dt, so that the first term on the right hand side is equal for
ψ ◦ c1 and ψ ◦ c2 (at t = 0). Therefore:

(ψ ◦ c1)′′(0)− (ψ ◦ c2)′′(0) =
∂ψ

∂x
(m) ·

(
c′′1(0)− c′′2(0)

)
.

Since ψ is a change of H-coordinates at m, ∂ψ/∂x preserves Hm, so that c′′1(0) − c′′2(0) ∈ Hm

implies (ψ ◦ c1)′′(0)− (ψ ◦ c2)′′(0) ∈ Hm.
2

If we fix H-coordinates at m ∈M , and consider the second-order expansion (in coordinates)
of a curve c with c(0) = m,

c(t) = c′(0) t+
1
2
c′′(0) t2 +O(t3),

we see that any such curve is equivalent, as a parabolic arrow, to a curve c̃ of the form

c̃(t) = (th, t2n) = (th1, . . . , thp, t
2n1, . . . , t

2nq).

This observation forms the basis for the following definition.

Definition 4 Suppose we are given H-coordinates at m ∈ M . Let h ∈ Rp, n ∈ Rq, and let c(t)
be the curve in M defined (in H-coordinates) by

c(t) = (th, t2n).

We call (h, n) = (h1, . . . hp, n1, . . . , nq) ∈ Rp+q the Taylor coordinates for the parabolic arrow
[c]H ∈ THMm, induced by the given H-coordinates at m.

This is analogous to the way in which coordinates on the tangent space TmM are induced by
coordinates on M , with the important difference that Taylor coordinates on THMm are defined
for only one fiber (i.e., one point m ∈M) at a time.

Analogous to the directed line segments that represent tangent vectors, a pictorial represen-
tation for the class [c]H would be a directed segment of a parabola. Hence our name ‘parabolic
arrow.’ Parabolic arrows are what smooth curves look like when you blow up the manifold using
the dilations (h, n) 7→ (th, t2n), and let t→∞.

When working with H-coordinates φ(m) = x ∈ Rn, we use the notation x = (xH , xN ) ∈
Rp+q, where

xH = (x1, . . . , xp) ∈ Rp, xN = (xp+1, . . . , xp+q) ∈ Rq.

8



Lemma 5 If ψ is a change of H-coordinates at m, then the induced change of Taylor coordinates
ψ(h, n) = (h′, n′) for a given parabolic vector in THMm is given by the quadratic formula:

h′ = Dψ(h),

n′ = [Dψ(n) +D2ψ(h, h)]N ,

where [v]N denotes the normal component of the vector v = (vH , vN ) ∈ Rp+q.

Proof. This is just the formula for (ψ ◦ c)′′(0) from the proof of Lemma 3.
2

Corollary 6 The smooth structures on the set of parabolic arrows THMm at a point m ∈ M
defined by different Taylor coordinates are compatible, i.e., THMm has a natural structure of a
smooth manifold.

It is clear from Lemma 5 that Taylor coordinates define a structure on THMm that is more
than just a smooth structure. This will be fully clarified when we introduce the group structure
on THMm, but part of this extra structure is captured if we consider how parabolic arrow behave
when rescaled.

Definition 7 The family of dilations δs, s > 0, on the space of parabolic arrows THMm is
defined by

δs([c]H) = [cs]H ,

where [c]H is a parabolic arrow in THMm represented by the curve c(t), and cs denotes the
reparametrized curve cs(t) = c(st).

When working in Taylor coordinates [c]H = (h, n), we simply have

δs(h, n) = (sh, s2n).

Clearly, these dilations are smooth maps and δst = δs ◦ δt.
Considering Taylor coordinates on THMm, it is tempting to identify parabolic arrows with

vectors in H ⊕N . Lemma 5 shows that such an identification is not invariant if we use Taylor
coordinates to define it. But we have at least the following result.

Lemma 8 There is a natural identification

T0(THMm) ∼= Hm ⊕Nm

of the tangent space T0(THMm) at the ‘origin’ (i.e., at the equivalence class [0]H of the constant
curve at m) with the vector space Hm ⊕ Nm. It is obtained by identifying the coordinates on
T0(THMm) induced by Taylor coordinates on THMm, with the natural coordinates on Hm⊕Nm.

Proof. From Lemma 5, we see that Taylor coordinates on T0(THMm) transform according to
the formula

h′ = Dψ(h), n′ = Dψ(n)N ,

because the quadratic term D2ψ(h, h) has derivative 0 at 0. This is precisely how the induced
coordinates on Hm ⊕Nm behave under coordinate transformation ψ.

2
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2.3 Composition of parabolic arrows.

We will now show that the manifold THMm has the structure of a Lie group. Our method
is based on composition of local flows of M . By a flow Φ of M we mean a diffeomorphism
Φ: M × R → M , such that m 7→ Φt(m) = Φ(m, t) is a diffeomorphism for each t ∈ R, while
Φ0(m) = m. A local flow is only defined on an open subset V ⊆M ×R. Two flows Φ,Ψ can be
composed:

(Φ ◦Ψ)(m, t) = Φ(Ψ(m, t), t).

Using the notation Φt for the local diffeomorphism Φt(m) = Φ(m, t), we can write (Φ ◦ Ψ)t =
Φt ◦Ψt.

A (local) flow is said to be generated by the vector field X ∈ Γ(TM), if

∂Φ
∂t

(m, t) = X(m).

However, we are specifically interested in flows for which the generating vector field Xt(m) =
∂Φ
∂t (m, t) is not constant, but depends on t. We will only require that X0 is a section in H, but
we will allow Xt to pick up a component in the N -direction. The reason is that we are not
primarily interested in the tangent vectors to the flow lines cm(t) = Φ(m, t), but in the parabolic
arrows that they define.

We start with a formula that gives a quadratic approximation (in t) for the composition of
two arbitrary flows.

Lemma 9 Let ΦX ,ΦY be two flows in Rn that are defined near the origin, and let X and Y be
their generating vector fields at t = 0:

X(x) = (∂tΦX)(x, 0), and Y (x) = (∂tΦY )(x, 0).

Then the composition of ΦX and ΦY has the following second-order approximation,

(ΦX
t ◦ ΦY

t )(0) = ΦX
t (0) + ΦY

t (0) + t2 (∇YX)(0) +O(t3),

where ∇ denotes the standard connection on TRn.

Remark. Observe that X = ∂tΦX is required only at t = 0!

Proof. Write F (r, s) = ΦX
r (ΦY

s (0)). The Taylor series for F gives

F (t, t) = t ∂rF (0, 0) + t2∂s∂rF (0, 0) + t ∂sF (0, 0) +
1
2
t2∂2

rF (0, 0)

+
1
2
t2∂2

sF (0, 0) +O(t3)

= F (t, 0) + F (0, t) + t2∂s∂rF (0, 0) +O(t3),

or

ΦX
t ΦY

t (0) = ΦX
t (0) + ΦY

t (0) + t2 ∂s∂rΦX
r ΦY

s (0)
∣∣
r=s=0

+O(t3).
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At r=0 we have ∂rΦX
r = X, so:

∂s∂rΦX
r (ΦY

s (0))
∣∣
r=0

= ∂s
(
X(ΦY

s (0))
)
.

Here X(ΦY
s (0)) denotes the vector field X evaluated at the point ΦY

s (0), which can be thought
of as a point on the curve s 7→ ΦY

s (0). The operator ∂s is applied to the components of this
vector, and the chain rule gives

∂sX(ΦY
s (0))

∣∣
s=0

=
∑
i

∂iX(0) · ∂sΦY
s (0)i

∣∣
s=0

=
p∑
i=1

(∂iX)(0) Y i(0) = (∇YX)(0).

2

We are interested in flows Φ for which the flow lines Φm(t) = Φ(m, t) define parabolic arrows.
Hence the following definition.

Definition 10 A parabolic flow of (M,H) is a local flow Φ: V → M (with V an open subset
in M × R) whose generating vector field at t = 0,

∂Φ
∂t

(m, 0)

(defined at each point m for which (m, 0) ∈ V ) is a section of H.

Given a parabolic flow Φ, each of the flow lines Φm is tangent to H at t = 0, and so determines
a parabolic arrow [Φm]H at each m ∈ M (with (m, 0) ∈ V ). Once we have defined the smooth
structure on THM it will become clear that m 7→ Φm is a smooth section of the bundle THM .
It is an analogue of the notion of a generating vector field, but it is generally only defined at
t = 0.

We now show how composition of parabolic flows induces a group structure on the fibers of
THM .

Proposition 11 Let Φ,Ψ be two parabolic flows. Then the composition (Φ ◦ Ψ)t = Φt ◦ Ψt

(defined on an appropriate domain) is also a parabolic flow, and the parabolic vector [(Φ◦Ψ)m]H
at a point m ∈M only depends on the parabolic vectors [Φm]H and [Ψm]H at the same point.

Proof. Let ∇ denote the standard local connection on TM induced by the H-coordinates at
m. Because ∇fY (gX) = fg∇Y (X) + f(Y.g)X, we see that the operation

Γ∞(H)⊗ Γ∞(H) → Γ∞(N) : (X,Y ) 7→ [∇YX]N

is C∞(M)-bilinear. In other words, the N -component of ∇YX at the point m ∈M only depends
on the values X(m) and Y (m) at m. We denote this N -component by ∇N :

∇N : Hm ⊗Hm → Nm,

∇N (X(m), Y (m)) = [∇YX]N (m).

Lemma 9 implies:

ΦtΨt(0)H = Φt(0)H + Ψt(0)H +O(t2),

ΦtΨt(0)N = Φt(0)N + Ψt(0)N + t2∇N (X(0), Y (0)) +O(t3).
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Writing

Φt(0)H = th+O(t2), Φt(0)N = t2n+O(t3),

Ψt(0)H = th′ +O(t2), Ψt(0)N = t2n′ +O(t3),

this becomes

ΦtΨt(0)H = t(h+ h′) +O(t2),

ΦtΨt(0)N = t2
(
n+ n′ +∇N (h, h′)

)
+O(t3).

The proposition is a direct corollary of these formulas.
2

It is clear from Proposition 11 that composition of parabolic flows induces a group structure
on the set THMm, for each m ∈ M , analogous to addition of tangent vectors in TmM . To
see that THMm is actually a Lie group, we use the explicit formulas obtained in the proof of
Proposition 11 .

Proposition 12 Let Φ,Ψ be two parabolic flows. Given H-coordinates at m, let Xi ∈ Γ(H)
(i = 1, . . . , p) be local sections in H that extend the coordinate tangent vectors ∂i at m. Let X l

i

(l = 1, . . . , n) denote the coefficients of the vector field Xi, i.e.,

Xi =
∑

X l
i∂l.

Let (bkij) be the array of constants

bkij = ∂jX
p+k
i (m)

for i, j = 1, . . . , p and k = 1 . . . , q. It represents a bilinear map b : Rp × Rp → Rq via

b(v, w)k =
p∑

i,j=1

bkijv
iwj ,

with k = 1, . . . , q.
If (h, n) and (h′, n′) are the Taylor coordinates of [Φm]q and [Ψm]q, respectively, then the

Taylor coordinates (h′′, n′′) of [(Φ ◦Ψ)m]q are given by

h′′ = h+ h′,

n′′ = n+ n′ + b(h, h′).

Proof. This is a direct corollary of the formulas in the proof of Proposition 11. Simply observe
that

b(∂i, ∂j)k = ∂jX
p+k
i (m) = [∇XjXi]p+k(m) = ∇(∂i, ∂j)p+k,

which implies that b(v, w) = ∇N (v, w).
2
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Corollary 13 The operation

[Φm]H ∗ [Ψm]H = [(Φ ◦Ψ)m]H

defines the structure of a Lie group on THMm.

We call the groups THMm the osculating groups associated to the Heisenberg structure (M,H).
Note that, although the value of the array (bkij) depends on the choice of coordinates, the

group operation on parabolic vectors is defined in a coordinate-independent way. Furthermore,
the values of bkij do not depend on the choice of sections Xi, but only on the choice of coordinates.

Beals and Greiner introduce the group structure by means of the formulas we have derived
in Proposition 12 (see [BG], chapter 1). Note that in their treatment q = 1, so that the k-index
in the array bkij is missing. The osculating group itself is simply identified with the coordinate
space Rn, and its status as an independent geometric object was left obscure.

Proposition 14 The natural dilations δs of the osculating groups THMm, induced by reparametriza-
tion of curves, are Lie group automorphisms.

Proof. That the dilations are group automorphisms follows immediately from the geometric
definition of the group operation on THMm in Corollary 13 (by reparametrizing the flows).
Alternatively, using Taylor coordinates we have δs(h, n) = (sh, s2n), which is clearly a smooth
automorphism for the group operation

(h, n, ) ∗ (h′, n′) = (h+ h′, n+ n′ + b(h, h′)).

2

The construction of the osculating bundle THM is functorial for (local) diffeomorphisms.
Given a diffeomorphism of manifolds with Heisenberg structure,

φ : (M,H) → (M ′,H ′),

such that Dφ : H → H ′, we could define the parabolic derivative THφ of φ as the map

THφ : THM → THM
′ : [c]H 7→ [φ ◦ c]H ,

where c(t) is a curve in M representing a parabolic arrow [c]H ∈ THMm. A straightforward
calculation, similar to the proof of Lemma 3, shows that this is a well-defined map (independent
of the choice of the curve c), and functoriality is obvious, i.e.,

TH(φ ◦ φ′) = THφ ◦ THφ′.

Clearly, if φ is a diffeomorphism, then THφ is a group isomorphism in each fiber.

2.4 The Lie algebras of the osculating groups.

According to Lemma 8, we may identify the Lie algebra Lie (THMm) as a vector space with
Hm ⊕ Nm. In the introduction we defined a Lie algebra structure on Hm ⊕ Nm, and we now
show that it is compatible with the group structure on THMm. We make use of some general
results on two-step nilpotent groups that are discussed in the appendix to this chapter.

13



Proposition 15 Let X and Y be two (local) sections of H. Then the value of the normal
component [X,Y ]N (m) of the bracket [X,Y ] at the point m only depends on the values of X and
Y at the point m.

The Lie algebra structure on LieTHMm
∼= Hm ⊕Nm is given by

[(h, n), (h′, n′)] =
(
0, [X,Y ]N (m)

)
,

where X,Y ∈ Γ(H) are arbitrary vector fields with X(m) = h, Y (m) = h′.

Proof. This is a straightforward application of Lemma 31 to the group structure on THMm as
described in Proposition 11. We have

b(h′, h)− b(h, h′) = (∇XY −∇YX)N (m) = [X,Y ]N (m).

We have already shown that b(h, h′) = (∇YX)N (m) only depends on h = X(m) and h′ = Y (m).
2

We are now in a position to define the smooth structure on the total space

THM =
⋃
THMm.

There is a natural bijection

exp : Hm ⊕Nm → THMm,

namely the exponential map from the Lie algebra Hm ⊕Nm to the Lie group THMm. We give
the total space THM the smooth structure that it derives from its identification with H ⊕N .

Lemma 16 The smooth structure on THM , obtained by the fiberwise identification with H ⊕N
via exponential maps, is compatible with the Taylor coordinates on each THMm, for any choice
of H-coordinates at m.

Proof. Choosing H-coordinates at m, we get linear coordinates on Hm ⊕ Nm. Taking these
coordinates and Taylor coordinates on THMm, we have identified LieTHMm

∼= Hm ⊕ Nm.
According to Proposition 30, the exponential map Hm ⊕ Nm → THMm is expressed in these
coordinates as

exp(h, n) = (h, n+
1
2
b(h, h)),

which is clearly a diffeomorphism.
2

A graded Lie algebra g = gr⊕· · ·⊕g1 (where elements in gi are of degree i) has a Lie bracket
that is compatible with the grading,

[gi, gj ] ⊆ gi+j ,

with [gi, gj ] = {0} if i+ j > r. Dilations δt associated to the grading are linear maps defined by

δt(X) = tiX, forX ∈ gi.
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Clearly, δt, t > 0 is a one-parameter group of Lie algebra automorphisms.
The natural decomposition Lie (THMm) = Hm ⊕ Nm defines a grading, with g1 = Hm of

degree 1 and g2 = Nm of degree 2. The corresponding dilations are δt(h, n) = (th, t2n). The
dilations of the osculating group THMm induced by reparametrization of curves and the dilations
of the graded Lie algebra Hm ⊕Nm are related via the exponential map (see Proposition 30):

exp(δt(h, n)) = exp(th, t2n) = (th, t2n+
1
2
b(th, th)) = δt(h, n+

1
2
b(h, h)) = δt exp(h, n).

It will be useful to characterize the parabolic arrows whose logarithms are vectors in H.

Proposition 17 If c : R → M is a curve such that c′(t) ∈ H for all t ∈ (−ε, ε), then the
parabolic arrow [c]H ∈ THMm is the exponential of the tangent vector c′(0) ∈ Hm, where m =
c(0).

Proof. Choose H-coordinates at m = c(0), and let (h, n) ∈ Rp+q be the corresponding Taylor
coordinates of the parabolic arrow [c]H . Because c′(t) ∈ H for t near 0, we can choose an H-
frame X1, . . . , Xn in a neighborhood U of m in such a way that c′(t) =

∑
hiXi(c(t)) at every

point c(t) ∈ U . With this set up, we compute the second derivative:

d2c

dt2
=

d

dt
(
∑
i

hiXi) ◦ c =
∑
j

∂

∂xj

(∑
i

hiXi

)
dcj
dt

=
∑
i,j

hi
∂Xj

∂xi

dcj
dt
.

Then, at t = 0, the normal component of c′′(0) is given by,

c′′(0)N =
∑
i,j

∂iX
N
j hihj = b(h, h),

where b(h, h) is defined as in Proposition 12. It follows that the Taylor coordinates of [c]H are
(h, 1

2b(h, h)), and therefore, by Proposition 30,

log([c]H) = (h, 0).

2

2.5 Exponential maps.

The osculating Heisenberg structure was originally introduced as a tool for the analysis of subel-
liptic operators on contact manifolds. In the literature, one typically defines a (local) group
structure on an open subset of the manifold itself, via some explicit coordinate expression (see,
for example, [BG], [FS1], [RS]). In the preceding sections we developed an infinitesimal and
geometric interpretation of the osculating groups, but to establish the relationship with the def-
initions found in the literature, we must consider the appropriate ways to identify the osculating
groups with (open sets in) the manifold. This will be important later, in Chapter 5, where we
define the parabolic tangent groupoid associated to the bundle THM .

For a connection ∇ on TM there is the corresponding exponential map

exp∇ : TM →M,
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where exp(m, v) is defined as the end point c(1) of the unique ‘geodesic’ c(t) that satisfies

c(0) = m, c′(0) = v, ∇c′(t)c
′(t) = 0.

We will use the term ‘exponential map’ in a generalized sense.

Definition 18 An exponential map exp: TM →M is a smooth map whose restriction expm : TmM →
M to a fiber THMm fixes the point m, while the derivative D expm is the identity map Tm(TmM) =
TmM → TmM at the point m.

Determining the ways the osculating groups THMm can be identified with open subsets in the
manifold M amounts to developing the appropriate notion of an exponential map for the bundle
THM .

Definition 19 Let (M,H) be a manifold with Heisenberg structure.
An exponential map for the Heisenberg structure,

exp : THM →M,

is a smooth map such that for each (m, v) ∈ THM , the curve c(t) = exp(m, δtv) in M defines a
parabolic arrow [c]H equal to v ∈ THMm.

Notice that this reduces to Definition 19 ifH = TM . A convenient way to construct a Heisenberg
exponential map is by choosing a smooth system of H-coordinates on M . This is a choice of
H-coordinates,

Em : Rn →M,

at each point m ∈M , in such a way that the map (m,x) 7→ Em(x) is smooth. Let

Fm : Rn → THMm

denote the Taylor coordinates induced by the H-coordinates Em. It is immediately clear from
the definition of Taylor coordinates (Definition 4) that the composition

exp = Em ◦ F−1
m : THMm →M

defines a Heisenberg exponential map.
One can try to obtain a Heisenberg exponential map by means of an ordinary exponential

map exp: TM →M . Consider the composition

THM
log−→ H ⊕N

j−→ TM
exp−→M,

where j is an isomorphism induced by a choice of section N ↪→ TM . Every exponential map for
the Heisenberg structure is induced by an ordinary exponential map in this way. However, it is
important to note that not every exponential map TM →M will induce an exponential map for
the Heisenberg structure. The condition that every curve c(t) = exp(th), for h ∈ Hm, represents
the parabolic arrow [c]H = h ∈ Hm translates into a requirement on the second derivative of
exp.
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One way to deal with this issue is to consider exponential maps arising from connections.
Observe that the choice of a Heisenberg structure H ⊆ TM is equivalent to a reduction of the
principal frame bundle fTM , to the subbundle fTHM , whose fiber at m ∈M consists of frames
(e1, . . . , en) in TmM for which (e1, . . . , ep) is a frame in Hm. (A section of fTHM is what we
have called an H-frame.) The bundle fTHM is a principal bundle with structure group,

Gp,q = {
(
A B
0 C

)
∈ Aut (Rp ⊕ Rq)} ⊆ GLn(R).

In other words, a Heisenberg structure on M is equivalent to a Gp,q-structure on TM , and the
natural connections to consider are connections on the principal Gp,q-bundle fTHM . For the
associated affine connection ∇ on TM , this simply means that if X ∈ Γ(H), then ∇YX ∈ Γ(H),
in other words, ∇ restricts to a connection on H. One easily verifies that this last condition
implies that the exponential map exp∇ : TM → M satisfies the requirements of Definition 19,
when we identify TM ∼= H ⊕N with THM . We will also use the notation exp∇ for the induced
exponential map,

exp∇ : THM →M.

Exponential maps induced by connections will play a role in our investigation of the parabolic
tangent groupoid.

2.6 Osculating structures in the literature.

In this section we show how our formalism relates to the definitions of the osculating structure
found in the literature. One purpose of Definition 19 is to clarify and generalize the various
identifications of the osculating groups with coordinate patches in the manifold. The reader
who is not burdened by knowledge of this literature may prefer to skip this section.

As a first example, we consider the group structure defined by Beals and Greiner on the
coordinate space for given H-coordinates Em : Rn → U at a point m (see [BG], section 1.1).
We have already seen (see Proposition 12) that the coordinate definition of the osculating group
Fm : Rn ∼= THMm, implicit in the construction of Beals and Greiner, corresponds to what we
call the Taylor coordinates Fm on the osculating group induced by H-coordinates E. If we now
interpret this identification as a map

Em ◦ F−1
m : THMm → U,

then it satisfies our requirements for an exponential map, as we have seen.
To make things more explicit, suppose for simplicity that M is a subset of Rn, and let

X1, . . . , Xn be an H-frame with Xi =
∑
Xj
i ∂j . At each point m ∈ M , one can define H-

coordinates on M by

Em : Rn →M : v 7→ m+
∑

viXi(m) = m+X(m)v,

where X(m) denotes the n× n invertible matrix (Xj
i (m))ij . If b(m),m ∈ M denotes the array

bkij for the coordinates Em as in Proposition 12, then the logarithm THMm → Hm ⊕ Nm is
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expressed in Taylor coordinates as log(h, n) = (h, n − b(h, h)) (Proposition 30). One can work
out an explicit (and rather useless) expression for bkij :

bkij(m) =
∑
l

dX l
i(Xj)(m) (X−1)p+kl (m),

where X−1(m) denotes the inverse matrix of X(m). (If Xj(m) = ∂j , then X(m) = 1, and we
retrieve the expression from Proposition 12.) The Taylor coordinates on THMm can then be
made explicit as

Fm : Rp+q → THMm : v = (h, n) 7→ exp(
∑

viXi(m)−
∑

bkij(m)hihjXp+k(m)),

where we have a complicated quadratic term∑
bkij(m)hihjXp+k(m) =

∑
d(hiX l

i)(hjXj)(m) (X−1)p+kl (m)Xp+k(m).

We obtain an exponential map

exp = Em ◦ F−1
m : THM →M,

defined in a neighborhood of the zero section.

Osculating structures on contact manifolds first appeared in the work of Folland and Stein
(see [FS1], sections 13 and 14). Their construction was different from that of Beals and Greiner,
and can be descibed as follows (we generalize slightly). On a (2k + 1)-dimensional contact
manifold, with 2k-dimensional bundle H ⊆ TM , choose a (local) H-frame X1, . . . , X2k+1. It
can be shown that this frame can be chosen such that

[Xi, Xk+i] = X2k+1 mod H, for i = 1, . . . , p,
[Xi, Xj ] = 0 mod H, for all other values of i ≤ j.

Then, for v ∈ R2k+1, let Em(v) be the endpoint c(1) of the integral curve c(t) of the vector field∑
viXi with c(0) = m, in other words,

Em : R2k+1 →M : v 7→ Φ1∑
viXi

(m),

where Φt
Y denotes the flow generated by a vector field Y . For Folland and Stein, the ‘osculat-

ing Heisenberg structure’ on M is the family of maps Em, identifying an open subset of the
Heisenberg group Hk = R2k+1 (with its standard coordinates), with a neighborhood of m ∈M .

Translating, we see that the commutator relations for the H-frame allow us to identify the
basis Xi(m) ∈ Hm⊕Nm of the osculating Lie algebra with the standard basis of the Lie algebra
of the Heisenberg group. Accordingly, we have an isomorphism,

Fm : Hk = R2k+1 → THMm : v 7→ exp(
∑

viXi(m)).

We recognize Fm as the Taylor coordinates on THMm for the H-coordinates E−1
m at m (we have

bkij = bkji), and we see that the osculating structure on M , as defined by Folland and Stein, can
be interpreted as an exponential map,

exp = Em ◦ F−1
m : THMm →M.
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Beals and Greiner start their construction with an arbitrary system of H-coordinates Em, and
are therefore required to compensate by a quadratic correction term in the Taylor coordinates
Fm. Folland and Stein, on the other hand, choose a system of coordinates Em that is better
suited to the Heisenberg structure, and as a result obtain Taylor coordinates Fm that are simply
the linear coordinates on Hm ⊕Nm.

Remark. The construction of Folland and Stein corresponds to the exponential map associated
to a (local) flat Gp,q-connection ∇ on TM . Locally, such a connection can be represented by
the choice of an H-frame X1, . . . , Xn. For each v ∈ Rn, the vector field

∑
viXi is parallel.

Identifying THM with H⊕N ∼= TM (the H-frame induces a section N ⊆ TM), the exponential
map exp∇ is given by,

exp∇ : THM →M : (m, v) 7→ Em ◦ F−1
m (v),

with coordinate maps Em, Fm given by,

Em : Rn →M : v 7→ Φ1∑
viXi

(m),

Fm : Rn → THMm : v 7→ exp(
∑

viXi(m)).

2.7 Foliations, Heisenberg manifolds, contact manifolds.

In this chapter we discuss some important examples of Heisenberg structures.

Foliations.
The simplest examples are foliations. By definition, a foliated manifold is equipped with a
distribution H ⊆ TM that is integrable. Integrability of H can be defined in a number of
equivalent ways, one of which is to say that [H,H] ⊆ H.

Proposition 20 A distribution H ⊆ TM is integrable, i.e., (M,H) is a foliation, if and only
if all the osculating groups THMm are abelian.

Proof. The expression [H,H] ⊆ H is equivalent to the statement that the normal component
[X,Y ]N vanishes for any two sections X,Y in Γ∞(H), which, according to Proposition 15, is
equivalent to the fact that all the Lie algebras Lie(THMm) are abelian.

2

Remark. An alternative proof uses foliation charts as a special type of H-coordinates. In a
foliation chart, the coordinate fields Xi = ∂i, i = 1, . . . , p, are—by definition—sections in H.
Applying Proposition 12, we see that Xp+k

i = 0 implies bkij = 0.

Heisenberg manifolds.
A more interesting example is given by the class of Heisenberg manifolds. Heisenberg manifolds
are manifolds with Heisenberg structure H ⊆ TM , where H is of codimension one in TM . (In
our notation, q = 1, and p = n− 1.)

Proposition 21 If (M,H) is a Heisenberg manifold, then the osculating groups are isomorphic
to a direct product Rs × Hr of an abelian group Rs and the (2r + 1)-dimenisional Heisenberg
group Hr. Here 2r + s = p, but the values of r, s are not necessarily the same for all m ∈M .
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Proof. The groups THMm that arise in this case are of the type GB = Rp+1 described in section
2.9, where B : Rp × Rp → R is a bilinear form on Rp, and multiplication is given by

(h, n) ∗ (h′, n′) = (h+ h′, n+ n′ +B(h, h′)).

By Lemma 33, we may assume that B is skew-symmetric. From the theory of skew-symmetric
forms, we know that a linear coordinate change brings B in canonical form. The form B may
be degenerate, and if s is the dimension of the kernel of B, then GB is isomorphic to the
direct product Rs × Hr, where Hr is the (2r + 1)-dimensional group associated to the unique
non-degenerate skew-symmetric form on Rr (p = 2r + s). The group operation on Hr may be
expressed in coordinates as

(x0, . . . , x2r) ∗ (y0, . . . , y2r) = (x0 + y0 +
1
2

r∑
j=1

(xjyr+j − xr+jyj), x1 + y1, . . . , x2r + y2r).

Replacing the bilinear form with an equivalent, but non skew-symmetric form (see Lemma 33),
we obtain

(x0, . . . , x2r) ∗ (y0, . . . , y2r) = (x0 + y0 +
r∑
j=1

xjyr+j , x1 + y1, . . . , x2r + y2r).

Thus, Hr is isomorphic to the (2r + 1)-dimensional matrix group:

Hr
∼= {


1 x1 x2 · · · x0

0 1 0 · · · xr+1

0 0 1 · · · xr+2
...

...
...

. . .
...

0 0 0 · · · 1

 : xi ∈ R}.

2

Contact manifolds.
A contact manifold is a special kind of Heisenberg manifold. At one extreme, all osculating groups
of a Heisenberg manifold could be abelian, in which case we are dealing with a codimension
one foliation. Contact manifolds exist at the other extreme, where all osculating groups are
Heisenberg groups.

Let M be a manifold of odd dimension n = 2r + 1, and H ⊆ TM a codimension one
subbundle.

Definition 22 The distribution H ⊆ M defines a contact structure on M if a non-vanishing
local one-form θ ∈ Ω1(M) with θ(H) = 0 is a contact form, i.e., if θ ∧ (dθ)r is a nowhere
vanishing volume form.

Observe that the definition does not depend on the choice of θ, because any other choice θ′

is related to θ by θ′ = fθ, where f is a non-vanishing smooth function. One easily calculates
θ′(dθ′)r = f r+1θ(dθ)r, i.e., θ′ = fθ is a contact form if and only if θ is.

Also note that θ is not necessarily defined globally. A global contact form exists if and only
if N = T/H is a trivial line bundle.
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Proposition 23 Let (M,H) be a Heisenberg manifold of odd dimension n = 2r + 1. If all the
osculating groups THMm are isomorphic to the Heisenberg group Hr, then (M,H) is a contact
manifold.

Proof. Let b be the skew-symmetric bilinear form

b : H ⊗H → N : b(X,Y ) = [X,Y ]N

that defines the Lie algebra structure on H ⊗N . If we identify the fibers of the line bundle N
with R, than b becomes a two form on H. We will show that b = −dθ.

Choose a local frame X1, . . . , X2r ∈ Γ(H) spanning H, and a non-vanishing section X0 ∈
Γ(N). Every smooth section θ of the bundle N∗ = (TM/H)∗ canonically identifies with a one
form θ ∈ Ω1(M) (because N∗ ⊆ T ∗M), that satisfies θ(H) = 0. Choose θ ∈ Γ(N∗) such that
θ(X0) = 1.

For two vector fields X,Y ∈ Γ(H) we have the normal component

[X,Y ]N = θ([X,Y ]) · X0.

A basic formula from differential topology relates the de Rham operator d to the Lie bracket of
vector fields,

dθ(X,Y ) = −θ([X,Y ]) +Xθ(Y )− Y θ(X).

In our case, the two final terms on the right hand side vanish, and we find,

b(X,Y ) = −dθ(X,Y ) · X0.

If Lie(THM) is isomorphic to the Lie algebra of the Heisenberg group Hr, then there exist
coordinates for which the two form b = −dθ takes the canonical form,

−dθ =
r∑
i=1

dxi ∧ dxr+i,

It follows immediately that θ is a contact form.
2

The converse is also true. Before we see why, we consider the example of the Heisenberg
group as a contact manifold. Let M = R2r+1 be equipped with the structure of the (2r + 1)
dimensional Heisenberg group Hr, and let X0, X1, . . . , X2r be the standard basis for its Lie
algebra, such that

[Xi, Xi+r] = X0, i = 1, . . . , r.

Thinking ofXi as right invariant vector fields onM , we define a distributionH ⊆ TM as the span
of the fields X1, . . . , X2r (excluding X0). Clearly, for every m ∈ M , Lie(THMm) is isomorphic
to the Lie algebra of Hr, so that all osculating groups are isomorphic to Hr. Therefore, by
Proposition 23 the Heisenberg group M with distribution H is a contact manifold.
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An application of Lemma 34 gives the formulas for right invariant fields on the Heisenberg
group. With standard coordinates (x0, x1, . . . , x2r) ∈ R2r+1 = M we find,

X0 =
∂

∂x0
,

Xi =
∂

∂xi
+

1
2
xi+r

∂

∂x0
, i = 1, . . . , r,

Xi+r =
∂

∂xi+r
− 1

2
xi

∂

∂x0
, i = 1, . . . , r.

Therefore, the one form

θ = dx0 +
1
2

r∑
i=1

(xidxi+r − xi+rdxi)

satisfies θ(Xi) = 0 for i = 1, . . . , 2r. It is the canonical contact form on the Heisenberg group.

Theorem 24 Every contact manifold (M,H) of dimension (2r + 1) is locally isomorphic (as
a contact manifold) to an open subset of the Heisenberg group Hr with its canonical contact
structure.

In other words, if θ is a contact form on M , then, around each point in M , there exist local
coordinates (x0, . . . , x2r) for which θ takes the form θ = dx0 + 1

2

∑
(xidxi+r − xi+rdxi) .

The proof involves the construction of a symplectic structure on M ×R+, and an application of
Darboux’s theorem; see [Ar].

As an immediate corollary, we obtain the converse of Proposition 23.

Corollary 25 Let (M,H) be a contact manifold of dimension (2r + 1). Then all osculating
groups THM are isomorphic to the Heisenberg group Hr.

Remark. Recall that a distribution H ⊆ TM is integrable if and only if for every one form θ
that vanishes on H, the two form dθ also vanishes when restricted to H. Again, we see that
foliations and contact manifolds are in some sense ‘opposite’ structures.

Homogeneous Heisenberg structures.
Foliations and contact manifolds have an interesting feature in common. In both cases the

Heisenberg structure on the manifold is locally isomorhic to the canonical Heisenberg structure
of the osculating group. This makes analysis on such manifolds particularly easy.

Definition 26 A Heisenberg atlas for a manifold M is an atlas {(Uk, ψk)}, where the coordi-
nates space Rp+q carries the canonical Heisenberg structure of a (fixed) two-step graded nilpotent
group G ≈ Rp+q, and the coordinate transformations ψk ◦ψ−1

l preserve the Heisenberg structure
on G.

A manifold with a Heisenberg atlas is said to have a homogeneous Heisenberg structure.

Clearly, the chart ψk : Uk → G induces an isomorhism between the osculating groups THMm

and the group G, for each m ∈ Uk (this is obvious at the level of the Lie algebras). Hence, for a
manifold with Heisenberg atlas all osculating groups are isomorphic.
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Conversely, according to Proposition 20, if all osculating groups are isomorphic to the
(graded) abelian group G = Rp+q, then the Heisenberg structure is a foliation, and the col-
lection of foliation charts defines a Heisenberg atlas. Likewise, Proposition 23 states that if all
osculating groups are isomorphic to a Heisenberg group G = Hr, the Heisenberg structure is a
contact structure, in which case Darboux coordinates provide the charts for a Heisenberg atlas.

It is an interesting geometric question (to which we don’t know the answer) whether isomor-
phism of all osculating groups (or, perhaps, the stronger condition that the bundle of groups
THM is locally trivial) implies the existence of a Heisenberg atlas.

2.8 Contact manifolds in complex analysis.

Contact manifolds arise in complex analysis as the boundary of strictly pseudoconvex domains
in Ck. Osculating structures were first defined in this context (see [FS1]). A good introductory
reference for this material is [Ep].

We briefly recall some basics from complex geometry (see [GH]). As a real manifold, Ck = R2k

has a tangent space TRCk = TR2k. Let TCCk = TCR2k be the complexified bundle. Its complex
fiber dimension is 2k. Standard coordinates are denoted (z1, . . . , zk) = (x1 + iy1, . . . , xk + iyk).
The holomorphic tangent bundle T 1,0 ⊆ TCCk consists of complex linear combinations of the
basis vectors

∂

∂zj
=

1
2

(
∂

∂xj
−
√
−1

∂

∂yj

)
.

Likewise, the anti-holomorphic vectors T 0,1 = T̄ 1,0 are spanned by the vectors ∂/∂z̄j . Clearly,

TCCk = T 1,0 ⊕ T 0,1.

There is a natural identification of the holomorphic tangent bundle T 1,0 with the real tangent
space TRCk, via Z 7→ ReZ, or,

T 1,0 ∼= TRCk :
∂

∂zj
7→ 1

2
∂

∂xj
;
√
−1

∂

∂zj
7→ 1

2
∂

∂yj
.

Multiplying vectors in T 1,0 with
√
−1 induces a linear map J (with J2 = −1) on the fibers of

TRCk. The inverse of the isomorphism T 1,0 → TR can be expressed as

v 7→ v −
√
−1Jv.

At the level of differential forms, one has the ∂ and ∂̄ operators,

∂f = df |T 1,0 =
∑ ∂f

∂zj
dzj , ∂̄f = df |T 0,1 =

∑ ∂f

∂z̄j
dz̄j .

Clearly, df = ∂f + ∂̄f , while ∂̄f = 0 iff f is holomorphic.

Now, let M = ∂Ω be the smooth boundary of a region Ω ⊆ Ck. The manifold M has
dimension 2k−1, so it is not a complex manifold. However, the complex structure of Ck induces
a Heisenberg structure on M , as we will see.
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Let T 1,0M be the intersection of the complexified tangent bundle TCM with the holomorphic
tangent bundle T 1,0Ck, and let T 0,1M denote the conjugate bundle, i.e., the anti-holomorphic
vectors in TCM . Then the complex bundle

HC = T 1,0M ⊕ T 0,1M ⊆ TCM

is a (complex) codimension 1 subbundle in TCM . Therefore H = HC∩TRM is a real codimension
1 subbundle of TRM , and (M,H) is a Heisenberg manifold. Alternatively, we can think of H
as the largest subbundle of TM ⊆ TRCk that is closed under the action of J . In this picture,
T 1,0M and T 0,1M are the ±

√
−1 eigenspaces of J .

Suppose the region Ω is given in the form {z|ρ(z) < 0}, with ρ a smooth function on Cn and
dρ 6= 0 on the boundary M = ρ−1(0).

Lemma 27 The (1,0)-form θ = −i∂ρ restricts to a real one form on TM . The kernel of θ (as
a form on TM) is the bundle H.

Proof. Because dρ(v) = 0 when v ∈ TM , we have ∂ρ(v) = −∂̄ρ(v) = −∂ρ(v) (since ρ is real
valued), which proves that θ(v) = −i∂ρ(v) is real. Also, ∂ρ(v) = −∂̄ρ(v) implies that θ vanishes
on vectors in T 1,0M as well as T 0,1M , so that θ vanishes on all of HC.

We need to prove that θ does not vanish on all of TM . Let v ∈ TRCk be a normal vector to
M . By assumption, dρ(v) 6= 0. Also, w = Jv ∈ TM , which implies dρ(w) = 0. We find,

θ(w) = −i∂ρ(w) = −idρ(w − iJw) = dρ(v) 6= 0.

2

To check whether θ is a contact form, one calculates,

dθ = −id∂ρ = i∂∂̄ρ = i
∑
j,k

∂2ρ

∂zj∂z̄k
dzj ∧ dz̄k.

Notice that dθ = dθ. We have seen that (M,H) is a contact manifold if and only if dθ is
nondegenerate when restricted to H.

Lemma 28 The form dθ is nondegenerate on H if and only if it is nondegenerate as a bilinear
map

dθ : T 1,0M ⊗ T 0,1M → C.

Proof. Nondegeneracy of the real form dθ on H is equivalent to nondegeneracy of dθ on
HC = T 1,0M ⊕ T 0,1M . The bilinear form

dθ : (T 1,0M ⊕ T 0,1M) ⊗ (T 1,0M ⊕ T 0,1M) → C,

vanishes on the summands T 1,0 ⊕ T 1,0 and T 0,1 ⊕ T 0,1, so we only need to consider dθ on
(T 1,0⊗T 0,1)⊕(T 0,1⊗T 1,0). But dθ is the same on these last two summands, because dθ(X, Ȳ ) =
−dθ(X̄, Y ) for sections X,Y in T 1,0M . Therefore dθ is nondegenerate on HC if and only if it is
nondegenerate on T 1,0 ⊗ T 0,1.

2
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The restriction of dθ to T 1,0 ⊗ T 0,1 can be thought of as a Hermitian form 〈·〉L on T 1,0M ,
called the Levi form. It is given by

〈Z1, Z2〉L = −idθ(Z1, Z̄2),

for sections Z1, Z2 in T 1,0M . We see that the Levi form 〈·〉L is the restriction to T 1,0M of the
form 〈·〉 on T 1,0Ck defined by

〈 ∂
∂zj

,
∂

∂zk
〉 =

∂2ρ

∂zj∂z̄k
.

(The bundle T 1,0M may or may not contain any of the basis vectors ∂/∂zj .)
The following proposition is a direct corollary of Lemma 28.

Proposition 29 The natural Heisenberg structure on the smooth boundary M = ∂Ω of a domain
Ω ⊆ Ck is a contact structure if and only if the Levi form is nondegenerate.

As an example, consider the (2k − 1) sphere S2k−1 as the boundary of the unit ball B ⊆ Ck.
The defining function here is

ρ(z) = −1 +
∑

zj z̄j .

Thus,

∂2ρ

∂zj∂z̄k
= δjk,

which shows that the Levi form is simply the restriction of the standard Hermitian form on
T 1,0Ck to T 1,0S2k−1. Therefore the Levi form is strictly positive, and we conclude that the
sphere S2k−1, with the Heisenberg structure inherited from its embedding in Ck, is a contact
manifold.

If R is the symmetric form on TM defined by the Hessian ∂2ρ/∂xi∂xj (for arbitrary coor-
dinates (x1, . . . , x2k−1)), and if RC denotes the associated Hermitian form on TCM , given by
RC(X,Y ) = R(X, Ȳ ), then the Levi form is just the restriction of RC to the bundle T 1,0M .
The region Ω is strictly convex if and only if the real form R is strictly positive. This, in turn,
is equivalent to strict positivity of RC, which implies strict positivity of the Levi form. There-
fore, the boundary of any strictly convex region in Ck is a contact manifold. (A domain whose
boundary has a strictly positive Levi form is called strictly pseudoconvex.)

2.9 Appendix: Two-step nilpotent groups.

We derive some simple facts about two-step nilpotent groups.
Recall that a Lie algebra g is called two-step nilpotent if [[g, g], g] = 0. The Campbell–Baker–

Hausdorff formula for such Lie algebras has very few non-zero terms:

exp (x) · exp (y) = exp (x+ y +
1
2
[x, y]),
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for x, y ∈ g. (For the full CBH-formula, see [Se].) Replacing the bracket [x, y] with an arbitrary
(not necessarily skew-symmetric) bilinear map B : Rp × Rp → Rq, we can define a Lie group
GB = Rp × Rq with group operation

(h1, n1) ∗ (h2, n2) = (h1 + h2, n1 + n2 +B(h1, h2)).

It is trivial to verify the group axioms (using the bilinearity of B). By Proposition 12, the group
structure of parabolic arrows THMm expressed in Taylor coordinates is of this type. Our main
goal in this section is to prove the following proposition.

Proposition 30 Let GB be the Lie group defined above. With the natural coordinates on GB =
Rp+q and LieGB = T0Rp+q, the exponential map exp : LieGB → GB is expressed as

exp(h, n) = (h, n+
1
2
B(h, h)).

The proof consists of a string of lemmas.

Lemma 31 The Lie algebra structure on LieGB = Rp+q is given by the bracket

[(h1, n1), (h2, n2)] = (0, B(h1, h2)−B(h2, h1)) .

In particular, the Lie algebra structure only depends on the skew-symmetric part (B −BT )/2 of
the bilinear map B.

Proof. The neutral element in GB is (0, 0), and inverses are given by

(h, n)−1 = (−h,−n+B(h, h)).

Commutators in GB are calculated as follows:

(h1, n1) ∗ (h2, n2) ∗ (h1, n1)−1 ∗ (h2, n2)−1

= (h1, n1) ∗ (h2, n2) ∗ (−h1,−n1 +B(h1, h1)) ∗ (−h2,−n2 +B(h2, h2))
= (h1 + h2, n1 + n2 +B(h1, h2))∗

(h1 − h2,−n1 − n2 +B(h1, h1) +B(h2, h2) +B(−h1,−h2))
= (0, B(h1, h1) +B(h2, h2) + 2B(h1, h2) +B(h1 + h2,−h1 − h2))
= (0, B(h1, h2)−B(h2, h1)).

Replace (hi, ni) with (thi, tni) and take the limit as t→ 0.
2

We see that the groups GB are indeed two-step nilpotent, or even abelian in the trivial case
where B is symmetric.

Lemma 32 If B : Rp × Rp → Rq is a skew-symmetric bilinear map, then the exponential map
exp: Lie (GB) → GB is the usual identification of T0Rn with Rn.
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Proof. For any (h, n) ∈ Rp+q we have (th, tn) ∗ (sh, sn) = ((t+ s)h, (t+ s)n). In other words,
the map

φ : R → Gb : t 7→ (th, tn)

is a group homomorphism. The tangent vector to this one-parameter subgroup at t = 0 is
φ′(0) = (h, n) ∈ Lie (GB), and by definition exp(φ′(0)) = φ(1) = (h, n) ∈ GB.

2

Lemma 33 If B,C : Rp × Rp → Rq are two bilinear maps that have the same skew-symmetric
part, then the quadratic map

φ : GC
∼=−→ GB : (h, n) 7→ (h, n+ 1

2B(h, h)− 1
2C(h, h)),

is a group isomorphism.

Proof. With S = B − C:

φ(h1, n1) ∗ φ(h2, n2)
= (h1, n1 + 1

2S(h1, h1)) ∗ (h2, n2 + 1
2S(h2, h2))

= (h1 + h2, n1 + 1
2S(h1, h1) + n2 + 1

2S(h2, h2) + C(h1, h2))
= (h1 + h2, n1 + n2 + 1

2S(h1, h1) + 1
2S(h2, h2) + S(h1, h2) +B(h1, h2))

= (h1 + h2, n1 + n2 + 1
2S(h1 + h2, h1 + h2) +B(h1, h2))

= φ(h1 + h2, n1 + n2 +B(h1, h2)) = φ((h1, n1) ∗ (h2, n2)).

2

Proof of Proposition 30. Let C = 1
2(B − BT ) be the skew-symmetric part of B. The

exponential map for GB is the composite of the following three maps:

Lie(GB)
∼=−→ Lie(GC)

exp−→ GC
φ−→ GB.

The first two of these maps are just the identity map Rp+q → Rp+q (by Lemmas 31 and 32,
respectively). Lemma 33 gives the explicit isomorphism φ : GC ∼= GB, with C(h, h) = 0.

2

It will be useful to have explicit formulas for the right-invariant vector fields on the Lie group
GB. The bilinear form B is represented by the array of constants,

Bk
ij = 〈B(ei, ej), ek〉, for i, j = 1, . . . , p , k = 1, . . . , q.

Lemma 34 Let (x1, . . . , xp+q) denote the standard coordinates on GB = Rp+q. The vector space
of left-invariant vector fields on GB is spanned by the vector fields Yi = ∂i, for i = p+1, . . . , p+q,
and the vector fields

Yi = ∂i +
q∑

k=1

p∑
j=1

Bk
ijxj∂p+k,

for i = 1, . . . , p. In particular,

Bk
ij = ∂jY

p+k
i .
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Proof. Suppose Y is a right-invariant vector field that restricts to some v ∈ T0GB at x = 0.
Denoting right multiplication by Rx(y) = y ∗ x we have

Y = DRx(v) =
d

dt

∣∣∣∣
t=0

(tvH , tvN ) ∗ (xH , xN )

=
d

dt

∣∣∣∣
t=0

(tvH + xH , tvN + xN + tb(vH , xH))

= (vH , vN + b(vH , xH)).

We could write, for short (extending B to Rp+q),

Y (x) = v +B(v, x).

Taking v = ∂i, we obtain the formulas in the lemma. 2
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Chapter 3

Maximally hypoelliptic operators.

3.1 Introduction.

In this chapter we develop the ‘elliptic’ theory suitable to the presence of a Heisenberg structure
on a compact manifold (M,H). We have restricted our discussion to the case of contact mani-
folds. However, we believe that many of the results hold in the case of more general Heisenberg
structures.

In general, the operators that are of interest in applications act on sections in vector bundles.
For simplicity of our exposition, we will only discuss scalar operators. However, there is no
difficulty in rephrasing everything in terms of vector bundle operators. We will explicitly mention
vector bundles only if the generalization is not trivial.

Recall that a closed Hilbert space operator is Fredholm if it has closed range, and its kernel
and cokernel are finite dimensional. The index of a Fredholm operator P is defined as

IndexP = dim KerP − dim CokerP = dim KerP − dim KerP ∗.

It is well-known that the closure of an elliptic operator on a compact manifold is Fredholm, and
index theory typically deals with elliptic operators.

However, the fact that an elliptic operator is Fredholm is a consequence of their hypoellipticity,
and the aim of our work is to develop an index theory for a more general class of hypoelliptic
operators.

Definition 35 A differential operator P on a manifold M is hypoelliptic if, for any distribution
u on M , whenever Pu is C∞ on an open set U ⊆M , u is C∞ in U .

Proposition 36 If the closure of a symmetric, hypoelliptic operator on a compact manifold M
has closed range in L2(M), it is Fredholm.

Proof. Let P be hypoelliptic on a compact manifold M . Let P̄ be the closure of P as an
unbounded operator on L2(M), with P̄ = P ∗.

For v in the domain of P ∗, we have 〈u, P ∗v〉 = 〈Pu, v〉 for every u ∈ C∞(M). We see that
P̄ v = P ∗v = Pv, where Pv should be read in the distribution sense. Hence, hypoellipticity of P
implies that the kernel of P̄ consists of smooth functions. But the kernel of a closed operator is
closed, and a closed subspace of L2(M) consisting of smooth functions is finite dimensional (see
Lemma 37).
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Since P has closed range, the cokernel of P is isomorphic to the kernel of P ∗ = P .
2

Lemma 37 Let M be a compact manifold. A closed linear subspace of L2(M) that consists
entirely of continuous functions is finite dimensional.

Proof. By Sobolev theory, the inclusion of Banach spaces C(M) ⊆ L2(M) (with supremum
norm on C(M)) is compact. But the range of a compact operator cannot contain an infinite
dimensional closed linear subspace.

2

Ellipticity of an operator P only depends on the highest order part of the operator, i.e., its
principal symbol σ(P ). In elliptic theory, the requirement that the principal symbol is invertible,
leads to the proof of the so-called a priori estimates, which state that, if P is an elliptic operator
of order d, and A is any differential operator of order less or equal d, then there is a C > 0 such
that

‖Au‖ ≤ C(‖Pu‖+ ‖u‖).

These estimates are at the heart of elliptic theory. In particular, they imply hypoellipticity of P ,
and hence Fredholmness. The key technical tool in the proof of the estimates is Fourier theory.

We will show how, by simply changing the notion of ‘order’ of an operator, in a way which is
consistent with the presence of a Heisenberg structure, one is naturally led to a noncommutative
symbolic calculus. The same ingredients that play a role in the analysis of elliptic operators
will appear here, including the key role played by the Fourier transform (in noncommutative
harmonic analysis this time). The aim of the chapter is to prove Theorem 53, which states,
roughly, that an operator whose (noncommutative) principal symbol is invertible is hypoelliptic.

By taking H = TM , this chapter could be read as an introduction to ordinary elliptic theory.
The reader familiar with elliptic theory will notice how little has changed. Our approach is
essentially a direct translation of the well known results from elliptic theory to a noncommutative
setting.

3.2 A noncommutative symbolic calculus.

In this section we define the symbolic calculus for operators on manifolds with Heisenberg struc-
ture. A Heisenberg calculus for pseudo-differential operators has been developed independently
by Beals and Greiner [BG] and by Taylor [Ta1]. A succinct introduction can be found in [Ep],
and [EM]. We have limited the discussion of the calculus to differential operators, which greatly
simplifies the discussion. It allows us to give a simple algebraic interpretation of the calculus.

Let g• denote the filtered Lie algebra of vector fields on M , with filtration induced by H ⊆
TM ,

g1 = Γ(H) ⊆ g2 = Γ(TM).

The associated graded Lie algebra is precisely the set of smooth sections in the bundle of oscu-
lating Lie algebras Lie(THM) = {gm} discussed in Chapter 2. The filtration on the set of vector
fields induces a filtration on the algebra of differential operators P in the obvious way: a vector
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field X ∈ Γ(H) defines an order 1 operator; any other vector field has order 2; and a product of
vector fields ΠXk has order

∑
d(k) or less, where d(k) denotes the order of Xk. Let PdH be the

linear span of monomials ΠXk of order d or less, with P0
H = C∞(M). A differential operator P

is said to have Heisenberg order d if P ∈ PdH \ P
d−1
H . We write

PH =
∞⋃
d=0

PdH

for the algebra of differential operators filtered by the Heisenberg order.
We introduce some convenient notation. If X1, · · · , Xn is a local H-frame on M , a differential

operator P of Heisenberg order d can be locally represented as,

P =
∑
|α|≤d

aαX
α.

As usual, α = (α1, . . . , αn) denotes a multi-index, while the expression Xα is analogous to the
usual notation ∂α, and is shorthand for,

Xα = Xα1
1 · · ·Xαn

n .

The Heisenberg degree of the monomial Xα is given by,

|α| = α1 + · · ·+ αp + 2αp+1 + · · ·+ 2αp+q.

The algebra of symbols for the Heisenberg calculus is simply the graded algebra SH associated
to the filtered algebra PH ,

SH =
⊕

SdH ; SdH = PdH/Pd−1
H .

Abstractly, the principal Heisenberg symbol of a differential operator P of Heisenberg order d is
simply the image of P under the quotient map

σdH : PdH → SdH .

Clearly, if P has Heisenberg order k, and Q has Heisenberg order l, then

σkH(P )σlH(Q) = σk+lH (PQ).

Because the bracket [X,Y ] of two order 1 vector fields may have Heisenberg order 2, the algebra
of symbols SH is generally noncommutative. The algebra SH is commutative if and only if all
the osculating groups are abelian, i.e., if (M,H) is a foliation.

The set PdH is a finitely generated C∞(M)-module, and is therefore naturally equivalent to
the module of sections in a smooth vector bundle over M . This is not a very meaningful point
of view, because multiplication in PH is not C∞(M)-linear and therefore the algebra structure
of PdH does not correspond to an algebra structure on the fibers of this vector bundle.

The situation is different when we turn to the graded algebra SH . If f ∈ C∞(M) and
X ∈ Γ(TM) then [X, f ] = X.f ∈ C∞(M) is again a smooth function. As a result, S0

H = C∞(M)
commutes with all of SH , or, in other words, multiplication in SH is C∞(M)-linear. It follows
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that SH is naturally isomorphic as a graded algebra to the module of sections in a bundle of
graded algebras. We now describe this bundle of algebras explicitly.

For a point m ∈M , let Im denote the ideal

Im = {f ∈ C∞(M) | f(m) = 0}.

Abstractly, the fibers in the vector bundle Ud corresponding to the module SdH are the finite
dimensional vector spaces

Udm = SdH/ImSdH .

If P is a differential operator in PdH , let [P ]d denote the corresponding element in SdH , and [P ]dm
the element in Udm. Clearly, [P ]dm = [Q]dm in Udm if and only if P and Q agree at the point m up
to terms of order less than d.

Multiplication of elements in SH induces bilinear maps,

Ukm ⊗ U lH → Uk+lH : [P ]km ⊗ [Q]km 7→ [PQ]k+lm ,

thus inducing the structure of a graded algebra on the infinite dimensional vector space

Um =
∞⊕
d=0

Udm,

where U0
m = C. To see that multiplication in Um is well defined, let [P ]km = [P ′]km and [Q]lm =

[Q′]lm, which means that

P = P ′ + fA+ lower order terms, Q = Q′ + gB + lower order terms,

where A and B are operators of order k, l, respectively, and f and g are smooth functions with
f(m) = g(m) = 0. Then

PQ = P ′Q′ + P ′gB + fAQ′ + fAgB + lower order terms
= P ′Q′ + gP ′B + fAQ′ + fgAB + lower order terms,

and so [PQ]k+lm = [P ′Q′]k+lm . We have used the fact that [P ′, g] and [A, g] are of order one less
than P ′ and A, respectively, which is precisely the reason that multiplication in SH is C∞(M)-
linear. One easily checks that the canonical map

SH →
∞⊕
d=0

Γ(Ud) : [P ]d 7→ [m 7→ [P ]dm]

defines an isomorphism of graded algebras. To understand the symbolic calculus, we need
to investigate the multiplicative structure on the point-wise algebras Um. This algebra turns
out to be isomorphic to the universal enveloping algebra U(gm) of the osculating Lie algebra
gm = Hm ⊕Nm at m. Note that the grading on gm induces a grading

U(gm) =
∞⊕
d=0

Ud(gm).
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Proposition 38 Let X1, . . . , Xn be a local H-frame in a neighborhood of m ∈ M , and let
Yi = Xi(m) ∈ Hm (i = 1, . . . , p), and Yj = Xj(m)N ∈ Nm (j = p + 1, . . . , i = p + q), so that
Y1, . . . , Yn is a basis for the osculating Lie algebra gm = Hm ⊕Nm. The map

χ : U(gm) → Um = ⊕Udm :
∑
α

cαY
α 7→

∑
cα [Xα]|α|m

is an isomorphism of graded algebras. It is independent of the choice of H-frame.

Proof. The restriction of χ to the Lie algebra gm ⊆ U(gm) is compatible with the grading on
gm and Um. It preserves commutators, because by definition of the bracket on gm we have

χ[Yi, Yj ] = χ(Yi)χ(Yj)− χ(Yj)χ(Yi)

Therefore, χ extends in a unique way to a graded algebra homomorphism U(gm) → Um. By the
Poincaré–Birkhoff–Witt Theorem this homomorphism is identical to the map χ defined above
(see [Hu]). Clearly, the map χ is one-to-one and onto, and therefore an isomorphism.

If we choose a different H-frame to define χ, then χ remains the same when restricted to gm,
and therefore also on U(gm).

2

Let Ud(Lie(THM)) denote the bundle with fibers Ud(gm). We have an identification of graded
algebras

SH ∼=
∞⊕
d=0

Γ(Ud(Lie(THM))),

and the principal Heisenberg symbol σdH(P ) of a differential operator of Heisenberg order d can
be interpreted as a smooth section in the bundle Ud(Lie(THM)). If we identify U(gm) with the
algebra of right invariant differential operators on the osculating group Gm = THMm, then SH
is realized as the algebra of smooth families of such operators, and the principal symbol σdH(P )
can be identified with a smooth family of homogeneous, right-invariant operators Pm on the
osculating groups Gm. We call Pm the model operator for P at the point m ∈M .

With

P =
∑
|α|≤d

aαX
α,

as above, we have

Pm =
∑
|α|=d

aα(m)Y α ∈ U(gm),

where, as before, Yi = Xi(m) ∈ gm = Hm ⊕Nm. The algebraic discussion in this section shows
that the model operators Pm are invariantly defined, i.e., independent of the choice of H-frame
and local representation of P . Once we have constructed the parabolic tangent groupoid we will
give a geometric proof of this fact (see section 6.2).

Remark. In the special case where H = TM , the principal Heisenberg symbol σH(P ) is just
the Fourier transform of the usual principal symbol σ(P ).
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3.3 Rockland operators.

We will study the behaviour of the operator P by approximating it near a point m ∈ M
by its model operator Pm, a homogeneous, right-invariant operator on the graded nilpotent
group Gm = THMm, the osculating group at m for the Heisenberg structure (M,H). There
is a beautiful criterion that decides whether such a model operator is hypoelliptic. Let us first
consider the easiest case where the group is just Rn.

Theorem 39 A homogeneous constant coefficient operator on Rn is hypoelliptic if and only if
it is elliptic.

(This follows from theorem by Hörmander; see [Fo], p. 216.) This result has been generalized
to the case of arbitrary graded nilpotent groups.

Definition 40 A Rockland operator on a graded group G is a differential operator P that is
right-invariant, homogeneous, and has the property that dπ(P ) is injective on the space of smooth
vectors Sπ, for every irreducible unitary representation π ∈ Ĝ, except the trivial representation.

We explain the notation. The unitary dual Ĝ of G is the set of equivalence classes of
irreducible unitary representations π on Hilbert space Hπ. The space of smooth vectors Sπ ⊆ Hπ

consists of vectors v ∈ Hπ for which the map g 7→ π(g)v : G→ Hπ is a C∞ function. In the usual
manner, π induces a representation dπ of elements in the Lie algebra g of G as skew-Hermitian
(unbounded) operators,

dπ(X)v =
d

dt (t=0)
exp(tX)v,

for X ∈ g, v ∈ Sπ. The representation dπ extends to the universal enveloping algebra U(g), such
that for an invariant operator P ∈ U(g), we have an unbounded operator dπ(P ) on Hπ with
domain Sπ.

(For the basics of representation theory for nilpotent groups, see, for example, [Ta], [CG].)

Lemma 41 Let G = Rn be an abelian group with trivial grading. A homogeneous, constant
coefficient operator on G is a Rockland operator if and only if it is elliptic.

Proof. The unitary dual Ĝ can be identified with the dual space (Rn)∗. To ξ ∈ (Rn)∗ is
associated the (scalar) unitary representation πξ(x) = ei〈ξ,x〉. This leads to,

dπξ

(
∂

∂xj

)
=

d

dt (t=0)
πξ(txj) = iξj .

In other words, if P =
∑
aα∂

α, then dπξ(P ) =
∑
aα(iξ)α, which is just the symbol of P . The

Rockland condition for P says precisely that the symbol of P is invertible for ξ 6= 0.
2

The following elegant theorem was first conjectured by Rockland [Ro], who proved it for
the Heisenberg group. Necessity in the general case was proven by Rothschild and Stein [RS];
sufficiency by Helffer and Nourrigat [HN].
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Theorem 42 A right invariant homogeneous operator on a graded group is hypoelliptic if and
only if it is a Rockland operator. Moreover, if P is any left invariant operator on a graded group,
whose highest order part (in the graded sense) is a Rockland operator, then P is hypoelliptic.

Sufficiency of the Rockland condition follows from the following a priori estimates ([HN], propo-
sition 6.4).

Proposition 43 Let G be a graded group, with grading of length r. Let d be a common multiple
of 1, 2, . . . , r that is greater or equal rr.

If P is a Rockland operator of degree d, and A is an invariant differential operator of order
≤ d, then there exists a constant C > 0 such that

‖Au‖ ≤ C (‖Pu‖+ ‖u‖) ,

for all u ∈ S(G). The norms in the inequality are L2(G) norms.

These estimates imply hypoellipticity of P . If the degree of P does not satisfy the requirements,
then the estimates will still hold for a sufficiently large power Pm of P (if P is Rockland, then so
is Pm). Hypoellipticity of Pm then implies hypoellipticity of P . In Appendix A we have verified
that the proof of the Rockland theorem given in [HN] still holds for vector bundle operators
([HN] only deals with scalar operators).

The following important result was proven by Nelson and Stinespring ([NS], Theorem 2.2)
for elliptic operators. Their proof also applies to Rockland operators, because it relies only on
the fact that the invertible operator P ∗P + 1 is hypoelliptic.

Theorem 44 A formally self-adjoint Rockland operator P with domain on a graded group G is
essentially self-adjoint. Moreover, if π is any unitary representation of G, then the closure of
the operator π(P ), with domain Sπ, is self-adjoint.

Next, we consider the Sobolev theory which corresponds to the filtration of U(g). Let
Y1, · · · , Yn be a basis for the Lie algebra g, compatible with the grading, i.e., Y1, · · · , Yr(1) in g1,
Yr(1)+1, · · · , Yr(2) in g2, etc. Then the weigthed Sobolev space W k = W k(G) is the completion of
C∞c (G) with respect to the norm,

‖u‖Wk =
∑
|α|≤k

‖Y αu‖.

As usual, these weighted Sobolev spaces are Hilbert spaces. The W k norms are, up to equiva-
lence, independent of the choice of basis Yi. Clearly, if A is an arbitrary invariant operator of
(weighted) order less or equal d, then A is continuous as an operator W d+k →W k.

Proposition 45 Let G be a graded group, with grading of length r. Let d be a common multiple
of 1, 2, . . . , r that is greater or equal rr.

If P is a Rockland operator on G of order d, then the domain of the closure of P is the
weighted Sobolev space W d(G).
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Proof. The expression ‖Pu‖+‖u‖ is equivalent to the graph norm of P . The a priori estimates
for a maximally hypoelliptic P can be written as,

‖u‖W d ≤ C(‖Pu‖+ ‖u‖).

But, simply because P is of order d, we also have,

‖Pu‖+ ‖u‖ ≤ C ′‖u‖W d .

It follows that the graph norm is equivalent to the Sobolev norm.
2

We will show that the restrictions on the order of P in Proposition 43 can be removed.

Proposition 46 Let G be a graded nilpotent group. Let P be a formally selfadjoint Rockland
operator of order d.

If f ∈ C(R) is a continuous function of order f(x) = O(|x|−k/d), as x → ∞, for a positive
integer k, then f(P ) is bounded as an operator L2 →W k.

Proof. We first show that, for any invariant operator A of order less or equal k, there is a
constant C > 0, such that,

‖Au‖ ≤ C‖(P 2 + 1)k/2du‖,

for all u ∈ S(G).
First, observe that P 2 + 1 is a bijective map from the domain W 2d to L2. Therefore, the

closure of P 2 + 1 is selfadjoint, so it makes sense to define the selfadjoint operator (P 2 + 1)k/2d.
For suitably large m (depending on the length of the grading of the group), both the self-

adjoint operators (A∗A)md and P 2mk are of order 2mdk, and P 2mk is a Rockland operator for
which the a priori estimates hold,

‖(A∗A)mdu‖ ≤ C(‖P 2mku‖2 + ‖u‖2),

for all u ∈W 2mdk. Rewriting these estimates, we derive,

0 < 〈(A∗A)2mdu, u〉 ≤ C〈(P 4mk + 1)u, u〉 ≤ C〈(P 2 + 1)2mku, u〉,

which holds for all u in the domain of the Rockland operator (P 2 + 1)2mk which is W 2mdk. The
domain of (A∗A)2md certainly contains W 2mdk.

By Lemma ?? (see the Appendix to this chapter) we derive,

0 < 〈A∗Au, u〉 ≤ C ′〈(P 2 + 1)k/du, u〉,

for all u in the domain of (P 2 + 1)k/d, which certainly contains S(G).
This establishes that g(P ) : W k → L2 is bounded, for g(x) = (x2 + 1)−k/2d. Now, if f(x) =

O(|x|−k/d, then f(x) = h(x)g(x) for a bounded function h. Because h(P ) is bounded on L2,
f(P ) = h(P )g(P ) is bounded W d → L2.

2

Corollary 47 The a priori estimates in Proposition 43 hold, regardless of the degree of the
Rockland operator P .
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Proof. Take k = d in Proposition 46.
2

The following lemma plays an important technical role.

Lemma 48 Let G be a graded group, with grading of length r. Let k be a common multiple of
1, 2, . . . , r.

Then for every ε > 0, there exists C > 0 such that,

‖u‖Wk−1 ≤ ε‖u‖Wk + C‖u‖,

for all u ∈ S(G).

(See Proposition 4.6.1 in [HN]) This lemma is false (in general) for values of k that are not
multiples of 1, 2, . . . , r. However, for a limited class of groups (that includes the Heisenberg
group), we give a simple proof of a stronger version of this lemma. The proof depends on a
‘spectral’ definition of the Sobolev norms.

Lemma 49 Let G be a graded, two-step nilpotent group, for which g1 generates the Lie algebra
g, i.e., [g1, g1] = g2, and let,

∆ =
p∑
i=1

−Y 2
i ,

be the sum of squares of order one vector fields Y1.
Then the weighted Sobolev norm ‖u‖Wk is equivalent to the norm ‖u‖k = ‖(∆ + 1)k/2u‖.

Proof. Because the order one vector fields Y1, · · · , Yp generate the Lie algebra g, the operator
∆ is hypoelliptic, and hence a (positive) Rockland operator.

If k = 2m is even, clearly ‖(∆ + 1)mu‖ ≤ C‖u‖W 2m , while, by Proposition 46,

‖u‖W 2m ≤ C‖(∆2 + 1)m/2u‖.

Spectral theory gives,

‖(∆2 + 1)m/2u‖ ≤ ‖(∆ + 1)mu‖.

This proves the lemma for even k.
To deal with the odd case k = 2m+ 1, simply observe that,

‖u‖2
W 2m+1 =

p∑
i=1

‖Yiu‖2
W 2m + ‖u‖2

W 2m = 〈(
p∑
i=1

−Y 2
i + 1)u, u〉W 2m = ‖(∆ + 1)1/2u‖2

W 2m .

2

Corollary 50 Let G be a graded, two-step nilpotent group, for which g1 generates the Lie algebra
g, i.e., [g1, g1] = g2.

Then Lemma 48 holds for arbitrary positive integers k.

37



Proof. Using Lemma 49, we only need to observe that,

‖(∆ + 1)(k−1)/2u‖ ≤ ε‖(∆ + 1)k/2u‖+ C‖u‖,

which follows by spectral theory.
2

Examples. On the graded abelian group Rp+1 the heat operator,

P =
p∑
i=1

−∂2
i + ∂n,

is a Rockland operator. As an exercise the reader should verify that the operator

P =
p∑
i=1

−Y 2
i + iαYn,

on the Heisenberg group is a Rockland operator if and only if the complex constant α is not an
odd integer. One should make use of the spectral theory of the harmonic oscillator.

3.4 Maximally hypoelliptic operators.

We now turn to the study of hypoelliptic operators on a compact contact manifold (M,H).

Definition 51 Let (M,H) be a compact contact manifold. A differential operator P on M of
H-order d is called maximally hypoelliptic if for every differential operator A on M of H-order
≤ d, there is a constant C such that,

‖Au‖ ≤ C(‖Pu‖+ ‖u‖),

for all smooth u ∈ C∞(M). The norms in the inequality are L2(M) norms.

Remark. The ‘a priori’ estimates will hold, in particular, if the ordinary order of A is less or
equal half that of P . Therefore,

‖u‖d/2 ≤ C(‖Pu‖+ ‖u‖),

where ‖·‖d/2 denotes the ordinary Sobolev norm. This is expressed by saying that P is subelliptic.
However, the notion of maximal hypoellipticity is better suited to the Heisenberg structure on
M .

Let {Uj , ψj} be a Heisenberg atlas for M (see Definition 26), with Darboux coordinates
ψj : Uj → G, where G is the Heisenberg group. Choosing an H-basis Y1, · · · , Yn for the right
invariant vector fields on G, let X(j)

1 , · · · , X(j)
n denote the pullback of this basis to Uj . Let {ϕj}

be a partition of unity subordinate to {Uj}. For a positive integer k, we define the weighted
Sobolev space W k = W k(M,H), as the completion of C∞(M) with respect to the norm,

‖u‖2
Wk =

∑
j

∑
|α|≤k

‖ϕjXα
(j)u‖

2.
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As usual, these weighted Sobolev spaces are Hilbert spaces.
Clearly, if A is an arbitrary differential operator of (graded) order less or equal d, it can be

written as,

A =
∑
j

∑
|α|≤k

ϕja
(j)
α Xα

(j),

with a
(j)
α ∈ C∞(Uj). One easily checks that A is continuous as an operator W d+k → W k. The

Sobolev norms are, up to equivalence, independent of the choice of atlas {Uj}, frame X(j), or
partition ϕj .

Lemma 52 Let (M,H) be a compact contact manifold. For every integer k, and every ε > 0,
there exists C > 0 such that,

‖u‖Wk−1 ≤ ε‖u‖Wk + C‖u‖,

for any u ∈ C∞(M).

Proof. Corollary 50 gives the local estimates,∑
|α|≤k−1

‖Xα
(j)ϕju‖ ≤ ε

∑
|α|≤k

‖Xα
(j)ϕju‖+ C‖ϕju‖.

We must commute Xα
(j) and ϕj . First,

‖u‖Wk−1 =
∑
j

∑
|α|≤k−1

‖ϕjXα
(j)u‖ ≤

∑
j

∑
|α|≤k−1

‖Xα
(j)ϕju‖+

∑
j

∑
|α|≤k−1

‖ [Xα
(j), ϕj ]u‖

The first term on the right hand side gives,∑
j

∑
|α|≤k−1

‖Xα
(j)ϕju‖ ≤ ε

∑
j

∑
|α|≤k

‖Xα
(j)ϕju‖+ C

∑
j

‖ϕju‖

≤ ε‖u‖Wk + ε
∑
j

∑
|α|≤k

‖ [Xα
(j), ϕj ]u‖+ C ′‖u‖.

Because the commutator [Xα
(j), ϕj ] is an order |α| − 1 operator on M , we obtain,

‖u‖Wk−1 ≤ ε‖u‖Wk + εC ′′‖u‖Wk−1 + C ′‖u‖+ C ′′′‖u‖Wk−2 ,

where C ′′ and C ′′′ are independent of ε. If we assume, by a pocess of induction, that,

‖u‖Wk−2 ≤ ε‖u‖Wk−1 + C‖u‖,

the desired result follows.
2

We are now ready to prove the main result of this chapter.

Theorem 53 Let (M,H) be a compact contact manifold. A differential operator P on M is
maximally hypoelliptic if and only if all the model operators Pm,m ∈M are Rockland operators.
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Proof. Assume that all model operators are Rockland operators.
By approximating the differential operator P with its model operator Pm in a neighborhood

of each m ∈ M , we first show that for each m ∈ M there is a neighborhood V of m, and a
constant CV , such that,

‖u‖W d ≤ CV (‖Pu‖+ ‖u‖),

for functions u with support in V .
Let U be a neigborhood of m, equipped with an isomorphism of Heisenberg structures

ψ : U → G, where G is the Heisenberg group. Let Y1, · · · , Yn be a basis of invariant vector
fields on G, identified with vector fields on U . The Rockland operator Pm now acts on functions
u ∈ C∞c (U), and we have,

‖u‖W d ≤ C(‖Pmu‖+ ‖u‖).

All we need to do is compare ‖Pu‖ and ‖Pmu‖.
Choosing coordinates (x1, · · · , xn) in U , with x = 0 at m, we have,

P = Pm +
∑

xjQj + S,

where Qj are order d differential operators, and S is of order d − 1. If u is supported in a ball
of small radius |x| < ε, we get,

‖Pmu‖ − ‖Pu‖ ≤ ‖(Pm − P )u‖ ≤ εC‖u‖W d + C‖u‖W d−1 ,

with C independent of ε. Using Lemma 52, we obtain the desired estimate for smooth functions
supported in an ε neighborhood of m, for ε sufficiently small.

To get the global result, choose a finite open cover {Vj} such that the above estimates hold
locally for each Vj . Choose a smooth partition of unity {ϕj} subordinate to {Vj}. Then,

‖Au‖ ≤
∑

‖Aϕju‖ ≤
∑

Cj(‖Pϕju‖+ ‖ϕju‖)

≤
∑

Cj(‖ϕjPu‖+ ‖ [P,ϕj ]u‖+ ‖ϕju‖)

≤ C(‖Pu‖+ ‖u‖) +
∑

Cj‖ [P,ϕj ]u‖.

Again, Lemma 52 finishes the proof.
Conversely, suppose P is maximally hypoelliptic. A similar argument, reversing the roles of

P and Pm, proves that Pm is hypoelliptic. (Note that Pm is invariant, so if it is hypoelliptic in
a small open set it is hypoelliptic globally). Theorem 42 implies that Pm is Rockland.

2
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3.5 Appendix: inequalities of unbounded operators.

The purpose of this section is to prove the following technical result, which is a version for
(unbounded) differential operators of Proposition 1.3.8 in [Pe].

Proposition 54 Let A,B be two selfadjoint differential operators on a manifold M .
If 0 ≤ 〈Au, u〉 ≤ 〈Bu, u〉, for all u ∈ C∞c (M), then for any 0 < r < 1,

〈Aru, u〉 ≤ 〈Bru, u〉; , u ∈ C∞c (M).

Let A be a selfadjoint operator on a Hilbert space H, and E the associated resolution of the
identity. For a (possibly unbounded) Borel function f : R → C, the operator f(A) is defined
as f(A) =

∫
fdE, where the integral is interpreted as a weak limit. More explicitly, for a pair

u, v ∈ H, one can define the regular, bounded Borel measure Eu,v(ω) = 〈E(ω)u, v〉, where E(ω)
is the spectral projection of A associated to the Borel set ω ⊆ R. Then f(A) is characterized by,

〈f(A)u, v〉 =
∫
f(t)dEu,v(t).

The domain of f(A) is defined as,

D(f(A)) = {u ∈ H :
∫
|f |2dEu,u <∞}.

In fact, for u ∈ D(f(A)),

‖f(A)u‖2 =
∫
|f |2dEu,u.

The domainD(f(A)) ⊆ H is dense, and f(A) is closed, while f(A) is bounded iff f is E-essentially
bounded. (see [Ru], Chapter 13.)

Lemma 55 Let A be a selfadjoint differential operator on a manifold M . Let f be a Borel
function that is bounded by a polynomial, i.e. |f(t)| ≤ C(1 + t2N ) for some N > 0, and all t in
the spectrum of A.

Then the domain of f(A) contains C∞c (M).

Proof. Let E be the resolution of the identity associated with A. If u ∈ C∞c (M), then u is in
the domain of 1 +A2N , for any integer N > 0. This means that,∫

(1 + t2N )2dEu,u(t) <∞.

Since Eu,u is a positive measure, it follows that,∫
|f(t)|2dEu,u(t) <∞,

and so u ∈ D(f(A)), by definition.
2
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Lemma 56 Let A be a selfadjoint differential operator on a manifold M . Let f be a Borel
function on R, and fn a sequence of bounded Borel functions converging pointwise to f , and
such that |fn(x)| ≤ |f(x)|, for x in the spectrum of A.

Then fn(A)u converges to f(A)u, for all u in the domain of f(A).

Proof. Let u ∈ D(f(A)), i.e.,
∫
|f |2dEu,u < ∞. Because |f − fn|2 ≤ 4|f |2, the dominated

convergence theorem implies,

‖f(A)u− fn(A)u‖2 =
∫
|f − fn|2dEu,u → 0.

2

Lemma 57 Let A be a strictly positive operator on a Hilbert space H.
Then the domain D(A) of A is contained in the domain of A1/2, and A1/2 maps D(A) to a

dense subset of H.

Proof. We have D(A) ⊆ D(A1/2), because if
∫
|t|2dEu,u <∞, then clearly

∫
|t1/2|2dEu,u <∞.

To see that A1/2 maps D(A) to a dense subset of H, let w ∈ H be such that 〈A1/2u,w〉 = 0
for all u ∈ D(A). Then 〈Au,A−1/2w〉 = 〈A1/2u,w〉 = 0. But because A is invertible, {Au : u ∈
D(A)} = H, so we have A−1/2w = 0, and therefore w = 0.

2

Lemma 58 Let A,B be two (possibly unbounded) strictly positive operators on a Hilbert space
H, with dense domains D(A),D(B).

If 0 < 〈Au, u〉 ≤ 〈Bu, u〉 for all u ∈ D(B), while D(B) ⊆ D(A), then

0 < 〈B−1u, u〉 ≤ 〈A−1u, u〉,

for all u ∈ H.

Proof. Because A,B are positive, we can take square roots: C = A1/2 and D = B1/2. By
Lemma 57, D(B) ⊆ D(D), and also D(B) ⊆ D(A) ⊆ D(C). We may write,

〈Cu,Cu〉 ≤ 〈Du,Du〉,

for u ∈ D(B).
From ‖Cu‖ ≤ ‖Du‖, we see that ‖CD−1v‖ ≤ ‖v‖, for v = Du, u ∈ D(B). Because the set

{Du : u ∈ D(B)} is dense in H, we conclude the closure CD−1 is bounded of norm ≤ 1.
Because (CD−1)∗ = (CD−1)∗, while (CD−1)∗ ⊇ D−1C, we get,

‖D−1Cv‖ ≤ ‖v‖,

for all v ∈ D(D−1C) = D(C).
This, in turn, implies ‖D−1u‖ ≤ ‖Cu‖, for u = Cv. But the range of C is H (because C−1

is bounded), so we get the desired result for all u ∈ H.
2
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Proof of Proposition 54. Consider the functions fε, ε > 0,with domain x ∈ [0,∞),

fε(x) =
∫ ∞

ε

x

tx+ 1
t−rdt = xr

∫ ∞

εx

1
u+ 1

u−rdu.

The functions fε are bounded, because,∫ ∞

ε

x

tx+ 1
t−rdt ≤

∫ ∞

ε
t−r−1dt =

1
r
ε−r.

Observe that c =
∫∞
0 (1 + t)t−rdt <∞, for 0 < r < 1. We have pointwise convergence,

lim
ε→0

fε(x) = cxr,

while |fε(x)| ≤ |cxr|. By Lemma 55 and Lemma 56,

fε(A)u→ cAru , fε(B)u→ cBru,

for u ∈ C∞c . Hence, it suffices to show that fε(A) ≤ fε(B) for all ε > 0.
Observe that gt(x) = x(tx+ 1)−1 has supremum ‖gt‖∞ = 1/t, and so,

fε =
∫ ∞

ε
gtt

−rdt,

converges uniformly. Therefore, we have norm convergence,

fε(A) =
∫ ∞

ε

A

tA+ 1
t−rdt.

It therefore suffices to show,

A

tA+ 1
≤ B

tB + 1
.

But that follows immediately from (tA+ 1)−1 ≤ (tB + 1)−1, because,

x

tx+ 1
=

1
t

(
1− 1

tx+ 1

)
.

2
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Chapter 4

From noncommutative symbol to
K-theory class.

4.1 Introduction.

In this chapter we associate a K-theory class to the principal Heisenberg symbol of a maximally
hypoelliptic operator on a contact manifold. As we saw in Chapter 3, a filtration on the algebra
of differential operators compatible with the Heisenberg structure naturally leads to a noncom-
mutative symbolic calculus. Correspondingly, the K-theory class associated to the principal part
of a maximally hypoelliptic operator is a class in the K-theory of a noncommutative C∗-algebra.

We have seen that the algebra of symbols consists of smooth families of differential operators
on the oscillating groups Gm,m ∈M . This algebra can be extended to include smooth families
of compactly supported distributions on Gm, with convolution as the product. One can think
of this extended algebra as containing the symbols of parametrices for maximally hypoelliptic
operators. However, we will not develop the symbolic calculus in this direction.

Instead, we consider the subalgebra of ‘symbols’ consisting of smooth families of functions in
the convolution algebras C∞c (Gm). The C∗-algebra C∗(THM) is the closure of the latter algebra
with respect to a suitable C∗-norm. This C∗-algebra contains the resolvent of the Heisenberg
symbol σH(P ) of a maximally hypoelliptic operator P . This is the key fact that allows us to
construct an element,

[σH(P )] ∈ K0(C∗(THM)).

The C∗-algebra C∗(THM) is the reduced C∗-algebra of the smooth groupoid THM . We review
the construction of the convolution C∗-algebra of a general smooth groupoid in sections 4.2 and
4.3. The reader familiar with this construction could skip these sections.

The basic idea for our construction of the K-theory class [σH(P )] is due to Quillen, who
gave a reformulation of the topological K-theory class of an elliptic operator (see [Qu]). The
symbol class, as conceived by Atiyah and Singer, was an element in ‘compactly supported’ K-
theory K0(T ∗M). This K-theory class is defined precisely if the principal symbol σ(x, ξ) of
the operator P is invertible away from ξ = 0, i.e., if P is elliptic. There is not much hope of
extending this topological construction to operators that are not elliptic. However, C∗-algebraic
K-theory is more flexible. First, Quillen developed an algebraic formalism that gives the symbol
class of an elliptic operator as a formal difference of projections in K0(C0(T ∗M)). By a slight
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reformulation, we conceive of Quillen’s construction as producing an element in K0(C∗(TM)),
i.e., in the K-theory of the convolution C∗-algebra of the groupoid TM . Of course,

K0(T ∗M) ∼= K0(C0(T ∗M)) ∼= K0(C∗(TM)).

Once conceived in these terms, it is not hard to see what to do in the hypoelliptic case. The
important technical step is to prove that the family of resolvents of the model operators Pm
defines an element in the C∗-algebra C∗(THM).

4.2 Smooth groupoids.

In this section we briefly review the definition of a smooth groupoid, and give some examples
that are relevant in what follows. A basic reference for this material is [Ma]. Put most succinctly,
a groupoid is a small category with invertible arrows. To fix some terminology and notation, we
give the expanded definition.

Definition 59 A groupoid is a structure (G,G(0), s, r,m, e, i), where G is a set called the arrow
set, and G(0) is a set called the object set, and r, s,m, e, i are various maps defined below. First
we have the source map s, and the range map r:

s : G → G(0),

r : G → G(0),

assigning to each arrow γ ∈ G a source object s(γ) and a range object r(γ).
A pair of arrows (γ1, γ2) ∈ G × G is called composable, if s(γ1) = r(γ2). The set of pairs of

composable arrows is denoted G(2), and we have a multiplication map m, defined on composable
arrows:

m : G(2) → G.

We denote m(γ1, γ2) = γ1 · γ2. Associated to the multiplication map are the units map e, and
the inverses map i:

e : G(0) → G,
i : G → G.

We denote i(γ) = γ−1, and e(x) = ex.
Such a structure is a groupoid, if it satisfies the following six axioms.
Axioms governing the source map in relation to multiplication, units, and inverses:

(1) s(γ1γ2) = s(γ2), ∀γ1, γ2 ∈ G.
(2) s(ex) = x, ∀x ∈ G(0).

(3) s(γ−1) = r(γ), ∀γ ∈ G.
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The groupoid axioms proper:

(4) [Associativity]

(γ1γ2)γ3 = γ1(γ2γ3), ∀(γ1, γ2), (γ2, γ3) ∈ G(2).

(5) [Multiplicative Units]
γ · es(γ) = er(γ) · γ = γ, ∀γ ∈ G.

(6) [Multiplicative Inverses]

γ · γ−1 = er(γ), γ
−1 · γ = es(γ), ∀γ ∈ G.

Note that axioms 1—3 guarantee that the various multiplications in axioms 4—6 are indeed
defined. Some trivial consequences of the axioms should be mentioned. First of all, one easily
derives that (γ−1)−1 = γ. This implies, in particular, that the inverses map i is a bijection. One
then deduces the analogs of axioms 1—3 for the range maps:

r(γ1γ2) = r(γ1)
r(ex) = x,

r(γ−1) = s(γ).

We see that the range map r and source map s are right inverses for the identity map e. Therefore
r and s are surjective, and e is injective.

To clarify axiom (1), we should mention that we think of elements in G as arrows pointing
from right to left, with the source of the arrow on the right, and the range of the arrow on the
left. With this picture in mind, it is clear that the source of γ1γ2 is the same as the source of γ2.

Definition 59 describes an algebraic groupoid. We now impose topological conditions.

Definition 60 A topological groupoid is a groupoid for which the arrow set G and object set
G(0) are topological spaces; the set of composable arrows G(2) is closed in G × G; the groupoid
maps s, r,m, e, i are continuous; and the source and range maps s, r are open maps.

A smooth groupoid is a groupoid for which the arrow set G and object set G(0) are smooth
manifolds; the groupoid maps s, r,m, e, i are smooth; and the source and range maps s, r are
submersions.

Some notation:

Gx = {γ | s(γ) = x},
Gy = {γ | r(γ) = y},
Gyx = Gx ∩ Gy.

Notice that, in a topological groupoid, the fact that source and range map are open is equivalent
to saying that the sets Gx and Gy are closed subspaces of G. In the case of a smooth groupoid,
the fact that s and r are submersions guarantees that Gx and Gy are smooth submanifolds of
G. In fact, these sets form the leafs of two foliations of G. Also observe that the set G(2) of
composable arrows is automatically a submanifold of G × G, because it is the pre-image of the
diagonal in G(0) × G(0) under the submersion (r, s) : G × G → G(0) × G(0).

46



Example 1. Taking a smooth manifold M as object space, imagine an arrow connecting each
pair of points in M . That is to say, we take G(0) = M with arrow space G = M ×M . The
groupoid maps are the obvious ones: thinking of (x, y) ∈ G as an arrow from y to x, we get
s(x, y) = y, r(x, y) = x. Composition of arrows is expressed by the multiplication law

(x, y) · (y, z) = (x, z).

The units for this operation are the arrows e(x) = (x, x) ,while (x, y)−1 = (y, x) .
The groupoid M ×M is called a pair groupoid.

Example 2. The tangent space TM of a smooth manifold can be thought of as a smooth
groupoid, with addition of vectors as groupoid multiplication. Composable vectors, of course,
are those belonging to the same fiber, and the units e(x) are the zero vectors. We may identify
the object space with M , and take the units map to be the zero section e : M → TM . Clearly,
source and range maps are just the base point map, r = s : TM →M .

Note that, from a purely algebraic point of view, the groupoid TM is just an uncountable
family of disjoint abelian groups. Defining TM as a smooth groupoid makes precise the notion
that the fibers form a smooth bundle of Lie groups.

Example 3. In the same manner, the bundle of oscillating groups THM is a smooth groupoid.
Smoothness of the groupoid operations follows from smoothness of the coefficients in the array
bkij , defined in Proposition 12. Note that, in this case, the group structure on the fibers Gm may
vary from point to point.

4.3 The convolution C∗-algebra of a groupoid.

We recall the construction of the reduced C∗-algebra C∗(G) associated to a smooth groupoid G.
See [Re] for the basics on groupoid C∗-algebras.

Definition 61 A Haar system on a topological groupoid G is a family of positive measures λx,
defined on the submanifolds Gx = s−1(x) for each x ∈ G(0), that is (right) invariant with respect
to groupoid multiplication, and continuous in x. To be precise:

(1) λs(γ)(E · γ) = λr(γ)(E) , ∀γ ∈ G,∀E ⊆ Gr(γ).
(2) The map,

x 7→
∫
Gx

fdλx

is continuous on G(0), for any choice of f ∈ Cc(G).
For a smooth groupoid, a smooth Haar system is a Haar system such that each λx is a smooth

1-density, and such that x 7→
∫
fdλx is smooth for any f ∈ C∞c (G).

Example 1. According to the definition, a Haar system on the pair groupoid G = M ×M is
a family of measures λx on Gx = {(y, x)|y ∈ M} = M × {x} that is invariant and continuous.
Invariance of the family λx simply means that all λx are equal (as measures on M). Continuity
is then automatic. In the smooth case, λx should be a fixed smooth 1-density on M .
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Example 2. A smooth Haar system on the tangent bundle G = TM is a family of smooth
densities on the fibers Gx = TxM for x ∈M . Invariance is satisfied if the densities λx are Haar
measures for the Lie group structure on TxM , i.e., λx is a multiple of Lebesgue measure on TxM .
Thinking of Haar measure on TxM as a linear map,

λx : |Λn|TxM → R+,

we see that the family {λx} can be identified with a single 1-density λ on M . (The bundle
|Λn|TM is the bundle of 1-densities, associated to the frame bundle of TM by means of the
representation GL(n,R) → R+ : A 7→ |det(A)|.) To require that λx varies smoothly with x is to
say that λ is a smooth 1-density on M .

Example 3. The situation for the groupoid THM is similar. If we identify the osculating group
THMx with the Lie algebra Hx ⊕Nx via the exponential map, then Haar measure on THMx is
just Lebesgue measure on Hx⊕Nx, which, in turn, is naturally identified with Lebesgue measure
on TxM (independent of the choice of section N ⊆ TM). So, again, a smooth Haar system on
THM corresponds to a smooth 1-density on M .

For a smooth groupoid G, the set C∞c (G) of smooth, compactly supported functions on G is
a convolution ∗-algebra. Convolution and star operation are defined as,

(f ∗ g)(γ) =
∫
Gx

f(γν−1)g(ν)dλx(ν),

f∗(γ) = f(γ−1)

where x = s(γ). Right invariance of the Haar system garantuees associativity of convolution,
and all axioms for a ∗-algebra are easily verified.

For each x ∈ G(0) the associated regular representation πx of the ∗-algebra C∞c (G) is the
representation on the Hilbert space L2(Gx, λx) obtained by convolution,

πx(f)φ = f ∗ φ,

with f ∈ C∞c (G) and φ ∈ C∞c (Gx) ⊆ L2(Gx).

Definition 62 Let G be a smooth groupoid. The reduced groupoid C∗-algebra C∗(G) is the
completion of the convolution algebra C∞c (G) with respect to the norm,

||f ||C∗r (G) = sup
x∈G(0)

||πx(f)||.

In other words, the reduced C∗-algebra norm is the smallest norm for which all regular repre-
sentations are continuous.

Example 1. Convolution and star operation for the pair groupoid M ×M are given by the
formulas,

(f ∗ g)(x, y) =
∫
M
f(x, z)g(z, y)dλ(z),

f∗(x, y) = f(y, x),
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with x, y, z ∈M . This corresponds to multiplication and adjoint operation for operator kernels.
Indeed, the operatorπy(K), y ∈M , for K ∈ C∞c (M ×M) is given by,

(πy(K)φ)(x, y) =
∫
M
K(x, z)φ(z, y)dλ(z).

Identifying Gy = M , we see that πy(K) = Op(K) is independent of y ∈M . Here Op(K) denotes
the Hilbert-Schmidt operator with Schwartz kernel K, i.e.,

Op(K)φ(x) =
∫
M
K(x, z)φ(z)dλ(z).

Since ‖πy(K)‖ = ‖Op(K)‖, we have ‖K‖C∗r (G) = ‖Op(K)‖, and we get a canonical isomorphism,

C∗(M ×M) ∼= K(L2(M,λ)) : K 7→ Op(K),

where K denotes the algebra of compact operators on a Hilbert space.

Example 2. For the tangent space G = TM we had Gx = TxM , with Lebesgue measure λx
on TxM = Rn. For a smooth function f ∈ C∞c (TM) the regular representation πx(f) is the
operator on L2(TxM,λx) of convolution with fx, the restriction of f to TxM . This implies,

||πx(f)|| = sup
ξ∈T ∗xM

f̂x(ξ),

where f̂x denotes the Fourier transform of fx (f̂x is a Schwartz class function on T ∗M), and so,

||f ||C∗(G) = ||f̂ ||∞.

We see that Fourier transform in the fibers of TM gives an isomorphism,

C∗(TM) ∼= C0(T ∗M).

Example 3. The situation for the bundle of oscillating groups THM is similar, except that
we cannot make use of Fourier transform. Each regular representation πx, x ∈ M gives a ∗-
homomorphism,

πx : C∞c (THM) → C∗(Gx),

where C∗(Gx) is the (reduced) group C∗-algebra of the osculating group Gx at x ∈ M . (The
nilpotent groups Gm are amenable, so the full group C∗-algebra C∗(G) is naturally isomorphic
to the reduced C∗-algebra C∗r (G).) Then,

||f ||C∗(THM) = sup
x∈M

||πx(f)||C∗(Gx).

Proposition 63 The function x 7→ ||πx(f)||C∗(Gx) is continuous on M , for each f ∈ Cc(THM).
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Proof. Suppose for some x ∈M we have ‖πx(f)‖ = C. Pick gx ∈ Cc(Gx) such that

〈fx ∗ gx, gx〉
〈gx, gx〉

> C − ε.

If we extend gx to a function g ∈ Cc(THM), then the function

y 7→ 〈fy ∗ gy, gy〉
〈gy, gy〉

is continuous. (Here gy denotes the function on Gy defined by gy(v) = g(y, v) for y ∈ M,v ∈
Gy.) Therefore, for all y in a neighborhood of x we have ‖πy(f)‖ > C − 2ε. In other words,
x 7→ ‖πx(f)‖ is lower semi-continuous.

2

As a corollary of Proposition 63, we see that C∗(THM) is a continuous field of C∗-algebras
over M , where the fibers are the group C∗-algebras C∗(Gx). Notice that C∗(THM) is commu-
tative if and only if each osculating group Gx is abelian, which means that (M,H) is a foliation.

4.4 An elliptic symbol as a K-theory class.

Let P be an elliptic differential operator on a compact manifold M , acting on the space of
smooth sections in a vector bundle E over M , with range in the space of sections in a second
bundle F ,

P : Γ(E) → Γ(F ).

If P is given in local coordinates as,

P =
∑
|α|≤d

aα(x)∂α,

with matrix valued coefficients aα(x), then the principal symbol,

σ(P )(x, ξ) =
∑
|α|=d

aα(x)(iξ)α,

is invariantly defined as a section,

σ(P ) ∈ Γ(Hom (π∗E, π∗F )),

where π∗E, π∗F denote the pullback of E, F to the cotangent space T ∗M via the base point
map π : T ∗M →M .

By definition, P is elliptic if its principal symbol σ(P ) is invertible outside the zero section
M ⊂ T ∗M . In this case the principal symbol defines a class in compactly supported K-theory,

[(σ(P ), π∗E, π∗F )] ∈ K0(T ∗M).
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There is a nice description of this class as an element in the C∗-algebraic K-theory group
K0(C0(T ∗M)). To arrive at this description, and show its equivalence with the topological
K-theory class, we use the strong excision property of K-theory as an intermediate step,

K0(T ∗M) ∼= K0(T ∗M,∂T ∗M),

where T ∗M = T ∗M ∪ ∂T ∗M is an arbitrary compactification of T ∗M . By choosing a suitable
boundary ∂T ∗M we can avoid the technical complications presented by the possible nontriviality
of the vector bundles E and F . Consider the graph Γσ of the symbol σ(P ),

Γσ = {(v, σ(v)) ∈ π∗E ⊕ π∗F} ⊆ π∗E ⊕ π∗F.

As a vector bundle over T ∗M , it is isomorphic to π∗E,

Γσ ∼= π∗E : (v, σ(v)) 7→ v.

But, because σ is homogeneous (i.e. σ(x, tξ) = tdσ(x, ξ)) and elliptic, there is a sense in which Γσ
converges at infinity (as ξ →∞) to the bundle π∗F . Let T ∗M be the compactification obtained
by adding a point at infinity in each fiber of T ∗M (or any other compactification that covers
this one). Then π∗E, π∗F , and Γσ extend to bundles over T ∗M in the obvious way, without the
need for trivialization, and the compactly supported class [(σ, π∗E, π∗F )] is equivalent to the
relative element,

[Γσ]− [π∗F ] ∈ K0(T ∗M,∂T ∗M).

This translates easily into algebraic language. Choose a hermitian metric in the fibers of the
bundles E and F . Let eσ denote the graph projection of the symbol σ, i.e., the orthogonal
projection of π∗E ⊕ π∗F onto Γσ,

eσ ∈ Cb(End (π∗E ⊕ π∗F )).

Let eF denote the projection of π∗E ⊕ π∗F onto π∗F . Then esigma − eF is an element in
C0(End (π∗E ⊕ π∗F )), and we therefore have a well-defined K-theory class

[eσ]− [eF ] ∈ K0(C0(End (π∗E ⊕ π∗F ))).

Here C0(End (π∗E ⊕ π∗F )) is the C∗-algebra of continuous sections in End (π∗E ⊕ π∗F ) that
vanish at infinity. In terms of relative K-theory, we actually have an element in the group,

K0(Cb(End (π∗E ⊕ π∗F )), C0(End (π∗E ⊕ π∗F ))).

While End(π∗E ⊕ π∗F ) may not be a trivial M2N (C) bundle over T ∗M , we still have Morita
equivalence,

C0(End (π∗E ⊕ π∗F )) ∼Morita C0(T ∗M),

and hence,

K0(C0(End (π∗E ⊕ π∗F ))) ∼= K0(C0(T ∗M)).
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To get the equivalent class in K0(C0(T ∗M)), choose a bundle G such that E ⊕ F ⊕G is trivial.
Then eσ and eF are projections in,

Cb(End (π∗E ⊕ π∗F )) ⊆ Cb(End (π∗E ⊕ π∗F ⊕ π∗G)) ∼= Cb(T ∗M)⊗Mk(C),

where k denotes the fiber dimension of E ⊕ F ⊕ G. (In fact, eσ and eF will be elements in
C(T ∗M)+ ⊗Mk.)

It is clear that the element [eσ]−[eF ] ∈ K0(C0(T ∗M)) is equivalent to the class [Γσ]−[π∗F ] ∈
K0(T ∗M,∂T ∗M) (to get a perfect correspondence, we should take the Cech-Stone compactifi-
cation for T ∗M), and hence to the compactly supported class [(σ, π∗E, π∗F )] ∈ K0(T ∗M).

4.5 The analytic index as K-theory class.

The beauty of the algebraic construction just described is that it can also be applied directly to
P itself. Choosing a measure on M , and hermitian structures in the bundles E and F , we can
think of P as an unbounded Hilbert space operator,

P : L2(M,E) → L2(M,F ).

Since P is a differential operator, it is closable. The graph projection eP of P is the projection
of the Hilbert space H = L2(M,E)⊕L2(M,F ) onto the graph of the closure P̄ of P , which is a
closed subspace of H. If eL2F denotes the projection of H onto L2(M,F ), we can construct the
K-theory class,

[eP ]− [eL2F ] ∈ K0(B(H),K(H)) ∼= K0(K(H)).

The following lemma states that this is a well-defined element.

Lemma 64 For a closed operator P : L2(M,E) → L2(M,F ), the difference of projections eP −
eL2F is a compact operator on L2(M,E)⊕ L2(M,F ) if and only if (1 + P ∗P )−1 is compact.

Proof. An elementary exercise in linear algebra shows that if A ∈ Mn(C) is an n × n matrix,
then the graph projection of A is the 2n× 2n matrix,(

(1 +A∗A)−1 (1 +A∗A)−1A∗

A(1 +A∗A)−1 A(1 +A∗A)−1A∗

)
.

Likewise, we can describe the graph projection of P as a 2× 2 matrix of operators on H,

eP =
(

(1 + P ∗P )−1 (1 + P ∗P )−1P ∗

P (1 + P ∗P )−1 P (1 + P ∗P )−1P ∗

)
.

(When we write P here, we mean the closure P̄ .) The entries in the matrix should be interpreted
according to the direct sum decomposition H = L2(M,E) ⊕ L2(M,F ). Observe that from
P (1+P ∗P ) = (1+PP ∗)P we get (1+PP ∗)−1P = P (1+P ∗P )−1, and then P (1+P ∗P )−1P ∗ =
(1 + PP ∗)−1(1 + PP ∗ − 1) = 1− (1 + PP ∗)−1. Therefore,

eP − eL2F = eP −
(

0 0
0 1

)
=
(

(1 + P ∗P )−1 (1 + P ∗P )−1P ∗

P (1 + P ∗P )−1 −(1 + PP ∗)−1

)
.
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If this is compact, then so is the matrix entry (1 + P ∗P )−1. Conversely, if (1 + P ∗P )−1 is
compact then so are all matrix entries in eP − eL2F . For example, using a polar decomposition
P =

√
P ∗PU , we get,

(1 + P ∗P )−1P ∗ = (1 + P ∗P )−1
√
P ∗PU = f(P ∗P )U,

with f(x) =
√
x/(1 + x). Because f ∈ C0(R) and P ∗P has compact resolvent, the operator

f(P ∗P ) is compact.
2

Observe that for a maximally hypoelliptic operator, the a priori estimates imply that (1 +
P ∗P )−1 is bounded as an operator L2 → W 2d, and is therefore compact. Hence, the lemma
applies.

There is an nice description of the graph projection, which is sometimes more convenient.
Consider the self-adjoint operator on H,

D =
(

0 −iP
iP ∗ 0

)
,

and let u be the Cayley transform of D, i.e., the unitary,

u = (D + i)(D − i)−1.

The decomposition of H is encoded in the grading operator,

ε =
(
−1 0
0 1

)
,

that satisfies ε2 = 1, and εD = −Dε. It follows that εu = u∗ε, and then (εu)2 = 1. This last
equality implies that 1

2(εu+ 1) is a projection.

Lemma 65 With the above notation,

eP =
1
2
(εu+ 1) , eL2F =

1
2
(ε+ 1).

Proof. We obtain an expression for u as a 2× 2 matrix as follows,

u = (D + i)2(D2 + 1)−1

=
(
−1 + P ∗P −2P ∗

2P −1 + PP ∗

) (
(1 + P ∗P )−1 0

0 (1 + PP ∗)−1

)
=
(

1− 2(1 + P ∗P )−1 −2(1 + P ∗P )−1P ∗

2(1 + PP ∗)−1P 1− 2(1 + PP ∗)−1

)
,

and therefore,

1
2
(εu+ 1) =

(
(1 + P ∗P )−1 (1 + P ∗P )−1P ∗

(1 + PP ∗)−1P 1− (1 + PP ∗)−1

)
= eP .

2
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Observe that, u = (D + i)(D − i)−1 = 1 + 2i(D − i)−1 , and therefore,

eP − eL2F =
1
2
(εu+ 1)− 1

2
(ε+ 1) = iε(D − i)−1,

which shows, again, that eP − eL2F is compact if and only if the resolvent (D− i)−1 is compact,
i.e., if D is Fredholm.

Proposition 66 With the notation used above, we have,

[eP ]− [eL2F ] = [KerP ]− [KerP ∗] ∈ K0(K(H)),

where [KerP ], [KerP ∗] denote the projections of H onto the kernels of P and P ∗.

Proof. Consider the family of projections et = 1
2(εut + 1), with ut = (tD + i)(tD − i)−1.

By functional calculus, the family ut is norm continuous. Observe that the spectral function
z 7→ (z+i)(z−i)−1 maps 0 to −1, and ∞ to +1. Now, D having compact resolvent, its spectrum
is discrete. Therefore, as t→∞, the family ut converges in norm to the operator,

u∞ = −[KerD] + (1− [KerD]) = 1− 2[KerD].

By definition of D, we have,

[KerD] =
(

[KerP ] 0
0 [KerP ∗]

)
,

and we see that the homotopy of projections et converges in norm to the projection,

e∞ =
1
2
(εu∞ + 1) =

1
2
(ε− 2ε[KerD] + 1) =

(
[KerP ] 0

0 1− [KerP ∗]

)
.

Now use,

[eL2F ] = [1− [KerP ∗]] + [KerP ∗] ∈ K0(K(H)).

2

Hence, the same algebraic formula that defines the K-theory class associated to an elliptic
symbol σ(P ), defines the analytic index of P as a K-theory class. Of course, the symbol class
could have been constructed starting from the self adjoint element,

σ(D) =
(

0 −iσ(P )
iσ(P ) 0

)
.

We point out that the K-theory element in K0(C0(End(π∗E ⊕ π∗F )) is well-defined precisely
because the resolvent of σ(D) is an element in the C∗-algebra C0(End(π∗E ⊕ π∗F ), which
occurs if and only if the symbol is elliptic. Likewise, the analytic index of P in K0(K(L2(E)⊕
L2(F ))) is well-defined if and only if the resolvent of D is a compact operator. Since ellipticity
of σ(D) implies that D has compact resolvent, the two resolvents (of σ(D) and of D itself)
and the corresponding K-theories should be related. This relationship will be clarified by the
construction of the tangent groupoid and its associated C∗-algebra and K-theory, described in a
later chapter.
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4.6 The Heisenberg symbol as K-theory class.

In this section we adapt Quillen’s construction to the noncommutative, hypoelliptic case. The
appropriate K-theory group for the class associated to the Heisenberg symbol of a maximally
hypoelliptic operator is K0(C∗(THM)), where C∗(THM) denotes the convolution C∗-algebra of
the smooth groupoid THM , the bundle of osculating groups for the Heisenberg structure (M,H).
As is to be expected from the above discussion, the key technical issue is to show that, for a
maximally hypoelliptic operator, the resolvent of its symbol defines an element in a C∗-algebra
that is Morita equivalent to C∗(THM).

Starting from a maximally hypoelliptic operator P , we have the Heisenberg symbol σH(P ),
which is a smooth family of Rockland operators Pm on the osculating groups Gm,m ∈ M . As
before, we define the self-adjoint operators,

Dm =
(

0 −iPm
iP ∗m 0

)
,

and Cayley transforms,

um = (Dm + i)(Dm − i)−1.

Note that the family {Dm} is just the Heisenberg symbol σH(D) of the self-adjoint operator D
associated to P . All operators Dm are Rockland operators.

If P acts on sections in bundles E and F , then Dm acts on sections in the (always trivial)
bundle π∗E⊕π∗F over Gm. (Here π is the base point map π : THM →M .) As before, ε denotes
the grading operator associated to the decomposition π∗E⊕π∗F . Following Quillen’s formalism,
we want to define a K-theory class,

[σH(P )] = [eσ]− [eF ] = [
1
2
(εu+ 1)]− [

1
2
(ε+ 1)] ∈ K0(C∗(THM)).

We must interpret this with a little care. First of all, the graph projection,

eσ =
1
2
(εu+ 1),

can be thought of as a family of projections parametrized by m ∈M ,

em =
1
2
(εum + 1) ∈ End (Em ⊕ Fm),

and we will need to show that

em ∈ C∗(G)+ ⊗ End (Em ⊕ Fm) ∼= M2N (C∗(Gm)+),

where 2N denotes the fiber dimension of E ⊕ F . Since um = 1 + 2i(Dm − i)−1, it suffices to
prove that,

(Dm − i)−1 ∈M2N (C∗(Gm)).

Secondly, the family {em} should define a projection,

eσ ∈ C∗(THM)⊗M C(End(E ⊕ F )).
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Here C∗(THM) ⊗M C(End(E ⊕ F )) denotes the C∗-algebra of continuous sections in the field
{C∗(Gm)+⊗End (Em⊕Fm)}. By choosing a bundle G such that E⊕F ⊕G is trivial, we obtain,

C∗(THM)⊗M C(End(E ⊕ F )) ⊆Mk(C∗(THM)+).

Again, it suffices to show that the family of resolvents {(Dm− i)−1} defines a continuous section
in {M2N (C∗(Gm))} (here we can simply choose a local trivialization of E ⊕ F ).

We now prove these two key results about the family of resolvents (Dm − i)−1 of the model
operators Dm of the self-adjoint, maximally hypoelliptic operator D.

Proposition 67 Let G be a graded nilpotent group, with grading of arbitrary length. If L is a
formally self-adjoint Rockland operator on G, then

f(L) ∈ C∗(G)

for all functions f ∈ C0(R).

proof. A theorem of Folland and Stein states that, for the positive Rockland operator L2, the
distribution kernel K of exp(−L2),

e−L
2
φ = K ∗ φ,

is a Schwartz-class function on the group G ([FS], chapter 4.B). Hence, certainly K ∈ L1(G),
and therefore,

e−L
2 ∈ C∗(G).

(Here, we identify C∗(G) with its image under the left regular representation on L2(G).)
Next, the distribution kernel of the operator Le−L

2
is (Lδ) ∗ K = LK. The function LK,

again, is of Schwartz class, because any left invariant homogeneous operator L =
∑
aα(x)∂α has

polynomial coefficients aα(x). We conclude that also,

Le−L
2 ∈ C∗(G).

Because the functions e−x
2

and xe−x
2

separate points on R, these two functions generate C0(R)
as a C∗-algebra. This implies the general result.

2

Remark. Folland and Stein prove the theorem quoted in our proof only for scalar operators
L. However, their proof relies only on the existence of a priori estimates for a sufficiently large
power of L, i.e., on the theorem by Helffer and Nourrigat we referred to in the previous chapter
(see Theorem 43). In Appendix A we verify that the a priori estimates hold if L is a matrix of
operators, and therefore Proposition 67 also holds for such operators.

Proposition 67 establishes our first requirement on the resolvent of the model operators,

(Dm − i)−1 ∈M2N (C∗(Gm)).

This result holds in absolute generality. Our second requirement is that the family {(Dm− i)−1}
defines a continuous section in the field of C∗-algebras {M2N (C∗(Gm))} over M . We will only
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prove this for the special case where the bundle of osculating groups is locally trivial. In this
case, the field {M2N (C∗(Gm))} is also locally trivial, and we can choose local isomorphisms,

C∗(Gm) ∼= C∗(G),

where G is a fixed graded group. With these identifications, the model operators Dm form a
family of Rockland operators on a single group G, with smoothly varying coefficients.

In the case of a contact manifold, for example, Darboux coordinates induce Taylor coordinates
on the osculating groups, by means of which the groups are identified with the Heisenberg group,
with its standard coordinates. In general, a Heisenberg atlas will accomplish the same for any
trivial Heisenberg structure.

Having chosen a local trivialization of the bundle THM = {Gm} on an open set U ⊆ M , a
continuous section in the field {M2N (C∗(Gm))} is just a continuous map,

U →M2N (C∗(G)).

In other words, having identified the resolvents (Dm − i)−1 as elements in the same C∗-algebra,
we must establish that they form a norm-continuous family.

Definition 68 Let G be a graded nilpotent group, and let X1, · · ·Xn be a basis for the Lie algebra
of G compatible with the grading. Let U ⊆ Rn be an open set.

A family of right-invariant operators {Dm,m ∈ U} on a graded group G,

Dm =
∑
|α|≤d

aα(m)Xα,

is called a continuous family, if the coefficients aα are continuous functions on U .

Lemma 69 A continuous family of right invariant differential operators of order d on a graded
group G is norm continuous as a family of bounded operators W d(G) → L2(G).

Proof. This follows immediately from the definitions. Clearly, if |α| ≤ d, then ‖Xα‖W d→L2 ≤ 1.
Therefore,

‖Dm1 −Dm0‖W d→L2 ≤ C
∑
α

‖aα(m1)− aα(m0)‖∞.

2

Proposition 70 Let G be a graded nilpotent group. If {Dm,m ∈ U} is a continuous family of
self-adjoint Rockland operators on G, then the map,

U → B(L2(G)) : m 7→ f(Dm),

is norm continuous for any f ∈ C0(R).

Proof. Consider the equality,

(Dm0 − i)−1 − (Dm1 − i)−1 = (Dm1 − i)−1(Dm1 −Dm0)(Dm0 − i)−1.
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By Proposition 46, we have,

‖(Dm0 − i)−1‖L2→W d ≤ ∞,

while,

‖(Dm1 − i)−1‖L2→L2 ≤ 1.

and, finally, by Lemma 69,

‖Dm1 −Dm0‖W d→L2 → 0,

as m1 → m0. Combining these facts we obtain,

‖(Dm1 − i)−1(Dm1 −Dm0)(Dm0 − i)−1‖L2→L2 → 0

as m1 → m0 (keeping m0 fixed). Therefore the family of resolvents (Dm − i)−1 is norm contin-
uous.

The result for general f ∈ C0(R) follows by spectral theory.
2

Again, the same is true when Dm is a matrix of Rockland operators, by the same proof. We
summarize:

Theorem 71 Let P be a maximally hypoelliptic differential operator on a manifold with Heisen-
berg structure (M,H), acting on the space of sections in a vector bundle E, with range in the
space of sections in a bundle F . Let σH(P ) = {Pm} denote the Heisenberg symbol of P . The
graph projection,

em ∈ B(L2(Gm, Em ⊕ Fm)),

of the Rockland operator Pm defines an element in the C∗-algebra,

em ∈ C∗(Gm)+ ⊗ End (Em ⊕ Fm) ∼= M2N (C∗(Gm)+).

Assuming that the bundle THM of osculating groups is locally trivial, the family of graph pro-
jections {em, m ∈M} defines a projection,

eσ ∈ C∗(THM)+ ⊗M C(End (E ⊕ F )) ⊆Mk(C∗(THM)+).

Finally, let

eF ∈ C(End (E ⊕ F ))

denote the family of projections Em ⊕ Fm → Fm. We identify eF with the element,

1⊗ eF ∈ C∗(THM)+ ⊗M C(End (E ⊕ F )) ⊆Mk(C∗(THM)+).

Then the K-theory class,

[σH(P )] = [eσ]− [eF ] ∈ K0(C∗(THM)),

is well defined.
If H = TM , then P is elliptic, and [σH(P )] is equivalent to the topological K-theory class

associated to the principal symbol σ(P ) of P ,

[(σ(P ), π∗E, π∗F )] ∈ K0(T ∗M).

58



It seems reasonable to conjecture that the assumption of triviality of the bundle THM can
be dropped. However, since this assumption holds for the most important examples (contact
manifolds, foliations), it is not a serious restriction for us.
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Chapter 5

The parabolic tangent groupoid.

5.1 Introduction.

Quillen’s construction associates to the principal symbol σ(P ) of an elliptic operator on a com-
pact manifold a K-theory class in K0(C0(T ∗M)), which corresponds to the topological K-theory
class [σ(P )] ∈ K0(T ∗M) defined by Atiyah and Singer. The same algebraic formula associates to
the operator P itself a class in K0(K(L2(M))), the K-theory group of the C∗-algebra of compact
operators on L2(M). Under the isomorphism K0(K) ∼= Z, induced by the trace map, the latter
class corresponds to the analytic index of P .

In [Co], Connes introduces a smooth groupoid whose convolution C∗-algebra combines in
a single continuous field both of these C∗-algebras C0(T ∗M) and K(L2(M)). Based on the
idea that the tangent bundle TM can be identified with the normal bundle of the diagonal
∆ = M ⊂ M ×M in the Cartesian square M ×M , Connes glues the groupoid TM to the
parametrized family M ×M × (0, 1] by blowing up the diagonal in M ×M as t ∈ (0, 1] converges
to 0. The resulting groupoid is called the tangent groupoid of the manifold M . A simple
construction involving the K-theory of the convolution algebra of the tangent groupoid leads to
a natural map,

K0(C0(T ∗M)) → K0(K(L2(M))) ∼= Z,

which turns out to be equal to the analytic index map. Connes sketches a proof of the Atiyah-
Singer index theorem based on these ideas (see [Co], section II.5).

Our proof of the index theorem for subelliptic operators is based on a generalization of
Connes’ tangent groupoid to the case where (M,H) is a manifold with Heisenberg structure.
The basic idea is to glue the groupoid M ×M × (0, 1] to the bundle of osculating groups THM
by blowing up the diagonal in M ×M using graded dilations, corresponding to the grading of
the osculating groups. Our groupoid will give rise to a map,

K0(C∗(THM)) → K0(K(L2(M))) ∼= Z,

which leads to the index theorem that we will formulate and prove in the next chapter.
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5.2 The groupoid THM .

As a generalization of Connes’ tangent groupoid, which relates the total space of the tangent
bundle TM to the pair groupoid M ×M , we define a similar groupoid in which the bundle
TM is replaced by THM . We shall refer to this groupoid as the parabolic tangent groupoid of a
manifold with Heisenberg structure, and denote it by THM .

As an algebraic groupoid, THM is the disjoint union,

THM = (
⋃

t∈(0,1]

Gt) ∪ (
⋃
m∈M

Gm),

of a parametrized family of pair groupoids with the collection of osculating groups,

Gt = M ×M, t ∈ (0, 1],
Gm = THMm, m ∈M.

Clearly, the union ∪Gt = M ×M × (0, 1] by itself is a smooth groupoid, and the same is true,
as we have seen, for the bundle of osculating groups ∪Gm = THM . We write G0 = THM , and
G(0,1] = M ×M × (0, 1]. Each groupoid Gt, t ∈ [0, 1] has object space M , and the object space
for the total groupoid G = THM is the manifold,

G(0) = M × [0, 1].

We will endow THM with the structure of a manifold with boundary, by glueing G0 as the t = 0
boundary to G(0,1]. The topology of THM will be such that G(0,1] is an open subset of THM ,
and a curve (a(t), b(t), t) in G(0,1] = M ×M × (0, 1] converges, as t → 0, to a parabolic arrow
(m, v) ∈ THM if,

M 3 m = lim
t→0

a(t) = lim
t→0

b(t),

THMm 3 v = [a]H ∗ [b]−1
H ,

where we assume that a′(0), b′(0) ∈ H. Recall that [a]H , [b]H denote the parabolic arrows defined
by the curves a, b, while the expression [a]H ∗ [b]−1

H denotes the product of [a]H with the inverse
of [b]H in the osculating group THMm (see Chapter 2). If H = TM , the osculating groups are
abelian, and the last condition simplifies to,

TmM 3 v = a′(0)− b′(0) = lim
t→0

a(t)− b(t)
t

,

which is the topology of Connes’ tangent groupoid.
With this defintion of the topology, it is easy to see that the groupoid operations for THM

are continuous. For example, in G(0,1] we have,

(a(t), b(t), t) · (b(t), c(t), t) = (a(t), c(t), t),

while in G0,

([a]H ∗ [b]−1
H ) ∗ ([b]H ∗ [c]−1

H ) = [a]H ∗ [c]−1
H ,
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assuming that a(0) = b(0) = c(0) and a′(0), b′(0), c′(0) ∈ Hm. However, we will not rigorously
develop this point of view. Instead, we glue G0 to G(0,1] in an alternative way, more convenient
for practical use, by defining a smooth structure on THM . For that purpose we make use of an
exponential map for the Heisenberg structure,

exp : THM →M.

(See section 2.5; it might be useful for the reader to quickly review the content of that section
before continuing.) We define a map,

ψ : THM × [0, 1) → THM,

by,

ψ(m, v, t) = (expm(δtv),m, t), for t > 0,
ψ(m, v, 0) = (m, v) ∈ THMm.

Here δt denotes the Heisenberg dilation in the osculating group THMm.
The smooth structure on THM× [0, 1) induces a smooth structure in an open neigborhood of

G0 = THM in THM . (Compare the definition of the smooth structure of the tangent groupoid
in [Co], p. 103.)

Theorem 72 With the above structure, THM is a smooth groupoid with boundary.

As we will see in the next sections, this is an immediate corollary of Lie’s Third Theorem for
Lie algebroids.

We make a few remarks. First of all, recall that, if we identify THM with TM via a map,

THM
log−→ H ⊕N

j−→ TM,

induced by the choice of a section N ⊆ TM , then an exponential map THM → M determines
an ordinary exponential map TM → M . But, as we have seen, not every exponential map for
TM corresponds to a good exponential map for THM . If we allowed arbitrary exponential maps
TM → M in the definition of the parabolic tangent groupoid, the different charts would fail
to be smoothly compatible. This is a subtle but important issue, and the concepts outlined in
chapter 2 were developed largely to assist the construction of the groupoid THM .

To be more explicit, recall that an exponential map for THM can be constructed locally, in
an open set U ⊆M , by choosing a system of H-coordinates,

Em : Rn → U.

Recall that H-coordinates are such that, for each m ∈ U , the coordinate vectors dEm(∂i), for
i = 1, . . . , p, are vectors in Hm at the point m. A system of H-coordinates Em is such that
(m, v) 7→ Em(v) is a smooth map U × Rn → U . Then let,

Fm : Rp+q → THMm,
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denote the Taylor coordinates on the osculating group THMm, induced by the H-coordinates
Em (Definition 4). With this set-up, the composition,

exp(m, v) = Em(F−1
m (v)),

is a (local) exponential map that is compatible with the Heisenberg structure, and every Heisen-
berg exponential map is locally of this kind (see Section 2.5). From this perspective, the equiv-
alent of the map ψ that was defined above is the chart,

ψ′ : U × Rp × Rq × [0, 1) → THM,

defined by,

ψ′(m,h, n, t) = (Em(th, t2n),m, t), for t > 0,
ψ′(m,h, n, 0) = Fm(m,h, n) ∈ THMm.

The effect of this construction is clear: it ‘blows up’ the diagonal in M ×M (as t gets smaller)
by a factor t−1 in the direction of H, and by a factor t−2 in the direction that is transversal
to H. The reason we need to choose different coordinates Em for each point m ∈ M is easy to
understand: the bundle H may not be integrable.

The choice of coordinates at t = 0 is perhaps less transparant, but the success of the con-
struction crucially depends on it. Recall that, if we make the canonical identification of THM
with the bundle H ⊕ N (by means of the Lie exponential map in the fibers), then the Taylor
coordinates Fm are explicitly given by,

log Fm(m,h, n) = (h, n− 1
2bm(h, h)) ∈ Hm ⊕Nm,

where bm(h, h) is a quadratic form that depends on the coordinates Em (see Propositions 12
and 30). If the coordinates Em are chosen in such a way that the corresponding bilinear form
bm is skew-symmetric (for example, as in the construction of Folland and Stein discussed in
Section 2.6), then this quadratic correction term vanishes, and we can work simply with the
natural coordinates on Hm ⊕Nm at t = 0. Correspondingly, one solution to the construction of
the parabolic tangent groupoid would be to work with ‘preferred’ coordinate systems Em, i.e.,
H-coordinates for which bm is skew-symmetric. But if one allows arbitrary H-coordinates Em to
‘blow up’ the diagonal in M ×M , then the coordinates on THM ∼= H ⊕N must be adjusted by
a quadratic correction term, as indicated. It is precisely to clarify this situation that we studied
Taylor coordinates on the osculating groups in Chapter 2, and carefully distinguished between
the bundle of groups THM and the bundle of Lie algebras H ⊕N .

We now show that, with the above choices, the manifold structure on THM is well defined.
Later we will see that this follows directly from Lie’s Third Theorem for Lie algebroids, and the
reader may choose to skip the rest of this section. Propositions 73 and 75 are not necessary
for what follows, but they do illustrate how a direct proof of Theorem 72 could be developed,
without reference to Lie algebroids. More importantly, the proofs of Propositions 73 and 75
show the relevance of the corrected groupoid coordinates at t = 0, if arbitrary H-coordinates
Em are allowed. The theory of integration of Lie algebroids only applies to charts ψ that are
obtained by means of exponential maps induced by connections on H⊕N (see Section 2.5), and
for such charts the correction term bm(h, h) vanishes automatically. The proofs in this section
establish the correctness of our definition in the general case.
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Proposition 73 For different choices of the exponential map exp: THM → M , the maps
ψ : THM × [0, 1] → THM , defined in the manner described above, have smooth transition func-
tions. In other words, THM has a well-defined structure of smooth manifold, independent of the
choice of exponential map.

The basic ingredient of the proof is the following technical lemma.

Lemma 74 Let φ : THM → THM be a diffeomorphism that preserves the fibers; fixes the zero
section M ⊂ THM ; and at the point m has derivative Dφm = id, and a second derivative that
satisfies D2φm(h, h) ∈ Hm, for h ∈ Hm. Then the map,

φ̃ : THM × R → THM × R,

defined by,

φ̃(m, v, t) = (δ−1
t φ(m, δtv), t),

φ̃(m, v, 0) = (m, v, 0),

is a diffeomorphism.

Proof. Clearly, φ̃ is smooth on the open subset where t 6= 0. We must prove that φ̃ is smooth
in a neighborhood of the t = 0 fiber.

For convenience of notation, we identify THM with H ⊕N via the logarithm. The proof is
based on a simple Taylor expansion near t = 0. For a choice of coordinates on H ⊕N we have,

φ(m, v) = φ(m, 0) +Dφm(v) +
1
2
D2φm(v, v) +R(m, v).

The remainder term R = R(m, v) satisfies a bound |R| < C|v|3, for |v| < 1. Now write v = h+n
with h ∈ Hm, n ∈ Nm. Then,

φ(m, th+ t2n) = φ(m, 0) + tDφm(h) + t2Dφm(n)

+
1
2
t2D2φm(h, h) + t3D2φm(h, n) +

1
2
t4D2φm(n, n) +R(m, th+ t2n)

= φ(m, 0) + tDφm(h) + t2Dφm(n) +
1
2
t2D2φm(h, h) + t3R′.

The error term R′ = r′(m,h, n, t), satisfies a bound |R′| ≤ C for |h| < ε|t|−1, |n| < ε|t|−2.
Observe that these inequalities hold in an open neighborhood of the t = 0 fiber in THM × R.

The assumptions on φ allow the simplification,

φ(m, δtv) = (m, th+ t2n+
1
2
t2D2φm(h, h) + t3R′),

where D2φm(h, h) ∈ Hm. We find,

δ−1
t φ(m, δtv) = (m, v + tR′′),

where, again, the coefficient of the remainder R′′ is uniformly bounded in a neighborhood of the
t = 0 fiber. This implies continuity of φ̃.
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By the same reasoning, expanding φ in a higher order Taylor series, one obtains,

φ̃(m, v, t) = (m, v +
r∑

k=1

akt
k +Rrt

r, t),

where the coefficients ak = ak(m, v) are smooth functions, independent of t, arising from the
derivatives of φ, while the coefficient Rr of the remainder is uniformly bounded in a neighborhood
of t = 0. This implies smoothness of φ̃.

2

Proof of Proposition 73 . Let ψ and ψ′ be the two maps,

ψ,ψ′ : THM × [0, 1] → THM,

constructed in the manner explained above, for two different exponential maps E,E′ : THM →
M . We must prove that the transition function φ̃ = ψ−1 ◦ ψ′ is smooth. We have,

φ̃(m, v, t) = (δ−1
t E−1

m (E′m(δtv)),m, t), for t 6= 0,

φ̃(m, v, 0) = (m, v, 0).

The defining property of exponential maps for THM (Definition 19) immediately implies that
the composition φm = E−1

m ◦ E′m satisfies the assumptions of Lemma 74. Hence, φ̃ is smooth.
2

The next proposition shows that the manifold structure on THM is compatible with our
earlier, informal definition of the topology on THM by means of parabolic arrows.

Proposition 75 Suppose a(t), b(t) are smooth curves in M with a(0) = b(0) = m, such that
a′(0) and b′(0) are in Hm. Then in THM , endowed with the manifold structure defined above,

lim
t→0

(a(t), b(t), t) = [a]H ∗ [b]−1
H ∈ THMm.

First proof. If we assume that the curve (a(t), b(t), t) in G(0,1] extends to a smooth curve in
THM , then there is a nice proof that makes use of parabolic flows. Let v0 ∈ THMm be the
point in G0 to which the curve in G(0,1] converges, and let vt be the parabolic arrow defined by,
ψ(b(t), vt, t) = (a(t), b(t), t), i.e.,

a(t) = expb(t)(δtvt).

By definition of the manifold structure on THM , we have (b(t), vt) → (m, v0). We see that the
section vt, t ∈ [0, 1] is smooth along b(t), and can be extended to a section V in a neigborhood
of m = b(0). Now define a flow,

Φt
v(m

′) = expm′(δtV (m′)).

By definition of Heisenberg exponential maps, the curve,

t 7→ expm′(δtV (m′))
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has parabolic arrow V (m′). In other words, Φt
v is a parabolic flow, and in particular,

[Φt
v(m)]H = V (m) = v0 ∈ THMm.

Clearly a(t) = Φt
v(b(t)). Extend b(t) to a parabolic flow Φt

b, such that b(t) = Φt
b(m). Then we

see that,

[a]H = [Φt
v ◦ Φt

b(m)]H = [Φt
v(m)]H ∗ [Φt

b(m)]H = v0 ∗ [b]H ,

which means that v0 = [a]H ∗ [b]−1
H .

2

Second proof. To prove the proposition without the extra assumption of convergence, and to
illustrate a different technique, we give a second proof.

We use the map ψ′ defined above to describe the manifold structure on THM . We need a
system of H-coordinates Em, and the corresponding Taylor coordinates Fm. Let us identify an
open set U ⊆ M with Rn (via a coordinate map that we suppress in the notation). Given an
H-frame Xi on U , we have a system of coordinates,

Em : Rn → U : v 7→ m+
∑

viXi(m) = m+Xv.

Here X = (Xj
i ) denotes the n×n matrix whose columns are the vector-values functions Xi : U →

Rn.
Expand a and b in the coordinates on U ∼= Rn as,

a(t) = th+ t2k +O(t3),

b(t) = th′ + t2k′ +O(t3),

assuming that a(0) = b(0) = 0. We have Taylor coordinates,

Fm(h, n) = [a]H , Fm(h′, n′) = [b]H ,

where n = kN , n′ = k′N are the normal components of k, k′. With the notation of Proposition
12, we compute,

F−1
m ([a]H ∗ [b]−1

H ) = (h, n) ∗ (h′, n′)−1

= (h, n) ∗ (−h′,−n′ + b(h′, h′))
= (h− h′, n− n′ − b(h, h′) + b(h′, h′)).

Now let (a(t), b(t), t) = ψ′(b(t), x(t), y(t), t), i.e.,

a(t) = Eb(t)(tx(t), t
2y(t)),

where the coordinates (x(t), y(t)) ∈ Rp+q depend on t. We must show that,

lim
t→0

(x(t), y(t)) = (−h+ h′,−n+ n′ − b(h, h′) + b(h, h)).
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We approximate the coordinates (x(t), y(t)) ∈ Rp+q by a Taylor expansion of E−1
b(t)(a(t)), using

the explicit form of Em, as follows,

(tx(t), t2y(t)) = X−1
b(t) (a(t)− b(t))

= a(t)− b(t) + tD(X−1)0
(
h′, a(t)− b(t)

)
+O(t3)

= t(h− h′) + t2(k − k′) + t2D(X−1)0(h′, h− h′) +O(t3),

Let us explain the calculation. In the first step we expanded X−1(b(t)). Because a(t) − b(t) =
O(t), it sufficed to consider only the first derivative,

∂

∂t
X−1(b(t))

∣∣
t=0

= D(X−1)0.h′.

In the second step we expanded a(t)− b(t), again ignoring terms of order O(t3).
Reversing the dilation, we find,

(x(t), y(t)) =
(
h− h′, n− n′ +D(X−1)N0 (h′, h− h′)

)
+O(t).

Because X0 = 1, we have D(X−1)0 = −DX0, while the normal component DXN
0 (h′, h − h′) is

equal to b(h′, h− h′), by definition of the bilinear form b. This gives the desired result.
2

5.3 Lie algebroids.

It is not too difficult to give a direct proof of smoothness of the groupoid operations in THM .
However, one can bypass all the tedious Taylor expansions by appealing to a general integra-
bility result for Lie algebroids. In fact, Propositions 73 and 75 above were included mainly for
illustration of some of the techniques involved in their proofs, and are not essential in what
follows.

In this section we review the basic facts about Lie algebroids. The material is taken from
[Ma].

Definition 76 Let B be a smooth manifold. A Lie algebroid A with base B is a smooth vector
bundle p : A → B, together with a Lie bracket on its sections,

[ , ] : Γ(A)× Γ(A) → Γ(A),

that is R-bilinear, skew-symmetric, and satisfies the Jacobi identity, and a vector bundle map

q : A → TB,

called the anchor of A, such that

q([X,Y ]) = [q(X), q(Y )],
[X, fY ] = f [X,Y ] + (q(X).f)Y,

for X,Y ∈ Γ(A), f ∈ C∞(B).
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The notion was introduced by J. Pradines in 1967 (see [Pa]). The English term ‘anchor’ was
coined by K. MacKenzie. The anchor map relates the bracket and module structures of Γ(A).

Lemma 77 The Lie bracket of a Lie groupoid is a local operation, i.e., if sections X and X ′,
Y and Y ′ agree on some open subset of B, then so do [X,Y ] and [Y, Y ′].

Proof. Let f ∈ Γ(B) have support in the open set U ⊆ B where Y and Y ′ agree. Comparing
[X, fY ] = f [X,Y ] + (q(X).f)Y and [X, fY ′] = f [X,Y ′] + (q(X).f)Y ′, we derive that f [X,Y ] =
f [X,Y ′]. It follows that [X,Y ] = [X,Y ′] in U . Likewise [X,Y ′] = [X ′, Y ′].

2

Associated to every smooth groupoid G is a Lie algebroid, denoted by AG. This notion
generalizes the construction of the Lie algebra associated to a Lie group, which consists of right
invariant vector fields on the group, and which, as a vector space, can be identified with the
tangent space at the unit element of the group. We first consider the notion of right invariant
vector fields on a groupoid G. Right multiplication by an element γ ∈ G induces a diffeomorphism
between s-fibers,

Rγ : Gs(γ′) → Gs(γ) : γ′ 7→ γ′γ.

Clearly, the notion of ‘right invariance’ only makes sense for vector fields on G that are tangent
to the fibers Gx = s−1(x) of the source map s : G → G(0). These are called vertical vector fields.
We denote the bundle of vertical vectors of G by T sG ,

T sG =
⋃

x∈G(0)

TGx = {v ∈ TG |Ds(v) = 0} ⊆ TG.

Here Ds denotes the derivative Ds : TG → TG(0) of the source map s. Because s is a submersion,
T sG is a locally trivial vector bundle.

Definition 78 A right invariant vector field is a vertical vector field X ∈ Γ∞(T sG) that is
invariant under right multiplication, i.e.,

DRγ ·X(γ′) = X(γ′γ),

for all γ, γ′ ∈ G.

Observe that the commutator of two right invariant vector fields is again a right invariant vector
field, because right multiplication commutes with the bracket operation on Γ(T sG)

Now, let AG be the restriction of the T sG to the space of units B = G(0), i.e.,

AG =
⋃

x∈G(0)

Te(x)Gx.

The vector bundle AG → B is locally trivial, since it is the restriction of the locally trivial bundle
T sG. Because a right invariant vector field is determined by its values on the unit space G(0)

(the value in Te(x)Gx determines the value in all of TGx), restriction to G(0) induces a one-to-one
correspondence between right invariant vector fields on G and arbitrary sections in Γ(AG). With
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this correspondence, the commutator of right invariant vectorfields induces a Lie bracket on
Γ(AG).

There is now only one possible choice for the anchor map q : AG → TB. To see this, let
X̃, Ỹ denote the right invariant fields on G associated to X,Y ∈ Γ(AG). For a given function
f ∈ C∞(B), the right invariant function f̃ ∈ C∞(G) that extends f is given by

f̃(γ) = f(r(γ)),

where r : G → B denotes the range map of G. Clearly, f̃(γ′) = f̃(γ′γ). Identifying B = e[B] ⊆ G,
we find,

[X, fY ](x) = [X̃, f̃ Ỹ ](ex) = f̃ [X̃, Ỹ ](ex) + (X̃.f̃)Ỹ (ex)

= f [X,Y ](x) + (X̃.(f ◦ r))(ex)Y (x).

We conclude that the anchor map satisfies the second axiom iff,

(q(X).f)(x) = (X̃.(f ◦ r))(ex) = (d(f ◦ r)(ex) · X̃(ex)
= df(x) ·Dr(ex) ·X(x) = (Dr(X).f)(x),

or simply,

q(X) = Dr(X).

In other words, the anchor q : AG → TB is the projection of vertical vectors along the range
map r. It then follows trivially that q([X,Y ]) = [q(X), q(Y )].

We summarize.

Definition 79 The Lie algebroid AG associated to a smooth groupoid G is the bundle of vertical
vectors T sG restricted to the base space B = G(0), where the Lie bracket [X,Y ] of two sections
X,Y ∈ Γ(AG) is the restriction to B of the commutator [X̃, Ỹ ] of the unique right invariant
vector fields X̃, Ỹ that extend X,Y , while the anchor q : AG → B is the derivative q = Dr of the
range map r : G → B, restricted to AG.

Example 1. The Lie algebroid of the pair groupoid G = M×M is obtained as follows. Because
Gm = s−1(m) = M × {m}, we have TGm = TM × {m}, and T sG = TM ×M . A right invariant
vector field is a section in TM ⊕ TM that is constant in the first component, and zero in the
second. So right invariant vectorfields on M ×M identify naturally with sections in TM , and
this identification preserves the commutator structure.

The space of units is embedded as the diagonal in M ×M , and so

AG =
⋃
m∈M

TmM × {m} ≈ TM.

Of course, the base of AG is just B = M . The bracket on AG corresponds to the usual bracket
operation of vector fields on M . The anchor is the identity map q : AG → TB = TM . A Lie
algebroid where the anchor is a submersion is called totally transitive.

Example 2. The tangent space TM and parabolic tangent space THM are examples of ‘bundles
of Lie groups’ (the Lie group structure is not necessarily locally trivial).
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If the groupoid G is a bundle of Lie groups, the Lie algebroid AG is the family of Lie algebras
naturally associated to G, with the obvious bracket. Since source and range maps coincide, we
have Dr = Ds. Therefore, since vertical vectors are in the kernel of Ds, we see that the anchor
map q = Dr = 0 is trivial. This is equivalent to [X, fY ] = f [X,Y ], which means that the Lie
bracket is a pointwise operation. Lie algebroids with trivial anchor, q = 0, are called totally
intransitive.

Note. Mackenzie [Ma] reserves the term ‘bundle’ of Lie algebras for the locally trivial case, i.e.,
where the family is locally isomorphic (as a Lie algebroid) to a product U × g of an open set U
and a fixed Lie algebra g.

5.4 Lie’s Third Theorem for Lie algebroids.

Lie’s Third Theorem states that every Lie algebra can be integrated by a unique simply connected
Lie group. The result depends on an identification, via the exponential map, of a neighborhood
of the unit element in the Lie group with a neighborhood of the origin in the Lie algebra. The
corresponding theorem for Lie algebroids was proven, in full generality, by M. Crainic and R. L.
Fernandes in [CF]. Here we describe an integrability theorem due to V. Nistor in [Ni1], which
does not treat the most general case, but is better suited to our purposes.

If G is a smooth groupoid with Lie algebroid A = AG, then an exponential map A → G is
defined for a connection ∇ on the vector bundle A, generalizing the notion of an exponential
map from a Lie algebra to a Lie group. We now describe this construction. Right multiplication
establishes an isomorphism between the fiber Ar(γ) at the range of an arrow γ ∈ G and the
vertical tangent space TγGs(γ),

DRγ : Ar(γ)
∼=→ TγGs(γ).

Thus, the bundle of vertical vectors T sG is identified with the pull-back via the range map r∗A
of the bundle A. The connection on A induces a connection on r∗A ∼= T sG, which, in turn,
restricts to a connection ∇x on the tangent space TGx of each s-fiber Gx. Let exp∇

x
be the

corresponding exponential map,

exp∇
x

: Ax = Te(x)Gx → Gx.

To give a different description, consider a path g : [0, 1] → Gx. The derivative g′(t) defines a path
a : [0, 1] → A by,

a(t) = DRg(t)−1 g′(t).

Let π : A → B denote the base point map, and consider the base path π(a(t)) = r(g(t)) ∈ B. It
satisfies,

d

dt
(π(a(t)) =

d

dt
(r(g(t)) = Dr(g′(t)) = Dr(DRg(t)−1 g′(t)) = q(a(t)).

We used the fact that q = Dr, and r ◦Rγ = r. Given v ∈ Ax, the exponential exp∇
x

is the end
point g(1) of a path g in Gx that starts at the unit g(0) = ex, in direction g′(0) = v, such that
the corresponding path a(t) is parallel in A, i.e.,

∇q(a(t))a(t) = 0.
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This uniquely determines the path a(t) in A, and hence g(t) in G. (If q(a(t)) = 0, then a(t)
remains constant.) The maps exp∇

x
fit together into a global exponential map,

exp∇ : A → G,

which is a diffeomorphism in a neighborhood of the zero section B ⊆ A (see [NWP]).

Now assume that A is a Lie algebroid, whose base space has an A-invariant stratification
in the following sense. The base space B is a stratified manifold if it is the union B = ∪S of
disjoint submanifolds S, called strata. If B is a manifold with corners, then the strata must
be submanifolds without corners, while the closure (in B) of each stratum S is a submanifold,
possibly with corners, that is contained entirely in a unique open face of B. (The reason we
allow B to have corners is that in the next chapter we will construct a groupoid with base
space B = M ×M × [0, 1]2.) A stratification of the base space of a Lie algebroid A is called
A-invariant, if for each x ∈ B, the range of q : Ax → TxB is contained in TxS,

q[Ax] ⊆ TxS,

where S is the stratum that contains x. This is equivalent to the condition that each local
diffeomorphism of the form exp(q(X)), for X ∈ Γ(A), preserves the strata of M , or to the
condition that the restriction AS of A to S is a Lie algebroid on S, for each S. Algebraically, A
is the disjoint union of the Lie algebroids ∪AS .

Now also suppose that each Lie algebroid AS is integrable, which means that there exists
a smooth groupoid GS whose Lie algebroid is AGS = AS . One can always choose s-simply
connected groupoids GS , which means that its s-fibers Gx = s−1(x) are simply connected. (For
every smooth groupoid G, there exists a unique s-simply connected groupoid with the same Lie
algebroid as G.) Such s-simply connected groupoids GS can be glued together to a groupoid G
that integrates A.

Given a connection ∇ on A, let ∇S be its restriction to AS . We obtain exponential maps,

exp∇
S

: AS → GS .

The disjoint union G = ∪GS does not have a global smooth structure, but we can still define,

exp∇ : A = ∪AS → G = ∪GS ,

by fitting together the maps exp∇
S
.

Via this exponential map, the smooth structure on A induces charts on G = ∪GS in a
neighborhood of the base space B, as long as exp∇ is injective in a neighborhood of B. According
to Nistor’s integrability result, if the groupoids GS are s-simply connected, these charts can be
extended to an atlas, for which G becomes a smooth groupoid.

Theorem 80 Let A be a Lie algebroid with an A-invariant stratification of the base space B =
∪S. Suppose that each of the restrictions AS is integrable by an s-simply connected smooth
groupoid GS, and that the exponential map A → G = ∪GS is injective in a neighborhood of the
base space B (for some connection on A).

Then there exists a unique manifold structure on the disjoint union G = ∪GS, for which G is
a smooth groupoid with A = AG.

(Theorem 2 and 3 in [Ni1]. The condition on the exponential map is missing in [Ni1], and the
correction is published in [BN].)
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5.5 The Lie algebroid of THM .

We now consider the Lie algebroid of the parabolic tangent groupoid THM . It is much easier to
define than the groupoid itself, and it can be constructed independently of the groupoid THM .
Once the Lie algebroid is constructed, Theorem 80 will imply smoothness of the groupoid THM .

The base space of the groupoid THM can be stratified,

B = M × [0, 1] = ∪S,

with strata St, Sm defined as follows,

St = M × {t} , for t ∈ (0, 1]
Sm = {(m, 0)} form ∈M.

Observe that source s(γ) and range r(γ) of an arrow γ ∈ G = THM always belong to the same
stratum. The restriction of G to a stratum S ⊆ B is denoted,

GS = s−1(S) = r−1(S),

and we have a disjoint union of (algebraically connected) groupoids,

THM = ∪GS .

Here,

GSt = Gt ∼= M ×M, t ∈ (0, 1]
GSm = Gm ∼= THMm, m ∈M.

Each subgroupoid GS has the structure of a smooth groupoid (independent of our definition of
the smooth structure on THM), and has Lie algebroid AS = AGS ,

ASt = At ∼= TM, t ∈ (0, 1]
ASm = Am ∼= Hm ⊕Nm, m ∈M

where Hm ⊕ Nm is the Lie algebra of THMm. We define the total space of the vector bundle
A = ∪AS over M × [0, 1] by an identification,

φ : H ⊕N × [0, 1] → ∪AS ,

given by,

φ(m,h, n, t) = th+ t2j(n) ∈ TmM ⊂ At t > 0
φ(m,h, n, 0) = (h, n) ∈ Hm ⊕Nm = Am, m ∈M.

Here we have chosen a section j : N ↪→ TM , but one easily verifies that the resulting smooth
structure on A is independent of this choice.

Of course, the basic idea (the use of the dilations for the Heisenberg structure) is the same
as for the construction of the smooth structure of the groupoid THM , but it is much easier to
carry out for the Lie algebroid.

Corresponding to the stratification of the base space, we denote a section in Γ(A) as a family
of sections in AS . Explicitly, 〈Xm, Xt〉 ∈ ∪AS denotes a section in Γ(A) with Xm ∈ Γ(Hm⊕Nm)
for m ∈M , and Xt ∈ Γ(TM) for t ∈ (0, 1]. We summarize the structure of A in a definition.
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Definition 81 With the above notation, the smooth structure on A = ∪AS is characterized by,

1. If X ∈ Γ(H), then 〈X(m), tX〉 ∈ Γ(A).

2. If Y ∈ Γ(N), then 〈Y (m), t2X〉 ∈ Γ(A), where X ∈ Γ(TM) is an arbitrary lift of Y .

The Lie bracket and anchor map for A are obtained from those of AS,

[ 〈Xm, Xt〉, 〈Ym, Yt〉 ] = 〈 [Xm, Ym], [Xt, Yt] 〉,
q( 〈Xm, Xt〉 ) = 〈 q(Xm), q(Xt) 〉 = 〈0, Xt〉.

Proposition 82 With the above definitions, A is a Lie algebroid.

Proof. We only need to verify that the bracket of two smooth sections is a smooth section.
That q(X) ∈ Γ(TM) for X ∈ Γ(A) is trivial.

Let X,Y ∈ Γ(H), and f, g ∈ Γ(B), and denote ft(m) = f(t,m), gt(m) = g(t,m). Then we
have sections in Γ(A),

f〈X(m), tX〉 = 〈f0(m)X(m), tftX〉,
g〈Y (m), tY 〉 = 〈g0(m)Y (m), tgtY 〉,

with bracket,

〈 [f0(m)X(m), g0(m)Y (m)], t2[ftX, gtY ] 〉
= fg〈 [X(m), Y (m)], t2[X,Y ] 〉+ 〈 0, t2(ft(X.gt)Y − gt(Y.ft)X) 〉.

The first term on the right hand side is in Γ(A), because, by definition of the Lie algebra structure
on Hm ⊕Nm,

[X,Y ](m)modHm = [X(m), Y (m)] ∈ Nm.

The second term is a section in Γ(H) for t ∈ (0, 1]. Since it is of order t2, and has no Γ(N) part,
it is also in Γ(A).

The cases where X and/or Y are sections in Γ(N) are similar.
2

5.6 Integration of the Lie algebroid of THM .

In this section we show that Theorem 72 is a corollary of Lie’s third theorem for Lie algebroids.
We first describe the s-simply connected smooth groupoid that integrates the Lie algebroid A
constructed in the previous section. We will see that it agrees with THM in a neighborhood of
the t = 0 boundary G0 = THM , which is sufficient to prove Theorem 72.

Let A = ∪AS be the Lie algebroid constructed in the previous section. Each Lie algebroid
AS , for the stratification M × [0, 1] = ∪S described above, can be integrated to an s-simply
connected groupoid G̃S . For the Lie algebra Am = Hm⊕Nm, the osculating group Gm = THMm

is simply connected, so we take G̃m = THMm. However, the s-simply connected groupoid that
integrates At = TM is not the pair groupoid Gt = M ×M , but the homotopy groupoid G̃t = ΠM
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of M . While M ×M contains an arrow connecting each pair of points in M , arrows in ΠM are
homotopy classes of paths in M with fixed end points. Source and range of an arrow γ = [c]
represented by a path c : [0, 1] → M are the end points of the path: s(γ) = c(0), r(γ) = c(1).
Composition of paths gives the groupoid multiplication.

Proof of Theorem 72 According to Theorem 80 there is a unique smooth groupoid G̃ = ∪G̃S
that integrates A. We investigate how it is related to THM . We first establish a relationship
between the homotopy groupoid ΠM and the pair groupoid M ×M . Let us denote the source
fiber s−1(m) in ΠM by M̃m. It is the universal cover of the component Mm of M that contains
m. The range map r : M̃m →Mm is the corresponding covering map. The map,

ΠM →M ×M : γ → (r(γ), s(γ)),

is a morphism of smooth groupoids, and it is a diffeomorphism in a neigborhood of the unit space
M . Thus, ΠM and M ×M can be identified as ‘local groupoids’ near the unit space. Choosing
such a local identification, we obtain an identification of THM and G̃ as local groupoids in a
neighborhood of the base space M × [0, 1] that contains the entire t = 0 boundary.

To obtain a chart on G̃ in this neighborhood, we need a connection on A, and construct the
associated exponential map A → G̃. We will see that the chart we obtain agrees with the smooth
structure on THM .

To begin with, choose a connection ∇ on TM that is compatible with the Heisenberg struc-
ture (i.e., aG-connection, see section 2.5). Such a connection restricts to a connection∇H = ∇|H
on H, and if we choose a section j : N ↪→ TM , then ∇ also induces a connection j−1∇j on N .
Thinking of j as an identification, we will denote the induced connection on H ⊕N simply by
∇. It is important to observe that ∇ commutes with the dilations, i.e., ∇δtX = δt∇X, for
X ∈ Γ(H ⊕N).

Let ∇ be the connection on H ⊕N × [0, 1] given by,

∇ = ∇+
∂

∂t
.

Pushing forward via the identification φ : H ⊕N × [0, 1] → A = ∪AS , we obtain a connection on
the Lie algebroid A, which we also denote by ∇. Restricted to t ∈ (0, 1], the map φ is the dilation
δt in the fibers of H ⊕N ∼= TM . Because ∇ commutes with these dilations, the restriction ∇St

of ∇ to the stratum St = M ×{t} is identical to the connection ∇ on At = TM that we started
with. (The action of ∇ in the direction of ∂/∂t is irrelevant.)

We obtain exponential maps,

exp∇
x
: Ax → G̃x,

that are given by,

exp∇
x

: TmM → M̃m : v 7→ exp∇(v), forx = (m, t), t ∈ (0, 1],

exp∇
x

: Hm ⊕Nm → THMm : (h, n) 7→ exp(h, n), forx = (m, 0).

Here exp∇ denotes the exponential map TM̃m → M̃m induced by the connection ∇ pulled back
from Mm to the cover M̃m. Identifying THM with G̃ in a neigborhood of the t = 0 boundary,

74



we see that we have a commutative diagram,

H ⊕N × [0, 1]

exp

��

φ
// A

exp∇

��

THM × [0, 1]
ψ

// THM

where ψ and φ are the maps defined in sections 5.2 and 5.5 above. Since the maps exp, φ, ψ
are diffeomorphisms, it follows that exp∇ defines a smooth chart on THM . Therefore, the
identification of G̃ and THM in a neighborhood of the t = 0 boundary is a diffeomorphism. It
follows that THM satisfies the axioms of a smooth groupoid in a neighborhood of the t = 0
boundary. For t ∈ (0, 1], smoothness of THM clear.

2

5.7 The parabolic tangent groupoid of a contact manifold.

In this section we describe a nice local model for the parabolic tangent groupoid THM when
(M,H) is a contact manifold. Recall that Darboux coordinates on a contact manifold M identify
an open subset U ⊆M with the (2r+1)-dimensional Heisenberg group G = Hr. The Heisenberg
group Hr has a standard contact structure, and U is identified with Hr as a contact manifold.

If U ⊆M is any open subset, then the parabolic tangent groupoid THU = THU∪U×U×(0, 1]
of U is the restriction of the groupoid THM to the subset U×[0, 1] of the space of units M×[0, 1].
To understand THM it suffices to describe the smooth structure of the groupoid THU near t = 0,
for a cover of M by open sets U . Therefore, to understand the parabolic tangent groupoid of
a contact manifold it suffices to study the parabolic tangent groupoid THG of the Heisenberg
group G = Hr.

The tangent bundle TG of a group G is trivialized by right translation of the fiber T0G at
the identity element. This identifies each fiber TxG, x ∈ G with the Lie algebra g of G,i.e.,

TG ∼= G× g.

For the Heisenberg group G = Hr, the Lie algebra is spanned by 2r + 1 vectors Xi, Yi, Z, i =
1, . . . , r, with commutation relation [Xi, Yi] = Z. The standard contact hyperplane bundle
H ⊆ TG is the subbundle of TG = G × g whose fiber at each point is spanned by the vectors
Xi, Yi ∈ g. We obtain a section N = T/H ↪→ TG by identifying the fiber of the quotient bundle
N with the span of the vector Z ∈ g. From here on we will make that identification, so that
H⊕N = G×g. It is important to notice that this is an identification, not just of vector bundles,
but of bundles of Lie algebras. As usual, this leads to an identification TG = THG,

TG = G× g → THG = G×G : (x, ξ) 7→ (x, exp(ξ)).

The right invariant trivialization of TG gives rise to a (flat) connection ∇ on G, which restricts to
a connection on the contact bundle H ⊆ TG (since H is right invariant). Thus, ∇ is compatible
with the contact structure, and we obtain an exponential map,

exp∇ : THG = G×G→ G : exp∇x (y) = yx.
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Note that x ∈ G denotes the base point, while y ∈ G ∼= THGx symbolizes the parabolic arrow
at x. The reason we get yx and not xy as the image of the exponential map is that we have
chosen a right invariant trivialization of TG.

Consider the defining chart for the parabolic tangent groupoid,

ψ : THG× [0, 1] → THG = THG ∪G×G× (0, 1]

that was introduced above. Identifying THG = G×G, we see that the map

ψ : G×G× [0, 1] → THG

is expressed by the formulas

ψ(x, y, t) = (δt(y)x, x, t) ∈ G×G× (0, 1], for t > 0,
ψ(x, y, 0) = y ∈ THGx.

Here, the map ψ is a bijection, and we can describe the groupoid operations of THG directly in
the (x, y, t) coordinates. At t = 0 it is clear that simply,

ψ(x, y, 0)ψ(x, v, 0) = ψ(x, yv, 0).

If t > 0, we have

ψ(x, y, t)ψ(u, v, t) = (δt(y)x, x, t) (δt(v)u, u, t) = (δt(y)x, u, t),

where the two elements are composable if and only if δt(v)u = x. This implies δt(y)x = δt(yv)u,
and we obtain the simple expression,

ψ(x, y, t)ψ(u, v, t) = ψ(u, yv, t).

If t = 0, the requirement that x = δt(v)u becomes x = u. We therefore have the same expression
for the groupoid operation at t = 0 and t > 0. In fact, the operation as expressed in the (x, y, t)
coordinates corresponds precisely to the composition law for elements in the action groupoid
(G× [0, 1]) oα G, with y ∈ G acting on (x, t) ∈ G× [0, 1] by

α(y)(x, t) = (δt(y)x, t).

Indeed, the composition rule for elements in this action groupoid is

((x, t), y) ((u, t), v) = ((u, t), yv),

where it is required that the source (x, t) of the first element is equal to the range α(v)(u, t) =
(δt(v)u, t) of the second element. We can summarize as follows.

Proposition 83 The parabolic tangent groupoid of the Heisenberg group G = Hr is isomorphic,
as a smooth groupoid, to the action groupoid BoαG, where G acts on the base space B = G×[0, 1]
by

α(y)(x, t) = (δt(y)x, t).
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An explicit isomorphism B oα G→ THG is given by,

((x, t), y) 7→ (δt(y)x, x, t) ∈ G×G× (0, 1], for t > 0
((x, 0), y) 7→ y ∈ G ∼= THGx,

where the isomorphism G ∼= THGx is obtained by the right invariant trivialization of the bundle
of osculating groups THG, plus the choice of an identification THG0 = G.

Observe that this isomorphism preserves the base space B = G × [0, 1] of the groupoids. Also
note that the same construction works for any graded nilpotent group.

5.8 A characterization of elements in C∗(THM).

In this section we consider the convolution C∗-algebra C∗(THM) of the parabolic tangent
groupoid THM , and we derive a concrete characterization of the elements in this C∗-algebra in
the case of a contact manifold M . This explicit characterization is one of the key technical steps
in the proof of our index theorem.

To define C∗(THM) we choose a smooth Haar system on THM . In Examples 1 and 3 of
section 4.3 we described Haar systems on the groupoids THM and M ×M . Fixing a smooth
1-density λ on M , we saw how λ induces Lebesgue measure λm on THMm, for m ∈ M . This
extends to a Haar system on THM by taking the dilated densities t−p−2qλ as measures on the
s-fibers G(m,t) = M , for (m, t) ∈ M × (0, 1]. Here p + 2q is the homogeneous dimension of the
osculating groups THMm.

To understand the structure of C∗(THM) it is useful to consider the various restriction maps
associated to the stratification of the groupoid. Restriction at t = 0 of functions in the convo-
lution algebra Cc(THM) determines a ∗-homomorphism to the convolution algebra Cc(THM).
This maps extends by continuity to a surjective ∗-homomorphism of the corresponding C∗-
algebras,

π0 : C∗(THM) → C∗(THM).

Further restriction to the individual osculating groups gives morphisms

πm : C∗(THM) → C∗(THMm).

Likewise, for t ∈ (0, 1] we obtain surjective ∗-homomorphisms,

πt : C∗(THM) → C∗(M ×M) ∼= K(L2(M, t−p−2qλ)).

Observe that the C∗-algebras K(L2(M, t−p−2qλ)) are all naturally isomorphic to K(L2(M,λ)). If
the action of a (compact) operator Q on functions C∞(M) is known, it determines a well-defined
element in this algebra, independent of the value of t. We can therefore ignore this scaling factor,
and will simply write K(L2(M)). (Note: the situation is different when we are given an operator
kernel k(x, y); the operator it defines does depend on the scaling factor of the measure.)

Thus, every element Q ∈ C∗(THM) gives rise to a family of elements

〈Qm, Qt〉 = 〈πm(Q), πt(Qt)〉,
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with

Qm ∈ C∗(THMm), Qt ∈ K(L2(M)).

Our aim in this section is to determine precisely which families 〈Qm, Qt〉 represent elements in
C∗(THM). An obvious requirement is that the elements {Qm} represent an element in the C∗-
algebra C∗(THM). A similarly obvious property for the family {Qt} follows from the following
lemma.

Lemma 84 Let M,T be smooth manifolds, and let G = M ×M × T be the smooth groupoid
that, algebraically, is a family of copies of the pair groupoid M ×M , with parameter space T .

Then C∗(G) is isomorphic to the C∗-algebra C0(T,K).

Proof. The structure of the convolution C∗-algebra does not depend on the choice of Haar
system. So for simplicity, we can take a Haar system on C∗(M ×M × T ) that is the same in
each copy of M ×M .

With k ∈ C∞c (M ×M × T ), let kt ∈ C∞c (M ×M) denote the restriction of k to t ∈ T , i.e.,
kt(x, y) = k(x, y, t). With this notation, the norm on C∗(G) is, by definition,

||k||C∗r = sup
t∈T

||Op(kt)||,

where Op(kt) denotes the operator on L2(M) with Schwartz kernel kt. Consider the map,

T → K(L2(M)) : t 7→ Op(kt)

We will show it is continuous. Because k is continuous with compact support, t 7→ kt is contin-
uous in the sup norm for kt. Also, for f ∈ C∞c (M ×M), such that the support of f is contained
in a fixed compact set V ⊆M ×M , we have the uniform estimate,

||Op(f)|| ≤ C ||f ||∞,

with C = Vol(V )1/2. In other words, f 7→ Op(f) is continuous, if we take the sup norm for f .
this proves continuity of t 7→ Op(kt).

We see that,

C∞c (G) → C0(T,K) : k → [t 7→ Op(kt)].

is an isometric ∗-homomorphism. The range is dense, and we conclude that this map completes
to an isomorphism of C∗-algebras.

2

We easily derive that if 〈Qm, Qt〉 represents an element in C∗(THM), then t 7→ Qt is a norm-
continuous family of operators that is uniformly bounded. This represents the second property
that 〈Qm, Qt〉 must satisfy.

Another easy property of elements in C∗(THM) is that the family {Qt} is asymptotically
local.

Proposition 85 If 〈Qm, Qt〉 ∈ C∗(THM), then the family Qt is asymptotically local, i.e., given
two continuous functions φ, ψ ∈ C(M) with disjoint supports, we have

lim
t→0

‖φQt ψ‖ = 0.
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Proof. Let us first consider k ∈ Cc(THM). Then Qt = πt(k) is the compact operator on L2(M)
with continuous Schwartz kernel kt(x, y) = k(x, y, t), where (x, y) ∈ M × M . The manifold
structure on THM was defined by blowing up the diagonal in M ×M as t → 0. Therefore the
compact support of the kernel kt(x, y) will concentrate near the diagonal of M ×M as t → 0,
and for sufficiently small t we have

φπt(k)ψ = 0.

The result for arbitrary Q ∈ C∗(THM) follows by approximation. For every ε > 0 there exists
an element k ∈ Cc(THM) such that ‖Qt − πt(k)‖ < ε for every t ∈ (0, 1] (by definition of the
norm on C∗(THM)). We see that for sufficiently small t,

‖φQt ψ‖ = ‖φQt ψ − φπt(k)ψ‖ ≤ ‖φ‖∞‖ψ‖∞ε.

2

The next property is the crucial one, and it is less obvious. It establishes the relation between
the family Qt and the family Qm. If we pick an appropriate exponential map for the Heisenberg
structure,

exp : THM →M,

then the osculating group THMm is identified with an open neighborhood U ⊆ M of m ∈ M .
In this way the operator Qm, which acts on L2(THMm), can be identified with an operator on
L2(U) ⊆ L2(M). If δt are the natural dilations of the osculating group, then

δ∗t f(x) = f(δtx)

denotes the induced action on L2(THMm), and we consider the family of operators

δ∗t−1Qmδ
∗
t .

These operators are thought of as acting on L2(M), and we compare their aympptotic behaviour
as t → 0 with that of the operators Qt. Of course, this comparison is only meaningful locally,
in a neighborhood of the point m.

Proposition 86 Let M be a contact manifold.
If 〈Qm, Qt〉 ∈ C∗(THM), then for every m ∈M and every ε > 0 there exists a neighborhood

V of m such that if h denotes the characteristic function of V , then

lim sup
t→0

‖hQth− h δ∗t−1Qmδ
∗
t h‖ < ε.

Here the operators δ∗t−1Qmδ
∗
t , defined on the osculating group, are identified with operators on M

with the help of Darboux coordinates near the point m. The norm ‖ · ‖ appearing in the estimate
is the operator norm of bounded operators on L2(M).

We will say that Qt is locally asymptotically equivalent to δ∗t−1Qmδ
∗
t .
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Proof. It suffices to consider what happens in the case where M = G is the Heisenberg group.
We identify THG ∼= (G× [0, 1]) oG, as in Proposition 83.

To begin, we assume k ∈ Cc((G× [0, 1]) oG). We think of the operators δ∗t−1kmδ
∗
t as acting

on the source map fibers of the tangent groupoid at the appropriate value of t. The isomorphism
of the tangent groupoid with the action groupoid is effected by δt-dilations of the fibers (each
a copy of M = G). Therefore, when representing the operators δ∗t−1kmδ

∗
t on the fibers of the

action groupoid, we simply get km for each t > 0.
The neutral element 0 ∈ G corresponds to m ∈M . According to the composition law in the

action groupoid we have,

((0, t), x) = ((δty, t), xy−1) ((0, t), y).

It follows that the regular representation kt = πt(k), associated to the fixed base point (0, t) ∈
G× [0, 1], is given by

πt(k)f(x) =
∫
G
k(δty, t, xy−1) f(y)dy.

At t = 0 this gives the convolution operator km = πm(k),

πm(k)f(x) =
∫
G
k(0, 0, xy−1) f(y)dy.

Let f be a characteristic function of some neighborhood of 0 in the fibers G = δtM of the action
groupoid, which is fixed for all values of t. Then h(x) = ft(x) = f(δtx) corresponds to the
characteristic function of a fixed neighborhood V of m ∈ M . Let at(x, y) denote the Schartz
kernel of ftktft and bt(x, y) that of ftkmft. These kernels are given by

at(x, y) = f(δtx) k(δty, t, xy−1) f(δty),

bt(x, y) = f(δtx) k(0, 0, xy−1) f(δty).

By taking the support U of f sufficiently small, and letting t < r for sufficiently small r > 0, we
can obtain a uniform estimate

|at(x, y)− bt(x, y)| < ε.

To see this, consider the values (x, y, t) for which at(x, y)− bt(x, y) 6= 0. We must have δty ∈ U ,
but also xy−1 ∈ K, where K ⊆ G is the compact set

K = {v ∈ G | ((u, t), v) ∈ supp(k), u ∈ U, t ∈ [0, r]}.

This set is compact because k has compact support. Then, because k is continuous, the difference

|k(δty, t, xy−1)− k(0, 0, xy−1)|

can be made arbitrarily small for all δty ∈ U, t < r, by taking U and r > 0 small enough. This
estimate will be uniform in xy−1 ∈ K (because K is compact), which gives the required estimate
on ‖at − bt‖∞.
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Now let us denote ct(x, y) = at(x, y)−bt(x, y). The fact that xy−1 ∈ K if ct(x, y) 6= 0 implies
uniform estimates∫

|ct(z, y)|dy < Vol(K)ε,
∫
|ct(x, z)|dx < Vol(K)ε,

that hold for each z ∈ G. Hence,

‖ftktft − ftkmft‖ < Vol(K)ε,

for all t < r. This gives the required estimate.
The result for general 〈Qm, Qt〉 ∈ C∗(THM) follows immediately by approximation, by

choosing k ∈ Cc(THM) such that ‖Qm − km‖ < ε and ‖Qt − kt‖ < ε for all m ∈M , t ∈ (0, 1].
2

The properties derived so far are sufficient to characterize the elements in C∗(THM).

Proposition 87 Let M be a contact manifold.
A family of operators 〈Qm, Qt〉 with Qm ∈ C∗(THMm) and Qt ∈ K(L2(M)) represents an

element in C∗(THM) if and only if it has all of the following properties:
(1) the family Qm defines an element in C∗(THM);
(2) the family Qt is norm continuous and uniformly bounded;
(3) the family Qt is asymptotically local (as defined in Proposition 85);
(4) the family Qt is locally aymptotically equivalent to δ∗t−1Qmδ

∗
t for each m ∈M (as defined

in Proposition 86).

Proof. We have proven necessity of the four properties listed, and must now show that they
are sufficient. Let D be the set of elements 〈Qm, Qt〉 that satisfy all four properties. Because of
properties (1) and (2), we can think of D as a subset of the C∗-algebra

C∗(THM)⊕ Cb((0, 1],K)).

We first verify that D is a norm-closed ∗-subalgebra, which will prove that D is a C∗-algebra. It
is easy to see that the set D is norm closed. Let 〈Qm, Qt〉 and 〈Rm, Rt〉 be two families in D. One
easily verifies that 〈Qm+Rm, Qt+Rt〉, as well as 〈Q∗m, Q∗t 〉 are contained in D. For the product
〈QmRm, QtRt〉, proporties (1) and (2) clearly hold. To verify property (3), let φ1, φ2 ∈ C(M)
be two functions with disjoint support. Choose two other function ψ1, ψ2 ∈ C(M), such that ψ1

and ψ2 have disjoint supports as well, and such that ψj(x) = 1 whenever x ∈ supp(φj). Then
(1− ψj) and φj have disjoint supports as well, and therefore

lim
t→0

‖φ1Qt − φ1Qtψ1‖ = lim
t→0

‖φ1Qt(1− ψ1)‖ = 0,

lim
t→0

‖Rtφ2 − ψ2Rtφ2‖ = lim
t→0

‖(1− ψ2)Rtφ2‖ = 0.

Because both Qt and Rt are uniformly bounded in norm, it follows that

lim
t→0

‖φ1QtRtφ2‖ = lim
t→0

‖φ1Qtψ1ψ2Rtφ2‖ = 0.

This establishes property (3). Property (4) is proven in a similar way, this time using asymptotic
equivalence of Qth, hQt, and hQth, etc.
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We see that D is indeed a C∗-algebra, and by the previous two propositions we know that
C∗(THM) ⊆ D. To see that the two are isomorphic, consider the restriction map

D → C∗(THM) : 〈Qm, Qt〉 7→ {Qm}.

We only need to show that it has the same kernel as the corresponding map,

C∗(THM) → C∗(THM) : 〈Qm, Qt〉 7→ {Qm}.

(both maps are surjective), which is C0((0, 1],K) (this follows from Lemma 84).
Suppose therefore that 〈Qm, Qt〉 ∈ D and that Qm = 0 for all m ∈ M . Choose ε > 0. By

property (3) there exists a neigborhood Vm of each point m ∈ M , such that the characteristic
function hm of Vm satisfies

lim sup
t→0

‖hmQthm‖ < ε.

But since Qt is asymptotically local, this actually implies,

lim sup
t→0

‖Qt‖ < ε,

and therefore certainly ‖Qt‖ → 0, which proves the claim.
2

82



Chapter 6

The index theorem for maximally
hypoelliptic operators.

6.1 Introduction.

In this chapter we prove our main theorem (Theorem 99), which states that the analytic index of
a maximally hypoelliptic operator on a compact contact manifold is computed by the topological
index formula of Atiyah and Singer. Our proof is a development of the tangent groupoid proof
of the classical index theorem for elliptic operators, proposed by Connes (see [Co], Section II.5).
For a detailed exposition of this proof we refer to [Hi]. (Higson’s paper is phrased in the language
of E-theory, and is easily translated into terms involving the tangent groupoid.)

Restriction to the t = 0 and t = 1 fibers in the tangent groupoid TM gives rise to two maps
in K-theory, denoted π0 and π1, respectively,

K0(C∗(TM))
π1

//

π0

��

K0(C∗(M ×M)) ∼= Z

K0(T ∗M)

Because π0 is an isomorphism, Connes obtains a map,

Inda = π1 ◦ π−1
0 : K0(T ∗M) → Z.

The topological index of Atiyah and Singer also defines a map in K-theory,

Indt : K0(T ∗M) → Z : x 7→
∫
T ∗M

Ch(x) ∧ Td(M).

First Connes proves that Inda is the analytic index map for elliptic operators P ,

Index P = Inda([σ(P )]),

and then shows that Inda = Indt, thus proving the Atiyah-Singer index theorem. (See [Co],
[Hi].)
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In the same manner, the parabolic tangent groupoid gives rise to a map,

Indq : K0(C∗(THM)) → Z.

The first step in the proof of our index theorem is to show that for a maximally hypoelliptic
operator P we have

Index P = Indq([σH(P )]).

Any differential operator P on M gives rise to a smooth invariant family 〈Pm, tdP 〉 of operators
on the parabolic tangent groupoid THM . The fact that Indq is equal to the analytic index
will follow immediately once it is established that, in the case of a subelliptic operator P , the
resolvents of the individual operators in the invariant family 〈Pm, tdP 〉 define an element in the
C∗-algebra C∗(THM)⊗Mk. Section 6.3 is devoted to proving this key result. Our proof is based
on the characterization of elements in C∗(THM) derived in Section 5.8. The corresponding fact
for elliptic operators is much easier to prove, because there the osculating groups are abelian,
and one can use Fourier Theory.

Next, there is a natural isomorphism

Ψ : K0(C∗(THM)) → K0(T ∗M),

which allows us to identify the symbol class [σH(P )] of a subelliptic operator with an element
in K0(T ∗M). Thus, we can apply the topological index formula to the symbol of a subelliptic
operator P . We show that, under the natural isomorphism Ψ, the index map that is induced
by the parabolic tangent groupoid agrees with the index map that is induced by the ordinary
tangent groupoid, i.e.,

Indq = Inda ◦Ψ.

The proof of this fact relies on the construction of a larger groupoid that interpolates, as it
where, between the parabolic tangent groupoid THM and the ordinary tangent groupoid TM .
Using the fact proven by Connes that Inda = Indt, we obtain

Index P =
∫
T ∗M

Ch(Ψ([σH(P )])) ∧ Td(M).

6.2 Model operators and the tangent groupoid.

In this section we see how a differential operator P and the model operators Pm can be assem-
bled into a single operator P on the parabolic tangent groupoid. This clarifies the relationship
between a differential operator and its principal symbol. In fact, the tangent groupoid provides a
convenient context for an alternative definition of the principal symbol, which has the advantage
that it is coordinate independent. (Put differently, the effect of coordinate transformations has
been taken care of in the construction of the groupoid itself.)

Let P be a differential operator on a manifold M with Heisenberg structure H ⊆ TM .
Choosing an H-frame X1, · · · , Xn, we can present P locally as,

P =
∑
|α|≤d

aαX
α.
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The model operator for P at m ∈M was defined as,

Pm =
∑
|α|=d

aα(m)Y α,

where Yi denotes the invariant vector field on THMm that correspond to Xi(m) ∈ Hm⊕Nm. The
operator Pm is invariantly defined as a right invariant operator on the osculating group THMm.
We give an alternative proof of this fact by showing how the collection of model operators can
be interpreted invariantly as the asymptotic ‘limit’ of the family tdδ∗tPδ

∗
t−1 as t → 0 (here, as

elsewhere, δt denotes the Heisenberg dilations in the osculating groups). This limit receives a
precise meaning if we think of the family tdP as a right invariant family of operators on the
parabolic tangent groupoid.

Proposition 88 Let P be a differential operator on (M,H) of Heisenberg degree d. Then the
model operators Pm,m ∈M are well-defined as right invariant operators on the osculating groups
THMm, independent of the way P is presented locally by a choice of H-frame.

The principal Heisenberg symbol σH(P ) = {Pm}, regarded as a single operator on THM , has
smooth coefficients. Moreover, the family,

P = 〈Pm, tdP 〉,

is a right invariant operator with smooth coefficients on the parabolic tangent groupoid THM .

Proof. Let Xi be an H-frame on M . For simplicity, we assume that the frame is defined globally.
The argument is not essentially different if Xi are only defined locally.

According to Definition 81 each of the families,

Xi = 〈Yi(m), tνiXi〉,

corresponds to a local smooth section in the Lie algebroid of THM , and hence to a right invariant
vector field on the groupoid. Here νi ∈ {1, 2} is, of course, the degree ofXi, depending on whether
Xi is a section in H or not.

Thinking of Xi as a single operator on THM , we can form the product,

Xα = Xα1
1 · · ·Xαn

n = 〈Y α(m), tkXα〉,

where k = |α| =
∑
αiνi is the weighted degree of the monomial.

Now consider the function aα ∈ C∞(M). It can be identified with a function on G(0) =
M× [0, 1] that is independent of t ∈ [0, 1], and then induces a right invariant function ãα = aα ◦r
on THM . Observe that, when restricted to the group THMm at t = 0, ãα is just the scalar aα(m).
For t ∈ (0, 1], the function ãα corresponds to aα evaluated on the first component in M ×M .
We obtain a right invariant operator on THM ,

ãαXα = 〈aα(m)Y α(m), tkaαXα〉 = 〈σH(aαXα), tkaαXα〉.

To analyse the situation for a general operator P , we expand it as a sum of homogeneous
terms,

P = P0 + P−1 + P−2 + · · ·+ P−d,
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where P−k =
∑

|α|=d−k aαX
α is of degree d− k. We have right invariant operators,

P−k =
∑

|α|=d−k

ãαXα = 〈σH(P−k), td−kP−k〉.

Note that σH(P−k) denotes the order d− k symbol of P−k, not the order d symbol! Finally,

P = 〈Pm, tdP 〉 = 〈σH(P0), tdP0〉+ 〈0, tdP−1〉+ 〈0, tdP−2〉+ · · ·
= P0 + tP−1 + t2P−2 + · · · .

This proves that P is an invariant differential operator on THM with smooth coefficients.
The fact that σH(P ) is independent of the choice of H-frame Xi is now a trivial corollary.

Clearly, at t ∈ (0, 1], the definition of P is independent of the choice of H-frame and the corre-
sponding local presentation of P , and by continuity the value of P at t = 0 (i.e., the family of
model operators) is entirely determined by tdP .

2

Remark. It is a routine matter to adapt our discussion to the case of operators acting on
sections in vector bundles E,F →M ,

P : Γ(E) → Γ(F ).

By trivializing E and F in some open set in M , the operator P can be presented as a matrix
P = (Pij) of scalar differential operators. The symbol of P is simply the matrix of symbols
σH(P ) = (σH(Pij)). At each point m ∈ M the symbol should be thought of as an invariant
operator acting on sections in the bundles π∗E, π∗F on THMm, obtained by pull back of E,F
by the base point map π : THM →M .

In fact, the bundles E,F on M induce right invariant bundles Ẽ, F̃ on THM by pull back
via the composition THM

r−→ M × [0, 1] → M (r denotes the range map in the groupoid).
Because at t = 0 the range map r in THM is equal to the base point map π for THM , the
bundles Ẽ, F̃ restrict to π∗E, π∗F on THM at t = 0. At t > 0 the bundles Ẽ, F̃ simply restrict
to the bundles E,F in each s-fiber M . The family 〈Pm, tdP 〉 then defines an invariant operator,

P : Γ(Ẽ) → Γ(F̃ ).

The proof of Proposition 88 applies without fundamental changes.

6.3 Subelliptic operators and the C∗-algebra of THM .

Let (M,H) be a compact contact manifold, and P : Γ(E) → Γ(F ) a maximally hypoelliptic
operator on M , acting on sections in smooth vector bundles E,F . Let D be the self-adjoint
operator,

D =
(

0 −iP
iP ∗ 0

)
,

acting on sections in Γ(E ⊕ F ), with associated self-adjoint model operators,

Dm =
(

0 −iPm
iP ∗m 0

)
,
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acting on sections in Γ(π∗Em ⊕ π∗Fm) (pulling back E,F via π : THM → M). In Chapter 4
we described two K-theory classes associated to the operator D. The first one, constructed
from the graph projection of D itself, corresponded to the analytic index of P as an element in
K0(K(L2(M))) ∼= Z. An analogous construction involving the graph projections of the model
operators Dm gave us the symbol class

[σH(P )] ∈ K0(C∗(THM)).

Now consider the right invariant operatoron the parabolic tangent groupoid P = 〈Pm, tdP 〉 , and
the corresponding self-adjoint operator D = 〈Dm, t

dD〉. Our aim is to construct an element in
K0(C∗(THM)) that restricts at t = 0 to the Heisenberg symbol of P , and at t = 1 to its analytic
index. We will construct this K-theory class starting from the operator P by the same procedure
that produced the two K-theory classes associated to P and the family {Pm}, respectively. The
crucial technical step in this construction is to show that the family of resolvents

(D− 1)−1 = 〈(Dm − i)−1, (tdD − i)−1〉

defines an element in C∗(THM). In Section 5.8, Proposition 87 we derived a characterization of
elements in C∗(THM) as families 〈Qm, Qt〉 with certain properties. We will now show that the
family f(D) satisfies these properties.

Proposition 89 Let (M,H) be a compact contact manifold, and D : Γ(E) → Γ(F ) a maximally
hypoelliptic, self-adjoint operator on M of Heisenberg order d.

If D = 〈Dm, t
dD〉 denotes the invariant family of operators on THM associated to D, then

f(D) ∈Mk(C∗(THM))

for any f ∈ C0(R).

Remark. As in Chapter 4, the integer k denotes the dimension of a trivial vector bundle over
M that contains E ⊕ F as a direct summand.

Proof. According to Proposition 87, we must verify four properties for the family 〈f(Dm), f(tdD)〉.
By functional calculus it suffices to prove this for the function f(x) = (x− i)−1. We know that
the family {f(Dm)} defines an element in Mk(C∗(THM)) (Proposition 67). By functional calcu-
lus, the map t 7→ f(tdD) is norm-continous, while ‖f(tdD)‖ is uniformly bounded. Also, f(tdD)
is compact because D is Fredholm. This proves the first two properties listed in Proposition 87.

Next, we must show that if φ, ψ ∈ C∞(M) are two functions with disjoint supports, then

lim
t→0

‖φf(tdD)ψ‖ = 0.

This follows immediately from Lemma 94 below. Finally, we must verify that for each m ∈ M
there exists a neighborhood V of m for each ε > 0 such that, if h denotes the characteristic
function of V , then

lim sup
t→0

‖hf(δ∗t−1Dmδ
∗
t )h− hf(tdD)h‖ < ε.

Here the osculating group THMm is identified with a neighborhood of m by means of a choice
of Darboux coordinates centered at m, so that we can think of Dm as an operator on M . (See
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section 5.8 for details.) Because Dm is homogeneous of order d with respect to the dilations δt
of the osculating group, we have simply

δ∗t−1Dmδ
∗
t = tdDm,

so we must show

lim sup
t→0

‖hf(tdDm)h− hf(tdD)h‖ < ε.

The standard trick for comparison of two commutators gives us

(tdDm − i)−1 − (tdD − i)−1 = td (tdDm − i)−1(D −Dm)(tdD − i)−1.

Because ‖[f(tdD), h]‖ → 0 as t→ 0, we can write

lim sup
t→0

‖hf(tdDm)h− hf(tdD)h ‖ = lim sup
t→0

td ‖hf(tdDm)(D −Dm)hf(tdD) ‖.

We decompose the product of operators as follows,

td ‖hf(tdDm)(D −Dm)hf(tdD)‖
= td ‖hf(tdDm)‖L2→L2 ‖(D −Dm)h‖W d→L2 ‖f(tdD)‖L2→W d

≤ td ‖(D −Dm)h‖W d→L2 ‖f(tdD)‖L2→W d .

Here W d denotes the order d Sobolev space for the Heisenberg group G. By Lemma 93 below,
the norm ‖f(tdD)‖L2→W d is of order O(t−d), which means that

td ‖f(tdD)‖L2→W d < C.

For the remaining factor, observe that because Dm is the highest order part of D at m the norm
‖(D−Dm)h‖W d→L2 can be made arbitrarily small by choosing a sufficiently small neighborhood
of m as the support of h. This proves the last property in Proposition 87, and completes the
proof.

2

In the remainder of this section we derive some technical results that were used in the proof
of Proposition 89.

Lemma 90 Let (M,H) be a compact contact manifold. Let D be a formally selfadjoint, maxi-
mally hypoelliptic operator of order d. Let ∆ = (D2 + 1)1/2d.

The operators ∆r (r ∈ R) map C∞(M) bijectively to C∞(M), and if k is a positive integer
then ∆−k is bounded as an operator L2 →W k.

Proof. The a priori estimates imply that the domain of the closure of the maximally hypoelliptic
operator D2 + 1 is the weighted Sobolev space W 2d. Then the closure of D2 + 1 is a bijective
map from the domain W 2d to L2, and is therefore selfadjoint. So it makes sense to define the
selfadjoint operator ∆ = (D2 + 1)1/2d.
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To prove the first statement, observe that C∞(M) is the intersection of the Sobolev spaces
W k, which is equal to the intersection of the domains of the maximally hypoelliptic opera-
tors ∆4dk (k = 1, 2, 3, . . .). Let E is the projection valued spectral measure of the invertible,
selfadjoint operator ∆ (See [Ru], or section 3.5). Then u ∈ C∞(M) if and only if∫

|λ|NdEu,u <∞

for all integers N > 0. Here Eu,u denotes the positive measure

Eu,u(ω) = 〈E(ω)u, u〉,

where ω ⊆ R is a Borel set. If v = ∆ru then

〈E(ω)v, v〉 = 〈E(ω)∆2ru, u〉 =
∫
ω
λ2rdEu,u,

which shows that dEv,v = λ2rdEu,u (see [Ru]). It follows that u ∈ C∞ if and only if v ∈ C∞.
To prove the second claim, let A be a differential operator of Heisenberg order k. The same

argument used in the proof of Proposition 46 shows that

‖Au‖ ≤ C‖∆ku‖,

for all u ∈ C∞. By the first result we may substitute u = ∆−kv with v ∈ C∞, and we get

‖A∆−kv‖ ≤ C‖v‖.

Therefore ‖∆−kv‖Wk ≤ C ′‖v‖ holds for all v ∈ C∞, and hence for all v ∈ L2.
2

Corollary 91 If f ∈ C0(R) has rapid decay, i.e., f(x) ≤ Ck(1 + x2)−k for all k > 0, then f(D)
is a smoothing operator, i.e., it maps L2(M) to C∞(M).

Lemma 92 Let r be a fixed real number, 0 < r ≤ 1. The supremum of the family of bounded
functions ft ∈ Cb(R) with t > 0,

ft(x) =
(x+ i)r

tx+ i
,

behaves asymptotically as ‖ft‖∞ ∼ Ct−r as t ↓ 0. Here C > 0 is a constant that depends on r.

Proof. To find the supremum of ft, consider the square of the absolute value

h(x) = |ft(x)|2 =
(x2 + 1)r

t2x2 + 1

and its derivative

h′(x) =
x
(
(r − 1)t2x2 + (r − t2)

)
(t2x2 + 1)2

,
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First, let r = 1, and assume that 0 < t < 1. In this case ft reaches its supremum as x → ±∞,
and we find ‖ft‖∞ = t−1, as desired.

Now suppose r < 1, and assume 0 < t2 < r so that r − t2 > 0. Then h′(x) = 0 if either
x = 0, or

x2 =
r − t2

(1− r)t2
.

At x = 0 the function h has a local minimum h(0) = 1. As x→ ±∞ the value of h(x) tends to
zero. The supremum for h is attained at x2 = (r − t2)/(1 − r)t2. This means that x2 ∼ Ct−2,
and therefore h(x) ∼ C ′t−2.

2

Lemma 93 Let D be a selfadjoint, maximally hypoelliptic operator on (M,H) of order d.
If f ∈ C0(R) satisfies f(x) < C(1 + x2)−1/2, then for any k ≤ d

‖ f(tdP ) ‖Wk = O(t−k).

Proof. Let A be a differential operator of Heisenberg order k ≤ d. We write,

Af(tdP ) = A(P + i)−k/d · (P + i)k/d(tdP + i)−1 · (tdP + i)f(tdP ).

According to Lemma 92, we have the asymptotic behaviour,

‖(P + i)k/d(tdP + i)‖ = O(t−k).

Lemma 90 shows that A(P + i)−k/d is bounded, while the assumption on f implies that there is
a bound (tdx+ i)f(tdx) < C.

2

Lemma 94 Let D be a selfadjoint, maximally hypoelliptic operator on (M,H) of order d.
Let f(x) = (x+ λ)−1, λ /∈ R, and ϕ ∈ C∞(M). Then

‖ [f(tdD), ϕ] ‖ = O(t).

Proof. We have,

[f(tdD), ϕ] = −tdf(tdD)[D,ϕ]f(tdD).

The commutator [D,ϕ] is of Heisenberg order (d− 1), so ‖ [D,ϕ]f(tdD) ‖ = O(td−1) by Lemma
93. Also, ‖f(tdD)‖ ≤ 1.

2

6.4 The analytic index map for subelliptic operators.

In this section we construct the analytic index map in K-theory

K0(C∗(THM)) → Z
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that sends the Heisenberg symbol [σH(P )] to the analytic index of the subelliptic operator P .
The idea is the same as that used by Connes for elliptic operators (in [Co]). The technical result
that makes the idea work for subelliptic operators is Proposition 89, proven in the previous
section.

The restriction map π0 at t = 0 gives rise to a short exact sequence,

0 → C0( (0, 1], K) → C∗(THM) π0−→ C∗(THM) → 0.

(See section 5.8.)

Lemma 95 The C∗-algebra C∗((0, 1],K) is contractible (to zero).

Proof. Recall that a contraction of a C∗-algebra A is a ∗-homomorphism,

A→ C([0, 1], A) : a 7→ [s 7→ as],

such that a0 = a, a1 = 0 for all a ∈ A. For f ∈ A = C0((0, 1],K) define,

fs(t) = f(t− s)

for s ∈ [0, 1], t ∈ (s, 1]. If t[0, s] we let fs(t) = 0.
This is a contraction of C0((0, 1],K). We only need to show that s 7→ fs is continuous. Any

continuous function f : [0, 1] → K with f(0) = 0 is uniformly continuous. Therefore, for ε > 0,
there is δ > 0, such that

||fs − fs′ ||C0((0,1],K) = sup
t
||f(t− s)− f(t− s′)||K < ε,

whenever |s− s′| < δ.
2

Corollary 96 The restriction map π0 : C∗(THM) → C∗(THM) induces an isomorphism in
K-theory.

Proof. This follows immediately from the exact sequence in K-theory for the quotient map π0.
2

All the restriction maps πt : C∗(THM) → K(L2(M)), for t 6= 0, are homotopic in the sense
that t 7→ πt(a) is continuous for each a ∈ C∗(THM) (by Lemma 84). Therefore, each πt induces
the same map in K-theory,

πt : K0(C∗(THM)) → K0(K) ∼= Z.

Definition 97 The composition IndH = π1 ◦ π−1
0 ,

K0(C∗(THM))

π0∼=
��

π1

&&

L

L

L

L

L

L

L

L

L

L

L

L

K0(C∗(THM))
IndH

// Z

is called the deformation index for (M,H).
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Proposition 89 immediately implies the following theorem.

Theorem 98 Let (M,H) be a compact contact manifold, and P a maximally hypoelliptic oper-
ator on M . Then,

IndexP = IndH ([σH(P )]).

In other words, IndH is the analytic index map for maximally hypoelliptic operators.

Proof. Proposition 89 implies that there is a well-defined unitary,

U = (D + i)(D− i)−1 = 1− 2i(D− i)−1 ∈Mk(C∗(THM)+),

and a projection,

1
2
(εU + 1) ∈Mk(C∗(THM)+).

We thus obtain a K-theoretic ‘index’ for the invariant family P = 〈Pm, tdP 〉,

[P] = [
1
2
(εU + 1)]− [

1
2
(ε+ 1)] ∈ K0(C∗(THM)).

Its restrictions to t = 0 and t = 1 are precisely the two K-theory classes constructed in Chapter
4,

π0([P]) = [σH(P )] ∈ K0(C∗(THM)),

π1([P]) = IndexP ∈ K0(K(L2(M))) ∼= Z,

which proves,

IndexP = π1π
−1
0 ([σH(P )]).

2

6.5 The topological index of a subelliptic operator.

We can now prove our index theorem for subelliptic operators.

Theorem 99 Let (M,H) be a compact contact manifold, and P : Γ(E) → Γ(F ) a maximally
hypoelliptic differential operator on M . Then

IndexP =
∫
T ∗M

Ch(Ψ([σHP ])) ∧ Td(M).

In other words, the analytic index of P is computed by the topological index formula of Atiyah
and Singer. Here

Ψ : K0(C∗(THM))
∼=−→ K0(T ∗M)
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denotes a canonical isomorphism in K-theory that we will define below.

Our proof of the index theorem relies on an enlargement of the parabolic tangent groupoid
by introduction of a second parameter s ∈ [0, 1]. The larger groupoid is called the adiabatic
groupoid of THM (see, for example, [Ni2]). Recall that we can think of THM as a family of
groupoids over the unit interval [0, 1], where at t = 0 we have the bundle of osculating groups
THM , while at each t > 0 we have a copy of M ×M . Algebraically, the adiabatic groupoid
THMad is the union of a family of groupoids G(t,s) parametrized by (t, s) ∈ [0, 1]2, and defined
as follows:

G(t,s) = M ×M for t > 0, s > 0,

G(0,s) = THM, for s > 0

G(t,0) = TM, for t > 0

G(0,0) = H ⊕N.

Since each groupoid G(t,s) has unit space M , the unit space of the adiabatic groupoid THMad

is the manifold with corners M × [0, 1]× [0, 1]. We will define the smooth structure on THMad

indirectly by constructing its Lie algebroid, but before we turn to the algebroid let us indicate
the essential features of the groupoid structure. Along each horizontal or vertical segment in
the square [0, 1]2 we have a family of copies of the same groupoid, with a single exceptional
groupoid at t = 0 or s = 0. In the horizontal segments the groupoids along (0, 1]×{s} are blown
up using Heisenberg dilations δ−1

t , t ∈ (0, 1] and glued to the exceptional groupoid at (0, s). In
the vertical direction we simply scale by a factor s−1, s ∈ (0, 1] to blow up the groupoids along
{t} × (0, 1] and glue them to the (t, 0) groupoid. At each horizontal segment [0, 1] × {s} for
positive s > 0 we get a copy of the parabolic tangent groupoid THM . At each vertical segment
{t}× [0, 1] with positive t > 0 we have the usual tangent groupoid TM . We will see below what
happens at the exceptional edges [0, 1]× {0} and {0} × [0, 1].

Schematically:

(t, s) = (0, 0) //

/o

/o

/o H ⊕N δ−1
t

s−1

TM

s−1 TM

THM
THM

δ−1
t

M ×M (t, s) = (1, 1)oo

o/

o/

o/

We verify that THMad is a smooth groupoid, by considering its Lie algebroid. We start with
the family of Lie algebroids AG(t,s) associated to the groupoids G(t,s) described above:

AG(t,s) = TM, for t > 0,

AG(0,s) = Lie(THM) = H ⊕N as the bundle of osculating Lie algebras for s > 0,

AG(0,0) = H ⊕N as a bundle of abelian Lie algebras for s = 0.

At points with t > 0 we have the Lie algebroid TM , whose bracket is the commutator of vector
fields. At t = 0 we have the Lie algebroid Lie(THM) = H ⊕ N of THM , except at the point
(t, s) = (0, 0) where we have the vector bundle H⊕N as the Lie algebroid of the groupoid H⊕N ,
which is just a bundle of abelian groups.
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To describe the smooth structure of A = ∪AG(t,s) we choose a section N ⊆ TM and identify
H ⊕N ∼= TM . As a smooth vector bundle over M × [0, 1]2, the Lie algebroid A is isomorphic
to the bundle TM × [0, 1]2 by the identification,

φ : TM × [0, 1]2 → ∪AG(t,s),

given by a combination of parabolic dilations δt and scaling by s:

φ(m, v; t, s) = (m, sδtv) ∈ TmM, t > 0, s > 0,
φ(m, v; t, 0) = (m, δtv) ∈ TmM, t > 0,
φ(m, v; 0, s) = (m, sv) ∈ H ⊕N, s > 0,
φ(m, v; 0, 0) = (m, v) ∈ H ⊕N.

One easily verifies that the bracket operation and anchor map on A = ∪AG(t,s) are smooth. Lie’s
Third Theorem for stratified Lie algebroids implies that the Lie groupoid THMad has a unique
smooth structure such that A is its Lie algebroid.

The groupoid THMad gives rise to a commutative diagram inK-theory, induced by restriction
of functions on THMad to each of the four corners of the square [0, 1]2. We proceed step-by-step.

Lemma 100 Restriction of elements in C∗(THMad) to the (t, s) = (0, 0) corner,

e(0,0) : C∗(THMad) → C∗(H ⊕N) ∼= C0(H∗ ⊕N∗),

induces an isomorphism in K-theory.

Proof. Let G denote the groupoid that is the union of the t = 0 and s = 0 edges in THMad.
The restriction map C∗(THMad) → G induces an isomorphism in K-theory, because the kernel
of this map is the contractible ideal C0((0, 1]2,K). The kernel of the map that further restricts
G to the corner (t, s) = (0, 0) is again a contractible ideal.

2

Now let e(t,1) denote restriction to the edge s = 1,

e(t,1) : C∗(THMad) → C∗(THM),

and e(1,s) restriction to the edge t = 1,

e(1,s) : C∗(THMad) → C∗(TM).

Further restriction to the corner (t, s) = (1, 1) gives two ∗-homomorphisms,

e(1,1) : C∗(THM) → C∗(M ×M)

e′(1,1) : C∗(TM) → C∗(M ×M).

We obtain a commutative diagram,

K0(C∗(THMad))

e(t,1)

��

e(1,s)
// K0(C∗(TM))

e′
(1,1)

��

K0(C∗(THM)) e(1,1)

// K0(C∗(M ×M))
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But e(1,1) is just our deformation index IndH , while e′(1,1) is the deformation index associated to
the usual tangent groupoid. As is known from the tangent groupoid proof of the Atiyah-Singer
index theorem for elliptic operators, this map e′(1,1) is equal to the topological index Indt (see
[Co], [Hi]). Therefore, the diagram above can be read as follows,

K0(H∗ ⊕N∗)

e(t,1)

��

e(1,s)
// K0(T ∗M)

Indt

��

K0(C∗(THM))
IndH

// Z

We will see that the remaining maps e(1,s) and e(t,1) are natural isomorphisms. The map e(1,s)
is trivial.

Lemma 101 The map

e(1,s) : K0(H∗ ⊕N∗) → K0(T ∗M)

in the diagram above is the isomorphism induced by an arbitrary identification H∗⊕N∗ = T ∗M ,
arising from the choice of a section N ⊆ TM .

Proof. Let the groupoid G denote the restriction of THMad to the s = 0 edge. It is the union
of H ⊕N at t = 0 with the groupoid TM × (0, 1]. Even though TM × (0, 1] is glued to H ⊕N
by means of Heisenberg dilations, the resulting groupoid G is isomorphic to TM × [0, 1].

The map e(1,s) is induced by restriction to t = 1 in G ∼= TM × [0, 1], composed with the
inverse (in K-theory) of restriction at t = 0. By homotopy invariance of K-theory, this is the
identity map.

2

The last step is far from trivial.

Proposition 102 The map

e(t,1) : K0(H∗ ⊕N∗) → K0(C∗(THM))

is an isomorphism in K-theory.

This is a special case of Lemma 3 in [Ni2]. We give a brief sketch of the idea of the proof. For
every nilpotent (or even solvable) group G there exists a (non-unique) split exact sequence,

0 → G′ → G→ R → 0.

Therefore G is a semi-direct product of groups G ∼= G′ o R, and we get a crossed product

C∗(G) ∼= C∗(G′) o R.

Thus, by the Connes–Thom isomorphism for crossed products with R we have

K0(G) ∼= K0(C∗(G′) o R) ∼= K(C∗(G′)⊗ C0(R)).
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(See [Co1] for the Connes–Thom isomorphism.) By induction we obtain

K0(C∗(G)) ∼= K0(Rn),

where n is the (ordinary) dimension of G. It is not hard to show that the map e(t,1) restricts to
the Connes–Thom isomorphism for the osculating group THMm in each of the fibers of THM ,
where Rn is naturally identified with the Lie algebra Hm ⊕ Nm of the group. Once this is
established, the proof of Proposition 102 is completed by a Mayer–Vietoris argument. (See [Ni2]
for details.)

Lemma 101 and Proposition 102 combined gives us a natural isomorphism,

Ψ = e(1,s) ◦ e−1
(t,1) : K0(C∗(THM))

∼=−→ K0(T ∗M),

and our commutative diagram reduces to

K0(T ∗M)

Indt

��

K0(C∗(THM))

Ψ
22

IndH

// Z

In particular,

IndH([σHP ]) = Indt(Ψ([σHP ])).

In combination with Theorem 98 this proves our main Theorem 99.
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Appendix A

Subelliptic estimates for Rockland
operators.

A.1 Introduction.

In this appendix we outline the proof of a theorem of Helffer and Nourrigat [HN] concerning
subelliptic estimates for Rockland operators. Our aim is to convince the reader that the proof
of their theorem, which applies to scalar Rockland operators, generalizes to operators that act
on sections in a trivial vector bundle. We will frequently refer to parts of the paper by Helffer
and Nourrigat [HN], and assume that the reader has a copy of it at hand. Section A.3 below
corresponds to the content of section 6 in [HN], which contains the proof of the main theorem,
while sections A.4 and A.5 below contain the crucial technical results from sections 2 and 4
in [HN] respectively, indicating what needs to be changed to make the proofs work for vector
bundle operators. None of the changes is fundamental.

In what follows, G denotes a graded nilpotent group, with graded Lie-algebra g = g1⊕· · ·⊕gr,
and L denotes a left-invariant differential operator G. In [HN] the operator L is a scalar operator,
while we assume here that L acts on smooth sections in a trivial complex vector bundle G×CN .
One can think of L as an N ×N matrix (Lij), where each Lij is a left-invariant scalar operator.

Recall that if π is a unitary representation of G on Hilbert space Hπ, then π induces an
(unbounded) representation of the Lie-algebra g, by

π(X)u =
d

dt

∣∣∣∣
(t=0)

π(exp (tX))u,

for X ∈ g. The domain of π(X) consists of vectors u ∈ Hπ for which the limit converges.
This extends to a representation (still denoted π) of the universal enveloping algebra U(g). An
element in Hπ that is in the domain of all the operators π(A), A ∈ U(g) is called a smooth vector
of π. The space of smooth vectors is denoted by Sπ. (In standard presentations of irreducible
representations π, Hπ = L2(Rk) for some k, and Sπ is precisely of the Schwartz class on Rk.)

If L is a left-invariant operator on G with matrix valued coefficients, we may think of L as
an element in the algebra U(g)⊗MN (C), while π(L) is an unbounded operator on the Hilbert
space Hπ ⊗ RN = H⊕N

π with domain Sπ ⊗ RN = S⊕Nπ . If L is the matrix (Lij), then simply
π(L) = (π(Lij)). L is homogeneous of order m if all Lij are homogeneous of order m.
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Definition 103 A differential operator L acting on sections in a trivial bundle G×CN is called
a Rockland operator, if it is left-invariant, homogeneous, and for every non-trivial irreducible
unitary representation π ∈ Ĝ the operator π(L) is injective on S⊕Nπ .

The theorem that concerns us here is the following ([HN], proposition 6.4).

Proposition 104 Let m be a common multiple of 1, 2, . . . , r which is larger than rr. If L is a
Rockland operator of degree m, then there is a constant C > 0 such that,

‖u‖Hm ≤ C (‖Lu‖L2 + ‖u‖L2) ,

for all sections u ∈ S(G,CN ).

This result implies hypoellipticity of any Rockland operator L, because the estimates imply
hypoellipticity for Lk, for a suitable k.

Remark. The converse is also true. For left invariant homogeneous operators on graded groups,
the Rockland condition is equivalent to hypoellipticity. The theorem, in this form, was first
conjectured by Rockland ([Ro]), who proved it for the case of the Heisenberg group. Necessity
of the Rockland condition was proven by Beals ([Be]). (We have not verified necessity of the
Rockland condition for hypoelliptic vector bundle operators, since it is not relevant for our
purposes. However, we strongly suspect that there is no problem there.)

We outline the proof found in [HN], in order to show that it applies, with minimal changes,
to vector bundle operators. In broad outlines, the proof proceeds as follows. We assume,
inductively, that the estimates hold for groups of length r− 1. In particular, it is assumed to be
true for the group G/Gr, where Gr = exp(gr). Throughout the proof, various other inductions
are carried out. Starting from the Rockland condition, i.e., injectivity of π(L) for irreducible π,
and the induction hypothesis, an inequality of the general type∑

‖π(Ai)u‖ ≤ C
∑

‖π(L)u‖

is derived, where, in this case, Ai ranges over a basis of the order m part of U(g). One introduces
a more general class of representations π(ξ,V ), that includes, at one extreme, the irreducible
representations (where V is a ‘large’ subalgebra of g), and at the other extreme the regular
representation (where V = 0). It is shown (inductively) that the same inequality holds for all
such representations, as long as V contains gr. From this result one arrives in one more step at
the desired inequality for the regular representation (corresponding to the case V = 0).

The main technique used in [HN ] is the explicit presentation of the representations of G
on spaces L2(Rk), where each X ∈ g is presented as a first order differential operator with
polynomial coefficients. These explicit computations reveal precise relations between various
different representations, that provide the main inductive technique (‘reduction of the number
of variables’) in the paper. We will not describe these explicit computations here, but will accept
the main technical lemmas that are derived from it.

A.2 The representations π(ξ,V ).

In Kirillov theory, the irreducibel representations of the nilpotent group G are constructed from
elements in the dual g∗ of the Lie algebra. To every ξ ∈ g∗ is associated a bilinear form,

Bξ(X,Y ) = 〈ξ, [X,Y ]〉,
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for X,Y ∈ g. It is shown that one can always find a subalgebra V ∈ g, which is maximally
isotropic for Bξ, i.e., V = V ⊥. Restricting ξ to a homomorphism V → R, there is a corresponding
character of the subgroup G0 = exp (V ) ⊆ G,

G0 → U(1) : exp (v) → ei〈v,ξ〉.

The representation of G induced by this character of G0 is irreducible, and all irreducible unitary
representations are obtained in this way. (Furthermore, the irreducible representations of G
associated to two different functionals in g∗ are unitarily equivalent if and only if these functionals
are in the same co-adjoint orbit.)

To carry out various inductive processes, Helffer and Nourrigat introduce a larger class of
representations, by starting with a pair (ξ, V ), where V ∈ g is a now an arbitrary subalgebra,
and ξ ∈ V ∗. The representation of G induced by the character G0 → U(1) that corresponds to
ξ is denoted by π(ξ,V ). To make these representations more explicit, one can always choose a
‘good’ transversal S of V in g, such that the diffeomorphism,

φ : V × S → G ; (v, x) 7→ exp (v) exp (x),

identifies the coset space G0\G with S, and in such a way that Lebesgue measure on S ⊆ g

corresponds to the G-invariant measure on G0\G. With this setup, the induced representation
on L2(S) is expressed by

π(ξ,V )(g)f(x) = ei〈v,ξ〉f(σ),

where v = v(x, g) ∈ V and σ = σ(x, g) ∈ S are uniquely determined by

exp (x)g = exp (v) exp (σ),

for given x ∈ S, g ∈ G. Observe that v and σ are polynomials in (x, g) ∈ S×G. It easily follows
that each π(X), for X ∈ g, is a first order differential operator on S with polynomial coefficients.
Many of the results in [HN] rely on an explicit working out of what the operators π(X) look
like, by strategically choosing convenient subalgebras V and transversals S.

Associated to a representation π of G there are Sobolev type subspaces of the representation
space Hπ. For a non-negative integer m, the space Hm

π is defined as the space of vectors in
u ∈ Hπ for which π(L)u ∈ Hπ, for all L ∈ U(g) of homogeneous order less or equal m. Choosing
a basis {Yi} for g, a Hilbert space norm on Hm

π is given by,

‖u‖2
Hm

π
=

∑
d(α)≤m

‖π(Y α)u‖2.

If we take for π the right regular representation on L2(G), then Hm
π is just the weighted Sobolev

space Hm(G).

Remark. In [HN], the spaces Hm
π are denoted by Hm

(ξ,V ) for the representations π = π(ξ,V ). The
notation Hm

(0) in [HN] refers to the spaces associated to the right regular representation (which
is ‘induced’ by the trivial representation of the trivial subgroup, hence V = {0}).
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A.3 Proof of the subelliptic estimates.

We must prove the existence of an inequality

‖u‖Hm ≤ C (‖Lu‖+ ‖u‖) ,

for all u ∈ S(G)⊕N . The proof, given in section 6 of [HN], proceeds by induction on the length
r of the grading of g, assuming that the result is true for graded groups with length of grading
r − 1.

The first step involves an application of the following result.

Proposition 105 Let G be a graded group, with grading of length r. If m is an integer multiple
of 1, 2, . . . , r, then, for each ε > 0 there is a constant Cε > 0, such that

‖u‖Hm−1 ≤ ε‖u‖Hm + Cε‖u‖,

for all u ∈ S(G,CN ).

Proof. For scalar functions u, this is Proposition 4.6.1 in [HN]. If

u = (u1, . . . , uN ) ∈ S(G,CN ) = S(G)⊕N

is a section in the bundle G× CN , then the obvious equality ‖u‖2
Hm =

∑
i ‖ui‖2

Hm immediately
implies the generalized result.

2

By definition,

‖u‖2
Hm =

∑
d(α)=m

‖Y αu‖2 + ‖u‖2
Hm−1 .

Proposition 105 implies that the Hm norm is equivalent to∑
d(α)=m

‖Y αu‖2 + ‖u‖2.

Therefore, in order to prove Proposition 104, it suffices to prove the inequality

‖Au‖ ≤ C‖Lu‖,

for any A ∈ U(g) homogeneous of order m. The constant C > 0 may depend on A. For the next
step, we invoke the following technical result.

Proposition 106 Let V1, V2 be two subalgebras of g such that

[V2, V2] ⊆ V1 ⊆ V2,

and let ξ1 ∈ V ∗
1 be a functional that vanishes on commutators [V2, V2].

Given two finite families (Ai)i∈I , (Bj)j∈J of elements in U(g), and a constant C > 0. Then,
if the inequality∑

i∈J
‖π(Ai)u‖ ≤ C

∑
j∈J

‖π(Bj)u‖,

with π = π(ξ1,V1) holds for all u ∈ Sπ, then the same inequality holds for π = π(ξ2,V2), where
ξ2 ∈ V ∗

2 is an arbitrary extension of ξ1. Conversely, if the inequality holds for all extensions
ξ2 ∈ V ∗

2 of ξ1 ∈ V ∗
1 , with the same constant C > 0, then it also holds for ξ1.
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The proof of this proposition is outlined in section A.4.

Taking V1 = {0} ⊆ V2 = gr, the proposition shows that the inequality ‖Au‖ ≤ C‖Lu‖ follows
if we can show that

‖π(A)u‖ ≤ C‖π(L)u‖,

for all representations π = π(ξ,gr), ξ ∈ g∗r , for a constant C > 0 that is independent of ξ.
The case ξ = 0 is easily dealt with. The representation π(0,gr) of G is induced by the trivial

representation of the normal subgroup Gr = exp (gr). The space Hπ identifies with the space of
functions on G/Gr, and π(0,gr) factors through the regular representation of the quotient group
G/Gr. This group has a grading of length (at most) r − 1, and the inequality is true by the
induction hypothesis.

So it suffices to show the inequality for ξ 6= 0. Because A,L are both homogeneous of degree
m, is suffices to show (why ?!) the inequality for all ξ ∈ g∗r with ‖ξ‖ = 1. This, in turn, would
follow from

‖u‖Hm
π
≤ C‖π(L)u‖,

for π = π(ξ,gr), ‖ξ‖ = 1.
The constant C appearing in this inequality must be independent of ξ. Next we show that

it suffices to find a constant C > 0 for each ξ separately. This is achieved by showing that, if
the inequality holds for some ξ0 ∈ g∗r , then it holds (perhaps for a larger constant C > 0) in a
neighborhood of ξ0. Compactness of the unit sphere in g∗r then gives a uniform estimate for all
ξ. What allows us to make this step is the following result. We introduce here the convenient
notation,

gp = gp ⊕ · · · ⊕ gr ; Vp = V ∩ gp,

for a subalgebra V ⊆ g. If V ⊆ gp, we get a chain of subalgebras

V = Vp ⊇ Vp+1 ⊇ · · · ⊇ Vr.

Proposition 107 Let V ⊆ g be a subalgebra that is contained in gp, and let ξ0 ∈ V ∗. Suppose
that for two finite families (Ai)(i∈I), (Bj)(j∈J) of elements in U(g) we have the inequality∑

i∈I
‖π(ξ0,V )(Ai)u‖ ≤ C

∑
j∈J

‖π(ξ0,V )(Bj)u‖.

Suppose that all Ai, Bj are of order less or equal m. Then there is a constant C ′ > 0 such that,
for every 0 < ε ≤ 1 there is a neighborhood U ⊆ V ∗ of ξ0, so that every ξ ∈ U for which ξ = ξ0
on Vp+1, satisfies

∑
i∈I

‖π(ξ,V )(Ai)u‖2 ≤ C ′

∑
j∈J

‖π(ξ,V )(Bj)u‖2 + ε‖u‖2
Hm−1

π

 .

102



The proof of the proposition is dicussed in section A.5.

This proposition shows that if we have the inequality

‖u‖Hm
π
≤ C‖π(L)u‖,

for π = π(ξ0,gr), then, for π = π(ξ,gr) with ξ in some neighborhood of ξ0 we have the inequality

‖u‖Hm
π
≤ C ′

(
‖π(L)u‖+ ‖u‖Hm−1

π

)
.

Proposition 105 then implies the existence of a constant C ′′ such that ‖u‖Hm
π
≤ C ′′‖π(L)u‖ for

ξ near ξ0.

To sum up what has been achieved so far. In order to prove Proposition 104, it suffices to
show that, for every representation π(ξ,V ), V = gr, with ‖ξ‖ = 1, there is a constant C > 0
(dependent on ξ ∈ V ∗), such that

‖u‖Hm
π
≤ C‖π(L)u‖,

for all u ∈ Sπ.
The proof of these estimates will be achieved inductively. We first prove that these inequali-

ties hold for arbitrary V for which πξ,V ) is irreducible. An inductive process will then derive the
desired inequalities for V = gr, which finishes the proof of Proposition 104.

Proposition 108 Let π(ξ,V ) be irreducible (which implies gr ⊆ V ). Suppose that ξ, when re-
stricted to gr, is of norm 1. Then, if L is a Rockland operator, there exists a constant C > 0,
such that

‖u‖Hm
π
≤ C‖π(ξ,V )(L)u‖,

for every u ∈ Hm
π .

Proof. As a first step, we claim that there exists a C > 0 such that,

‖u‖Hm
π
≤ C(‖π(ξ,V )(L)u‖+ ‖u‖),

for u ∈ Sπ. In fact, this is true for every subalgebra V ⊆ g that contains gr,and ξ ∈ V ∗ for
which the restriction to gr is of norm less or equal 1.

First, consider V = gr, and ξ = 0. As we have seen before, π(0,gr) factors through the
regular representation of the group G/Gr, and π(L) can be identified with a Rockland operator
of order m on G/Gr. The desired inequalities are assumed as part of the induction hypothesis
of Proposition 104.

Next, consider V = gr with arbitrary ξ ∈ V ∗. Proposition 107 with ξ0 = 0 implies that there
is a constant C > 0 for which

‖u‖Hm
π
≤ C(‖π(L)u‖+ ‖u‖Hm−1

π
),

for all ξ ∈ V ∗ in some neighborhood of the origin. We may assume that ‖ξ‖ ≤ 1. Now applying
Proposition 105 we get the desired estimates.
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Finally, let V ⊆ g be an arbitrary subalgebra that contains gr, and ξ ∈ V ∗ such that ξ
vansihes on commutators [V, V ]. (This is certainly the case if V is maximally isotropic for the
bilinear form 〈ξ, [X,Y ]〉.) One successively applies Proposition 106 to the chain of subalgebras

gr = Vr ⊆ Vr−1 ⊆ · · · ⊆ V1 = V.

This proves the claim.

Now, pick a ‘good’ transversal S for V in g. If V = g, the representation π(ξ,V ) is scalar,
and the inequality is trivial. We assume therefore that V 6= g, and thus that S is larger than a
point. In this case proposition 1.5.1 in [HN] states that the space of smooth vectors Sπ is dense
in Hm

π . The inequality we have just proven therefore extends to u ∈ Hm
π .

A classical lemma by Peetre states that, if E and F are reflexive Banach spaces, such that
E ⊆ F is a compact inclusion, and L : E → F is a bounded linear operator, then the image of
L is closed and its kernel is finite dimensional if and only if there exists a constant C > 0 such
that

‖u‖E ≤ C(‖Lu‖F + ‖u‖F ),

for u ∈ E ([LM], p.171). Now, π(L) : Hm
π → Hπ is bounded, and, by proposition 5.5.2 in [HM],

the inclusion Hm
π ⊆ Hπ is compact if m ≥ rr. The inequalities we have proven therefore imply

that the operator

π(ξ,V )(L) : Hm
π → Hπ

has closed image in Hπ. Moreover, by proposition 5.7.1 in [HN1], these same inequalities imply
that, if u ∈ Hm

π , and π(L)u ∈ Sπ, then u ∈ Sπ. In particular, injectivity of π(L) on Sπ implies
injectivity on Hm

π . (In [HN1] this fact is proven for scalar operators L, but the proof given there
generalizes trivially to the case of vector bundle operators.) The open mapping theorem for
π(L) now gives us the desired estimate.

2

To complete the proof of Proposition 104 one proves that the inequality of Proposition 108
holds, not only for irreducible π(ξ,V ), but for a more general class of representations that Helffer
and Nourrigat call maximal of order p. The case p = r will correspond to the condition V = gr,
which is what we desire. The case p = 1 is the irreducible case, proven in Proposition 108. The
induction process proceeds successively from p = 1 to p = r.

Let V ⊆ gp, with p = 1, . . . , r, with subalgebras Vj = V ∩ gj , as before. Given ξ ∈ V , we
call the representation π(ξ,V ) maximal of order p if, for an (arbitrary) extension ξ1 ∈ g∗ of ξ,
each subalgebra Vj is maximally isotropic in gj for the bilinear form B(X,Y ) = 〈ξ1, [X,Y ]〉.
This implies in particular that gr ⊆ V . (Note that for p = 1 we have V maximally isotropic
in g, and therefore an irreducible representation π(ξ, V ). Of course, ‘maximal of order 1’ is a
stronger condition, but every irreducible representation is equivalent to one that is maximal of
order 1.) The induction is carried out in lemma 6.5 of [HN], and is a straightforward application
of Propositions 106 and 105, like the one we have already seen. Because nothing changes in the
case of vector bundle operators, we refer the reader to [HN] for details.
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A.4 Proof of Proposition 106.

In this section we verify that Proposition 106 holds for vector bundle operators. The case for
scalar operators is given in [HN] as Proposition 2.1 and Remark 2.2. We follow the argument
given in section 2 of [HN].

Starting with subalgebras V1 ⊆ V2 ⊆ g, such that [V2, V2] ⊆ V1, one constructs a good
transversal S for V2, and an arbitrary complement T of V1 in V2. Then T × S is a good
transversal for V1.

Let F denote the Fourier transform in the T variables on S(T×S) which induces an isometry
L2(T × S) ∼= L2(T ∗ × S). We have ξ1 ∈ V ∗

1 and an extension ξ2 ∈ V ∗
2 . Denote the difference by

ξ′ = ξ2 − ξ1 ∈ T ∗. An explicit calculation shows that with these choices,

Fπ(ξ1,V1)(A)F−1u(ξ′, s) = π(ξ1+ξ′,V2)(A)uξ′(s),

for u ∈ S(T ∗ × S), A ∈ U(g), where uξ′(s) = u(ξ′, s). More explicitly, both operators
Fπ(ξ1,V1)(A)F−1 and π(ξ1+ξ′,V2)(A) are given by the same expression,

a(ξ′, s, ∂s) =
∑
α

aα(ξ′, s)∂αs ,

in which the derivatives ∂/∂ξ′ do not appear. Moreover, the coefficients aα(ξ′, s) are polynomial
in (ξ′, s). This is a consequence of the explicit way in which the transversals are chosen, together
with the assumption that [V2, V2] ⊆ V1.

Given this fact, it follows trivially that the same equality holds if u = (ui) is a section in
a trivial bundle, and A = (Aij) is a matrix of operators Aij ∈ U(g) acting on such sections,
because for any representation π of G, π(A) is simply given by the matrix (π(Aij)).

Proposition 106 is an almost immediate consequence of this equality, and the proof, as given
in [HN], applies without change to the case of vector bundle operators.

A.5 Proof of Proposition 107.

In this section we verify that Proposition 107 holds for vector bundle operators. The proof
for scalar operators ([HN] Proposition 4.1.1 and Remark 4.2.2) is given in section 4 of [HN],
specifically in section 4.5. We indicate the changes that need to be made to the proof given in
[HN].

First we show that the vector bundle version of lemma 4.5.1 in [HN] holds. We need to
explain some of the setup and notation developed in sections 3 and 4 of [HN].

Let V be a subalgebra of g. Denoting G0 = exp(V ) ⊆ G, consider the conjugate subgroup
Gh = e−hG0e

h, for h ∈ g. There is a natural correspondence between the representations
induced by the characters of G0 and Gh. Let Vh denote the Lie algebra of Gh. If ξh ∈ V ∗

h is the
element that corresponds to ξ ∈ V ∗ under the conjugacy V ∼= Vh, then π(ξ, V ) and π(ξh, Vh) are
unitarily equivalent.

In order to do explicit calculations, [HN] construct a subspace S ⊆ g, which can serve as a
‘good’ transversal for all Vh simultaneously, where V is fixed, and h ∈ g varies. In this way, all
the represenations π(ξh, Vh) can be made explicit on the same space L2(S). The construction is
as follows. Let Ik ⊆ gk be the projection of V on gk, i.e.,

Ik = {x ∈ gk | ∃v ∈ V : x− v ∈ gk+1}.
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One can then choose arbitrary transversals Sk ⊕ Ik = gk, and set S = Sr × · · · × S1. This S is
then a ‘good’ transversal for all subalgebras Vh. To describe the induced representations π(ξh,Vh)

on L2(S), the space S is identified with Gh\G via the diffeomorphism

S → G0\G : (sr, . . . , s1) 7→ esr · · · es1 .

The unitary equivalence between π(ξh, Vh) and π(ξ, V ) is implemented by a diffeomorphism

τh : S → S,

that preserves Lebesgue measure on S. This diffeomorphism also preserves the subspaces S1 ×
· · · × Sj , for j = 1, . . . , r.

We now suppose that V ⊆ gp = gp ⊕ · · · ⊕ gr, as in Proposition 107. In this case Sj = gj
for j = r, . . . , p − 1. The proof of Proposition 107 will involve the construction of a particular
smooth partition of unity on S̃ = gr × · · · × gp−1 ⊆ S. The functions ψ ∈ C∞c (S̃) figuring in
this partition are thought of as functions on S that only depend on the variables (xr, . . . , xp−1).
Because the diffeomorphisms τh preserve S̃, we may define,

Thψ = ψ ◦ τh,

for ψ ∈ C∞c (S̃). We have T−1
h = T−h. In [HN] Lemma 4.5.2, a special partition of unity is

constructed, that will be important in the proof of the Propostion 107.

One can choose ψ ∈ C∞c (S̃), together with a discrete set of points Z ∈ S̃, such that∑
h∈Z

T−hψ(x)2 = 1,

and moreover, for each B ∈ U(g), there is a constant C > 0 such that for all x ∈ Ŝ,∑
h∈Z

|T−h π(0,V )(B)ψ(x)|2 ≤ C.

Observe that the transversal S is stable under dilations δt of g, so that we have a notion
of homogeneity for functions on S. These dilations are used in a crucial way, to ’shrink’ the
partition of unity, if necessary. Some final notation. For 0 < t ≤ 1, we write ht = δt−1h, and
write πξ(h,t) instead of the cumbersome π(ξht

,Vht
). Also ψt = ψ ◦ δt.

We are now ready to guide the reader to the changes that need to be made to the lemmas
and constructions of section 4 in [HN]. First we must address lemma 4.5.1, [HN] p.926. It reads
as follows.

Under the hypotheses of Proposition 107, there exists a constant C > 0, and a finite number
of elements Akj , B

k
j ∈ U(g) (here j ranges over a finite index set, and k = 1, . . . , N), where all

Akj are of order m − 1 or less, and Bk
j of order m or less, such that for each h ∈ g, 0 < t ≤ 1

and ξ ∈ Ωt,

‖ψt πξ(h,t)(A)v‖2

≤ C

‖ψt πξ(h,t)(P )v‖2 + t2
N∑
k=1

∑
j

‖
(
π(0,V )(B

k
j )ψ

)
t
πξ(h,t)(A

k
j ) vk‖2

 ,
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for all sections v = (v1, . . . , vN ) ∈ S(S,RN ).

Here Ωt ⊆ V ∗ is a specific neighborhood of ξ, defined in section 4.1, which depends on the
parameter t. The only difference with lemma 4.5.1 as stated in [HN] is the additional summation
over the k index. Notice that, even though A,P are operators acting on sections S(S,RN ), the
Akj , B

k
j are simply scalar operators.

The proof of this lemma is exactly as in [HN] (see p.927–929), with two small amendmends.
First, for B = A or B = P , lemma 4.4.2 in [HN] is invoked to obtain inequality (4.5.5),

‖
[
ψt, πξ(h,t)(B)

]
v‖2 ≤

∑
j

‖
(
π(0,Vh,t)(Bj)ψt

)
πξ(h,t)(Aj)v‖2,

with Aj , Bj ∈ U(g) as above. In our case, where B is a matrix (Bik), we have

‖ [B,ψ] v‖2 =
N∑
i=1

‖
N∑
k=1

[Bik, ψ]vk‖2 ≤
N∑

i,k=1

‖[Bik, ψ]vk‖2.

We can therefore replace the proven inequality for the scalar case by the following version for
matrices,

‖
[
ψt, πξ(h,t)(B)

]
v‖2 ≤

N∑
k=1

∑
j

‖
(
π(0,Vh,t)(B

k
j )ψt

)
πξ(h,t)(A

k
j )vk‖2.

Likewise, inequality (4.5.7) obtained from lemma 4.4.3 in [HN],

‖
(
πξ(h,t)(B) − πξ0(h,t)(B)

)
ψtv‖2

≤ C
∑

j+k+l<m, j≥1

∑
n∈N

‖gnj (x, η)
(
π(0,V )(B

n
k )ψt

)
πξ(h,t)(A

n
l ) v‖2,

for scalar B = A,P , can be generalized by considering,

‖ (πξ(B)− πξ0(B))ψtv‖2 ≤
N∑

i,k=1

‖ (πξ(Bik)− πξ0(Bik))ψtvk‖2.

Again, an extra summation over k = 1, . . . , N is added on the right hand side of inequality
(4.5.6), while v is there replaced by its components vk. The rest of the proof is devoted to
deriving the estimate (4.5.11),

|gnj (x, η)| ≤ Ctj ,

which, together with the results obtained so far, proves the lemma.

With this adapted form of lemma 4.5.1 in [HN], we can now show how to prove Proposition 107
(generalizing Proposition 4.1.1 in [HN]). We indicate how the proof in [HN] needs to be adapted.

The first part of the proof can be copied as it is (see [HN], p.931–932), until the point where
lemma 4.5.1 is invoked to prove the inequality

‖(T−hψ)t π(ξ,V )(A)u‖2 ≤

C

‖(T−hψ)t π(ξ,V )(A)u‖2 + t2
∑
j

‖
(
T−hπ(0,V )(Bj)ψ

)
t
π(ξ, V )(Aj)u‖2

 .
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With the adapted version of this lemma, the final term t2
∑

j ‖(. . .)u‖2 will be replaced by
t2
∑N

k=1

∑
j ‖(. . .)uk‖2. With this change, the final inequality that is derived on p.932 becomes,

‖π(ξ,V )(A)u‖2 ≤ C

‖π(ξ,V )(P )u‖2 + t2
N∑
k=1

∑
j

‖π(ξ,V )(A
k
j )uk‖2

 .

Because each Akj ∈ U(g) is of order less or equal m− 1, for sufficiently small t we have,

t2
N∑
k=1

∑
j

‖π(ξ,V )(A
k
j )uk‖2 ≤ ε‖u‖Hm−1

(ξ,V )
,

which proves Proposition 107.
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[Hu] JĖ. Humphreys, Introduction to Lie Algebras and Representation Theory, GTM 9, Springer,
1972.

[KJ] G. Kasparav and P. Julg, Operator K-theory for the group SU(n, 1), J. reine angew. Math.
463 (1995), 99–152.
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