
The Pennsylvania State University 

 

The Graduate School 

 

 

WEATHERING DYNAMICS IN WATERSHEDS: 

CONNECTING RIVER CHEMISTRY TO SUBSURFACE MINERAL DISTRIBUTIONS 

 

A Dissertation in 

 

Geosciences 

 

by 

 

Andrew Riordan Shaughnessy 

© 2022 Andrew Riordan Shaughnessy 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

December 2022



ii 

 

The dissertation of Andrew Riordan Shaughnessy was reviewed and approved by the following: 

 

Susan L. Brantley 

Evan Pugh University Professor 

Barnes Professor of Geosciences 

Dissertation Advisor 

Chair of Committee 

 

James Kasting 

Evan Pugh University Professor of Geosciences 

 

Matthew Fantle 

Professor of Geosciences 

 

 

 

Shujie Wang 

Assistant Professor of Geography 

 

Donald Fisher 

Professor of Geosciences 

Associate Head for Graduate Programs and Research 

Head of the Graduate Program 

 



iii 

 

ABSTRACT 

Mineral weathering significantly contributes to global biogeochemical cycles and is 

hypothesized to control Earth’s long-term climate through release and removal of CO2 to and 

from the atmosphere. Although it is known that underlying geology influences water quality and 

weathering, few studies consider the subsurface beneath a watershed with respect to weathering 

dynamics. This is because in most watersheds, subsurface mineral distributions remain largely 

uncharacterized. By exploring river chemistry in comparison to the subsurface architecture of a 

watershed, I sought insights into weathering mechanisms for different minerals. For a given 

mineral weathering reaction, it is often assumed that one step limits the rate, dictating the 

weathering regime in that watershed. Rate limiting steps such as water throughput (the regime of 

runoff limitation), delivery of weathering reagents other than H2O (advective transport 

limitation), supply of fresh minerals (erosive transport limitation), and interfacial reaction kinetics 

(kinetic limitation) have been considered. But how the dominant weathering regimes change 

across spatial and temporal scales or for different compositional systems is generally unknown. In 

this dissertation I explore how weathering fluxes in rivers vary with discharge, watershed size, 

and climate to evaluate weathering regimes for a few compositional systems. I link this variability 

to subsurface mineral distributions through borehole observations, multivariate statistics, 

physically based models, and data driven techniques.  

The first mineral whose weathering I assess is pyrite – a ubiquitous iron sulfide mineral 

that releases much of the sulfate in rivers that flows to the ocean. When pyrite oxidizes, it releases 

sulfuric acid, dissolving minerals in proximity and often releasing CO2. Additionally, some of the 

oxidant (O2) can be incorporated into the sulfate byproduct from pyrite oxidation. Oxygen 

isotopes in sulfate deposits could, therefore, help to reconstruct Earth’s atmospheric oxygen 

history; however, we need a better understanding of modern pyrite oxidation mechanisms to 
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accurately interpret historic or long-term geologic oxidation dynamics.  In my first study I 

developed a machine learning-based mixing model to discern the signal of pyrite oxidation from 

other sources of sulfate in rivers. This model leverages the fact that different minerals dissolve 

along deep and shallow flowpaths, leading to unique chemical signatures that can be detected in 

streams. I apply this model to three extensively studied watersheds to investigate modern and 

long-term weathering-CO2 dynamics. I found that watersheds intermittently switch between 

acting as CO2 sources and CO2 sinks depending on whether the dominant flowpath sampled by 

the stream is deep or shallow, respectively. Comparing soil chemistry to river chemistry, I found 

that long-term CO2 dynamics (recorded in soils) are roughly consistent with short-term CO2 

dynamics (recorded in streams). Acid rain at the three sites competes with CO2 as a weathering 

agent and has reduced the short-term capacity of the watersheds to sequester CO2. Only recently 

have the watersheds begun recovering from the impacts of acid rain. 

From my first study, I observed that pyrite-derived sulfate concentrations changed with 

time, and that concentrations were highest in the dry season and lowest in the wet season. To 

explore these temporal dynamics, I coupled the machine learning-based mixing model to a 

physically based-oxidation model that describes how pyrite-derived sulfate concentrations vary 

with discharge. Utilizing concentration and discharge data from 15 watersheds in the northeastern 

United States and ~300 watersheds in the western United States, I fit the oxidation model using a 

non-linear least squares regression. From these modeling results, I found that, in the northeastern 

United States, concentrations vary little with discharge when coal mining is absent within the 

drainage area, and that concentrations decrease with discharge when coal is mined in the basin. I 

interpreted this trend as a shift in the rate limiting step of oxidation from advection of dissolved 

oxygen to interfacial reaction kinetics as a result of mining-related exhumation of pyrite. Coal 

mining and spatial scale co-vary in the Susquehanna River Basin of the northeastern United 
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States (i.e., only small watersheds contain no coal); therefore, it is difficult to disentangle their 

effects on concentration-discharge (C-q) dynamics. In the western United States, I was able to 

deconvolve some of these relationships by focusing on watersheds without agriculture and with 

low inputs of acid rain. I found that C-q behaviors are consistent with the pyrite reaction front 

becoming shallower as drainage areas of watersheds increase. This could indicate that pyrite-

derived sulfate fluxes in small watersheds tend to be limited by transport of reagent (short 

timescales) or supply of fresh mineral (long timescales). 

In the first two studies, I focused on pyrite weathering, which shows relatively fast 

reaction kinetics. As a comparison, I sought to explore the other end of the weathering spectrum, 

namely slow-dissolving silicate minerals. For my third study, I aggregated data for water quality, 

discharge, climate, and catchment characteristics for 148 shale-underlain watersheds across the 

United States to explore the rate limiting step of silicate weathering. Shales cover a significant 

proportion of global land area, but most weathering studies focus on granitic and basaltic systems. 

I found that when potential evapotranspiration (PET) is much larger than mean annual 

precipitation (MAP), weathering is limited by the throughput of water in the system (i.e., runoff). 

For humid watersheds, I found that weathering rates show a dependence on erosion rate, 

temperature, and precipitation rate, which is consistent with a mixture of weathering regimes and 

rate limiting steps. When watersheds are small and characterized by steep slopes on average, the 

silicate weathering rate is only dependent on temperature and precipitation. When watersheds are 

large and are characterized on average by gentle slopes, the weathering rate is predominantly 

dependent upon the erosion rate. I quantify the weathering dependencies for different groups of 

watersheds via regression analysis. For US shale-underlain watersheds, 48%, 37%, and 7% of 

their land area is limited by runoff, erosion, and reaction kinetics, respectively. The remaining 9% 

represent a mixed weathering regime. Weighting these land fractions by the average fluxes 
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observed for each weathering regime, I found that 17%, 56%, 11%, and 16% of silicate 

weathering fluxes from shale watersheds in the US are limited by runoff, erosion, reaction 

kinetics, or a mixture, respectively.   

Overall, the results presented in this dissertation shed new light on the impact of 

subsurface mineral distributions on weathering dynamics in watersheds. I present a new 

interpretive framework for evaluating the CO2 sequestration efficiency of weathering using both 

stream and soil chemistry. This has implications for evaluating CO2-weathering dynamics over 

geologically relevant timescales. I also present a new method for evaluating C-q relationships 

with respect to depths of groundwater flowpaths and reactive minerals.  This has implications for 

predicting legacy contamination and the transport of redox-sensitive species. Lastly, I evaluate 

and quantify the silicate weathering dependencies in shale watersheds. I classify weathering 

regimes in these watersheds based on climatic and geomorphologic characteristics of a watershed. 

Results in this dissertation can improve future hydrologic and geochemical models through 

integrating subsurface mineral distributions across scales.  
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Chapter 1 

 

Motivation and Outline 

1.1 Motivation 

1.1.1 Introduction 

Watersheds act as chemical reactors integrating complex interactions between the 

hydrosphere, biosphere, lithosphere, and atmosphere (Aufdenkampe et al., 2011; Grathwohl et al., 

2013; Li, 2019; Li et al., 2022).  As water flows through these reactors, minerals dissolve 

releasing solutes, which are exported by the stream. Mineral weathering is important because of 

its control on modern water quality and long-term climate. For example, minerals have been 

shown to release heavy metals into groundwater, impacting water quality (e.g., Smedley and 

Kinniburgh, 2013). Moreover, underlying lithology is considered a major control on river 

chemistry (e.g., Bluth and Kump, 1994). With respect to long-term climate, weathering of silicate 

minerals removes CO2 from the atmosphere (e.g., Walker et al., 1981; Berner, 2004), and 

weathering of carbonate (coupled to pyrite oxidation) releases CO2 to the atmosphere (e.g., Torres 

et al., 2014; Kölling et al., 2019; Kemeny et al., 2021).  

Geologists investigate landscapes and Earth processes through direct observation. 

Mineral weathering, however, largely occurs below our feet along subsurface flowpaths that 

define landscapes we cannot see. These landscapes consist of depth-dependent distributions of 

minerals that control and are controlled by the evolution of groundwater chemistry. The 

subsurface architecture of most watersheds remains largely uncharacterized, hindering our 
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abilities to predict water quality and mineral weathering across scales (Edmunds et al., 2003; 

Brantley et al., 2017). 

In this dissertation I analyze river chemistry and relate it to the mineralogical structure of 

watersheds. I link variations in concentration and discharge (C-q; full list of abbreviations can be 

found in Table 1-1) to subsurface flowpaths and mineral distributions. The new information 

gleaned from this work increases our knowledge of watershed processes and weathering 

dynamics. Future work could integrate the results herein into hydrologic and geochemical 

models.  

1.1.2. Modalities of Weathering 

Weathering dynamics in watersheds depend on many factors including -- but not limited 

to -- climate (e.g., White and Blum, 1995; Gaillardet et al., 1999), hydrology (e.g., Maher, K. 

2010; Pacheco and Van der Weijden, 2012; Maher and Chamberlain, 2014), erosion (e.g., 

Stallard and Edmond, 1983; Calmels et al., 2007), lithology (e.g., Bluth and Kump, 1994), land 

use (e.g., Perrin et al., 2008), and vegetation (e.g., Nezat et al., 2004; Egli et al., 2008; Molina et 

al., 2019). In any given location, we often assume that there is a rate limiting step that controls 

weathering. We classify watersheds into “weathering regimes” based on their rate liming step. In 

this dissertation, I consider three endmember weathering regimes defined over long timescales: 

Erosive Transport Limited (ETL), Kinetic Limited (KL), and Runoff Limited (RL). When erosion 

rates are low, weathering is limited by the supply of fresh minerals (Stallard and Edmond, 1987; 

Stallard, 1988; West et al., 2005; Gabet and Mudd, 2009; Dixon and von Blanckenburg, 2012; 

Lebedeva et al., 2010). These watersheds are considered ETL, because weathering rates linearly 

increase with erosion (i.e., removal of weathered material and exhumation of fresh material). 

Using geochemical models, Lebedeva et al. (2010) have hypothesized that in ETL soils, reactive 
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minerals are absent from the land surface (Figure 1-1C) because they dissolved faster than they 

were physically removed from the system. When a mineral is absent in a soil profile at land 

surface, but present in the subsurface at some depth, we refer to the weathering profile as 

“completely developed” (Figure 1-1D; Brantley et al., 2008). The depth interval across which the 

mineral is actively weathering is called a “reaction front” (Brantley et al., 2008). In some 

watersheds, erosion rates are fast enough that the reactive mineral does not completely dissolve 

before it is physically removed by erosion. In this situation, weathering rates are limited by 

interfacial reaction kinetics rather than erosion rates; therefore, these soil profiles are considered 

KL. In this dissertation, I follow a recent approach (Brantley et al., in review) and hypothesize 

that watersheds characterized by incompletely developed soil profiles across the landscape can be 

considered KL watersheds. In KL watersheds, the reactive mineral -- and its reaction front -- is 

present at land surface at ridgelines and in valleys (Figure 1-1B), and we refer to this type of 

weathering profile as “incompletely developed” (Brantley et al., 2008; Figure 1-1A). 

Given the weathering profile framework for ETL and KL watersheds described above, 

we still must consider the subsurface mineral distributions because they are important in 

determining how weathering rates will respond to climate and erosion. For example, when 

reaction fronts for reactive minerals are situated beneath the land surface (i.e., ETL), soils shield 

them from the effects of climate (e.g., Edmond et al., 1995; Boeglin and Probst, 1998) and, thus, 

their weathering rates may become independent of temperature and precipitation. On the other 

hand, when reactive minerals are shallow so that reaction fronts are exposed at land surface (i.e., 

KL), weathering rates might increase exponentially with temperature and linearly with 

precipitation as has been shown by some workers (White and Blum, 1995). This simple view is 

made more complicated by several circumstances.  

The first complication is that there are many different minerals that weather in a single 

watershed; some form completely developed profiles and others form incompletely developed 
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profiles. Brantley et al. (2014) describe how this scenario results in “nested reaction fronts” (e.g., 

Brantley et al., 2014; Wan et al., 2019; Gu et al., 2020). In some watersheds, minerals that form 

completely developed profiles and minerals that form incompletely developed profiles release 

common solutes during weathering (e.g., SiO2, Ca2+, Mg2+), which can lead to complex 

weathering dynamics as recorded by the stream chemistry and also can cause coupling between 

reaction kinetics. To more easily interpret these different weathering reactions, geochemists and 

hydrologists “unmix” the river chemistry using either forward (e.g., Garrels and MacKenzie, 

1967; Moon et al. 2007) or inverse (e.g., Hooper et al., 1990; Gaillardet et al., 1999; Torres et al., 

2016) modeling approaches. There are many unanswered issues surrounding interpreting 

weathering reactions from river chemistry, including: how can we identify unknown sources (e.g., 

Valder et al., 2012; Popp et al., 2019; Xu Fei and Harman, 2022) and how do we account for time 

lags in transport (e.g., DeWalle et al., 2016). While many geochemical papers have long treated 

questions of unmixing, new data-driven models are now allowing new approaches (e.g., Xu Fei 

and Harman, 2022). I address several aspects of these questions in Chapter 2 of this dissertation 

(see section 1.2.1). 

The second complication is that watersheds are not 1-dimensional soil profiles and can 

integrate several different weathering regimes. For example, transitional or mixed regime (i.e., 

TR) weathering has been described for soils (Ferrier et al., 2016), hillslopes (Lebedeva and 

Brantley, 2013), and watersheds (Brantley et al., in review). TR describes weathering fluxes that 

are partly ETL and partly KL. Large watersheds can integrate both highland (potentially KL) and 

lowland (potentially ETL) topography (West et al., 2005; Dixon and von Blanckenburg, 2012); 

thus, weathering in large watersheds could be considered TR. To account for this issue, many 

weathering studies focus on small headwater catchments (e.g., White and Blum, 1995); however, 

global weathering budgets typically utilize chemistry from the world’s largest rivers (Gaillardet et 

al., 1999).  I evaluate weathering dynamics in small and large watersheds in Chapter 3 to consider 
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this issue (see Section 1.2.2). Additionally, I investigate weathering dependencies in TR 

watersheds in Chapter 4 (see Section 1.2.3). 

The third complication is that an incompletely developed weathering profile does not 

always indicate that the weathering flux of that particular mineral is KL. In dry landscapes where 

potential evapotranspiration (PET) is much larger than mean annual precipitation (MAP), a third 

long-term weathering regime has been hypothesized (Rasmussen et al., 2011), and recently 

termed runoff limited weathering (RL) (Brantley et al., in review). In these watersheds, high PET 

causes weathering products to become concentrated in porefluids, leading to high solute 

concentrations in streams (Li et al., 2022) that in some cases have been observed to be constant 

across a wide range of discharge (Godsey et al., 2019). In these systems, water throughput limits 

the reaction rate; therefore, weathering rates linearly increase with runoff in RL watersheds 

(Brantley et al., in review). Like KL, soil profiles in RL landscapes have been hypothesized to 

typically form incomplete weathering profiles (Rasmussen et al., 2011; Brantley et al., in review). 

These profiles do not form because the timescale of weathering is longer than the timescale of 

erosion, but rather because of the lack of water, which in some cases results in formation of 

secondary minerals that retain some weathering products from the primary minerals even at the 

land surface (e.g., Folkoff and Meentemeyer, 1985). I investigate the different long term 

weathering modalities (ETL, KL, RL) for silicate weathering in shale watersheds in chapter 4 (see 

Section 1.2.3).  

In addition to long-term weathering regimes (timescales relevant to the residence time of 

soils), there are also short-term weathering regimes (timescales relevant to the residence time of 

groundwater). For example, advection of meteoric water to the subsurface reaction fronts can 

bring fresh reagents (e.g., CO2, O2) other than H2O needed for weathering reactions to progress. 

In these situations, the groundwater might not come to equilibrium, but rather approach a steady 

state concentration when all of the weathering reagent is consumed. When advection of reagent is 
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limited, the weathering regime has been called “Advective Transport Limited” (ATL) weathering 

(e.g., Yu and Hunt, 2017). Lastly, short term weathering (e.g., solute production in streams) can 

also be KL. In these systems, fast erosion does not cause the kinetic limitation but the cause, 

rather, is fast water throughput. Water advection is faster than mineral dissolution, resulting in 

KL weathering. Whether or not a watershed experiences ATL or KL (short-term) is related to the 

length of the groundwater flowpaths and the depths of the reactive minerals in the subsurface. I 

explore ATL and short-term KL in chapter 3 of this dissertation (see section 1.2.2). 

1.1.3. Modalities of Concentration-Discharge Relationships 

To investigate weathering dynamics, scientists often utilize concentration-discharge (C-q) 

relationships. Precipitation falls on a watershed, infiltrates through the soils and enters the 

groundwater. Groundwater then flows through the bedrock and enters the stream, dissolving 

minerals and releasing solutes along subsurface flowpaths. How the concentrations of these 

solutes change with discharge reveals information about weathering reactions (Ibarra et al., 

2016), groundwater flowpaths (Hoagland et al., 2017), storage (Duffy and Cusumano, 1998), 

solute transport (Rose et al., 2018), among others. Additionally, C-q dynamics can reflect short- 

and long-term weathering regimes depending on the timescale of the C-q relationship. For 

example, C-q relationships can be classified at “event”, “seasonal”, “interannual”, and “inter-site” 

scales (Godsey et al., 2009; Godsey et al., 2019; Figure 1-2). Each of these classifications relates 

to different timescales and integrates different processes. 

The shortest timescale is event-based C-q dynamics. These studies reflect C-q dynamics 

that typically track how concentration changes over the course of a single flood pulse or multiple 

such pulses. Event-scale C-q dynamics feature complex patterns such as hysteresis loops, which 

means that concentration varies with discharge in one way during the rising limb of the flood 
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pulse, and then it varies in a different way on the falling limb of the flood pulse (see Figure 1-

2A). This cyclic C-q relationship (i.e., hysteresis) is thought to be dependent on mixing (Evans 

and Davies, 1998; Bouchez et al., 2017; Neira et al., 2020), deep and shallow groundwater 

connectivity (Rose et al., 2018; Pohle et al., 2021), and the relative timescales of dissolution to 

advection (Hornberger et al., 2002). Most often, weathering products exhibit a clockwise 

hysteresis pattern with respect to concentration (y-axis) and discharge (x-axis) (Rose et al., 2018), 

which is schematically depicted in Figure 1-2A. Event-scale C-q dynamics can be modeled using 

the following equation (Minaudo et al., 2017; Musolff et al., 2021): 

𝐶 = 𝑎𝑞𝑏 + 𝑔
𝑑𝑞

𝑑𝑡
      (1-1) 

Here, C is the concentration of weathering product in the stream, q is the instantaneous discharge 

during the flood pulse, 
𝑑𝑞

𝑑𝑡
 is the derivative of the discharge that differentiates the rising and 

falling limbs, and a, b, and g are fitting parameters for the model. b is referred to as the power-

law slope.  

The next timescale is seasonal-based C-q dynamics. These dynamics typically describe 

how concentration varies with discharge across the wet to dry seasons. At the seasonal scale, 

concentration varies non-linearly with discharge. At low q, C tends to be high and constant with 

increasing q; whereas, at high q, C tends to be low and decreases with increasing q (Figure 1-2B). 

When concentration is constant with varying discharge, we refer to the C-q relationship as 

“chemostatic”, and when concentration decreases with increasing discharge, we refer to the C-q 

relationship as “dilution behavior” (Godsey et al., 2009). There is a third C-q classification, which 

is when concentration increases with increasing discharge, which is referred to as “flushing 

behavior”. Flushing behavior, uncommon for weathering products, is more often associated with 

dissolved organic carbon and nutrients in soils (e.g., Boyer et al., 1997; Zarnetske et al., 2018). 

The general shape of the seasonal C-q curve has been described by several different models (e.g., 
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Langbein and Dawdy, 1964; Johnson et al., 1969; Berner, 1978; Kump et al., 2000). Recently, 

Maher and Chamberlain (2014) developed the “solute production model”, which describes this 

seasonal behavior (where some terms have been re-named following Ibarra et al., 2016): 

𝐶 =
𝐶0

1+
𝐷𝑤

𝑞

+
𝐶𝑚𝑎𝑥

𝐷𝑤

𝑞

1+
𝐷𝑤

𝑞

      (1-2) 

Here, C0 is the initial concentration of the solute for the water entering the system (i.e., 

rainwater; mg/l), Cmax is the empirical maximum concentration of the solute (which may be an 

equilibrium concentration in some cases or a steady state in others; mg/l), and Dw is the 

Damköhler coefficient (m yr-1). Dw is a function of the Damköhler number (Da; Da = Dw/q), 

which is the characteristic timescale of the reaction divided by the characteristic timescale of 

advection. If the initial concentration is zero or the sources of solutes are separated (see Section 

1.1.2), then eq. 1-2 can be simplified to: 

𝐶 =
𝐶𝑚𝑎𝑥𝐷𝑤

𝐷𝑤+𝑞
           (1-3) 

The mathematical function expressed in Eq. 1-3 produces a C-q curve such as depicted in 

Figure 1-2B. We can investigate seasonal C-q dynamics to learn about the weathering regimes 

discussed in Section 1.1.2. For example, assuming that one mineral produces the target solute 

during a weathering reaction, when the C-q curve is chemostatic (i.e., low q), the flowpaths that 

are integrated by the stream are long and come to equilibrium (or steady state) with respect to the 

mineral reacting in the bedrock, such that C approaches Cmax. This means that weathering at low q 

is controlled by equilibrium (SL or EL) or supply of reagent (ATL). Weathering at high q is 

controlled by reaction kinetics (KL) because water advection rates are faster than dissolution 

rates. Given this framework, at seasonal scales, chemostasis indicates ATL and dilution indicates 

KL. Over the course of a year, a stream intermittently switches between chemostatic and dilution 

(depending on wet and dry conditions); thus, the rate limiting step also changes.  There are 

several outstanding questions surrounding seasonal C-q dynamics such as: How do we interpret 
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or predict Cmax (Ibarra et al., 2016), at what q does a watershed switch from chemostatic to 

dilution, and how can we utilize seasonal C-q to predict where reaction fronts are located in the 

subsurface? I explore these questions in Chapter 3 of this dissertation (see Section 1.2.2).  

The next C-q timescale is interannual dynamics. Unlike seasonal C-q dynamics, 

interannual C-q document the year-to-year variability in the flow-weight mean concentrations 

(Cm) and the mean annual discharge (qm; Godsey et al., 2019): 

𝐶𝑚 = 𝑎𝑞𝑚
𝑏       (1-4) 

This equation is similar to the event-based C-q, but does not include the hysteresis term 

(i.e., 𝑔
𝑑𝑞

𝑑𝑡
). Again, b is the power law exponent, which tells us if the watershed is chemostatic (b 

= 0) or dilution (b = 1). The definitions of chemostatic and dilution are idealized endmembers, 

and, in reality, 0 > b > -1 is common. This can be explained by mixing and concentration 

contrasts between shallow and deep flowpaths (Zhi et al., 2019; Zhi and Li, 2020; Botter et al., 

2020). For this reason, we often define ranges for chemostatic (i.e., 0.1 > b > -0.1) and dilution (b 

< -0.1) (Herndon et al., 2015). Over interannual timescales, C-q behavior does not change 

depending on whether q is high or low (like seasonal dynamics), but rather represents the long-

term average of C-q behavior in a catchment. This means that, for weathering products, a 

watershed is generally classified as only chemostatic or only dilution (Figure 1-2C). Again, 

chemostasis indicates ATL and dilution indicates KL over this timescale. I explore interannual C-

q dynamics for a series of watersheds in the Northeastern United States in Chapter 3 (see Section 

1.2.2). 

Lastly, the longest timescale is the inter-site comparison. Unlike the previous three 

timescales that look at C-q dynamics as a function of timescale, inter-site timescales treat C-q 

dynamics as a function of spatial variables. In other words, all timescales up to this point have 

referred to a single watershed, whereas inter-site timescales refer to multiple watersheds. 
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Although short timescale C-q dynamics have been extensively studied, inter-site C-q dynamics 

have been far less frequently investigated (e.g., Godsey et al., 2019, Li et al., 2022) and remain a 

rich avenue for future work. Similar to interannual C-q, inter-site C-q is expressed in terms of 

flow-weight mean concentrations and the mean annual discharge: 

𝐶𝑚 = 𝐴𝑞𝑚
𝐵       (1-5) 

Although eq. 1-4 and 1-5 are functionally identical, the preexponential (A) and the power 

law exponent (B) were defined differently in eq. 1-5 (see Li et al., 2022). Here, A is the bulk rate 

of the reaction, which is dependent on parameters such as the rate constant, surface area, 

temperature and soil moisture averaged over an entire watershed. B is the ratio of the rate 

dependence on water content to the discharge dependence on water content, which quantifies 

concentration sensitivity to variations in mean discharge (Li et al., 2022). Because inter-site C-q 

dynamics represent comparisons of multiple watersheds, they also reflect the longest timescales, 

and their C-q modalities are hypothesized to correspond more directly to the long timescale 

weathering regimes (i.e., ETL, KL, RL). As discussed in section 1.1.2, concentrations in RL 

watersheds are constant over long timescales because high PET concentrates weathering products 

until they reach equilibrium or steady state with respect to minerals in the bedrock. RL 

weathering fluxes at watershed scale are hypothesized, therefore, to exhibit chemostatic behavior 

at the inter-site scale (Brantley et al., in review). This has been observed in arid watersheds 

(Godsey et al., 2019). In contrast, ETL fluxes at the inter-site scale are more complicated to 

interpret. Intuitively, we might expect KL watersheds to exhibit dilution behavior because KL 

fluxes for watersheds at the seasonal and interannual scales exhibit dilution behavior. ETL fluxes 

for watersheds tend to be observed for larger watersheds; therefore, they might have long 

flowpaths and exhibit chemostasis at the interannual timescales. It is not obvious how inter-site 

C-q dynamics would behave for ETL watersheds. In general, we can conceptualize the long-term 

flux of weathering products as 𝐹𝑙𝑢𝑥 =  𝐶𝑚𝑄𝑚. But for KL and ETL fluxes for watersheds, long-
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term weathering rates have been observed to depend on temperature and erosion rate, respectively 

(see Brantley et al., in review), but not on 𝑄𝑚. Therefore, if 𝑄𝑚increases or decreases, internal 

feedbacks must drive the system back to a constant 𝐶𝑚𝑄𝑚 at constant temperatures and erosion 

rates. This would be consistent with KL and ETL both exhibiting dilution behavior at inter-site 

timescales. Inter-site dilution behavior was observed for weathering products in humid 

watersheds (Godsey et al., 2019; Li et al., 2022), which supports our hypothesis for KL and ETL 

watersheds. Inter-site C-q dynamics have not been extensively studied, and many complicating 

factors such as land use and lithology make their interpretation difficult (Hartmann et al., 2010; 

Jansen et al., 2010; Godsey et al., 2019). I explore interannual C-q dynamics for a series of shale 

watersheds in the United States in Chapter 4 (see Section 1.2.3). 

1.1.4. Weathering Across Space and Time 

As seen in Section 1.1.3, C-q dynamics depend on temporal scales, which generally 

implies that they depend also on spatial scales. As spatial scales get larger, temporal scales also 

tend to increase. Weathering rates change as a function of spatial scale because of variations in 

techniques for estimating mineral surface area (Navarre-Sitchler and Brantley, 2007). 

Discrepancies in weathering dynamics have also been observed between different spatial and 

temporal scales (e.g., West et al., 2005; Dixon and von Blanckenburg, 2012; Larsen et al., 2014). 

Different methods for investigating weathering integrate different spatial and temporal scales, but 

it is not well understood how weathering dynamics change across these scales. Here we describe 

the materials, methods, and equations needed to investigate weathering across four 

spaciotemporal scales (Figure 1-3). 

To describe these scales for a given weathering reaction, I label them using the notation 

of space-time. There are two spatial scales (small and large) and two temporal scales (short and 
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long), resulting in four permutations of space-time. In each case, the actual temporal or spatial 

dimension is defined by the characteristic timescale of equilibration for a weathering reaction or 

the characteristic length scale over which a flowing packet of water equilibrates. The first scale 

described here is the small-short scale. To study small-short scale weathering, scientists typically 

measure the chemistry of pore fluids in soils (Stonestrom et al., 1998). The pore fluids integrate 

weathering products from reactions happening today (i.e., short) and the soil profiles are points in 

space (i.e., small). For example, the rate for small-short weathering (i.e., Ω𝑠𝑚𝑎𝑙𝑙−𝑠ℎ𝑜𝑟𝑡, mol m-2 

yr-1) can be described following (White, 2002): 

Ω𝑠𝑚𝑎𝑙𝑙−𝑠ℎ𝑜𝑟𝑡 = 1000
𝑆

𝐴
(

ν

𝑏𝑝
)      (1-6)  

Here,  is the regolith porosity (m3 m-3), S is the pore fluid saturation (m3 m-3),  is the 

stoichiometric coefficient describing the solute release from mineral weathering,  is the solute 

advection velocity (m yr-1), A is the mineral surface area (m2 m-3), and bp is the slope of the solute 

gradient in the soil profile (m l mol-1). Using eq. 1-6, small-short weathering is assessed by the 

vertical gradient of solutes in the soil pore fluid.  

We can also use the solid-phase chemistry of the soils to investigate weathering rate. I 

classify this as small-long weathering because soil chemistry changes over long timescales 

compared to solute chemistry. White (2002) describes the weathering rate for small-long 

weathering (i.e., Ω𝑠𝑚𝑎𝑙𝑙−𝑙𝑜𝑛𝑔, mol m-2 yr-1) as: 

Ω𝑠𝑚𝑎𝑙𝑙−𝑙𝑜𝑛𝑔 = 1000
ρw

𝐴
(

ω

𝑏𝑝
)      (1-6)  

Here, w is the regolith specific density (g cm 3) and  is the solid-state weathering 

velocity (m yr-1). Using eq. 1-6, small-short weathering is assessed by the vertical depletion of 

cations in the regolith. An alternative definition for Ω𝑠𝑚𝑎𝑙𝑙−𝑙𝑜𝑛𝑔 comes from Riebe et al. (2004):  

Ω𝑠𝑚𝑎𝑙𝑙−𝑙𝑜𝑛𝑔 = 𝐷[𝑋]𝑟𝑜𝑐𝑘𝐶𝐷𝐹𝑥      (1-7)  
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where  

𝐶𝐷𝐹𝑥 = (
[𝑋]𝑟𝑜𝑐𝑘[𝑍𝑟]𝑠𝑜𝑖𝑙

[𝑋]𝑠𝑜𝑖𝑙[𝑍𝑟]𝑟𝑜𝑐𝑘
− 1)      (1-8)  

Here, D is the total denudation rate (kg m-2 yr-1), [𝑋]𝑟𝑜𝑐𝑘 is the concentration of element 

X (mol kg-1) in the bedrock, and 𝐶𝐷𝐹𝑥 is the fraction of X that has been chemically weathered. 

𝐶𝐷𝐹𝑥 is calculated by comparing the concentration of mobile element X in the soil ([𝑋]𝑠𝑜𝑖𝑙) and 

bedrock ([𝑋]𝑟𝑜𝑐𝑘) to the concentration of immobile element Zr in the soil ([𝑍𝑟]𝑠𝑜𝑖𝑙) and bedrock 

([𝑍𝑟]𝑟𝑜𝑐𝑘) (eq. 1-8). 𝐶𝐷𝐹𝑥 is calculated over different depth intervals, and the depth interval for 

the 𝐶𝐷𝐹𝑥 used in eq. 1-8 is typically the depth where cosmic rays penetrate in the soil (e.g., Riebe 

et al., 2005). 

Solid phase chemistry can also be used to assess long-large weathering. As erosion 

removes weathered material from hillslopes, sediments are transported to rivers and exported 

from the watershed. The flux of sediment out of watersheds is called sediment yield (Sy, kg m2 yr-

1). By measuring the chemistry of exported sediments, we can calculate the rate for large-long 

weathering (i.e., Ω𝑙𝑎𝑟𝑔𝑒−𝑙𝑜𝑛𝑔, mol m-2 yr-1) because watersheds integrate large spatial scales and 

sediment chemistry integrates long temporal scales. 

 Ω𝑙𝑎𝑟𝑔𝑒−𝑙𝑜𝑛𝑔 = 𝑆𝑦[𝑋]𝑟𝑜𝑐𝑘𝐶𝐷𝐹𝑥      (1-9) 

One problem with this approach is defining the parent composition (i.e., [𝑋]𝑟𝑜𝑐𝑘  and 

[𝑍𝑟]𝑟𝑜𝑐𝑘), which is difficult when the bedrock composition is spatially variable. Recently, Deng 

et al. (2022) compiled sediment chemistry globally and assessed weathering utilizing the 

chemical index of alteration (CIA): 

𝐶𝐼𝐴 =
Al2O3

Al2O3+CaO+Na2O+K2O
× 100     (1-10) 

where Al2O3, CaO, Na2O, and K2O are the weight percent oxides measured in suspended and bed 

sediments in rivers. Deng et al. (2022) compile sediment chemistry for global rivers. Using the 
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stoichiometry of feldspar dissolution and transformation to kaolinite, the fraction of feldspar 

dissolved (𝑓𝑑𝑖𝑠𝑠) can be calculated from CIA. 

𝑓𝑑𝑖𝑠𝑠 = −
100

𝐶𝐼𝐴
+ 2      (1-11) 

For feldspar, eq. 1-9 can be rewritten using eq. 1-11: 

Ω𝑙𝑎𝑟𝑔𝑒−𝑙𝑜𝑛𝑔 = 𝑆𝑦𝑓𝑑𝑖𝑠𝑠𝑋𝑓     (1-12) 

where Xf is the concentration of feldspar in the bedrock (mol kg-1). Xf can easily be estimated for a 

particular rock type (Lerman and Wu, 2008). 

The last spatiotemporal weathering scale is the short-large scale. For this scale, we utilize 

solute chemistry in rivers. As described for the short-small and long-large scales, solute chemistry 

reflects modern weathering (hence short timescales) and rivers integrate weathering over their 

entire drainage basin (hence the large spatial scale). We calculate the rate for large-short 

weathering (i.e., Ω𝑙𝑎𝑟𝑔𝑒−𝑠ℎ𝑜𝑟𝑡, mol m-2 yr-1) following (Moatar et al., 2013): 

Ω𝑙𝑎𝑟𝑔𝑒−𝑠ℎ𝑜𝑟𝑡 =
∑ 𝐶𝑖𝑄𝑖𝑖

∑ 𝑄𝑖𝑖
𝑄̅𝐴−1     (1-13) 

Here, 𝑄̅ is the mean annual discharge (l yr-1), and  
∑ 𝐶𝑖𝑄𝑖𝑖

∑ 𝑄𝑖𝑖
 is the flow-weighted average 

concentration (mol l-1) where 𝐶𝑖 and 𝑄𝑖 are the instantaneous concentration and discharge 

measured at timepoint i. As seen in eq. 1-13, short-large weathering is dictated by river 

concentrations and discharge, which, as discussed in section 1.1.3, can vary dependent or 

independent of each other based on the weathering regime of the watershed. One complicating 

factor is the large variability in watershed size within the short-large weathering category. For 

example, small headwater catchments can be < 1km2, and large HUC2 watersheds can be > 

1,000,000 km2. This variability reflects that the four categories of weathering dynamics are 

endmember categories. 

Each spaciotemporal category has its own benefits and drawbacks with respect to 

understanding weathering dynamics. For example, large spatial scales give insights into globally 
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relevant processes, but interpreting their site-to-site variability can be difficult because of highly 

heterogeneous watershed characteristics. Long temporal scales provide information about 

weathering relevant to earth history and the rock record, but climate variability over the residence 

time of soils can lead to confounding results or under-constrained models. Many questions remain 

unanswered with respect to scaling such as: how do we apply site-specific studies regionally or 

globally, how do weathering dynamics change across spatial scales, and are modern and long-

term weathering rates consistent? In Chapter 2, I compare large-short to small-long weathering 

dynamics in three watersheds (see Section 1.2.1), in Chapter 3 I evaluate how large-short 

dynamics change across watershed size (see Section 1.2.2), and in Chapter 4 I investigate how 

spatial scale influences the long-term weathering regime across watersheds (See Section 1.2.3).  

1.1.5. Connecting Mineral Distributions to Weathering Dynamics 

As discussed throughout this chapter, where minerals are located in the subsurface 

impacts watershed processes and dictates weathering regimes. Connecting river chemistry with 

vertical mineral distributions remains difficult, however, because of the lack of subsurface 

observations in most watersheds. Typically, to assess reaction fronts and mineral depletion, 

geologists drill boreholes and measure the solid phase chemistry with depth (e.g., Jin et al., 2010; 

Brantley et al., 2014; Gu et al., 2020; Liao et al., 2022). These 1-dimensional weathering profiles 

cannot fully describe the complexity of the subsurface because they are spatially limited. 

Recently, intensive application of geophysical techniques have yielded 2-dimensional (e.g., Befus 

et al., 2011; Holbrook et al., 2014; Gu et al., 2020; Ma et al., 2021) and 3-dimensional (e.g., 

Keifer et al., 2019; Wang et al., 2021) views of subsurface weathering patterns.  

An alternative approach to investigating the subsurface is through analyzing river 

chemistry. How river chemistry changes with time and space reveals information about 
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subsurface flowpaths and mineral distributions. In this chapter, I have reviewed the importance of 

weathering dynamics in watersheds and how they relate to the mineralogical architecture of a 

watershed. I highlighted several unknowns in the field related to rate limiting step, concentration 

discharge dynamics, and spaciotemporal scaling. Although this dissertation cannot address all 

outstanding questions posed here, we do analyze several aspects of these issues, specifically 

related to weathering of carbonate minerals, silicate minerals, and pyrite in shale and mixed 

lithology watersheds. This dissertation is a culmination of comparing chemical analyses from 

more than 120,000 river samples from >600 watersheds across the United States that are available 

in publicly-available databases, many maintained by the U.S. Geological Survey. What follows 

are brief outlines of each of the chapters contained within this dissertation. 

1.2 Chapter Summaries  

1.2.1 Summary of Chapter 2 

In this chapter, we investigate the weathering dynamics of pyrite, carbonate, and silicate 

minerals by analyzing variations in river chemistry. Typically, to understand weathering reactions 

in watersheds, scientists measure the chemistry in rivers because they integrate weathering 

processes over their entire drainage area. Solutes in streams, however, come from many different 

sources; therefore, we must “unmix” the river chemistry to apportion solutes to various dissolving 

minerals. This process is difficult because endmembers chemistries of various sources are often 

unknown or under constrained.  

Based on the analysis of subsurface mineral distributions in boreholes (e.g., Jin et al., 

2010; Brantley et al., 2013; Wan et al., 2019; Gu et al., 2020), we know that reactive minerals 

such as pyrite and carbonate weather deep in the subsurface and less reactive silicate minerals 
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weather shallow in the subsurface. We hypothesize that different minerals dissolve along 

different groundwater flowpaths because of the presence of these shallow and deep reaction 

zones. As waters follow these flowpaths to the stream, they produce distinct patterns in the river 

chemistry. We developed a machine-learning based mixing model to detect these patterns and 

“unmix” their signals. This model does not make assumptions about the sources a priori, instead 

it derives the optimal source chemistries and mixing fractions simultaneously. The identity of 

these sources must be interpreted by the scientists using domain knowledge of the system.  

We developed this model at the Susquehanna Shale Hills Critical Zone Observatory 

(SSHCZO), an extensively studied watershed in central Pennsylvania (Brantley et al., 2018). We 

then applied our model to two other watersheds: East River in Colorado (Hubbard et al., 2018) 

and Hubbard Brook in New Hampshire (Holmes and Likens, 2016). These sites were selected to 

test the efficacy of our model across different climates and lithologies. After unmixing the 

weathering signals in these streams, we determined weather CO2 was being sequestered or 

released in these watersheds. Lastly, we compared the results of our river chemistry to long-term 

weathering patterns as recorded in the rock and soil chemistry of these sites.  

In this chapter, we found that watersheds intermittently switch between sequestering and 

releasing CO2 depending on the predominant flowpath sampled by the stream. When flow is deep, 

pyrite oxidation coupled to carbonate dissolution results in release of CO2, and CO2 sequestration 

via silicate weathering is dominant in shallow flowpaths. We also found that acid rain competes 

with CO2 as a weathering agent, which reduces the capacity of a watershed to sequester CO2. 

Through comparing soil chemistry to river chemistry, we determined that watersheds have 

recently begun to recover from the impacts of acid rain. Long-term CO2 dynamics recorded by 

soil profiles is roughly consistent with short-term CO2 dynamics as recorded by stream chemistry. 

In this chapter I worked collaboratively with Dr. Susan Brantley, Dr. Xin Gu, and Dr. 

Tao Wen to design, execute, and ultimately publish the chapter in Hydrology and Earth System 
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Sciences (Shaughnessy et al., 2021). Drs. Brantley and Gu assisted with the design of the study 

and the analysis of the results, and Dr. Wen assisted in methodology development. I was 

responsible for conceptualizing, analyzing, coding, and writing the publication.  

1.2.2 Summary of Chapter 3 

In this chapter we investigated how the depth of pyrite in the subsurface changes across 

spatial scale through analysis of concentration-discharge relationships. We couple our machine 

learning-based mixing model from Chapter 2 to a physically-based oxidation model that describes 

how concentrations of sulfate change as a function of discharge. In essence, our oxidation model 

represents the balance between solute production and dilution processes. We first develop this 

model in Shale Hills and then expand to Shaver’s Creek, the larger HUC10 watershed that 

encompasses Shale Hills (Brantley et al., 2018). In Shaver’s Creek, we assess where pyrite is 

present or absent at land surface by sampling outcropping bedrock along the streambed 

downstream. After that assessment, we apply our oxidation model to the Juniata River Basin 

(which encompasses Shaver’s Creek) and the Susquehanna River Basin (encompasses Juniata 

River Basin). In all, we investigate a series of 15 sites within a series of 4 nested watersheds in 

the northeastern United States. Finally, we expand our analysis to ~300 watersheds in the western 

United States to compare results from the northeast and to test how coal mining impacts 

concentration-discharge dynamics.   

In this Chapter, we found that variations in pyrite-derived could be described through a 

simple oxidation model that is a function of discharge. Using this model at Shale Hills, We found 

that the seasonality of sulfate production was consistent with the seasonality of dissolved oxygen 

(DO) consumption in groundwater. At low flow conditions, sulfate concentrations were high in 

the stream and DO was low in groundwater. When flow was high, sulfate concentrations were 
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low in the stream and DO was high in groundwater. Across all of the northeastern sites, the 

maximum sulfate concentrations observed in the streams were lower than would be predicted by 

DO in equilibrium with the atmosphere for small watersheds. Large watersheds featured sulfate 

concentrations much higher than would be predicted by the advection of dissolved oxygen. In the 

northeastern United States, large watersheds have extensive coal mining in their catchments, 

which has exhumed pyrite to land surface. Concentration-discharge (C-q) dynamics in the east 

coast are consistent with ATL weathering for watersheds without coal and KL for watersheds 

with coal. In the Western United States, we found that C-q relationships are consistent the pyrite 

reaction front becoming shallower as drainage area increases for watersheds without coal. 

Overall, this work has implications for predicting the fate and transport of redox sensitive 

contaminants.  

In this chapter I worked collaboratively with Dr. Susan Brantley, Michael Forgeng, Dr. 

Xin Gu, Dr. Jordon Hemmingway, and Dr. Tao Wen to design, execute, and write the chapter 

(and submit it to Water Resources Research). Drs. Brantley and Gu assisted with the design of the 

study and the analysis of the results. Dr. Wen assisted in methodology development. Michael 

Forgeng assisted with coordinating and executing field work. Dr. Hemmingway was responsible 

for analyzing sulfur isotopes and assisting in the interpretation of these data. I was responsible for 

conceptualizing, data acquisition, lab work, data analysis, coding, and writing the publication. 

Brantley also participated in writing of the paper. 

1.2.3 Summary of Chapter 4 

In this chapter we investigate how the presence or absence of reactive minerals at Earth’s 

surface impact weathering dynamics in watersheds. For example, when reactive minerals are 

depleted at land surface (i.e., completely developed weathering profile), weathering is limited by 
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the supply of fresh minerals via physical erosion. Alternatively, when reactive minerals are 

present at land surface (i.e., incompletely developed profile), weathering is limited by interfacial 

reaction kinetics. Here, we calculate silicate weathering rates as SiO2 fluxes in 142 watersheds 

underlain by shale. Shale is important because it is covers a significant portion of Earth’s 

continents (estimated at 34.4 % (Meybeck, 1987), 12.6 % (Gibbs and Kump, 1994), 25.4% 

(Amiotte Suchet et al., 2003), 6.6% (Hartmann and Moosdorf, 2012)), but weathering in shale 

watersheds has been under-characterized when compared to other lithologies such as granite and 

basalt. We then aggregate datasets of climate (i.e., precipitation, temperature, potential 

evapotranspiration), hydrology (i.e., runoff), and geomorphology (i.e., basin area, relief, 

elevation, slope) for each of these watersheds. We first define a criterion to separate dry 

watersheds and wet watersheds based on mean annual precipitation (MAP) and potential 

evapotranspiration (PET). We then investigate what controls variations in SiO2 fluxes in dry 

watersheds. Next, we apply a weathering model to our wet watersheds to determine the sensitivity 

of weathering to temperature, precipitation, and erosion. Lastly, determine which wet watersheds 

experience only kinetic-limited silicate weathering and which experience only erosive transport 

limited weathering.  

In this chapter, we found that silica weathering fluxes vary by several orders of 

magnitude between sites. When PET/MAP (referred to as humidity index or HI) is less than 0.55, 

then fluxes increase linearly with runoff. We hypothesize that silica fluxes in these sites are RL. 

In these watersheds, we observe that stream chemistry is consistent with an equilibrium between 

smectite and kaolinite. The weathering fluxes in these sites, show an inverse relationship with 

temperature, which is consistent with the Hr for the smectite-kaolite equilibrium. When HI > 

0.55, we observe a temperature dependence (when fit to the Arrhenius equation) of 56 kJ mol-1. 

We hypothesize that, as a whole, these sites are TR, and a subset of these sites are likely KL and 

ETL. For sites with HI > 0.55 and a mean catchment slope > 10, the apparent activation energy 
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is 92 kJ mol-1, which is consistent with the experimental activation energy for chlorite dissolution, 

a major mineral present in shale rocks. We hypothesize that silica fluxes in these sites are KL.    

For sites with HI > 0.55 and a mean catchment slope < 5, weathering fluxes predominantly 

depend on erosion rate. We hypothesize that silica fluxes in these sites are ETL. Overall, we 

found that 48%, 37%, and 7% of silicate weathering in US Shales is limited by runoff, erosion, 

and reaction kinetics, respectively  

In this chapter I worked collaboratively with Dr. Susan Brantley to design, execute, and 

analyze the data. Aspects of the analysis in this chapter was incorporated into a submission to 

Science that is first authored by Dr. Brantley. Other co-authors on that manuscript include Dr. 

Marina Lebedeva and Dr. Viktor Balashov, both of whom were involved in contributing to the 

submission to Science but not to the data, analysis, and writing presented in chapter 4. Although 

part of this chapter was included in Dr. Brantley’s manuscript, the writing and analysis presented 

here are my own and extend beyond the information previously submitted.  
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1.3 Tables 

 

  

Table 1-1: Common abbreviations found in this dissertation 

Abbreviation Variable Name 

ATL Advective Transport Limited 

CHELSA  Climatologies at High resolution for the Earth Land Surface Areas  

C-q Concentration-Discharge 

DIC Dissolved Inorganic Carbon 

DO Dissolved Oxygen 

EDS Energy Dispersive X-ray Spectroscopy  

EMMA Endmember Mixing Analysis 

ETL Erosive Transport Limited 

HI Humidity Index 

HUC Hydrologic Unit Code 

KL Kinetic Limited 

MAP Mean Annual Precipitation 

MAT Mean Annual Temperature 

mbls Meters Below Land Surface 

NMF Non-negative Matrix Factorization 

NWIS National Water Information System  

PAL Present Atmospheric Level 

PCA Principal Component Analysis 

PET Potential Evapotranspiration  

p-sulfate Pyrite-derived Sulfate 

RL Runoff Limited 

SEM Scanning Electron Microscopy  

SGMC State Geologic Map Compilation  

SRB Susquehanna River Basin 

SSHCZO Susquehanna Shale Hills Critical Zone Observatory 

TR Transition Regime 

US United States 

USGS United States Geological Survey 

WQP Water Quality Portal 

yr Year 
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1.4 Figures 

 

  

 

 

Figure 1-1: Schematic diagrams showing schematic representations of hypothetically kinetic 

limited (A, B) and erosive transport limited (C, D) weathering regimes for a given geochemical 

reaction in both a 1-D soil profile (A, D) and 3-D watershed (B, C). Blue lines in B and C represent 

subsurface flowpaths in each weathering regime. Note that KL weathering only features shallow 

flowpaths through the reaction front; whereas ETL weathering features deeper flowpaths. This is 

because KL watersheds tend to be small and ETL watersheds tend to be large; thus, rivers in ETL 

watersheds sample deeper regional groundwater flow.  
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Figure 1-2: Schematic diagram showing different concentration-discharge (C-q) relationships 

across Event (A), Seasonal (B), Interannual (C), and Inter-site (D) timescales as discussed in 

chapter 1 of this dissertation. For explanations of equations shown for the respective C-q curves 

refer to Section 1.1.3. Annotations on the C-q curves represent one version of how to define 

weathering regimes that feature the specific C-q relationships shown as described in chapter 1. 

Names for weathering regimes used here include Advective Transport Limited (ATL), Kinetic 

Limited (KL), Runoff Limited (RL), and Erosive Transport Limited (ETL). While explicit 

definition of Cq behavior with respect to weathering regimes is not well-established, this figure is 

one conceptualization of such definition. 
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Figure 1-3: Schematic diagram showing equations and characteristic plots for four spatiotemporal 

scales of assessment of weathering. For explanations on the equations shown for each scale, refer 

to section 1.1.4. In general, blue colors represent solute chemistry and brown colors represent solid-

phase chemistry. 
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Abstract 

Endmember mixing analysis (EMMA) is often used by hydrogeochemists to interpret the 

sources of stream solutes, but variations in stream concentrations and discharges remain difficult 

to explain. We discovered that machine learning can be used to highlight patterns in stream 

chemistry that reveal information about sources of solutes and subsurface groundwater flowpaths. 
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The investigation has implications, in turn, for the balance of CO2 in the atmosphere. For 

example, CO2-driven weathering of silicate minerals removes carbon from the atmosphere over 

106-yr timescales. Weathering of another common mineral, pyrite, releases sulfuric acid that in 

turn causes dissolution of carbonates. In that process, however, CO2 is released instead of 

sequestered from the atmosphere. Thus, to understand long-term global CO2 sequestration by 

weathering requires quantification of CO2- versus H2SO4-driven reactions. Most researchers 

estimate such weathering fluxes from stream chemistry but interpreting the reactant minerals and 

acids dissolved in streams has been fraught with difficulty. We apply a machine learning 

technique to EMMA in three watersheds to determine the extent of mineral dissolution by each 

acid, without pre-defining the endmembers. The results show that the watersheds continuously or 

intermittently sequester CO2 but the extent of CO2 drawdown is diminished in areas heavily 

affected by acid rain. Prior to applying the new algorithm, CO2 drawdown was overestimated. 

The new technique, which elucidates the importance of different subsurface flowpaths and long-

timescale changes in the watersheds, should have utility as a new EMMA for investigating water 

resources worldwide. 

2.1 Introduction 

We need to understand the long-term controls on atmospheric CO2 because of the impact 

of this greenhouse gas on global climate. This is important because humans are increasingly 

burning fossil fuels and releasing long-sequestered carbon to the atmosphere (Kasting and 

Walker, 1992). This new C flux upsets the natural long-term balance in the atmosphere between 

volcanic degassing and weathering-induced drawdown of CO2 over millennial timescales. 

Chemical weathering of the most common rock-forming minerals, silicates and carbonates, 

removes CO2 from the atmosphere by forming dissolved inorganic carbon that is carried in rivers 
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to the ocean (DIC; Figure 2-1). Over 105– 106 yr timescales, this DIC is precipitated as marine 

calcite, releasing half or all of the atmospherically derived CO2 back to the atmosphere for 

silicates and carbonates, respectively (Figure 2-1). Thus, over this timescale, CO2-driven 

weathering (CO2-weathering) of silicates sequesters CO2 out of the atmosphere while CO2-

weathering of carbonates neither removes nor releases CO2 to the atmosphere (Figure 2-1). Some 

researchers also emphasize that this simple picture neglects weathering of another ubiquitous 

mineral, pyrite (Lerman et al., 2007). When pyrite weathers, it produces sulfuric acid that also 

dissolves silicates and carbonates, i.e., H2SO4-weathering. When DIC generated through H2SO4-

weathering of carbonates is carried to the ocean, marine calcite precipitates and releases CO2, 

increasing atmosphere concentrations (Spence and Telmer, 2005; Calmels et al., 2011; Torres et 

al., 2014; Kölling et al., 2019). Thus, determination of the weathering contributions of silicates, 

carbonates, and pyrite is essential toward understanding long-term dynamics of CO2. In this paper 

we describe a powerful machine learning technique to interpret the sources of stream solutes to 

understand problems such as weathering. While we show the importance of applying this 

machine learning technique to the weathering question, we also emphasize how machine learning 

can teach hydrogeochemists about subsurface flow paths and other characteristics of stream 

systems.   

The most common way hydrogeochemists interpret the fluxes of weathering are to 

investigate stream and river chemistry. Determining the endmembers for streams is important 

because streams integrate the byproducts of weathering reactions over drainage basins, allowing 

assessment of regional to global understanding of fluxes – but only if minerals weathered by 

different acid sources can be deconvoluted (Li et al., 2008; Calmels et al., 2011; Torres et al., 

2016; Winnick et al., 2017; Burke et al., 2018; Killingsworth et al., 2018). In small-scale studies 

in the laboratory or soil profiles, mineral reactions can be documented, but this information 

cannot be scaled up easily (Navarre-Sitchler and Brantley 2007). Here we show that machine 
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learning can decipher the balance of fluxes of CO2- versus H2SO4-weathering as recorded in 

stream chemistry. We discovered that catchments partition water into subsurface flowpaths that 

can be i) deciphered with respect to the extent of pyrite, silicate, and carbonate weathering in 

different lithologies, and ii) interpreted with respect to whether weathering is driven by CO2 or 

H2SO4. We emphasize the long-term effects (over 10 5 -106 yr) on the CO2 balance in the 

atmosphere.  

Although geochemists commonly use stream chemistry to determine mineral sources of 

solutes via weathering reactions over large aerial extents (Gaillardet et al., 1999) and hydrologists 

commonly use endmember mixing analysis (EMMA) to determine the sources of solutes in a 

stream (Christophersen et al., 1990), stream datasets remain difficult to interpret because of 

spatial and temporal variations in endmember composition. For example, sulfur isotopes in 

stream solutes can distinguish pyrite-derived from rain-derived sulfate because pyrite typically is 

depleted in 34S (Burke et al., 2018; Killingsworth et al., 2018). But this attribution is difficult, 

more expensive, and often ambiguous because pyrite 34S varies between formations (Gautier, 

1986) or within a single catchment (Bailey et al., 2004). Likewise, inputs of sulfate to watersheds, 

such as acid rain, can swamp out the signal from mineral reactions, and can change significantly 

over time (e.g., because of changing acid rain deposition) (Lynch et al., 2000; Lehmann et al., 

2007). These factors make it difficult to determine sources releasing sulfate to varying stream 

chemistries over time. 

 Several so-called “inverse models” have been used successfully to partition 

sulfate into endmember sources for streams and rivers. These include the two prominent 

modeling approaches by Torres et al. (2016) and Burke et al. (2018).  However, because the 

chemistry of acid rain has varied over the past decades, utilizing the full range of rain chemistry 

in those models results in unrealistic contributions of acid rain (i.e., > 100%) or models that fail 

to converge. This is at least partly because the chemistry of acid rain has been so variable that it 
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spans the entire measured range of stream samples. Additionally, utilizing the approach of Burke 

et al. (2018), based on the approach of Gaillardet et al. (1999), requires a priori assignment of 

accurate endmember chemistries. Often, the researcher must rely on a few samples to characterize 

endmembers, resulting in large uncertainties in endmember chemistry and in source apportioning. 

Since the inception of EMMA, many researchers have aimed to improve analysis through a more 

accurate determination of unknown or under-constrained endmember chemistries (Hooper, 2003; 

Carrera et al., 2004; Valder et al., 2012). But these efforts all use some a priori determination of 

endmembers. Our machine learning model adds to the growing effort to improve EMMA by 

applying blind source separation. The machine-learning approach we describe here de-convolves 

sources of stream chemistry without pre-defining the endmembers. We demonstrate this first with 

a synthetic dataset and then with data from three well-studied watersheds with different 

characteristics. The new method discovers the endmember chemistries and, as a result, documents 

new findings of importance previously undiscovered with the other methods.  

For the target watersheds, we focus first on Shale Hills, an acid rain-impacted shale 

watershed in central Pennsylvania, USA with extensive data for water/rock chemistry (Jin et al., 

2010; Brantley et al., 2013a; Sullivan et al., 2016). This watershed allows the most complete 

understanding of solute sources. Although we do not show this here, if we use either of the two 

previously used models for source attribution, stream chemistry data for Shale Hills either does 

not separate acid rain and pyrite as a sulfate source (if we use the model of Torres et al., 2016) or 

yields a proportion for acid rain which is larger than 100% (if we use the model of Burke et al., 

2018). As shown below, the Non-negative Matrix Factorization (NMF) model easily defines 

endmembers and proportions.  

We then show the utility of the machine learning method for watersheds where less 

water/rock chemistry has been published: we investigate East River and Hubbard Brook 

catchments. Like Shale Hills, East River is shale-hosted, but it receives little acid rain (Winnick et 
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al., 2017). In contrast, Hubbard Brook has been extensively impacted by acid rain but is underlain 

by glacial till over schist (Likens et al., 2002). In both cases, NMF successfully determines 

endmembers and source proportions. 

2.2 Methods 

2.2.1 Study Sites 

Where previous deconvolutions of stream chemistry into endmembers were generally 

based on assumptions of the chemistry of dissolving minerals alone, data for watersheds show 

that the flowpath of the water also affects this chemistry (e.g., Brantley et al 2017).  We 

demonstrate this with data from three well-studied watersheds with different characteristics. We 

focus first on Shale Hills, a small (0.08 km2), acid-rain impacted forested watershed underlain by 

Rose Hill shale located in central Pennsylvania, USA (Brantley et al., 2018). The Rose Hill 

Formation shale contains ~0.14 wt% S as pyrite (FeS2) (Gu et al., 2020a).  

We then show utility of the method in East River (shale-hosted but it receives little acid 

rain) and Hubbard Brook (extensively impacted by acid rain but is underlain by schist and glacial 

till) catchments. Specifically, East River is a large (85 km2), mountainous watershed underlain by 

Mancos Shale that is located near Gothic, Colorado USA within the Gunnison River basin 

(Winnick et al., 2017). The Mancos is a black shale that contains ~1.6 wt% S as pyrite (Wan et 

al., 2019). Both of these shale-hosted watersheds contain carbonate minerals that vary in 

composition and abundance in the subsurface. Lastly, Hubbard Brook (Nezat et al., 2004), located 

in the White Mountains of New Hampshire USA, consists of a series of nine small (0.14-0.77 

km2), forested watersheds underlain by Rangeley Formation metamorphosed shale and sandstone 

(schist) generally covered by glacial till derived mostly from the Kinsman granodiorite. The schist 
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bedrock contains ~0.2-0.9 wt% S and till contains ~0.1-0.2 wt% S. Again, almost all S is present 

as iron sulfide (pyrite or pyrrhotite). Both bedrock and till are largely carbonate-free.  

2.2.2   Data Acquisition  

For Shale Hills, daily stream chemistry has been reported from 2008-2010 (Brantley et 

al., 2013b; Brantley et al., 2013c; Brantley et al., 2013d). Additional samples were measured in 

other time intervals for sulfur isotopes and alkalinity (Jin et al., 2014). All samples were filtered 

through a 0.45 m Nylon filter and aliquots for cation analysis were acidified with nitric acid. 

Cations were measured on a Leeman Labs PS3000UV (Teledyne Leeman Labs, Hudson, NH) 

inductively coupled plasma–optical emission spectrometer (ICP-OES), and anions were measured 

on a Dionex Ion Chromatograph (Sunnyvale, CA). Alkalinity was measured by titration with 0.16 

M H2SO4. Discharge data are available online (http://www.czo.psu.edu/data_time_series.html). 

All published data from East River were used in analysis (Winnick et al., 2017), except 

for two samples with extremely high values of chloride (246 and 854 M) because they differed 

significantly from the remaining sample chemistry (average Cl concentration = 21M). Hubbard 

Brook weekly chemistry from 2000-2017 was downloaded for the sub-catchments (3, 6, 7, 8, 9) 

that were not experimentally manipulated (Bernhardt et al., 2019). Stream discharge data for each 

sub-catchment are from USDA Forest Service (USDA, 2019). 

2.2.3 Machine Learning Model 

To assign the proportion of sulfate in streams to sources, we first bootstrapped a training 

dataset and then used a method of blind source separation (Alexandrov and Vesselinov, 2014; 

Vesselinov et al., 2018) called non-negative matrix factorization (NMF). NMF is unique from 

http://www.czo.psu.edu/data_time_series.html


39 

 

previously used methods in that it allows calculation of endmember compositions and mixing 

proportions simultaneously and does not rely on measurements or assumptions of endmembers a 

priori (Figure 2-2A; see Appendix A.1). Specifically, NMF decomposes the n x m matrix, V, into 

two matrices W and H:  

 V = WH     (2-1) 

Here, cell entries of V are molar solute concentration ratios, [X]/[Y], for stream samples. 

Indicator n refers to the sampling date, m refers to different solutes X (= Ca2+, Mg2+, Na+, K+, Cl-), 

and brackets refer to concentrations. W is the n x p matrix whose cell entries are proportions, , 

for each endmember in each stream sample. Again, n refers to sampling dates, but p is the number 

of sources of solutes (referred to as endmembers). The proportions refer to the fractions of sulfate 

in each sample that derive from an individual endmember, where the sum of proportions must 

equal 1 ± 0.05 for each sample. To derive the mixing proportions of sulfate specifically, we set up 

the NMF approach by normalizing each analyte concentration by sulfate concentration (Y = SO4
2-

), the target solute. After running the algorithm for each of the three watersheds, we then inferred 

by inspection (see discussion below) that the endmembers represent different flowpaths in the 

subsurface. Therefore, these proportions of sulfate are referred to here as shallow, moderately 

shallow, and deep flowpaths, i.e. shallow, moderate, and deep respectively (only one of our target 

watersheds revealed the moderate-depth flowpath). H is the p x m matrix whose cell entries are 

the concentration ratios that define the chemical signature of each of the p endmembers. The key 

to NMF is that these concentration ratios are not determined prior to apportionment but rather are 

determined from the data itself. In addition, the chemical signatures of each endmember can vary 

temporally around central tendencies. Because the solution to eq. 2-1 is non-unique, we run the 

model 20,000 times, apply a filter to the models, and then calculate the mean and standard 

deviation of the remaining models for trend and error analysis (Appendix A.1; Eq. A-1).  
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The only hyperparameter that must be defined to run NMF a priori is the number of 

endmembers, p. We used principal component analysis (PCA) to determine the minimum number 

of components needed to explain >90% of the variance in stream solute ratios, and trained NMF 

to the bootstrapped data while assuming that number of endmembers. Machine learning 

determined the compositions defining the endmembers and the mixing proportions of each 

endmember in each sample. After running NMF, we interpreted each endmember composition 

based on geological and watershed knowledge. 

 Based on the outputs of the NMF model, we calculated the weathering rates of 

sulfide, carbonate, and silicate minerals in the watersheds. Additionally, we calculated the relative 

contributions of sulfuric and carbonic acid driving those weathering reactions. For details on the 

weathering calculations see Appendix A.2. 

2.2.4 Synthetic Dataset 

NMF is an algorithm that has been used for many applications (e.g., spectral analysis, 

email surveillance, cluster analysis; Berry et al., 2007) but has only recently been applied to 

stream chemistry (e.g., Xu and Harman, 2020). To exemplify the validity of our modeling 

approach, we generated a dataset of synthetic stream chemistry versus time and ran it through our 

NMF model. First, we defined two known endmember compositions, which are shown in Table 

A-1 in Appendix A.5. Next, we randomly generated 300 synthetic stream samples that were each 

calculated as a mixture of the two endmembers. Lastly, we ran NMF on the synthetic stream 

chemistry to determine the mixing proportions () and endmember compositions ([X]/[SO4
2-]), 

for all X.  
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2.3 Results and Discussion 

2.3.1 Synthetic Data Model 

After generating the synthetic dataset of stream samples, we utilized NMF to determine 

the mixing proportions and endmember compositions. We then filtered out the poor fitting 

models (see Appendix A.1 eq. A-1). As described more fully in Appendix A.1, this left an 

average number of valid models of 62 (range: 42-77). The average variance between valid models 

was <10%. Without any prior information about the system, NMF accurately determined the 

correct mixing proportions (RMSE = 0.04; R2 = 0.98; p < 0.001; Figure 2-2B) and endmember 

compositions (RMSE = 0.21; R2 = 0.99; p < 0.001; Figure 2-2C). In effect, the model was able to 

use patterns in the data to deconvolve sample chemistry into endmembers and proportions.  

2.3.2 Application to Shale Hills 

While clay minerals in shale-underlain watersheds in rainy climates are found at all 

depths because of their low chemical reactivity, pyrite and carbonate minerals are often 

chemically removed from upper layers and only found in unweathered shale at depth (Figure 2-3; 

Brantley et al., 2013a; Wan et al., 2019; Gu et al., 2020a). For example, at Shale Hills, pyrite and 

carbonate minerals are only observed deeper than at least 15 meters below land surface (mbls) 

under the ridges and 2 mbls under the valley. In these deeper zones, calcite (CaCO3), ankerite 

(Ca(Fe0.34Mg0.62Mn0.04)(CO3)2), and pyrite (FeS2) dissolve in regional groundwaters that flow to 

the stream (Brantley et al., 2013a; Gu et al., 2020a). These groundwaters thus contribute DIC, 

Ca2+, Mg2+, and SO4
2- into the stream.  

Like many catchments, water also flows to the stream in Shale Hills along a much 

shallower near-surface flowpath, which we call interflow (Figure 2-3). Interflow is thought to 
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occur along a transiently perched water table that lies within the upper 5-8 mbls. The most 

abundant mineral, illite (K0.69(Si3.24Al0.76)(Al1.69Fe3+
0.10Fe2+

0.16Mg0.19)O10(OH)2), dissolves in 

interflow where it flows through the soil, with minimal illite dissolution in underlying weathered 

rock. Illite dissolution releases DIC and Mg2+ and K+ to interflow waters and causes precipitation 

of clays and iron oxides. Interflow derives ultimately from local precipitation that also contains 

Na+, Cl-, and SO4
2-. Interflow and deep groundwater flowlines converge under the catchment 

outlet where the stream, on average, is 90% interflow and 10% deep groundwater (Sullivan et al., 

2016; Li et al., 2017).  

Only one mineral, chlorite ((Fe2+
0.40Mg0.15Al0.35)6(Si0.76Al0.24)4O10(OH)8), is observed to 

begin to weather in the deep groundwater and continue weathering all the way to the surface 

(Figure 2-3; Gu et al., 2020a). Chlorite thus dissolves to release Mg2+ to both interflow and deep 

groundwater. While most water entering the catchment leaves as interflow without entering deep 

groundwater, the wide reaction zone observed for chlorite is consistent with a small fraction of 

water infiltrating vertically to the deeper zone (Brantley et al., 2017). 

PCA for stream chemistry (2008-2010) at Shale Hills revealed two sources of sulfate, and 

this was used to set up NMF, i.e., p = 2 (Table A-2 in Appendix A.5). By comparing the 

compositions from matrix H (Table A-2 in Appendix A.5) determined by NMF to our knowledge 

of the subsurface (Figure 2-3), we interpreted the two endmembers as deep and shallow 

weathering along the two flowpaths, i.e. groundwater and interflow (Figure 2-3), respectively (Jin 

et al., 2014; Sullivan et al., 2016). The endmember with high [Ca2+]/[SO4
2-] and [Mg2+]/[SO4

2-] 

was attributed to deep weathering because Ca- and Mg-containing minerals (i.e., calcite and 

ankerite) only dissolve at depth (Figure 2-3; Jin et al., 2014; Gu et al., 2020a). The high [Cl-

]/[SO4
2-] endmember was attributed to shallow interflow because it is dominated by Cl-containing 

acid rain. This attribution revealed, consistent with other studies of the acid rain-impacted 
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northeastern United States, that precipitation accounts for the majority of sulfate flux (i.e., 77%) 

at Shale Hills between 2008 and 2010. 

Many lines of evidence back up these endmember attributions. The sulfate in the shallow 

endmember derives from interflow well above the pyrite oxidation front through pyrite-depleted 

rock and is thus attributed to acid rain, while the sulfate in the deep endmember is attributed 

mostly to pyrite oxidation. Some sulfate from acid rain may infiltrate to the regional groundwater, 

but the fraction is small. At Shale Hills, acid rain always contains Cl- and pyrite oxidation always 

preferentially dissolves carbonate minerals, giving each flowpath endmember a unique signature. 

To test the NMF deconvolution, we compared these attributions to isotopic data. The 

value of 34S in dissolved sulfate is observed to correlate with increasing concentrations of pyrite-

derived sulfate determined by NMF (Figure 2-4A), consistent with depleted 34S signatures in 

pyrite (e.g., -20‰; Killingsworth et al., 2018).  In contrast, acid rain shows 34S values around 

+3-5‰ (Bailey et al., 2004), and low sulfate concentrations in stream samples are characterized 

by 34S values within this range. Also, as pyrite oxidizes, the concentration of sulfate increases 

and the 34S values decrease to reflect the inferred composition of pyrite, -9.5‰ to -7.2‰ (Figure 

2-4A). Finally, Gu et al. (2020b) showed that pyrite oxidation drives the carbonate dissolution at 

Shale Hills. NMF results show that stream water was near calcite equilibrium (i.e., calcite  = 1; log 

calcite = 0) and had the highest pyrite-derived sulfate concentrations when the stream was fed by 

groundwater (Figure 2-4B).  

 However, the annual flux of acid rain-derived sulfate from 2008-2010 in the 

shallow endmember determined from NMF at Shale Hills (Table 2-1) far exceeds the wet 

deposition of sulfate during the sampling period (Figure 2-4C). Such inconsistencies have been 

noted elsewhere and attributed to travel-time delays over decades between acid rain input and 

stream output (Cosby et al., 1985; Prechtel et al., 2001; Mörth et al., 2005; Rice et al., 2014). 
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Figure 2-4C thus allows us to estimate a ~19-31-year lag time between input and export of sulfate 

from the temporally changing acid rain (see Appendix A.2.4).  

Weathering profiles at Shale Hills, the chemistry of the composition (H) matrix, sulfur 

isotopes, calcite saturation, and lag in acid rain export all support our interpretation that the two 

components in the NMF model are shallow and deep flowpaths and that sulfate largely derives 

from acid rain and pyrite respectively. The dissolution of different minerals along these flowpaths 

lead to patterns in stream chemistry that our NMF model discerns and separates. If mineral 

reaction fronts are not separated in the subsurface, different flowpaths might not be separated by 

NMF; however, Brantley et al. (2017) and Gu et al. (2020a) have shown that separation of 

reaction fronts is common.  

2.3.3 Rates of Weathering and CO2 Sequestration at Shale Hills 

With these calculations we can use NMF results to elucidate the effect of sequestration or 

release of CO2 at Shale Hills. We emphasize fluxes of importance over 105– 106 yr timescales. 

CO2-driven weathering of the silicate minerals chlorite and illite removes carbon from the 

atmosphere and carries it as DIC in rivers to the ocean where it is buried as carbonate minerals 

(akin to reaction 2 in Figure 2-1, Table A-3 in Appendix A.5).  In contrast, calcite and ankerite 

weathering coupled to pyrite oxidation instead releases CO2 to the atmosphere over those 

timescales (reaction 7 in Figure 2-1) and carbonate mineral weathering is neutral over those 

timescales (reaction 4 in Figure 2-1). Additionally, acid rain can interact with silicate minerals but 

not carbonate minerals at Shale Hills (because these are not present in the shallow subsurface 

(Figure 2-3)). Thus H2SO4-dissolution caused by acid rain competes with CO2-dissolution for 

silicates. This competition lowers the CO2 consumption from silicate weathering, which been 

observed in other watersheds (e.g., Suchet et al., 1995). 
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To summarize the effect of weathering on CO2 considered at the timescale of 105– 106 yr 

as shown in Figure 2-1, we propose a new parameter, the stream CO2 sequestration coefficient, 

kstream (see Appendix A.2.2 for full derivation). This coefficient is defined as mol CO2/[Σ+]𝑡𝑜𝑡𝑎𝑙 

where [Σ+]𝑡𝑜𝑡𝑎𝑙 is the sum of the equivalents of base cations in a sample. Here, equivalents refer 

to molar concentration multiplied by charge for an ion. Positive kstream implies the stream acts as a 

source and negative implies it acts as net sink of CO2 and the values are calculated for an 

individual sample or integrated over some time period of stream sampling. The product of kstream 

times [Σ+]𝑡𝑜𝑡𝑎𝑙 in a sample equals the moles of CO2 sequestered or released during weathering as 

represented in that sample (but the accounting is calculated for the reactions considered for the 

105-106 y timescale in Figure 2-1). Quantitatively this parameter reveals the moles of CO2 

sequestered or released during weathering per cation equivalent in a given stream sample: 

𝜅𝑠𝑡𝑟𝑒𝑎𝑚 =
1

2
(−1 + 𝛾𝑠𝑡𝑟𝑒𝑎𝑚 + 𝜁𝑠𝑡𝑟𝑒𝑎𝑚)    (2-2) 

Here, stream is the proportion of cation equivalents in the stream derived from carbonate 

weathering per [Σ+]𝑡𝑜𝑡𝑎𝑙, and stream is the ratio of sulfate equivalents from sulfuric acid per total 

base cation equivalents. We calculate stream for a sample by multiplying the pyrite-derived sulfate 

concentration (i.e., deep multiplied by total sulfate concentration) by the [Ca2+]/[SO4
2-] and 

[Mg2+]/[SO4
2-] ratios in the sample calculated by NMF to have derived from the deep weathering 

endmember and then dividing by [Σ+]𝑡𝑜𝑡𝑎𝑙. Likewise, stream is calculated by multiplying the 

fraction of sulfate from pyrite + acid rain (e.g., deep + shallow) by the total sulfate concentration 

and dividing that by [Σ+]𝑡𝑜𝑡𝑎𝑙. This calculation shows that seasonally, Shale Hills switches 

between net source and net sink of CO2 (Figure 2-5D). Using the weathering reactions described 

in Appendix A.2.2, we also calculated the actual associated CO2 fluxes; annual CO2 dynamics are 

net-neutral at Shale Hills when considered over timescales of 105– 106 yr (Table 2-1; Figure A-4 

in Appendix A.6).  
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The switch in systems from operating as a source or a sink is attributed to seasonality in 

the dominant flowpath: CO2-weathering of silicates occurs year-round, but H2SO4-weathering is 

more important in the wet season and is dominated by acid from rain. Specifically, in the dry 

season when water tables are low, the stream water is often dominated by deeper groundwater 

flow that interacts with the deep pyrite reaction front and has little contribution of acid rain. 

However, even though this dry season is characterized by higher proportions of pyrite-derived 

sulfate, the watershed acts predominantly as a sink of CO2 during this time of the year because 

the drawdown of CO2 from CO2-weathering of silicates is larger than the efflux of CO2 from 

pyrite-driven H2SO4-weathering of carbonate (Figure 2-5D). In the wet season when water tables 

are high, however, the stream is dominated by shallow interflow that does not interact with pyrite 

but has a large contribution of H2SO4 from rain. Kanzaki et al. (2020) also previously showed that 

the separation of reaction fronts (Figure 2-3) can cause such important effects on CO2 fluxes, 

although that previous treatment focused strictly on simple model systems unaffected by acid 

rain. 

To test the accuracy of these inferences based on NMF, we compare to previous results 

for Shale Hills. Based on soil pore-water chemistry and rain fluxes at Shale Hills, Jin et al. (2014) 

estimated the CO2 drawdown from silicate weathering to be 44 mmol m-2 yr-1. We find that if we 

assume all silicate weathering is CO2-driven, then the silicate weathering drawdown is 38 mmol 

m-2 yr-1, which is consistent with the estimate of Jin et al (2014). But 44 mmol m-2 yr-1 is an 

overestimate because it does not consider H2SO4-weathering of silicates or carbonates.  

2.3.4 East River 

Shale Hills is unique in that it is a monolithologic catchment and the data volume to 

constrain endmember apportionment is large. But NMF also works well for watersheds in which 
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the subsurface flow and reactions are less constrained partly due to the more complex subsurface 

geology. The weathering profile at East River (underlain by black shale) shows that pyrite and 

carbonate are depleted in upper layers but start dissolving at ~2-4mbls (Wan et al., 2019). PCA 

shows that the number of components is 2. The composition of the endmembers for East River 

are similar to Shale Hills (Table A-2 in Appendix A.5); however, the endmember composition 

indicates a higher proportion of H2SO4-weathering of carbonates (see Appendix A.2).  

Based on NMF for East River, pyrite contributes 62% of the annual sulfate flux (Table 2-

1). Sulfuric acid drives 29% to 69% of carbonate dissolution depending on the season, and this 

compares well with previous estimates of 35-75% (Winnick et al., 2017). Unlike Shale Hills, 

pyrite oxidation at East River is the dominant source of sulfate because acid rain is less important, 

and the black shale is pyrite-rich (Figure 2-5B).  

Although East River is like Shale Hills in that it intermittently switches between acting as 

a source or sink of CO2 (Figure 2-5), the seasonality of the switch between Shale Hills and East 

River is reversed. During baseflow (i.e., between periods of precipitation), Shale Hills is 

predominantly a sink of CO2, and it sometimes switches to a source of CO2 in the wet season 

because acid rain competes with CO2 and reduces CO2 consumption from silicate weathering. 

Without the large acid rain influx, East River instead acts as a sink of CO2 during the wet season 

of snowmelt and then switches to a source during baseflow. Our results are consistent with 

previous interpretations (Winnick et al., 2017) suggesting CO2 efflux rates are highest in 

baseflow-dominated and lowest in snowmelt-dominated flow regimes. 

2.3.5 Hubbard Brook 

Monolithologic shale watersheds are not the only target chemistries that can be 

deconvoluted with NMF: we now consider Hubbard Brook, a catchment on crystalline rock. 
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Large variations in the 34S composition of the bedrock at Hubbard Brook (Bailey et al., 2004) 

mean that sulfur isotopes in stream water cannot be used to unambiguously apportion sulfate 

sources. Weathering fluxes from sulfide minerals are therefore difficult to constrain (Mitchell et 

al., 2001). 

At Hubbard Brook, PCA shows three endmember sources of sulfate. As described below, 

we attribute these to three inferred flow lines, two in till and one at depth: waters flowing through 

i) shallow soil developed from till, ii) moderately-deep, less-weathered till, and iii) weathering 

bedrock. A three-layered weathering profile has been observed in other till-covered areas of New 

Hampshire as well (Goldthwait and Kruger, 1938). We used these ideas to identify endmembers 

as described below.  

Concentrations of sulfate in acid rain have declined over time in northeastern USA 

(Lynch et al., 2000; Lehmann et al., 2007). Of the three NMF-determined endmembers at 

Hubbard Brook, two of them show declining sulfate concentrations with time. We therefore 

attributed the first and second endmembers to acid rain (Figure A-1 in Appendix A.6).  

Only one endmember showed little to no decline in sulfate concentration over time, and 

we therefore attributed that endmember to deep weathering in water interacting with the 

underlying bedrock. The composition of the deep weathering endmember shows a strong 

correlation between [Mg2+]/[SO4
2-] and [K+]/[SO4

2-].  This chemical signature is similar to 

previous observations of weathering of metasedimentary rock piles where silicates (biotite and 

chlorite) are the first minerals to dissolve when sulfides oxidize (Moncur et al., 2009). 

Specifically, biotite (K(Si3Al)Mg2FeO10(OH)2) is known to release Mg2+ and K+ while chlorite 

releases Mg2+ upon weathering.  Moreover, the metamorphic conditions that produce pyrrhotite 

also produce biotite and chlorite, and those three minerals tend to be located together in schist 

foliations (Carpenter, 1974). We thus infer that pyrrhotite oxidation at Hubbard Brook apparently 

causes dissolution of biotite + chlorite because these are the most susceptible minerals in close 
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proximity to the sulfide. Thus, several lines of evidence underlie our interpretation that 

component 3 is the deep weathering source of sulfate.  

From the NMF results summarized in Table 2-1, pyrrhotite can account for 30% of the 

total sulfate flux at Hubbard Brook. The schist and till contain essentially no carbonate; therefore, 

weathering is always a net sink for CO2. In this watershed, however, the story is complicated by 

the dissolution of silicate minerals by sulfuric acid from pyrrhotite oxidation and acid rain. If we 

had assumed all of the base cations detected in Hubbard Brook were caused by CO2-weathering, 

we would have overestimated the net drawdown of CO2 out of the atmosphere (Figure 2-1).  

2.3.6 Predicting CO2 release or drawdown from rock chemistry 

From the stream chemistry, we found that Shale Hills and East River are net neutral with 

respect to CO2, and Hubbard Brook is a net sink (Table 2-1; Figure 2-5). In Table 2-1, the 

weathering fluxes are summarized as CO2 fluxes (see Appendix A.2.2; Figure A-4 in Appendix 

A.6), but the NMF results can also be used to calculate weathering losses for each mineral as 

described in Appendix A.2.5 (Table A-5 in Appendix A.5). Although we do not explicitly discuss 

each of these mineral-related fluxes learned from NMF, they have resulted in differences in 

composition of soil versus protolith and we can use soil chemistry therefore as an additional test 

of stream: specifically, we compare stream to the CO2 flux recorded in the weathered profile as 

solid-phase chemistry. To do this, we calculate a CO2 sequestration coefficient analogous to 

stream but instead based on rock chemistry, rock, by assessing soil and taking into account the 

fraction of base cations weathered, the fraction of base cations from carbonates, and the capacity 

of the bedrock to produce H2SO4:  

𝜅𝑟𝑜𝑐𝑘 =
1

2
(𝜏 + 𝛾𝑟𝑜𝑐𝑘 + 𝜁𝑟𝑜𝑐𝑘)     (2-3) 
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In effect, rock is the time-integrated CO2 sequestration coefficient recorded as the solid 

phase weathering products in units of mol CO2/eq base cation. In eq. 2-3,  is the mass transfer 

coefficient for base cations at the land surface (where 1- equals the fraction of total base cations 

originally present in parent rock that remain in topsoil at land surface), rock is the proportion of 

base cations in the bedrock associated with carbonate minerals, and rock is the acid generation 

capacity of the rock. The derivation of eq. 2-3 and description of each variable is more fully 

summarized in Appendix A.2.3. Briefly, rock expresses the proportion of base cations in the 

parent rock that are associated with carbonate minerals (varies from 0 to 1 for 100% silicate 

protolith to 100% carbonate protolith). rock expresses the relative amount of (acid-generating) 

pyrite to base cations in the protolith (varies from 0 to 1.5 for catchments where 100% of 

weathering is CO2-driven to catchments where 100% of weathering is H2SO4-driven, 

respectively).  expresses the fraction of cations that have not dissolved away upon exposure at 

the land surface (varies from -1 to 0 for 0% cations remaining at land surface to 100% cations 

remaining, respectively). Negative rock describes a lithology that has been net sequestering CO2 

over the duration of weathering, whereas positive rock has been net releasing CO2. Based on the 

chemistry of the bedrock and topsoil at each watershed, rock is -0.08 ± 0.11, 0.08 ± 0.17, and -

0.19± 0.11 for Shale Hills, East River, and Hubbard Brook, respectively (Table 2-1 and Table A-

4 in Appendix A.5). Based on these values from observations of the solid weathering phases, 

Shale Hills and East River on net are CO2 neutral (i.e., within error of 0), but Hubbard Brook has 

acted as a long-term CO2 sink.   

If the streams at each site today are acting just like the weathering recorded over the last 

tens of thousands of years in the solid-phase material and our assumptions about CO2- versus 

H2SO4-weathering are correct, rock should equal stream. Here, we find that stream (discharge-

weighted average) for Shale Hills, East River, and Hubbard Brook are 0.01 ± 0.03, -0.02 ± 0.02, 
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and -0.14 ± 0.01 respectively (Table 2-1, Figure 2-5). For all sites, the stream chemistry shows 

similar values of CO2 sequestration coefficient for the modern (stream timescale) compared to the 

time-integrated (soil timescale), i.e., stream  rock, consistent with Shale Hills and East River 

acting as CO2 net neutral but Hubbard Brook as a CO2 sink.  In addition, at Hubbard Brook, it can 

be seen that acid rain has competed with CO2 in weathering minerals, lowering the capacity of the 

rock to sequester atmospheric CO2. Because our calculation of rock does not include acid rain, we 

would expect acid rain would increase stream relative to rock, which is what we observe at 

Hubbard Brook. Hubbard Brook has only moved back to equivalency between the rock and 

stream record in recent years (2013-2016; Figure 2-5F) as the system has recovered from acid 

rain. These comparisons also suggest that rock chemistry, which is much easier to analyze, can 

sometimes predict stream fluxes adequately. 

2.4 Conclusions 

By not requiring a priori assignments of endmembers, our machine learning model not 

only successfully reproduced source apportionments made in more traditional endmember 

analysis for streams, but also revealed new information about how watersheds work.  At the same 

time, the method also solved some issues related to source apportionment for streams with time 

variations of large acid rain inputs. The approach documented that two carbonate-containing 

shale watersheds (Shale Hills, East River) are intermittent sources or sinks of CO2 to the 

atmosphere but on net are neutral with respect to CO2. In contrast, because it has no carbonate 

minerals, Hubbard Brook is a constant sink for CO2 (Figure 2-5 and Figure A-5 in Appendix 

A.6). These observations were compared and confirmed by comparing stream chemistry to rock 

chemistry.  
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NMF also emphasized the importance of different water flowpaths in determining 

endmembers: the endmembers were not strictly defined by mineralogy but by patterns of 

subsurface flow that can be related to subsurface reaction zones. These flowpaths lead to patterns 

in stream water chemistry that were easily deciphered by our newly developed machine learning-

based mixing model. In particular, for three streams, signals in the chemical variations were 

observed to reveal dissolution of the most reactive mineral in proximity to sulfide oxidation. 

Many watersheds have flowpaths distinguished by geochemical signatures from mineral reactions 

(Brantley et al., 2017) but we do not know these paths a priori when we investigate stream 

chemistry. Machine learning will be useful to model mineral reactions on broader spatial scales 

and will help constrain global weathering-related CO2 dynamics because it can delineate 

endmembers without a priori assumptions.  

Beyond these attributes, the machine learning approach also revealed other new attributes 

of weathering. In Shale Hills, we discovered that sulfate inputs from acid rain may not be 

exported completely for two decades, which impacts mass balance and weathering-related CO2 

dynamics. Although not discussed explicitly here, this decadal time-lag was also observed at 

Hubbard Brook. NMF also showed that Hubbard Brook, recovering from the impacts of acid rain, 

is only recently returning to its full potential as a CO2-sequestering rock system. In other words, 

prior to acid rain, Hubbard Brook sequestered more CO2 per mole of weathered bedrock than it 

does today. But acid rain dissolved some of the silicates with H2SO4, lowering the CO2 

sequestration capability of the watershed. NMF led us to discover this new attribute of acid rain, 

namely that it diminishes the capacity of a rock to sequester CO2 at millennial timescales (Figure 

2-1) by replacement of CO2 by H2SO4 as a weathering agent. Regardless of the net CO2 dynamic, 

we discovered that without considering sulfide oxidation or acid rain, the CO2 weathering sink 

considered over 105 to 106 yr timescales is always overestimated. 
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2.5 Tables 

 

  

Table 2-1:  Fluxes of SO4
2-, Cations, and CO2 

      Shale Hills East River Hubbard Brook 

 Base Cation Fluxes (meq m-2 yr-1)a 

Total base cation flux 336 ± 13 1540 ± 30 84.6 ± 0.8 

Base cation flux from CO2-weathering of 

silicates  
12.6 ± 21.1 315 ± 58 24.1 ± 0.8 

Base cation flux from CO2-weathering of 

carbonates 
216 ± 16 587 ± 48 NAc 

Base cation flux from H2SO4-weathering of 

silicates  
62.4 ± 1.0 152 ± 4 60.5 ± 0.2 

Base cation flux from H2SO4-weathering of 

carbonates 
44.8 ± 1.9 488 ± 9 NAc 

 Fluxes (mmol m-2 yr-1)b 

Total sulfate flux 50.3 ± 0.3 198 ± 1 30.3 ± 0.1 

Sulfide-derived sulfate flux 11.2 ± 0.9  122 ± 4 9.1 ± 0.1 

Rain-derived sulfate flux 38.9 ± 1.0 76.0 ± 4.2 21.2± 0.6 

CO2 sequestration or release   4.9 ± 10.7 -35.6 ± 30.4 -12.1 ± 0.4 

 
CO2 Sequestration Coefficients 

stream
d,e 0.01 ± 0.03 -0.02 ± 0.02 -0.14 ± 0.01 

rock 
-0.08 ± 

0.11 
0.08 ± 0.17 -0.19 ± 0.11 

 

aWeathering fluxes calculated following procedure in Appendix A.2.2 
bNegative CO2 flux indicates sequestration and positive indicates release to atmosphere as considered over 105– 106 yr 

timescales (see Figure 2-1) 
cNo carbonate cation fluxes reported because the bedrock contains no carbonate 
dStream CO2 sequestration coefficient integrated over the period of record for each site  
eRock and stream CO2 sequestration coefficients show that Shale Hills and East River are within error of net-neutral 

with respect to CO2 and Hubbard Brook sequesters CO2.  
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2.6 Figures 

 

 

Figure 2-1:  Schematic summarizing the reactions, timescales, and net CO2 release to or uptake 

from the atmosphere accompanying weathering of silicate and carbonate minerals. Uptake or 

release depends upon timescale, as shown, and as discussed in text. CaSiO3 is used as a generic 

silicate mineral.   
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Figure 2-2:  Schematic diagram showing the differences between a traditional mixing model and 

our machine learning mixing model (A). Notably, in the machine learning mixing model, 

endmember chemistry is not assigned a priori, but rather derived from patterns in the data. Results 

from using our machine learning mixing model (i.e., NMF) on a synthetic dataset of known 

endmember chemistry and mixing proportions (i.e., ) are shown in B and C. Using only the 

synthesized stream sample chemistries, the model adequately recovered the correct mixing 

proportions (B) and endmember chemistries (C). The axes in (C) are the true concentration ratios 

of the endmembers and the NMF-derived concentration ratios of the endmembers. 
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Figure 2-3:  Schematic cross section of Shale Hills showing the depths (labelled lines) where 

oxidation of pyrite, and dissolution of carbonate, chlorite, and illite initiate (modified after Brantley 

et al., 2013a). Illite and chlorite dissolve at all depths above the labelled lines, but reactions of 

carbonate minerals and pyrite only occur in a narrow one-meter wide depth zone under the ridge 

that widens to several meters toward the valley. Specifically, pyrite oxidation is complete under 

both ridge and valley at the depths where chlorite dissolution initiates. Carbonate dissolution is 

complete at the depth where pyrite oxidation is complete under the ridge but at ~4 m above the 

pyrite front under the valley. These reaction fronts are estimated and extrapolated from bulk 

chemistry measured in samples from boreholes located at the ridge and valley (Jin et al., 2010; 

Brantley et al., 2013a; Gu et al., 2020b). 
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Figure 2-4: Sulfur isotope composition plotted versus concentration for sulfate in the subset of 

stream or groundwater samples at Shale Hills where S isotopes were measured (symbols; Jin et al., 

2014). Dot-dashed lines represent the average sulfur isotope range for acid rain in USA (3-5‰; 

Bailey et al., 2004) and dashed lines represent the average sulfur isotope range of pyrite calculated 

from NMF results (-9.5‰ to -7.2‰). Sulfur isotopes in pyrite at Shale Hills were previously 

constrained to lie in the range of -1‰ to -15‰ (Jin et al., 2014). (B) Plot showing the calcite 

saturation index (log calcite) vs. concentration of pyrite-derived sulfate (calculated through NMF) 

in surface and groundwater samples at Shale Hills where alkalinity was measured. Here calcite (= 

ion activity product / equilibrium constant for calcite dissolution) is <1 the water is undersaturated 

with respect to calcite, and when calcite is >1, the water is oversaturated. Black line represents 

water-calcite equilibrium. Some samples in B differ from those in A because more samples were 

collected for alkalinity than sulfur isotopes. In both A and B, color shading represents the fraction 

of total sulfate derived from pyrite calculated by NMF (i.e., deep). (C) Time series plot showing 

the flux of sulfate in Pennsylvania NADP site PA42 (2.8 km from Shale Hills) from wet and dry 

deposition (see Appendix A.2.4). Black bar shows the NMF results for the export flux of sulfate 

derived from acid rain for Shale Hills during our sampling period, and the rationale for the inferred 

19 y lag between input and output.   
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Figure 2-5:  Concentration of total sulfate (black line), rain-derived sulfate (NMF-calculated; gray) 

and sulfide-derived sulfate (NMF-calculated; yellow) in stream water plotted versus time at Shale 

Hills (A), East River (B), and Hubbard Brook (W-3 sub-catchment) (C). Shale Hills and East River 

temporally switch between being a source and sink of CO2, while Hubbard Brook is always a sink 

over the timescales studied, as shown by the CO2 sequestration coefficient (stream) for Shale Hills 

(D), East River, (E), and Hubbard Brook (F). Gray error bars in D, E and F represent 1s.d. from the 

calculated stream for that sample. The range (mean + 1s.d.) indicated in red to the right of D, E, and 

F represent rock, the time integrated CO2 sequestration coefficient calculated from the rock 

chemistry (see text). Here, stream > 0 or <0 indicates stream is a source or sink of CO2 respectively 

when considering weathering reactions over 105 to 106 yr timescales (see Figure 2-1).  The long 

record at Hubbard Brook shows that stream is approaching rock as the watershed recovers from acid 

rain. Gaps in the time series for Shale Hills occur when the autosampler tubing or stream froze. 
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Abstract 

As drinking-water scarcity grows worldwide, we need to improve predictions of the 

quantity and quality of our water resources. An overarching problem for model improvement is 

that we do not know geological structure of aquifers in sufficient detail. We discovered that 

mineral-water reactions imprint structure in the subsurface that impacts flow and transport of 

some chemical species. Specifically, pyrite, a ubiquitous mineral, commonly oxidizes and 

depletes in the upper layers of most watersheds, only remaining at tens of meters of depth. 

Variations in sulfate concentrations released into rivers from oxidizing pyrite reflect the rate 
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limiting step of oxidation and the relationship between the land surface and pyrite-oxidizing 

layers. Although coal mining changes the natural dynamics, patterns in stream chemistry as a 

function of discharge are consistent with deep and shallow pyrite oxidation zones in small and 

large watersheds respectively. Understanding the subsurface patterns of mineral reactions and 

how they affect the architecture of aquifers will elucidate patterns of changing river chemistry 

and our ability to manage water resources. 

3.1 Introduction 

Geologists investigate the evolution of the land surface through direct observation. In 

contrast, below the land surface, water dissolves and precipitates minerals in localized zones 

called reaction fronts that define landscapes we cannot see (Brantley et al., 2014). These 

subsurface landscapes have both a physical and chemical structure that impact many processes 

such as groundwater flow and storage and contaminant fate and transport. Of particular interest is 

the redox architecture of a watershed, a term we use to refer to the zones of oxidized and 

unoxidized bedrock (Gu et al., 2020a), which includes both minerals and organic matter. 

Understanding the redox architecture of a watershed is important because the fate and transport of 

many environmental contaminants depend on redox processes along subsurface flowpaths (Borch 

et al., 2010). For example, nitrate leaching into groundwater from excess fertilizer application is 

one of the major threats to environmental and public health worldwide (Galaviz-Villa et al., 

2010). Although conservation efforts have reduced nitrate runoff from farms, stream nitrate 

concentrations have remained high due to the persistence of legacy nitrate in groundwater (Van 

Meter et al., 2017; Van Meter et al., 2018). Whether or not a watershed is susceptible to legacy 

contamination may depend on its underlying redox architecture (Tesoriero et al., 2013; Tesoriero 

et al., 2015). Several studies have aimed to predict redox conditions in groundwater using 
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measurements of dissolved oxygen, watershed characteristics (e.g., lithology, land use, and soil 

properties), and statistical analysis (e.g., Tesoriero et al., 2015; Close et al., 2016; Tesoriero et al., 

2017; Friedel et al., 2020), but interpreting these results with respect to watershed function and 

contaminant transport remains difficult – especially at large spatial scales – because of landscape 

heterogeneity.  

While we do not focus on the nitrate system here, we nonetheless explore the redox 

architecture of the subsurface by investigating pyrite oxidation. Pyrite, a ubiquitous but trace iron 

sulfide mineral, is generally depleted through oxidation in the upper layers of near-surface rock 

through interaction with oxygenated water (Gu et al., 2020a, and citations therein).  In fact, only 

rarely are detrital pyrite-containing sediments found in the rock record since atmospheric oxygen 

levels increased above 10-5 PAL (present atmospheric level), because pyrite in these particles 

oxidizes so rapidly near Earth’s surface (Johnson et al., 2019). Gu et al. (2020a) showed that 

many rocks are unaffected by oxidation at depths of tens of meters below land surface but are 

completely pyrite-free at the land surface. They also identified a depth interval of oxidation (a 

reaction front) that somewhat parallels the land surface under headwater catchments. In some 

watersheds where the front remained sub-parallel to the land surface, pyrite-containing rock was 

observed to never reach the land surface but in other watersheds, river incision exposes pyrite in 

the channel. We hypothesized that the pyrite oxidation front might indicate the transition from 

oxic to anoxic groundwater in a watershed and might control sulfate dynamics. Understanding the 

vertical distribution of pyrite in the subsurface (i.e., the depth of the reaction front) might 

eventually enhance predictions of transport for redox-active contaminants such as nitrate or 

organic compounds.  

Here we join a machine learning based mixing model with a physically based oxidation 

model to explore what concentration-discharge relationships can teach us about the subsurface 

redox architecture of a watershed across spatial scales, and we apply it to watersheds in the 
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United States (US) using publicly accessible water quality databases. This investigation is 

important because, although it is known that outcropping rock type is a major control on river 

chemistry (Meybeck, 1987), few studies have linked subsurface distributions of minerals (e.g., 

pyrite) to changes in stream concentrations at basin scale. If such linkages could be made, our 

ability to predict water quality and legacy contamination would greatly improve. 

3.2 Methods 

3.2.1 Data Acquisition 

For this study, we first aggregated datasets of stream concentration and discharge 

measurements in a series of four increasingly larger, nested watersheds that range from zeroth 

order to 7th order (HUC16 to HUC4) (Figure 3-1; Table B-3 in Appendix B.3). For the smallest 

watershed of Shale Hills (HUC16; Figure 3-1A), we utilized data collected from 2008-2010 

(Brantley et al., 2013a-c). For the next larger watershed of Shaver’s Creek (HUC10; Figure 3-

1B), we utilized datasets from three locations for samples collected from 2014-2020 (Brantley et 

al., 2018a,b, this study). This HUC-10 watershed comprises the Susquehanna Shale Hills Critical 

Zone Observatory (SSHCZO) (Brantley et al., 2018c).  Lastly, data were downloaded for two 

sites in the Juniata River Basin (HUC8; Figure 3-1C) and nine sites in the Susquehanna River 

Basin (SRB) (HUC4; Figure 3-1D) from the Water Quality Portal (WQP; Read et al., 2017), a 

national repository for water quality data. These sites were selected based on the following 

criteria: 1) they were located along the main stem of the river, and, 2) they provided >15 samples 

where aqueous Ca2+, Mg2+, Na+, K+, Cl−, NO3
-, and SO4

2-, were all measured between 2014 and 

2020. All data from the WQP were accessed and downloaded using dataRetrieval, an R package 

developed by the United States Geological Survey (USGS; De Cicco et al., 2018). 
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To disentangle effects related to watershed scale from those related to presence/absence 

of coal, we retrieved data from watersheds in the western US. For these watersheds, we do not 

apply the machine learning model (see Section 3.2.3) to separate the sources of sulfate due to 

computational limitations. Instead, we target watersheds where pyrite would be the predominant 

source of sulfate by querying for watersheds that meet the following five criteria: 1) west of 

longitude -104° to minimize the effects of acid rain (longitude determined using acid deposition 

maps from the National Atmospheric Deposition Program); 2) <5% agricultural land use to 

minimize the effects of fertilizers; 3) without evaporites (i.e., gypsum); 4) with a positive water 

balance (precipitation/potential evapotranspiration >1) to minimize the effects of evaporation; 5) 

with >15 concentration-discharge (C-q ) measurements for analysis. We identified 291 

watersheds that met these criteria. 

3.2.2 Water Sampling and Analysis 

Although much of the Shaver’s Creek data has been published as referenced above, some 

waters were also sampled in this study using identical sampling approaches. For routine 

sampling, we collected stream water and split the sample into two subsamples. For cation 

analysis, we filtered the sample through a 0.45 m filter and field-acidified to pH < 2 using 10% 

nitric acid. For anion analysis, we filtered the sample through a 0.45 m filter and left the sample 

unacidified. All samples were stored at temperatures 5C before analysis. Cation concentrations 

were measured on an Thermo Scientific iCAP 7400 Inductively Coupled Atomic Emissions 

Spectrometer and anion concentrations were measured on an Dionex Ion Chromatograph.  

Additionally, an optical sensor (Campbell Scientific CS511) was deployed 20mbls in a 

well (CZMW11) at Shale Hills to measure dissolved oxygen concentrations over time from 2019-

2020. A stage sensor (MeterGroup Hydros 21) was also deployed to monitor water level depth 
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during the same time interval. Measurements were taken every 15 minutes and stage 

measurements were corrected to account for instrumental drift (Shaughnessy et al., 2019). All 

data for these sensors can be found on the SSHCZO website 

(http://www.czo.psu.edu/data_time_series.html). 

On two sampling campaigns, surface water and groundwater were collected over the 

course of two days throughout the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO; 

Shale Hills, Cole Farm, Garner Run, Shaver’s Creek; see Brantley et al. (2018c) for site details) 

for sulfur isotope compositions of sulfate (i.e., 34S; Table B-2 in Appendix B.3). These samples 

were vacuum filtered through a 0.2 m filter in the laboratory. Then, samples were dripped 

through an ion exchange column packed with 5 g of Cl- type Bio Rad 1-X8 anion exchange resin. 

Before introducing each sample, ion exchange columns were pre-cleaned by triple rinsing with 3 

M hydrochloric acid and then triple rinsing with deionized water. Once loaded, sulfate from each 

sample was eluted with 45 mL of 0.8 M hydrochloric acid as described in Le Gendre et al. 

(2017). This approach isolates sulfate and removes potential contamination by other anions (e.g., 

nitrate). Once eluted, sulfate was precipitated as barite (BaSO4) by adding 5 mL of saturated 

BaCl2 in deionized water. Barite was then centrifuged and rinsed 3x with deionized water and 

dried for isotope analysis. 

For isotope analysis, ~0.3 to 0.4 mg of barite were weighed into a tin boat along with an 

excess (~5x) of vanadium pentoxide (V2O5) to ensure consistent 18O abundance in resulting SO2 

analyte gas, as 32S18O16O will isobarically interfere with 34S16O16O (e.g., Fry et al. 2002). Samples 

were dried at least overnight in a vacuum oven prior to analysis on a Thermo Flash EA coupled to 

a Thermo Delta V isotope ratio mass spectrometer operated in continuous flow mode. Results are 

reported on the Vienna Canyon Diablo Troilite (VCDT) scale by analyzing a 3-point suite of 

international reference standards between every 10 samples (IAEA SO-5, 34S = +0.5 ‰; IAEA 

SO-6, 34S = -34.1 ‰; NIST NBS127, 34S = +20.3 ‰). Samples were analyzed in duplicate, and 
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uncertainty is reported as the difference between duplicate measurements; long-term precision of 

standard reference materials was always better than ±0.3 ‰ (±1 std. dev.). 

3.2.3. Rock Sampling and Analysis 

In addition to water samples, in-place bedrock was sampled from outcrops within the 

streambed at various locations within Shaver’s Creek catchment (Figure B-1 in Appendix B.4; 

Table B-4 in Appendix B.3). These samples were either collected from the surface using a rock 

hammer or recovered using a Shaw Portable Core Drill. The pulverized samples (<150 µm) were 

analyzed for the concentration of total sulfur (Gu et al., 2020a) and the values were compared to 

unweathered bedrock to estimate the extend of pyrite oxidation by assuming pyrite is the main 

sulfur-bearing mineral. A few thin sections were made by cutting across the center of the rocks 

and were checked under scanning electron microscopy (SEM). The elemental compositions of 

spots within the thin section were determined by energy dispersive X-ray spectroscopy (EDS). 

Based on the bulk analysis of total sulfur and microscopic observations from SEM and EDS, the 

samples were classified as either fully oxidized, partially oxidized, or unoxidized with respect to 

pyrite (Figure B-1 in Appendix B.4). 

3.2.4 Machine Learning Model 

To separate the sources of sulfate we utilize a machine learning-based mixing model 

called Non-negative Matrix Factorization (NMF) (Shaughnessy et al., 2021). In short, NMF is 

unique among mixing models because it determines the chemistry of the endmembers and the 

mixing proportions simultaneously. As a “blind source separation”, the user does not stipulate an 

endmember chemistry a priori; rather, NMF identifies endmember water chemistries and then 
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geochemists must interpret the identity of the endmember based on understanding of the system. 

NMF decomposes a matrix of stream chemistry, V (dimensions = n x m), into the product of two 

matrices, W and H. The m columns of V are concentration ratios [X]/[SO4
2-], where brackets 

denote molar concentration and X = Ca2+, Mg2+, Na+, K+, Cl−, and NO3
-. The n rows of V are 

samples taken at different sampling dates. W has the dimensions n x p, where n is the number 

sampling dates and p is the number of endmembers. The cell entries of W are the mixing 

proportions of the endmembers. The row sum of each entry in W is 1.00 ± 0.05, meaning that the 

stream chemistry is completely described (± 0.05) as a combination of endmembers. This is 

referred to as a unity constraint. H has the dimensions p x m and its cell entries represent the 

chemical signature of each of the endmembers. The only parameter that needs to be set before the 

model is run is p – the number of endmembers. To determine p, we utilize principal component 

analysis (PCA) to determine the number of components that are needed to explain >90% of the 

variation in the stream ratio data. We set p equal to this number of components. As used here, 

NMF is governed by a series of mass balance equations.  

The solution for NMF is non-unique; therefore, we run the model 10,000 times to account 

for variability in the derived endmember compositions and mixing proportions. We filter out any 

models that do not fulfill the unity constraint. Additionally, following Shaughnessy et al. (2021), 

we filter out poor-fitting models and retain only the 5th percentile of best-fitting models. These are 

averaged and reported here. 

The validity of the NMF modeling was investigated in Shaughnessy et al. (2021). In our 

previous study, we created a synthetic dataset where the mixing proportions and the endmember 

chemistries (H) were known, but not input into the model. We found that NMF successfully 

derived the correct endmember chemistries and mixing proportions for the synthetic dataset. 

Additionally, we compared sulfur isotopes and calcite saturation indices to the modeling results 

for samples from Shale Hills. We found that when pyrite-derived sulfate concentrations were high 
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(as determined by NMF), sulfur isotopes showed a depleted signature that is consistent with 

pyrite at Shale Hills, and the water was saturated with respect to calcite, which is consistent with 

sulfuric acid driving dissolution of the ubiquitous mineral, calcite, at depth. Both of these 

observations are consistent with pyrite oxidation, which supports that our model identifies the 

pyrite-sulfate signal in the stream chemistry and separates pyrite-sulfate from other sulfate 

sources such as acid rain or fertilizer. 

3.2.5 Data Analysis 

First, stream samples from Shaver’s Creek were utilized in the NMF model (Section 2.3; 

eq. 1) to separate the sources of sulfate. Sources for Shaver’s Creek were determined using sulfur 

isotopes and the H matrix from the NMF decomposition.  After developing the Shaver’s Creek 

model, we constructed models for the Juniata and Susquehanna River sites (Figures 3-1C,D).  

After NMF, we utilized the pyrite-derived sulfate concentrations in an oxidation model 

for each site (see Section 3.4.1; eq. 3-3). Following a published approach (i.e., Ibarra et al., 2016), 

we fit the oxidation model to the concentration and discharge data using a non-linear least squares 

model. All model calculations were performed in R using the nls2 package.  

3.3 Results 

3.3.1 Sources of Sulfate 

Following our previous approach for Shale Hills where two components (i.e., pyrite 

oxidation and acid rain) were observed to explain stream sulfate concentrations (Shaughnessy et 

al., 2021), we investigated pyrite oxidation in the larger, encompassing HUC-10 watershed of 
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Shaver’s Creek. For that dataset, principal component analysis (PCA) revealed three components 

were needed to explain >90% of the variance in stream chemistry. Given that Shaver’s Creek has 

agricultural land use, we anticipated that the three sources of sulfate would be the two identified 

at Shale Hills (acid rain, pyrite) and an additional sulfate source, fertilizer.  

Sulfur isotopic measurements are also consistent with three inferred sources of sulfate in 

Shaver’s Creek (Figure 3-3). In particular, the isotopic signature of dissolved sulfate in Shaver’s 

Creek water falls in between the inferred compositions of three sources inferred to be acid rain, 

pyrite, and fertilizer. For example, the 34S values in shallow groundwater near a farm field are 

consistent with measurements of fertilizer sulfate as reported elsewhere (Zhang et al. 2015). In 

contrast, the 34S values in groundwater in a subcatchment within the SSHCZO that is underlain 

by sandstone (i.e., Garner Run) are consistent with acid rain. A third sulfate source is inferred 

from the 34S values in deep groundwater at Shale Hills: these are very depleted, ranging from -

15‰ to 0‰, consistent with pyrite oxidation (Jin et al., 2014). The isotopic signature of dissolved 

sulfate in Shaver’s Creek water falls in between the inferred compositions of acid rain, pyrite, and 

fertilizer, as expected if these three endmembers contribute sulfate to Shaver’s Creek (Figure 3-

3).   

Based on the PCA and the isotope data, we set the number of endmembers (i.e., p) in the 

NMF model to 3.  After running the model, the derived geochemical signatures for each of the 

three endmembers are distinct (Table B-1 in Appendix B.4). We use geochemical knowledge to 

identify these sources. Comparing results from Shaver’s Creek to non-agricultural headwater 

Shale Hills, we identify the first two sulfate sources in Shaver’s Creek as pyrite oxidation and 

acid rain (Shaughnessy et al. 2021). Pyrite oxidation can be identified because oxidation releases 

sulfuric acid which, in almost all sedimentary rock, causes dissolution of (Ca, Mg) carbonate 

minerals at depth, releasing Ca2+ and Mg2+ to ground waters. Therefore, the source with the 

highest ratios of [Ca2+]/[SO4
2-] and [Mg2+]/[SO4

2-] is identified as pyrite oxidation. To identify the 
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acid rain endmember, we note that rain retains the Na/Cl ratio of ocean water, 0.86 (Möller, 1990; 

Neal and Kirchner, 2000), very close to that of endmember 2, 0.89 (Table B-1 in Appendix B.4). 

The third endmember in the Shaver’s Creek model has the highest [NO3
-]/[SO4

2-] ratio, which we 

infer to represent fertilizer application in the watershed. 

3.3.2 Dissolved Oxygen Dynamics 

The reactant driving pyrite oxidation is dissolved oxygen at the reaction front. Here, we 

show the concentration of DO in groundwater, CDO, measured from 2020-2021 in a ridgetop 

borehole (CZMW11) located towards the outlet of the watershed at Shale Hills (Figure 3-5B). 

The DO probe was placed at 20 meters below land surface (mbls) within the reaction front, the 

depth of which was determined via solid phase analysis of drill cuttings (Gu et al., 2020a). 

Although sampled in different years, the seasonal trends of pyrite-derived sulfate in the stream, 

Csulf (sampled 2008-2010), and groundwater CDO (sampled 2020-2021) are opposite. Csulf is high 

in the dry season and low in the wet season, while CDO is high in the wet season and low in the 

dry season.  

3.3.3 Streambed Pyrite in Shaver’s Creek 

In addition to water chemistry, the extent of pyrite oxidation in the stream bed varied 

downstream in Shaver’s Creek. In the samples where thin sections were made, euhedral or 

framboidal pyrite was observed in unoxidized samples via SEM. Where oxidation had occurred, 

we observed iron oxide pseudomorphs after pyrite. The elemental compositions of the framboids 

were determined by EDS and the pseudomorphs were found to contain no sulfur. We found that 

in some samples, pyrite framboids and iron oxide pseudomorphs were both present, which we 
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refer to as partially oxidized samples. In the upper part of the watershed, pyrite in outcrops within 

the streambed was predominantly fully or partially oxidized, whereas pyrite in downstream 

outcrops was predominantly unoxidized (Figure B-1 in Appendix B.4). 

3.3.4 Concentrations Across Watershed Scale 

The average sulfate concentration in the streams increases as the size of the drainage 

basin increases (Figure 3-4A). At the outlets of Shale Hills, Shaver’s Creek, the Juniata River, 

and the Susquehanna Rivers, for example, the average sulfate concentrations are 95 + 17, 114 + 

23, 160 + 37, and 223 + 57 M, respectively. All sites show similar seasonal trends in stream 

sulfate concentrations, where sulfate concentrations are highest in the summer and fall and lowest 

in the winter and spring.  

The relative proportions of pyrite, acid rain, and fertilizer derived sulfate change both 

temporally (seasonally) and with increasing spatial scale. The proportions of acid rain sulfate are 

larger in small watersheds, and as the watershed size increases, the proportions of pyrite and 

fertilizer both increase (Figure 3-4C). In all watersheds, we observe the highest proportion of 

pyrite-derived sulfate in the summer and fall and the highest proportion of acid rain in the winter 

and spring (Figure 3-4B). We observe no significant temporal trend in fertilizer-derived sulfate. 

3.4 Discussion 

3.4.1 Oxidation Model 

To explore river and groundwater sulfate dynamics, we propose a simple model that 

describes pyrite oxidation along a flowpath as recorded in variations in stream chemistry. There 
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are many oxidation reactions that remove O2 from groundwater. Some of the electron donors in 

these reactions include soil organic carbon, petrogenic organic carbon, and redox sensitive 

minerals such as pyrite and chlorite. We assume that oxidation of the modern organic matter 

occurs strictly in the soil and sediment, affecting the initial DO concentrations entering the 

underlying rock (as described below). In contrast, petrogenic organic matter can oxidize in the 

rock or in the soil. In general, however, pyrite is usually observed to be the first mineral to 

oxidize in bedrock. For example, observations document that pyrite tends to be depleted by 

oxidation before all the petrogenic organic carbon is oxidized (Petsch et al., 2000; Bolton et 

al.,2006; Hemingway et al. 2018). For this reason, we focus on pyrite oxidation because it is 

likely the deepest oxidation occurring in the bedrock.  

Following other simple weathering model treatments (e.g., Berner, 1978; Kump et al., 

2000) the change of pyrite-derived sulfate concentrations, Csulf (mol m-3), in stream waters over 

time, t, is a balance between dilution and R, the rate of pyrite oxidation (mol sulfate m-3 yr-1): 

𝜕𝐶𝑠𝑢𝑙𝑓

𝜕𝑡
= 𝑅 − 𝐶𝑠𝑢𝑙𝑓

𝑄

𝑉
      (3-1) 

For simplicity, we abbreviate pyrite-generated sulfate as p-sulfate. In eq. 3-1, Q is the 

volumetric flow rate of water through the system (m3 yr-1), and V is the volume of water stored in 

the watershed (m3). Ultimately, solving eq. 3-1 for steady state with respect to p-sulfate 

concentrations and defining Dw as the Damköhler coefficient (m yr-1) (Maher and Chamberlain, 

2014) results in the following equation (see Appendix B.1): 

𝐶𝑠𝑢𝑙𝑓 =
𝐶𝑠𝑢𝑙𝑓

𝑚𝑎𝑥,𝑜𝑏𝑠𝐷𝑤

𝐷𝑤+𝑞
      (3-2) 

Here, 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 is the empirical maximum concentration of p-sulfate, and q is the runoff 

(m yr-1). Dw equals the advective Damköhler number, Da, multiplied by q for the watershed. Da 

is the characteristic time scale of advection divided by that of pyrite oxidation. Although derived 

differently, eqn. 3-2 is mathematically equivalent to the equation previously proposed (Maher and 
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Chamberlain, 2014) that has been used by several authors to fit C-q data for silicate weathering 

(Ibarra et al., 2016; Wymore et al., 2017), carbonate weathering (Zhong et al., 2020), and global 

weathering patterns (Maher and Chamberlain, 2014, Ibarra et al., 2017); however, this study is 

the first time that the model is linked to the subsurface distribution of minerals. We determined 

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 and Dw for each watershed here by fitting measurements of Csulf versus q to eqn. 3-2 

using non-linear least squares regression.  

 

The flux of p-sulfate, Fpyrite, is manifested in stream chemistry as the product of 𝐶𝑠𝑢𝑙𝑓 and 

q and thus, using eq. 3-2, we can write 

𝐹𝑝𝑦𝑟𝑖𝑡𝑒 = 𝑞𝐶𝑠𝑢𝑙𝑓 =
𝑞𝐶𝑠𝑢𝑙𝑓

𝑚𝑎𝑥,𝑜𝑏𝑠𝐷𝑤

𝐷𝑤+𝑞
     (3-3) 

When q is very small, 𝐹𝑝𝑦𝑟𝑖𝑡𝑒 = 𝑞𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 and 𝐶𝑠𝑢𝑙𝑓 =  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 (eqs. 3-2- and 3-3), 

which means that p-sulfate concentrations are constant, and the rate of pyrite oxidation linearly 

increases with runoff. This behavior is interpreted as pyrite oxidation limited by transport of DO 

into or sulfate out of the system (transport-limited oxidation). When q is very large, 𝐹𝑝𝑦𝑟𝑖𝑡𝑒 =

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠𝐷𝑤 and 𝐶𝑠𝑢𝑙𝑓 =

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠𝐷𝑤

𝑞
 (eqs. 3-2- and 3-3), which means that p-sulfate 

concentrations are inversely proportional to runoff and pyrite oxidation rate is constant. Here, the 

rate of oxidation cannot keep up with the rate of dilution (kinetic-limited oxidation). 

Next, we interpreted our oxidation model with respect to the subsurface redox 

architecture across small and large watersheds. First, we define a new term,  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

, as the 

maximum concentration of p-sulfate in groundwater predicted after complete consumption of 

DO. We assume water at 10C (i.e., the average temperature of groundwater at Shale Hills) is 

equilibrated with atmospheric oxygen (i.e., DO = 11.3 mg/l or 353 µM) and reacts with pyrite 
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until DO reaches zero. Given these assumptions, 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 equals 188 µM. Although 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 

varies slightly with temperature, we assume that 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

= 188 µM everywhere for simplicity.  

We suggest four reasons why 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 could be less than 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. First, groundwater 

could be in equilibrium with soil gases rather than atmospheric gases. At Shale Hills, soil gas O2 

concentrations are 75% of PAL; therefore, groundwater in equilibrium with soils would have DO 

concentrations of 260 µM (8.3 mg/l) (Gu et al., 2020b). Second, other redox sensitive species in 

the bedrock (e.g., petrogenic organic matter, chlorite, biotite) could consume DO before the 

oxygen reaches pyrite. The relative importance of each electron donor in removing DO is 

determined by the vertical distribution, concentration, and oxidation kinetics of each species in 

the bedrock. Third, there could be too little pyrite in the bedrock to completely deplete the DO for 

a given packet of water and a given flowpath. In this situation, then the groundwater will remain 

oxic, and groundwater entering the stream will still contain DO. Lastly, the depth of groundwater 

flow might be less than the depth of the pyrite reaction front. A typical weathering profile from 

Shale Hills and other shale-underlain watersheds (Gu et al., 2020a) for pyrite is shown in Figure 

3-2A. Based on this weathering profile structure, three generalized types of flowpath are possible 

(Figure 3-2B): 1) above the reaction front such that water does not interact with pyrite and 

𝐶𝑠𝑢𝑙𝑓 = 0; 2) through part of the reaction front such that pyrite oxidation affects the water but 

does not deplete all DO, resulting in 𝐶𝑠𝑢𝑙𝑓 <  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

, and 3) completely through a reaction 

front that has enough pyrite to deplete the DO, such that 𝐶𝑠𝑢𝑙𝑓 =  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 (Figure 3-2B). 

Flowpaths 1 and 2 result in 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 < 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. 

Given the four explanations for understanding 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

, only the last explanation (i.e., 

differing flowpaths) has any implicit scaling relationship. In other words, the length and depth of 

flowpaths can change as a function of drainage area, but it is unlikely that relative importance of 
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different redox reactions (explanations 1 and 2) or the concentration of pyrite in the bedrock 

(explanation 3) systematically varies with watershed size. For this reason, we infer that 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 

can give clues to the average flowpath and its position with respect to the reaction front. 

Another way to understand the chemistry of each packet of water along a flowpath is to 

consider the average length of flow of the packet through the reaction front, 𝑙, normalized by the 

length of the total flowpath from the land surface to the stream (L). Those two quantities can be 

used to approximate the advective Damköhler number, Da, for a reaction under some 

circumstances (Brantley and Lebedeva, 2021):  

𝐷𝑎 =
𝐿

𝑙
       (4)  

In defining this Damköhler number, the watershed is likened to a packed-bed chemical 

reactor where L is the length of the reactor and l is the length of the reaction zone. For Da > 1 (L 

> l), the system is transport-limited, and for Da = 1 (L=l), the system is kinetic limited (the 

derivation for this treatment does not allow Da < 1 because L cannot be smaller than l). We can 

determine the relative flowpath length through the reaction front by converting Dw from our 

oxidation model to Da (i.e., Da = Dw/q).   

3.4.2 Oxidation Model for Shale Hills 

As discussed in Shaughnessy et al. (2021), there are two sources of sulfate at Shale Hills: 

pyrite oxidation and acid rain, and the NMF model successfully separates contributions in each 

stream sample from each source. Using the oxidation model (eq. 3-2) and our NMF 

decomposition, we aimed to describe how the concentration of pyrite-derived sulfate (Csulf) in the 

stream at Shale Hills changes as a function of runoff (q). We found that at low q, Csulf is relatively 

constant, consistent with pyrite oxidation limited by the transport of DO to the reaction front (i.e., 
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transport limited). At high q, Csulf is diluted to lower values, consistent with pyrite oxidation 

limited by reaction kinetics (i.e., kinetic-limited). For Shale Hills, we observe both transport- and 

kinetic-limited oxidation as evident in the C-q curve shown in Figure 3-5A.  Fitting eq. 3-2 to 

Csulf and q, we find 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 = 54 ± 2 µM and Dw = 0.4 ± 0.05 m yr-1 (p < 0.01; Figure 3-5A).  

At Shale Hills, 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠 < 𝐶𝑠𝑢𝑙𝑓

𝑚𝑎𝑥,𝑝𝑟𝑒𝑑
, regardless of whether we use soil O2 or 

atmospheric O2 to define 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. Using the conceptual model in Figure 3-2, we interpret this 

to mean that the stream mostly integrates flowpaths above and partially through the reaction front 

with little contribution of completely oxygen-depleted water that travels in flowpaths completely 

through the reaction front. However, we know that some groundwater flowpaths at Shale Hills 

travel across the pyrite reaction front. For example, Sullivan et al. (2016) collected groundwater 

samples from a ridgetop borehole (i.e., CZMW8) below the pyrite oxidation front as determined 

based on mineralogical analysis of borehole cuttings at depth. They found that the average sulfate 

concentration in the groundwater from this well at 30.1 mbls was 182 ± 38.7 M (n = 9), which is 

consistent with 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

= 188 M. This flowpath might not make it to the stream; therefore, it 

is not detected by our oxidation model, which relies on flowpaths that return to the stream. 

The seasonality of Csulf and CDO is consistent with consumption of DO via pyrite 

oxidation at Shale Hills. We observe that CDO increases seasonally (in CZMW11) as the water 

level in the borehole increases, i.e., as the water table rises (Figure 3-5B). This is consistent with 

advection of groundwater with high dissolved oxygen to the reaction front – perhaps through 

interconnected fractures (Gu et al., 2020b; Sullivan et al., 2016) – during the wet season. As the 

water level lowers, CDO decreases sharply, likely due to pyrite oxidation removing dissolved 

oxygen from the groundwater (Figure 3-5B). Because these measurements are taken 20 mbls and 

are within the pyrite reaction front, it is unlikely that the removal of oxygen from the groundwater 

in this location is due to oxidation of other materials (e.g., organic matter). 
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3.4.3 C-q Analysis 

Similar to Shale Hills (see Section 3.4.2), we calculated Dw and 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 for sites across 

Shaver’s Creek, the Juniata River, and the Susquehanna River using the oxidation model. The 

oxidation model successfully described the C-q behavior for all the sampling points (watersheds) 

in the study, except for S9, the most upstream site in the SRB. For S9, we observe an increase in 

Csulf as q increases, which cannot be described by our model. The fit of the model to the C-q data 

(for all sampling locations except for S9) can be seen in Figure 3-6. Generally, 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 

increases with increasing drainage area and Dw decreases. Small watersheds tend to show 

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 < 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 and large watersheds tend to show 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

> 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. As explained 

previously, values of  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 < 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 are easy to explain; however, the conceptual model 

(Figure 3-2B) fails to explain 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

> 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. We explore this trend further in Section 

3.4.4. 

3.4.4 Explanations for Observed Sulfate > Predicted Sulfate 

3.4.4.1 Two hypotheses 

To explain why most large watersheds show 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 > 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 in the SRB, we 

hypothesized that a different oxidant is present for the pyrite in larger watersheds. Fe3+ is a known 

oxidant for pyrite (Silverman, 1967), but ultimately, O2 is needed to transform Fe2+ (produced 

during pyrite oxidation by Fe3+) back to Fe3+ (i.e., regeneration of oxidant) and ferric iron 

concentrations are low at circumneutral pH; therefore, ferric iron cannot be the missing oxidant. 

Some studies have suggested that NO3
- can oxidize pyrite (Jørgensen et al., 2009; Torrentó et al., 
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2011); however, this reaction must be microbially mediated. Pore throats in the pyrite-containing 

zone of the shale at Shale Hills are too small for microorganisms to access the pyrite; therefore, 

pyrite oxidation in these locations is abiotic (Gu et al., 2020b). Although other watersheds might 

have larger pores, it is unlikely that pore size depends on watershed size; therefore, NO3
--

dependent pyrite oxidation is unlikely to explain the overall trends. We therefore concluded that 

an alternate oxidant is unlikely to explain our findings. 

This led us to hypothesize that transport of O2 to the mineral surface differed in large and 

small watersheds. If this is the explanation, it is likely related to the importance of coal mining in 

impacting riverine sulfate dynamics in the SRB over the last many decades (Raymond and Oh, 

2009). For example, coal mining in parts of the SRB has exhumed pyrite and exposed it at the 

surface, which allows direct interaction of pyrite with gaseous O2. The easy influx of O2 in air 

could explain riverine concentrations of Csulf and 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

greater than  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. We infer that 

as drainage area in the SRB increases, the probability that the watershed is impacted by coal 

mining increases (Figure B-2B in Appendix B.4). After mining coal in the larger watersheds, 

oxidation of pyrite becomes kinetic- rather than transport-limited. For example, studies 

investigating pyrite oxidation in mine tailings have documented that oxidation is limited by 

reaction kinetics (Elberling et al., 1994). In effect, as transport of O2 changes from advection of 

oxygenated water in small watersheds to transport in air in large watersheds with mining-exposed 

pyrite, the overall rate limiting step changes from transport- to kinetic-limited. 

To test this hypothesis, we used a geospatial dataset of coalbed lithology (East, 2013) 

(Figure B-2A in Appendix B.4) and classified each watershed as “coal containing” (>0% of 

watershed area occupied by coal mining) or “non-coal containing” (0% coal mining). Using these 

classifications, watersheds with coal show 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 >  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

, and those without show  

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 <  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 (Figure B-3A in Appendix B.4). We quantified this further by utilizing a 
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logistic regression model. Logistic regression models work by fitting explanatory variables (i.e., 

drainage area) to binary responses (i.e., a watershed contains coal or does not). The model is fully 

described in the supplementary material. We analyzed 335 watersheds within the SRB and found 

that any watershed > 1,355 km2 has >50% chance of integrating coalbed lithology.  We conclude 

that in the SRB, stream chemistry yields evidence for a change in rate limiting step at larger 

spatial scales, and this is likely because larger subbasins within the SRB contain coal. 

One issue in the SRB, however, is that spatial scale and coal-containing lithology co-

vary; therefore, we cannot disentangle the effects of coal mining from spatial scale. Thus, an 

alternate hypothesis might be that 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 increases above  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

simply because the 

watersheds are larger. As a first test of the scaling hypothesis, we identified two additional sites 

slightly north of the SRB that are large and contain no coal: the Hudson (USGS site 01358000; 

drainage area: 20,981 km2) and the Mohawk Rivers (USGS site 01357500; drainage area: 8,950 

km2). Water quality data were accessed as for the SRB (see materials and methods). 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 

values for these two watersheds equal 97 µM and 108 µM, respectively. These values are both 

below  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. This suggests that coal is a better explanation than watershed size for why 

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 >  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 in large subwatersheds of the SRB.  

These arguments are consistent with a change in rate-limiting step as watersheds become 

large enough to be coal-containing. In the next two sections, we provide additional evidence for 

the presence of coal in watersheds as the important variable (rather than scaling). First, we look at 

the power-law exponent in C-q behavior, and then we look at watersheds in other parts of the 

USA. This latter investigation also allows us to determine if the behavior we document in the 

SRB is particular to just this one region or more general. 
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3.4.4.2 Sulfate Concentration-Discharge Relationship 

Many researchers have documented a power-law relationship between stream 

concentration, C, and discharge, q (Godsey et al., 2009) and have interpreted the power law 

exponent, b, in terms of physical processes: 

C = aqb      (3-5) 

In addition to increases in 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

, we therefore tested how coal mining impacts the 

power-law relationship between sulfate concentration and discharge. If DO is the oxidant source, 

then there is a fixed amount of oxidant available within any packet of water (i.e., the amount of 

O2 that can be dissolved in water). In such systems where the source of the oxygen is dissolved in 

groundwater, we might expect chemostatic or dilution C-q behavior (i.e., b = 0 or b <0) 

depending on if the rate of advection is faster or slower than the rate of oxidation (i.e., transport 

or kinetic-limited, respectively). In contrast, if gaseous O2 is the oxidant source, we might only 

expect dilution behavior (i.e., b < 0) because in such systems oxidation is usually kinetic-limited 

(Elberling et al., 1994). We tested this using 92 watersheds throughout the SRB. For these sites, 

we did not separate the sources using our machine learning model due to limited concentration 

data availability, but rather calculated the C-q power law slope for total sulfate concentrations. 

We found that 71% of coal-containing watersheds show dilution C-q behavior (b = -0.2 ± 0.2, n = 

56), and 72% of non-coal containing watersheds show chemostatic C-q behavior (b = 0.0 ± 0.1, n 

= 36) (Figure B-3B in Appendix B.4). This shows that the C-q may indicate the relative 

importance of different oxidants and supports our hypothesis that we observe a change in the rate 

limiting step of oxidation as a result of coal mining. 



84 

 

3.4.5 Application to Other Datasets 

To further investigate the effects of coal and watershed size on pyrite oxidation at the 

same time as exploring new climate and lithologic effects, we queried data within the WQP for 

the western US. In this region, we were able to investigate large watersheds on several lithologies 

in different climate regimes that do not contain coal. We identified 293 watersheds that fulfill the 

criteria outlined in materials and methods (109 with and 184 without coal-lithology) (Figure 3-

7A). Using this dataset, we were able to test how pyrite oxidation changes as a function of 

drainage area of a watershed regardless of whether it contained coal. Using the total sulfate 

concentration and discharge, we calculated Dw and 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥 for each watershed as described above 

(eq. 3-2).  

Analogous to the eastern US results, watersheds with coal show 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 >  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 

and watersheds without coal tend to show 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 <  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

(Figure B-4 in Appendix B.4). 

In addition, for watersheds without coal, as spatial scale increases, 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 approaches 

 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 (=188 uM) (Figure 3-7B) rather than increasing above  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

as observed in the 

SRB. Once again, this corroborates the findings from the SRB that 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 >  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 is only 

observed in the presence of coal. 

To explain why 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠 increases with watershed size in the western dataset, we turn 

back to observations at Shale Hills and Shaver’s Creek. Explanations might include that the 

predominant flowpath type changes and/or that the depth of the oxidation front changes relative 

to land surface as a function of spatial scale. In small headwater watersheds (like Shale Hills) 

flowpaths above and within the pyrite reaction front contribute dominantly to the stream. In other 

words, the reaction front is relatively deep (Figure 3-2B), consistent with 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 <  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 

(Figure 3-8). In larger watersheds, flowpaths through the pyrite reaction front are dominant, as 
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evident by 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 =  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. In addition, if watersheds are like Shaver’s Creek, the pyrite 

reaction front is likely to become increasingly shallow as the stream incises into bedrock (Figure 

3-2B), leading to 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 =  𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 (Figure 3-8).  

In addition to 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

, we found that Dw (and Da) also change with scale. In particular, 

as watersheds get larger, Da → 1. In relationship to eqn. (3-4), this can be conceptualized as 𝑙 → 

L as watersheds get larger. 

3.4.6 Subsurface Redox Architecture in Small and Large Watersheds 

To recap the observations, in watersheds without coal, we found that 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 → 

 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 and Da → 1 as watersheds become larger (Figure 3-7). Both observations are 

consistent with 𝑙 → L (see eq. 3-4). We propose two ways to interpret this observation. The first 

explanation is that as watersheds get larger, their streams integrate water from deeper flowpaths 

where water is more likely to have traveled completely through the reaction front, depleting DO 

completely (i.e., flowpath 3; Figure 3-2B). The second explanation is that streams incise into the 

pyrite reaction zones in increasingly larger watersheds.  

Explanation 1 implies that flow length and depth of flow both increase as drainage area 

increases. However, tributaries also enter the mainstem of large rivers contributing significantly 

to streamflow. Instead of integrating deeper flowpaths, therefore, large rivers might simply be 

manifesting the influence of their tributaries (i.e., higher order streams are a summation of lower 

order streams) (Shaman et al., 2004; Hrachowitz et al., 2010). For example, runoff in watersheds 

in the Neversink River watershed in New York become similar after watersheds exceed 21 km2 

(Shaman et al., 2004). This suggests that water from deeper flowpaths only significantly increase 

streamflow in moderately small watersheds. Moreover, mean transit times of water in streams 
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converge to the same value at increasingly large watershed scale, and large watersheds show no 

major change of dominant flow paths (Hrachowitz et al., 2010). Given these findings, variations 

in flow length and depth likely describe some of the differences between small in large 

watersheds, but they cannot solely account for all the trends in our data. 

We therefore favor explanation two: reaction fronts shallow as watershed size increases. 

Instead of flowpaths becoming deeper, allowing stream waters to have interacted with pyrite for 

longer, the reaction front instead shallows such that shallow flowpaths are within the reaction 

front rather than above it (i.e., flowpath type 1 disappears in favor of flowpath type 2; Figure 3-

2B).  This explanation is also consistent with our observation of unoxidized pyrite outcropping 

along sections of Shaver’s Creek and in other locations (Gu et al., 2020a). Headwater streams 

(i.e., zeroth or first order) may generally develop deep pyrite oxidation fronts at least partly 

because recharging water has high concentrations of DO. But as groundwater flows from the 

headwaters downstream to join higher order streams, it becomes depleted with respect to DO and 

in turn less reactive with pyrite; therefore, the reaction front shallows downstream (schematically 

depicted in Figure 3-2B). This idea is a corollary to hydrologic models which show local 

flowpaths contributing to flow in first order streams and significant regional groundwater 

flowpaths contributing to third order streams (Gleeson and Manning, 2008). Our data document 

changes in the subsurface redox architecture as a function of watershed size. Integrating 

subsurface mineral distributions into conceptual and hydrologic models will help improve water 

quality predictions.   

3.5 Conclusions 

Through a unique combination of machine learning and physically based modeling, we 

investigated the mechanism of pyrite oxidation through concentration-discharge relationships. We 
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found three characteristic concentration-discharge trends as depicted in Figure 3-8.  In small 

watersheds without coal, we found that the maximum stream sulfate concentrations are less than 

predicted by equilibrium with pyrite (𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 < 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

), and the Damköhler number (Da) is 

greater than 1. In large watersheds without coal 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 = 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 and Da = 1. This is partly 

because subsurface flowpaths get deeper and longer as spatial scale increases but especially 

because the pyrite reaction front tends to shallow downstream in larger watersheds. Nonetheless, 

across all spatial scales, the transport of dissolved oxygen to the reaction front limits pyrite 

oxidation in these watersheds (Figure 3-8). On the other hand, coal mining results in 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 > 

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 across all-sized watersheds, which is consistent with kinetic-limited, rather than 

transport-limited, oxidation of exhumed pyrite (Figure 3-8). We found that coal containing 

watersheds have steeper C-q power law slopes (i.e., b-values) than non-coal containing 

watersheds; therefore, C-q slopes might indicate the relative importance of kinetic- vs. transport- 

limited oxidation. Through analysis of C-q relationships, we were able to determine information 

about subsurface flowpaths, the subsurface redox architecture, and oxidant source dynamics, all 

of which will help to better interpret reaction mechanisms across spatial scales. Understanding the 

subsurface redox architecture of a watershed will help to improve our predictions of legacy 

contamination in the future. 
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3.6 Figures 

 

  

 

 

Figure 3-1:  Map showing the sampling locations and relationship of the four nested watersheds: 

Shale Hills (A), Shaver’s Creek (B; SCAL, SCCF, and SCO), Juniata River (C; J1 and J2), and 

Susquehanna River (D; S1-S9). Shapes refer to river basin and intensity of shading indicates 

relative drainage area of the sub-catchments (light = smaller, dark = larger). 
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Figure 3-2: (A) Schematic representation of a weathering profile (on left) and expected depth 

profiles for sulfate and oxygen concentrations (i.e., Csulf and CDO, respectively) in the groundwater 

(on right) based on consumption of DO via pyrite oxidation across the pyrite reaction front. (B) 3-

D cross-sectional view of a schematic watershed showing the subsurface pyrite oxidation zone 

(yellow) and subsurface flowpaths above (1), partially through (2), and through (3) the reaction 

front. In both A and B, the pyrite reaction front (yellow) is defined as the zone where oxidation is 

actively occurring. Above the oxidation zone (i.e., 100% pyrite-depleted; brown), pyrite has been 

completely oxidized to form secondary iron oxide minerals. Below the oxidation zone, no oxidation 

is occurring; therefore, this zone is fresh, pyrite-containing bedrock. Except for within a few 

isolated fracture sets (Gu et al., 2020), oxidation does not occur below the oxidation front because 

dissolved oxygen is completely depleted as water travels through the oxidation front (A). This 

means that groundwater above the reaction front is oxic and below the reaction front is anoxic. 
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Figure 3-3: Plot showing sulfur isotope values (i.e., 34S) plotted vs. the reciprocal of sulfate 

concentration [SO4
2-] (M) for surface and groundwater samples across the Shaver’s Creek 

watershed. Sulfur isotope ranges (i.e., the y-axis) shown for fertilizer (green rectangle) are from a 

global compilation (Zhang et al., 2015), and the concentration range (i.e., the x-axis) is inferred 

from measurements of sulfate in groundwater near a farm field in Shaver’s Creek (i.e., Cole Farm 

Well CFW4; see Forgeng (2021) for well location). Sulfur isotope and concentration ranges for 

pyrite oxidation are also shown (yellow rectangle) as inferred for pyrite oxidation at Shale Hills 

(Jin et al. 2014). The range of values for acid rain (blue rectangle) are based on measurements of 

rain chemistry at Hubbard Brook, a watershed ~600 km to the northeast (Alewell et al., 2019).  

Circle points are surface and groundwater samples from Shale Hills reported in Jin et al. (2014) 

and square points are surface and groundwater samples collected throughout the SSHCZO in this 

study 
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Figure 3-4:  Plot showing the average concentration (A) and mixing proportions (C) determined by 

NMF for sampling locations as a function of drainage area. (B) shows an example of the temporal 

series of sulfate concentrations broken down by source for site S4 in the SRB (see Figure 3-2D). 
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Figure 3-5: Concentration-discharge relationship for pyrite-derived sulfate concentrations 

measured in the outlet stream at Shale Hills (A) measured during 2008-2010. The solid line is the 

fit of eqn. 2 to the data, and the dashed line is the 95% confidence interval. (B) shows the monthly 

average DO concentration in groundwaters collected at 20 mbls in a ridgetop borehole near the 

outlet (CZMW11) at Shale Hills from 2020-2021 plotted vs the water table depth. Arrows in (B) 

indicate the general trend over time. First, DO is advected to the sensor in the wet season and then 

DO is depleted in the dry season. 
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Figure 3-6:  Plot showing the C-q relationships for all 14 sampling locations where symbols (NMF 

derived concentrations) are plotted on top of one another, and lines refer to model fits to each sub-

watershed. 
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Figure 3-7:  Map showing the selected sites in the Western United States (A). Boxplots for natural 

(i.e., contains no coal) watersheds showing how 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 (B) and Da (C) change across spatial 

scale. 
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Figure 3-8: Schematic plot showing the three characteristic concentration-discharge patterns 

observed in watersheds in the northeastern and western US. By studying catchments within the 

SRB and western US, we observed that pyrite oxidation is always limited by transport of the oxidant 

to the mineral everywhere except where coal has exhumed at the land surface. For the latter 

catchments, oxidation is kinetic (or mineral interface-) limited. 
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Abstract 

Mineral weathering is a major control on long term atmospheric CO2. The sensitivity of 

weathering rates to changes in climate and erosion depends on the regime of weathering. For 

example, when reaction kinetics, supply of fresh mineral, or water throughput is limiting, 

weathering fluxes increase with temperature, erosion rate, and runoff, respectively. We call these 

three weathering regimes kinetic limited (KL), erosive transport limited (ETL), and runoff limited 

(RL). Watersheds can also exhibit complex weathering dependencies when they become large 

and integrate several different regimes. We refer to such behavior for larger watersheds as 

transition regime (TR). Another strong influence on weathering is lithology. However, although 

silicate weathering and CO2 drawdown have been extensively studied for granitic and basaltic 
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watersheds, weathering dependencies in shale watersheds have not been fully characterized 

despite the observation that shale is one of the most widespread lithology exposed at land surface 

globally.  

 

Here we identified and analyzed 142 shale watersheds across the United States, spanning a 

diverse range of climatic (mean annual temperature (MAT): 3-17 C; mean annual precipitation 

(MAP): 220-1,975 mm yr-1; potential evapotranspiration (PET): 908-2,059 mm yr-1), topographic 

(mean catchment elevation: 78-2,346 m; mean catchment slope: 0.4-28), and hydrologic (annual 

runoff (q): 0.002-1.3 m yr-1) conditions. For these sites, we calculated silica fluxes (i.e., FSiO2) 

using SiO2 concentrations and river discharge measurements. We observed that when the 

humidity index (HI; MAP/PET) is less than 0.55, FSiO2 increases with MAP and q; however, when 

HI > 0.55 FSiO2 does not increase with MAP or q. We posit that sites with HI < 0.55 are RL. The 

river chemistry for the RL sites is consistent with equilibrium between smectite and kaolinite. We 

find that the exponential temperature dependence (termed, here, apparent activation energy or Ea) 

for sites with HI < 0.55 is -89 kJ mol-1. In this case the Ea is consistent with the negative Hr for 

this equilibrium. Fitting the data for sites with HI > 0.55 to an exponential temperature 

dependence, we find that the sensitivity of weathering to temperature is 55 kJ mol-1. Rather than 

defining this as the KL Ea, we also hypothesized that watersheds with steep slopes are more 

likely to be KL because of fast erosion. For sites with HI > 0.55 and slopes > 10, we find a 

temperature dependence of 92 kJ mol-1. This value is consistent with the Ea measured 

experimentally for the dissolution of chlorite, a clay mineral found in most shales. Using 

geospatial-based definitions defined in this study to classify watersheds across the United States, 

we find that 48%, 37%, 9%, and 7% of shale watersheds are RL, ETL, TR, and KL, respectively. 
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Shales cover a large fraction of land surface globally and have temperature sensitivities similar to 

granitic watersheds; therefore, they should be considered when evaluating global CO2 dynamics. 

 

4.1 Introduction 

 Silicate weathering is a major control on Earth’s atmospheric CO2 concentrations (e.g., 

Berner, 2004). When silicate minerals weather, they draw CO2 out of the atmosphere, producing 

alkalinity, cations, and aqueous SiO2 (eq. 4-1).  Most of the alkalinity is dissolved inorganic 

carbon, which, over longer timescales encompassing riverine transport, is precipitated as calcium 

carbonate in the ocean and eventually subducted and returned to the atmosphere via volcanism on 

~106-year timescales (e.g., Doney and Schimel, 2007). A canonical model has suggested that 

Earth’s long-term climate is stabilized by this reaction as a result of a negative feedback between 

CO2 concentrations, temperature, and silicate weathering rates (e.g., Walker et al., 1981). 

According to this paradigm, as CO2 concentrations increase in the atmosphere, global temperature 

also increases, which results in faster silicate weathering rates and thus faster rates of CO2 

removal. In this way, a negative feedback between silicate weathering and atmospheric CO2 

concentrations stabilize Earth’s climate. Previous studies have characterized this feedback 

through determining mineral weathering dependencies on CO2 and temperature (e.g., Velbel, 

1993; Kump et al., 2000). 

CaSiO3(s)
+ 2CO2(g) + H2O → Ca(aq)

2+ + 2HCO3
−

(aq)
+ SiO2(aq) → CaCO3(s)

+ CO2(g) + H2O +

SiO2(aq)    (4-1) 

Here, we write CaSiO3 as a generic form for any cation-containing silicate mineral. 

 Although mineral weathering is sometimes controlled by dissolution kinetics, other 

factors are thought to play an important role in silicate weathering as well. For example, physical 
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erosion can affect silicate weathering rates by modulating the supply of fresh reactive minerals 

(Stallard et al., 1983; Calmels et al., 2007). Additionally, precipitation (and in turn runoff) has 

been shown to impact weathering rates (e.g., White and Blum, 1995). Thermodynamic limitations 

have also been explored as a control on global silicate weathering rates (Maher and Chamberlain, 

2014, Winnick and Maher, 2018). Because all these factors can influence weathering, complex 

relationships between temperature, precipitation, erosion, and weathering rates have been 

observed (Kump et al., 2000; Riebe et al., 2004; West et al., 2005), making predicting trends 

across landscapes difficult.  

 Although many factors are important in controlling silicate weathering rates in any given 

location, we often assume there is one rate limiting step that dominates a given system and 

assume we can classify weathering regimes for a given mineral reaction and solute release rate in 

watersheds by the rate-limiting factor. Here we discuss three primary types of weathering 

regimes: runoff-limited (RL), erosive transport-limited (ETL), and kinetic-limited (KL).  

 In some watersheds, potential evapotranspiration can be larger than precipitation, which 

leads to a negative water balance (Budyko, 1974), which, for soils, has been described as “water-

limited” (Rasmussen et al., 2011). In high PET watersheds, concentrations (C) of weathering 

products remain high in porefluids and in the stream despite large ranges in discharge (q) due to 

the high rates of evapotranspiration. It has been observed that, if concentrations are relatively 

constant because of high PET, weathering fluxes (C x q) are hypothetically only dependent on 

runoff (defined here as long-term average discharge and in other studies as mean annual 

precipitation minus potential evapotranspiration) (Brantley et al., in review). Here, following 

Brantley et al. (in review), we refer to this weathering regime as “runoff-limited” (i.e., RL). It is 

important to note that there are other mechanisms that cause constant concentrations of 

weathering products in streams. In watersheds with ample runoff but long timescales of 

groundwater flow relative to mineral reaction timescales, concentrations in streams can also be 
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constant. These situations have been referred to as “saturation-limited” or “equilibrium-limited” 

(White et al., 2001).. These terms, however, emphasize the addition of solutes from weathering 

until the water reaches equilibrium rather than the removal of water that concentrates the products 

of very little weathering (i.e., negative water balance).  Moreover, these terms also describe short-

term weathering dynamics (i.e., residence times of groundwater), rather than the long-term 

dynamics (i.e., residence times of soils). In addition, the first two of these terms imply a reason 

for the constant concentrations, rather than indicating the rate limiting step or factor. We argue 

that RL is a better name for this high PET regime at least partly because “equilibrium-limited” 

can imply a result of runoff limitation rather than a rate-limiting step and can point to a 

fundamentally different weathering regime. RL is the best descriptor for weathering in dry 

landscapes because it emphasizes the observation that weathering depends on runoff in this 

regime. 

 At low erosion rates, where reactive silicate minerals are completely depleted at land 

surface, weathering rates must eventually be limited by the supply of fresh minerals. This 

hypothetical endmember is referred to as “supply-limited” or “erosive transport limited” (West et 

al., 2005; Gabet and Mudd, 2009; Dixon and von Blanckenburg, 2012; Lebedeva et al., 2010). 

Here we classify this weathering regime as erosive transport limited (i.e., ETL) because 

weathering in soils of steady-state thickness are ultimately limited by the rate of erosion, which 

dictates the speed at which minerals pass through the weathering zone. One result of erosion can 

be that new mineral surface are “supplied” to the weathering zone, but other processes are 

encompassed in the term ETL. For example, after erosion and thinning of a soil, porewater 

chemistry can be more corrosive. Regardless of these subtleties, in a system that is ETL, we 

expect that weathering rates linearly increase with erosion rates and show little to no dependence 

on temperature or runoff.  
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 Using an advection-diffusion-reaction model, Lebedeva et al. (2010) shows that as 

erosion rates increase for a simple albite-quartz system, weathering rates and production of 

kaolinite increase until eventually, erosion rates become too large, and the weathering rate 

becomes constant. Under those conditions, the albite is not totally dissolved away from the soil, 

and it remains even at the land surface. For this theoretically explored regime where erosion rates 

are high and reactive silicate minerals are present at land surface, weathering rates are limited by 

interfacial reaction kinetics rather than erosion, which we refer to as kinetic limited (KL). In these 

watersheds, weathering rates are expected to increase exponentially with temperature according 

to the Arrhenius equation.  

 Although these are the three theoretical endmember weathering regimes we consider in 

this paper, observations and models also show that soils can integrate multiple weathering 

regimes into what has been referred to as the transition or mixed regime for soils (Ferrier et al., 

2016) or hillslopes (Lebedeva et al., 2013). West et al. (2005) suggests variability in weathering 

rates observed in very large rivers (Gaillardet et al., 1999) could potentially be explained by 

integrating both KL and ETL landscapes. Most recently, Brantley et al. (in review) describes 

these types of watersheds as “Transition Regime” (TR), which can depend in complex ways on 

erosion, temperature, and precipitation.  

 Although variations in climate and erosion create regimes of weathering defined by rate-

limiting steps, lithology is also a primary control on weathering rates that affects these regimes 

(e.g., Bluth and Kump, 1994). Many studies have investigated how climate and erosion impact 

silicate weathering in granitic (e.g., Velbel, 1993; White and Blum, 1995; White et al., 1999; 

Dalai et al., 2002; Oliva et al., 2003; West et al., 2005; Clow and Mast, 2010; Yadav and 

Chakrapani, 2011) and basaltic (e.g., Dessert et al., 2001; Dessert et al., 2003; Navarre-Sitchler 

and Brantley, 2007; Eiriksdottir et al., 2013; Li et al., 2016) watersheds. Although there are 

studies in mixed sedimentary  watersheds (e.g., Gaillardet et al., 1999; Dalai et al., 2002; Wolff-



107 

 

Boenisch et al., 2009; Yadav and Chakrapani, 2011; Dixon and von Blanckenburg, 2012), few 

studies investigate these dependencies for shales and have largely been constrained to soils rather 

than watersheds (e.g., Dere et al., 2013; Gu et al., 2020). Shales cover a significant fraction of 

global land area (estimated at 34.4 % (Meybeck, 1987), 12.6 % (Gibbs and Kump, 1994), 25.4% 

(Amiotte Suchet et al., 2003), 6.6% (Hartmann and Moosdorf, 2012)) and constitute 51% of total 

mass of sediments worldwide (Lerman et al., 2007). Moreover, shales have been found to 

contribute significantly to global silicate weathering rates (Amiotte Suchet et al., 2003). 

 To more accurately predict global CO2 consumption from weathering, we need a better 

understanding of silicate weathering in shale watersheds. Here, we present silica flux data from 

142 shale watersheds from the United States that cover significant variability in climate and 

erosion. Although silica fluxes have previously been reported for a dataset targeting many US 

watersheds (e.g., Jansen et al., 2010), this chapter presents the first study to specifically isolate 

shale watersheds. Shale is of particular interest not only because of its importance as a common 

lithology, but also because it is one of the fastest eroding common lithologies. We aim to explore 

whether watersheds show characteristics that allow identification of their respective weathering 

regimes (i.e., RL, ETL, KL, TR), and determine how the weathering fluxes change with runoff, 

precipitation, temperature, and erosion for each regime through regression analysis. 

4.2 Methods 

4.2.1 Watershed Selection and Data Acquisition 

For this study, we are interested in weathering fluxes in shale watersheds, and we focus 

our analysis on the United States because it has the highest number of waters chemistry sampling 

sites. First, we utilize the State Geologic Map Compilation (SGMC) geodatabase of the 
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conterminous United States (Horton et al., 2017) to define shale lithology.  The SGMC is a 

geographic database compiled by the United States Geological Survey (USGS) that maps 

outcropping lithology across the United States and classifies different lithologic units by their 

major and minor rock types. For the purposes of our study, we define shale as any formation/unit 

where the major rock type (i.e., MAJOR1 in the attributes table of the SGMC) is Shale, 

Mudstone, Siltstone, or Siltstone-mudstone. The geospatial coverage of shales, as defined by the 

criteria above, can be seen in Figure 4-1. 

After defining shale lithology, we identify watersheds with  75% coverage by shale 

lithology (i.e., shales at land surface). We start by aggregating watershed shapefiles from the 

GAGESII (Falcone, 2011) and USGS Streamgage NHDPlus Version 1 Basins (USGS, 2011) 

datasets, which contain 20,163 unique watershed boundaries. We then calculate the percent areal 

coverage of shale in each of these watersheds using the tabulate intersection function from the 

Analysis Toolbox in ArcGIS Pro. Next, we remove any watersheds with <75% shale, leaving 

1,033 remaining watersheds. For each of these watersheds, we query water quality data from the 

Water Quality Portal (WQP), a national repository managed by the USGS and United States 

Environmental Protection Agency (USEPA) (Read et al., 2017). Specifically, we downloaded 

silica (SiO2) concentrations because SiO2 is released during silicate weathering (eq. 4-1) and does 

not have many other sources (e.g., anthropogenic contamination) and typically is only present at 

low concentrations in precipitation. To download data, we utilized the dataRetrieval package in R 

(Hirsch and De Cicco, 2015). We found that 588 watersheds have measurements of SiO2. After, 

we filter out sites with an insufficient number of measurements. Specifically, we require that each 

site has at least four concentration measurements per year and at least three years of 

measurements. All measurements must also be located at the outlet of the watershed (i.e., 

mainstem sampling site and not tributaries). Based on this criterion, the number of watersheds is 

reduced to 187. Lastly, we query discharge measurements for the remaining sites from the 
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National Water Information System (NWIS). After matching concentrations measurements with 

discharge measurements, we again require that there are at least four concentration-discharge 

paired measurements per year for at least three years of measurements, which results in the final 

number of sites (watersheds) – 142 (Figure 4-1). After identifying these 142 watersheds, we also 

downloaded Ca2+, Mg2+, Na+, K+, and pH data following the same procedure for SiO2 in order to 

make activity-activity diagrams (see Section 4.3.3). 

4.2.2 Climate Data 

To investigate the impacts of climate on weathering, we compiled the humidity index 

(HI), mean annual temperature (MAT), mean annual precipitation (MAP), potential 

evapotranspiration (PET), and runoff (q) for each of the 142 watersheds.  Humidity index 

(sometimes called aridity index) is defined as the ratio of MAP to potential evapotranspiration 

(PET). When MAP > PET, then HI > 1 and there is a positive water balance in a watershed. 

When MAP < PET, then HI < 1 and we expect dry conditions. 

Different methods of calculating PET yield different values for HI; therefore, we do not 

expect to see a transition from negative to positive water balance strictly at HI = 1. Furthermore, 

seasonality of dry and wet conditions can influence stream water quality and quantity, and the 

size of the watershed influences the water budget that controls stream discharge (because of 

groundwater). Instead, we utilize a consistent method of determining HI for each watershed and 

then look at the data to determine where runoff-limited conditions may exist.  To compile HI and 

PET, we utilize the Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate 

Database v2 (Trabucco and Zomer, 2018). For each watershed, we calculate the spatially 

averaged HI and PET values utilizing the Zonal Statistics function in the Image Analyst toolbox 

in ArcGIS Pro.  
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To compile MAT and MAP, we utilized the Climatologies at High resolution for the 

Earth Land Surface Areas (CHELSA) V2.1 dataset (Karger et al., 2017). CHELSA contains high-

resolution information on climatic conditions around the globe. MAT and MAP were calculated 

by averaging the annual temperature and precipitation datasets within CHELSA across the 

drainage area of each watershed using the same method described for HI and PET.  

Lastly, we determined q, i.e., the runoff of a watershed. Runoff is related to MAP; 

however, some MAP is lost to interception by trees, evapotranspiration, or groundwater storage. 

Runoff accounts for these different processes.  In some studies, q is calculated as MAP – PET. As 

noted earlier, in some watersheds, PET > MAP, which would yield negative or zero runoff. In 

reality, however, rivers still flow seasonally in dry watersheds during precipitation events or 

during snowmelt. We instead calculate q using measured discharge values. We first downloaded 

the average discharge in the stream for each year of recorded flow (m3 yr-1) using the 

readNWISstat function from the dataRetrieval package. Then, we averaged the yearly data and 

divided by the drainage area (m2) to calculate q (m yr-1). We take the average of the yearly 

averages to better account for interannual variability in q.  

4.2.2 Sediment Yields 

Erosion is an important process for weathering in watersheds in that it exhumes fresh 

minerals to interact with meteoric solutions (e.g., Millot et al., 2002; Stallard et al., 1983; Calmels 

et al., 2007) and thins soils to allow minerals to interact with more corrosive porewaters (Fletcher 

et al., 2006); thus, silicate weathering rates can depend upon erosion rate (Riebe et al., 2004; 

West et al., 2005; Millot et al 2002; Lebedeva et al. 2010). Here, we utilize sediment yield as a 

proxy for erosion rate. Sediment yield is flux of sediments leaving a watershed via the river and is 

typically calculated using measurements of suspended sediments and discharge. Suspended 
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sediment measurements, however, are not regularly measured in many watersheds; therefore, we 

aim to model the sediment yield in watersheds using an empirical equation, i.e., the BQART 

model (Syvitski and Milliman, 2007).  

𝑆𝑦 = 𝑤𝐵𝑄0.31𝐴−0.5𝑟𝑇 (𝑀𝐴𝑇 ≥ 2℃)      (4-2) 

𝑆𝑦 = 2𝑤𝐵𝑄0.31𝐴−0.5𝑟 (𝑀𝐴𝑇 < 2℃)      (4-3) 

 

Here, 𝑆𝑦 is the sediment yield (t km-2 yr-1) for a watershed, w is a coefficient (600 t yr-1), 

Q is the annual discharge (km3 yr-1), A is the drainage area (km2), r is the maximum relief of the 

watershed (km; i.e., maximum elevation minus minimum elevation), and T is the MAT (℃). B is 

an empirical term that accounts for geological and human impacts. 

 

𝐵 = (1 + 9𝐴𝑔)(1 − 𝑇𝐸)𝐿𝑟𝐸ℎ          (4-4) 

 

Here, Ag is the areal fraction of ice and snow in a watershed, Lr is the rock erodibility 

index, Te is the trapping efficiency, and Eh is the human-influenced soil erosion factor. None of 

our sampling locations are currently glaciated; therefore, Ag is 0. Following Deng et al. (2022), 

we set Te to 0 and Eh to 1. Eh is set to 1 because the timescales of weathering are longer than the 

timescales of human impacts. It is true that Te could be larger than 0, especially if a watershed 

contains dams; however, for simplicity we will ignore this term because of the large uncertainty 

surrounding it.  Based on our assumptions, eq. 3 can be simplified to B = Lr. Although we use 

many assumptions here, it has been shown that when the entire B term is simply set to 1 (i.e., 

ignoring the effects of lithology and humans), the BQART model still accounts for 68% of 

between-river variations in sediment yields (Syvitski and Milliman, 2007). This model has been 
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shown to give very good predictions of sediment yield when compared to measured sediment 

fluxes (R2 = 0.94; Syvitski and Milliman, 2007).  

To calculate 𝑆𝑦 using eqs. 4-2 through 4-4, we integrate data from several different 

sources. The data sources and acquisition methods for T and Q were discussed in section 4.2.2. 

To calculate B, we use a global dataset of erodibility indices, Lr (Moosdorf et al., 2018), and 

calculated the spatial average Lr for each watershed following the same method described with 

MAP and MAT. Drainage area was downloaded from the USGS site metadata, which was 

accessed using the whatWQPsite function from the dataRetrieval package. To calculate the 

maximum relief of each watershed, r, we utilized a digital elevation model (DEM) for the 

conterminous United States (USGS, 2022). Because of the large size of the DEM, we utilized the 

terrain toolbox in Google Earth Engine (Gorelick et al., 2017) to extract the maximum and 

minimum elevations for each of the watersheds, which were used to calculate r (i.e., r = max 

elevation – min elevation). In addition to the minimum and maximum elevations, we 

simultaneously calculate the mean elevation and the mean catchment slope using the same SEM. 

4.2.4 Weathering Calculations 

To investigate how silicate weathering rates change as a function of climate, tectonic, and 

topographic conditions, we first calculate the release rate of silica in each watershed as defined by 

concentration and discharge. We define the release rate as the flux of dissolved silica (mass per 

time per unit area) as recorded in the stream at the outlet of the watershed. Streams integrate 

weathering across their entire drainage area (A (km2)); therefore, this flux represents the 

catchment-average release rate. The equation to calculate flux is as follows (modified from 

Moatar et al., 2013): 
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𝐹𝑆𝑖𝑂2
= 𝑏

∑ 𝑄𝑖𝐶𝑖𝑖

∑ 𝑄𝑖𝑖
𝑄̅𝐴−1       (4-5) 

 

Here, 𝐹𝑆𝑖𝑂2
 is the flux of SiO2 (t km-2 yr-1), b is a coefficient for unit conversion (10-6 t l 

m-3 mg-1), Qi and Ci are the instantaneous discharge (m3 s-1) and SiO2 concentration (mg l-1) at 

timepoint i,and 𝑄̅ is the annual average discharge (m2 yr-1). The term 
∑ 𝑄𝑖𝐶𝑖𝑖

∑ 𝑄𝑖𝑖
 is the flow weighted 

average SiO2 concentration for a given river. 

 To compare 𝐹𝑆𝑖𝑂2
 across watersheds and to incorporate dependence upon MAT 

(T), MAP (P), and erosion rate (E; sediment yield (t km-2 yr-1)), we fit 𝐹𝑆𝑖𝑂2
 to a modified 

Arrhenius equation that has been previously used to model weathering of soils and watersheds 

(Riebe et al., 2004; West et al., 2005). 

 

𝐹𝑆𝑖𝑂2
= 𝐾 (

𝐸

𝐸0
)

𝛼
(

𝑃

𝑃0
)

𝛽
𝑒

(−
𝐸𝑎

𝑅
[

1

𝑇
 − 

1

𝑇0
])

     (4-6) 

ln(𝐹𝑆𝑖𝑂2
) = ln(𝐾) + 𝛼 ln (

𝐸

𝐸0
) + 𝛽 ln (

𝑃

𝑃0
) −

𝐸𝑎

𝑅
[

1

𝑇
 −  

1

𝑇0
]   (4-7) 

 

Here,  and  are fitting parameters that describe the non-linear dependance of 𝐹𝑆𝑖𝑂2
 on E 

and P, respectively. Ea is the apparent activation energy (kJ mol-1), which describes the 

sensitivity of weathering to changes in T (K), and R is the ideal gas constant (8.314 j mol-1 K-1). 

E0, P0, and T0 are reference values for E, P, and T, respectively, that are set to the log-mean 

values for each of those parameters in the dataset (i.e., 60.3 t km-2 yr-1, 831 mm yr-1, and 281 K). 

K is the flux of SiO2 when E, P, and T are equal to their respective reference values.  Eq. 4-7 is 

the linearized form of eq. 4-6. To determine K, , , and Ea, we fit 𝐹𝑆𝑖𝑂2
 with a multiple 

regression using values of E, P, and T for each watershed (eq. 4-7). In some cases, fitting the full 

model can result in insignificant parameters. For a more robust analysis, we fit the regression 
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using every combination of fitting parameters (i.e., , , and Ea). For example, in one model we 

include an erosion and precipitation dependence (i.e.,  and ), but omit the temperature 

dependence. In another model, we only utilize the temperature dependence. In all, there are 7 

parameter combinations. We also include an 8th model, which is a linear precipitation correction 

(i.e.,   = 1) and no erosion correction (i.e.,  = 0). We include this model because this correction 

is common in weathering studies (e.g., White and Blum, 1995; Dere et al., 2013). For this 

analysis, we define a valid model as any model where all fitting parameters are significant (p < 

0.05) and the correlation between the modeled 𝐹𝑆𝑖𝑂2
 and the measured 𝐹𝑆𝑖𝑂2

 is also significant (p 

< 0.05). The goodness of fit is determined by the R2 value and the adjusted R2 value. Note that the 

difference between the R2 and adjusted R2 values was <0.02; therefore, we only report the R2 

herein. We note that the input variables to the model (i.e., MAP, MAT, Sy) are largely 

uncorrelated in the dataset.  

4.3 Results and Discussion 

4.3.1 Site Information 

The 142 shale watersheds span a wide range of geographic locations and are climatically, 

topographically, and hydrologically diverse. Geographically, the sampling locations range from 

latitude 33.3 to 48.9 and longitude -109 to -71.6 (Figure 4-1), and the average drainage area is 

3,400 km2 (min = 2 km2, max = 41,000 km2).  Climatically, MAT, MAP, PET, and HI range from 

3 to 17 C, 220 to 1,975 mm yr-1, 908 to 2,059 mm yr-1, and 0.14 to 1.58, respectively. 

Topographically, mean catchment elevation, mean catchment slope, and Sy range from 78 to 

2,346 m, 0.4 to 28, and 8 to 405 t km-2 yr-1, respectively. Runoff (q) varies from 0.002 to 1.3 m 
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yr-1. Based on the Holdridge classification system, our sites fall within the arid, semiarid, 

subhumid, and humid categories (Holdridge, 1947; Figure 4-2). 

4.3.2 Humidity Indices for Shale-underlain Watersheds 

We follow the suggestion in the literature (Rasmussen et al., 2011) and hypothesize that 

the RL regime can be delineated from the relative magnitudes of MAP and PET (i.e., HI). When 

PET far exceeds MAP, only a small amount of water flows through the weathering minerals and 

the systems could become runoff-limited. In order to increase 𝐹𝑆𝑖𝑂2
, then, runoff needs to increase 

(i.e., MAP increases relative to PET). At some HI value, however, the flow through the system 

will be fast and weathering fluxes will no longer vary with runoff and in that case will, according 

to the paradigm presented here, become ETL or KL. Here we aim to determine the threshold HI 

value that defines the transition from RL to ETL or KL. When HI is less than the threshold, a 

watershed is RL, and when HI is greater than the threshold, a watershed is KL, ETL, or TR. We 

use four methods to determine the threshold: 1) the local valley method, 2) the Otsu method, 3) 

break point analysis, and 4) Holdridge classification system (Holdridge, 1947).  

Across the United States, we observe that there are two distinct climates: one with high 

HI values and one with low HI values (HI varies from ~0.1 to 3; Figure 4-3A). When we plot the 

distribution of HI values from outcropping shale lithologies across the United States, we observe 

a bimodal distribution that is roughly the combination of two log-normal distributions (Figure 4-

3A). Our first hypothesis is that one of the peaks in the bimodal distribution could represent dry 

climates (i.e., RL) and the other could represent wet climates (i.e., KL or ETL). The transition 

from dry to wet is therefore the minimum (i.e., valley) between the two bimodal peaks. This is 

called the local valley method of determining a threshold. To determine this minimum, we first 

estimate the distribution by fitting a kernel density to the histogram (density function from the 
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stats package in R; Figure 4-3A). Then, we determine the location of the valley between the two 

peaks based on the kernel density. We found that the threshold using this method is HI = 0.59. 

Next, we use the same distribution data, but define the threshold using another method 

(i.e., method 2) called the Otsu method (Otsu, 1979). This method defines a threshold as a value 

that maximizes the between-group variance, 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 . 

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 = 𝑛𝐴𝑛𝐵(𝜇𝐴 − 𝜇𝐵)2      (4-8) 

Here, 𝑛𝐴 and 𝑛𝐵 are the number of pixels in the HI raster above and below the threshold, 

respectively, and 𝜇𝐴 and 𝜇𝐵 are the mean HI values above and below the threshold, respectively. 

Using this method, we found that the maximum 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  occurs when the HI threshold is equal 

to 0.50 (Figure 4-3B).  

Recognizing that these first two estimates might reflect climate distributions but not 

necessarily weathering distributions, we also tried a third method to determine a threshold HI 

value based on measurements of 𝐹𝑆𝑖𝑂2
 versus the HI for each watershed. We observe that  𝐹𝑆𝑖𝑂2

 

first increases with HI and then approximates a constant at higher HI values (Figure 4-3C). There 

are three sites that are outliers to this trend and show low HI values but large 𝐹𝑆𝑖𝑂2
. These three 

sites are co-located in western Colorado and feature low MAP but high q.  With this method, we 

argue that the break in slope observed in Figure 4-3C defines the HI threshold. To statistically 

determine the break in slope, we utilized break point analysis with the mcp package in R 

(Lindeløv, 2020). The mcp package utilizes a Bayesian regression to identify the location for 

changes (i.e., break points) in trends. For our system, we define the model as two linear segments 

that are joined by a break point. Utilizing this method to determine the optimal break point, we 

found that the HI threshold (i.e., the break point) is 0.62 (Figure 4-3C).  

Lastly, we utilized the Holdridge climate classification system (Figure 4-2) to define the 

threshold HI value (Holdridge, 1947). To do this, we simply noted that the threshold determined 
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from the first three methods roughly co-aligns with the transition from semiarid to subhumid 

climates. This climate transition occurs when the potential evapotranspiration ratio is 2, which is 

the same as HI = 0.50. Although this definition is more qualitative than quantitative, it is 

consistent with values from the other 3 methods and gives a conceptual definition rather than 

solely a statistical definition. Furthermore, the Holdridge classification is based not only climate 

variables but also on ecological observations.  

For a best estimate, we take the average value from the four methods described above, 

i.e., HI = 0.55, and we now test if the weathering flux varies with runoff as expected for this 

hypothetical RL regime. We hypothesize that when HI < 0.55 watersheds are RL and when HI > 

0.55, watersheds are KL, ETL, or TR. We do not define an HI value to separate KL from ETL 

because HI alone cannot describe the balance between chemical weathering and physical 

weathering needed to define these two categories. Based on this final definition, 82 watersheds 

are RL, and 60 watersheds are KL, ETL, or TR. For the rest of this analysis, we will separate 

these two groups as HI < 0.55 and HI > 0.55.  



 

 

4.3.3 SiO2 Concentrations 

Flow weighted SiO2 concentrations (herein denoted as [SiO2]) for each watershed vary 

from 1.6 to 54.3 mg/l (Figure 4-4). The average SiO2 concentration across watersheds when HI < 

0.55 is 16.9 ± 11.9 mg/l (min = 3.1 mg/l, max = 54.3 mg/l) and 6.1 ± 2.7 mg/l (min = 1.6 mg/l, 

max = 14.4 mg/l) when HI > 0.55. Overall, sites with HI < 0.55 have significantly higher 

concentrations than sites with HI > 0.55 (two-sided t-test; p << 0.01).  

Variations in temperature can partly explain the variability in [SiO2]. For example, if 

groundwater is in equilibrium with the surrounding minerals, then we expect [SiO2] to vary with 

MAT because the equilibrium constant (Keq) is dependent on temperature. We explore the 

possibility of weathering controls by temperature-dependent Keq further in Section 4.3.5. 

Additionally, reaction rate increases with increasing temperature; therefore, if groundwater is not 

at equilibrium with surrounding minerals, increasing MAT might increase [SiO2] by accelerating 

reaction kinetics and bringing the water closer to equilibrium. We observe that, when HI < 0.55, 

even though concentrations are relatively constant with discharge, there is no correlation between 

[SiO2] and MAT (Figure 4-4A). When HI > 0.55, [SiO2] increases as MAT increases, until MAT 

= 10 C. For MAT > 10 C, [SiO2] becomes constant at ~ 7 mg/l (Figure 4-4A). For HI > 0.55, 

the trend in [SiO2] vs. MAT is therefore consistent with the system approaching equilibrium from 

5 C to 10 C, and then reaching equilibrium at 10 C.  Another explanation for such behavior 

might be that concentrations approach or reach a steady state (a balance between dissolution and 

precipitation) that is not a true equilibrium.   

We can test whether the observed temperature dependence can be considered 

thermodynamic in nature by using activity-activity diagrams for appropriate mineral assemblages. 

We cannot explore the composition of all the shales for the watersheds, so we rely on the average 
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compositions of shales: 60% clay minerals (predominantly chlorite, smectite, illite, kaolinite), 

30% quartz, 4% feldspar, 4% carbonate, and 2% other (Rimstidt et al., 2017). Figure 4-5 shows 

activity-activity diagrams for the chlorite-smectite-kaolinite-gibbsite system (Figure 4-5). These 

stability fields are calculated using the thermo.tdat database (i.e., Lawrence Livermore National 

Laboratory thermo database) and Geochemists Workbench (GWB) 2022 Community Edition. For 

these plots and for simplicity, we chose the mineral clinochlore for chlorite and Mg-saponite for 

smectite. Although we downloaded all major cation data for these sites (see Section 4.2.1), we 

focus here on the Mg2+, SiO2, and pH measurements because i) not all shales include both 

smectite and illite; ii) almost all shales include chlorite, iii) chlorite is much more reactive than 

illite and kaolinite. We therefore hypothesize that chlorite weathering is the SiO2-producing 

reaction in the shale watersheds (see also Gu et al. (2020) and Liao et al. (2022) chlorite 

weathering dynamics in shales).  

When HI < 0.55, we observe that the average river chemistry falls along the smectite-

kaolinite boundary as expected if smectite is transforming to kaolinite with weathering progress 

(Figure 4-5B). In some of these very dry watersheds, the SiO2 concentrations approach 

amorphous silica saturation. When we look at all of the measurements of SiO2, Mg2+, and pH for 

sites with HI < 0.55, we observe that many individual samples reach amorphous silica saturation, 

but do not exceed it (Figure 4-5C), consistent with precipitation of amorphous silica in some of 

the dry soils. When we analyze the specific sites that appear to be controlled by amorphous silica, 

we observe that all watersheds are located throughout the state of Iowa and are all underlain by 

the Ogallala Formation. In contrast to the low-HI sites, when HI > 0.55, we observe that the 

average river chemistry falls along the kaolinite-gibbsite and smectite-kaolinite boundaries, or 

within the kaolinite stability zone (Figure 4-5B). None of the flow-weighted average 

compositions or individual samples for sites with HI > 0.55 reach saturation with respect to 

amorphous silica (Figure 4-5B,D). 
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Since increases in MAP largely result in increases in q, it is not surprising that we 

observe similar trends in [SiO2] with respect to MAP as shown previously for q  (Figure 4-4B,C). 

Changes in the concentration of weathering products (e.g., SiO2) in streams are largely a balance 

between the net rate of release to concentrated porefluid solutions and the rate of dilution by less-

concentrated waters. Maher and Chamberlain (2014) proposed a solute production model based 

on an earlier reaction-dilution model for watersheds (Berner, 1978; Kump et al., 2000) that 

related changes in concentrations to q  (i.e., C-q). 

𝐶 =
𝐶0

1+
𝐷𝑤

𝑞

+ 𝐶𝑚𝑎𝑥

𝐷𝑤

𝑞

1+
𝐷𝑤

𝑞

       (4-9) 

𝐶 =
𝐶𝑚𝑎𝑥𝐷𝑤

𝐷𝑤+𝑞
            (4-10) 

Here, C is the concentration of a solute in the stream (i.e., [SiO2]; mg/l), C0 is the initial 

concentration of the solute for the water entering the system (i.e., rainwater; mg/l), Cmax us the 

empirical maximum concentration of the solute (which may be an equilibrium concentration in 

some cases or a steady state in others; mg/l), and Dw is the Damköhler coefficient (m yr-1). Dw is 

a function of the Damköhler number (Da; Da = Dw/q), which is the characteristic timescale of 

the reaction divided by the characteristic timescale of advection. As stated in Ibarra et al. (2016), 

for most catchments, C0 can be assumed to be zero; therefore eq. 4-9 simplifies to eq. 4-10. Based 

on this model, when q is very small, C is constant and approaches Cmax because the rate of solute 

production is much faster than the rate of advection. Following Godsey et al. (2009), we call this 

C-q modality “chemostatic”. When q is very large, C decreases as q increases because the rate of 

advection is much larger than the rate of solute production. We call this C-q modality “dilution 

behavior”. For our system, we assume C0 = 0 because rainwater is very dilute with respect to 

SiO2, and we fit eq. 4-10 to our data shown in Figure 4-4C using a nonlinear regression in R. 

Based on our mineral activity diagrams (Figure 4-5), we omit the sites that are controlled by 

amorphous silica saturation because their Cmax is fundamentally different than the other sites. 
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We found that the solute production model successfully describes the trends we observe 

between [SiO2] and q, where Cmax = 13.0 ± 0.5 mg/l and Dw = 0.47 ± 0.08 m yr-1 (p < 0.01). 

Based on Figure 4-5, the Cmax value for SiO2 is attributed to the SiO2 concentrations for the 

equilibrium between Mg-smectite and kaolinite. Sites with HI < 0.55 are predominantly located 

within the chemostatic part of the C-q curve, whereas sites with HI > 0.55 are predominantly 

located within the part of the C-q curve characterizing dilution behavior (Figure 4-4C). A similar 

trend between average concentration and discharge across wet and dry watersheds has been 

observed elsewhere (Godsey et al., 2019).  

4.3.4 SiO2 Fluxes 

 SiO2 Fluxes (𝐹𝑆𝑖𝑂2
) vary across the different watersheds from 0.007 to 11.0 t km-2 yr-1 

(Figure 4-6). The average 𝐹𝑆𝑖𝑂2
across watersheds when HI < 0.55 is 1.1 ± 1.8 t km-2 yr-1 (min = 

0.007 t km-2 yr-1, max = 11.0 t km-2 yr-1). This, however, includes the three outlier sites discussed 

earlier. When these sites are removed, 𝐹𝑆𝑖𝑂2
 (for HI < 0.55) = 0.9 ± 1.1 t km-2 yr-1. When HI > 

0.55, 𝐹𝑆𝑖𝑂2
= 2.7 ± 1.1 t km-2 yr-1 (min = 1.2 t km-2 yr-1, max = 5.6 t km-2 yr-1). Overall, sites with 

HI < 0.55 have significantly lower fluxes than sites with HI > 0.55 (two-sided t-test; p << 0.01).  

 Similar to the concentration data, we observe that SiO2 fluxes (𝐹𝑆𝑖𝑂2
) increase with MAT 

when HI > 0.55, but do not show a temperature dependence when HI < 0.55 (Figure 4-6A). If 

weathering at high HI was ETL, we would expect an increase in 𝐹𝑆𝑖𝑂2
 with an increase in erosion 

or sediment yield. We do not observe a noticeable correlation between 𝐹𝑆𝑖𝑂2
 and sediment yield 

for sites with HI > 0.55 (Figure 4-6D). 

 Therefore, our original interpretation that sites with HI > 0.55 are likely ETL, KL, or TR, 

in combination with the observed temperature dependence and lack of strong erosion rate 
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dependence for these high-HI sites, leads to the inference that these high-HI sites are KL or TR. 

When sites are KL or TR, we would expect 𝐹𝑆𝑖𝑂2
 to increase with temperature where the strength 

of the dependence is a function of what proportion of the watershed is KL. There could be a weak 

erosion dependence (i.e.,  < 1; eq. 4-6) for TR, which we explore in Section 4.3.6.  

 For sites with HI < 0.55, we observe an increase in 𝐹𝑆𝑖𝑂2
 with increases in both MAP and 

q (Figure 4-6B,C). This is consistent with our interpretation that these sites are RL. We do not 

observe systematic variation in 𝐹𝑆𝑖𝑂2
 with MAP or q for sites with HI > 0.55 (Figure 4-6B,C). 

When we fit eq. 4-7 to all sites (regardless of HI), we find that the parameters for the best fitting 

model are   = 0,  = 2.0  0.2, and Ea = 56  18 (R2 = 0.62; p < 0.01; Table 4-1; Table C-1). 

The   value for this regression shows that when wet and dry sites are not separated, 𝐹𝑆𝑖𝑂2
 

increases exponentially with MAP. 

4.3.5 Climate Controls on Weathering: Dry Watersheds  

 As stated previously, for sites with HI < 0.55, we observe an increase in 𝐹𝑆𝑖𝑂2
 with 

increases in both MAP and q (Figure 4-6B,C). When we fit eq. 4-7 to the sites with HI < 0.55, we 

find that the parameters for the best fitting model are   = 1.1  0.2,  = 4.9  0.5, and Ea = -83  

31 (R2 = 0.66; p < 0.01; Table 4-1; Table C-2). Fitting an exponential equation to 𝐹𝑆𝑖𝑂2
vs. q for 

these sites, we find that 𝐹𝑆𝑖𝑂2
= (29.6 ± 8.5)𝑞1.2±0.1 (R2 = 0.76, p < 0.01). For RL weathering, 

𝐹𝑆𝑖𝑂2
 increases linearly with q (and exponentially with MAP), and this is not surprising given the 

definition of RL. The Ea for these sites, however, is surprising given that the negative sign 

indicates that 𝐹𝑆𝑖𝑂2
decreases as MAT increases. Here, we explore this negative temperature 

dependence further. 
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  For RL weathering of shale, we observe the possibility that concentrations are 

chemostatic because they are controlled by smectite-kaolinite equilibration. In that case, 𝐹𝑆𝑖𝑂2
=

𝑞𝐶𝑒𝑞, where 𝐶𝑒𝑞 is the equilibrium concentration, or at least the steady state concentration, of 

SiO2 in solution for that mineral assemblage. As discussed in section 4.3.3, the river chemistry for 

sites with HI < 0.55 primarily plot on the line consistent with equilibrium between smectite and 

kaolinite (Figure 4-5B,C). For this equilibrium, we used Mg-Saponite 

(Mg3.165Al0.33Si3.67O10(OH)2) as the smectite mineral and the reaction was written based on the 

assumption that all Al is retained in kaolinite as smectite transforms. 

Smectite + 6.33 H+ = 0.165 Kaolinite + 3.165 Mg2+ + 3.34 SiO2   (4-11)  

For the reaction as written, the equilibrium constant, 𝐾𝑒𝑞, equals: 

𝐾𝑒𝑞 =
[Mg2+]

3.165
[SiO2]3.34

[𝐻+]6.33      (4-12) 

Using the Van't Hoff equation, 𝐾𝑒𝑞 depends on temperature and can be written as:  

𝐾𝑒𝑞 = 𝐾𝑒𝑞
0 e

(−
∆𝐻𝑟

𝑅
[

1

𝑇
−

1

𝑇0
])

      (4-13) 

 Here, 𝐾𝑒𝑞
0  is the equilibrium constant at reference temperature T0 and Hr is the enthalpy 

of the reaction at T0 (kJ mol-1).  If smectite → kaolinite as in eq. 11, then Hr= -194 kJ mol-1, 

which means that as temperature increases, 𝐾𝑒𝑞 decreases and the reaction results in higher 

smectite:kaolinite ratios at equilibrium. Thus, as temperature increases in a closed system, we 

expect decreases in SiO2 and Mg2+ concentrations and pH. Within the resolution of the field data, 

we observe evidence for SiO2 and pH decreasing with MAT for sites with HI < 0.55 (Figure 4-

7A,C), which is consistent with this equilibrium. Plotting the activity product (Q; eq. 4-12) vs. 

MAT, we find that the data fall along the smectite-kaolinite equilibrium when HI < 0.55 (eq. 4-

13; Figure 4-8A).  
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 Scatter in the data around 𝐾𝑒𝑞 (Figure 4-8A), could reflect the general difficulty of 

measuring accurate thermodynamic data for clays, given their chemical and structural 

heterogeneity and lack of crystallinity. For example, differences in chemical composition of the 

smectite such as Fe substitution (Goddéris et al., 2010) can affect the Keq significantly. To control 

for chemical composition across the 80 watersheds is not possible because clay compositions are 

highly variable and dependent on parent material. On the other hand, it has been shown that clay 

mineralogy (e.g., development of smectite and kaolinite) is driven more by climate than by parent 

lithology (Folkoff and Meenemeyer, 1985), especially when considered over larger spatial scales; 

therefore, we consider this unaccounted-for variable as likely leading to random error in our 

calculations.  

 Our observation of a negative Ea (Table 4-1) is consistent with the negative sign of Hr 

for smectite-kaolinite equilibrium. Our Ea, however, has a smaller magnitude (i.e., less negative 

and less sensitive to changes in MAT) than Hr for this reaction. An additional explanation for 

the scatter in Figure 4-8A and the lower apparent temperature sensitivity in our field data is 

variability in soil pCO2. For example, Winnick and Maher (2018) emphasize that concentration of 

solutes derived from for mineral weathering reactions depend on CO2 concentrations and the 

open versus closed nature of a weathering system. Following their treatment (for an open-

system), eq. 4-11 can be re-written with respect to CO2 (assuming the same composition of clay 

as above). 

 

Smectite + 2.495 H2O + 6.33 CO2(g) = 0.165 Kaolinite + 3.165 Mg2+ + 3.34 SiO2 +

6.33 HCO3
−  (4-14) 

 

The equilibrium constant (Keq) can then be written as: 
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𝐾𝑒𝑞 =
[Mg2+]

3.165
[SiO2]3.34[HCO3

−]6.33

(𝑝𝐶𝑂2)6.33      (4-15) 

If we assume that concentration is equivalent to activity (i.e., activity coefficient = 1) and that 

reaction 4-14 is the only reaction changing the solute chemistry, then we eq. 4-15 shows that 

[Mg2+] and [HCO3
-] vary with [SiO2] according to stoichiometric ratios defined by mineral 

composition (Winnick and Maher, 2018). For example,  

[Mg2+] =
3.165

3.34
[SiO2] 

[HCO3
−] =

6.33

3.34
[SiO2] 

(4-16a,b) 

Eliminating [Mg2+] and [HCO3
-] from eq. 4-15 results in a prediction for [SiO2] as a function of 

pCO2 for the case where smectite-kaolinite equilibration is the only reaction at a given pCO2: 

𝐾𝑒𝑞 =
(

3.165

3.34
[SiO2])

3.165
[SiO2]3.34(

6.33

3.34
[SiO2])

6.33

(𝑝𝐶𝑂2)6.33     (4-17) 

Simplifying and solving for [SiO2] leads to: 

[𝑆𝑖𝑂2]𝑒𝑞 = (
𝐾𝑒𝑞

48.26
)

1

12.835 (𝑝𝐶𝑂2)
6.33

12.835     (4-18) 

Incorporating eq. 4-13 into eq. 4-18 results in  

[𝑆𝑖𝑂2]𝑒𝑞 = (
𝐾𝑒𝑞

0

48.26
e

(−
∆𝐻

𝑅
[

1

𝑇
−

1

𝑇0
])

)

1

12.835

(𝑝𝐶𝑂2)
6.33

12.835    (4-19) 

𝐹𝑆𝑖𝑂2
 in RL watersheds can then be written as: 

𝐹𝑆𝑖𝑂2
= 𝑞[𝑆𝑖𝑂2]𝑒𝑞 = 𝑞 (

𝐾𝑒𝑞
0

48.26
e

(−
∆𝐻

𝑅
[

1

𝑇
−

1

𝑇0
])

)

1

12.835

(𝑝𝐶𝑂2)
6.33

12.835    (4-20) 

 

 Eq. 4-20 shows that 𝐹𝑆𝑖𝑂2
 is dependent on q, MAT, and pCO2. We do not have 

measurements of pCO2 to include in our model; however, we can test for systematic differences 



126 

 

in pCO2 across our sites using GWB. For example, Hr for the reaction shown in eq. 14 is -248 

kJ mol-1. We can also calculate 𝐾𝑒𝑞
0  in GWB by setting the temperature of the reaction to 8.2 C 

(i.e., T0), which then equals 10-21.3. If we assume the flow weighted average SiO2 concentration 

equals [𝑆𝑖𝑂2]𝑒𝑞, then we can solve eq. 4-19 for pCO2 in each watershed for that value of Keq and 

T0. For the parameters and assumptions utilized in this calculation, we observe that the calculated 

pCO2 values increase linearly with increasing HI (R2 = 0.38; p < 0.01; Figure 4-9). This 

dependence on HI is consistent with the common observation that soil moisture and temperature 

affect CO2 production in soils (e.g., Raich and Schlesinger, 1992; Lloyd and Taylor, 1994). It has 

been observed, for example, that when soil moisture is low, CO2 production is low (Wood et al., 

2013). We infer that this is thus a defensible explanation for the trends that we see in the dry 

watersheds. Specifically, when PET >> MAP, soils are too dry for soil microbiota to produce 

significant CO2 through respiration; therefore, pCO2 is low. When HI increases, soil moisture 

increases, leading to higher pCO2 in the system. The variability in pCO2 across each watershed 

could explain the apparently weaker temperature sensitivity in our watershed data compared to 

the theoretical value.  In this regard, the low temperature sensitivity for smectite-kaolinite is 

similar to the low T sensitivity reported by Maher and Chamberlain (2014) for several important 

silicate weathering reactions. 

 The pCO2 values we derived here are relatively low for soil gases. This could be a result 

of several of our assumptions being incorrect. 1) we assumed here that the system is open, and 

CO2 is constant; however, CO2 can also be consumed along a flowpath leading to closed-system 

behavior. In this situation, we might expect CO2 concentrations to be low because it is not being 

continuously resupplied by the atmosphere during the reaction progress. 2) We assumed that the 

equilibrium between smectite and kaolinite was the only reaction controlling the stream chemistry 

(eq. 4-16); however, we know that chlorite, illite, and feldspar also release cations, SiO2, and 

change pH. In this situation, the magnitude of our pCO2 values could be incorrect because of an 
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incorrect stoichiometric relationship that we assumed between pCO2 and SiO2 (eq. 4-18). This 

error would impact the magnitude of the pCO2 calculated in Figure 4-9 but not the trend we 

observed. 

4.3.6 Climate Controls on Weathering: Wet Watersheds 

In order to explore how climate impacts weathering dynamics in wet watersheds, we fit 

eq. 4-7 to sites with HI > 0.55. For these sites, we found that three models provided equally valid 

results (Table 4-1; Table C-3): 

 

1)   = 0.16   0.03,  = 0, and Ea = 55  8 (R2 = 0.49; p < 0.01) 

2)   = 0,  = 0.65  0.16, and Ea = 56  8 (R2 = 0.46; p < 0.01) 

3)   = 0,  = 1, and Ea = 61  8 (R2 = 0.48; p < 0.01) 

 

As shown in the three models above, we find that weathering for sites with HI > 0.55 is 

always dependent on temperature but is only dependent on one of the two parameters, 

precipitation or erosion. Conceptually, we might expect transition regime watersheds to show 

both a temperature and erosion dependence because part of the watershed is KL, and part is ETL. 

If watersheds were only KL, then we expect that  = 0 and if they were only ETL, then  = 1. We 

observe 0 <  < 1, which is consistent with TR.  

Regardless of which of the best-fitting models is deemed appropriate, the Ea values for 

each of the models are relatively consistent (i.e., 55-61 kJ mol-1). The average of all the best-

fitting models results in Ea = 55 ± 5 kJ mol-1. This value is smaller than the Ea determined for Na 

in shale soils, 99  15 kJ mol-1 (Dere et al., 2013) or 112  34 kJ mol-1 (same data re-analyzed by 
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Brantley et al., in review). Although this Ea value was evaluated for Na and not SiO2, a higher Ea 

in soils compared to Ea in watersheds is nonetheless consistent with our interpretation that the 

watersheds in our dataset with HI > 0.55 are predominantly TR.  

We infer that, when evaluated as a whole, sites with HI > 0.55 appear to be TR; however, 

we can also hypothesize that a subset of these sites are KL and some might be ETL. Watersheds 

with steep slopes might be KL because they have fast erosion rates compared to silicate 

dissolution rates, leading to incompletely developed weathering profiles (i.e., silicate minerals 

present at land surface). To test this idea, we analyzed the subset of watersheds with steep slopes, 

by defining a mean catchment slope >10 (n = 16). For these potentially KL sites, we find that the 

best fitting model has the parameters   = 0,   = 1, and Ea = 92  10 kJ mol-1 (R2 = 0.86; p < 

0.01; Table 4-1; Table C-4).  

If watersheds with steep slopes are KL, then watersheds with gentle slopes might be ETL. 

In these watersheds, erosion is low compared to silicate dissolution rates, leading to completely 

developed weathering profiles (i.e., silicate minerals absent at land surface). To test this idea, we 

focus our analysis on the watersheds with gentle slopes, which we define as a mean catchment 

slope <5 (n = 31). The best fitting model for these sites have the parameters  = 0.35  0.08,   = 

0, and Ea = 45  16 kJ mol-1 (R2 = 0.48; p < 0.01; Table 4-1; Table C-5). Based on these 

parameters, we see that erosion and temperature control 𝐹𝑆𝑖𝑂2
 in these watersheds. We propose 

two interpretations for this result. The first is that these sites are TR because they have an erosion 

dependence as expected for ETL but also a temperature dependence as expected for KL. In other 

words, it is possible that, because shales are relatively easy to erode, our dataset does not contain 

any strictly ETL watersheds. An alternative explanation is that these sites are in fact ETL. As 

seen in eq. 4-2, sediment yield (Sy), our proxy for erosion rate, is dependent on temperature. The 

temperature dependence that we observe for these sites could therefore reflect the increase in 
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erosion rate with increasing temperatures. Noting, however, the dependence of erosion rate 

globally on temperature is not consistent (Schaller and Ehlers, 2022), we infer that shales are 

different from other lithologies, or that the climate systems represented in the USA are unique in 

showing a relatively small erosion rate dependence upon T.  Regardless, we can calculate the 

fractional change in silicate weathering flux with each degree increase in temperature, 𝑓𝑠𝑤, by 

increasing T in eq. 4-2 and evaluating how Sy changes. 

𝑓𝑠𝑤 =
𝐸𝑎

𝑅𝑇2      (4-21) 

 

Eq. 4-21 describes the relationship between 𝑓𝑠𝑤 and Ea (Berner, 1994; Hayworth and Foley, 

2020). Here, we set T in eqs. 4-2 and 4-21 to 288 K, Earth’s modern average surface temperature 

and find that 𝑓𝑠𝑤 = 6.7%/K and Ea = 46 kJ mol-1. This Ea is consistent with the Ea observed in the 

wet watersheds with gentle slopes; therefore, these sites could be ETL. More analysis and data 

would be required to definitively classify these sites as ETL vs. TR.   

4.3.7 Evaluation of Weathering Regimes in the United States 

As seen in sections 4.3.4 through 4.3.6, 𝐹𝑆𝑖𝑂2
 in different groups of watersheds have 

different sensitivity to temperature (i.e., Ea). When we look across all the sites (regardless of HI 

and slope), we find that Ea = 56 ± 18 kJ mol-1 (Table 4-1). We find that this Ea is consistent with 

other Ea values for silica fluxes in watersheds reported in the literature (typically 49-60 kJ mol-1; 

Table 4-1). Most of the sites previously studied are granitic and mixed sedimentary watersheds 

and this Ea has been attributed to feldspar dissolution. We, however, attribute this Ea in shales to 

TR weathering because they incorporate several different rate limiting steps across these 

landscapes. When we remove the very dry RL sites, we find that the Ea is 56 ± 8 kJ mol-1 (Table 

4-1), which is still consistent with the Ea for all watersheds; however, the MAP dependence 
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decreases from  = 2 to  = 0.65. White et al. (1999) found that the Ea for weathering release rate 

of SiO2 was 51 kJ mol-1. Their dataset contains some dry watersheds, and when only watersheds 

with MAP > 1000 mm yr-1 were analyzed (from the same dataset), Oliva et al. (2003) found that 

the Ea was essentially the same (49 kJ mol-1). We also observe that when dry sites (HI < 0.55) are 

included in analysis or not, Ea does not significantly change (see Table 4-1). Like our shale 

dataset, dry watersheds (i.e., HI < 0.55) did not impact the temperature dependence of 

weathering. 

When we separate sites in our shale dataset further, the Ea values we calculate can be 

interpreted through physical and chemical processes in the watersheds. For sites with HI < 0.55, 

we found that Ea = -83 ± 31 kJ mol-1 (Table 4-1). As discussed in section 4.3.5, this Ea value is 

consistent, although slightly smaller in magnitude, with the equilibrium between smectite and 

kaolinite. As temperatures increase, smectite is favored over kaolinite, leading to retention of base 

cations and SiO2 in soils and a lower weathering flux. This sensitivity is lower than predicted in 

GWB, which is likely a result of diverse chemical compositions of secondary clays and the 

influence of pCO2 in the weathering reactions. Nonetheless, we find that in watersheds with RL 

silicate weathering, the sensitivity to changes in q is much larger than the sensitivity to changes in 

MAT; therefore, the RL endmember for silicate weathering in watersheds can by simply 

expressed as 𝐹𝑆𝑖𝑂2
= 𝑞𝐶𝑚𝑎𝑥 (see eq. 4-9 and 4-10).  

For sites with HI > 0.55 and slopes > 10, we found that Ea = 92 ± 10 kJ mol-1 (Table 4-

1). We interpreted these sites as showing KL silicate weathering; therefore, this Ea should 

represent the Ea of dissolution for the major SiO2-producing mineral. As discussed earlier, 

chlorite is likely the primary silicate mineral dissolving in shale watersheds (Gu et al., 2020; Liao 

et al., 2022). Our Ea of 92 ± 10 kJ mol-1 is consistent with the Ea for chlorite dissolution, 88 kJ 

mol-1 (Palandri and Kharaka, 2004). We did find that one study in the literature reported a larger 

Ea (i.e., 160 kJ mol-1; Wolff-Boenisch et al., 2009). This study focused on the high Himalayas in 
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a mixed lithology setting. The average watershed relief was 940 ± 200 m, higher than the relief 

that we observed for our sites with slopes > 10 (654 ± 183 m). Based on our findings, this high 

Ea observed by Wolff-Boenisch et al. (2009) could be explained by strictly KL watersheds (rather 

than TR) as a result of fast eroding watersheds. Because their study features a mixed lithology, 

however, interpreting the Ea with respect to the primary dissolving mineral is difficult. 

Nonetheless, their results highlight that watersheds with steep slopes are more likely to be KL.  

Lastly, for sites with HI > 0.55 and slopes < 5, we found that Ea = 45 ± 16 kJ mol-1 

(Table 4-1). This value could reflect TR silicate weathering, or it could reflect the temperature 

dependence of erosion as shown by our analysis of the BQART model for sediment yields. Given 

our definition for Sy, we would expect a 6.7% increase in erosion with degree increase in 

temperature, which results in Ea = 46 kJ mol-1, consistent with the Ea derived from our wet sites 

with gentle slopes. 

If we accept that shale watersheds with HI < 0.55 are RL, watersheds with HI > 0.55 and 

slopes >10 are KL, watersheds with HI > 0.55 and slopes <5 are ETL, and all other watersheds 

are TR, then we can calculate the relative importance of each of these weathering regimes for 

shales across the continental United States. For this calculation we utilize HUC12 watersheds 

because they are small (typically ~100 km2) and have been mapped across the entire United 

States (Berelson et al., 2004). There are >100,000 HUC12 watersheds within the Watershed 

Boundary Dataset (WBD). Using the same method for identifying shale watersheds (see section 

4.2.1), we found that 10,706 HUC12 watersheds are underlain by shale. We calculated HI and 

mean catchment slope for these watersheds following methods in sections 4.2.2 and 4.2.3. Of the 

shale HUC12 watersheds, we found that 48% (n = 5,142) were RL, 37% (n = 3,914) were ETL, 

9% (n = 940) were TR, and 7% (n = 710) were KL (Figure 4-10). Weighting the land area 

fractions by the average 𝐹𝑆𝑖𝑂2
 observed for each of these weathering regimes, we find that silicate 
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weathering in US shales is 17% RL, 56% ETL, 16% TR, and 11% KL. Although RL watersheds 

cover the largest land area in the United States, their weathering fluxes are very low; therefore, 

they contribute significantly less to the silicate weathering fluxes on the continental scale than 

ETL and KL watersheds.  

4.4 Conclusions 

Understanding controls on silicate weathering rates is important in order to predict CO2-

weathering dynamics across space and time. We found that in the United States, shales can 

broadly be categorized as “dry” and “wet”, depending on whether the ratio of MAP to PET is less 

than or greater than 0.55, respectively. In dry watersheds, weathering is limited by runoff. The 

stream chemistry in these watersheds is consistent with weathering products reaching equilibrium 

with respect to secondary formation of smectite and kaolinite. The temperature dependence of 

this equilibrium is consistent with this equilibrium but made more difficult to interpret due to 

potentially low and variable pCO2 in very dry soils. These watersheds are best described as 

dependent upon runoff, temperature, pCO2, and the mineralogy of the system. For our specific 

shale watersheds, 𝐹𝑆𝑖𝑂2
= 𝑞 (

𝐾𝑒𝑞
0

48.26
e

(−
−83

𝑅
[

1

𝑇
−

1

281
])

)

1

12.835
(𝑝𝐶𝑂2)

6.33

12.835. 

In contrast, silicate weathering in some wet watersheds may best be described as KL, 

some as ETL, and some as a combination of KL and ETL landscapes considered TR. When 

evaluating the temperature sensitivity for silicate weathering of these watersheds considered 

together as a group, we found an apparent activation energy of 55  5 kJ mol-1. This value is 

consistent with apparent activation energies for silica release rates reported in the literature for 

granitoid watersheds (49-60 kJ mol-1; Table 4-1). When all these watersheds are considered 

together as a group, however, the activation energy is difficult to interpret. Splitting these sites 
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into watersheds with steep (> 10) and gentle (< 5) slopes, we found that the Ea can be more 

easily interpreted. For sites with steep slopes, Ea = 92 ± 10 kJ mol-1, which is consistent with the 

Ea for chlorite dissolution, 88 kJ mol-1 (Palandri and Kharaka, 2004). We, therefore, consider 

silicate weathering in watersheds with steep slopes as KL. For sites with gentle slopes, Ea = 45 ± 

16 kJ mol-1, which is consistent with the temperature sensitivity for sediment yield (46 kJ mol-1). 

We, therefore, consider silicate weathering in watersheds with gentle slopes as ETL. For 

watersheds where silicate weathering is KL, they are best described as dependent upon 

temperature and precipitation, and 𝐹𝑆𝑖𝑂2
= 1.5 × 10−3 (

𝑃

831
) 𝑒

(−
92

𝑅
[

1

𝑇
 − 

1

281
])

. For watersheds where 

silicate weathering is ETL, they are best described as dependent upon erosion and temperature, 

and 𝐹𝑆𝑖𝑂2
= 2.5 (

𝐸

60.3
)

0.35
𝑒

(−
45

𝑅
[

1

𝑇
 − 

1

281
])

. 

 In the USA, 33% of HUC12 watersheds are underlain partially by shale, and 10% have 

>75% of their drainage area underlain by shale. Utilizing the criteria that RL silicate weathering 

develops in watersheds where HI < 0.55, we found that silicate weathering rates in 48% of shale 

watersheds are RL in the United States. Only 7% of shale watersheds have HI > 0.55 and slopes 

>10. Lastly, 37% of shale watersheds have HI > 0.55 and slopes <5. Most wet watersheds are 

ETL and only a very small fraction of watersheds are KL. Moreover, we also show that a large 

fraction of land surface (i.e., the fraction where silicate weathering is RL) contributes very little to 

weathering fluxes.  

In conclusion, shales cover a large fraction of land surface globally and have temperature 

sensitivities similar to granitic watersheds. Unlike granites, however, shales are easily erodible, 

which may make them less likely to be ETL.  It is important to consider shales when evaluating 

global weathering dynamics. 
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4.5 Tables 

 

  

Table 4-1:  Temperature sensitivity for silica fluxes in watersheds from this study and from 

published literature. 

Study 
Ea  

(kJ mol-1) 
Lithology n Correction Notes 

This Study 56 ± 18 Shale 139 
 = 0,  = 

2.0 ± 0.2 

All Sites (3 outliers 

removed) 

This Study -83 ± 31 Shale 79 

 = 1.1 ± 

0.2,  = 4.9 

± 0.5 

HI < 0.55 & 3 outliers 

removed 

This Study 56 ± 8 Shale 60 
 = 0,  = 

0.65 ± 0.16 
HI > 0.55 

This Study 92 ± 10 Shale 16  = 0,  = 1 HI > 0.55 & slope > 10 

This Study 45 ± 16 Shale 31 
 = 0.35 ± 

0.08  = 0 
HI > 0.55 & slope < 5 

White and 

Blum 

(1995) 

59 Granite 68  = 0,  = 1  

White et al. 

(1999) 
51 Granite 86  = 0,  = 1 

Extended dataset of 

White and Blum (1995) 

Dalai et al. 

(2002) 
51 

Granite/Mixed 

Sedimentary 
15  = 0,  = 0  

Oliva et al. 

(2003) 
49 Granite 36  = 0,  = 0 

Same data as White and 

Blum (1995), but runoff 

> 1000 mm yr-1 

West et al. 

(2005) 
60 ± 20 Granite 12  = 0,  = 1 

Data Reanalyzed for SiO2 

fluxes 

Wolff-

Boenisch et 

al. (2009) 

160 
Granite/Mixed 

Sedimentary 
10  = 0,  = 0 

High Relief Himalayan 

catchments (R = 940 ± 

200 m) 

Yadav and 

Chakrapani 

(2011) 

52 
Granite/Mixed 

Sedimentary 
11  = 0,  = 0   

 

**: p < 0.01 

  *: p < 0.05 
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4.6 Figures 

 

  

 

 

Figure 4-1:    Map showing the coverage of shale lithology and the sampling locations (n = 142) 

for shale watersheds. Gray and black points indicate sites where water chemistry and discharge 

have been reported and were used for analysis for HI < 0.5 and HI > 0.55 respectively (see section 

4.3.1). 
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Figure 4-2: Holdridge classification triangle showing the climate classifications for the shale 

watersheds. Note that the potential evapotranspiration ratio is the inverse of HI (i.e., PET/MAP). 
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Figure 4-3: (A) Histogram (bars) and kernel density (solid black line) showing the distribution of 

HI values across the United States with shale as the outcropping lithology.  (B) Plot showing HI 

vs. the between-group variance (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ) using the Otsu method for threshold determination for 

the same dataset in panel A.  (C) Plot showing HI vs. SiO2 Flux, i.e., 𝐹𝑆𝑖𝑂2
, for all shale watersheds 

(n = 142). In all three plots (A-C), the vertical dashed line represents the threshold HI value 

determined using its respective method.  
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Figure 4-4:   Flow weighted SiO2 concentrations as a function of MAT (A), MAP (B), Runoff (C), 

and Sediment Yield (D).  
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Figure 4-5:   Activity diagrams of the chlorite-smectite-kaolinite-gibbsite system for Mg-SiO2. (A) 

General stability zones for each of the minerals at T0 (i.e., 8.2C). (B) Flow-weighted average river 

composition for of the 139 watersheds. The 3 missing watersheds had an insufficient number of 

Mg and pH measurements to calculate the average river chemistry. Error bars in (B) denote the 

interannual variability for the average composition. Plot (C) shows every sample (n = 11,291) for 

the 82 watersheds with HI < 0.55, and plot (D) shows every sample (n = 9,991) for the 60 

watersheds with HI > 0.55. In both (C) and (D) data are only shown where concentrations of SiO2, 

Mg2+, and pH were measured in the same water sample. 
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Figure 4-6:  SiO2 Fluxes (𝐹𝑆𝑖𝑂2
) as a function of MAT (A), MAP (B), Runoff (C), and Sediment 

Yield (D). 
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Figure 4-7:   Plots showing how [SiO2] (A), [Mg2+] (B), and pH (C) vary with MAT for sites with 

HI < 0.55. Sites in equilibrium with amorphous SiO2 were removed because their equilibrium is 

not consistent with eqs. 4-10 and 4-11. 
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Figure 4-8: Activity product (Q) for the kaolinite-smectite equilibrium as a function of MAT (A) 

and MAP (B). In both plots dashed line represents the equilibrium constant (Keq) for the 

transformation of kaolinite to smectite, which was calculated using the thermo.tdat database in 

GWB 2022 Community Edition. 
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Figure 4-9: Plot showing the calculated pCO2 concentrations using eq. 4-18 vs. HI for shale 

watersheds. Sites shown are watersheds with HI < 0.55. Sites in equilibrium with amorphous SiO2 

were removed because their equilibrium is not consistent with eqs. 4-12 and 4-14. 
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Figure 4-10:  Mapped distributions of weathering regimes calculated for shale-underlain HUC12 

watersheds in the United States based on climate and topography. 
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Appendix A 

 

Supplemental Information for Chapter 2 

Appendix A, published as the supplemental material for Shaughnessy, A. R., Gu, X., Wen, T., 

and Brantley, S. L. (2021). Machine learning deciphers CO2 sequestration and subsurface 

flowpaths from stream chemistry. Hydrology and Earth System Sciences, 25(6), 3397-3409, is 

included here in reformatted form. 

A.1 NMF Model 

To employ NMF on limited datasets of stream chemistry, a bootstrapped data set was 

generated using a multivariate normal distribution of log-transformed stream water chemistries, 

similar to the procedure outlined in Lautz et al. (2014). The bootstrapped dataset matches the 

measured means of the log-transformed stream water chemistries and maintains covariation 

between analytes. A comparison between the measured and bootstrapped data sets can be seen in 

Figure A-2 in Appendix A.6. All of the input features were normalized to values between 0 and 1 

to not bias the model training to any one input feature. Next, the model was trained to the 

bootstrapped dataset using NMF algorithms in the python library scikit-learn (Pedregosa et al., 

2011). Lastly, the trained model was applied to measured stream water samples to delineate 

mixing proportions.  

The model results are sensitive to the random initiation of the H matrix (i.e., endmember 

chemistries) used in the training. To produce a more robust decomposition, the starting H matrix 

was randomly initiated 20,000 times. For each stochastic iteration, we used NMF to calculate 

optimal W and H matrices (Eq 2-1) and then filtered out any models with proportions that did not 

add to 1 + 0.05. Additionally, the fit of the model was evaluated from SSE: 
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𝑆𝑆𝐸 =  ∑ ((
[𝑋𝑚]

[𝑆𝑂4
2−]

)
𝑛

− ∑ 𝛼𝑝 (
[𝑋𝑚]

[𝑆𝑂4
2−]

)
𝑝

𝑝 )

2

𝑚     (A-1) 

 

Here, SSE is the sum of square errors, p is the sulfate mixing proportion of endmember 

p derived from the model, X is the element “m" (i.e., Ca, Mg, Na, K, and Cl), and brackets denote 

concentration. The subscript “n” refers to measured concentrations at timepoint “n” in the stream. 

Using eq. A-1, we filtered out additional models that yielded poor fitting solutions following the 

procedure outlined in Torres et al. (2016). Here we define a reference SSE that is equal to the 5th 

percentile SSE for all the models for that sample and filtered out any models where the SSE was 

larger than the reference SSE. In other words, we kept only the 5th percentile of best fitting 

models for each sample. The remaining models were averaged and reported as the final result. 

Additionally, we calculate the standard deviation for the remaining samples to represent 

uncertainty in our modeling results and we propagate these errors throughout our calculations. 

This average number of valid models per sample after all filters were applied was 44 for Shale 

Hills, 104 for East River, and 55 for Hubbard Brook. 

A.2 Calculations 

A.2.1 Solute Fluxes 

The time-averaged flux of each species, Flux, was calculated using values for 

concentration and discharge following an equation adapted from Moatar et al. (2013): 

 

𝐹𝑙𝑢𝑥 =  𝛽
∑ [𝑋]𝑛𝑄𝑛𝑛

∑ 𝑄𝑛𝑛
𝑞̅𝐴−1    (A-2) 
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Here, Flux has the units of mmol m-2 yr-1, [X]n is the concentration of a weathering 

product in the stream (e.g., X = SO4
2-, Ca2+, Mg2+, Na+, K+, Cl-) at timepoint n, Qn is the discharge 

measured at timepoint n, 𝑞̅ is the mean discharge over the period of record (i.e., sum of daily 

discharge measurements/number of daily discharge measurements), A is the basin area (Shale 

Hills  = 8.0x104 m2; East River = 8.5x107 m2; Hubbard Brook = 4.0x105 m2 (W3), 1.5x105 m2 

(W6), 7.7x105 m2 (W7), 6.1x105 m2 (W8),  7.0x105 m2 (W9)), and  is a coefficient for unit 

conversions to mmol m-2 yr-1 (i.e., 3.15 x1010 l s m-3 yr-1) or to meq m-2 yr-1 (i.e., 3.15 x1010 l s m-3 

yr-1 multiplied by species charge (meq/mmol)).  

We calculate the uncertainty for our flux calculations by propagating errors in [X]n from 

equation A-2. For sulfate concentrations, we assume 5% error on the measured concentrations. 

Uncertainties in mixing proportions (i.e., ) from the NMF model are utilized as uncertainties in 

the pyrite-derived and acid rain-derived sulfate concentrations. Lastly, error in the total cation 

concentration is determined from the uncertainties in the NMF modeled total cation 

concentrations. For Hubbard Brook, there are 5 sub-catchments that we use in analysis. Reported 

fluxes in Table 1 are the average of the sub-catchments. 

A.2.2 Using Stream Chemistry to Calculate CO2 Drawdown or Release 

Here we calculate the inferred CO2 release or sequestration resulting from weathering as 

recorded in the sum of all base cation concentrations (meq/l) in each stream sample, [Σ+]total:  

 

[Σ+]𝑡𝑜𝑡𝑎𝑙 = 2[𝐶𝑎2+]𝑡𝑜𝑡𝑎𝑙 + 2[𝑀𝑔2+]𝑡𝑜𝑡𝑎𝑙 + [𝑁𝑎+]𝑡𝑜𝑡𝑎𝑙 + [𝐾+]𝑡𝑜𝑡𝑎𝑙    (A-3) 
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Here, we use the modeled base cation concentrations from NMF in eq. A-3, and we use 

the uncertainty in the modeled concentrations for the error in [Σ+]total. To calculate the inferred 

CO2 release or sequestration resulting from weathering, we use the results of NMF, as described 

below, to identify the extents of 4 weathering reactions recorded in each stream sample: 1) CO2-

driven weathering (CO2-weathering) of silicates, 2) H2SO4-driven weathering (H2SO4-

weathering) of silicates, 3) CO2-weathering of carbonates, and 4) H2SO4-weathering of 

carbonates. We note these four quantities respectively as 1) [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐶𝑂2
; 2) 

[Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐻2𝑆𝑂4 ;  3)[Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐶𝑂2 ;  4)[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐻2𝑆𝑂4
. These are the four unknowns we 

seek to calculate for SH and ER, as described below.  

 

Based on the high proton and low metal concentrations of the measured rain chemistry, 

the rain contributes negligibly to the base cation concentrations of the study streams; therefore, 

we apportioned all the base cations to weathering reactions. First, we note that the meq/l of 

cations derived from carbonate minerals, [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒, equal [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐶𝑂2
+  

[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐻2𝑆𝑂4
. Likewise, the meq/l of cations derived from silicate minerals, [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠 

equal [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐻2𝑆𝑂4  + [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐶𝑂2
. The summation of silicate-cations ([+]silicate) is the 

difference between the summation of total cations ([+]total) and that of carbonate-derived cations 

([+]carbonate ): 

 

[Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 = [Σ+]𝑡𝑜𝑡𝑎𝑙 − [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒   (A-4) 

 

We use a few field observations to complete the calculations for SH and ER, as explained 

in the main text. First, carbonate minerals only dissolve in water flowing along the deep path 

because carbonates have been depleted from shallow depths. Second, although some chlorite 
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dissolves into water flowing along the deep path, the release of Mg at depth is insignificant 

compared to Mg released from carbonate. We ignore shallow dissolution of carbonates and deep 

dissolution of silicates in both SH and ER.  

 

With these observations, we can write: 

 

[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 = 2𝛼𝑑𝑒𝑒𝑝[𝑆𝑂4
2−]𝑡𝑜𝑡𝑎𝑙 ((

[𝐶𝑎2+]

[𝑆𝑂4
2−]

)
𝑑𝑒𝑒𝑝

+ (
[𝑀𝑔2+]

[𝑆𝑂4
2−]

)
𝑑𝑒𝑒𝑝

)    (A-5) 

 

Here, deep is the proportion determined through NMF of sulfate in a given water sample 

that was derived from reactions along the deep flowpath, [SO4
2-]total is the total concentration of 

sulfate in the stream water sample under consideration, ([Ca2+]/[SO4
2-])deep and ([Mg2+]/[SO4

2-

])deep are the model-derived ratios of [Ca2+] and [Mg2+] to [SO4
2-], respectively, that characterize 

the deep flowpath endmember for that sample.  

 

Remembering that Mg release from chlorite dissolution at depth is insignificant 

compared to Mg from carbonates, all of the generated sulfate in the deep weathering endmember 

is balanced by cations from dissolved carbonate minerals:  

 

[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐻2𝑆𝑂4
= 4𝛼𝑑𝑒𝑒𝑝[𝑆𝑂4

2−]𝑡𝑜𝑡𝑎𝑙     (A-6) 

 

(We multiply the concentration of deep sulfate by 4 because 4 eq of cations are released 

per mol of sulfate, noting that [Σ+]is in eq/L and [SO4
2-] is in mol/L). Any carbonate-derived base 

cations that are in excess of what could have been produced by pyrite-derived sulfuric acid are 

attributed to CO2-weathering of carbonates:  
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[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐶𝑂2
= [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 − [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐻2𝑆𝑂4

  (A-7) 

 

Remembering that no carbonates dissolve into water flowing along the shallow path, then 

similar arguments for the shallow flowpath yield: 

 

[Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐻2𝑆𝑂4
= 2𝛼𝑠ℎ𝑎𝑙𝑙𝑜𝑤[𝑆𝑂4

2−]𝑡𝑜𝑡𝑎𝑙    (A-8) 

[Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐶𝑂2
= [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 − [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐻2𝑆𝑂4

    (A-9) 

 

From these equations, values for the four unknowns can be calculated for SH and ER. A 

similar approach was taken for HB except that no carbonate minerals were present, and only two 

unknowns were determined ([Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐻2𝑆𝑂4
, [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐶𝑂2

). 

 

With respect to the atmosphere considered over the long-term (105-106 yr), H2SO4-

weathering of silicates and CO2-weathering of carbonates are CO2 neutral, while CO2-weathering 

of silicates sequesters CO2 and H2SO4-weathering of carbonates releases CO2 (Figure 2-1). As 

seen in Figure 1, per mole of CaSiO3 or CaCO3 weathered, CO2-weathering of silicates sequesters 

1 mol of CO2 and H2SO4-weathering of carbonates releases 0.5 moles of CO2. In terms of [Σ+]total, 

CO2-weathering of silicates sequesters 0.5 moles of CO2 per base cation equivalent released into 

solution and H2SO4-weathering of carbonates releases 0.25 moles of CO2 per base cation 

equivalent released into solution (Figure 2-1; Reactions 2, 3, 6, and 7). For a given water sample, 

the cation concentrations record the extent of dissolution of carbonate and silicates, as long as the 

contribution of these base cations from acid rain is minimal. (For simplicity, we do not correct 
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[Σ+] for rain chemistry but see Appendix A.4). Therefore, the uptake or release of CO2, Δ𝐶𝑂2, 

can be calculated for any given stream water sample: 

 

Δ𝐶𝑂2 =  0.5 [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐶𝑂2
− 0.25 [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐻2𝑆𝑂4

   (A-10) 

 

Using Δ𝐶𝑂2, we calculate the flux of CO2 using the discharge measurements for each 

sample (see Figure A-4 in Appendix A.6).  

 

Next, we will derive stream, the modern CO2 sequestration coefficient. In general, both 

stream and rock (see Appendix A.2.3) are used as ways to note the extent that weathering in a 

watershed is sequestering or releasing CO2.  stream is the amount of CO2 emitted or sequestered 

calculated from [Σ+]𝑡𝑜𝑡𝑎𝑙  as described above, normalized by [Σ+]𝑡𝑜𝑡𝑎𝑙(meq/l): 

 

𝜅𝑠𝑡𝑟𝑒𝑎𝑚 = −
Δ𝐶𝑂2

[Σ+]𝑡𝑜𝑡𝑎𝑙
      (A-11) 

 

The negative sign is used so that a negative stream represents sequestration (uptake of 

CO2), and a positive stream represents release. From eq. A-11 it is apparent that the CO2 emitted or 

sequestered equals the product, stream [Σ+]𝑡𝑜𝑡𝑎𝑙 , with the appropriate sign.  Total dissolved base 

cations in a stream draining a watershed with no carbonate nor pyrite are attributed here entirely 

as CO2-weathering: this watershed demonstrates the highest capacity to sequester CO2 and 

𝜅𝑠𝑡𝑟𝑒𝑎𝑚 equals -0.5. Substituting from eq. A-10 into eq. A-11 yields: 

 

𝜅𝑠𝑡𝑟𝑒𝑎𝑚 = −
0.5 [Σ+]𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒−𝐶𝑂2−0.25 [Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−𝐻2𝑆𝑂4

[Σ+]𝑡𝑜𝑡𝑎𝑙
    (A-12) 
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We can further expand eq. A-12 by substituting eq. A-6 for [+]carbonate-H2SO4 , eq. A-9 for 

[+]silicate-CO2 , eq. A-4 for [+]silicate and eq. A-8 for [+]silicate-H2SO4 

 

𝜅𝑠𝑡𝑟𝑒𝑎𝑚 = −
0.5([Σ+]𝑡𝑜𝑡𝑎𝑙−[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒−2𝛼𝑠ℎ𝑎𝑙𝑙𝑜𝑤[𝑆𝑂4

2−]
𝑡𝑜𝑡𝑎𝑙

 )− 𝛼𝑑𝑒𝑒𝑝[𝑆𝑂4
2−]

𝑡𝑜𝑡𝑎𝑙

[Σ+]𝑡𝑜𝑡𝑎𝑙
  (A-13) 

 

This can be rearranged and simplified as: 

 

𝜅𝑠𝑡𝑟𝑒𝑎𝑚 = −
1

2
+

1

2

[Σ+]𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒

[Σ+]𝑡𝑜𝑡𝑎𝑙
+

[𝑆𝑂4
2−]

𝑡𝑜𝑡𝑎𝑙

[Σ+]𝑡𝑜𝑡𝑎𝑙
    (A-14) 

 

We then define the second term (ratio of carbonate-derived base cations to total base 

cations in the stream sample) as  stream and the third term (ratio of the sulfate equivalents (from 

sulfuric acid) to the equivalents of base cations in the stream) as stream. Note that to obtain the 

sulfate equivalents, we multiply [SO4
2-]total by 2, resulting in the third term equal to 0.5stream. 

Given these definitions, eq. A-14 yields eq. 2-2 from the main text: 

 

  𝜅𝑠𝑡𝑟𝑒𝑎𝑚 =
1

2
(−1 + 𝛾𝑠𝑡𝑟𝑒𝑎𝑚 + 𝜁𝑠𝑡𝑟𝑒𝑎𝑚)  

A.2.3 Using Rock Chemistry to Calculate CO2 Drawdown or Release  

Here we compare the bulk elemental composition of parent rock to topsoil and calculate 

the difference to determine if the system acted on net as a source or a sink of CO2 over the 

weathering duration. Of course, this calculation involves inspection only of rock versus soil 
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chemistry and cannot therefore be used to separate CO2- versus H2SO4-weathering when the latter 

is derived from acid rain. The three most important factors are i) the ratio of base cations in 

carbonates relative to silicates in the rock, ii) the ratio of acid-generating units of pyrite relative to 

total base cations in carbonate+silicate minerals, and iii) the ratio of base cations still retained in 

regolith at the land surface relative to total base cations. This latter ratio is related to the chemical 

depletion factor (written below as -), i.e., the relative ratio of loss of a component in a rock to 

chemical weathering versus total loss by physical + chemical weathering (Riebe et al. 2003). For 

(i), we define the carbonate/silicate factor, rock, which is the proportion of base cation equivalents 

in the rock derived from carbonate minerals divided by the total base cations: 

 

𝛾𝑟𝑜𝑐𝑘 =
2𝐶𝐶𝑎,𝑐𝑎𝑟𝑏+2𝐶𝑀𝑔,𝑐𝑎𝑟𝑏

2𝐶𝐶𝑎,𝑇𝑜𝑡𝑎𝑙+2𝐶𝑀𝑔,𝑇𝑜𝑡𝑎𝑙+𝐶𝑁𝑎,𝑇𝑜𝑡𝑎𝑙+𝐶𝐾,𝑇𝑜𝑡𝑎𝑙
    (A-15) 

 

Here CX,k is the mole fraction (mol/kg) of base cation (X = Ca, Mg, Na, or K) in 

carbonates (k = carb) or in carbonate + silicate minerals (k = Total). By definition, rock ranges 

from 0 (where all base cations derive from silicates) to 1 (where all base cations derive from 

carbonates). Likewise, 1- rock is the proportion of base cations derived from silicate minerals.  

When pyrite oxidizes it produces sulfuric acid that can dissolve carbonate and silicate 

minerals. This impacts CO2 dynamics over 105-106 yr timescales by releasing CO2 (H2SO4-

weathering of carbonates). But it also diminishes the silicate content of the rock, thereby 

diminishing the rock’s capacity to sequester CO2. Here, we define a new variable, rock, which is 

the acid generation capacity expressed relative to the base cations in the rock (all on an 

equivalents basis): 

 

𝜁𝑟𝑜𝑐𝑘 =
4𝐶𝑝𝑦

2𝐶𝐶𝑎,𝑇𝑜𝑡𝑎𝑙+2𝐶𝑀𝑔,𝑇𝑜𝑡𝑎𝑙+𝐶𝑁𝑎,𝑇𝑜𝑡𝑎𝑙+𝐶𝐾,𝑇𝑜𝑡𝑎𝑙
   (A-16) 
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Here, the subscript py refers to pyrite (mol/kg rock). We multiply the concentration of 

pyrite (i.e., Cpy) by 4 (eq/mol) because 4 equivalents of sulfate are produced per mole of pyrite as 

shown in reaction A-17. 

 

𝐹𝑒𝑆2 +
15

4
𝑂2 + 2𝐻2𝑂 →

1

2
𝐹𝑒2𝑂3 + 4𝐻+ + 2𝑆𝑂4

2−   (A-17) 

 

Lastly, in many catchments, the bulk chemistry of parent rock is not indicative of the CO2 

sequestration during weathering because silicate minerals are kinetically slow to dissolve and 

they do not completely dissolve before the rock physically erodes. On the other hand, we assume 

here that all carbonate minerals chemically weather away before exposure at land surface, an 

assumption most useful for wet climates and relatively low-carbonate content rocks. The relative 

depletion of an element in a weathered rock with respect to the parent rock is easily calculated 

from the mass transfer coefficient, . 

 

𝜏𝑖,𝑗 =  
𝐶𝑗,𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑒𝑑𝐶𝑖,𝑝𝑎𝑟𝑒𝑛𝑡

𝐶𝑗,𝑝𝑎𝑟𝑒𝑛𝑡𝐶𝑖,𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑒𝑑
− 1     (A-18) 

 

Here, C is the concentration of a base cation (j) or an immobile element (i) in the parent 

or weathered rock. When  at the top of the weathering profile is 0, the composition of the 

weathering material is the same with respect to base cations and immobile element i as the parent 

and none of these elements have been lost to solution (they will be eroded instead of chemically 

weathered). When  = -1, all of the element has been lost to solution and none is left to erode 

away.  
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 Using the variables rock, rock, and , we now define rock, the long-term CO2 

sequestration coefficient of the rock:  

 

𝜅𝑟𝑜𝑐𝑘 =
1

2
𝜏𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 𝑐𝑎𝑡𝑖𝑜𝑛𝑠(1 − 𝛾𝑟𝑜𝑐𝑘) −

1

2
𝜁𝑟𝑜𝑐𝑘   (A-19) 

 

Here, (1- rock) is the proportion of base cation equivalents associated with silicate 

minerals. We multiply this by 0.5 because 1 mol of CO2 is sequestered during weathering of 2 eq 

of base cations when considered over 105 to 106 yr timescales (see Figure 2-1 reactions 1 and 2). 

If pyrite oxidation is coupled to carbonate dissolution, 2 mols of CO2 are released per mole of 

pyrite in the rock (see Figure 2-1 reaction 7), yielding the term −
1

2
rock based on eq A-16. 

Likewise, pyrite oxidation could be coupled to silicate dissolution. In this case, 1 mol of pyrite 

consumes 2 mols of silicate minerals. Because 1 mol of Ca-silicate mineral sequesters 1 mol of 

CO2 over 105 to 106 yr timescales (see Figure A-1 reactions 1 and 2), CO2 sequestration is 

reduced by 2 mols of CO2 per mole pyrite in the rock. Again, based on eq A-16, this is equivalent 

to −
1

2
rock. Lastly, silicate cations is the mass transfer coefficient for base cations in silicates at the 

land surface. It ranges from 0 (no base cations in silicate minerals have been removed by 

dissolution) to -1 (all the base cations in silicate minerals have been removed by dissolution).  

Finally, noting that tsilicate cations is generally not reported, we must instead calculate it from 

t, the mass transfer coefficient for total base cations in the bulk rock: 

𝜏 = 𝜏𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 𝑐𝑎𝑡𝑖𝑜𝑛𝑠(1 − 𝛾𝑟𝑜𝑐𝑘) + 𝜏𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝛾𝑟𝑜𝑐𝑘  (A-20) 

Again, we emphasize wet climates and low-carbonate terrain and implicitly assume that 

all carbonates are fully dissolved at the land surface (i.e., carbonate cations = -1) to solve for silicate 

cations: 
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𝜏𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =
𝜏+𝛾𝑟𝑜𝑐𝑘

(1−𝛾𝑟𝑜𝑐𝑘)
    (A-21) 

Now we substitute eq. A-21 in eq. A-19 and simplify to the final equation 2-3 from the 

main text:  

𝜅𝑟𝑜𝑐𝑘 =
1

2
(𝜏 + 𝛾𝑟𝑜𝑐𝑘 + 𝜁𝑟𝑜𝑐𝑘)      

When rock < 0, the rock has sequestered CO2 from the atmosphere over the residence 

time of the soil and when rock > 0 the rock released CO2.  

Mathematically, this equation is only valid as long at  < - rock. The minimum value of 

rock is -0.5, which is a pure silicate rock dissolved only by CO2. The maximum value of rock is 

0.25, which is a pure carbonate rock weathered only by sulfuric acid. It is mathematically 

impossible for rock < -0.5; however, it is mathematically possible to have rock > 0.25. In these 

situations, there is more sulfuric acid in the system than can be buffered by both carbonate and 

silicate weathering. 

A.2.4 Lag-time Calculation 

Using rain chemistry data from the National Atmospheric Deposition Program (NADP; 

http://nadp.slh.wisc.edu/) site PA42, we calculated the annual flux of sulfate into Shale Hills from 

wet deposition. We used the flux data to calculate a trend in wet deposition over time and then 

used the regression to calculate when 39.5 mmol m-2 yr-1 was deposited (i.e., 31 years prior to 

today). Next we added dry deposition as an input (estimated as 30% wet deposition; Lynch and 

Corbett; 1989), fit a new regression to wet+dry deposition over time, and recalculated the lag 

time (i.e., 19 years; Figure 2-4C). Although not explicitly calculated here, Hubbard Brook also 

shows a lag in deposition to export on similar timescales, which is consistent with the excess 

sulfate export observed in other studies (Likens et al., 2002). 
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A.2.5 Mineral-derived Solute Concentrations 

The contributions of ankerite and calcite to the Ca2+ budget were calculated using the 

composition of the appropriate endmember (deep flowpath for SH and ER). Based on the 

stoichiometry of ankerite at Shale Hills and assuming all Mg2+ in deep flowpath water derives 

from ankerite, the concentration of Ca2+ from ankerite in any given stream sample, 

[Ca2+]ankerite, is calculated using the following equation. 

 

[𝐶𝑎2+]𝑎𝑛𝑘𝑒𝑟𝑖𝑡𝑒 =  1.6 (
𝑀𝑔2+

𝑆𝑂4
2− )

𝑑𝑒𝑒𝑝
𝛼𝑑𝑒𝑒𝑝[𝑆𝑂4

2−]𝑇𝑜𝑡𝑎𝑙   (A-22) 

 

Here, 1.6 is the stoichiometric number relating Mg2+ to Ca2+ in Ankerite (see Table S3).  

[𝐶𝑎2+]𝑐𝑎𝑙𝑐𝑖𝑡𝑒is calculated as the difference between the total Ca2+ and the ankerite-derived Ca2+. 

 Similarly, the contributions of chlorite and illite to the Mg2+ budget were 

calculated using the composition of the appropriate endmember (shallow flowpath for SH). Based 

on the stoichiometry of illite at Shale Hills and assuming all K+ in shallow flowpath water derives 

from illite, the concentration of Mg2+ from illite in any given sample, [𝑀𝑔2+]𝑖𝑙𝑙𝑖𝑡𝑒, is calculated 

using the following equation: 

 

[𝑀𝑔2+]𝑖𝑙𝑙𝑖𝑡𝑒 =  0.28 (
𝐾+

𝑆𝑂4
2−)

𝑠ℎ𝑎𝑙𝑙𝑜𝑤
𝛼𝑠ℎ𝑎𝑙𝑙𝑜𝑤[𝑆𝑂4

2−]𝑇𝑜𝑡𝑎𝑙   (A-23) 

 

Here, 0.28 is the stoichiometric number relating K+ to Mg2+ in illite (see Table A-3 in 

Appendix A.5). The concentration of chlorite-derived Mg2+ is calculated as the difference 

between the total Mg2+, the ankerite-derived Mg2+ and the illite-derived Mg2+. Fluxes of solutes 

derived from each mineral are summarized in Table A-5 (Appendix A.5) for Shale Hills.  
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A.3 Seasonality of Pyrite-sulfate Fluxes 

At Shale Hills, the proportion of pyrite-derived sulfate leaving the catchment accounts for 

23% of the annual sulfate flux (Table 2-1) but ranges from 99% of total sulfate in the dry season 

(summer, fall) to as low as 3% in the wet season (winter, spring, Figure 2-5A). This is easily 

explained because the stream is sustained by deep groundwater that flows up into the stream from 

the deep pyrite reaction front during the dry summer and fall but not in the winter and less acid 

rain enters the catchment in the dry season (Li et al., 2017). 

A.4 Rain-correction 

For simplicity, we do not correct [Σ+]total (eq. A-3) for rain chemistry; however, it is 

likely that some of the cations in the stream are derived from rain, rather than weathering. 

Because Cl in the stream is only derived from precipitation, we can apply a basic correction by 

subtracting cations from [Σ+]total that balance the Cl in the stream water. Because all of our 

calculations rely on [Σ+]total, and individual cations, it does not matter which cations are 

subtracted to balance the Cl. The correction results in very little change in the calculated fluxes 

and does not change the interpretations of the study (see Table A-6 in Appendix A.5). 
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A.5 Supplemental Tables 

 

  

Table A-1:  Endmember compositions for synthetic dataset 

  Endmember1 Endmember2 

[Ca2+]/[SO4
2-]a 8±0.7 0±0.2 

[Mg2+]/[SO4
2-] 3±0.3 0.5±0.1 

[Na+]/[SO4
2-] 2±0.1 4±0.2 

[K+]/[SO4
2-] 2±0.3 1±0.1 

[Cl-]/[SO4
2-] 0±0.1 5±0.6 

 

a) All analytes are reported in molar concentration ratios. 
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Table A-2:   Chemical composition and interpretations of end members from NMF model (see also Figure 

A-3 in Appendix A.6) 

 Shale Hills East River Hubbard Brook 

Component 1 2 1 2 1 2 3 

[Ca2+]/[SO4
2-]a 0.0±0.0 10.0±3.6 1.6±0.6 3.2±0.6 0.2±0.1 1.0±0.2 0.2±0.1 

[Mg2+]/[SO4
2-] 1.6±0.7 2.9±1.0 0.4±0.1 0.7±0.1 0.2±0.1 0.4±0.1 0.3±0.1 

[Na+]/[SO4
2-] 0.5±0.2 0.6±0.2 0.1±0.0 0.2±0.0 2.1±0.5 0.4±0.2 0.4±0.2 

[K+]/[SO4
2-] 0.6±0.3 0.7±0.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.5±0.1 

[Cl-]/[SO4
2-] 1.6±0.7  0.0±0.0 0.1±0.0 0.0±0.0 0.4±0.1 0.2±0.1 0.4±0.1 

Interpretation Shallow Deep Shallow Deep 
Shallow 

Till 

Moderately 

Shallow 

Till 

Deep 

 

a) All analytes are reported in molar concentration ratios. 
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Table A-3:   Mineral reactions with CO2 and H2SO4 

Reaction Equation 

1 Calcite + CO2 + H2O → Ca2+ + 2HCO3
−  

2 Dolomite + 2CO2 + 2H2O → Ca2+ + Mg2+ + 4HCO3
−  

3 Ankerite + 2CO2 + 2H2O → Ca2+ + 0.62Mg2+ + 4HCO3
−  

4 2Calcite + H2SO4 → 2Ca2+ + 2HCO3
− + SO4

2−  

5 Dolomite + H2SO4 → Ca2+ + Mg2+ + 2HCO3
− + SO4

2−  

6 Ankerite + H2SO4 → Ca2+ + 0.62Mg2+ + 2HCO3
− + SO4

2−  

7a Chlorite + 0.6O2 + 1.2CO2 + 1.2H2O → 1.2Hematite + Vermiculite +
 0.6Mg2+ + 3.6H2O  

8a Illite + 0.91CO2 + 4.15H2O → 1.08Kaolinite +  0.48 Goethite + 0.07Mg2+ +
0.77K+ + 1.15H4SiO4 + 0.91 HCO3

−  
 

Calcite: CaCO3 

Dolomite: CaMg(CO3)2 

Ankerite: Ca(Fe0.34Mg0.62Mn0.04)(CO3)2 

Chlorite: (Fe2+
0.40Mg0.15Al0.35)6(Si0.76Al0.24)4O10(OH)8 

Illite: K0.69(Si3.24Al0.76)(Al1.69Fe3+
0.10Fe2+

0.16Mg0.19)O10(OH)2 

Hematite: Fe2O3 

Vermiculite: (Mg0.3Al2.1)(Si0.76Al0.24)4O10(OH)2 

Kaolinite: Al2Si3O10(OH)2 

Goethite: FeOOH 

a) Mineral stoichiometries for chlorite and illite are reported in Sullivan et al. (2016) 
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Table A-4:   Relevant element concentrations and parameters to determine rock 

  Shale Hillsa East Riverb Hubbard 

Brookc 

(meq/kg)  Mean sd Mean sd Mean sdh 

Cation concentrations in parent  2309 439 4003 999 3321 664 

Cation concentrations in 

topsoil 
1368 552 1810 263 1528 

306 

Total sulfur in parent rock  100 19 686 312 119 24 

Inorganic carbon in parent rock  250 42 1083 417 42 8 

rock 0.22 0.05 0.54 0.25 0.03 0.01 

rock 0.04 0.01 0.17 0.09 0.04 0.01 

g -0.43d 0.19 -0.55e 0.16 -0.45f 0.13 

silicate cations -0.27 0.26 -0.01 0.64 -0.43 0.18 

rock -0.08 0.11 0.08 0.17 -0.19 0.11 
 

aValues from Gu et al. (2020b) 

bValues from Wan et al. (2019) 

cValues from Johnson et al. (1968) and Bailey et al. (2004) 
d calculated as averages from samples taken at the land surface for bulk composition data for 3 boreholes 
e calculated from the average of the top 8 cm of 5 cores as reported in Wan et al. (2019) 
f calculated from unweathered schist and reported soil data in Johnson et al. (1968) 
gimmobile element used in  calculations is Ti 
hNo error on measurements were reported (Johnson et al., 1968); we therefore assumed 20% error. 
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Table A-5:   Fluxes of SO4
2-, Ca2+, and Mg2+ by contributor at Shale Hills 

Analyte Fraction Flux (mmol m-2 yr-1) 

SO4
2- 

Total 50.3 ± 0.3 

Rain-derived 38.9 ± 1.0 (77%)a 

Pyrite 11.2 ± 0.9 (23%) 

Ca2+ 

Total 99.5 ± 15.2  

Calcite 56.1 ± 8.4 (56%) 

Ankerite 43.3 ± 6.9 (44%) 

Mg2+ 

Total 51.8 ± 7.4  

Ankerite 28.2 ± 4.4 (54%) 

Chlorite 21.3 ± 5.7 (41%) 

Illite 2.4 ± 0.6 (5%) 
 

aNumber in parentheses is the percent of the total flux for that element 
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Table A-6: Fluxes of SO4
2-, Cations, and CO2 and CO2 Sequestration Coefficients Corrected for Rain 

Cl 

      Shale Hills East River Hubbard Brook 

 Base Cation Fluxes (meq m-2 yr-1) 

 Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected 

Total base 

cation flux 336 ± 13 316 ± 13 1540 ± 30 1530 ± 30 84.6 ± 0.8 74.4 ± 0.8 

Base cation 

flux from CO2-

weathering of 

silicates  12.6 ± 21.1 5.0 ± 21.1 315 ± 58 300 ± 58 24.1± 0.8 14.8 ± 0.8 

Base cation 

flux from CO2-

weathering of 

carbonates 216 ± 16 216 ± 16 587 ± 48 587 ± 48 - - 

Base cation 

flux from 

H2SO4-

weathering of 

silicates  62.4 ± 1.0 66.0 ± 1.0 152 ± 4 152 ± 4 60.5 ± 0.2 59.5 ± 0.2 

Base cation 

flux from 

H2SO4-

weathering of 

carbonates 44.8 ± 1.9 44.8 ± 1.9 488 ± 9 488 ± 9 - - 

 Fluxes (mmol m-2 yr-1) 

 Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected 

Total sulfate 

flux 
50.3 ± 0.3 

197.5 ± 1.0 30.3 ± 0.1 

Sulfide-

derived sulfate 

flux 11.2 ± 0.9 122.1 ± 4.3 9.1 ± 0.1 

Rain-derived 

sulfate flux 38.9 ± 1.0 75.9 ± 4.2 21.2 ± 0.6 

CO2 

sequestration 

or release   4.9 ± 10.7 8.7 ± 10.7 -35.6 ± 30.4 

-27.9 ± 

30.4 -12.1 ± 0.4 -7.4 ± 0.4 

 CO2 Sequestration Coefficients 

 Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected 

stream 0.01 ± 0.03 0.03 ± 0.03 -0.02 ± 0.02 

-0.02 ± 

0.02 -0.14 ± 0.01 

-0.10 ± 

0.01 

rock -0.08 ± 0.11 0.08 ± 0.17 -0.19 ± 0.02 
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A.6 Supplemental Figures 

 

  

 

 

Figure A-1:  Time series showing [SO4
2-]in stream water for the three components calculated from 

NMF for the 5 analyzed sub-catchments for Hubbard Brook. The measured stream sulfate 

concentrations (i.e. total sulfate) are also shown.  Components 1 through 3 have been inferred to 

indicate weathering along flowpaths that are shallow, moderately shallow, and deep, respectively 

(see text and Table A-2 in Appendix A.5). 
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Figure A-2:   Matrix of plots showing measured concentration ratios in stream water at Shale Hills 

normalized to their maximum value (red) and the bootstrapped normalized concentration ratios 

(black). Off-diagonal plots show every combination of element ratio pairs to illustrate covariation 

in the dataset. Plots on the diagonal are element ratio distributions to illustrate that the bootstrapped 

dataset matches the distribution of the measured stream samples.   
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Figure A-3:   Plot showing the variation in end member composition over time for shallow and 

deep weathering end members at Shale Hills.  
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Figure A-4:   Plots showing the CO2 fluxes at Shale Hills (A), East River (B), and Hubbard Brook 

(C) through weathering reactions inferred from the stream chemistry (see Appendix A.2.2).  
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Appendix B 

 

Supplemental Information for Chapter 3 

 

B.1 Oxidation Model Derivation 

Here we provide the full derivation and rationale for the oxidation model presented in the 

main text (i.e., Eqs. 3-1 and 3-2).  We provide an initial model explaining how C-q can be 

conceptualized as a balance between the rate of production of solute and the rate of dilution of 

solute. For this derivation, we use a previously presented model but make it explicit for pyrite 

oxidation (Berner, 1978): 

𝜕𝐶𝑠𝑢𝑙𝑓

𝜕𝑡
= 𝑅 − 𝐶𝑠𝑢𝑙𝑓

𝑄

𝑉
      (3-1) 

As discussed in the main text, 𝐶𝑠𝑢𝑙𝑓 is the concentration of pyrite-derived sulfate 

(denoted as p-sulfate), R is the rate of pyrite oxidation (mol sulfate m-3 yr-1), Q is the volumetric 

flow rate of water through the system (m3 yr-1), and V is the volume of water in the watershed at 

any given time (m3). The rate of oxidation, R, at the mineral surface can furthermore be expressed 

for any packet of water moving through the watershed as 

𝑅 = − 
𝜕𝐶𝐷𝑂

𝜕𝑡
= 𝑘1𝐶𝐷𝑂          (B-1) 

Here, k1 is the rate constant (yr-1) and 𝐶𝐷𝑂is the dissolved oxygen (DO) in the 

groundwater interacting at the pyrite interface. Here we assume that the packet of fluid can 

continue interacting with pyrite in the bedrock until all the DO is consumed. Next, we rewrite R 

with respect to 𝐶𝑠𝑢𝑙𝑓, rather than 𝐶𝐷𝑂. To transform from 𝐶𝐷𝑂 to 𝐶𝑠𝑢𝑙𝑓, we note that 15 moles of 

O2 are consumed for every 8 moles of sulfate produced: 

15O2 + 4FeS2 + 8H2O ↔ 2Fe2O3 + 8SO4
2− + 16H+    (B-2) 
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The concentration of DO in water entering the subsurface is assumed to be equilibrated 

either with O2 in the atmosphere or, if other mineral or organic matter reductants are present in 

soil, with the soil-atmosphere at the soil-bedrock interface. For simplicity, we denote either 

concentration as 𝐶𝐷𝑂
𝑎𝑡𝑚. As noted in the main text, if water (at 10 C) is in equilibrium with the 

atmosphere, 𝐶𝐷𝑂
𝑎𝑡𝑚 equals 353 M and if in equilibrium with the soil atmosphere at Shale Hills, 

this value equals 260 M (Gu et al., 2020). For any packet of water that enters the subsurface 

with  𝐶𝐷𝑂
𝑎𝑡𝑚 and then reacts with pyrite, the stoichiometry of reaction S2 dictates that: 

𝐶𝐷𝑂 = 𝐶𝐷𝑂
𝑎𝑡𝑚 −

15

8
𝐶𝑠𝑢𝑙𝑓     (B-3) 

 

We define the concentration of sulfate when 𝐶𝐷𝑂 = 0 as 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

. Given this definition 

and the stoichiometry of reaction B-2, 

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

=
8

15
𝐶𝐷𝑂

𝑎𝑡𝑚      (B-4) 

Substituting eqs. B-3 and B-4 into eq B-1 yields 

𝑅 = 𝑘1
15

8
(𝐶𝑠𝑢𝑙𝑓

𝑚𝑎𝑥,𝑝𝑟𝑒𝑑
− 𝐶𝑠𝑢𝑙𝑓)              (B-5) 

Inserting eq. B-5 into eq. 3-1, and solving for steady-state concentration of sulfate (i.e., 

𝜕𝐶𝑠𝑢𝑙𝑓

𝜕𝑡
= 0) results in: 

𝐶𝑠𝑢𝑙𝑓 =
𝑘1

′ 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

𝑘1
′ +𝑘𝑓

=
𝑘1

′ 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

𝑧

𝑘1
′ 𝑧+𝑞

                                                  (B-6) 

For simplicity, we have rewritten the rate constant to include the stoichiometric 

coefficient (𝑘1
′ =

15

8
𝑘1). In the derivation of eq S6, we assumed that V is constant as Q varies. 

Again, following a previous treatment (Berner, 1978), the frequency that the watershed is flushed, 

Q/V, is therefore kf (yr-1) and the inverse of kf is the residence time for water in the watershed. 

Conceptualizing the watershed as a one-dimensional chemical reactor in these equations, we 
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furthermore consider the flushing frequency in terms of runoff q (m yr-1) along an average 

representative flowpath of length z: 𝑞 = 𝑧𝑘𝑓. 

Both of the terms in the denominator of eq. B-6 are related to the Damköhler number, Da, 

for a watershed:  

𝐷𝑎 =
𝑘1

′

𝑘𝑓
=

𝑘1
′ 𝑧

𝑞
      (B-7) 

In effect, Da is the ratio of the characteristic time scale of advection divided by that of 

dissolution. When Da  >> 1, reaction is fast compared to transport (𝑘1
′  >> kf) and the system is 

transport-limited but when Da << 1 (𝑘1
′ << kf), the system is kinetic-limited. For chemical 

engineers, Da is usually expressed as a function of the length of the chemical reactor z. For the 

simple approximation for a watershed presented here, z is the length of the weathering flowpath 

(Brantley and Lebedeva, 2021). Conceptually, for kinetic-limited oxidation (where Da << 1), 

water leaves the watershed before it reaches equilibrium for the mineral reaction but for transport 

limitation where Da >> 1 water leaves the watershed after equilibration.  We can then substitute 

eq. B-7 into B-6, which results in: 

𝐶𝑠𝑢𝑙𝑓 =
𝐶𝑠𝑢𝑙𝑓

𝑚𝑎𝑥,𝑝𝑟𝑒𝑑
𝐷𝑎

𝐷𝑎 + 1
=

𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

𝐷𝑤

𝐷𝑤 + 𝑞
 

𝐷𝑎 =
𝐷𝑤

𝑞
 

𝐷𝑤 = 𝑘1
′ 𝑧  

(B-8a,b,c) 

This treatment is directly comparable to another model derivation (Maher and 

Chamberlain, 2014). Maher and Chamberlain (2014) define a new term Dw as the Damköhler 

coefficient (m yr-1). Eq. B-8a is mathematically identical to their solute production model (Maher 

and Chamberlain, 2014) (assuming an initial concentration of zero), although they use Ceq (i.e., 

concentration of solute in equilibrium with the bedrock) instead of Cmax in their model. In later 
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iterations of the model (Ibarra et al., 2016), they replace Ceq with Cmax, which is the empirical 

maximum solute concentration. Their results for weathering reactions in many watersheds (Ibarra 

et al., 2016) show that Cmax is often less than what would be expected at equilibrium. Based on 

this observation, we also replace 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

 (a theoretical equilibrium value) with 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 (an 

empirical, observed value) in eq. B-8a, which results in the final equation used in the main text: 

𝐶𝑠𝑢𝑙𝑓 =
𝐶𝑠𝑢𝑙𝑓

𝑚𝑎𝑥,𝑜𝑏𝑠𝐷𝑤

𝐷𝑤+𝑞
      (3-2) 

B.2 Logistic Regression for Coal  

As a watershed gets larger, we would expect the probability that the watershed integrates 

coal-bed lithology to increase. We tested this hypothesis by utilizing a logistic regression model. 

Logistic regression models work by fitting explanatory variables (i.e., drainage area) to binary 

responses (i.e., a watershed contains coal or does not). Our logistic regression model takes the 

form of the following equation:  

𝑃 =
𝑒(𝑏0+𝑏1X1)

1 + 𝑒(𝑏0+𝑏1𝑋1)
 

 

ln (
𝑃

1 − 𝑃
) = 𝑏0 + 𝑏1X1 

(B-9a,b) 

Here, P is the probability that the watershed contains coal, b0 is a scaler intercept 

parameter, b1 is the slope coefficient, and X1 is the log-transformed drainage area of a watershed. 

Eq. B-9b is the linearization of eq. B-9a, which we use to fit the model. The result of the logistic 

regression is a probability distribution relating drainage area to coal containing lithology. For this 

analysis, we utilized delineated watersheds from the National Hydrography Dataset (NHD) and 
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calculated the drainage area and percent coal lithology for each of the watersheds within the SRB 

(n = 335). Watersheds were then assigned a value of 1 or 0 if it did or did not contain any coal, 

respectively. After fitting the logistic regression, we set P equal to 0.5 and solve for X1 to 

determine the scaling threshold for when a watershed is more likely than not to contain coal. We 

calculated the threshold to be > 1,355 km2. 
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B.3 Supplemental Tables 

 

  

Table B-1:   NMF-derived endmember chemistries for sites located along the mainstem of Shaver’s 

Creek, Juniata River, and Susquehanna River.  

Analyte Endmember 
Shaver's 

Creek 

Juniata 

River 

Susquehanna 

River 

Ca2+/SO4
2- 

1 12.5 ± 3.3 6.4 ± 1.6 4.2 ± 1.7 

2 2.4 ± 0.5 1.7 ± 1.6 3.3 ± 1.4 

3 0.9 ± 0.7 1.7 ± 1.2 1.1 ± 0.4 

Mg2+/ SO4
2- 

1 3.7 ± 1.0 1.3 ± 0.3 2.3 ± 0.9 

2 0.1 ± 0.1 0.3 ± 0.3 0.5 ± 0.4 

3 1.3 ± 0.3 0.3 ± 0.2 0.4 ± 0.3 

Na+/ SO4
2- 

1 0.1 ± 0.0 1.1 ± 0.8 1.7 ± 1.1 

2 7.4 ± 1.8 8.0 ± 1.5 6.7 ± 3.1 

3 0.0 ± 0.0 1.4 ± 1.0 0.3± 0.3 

K+/ SO4
2- 

1 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.2 

2 0.5 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 

3 0.3 ± 0.1 0.5 ± 0.1 0.1 ± 0.1 

Cl-/ SO4
2- 

1 0.0 ± 0.0 1.4 ± 1.0 1.2 ± 1.1 

2 8.3 ± 2.1 9.7 ± 1.8 7.7 ± 3.6 

3 0.5 ± 0.1 0.9 ± 1.0 0.6 ± 0.4 

NO3
-/ SO4

2- 

1 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0 

2 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 

3 1.1 ± 0.3 1.4 ± 0.4 0.8 ± 0.3 
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Table B-2:   Concentrations of sulfate and sulfur isotope values for samples collected in this study. 

Site ID Location Type 
[SO4

2-] 

(mg/L) 

34S 

mean error 

SS3 Shaver's Creek Surface Water 3.9 4.91 0.01 

SS4 Shaver's Creek Surface Water 4.0 5.02 0.07 

SS6 Shaver's Creek Surface Water 5.8 4.93 0.01 

SS7 Shaver's Creek Surface Water 9.1 4.63 0.03 

SS8 Shaver's Creek Surface Water 11.3 4.46 0.01 

SS67 Shaver's Creek Surface Water 11.3 4.78 0.00 

SS9 Shaver's Creek Surface Water 12.1 4.57 0.02 

SS10 Shaver's Creek Surface Water 12.1 4.59 0.03 

SS11 Shaver's Creek Surface Water 22.4 9.06 0.07 

SS12 Shaver's Creek Surface Water 21.4 9.57 0.06 

SS19 Shaver's Creek Surface Water 22.1 9.91 0.04 

SS20 Shaver's Creek Surface Water 19.8 9.18 0.07 

SS21 Shaver's Creek Surface Water 21.2 8.98 0.01 

SS25a Shaver's Creek Surface Water 25.4 12.55 0.00 

SCAL Shaver's Creek Surface Water 6.5 4.23 0.11 

CFW4 Cole Farm Groundwater 24.4 3.90 0.03 

HV3 Garner Run Groundwater 5.3 5.63 0.04 

GR Garner Run Surface Water 5.3 5.16 0.05 

SH Shale Hills Surface Water 9.0 -0.76 0.06 

CZMW10 Shale Hills Groundwater 12.3 -2.86 0.09 

CFW1 Cole Farm Groundwater 34.5 9.24 0.07 
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Table B-3:   Sampling locations and data sources for sites in the Susquehanna River Basin. Multiple 

USGS and USEPA sites are co-located for each of the sites with data from the WQP. 

Site 

ID Latitude Longitude 

Drainage 

Area (km2) 

Percent 

Coal 

Data 

Source 

USGS Site 

Name 

USEPA Site 

Name 

SH 40.66 -77.91 0.08 0 SSHCZO   

SCAL 40.67 -77.90 15.8 0 SSHCZO   

SCCF 40.63 -77.94 40.3 0 SSHCZO   

SCO 40.61 -78.01 121 0 SSHCZO   

J2 40.22 -78.27 1,958 3.3 WQP 

USGS-

0156200 

21PA_WQX-

WQN0223 

J1 40.48 -77.13 8,686 3.3 WQP 

USGS-

01567000 

21PA_WQX-

WQN0214 

S9 42.04 -75.80 5,780 0 WQP 

USGS-

01502771, 

USGS-

01503000 

21PA_WQX-

WQN0306 

S8 41.77 -76.44 20,194 0.5 WQP 

USGS-

01531500 

21PA_WQX-

WQN0305 

S7 41.46 -75.85 24,450 1 WQP 

USGS-

01534090 

21PA_WQX-

WQN0323 

S6 41.25 -75.88 25,796 2.9 WQP 

USGS-

01536500 

21PA_WQX-

WQN0302 

S5 40.96 -76.62 29,060 4 WQP 

USGS-

01540500 

21PA_WQX-

WQN0301 

S4 40.83 -76.83 47,397 16.1 WQP 

USGS-

01553990, 

USGS-

01554000 

21PA_WQX-

WQN0203 

S3 40.25 -76.89 62,419 13.5 WQP 

USGS-

01570500 

21PA_WQX-

WQN0202 

S2 40.05 -76.53 67,314 12.7 WQP 

USGS-

01576000 

21PA_WQX-

WQN0201 

S1 39.66 -76.17 70,189 12 WQP 

USGS-

01578310   
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Table B-4:   Sampling locations, lithology, and calculated sulfur depletion (i.e., sulfur) for rock 

samples collected in outcrops in Shaver’s Creek. 

ID Latitude Longitude sulfur Formation 

Roadcut 40.63 -77.94 -1 Clinton Group 

CF-SC1 40.64 -77.94 -1 

Bloomsburg and Mifflintown 

Formations 

CF-SC2 40.64 -77.94 -1 

Bloomsburg and Mifflintown 

Formations 

CFW7 40.64 -77.94 -1 

Bloomsburg and Mifflintown 

Formations 

SS7 40.64 -77.93 0 Clinton Group 

SS20 40.61 -78.01 0 

Bloomsburg and Mifflintown 

Formations 

SS21 40.58 -78.05 0 Wills Creek Formation 

SCO-Bedrock 40.61 -78.01 0 

Bloomsburg and Mifflintown 

Formations 

SCO Core 40.61 -78.01 0 

Bloomsburg and Mifflintown 

Formations 

SS9.5 40.63 -77.94 -1 Clinton Group 

Outcrop 2 40.63 -77.94 -1 

Bloomsburg and Mifflintown 

Formations 

Outcrop 3 40.66 -77.90 -0.55 Clinton Group 

R26 chip 40.69 -77.90 -0.2 Clinton Group 

MBS #1 40.65 -77.92 -1 Clinton Group 

MBS #2 40.65 -77.92 -1 Clinton Group 

MBS #3 40.66 -77.91 -0.8 Clinton Group 

MBS #4 40.66 -77.91 -1 Clinton Group 

MBS #5 40.66 -77.91 -1 Clinton Group 

MBS #6 40.65 -77.92 0 Clinton Group 

MBS #7 40.65 -77.92 -0.5 Clinton Group 

R26 #1 40.69 -77.90 -0.85 Clinton Group 

R26 #2 40.69 -77.90 -0.9 Clinton Group 

LR #1 40.67 -77.94 -1 Clinton Group 

LR #2 40.67 -77.94 -1 Clinton Group 

LR #3 40.67 -77.93 -1 

Bloomsburg and Mifflintown 

Formations 

SCR #1 40.65 -77.92 -1 Clinton Group 

SCR #2 40.65 -77.92 -0.75 Clinton Group 

SCR #3 40.64 -77.93 -1 Clinton Group 

SCR #4 40.64 -77.93 -1 

Bloomsburg and Mifflintown 

Formations 
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B.4 Supplemental Figures 

 

 

  

 

 

Figure B-1:  Map showing the 29 locations where in-place bedrock was sampled from outcrops in 

Shaver’s Creek where presence or absence of pyrite, partially oxidized pyrite, and fully oxidized 

pyrite was measured on drilled or hammered samples using electron microscopy and S analysis. 

Colors represent extent of oxidation at land surface, where white is fully oxidized (n = 16), pink is 

partially oxidized (n = 7), and red is unoxidized (n = 6). Location and lithologic information for 

each sampling site can be found in Table B-4 in Appendix B.3.  
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Figure B-2: (A) Map showing the location of the outlets of the catchments used in the logistic-

regression analysis as well as the distribution of coal in the SRB. (B) Plots showing percent of the 

drainage area covered by coal (upper) and the probability that a watershed contains coal (lower) as 

a function of drainage area in the SRB. 
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Figure B-3:  Boxplots comparing 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 (A) and the power law exponent (i.e., b-value) (B) for 

watersheds with and without coal-lithologies.  
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Figure B-4:  Boxplot comparing 𝐶𝑠𝑢𝑙𝑓
𝑚𝑎𝑥,𝑜𝑏𝑠

 between watersheds that do (gray) and do not (white) 

contain coal across various watershed sizes in the Western US. 

 

 



189 

 

Appendix C 

 

Supplemental Information for Chapter 4 

C.1 Sensitivity Analysis 

As discussed in Section 4.3.2 in the main text, the HI threshold we choose to define the 

cutoff for RL weathering varies between methods used to determine the threshold (e.g., values 

range from HI = 0.5 to HI = 0.62). Here we test how changing our threshold changes Ea (see 

section 3.6.1). For this analysis, we fit eq. 4-7 to 𝐹𝑆𝑖𝑂2
 for different groups of “wet” watersheds 

defined by a variety of thresholds. For simplicity, we will only fit the linear-MAP correction 

model to each group (i.e., model 8 in Table C-6;  = 0 and  = 1).  We test HI values ranging 

from 0.45 to 0.75 (in 0.5-unit increments; Table C-6) as threshold values. We find that Ea is 

relatively insensitive to the selected threshold value and remains relatively constant across all 

tested HI values (Table C-6). Ea for these tests range from 47 ± 7 kJ mol-1 to 61 ± 8 kJ mol-1. All 

Ea values are within error of each other and, therefore, are not significantly different.  

Because RL weathering is, by definition, limited by runoff in a watershed, it might be 

more intuitive to set a threshold based on runoff rather than HI. Practically, however, runoff is not 

measured everywhere, thus, selecting a threshold based on runoff would eliminate upscaling to 

ungagged watersheds. It is true that there are global datasets available for runoff; however, these 

datasets either 1) define runoff as MAP-PET or 2) are spatially coarse. The issue with (1) is that, 

as discussed earlier PET is often greater than MAP; therefore, these datasets typically define 

runoff in these areas as zero. In reality, these watersheds still experience runoff although low and 

typically seasonal. The issue with (2) is that coarse models typically are unresolved at the 

hillslope and watershed scales. Nonetheless, we can still test how selecting a threshold based on 

runoff would change Ea for our sites. Visually, we see that a break in slope for 𝐹𝑆𝑖𝑂2
 vs q (Figure 
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4-6C) occurs at ~q = 0.1 to 0.3 m yr-1. We test q values ranging from 0.1 to 0.3 m yr-1 (in 0.5 m 

yr-1 increments; Table C-6) as threshold values and found, again, that Ea remains relatively 

constant. Ea for these thresholds range from 48 ± 10 kJ mol-1 to 62 ± 9 kJ mol-1 (Table C-6). 

These values are all insignificantly different than each other and are consistent with the Ea values 

determined for the HI thresholds. 

Given the issues with utilizing q as a threshold for RL weathering, a natural alternative 

might be MAP. In the man text, we chose HI opposed to MAP because HI incorporated bot MAP 

and PET. Here, we test MAP thresholds. Again, visually, we see that a break in slope for 𝐹𝑆𝑖𝑂2
 vs 

MAP (Figure 4-6B) occurs at ~MAP = 600 to 1000 mm yr-1. We test MAP values ranging from 

600 to 1000 mm yr-1 (in 500 mm yr-1 increments; Table C-6) as threshold values. Ea for these 

thresholds range from 49 ± 8 kJ mol-1 to 64 ± 8 kJ mol-1 (Table C-6). Again, these values are all 

insignificantly different than each other and are consistent with the Ea values determined for the 

HI and q thresholds. Overall, we see that our analysis is insensitive to the selection value of the 

RL threshold as long as the threshold is relatively reasonable given plots in Figure 4-6.  

C.2 Shale Age 

Some shales contain primary smectite in the bedrock and some do not; therefore, the 

trend we observe in the activity diagrams (Figure 4-5) might be related to differences in the 

parent composition of the shale rather than differences in weathering regime. Hower et al. (1976) 

show that young shales (i.e., Mesozoic and Cenozoic) tend to have smectite while old shales (i.e., 

Paleozoic) tend to have illite. This variation in mineralogy can be attributed to increases in burial 

metamorphic grade with time. To test if smectite as a primary versus secondary mineral (age) is 

an important factor when considering weathering regimes, we classify each watershed as 
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Mesozoic, Cenozoic, or Paleozoic based on the era of the shale reported in the SGMC lithology 

database.  

We found that for watersheds with HI < 0.55, 78/82 watersheds have Cenozoic (n = 34) 

or Mesozoic (n = 44) shales, and only 4 watersheds have Paleozoic shales. For watersheds with 

HI > 0.55, 57/60 watersheds have Paleozoic shales and only 2 watersheds have Mesozoic shales. 

Overall, In the United States, dry watersheds tend to have young shales and wet watersheds tend 

to have old shales. The 4 watersheds with Paleozoic shales and HI < 0.55 fall within the upper 

bound of RL weathering and fall along the general trendline for 𝐹𝑆𝑖𝑂2
 vs q for RL weathering. 

The 2 watersheds have Mesozoic shales and HI > 0.55 follow the trendline for 𝐹𝑆𝑖𝑂2
 vs MAT for 

KL/TR weathering. Although there are not many wet Cenozoic/Mesozoic shales in the United 

States due to the geography of the country, RL weathering is unlikely to be controlled by the 

underlying bedrock and is more likely to be controlled by long term climate. It is possible that 

young vs. old shale could change the equilibrium concentration of SiO2; however, that value does 

not change the rate limiting step of the weathering reaction. 
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C.3 Supplemental Tables 

 

 

  

Table C-1:   Full model results for all watersheds. 

ln(K) Ea   R2 p 

0.09 ± 0.09 57.53 ± 18.47** 0.06 ± 0.11 1.93 ± 0.26** 0.62 5.75E-31 

0.22 ± 0.1* 127.16 ± 18.72** 0.6 ± 0.1** 0 0.47 7.46E-21 

0.06 ± 0.08 56 ± 18.22** 0 2.03 ± 0.2** 0.62 6.79E-31 

0.1 ± 0.09 0 0.01 ± 0.11 2.35 ± 0.23** 0.6 6.84E-29 

-0.11 ± 0.1 162.91 ± 20.14** 0 0 0.32 2.87E-13 

0.33 ± 0.12** 0 0.8 ± 0.11** 0 0.3 4.63E-12 

0.09 ± 0.08 0 0 2.37 ± 0.17** 0.6 6.88E-29 

-6.75 ± 0.08** 110.36 ± 16.49** 0 1 0.25 5.18E-10 
 

*  : p < 0.05 

**: p < 0.01 
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Table C-2:   Full model results for sites with HI < 0.55. 

ln(K) Ea   R2 p 

2.12 ± 0.27** -82.96 ± 30.71** 1.08 ± 0.18** 4.86 ± 0.49** 0.66 5.74E-20 

0.25 ± 0.3 82.19 ± 38.92* 0.92 ± 0.27** 0 0.23 9.17E-06 

1.02 ± 0.25** -28.43 ± 35.42 0 4.6 ± 0.59** 0.5 2.23E-13 

1.86 ± 0.27** 0 0.94 ± 0.18** 4.14 ± 0.43** 0.63 2.10E-18 

-0.61 ± 0.18** 121.58 ± 39.62** 0 0 0.11 0.002971038 

0.23 ± 0.31 0 1.09 ± 0.26** 0 0.18 9.11E-05 

0.97 ± 0.24** 0 0 4.34 ± 0.49** 0.5 3.10E-13 

-6.98 ± 0.16** 88.97 ± 36.05* 0 1 0.07 0.015812646 

*  : p < 0.05 

**: p < 0.01 
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Table C-3:   Full model results for sites with HI > 0.55. 

ln(K) Ea   R2 p 

0.65 ± 0.1** 56.2 ± 8.14** 0.12 ± 0.06* 0.24 ± 0.26 0.5 2.57E-10 

0.74 ± 0.04** 55.02 ± 8.03** 0.16 ± 0.03** 0 0.49 4.05E-10 

0.51 ± 0.08** 55.71 ± 8.37** 0 0.65 ± 0.16** 0.46 2.29E-09 

0.93 ± 0.13** 0 0.1 ± 0.07 -0.04 ± 0.34 0.08 0.032735 

0.78 ± 0.05** 46.16 ± 9** 0 0 0.31 3.50E-06 

0.92 ± 0.05** 0 0.1 ± 0.04* 0 0.08 0.032951 

0.8 ± 0.09** 0 0 0.34 ± 0.21 0.04 0.104431 

-6.36 ± 

0.04** 
60.76 ± 8.26** 0 1 0.48 7.31E-10 

*  : p < 0.05 

**: p < 0.01 
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Table C-4:   Full model results for sites with HI > 0.55 and slope > 10. 

ln(K) Ea   R2 p 

0.09 ± 0.26 89.36 ± 20.97** 0.17 ± 0.22 0.86 ± 0.52 0.75 1.61E-05 

0.28 ± 0.25 59.88 ± 11.5** 0.42 ± 0.17* 0 0.69 6.85E-05 

0.15 ± 0.24 97.37 ± 17.82** 0 1.13 ± 0.38* 0.73 2.25E-05 

0.64 ± 0.34 0 0.65 ± 0.29* -1.05 ± 0.41* 0.36 0.013598 

0.86 ± 0.06** 53.75 ± 13.03** 0 0 0.55 0.001028 

0.61 ± 0.4 0 0.22 ± 0.29 0 0.04 0.450478 

1.22 ± 0.24** 0 0 -0.54 ± 0.38 0.12 0.181795 

-6.49 ± 0.05** 92.31 ± 10.05** 0 1 0.86 2.63E-07 
 

*  : p < 0.05 

**: p < 0.01 
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Table C-5:   Full model results for sites with HI > 0.55 and slope < 5. 

ln(K) Ea   R2 p 

0.83 ± 0.17** 41.18 ± 16.8* 0.3 ± 0.11** 0.35 ± 0.48 0.49 1.31E-05 

0.93 ± 0.1** 44.57 ± 15.97** 0.35 ± 0.08** 0 0.48 1.73E-05 

0.46 ± 0.12** 32.83 ± 18.42 0 1.2 ± 0.42** 0.34 5.99E-04 

0.88 ± 0.18** 0 0.25 ± 0.12* 0.68 ± 0.51 0.37 2.72E-04 

0.69 ± 0.1** 44.49 ± 20.06* 0 0 0.15 0.034528 

1.11 ± 0.08** 0 0.35 ± 0.09** 0 0.33 7.12E-04 

0.55 ± 0.11** 0 0 1.36 ± 0.42** 0.26 0.003163 

-6.22 ± 0.09** 34.77 ± 17.72 0 1 0.12 0.059385 
 

*  : p < 0.05 

**: p < 0.01 
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Table C-6:   Sensitivity analysis for different thresholds defining RL weathering. 

Test 
Ea 

(kJ mol-1) 
R2 p 

HI > 0.45 50 ± 8 0.35 < 0.0001 

HI > 0.5 47 ± 7 0.38 < 0.0001 

HI > 0.55 61 ± 8 0.48 < 0.0001 

HI > 0.6 58 ± 9 0.44 < 0.0001 

HI > 0.65 58 ± 9 0.44 < 0.0001 

HI > 0.7 59 ± 9 0.44 < 0.0001 

HI > 0.75 58 ± 9 0.45 < 0.0001 

q > 0.1 48 ± 10 0.26 < 0.0001 

q > 0.15 51 ± 8 0.38 < 0.0001 

q > 0.2 61 ± 8 0.48 < 0.0001 

q > 0.25 62 ± 9 0.49 < 0.0001 

q > 0.3 61 ± 9 0.51 < 0.0001 

MAP > 600 64 ± 13 0.22 < 0.0001 

MAP > 650 57 ± 10 0.3 < 0.0001 

MAP > 700 49 ± 8 0.34 < 0.0001 

MAP > 750 56 ± 8 0.42 < 0.0001 

MAP > 800 56 ± 8 0.43 < 0.0001 

MAP > 850 58 ± 8 0.47 < 0.0001 

MAP > 900 58 ± 8 0.46 < 0.0001 

MAP > 950 62 ± 8 0.51 < 0.0001 

MAP > 1000 64 ± 8 0.56 < 0.0001 
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C.4 Supplemental Figures 

  

 

 

Figure C-1:   Activity diagrams of the chlorite-smectite-kaolinite-gibbsite system for Mg-SiO2. 

Blue arrow shows the expected evolution of solute composition for the dissolution of chlorite. Red 

arrow shows the expected evolution of solute composition when evapotranspiration removes water 

from the system after equilibration with chlorite. Schematic arrows are drawn based on batch 

calculations in Geochemists Workbench. 
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