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Abstract
In this article we explore the endomorphism rings and algebras of Jacobians of
trigonal curves of the form y

3
= f(x), where f(x) is a separable polynomial with

coefficients in k, irreducible over field k of characteristic zero and with Gal(f)
isomorphic to one of the 2-transitive Ree groups in the series 2

G2(q) with q = 32m+1

for positive integers m. We show that the endomorphism algebras End0(J) of such
Jacobians are simple and their centers are isomorphic to the number field Q(ζ3),
where ζ3 (the third root of unity) is the solution to to the polynomial equation over
the ring of integers x2+x+ 1. Form ∈ ABSm∪COMPm (see page 2), we determine
that the endomorphism algebras of such Jacobians are absolutely simple and are
isomorphic to the number field Q(ζ3), while the rings of endomorphisms of such
Jacobians are isomorphic to the ring Z[ζ3].
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Chapter 1 |
Introduction

Let k be a field of characteristic zero that contains the third root of unity (ζ3 ∈ k)
and C be a smooth projective model of the k-curve defined by the equation y3

= f(x).

Notation: By ζ3 we denote the third root of unity, i.e. the solution x = ζ3 to the
polynomial equation x2 + x + 1 with integer coefficients.

We assume f(x) is separable polynomial with coefficients in k, irreducible over
k of degree

n ∶= deg(f) = q3
+ 1

with q = 32m+1 for positive integers m. We fix an algebraic closure k̄ of k and use
Rf ⊂ k̄ for the set of roots of f(x), K(Rf) ⊃ k for the splitting field of f(x) and

Gal(f) = Gal(K(Rf), k).

Notation: J stands for the Jacobian of C, Endk(J) is used for the ring of k–
endomorphisms, End0

k(J) ∶= Endk(J)⊗Q for theQ-algebra and Endk̄(J) ∶= End(J)
for the ring of k̄-endomorphisms and End0(J) ∶= End(J)⊗Q for the Q-algebra.

We are interested in the endomorphism algebras End0(J) and the endomor-
phism rings End(J) of Jacobians J of C and we investigate the restrictions placed
on End0(J) and End(J) when Gal(f) coincides with one of the 2-transitive small
Ree groups in the series defined in our theorems below.

Notation: By Q(ζ3) we denote the number field over the field of rational num-
bers Q by adjoining the third root of unity ζ3. Equivalently, by Z[ζ3] we denote the
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ring extension over the ring of integers Z by adjoining the third root of unity ζ3.

We state the main results of this article:

Theorem 1.0. Let f be a polynomial with coefficients in k and of degree

n ∶= deg(f) = q3
+ 1.

Let C be the trigonal curve it describes via the equation y
3
= f(x). If Gal(f)

coincides with one of the 2-transitive Ree groups in the series

Ree(q) = 2
G2(q)

for q = 32m+1, then the endomorphism algebra End0(J) of the Jacobian J of C is a
simple algebra over its center

CJ ≅ Q(ζ3).

We prove Theorem 1.0 at the end of Chapter 4 of this article.

For certain values of m, see Remark 1.1, we determine that the Endomorphism
algebra actually coincides with its center CJ , i.e., it is isomorphic to Q(ζ3). Fur-
thermore, we obtain that the ring of endomorphisms of J

End(J) ≅ Z[ζ3].

N.B.: We define the embeddings of Q(ζ3) and Z[ζ3] into End0(J) and End(J) in
formulas (1) and (2) of Chapter 2.

Below, we define the sets ABSm and COMPm, which consist of values of m for
which the ring of endomorphisms End(J) of the Jacobian J of C is isomorphic to
Z[ζ3] and J is absolutely simple in the next theorem.

Notation:

ABSm ∶= {m ∈ Z
+∣ q − 1

2 is prime},
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COMPm ∶= {m ∈ Z∣ 1 ≤ n ≤ 752}.

Recall:
q = 32m+1

.

Theorem 1.1. Let f be a polynomial with coefficients in k and of degree

n ∶= deg(f) = q3
+ 1.

Let C be the trigonal curve it describes via the equation y3
= f(x). Suppose Gal(f)

coincides with one of the 2-transitive Ree groups in the series

Ree(q) = 2
G2(q)

for q = 32m+1 and
m ∈ ABSm ∪ COMPm,

then the endomorphism algebra End0(J) of the Jacobian of C is isomorphic toQ(ζ3)
and the endomorphism ring End(J) of the Jacobian of C is isomorphic to Z[ζ3],

End(J) ≅ Z[ζ3].

The proof of Theorem 1.1 will be carried out in steps throughout the further
Chapters of this article. We start with a setup in Chapter 2, where we also define
the Galois action on the endomorphism ring of the Jacobian. In Chapter 3 we
construct an irreducible Galois representation J[λ] arising from the Galois action
on the 3-torsion points of the Jacobian. We obtain a more explicit description Vf of
the Galois module J[λ] in Chapter 5. In Chapter 5 (Theorem 5.2) we also show
the absolute simplicity of this Galois module. In Chapter 6 we consider the notion
of very simple modules (as in in Yu. Zarhin’s paper Endomorphism Algebras of
Abelian Varieties with Special Reference to Superelliptic Jacobians [Zar05b]) and
obtain conditions for the Galois-module J[λ] to be very simple. The conditions we
obtain in Chapter 6 bring us to the theory of weights for Lie algebras in Chapter
7, where we consider the Galois-module J[λ] as a restriction coming from its parent
algebraic group G2 and establish the very simplicity of the Galois-module J[λ] in
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Theorem 7.3. In Chapter 8, the very simplicity along with results about the center
of the endomorphism algebra of the Jacobian (Theorems 4.14 and 4.16 from Yu.
Zarhin’s article Endomorphism algebras of superelliptic jacobians [Zar05a]), help
us prove Theorem 1.1.

Remark 1.1 : We expect Theorem 1.1 to hold for all m ≥ 1. However, currently,
we are unable to solve it for the case of allm. Showing the result for allm ≥ 1 comes
down to proving either the statement of Lemma 7.4 for allm ≥ 1 ( we were only able
to verify it for explicit cases of m ∈ COMPm by employing MAGMA [BCP97]) or try
to expand the set m ∈ ABSm to account for all integer values of m. The author is
grateful to Yu. Zarhin for his help with the set ABSm. For more details we refer
the reader to Remark 7.6 of Chapter 7.
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Chapter 2 |
Setup

Throughout the paper we assume Gal(f) ≅ Ree(q) and q = 32m+1
= 3d with positive

integer m or odd d > 1. The requirement for m ≥ 1 comes from the fact that Ree(3)
(the first group in the series) fails to be simple. Ree(q) is a 2-transitive group of
order q3(q3 + 1)(q − 1) and its action on the set of q3 + 1 roots of f(x) is 2-transitive.
We denote n = q

3 + 1 for the degree of f(x). One can use the Riemann-Hurwitz
formula to obtain the genus g of C and, thus, the dimension g of J :

g =
(3 − 1)(n − 1)

2 = n − 1 = q3
.

Our curve C has an automorphism of order 3 denoted δ and the corresponding
cyclic subgroup of order 3 it generates in the automorphism group of C,

Z/3Z ≅< δ > ⊂ Aut(C).

Since ζ3 ∈ k, we have a Galois cover of P1 corresponding to the action of δ:

P1
= C/ < δ >

C
δ

By Albanese functoriality, δ induces an automorphism δ ∶ J → J which satisfies
the polynomial
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P(t) = t
3 − 1
t − 1 = t

2
+ t + 1.

This gives rise to a Q-algebra embedding of the number field E = Q(ζ3) (as in
Section 3 of Yu. Zarhin’s paper “Endomorphism Algebras of Abelian Varieties with
Special Reference to Superelliptic Jacobians” [Zar18]):

i ∶ E = Q(ζ3)↪ End
0
k(J) ⊂ End0(J) (2.1)

such that ζ3 ↦ δ and i(1) = 1J . We denote End0(J, i) for the centralizer of i(E) in
End

0(J) and End0
k(J, i) for the centralizer of i(E) in End0

k(J). We have

i(E) ⊂ End0
k(J, i) ⊂ End0(J, i) ⊂ End0(J) and End

0
k(J, i) ⊂ End0

k(J, i) ⊂ End0(J).

There is, equivalently, a ring embedding of the ring OE = Z[ζ3]:

i ∶ OE = Z[ζ3]↪ Endk(J) ⊂ End(J) (2.2)

Remark 2.1 : The centralizer End0(J, i) will be one of the crucial objects in our
proof of both Theorem 1.0 and Theorem 1.1. For both theorems, the restrictions
we have placed on Gal(f) will result in End0(J, i) ≅ E. In the case of Theorem 1.1,
End

0(J, i) ≅ E turns out to being the maximal commutative subalgebra of End0(J).
These facts in conjunction with Theorem 4.16 of Yu. Zarhin’s “Endomorphism
algebras of superelliptic jacobians” [Zar05a] yield the isomorphism

End
0(J) ≅ Q(ζ3) = E.

We define the Galois action on the endomorphism ring of the Jacobian. Since J
is defined over k, we have a continuous group homomorphism:

ηk ∶ Gal(k)⟶ Aut(End(J)), with the image ηk(Gal(k)) = Γk (2.3)

where ηk(σ)(u) =σ u for σ ∈ Gal(k), u ∈ End(J) and σ
u(x) = σ(u(σ−1

x)) for all
x ∈ J(k̄).
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It is known that Endk(J) coincides with the subring End(J)Gal(k), where

End(J)Gal(k) = {u ∈ End(J)∣ σ
u = u ∀σ ∈ Gal(k)}.

The kernel Ker(ηk) is a closed normal subgroup of finite index in Gal(k), hence
(Theorem 1.3.11 in Szamuely’s “Central Simple Algebras and Galois Cohomology”
book [Sza09]) it is open and coincides with Gal(L) for some overfield L ⊃ k and

EndL(J) = End(J).

If N ⊃ k is a finite separable extension, then Gal(N) is an open subgroup of
finite index in Gal(k) and the restriction of ηk to Gal(N) coincides with

ηN ∶ Gal(N)⟶ Aut(End(J))

and EndN(J) = End(J)Gal(N)
= {u ∈ End(J)∣ σ

u = u ∀σ ∈ Gal(N)}. Clearly,
EndN(J) = End(J) ( all endomorphisms are defined over N ) if and only if N ⊃ L.

7



Chapter 3 |
Modular representations

We construct modular representations from the action of the Galois group on the
torsion points of the Jacobian J . It is known, A. Silverberg’s paper “Fields of
definition for homomorphisms of abelian varieties” [Sil92], that all endomorphisms
of J are defined over the field of definition of the 3-torsion points J[3], denoted by
K(J[3]) ⊃ k. Hence, K(J[3]) ⊃ L and

Gal(K(J[3])) ⊂ ker(ηk) ≅ Gal(L).

Since the equations that define J and the group law have coefficients in k and
for all P ∈ J(k̄) we have [3]σ(P ) = σ([3]P ), J[3] is Gal(k)-stable subgroup of J(k̄)
and we can define a faithful linear representation:

ρ3,k ∶ Gal(k)→ AutF3(J[3]) with image ρ3,k(Gal(k)) = G̃3,k. (3.1)

This representation fails to be irreducible and, thus, we consider the subgroup
of δ-fixed elements of J .

λ-torsion:
We are going to use the subgroup of δ-fixed points (J)δ ⊂ J to construct an

irreducible representation. We take a closer look at the fixed points of δ-action on
J .

We have the subgroup of δ-fixed points (J)δ = Ψ = ker(1 − δ)∣J with cardinality

#Ψ = 3
2dimJ

ϕ(3) = 3dimJ ,
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where ϕ is the Euler totient function.

Consider λ = (1 − δ) ⊂ OE, the only prime ideal that divides 3OE. It is known
that Ψ = J[λ] (λ-torsion points of J(k̄)). Hence, Ψ = J[λ] ⊂ J[3] is a module over
k(λ) = OE/λ = F3 and J[λ] ≅ FdimJ3 . Since under our assumptions J[λ] is defined
over K(Rf), we have

K(Rf) ≅ K(J[λ]) ⊂ K(J[3]),

where K(J[λ]) ⊃ k is the field over which J[λ] is defined.

Using the fact that J[λ] is Gal(k)-stable subgroup of J[3], we define a faithful
representation:

ρλ,k ∶ Gal(k)→ AutF3(J[λ]) with image ρλ,k(Gal(k)) = G̃λ,k ≅ Gal(f) (3.2)

which will turn out to be absolutely irreducible in the next section. We will use a
more explicit definition of the Gal(f)-module J[λ] to show that the representation
(3) is simple in Section 5.
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Chapter 4 |
Restrictions on End

0(J) and its
center CJ

In this section we continue with the setup of previous sections and obtain some
restrictions on the structure of endomorphism algebra End0(J) of J and its center
CJ . First, we use results from Yu. Zarhin’s paper “Endomorphism Algebras of
Abelian Varieties with Special Reference to Superelliptic Jacobians” [Zar18] to
show that End0(J) is simple in Theorem 4.1. In addition to the simplicity of algebra
End

0(J), this theorem provides us with the following inclusion for its center CJ

CJ ⊂ Q(δ) ≅ Q(ζ3),

which implies that CJ is isomorphic to either Q or Q(ζ3). In Theorem 4.2 we show
that CJ must be isomorphic to Q(ζ3).

Consider the centralizers End0
k(J, i) and End

0(J, i) of i(E) in End
0
k(J) and

End
0(J) respectively. Recall that these were obtained from the displayed formula

(1) of Section 2 above.

Lemma 4.1. With our setup we have End0
k(J, i) ≅ Q(ζ3) and Endk(J, i) ≅ Z[ζ3].

Proof. Since Gal(f) is 2-transitive, then by Theorem 5.1 and Remark 5.5 (see
Section 5 for more details), we have

EndGal(f)(J[λ]) ≅ F3.
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This fact allows us to use results from Section 3 of [Zar18], which allow us to
determine the algebra centralizers End0

k(J, i) and End0(J, i) and ring centralizers
centralizers Endk(J, i) and End(J, i). In particular, now we can apply Lemma 3.12
and Corollary 3.13 from [Zar18] with

Xλ ∶= J[λ], k(λ) ∶= OE/λ ≅ F3, i(O) ∶= Q(δ) ≅ Q(ζ3) and i(E) ∶= Q(δ) ≅ Q(ζ3)

to obtain

End
0
k(J, i) = i(E) = Q(δ) ≅ Q(ζ3),

Endk(J, i) = i(O) = Z[δ] ≅ Z[ζ3].

□

In the next step, we are going after the simplicity of End0(J) using Theorem
3.14 of Section 3 of [Zar18]. Theorem 3.14 of [Zar18] allows one to establish the
simplicity of End0(J) when the group in question, Gal(f) in our case, and its sub-
groups satisfy a certain criterion on the possible indices. Specifically, Theorem 3.14
of [Zar18] is employed in the proof of the Theorem 4.1 below to obtain the simplicity
of the Q-algebra End0(J).

Before proceeding further, we are going to require a couple of additional in-
gredients to be used in our application of Theorem 3.14 from [Zar18]. We define
these ingredients along the lines of Section 3.1 of [Zar18]. Note that Section 3.1
of [Zar18] tackles the cases when the endomorphism algebra of an abelian variety
contains a given number field (field Q(δ) ≅ Q(ζ3) in our case). Let us recall the
Q-algebra embedding (1) of Section 2:

i ∶ Q(ζ3)↪ End
0
k(J) ⊂ End0(J),

where i(1) = 1J . For E = Q(ζ3), similar to the definition in Section 3.1 of [Zar18],
we define

11



dJ =
2 ⋅ dim(J)
[E ∶ Q] =

2g
[Q(ζ3) ∶ Q] =

2g
2 = g = q

3
.

Theorem 4.1. With our setup we have:

(i) End0(J) is a simple Q-algebra (and J is isotypic);

(ii) the center of End0(J, i) is i(Q(ζ3)) = Q(δ) ≅ Q(ζ3);

(iii) the center CJ of End0(J) is contained in i(Q(ζ3)) = Q(δ) ≅ Q(ζ3);

(iv) End0(J, i) is CSA over i(Q(ζ3)) = Q(δ) ≅ Q(ζ3).

Proof. We want to employ Theorem 3.14 of [Zar18] with

Gλ,X,K ∶= Gal(f), X ∶= J and Xλ ∶= J[λ].

To apply this theorem we need to meet its two conditions. Since Gal(f) is 2-
transitive, then by Theorem 5.1 and Remark 5.5 (see Section 5 for more details),
we have

EndGal(f)(J[λ]) ≅ F3,

thus, satisfying the first condition of Theorem 3.14 in [Zar18]. Next, we want
to satisfy the second condition by showing that Gal(f) does not contain a proper
subgroup whose index divides dJ . Since the order of any maximal subgroupM of
Gal(f) must satisfy

#M ≤ q
3(q − 1),

see Remark 5.4, then the index of any subgroup H of Gal(f) must be ≥ q3+ 1, while
dJ = q

3. Clearly, dJ = q3 is not divisible by such indices. Now, since both conditions
of Theorem 3.14 of [Zar18] are satisfied we obtain the following:

• End
0(J) is simple Q-algebra;

• center of End0(J, i) is i(Q(ζ3)) = Q(δ);

• center CJ of End0(J) is contained in i(Q(ζ3)) = Q(δ);

12



• End
0(J, i) is CSA over i(Q(ζ3)) = Q(δ);

□

Next we concentrate on the center CJ of End0(J). Theorem 4.1 (iii) tells us that
CJ is contained in i(Q(ζ3)) = Q(δ) ≅ Q(ζ3). Thus, we have that CJ is isomorphic
either to Q or to Q(ζ3). In the last part of this section we eliminate the case of CJ
isomorphic to Q using results from Yu. Zarhin’s article “Endomorphism algebras of
superelliptic jacobians” [Zar05a]. Specifically, we apply Corollary 2.2 of [Zar05a] to
our setup. Corollary 2.2 defines certain conditions on subfields of endomorphism
algebras End0(J) of Jacobians of superelliptic curves upon whose satisfactions one
obtains the isomorphism class for their centers

CJ ⊂ End
0(J).

In order to use Corollary 2.2 of [Zar05a], we need to define the tangent space
Lie(J) of J and the space of differentials of the first kind Ω1(J) of J . For more
thorough details we refer the reader to D. Mumford’s canonical book on the subject
“Abelian varieties” [Mum70].

In the following part of this section we consider the Jacobian J to be defined
over the field of complex numbers C, which we denote by J(C). We consider J(C)
to be defined over C by picking a field embedding

τ ∶ Q(δ)↪ C,

recall that Q(δ) ≅ Q(ζ3). J(C) is a projective variety and, thus, inherits a complex
structure as a submanifold of a projective space over the complex numbers. In
particular, the group structure becomes holomorphic.

Thus, J(C) is a compact connected complex Lie group of dimension g with a
group structure defined by holomorphic maps. Let Lie(J) be the tangent space of
J(C) at the identity point e ∈ J(C), it is a complex vector space. For every tangent
vector v to J(C) at identity e, there is a unique holomorphic map

φv ∶ C→ J(C)
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such that φv(0) = e and (dφv(1)) = v. The exponential map is defined

exp ∶ Lie(J)→ J(C)

such that

t↦ exp(tv) ∶ C→ Lie(J)→ J(C)

is φv for all v, and, thus exp(v) = φv(1). When we identify the tangent space at 0 of
Lie(J) with itself, then the differential of exp at 0 becomes the identity map

Lie(J)→ Lie(J).

As shown in Mumford’s book [Mum70] on page 2, the exponential map

exp ∶ Lie(J)→ J(C)

is a surjective homomorphism of Lie groups with kernel a lattice L in Lie(J).
Moreover, it induces an isomorphism

Lie(J)/L ≅ J(C),

i.e. J(C) is a complex torus.

Remark 4.1: The tangent space Lie(J) of J(C) at the identity carries a natural
Q(δ)⊗Q C-module structure. For each field embedding τ ∶ Q(δ)↪ C we define

Lie(J)τ = {z ∈ Lie(J)∣ i(e)z = τ(e)z ∀e ∈ Q(δ)}

nτi
= dimC(Lie(J)τi

).

We note that for Q(δ), we can define two such embeddings

τi ∶ Q(δ)↪ C

where δ ↦ ζ
−i
3 and i = 1, 2.
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We define the space of differentials of the first kind Ω1(J) on J(C) following
Mumford’s book [Mum70] on page 4. As above, the tangent space Lie(J) is regarded
as a complex vector space and let T = HomC(Lie(J),C) be the complex cotangent
space to J(C) at the identity. By translation with respect to the group law on J(C),
every complex covector α ∈ T extends to a translation invariant holomorphic form
ωα on J(C). Moreover, the map α ↦ ωα defines an isomorphism

OX ⊗C T ≅ Ω1
.

In other words, Ω1 is a globally free sheaf of OX-modules. And since the only global
sections of OX are constants, then the global sections of Ω1 are the translation
invariant forms ωα.

More generally, Mumford’s book [Mum70] on page 4 utilizes the complex compact
manifold structure of J(C) to compute the cohomology groups Hq(J(C),Ωp), where
Ωp is a sheaf of holomorphic p-forms on J(C).

Remark 4.2: Let Ω1(J) be the space of differentials of the first kind on J . It is
well-known [Zar05a] that the natural map

Ω1(J)→ HomC(Lie(J),C)

is an isomorphism. This isomorphism allows us to define, via duality,

Q(δ)→ EndC(HomC(Lie(J),C)) = EndC(Ω1(J)).

This provides Ω1(J) with the structure of Q(δ)⊗ C-module in such a way that

Ω1(J)τi
∶= Cτi

Ω1(J) ≅ HomC(Lie(J)τi
,C)

where
Cτi

Ω1(J) = {a ∈ Lie(J) ∣ ea = τi(e)a ∀e ∈ Q(δ)}.

Now we have all the necessary ingredients to apply Corollary 2.2 from Yu.
Zarhin’s article Endomorphism algebras of superelliptic jacobians [Zar05a].

Theorem 4.2. With our setup, the center CJ of End0(J) is isomorphic to Q(ζ3).

15



Proof. We consider J as a complex abelian variety along with the two embeddings
(i = 1, 2) of Q(δ)

τi, ∶ Q(δ)↪ C where δ ↦ ζ
−i
.

Our goal is to apply Corollary 2.2 of [Zar05a], which will provide us with

CJ = Q(δ) ≅ Q(ζ3).

For this we need to satisfy the three conditions of Corollary 2.2 of [Zar05a]. Since
n = q

3 + 1 and p = 3 are relatively prime numbers, it only remains to determine
the multiplicities nτ1 and nτ2 to satisfy (iii) of Corollary 2.2 of [Zar05a]. We use the
first displayed formula (1) of Section 2 in [Zar05a] (its second equality sign):

dimC(Lie(J)τi
) = dimC(Ω1(J))τi

). (4.1)

We use the action of i(E) = Q(δ) on Ω1(J)) to determine themultiplicities nτ1 and nτ2

using equality (6) above. In particular, since δ generates the field Q(δ) ≅ Q(ζ3) over
Q, Ω1(J)τ1 and Ω1(J)τ2 are eigenspaces corresponding to eigenvalues τ1(δ) = ζ

−1
3

and τ2(δ) = ζ
−2
3 = ζ3 respectively. Therefore nτi

coincides with the multiplicity of
the eigenvalue ζ−i3 . It follows from Remark 4.13 in [Zar05a] that

nτ1(J, i) = ⌊q
3 + 1

3 ⌋ = ⌊36m+3 + 1
3 ⌋ = ⌊36m+3

3 +
1
3⌋ = 36m+3−1

= 36m+2

nτ2(J, i) = ⌊2(q3 + 1)
3 ⌋ = ⌊2 ⋅ 36m+3 + 2

3 ⌋ = ⌊2 ⋅ 36m+3

3 +
2
3⌋ = 2 ⋅ 36m+3−1

= 2 ⋅ 36m+2
.

Now this coincides with the requirement (iii) of Corollary 2.2 in [Zar05a]. Thus,
we obtain the required isomorphism

CJ = Q(δ) ≅ Q(ζ3).

□

Now we have all the necessary ingredients to prove Theorem 1.0 of Section 1.

Theorem 1.0. Let f be a polynomial with coefficients in k and of degree n ∶=
deg(f) = q3 + 1. Let C be the trigonal curve it describes via the equation y3

= f(x).

16



If Gal(f) coincides with one of the 2-transitive Ree groups in the series Ree(q) =
2
G2(q) for q = 32m+1, then the endomorphism algebra End0(J) of the Jacobian J of
C is a simple algebra over its center

CJ ≅ Q(ζ3).

Proof. By Theorem 4.1, End0(J) is a simple algebra and, by Theorem 4.2, its center
CJ is isomorphic to Q(ζ3). □
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Chapter 5 |
Explicit description of J[λ]

In this section we after a more explicit description of J[λ] using constructions
and definitions from Section 4 of Yu. Zarhin’s paper “Hyperelliptic jacobians
and modular representations” [Zar01]. This will allow us to obtain the absolute
simplicity of J[λ] when considered as a Gal(f)-module (see Theorem 5.3). We point
out that these constructions and definitions are also covered in Section 7 of [Zar18].

Consider FRf

3 , the n-dimensional F3-vector space of maps h ∶ Rf → F3. The
space FRf

3 is provided with a natural action of Perm(Rf), where each s ∈ Perm(Rf)
sends a map h ∶ Rf → F3 into sh ∶ r ↦ h(s−1(r)) for r ∈ Rf . Furthermore, the action
of Gal(f) ⊂ Perm(Rf) on Rf gives rise to an n-dimensional linear representation

Gal(f)→ Aut(FRf

3 ),

where for s ∈ Gal(f) ⊂ Perm(Rf), h ∈ F
Rf
p and r ∈ Rf , we have s ⋅ h ∶ r → h(s−1(r))

for all r ∈ Rf .

The representation space contains the invariant line of constant functionsF3⋅1Rf

and the (n − 1)-dimensional stable hyperplane of functions

(FRf

3 )0
= {h ∶ Rf → F3∣ ∑

α∈Rf

h(α) = 0}.

Vf = (FRf

3 )0 is called the heart of Gal(f) acting on the set Rf over the field F3.

18



Consider the following remarks, similar to remarks of Section 4 of [Zar01].
Remark 5.1: The above construction can be carried out with an arbitrary field

F instead of F3, consider the above construction with F = Q. By [Ser77] Exercise
2.2, the character of QRf sends each element of the group into the number of its
fixed points and takes values in Z, it is called the permutation character of Rf . We
denote by χRf

the character of (QRf )0 and 1 + χRf
is the permutation character. It

is known ( [Ser77] Exercise 2.6) that the Gal(f)-module (QRf )0 is absolutely simple
if and only if Gal(f) acts double-transitively on Rf .

Remark 5.2: LetGal(f)3 be the set of 3-regular elements ofGal(f). Clearly, the
Brauer character of the Gal(f)-module FRf

3 coincides with the restriction of 1+χRf

to Gal(f)3. Thus, the Brauer character of the Gal(f)-module (FRf

3 )0 coincides with
the restriction of χRf

to Gal(f)3.

Remark 5.3: In case Gal(f) acts 2-transitively on Rf , #Rf is not divisible
by 3 and #Rf − 1 coincides with the highest power of 3 dividing #Gal(f), then
by a theorem of Brauer-Nesbitt ( [Hum87] pp.249) (FRf

3 )0 is an absolutely simple
Gal(f)-module. In particular, it is the reduction of the Steinberg representation.

We also have the following result, as in Yu. Zarhin’s paper [Zar18] Lemma 8.1
(we are in p ∤ n case):

Theorem 5.1. EndGal(f)((F
Rf

3 )0) ≅ F3 if and only if Gal(f) is 2-transitive.

Proof. See proof of Lemma 8.1 in [Zar18]. □

Remark 5.4:
LetM be a maximal subgroup of Ree(q). Theorem C on page 60 in [Kle88] tells

us that any such groupM is conjugate to one of the maximal groups listed in the
table of Theorem C on page 60 in [Kle88]. Let us go through the list and determine
their respective orders. We use the structure column of the table on page 61 of
Theorem C in [Kle88] to determine the orders:

1. groups of order q3(q − 1) with group structure [q3] ∶ Zq−1 ;

2. groups of order q3 − q with group structure 2 × L2(q) ;
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3. groups of order 12 ⋅ (q − 1) with group structure (22 ×D(1/2)(q+1)) ∶ 3;

4. groups of order 23 ⋅ 7 ⋅ 3 with group structure 23 ∶ 7 ∶ 3 , only for q = 3;

5. groups of order 6(q + √
3q + 1) with group structure Zq+√3q+1 ∶ Z6;

6. groups of order 6(q − √
3q + 1) with group structure Zq−√3q+1 ∶ Z6;

7. groups of order q3
0(q3

0+1)(q0−1) for q = qa0 with group structure 2
G2(q0), where

a and q0 are positive integers;

8. groups of order 504 with group structure L2(8), only for q = 3.

Note: We start at the top of the table and use the table’s Structure column
to compute the orders. For the sake of consistent ordering between our list
and that of Theorem C on page 60 in [Kle88], we include cases for q = 3. As
mentioned above, we use the group structure to determine the orders listed
above.

From the orders of the groups in the list above one can easily tell that the
maximal group of highest possible ordermust be conjugate to themaximal parabolic
subgroup P of order q3(q − 1). Thus, the order ofM must satisfy:

#M ≤ q
3(q − 1).

We can use the above results to show:

Theorem 5.2. Gal(f)-module (FRf

3 )0 is absolutely simple for Gal(f) = Ree(q)
and q > 3.

Proof. Let M be a maximal subgroup of Ree(q), then, by Remark 5.4, we have
#M ≤ q

3(q − 1). Thus, each subgroup of Ree(q) has index ≥ q
3 + 1 = #Rf , which

implies that Ree(q) acts transitively on Rf . If a stabilizer Ree(q)r for some r ∈ Rf

has index q3+1, then it is a maximal subgroup by the same classification. Moreover,
Ree(q)r is conjugate to the Borel subgroup B (normalizer of 3-Syllow subgroup) and
the Ree(q)-set Rf is isomorphic to an ovoid Ree(q)/B where the action of Ree(q) is
known to be 2-transitive ( [B1̈4] Prop 3.2). Finally, we obtain our result by Remark
5.3, since

#Rf = q
3
+ 1
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and
#Rf − 1 = q3

is the highest power of 3 dividing #Ree(q). □

Remark 5.5: It is known, see Section 7 of [Zar18], that Gal(f)-modules
Vf = (FRf

3 )0 and J[λ] are canonically isomorphic.

Theorem 5.3. Gal(f)-module J[λ] is absolutely simple for Gal(f) = Ree(q) and
q > 3.

Proof. By Theorem 5.2 and Remark 5.5, Gal(f)-module J[λ] is absolutely simple.
□
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Chapter 6 |
Very Simple

In this section we first use the definitions established in Yu. Zarhin’s paper “Very
Simple Representations: Variations on a Theme of Clifford" [Zar05b]. Results
and definitions from [Zar05b] help us establish conditions in Corollary 6.2 for the
very-simplicity (see Definition 6.1 below) of Gal(f)-module J[λ]. In the second part
of this section we use definitions and results from R. Steinberg’s paper “Repre-
sentations of algebraic groups” [Ste63] and J. Humphrey’s book “Ordinary and
modular representations of Chevalley groups” [Hum76], all in pursuit of satisfying
the conditions of Corollary 6.2.

We consider the notion of a very simple module as in Section 1 of [Zar05b] :

Definition 6.1: Let G be a group, V a vector space over a field F and

ρ ∶ G→ AutF (V )

a linear representation of G in V . We say G-module V is very simple if it satisfies
the following property:
for any subalgebra R ⊂ EndF (V ) containing the identity operator Id that is normal,
i.e.,

ρ(σ)Rρ(σ)−1
⊂ R for all σ ∈ G

we have that R = F ⋅ Id or R = EndF (V ).

Our goal is to show that the Gal(f)-module Vf = (FRf

3 )0 is very simple and, since
(FRf

3 )0 and J[λ] are canonically isomorphic Gal(f)-modules, the result will imply
the very simplicity of the Gal(f)-module J[λ].

22



Remark 6.1: What will the very simplicity of the Gal(f)-module J[λ] achieve
for us? It is known (Theorem 3.18 and Theorem 4.14 in [Zar05a]) that in character-
istic 0 the very simplicity of the Gal(f)-module J[λ] results in E = Q(δ) coinciding
with the centralizer End0(J, i) and it being the maximal commutative subalgebra in
End

0(J). This along with the fact that the center of End0(J) coincides with E, Theo-
rem 4.16 in [Zar05a], will provide us with the required isomorphism of Theorem 1.1.

We establish conditions for the Gal(f)-modules (FRf

3 )0 to be very simple as
in [Zar05b] .

Note: Since the Schur multiplier of Ree(q) is trivial for q > 3, every projective
(irreducible) representation of Ree(q) (over an algebraically closed field) lifts to a
linear (irreducible) representation.

Corollary 6.1. (Corollary 4.2 in [Zar05b])
Let us assume that either k is algebraically closed or G is a perfect and k is finite.
Suppose V is a non-zero finite dimensional k-vector space and

ρ ∶ G→ Autk(V )

is a linear representation of a group G over k. Then the G-module V is very simple
if and only if all the following conditions hold:

(i) The G-module V is absolutely simple;

(ii) The G-module V does not admit a projective absolutely simple splitting;

(iii) The G-module V is not induced from a representation of a proper subgroup of
finite index in G.

Proof. See proof of Corollary 4.2 in [Zar05b].
□

Since we know that all the projective representations of Gal(f) = Ree(q) for
q > 3, this allows us to obtain the following result by adjusting the result in [Zar05b]
(Corollary 4.3 and its proof).
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Corollary 6.2. (Corollary 4.3 in [Zar05b])
Suppose V is a non-zero finite-dimensional vector space over F3 and

G = Ree(q)→ AutF3(V )

is a linear representation. Then the G-module V is very simple if and only if all
the following conditions hold:

(i) The G-module V is absolutely simple;

(ii) The G-module V does not split into a tensor product V ≅ V1 ⊗F3 V2 of two
absolutely simple Ree(q)-modules V1 and V2, both of dimension strictly greater
than 1;

(iii) The G-module V is not induced from a representation of a proper subgroup of
finite index in G.

Proof. See proof of Corollary 4.3 in [Zar05b].
□

Remark 6.2: If V is absolutely simple in the tensor product splitting

V ≅ V1 ⊗F3 V2,

then V1 and V2 are both absolutely simple.

We have already established the absolute simplicity of theRee(q)-module (FRf

3 )0,
so we continue by establishing (ii).

Let’s take a closer look at the construction of groups of Lie type. Recall that
any twisted group G of Lie type is of the form G

F where F is a Steinberg endomor-
phism (surjective homomorphism of G fixing only finitely many points) and G is a
simply-connected algebraic group associated to G.

In our case, G = Ree(q) with q = 32m+1
= 3d > 3 is a finite group of Lie type

arising from a connected reductive algebraic group G2 over an algebraically closed
filed Fq of characteristic 3, which we denote by G2(q). Since this group is defined
over Fq, the Frobenius map τ ∶ u↦ u

3 of F3 induces a Frobenius endomorphism τ
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of G2(q). From the Dynkin diagram of G2 we can observe that G2(q) has a special
isogeny F , such that F2

= τ . For any positive odd integer d > 1 we have

Ree(3d) = G2(q)F
d

,

a finite subgroup of Fd-fixed points of G2(q).

The irreducible representations of Ree(q) over F3 turn out to be the restrictions
of irreducible representations of the algebraic group G2(q) by the next theorem of
Steinberg.

Theorem 6.3. (Steinberg’s Restriction Theorem, Thm 1.3 in [Ste63])
Let G be a simple algebraic group over the field F3, let F be a Steinberg endomor-
phism on G, then every simple GF -module is the restriction of a simple G-module.

Proof. See proof of Theorem 1.3 in [Ste63]. □

Since Ree(q)-module Vf = (FRf

3 )0 is absolutely simple by Theorem 5.3, Theorem
6.3 allows us to view it as a restriction of a simple G2(q)-module.

Definition: For any G2(q)-moduleM , we denote byM [i] the G2(q)-module ob-
tained by composing the representation G2(q)→ GL(M) with the endomorphism
F i, we call such module the i-th Frobenius twist ofM . Note that the isomorphism
type of this module does not depend on the basis chosen forM .

The following part of this section involves the theory of weights and we refer
the reader to the next section (Section 7) for details.

Since G2(q) is simply connected, its group of rational characters X(T ) (X(T )
is the set of characters w.r.t maximal torus T , see Section 7) is a full lattice of
weights of rank 2 with a basis consisting of the fundamental dominant weights
{ω̄1, ω̄2}. The fundamental weight ω̄1 corresponds to the short fundamental root α1

in the root system Φ of G2(q), while ω̄2 corresponds to the long fundamental root α2

(< ω̄i, α∨j >= δi,j, see Section 7). Theorem 7.1 in Section 7 allows us to characterize
all simple G2(q)-modulesM via their unique highest weight µ and we setM = L(µ)
for such modules. Another result of Steinberg shows that these G2(q)-modules
L(µ) can be described in terms of a finite number of them. In fact, we know more –
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all simple G2(q)-modules L(µ) can be constructed out of a finite number of simple
G2(q)-modules that correspond to the 3-restricted weights

X(T )3 = {c1ω̄1 + c2ω̄2 ∣ 0 ≤ c1, c2 < 3}.

Theorem 6.4. (see Humphrey’s book [Hum76], §2.1)
For an arbitrary dominant weight µ consider its 3-adic expansion

µ =
d−1

∑
i=0

3iω̄i,

where ω̄i is a 3-restricted weight. Then

L(µ) = L(ω̄0)⊗ L(ω̄1)[1] ⊗ ...⊗ L(ω̄d−1)[d−1]

where L(ω̄j)[i] is the i-th Frobenius twist of L(ω̄j).

Proof. See §2.1 (Theorem of Steinberg) in [Hum76]. □

We restrict our attention to the case of Ree(q) in Theorem 2.4 in [Ble99], which
provides us with a classification of the simple modules for the finite group Ree(q)
in terms of restrictions of simple G2(q)-modules. It actually tells us that all simple
Ree(q)-modules can be constructed out of restrictions of the simple G2(q)-modules
that correspond to the 3-restricted weights {c1ω̄1 ∣ 0 ≤ c1 < 3}.

Theorem 6.5. ( Thm 2.4 in [Ble99] or Thm 7.4 and Thm 12.2 in [Ste63] )
Let G be a Ree group of type Ree(q) defined over Fq with q = 3d ,

X(T )′3 = {µ = c1ω̄1 ∣ 0 ≤ c1 < 3}

and M′
= {Mµ ∣ µ ∈ X

′
3}. Then every simple Ree(q)-module can be expressed

uniquely as a tensor product

M0 ⊗M
[1]
1 ⊗ ...⊗M

[d−1]
d−1

withMi ∈M′ andM [i]
j is the i-th Frobenius twist ofMj.

Proof. See proof of Thm 2.4 in [Ble99]. □
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Theorem 7.1 in Section 7 allows us to characterize the irreducible representa-
tions of G2(q) via their unique highest weights and we set (FRf

3 )0
= L(µ) for the

G2(q)-module for some highest weight µ ∈ X(T ).

Consider the tensor splitting of the Ree(q)-module L(µ) = V1 ⊗F3 V2 as in (ii) of
Corollary 6.2 and suppose that both of dimension of Vi are greater than 1. Since
the dimension of L(µ) is equal to q3 (multiple of 3) and it is absolutely simple, the
modules Vi in the tensor splitting must have both dimensions that are multiples of
3 and must also be absolutely simple by Remark 6.1. By Theorem 6.3 and Theorem
6.4, such Vi can be constructed from the restrictions of G2(q)-modules that corre-
spond to the 3-restricted weights whose dimensions are multiples of 3 and with
c2 = 0. Using the proof of Theorem 12.5 in [Ste63], we find out that there is only one
such module L(2ω̄1) of dimension 27 corresponding to the 3-restricted weight 2ω̄1.
Thus, if dimensions of Vi in the splitting L(µ) = V1 ⊗F3 V2 are both greater than 1,
then they both must be multiples of 3 and constructed from the restrictions of the
simple G2(q)-module L(2ω̄1) and its Frobenius twists. We show in Chapter 7 that
no such modules Vi of dimension less than q3 are possible over F3, thus eliminating
the possibility of the tensor splitting into modules of dimensions greater than 1.
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Chapter 7 |
Weight theory

In this section we introduce the theory of weights to better understand the G2(q)-
module structure of L(2ω̄1). Our goal is to show that Ree(q)-module Vf satisfies
condition (ii) in Corollary 6.2, i.e. eliminating the possibility of its tensor splitting
as in (ii) of Corollary 6.2.

Consider G2, a simply-connected reductive group over an algebraically closed
field Fq of characteristic 3, which we denote by G2(q). Let T ⊂ G2(q) be a maximal
torus, then there is an associated root datum forG2(q) given by (X(T ),Φ, Y (T ),Φ∨)
( see 7.4, 9.6 in [Spr09]) . We denote

X(T ) = Hom(T,F×3 ) ≅ Z2

for the set of characters of T and

Y (T ) = Hom(F×3 , T ) ≅ Z2

for its co-character group. Let {α1, α2} ⊂ X(T ) be a set of simple roots of G2(F3)
with respect to the torus T and, similarly, {α∨1 , α∨2 } is the set of co-roots. If M is
any finite-dimensional G2(q)-module, then we may consider it as a T -module. This
allows us to decompose the restriction ofM to T as a sum of irreducible T -modules

M = ⨁
µ∈X(T )

Mµ

where t ∈ T acts by multiplication µ(t) onM . Note that only a finite number ofMµ

in the sum decomposition are nonzero. Those µ for whichMµ is non-zero are called
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weights, andMµ are called weight spaces. The Weyl group

W = NG2(q)(T )/T,

where NG2(q)(T ) is the normalizer of T in G2(q), acts onX(T ) and on V = R⊗X(T ),
and permutes the weights ofM . The weights of G2(q)-action on its own Lie algebra
(adjoint representation) are called roots.

Not all of the elements of X(T ) can be weights of G2(q)-modules. The groups
X(T ) and Y (T ) are in duality via a natural pairing

< ⋅, ⋅ >∶ X(T ) × Y (T )→ Z,

which can be extended to an induced pairing on (X(T )⊗ R) × (Y (T )⊗ R). This
allows us to define weights in X(T ) as elements µ such that < µ, α∨ > is an integer
for all roots α. The Euclidean space X(T )⊗R allows us to define the fundamental
weights ω̄1, ω̄2 ∈ X(T )⊗R as the dual Z-basis of {α∨1 , α∨2 }, such that < ω̄i, α∨j >= δi,j.
We have a partial ordering on the weights, where ω̄1 ≥ ω̄2 if and only if ω̄2 − ω̄1 is
a non-negative linear combination of simple roots. A weight µ is dominant if it is
non-negative linear combination of the fundamental weights and we denote this
set by X(T )+. The group of p-restricted weights is denoted

X(T )p = {∑ ciω̄i ∣ 0 ≤ ci ≤ p − 1}.

The Weyl group W is generated by reflections along αi and under this action each
orbit contains a unique dominant weight. Every weight is a conjugate under W to
a unique dominant weight.

Let M be a simple G2(q)-module, the following result characterizes all such
simple G2(q)-modules via their set of weights.

Theorem 7.1. (Theorem 2.1 in [Lü01] ) With our setup G2(q) andM .

(i) IfM is irreducible then the set of weights ofM contains a unique element µ
such that for all weights ω of M we have ω ≤ µ. The µ is called the highest
weight ofM and it is dominant.

(ii) An irreducible G2-moduleM is determined up to isomorphism by its highest
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weight.

(iii) For each dominant weight µ ∈ X(T ) there is an irreducible G2-module L(µ)
with highest weight µ.

Proof. See proof of Theorem 2.1 in [Lü01]. □

Definition: We define the Weyl module V (µ) for a highest weight µ to the
distinguished finite-dimensional G2(q)-module V (µ), which is constructed in steps
from the Lie Algebra of G2(q) with the highest weight µ. This Lie Algebra posses a
Z-lattice which has a form that allows us to obtain the “generic” Weyl module over
the integers V (µ)Z, whose reduction module 3 provides us with V (µ), see chapter
3 in [Lü01] for details of construction.

By this theorem we can attach a highest weight µ ∈ X(T ) to the simple G2(q)-
module M . We denote L(µ) for the G2(q)-module corresponding to the highest
weight µ and V (µ) denotes the Weyl module. Weyl module has a unique simple quo-
tient isomorphic to L(µ). Theorem 6.4 tells us that all simple G2(q)-modules L(µ)
can be constructed out of a finite number of simple G2(q)-modules that correspond
to the 3-restricted weights

X(T )3 = {∑ ciω̄i ∣ 0 ≤ c1, c2 < 3}.

We are interested in those G2(q)-modules that restrict to simple Ree(q)-modules
and Theorem 6.5 tells us that these modules are L(0), L(ω̄1) and L(2ω̄1). Note that
0, µ1, 2µ1 ∈ X(T )′3 from Theorem 6.5. Next, the proof of Theorem 12.5 in [Ste63]
provides us with the dimensions of L(0), L(ω̄1) and L(2ω̄1), they are 1,7, and 27
respectively. It is known (proof of Lemma 2.1 in [Sin93]) that

L(ω̄1) ≅ V (ω̄1)

and
L(2ω̄1) ≅ V (2ω̄1).

Remark 7.1: We want to establish (ii) of Corollary 6.2 for the Ree(q)-module
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Vf . In Section 6 we have determined that if dimensions of Vi in the tensor splitting

Vf = V1 ⊗F3 V2

are both greater than 1, then they both must be multiples of 3 and constructed
from the restrictions of the simple G2(q)-modules corresponding to the 3-restricted
weights. The only G2(q)-module that satisfies these conditions is L(2ω̄1), the 27-
dimensional G2(q)-module that corresponds to the 3-restricted weight 2ω̄1.

We compute the character of the 27-dimensional irreducible G2(q)-module
L(2ω̄1). For this we construct the fundamental weights for G2(q) explicitly with
the help of results in [Spr68] Section 4.9.

The character groupX(T ) is spanned by 3 elements x1, x2, x3 and the root system
of type G2 is

Φ = {±xi, xi − xj ∣ i ≠ j, i, j = 1, 2, 3}

where x1+ x2+ x3 = 0. For the sake of symmetry, we consider x1, x2, x3 to be vectors
living in a hyperplane of R3. The Weyl group of Φ is of order 12 and acts on X(T )
as follows: w(xi) = exπ(i), where π is a permutation of {1, 2, 3} and e = ±1. This is
summarized in the Figure 7.1 below:

α1 = x1

G2

α2 = x3 − x1 α1 + α2 = x3

3α1 + 2α2 = x3 − x2

2α1 + α2 = −x2

3α1 + α2 = x1 − x2

Figure 7.1

The inner product is given by < xi, xi >= 1 and < xi, xj >= −
1
2 if i ≠ j. The funda-
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mental weights are ω̄1 = 2α1 + α2 = x2 + x3 and ω̄2 = 3α1 + 2α2 = x3 − x2.

We denote by χV (ω̄1), χV (2ω̄1) the formal characters of the Weyl-modules V (ω̄1),
V (2ω̄1). We use the table of weight decomposition numbers in characteristic 0
(Table 1 in [Spr68]) to compute them below. Note that the weight ω̄1 corresponds
to the index “11” in Table 1 – which means the character consists of the terms
corresponding to the element x2 + x3 and its conjugates under the action of the
Weyl group and the trivial one (we denote it as a (0)):

χV (ω̄1) = [(−x2) + (x2) + (−x3) + (x3) + (−x2 − x3) + (x2 + x3)] + (0).

Similarly, the weight 2ω̄1 corresponds to the index “20” in Table 1 of [Spr68].
The terms that are conjugate under the action of the Weyl group are arranged in
square brackets:

χV ( ¯2ω1) = [(−2x2) + (2x2) + (−2x3) + (2x3) + (−2x2 − 2x3) + (2x2 + 2x3)]

+2[(−x2) + (x2) + 2(−x3) + (x3) + (−x2 − x3) + (x2 + x3)]

+[(−x2 + x3) + (x2 − x3) + (−2x2 − x3) + (x2 + 2x3)

+(−x2 − 2x3) + (2x2 + x3)] + 3(0).

Note: One can also use the functionality of the CHEVIE [MGP96] package (its
scripts for recursive Freudentahl’s formula) for GAP [GAP21] ( requires version 4
or above) to verify these multiplicities.

We denote by χL(ω̄1), χL(2ω̄1) the formal characters of the G2(q)-modules L(ω̄1),
L(2ω̄1) in characteristic 3.

Theorem 7.2. We have χL(ω̄1) = χV (ω̄1) and χL(2ω̄1) = χV (2ω̄1) in characteristic
3.

Proof. To show this we use Table 2 in [Spr68], which provides us with decomposition
numbers in characteristic 3. In this table the weight ω̄1 is indexed by “10” and the

32



weight 2ω̄1 by “20”. Looking at the values we can see that, after the reduction to
characteristic 3 the Weyl module is actually simple and has only the trivial quotient.
This results in the equality of their characters as required.

□

Let ρ(0), ρ(ω̄1) and ρ(ω̄2) denote the 3-Brauer characters of Ree(q) afforded by
L(0), L(ω̄1) and L(2ω̄1). For F , the special isogeny of Ree(q) whose square is the
Frobenius, we define ρF = ρ ◦ F . The special isogeny F comes from an automor-
phism of order 2 of the parent Chevalley group G2, which switches long roots and
short roots and Ree(q) is actually a set of fixed points of G2 under this action, see
Chapter 12 in [Ste63]. Let I = Z/dZ, where q = 32m+1

= 3d, for any subset J ⊂ I we
denote S(J) for set of all functions into the set {0, 1, 2} ⊂ Z. An element s ∈ S(I)
can be written as (s(0), s(1), ..., s(d− 1)), where s(i) is the image of i ∈ I under the
function s.

For s ∈ S, we define

ρs =∏
s∈S

ρ(s(i)µ1)F
i

(7.1)

Remark 7.2: We use I = Z/dZ, since for any irreducible Ree(q)-moduleM its
d-th Frobenius twist is isomorphic to the 0-th twist ofM .

Remark 7.3: By our results in Section 6 (Theorem 6.4 and Theorem 6.5),

B = {ρs ∣ s ∈ S} (7.2)

is the set of all irreducible Brauer characters of Ree(q).

We want to eliminate the possibility of tensor splitting of Vf = (FRf

3 )0 (as in (ii)
of Corollary 6.2) by showing that the 27-dimensional representation L(2ω̄1), its
Frobenius twists and their certain tensor products cannot be defined over the field
F3. Recall from Section 6, we want to show Vf = (FRf

3 )0 is the smallest possible
non-trivial Ree(q)-module of dimension a multiple of 3 that is defined over F3. With
this goal in mind, we first determine how to compute the trace of character of L(2ω̄1)
for Ree(q) explicitly. Next lemma allows us to write down the Brauer character
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ρ(2ω̄1) in terms of ρ(ω̄1) (character of the 7-dimensional irreducible module L(ω̄1)).

Lemma 7.3. We have

(i) ρ(2ω̄1) = ρ(ω̄1)2 − 2ρ(ω̄1) − ρ(ω̄1)F − 1

(ii) ρ(2ω̄1)ρ(ω̄1) = ρ(ω̄1)F
2

+ 2ρ(ω̄1)ρ(ω̄1)F + ρ(2ω̄1) + 4ρ(ω̄1) + 4ρ(ω̄1)F + 1

(iii) ρ(2ω̄1)2
= ρ(ω̄1)ρ(ω̄1)F

2

+ 6ρ(ω̄1)ρ(ω̄1)F + ρ(2ω̄1)ρ(ω̄1)F + 2ρ(2ω̄1) + 2ρ(2ω̄1)F +
5ρ(ω̄1) + 6ρ(ω̄1)F + ρ(ω̄1)F

2

+ 5

Proof. See the proof of Lemma 2.1 in [Sin93]. □

In order to compute the trace of ρ(2ω̄1) explicitly, we obtain explicit formulas
for the trace of ρ(ω̄1). We consider the matrix generators for the 7-dimensional
representation L(ω̄1) as in [LN85]. Let θ = 3m (where q = 32m+1), for z ∈ Fq and
a ∈ F

×
q we have:

α(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 z
θ 0 0 −z3θ+1 −z3θ+2

z
4θ+2

0 1 z z
θ+1 −z2θ+1 0 −z3θ+2

0 0 1 z
θ −z2θ 0 z

3θ+1

0 0 0 1 z
θ 0 0

0 0 0 0 1 −z z
θ+1

0 0 0 0 0 1 −zθ

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.3)

β(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −zθ 0 −z 0 −zθ+1

0 1 0 z
θ 0 −z2θ 0

0 0 1 0 0 0 z

0 0 0 1 0 z
θ 0

0 0 0 0 1 0 z
θ

0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.4)
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γ(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −zθ 0 −z −z2θ

0 1 0 0 −zθ 0 z

0 0 1 0 0 z
θ 0

0 0 0 1 0 0 −zθ

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.5)

h(a) = diagonal(aθ, a1−θ
, a

2θ−1
, 1, a1−2θ

, a
θ−1
, a
−θ) (7.6)

Ψ = antidiagonal(−1,−1,−1,−1,−1,−1,−1). (7.7)

Remark 7.4: Using these generators we can define the Ree group as in [LN85]:

Ree(q) = {α(z), β(z), γ(z), h(a),Ψ ∣ z ∈ Fq, a ∈ F×q }.

We define the subgroups of Ree(q) consisting of upper triangular and diagonal
matrices:

U(q) = {α(z), β(z), γ(z) ∣ z ∈ Fq}

D(q) = {h(a) ∣ a ∈ F×q }.

It is known (see [LN85]) that each element of U(q) can be expressed uniquely
as S(a, b, c) = α(a)β(b)γ(c) for a, b, c ∈ Fq. We can notice that U(q) is a Sylow 3-
subgroup of Ree(q) and D(q) ≅ F×q .

Remark 7.5: An element ζ ∈ Fq is called primitive if ζ ≠ 0 and its multiplicative
order is q− 1 in the cyclic group F×q . LetM < q− 1 be a positive integer, then the set

µM(Fq) = {a ∈ Fq∣aM = 1}
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is a cyclic multiplicative subgroup of F×q and its orderM ′ divides bothM and q − 1.
SinceM < q − 1 and q − 1 is an even integer and 2 ≤ (q − 1)/M ′, we have

M
′
= #(µM(Fq) ≤ (q − 1)/2.

Recall:

ABSm ∶= {m ∈ Z
+∣ q − 1

2 is prime},

COMPm ∶= {m ∈ Z∣ 1 ≤ n ≤ 752}.

Remark 7.6: Why do we have

m ∈ ABSm ∪ COMPm?

In Theorem 7.3, we show the non-existence of absolutely simple non-trivial Ree(q)-
modules of dimension < q

3 that are multiples of 3, while the representation of
dimension q3 turns out to be the (reduction of) Steinberg representation (Remark
5.3) for q = 32m+1 and

m ∈ ABSm ∪ COMPm.

This is done in two parts. Lemma 7.5 takes care of cases for

m ∈ COMPm

with the aid of Lemma 7.4. In Lemma 7.4 we show that one can always find
ζ ∈ F

×
q whose image under the explicit trace function, Lemma 7.3 (i), along with

certain powers of this image, denoted byM (see Lemma 7.5), all do not lie in F3. We
employ MAGMA [BCP97] to verify directly the statement of Lemma 7.4 for explicit
cases of m ∈ COMPm. If one can show the validity of Lemma 7.4 for all m, then
Theorem 1.1 will hold for all cases of m. Lemma 7.6, kindly provided by Yu. Zarhin,
takes care of cases for

m ∈ ABSm.

Additionally, in the proof of Lemma 7.4 we explicitly verify the case of m = 1 by
hand.
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Let u(ζ) ∈ G be the pre-image of

h(ζ) = diagonal(ζθ, ζ1−θ
, ζ

2θ−1
, 1, ζ1−2θ

, ζ
θ−1
, ζ
−θ)

under the natural 7-dimensional representation ρ(ω̄1) for a root of unity ζ ∈ Fq.

Lemma 7.4. Let q = 32m+1
= 3d and m ∈ COMPm, then there exists a root of

unity ζ ∈ Fq such that its image under the trace map tr[ρ(2ω̄1)] has order:

Order(tr[ρ(2ω̄1)(u(ζ))]) ≥
(q − 1)

2 .

Additionally, we prove that the image a ∶= tr[ρ(2ω̄1)(u(ζ))] has the property
that an ≠ −1 for any positive integer n < (q − 1)/8. In particular, an ∉ F3 for
n < (q − 1)/8.

Proof. The proof and verification consist of multiple parts:

1) Explicit trace formula computation;

Here we derive and compute the explicit formula ( formula (14) below ) for
the trace of the 27-dimensional tr[ρ(2ω̄1)] in terms of the 7-dimenisional
tr[ρ(ω̄1)].

2) Proof of the second part of lemma;

Here we prove the following statement: If image a ∶= tr[ρ(2ω̄1)(u(ζ))]
has order

order(a) ≥ (q − 1)/2

then an ≠ −1 for any positive integer n < (q − 1)/8.
Note: if we guarantee the existence of image a of order(a) ≥ (q − 1)/2,
then an ∉ F3 for any positive integer n < (q − 1)/8.

3) Explicit verification for m = 1;

Here we explicitly verify lemma for m = 1 using the isomorphism F27 ≅

F3[x]/(x3 + 2x + 1) to show that the element x ∈ F3[x]/(x3 + 2x + 1)
satisfies the conditions of our lemma, i.e., its image under the trace map
tr[ρ(2ω̄1)] has order equal to 26, and 26 ≥ 13 = q−1

2 .
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4) Outline of MAGMA verification;

Here we go over Python and MAGMA algorithms we’ve used to verify
the lemma for values of m ∈ COMPm. We use a Python algorithm to
generate MAGMA script filesMagma_m.txt for varyingm. The MAGMA
scriptMagma_m.txt contains MAGMA code on finding and verifying an
element of order≥ q−1

2 ( as required by the statement of the lemma ) for
specific value of m. These Magma_m.txt files ( for multiple values of
m ) are then executed in parallel using threading and system calls to
MAGMA ( this allows us to compute multiple cases of m concurrently ).
We have verified the lemma form ∈ ABSm ∩ {n ∈ Z∣n ≤ 719}.

5) Description of contents/files of GitHub repository.

Here we go over the actual files used and their contents. All code used
is available in our repository.

1) Explicit trace formula computation.
We derive explicit formula for the trace of the 27-dimensional ρ(2ω̄1) in terms

of the 7-dimensional ρ(ω̄1) via Lemma 7.3 (i):

ρ(2ω̄1) = ρ(ω̄1)2
− 2ρ(ω̄1) − ρ(ω̄1)F − 1.

One can find out ( the last line of the first cont. paragraph on pp.328 of [Sin93]
) that F ∶= 3(d+1)/2 (or one can think of it as a square root of the Frobenius map ),
thus

ρ(2ω̄1) = ρ(ω̄1)2
− 2ρ(ω̄1) − ρ(ω̄1)3(d+1)/2

− 1.

Now we can compute the explicit formula for the trace of the 27-dimensional
representation tr(ρ(2ω̄1)) using the trace of the 7-dimensional

h(ζ) = diagonal(ζθ, ζ1−θ
, ζ

2θ−1
, 1, ζ1−2θ

, ζ
θ−1
, ζ
−θ)

with θ = 3m. We split the computation into three parts corresponding to the three
non-constant terms in the above displayed formula.
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• ρ(ω̄1)2:

(ζθ+ζ1−θ
+ζ

2θ−1
+1+ζ1−2θ

+ζ
θ−1
+ζ

−θ)2
= ζ

2θ
+ζ

−2θ
+ζ

2θ−2
+ζ

−2θ+2
+ζ

4θ−2
+ζ

−4θ+2
+1+

+2[ζ1
+ζ

−1
+ζ

3θ−1
+2ζθ+2ζ−θ+2ζ1−θ

+2ζθ−1
+2ζ2θ−1

+2ζ−2θ+1
+ζ

2−3θ
+ζ

3θ−2
+3];

• 2ρ(ω̄1):

2(ζθ + ζ1−θ
+ ζ

2θ−1
+ 1 + ζ1−2θ

+ ζ
θ−1

+ ζ
−θ);

• ρ(ω̄1)3(d+1)/2

:

since 3(d+1)/2
= 3

2m+1+1
2 = 3m+1

= 3θ and since x3θ2

= x for all x ∈ Fq, we have
3θ2

= 1 (in the exponent):

(ζθ+ζ1−θ
+ζ

2θ−1
+1+ζ1−2θ

+ζ
θ−1
+ζ

−θ)3θ
= ζ

3θ2

+ζ
3θ−3θ2

+ζ
6θ2−3θ

+1+ζ3θ−6θ2

+ζ
3θ2−3θ

+ζ
−3θ2

= ζ
1
+ ζ

3θ−1
+ ζ

2−3θ
+ 1 + ζ3θ−2

+ ζ
1−3θ

+ ζ
−1
.

Now we combine all the terms:

tr[ρ(2ω̄1)(ζ)] =

ζ
2θ + ζ

−2θ + ζ
2θ−2 + ζ

−2θ+2 + ζ
4θ−2 + ζ

−4θ+2 + 1 + 2[ζ1 + ζ
−1 + ζ

3θ−1 + 2ζθ + 2ζ−θ +
2ζ1−θ + 2ζθ−1 + 2ζ2θ−1 + 2ζ−2θ+1 + ζ2−3θ + ζ3θ−2 + 3] − 2(ζθ + ζ1−θ + ζ2θ−1 + 1 + ζ1−2θ +

ζ
θ−1 + ζ−θ) − (ζ1 + ζ3θ−1 + ζ2−3θ + 1 + ζ3θ−2 + ζ1−3θ + ζ−1) − 1.
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Now we combine the like terms and obtain:

tr[ρ(2ω̄1)(ζ)] = [ζ2θ
+ ζ

−2θ] + [ζ2θ−2
+ ζ

−2θ+2] + [ζ4θ−2
+ ζ

−4θ+2] + [ζ1
+ ζ

−1]+

+[ζ1−3θ
+ ζ

3θ−1] + [2ζθ + 2ζ−θ] + [2ζ1−θ
+ 2ζθ−1] + [2ζ2θ−1

+ 2ζ−2θ+1]+

[ζ2−3θ
+ ζ

3θ−2] + 1.

(7.8)

Proof of the second part of lemma :
In this part we show that the image a ∶= tr[ρ(2ω̄1)(u(ζ))] of order order(a) ≥

(q − 1)/2 has the property that an ≠ −1 for any positive integer n < (q − 1)/8. We
employ an argument by contradiciton to show this.

Suppose there exists some positive integer k < (q−1)/8 such that ak = −1. Then
we have

a
k
⋅ a

k
= (−1) ⋅ (−1) = 1,

which implies a2k
= 1. Now since 2k < (q − 1)/4 < (q − 1)/2 we arrive at a contradic-

tion, since by assumption order(a) ≥ (q − 1)/2.

Explicit verification for m=1 :
Let m = 1, then

tr[ρ(2ω̄1)(ζ)] = [ζ6
+ ζ

−6] + [ζ4
+ ζ

−4] + [ζ10
+ ζ

−10]+

+[ζ1
+ ζ

−1] + [ζ−8
+ ζ

8] + [2ζ3
+ 2ζ−3] + [2ζ−2

+ 2ζ2] + [2ζ5
+ 2ζ−5]+

[ζ−7
+ ζ

7] + 1.
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For q = 27 we have F27 ≅ F3[x]/(x3+2x+1). Let ζ = x ∈ F3[x]/(x3+2x+1), then

tr[ρ(2ω̄1)(x)] = [x6
+ x

−6] + [x4
+ x

−4] + [x10
+ x

−10]+

+[x1
+ x

−1]+ [x−8
+ x

8]+ [2x3
+ 2x−3]+ [2x−2

+ 2x2]+ [2x5
+ 2x−5]+ [x−7

+ x
7]+ 1 =

[x6
+ x

20] + [x4
+ x

22] + [x10
+ x

16]+

+[x1
+ x

25] + [x18
+ x

8] + [2x3
+ 2x23] + [2x24

+ 2x2] + [2x5
+ 2x21] + [x19

+ x
7] + 1

since x3 + 1 = −2x = x , we have x3
= x − 1 ;

since x4 + 2x2 + x = 0 , we have x4
= −2x2 − x = x2 + 2x;

we have 2x2
= 2(x3 + 1)2

= 2x6 + x3 + 2, while also 2x2
= −x4 − x = 2x4 + 2x;

we have 2x5
= 2x2

x
3
= 2(2x4 + 2x)(x − 1) = x5 + 2x4 + x3 + 2x;

we have x6
= (x3)2

= (x − 1)2
= x

2 + x + 1;

we have x7
= x

3
x

4
= (x − 1)(−2x2 − x) = x3 + x2 + x;

we have x8
= (x4)2

= (x2 + 2x)2
= x

4 + x3 + x2
= x

2 + 2x+ x3 + x2
= x

3 + 2x2 + 2x;

we have x9
= (x3)3

= (x − 1)3
= x

3 − 1;

we have x10
= x

6
x

4
= (x2 + x + 1)(x2 + 2x) = x4 + 2x = x2 + 2x + 2x = x2 + x;
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we have x16
= x

10
x

6
= (x4+ 2x)(x2+x+ 1) = x6+x5+x4+ 2x3+ 2x2+ 2x = 2x+ 1;

we have x18
= (x9)2

= (x3− 1)2
= x

6− 2x3+ 1 = x2+x+ 1+x3+ 1 = x3+x2+x+ 2;

we have x19
= x

10
x

9
= (x4 + 2x)(x3 − 1) = x

7 + x
4 + x = x

3 + x
2 + x + x

4 + x =

x
4 + x3 + x2 + 2x = x2 + 2x + x3 + x2 + 2x = x3 + 2x2 + x

we have x20
= (x10)2

= (x2+x)2
= x

4+2x3+x2
= x

2+2x+2x3+x2
= 2x3+2x2+2x;

we have x21
= (x10)2

x = (x2 + x)2
x = x

5 + 2x4 + x3
= x

5 + x3 + 2x2 + x;

we have x22
= x

21
x = (x5+ 2x4+ x3)x = x6+ 2x5+ x4

= 2x5+ x2+ x+ 1+ x2+ 2x =
2x5 + 2x2 + 1;

we have x23
= x

21
x

2
= (x5+2x4+x3)x2

= x
7+2x6+x5

= x
3+x2+x+2(x2+x+1)+x5

=

x
5 + x3 + 2;

we have x24
= x

23
x = (x5 + x3 + 2)x = x

6 + x4 + 2x = x
2 + x + 1 + x2 + 2x + 2x =

2x2 + 2x + 1;

we have x25
= x

24
x = (2x2 + 2x + 1)x = 2x3 + 2x2 + x.

we plugin the above equations and obtain:

[x2
+ x + 1 + 2x3

+ 2x2
+ 2x] + [x2

+ 2x + 2x5
+ 2x2

+ 1] + [x2
+ x + 2x + 1]+

+[x + 2x3
+ 2x2

+ x] + [x3
+ x

2
+ x + 2 + x3

+ 2x2
+ 2x] + [2x − 2 + 2x5

+ 2x3
+ 1]

+[4x2
+ 4x+ 2+ 2x2]+ [2x5

+ 2(x5
+ x

3
+ 2x2

+ x)]+ [x3
+ 2x2

+ x+ x
3
+ x

2
+ x]+ 1 =
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[2x3
+ 1] + [2x5

+ 2x + 1] + [x2
+ 1]+

+[2x3
+ 2x2

+ 2x] + [2x3
+ 2] + [2x5

+ 2x3
+ 2x + 2]+

+[4x + 2] + [x5
+ 2x3

+ x
2
+ 2x] + [2x3

+ 2x] + 1 =

2x3
+ 1 + 2x5

+ 2x + 1 + x2
+ 1 + 2x3

+ 2x2
+ 2x + 2x3

+ 2 + 2x5
+ 2x3

+ 2x + 2+

+4x + 2 + x5
+ 2x3

+ x
2
+ 2x + 2x3

+ 2x + 1 = 2x5
+ x

2
+ 2x + 1 =

x
5
+ 2x4

+ x
3
+ 2x + x2

+ 2x + 1 = x5
+ 2x2

+ x + x
3
+ 2x + x2

+ 2x + 1 =

x
5
+ x

3
+ 2x + 1 = x5

The last equality sign follows from the fact that x3 + 2x + 1 = 0.

Clearly, the order of x5
∈ F3[x]/(x3 + 2x + 1) is 26 and 26 ≥ 27−1

2 = 13.

Outline of MAGMA verification:
We employ MAGMA [BCP97] and Python [VRD09] to verify the statement of

our lemma for fixed values m ∈ ABSm ∩ {n ∈ Z∣n ≤ 719}. For each case of m with
q = 32m+1 in this range, we have verified that one can pick a primitive root of unity
ζ ∈ Fq such that its image under the trace map, image ∶= tr[ρ(2ω̄1)(u(ζ))], has
order greater or equal to (q − 1)/2.

This verification is carried out in steps, where we first use Python to generate
MAGMA templates for various cases of m and then execute these templates in
parallel instances of MAGMA, i.e., we use threading to outsource each computation
( for a single instance of m ) to the available cores of the CPU using system calls
to MAGMA. For example: one can use shell ( command line ) to run any magma
script by executing MAGMA script file ( say with name filename )

> magma filename
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Thus, we execute our Python generated script Magma_m.txt for some m via
executing in shell:

> magma Magma_m.txt

The reader can find the code in our GitHub repository. Also, in the next subsec-
tion we describe the files and contents of our Github repository.

Let us first go over the Python-part of the code. In

magma_script_generator_dickson.py

a user can set a range for m by setting the global variables M ( first value of m )
and END_V ALUE ( last value of m ). Executing this script will generate MAGMA
template filesMagma_m.txt form set in the range fromM to End_V alue. For more
details on the Python algorithm see the next subsection describing the contents of

magma_script_generator_dickson.py.

Let us go over the contents of one such fileMagma_1.txt for m = 1.

Below are the contents of the fileMagma_1.txt with our comments that explain
the steps:

( comments are given after //, MAGMA’s parser ignores the text that follows
after )

F:=FiniteField(3,3); // Defines the finite field F_27
a:= PrimitiveElement(F); // Provides a primitive root of unity
P<x>:=PolynomialRing(F); // Polynomial ring over F in x
b:= a+a^-1; // Element a+1/a using primitive root a
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tr:=DicksonFirst(6, 1)+DicksonFirst(4, 1)+ DicksonFirst(10, 1)+
DicksonFirst(1, 1)+DicksonFirst(8, 1)+2*DicksonFirst(3, 1)+
2*DicksonFirst(2, 1)+2*DicksonFirst(5, 1)+DicksonFirst(7, 1)+1;

// we define trace (11) as a linear combination of Dickson
// polynomials for optimization purposes.

image:= Evaluate(tr, b); // Defines the value of b under tr

if Order(image) lt 13 then PrintFile("Output_1", "False"); end if;

// We check the order of image, if it is <(q-1)/2 we create a file
// Output_1.txt and write "False" inside.

Let us go over the steps of a general algorithm ( we generate the specific values
template for fixed m using Python, see magma_script_generator_dickson.py in the
next subsection ). First we define the field F based on the odd power of 3 using the
built-in function F ∶= FiniteF ield(3, 2m + 1). Then we define the polynomial ring
P in variable x via

P < x >∶= PolynomialRing(F )

and element b which is the sum of a primitive root of unity a ∈ F and its inverse a−1.
Next we define the trace function tr as a linear combination of Dickson polynomials
using formula (14), this optimization was communicated by the author’s advisor Y.
Zarhin. We note that DicksonFirst(n, 1) = xn and our formula (14) is a polynomial
in a variable x = ζ + 1

ζ
. In the next step we evaluate trace function tr at the

element b using image ∶= Evaluate(tr, b). Now in the last step we need to verify
that the order of image is greater or equal to (q − 1)/2, we do this with the If...then
statement in MAGMA. In case Order(image) < (q − 1)/2, our algorithm creates a
file Output_m.txt with entry ( a string ) False using

PrintF ile(”Output_1”, ”False”).

Next part of our algorithm is a Python script magma_threading.py, which is
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used to execute multipleMagma_m.txt scripts concurrently using system calls to
MAGMA via shell command

> magma Magma_m.txt

User can set the range ofm in Python filemagma_threading.py in our repository
by defining start and end values for the function run_threaded_magma_scripts().

Verification has been carried out for values of m ∈ COMPm.

Description of contents/files of GitHub repository
Our script consists of two parts:

• magma_script_generator_dickson.py:

Contains the function main() with attributes/global-variables ofM and

End_V alue, which define the range of m when generating MAGMA script
templates. For a set values of m this function computes related values used
in MAGMA template code, such as q and exponents c_i used in the ith Dickson
polynomial DicksonFirst(c_i, 1). Note that DicksonFirst(c_i, 1) = xc_i and c_i
comes from the exponents of (14) considered as a polynomial in x = ζ + 1/ζ
and we can express (14) as a linear combination of Dickson polynomials
DicksonFirst(c_i, 1). Below is a snippet of our Python-code, where we define
the required values and MAGMA code template line by line:

for m in range(M, END_VALUE):
q = 3 ** (2 * m + 1)
q_minus_1_over_2 = int((q - 1) / 2)
q_minus_1_over_8 = int((q - 1) / 8)
field_entry = 2 * m + 1
t = 3 ** m
# here we compute the exponent coefficients
# (pairwise positive and negative)
c_1 = 2 * t
c_2 = 2 * t - 2
c_3 = 4 * t - 2
c_4 = 3 * t -1
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c_5 = t - 1
c_6 = 2 * t - 1
c_7 = 3 * t - 2

# last digit indicates line number in magma script file
finite_field_1 = f’F:=FiniteField(3,{field_entry});’
primitive_2 = f’a:= PrimitiveElement(F);’
polynomial_ring_3 = f’P<x>:=PolynomialRing(F);’
sum_inverse_4 = f’b:= a+a^-1;’

dickson_1 = f’d_1:=DicksonFirst({c_1}, 1);’
dickson_2 = f’d_2:=DicksonFirst({c_2}, 1);’
dickson_3 = f’d_3:=DicksonFirst({c_3}, 1);’
dickson_4 = f’d_4:=DicksonFirst(1, 1);’
dickson_5 = f’d_5:=DicksonFirst({c_4}, 1);’
dickson_6 = f’d_6:=DicksonFirst({t}, 1);’
dickson_7 = f’d_7:=DicksonFirst({c_5}, 1);’
dickson_8 = f’d_8:=DicksonFirst({c_6}, 1);’
dickson_9 = f’d_9:=DicksonFirst({c_7}, 1);’

trace_formula_6 = f’tr:=DicksonFirst({c_1}, 1)+
DicksonFirst({c_2}, 1) + DicksonFirst({c_3}, 1)+
DicksonFirst(1, 1)+DicksonFirst({c_4}, 1)
+2*DicksonFirst({t}, 1)+2*DicksonFirst({c_5}, 1)+
2*DicksonFirst({c_6}, 1) +
DicksonFirst({c_7}, 1)+1;’
image_6 = f’image:= Evaluate(tr, b);’
order_image_7 = f’if Order(image) lt {q_minus_1_over_2}
then PrintFile("Output_{m}", "False"); end if;’

We use this code to generate a string template of MAGMA code in the file
Magma_m.txt, where we plug-in those computed values for respective parts.
For example if one setsM = 1 and End_V alue = 10 and executes this script, it
will generate ten files Magma_1.txt, Magma_2.txt, ... , Magma_10.txt. Each
such file contains code for the specific value of m, we provide an example of
contents forMagma_7.txt below (some lines are cut to fit the page):
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F:=FiniteField(3,15);
a:= PrimitiveElement(F);
P<x>:=PolynomialRing(F);
b:= a+a^-1;
tr:=DicksonFirst(4374, 1)+DicksonFirst(4372, 1)+
DicksonFirst(8746, 1)+ DicksonFirst(1, 1)+
DicksonFirst(6560, 1)+2*DicksonFirst(2187, 1)+
2*DicksonFirst(2186, 1)+2*DicksonFirst(4373, 1)+
DicksonFirst(6559, 1)+1;

image:= Evaluate(tr, b);
if Order(image) lt 7174453 then PrintFile("Output_7", "False");
end if;

• magma_threading.py:

These files defines a function run_threaded_magma_scripts(start, end), where
the user can set the range for m by setting start and end values, which takes
Magma_m.txt as inputs and runs them concurrently using threading and
system calls:

> magma Magma_m.txt

The user can set the variable THREADS according to number of CPU cores
available for computation.

• magma_script_generator.py:

Version of MAGMA script generator that uses direct trace computation with-
out the use of Dickson polynomials.

□
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We can finally prove that the only irreducible representation of Ree(q) with
dimension a multiple of 3 which is defined over F3 is the (reduction of) Steinberg
representation. The following result is an adjustment of Lemma 4.2 in [Zar03] to
our case.

Lemma 7.5. Let G = Ree(q) with q = 32m+1
= 3d > 3 for m ∈ COMPm and let

ζ ∈ Fq be a primitive root of unity, we denote by u = u(ζ) ∈ G the preimage of

h(ζ) = diagonal(ζθ, ζ1−θ
, ζ

2θ−1
, 1, ζ1−2θ

, ζ
θ−1
, ζ
−θ)

under the natural faithful 7-dimensional representation ρ(µ1). For all j = 1, ..., d−1,
we denote Wj = L(2µ1)[j] for the j-th Frobenius twist of L(2µ1) with

ρj ∶ G→ GL(Wj)

Let S be a subset of {0, 1, ..., d − 1}, we define an F̄3-representation ρS of G as the
tensor product of the representations ρi for all i ∈ S. If S is a proper subset of
{0, 1, ..., d − 1}, then there exists an element u ∈ G such that the trace ρS(u) does
not belong to F3.

Proof. For any u ∈ G we have tr(ρi(u)) = tr(ρ0(u))3i

by our above results, which
clearly implies

tr(ρS(u)) =∏
i∈S

tr(ρi(u)) = tr(ρ0(u))M

whereM = ∑i∈S 3i. For a proper subset S of {0, 1, ..., d − 1}, we have

0 <M <

d−1

∑
i=0

3i = 3d − 1
2 =

q − 1
2 .

Actually, we can make this bound better (the author is grateful to Yu. Zarhin,
who suggested the new bound and communicated its proof over email):

The trace formula is (14) in the proof of Lemma 7.4 is a degree 4θ− 2 polynomial
P (x) in x = ζ + ζ−1. The set

U = {ζ + ζ−1 ∣ ζ ∈ F∗
q }

consists of (q − 1)/2 = (3θ2 − 1)/2 elements. We need to check that for each proper
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subset S of A = {0, 1, . . . , 2m} there is b ∈ U such that bM(S) /∈ F3 where

M(S) =∑
i∈S

3i.

Suppose that it’s not true. We call a proper subset S of A bad if for all b ∈ U

b
M(S)

∈ F3 (i.e., bM(S) is 0, 1 or −1). Notice that if S is bad then its complement

A \ S

is also bad. We have
M(S) +M(A \ S) = (q − 1)/2.

On the other hand, if bad S does NOT contain 0 then T = {i − 1, i ∈ S} is also bad,
because

b
M(S)

= (bM(T ))3
.

Let S be a bad set with the smallest possibleM(S) =∶M . Then it must contain 0.
We need to arrive to a contradiction. The complement S1 = A \ S is bad and does
NOT contain 0, hence, there is bad T1 such thatM(S1) = 3M(T1). By assumption

M(T1) ≥M(S) =M.

We have
3M ≤ 3M(T1) =M(S1) = (q − 1)/2 −M,

i.e.,
3M ≤ (q − 1)/2 −M,

i.e.,
M ≤ (q − 1)/8.

Actually, the inequality is strong, because (q− 1) is not divisibly by 8 and even by 4.

Thus, since (q − 1)/2 is odd we have M < (q − 1)/8. Next, by Lemma 7.4, for
1 ≤ m ≤ 719 there exists a primitive root of unity ζ ∈ F×

q such that for u = u(ζ) with
a = tr(ρS(u)) we have

Order[a] = Order[tr(ρS(u))] ≥
(q − 1)

2
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and aM ≠ ±1. Hence, if we pick u = u(ζ) for such ζ, then we have

tr(ρS(u)) = tr(ρ0(u))M = a
M
∉ F3

By Remark 7.3, we know that ρS exhaust the list of all absolutely irreducible
representations of G. The case of empty S corresponds to the trivial representation
and the case S = {1, ..., d−1} is the (reduction of) Steinberg representation (Remark
5.3).

□

Notation: we recall

ABSm ∶= {m ∈ Z
+∣ q − 1

2 is prime},

COMPm ∶= {m ∈ Z∣ 1 ≤ n ≤ 752}.

The next lemma and its proof (kindly provided by Yu. Zarhin) take care of cases
for

m ∈ ABSm.

Lemma 7.6. Let G = Ree(q) with q = 32m+1 and m ∈ ABSm, then we can find
b ∈ Fq such that

tr[ρ(2ω̄1)(b)]M ∉ F3, for 1 ≤M ≤ (q − 1)/8.

Proof. First, recall q = 32m+1 for positive integers m and θ = 3m. Note that the
explicit trace formula (14) tells us that tr[ρ(2ω̄1)] can be considered to be a degree
4θ − 2 polynomial P (x) in x = ζ + ζ−1 for which we define the set

U = {ζ + ζ−1 ∣ ζ ∈ F∗
q },

which consists of (q− 1)/2 = (3θ2− 1)/2 elements. We will show that form ∈ ABSm

there is a b ∈ U which satisfies the conditions of the Lemma, by showing that P (x)
takes more than three distinct values on the set U , i.e., we can always pick b ∈ U
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such that
tr[ρ(2ω̄1)(b)]M = P (b)M ∉ F3 for 1 ≤M ≤ (q − 1)/8.

We need to check that for each proper subset S of

A = {0, 1, . . . , 2m}

there is b ∈ U such that
b
M(S) /∈ F3

where
M(S) =∑

i∈S

3i.

We call a proper subset S of A bad if for all b ∈ U

b
M(S)

∈ F3

(i.e., bM(S) is 0, 1 or −1). In other words, we need to check that there are NO bad
sets for m ∈ ABSm. Notice that if S is bad then its complement A \ S is also bad.
Indeed, we have

M(S) +M(A \ S) = (q − 1)/2.

and therefore

b
(q−1)/2

= b
M(S)

b
M(A\S)

.

It remains to note that bq−1)/2 always lies in F3.
On the other hand, if bad S does NOT contain 0 then T = {i − 1, i ∈ S} is also

bad, because
b
M(S)

= (bM(T ))3
.

Let S be a bad set with the smallest possible M(S) =∶ M . Then it must contain
0. We need to arrive to a contradiction, so suppose it does contain 0. Then the
complement S1 = A\ is bad as well and does not contain 0. Hence, there is s bad T1

such thatM(S1) = 3M(T1). By assumption

M(T1) ≥M(S) =M.
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We have
3M ≤ 3M(T1) =M(S1) = (q − 1)/2 −M,

i.e.,
3M ≤ (q − 1)/2 −M,

i.e.,
M ≤ (q − 1)/8.

Actually, the inequality is strong, because (q− 1) is not divisibly by 8 and even by 4.

Thus, since (q − 1)/2 is odd we haveM < (q − 1)/8.
Let us put

N = N(S) ∶= gcd(M, (q − 1)/2).

Clearly, if b ∈ Fq then bM ∈ F3 iff bN ∈ F3.
If m > 2, then

3 < (32m+1 − 1)/2
4 ⋅ 3m − 2 =

#(U)
deg(P ) . (7.9)

Lets verify the inequality (15) for m > 2:

(32m+1 − 1)/2
4 ⋅ 3m − 2 =

32m+1 − 1
8 ⋅ 3m − 4

and clearly,

32m+1 − 1
3m+2 <

32m+1 − 1
3m+2 <

32m+1 − 1
3m+2 − 4

=
32m+1 − 1
9 ⋅ 3m − 4 <

32m+1 − 1
8 ⋅ 3m − 4 ,

while

3 < 3m−1
−

1
3m+2 =

32m+1

3m+2 −
1

3m+2 =
32m+1 − 1

3m+2 .

This implies that polynomial P (x) takes more than three distinct values on U .
In particular, there is b ∈ U such that

P (b) ∉ F3.

This implies that if m > 2 and N(S) = 1 then S is not bad. Thus, we show that for
m ∈ ABSm, cases when (q − 1)/2 is a prime, there are no bad subsets. Indeed, in
this case everyM =M(S) (for proper S) is prime to (q − 1)/2, therefore N(S) = 1
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and the result follows.
□

Remark 7.7: Lemma 7.5 and Lemma 7.6 tell us that the 27-dimensional repre-
sentation L(2ω̄1) along with its Frobenius twists and their certain tensor products
cannot be defined over the field F3. Thus we get that the Ree(q)-module Vf = (FRf

3 )0

is the (reduction of) Steinberg representation (Remark 5.3) and thus cannot be
split into a tensor product.

Nowwe have everything needed to show the very simplicity of theRee(q)-module
Vf = (FRf

3 )0:

Theorem 7.3. With our setup, we claim that the Ree(q) module Vf = (FRf

3 )0 is
very simple for the following values of m:

m ∈ ABSm ∪ COMPm.

Proof. To show the very simplicity of the G = Ree(q)-module Vf = (FRf

3 )0 we show
that it satisfies the conditions of Corollary 5.2:

(i) The G-module Vf = (FRf

3 )0 is absolutely simple by Theorem 5.2.

(ii) By Lemmas 7.5 and 7.6 and Remark 7.7, there are no absolutely simple non-
trivial G-modules of dimension < q3 which are multiples of 3 for m ∈ ABSm ∪

COMPm. Therefore, Vf = (FRf

3 )0 is not isomorphic to a tensor product of
absolutely simple G-modules of dimension > 1 for the required values of m.

(iii) By the classification of maximal subgroups in [KM20] Theorem 2.1 and by
Remark 5.3 of this article, each subgroup of Ree(q) has index ≥ q3 + 1 > q3

=

dimF3(Vf).

Thus, by Corollary 6.2, the Ree(q)-module Vf = (FRf

3 )0 is very simple.
□

Remark 7.8: Theorem 7.3 establishes the very simplicity of the Gal(f)-module
Vf = (FRf

3 )0. It is known [Zar18] that Gal(f)-modules Vf = (FRf

3 )0 and J[λ] are
canonically isomorphic. Hence, Gal(f)-module J[λ] is very simple.
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Chapter 8 |
Proof of Theorem 1.1

We have all the necessary ingredients to prove Theorem 1.1. We note that Remarks
2.1 and 6.1 have already outlined the way we are going to use the very-simplicity of
Gal(f)-module J[λ] in our proof of Theorem 1.1.

Theorem 1.1. Let f be a polynomial with coefficients in k and of degree

n ∶= deg(f) = q3
+ 1.

Let C be the trigonal curve it describes via the equation y3
= f(x). Suppose Gal(f)

coincides with one of the 2-transitive Ree groups in the series

Ree(q) = 2
G2(q)

for q = 32m+1 and
m ∈ ABSm ∪ COMPm,

then the endomorphism algebra End0(J) of the Jacobian of C is isomorphic toQ(ζ3)
and the endomorphism ring End(J) of the Jacobian of C is isomorphic to Z[ζ3],

End(J) ≅ Z[ζ3].

Proof. First, by Remark 7.7, Gal(f)-module J[λ] ( Section 3, formula (5)) is very
simple. Since the characteristic of k is zero, Theorem 4.14 in [Zar05a] (with n = q3+1,
p = 3 and r = 1) tells us that E = Q(δ) (the image of Q(δ)→ End

0(J)) is isomorphic
to Q(ζ3) and it is a maximal commutative subalgebra in End

0(J). Since it is a

55



maximal commutative subalgebra in End0(J), we have

Q(ζ3) ≅ Q(δ) = End0(J, i),

where End0(J, i) is the centralizer of i ∶ Q(ζ3) → End
0(J). Now we can employ

Theorem 4.16 from [Zar05a], which provides us with the required isomorphisms

End
0(J) ≅ Q(ζ3);

End(J) ≅ Z[ζ3].

In particular, J is an absolutely simple abelian variety.
□
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Appendix |
Python and MAGMA code

import sympy
import os
import glob
import sys
import os
import hashlib
from multiprocessing import Pool
from subprocess import call
import pandas as pd
from pathlib import Path
import subprocess
from sympy import Symbol
from sympy.parsing.sympy_parser import parse_expr

# Stating value of N for verification of the trace formula
M = 1
END_VALUE = 100
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# Number of cores available
THREADS = 9

# saving location for the LOG.txt
PATH = Path().resolve()
BASIC_LOG_FILE = PATH / ’basic_log.txt’

def main(starting_value=M, end_value=END_VALUE, threads=THREADS):
print(f’Verifying the trace formula, starting at m={M}’)
# here we create Threads for our calls to MAGMA from the command line shell
pool = Pool(processes=THREADS)

# here we create the variables and pass the required string for processing to MAGMA

m = Symbol(’m’)

for m in range(M, END_VALUE):
q = 3 ** (2 * m + 1)
q_minus_1_over_2 = int((q - 1) / 2)
q_minus_1_over_8 = int((q - 1) / 8)
field_entry = 2 * m + 1
t = 3 ** m
# here we compute the exponent coefficients
(pairwise positive and negative)

c_1 = 2 * t
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c_2 = 2 * t - 2
c_3 = 4 * t - 2
c_4 = 3 * t -1
c_5 = t - 1
c_6 = 2 * t - 1
c_7 = 3 * t - 2

# last digit indicates line number in magma script file
finite_field_1 = f’F:=FiniteField(3,{field_entry});’
primitive_2 = f’a:= PrimitiveElement(F);’

polynomial_ring_3 = f’P<x>:=PolynomialRing(F);’
sum_inverse_4 = f’b:= a+a^-1;’

dickson_1 = f’d_1:=DicksonFirst({c_1}, 1);’
dickson_2 = f’d_2:=DicksonFirst({c_2}, 1);’
dickson_3 = f’d_3:=DicksonFirst({c_3}, 1);’
dickson_4 = f’d_4:=DicksonFirst(1, 1);’
dickson_5 = f’d_5:=DicksonFirst({c_4}, 1);’
dickson_6 = f’d_6:=DicksonFirst({t}, 1);’
dickson_7 = f’d_7:=DicksonFirst({c_5}, 1);’
dickson_8 = f’d_8:=DicksonFirst({c_6}, 1);’
dickson_9 = f’d_9:=DicksonFirst({c_7}, 1);’

trace_formula_6 = f’tr:=DicksonFirst({c_1}, 1)+
DicksonFirst({c_2}, 1)
+ DicksonFirst({c_3}, 1)+ DicksonFirst(1, 1)+
DicksonFirst({c_4}, 1)+2*DicksonFirst({t}, 1)
+2*DicksonFirst({c_5}, 1)+2*DicksonFirst({c_6}, 1)
+DicksonFirst({c_7}, 1)+1;’
image_6 = f’image:= Evaluate(tr, b);’
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order_image_7 = f’if Order(image)
lt {q_minus_1_over_2}
then PrintFile("Output_{m}", "False"); end if;’

magma_command_list =
[finite_field_1,primitive_2,polynomial_ring_3,
sum_inverse_4, trace_formula_6, image_6, order_image_7 ]

# create the string for Template

# create a Template file for MAGMA
FILE_PATH = PATH / f’magma_{m}.txt’

# we create and save a file which magma will be executing
with open(FILE_PATH, "w") as f:

f.write("\n".join(magma_command_list))

if __name__ == ’__main__’:
main(sys.argv[1])

# Stating value of N for verification of the trace formula
M = 1
END_VALUE = 100
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# Number of cores available
THREADS = 9

# saving location for the LOG.txt
PATH = Path().resolve()
BASIC_LOG_FILE = PATH / ’basic_log.txt’

def main(starting_value=M, end_value=END_VALUE, threads=THREADS):
print(f’Verifying the trace formula, starting at m={M}’)
# here we create Threads for our calls to MAGMA from the command line shell

pool = Pool(processes=THREADS)

# here we create the variables and pass the required string for
processing to MAGMA

m = Symbol(’m’)

for m in range(M, END_VALUE):
q = 3 ** (2 * m + 1)
q_minus_1_over_2 = int((q - 1) / 2)
q_minus_1_over_8 = int((q - 1) / 8)
field_entry = 2 * m + 1
t = 3 ** m
# here we compute the exponent coefficients
(pairwise positive and negative)

c_1 = 2 * t
c_2 = 2 * t - 2
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c_3 = 4 * t - 2
c_4 = 1 - 3 * t
c_5 = t - 1
c_6 = 2 * t - 1
c_7 = 3 * t - 2

# last digit indicates line number in magma script file
finite_field_1 = f’F:=FiniteField(3,{field_entry});’
primitive_2 = f’a:= PrimitiveElement(F);’
# order_3 = f’Order(a);’

function_field_4 = f’P<x>:=FunctionField(F);’
trace_formula_5 = f’f:=x^({c_1}) + x^(-{c_1})+
x^({c_2}) + x^(-{c_2})+ x^({c_3}) + x^(-{c_3})+
x + x^(-1)+ x^({c_4}) + x^(-{c_4})+2*x^({t}) +
2*x^(-{t})+ 2*x^({c_5}) + 2*x^(-{c_5})+2*x^({c_6})
+ 2*x^(-{c_6})+x^({c_7}) + x^({c_7})+1;’

image_6 = f’image:= Evaluate(f, a);’

order_image_7 = f’if Order(image) ne {q-1}
then image:= Evaluate(f, a^2); end if;’

# powers_8 = f’Powers:=[];’
check_8_1 = f’b:= F! -1;’
# loop_9 = f’for i in [1..{q_minus_1_over_8}]
do if i mod 3 ne 0 then Powers:=Append(Powers, image^i);
end if; end for;’

loop_9 = f’for i in [1..{q_minus_1_over_8}]
do if i mod 3 ne 0 and image^i eq b
then PrintFile("Output_{m}", "False"); end if; end for;’

# last_11 = f’result:=b in Powers;’
# last_12 = f’ if result then PrintFile("Output_{m}", "False");
end if; ’
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magma_command_list = [finite_field_1,primitive_2,
function_field_4,trace_formula_5,
image_6,
order_image_7,check_8_1, loop_9, ]

# create the string for Template

# create a Template file for MAGMA
FILE_PATH = PATH / f’magma_{m}.txt’

# we create and save a file which magma will be executing
with open(FILE_PATH, "w") as f:

f.write("\n".join(magma_command_list))

if __name__ == ’__main__’:
main(sys.argv[1])

import sympy
import os
import glob
import sys
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import os
import hashlib
from multiprocessing import Pool
from subprocess import call
import pandas as pd
from pathlib import Path
import subprocess
from sympy import Symbol
from sympy.parsing.sympy_parser import parse_expr

# Number of cores available
THREADS = 3

# Running a thread pool masks debug output. Set DEBUG to 1 to run
DEBUG = False

DEVNULL = open(os.devnull, "w")

def run_threaded_magma_scripts(start, end):
list_of_m=[]
pool = Pool(processes=THREADS)
for i in range(start, end):

list_of_m.append(i)

pool.map(run_magma, list_of_m)
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def run_magma(m):
magma_commad = f’magma magma_{m}.txt’
os.system(magma_commad)

if __name__ == ’__main__’:
main(sys.argv[1])

import sympy
import os
import glob
import sys
import os
import hashlib
from multiprocessing import Pool
from subprocess import call
import pandas as pd
from pathlib import Path
import subprocess
from sympy import Symbol
from sympy.parsing.sympy_parser import parse_expr
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# Stating value of N for verification of the trace formula
M = 1
END_VALUE = 100

# Number of cores available
THREADS = 9

# saving location for the LOG.txt
PATH = Path().resolve()
BASIC_LOG_FILE = PATH / ’basic_log.txt’

def main(starting_value=M, end_value=END_VALUE, threads=THREADS):
print(f’Verifying the trace formula, starting at m={M}’)
# here we create Threads for our calls to MAGMA from the command line shell
pool = Pool(processes=THREADS)

# here we create the variables and pass the required string for processing to MAGMA

m = Symbol(’m’)

for m in range(M, END_VALUE):
q = 3 ** (2 * m + 1)
q_minus_1_over_2 = int((q - 1) / 2)
q_minus_1_over_8 = int((q - 1) / 8)
field_entry = 2 * m + 1
t = 3 ** m
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# here we compute the exponent coefficients
(pairwise positive and negative)

c_1 = 2 * t
c_2 = 2 * t - 2
c_3 = 4 * t - 2
c_4 = 1 - 3 * t
c_5 = t - 1
c_6 = 2 * t - 1
c_7 = 3 * t - 2

# last digit indicates line number in magma script file
finite_field_1 = f’F:=FiniteField(3,{field_entry});’
primitive_2 = f’a:= PrimitiveElement(F);’
# order_3 = f’Order(a);’

function_field_4 = f’P<x>:=FunctionField(F);’
trace_formula_5 = f’f:=x^({c_1}) + x^(-{c_1})+ x^({c_2}) +
x^(-{c_2})+ x^({c_3}) + x^(-{c_3})+ x + x^(-1)+ x^({c_4}) +
x^(-{c_4})+2*x^({t}) + 2*x^(-{t})+ 2*x^({c_5}) + 2*x^(-{c_5})+2*x^({c_6}) + 2*x^(-{c_6})+x^({c_7}) + x^({c_7})+1;’

image_6 = f’image:= Evaluate(f, a);’

order_image_7 = f’if Order(image) ne {q-1} then image:=
Evaluate(f, a^2); end if;’
# powers_8 = f’Powers:=[];’
check_8_1 = f’b:= F! -1;’
# loop_9 = f’for i in [1..{q_minus_1_over_8}]
do if i mod 3 ne 0 then Powers:=Append(Powers, image^i);
end if; end for;’

67



loop_9 = f’for i in [1..{q_minus_1_over_8}]
do if i mod 3 ne 0 and image^i eq b then PrintFile("Output_{m}", "False"); end if; end for;’

# last_11 = f’result:=b in Powers;’
# last_12 = f’ if result then PrintFile("Output_{m}", "False");
end if; ’

magma_command_list = [finite_field_1,primitive_2,
function_field_4,trace_formula_5,
image_6,
order_image_7,check_8_1, loop_9, ]

# create the string for Template

# create a Template file for MAGMA
FILE_PATH = PATH / f’magma_{m}.txt’

# we create and save a file which magma will be executing
with open(FILE_PATH, "w") as f:

f.write("\n".join(magma_command_list))
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if __name__ == ’__main__’:
main(sys.argv[1])
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