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ABSTRACT 

A completely non-intrusive method of monitoring driver drowsiness is described. 

Because of their abilities to learn behavior and represent very complex 

relationships, artificial neural networks are the basis of the method presented. 

Four artificial neural networks are designed based on the hypothesis that the 

time derivative of force (jerk) exerted by the driver at the steering wheel and 

accelerator pedal can be used to discern levels of alertness. The artificial neural 

networks are trained to replicate non-drowsy input, and then tested with unseen 

data. Data sets that are similar to the training sets will pass through the network 

with little change, and sets that are different will be changed considerably by the 

network. Thus, the further the driver’s jerk profile deviates from the non-drowsy 

jerk profile, the greater the error between the input and output of the network will 

be. The changes in network error with drive time are presented from testing the 

networks with simulated driving data, and the performance of the artificial neural 

network designs are compared. 



 iv

TABLE OF CONTENTS 

LIST OF FIGURES...........................................................................................................................vi 

LIST OF TABLES........................................................................................................................... viii 

ACKNOWLEDGEMENTS ................................................................................................................ix 

CHAPTER 1: LITERATURE REVIEW OF DRIVER ALERTNESS MONITORING TECHNIQUES 1 

Introduction ......................................................................................................................................1 

Causes of Alertness Impairment......................................................................................................2 

 Human Sleepiness..............................................................................................................2 

 Fatigue ................................................................................................................................4 

 Monotony ............................................................................................................................6 

Driver Alertness Monitoring Techniques..........................................................................................6 

 Car Observation Systems ...................................................................................................7 

 Driver Observation Systems ...............................................................................................8 

 Car-Driver Interface Observation Systems .......................................................................12 

Alertness Prediction Using Artificial Neural Networks ...................................................................16 

Literature Review Conclusions ......................................................................................................25 

CHAPTER 2: DRIVER ALERTNESS EXPERIMENT AT THE PENN STATE TRUCK 
DRIVING SIMULATOR.................................................................................................................. 27 

Overview of Simulator Architecture................................................................................................27 

Driving Scenario Development ......................................................................................................30 

Experimental Procedures...............................................................................................................35 

Data Recording ..............................................................................................................................36 

CHAPTER 3: ARTIFICIAL NEURAL NETWORKS ARCHITECTURE AND TRAINING ............. 37 

Introduction .................................................................................................................................... 37 

Artificial Neural Network Training with Back Propagation.............................................................. 41 

 



 v

Alternative Networks ..................................................................................................................... 44 

CHAPTER 4: APPROACH............................................................................................................ 47 

System Overview ........................................................................................................................... 47 

Input Processing ............................................................................................................................ 49 

 Savitzky-Golay Filter for Numerical Differentiation ........................................................... 49 

 Spikiness Index ................................................................................................................. 53 

Artificial Neural Network Designs................................................................................................... 55 

Network Training ............................................................................................................................ 56 

CHAPTER 5: RESULTS................................................................................................................ 60 

Jerk Profile ..................................................................................................................................... 60 

Spikiness Index .............................................................................................................................. 65 

Chapter 6: Conclusion................................................................................................................. 71 

References..................................................................................................................................... 73



 vi

LIST OF FIGURES 

 

Figure 1.1: Factors Contributing to Vehicle Driver Fatigue (Dawson et al., 2001) .......................... 5 

Figure 1.2:  Linear and Parabolic Regimens (Jung and Kelber, 2005)............................................ 8 

Figure 1.3: Flow Chart for Vision/Context-Based System (Ji, et al., 2004) ................................... 10 

Figure 1.4: Graphical Representation of Spikiness Index (Haque and Desai, 2006) .................... 14 

Figure 1.5: Flow Chart for AWAKE System (Bekiaris et al. 2004)................................................. 15 

Figure 1.6: Flow chart for EEG Analysis System (Wilson and Bracewell, 2000)........................... 19 

Figure 1.7: Spring-Damper Representation of Human Body (Andreeya, 2004) ............................ 20 

Figure 1.8: Biological and Driving Signal System (Hayashi et al., 2000)....................................... 23 

Figure 1.9: Normal and Abnormal Trajectories (Carswell and Chandran, 1994)........................... 24 

Figure 2.1: The Pennsylvania State Truck Driving Simulator ........................................................ 28 

Figure 2.3: Map of “Mountain” Terrain Used for Driving Scenario................................................. 32 

Figure 2.4: Simulated Vehicle Setup.............................................................................................. 33 

Figure 2.5: Mice Window Showing Data Recording Tasks............................................................ 34 

Figure 3.1:Diagram of Neuron ....................................................................................................... 37 

Figure 3.2: Diagram of a Three-Layer Feed-forward ANN ............................................................ 38 

Figure 3.3: MATLAB Hard Limit Function ...................................................................................... 40 

Figure 3.4: MATLAB Log-Sigmoid Function .................................................................................. 41 

Figure 3.5: MATLAB Radial Basis Function................................................................................... 45 

Figure 3.6: Radial Basis Neuron .................................................................................................... 46 

Figure 4.1: System Flow Chart ...................................................................................................... 48 

Figure 4.2: Raw and Smoothed Steering Position Data ................................................................ 52 

Figure 4.3: Raw and Smoothed Accelerator Pedal Position Data ................................................. 53 

Figure 4.4: Definition of Spikiness (Desai and Haque, 2006) ........................................................ 54 

Figure 4.5: Example Training Record for Feedforward Network Using Jerk Profile...................... 56 



 vii

Figure 4.6: Example Training Record for Radial Basis Network Using Jerk Profile ...................... 57 

Figure 4.7: Training Record for Radial Basis Network Using Five Jerk Profiles............................ 57 

Figure 4.8: Training Record for Radial Basis Network Using Four Jerk Profiles ........................... 57 

Figure 4.9: Training Record for Feedforward Network Using Spikiness Index.............................. 58 

Figure 4.10: Training Record for Network Trapped in Local Minima ............................................. 58 

Figure 4.11: Training Record for Network Trapped in Local Minima ............................................. 59 

Figure 5.1: Drowsiness Indicator using Jerk Profile #1.................................................................. 61 

Figure 5.2: Drowsiness Indicator using Jerk Profile #2.................................................................. 61 

Figure 5.3: Drowsiness Indicator using Jerk Profile #3.................................................................. 62 

Figure 5.4: Drowsiness Indicator using Jerk Profile #4.................................................................. 62 

Figure 5.5: Drowsiness Indicator using Jerk Profile #5.................................................................. 63 

Figure 5.6: Drowsiness Indicator using Jerk Profile #6.................................................................. 63 

Figure 5.7: Drowsiness Indicator using Jerk Profile #7.................................................................. 64 

Figure 5.8: Drowsiness Indicator using Jerk Profile #8.................................................................. 64 

Figure 5.9: Drowsiness Indicator using Spikiness Index #1 .......................................................... 66 

Figure 5.10: Drowsiness Indicator using Spikiness Index #2 ........................................................ 66 

Figure 5.11: Drowsiness Indicator using Spikiness Index #3 ........................................................ 67 

Figure 5.12: Drowsiness Indicator using Spikiness Index #4 ........................................................ 67 

Figure 5.13: Drowsiness Indicator using Spikiness Index #5 ........................................................ 68 

Figure 5.14: Drowsiness Indicator using Spikiness Index #6 ........................................................ 68 

Figure 5.15: Drowsiness Indicator using Spikiness Index #7 ........................................................ 69 

Figure 5.16: Drowsiness Indicator using Spikiness Index #8 ........................................................ 69



 viii

LIST OF TABLES 

 

Table 1.1:  Reaction Times for Levels of Alertness (Faber, et al., 2003) ........................................ 3 

Table 1.2: PERCLOS, LDBF and Fusion drowsiness detection (Chang, et al., 2005).................... 9 

Table 1.3: Results of Spikiness Index Analysis (Haque and Desai, 2006).................................... 14 

Table 2.1: Motion Range of Simulator Base .................................................................................. 28 

Table 2.2: Simulator Computer Network Architecture ................................................................... 29 

Table 2.3: Simulator Hardware ...................................................................................................... 29 



 ix

ACKNOWLEDGMENTS 
 
The author would like to express thanks to Dr. Moustafa El-Gindy and Dr. Aman 
Haque for their continuous technical help during the course of this research. 
 
The author would also like to express his gratitude to the Applied Research 
Laboratory (ARL) of Penn State University and its E&F Graduate Assistant 
program directed by Dr. Dick Stern. 
 
This thesis was made possible in part by Dr. Aman Haque and his Honda 
Initiative Grant. 



 

 

 

 

 

 

 
CHAPTER 1: LITERATURE REVIEW OF DRIVER ALERTNESS 

MONITORING TECHNIQUES 
 

 

1.1 Introduction 

 Security and safety on the roadway are major concerns of modern 

society.  Recent studies show driver drowsiness as a major cause of 

automobile accidents on roadways across the world (Rau, 1996).  In this 

respect, fatigue and monotony are two of the critical factors that decrease 

driver vigilance and increase risk of injury or death to both the driver and the 

surrounding public (Faber, 2004).  In the United States, the National Highway 

Traffic Safety Administration (NHTSA) estimates 100,000 crashes reported, 

1,550 deaths, and 76,000 injuries (Strohl, et al., 1998) due to fatigue.  

Economically, this corresponds to $12.4 billion per year in losses due to driver 

drowsiness (Grace, 1998; Wang, et al., 1996).  These numbers highlight the 

need for research and development of an effective drowsiness detection 

system for use in heavy trucks and automobiles.   
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 The purpose of this chapter is to review the causes and symptoms of 

loss of alertness and to make a decision on inputs to evaluate the level of 

driver vigilance.  The next section of this chapter is devoted to the causes of 

impairment of vigilance.  Section 1.3 will present the available techniques for 

alertness monitoring and rate the effectiveness and practicality of the inputs 

to the system. Special attention is given to artificial neural network 

approaches in section 1.4.  Finally, a concluding section will choose the type 

of system for further research based on the findings of the literature review. 

 

1.2 Causes of Alertness Impairment 

 Operation of any automobile or heavy machinery requires acute 

attention.  In order to safely manipulate the controls of such vehicles, the 

driver must be able to physically and psychologically stay attentive to the task 

and environment.  Due to the countless factors that present danger to driver 

judgment, an alertness warning system must be flexible enough to deal with a 

wide variety of circumstances.   Among these factors are sleepiness, fatigue, 

monotony, distraction and psycho-physiological (drugs, alcohol, emotional) 

effects.  Although all of these factors demonstrate great risk, this review is 

mainly concerned with sleepiness and fatigue.  

 

1.2.1 Human Sleepiness 

 Sleepiness and drowsiness are two synonymous terms that are 

defined by the Merriam-Webster Dictionary as “a very sleepy state; the need 
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to fall asleep” (2006).  It is necessary to understand the mechanisms of sleep 

as well as its causes.  During drowsiness, an individual’s awareness of the 

surrounding environment becomes sporadic (Makeig, et al., 2000).  

Researchers have investigated human sleepiness for many years and much 

has been discovered about the process as well as how to monitor alertness.  

One major sleep research technique is to monitor brain activity using an 

electroencephalogram (EEG).  Using an EEG, researchers measure electrical 

currents within the neural system of the human brain with sensors placed on 

the skin.  An EEG can show the state of the human brain because the 

characteristic patterns of current differ for asleep, awake, and anaesthetized 

states.  Correlations between vigilance states (Alert, Relaxed, and Sleepy) 

and reaction time have been exemplified using an EEG.  Table 1.1 displays 

the average reaction time for selected vigilant states defined by EEG data. 

Table 1.1:  Reaction Times for Levels of Alertness (Faber, et al., 2003) 

Vigilant State Reaction Time (ms) 
Alert 100-400 
Relaxed 400-800 
Sleepy 800-1200 → ∞ 

  

Ground-breaking work published by Kleitman and Aserinsky (1953) 

determined that sleep is not a passive state.  In fact, sleep consists of two 

states of Rapid Eye Movements (REM) and non-REM.  REM sleep is an 

active state of sleep with EEG measurements similar to those of an active 

state (Dement and Kleitman, 1957).  Kleitman also created the concept of an 

internal clock during his research of the natural inclination and timing of sleep.  
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This internal clock is known as the circadian rhythm.  The circadian rhythm is 

a daily cycle of a drive to sleep due to the timing of one’s biological clock.  

The circadian rhythm shows periods of unintended sleepiness to occur 

around the times of 6 am and mid-afternoon (Sagberg, et al., 2004).   

 The other factor that induces sleepiness is a homeostatic influence.  

An average adult sleeps a little longer than eight hours per night.  Research 

conducted by David Dinges shows that it is not “sleep debt” but a homeostatic 

factor of continual wakefulness that causes the human body to become 

sleepy (Dinges, 1995; Dinges, et al., 2001).  If one stays awake for more than 

18 hours, it has been found that the human body enters a state of decreased 

performance during simple tasks.  The longer one stays awake past 18 hours, 

the further the decrease in their performance.  

 
1.2.2 Fatigue 

 “Fatigue” is often mistakenly used as a synonym for “sleepiness”.  

Fatigue combines the psychological and physiological disinclinations to 

continue simple control tasks or start new ones (Desai and Haque, 2006).  

This can be caused by numerous factors including sleepiness, but one can 

suffer from fatigue and not be drowsy (Stutts, et al., 1999).  Figure 1.1 

presents the key influences on fatigue from both objective and subjective 

standpoints. 
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Figure 1.1: Factors Contributing to Vehicle Driver Fatigue (Dawson et al., 2001) 

Defining fatigue in the on-road context has never been unanimously accepted 

within the field of highway safety, but Australia’s Fatigue Expert Group 

(Dawson, et al., 2001) uses both subjective and objective states in its 

definition:   

“Impaired performance (loss of attentiveness, slower reaction times, 

impaired judgment, poorer performance on skilled control tasks, 

increased probability of falling asleep) and subjective feelings of 

drowsiness or tiredness. Long periods awake, inadequate amount or 

quality of sleep over an extended period, sustained mental or physical 

effort, disruption of circadian rhythm… inadequate rest breaks and 

environmental stress (such as heat, noise, and vibration)” 
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1.2.3 Monotony 

 The characteristics of a trip in an automobile also create factors that 

decrease vigilance.  Monotony is an intricate phenomenon that affects drivers’ 

physical and perceptive senses (Brandt, et al., 2004).  Monotony is caused by 

the lack of stimuli, such as a task that is repetitive or requires low amounts of 

attention.  Factors such as noise, vibration, and empty long straight roads 

create a monotonous environment (Thiffault and Bergeron, 2003).   

 The effect of such a monotonous environment can lead to a condition 

known as “highway hypnosis” (Shor and Thackray, 1970).  While in a hypnotic 

state, the lack of stimuli may result in a decrease in driver alertness 

(Desmond and Hancock, 2001). 

 

1.3 Driver Alertness Monitoring Techniques 

Existing approaches for monitoring driver alertness can be divided into 

three categories as follows: 

• Observing the car 

• Observing the driver 

• Observing the car-driver interface 

Car observation can include monitoring lane drift, car speed, yaw rate, etc.  

Driver observation includes monitoring facial features, eye movements and 

physiological responses such as an electroencephalogram (EEG) or skin 

impedance.  Car-driver interface observation includes all methods of 
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measuring driver imparted motions to the car.  This can include monitoring 

steering displacement rate, grip force on the steering wheel, accelerator 

displacement rate, etc.   

 
1.3.1 Car Observation Systems 

 Lane departure is by far the most widely used form of car observation.  

This technique calculates the position of the vehicle within the lane (usually 

via a vision system) and monitors how this position changes with time.  If the 

system finds the vehicle is leaving the lane (or roadway) a warning is given.  

AssistWare Technology has developed a product, SafeTRAC, which uses 

lane departure and boasts one example of a 350 mile trip in which the 

weather conditions and lane lines were optimal for lane departure recoginition 

for 99.45% of the trip, and experienced no false positives and no false 

negatives. 

 In a study by Jung and Kelber (2005) a lane departure warning system 

based on the lateral offset of the vehicle with respect to the center of the lane 

was developed.  A linear-parabolic model was created to detect the lane 

boundaries, and the linear part (up to 30 meters ahead of the vehicle) was 

used to compute the lateral offset without needing information about the 

camera angles.  Figure 1.2 shows the two sections (linear and parabolic) of 

the model. 
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Figure 1.2:  Linear and Parabolic Regimens (Jung and Kelber, 2005) 

The offset was analyzed across time to detect whether the vehicle 

approaches the lane boundaries or the offset remains constant.  The system 

was tested with video sequences obtained in different environmental 

conditions, such as faded lane line painting and various amounts of light, to 

favorable results. 

 Other similar methods of lane departure warning have been described 

by Yasui, et al. (1998), and LeBlanc, et al. (1996).  Systems of this type are 

able to measure and interpret symptoms independent of the driver’s physical 

characteristics.  However, there are also several negative aspects.  These 

systems require a large amount of computing power and cannot detect driver 

drowsiness directly.  In addition, systems of this nature may giving false 

warnings due to a particular driver’s style of driving or give late warnings. 

 
1.3.2 Driver Observation Systems 

 One of the most popular methods used to estimate driver drowsiness 

is a vision based measurement of the percentage of eyelid closure 

(PERCLOS) over time.  A PERCLOS drowsiness metric was established by 

Wierwille, et al., (1994) as the proportion of time in a minute that the eyes are 

at least 80 percent closed.  Further work by Dinges and Grace (1998) found 
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PERCLOS to be both valid and reliable.  PERCLOS is used in The Driver 

Fatigue Monitor (DD850) by Attention Technologies, Inc., making it one of the 

few drowsiness detection techniques that are commercially available. 

 Bergasa, et al., (2004) devised a method of real-time monitoring of 

driver alertness using PERCLOS.  An active IR illuminator and software were 

used to monitor eyelid movements and the pose of the face.  The system 

used PERCLOS, eye closure duration, blink frequency, nodding frequency 

and face direction as inputs to a fuzzy system.  Bergasa validated the method 

by testing with ten drivers with different light levels.  The system was able to 

work in varying light levels and, using PERCLOS, had a detection percentage 

of 90% compared to observer measurements.  However, when drivers wore 

eyeglasses the method’s performance decreased. 

 Chang, et al., (2005) used PERCLOS and long blink duration 

frequency (LDBF) as measurements of driver drowsiness.  Chang, et al., 

defined LDBF as the number of long blinks in which the eye is closed longer 

than usual.  Eye closure was defined as the eye being more than 70% closed.  

The LDBF and PERCLOS measurements were combined by fuzzy integral to 

improve the system’s performance.  This combination of measurements led to 

3.3% and 8.3% increase in accuracy over LDBF and PERCLOS, respectively.  

Complete results of this study are shown in Table 1.2. 

Table 1.2: PERCLOS, LDBF and Fusion drowsiness detection (Chang, et al., 2005) 

 Samples Errors Error Rate (%) Accuracy (%) 
LDBF 122 10 8.2 91.8 
PERCLOS 122 16 13.2 96.8 
Fuzzy Intergral Fusion 122 6 4.9 95.1 

 9



 

 A driver drowsiness detection method was described by Ji, et al., 

(2004) using remotely located charge-coupled-device cameras equipped with 

active infrared illuminators to acquire video images of the driver.  Various 

visual cues that typically characterize the level of alertness of a person (eyelid 

movement, gaze movement, head movement, and facial expression) were 

extracted in real time and systematically combined to infer the fatigue level of 

the driver.  Ji developed a probabilistic (Bayesian network) model was from 

known causes of fatigue to model human fatigue and to predict fatigue based 

on the visual cues obtained.  Among the many factors that can cause fatigue, 

this study used sleep history, Circadian Rhythm, work conditions, work 

environment, and physical condition.  This system is visualized in Figure 1.3. 

 
Figure 1.3: Flow Chart for Vision/Context-Based System (Ji, et al., 2004) 
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The simultaneous use of multiple visual cues and their systematic 

combination yielded a much more robust and accurate fatigue 

characterization than using a single visual cue.  This system was validated 

under real-life fatigue conditions with human subjects of different ethnic 

backgrounds, genders, ages, with/without glasses, and under different light 

conditions.  It was found to be reasonably robust, reliable, and accurate in 

fatigue characterization.  This study manually detected the eyes in a set of 

13,620 image stills and used these frames as the correct fatigue 

identifications. The eye tracker was quite accurate, with a false-alarm rate of 

0.05% and a misdetection rate of 4.2% when presented with the 13,620 

image stills.  

 Ueno, et al., (1994) developed a system that uses image-processing 

techniques to analyze images of the driver's face taken with a video camera.  

Alertness ratings were based on the number of times eye closure was 

detected during a specified interval.  The system was experimentally 

validated by driving an actual vehicle and by laboratory simulation.  When the 

alertness ratings from the image processing were compared to brain wave 

based alertness ratings, a correlation coefficient of 0.77 was obtained, 

meaning the image processing and physiological responses were strongly 

relateted. 

 Several other similar facial/eye image processing based approaches 

have been described by Tack and Craw (1996), Nakano, et al. (1996), Smith, 

et al. (2000), Eriksson and Papanikolopoulos (2001) and Kaneda, et al. 
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(1999).  Facial/eye image processing systems do not interfere with driving but 

the results are dependent on a specific driver (i.e. a driver with glasses versus 

a driver without).  Driver observation methods have the advantage of 

measuring actual physiological responses to drowsiness.  These systems 

have the disadvantages of using a large amount computing power for image 

processing.  

 

1.3.3 Car-Driver Interface Observation Systems 

 Work by Chien, et al. (2003), developed a driver alertness detection 

method that monitored changes in the driver's grip force on the steering 

wheel.  Steering grip force data was obtained using two resistive force 

sensors attached to the steering wheel connected to a personal computer 

with the aid of a data acquisition module.  Driving was simulated in a 

laboratory setting by having subjects perform sessions on vehicle simulator 

software with a computer game steering wheel.  The alertness of the driver 

was then assessed by a change detection algorithm using the ratio of the 

probability density based on the mean before a change in steering force and 

the probability density based on the mean after the change in steering force.  

The algorithm was successful in detecting changes in steering wheel grip 

force; however, steering wheel grip force could not be verified as an effective 

measurement of drowsiness. 

 Work by Fukuda, et al. (1995), developed a driver drowsiness 

detection system using the interval of steering adjustment for lane keeping.  
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Because a real life steering angle waveform contains reaction forces from the 

road, environmental effects, etc., waveform recognition methods were used to 

extract steering adjustment measurements alone.  The steering interval 

measurement was normalized to 80 km/h regardless of the actual vehicle 

speed at that time in order not to impair the real-time performance of the 

system.  The system worked by learning the steering adjustment intervals of 

drivers according to speed, and the learning time decreases as the vehicle 

speed becomes higher where the fluctuation in the interval becomes smaller.  

It also used estimates of steering adjustment data that could not be learned 

from the normalized data.  It then set the drowsiness judgment threshold level 

according to the values of steering adjustment intervals learned by the 

system.  The system used this threshold level to compare to the driver’s 

steering adjustment interval.  If drowsiness occurs, the interval of steering 

adjustment is prolonged.  When tested, the detection algorithm estimated 

drowsiness with a 15% error as compared to alpha wave (EEG) data and a 

7% error as compared to the driver’s self-ratings. 

 A method presented by Haque and Desai (2006) is based on the 

hypothesis that the time derivatives of forces exerted by the driver on the 

accelerator and steering wheel can be used to discern different levels of 

alertness.  This technique is novel because it employs multiple inputs to 

increase the robustness of the system.  Their study introduced a parameter, 

“spikiness index,” for the time series data of the force derivatives to quantify 
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driver alertness.  The spikiness index represents the variations from the 

general trend and the amplitude of the spikes, as shown in Figure 1.4. 

 
Figure 1.4: Graphical Representation of Spikiness Index (Haque and Desai, 2006) 

Haque and Desai hypothesized that the spikiness index decreases as 

the driver becomes drowsy.  To test the theory three drivers performed 

simulated driving while alert and drowsy, the derivative of the force on the gas 

pedal was taken and the spikiness index (deviation from the moving average) 

was computed and is shown in 

Table 1.3. 

Table 1.3: Results of Spikiness Index Analysis (Haque and Desai, 2006) 

Driver 1 Driver 2 Driver 2  
Alert (N/s) Drowsy (N/s) Alert (N/s) Drowsy (N/s) Alert (N/s) Drowsy (N/s)

1 2.27E-02 6.09E-03 2.67E-02 8.45E-03 1.36E-01 4.23E-03
2 5.00E-02 8.85E-03 9.93E-03 2.00E-02 2.97E-02 2.42E-02
3 3.67E-02 1.73E-02 8.84E-03 1.79E-02 8.88E-02 3.03E-02
4 1.56E-02 4.60E-03 5.33E-03 2.00E-02 6.58E-02 2.16E-02
5 9.02E-03 3.33E-03 11.11E-02 2.00E-02 4.38E-02 8.97E-02
Avg 2.68E-02 8.03E-03 1.124E-02 6.48E-03 7.28E-02 3.40E-02
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 One of the most unique studies in driver drowsiness detection and 

warning is the AWAKE project (Bekiaris et al. 2004).  The AWAKE system is 

exceptional because of its multi-sensor approach, using feedback from driver 

responses and traffic situations to diagnose driver drowsiness.  The System 

for effective Assessment of driver vigilance and Warning According to traffic 

risK Estimation (AWAKE) is a project of the European Commission intended 

to diagnose driver alertness impairments in terms of progressive or critical 

alertness lapses, allowing the driver to avoid a more hazardous situation.  

The goal of AWAKE is to achieve a correct diagnosis level of 90% and a false 

alarm rate below 1 % in all highway scenarios.  Figure 1.5 shows a flow chart 

for the AWAKE system. 

 
Figure 1.5: Flow Chart for AWAKE System (Bekiaris et al. 2004) 

A Hypo-vigilance Diagnosis Module (HDM) detects drowsiness in real-

time.  Based on an artificial intelligence algorithm, this module will monitor 

eyelid behavior, steering grip forces, and lane keeping performance.  
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A Traffic Risk Estimation module (TRE) assesses the traffic situation 

and the involved risks.  It monitors data from an enhanced digital navigational 

map, positioning system, anti-collision radar, vehicle speed, and the driver's 

gaze direction.  

The Hierarchical Manager (HM) co-ordinates the other system 

components and hosts the AWAKE warning strategy (Bekiaris et al. 2004).  

According to this diagnosis, the AWAKE warning strategy is as follows: 

• If driver is awake, only imminent collision and imminent speed 

warnings can be activated 

• If driver may be drowsy, all levels of traffic risk warnings can be 

activated 

• If driver is drowsy two different drowsiness warnings and traffic risk 

warnings can be activated 

Car driver interface systems have the advantage of being completely un-

intrusive to driving.  They can be implemented without the driver being aware 

of the system.  They also use less computing power than other image 

processing based systems.  Like car observation systems, car-driver interface 

observation systems have the disadvantage of not being able to directly 

monitor driver drowsiness. 

  

1.4 Alertness Prediction Using Artificial Neural Networks 

 Generally speaking, an artificial neural network (ANN) consists of a set 

of interconnected processing elements (called neurons) which can exhibit 
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complex global behavior.  Originally, this technique was inspired by simplified 

models of the human brain, hence its name.  The true power of artificial 

neural networks is their ability to recognize patterns.  Considerable work has 

been done to develop algorithms to train neural networks to detect patterns in 

data sets (Chen, 1990; Carpenter, 1989; Kohonen, 1988).  Artificial neural 

network computations are carried out in parallel (Carpenter and Grossberg, 

1987) and thus can be very fast.  If adequate inputs for a network can be 

determined (from car, driver or car-driver interface observations), artificial 

neural networks show promise for alertness prediction. 

 A driver drowsiness detection process based on an artificial neural 

network (ANN) was described by Sayed and Eskandarian (2001).  Steering 

angle signals were preprocessed and presented to the ANN, which classifies 

them into drowsy and non-drowsy driving intervals. The neural network 

architecture used in this study was a three-layer feed forward network 

connected by full synapses.  The input layer had eight neurons corresponding 

to the eight-dimensional input vector, the hidden layer has 22 neurons (the 

number of neurons in this layer was selected on the basis of a sensitivity 

analysis) and the output layer has two neurons corresponding to two possible 

outcomes, i.e. drowsy and non-drowsy.   Sayed and Eskandarian used the 

error back-propagation learning algorithm to train the network.  The process 

was validated by an experiment conducted at the highway-driving simulator at 

the Turner Fairbank Highway Research Center.  Twelve subjects (half male, 

half female) between ages 25 and 35 were used in the experiment.  Subjects 
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drove a 20 mile (36 km) rural loop with both straight and curved sections 

under different levels of sleep deprivation. Data was classified as drowsy if 

the driver was sleep deprived by continuous wakefulness or the driver fell 

asleep and non-drowsy otherwise.  The network classified 89.9 percent of the 

test data into the correct drowsy and non-drowsy classifications selected by 

the researchers.  During simulation in which the subject fell asleep and 

crashed the vehicle, the ANN detected drowsy driving an average of 3.5 

minutes before the crash occurred. 

 A study by Wilson and Bracewell (2000) created an artificial neural 

network with EEG inputs to detect drowsiness.  The input to this ANN system 

was a modified feature vector composed of the associated wavelet 

representations of the EEG data at different scales. The first stage filtered the 

incoming EEG signal, capturing regions of interest as wavelet coefficients and 

power spectrum estimates.  The filter bank filters into low pass (0-8 Hz) and 

high-pass regions and then into the regions associated with simplified alpha, 

theta, K complex, and delta characteristics.  The alpha wave depicting the 

early signs of drowsiness is most predominant in the 8-12 Hz spectral range.  

The theta wave is characterized roughly as 3-7 Hz.  The sleep spindles and K 

complex are prevalent at 12-14 Hz.  Delta sleep is defined as 0.5-2 Hz.  This 

set of wavelet coefficients was combined with power spectrum estimates to 

produce a modified feature vector used as an input to the ANN.  The output of 

the neural network was a binary decision as to whether the EEG represents 
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an alert state or a drowsy state.  A flow chart of the system is shown in Figure 

1.6. 

 
Figure 1.6: Flow chart for EEG Analysis System (Wilson and Bracewell, 2000) 

 

The network was trained with synthetic data patterns of discrete input values 

mapping the outputs of the spectral tuning networks to the alertness level 

assignments ranging from 1 (very alert) to 7 (sleep).  In efforts to simulate 

EEG noise that might actually occur due to chemical intake (such as coffee), 

the test dataset was supplemented with additional levels of noise. The 

artificial neural network model was 99% correct and all errors were misses. 

The artificial neural network model gave no false alarms. 

 Andreeya, et al. (2004), proposed a drowsiness detection system 

based on vibration characteristics of the driver’s body.  The driver’s body was 

studied as a linear time-variant (LTV) structure of springs and dampeners 

(Figure 1.7).   
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Figure 1.7: Spring-Damper Representation of Human Body (Andreeya, 2004) 

Vibrations traveling from the car seat through the body towards the head are 

affected by the spring-damper structure.  The hypothesis of Andreeya, et al., 

(2004) was that the filtration effects of the body are dependent on the driver’s 

state of sleepiness, and can therefore be used as indication of driver 

drowsiness.  To generate the input and desired signals of the driver’s upper 

body (the unknown plant), tri-axial accelerometers were placed on the driver’s 

seat and on the driver’s head.  The normalized least-mean square (LMS) 

algorithm was used for plant identification and generation of weight 

coefficients for the system.  The weights were pre-normalized to have zero 

mean, and unit variance distributions.  Separate coefficients were generated 

for the “awake” and “asleep” states of the subject and then used to train a 

neural network to classify the driver’s condition.  A feed-forward artificial 
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neural network, with 140 hidden units was used for classification.  The back-

propagation algorithm was used for training.  The experiment, tested on eight 

subjects, was conducted on sleep-deprived individuals for the “sleep” state 

and on fully awake individuals for the “awake” state.  When trained and tested 

on the same subject, the system detected “sleep” and “awake” states of the 

driver with a success rate of 95%.  When the system was trained on three 

subjects and then retested on a different fourth subject, the classification rate 

dropped to 90%. 

 Vuckovic, et al., (2002) presented a method for classifying alert versus 

drowsy states from one second sequences of full spectrum EEG recordings 

from an arbitrary subject as the input to an artificial neural network (ANN) with 

two discrete outputs: drowsy and alert.  The study used the following 

definitions: The “alert” state refers to an EEG recording with the occipital 

alpha rhythm present and the “drowsy” state refers to a drowsy EEG 

recording (i.e. presence of slow eye movement with the occipital alpha 

rhythm, a decrease in the amplitude, and/or frequency of the alpha rhythm, 

low amplitude activity at the central and posterior EEG channels preceding 

the Stage 1 sleep) and the Stage 1 sleep EEG recording.  Two experts in 

EEG interpretation visually inspected the data and provided the necessary 

expertise for the training of an ANN.  Three artificial neural networks were 

used: a linear network trained by Widrow-Hoff algorithm; a feed-forward 

neural network trained with the Levenberg–Marquardt (LM) rule; and a self 

organizing network trained with the Learning Vector Quantization (LVQ) rule.  
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It was shown that the LVQ neural network gives the best classification 

compared with the other two networks.  Classification properties of LVQ were 

validated using the data recorded in 12 healthy volunteer subjects, yet whose 

EEG recordings have not been used for the training of the neural networks.  

The statistics were used as a measure of potential applicability of the LVQ: 

the t-distribution showed that matching between the human assessment and 

the network output was 94.37 ± 1.95%.  This result suggests that the 

automatic recognition algorithm is applicable for distinguishing between alert 

and drowsy state in recordings that have not been used for the training.  

 Work by Hayashi, et al., (2005) described a detection method of 

driver’s drowsiness with focus on analyzing biological signals and driving 

performance data.  As the input data, sympathetic nerve activity, 

parasympathetic nerve activity, pulse rate, Lyapunov exponent, and steering 

instability were derived from driver’s pulse wave and steering data.  

Additionally, the score of Epworth Sleepiness Scale (a questionnaire used to 

determine the level of daytime sleepiness) was also used.  To analyze the 

indexes in consideration of the individual differences, artificial neural networks 

were used.   A flow chart summarizing the method by Hayashi et al. (2005) is 

shown in Figure 1.8. 
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Figure 1.8: Biological and Driving Signal System (Hayashi et al., 2000) 

Two detection methods of driver’s drowsiness were proposed in this paper: 

individualized drowsiness detection (learning each driver’s feature on each 

network) and individualized drowsiness detection with categorization 

(categorizing drivers with sympathetic nerve activity before their data were 

input into the networks).  To test the system, pulse wave and steering data 

were gathered from six individuals using a driving simulator.  Individualized 

drowsiness detection averaged an 88% detection rate and individualized 

drowsiness detection with categorization averaged an 85% detection rate. 

 Carswell and Chandran (1994) describe a method for the detection of 

abnormal vehicle trajectories.  It was hypothesized by Carswell and Chandran 

(1994) that abnormal trajectories are indicative of drunk or sleepy drivers.  

Figure 1.9 shows possible examples of these trajectories. 
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Figure 1.9: Normal and Abnormal Trajectories (Carswell and Chandran, 1994) 

The system coupled optical flow extraction of vehicle velocities with an 

artificial neural network classifier.  A single feature of the vehicle, e.g., a 

taillight, was isolated and the optical flow was computed only around this 

feature rather than at each pixel in the image.  The velocity fields were 

accurately extracted using a modification of the basic optical flow method.  

The training and testing data sets each contained approximately 50% normal 

and 50% abnormal trajectories where abnormal trajectories represented a 

vehicle whose path was oscillating around the correct trajectory (Figure 4.3).  

Absolute deviations for abnormal trajectories were overall greater than for 

normal trajectories but the normal set still allowed some deviation.  The ANN 

was used to classify the vehicle trajectories as either normal or abnormal.  

The artificial neural network was trained with the back-propagation learning 

algorithm and converged after 100,000 iterations.  When tested with the 40 

test sequences, the neural network classified the trajectories with 100% 

accuracy. 
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 Despite the differences in the measurements used as inputs in these 

studies, artificial neural networks show great potential for classifying driver 

behavior.  When using an artificial neural network, a designer has many 

numerical training algorithms to learn how to distinguish alert driving from 

non-alert driving available.  However, artificial neural networks have the 

disadvantage of needing a large amount of data sets for adequate training.   

 

1.5 Literature Review Conclusions 

This review has described significant causes of driver alertness 

deficiency, including fatigue, sleepiness and monotony. So far, the research 

and development on driver alertness warning systems has yielded significant 

results, yet very few commercial products are available.  Criteria for an ideal 

driver alertness monitoring system that could be commercially viable are 

given by Desai and Haque (2006) as: 

• Non-intrusive monitoring that will not distract the driver or compromise 

privacy. 

• Real-time monitoring to ensure accuracy and speed in detecting 

lowered levels of driver alertness. 

• System performance that is independent of environmental conditions 

(traffic, landscape, weather, and darkness). 

• Low unit and operation (including data processing) costs. 

Using these criteria guidelines, the introduction of a driver alertness warning 

system prototype is a realistic goal within the near future.  Using these 
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guidelines and the conclusions from the review of different types of input, car-

driver interface analysis has been chosen for this study.  Simple sensors 

(compared to EEG or image processing) can be used for data acquisition and 

the driver is unaware of their presence.   Artificial neural networks will be used 

because of the vast number of different types of systems that have proven 

successful to other researchers. 
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CHAPTER 2: DRIVER ALERTNESS EXPERIMENT AT THE PENN STATE 
TRUCK DRIVING SIMULATOR 

 

 

2.1 Overview of Simulator Architecture 

To collect data sets from sleep-deprived drivers, a driving simulator 

was used.  Driving simulation has been used by Chieh et al. (2003), Sayed 

and Eskandarian (2001), and Hayashi et al. (2005) to test driver alertness 

monitoring systems.  Simulated driving has its limitations; for example the 

Penn State Truck Driving Simulator has a low maximum frequency response, 

meaning it cannot provide the driver the feeling of road vibration.  Driving 

simulation is a constantly expanding field and while no simulator is perfect 

simulated driving is best for an experiment of this nature because there is little 

to no risk of injury or property damage.   

The Pennsylvania State Truck Driving Simulator (PTDS), shown in 

Figure 2.1, is the product of continued work and development that began in 

1997 with the undertaking of the 2TS (Truck Training Simulator) project by a 

 27



consortium of four companies, Moog, Inc., Systems Technology, Inc. (STI), 

Mack Trucks, and Renault (Delahaye and Kemeny, 1999).  

 
Figure 2.1: The Pennsylvania State Truck Driving Simulator 

 

The simulator driver station consists of a Mack Trucks CH600 series 

truck cab mounted on a six-degrees-of-freedom (roll, pitch, yaw, surge, 

lateral, and heave) motion platform by Moog, Inc.  The motion base has a 

small frequency range (up to 15 hz), but reacts sufficiently to produce realistic 

accelerations of a truck and has a range of motion listed in Table 2.1.   

Table 2.1: Motion Range of Simulator Base 

DOF Minimum Maximum 
Roll (Degrees) -29 29 
Pitch (Degrees) -33 33 
Yaw (Degrees) -29 29 
Surge (m) 0.381 -0.381 
Lateral (m) 0.381 -0.381 
Heave (m) 0 0.4752 
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Three visuals provided a 130° wide by 35° high front view and two rear 

views of the driver and passenger sides.  The simulator also has an amplifier 

that sends sound cues to the cab to simulate road, traffic and engine noises.  

In addition, a compressed air line allows for the use of the air horn, vertical 

adjustment of the driver’s seat, and the parking break light to turn off when 

the appropriate button is pressed.  

The functions of the truck simulator are controlled via a network of 

seven computers.  The details of this network are shown in Table 2.2. 

Table 2.2: Simulator Computer Network Architecture 

Name Functions(s) Computer Model 
Paris Host Dell Dimension 4100 (dual 200 MHz)
Lyon Dynamics, Cabin I/O Dell OptiPlex Gxpro (dual 200 MHz) 
Toulouse Sound Dell Dimension 4100 (800 Mhz) 
Grenoble Center Visual Dell Dimension 4100 (1000 MHz) 
Marseille Right Front Visual Dell OptiPlex Gxpro (dual 200 MHz) 
Nantes Left Front Visual Dell Dimension 4100 (900 MHz) 
Bordeaux Right Rear Visual Dell Dimension 4100 (800 MHz) 
Avignon Left Rear Visual Dell Dimension 4100 (800 MHz) 

 

A list of the simulators hardware components is presented in Table 2.3. 

Table 2.3: Simulator Hardware 

Hardware  Manufacturer  Model  
Rear Projectors (2)  InFocus  LP260  
Front Projectors (3)  InFocus  LP435Z  
Motion Platform  Moog, Inc  170E122A  
Cab  Mack Trucks  CH600 series  
Rear Screens (2)  Da-Lite  Perm Wall (64” x 84” viewing area) 
Front Screens (3)  Da-Lite  Fast Fold (68” x 92” viewing area)  
Ethernet switch  3-COM  Super Stack II – 3C16611  
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Two software components make up the real-time driving simulator 

(Hoskins, 2002).  Vehicle Dynamics Analysis Non-Linear (VDANL) is the 

vehicle dynamics simulation model used by the PTDS.  VDANL was 

developed for the National Highway Transportation Safety Administration 

during the mid 1980’s (Christos and Heydinger, 1997).  Detailed descriptions 

of VDANL’s mathematical models are provided in volumes II, III, and IV of 

“Analytical Modeling of Driver Response in Crash Avoidance Maneuvering” 

(Allen et al, 1998).  SCANeR©
 
II, developed by Renault, is the software 

package that controls all the processes used in the interactive simulation 

(Hoskins, 2002). 

The PTDS has undergone extensive validation.  Work by Christos and 

Heydinger (1997) studied the 1994 Ford Taurus model used in VDANL and 

VDM RoAD, along with experimental test data, to validate each of these 

models.  This study found the simulations predicted vehicle responses well in 

the linear range. 

 

2.2 Driving Scenario Development 

Experiments performed using the PTDS requires the ability to program 

and develop driving scenarios. Scenarios contain all of the visual and audible 

stimuli, Traffic, terrain specifications and data collection commands. 
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Figure 2.2: View from Truck Cab during Simulation 

A driving scenario was created with the SCANeR©
 
II program “Mice” 

following directions given by Hoskins (2002).  First, a terrain was selected.  

Terrain profiles contain the roadway and scenery information used by the 

simulator.  The terrain profile “Mountain” (Figure 2.2) was selected because it 

contains a four-lane divided highway and it is the appropriate length (roughly 

20 minutes to drive across the highway section).  This terrain also requires 

the driver to perform actions such as accelerating and braking for grade 

changes, lane changing, and left and right hand turning.  Figure 2.3 shows 

the map of this terrain profile and route used during the experiment. 
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Start

End

Figure 2.3: Map of “Mountain” Terrain Used for Driving Scenario 

Once the terrain was selected, the traffic of the scenario was inserted.  

Traffic files contain information such as the vehicles present in the simulation, 

vehicle positioning and behavior.  Figure 2.4 shows the traffic setup window. 

 32



 
Figure 2.4: Simulated Vehicle Setup 

 
The only traffic used during the experiment was the interactive vehicle.  

The interactive vehicle is the vehicle that is controlled through the control 

inputs of the simulator cab.  A dynamic model of a Ford Taurus was used 

because it is a common vehicle that most drivers would feel comfortable 

operating.  The vehicle is also named and given initial status as “visible” and 

“activated”.  Once the vehicle has been created it can be placed in the 
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desired starting location (Figure 2.3).  Traffic/vehicle information is saved in 

as an addition file (*.trf) in the same directory as the scenario file (*.sc).  

There is a large selection of variables that can be recorded during any 

given simulation, including driver inputs, vehicle responses and scenario 

events. To record data, the variables were specified separately within a 

scenario file using the Mice program.  The first step to recording data with the 

simulator is to create an event with a condition that specifies when the 

recording should begin.  For this experiment the data was recorded the entire 

time, thus the “IF” condition was set to “isScenarioBeginning”.  Next, actions 

are created to save specific parameters to export channels.  The channel 

numbers determine the column that the data for the parameters are written to 

within the output file.  The parameters “ScenarioClock”, “SteeringWheel”, 

“AcceleratorPedal”, “Speed”, “SpeedLimit”, and “LaneLateralShift” were 

recorded.  In addition, each action specifies the vehicle that the action applies 

to.  Figure 2.5 shows the complete list of rules used to record data. 

 
Figure 2.5: Mice Window Showing Data Recording Tasks 
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2.3 Experimental Procedures 

A pool of volunteers was selected to participate in the experiment.  The 

participants were multiethnic and between 20 to 30 years old.  Both males 

and females were represented.  Potential volunteers were first screened by a 

physician to certify that they had no known medical history of adverse effects 

(mental or physical) due to sleep deprivation.  In addition, the volunteers were 

asked the following questions: 

1. Are you feeling well enough to intermittently drive a simulated vehicle 

for 24 hours? 

2. Did you get sufficient sleep last night? 

3. Have you had any alcohol to drink in the last 12 hours? 

4. Have you taken any medications such as cold pills, allergy pills, 

anxiety or depression pills that could affect your ability to drive? 

Answers of “no” to questions 1 and 2 or answers of “yes” to questions 3 and 4 

resulted in disqualification of the candidate. 

During each experiment, a group of two participants remained awake 

at The Pennsylvania State Truck Driving Simulator for 24 hours.  The 

experiment began at 6 pm and ended at 6 pm the next day.  During the 

experiment, the first participant drove for roughly 20 minutes, and then both 

participants took a 30-minute break.  Next, the second participant drove for 

roughly 20 minutes, and then both participants took another 30-minute break.  

In addition, the participants were given meal breaks.  The participants were 

instructed to follow normal driving procedures, such as following the speed 
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limit and maintaining lane position.  For each of their 20-minute runs, the 

participant was asked to rank his or her own perceived drowsiness level from 

1 (most drowsy) to 10 (wide awake).  While the participants drove, the 

administrator of the experiment commented on the participants driving noting 

any crashes, lane drifting or other mistakes.  Four experiments were 

performed for a total of eight participants. 

 

2.4 Data Recording 

When the simulation is ended, the data recorded are saved as a binary 

file containing the data specified in the Mice Window (Figure 2.5). The files 

created by the simulation software use the naming scheme “scenario 

name_day_month_year_time.bin”. The binary file is written to the 

D:/cats/data/record directory on the host computer “Marseille”. The binary 

data files created by the simulator do not follow a traditional format, making it 

necessary to use a binary to ASCII converting program provided by Renault 

(Hoskins, 2002). The binary to ASCII conversion software (on sound 

computer “Toulouse”) creates delimited text files with columns of data for 

each “exportChannel” action in the specified in Mice.  The delimited text files 

can then be imported into MATLAB for further analysis. 
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CHAPTER 3: ARTIFICIAL NEURAL NETWORKS ARCHITECTURE AND 
TRAINING 

 

 

3.1 Introduction 

 Artificial neural networks (ANN) are systems of interconnected 

elements, called neurons, which operate in parallel.  They are inspired by 

biological nervous systems, hence their name.  Artificial neural networks are 

used to map a set of inputs,P , to a set of outputs, Y .  Originally proposed by 

McCulloch and Pitts (1943), the basic element of the ANN is the neuron 

(Figure 3.1) 

 
Figure 3.1:Diagram of Neuron 
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The input is transmitted through a connection that multiplies its strength by 

a weight, . Then a bias b  is added to the weighted input.  This gives the 

linear equation 

p

w

  (Eq. 3.1) bwpn +=

The parameter is used as the argument for a transfer function, .  The 

result of the transfer function is the output, . 

n f

a

A single neuron is not able to approximate the behavior of complex 

systems.  Neurons are arranged in parallel to increase the potential of the 

ANN.  A common network model is the feed-forward ANN, shown in Figure 

3.2. 

 
Figure 3.2: Diagram of a Three-Layer Feed-forward ANN 
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At the first layer of the network, each input is multiplied by a 

corresponding weight at each neuron, and then a bias is added.  This sum is 

used as an input to a transfer function.  The output of the transfer function is 

then used as an input for the next neuron layer.  This parallel structure lends 

itself well to matrix algebra, and in turn, MATLAB.  The inputs are represented 

as a column matrix with the form  

  (Eq. 3.2) { } [ T
npppP L21= ]

The weights for each layer can be expressed as a matrix with the 

same number of columns as inputs and the same number of rows as neurons 

in the layer with the forms 

  (Eq. 3.3) 
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The biases for each layer can be expressed as a column matrix with 

the same number of rows as neurons in the layer with the forms 
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  (Eq. 3.4) 
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The output of the network is a column matrix with the form 

  (Eq. 3.5) { } [ T
zyyyY L21= ]

The number of neurons in the output layer is always equal to the 

number of outputs.  The number of and the number of neurons in the hidden 

layers are arbitrary.   

The transfer functions for each layer are also arbitrary.  The hidden 

layers often use a function that has an output between zero and one.  This 

way the neuron can be turned “off” and “on” as appropriate.  One transfer 

function to accomplish this is the MATLAB hard limit, shown in Figure 3.3. 

 
Figure 3.3: MATLAB Hard Limit Function 

Some training algorithms require the transfer functions to be 

differentiable.  The log-sigmoid function (Figure 3.4) is used in these cases. 

 40



 
Figure 3.4: MATLAB Log-Sigmoid Function 

The log-sigmoid function is expressed as 

 ne
a −−

=
1

1  (Eq. 3.6) 

The "best" network architecture depends on the type of problem the 

network is being used to represent.  Sigmoid transfer functions can be used 

to represent non-linear functions or pure linear functions can be used for 

linear mapping.  The number of hidden layers and the number of neurons in 

each layer can be increased to create a more powerful ANN.  These 

parameters are chosen to meet design criteria, usually low summed squared 

error and a low number of training iterations to convergence. 

 

3.2 Artificial Neural Network Training with Back Propagation 
 

Supervised training uses a training algorithm to adjust the biases and 

weights to match the artificial neural network’s output to a set of target data 

for a given input pattern.  Back-propagation (Rumelhart et al., 1986) is the 

most widely used ANN training algorithm for multilayer feed-forward networks. 
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This is algorithm is easy to understand and can solve many minimization 

problems.  The simplest form of back propagation updates the network 

weights based on the gradient of the sum squared error, 

 Ew ∇−=∆ αij  (Eq. 3.7) 

 10 ≤< α  

The algorithm is stopped when the error reaches an acceptably small 

amount.  Additional conditions are usually added to stop the algorithm after a 

certain number of iterations (called training epochs) or when then gradient 

has become sufficiently small (i.e. successive steps will no longer reduce 

error).  The parameterα is called the learning rate and, if chosen carefully, 

decreases training time without loosing stability.    

Although gradient descent methods are very popular, several 

situations exist where problems can arise.  A large learning rate can produce 

an overshoot, where the algorithm missed the minimum value.  Conversely, 

when the gradient becomes small the updates to the weights also are small.  

This can cause the algorithm to move very slowly through flat regions.  The 

learning rate,α , can be chosen to help alleviate these problems, but selecting 

an appropriate value can be difficult. 

Many algorithms have been proposed to deal with this problem by 

adapting the learning rate during training.  These algorithms can be divided 

into global and local adaptation. Global adaptation make use of the 

knowledge of the state of the entire network (e.g. the direction of the previous 

weight-step) to modify global parameters, whereas local strategies use only 
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weight-specific information (e.g. the partial derivative) to adapt weight specific 

parameters (Riedmiller and Braun, 1993).  Besides being more memory 

efficient, local adaptation is better suited for parallel computing. 

The Resilient Back Propagation Method (RPROP) introduced by 

Riedmiller and Braun (1993) avoids the issues of stability while being very 

memory efficient.  The RPROP algorithm deviates from most other methods 

by the fact that the sizes of the updates to the weights are not determined by 

the gradient size.  Individual weights, ijω , are updated by a value, , which is 

determined by the following rule: 
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 (Eq. 3.8) 

If the error function has changed its sign this indicates the previous 

update was too large, thus the previous update is decreased by factor .  If 

the sign of the error function has not changed the update is increased by 

factor  in order to accelerate convergence.  The direction of the update to 

the weight then is determined by the following: 
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   (Eq. 3.10) t
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A positive derivative of the performance function E indicates an 

increase in error; therefore the update value is negative.  Likewise a negative 

derivative corresponds to a decrease in error and the update value is added.  

One exception occurs in the case of a step being to large and the partial 

derivative changes signs.  In this case a back tracking step is added: 
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∆−=∆ ωω  (Eq. 3.11) 

Since the step after the back tracking step would create the same sign 

change in the partial derivative, no new update value is calculated and the 

previous update value (calculated during the back tracking step) is used.  

In order to obtain the stable and fast performance of the algorithm, 

values of the initial update value ( 0∆ ), decrease factor ( ), and increase 

factor ( ) must be chosen.  The initial update is not critical at all.  In most 

cases the default value of  is expectable.  Riedmiller and Braun found 

that constantly fixing the increase/decrease factors to and  

works in most situations. 
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1.00 =∆
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3.3 Alternative Networks 

Up to this point, only multilayer feed-forward networks with sigmoid 

transfer functions have been considered.  As problems get more complex, 
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larger networks are needed.  Larger networks require the design to provide 

more parameters (number of layers, number of neurons per layer, transfer 

functions) to define the network and more computing power for adequate 

training.  It becomes obvious that multilayer network design with back 

propagation training is unfeasible for some problems.  One alternative to 

avoid these problems is the use of radial basis networks.  The key feature of 

this type of network is the use of a radial basis function (Figure 3.5) in the 

hidden layer.  

 
Figure 3.5: MATLAB Radial Basis Function 

MATLAB defines the radial basis function as 

  (Eq. 3.12) 
2nea −=

Although the network has weights and biases, they are used differently 

than in the case of the feed-forward network.  The net input to the radial basis 

function is the Euclidean distance between its weight vector and the input 

vector, multiplied by the bias. 
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Figure 3.6: Radial Basis Neuron 

The radial basis network does not require the designer to choose the 

size of the network; instead the training algorithm decides the network size in 

addition to the weights.  The network begins as one hidden radial basis 

neuron and a layer of linear neurons equal in size to the output vector.  At 

each iteration the input vector that results in a reducing the mean square error 

of the network the most is used to create a radial basis neuron and add it to 

the hidden layer.  A new weight matrix for the linear output layer is created by 

dividing the output of the hidden layer by the desired output of the network.  

The error of the new network is calculated, and if it is less than or equal to the 

goal the training algorithm is finished.  Otherwise another neuron is created.  

This process repeats until the goal is met or until the user specified number of 

hidden neurons is reached.  
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CHAPTER 4: APPROACH 

 

 

4.1 System Overview 

 Input data is obtained from steering angle and accelerator pedal 

position via optical encoders. A pre-processing step, based on the hypothesis 

that jerk profiles are indicative of alertness level, differentiates the position 

data to find the jerk profile and calculates the associated parameter, spikiness 

index (see 4.2.2) (Desai and Haque, 2006). The output from the pre-

processing is used as input to an artificial neural network. The neural 

networks used in this approach are inspired by Thompson et al. (2002) where 

the difference between the input and output of an artificial neural network 

autoencoder is used to detect abnormal system behavior. As opposed to 

other methods in the literature, which use classifier networks, this approach 

uses a special type of artificial neural network, referred to as an auto 

associative neural network. In auto associative neural networks the input is 
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equal to the target output during training. The advantage of using auto 

association is that only one type of input is needed to train the network, where 

a classifier network would require both drowsy and non-drowsy data sets. 

Since the network is trained to replicate its input as its output, data sets that 

are similar to training sets will pass through the network without being 

changed and data sets that differ from the training sets will be distorted. This 

change produced by the auto associative network is used to gauge how the 

test data set has changed from the training data sets. Thus, the inputs to the 

network are subtracted from the outputs and this difference is quantified by 

the sum squared error: 

  (Eq. 4.1) 
( )∑
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This approach is outlined in a flowchart, shown in Figure 4.1. 
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Figure 4.1: System Flow Chart 

Throttle 
Position 

 

M
Sum Numerical 

Differentiation Square 
Error 

 

Drowsiness 

 48



4.2 Input Processing 

 Instead of image processing or lane tracking techniques, both of which 

require extra sensors and real time image processing, this study introduces a 

method of monitoring driver drowsiness from the steering wheel and 

accelerator pedal. Steering angle and accelerator pedal position cannot alone 

measure drowsiness because they are significantly affected by traffic, 

landscape, etc., however, the time derivatives may be used to mask most of 

these variables. Because alert drivers respond quicker and more frequently 

than drowsy drivers, jerk profiles change as drivers become drowsy.  

 

4.2.1 Savitzky-Golay Filter for Numerical Differentiation 
 

The data for steering position and throttle are differentiated three times 

using the Savitzky-Golay method to give the velocity, acceleration and jerk.  

The Savitzky-Golay method finds filter coefficients bn for a least squares fit 

polynomial within a moving window. In this case, a relatively small 7-point 

moving window is used to preserve most of the characteristics of the raw 

data.  Since the third derivative of the data is needed, a cubic polynomial is 

used to fit the data in the form of 

  (Eq. 4.2) 
3

3
2

210 tb+tb+tb+b   =x

The process of least squares fitting involves only a linear matrix 

inversion; the coefficients of the fitted polynomial are themselves linear. That 

means the fitting is done in advance, for fictitious data consisting of all zeros 
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except for a single one, and then the fit of the real data are linear 

combinations (Press 1992).  Seven dummy variables are defined as 

 3  t,2  t,1  t,0  t,1  t,2  t,3t 3i2i1ii1-i2-i3-i ====−=−=−= +++   (Eq. 4.3) 

The method performs a least-squares fit of the cubic polynomial to all 

points in the moving window.  Rearranging the equations for the polynomial 

with the dummy variables into matrix notation leaves 

  (Eq. 4.4) 
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   (Eq. 4.6, Eq. 4.7) 
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  (Eq. 4.8) 
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 (Eq. 4.9) 

This polynomial is used only at point the xi, a new polynomial is fit at 

the next point xi+1 using a shifted window.  The least squares polynomial fit of 

the data is differentiated to find the jerk profile  

( )2
3

t
t6b

∆
 

=′′′x
 (Eq. 4.10) 

The equations for the smoothed data and first, second and third time 

derivatives are 

 
3

3-i2-i1-i1+i2+i3+i
i t6

  x   x+  x+ x  x   x
 = x 

∆
−−−′′′

 (Eq. 4.11) 
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Complete tables of the filter coefficients are available in Savitsky and Golay 

(1964). 

This method creates a -3 dB low-pass cutoff at 16% of the sampling 

frequency.  The main advantages of the Savitzky-Golay Method are that it 

tends to preserve features of the distribution such as relative maxima, minima 

and width. Also, when using this method to differentiate, it does not introduce 

distortions that are often associated with lower level finite difference methods.  

If the window for interpolation is small and if a high ordered polynomial is 

used very little alteration of the original data occurs.  Figures 4.2 and 4.4 

show the effects of the Savitzky-Golay filter on the raw data. The filter has 

altered the raw data very litte. 
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Figure 4.2: Raw and Smoothed Steering Position Data 
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Figure 4.3: Raw and Smoothed Accelerator Pedal Position Data 

 

4.2.2 Spikiness Index 
 

The deviation of the jerk from the general trend of the data will also be 

used as an input for the neural network (Desai and Haque, 2006). To 

measure the deviation from the general trend, the spikiness index is used. To 

compute the spikiness index (Ψ ) during 30 seconds of driving, the deviation 

from the general trend ( ) is calculated. The general trend ( ) is the 

average of a fixed number of points (

mµ mµ

nnavg ≤ ) and is equivalent to a local 

average. Thus, for every point, the deviation from the general trend of the 
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points preceding it (specifically navg number of points) is computed to estimate 

the spikiness index.  Figure 4.4 shows this definition graphically.  

 
Figure 4.4: Definition of Spikiness (Desai and Haque, 2006) 

The equation for spikiness index, according to the deviation from the 

general trend, is given by Desai and Haque (2006) as, 
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 (Eq. 4.12) 

It should be noted that  determines the closeness of the plot to the 

actual profile; as increases the plot flattens out and eventually becomes a 

straight line (global mean of the data).  For this analysis, is chosen to be 

30 points (i.e. 1.5 seconds of drive time).  The spikiness index of jerk of both 

steering angle and throttle is calculated for each 30-second interval of every 

driving run and recorded. 

avgn

avgn
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4.3 Artificial Neural Network Designs 

Artificial neural networks are used to analyze the steering and 

accelerator pedal information. Two different neural network architectures are 

used for auto association (feed-forward and radial basis) each with two 

different input sets (jerk profile and spikiness index of jerk profile), for a total 

of four network designs. The first feed-forward network uses 2400 data points 

from the jerk profile of the steering and accelerator pedal for a single 4800 

element input vector. The network consists of one hidden layer, containing 

480 neurons, and an output layer of 4800 neurons.  The second feed-forward 

network uses 20 spikiness indices from the jerk profiles of steering and 

accelerator pedal as a 40 element input vector. The spikiness index feed-

forward network consists of one hidden layer, containing 480 neurons, and an 

output layer of 40 neurons. Tangent sigmoid transfer functions are used at the 

hidden layer and linear transfer functions are used at the output of both 

networks. 

Like the feed-forward networks, the radial basis networks consist of 

one hidden layer and one output layer. The input and output layers of the two 

radial basis networks are identical to the corresponding feed-forward 

network—the jerk profile network has 4800 neurons in the output layer and a 

4800 element input vector and the spikiness index network has 40 neurons in 

the output layer and a 40 element input vector. 
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4.4 Network Training 

As previously mentioned, the only training sets required are data 

representing the driver’s normal state.  The first six simulation runs were used 

for the training sets. These sets were acquired between 6 pm and 12 am. 

Unfortunately, fewer data sets were collected for participant seven and 

participant eight.  In order to keep the ratio of training sets to total data sets 

near 1:3.667 (like the other participants), five training sets were used for 

participant seven and four sets were used for participant eight.  

The feed-forward networks were trained with the RPROP algorithm, a 

typical training record is shown in Figure 4.5. 

Feedforward Network Training with Jerk Input #2
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Figure 4.5: Example Training Record for Feedforward Network Using Jerk Profile  

The training process was repeated using radial basis networks. As 

mentioned earlier, the radial basis network has a self-organizing layer. Initially 

the hidden layer has no neurons. Figures 4.6 through 4.8 show the training of 

the radial basis networks with jerk profile inputs. 
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Radial Basis Network Training with Jerk Input #1
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Figure 4.6: Example Training Record for Radial Basis Network Using Jerk Profile 

Radial Basis Network Training with Jerk Input #7
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Figure 4.7: Training Record for Radial Basis Network Using Five Jerk Profiles 

Radial Basis Network Training with Jerk Input #8
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Figure 4.8: Training Record for Radial Basis Network Using Four Jerk Profiles 
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In an effort to compare the effects that the inputs to the artificial neural 

network have on the trends predicted by the drowsiness indicator, feed-

forward and radial basis networks were trained with the same training sets, 

algorithms, and training goals using spikiness index inputs. Some feedforward 

networks did not reach the desired mean square error (Figure 4.10 and 4.11).  

The radial basis networks trained very similiarly to the jerk profile networks. 
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Figure 4.9: Training Record for Feedforward Network Using Spikiness Index 

Feedforward Network Training with Spikiness Input #2
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Figure 4.10: Training Record for Network Trapped in Local Minima 
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Feedforward Network Training with Spikiness Input #7
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Figure 4.11: Training Record for Network Trapped in Local Minima 
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CHAPTER 5: RESULTS 

 

 

5.1 Jerk Profiles 

 Once the artificial neural networks described in Chapter 4 were trained 

using the data sets obtained from the experiment described in Chapter 2, the 

networks were tested using the remaining data sets. The drowsiness indicator 

number 

  (Eq. 5.1) 
( )∑
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 was normalized by dividing all of the indicator numbers by the maximum 

indicator number.  The indicator numbers were arranged from the earliest test 

(roughly 12 AM) to the latest (roughly 6 PM) and a linear trend line was added 

to the plot. Figures 5.1 through 5.8 show the drowsiness indicator results 

using the jerk profiles of steering and accelerator pedal as inputs to feed-

forward and radial basis networks. 
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Figure 5.1: Drowsiness Indicator using Jerk Profile #1 
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Figure 5.2: Drowsiness Indicator using Jerk Profile #2 
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Participant Three Drowsiness Indicator
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Figure 5.3: Drowsiness Indicator using Jerk Profile #3 
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Figure 5.4: Drowsiness Indicator using Jerk Profile #4 
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Participant Five Drowsiness Indicator
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Figure 5.5: Drowsiness Indicator using Jerk Profile #5 

 

Participant Six Drowsiness Indicator
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Figure 5.6: Drowsiness Indicator using Jerk Profile #6 
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Participant Seven Drowsiness Indicator
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Figure 5.7: Drowsiness Indicator using Jerk Profile #7 

 

Participant Eight Drowsiness Indicator
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Figure 5.8: Drowsiness Indicator using Jerk Profile #8 

 

When using the jerk profile as the input, all of the participants showed a 

positive trend, indicating that the driver’s steering and accelerator pedal jerk 

profiles strayed further from the sets used for training the longer the 
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participant stayed awake. These trends are justified by the work of Dinges, et 

al. (2001) which shows the longer a person stays awake past 18 hours, the 

further their performance will decrease. Interestingly several participants 

showed higher error levels near dawn (most notably Figures 5.2, 5.5, 5.7, and 

5.8) and in the late afternoon (most notably Figures 5.1, 5.3, 5.4, and 5.7). 

These phenomena are explained by a study by Sagberg, et al. (2004), which 

shows people who have been asked to stay awake for 24 continuous hours 

will have unintended sleep episodes, most often around 6 am and in the 

middle of the afternoon, caused by the circadian rhythm. Using a radial basis 

neural network instead of a feed-forward neural network introduces a bias, 

but does not significantly alter the trend of the drowsiness indicator. 

 

5.2 Spikiness Index 

 In an effort to compare the effects that the inputs to the artificial neural 

network have on the trends predicted by the drowsiness indicator, feed-

forward and radial basis networks were tested using the spikiness index 

inputs as described in Chapter 4. Figures 5.9 through 5.16 show the 

drowsiness indicator results using spikiness indices as inputs to feed-forward 

and radial basis networks. 
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Figure 5.9: Drowsiness Indicator using Spikiness Index #1 
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Figure 5.10: Drowsiness Indicator using Spikiness Index #2 

 

 66



Participant Three Drowsiness Indicator
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Figure 5.11: Drowsiness Indicator using Spikiness Index #3 

 

Participant Four Drowsiness Indicator
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Figure 5.12: Drowsiness Indicator using Spikiness Index #4 

 

Participant four (Figure 5.12) changed dramatically when spikiness index 

was used. The maximum difference from the training set is predicted at a very 

different, and unexpected, time and the trend line has reversed in direction. 
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Participant Five Drowsiness Indicator
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Figure 5.13: Drowsiness Indicator using Spikiness Index #5 

 

Participant Six Drowsiness Indicator
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Figure 5.14: Drowsiness Indicator using Spikiness Index #6 
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Participant Seven Drowsiness Indicator
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Figure 5.15: Drowsiness Indicator using Spikiness Index #7 

 

Participant Eight Drowsiness Indicator
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Figure 5.16: Drowsiness Indicator using Spikiness Index #8 

 

The networks with spikiness indices as inputs had different outputs than 

the networks using jerk profile, but most drowsiness indicator trends were 

similar. The networks predicted maximum difference from the training sets at 
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similar times for most participants. The radial basis network and feed-forward 

network produced trends in the drowsiness indicator that are extremely 

similar for participants one, two and eight (Figure 5.9, Figure 5.10, and Figure 

5.16) or introduced a very small bias (Figure 5.11, Figure 5.14, and Figure 

5.15). 

 70



 

 

 

 

 

 

 

CHAPTER 6: Conclusion 
 

 

 

Artificial neural networks using jerk profiles as inputs predicted drowsiness 

indicators that matched expectations from the literature. Changing the 

network architecture did not provide better results, but the combination of self-

organization and supervised learning used by the radial basis network is 

significantly faster than the back-propagation training used by the feed-

forward network.  Also, the hidden layer of the radial basis network contains 5 

neurons. Compared to the 480 used in the feed-forward design, this is quite a 

reduction in network size, and as a result, a reduction in computer storage 

required to implement the network. 

Although the results of one of the participants reduced in quality, the 

spikiness index can still be a useful parameter for drowsiness prediction. The 

spikiness index as implemented reduces the number of inputs to the network 

because it effectively compresses 20 seconds of jerk profile (400 data points) 

into one data point, this leads to a smaller number of inputs and a smaller 
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network. Further work should include a redesign of the spikiness index inputs. 

The number of data points used to calculate the spikiness index (n) and the 

number of data points used for local averaging (nAVG) can be changed, 

possibly creating favorable changes in network performance. 

Since the data used to test the system design was obtained from 

simulated driving, real life driving is needed to verify the system.  Simulated 

driving is convenient because of the safety for the driver, but it cannot 

produce the sensation of road vibration, wind or the element of danger from 

real-life driving.  

 72



References 

 

Allen, R. W., Rosenthal, T. J., and Szostak, H. T. (1988) “Analytical Modeling 
of Driver Response in Crash Avoidance Maneuvering – Volume II: An 
Interactive Tire Model,” NHTSA Final Report DOT-HS-807-271 
 
Allen, R. W., Rosenthal, T. J., and Szostak, H. T. (1988) “Analytical Modeling 
of Driver Response in Crash Avoidance Maneuvering – Volume III: A Trim 
Model and Computer Program for Determining Ground Vehicle Steady State 
Operating Conditions and Quasilinear Stability Coefficients,” NHTSA Final 
Report DOT-HS-807-272 
 
Allen, R. W., Rosenthal, T. J., and Szostak, H. T. (1988) “Analytical Modeling 
of Driver Response in Crash Avoidance Maneuvering – Volume IV: User’s 
Guide for Linear Analysis, Nonlinear Simulation, Part Task Simulation,” 
NHTSA Final Report DOT-HS-807-273 
 
Andreeya, E., Aarabi, P., Philiastides, M. G., Mohajer, K. and Emami, M., 
(2004) “Driver Drowsiness Detection Using Multi-Modal Sensor Fusion,” 
Proceedings of SPIE - Multisensor, Multisource Information Fusion: 
Architectures, Algorithms, and Applications, 5434, pp. 380-390 
 
Aserinsky, E. and Kleitman, N. (1953) “Regularly Occurring Periods of Eye 
Motility, and Concomitant Phenomena during Sleep,” Science, 118(3062), pp. 
273-274 
 
AssistWare Technology. Available: http://www.assistware.com 
 
Attention Technologies, Inc. (2005) Available: 
http://www.attentiontechnology.com/index.html 
 
Bekiaris, E., Nikolaou, S., and Mousadakou A., (2004) “AWAKE: Design 
Guidelines for Driver Drowsiness Detection and Avoidance,” Hellenic Institute 
of Transport, Thessaloniki, Greece 
 
Bergasa, L. M., Nuevo, J., Sotelo, M. A., and Vazquez, M., (2004) “Real-Time 
System for Monitoring Driver Vigilance,” 2004 IEEE Intelligent Vehicles 
Symposium, 14-17 June, pp. 78-83 
 
Brandt, T., Stemmer, R., and Rakotonirainy, A., (2004) "Affordable visual 
driver monitoring system for fatigue and monotony," 2004 IEEE International 
Conference on Systems, Man and Cybernetics, 10-13 Oct, 7, pp. 6451- 6456 
 
Carpenter, G. A., (1989) “Neural Network Models for Pattern Recognition and 
Associative Memory,” Neural Networks, 2(4), pp. 243-257 
 
Carpenter, G.A. and Grossberg, S., (1987) “A Massively Parallel Architecture 
for a Self-Organizing Neural Pattern Recognition Machine,” Computer Vision, 
Graphics, and Image Processing, 37, pp. 54–115 
 

 73



Carswell, B. and Chandran, V., (1994) “Automated recognition of drunk 
driving on highways from video sequences,” 1994 IEEE International 
Conference on Image Processing, 13-16 Nov, 2, pp. 306–310 
 
Chang, J.Y., Cho, C.W., and Lu, S.M. (2005) “A Fuzzy Intergral Based 
Information Fusion for Drowsiness Detection,” International Journal of Fuzzy 
Systems, 7(2), pp.63-71 
 
Chen, C.H., (1990) “On the Relationships between Statistical Pattern 
Recognition and Artificial Neural Networks,” 1990 IEEE International 
Conference on Systems, Man and Cybernetics, 4-7 Nov, pp.182 – 183 
 
Chieh, T.C., Mustafa, M.M., Hussain, A., Zahedi, E., and Majlis, B.Y., (2003) 
“Driver Fatigue Detection Using Steering Grip Force,” 2003 Student 
Conference on Research and Development, 25-26 Aug, pp. 45–48 
 
Chrstos, J. P., and Heydinger, G. J. (1997) “Evaluation of VDANL and VDM 
RoAD for Predicting the Vehicle Dynamics of a 1994 Ford Taurus,” SAE 
Paper No. 970566 
 
Dawson, D., Feyer, A. M., Gander, P., Hartley, L., Haworth, N., Willamson, A., 
Baas, P., Nolan, D., Moore, B., Brooks, C., Foley, C. and Bottomley, B., 
(2001) “Fatigue Expert Group: Options for a Regulatory Approach to Fatigue 
in Drivers of Heavy Vehicles in Australia and New Zealand,” National 
Transport Commission Australia, Melbourne, Australia 
 
Delahaye, N., and Kemeny, A., (1999) “PSU Truck Driving Simulator,” 
International Journal of Heavy Vehicle Systems, 6, pp. 391–397 
 
Dement, W. and Kleitman, N., (1957) “The Relation of Eye Movements During 
Sleep to Dream Activity:  An Objective Method for the Study of Dreaming,” 
Journal of Experimental Psychology, 53, pp. 339-346 
 
Desai, A. V., and Haque, M. A., (2006) “Vigilance Monitoring for Operator 
Safety:  A Simulation Study on Highway Driving,” Journal of Safety Research, 
37, pp. 139-147   
 
Desmond, P. A., and Hancock, P. A., (2001) Stress, workload, and fatigue, 
New Jersey, Lawrence Erlbaum Associates, pp. 455-465 
 
Dinges, D. and Grace, R., (1998) “PERCLOS: a valid psychophysiologial 
measure of alertness as assessed by psychomotor vigilance,” Federal 
Highway Administration, Office of Motor Carriers, USA 
 
Dinges, D., (1995) “An Overview of Sleepiness and Accidents,” Journal of 
Sleep Research, 4(2), pp. 4 – 14 
 
Dinges, D., Maislin, G., and Van Dongen, H., (2001) “Chronic Sleep 
Restriction: Relation of Sleep Structure to Daytime Sleepiness and 
Performance,” Sleep, 24, A28 
 
Eriksson, M. and Papanikolopoulos, N. P., (2001) “Driver fatigue: a Vision-
Based Approach to Automatic Diagnosis,” Transportation research, Part C: 
Emerging technologies, 9(6), pp. 399-413  

 74



 
Faber, J., (2004) “Detection of Different Levels of Vigilance by EEG Pseudo 
Spectra,” Neural Network World, 14(3-4), pp. 285-290 
 
Faber, J., Novak, M., Svoboda, P., and Tatarinov V., (2003) "Electrical Brain 
Wave Analysis During Hypnagogium," Neural Network World, 1, pp. 41-54 
 
Fukuda, J., Akutsu, E., and Aoki K., (1995) "Estimation of driver's drowsiness 
level using interval of steering adjustment for lane keeping," JSAE Review, 
16, pp. 197-199 
 
Grace, R., Byrne, V.E., Bierman, D.M., Legrand, J. M., Gricourt, D., Davis, 
B.K., Staszewski, J.J. and Carnahan, B., (1998) “A Drowsy Driver Detection 
System for Heavy Vehicles,” 1998 AIAA/IEEE/SAE Digital Avionics Systems 
Conference, 31 Oct-7 Nov, 2, pp. I36/1 - I36/8 
 
Hayashi, K.; Ishihara, K.; Hashimoto, H.; Oguri, K., (2005) “Individualized 
Drowsiness Detection during Driving by Pulse Wave Analysis with Neural 
Network,” 2005 IEEE Conference on Intelligent Transportation Systems, 13-
15 Sept, pp. 901 – 906 
 
Heydinger, G. J., Garrott, W.R., Chrstos, J. P., and Guenther, D.A. (1990) “A 
Methodology for Validating Vehicle Dynamics Simulations,” SAE Paper No. 
900128 
 
Hoskins, A. H., (2002) “Development and Validation of the Pennsylvania 
Truck Driving Simulator,” Masters Thesis, The Pennsylvania State University, 
University Park, Pa 
 
Ji, Q., Zhu, Z., and Lan P., (2004) “Real-Time Nonintrusive Monitoring and 
Prediction of Driver Fatigue,” IEEE Transactions on Vehicular Technology, 
53(4), pp.1052-1068 
 
Jung, C. and Kelber, C., (2005) “A Lane Departure Warning System Using 
Lateral Offset with Uncalibrated Camera,” 2005 IEEE Conference on 
Intelligent Transportation Systems, 13-15 Sept, pp.348-353 
 
Kaneda, M., Obara, H., and Nasu T., (1999) "Adaptability to ambient light 
changes for drowsy driving detection using image processing," JSAE Review, 
20, pp. 133-136. 
 
Kohonen, T., Barna, G. and Chrisley, R., (1988) “Statistical Pattern 
Recognition with Neural Networks: Benchmarking Studies,” 1988 IEEE 
International Conference on Neural Networks, 24-27 July, 1, pp. 61-68. 
 
LeBlanc, D. J., Johnson, G. E., Venhovens, P. J. T., Gerber, G., DeSonia, R., 
Ervin, R. D., Lin, C.F., Ulsoy, A. G., and Pilutti, T. E., (1996) "CAPC:  an 
implementation of a road-departure warning system," 1996 IEEE International 
Conference on Control Applications, 15-18 Sept, pp. 590-595 
 
Makeig, S., Jung, T. P., and Sejnowski, T. J., (2000) “Awareness During 
Drowsiness:  Dynamics and Electrophysiological Correlates,” Canadian 
Journal of Experimental Psychology, 54(4), pp. 266-273   
 

 75



McCulloch, W. S. and Pitts, W. H. (1943) “A Logical Calculus of the Ideas 
Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics, 5, 
pp.115-133 
Merriam Webster Dictionary [Online] 
 
Nakano, T., Sugiyama, K., Mizuno, M. and Yamamoto, S., (1996) "Blink 
measurement by image processing and application to detection of driver's 
drowsiness," Terebijon Gakkaishi/Journal of the Institute of Television 
Engineers of Japan, 50, pp. 1949-1956 
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. (1992) 
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 
Cambridge, England: Cambridge University Press, 2, pp. 183 and 644-645
 
Rau, P. S., (1996) “NHTSA’s Drowsy Driver Research Program Fact Sheet,” 
National Highway Traffic Safety Administration, Washington, DC 
 
Riedmiller, M. and Braun, H. (1993) “A Direct Adaptive Method for Faster 
Backpropagation Learning: the RPROP Algorithm,” 1993 IEEE Internation 
Conference on Neural Networks, 28 Mar – 1 Apr, 1, pp. 586-591 
 
Sagberg, F. Jackson, P., Krüger, H. P., Muzet, A., Williams, A., (2004) 
“Fatigue, Sleepiness and Reduced Alertness as Risk Factors in Driving,” 
Institute of Transport Economics, Oslo, Norway  
 
Savitzky, A. and Golay, M. J. E.  (1964) “Smoothing and Differentiation of 
Data by Simplified Least Squares Procedures,” Analytical Chemistry, 36, pp. 
1627-1639 
 
Sayed, R. and Eskandarian, A., (2001) "Unobtrusive drowsiness detection by 
neural network learning of driver steering," Proceedings of the Institution of 
Mechanical Engineers, Part D: Journal of Automobile Engineering, 215, pp. 
969-975 
 
Shor, R.E. and Thackray, R.I., (1970) “A Program of Research in Highway 
Hypnosis: A Preliminary Report,” Accident Analysis Prevention, 2(2), pp. 103-
109 
 
Smith, P., Shah, M., da Vitoria Lobo, N., (2000) “Monitoring Head/Eye Motion 
for Driver Alertness with One Camera,” 2000 International Conference on 
Pattern Recognition, 3-7 Sept, 4, pp. 636 – 642 
 
Strohl, K. P., Blatt, J., Council, F., Georges, K., Kiley, J., Kurrus, R., McCartt, 
A. T., Merritt, S. L., Pack, A. I., Rogus, S., Roth, T., Stutts, J., Waller, P, and 
Willis, D., (1998) “Drowsy Driving and Automobile Crashes,” National 
Highway Traffic Safety Administration, Washington, DC   
 
Stutts, J. C., Wilkins, J. W., and Vaughn, B. V., (1999) “Why Do People Have 
Drowsy Crashes: Input from Drivers Who Just Did,” AAA Foundation for 
Traffic Safety, Washington, DC 
 
Tack, D. and Craw, I., (1996) “Tracking and Measuring Drivers’ Eyes” Image 
and Vision Computing, 14, pp. 541-547 
 

 76



Thiffault, P., and Bergeron, J., (2003) “Monotony of Road Environment and 
Driver Fatigue: A Simulator Study,” Accident Analysis and Prevention, 35(3), 
pp.381– 391 
 
Thompson, B.B.   Marks, R.J., II   Choi, J.J.   El-Sharkawi, M.A.   Ming-Yuh 
Huang   Bunje, C. (2002) “Implicit Learning in Autoencoder Novelty 
Assessment,” 3, pp. 2878-2883 
 
Ueno, H., Kaneda, M. and Tsukino, M., (1994) “Development of Drowsiness 
Detection System,” 1994 IEEE Conference on Vehicle Navigation and 
Information Systems, 31 Aug-2 Sept, pp. 15-20 
 
Vuckovic, A., Radivojevic, V., Chen, A. C. N., and Popovic, D., (2002) 
“Automatic Recognition of Alertness and Drowsiness from EEG by an Artificial 
Neural Network,” Medical Engineering and Physics, 24(5), pp. 349-360 
 
Wang, J. S., Knipling, R. R., and Blincco, L. J., (1996) “Motor Vehicle Crash 
Involvements:  A Multi-Dimensional Problem Size Assessments,” Paper 
presented at ITS 6th Annual Meeting, Houston, TX 
 
Wierwille, W.W., Ellsworth, L.A., Wreggit, S.S., Fairbanks, R.J., and Kirn, C.L. 
(1994) “Research on vehicle based driver status/performance monitoring: 
development, validation, and refinement of algorithms for detection of driver 
drowsiness,” National Highway Traffic Safety Administration, Washington, DC 
 
Wilson, B.J. and Bracewell, T.D., (2000) “Alertness Monitor Using Neural 
Networks for EEG Analysis,” 2000 IEEE Workshop on Neural Networks for 
Signal Processing, 11-13 Dec, 2, pp. 814–820 
 
Yasui, N., Iisaka, A., and Nomura, N., (1998) "White Road Line Recognition 
Using Lane Region Extraction and Line Edge Detection," 1998 SAE 
International Congress and Exposition, 23-26 Feb, pp. 131-136

 

 

 77


	LITERATURE REVIEW OF DRIVER ALERTNESS MONITORING TECHNIQUES
	Introduction
	Causes of Alertness Impairment
	Human Sleepiness
	Fatigue
	Monotony

	Driver Alertness Monitoring Techniques
	Car Observation Systems
	Driver Observation Systems
	Car-Driver Interface Observation Systems

	Alertness Prediction Using Artificial Neural Networks
	Literature Review Conclusions

	DRIVER ALERTNESS EXPERIMENT AT THE PENN STATE TRUCK DRIVING 
	Overview of Simulator Architecture
	Driving Scenario Development
	Experimental Procedures
	Data Recording

	ARTIFICIAL NEURAL NETWORKS ARCHITECTURE AND TRAINING
	Introduction
	Artificial Neural Network Training with Back Propagation
	Alternative Networks

	APPROACH
	System Overview
	Input Processing
	Savitzky-Golay Filter for Numerical Differentiation
	Spikiness Index

	Artificial Neural Network Designs
	Network Training

	RESULTS
	Jerk Profiles
	Spikiness Index

	Conclusion

