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ABSTRACT 

To reconcile the need to sustain river communities, water quality, and ecosystem services 
against the needs for water supply, daily usage, and power generation, to name a few, extensive 
understanding and accurate sediment estimates are required. However, sediment’s nonlinearity and 
complex hysteresis characteristics make sediment prediction challenging. Furthermore, most of the 
past studies have focused solely on a local scale and simply ignored human-induced disturbances, 
land cover status, geological properties, etc. There lacked a systematic way to predict sediment 
contributions at large scales and high accuracy.  

This study developed models based on long short-term memory (LSTM) deep networks to 
predict SSC over 377 sites across the Contiguous United States (CONUS) with 
hydrometeorological forcing datasets from the DAYMET, Daily Surface Weather, and 
Climatological Summaries (Jan 1980 – Dec 2019), streamflow from USGS, United States 
Geological Survey, sediment-related static attributes from GAGES-II, Geospatial Attributes of 
Gages for Evaluating Streamflow or non-sediment-related static attributes (simulated random 
vectors) as inputs. The model has been trained either basin by basin (called the local model) or for 
the entire CONUS (call the Whole-CONUS model) with the optimal period to cope with data 
availability and variations of each basin. 

The local models for 377 sites across the CONUS show much superior prediction 
performance compared to the Whole-CONUS model, in terms of a median of the Nash-Sutcliffe 
Error (NSE), Pearson’s Correlation Coefficient (R), Coefficient of Determination (R2), Root Mean 
Square Error (RMSE, [mg/L]), and Bias [mg/L] of all sites equal to 0.687, 0.868, 0.727, 67.295, 
1.379 respectively in testing. The result from the Whole-CONUS from all sites training (377 sites) 
with sediment-related attributes shows relatively lower statistical metrics (0.596, 0.806, 0.645, 
79.303, and -3.403. for Nash-Sutcliffe Error (NSE), Pearson’s Correlation Coefficient (R), 
Coefficient of Determination (R2), Root Mean Squared Error, and Bias respectively) and with 
random vector attributes ((0.508, 0.788, 0.621, 92.186, and -4.507. for Nash-Sutcliffe Error (NSE), 
Pearson’s Correlation Coefficient (R), Coefficient of Determination (R2), Root Mean Squared 
Error, and Bias respectively). For ungauged site experiment, the Whole-CONUS with 284 training 
sites perform a satisfying performance in Suspended Sediment Concentration prediction with a 
0.591, 0.810, 0.651, 84.598, and -1.669 for Nash-Sutcliffe Error (NSE), Pearson’s Correlation 
Coefficient (R), Coefficient of Determination (R2), Root Mean Squared Error, and Bias 
respectively. With a Whole-CONUS that has been trained with 284 basins, it can predict the 93-
ungauged sites with satisfactory performance (0.521, 0.865, 0.749, 79.129, and -0.211 for Nash-
Sutcliffe Error (NSE), Pearson’s Correlation Coefficient (R), Coefficient of Determination (R2), 
Root Mean Squared Error, and Bias)   

The results from this study suggest that on gauged sites, the locally-trained LSTM model 
is the best approach to estimate the SSC time series. In the ungauged sites, the Whole-CONUS can 
be considered an acceptable approach for expanding the availability of SSC data. The Whole-
CONUS model has been trained either with sediment-related or with non-sediment-related 
attributes higher overall performance when the model has been trained with the sediment-related 
attributes. The Whole-CONUS model captures the (imperfect) relationships between sediment-
related attributes and sediment dynamics, exposing the spatial heterogeneity of SSC characteristics 
(higher overall performance from the Local-CONUS model compared to the Whole-CONUS 
model) that require more descriptors to overcome the interconnectedness and the heterogeneous 
characteristics. Future work should seek these critical inputs to improve the Whole-CONUS model, 
allowing us to simulate sediment at large scales with high accuracy.   



iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................................ V 
LIST OF TABLES ....................................................................................................................... VII 
ACKNOWLEDGEMENTS ....................................................................................................... VIII 
CHAPTER 1  INTRODUCTION ................................................................................................... 1 

SUSPENDED SEDIMENT REGIMES AND WHY DO WE NEED ACCURATE SUSPENDED SEDIMENT 
CONCENTRATION MODELING? ....................................................................................................... 1 
FROM PAST TO PRESENT, EFFORTS ON SEDIMENT PREDICTIONS ..................................................... 1 
RESEARCH OBJECTIVES AND QUESTIONS ...................................................................................... 3 

CHAPTER 2  DATASETS AND METHODOLOGY .................................................................. 4 
DATASETS ...................................................................................................................................... 4 
METHODOLOGY ............................................................................................................................. 5 

The Long Short-Term Memory Architecture ............................................................................ 5 
Local-CONUS and Whole-CONUS approaches ...................................................................... 7 
Preprocessing steps .................................................................................................................. 7 
Hyperparameter, training and testing ...................................................................................... 9 

CHAPTER 3  RESULTS .............................................................................................................. 12 
RAW DATASETS ANALYSIS ........................................................................................................... 12 
RESULTS FROM THE LOCAL-CONUS APPROACH ......................................................................... 16 
RESULTS FROM THE WHOLE-CONUS APPROACH ........................................................................ 17 
THE UNGAUGED PREDICTION EXPERIMENT ................................................................................. 20 

CHAPTER 4  DISCUSSION ........................................................................................................ 23 
THE 1ST RESEARCH QUESTION ...................................................................................................... 23 
THE 2ND RESEARCH QUESTION ...................................................................................................... 28 

CHAPTER 5 LIMITATIONS AND FUTURE WORKS ........................................................... 29 
LIMITATIONS ................................................................................................................................ 29 
FUTURE WORKS ........................................................................................................................... 30 

REFERENCES .............................................................................................................................. 32 
APPENDIX A SEDIMENT MODELS STUDIES IN THE LAST DECADES ....................... 37 
APPENDIX B LIST OF INPUTS ................................................................................................ 53 
APPENDIX C TRAINING AND TESTING PERIOD OF EACH SITE ................................. 56 
 

 



v 

 

LIST OF FIGURES 

Figure 1 The LSTM repeating unit schematic flow ................................................................. 6 

Figure 2 Schematic flow of research ........................................................................................ 7 

Figure 3 Number of SSC data points for each site across the Contiguous United State .......... 11 

Figure 4 Average Daily Suspended Sediment Concentration of each site across the 
CONUS [mg/L] ................................................................................................................ 13 

Figure 5 Average Daily Precipitation of each site across the CONUS [mm/day] ................... 13 

Figure 6 Average Daily Shortwave Radiation of each site across the CONUS [W/m2] ......... 13 

Figure 7 Average Daily Maximum Air Temperature of each site across the CONUS [C] ...... 14 

Figure 8 Average Daily Minimum Air Temperature of each site across the CONUS [C] ...... 14 

Figure 9 Average Daily Water Vapor Pressure of each site across the CONUS [Pa] .............. 14 

Figure 10 Average Daily Day Length of each site across the CONUS [second] ..................... 15 

Figure 11 Average Daily Snow Water Equivalent of each site across the CONUS ................ 15 

Figure 12 Average Streamflow of each site across the CONUS [ft/s] ..................................... 15 

Figure 13 Hydrological Disturbance Index of each site across the CONUS ........................... 16 

Figure 14 The Local-CONUS box plot of statistical metrics in training ................................. 16 

Figure 15 The Local-CONUS box plot of statistical metrics in testing ................................... 17 

Figure 16 The Whole-CONUS box plot of statistical metrics in training ................................ 18 

Figure 17 The Whole-CONUS box plot of statistical metrics in testing .................................. 18 

Figure 18 The Whole-CONUS box plot of statistical metrics in 284-stations training ........... 20 

Figure 19 The Whole-CONUS box plot of statistical metrics in 284-stations testing ............. 21 

Figure 20 The Whole-CONUS box plot of statistical metrics in 93-stations testing ............... 21 

Figure 21 Statistical metric plots for Local-CONUS and Whole-CONUS (Blue is the 
Local-CONUS in a training session; Green is the Local-CONUS in a testing session; 
Red is the Whole-CONUS in a training session; Yellow is the Whole-CONUS in a 
testing session ................................................................................................................... 25 



vi 

 

Figure 22 Time-Series plot for selected sites from the Whole-CONUS (all sites training) ..... 27 

Figure 23 The Box plot of the Whole-CONUS (ungauged experiment): Blue is the Whole-
CONUS model with 284 in a training session performance; Green is the Whole-
CONUS model with 284 in a testing session performance; Red is the Whole-CONUS 
model with 93-ungauged-sites testing performance ......................................................... 28 

 



vii 

 

LIST OF TABLES 

Table 1 Overview of inputs information .................................................................................. 5 

Table 2 Hyperparameters for Local-CONUS, Whole-CONUS (all sites), and Whole-
CONUS (ungauged experiment) ...................................................................................... 10 

Table 3 Statistical metric of all Local-CONUS model ............................................................. 17 

Table 4 Statistical metric of all Local-CONUS model ............................................................. 18 

Table 5 Statistical metric of the Whole-CONUS model in The Ungauged Prediction 
Experiment ........................................................................................................................ 21 

Table 6 Number of sites' performance distributed in each criterion ........................................ 25 

Table 7 Number of sites' performance distributed in each criterion ........................................ 28 

Table 8 Sediment models studies in the last decades ............................................................... 37 

Table 9 List of inputs (hydrometeorological forcing and static watershed attributes) ............. 53 

Table 10 Training and Testing Time Period for each site ........................................................ 56 
 
 



viii 

 

ACKNOWLEDGEMENTS 

My sense of urgency, perseverance, diligence, and love from my mom made this work 
presented in this research possible. 

I want to thank my advisor, Dr. Chaopeng Shen, for his support in every aspect since the 
first day of knowing him. Dr. Shen provided critical advice regarding research processes, flow 
designs, troubleshooting bugs, to name a few, etc. Additionally, I would like to thank all folks in 
the Multiscale Hydrology, Processes, and Intelligence group: JT, DP, Tadd, Farshid, and Doaa. 
They helped answer questions and were mental supporters.   

I want to thank Dr. Zhi Wei, Dr. Elizabeth Boyer, and Gary Shenk for all their comments, 
troubles shooting ideas, and attention every month of our meeting. Furthermore, I would like to 
express my tremendous gratitude to my thesis committee, Dr. Li Li and Dr. Xiaofeng Liu, for their 
suggestions, questions, and overall attention to our research. The questions they asked elevate this 
research to another level of this thesis work. 

Thank you, Lois, Pluem (Peter), Arthur, Gwad, Fern, Ploy, and Orochimaru (my cat) for 
being my mental supporters when I was feeling low.  

All funding to subsidize Piyaphat Chaemchuen comes from the Thai people’s taxes. All 
results and knowledge that have been gained from this research are for them and their younger 
generations.  
 

 
 



1 

 

Chapter 1 
 

Introduction 

Suspended Sediment regimes and Why Do We Need Accurate Suspended Sediment 
Concentration Modeling? 

Riverscapes around the globe are experiencing rapid and tremendous modifications due to 
human-induced activities (Peipoch et al., 2015; Wohl et al., 2015). Such modifications as river 
fragmentation, land-use changes, and riparian invasion, to name a few, interrupt both direct and 
indirect present suspended sediment regimes (Heathcote, 2009; Wohl et al., 2015). The interrupted 
regimes can directly impact biota, or directly impact their physical habitats, which results in effects 
on biota (EPA (2003)). 

The term “suspended sediment” refers to sediment particles in a water body, which are 
fine-grained to the point that turbulent eddies are able to outweigh the settling of the sediment 
particles and carry them along with the fluid (Parson et at., 2015). 

Suspended sediments are vital to rivers' aquatic ecosystem and environmental health in 
myriad ways. Salmonids, for example, can be sensitive to excess fine sediment in the bed, and the 
aquatic species requires suspended sediment in a suitable size range and concentration for spawning 
(Newcombe and MacDonald 1991; Jones et al., 2011; Newcombe and MacDonald 2011; Riebe et 
al., 2014). Also, suspended sediments are geomorphologically and dynamically related to processes 
in river channel systems; lacking suspended sediment supply can lead to catastrophic losses (Panek 
(2020)). On the other hand, an excessive amount of suspended sediment can be a harmful result of 
eutrophic conditions, leading to the losses of aquatic species and freshwater quality (Lemley and 
Adams (2019)). 

Sediments, still, are often considered a minor variable in the river system as traditional 
river management tends to put a lot of emphasis on the flow regime at the expense of the sediment 
regime (Wohl et al., 2015). Also, the modeling communities as well that emphasize flow modeling 
for reasons which are discussed more in the sub-chapter topic ahead.   

Accurate suspended sediment modeling will allow engineers, scientists, ecologists, 
hydrologists, landscape architects, and other natural resources-related professionals to understand 
and cope with the dynamics, complexity, and non-linearity of the sediment realm to create a new 
sustainable resources management paradigm for river conservation and restoration, before the river 
ecosystem is annihilated and altered to irreversible regimes.  

From past to present, efforts on sediment predictions 

Sediment modeling, which has been primarily done in suspended sediment flux and 
concentration terms, is still challenging for two main reasons.   
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First, suspended sediment concentration (SSC) is heavily influenced by diverse, dynamic 
hydrologic inputs such as precipitation, soil erosion processes, riverine sediment processes 
(scouring or deposition), topography, land cover, anthropogenic activities like management 
practices, and more (Leopold et al., 1992; Bhagat, Tung, and Yaseen 2020; Taher and Hamideh, 
2020; Wohl, 2020). Spatial and temporal variations of those factors make the sediment realm 
complex, non-stationary, and nonlinear (Afan et al., 2014; Nourani et al., 2014).   

Second, the determination of SSC in rivers is time-consuming and expensive, making long-
term SSC observations scarce. This in turn makes it more difficult to assess the impacts of human 
disturbance. For example, whereas over 20,000 US Geological Survey gaging stations have long-
term (i.e., longer than five years) historical datasets of streamflow discharge in the United States, 
only around 1500 sites have more than five years’ worth of suspended-sediment concentration data 
(Austin et al., 2017). Long-term data sets are necessary for characterizing the magnitude, 
frequency, duration, timing or predictability, and rate of change or flashiness of sediment transport 
for different regions and rivers (Poff et al. 1997), leading to even more challenges in forecasting 
(Fatih et al., 2020).  

Traditionally, engineers use the sediment rating curve, a sediment-discharge relation curve. 
However, utilizing a log-log rating curve, the rating curve approach, or the duration curve method, 
can underestimate sediment loads by up to 50%, even when the whole time series of concentration 
is known (Ferguson 1980).  

For decades, many types of suspended sediment models have been proposed across various 
scales (Cigizoglu (2004); Agarwal et al., 2005; Kisi 2005; Cigizoglu and Alp (2006); Alp and 
Cigizoglu (2007); Lohani et al., 2007; Francke et al., 2008; Kisi 2008; Jothiprakash and Garg 
(2009); Rajaee et al., 2009; Firat and Gungor 2010; Melesse et al., 2011; Mustafa et al., 2012; Singh 
et al., 2013; Afan et al., 2014; Mustafa and Isa (2014); Olyaie et al., 2014; Kumar et al., 2016; 
Kaveh et al., 2017; Tasar et al., 2017; Liu et al., 2019; Kumar et al., 2019; Meshram et al., 2019; 
Nourani et al., 2019; Tao et al., 2019; Darabi et al., 2021; Üneş et al., 2021) spanning from physical-
based to data-driven models as shown in Table 1 in Appendix 1.   

Numerous forms of physical-based suspended sediment modeling have been proposed to 
cope with the unique characteristics of the sediment realm. More process-based soil loss equations 
include semi-empirical equations that break down the soil loss into multiple factors considering 
rainfall intensity, soil bulk density, soil properties, land cover and management, and soil moisture, 
e.g., revised universal soil loss equation (Morgan et al., 1984; Renard et al., 1991), or Morgan-
Morgan-Finney (Morgan (2001)). However, one significant burden of physical-based models is 
that they require extensive information for development, calibration, and validation (Adnan et al., 
2021) and they would first require the hydrology to be correctly simulated, which in itself has been 
shown recently to be suboptimal compared to machine learning models, given the information in 
available data (Shen 2018). Furthermore, due to the nonlinearity of sediment transport processes, 
calibrating the numerous parameters in such models is highly complex, requiring expert knowledge 
and substantial computational resources (Akay et al., 2008; Hamaamin et al., 2016; Adnan et al., 
2019; Khosravi et al., 2020), and can easily run into nonuniqueness (or equifinality) issues (Beven 
and Rovan (2000); Beven (2006); Maren and Cronin (2016); Wu et al., 2022)).  

On the other hand, data-driven models can overcome some of the drawbacks of the 
physical-based model. The data-driven models have demonstrated an aptitude to solve and handle 
modeling different hydrological variables (Afan et al., 2016; Fang and Shen (2020); Fang et al., 
2020; Feng et al., 2020; Tsai et al., 2020; Ma et al., 2021; Ouyang et al., 2021; Rahmani et al., 
2021; Tao et al., 2021; Tsai et al., 2021; Zhi et al., 2021; Fang et al., 2022), especially streamflow 
and sediment load, by capturing the non-stationarity and nonlinear behavior of SSL with fewer data 
than physical-based model(AlDahoul et al., 2021). However, until now, no SSC-specific data-
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driven models on a large scale make universal agreements for large-scale natural resources 
management.  

Research Objectives and Questions 

This study focuses on suspended sediment concentration rather than suspended sediment 
flux prediction. My motivation for this work is to develop an alternative tool for predicting 
suspended sediment concentration on both local and continental scales over the contiguous United 
States (CONUS) using a state-of-the-art approach to solve challenges in measuring, calculating, 
and predicting the sediment concentration. This in turn can make great savings in terms of time, 
funding, and workforce, leading to the next step of modern paradigm for river restoration.  

In this study, two types of models will be proposed: local (Local-CONUS) and continental 
(Whole-CONUS) scales (they will be fully described in Chapter 2, Datasets and Methodology). 
For the local model, it aims to delineate the trained model and explore its performance in suspended 
sediment concentration prediction on local scale. For continental-scale work, it aims to represent 
the trained sediment model on a continental scale to achieve a single model that can expand 
suspended sediment concentration estimates in ungauged areas (where SSC is not measured, but 
hydrometeorological forcing, sediment-related inputs, and streamflow information are available).  

The main questions of this research are the following: (1) Can the LSTM-based models 
estimate the spatiotemporal SSC in the contiguous United States based on hydrometeorological 
forcing datasets, static watershed characteristics attributes, and streamflow with only sparse 
suspended concentration as the training data? (2.) Can the trained model learn to predict SSC for 
ungauged areas? 
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Chapter 2 
 

Datasets and Methodology 

Datasets 

In this study, model inputs selections have been hypothesized and constructed based on a 
modification of the Universal Soil Loss Equation (MUSLE), an erosional model from Wischmeier 
and Smith (1978), suspended sediment transport mechanisms mentioned in Wohl (2020), and the 
past data-driven sediment models’ configurations (Cigizoglu (2004); Agarwal et al., 2005; Kisi 
(2005); Cigizoglu and Alp (2006); Alp and Cigizoglu (2007); Lohani et al., 2007; Francke et al., 
2008; Kisi (2008); Jothiprakash and Garg (2009); Rajaee et al., 2009; Firat and Gungor 2010; 
Melesse et al., 2011; Mustafa et al., 2012; Singh et al., 2013; Afan et al., 2014; Mustafa and Isa 
(2014); Olyaie et al., 2014; Kumar et al., 2016; Kaveh et al., 2017; Tasar et al., 2017; Liu et al., 
2019; Kumar et al., 2019; Meshram et al., 2019; Nourani et al., 2019; Tao et al., 2019; Darabi et 
al., 2021; Üneş et al., 2021) to develop the most reasonable sediment model.   

To cover factors that could influence sediment dynamics, the first set of inputs, which 
should be related to the energetic driver, are hydrometeorological forcings derived from an 
interpolation of a gridded meteorological dataset (Daymet) with one km by one km resolution 
(Thornton et al. 2016) from Google Earth Engine (GEE) (Gorelick et al. 2017) for each basin from 
1980 to 2019; as a result, daily meteorological forcing data across the conterminous United States 
were generated (e.g., minimum and maximum temperatures, precipitation, vapor pressure, 
radiation, snow water equivalent, and day duration) and are shown in Table 2 in Appendix.   

The second set of inputs are sediment-related static watershed features that describe the 
surrounding landscape and degree of regulation in the river channels. We have learned so far from 
studies (Yarmoshenko et al., 2020; Mahoney et al., 2018; Wohl et al., 2018; Fryirs, 2012; Borselli, 
2008; Jain and Kothyari, 2000) that these features affect the sediment realm. The static watershed 
characteristics datasets are acquired from the Geospatial Attributes of Gages for Evaluating 
Streamflow dataset version II (GAGES-II), which includes geological variables, land cover, and 
reservoir data in 9,312 basins across the conterminous United States (Falcone 2011). A list of the 
watershed attributes is shown in Table 2 in Appendix. A set of non-sediment-related attributes was 
generated to see whether sediment-related features affect prediction performance.  

The third kind of input is streamflow, as in most previous sediment modeling studies 
(Agarwal et al., 2005; Kisi, 2005; Cigizoglu and Alp (2006); Alp and Cigizoglu (2007); Lohani et 
al., 2007; Melesse et al., 2011; Afan et al., 2014; Goyal (2014); Mustafa and Isa (2014); Olyaie et 
al., 2014; Nourani and Andalib 2015; Kumar et al., 2016; Zounemat-Kermani et al., 2016; Kaveh 
et al., 2017; Liu et al., 2019; Kumar et al., 2019; Malik et al., 2019) included streamflow as one of 
the drivers of suspended sediment in river channels. It is therefore reasonable to presume that 
incorporating the streamflow discharge could bring additional information to our models. Although 
long-term records of daily streamflow discharge are available for over 23,000 US Geological 
Survey gaging stations in the United States, there are some sporadic missing values, so we 
implemented a trained LSTM-based model from Ouyang et al., 2021 (NSE = 0.71) to fill those 
missing values for daily streamflow observation.   

The final dataset is our target SSC dataset. The USGS's National Water Information System 
(NWIS) database was used to download historical data for daily mean suspended sediment 
concentration or “SSC” (parameter code: 80154) using the public USGS-Data retrieval repository 
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(https://github.com/USGS-python/dataretrieval). However, data paucity of suspended sediment 
concentration observations limited the number of basins that could be used as inputs—only 377 
sites across the contiguous United States had data both in the SSC dataset and in the static attributes 
from GAGES-II. The overview of information for inputs used in this study is shown in Table 1. 

Table 1 Overview of inputs information 

Dataset Source Availability 
Meteorological forcing Daymet  1980 - 2019 

Static watershed  
attributes 

Geospatial Attributes of Gages for 
Evaluating Streamflow dataset version II 

(GAGES-II) 
2009 

Suspended Sediment 
Concentration (USGS 

parameter code: 80154) 

USGS 
 

377 sites across the 
CONUS (SSC data 

length and distribution 
vary significantly from 

site to site) 

Streamflow (USGS 
parameter: 00060) USGS 

1980 – 2019 
(Filled missing 

streamflow values with 
Ouyang et al., 2021) 

Methodology 

 In this study, the author chose the Long Short-Term Memory (LSTM) algorithm as the 
primary approach as it has gained popularity in the hydrologic and water quality realm in the last 
five years (e.g., Shen (2018); Fang et al., 2018; Wei et al., 2020; Rahmani et al., 2021; Rahmani et 
al., 2022). The LSTM approach utilizes memory cells and gates to learn and retain information 
over lengthy periods. Cells hold data, and gates control which data enters and exits the cells, and 
this memory control allows the LSTM to overcome the vanishing gradient problem faced by other 
algorithms (Hochreiter and Schmidhuber 1997; Fang et al., 2017, 2019). Essentially, the LSTM 
approach is developed to hold the gradient information over long-term memory. The overall 
research flow of this study is displayed in Figure 2, and the details of the LSTM will be fully 
described in the following sub-chapter. 

The Long Short-Term Memory Architecture 

Even though it sounds alien for civil engineering students, deep learning has been proved 
useful and can be further developed in various scientific fields. The author aims to explicitly explain 
the LSTM architecture mathematically as done by Lipton (2015), but simpler. The LSTM recurrent 
unit consists of three parts, as shown in Figure 1 The key idea is that we have the input (xt) that 
goes through the LSTM recurrent unit and generates the output (Ht)  

The first part is called the “Forgot Gate” (forgets irrelevant information), the second part 
is called the “Input Gate” (adds or updates new information), and the third part is called the “Output 
Gate” (passes updated information). Also, the LSTM has the “Hidden State” both at the previous 
timestamp (Ht-1) and at the current timestamp (Ht) (the Hidden State is known as the short-term 
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memory), and the “Cell State” at the previous timestamp (Ct-1) and at the current timestamp (Ct) 
(the Cell State is known as the long-term memory, which carries the information along with all 
timestamps).   

As the information goes along in the repeating unit, the first gate is the Forgot Gate. In this 
gate, it can be explained mathematically as eq. 1, where xt is an input to the current timestamp; Uf 
is a weight associated with the input; and Wf is the weight matrix associated with the Hidden State. 
A sigmoid function is then applied, so that as a result, Fgt will be a number between 0 and 1. This 
Fgt is then multiplied by the previous timestamp's cell state, which means how much information 
in the Cell State should be let through. If Fgt is 0, the network will forget everything; if Fgt is 1, it 
will remember everything. 

 
Figure 1 The LSTM repeating unit schematic flow 

The next step is determining what additional information will be stored in the Cell State 
(the second part, the Input Gate). There are two layers in the Input Gate. The "input layer", similar 
to the Forgot Gate, a sigmoid layer, determines which information from the Hidden State at the 
previous timestamp and input at the current timestamp to update first. A “tanh layer” then generates 
a vector of new candidate values, Nt, that could be added to the state. The next step is to make a 
state update by combining eq.2 and eq. 3 as eq. 4.  

Finally, the updated information in the Cell State (Ct) will move to the third part of the 
LSTM unit, the Output Gate. First is a sigmoid layer to determine which aspects of the cell state 
will be output. This sigmoid layer, again similar to the Forgot Gate, combines the previous Hidden 
State and the current timestamp input as eq. 5. The cell state is then passed through tanh (to force 
the values to be between -1 and 1) and multiplied by the output of the sigmoid gate (Ot), resulting 
as the Hidden State in the current timestamp, which can either be the final output we want, or can 
be used in the next LSTM repeating unit, and so on.  

Fgt = sigmoid(xt * Uf + Ht-1 * Wf)  eq. 1 
It = sigmoid(xt * Ui + Ht-1 * Wi)   eq. 2 
Nt = tanh(xt * UN + Ht-1 * WN)   eq. 3 
Ct = Fgt * Ct-1 + It* Nt    eq. 4 
Ot = sigmoid(xt * Uo + Ht-1 * Wo)  eq. 5 
Ht = Ot * tanh(Ct)     eq. 6 

Forgot gate Input gate Output gate

Ct-1 Ct

HtHt-1

! ! !tanh

tanh
x

+x

xt

x
Fgt

It Nt Ot
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Local-CONUS and Whole-CONUS approaches 

The author implemented two training-and-testing approaches to answer the research 
questions in this study.   

The first approach is called the “Local-CONUS” or “local”, in which a model is trained 
and tested locally for each of the 377 basins in the compiled dataset. At the end, 377 LSTM-based 
models will be generated). The schematic flow of research is portrayed in Figure 2 (left, blue).   

The second approach is called the Whole-CONUS model. This approach will randomly 
select data points from a 377-basin training data pool to train the model, then test the trained model 
with a different date-time range for each site. At the end, one single LSTM-based model will be 
generated), as shown in Figure 2 (right, green). 

 
Figure 2 Schematic flow of research 

Preprocessing steps 

Reliability of Suspended Sediment sampling to Suspended Sediment Concentration datasets 

The suspended sediment concentration raw datasets have been retrieved from the National 
Water Information system, USGS. The USGS studies (U.S. Geological Survey, 1997; Wilde and 
others, 1999; Gray et al., 2000) showed that the accuracy of churn splitter and cone splitter 
subsamples is considered inadequate at SSC values of 10,000 mg/L or above. Thus, in this study, 
we set the ceiling of the suspended sediment concentration to 10,000 mg/L (1.65% of available 
suspended sediment concentration data are more than 10,000 mg/L). 

Standardized inputs

Training from local-data pooli

Save as the trained modeli

Testing for the particular local-data pooli

i<=377

377 models over 377 basin 
across CONUS have been 

saved

No

Yes

Standardized inputs

Training from random data selection 
from CONUS data pool without 

ungauged sites

Save as the trained model

Testing from selected CONUS data 
pool

A continental 
model has been 

saved

Start

Gathering inputs

Preprocessing and cleansing 
datasets

SSC [USGS] Forcing
[DAYMET]

Attributes
[GAGES-II]

End

Local-CONUS Whole-CONUS

Select 
training/testing 

approach

Streamflow
*

[USGS]

Determining training and testing 
size (training and ungauged sites)

Choosing sediment-related or
non-sediment-related attributes
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Standardizations and De-standardizations 

The inputs were standardized before being fed to training processes. The standardization 
procedures compel a trained model to pay equal attention to large wet and small dry basins (Feng 
et al., 2020; Rahmani et al., 2021; Wenyu et al., 2021). Firstly, we created a dimensionless 
streamflow distribution by partitioning both basin area and mean annual precipitation in the 
particular basin. Then we transformed dimensionless streamflow into a new, more Gaussian 
distribution as eq. 7 (Feng et al., 2020; Wenyu et al., 2021; Rahmani et al., 2022). Note that 0.1 is 
the constant included to cope with any zero values of the streamflow. We also applied log-
transformation eq. 8 to suspended sediment concentration datasets to minimize the skewness of the 
broad range of SSC values (spanning from 0.1 to 10,000) based on the common assumption that 
the suspended sediment concentration is log-normally distributed (Holtschlag 2001).  

 

𝑓∗ = log"#('𝑓 + 0.1)   eq. 7 

𝑓∗ = log"#('𝑓)             eq. 8 
Where 𝑓∗ and 𝑓 are transformed streamflow and observed raw streamflow, respectively. 

Next, we standardized all forcings, static attributes, transformed streamflow, and SSC observations 
by the eq. 9 

𝑥$%&,( =
(*!+	*̅)

/
   eq. 9 

Where 𝑥$%&,( is the standardized values, 𝑥( is the raw observed value, 𝑥̅ is the variable's 
mean, and σ is the variable's standard deviation. In the end, all output from the model will be de-
standardized before statistical metrics calculations. 

Loss function and statistical metrics for model evaluations 

Root-mean-square error(RMSE)   
Root-mean-square error (RMSE) was applied as the loss function for each model. RMSE 

is defined as the square root of the mean of the square of all errors. The RMSE error metric is 
widely used and is regarded as an excellent general-purpose error measure for numerical forecasts. 
The RMSE can be calculated as in eq. 10: 

 RMSE =/∑ (01%2!+345!)"

$
$
( 	  eq. 10 

Bias 
 Bias is the gap between the estimated and actual values, which can be calculated 

as the eq. 11: 
Bias = ∑ (𝑝𝑟𝑒𝑑( − 𝑜𝑏𝑠($

( )   eq. 11 
Unbiased-Root Mean Squared (ubRMSE) 
 From the metrics mentioned above, we can calculate the unbiased root-mean-

square error by subtracting the mean bias from the mean root-mean-square error. 
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Nash-Sutcliffe coefficient (NSE) 
The Nash–Sutcliffe model efficiency coefficient (NSE) is used to evaluate hydrological 

models' forecasting ability (Nash and Sutcliffe 1970). NSE ranges from 0 to 1, with 1 indicating a 
perfect match between model prediction and observation. However, NSE 0 implies poor 
performance, with model prediction poorer than mean observations. It is defined as follows in eq. 
12: 

𝑁𝑆𝐸 = 1 −	∑ (01%2!+345!)"#
!
∑ (345!+34577777)"#
!

       eq. 12 

Moriasi et al., 2015 considered performance measures and evaluation criteria regarding 
physical-based hydrologic and water quality models to predict suspended sediment concentration 
on a monthly temporal scale and a watershed-scale spatial scale, and concluded that Very Good 
NSE is more than 0.80, Good NSE is in between 0.70 and 0.80, Satisfactory NSE is in between 
0.45 and 0.70, and Unsatisfactory NSE is lower than 0.45. Moriasi also mentioned that lacking 
observations and difficulties of model calibration, model validation, model initializations, etc. in 
physical-based modeling limited the final performance criteria to a monthly scale and to watershed 
and local scales.  

Pearson’s correlation coefficient (R) 
Pearson’s correlation coefficient measures the linear correlation between two sets of data 

(predictions and observations). The Pearson’s values range from -1 to 1 for the perfect negative 
and positive correlation. It is defined as eq. 13: 

 
𝑅 =	 ∑ (01%2!+01%2$77777777)#

! (345!+345$777777)

8∑ (01%2!+01%2$77777777)"#
! ∑ (345!+345$777777)"#

!

  eq. 13 

 
The Coefficient of determination (R2) 
R2, a coefficient of determination, is used to determine how differences in one variable 

may be explained by variations in another. Typically, the coefficient of determination ranges from 
0 to 1. It can be calculated as eq. 14: 

 
𝑅9 =	 $∑ (01%2!×	345!)#

! +	∑ (01%2!)#
! ∑ (345!)#

!

8$[∑ (01%2!)"#
! +(∑ 01%2!)"]#

! $[∑ (345!)"#
! +(∑ 345!)"]#

!

   eq. 14 

Hyperparameter, training and testing 

Hyperparameters 

In the realm of Deep Learning, hyperparameters are characteristics of the deep learning 
model itself, which influence the learning process and affect the model performance. The first 
hyperparameter is the number of epochs used, which refers to the number of rounds through the 
full training dataset that the training has completed. The second hyperparameter is Rho or “ρ” which 
is a constant time window used in sampling time-series datasets (hydrometeorological forcings and 
suspended sediment concentration, our target) in the training process. The unit of rho is days. The 
third hyperparameter, batch size, is the number of training samples used in one iteration. The fourth 
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is the hidden size, or the number of hidden layers in the neural network. And the last one, dropout, 
indicates the percentage of generalization during the training process to cope with overfitting 
issues. During training, some layer outputs are disregarded or "dropped out" at random. In this case, 
Dropout is equal to 0.5, meaning that 50% of data in one iteration is dropped out.   

However, this study has not concluded optimized investigations as it focuses on addressing 
the accuracy and insights between local and continental scales. As such, the same hyperparameters 
were utilized in Local-CONUS and Whole-CONUS, and are listed in Table 2.  
Table 2 Hyperparameters for Local-CONUS, Whole-CONUS (all sites), and Whole-CONUS (ungauged experiment) 

Model/Hyperparameters Epochs Rho Hiddensize Batchsize Dropout 
Local-CONUS 100 30 100 40 0.5 
Whole-CONUS with all 
sites 

100 30 256 40 0.5 

Whole-CONUS 
(ungauged experiment) 

300 365 200 40 0.5 

 

Training and Testing 

Due to data availability, data length, and distribution of suspended sediment concentration 
varying from site to site as shown in Figure 3, the traditional constant time window for training and 
testing of the LSTM-based model as done in previous studies (Rahmani et al., 2021; Zhi et al., 
2021; Ouyang et al., 2021; Fang et al., 2020) may exclude some sites that may hold data points in 
training but do not hold data points in testing, or conversely, hold in testing but do not hold in 
training. Furthermore, to optimize all existing observations in such a scarce suspended sediment 
concentration dataset, the Maximum Sub-Array Sum algorithm (Takaoka (2002)) was implemented 
to find the proper training and testing periods for each site, which are listed in Appendix-Table 5 
DNP. The author called this method of training and testing the “DNP” (e.g., Days and Periods). 
The process of DNP is simple. In a training process, a random starting date (e.g., nt in train.py) for 
sampling data from the data pool is generated solely in the range of the DNP in each site (e.g., ngrid 
in train.py), and in the testing process, all the other observations outside of the testing period in 
DNP will turn up in np.nan. This means we will test the predicted data with the observation in the 
testing period from the DNP. 
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Figure 3 Number of SSC data points for each site across the Contiguous United State 
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Chapter 3 
 

Results 

In this chapter, results from analyses are provided in 3 main sections: (1) Raw datasets 
analysis; (2); The local model results; (3) The Whole-CONUS results, which comprise two 
subsections (all-site predictions and ungauged stations predictions).  

Raw datasets analysis 

In this section, the maps of SSC observation, hydrometeorological forcings, and a selected 
attribute (e.g., hydrological disturbance index) are plotted to demonstrate the spatial variability and 
range. Only one static watershed attribute, the hydrological disturbance index, is plotted. This 
parameter is dimensionless and significantly impacts sediment regimes (details about this 
parameter are in Table 2 in Appendix). The day length variable was not plotted, since it does not 
significantly vary from site to site. However, it was still included as an input for the model.   

The distribution maps of the daily value of variables for each site are shown in Figure 1 to 
Figure 13 below, with the color bar indicating the degree of importance. The Mountain West region 
of the CONUS (as the Rocky Range) shows a relatively high value of suspended sediment 
concentration, and relatively low values of SSC are seen in the Mid Atlantic and near-coast area 
(the 5th and 85th percentiles of the average suspended sediment concentration are 7.19 and 309.78 
[mg/L], respectively). SSC is higher in the western basins where rainfall is decidedly lower, 
suggesting that vegetative protection plays an important role in preventing soil erosion.  

The average daily shortwave radiation shows a significantly high value in the South-West 
region of the CONUS, and for other regions, the higher average value of the radiation moves to the 
lower value longitudinally (the 5th and 85th percentiles of the shortwave radiation are 297.00 and 
388.35 [W/m2], respectively). The average daily precipitation is significantly high in the 
Northeastern and Eastern regions and relatively low in the Southwest of the CONUS (the 5th and 
85th percentiles of the shortwave radiation are 1.06 and 3.82 [mm/day], respectively). The 
maximum and minimum air temperatures have a similar variation which is relatively higher in the 
northern region and lower in the southern region. The 5th and 85th percentiles of the average daily 
maximum air temperature are 10.84 and 20.18 [degrees Celsius], respectively. The 5th and 85th 
percentiles of the average daily air minimum temperature are -2.41 and 7.68 [degrees Celsius], 
respectively. The water vapor pressure is relatively high in the southern region (the 5th and 85th 
percentiles of the vapor pressure are 474.38 and 1121.20 [Pa], respectively). The snow water 
equivalent is relatively high in the north of the CONUS (the 5th and 85th percentiles of the vapor 
pressure are 0.0012 and 32.18 [kg/m2]). For streamflow, it makes sense that the spatial variation 
of the streamflow is irregular because the flow regimes are interrupted by regulations, 
fragmentations, and anthropogenic modifications. The 5th and 85th percentiles of the streamflow 
are 3.56 and 2075.27 [ft3/s]. Similarly, for the selected attribute, the hydrological disturbance index 
scatters with no clear continental-scale patterns (the 5th and 85th percentiles are 1 and 20 [ft3/s]. 
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Figure 4 Average Daily Suspended Sediment Concentration of each site across the CONUS [mg/L] 

 

Figure 5 Average Daily Precipitation of each site across the CONUS [mm/day] 

 
Figure 6 Average Daily Shortwave Radiation of each site across the CONUS [W/m2] 

 



14 

 

 
Figure 7 Average Daily Maximum Air Temperature of each site across the CONUS [C] 

 
Figure 8 Average Daily Minimum Air Temperature of each site across the CONUS [C] 

 

 
Figure 9 Average Daily Water Vapor Pressure of each site across the CONUS [Pa] 
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Figure 10 Average Daily Day Length of each site across the CONUS [second] 

 

 
Figure 11 Average Daily Snow Water Equivalent of each site across the CONUS [Kg/m2] 

 
Figure 12 Average Streamflow of each site across the CONUS [ft/s] 
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Figure 13 Hydrological Disturbance Index of each site across the CONUS 

 

Results from the Local-CONUS approach 

377 local models were trained; one for each basin with sufficient data. The models were 
trained and tested individually with sediment-related attributes. In the end, the 377 models’ training 
and testing performances across the contiguous United States were plotted as box plots, which are 
shown below in Figure 14 and Figure 15. The horizontal line in each box represents the median 
and the bottom and top of the box represent the first and third quantiles, respectively, while the 
whiskers represent the minimum and maximum values, respectively. Further, the local models 
presented exceptional median metrics as provided in Table 3. 

 

 
Figure 14 The Local-CONUS box plot of statistical metrics in training 
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Figure 15 The Local-CONUS box plot of statistical metrics in testing 

Table 3 Statistical metrics of all Local-CONUS models with sediment-related attributes 

Statistical Metric median value (Training) median value (Testing) 
Bias [mg/L] 1.781 1.379 
RMSE [mg/L] 66.156 67.295 
Unbiased RMSE [mg/L] 64.740 65.834 
Pearson’s Correlation (R) 0.922 0.868 
Nash-Sutcliff Efficiency 0.702 0.687 
Coefficient of determination (R2) 0.850 0.727 

Results from the Whole-CONUS approach 

All-Site Predictions Experiment with sediment-related attributes 
In this experiment, the Whole-CONUS model has been developed as a trained and tested 

model from a 377-station data pool. The model generates estimated SSC values, which are then 
compared with the actual values measured at the 377 stations. In the end, the Whole-CONUS 
model’s training and testing performance across the contiguous United States has been plotted as 
box plots, which are shown below in Figure 16 and Figure 17. The horizontal line in each box 
represents the median and the bottom and top of the box represent the first and third quantiles, 
respectively, while the whiskers represent the minimum and maximum values, respectively. The 
median statistical metrics of training and testing are also provided in Table 4.  
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Figure 16 The Whole-CONUS box plot of statistical metrics in training 

 

 
Figure 17 The Whole-CONUS box plot of statistical metrics in testing 

Table 4 Statistical metrics of Whole-CONUS model with sediment-related attributes 

Statistical Metric median value (Training) median value (Testing) 
Bias [mg/L] -3.138 -3.403 
RMSE [mg/L] 77.471 79.303 
Unbiased RMSE [mg/L] 77.255 78.978 
Pearson’s Correlation (R) 0.816 0.806 
Nash-Sutcliff Efficiency 0.621 0.596 
Coefficient of determination (R2) 0.665 0.645 

 
All-Site Predictions Experiment with non-sediment-related attributes 
With the same configuration as above, the Whole-CONUS model with random vectors has 

been developed as a trained and tested model from a 377-station data pool, but was trained using 
non-sediment-related attributes (random vectors), as some argued that deep learning models are 
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powerful enough to memorize random vectors for site characterization (Li et al., 2022). In the end, 
the Whole-CONUS model’s training and testing performance across the contiguous United States 
was plotted as box plots, shown below in Figure 16 and Figure 17. The horizontal line in each box 
represents the median and the bottom and top of the box represent the first and third quantiles, 
respectively, while the whiskers represent the minimum and maximum values, respectively. The 
median statistical metrics of training and testing are also provided in Table 4. 

 
Figure 18 The Whole-CONUS box plot of statistical metrics in training with non-sediment-related attributes 

 
Figure 19 The Whole-CONUS box plot of statistical metrics in testing with non-sediment-related attributes 
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Table 5 Statistical metrics of all Whole-CONUS model with non-sediment-related attributes 

Statistical Metric median value (Training) median value (Testing) 
Bias [mg/L] -4.476 -4.507 
RMSE [mg/L] 83.254 92.186 
Unbiased RMSE [mg/L] 81.621 89.826 
Pearson’s Correlation (R) 0.798 0.788 
Nash-Sutcliff Efficiency 0.557 0.508 
Coefficient of determination (R2) 0.638 0.621 

 

The Ungauged Prediction Experiment 

In this experiment, the Whole-CONUS model was built up from a 284-basin data pool and 
tested with a 93-basin data pool (instead of training and testing from the entire 377-basin data pool) 
to see its capability to overcome ungauged areas. The 93 ungauged stations were split with simple 
criteria: the number of raw data should be more than 365. And the reason that came up with the 
criteria is the model can be tuned with hyperparameter rho equal to 365 for reducing computational 
time (it runs faster with hyperparameter rho = 365). The box plots for the 284-basin model and 
ungauged station performance are shown in Figure 20, Figure 21, and Figure 22, respectively, and 
median metrics of the ungauged performance are listed in Table 6. 

 
Figure 20 The Whole-CONUS box plot of statistical metrics in 284-stations training 
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Figure 21 The Whole-CONUS box plot of statistical metrics in 284-stations testing 

 

 
Figure 22 The Whole-CONUS box plot of statistical metrics in 93-stations testing 

 

Table 6 Statistical metrics of the Whole-CONUS model in The Ungauged Prediction Experiment 

Statistical Metric median value (284-station 
training) 

median value (284-
station testing) 

Median value (Ungauged 
stations testing) 

Bias [mg/L] -1.619 -1.669 -0.211 
RMSE [mg/L] 79.758 84.598 79.129 
Unbiased RMSE [mg/L] 77.507 84.573 77.868 
Pearson’s Correlation (R) 0.813 0.810 0.865 
Nash-Sutcliff Efficiency 0.599 0.591 0.521 
Coefficient of determination 
(R2) 

0.662 0.657 0.749 
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Chapter 4 
 

Discussion 

The 1st Research question: Can the LSTM-based model predict the suspended sediment 
concentration across the contiguous United States from intensive hydrometeorological 
forcing, static watershed attributes, streamflow, and sparse suspended sediment 
concentration? 

As discussed in Chapter 2, this study will follow the criteria from Moriasi et al., 2015. For 
the Local-CONUS approach in a training session, there are 75 sites with an NSE < 0.45 
(approximately 20 percent of the available 377 sites), 107 sites with 0.45 < an NSE < 0.7 
(approximately 29 percent), 49 sites with 0.70 < an NSE ≦ 0.8 (approximately 13 percent), and 
146 sites with an NSE > 0.8 (approximately 38 percent). For the Local-CONUS approach in a 
testing session, there are 54 sites with an NSE < 0.45 (approximately 14 percent of available sites), 
164 sites with 0.45 < an NSE < 0.7 (approximately 44 percent), 89 sites with 0.70 < an NSE ≦ 0.8 
(approximately 23 percent), and 70 sites with an NSE > 0.8 (approximately 19 percent).   

For the Whole-CONUS approach with all sites (377 sites) in a training session, there are 
102 sites with an NSE < 0.45 (approximately 27 percent of available sites), 155 sites with 0.45 < 
an NSE < 0.7 (approximately 41 percent), 70 sites with 0.70 < an NSE ≦ 0.8 (approximately 19 
percent), and 50 sites with an NSE > 0.8 (approximately 13 percent). For the Whole-CONUS 
approach with all sites in a testing session, there are 124 sites with an NSE < 0.45 (approximately 
32 percent of available sites), 158 sites with 0.45 < an NSE < 0.7 (approximately 42 percent), 62 
sites with 0.70 < an NSE ≦ 0.8 (approximately 17 percent), and 33 sites with an NSE > 0.8 
(approximately 9 percent). These results are summarized in Table 7.  

The author expects to see a higher error of prediction in the system on different scales 
(higher RMSE, lower NSE, and lower R2, to name a few) as previous studies in water quality as 
such dissolved oxygen prediction showed that the higher the spatial scale, the higher the RMSE 
error (Hu et al., 2019). Likewise, the higher temporal scale is expected to show a lower RMSE, as 
Aldahoul et al., 2021 showed that daily scale suspended sediment concentration prediction results 
hold a higher RMSE error than weekly and monthly results.  

Cohen et al., 2013 showed an average of 0.29 Coefficient of Determination of suspended 
sediment concentration over 11 sites across the CONUS, which is far below the median coefficient 
of the LSTM-based model reported here, equal to 0.86 and 0.67 for Local-CONUS and Whole-
CONUS approaches, respectively, even though the Local-CONUS and the Whole-CONUS models 
are on a larger spatial scale.  

The differences in performance between the Local-CONUS and Whole-CONUS 
approaches imply that the continental scale prediction is more complex compared to the local scale 
prediction, even though the number of hidden layers of the Local-CONUS is lower than the Whole-
CONUS in terms of the model structure. The differences also lead the author to question the current 
set of attributes and how crucial the current attributes are. Considering results from the Whole-
CONUS models that have been trained with sediment-related and non-sediment-related attributes 
with the same configurations as shown in Figure 24, they confirm the importance of the sediment-
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related attributes: the attributes do provide knowledge and information helping the model capture 
suspended sediment concentration characteristics in river channels. Thus, it can be implied that the 
current set of static watershed descriptors inputs still lacks critical information regarding certain 
processes that are highly relevant to suspended sediment production. The LSTM-based model may 
need new inputs, e.g., management practices, stream channel width distributions, etc.  

Juez et al., 2018 and Tao et al., 2021 also mentioned that processes of the riverbed modulate 
the hysteresis behaviors of suspended sediment in different rivers, and adequately modeling 
suspended sediment needs new strategies considering the inputs, including the morphological 
changes in the riverbed. Unfortunately, this study does not include any information about riverbed 
or riverbed grain size changes. The missing riverbed descriptor may contribute to the reason that 
the Whole-CONUS model did not perform as well as the Local-CONUS approach. 

Figure 25 reflects that the model will fail to capture the dynamics of SSC if there are 
significant broad differences in the magnitude of SSC observations between the training and the 
testing periods. The author expects that these differences come from external factors that control 
observed data qualities, such as illegal dumping, dredging, or other events that act as “hot spots” 
and “hot moments” and make the suspended sediment concentration abruptly increase in a short 
time. Thus, it can be implied that the models will effectively capture the suspended sediment 
dynamic when those sites are less disruptive (no external factors, hot spots, or hot moments) or 
have fewer differences observations used for training and testing. 

To conclude, results from this study clearly show that LSTM-based models can predict 
suspended sediment concentration from rich-data hydrometeorological forcing, sediment-related 
static watershed attributes, and streamflow data with overall satisfying performance in both 
approaches across the contiguous United States as portrayed in Figure 14 to Figure 21. The author 
argues that the strength of the approaches is that the models include watershed features such as land 
use and land cover, stream density, soil properties, geological parameters, and anthropogenic 
modifications like the presence of dams, etc., which are difficult to calibrate and include in 
traditional models. The models only require the hydrometeorological forcings, sediment-related 
static watershed attributes, and streamflow data which are much more available datasets compared 
to suspended sediment concentration. If the datasets above are available, the best way to predict 
SSC in the river channel is to train the model as the Local-CONUS models shown in this work. 
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Figure 23 Statistical metric plots for Local-CONUS and Whole-CONUS (Blue is the Local-CONUS in a 

training session; Green is the Local-CONUS in a testing session; Red is the Whole-CONUS in a training session; 
Yellow is the Whole-CONUS in a testing session 

 
Table 7 Number of sites' performance distributed in each criterion 

Model/session NSE < 0.45 
(Unsatisfactory) 

0.45< NSE ≦ 0.7 
(Satisfactory) 

0.7 < NSE  0.8 
(Good) 

NSE > 0.8 
(Very good) 

Local-CONUS/ 
Training 76 110 54 137 

Local-CONUS/ 
Testing 86 109 119 63 

Whole-CONUS 
with all sites 

/Training 
102 155 70 50 

Whole-CONUS 
with all sites 

/Testing 
124 158 62 33 
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Figure 24 Statistical metric plots for Whole-CONUS with sediment-related and non-sediment-related attributes (Blue is 
the Whole-CONUS with sediment-related attributes in a training session; Green is the Whole-CONUS with sediment-
related attributes in a testing session; Red is the Whole-CONUS with non-sediment-related attributes in a training 
session; Yellow is the Whole-CONUS with non-sediment-related attributes in a testing session  
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Figure 25 Time-Series plot for selected sites from the Whole-CONUS (all sites): a,c,e, and g are the plot from 
training sessions of sites chosen from the Very Good tier, Good tier, Satisfied tier, and Unsatisfied tier, respectively. 
b,d,f, and h are the plot from testing sessions of selected sites from the Very Good tier, Good tier, Satisfied tier, and 

Unsatisfied tier, respectively 

a b

c d

e f

g h



28 

 

 

The 2nd research question: Can the trained model learn to predict ungauged areas? 

To answer this question, the Whole-CONUS ungauged predictions experiment was 
developed. For the Whole-CONUS approach with the 284-basin training set, there are 63 stations 
with an NSE < 0.4 (22 percent of the 377 stations available), 131 stations with 0.4 < an NSE < 0.7 
(46 percent), and there are 90 stations with NSE > 0.8 (32 percent). Time-series plots for selected 
sites and the Whisker-box plot of the experiment are shown below.   

The results from the Whole-CONUS approach with the 93-ungauged-basin testing can be 
ranked in the same tier as the 377-basin and the 284-basin model as it shows a median NSE of 
0.521. The result clearly indicates that the trained Whole-CONUS model holds the capability to 
predict ungauged sites with satisfying performance. 

 

Figure 26 The Box plot of the Whole-CONUS (ungauged experiment): Blue is the Whole-CONUS model with 
284 in a training session performance; Green is the Whole-CONUS model with 284 in a testing session performance; 

Red is the Whole-CONUS model with 93-ungauged-sites testing performance 

 
 
 

 Table 8 Number of sites' performance distributed in each criterion 

Model/session NSE < 0.45 
(Unsatisfactory) 

0.45< NSE ≦ 0.7 
(Satisfactory) 

0.7 < NSE ≦ 0.8 
(Good) 

NSE > 0.8 
(Very good) 

Whole-CONUS 
with 284 sites 
training /Training 

80 118 48 38 

Whole-CONUS 
with 284 training 
/Testing 

91 119 45 29 

Ungauged sites 
(93 sites)/ Testing 

30 35 12 16 
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Chapter 5 

Limitations and future works 

Limitations 

 In this study, 380 models were developed (377 Local-CONUS models and 3 
Whole-CONUS models). The LSTM-based sediment model holds a strong capability in suspended 
sediment concentration prediction, especially in the rich-data basin. Further, as the Whole-CONUS 
model reflects a satisfactory performance on large-scale prediction in both experiments (All-sites 
and Ungauged), the Whole-CONUS model can be considered as a suspended sediment 
concentration prediction tool in ungauged areas, which only needs hydrometeorological forcing, 
static watershed attributes, and streamflow discharge to predict suspended sediment concentration. 
Nevertheless, since both Local-CONUS and Whole-CONUS were trained with the specific 
products from DAYMET, GAGES-II, and streamflow, there are a few limitations of these models, 
which are discussed in the following paragraph. 

Data availability of inputs limits the number of sites that can be trained and predict 
suspended sediment concentration. 

Data availability has been an issue for Deep Learning communities for a long time, and the 
trend has continued in this study as well. Although such inputs as hydrometeorological forcing and 
streamflow are not an issue for our case because they are satellite-based products, and streamflow 
can be simulated using the LSTM-based model (Ouyang et al., 2021), suspended sediment 
concentration observations and static watershed attributes are controlled as described by the 
following two limitations.  

The first point is that the models require daily suspended sediment concentration 
observations and static watershed attributes to be available for the training process. Although there 
are 9,312 available sites from the GAGES-II datasets, its paucity of suspended sediment 
concentration limits the number of basins across the CONUS that can be used (in this case, only 
377 sites). The availability of SSC and the static attributes need to be available at the same site at 
the same time.   
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The second point is that, in the same way, the models have been trained with the static 
watershed attributes from the GAGES-II product, which holds 9,312 basins. Thus, in prediction, 
both gauged and ungauged sites across the Contiguous United States are limited to these 9,312 
sites. 

Data availability limits the training performance of the model. 

Even though there are no “golden” rules for testing dataset size, at least 45 data points (for 
training 30 days and testing 15 days, as an approximate 70:30 training to testing ratio) are required 
for each site. Because the 45-day SSC requirement will limit the hyperparameter rho, and this 
hyperparameter will define sampling processes from the data pool in training (rho cannot exceed 
the available range of data described in no_days in Table 3 in Appendix). A lower magnitude of 
rho will lead to a higher computational time (a higher number of iterations in one epoch). For the 
current setting, the Local-CONUS models use about three days and fifteen hours to train and test 
for all 377 sites, and the Whole-CONUS model used approximately four days to train and test.  

 

Future works 

As a hunger modeler, the median of NSE from the Whole-CONUS (0.596) is still far 
behind the median of NSE from Local-CONUS (0.687), suggesting the current configuration 
partially reflects the issue of uncaptured spatial heterogeneity; one Whole-CONUS model alone 
can’t reach the same exceptional performance as the individual Local-CONUS models.  

The author hypothesizes that the lower performance from the Whole-CONUS model are 
due to a few factors: 

1. Lacking information on spatial watershed characteristics from the static watershed 
attributes to overcome the non-stationary, non-linear, hysteresis.  

2. Lacking tuning to reflect the optimized version of the Whole-CONUS model to solve 
the suspended sediment concentration problem (higher hidden size? Higher batch 
size?) 

Gaining more information on spatial characteristics from the static watershed attributes to 
overcome the non-stationary, non-linear hysteresis.  

Gaining more spatial heterogeneity knowledge from site to site across the CONUS may 
require more static watershed attributes, which are related to the geospatial characteristic of basins. 
A current list of static watershed attributes can be found in Table 2 in Appendix. The selected 
attributes are chosen from 5 categories: (1). Geospatial and topographic parameters (Elevation, 
Drainage area, Slope, etc.); (2) River fragmentation (Dam storage, Fragmentation index, etc.); (3) 
River characteristics (Stream density); (4) land use and land covers (Percent of the forest, Percent 
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of development, Percent of different types of soil, Hydraulic conductivity, etc.); (5) Hydrological 
parameters (The mean of precipitation, Rainfall and Runoff ratio, etc.).   

Future work should focus on the 1st category (Geospatial and topographic parameters)  
such as the mean aspect, aspect of the northness, and aspect of the eastness for each basin’s 
Hydrologic Landscape Region (HLRs are aggregates of watersheds that have been grouped 
according to their similarities in land-surface form, geologic texture, and climate characteristics 
(Winter (2001)). 

Hyperparameter tuning to the optimized version of the Whole-CONUS to solve the 
suspended sediment concentration problem  

 Although, from the author’s intuition, hyperparameter tuning will likely not 
significantly improve the model’s performance, the author believes the model performance can still 
be improved. The Hidden size of the model should be increased to make the model more complex, 
and the batch size should be raised to let the model learn a higher number of sites in one epoch, 
leading to a higher learning rate.  
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Appendix A  

Sediment models studies in the last decades 

Table 9 Sediment models studies in the last decades 

Publications Models/compared 
with Inputs Target Study area Training/ 

Testing 
Time 
scale 

Training 
Performance 

Testing 
Performance Remark 

Cigizoglu 
(2004) MLP/SRC SSL, 

Discharge SL [tons/day] 

Schuylkill river 
(USGS code: 
1470500 and 

1473800) 

1952 - 1978/ 
1979 - 1981 Daily - 

MSE = 34 x 10^6 
tons2/day2 
R2 = 0.27 

- 

Agarwal et 
al., 2005 

FFNN (LTF, 
BPANN) 

SSC, 
rainfall, 

discharge 
SSC [mg/L] 

Vamsadhara River 
basin up to 

Kashinagar, India 

1984 - 1989/  
1992 - 1995 

Daily, 
Weekly, 

Ten-
daily, 
and 

monthly 

Daily  
RMSE = 199,  
R2 = 0.871 ,  

E = 0.712  
Weekly  

RMSE =  766 
R2 = 0.908  
E = 0.777 
Ten-daily  

RMSE = 833  
R2 =  0.935  
E = 0.830 
Monthly  
RMSE = 

1,404  
R2 = 0.940  
E = 0.859 

• 
** Daily  

RMSE = 308  
R2 = 0.850   
E = 0.574  

• ** Weekly  
RMSE = 1433    

R2 = 0.874 
E = 0.636 

• ** Ten-daily  
RMSE = 1828  

R2 =  0.871 
E = 0.638 

• ** Monthly  
RMSE = 3,988  

R2 =  0.834 
E = 0.513 

Linear 
Transfer 
Function, 

Back 
Propagation 

Artificial 
Neural 

Network 
**There are 
two testing 

periods, only 
the best period 
with the best 
performances 

are shown 
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Kisi 2005 Neuro-
Fuzzy/SRC 

SSC, 
Discharge SSC [mg/L] 

Quebrada Blanca 
(USGS: 50051150)  

and 
Rio Valenciano  

(USGS: 50056400) 

1994/ 1995 Daily - **MRSE =2.72 
**R2 = 0.876 

**The best 
performance 

from one 
inputs 

combination 

Cigizoglu 
and Alp 
(2006) 

FFBP, 
GRNN/MLR, 

SRC 

SSL, 
Discharge SSL [mg/day] 

Juniata River, 
Pennsylvania 
[USGS code: 
01567000] 

1983 - 1988/ 
1988 - 1989 Daily - **MSE = 29,211 

**R2 = 0.958 

Feed Forward 
Back 

Propagation 
algorithm 

**The best 
performance 
from one set 

of inputs 
combination 

Alp and 
Cigizoglu 

(2007) 
FFBP/RBF SSL, rainfall, 

discharge SSL [tons/day] 

Juniata River, 
Pennsylvania 
[USGS code: 
01567000] 

1983 - 1988/ 
1988 - 1989 Daily - 

• 
**For FFBP 

MSE = 124,997  
R2 = 0.864  

• **For RBF 
MSE = 118,496  

R2 = 0.868 

Radial 
Function-

based Neural 
Network 

**The best 
performance 
from one set 

of inputs 
combination 

Lohani et al., 
2007 ANN, FL/ SRC SSC, 

Discharge SSC [mg/L] Jamtara river, India 250 days/ 156 
days Daily - **R = 0.815 

**RMSE = 82.83 

**The best 
performance 

from one 
inputs 

combination 

Francke et 
al., 2008 

Generalized 
Linear Models, 

RF, Quantile RF 

SSC, 
Discharge 

SSC 
[g/L] 

subcatchments in 
Isebana 

(Torrelaribera, 
Villacarli, 

Cabecera, and 
Capella), Central 
Spanish Pyrenees 

Sep - Dec 
2006 

(Does not 
mention 

training and 
testing period) 

Daily - 

•**Torrelaribera 
RMSE = 29.98 

R =  0.74 
• **Villacarli 

RMSE = 25.85 
R =  0.64 

• **Cabecera 
RMSE = 5.73 

R =  0.39 
• **Capella 

RMSE = 17.15 
R =  0.13 

**The best 
performance 
from one set 

of inputs 
combination 
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Kisi 2008 

ANN with 
Levenberg–
Marquardt 

 (LM), Conjugate 
gradient (CG) 

/SRC 

SSC, 
Discharge SSC [mg/L] 

Quebrada Blanca 
(USGS: 50051150)  

and 
Rio Valenciano  

(USGS: 50056400) 

1994/ 1995 Daily 

• For LM  
MRSE = 75 

R2 = not 
reported 
• For CG 

MRSE = 156 
R2 = not 
reported 

• For LM  
MRSE = 83 
R2 = 0.964 
• For CG 

MRSE = 167 
R2 =  0.937 

**The best 
performance 

among 
configurations 

Jothiprakash 
and Garg 

(2009) 
MLP/- 

Rainfall, 
inflow, 

reservoir 
capacity, 
sediment 
volume 

Volume of  sediment 
retained Satluj River, India 

Randomly 
selected 70% 
of available 
data. The 

remaining 30% 
for testing. 

Yearly 

R =  0.970  
RMSE = 

2.612 x 10^6 
m3 

MAE = 2.264 
x10^6 m3 
AARE = 

0.305  
E = 0.927 

R =  0.965  
RMSE = 3.513 x 

10^6 m3 
MAE = 3.143 

x10^6 m3 
AARE = 1.181  

E = 0.890 

- 

Rajaee et al., 
2009 

ANN, NF, MLR/ 
SRC 

SSC, 
Discharge SSC [mg/L] 

Little black river 
(USGS code: 
07068510), 
Salt river 

(USGS code: 
05508000) 

• Little Black 
river: Oct 1980 

- Sep 1983/ 
Oct 1983 - Sep 

1984 
• Salt river: 

Oct 1984 - Sep 
1987/ Oct 
1987 - Sep 

1988 

Daily 

• **Little 
Black river 
RMSE =  
R = 0.390 

• **Salt river 
RMSE =  

R = 

• ** ANN 
Little Black river 
RMSE = 21.41 

R2 = 0.457 
Salt river 

RMSE = 66.15 
R2 = 0.345 

• **NF 
Little Black river 
RMSE = 15.98 

R2 = 0.697 
Salt river 

RMSE = 61.41  
R2 = 0.435 
• **MLR 

Little Black river 
RMSE = 25.04 

R2 = 0.257 
Salt river 

RMSE = 69.16 
R = 0.284 
• **SRC 

Little Black river 
RMSE = 25.6 

R2 = 0.225 
Salt river 

RMSE = 75.7 
R2 = 0.144 

**The best 
performance 
from one set 

of inputs 
combination 
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Firat and 
Gungor 2010 

ANFIS/ANN, 
MLR 

  

Aydın Bridge (706), 
Menderes C¸ ıtak 
Ko¨pru (713), and 
Do¨rt Deg˘irmen 

(735) in Great 
Menderes, Anatolia 

Testing with 3 
years and the 

remain of 
available data 
is a training 

Monthly - 

• **706 
NRMSE = 0.649 

NSE = 0.742 
R =  0.866 

• **713 
NRMSE = 0.747 

NSE = 0.787 
R =  0.893 

• **735 
NRMSE = 0.824 

NSE = 0.769 
R =  0.914 

**The best 
performance 
from one set 

of inputs 
combination 

Melesse et 
al., 2011 

FFNN (Feed 
Forward Neural 
Network)/MLR, 

ARIMA 
(Autoregressive 

Integrated 
Moving 

Average), MNLP 

SSL, rainfall, 
discharge SSL [mg/day] 

Mississippi, 
Missouri and Rio 

Grande rivers 

1971 -1973 /  
1974 - 1975 
[Mississipi],  
1977 - 1979/ 
1980 - 1981 

[ Missouri and 
Rio Grande] 

Daily 
and 

Weekly 
- 

• **For ANN 
(Daily), 

[Mississipi]   
RMSE= 54,928 
MAPE = 11.7 

E =0.80 
R2 = 0.96  

 
• **For ANN 

(Weekly), 
[Mississipi]   

RMSE= 677,031 
MAPE = 16.8  

E = 0.60 
R2 = 0.87 

**The best 
performance 

among 
configurations 
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- 

• **For ANN 
(Daily), 

[Missouri]   
RMSE = 54,928, 
MAPE = 11.7,  

E = 0.80, 
R2 = 0.96  

 
• **For ANN 

(Weekly), 
[Missouri]  

RMSE= 54,928, 
MAPE = 11.7,  

E =0.80, 
R2 = 0.96 

- 

- 

• **For ANN 
(Daily), [Rio 

Grande]  
RMSE = 2,072 
MAPE = 114.5,  

E = 0.46 
R2 = 0.65  

 
• **For ANN 

(Weekly), [Rio 
Grande]  

RMSE= 17,907 
MAPE = 112.5  

E = 0.25 
R2 = 0.40 

- 
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Mustafa et 
al., 2012 MLP/- SSL, 

Discharge SSL [tons/day] Pari river, Malaysia 1993 - 1998 
[70:30] Daily 

• Gradient 
Descent  

R2 = 0.9846 ,  
RMSE = 253,  

MARE = 
0.227  

• Gradient 
Descent 

Momentum  
R2 =  

RMSE = 254, 
 MARE = 

0.228 

• Gradient 
Descent  

R2 = 0.9837   
RMSE = 106  

MARE = 0.227  
• Gradient 
Descent 

Momentum  
R2 =  

RMSE = 105,  
MARE = 0.228 

- 

Singh et al., 
2013 SBP/RBNN 

Rainfall, 
Runoff, and 
Sediment 

yield 

Sediment yield 
[ton/ha] Sewani river, India 1991 - 2004/ 

2005 - 2007 Daily - 

**R2 = 0.81  
**E = 0.90  
**RMSE = 

3,145.1 

**The best 
performance 
from one set 

of inputs 
combination 

Afan et al., 
2014 FFNN/RBF SSL, 

discharge SSL [tons/day] Johor River, 
Malaysia 

3653 days/ 365 
days Daily - 

• **FFNN 
RMSE = 27.157  
MAE = 19.144 
 R2 = 0.9031 

• **RBF 
RMSE = 26.811  
MAE = 17.343 
 R2 = 0.8991 

RBF: Radial 
Basis Function 

**The best 
performance 
from one set 

of inputs 
combination 

Goyal (2014) M5T, BPANN Rainfall, 
Discharge 

Monthly sediment 
yield Nagwa, India 1993 - 2004/  

2004 - 2007 Daily - 

• **M5T 
RMSE = 0.92 
NSE = 0.79 
R = 2920.46 
• **BPANN 

RMSE = 2140 
NSE = 0.68 

R = 0.89 

- 

Mustafa and 
Isa (2014) MLP/ RBF SSL, 

Discharge SSL [tons/day] Pari river, Malaysia 1993 - 1998 
[70:30] Daily 

• MLP 
RMSE = 47  
MAE = 29 

R2 = 0.9971 
• RBF  

RMSE = 265 
MAE = 57 

R2 = 0.9091 

• MLP 
RMSE = 62  
MAE = 40 

R2 = 0.9895 
• RBF  

RMSE = 61 
MAE = 41 

R2 = 0.9898 
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Olyaie et al., 
2014 

ANFIS/ANN, 
SRC 

SSL, 
Discharge SSL [tons/day] 

Flathead British, 
MO 

(USGS code: 
12355000) 

and 
Santa Clara  

(USGS code: 
111080500) 

• Flathead 
75% / 25% of 
available data 
(1975-1981) 
• Santa Clara 
75% / 25% of 
available data 
(1968-1974) 

Daily - 

• ANFIS 
RMSE = [421.71, 

218.37] 
MAPE = [0.3265, 

0.2634] 
R = [0.867, 0.888] 

NSE = [0.750, 
0.732] 
• ANN 

RMSE = [480.1, 
240.9] 

MAPE = [0.5090, 
0.3691] 

R = [0.813, 0.877] 
NSE = [0.694, 

0.749] 
• SRC 

RMSE = [529.3, 
280.7] 

MAPE = [0.6987, 
0.6327] 

R = [0.673, 0.737] 
NSE = [0.602, 

0.505] 

**The best 
performance 
from one set 

of inputs 
combination 

Nourani and 
Andalib 2015 LSSVM, WANN SSL, 

Discharge SSL Thebes, Mississippi 
river 

75% / 25% of 
available data 

Daily 
and 

Monthly 

•**LSSVM 
(Daily) 

RMSE = 
0.019 

R2 = 0.92 
• **WANN 

(Daily) 
RMSE = 0.15 

R2 = 0.92 
• **LSSVM 
(Monthly) 
RMSE = 

0.080 
R2 = 0.71 

• **WANN 
(Monthly) 
RMSE = 

0.077 
R2 = 0.74 

• **LSSVM 
(Daily) 

RMSE = 0.015 
R2 = 0.92 

• **WANN 
(Daily) 

RMSE = 0.019 
R2 = 0.96 

• **LSSVM 
(Monthly) 

RMSE = 0.071 
R2 = 0.70 

• **WANN 
(Monthly) 

RMSE = 0.069 
R2 = 0.72 

- 
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Kumar et al., 
2016 

ANN-LM, 
RBFNN, CART, 

M5/ LSSVR 

SSC, 
rainfall, 

discharge 
SSC [mg/L] Kopili river and 

Brahmaputra, India 
70% / 30% of 
available data Daily 

• ANN 
R = 0.996 

NSE = 
0.9921 

RSR = 0.291 
• RBFNN 
R = 0.997 

NSE = 
0.99315 

RSR = 0.053 
• CART 
R = 0.99 
NSE =  
0.9913 

RSR = 0.06 
• LSSVR 
R = 0.923 

NSE = 
0.9887 

RSR = 0.070 
• M5 

R = 0.92 
NSE = 
0.9918 

RSR = 0.06 

• ANN 
R = 0.921 

NSE = 0.887 
RSR = 0.291 

• RBFNN 
R = 0.914 

NSE = 0.847 
RSR = 0.341 

• CART 
R = 0.92 

NSE =  0.8673 
RSR = 0.32 
• LSSVR 
R = 0.923 

NSE = 0.8900 
RSR = 0.072 

• M5 
R = 0.0.92 

NSE = 0.8822 
RSR = 0.29 

**The best 
performance 
from one set 

of inputs 
combination 
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Zounemat-
Kermani et 
al., 2016 

ANN/ MLR, SRC SSC, 
Discharge SSC [mg/L] 

Arkansas, 
Delaware, and 

Idaho 

80% / 20% of 
available data Daily 

• Arkansus 
SRC RMSE 
= 281.513 

SRC NSE = 
0.1161 

MLR RMSE 
= 261.309 

MLR NSE = 
0.2394 

ANN RMSE 
=  255ใ399 

ANN NSE = 
0.2734 

• Deleware 
SRC RMSE 
= 281ใ513 

SRC NSE = 
0.1161 

MLR RMSE 
= 89.211 

MLR NSE = 
0.1635 

ANN RMSE 
=  87.700 

ANN NSE = 
0.1986 
• Idaho 

SRC RMSE 
= 20.746 

SRC NSE = 
0.8934 

MLR RMSE 
= 261.309 

MLR NSE = 
0.2394 

ANN RMSE 
= 14.924 

ANN NSE = 
0.9448 

• Arkansus 
SRC RMSE = 

237.810 
SRC NSE = 

0.1595  
MLR RMSE = 

213.353 
MLR NSE = 

0.3235  
ANN RMSE = 

206.531 
ANN NSE = 

0.3660 
• Deleware 

SRC RMSE = 
72.832  

SRC NSE = 
0.2746 

MLR RMSE = 
79.777  

MLR NSE = 
0.1297 

ANN RMSE = 
76.535  

ANN NSE = 
0.1980 
• Idaho 

SRC RMSE = 
37.166  

SRC NSE = 
0.1445 

MLR RMSE = 
21.589 

MLR NSE = 
0.7113 

ANN RMSE = 
15.417  

ANN NSE = 
0.8528 

- 

Kaveh et al., 
2017 ANFIS SSC, 

Discharge SSC [mg/L] 
Schuylkill river, PA 

(USGS code: 
01473800) 

Jan 1949 - Dec 
1953 (83%) 
/ Jan 1954 - 
Dec 1954 

(17%) 

Daily - 

• **ANFIS 
R2 = 0.7513 

RMSE = 25.955 
MAE = 11.859 

**The best 
performance 
from one set 

of inputs 
combination 
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Tasar et al., 
2017 

MLR, M5T, 
ANN/ SRC 

SSC, T, 
Discharge SSC [mg/L] 

Iowa station, USA  
(Does not report the 

USGS code) 

70% / 30% of 
available data 
for each site 

Daily - 

• **SRC 
MSE = 117877.4  
MAE = 207.86 

R = 0.5848 
• **MLR 

MSE =  82268.13 
MAE = 144.22 

R = 0.8462 
• **M5T 

MSE =  60883.11 
MAE = 143.95 

R = 0.8686 
• **ANN 

MSE =  45242.93 
MAE = 134.80 

R = 0.8908 

**The best 
performance 
from one set 

of inputs 
combination 

Moeeni and 
Bonakdari 

2017 
ARMAX-ANN SSL, 

Discharge SSL [tons/day] 

Pineville station and 
Barbourville station 

in Cumberland 
river, USA 

October 1, 
1979 - 

September 30, 
1986/ 

October 1, 
1986 - 

September 30, 
1989 

Daily - 

• ARMAX-ANN 
(Pineville) 

MAE = 604 
R2 = 0.864 

CRM = -0.210 
VAF = 78.4  

• ARMAX-ANN 
(Barbourville) 
MAE = 596 
R2 = 0.885 

CRM = -0.078 
VAF = 80.3 

- 

Yadav et al., 
2018 

GA-ANN/ANN, 
SVM 

SSL, 
Discharge, 

Rainfall, and 
Temperature 

SSL [tons/month] Mahanadi river, 
India 

70%/ 30% of 
available data 
(1990 - 2005) 

Monthly 

• GA-ANN 
RMSE = 
0.0554 

R2 = 0.9267 
MAE = 
0.0267 
• ANN 

RMSE = 
0.0425 

R2 = 0.9410 
MAE = 
0.0201 
• SVM 

RMSE = 
0.06118 

R2 = 0.88456 
MAE = 
0.02432 

• GA-ANN 
RMSE = 0.02675 

R2 = 0.9923 
MAE = 0.0146 

• ANN 
RMSE = 0.0419 

R2 = 0.9948 
MAE = 0.0157 

• SVM 
RMSE = 0.03442 

R2 = 0.94755 
MAE = 0.01896 

- 

Liu et al., 
2019 ANN 

Discharge, 
NDVI, 
Rainfall 

SSC [mg/L] Kuye river, China 2006 - 2008/  
2009 - 2010 Daily - **R2 = 0.64 

**NSE = 0.63 

**The best 
performance 
from one set 

of inputs 
combination 
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Kumar et al., 
2019 ANN, ANFIS 

Water stage, 
Discharge, 

SSC 
SSC [mg/L] Pathagudem, India 1996–2007/  

2008 - 2010 Daily 

**R =  0.941 
**RMSE = 

0.1461 
**R2 = 0.901 
**PARE = -

2xE-8 

**R =  0.926 
**RMSE = 0.1240 

**R2 = 0.960 
**PARE = -0.003 

**The best 
performance 
from one set 

of inputs 
combination 

Malik et al., 
2019 

RBNN, SOMNN, 
LSSVR/ SRC 

SSC, 
Discharge SSC [g/L] 

Ashti station, 
Bahmini station , 

Tekra station, India 

75% data from 
July 1, 2003  - 

August 31, 
2010/ 25% 
data from 

September 1, 
2010 - October 

31, 2012 

Daily - 

• **RBNN (Ashti)  
RMSE = 0.045 
COE = 0.884  
PCC = 0.955,  
WI = 0.970 
• **RBNN 
(Bahmini) 

RMSE = 0.062  
COE = 0.883  
PCC = 0.961, 
WI =  0.963 
• **RBNN 

(Tekra) 
RMSE = 0.131  
COE = 0.914  
PCC =  0.958 
WI = 0.976 

- 

Meshram et 
al., 2019 ANFIS Rainfall, 

Runoff SSC [mg/L] Narmady river, 
India 

80% / 20% of 
available data 
ranging from 
2000 - 2009 

Monthly 

MAE = 
30,916.4 

NSE = 0.524 
WI index = 

0.819 

MAE = 19773.3 
NSE = 0.419 

WI index = 0.788 

**The best 
performance 
from one set 

of inputs 
combination 
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Nourani et 
al., 2019 

WANN, M5, and 
WANN-M5 

SSL, 
Discharge 

SSL [tons/day], SSL 
[tons/month] 

Lightvachai river 
 and Upper Rio 

Grande river 

75% / 25% of 
available data 
for each site 

Daily 
and 

Monthly 

• **ANN 
(Daily) 

Lightvachai 
river 

NSE = 0.93 
RMSE = 0.02 
MAPE = 1.54 

Upper Rio 
Grande  

NSE = 0.62 
RMSE = 0.04 
MAPE = 5.89 
• **WANN 

(Daily) 
Lightvachai 

river 
NSE = 0.98  

RMSE = 0.01 
MAPE = 0.53 

Upper Rio 
Grande  

NSE = 0.89 
RMSE = 0.01 
MAPE = 2.51 

• **M5 
(Daily) 

Lightvachai 
river 

NSE = 0.92 
RMSE = 0.01 
MAPE = 1.43 

Upper Rio 
Grande  

NSE = 0.77 
RMSE = 0.01 
MAPE = 3.75 
• **WANN-
M5 (Daily) 
Lightvachai 

river 
NSE = 0.97 

RMSE = 
0.006 

MAPE = 0.40 
Upper Rio 

Grande  
NSE = 0.94 

RMSE = 
0.004 

MAPE = 1.81 
• **ANN 
(Monthly) 

Lightvachai 
river 

NSE = 0.61 
RMSE = 0.07 
MAPE = 1.23 

Upper Rio 
Grande  

NSE = 0.44 
RMSE = 0.09 
MAPE = 3.15 
• **WANN 
(Monthly) 

Lightvachai 
river 

NSE =  0.97 
RMSE = 0.01 
MAPE = 0.56 

Upper Rio 
Grande  

NSE = 0.93 
RMSE = 0.03 
MAPE = 1.28 

• **M5 
(Monthly) 

Lightvachai 
river 

NSE = 0.78 
RMSE = 0.02 
MAPE = 0.83 

Upper Rio 
Grande  

NSE = 0.68 
RMSE = 0.04 
MAPE = 0.06 
• **WANN-

M5 
(Monthly) 

Lightvachai 
river 

NSE = 0.94 
RMSE = 

0.007 
MAPE = 0.34 

Upper Rio 
Grande  

NSE = 0.90 
RMSE = 0.01 
MAPE = 1.71 

• **ANN (Daily) 
Lightvachai river 

NSE = 0.80 
RMSE = 0.07 
MAPE = 1.19 

Upper Rio Grande  
NSE = 0.48 

RMSE = 0.14 
MAPE = 1.05 
• **WANN 

(Daily) 
Lightvachai river 

NSE = 0.91 
RMSE = 0.05 
MAPE = 0.44 

Upper Rio Grande  
NSE = 0.84 

RMSE = 0.02 
MAPE = 2.82 

• **M5 (Daily) 
Lightvachai river 

NSE = 0.86 
RMSE = 0.07 
MAPE = 1.10 

Upper Rio Grande  
NSE = 0.75 

RMSE = 0.03 
MAPE = 4.24 

• **WANN-M5 
(Daily) 

Lightvachai river 
NSE = 0.95 

RMSE = 0.03 
MAPE = 0.32 

Upper Rio Grande  
NSE = 0.89 

RMSE = 0.008 
MAPE = 2.26 

• **ANN 
(Monthly) 

Lightvachai river 
NSE = 0.48 

RMSE = 0.14 
MAPE = 1.05 

Upper Rio Grande  
NSE = 0.30 

RMSE = 0.14 
MAPE = 4.61 
• **WANN 
(Monthly) 

Lightvachai river 
NSE = 0.78 

RMSE = 0.09 
MAPE = 0.64 

Upper Rio Grande  
NSE = 0.77 

RMSE = 0.08 
MAPE = 1.55 

• **M5 (Monthly) 
Lightvachai river 

NSE = 0.69 
RMSE = 0.07 
MAPE = 0.70 

Upper Rio Grande  
NSE = 0.70 

RMSE = 0.06 
MAPE = 3.15 

• **WANN-M5 
(Monthly) 

Lightvachai river 
NSE = 0.90 

RMSE = 0.02 
MAPE = 0.31 

Upper Rio Grande  
NSE = 0.86 

RMSE = 0.03 
MAPE = 2.13 

**The best 
performance 
from one set 

of inputs 
combination 
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Sharghi et 
al., 2019 WANN, EANN SSL, 

Discharge SSL [tons/days] 

Lighvanchai, 
Azerbaijan and 

Upper Rio Grande 
Rivers, Colorado 

75%/ 25% 
The time 

series data for 
28 years, from 
1987 to 2015 

for the 
Lighvanchai 
River and 39 
years, from 

1976 to 2015 
for Upper Rio 
Grande River 

Daily, 
Monthly 

•**WANNN 
Daily 

(Lighvanchai) 
RMSE = 

2.123  
NSE = 0.987 
• **WANN 

Daily 
(Rio Grande) 

RMSE = 
4516.79  

NSE = 0.879 
• **WANNN 

Monthly 
(Lighvanchai) 

RMSE = 
305.156  

NSE = 0.789  
• **WANN 

Monthly 
(Rio Grande) 

RMSE = 
12592.74   

NSE = 0.742 

**WANNN Daily 
(Lighvanchai) 
RMSE = 8.722  
NSE = 0.915  

• **WANN Daily 
(Rio Grande) 

RMSE = 7475.51  
NSE = 0.781 
• **WANNN 

Monthly 
(Lighvanchai) 

RMSE = 334.179  
NSE = 0.779  
• **WANN 

Monthly 
(Rio Grande) 

RMSE = 
146935.55  

NSE = 0.642 

- 

Tao et al., 
2019 

RM5Tree (M5 
tree with Radial 

basis)/ MLR, 
RSM (Response 
Surface method), 

ANN, M5 

SSL, 
Discharge SSL [tons/day] Delaware river, 

USA 
8329 days/  
3569 days Daily - 

• ** 
RM5Tree 

MAE = 427.2 
RMSE = 2091.8 

d = 0.929 
NSE = 0.863 

**The best 
performance 
from one set 

of inputs 
combination 

Hazarlka et 
al., 2020 ELM, SVR SSL, 

Discharge SSC [g/L] 
Tawang Chu 

River, Arunachal 
Pradesh 

2013 - 2015 
(not mentioned 

split 
training:testing 

ration) 

Daily - 

• ** ELM 
RMSE = 0.042 
MAE = 0.01063 

• ** SVR 
RMSE = 0.0426 
MAE = 0.15651 

- 
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Shadkani et 
al., 2020 

MLP, MLP-SGD, 
GBT 

SSL, 
Discharge SSL [tons/day] 

St. Louis, MO 
(USGS code: 
07010000)  

Chester, IL (USGS 
code: 07020500) 

70% / 30% of 
available data 
(2004 - 2017) 

Daily - 

• **MLP 
R2 = 0.982 

NSE = 0.965 
WI = 0.953  
SI = 0.618 
• **GBT 

R2 = 0.919 
NSE = 0.957 
WI = 0.949 
SI = 0.618 

• **MLP-SGD 
R2 = 0.932 

NSE = 0.967 
WI = 0.960 
SI = 0.580 

**The best 
performance 
from one set 

of inputs 
combination 

Aldahoul et 
al., 2021 

ElasticNetLR, 
XGB, MLP,and 

LSTM 

SSL, 
Discharge SSL [tons/day] Johor River, 

Malaysia 

80% / 20% of 
available data 
in 365 days 

Daily, 
Weekly, 

Ten-
daily, 
and 

monthly 

- 

• **LSTM Daily 
R2 = 0.9201 

MAE = 12.55 
RMSE = 22.92 
RAE = 0.216 
RSE = 0.079 
• **LSTM 

Weekly 
R2 = 0.9656 

MAE = 8.601 
RMSE = 11.84 
RAE = 0.187 
RSE = 0.034 

• **LSTM Ten-
day 

R2 = 0.9671 
MAE = 0.088 
RMSE = 11.04 
RAE = 0.183 
RSE = 0.033 
• **LSTM 
Monthly 

R2 = 0.9833 
MAE = 2.447 
RMSE = 3.236 
RAE = 0.075 
RSE = 0.005 

**The best 
performance 
from one set 

of inputs 
combination 
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Darabi et al., 
2021 

MLP, ANFIS, 
RBF 

SSC, 
Discharge SSL [tons/day] 

Talar river basin 
(Talar station) 

and  
Eagel Creek basin 
(Kasilian station) 

80% / 20% of 
available data 
for each site 

Daily - 

• ** Talar river 
basin 

RMSE = 934.2 
NSE = 0.93  

MAE = 912.2 
PBIAS = 0.12 

• ** Eagel  Creek 
basin 

RMSE = 1412.10 
NSE = 0.92 

MAE = 1403.4 
PBIAS = 0.14 

**The best 
performance 
from one set 

of inputs 
combination 

Hazarlka et 
al., 2021 

coiflet LDMR, 
coiflet OB-ELM 

SSL, 
Discharge SSC [g/L] 

Tawang Chu 
River, Arunachal 

Pradesh 

70%/ 30% of 
available data 
 (2013 - 2015) 

Daily - 

• ** LDMR 
RMSE = 0.05339 
MAE = 0.02414 
• ** OB-ELM 

RMSE = 0.09091 
MAE = 0.08503 

Large margin 
distribution 

machine-based 
regression 
(LDMR) 

Üneş et al., 
2021 

SRC, MLR, 
SVM-RBF, 
SVM-PK, 
LibSVM 

SSC, 
Discharge SSC [mg/L] 

Augusta station on 
Skunk river (USGS 

code: 05474000) 

875 days/ 220 
days Daily - 

• **SRC 
RMSE = 278.77  
MAE = 163.19 

R = 0.47 
•  **MLR 

RMSE = 230.92 
MAE = 103.42 

R = 0.80 
• **SVM-RBF 

RMSE = 180.76  
MAE = 81.09 

R = 0.75 
• **SVM-PK  

RMSE = 180.72 
MAE = 79.41 

R = 0.83 
• **LibSVM 

RMSE = 121.38  
MAE = 64.39 

R = 0.90 
• **NF  

RMSE = 131.25 
MAE = 73.71 

R = 0.89 

**The best 
performance 
from one set 

of inputs 
combination 
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Fathabadi et 
al., 2022 

BLR, GPR, and 
K-NN/SRC 

SSC, 
Discharge SSC [mg/L] 

Arazkoseh station, 
Oghan station and 
Jajrood station in 

Iran 

70% / 30% of 
available data Daily - 

• **Arazkoseh 
BLR NSE = 0.55 

BLR R = 0.83 
GPR NSE = 0.57 

GPR R = 0.76 
KNN NSE = 0.59 

KNN R = 0.78 
• **Oghan 

BLR NSE = 0.44 
BLR R = 0.77 

GPR NSE = 0.47 
GPR R = 0.74 

KNN NSE = 0.52 
KNN R = 0.72 

• **Jairood 
BLR NSE = 0.35 

BLR R = 0.75 
GPR NSE = 0.67  

GPR R = 0.84 
KNN NSE = 0.66 

KNN R = 0.82  

- 
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Appendix B 

List of inputs 

Table 10 List of inputs (hydrometeorological forcing and static watershed attributes) 

Inputs Product Variables Unit Description 
Hydrometeorological 

Forcing 
DAYMET dayl s/day Duration of the daylight period in 

seconds per day. This calculation is 
based on the period of the day during 
which the sun is above a hypothetical 

flat horizon 
prcp mm/day Daily total precipitation in millimeters 

per day, sum of all forms converted to 
water-equivalent. Precipitation 

occurrence on any given day may be 
ascertained. 

srad W/m2 Incident shortwave radiation flux 
density in watts per square meter, taken 
as an average over the daylight period 

of the day. NOTE: Daily total radiation 
(MJ/m2/day) can be calculated as 

follows: ((srad (W/m2) * dayl (s/day)) 
/ l,000,000) 

swe Kg/m2 Snow water equivalent in kilograms 
per square meter. The amount of water 

contained within the snowpack. 
tmax Deg C Daily maximum 2-meter air 

temperature in degrees Celsius. 
tmin Deg C Daily minimum 2-meter air 

temperature in degrees Celsius. 
Vp Pa Water vapor pressure in pascals. Daily 

average partial pressure of water vapor. 
Static Watershed 

Attributes 
GAGES-II ELEV_MEAN_M_BASIN m Mean watershed elevation (meters) 

from 100m National Elevation Dataset 
  SLOPE_PCT - Mean watershed slope, percent. 

Derived from 100m resolution 
National Elevation Dataset, so slope 

values may differ from those calculated 
from data of other resolutions. 

  DRAIN_SQKM km2 Watershed drainage area, sq km, as 
delineated in our basin boundary  
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  DEVNLCD06 % Watershed percent "developed" 
(urban), 2006  

  FORESTNLCD06 % Watershed percent "forest", 2006  
  STREAMS_KM_SQ_KM km/km2 Stream density, km of streams per 

watershed sq km 
  MAJ_DDENS_2009 number per 

100 km2 
Major dam density 

  GEOL_REEDBUSH_DOM_PCT % Percentage of the watershed covered 
by the dominant geology type 

  PPTAVG_BASIN cm Mean annual precipitation for the 
watershed 

  PERMAVE inches/hour Average permeability 
  HIRES_LENTIC_DENS Number  

per km2 
Density of Lakes/Ponds + Reservoir 

water bodies  
  FRAGUN_BASIN - Fragmentation Index of "undeveloped" 

land in the watershed.  High numbers = 
more disturbance by development and 

fragmentation; a very pristine basin 
with a lot of contiguous undeveloped 
land cover would have a low number 

  STOR_NID_2009 ML/km2 Dam storage in watershed  
  MAINS100_FOREST % Mainstem 100m buffer "forest" 
  MAINS100_DEV % Mainstem 100m buffer "developed" 
  RRMEAN - Relief ratio, calculated as 

(ELEV_MEAN - 
ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). 
  RFACT 100s ft-tonf 

in/h/ac/yr 
Rainfall and Runoff factor ("R factor" 

of Universal Soil Loss Equation); 
average annual value for period 1971-

2000 
  WTDEPAVE ft Average value of depth to seasonally 

high water table 
  IMPNLCD06 % Watershed percent impervious surfaces 

from 30-m resolution NLCD06 data 
  HGA % Percentage of soils in hydrologic group 

A. Hydrologic group A soils have high 
infiltration rates. Soils are deep and 

well drained and, typically, have high 
sand and gravel content. 

  HGB % Percentage of soils in hydrologic group 
B. Hydrologic group B soils have 

moderate infiltration rates. Soils are 
moderately deep, moderately well 
drained, and moderately coarse in 

texture. 
  HGC % Percentage of soils in hydrologic group 

C. Hydrologic group C soils have slow 
soil inflitration rates. The soil profiles 

include layers impeding downward 
movement of water and, typically, have 

moderately fine or fine texture. 
  HGD % Percentage of soils in hydrologic group 

D. Hydrologic group D soils have very 
slow infiltration rates. Soils are clayey, 

have a high water table, or have a 
shallow impervious layer. 
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  AWCAVE - 
 

Average value for the range of 
available water capacity for the soil 

layer or horizon 
  TOPWET ln(m) Topographic wetness index, ln(a/S); 

where "ln" is the natural log, "a" is the 
upslope area per unit contour length 

and "S" is the slope at that point 
  RUNAVE7100 mm/year Estimated watershed annual runoff 
  HYD_DIS_INX - Hydrological Disturbance Index based 

on 7 variables: 1) MAJ_DDENS_2009, 
2) WATER_WITHDR, 3) change in 
dam storage 1950-2009, 4) 
CANALS_PCT, 5) 
RAW_DIS_NEAREST_MAJ_NPDES, 
6) ROADS_KM_SQ_KM, and 7) 
FRAGUN_BASIN.  Low values = low 
anthropogenic hydrologic modification 
in the watershed, high values = high 
anthropogenic hydrologic modification 
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Appendix C 

Training and Testing period of each site 

S_Training: Starting date of training 
E_Training: Ending date of training 
S_Testing: Starting date of testing 
E_Testing: Ending date of testing 
no_days: the number of days from the starting date of training to the ending date of testing 
Table 11 Training and Testing period for each site 

sta_id S_Training E_Training S_Testing E_Testing no_days 
1127500 19800101 19800805 19800806 19800929 272 
1192883 19810228 19870325 19870326 19880929 2770 
1197500 19800101 19921231 19930101 19960401 5935 
1198125 19940325 19951105 19951106 19960401 738 
1331095 19800101 19971018 19971019 20020331 8125 
1357500 19990301 20150305 20150306 20190307 7311 
1470500 19800101 19810524 19810525 19810929 637 
1491000 19801001 19890718 19890719 19910929 4015 
1545600 19801001 19810718 19810719 19810929 363 
1567000 19800101 19901011 19901012 19930621 4920 
1589000 20101001 20140929 20140930 20150929 1824 
1589290 20151001 20181212 20181213 20190930 1460 
1594440 19841027 19900511 19900512 19910929 2528 
1595500 19800214 19800814 19800815 19800929 228 
1597000 19800204 19810531 19810601 19810929 603 
1603000 19800510 19820407 19820408 19820929 872 
1614500 19800101 19800805 19800806 19800929 272 
1638500 19800101 19900820 19900821 19930418 4856 
1639000 19891001 19921211 19921212 19930929 1459 
1642438 20080717 20100704 20100705 20101231 897 
1658500 19821001 20051211 20051212 20110929 10590 
1659000 20000324 20090609 20090610 20110929 4206 
1664000 19800101 19901230 19901231 19930929 5020 
2035000 19801001 19810412 19810413 19810531 242 
2066000 19800101 19810524 19810525 19810929 637 
2075500 19800101 19810524 19810525 19810929 637 
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2084160 19800101 19851025 19851026 19870409 2655 
2116500 19800101 19871018 19871019 19890929 3559 
2148315 19831001 19841211 19841212 19850331 547 
2269160 20070716 20101106 20101107 20110905 1512 
2489500 19800101 19901230 19901231 19930929 5020 
3061500 19800101 19810524 19810525 19810929 637 
3068800 19800101 19810523 19810524 19810927 635 
3111500 19800524 19810622 19810623 19810929 493 
3111548 19821208 19891224 19891225 19910929 3217 
3150000 19800101 19890524 19890525 19910929 4289 
3151400 19800101 19810524 19810525 19810929 637 
3187500 19800101 19800804 19800805 19800928 271 
3195500 19850201 19861023 19861024 19870330 787 
3197000 19850215 19860602 19860603 19860929 591 
3201902 19840719 19850421 19850422 19850630 346 
3201980 19840809 19850426 19850427 19850630 325 
3207800 19800105 19810525 19810526 19810929 633 
3209300 19800115 19810501 19810502 19810828 591 
3209500 19800306 19810221 19810222 19810521 441 
3210000 19800101 19820312 19820313 19820929 1002 
3211500 19800303 19820325 19820326 19820929 940 
3212500 19800101 19810409 19810410 19810804 581 
3216500 19800101 19810405 19810406 19810730 576 
3226800 19800101 19810524 19810525 19810929 637 
3230450 19921001 20140507 20140508 20190930 9860 
3230500 19921112 19970726 19970727 19980929 2147 
3234500 19800101 19820312 19820313 19820929 1002 
3245500 19800101 19871018 19871019 19890929 3559 
3248500 19800101 19810320 19810321 19810710 556 
3277500 19800506 19810618 19810619 19810929 511 
3280600 19800101 19810524 19810525 19810929 637 
3281000 19800101 19810415 19810416 19810811 588 
3281100 19800101 19810312 19810313 19810629 545 
3281500 19800101 19800425 19800426 19800524 144 
3302680 19800101 19800805 19800806 19800929 272 
3316500 19801001 19810718 19810719 19810929 363 
3319000 19800101 19810415 19810416 19810811 588 
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3320000 19800101 19810524 19810525 19810929 637 
3320500 19800101 19810312 19810313 19810630 546 
3328500 19800101 19800805 19800806 19800929 272 
3335500 19800101 19800805 19800806 19800929 272 
3339000 20110315 20120608 20120609 20120929 564 
3347500 19800103 19800806 19800807 19800929 270 
3361000 19800101 19810409 19810410 19810803 580 
3365500 19800101 19810524 19810525 19810929 637 
3382100 19800101 19810524 19810525 19810929 637 
3384450 19800101 19810524 19810525 19810929 637 
3401000 19800108 19801114 19801115 19810131 389 
3402000 19800101 19900313 19900314 19920929 4655 
3403500 19800101 19900313 19900314 19920929 4655 
3403910 19800125 19810407 19810408 19810726 548 
3404000 19800101 19900313 19900314 19920929 4655 
3410210 19851001 19860718 19860719 19860929 363 
3410500 19831001 19890506 19890507 19900929 2555 
4024098 19800101 19810503 19810504 19810902 610 
4073462 19811203 20120519 20120520 20191231 13907 
4084445 19860702 19891123 19891124 19900929 1550 
4086600 19820701 19840417 19840418 19840929 821 
4087000 19820701 19840417 19840418 19840929 821 
4087030 19820601 19840411 19840412 19840929 851 
4087120 19820601 19840411 19840412 19840929 851 
4087159 19821001 19840506 19840507 19840929 729 
4095300 19900625 19931121 19931122 19940929 1557 
4102700 19800424 19820227 19820228 19820815 843 
4178000 20170301 20190607 20190608 20191231 1035 
4182000 20171220 20190804 20190805 20191231 741 
4183000 20180624 20190911 20190912 20191231 555 
4183500 20170101 20190526 20190527 20191231 1094 
4184500 20181001 20190930 20191001 20191231 456 
4186500 20140301 20181030 20181031 20191231 2131 
4193500 19800101 19981229 19981230 20030929 8672 
4197100 19871001 19890506 19890507 19890929 729 
4198000 19800101 19980312 19980313 20020929 8307 
4199000 19871001 19901211 19901212 19910929 1459 
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4200500 19800612 19810414 19810415 19810630 383 
4201500 19800101 19810524 19810525 19810929 637 
4202000 19850226 19860605 19860606 19860929 580 
4206000 19800101 19810524 19810525 19810929 637 
4208000 19800101 19980312 19980313 20020929 8307 
4209000 19800101 19810524 19810525 19810929 637 
4212100 19800101 19890524 19890525 19910929 4289 
4233286 20030131 20140105 20140106 20160929 4990 
4233300 19981202 20130306 20130307 20160929 6511 
5059000 19800101 19800805 19800806 19800929 272 
5123400 19890403 19890510 19890511 19890520 47 
5275000 19800207 19810510 19810511 19810902 573 
5280000 19800104 19810524 19810525 19810928 633 
5291000 19800101 19861207 19861208 19880831 3165 
5293000 19800101 19861207 19861208 19880831 3165 
5304500 19800103 19810417 19810418 19810813 588 
5319500 19800208 19800711 19800712 19800819 193 
5325000 19800101 20100312 20100313 20170929 13786 
5341500 20131001 20150506 20150507 20150929 728 
5342000 20131001 20150506 20150507 20150929 728 
5357335 19910501 19940122 19940123 19940929 1247 
5372995 19810326 19820329 19820330 19820630 461 
5385000 19800101 19810524 19810525 19810929 637 
5385500 19800101 19810524 19810525 19810929 637 
5388250 19800101 19810524 19810525 19810929 637 
5389400 19911001 20020222 20020223 20040929 4747 
5406500 19841001 19860222 19860223 19860630 637 
5416900 20000426 20020404 20020405 20020929 886 
5418500 19800101 19991018 19991019 20040929 9038 
5419000 19941001 19970222 19970223 19970929 1094 
5422000 19960101 19980526 19980527 19990101 1096 
5422470 19800101 19810807 19810808 19811231 730 
5426000 19800101 19820312 19820313 19820929 1002 
5426067 20021029 20040605 20040606 20041030 732 
5427718 19900301 20131030 20131031 20190930 10805 
5427850 20081001 20170718 20170719 20190930 4016 
5427948 19800101 20111231 20120101 20191231 14609 
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5431016 19930201 20140813 20140814 20191231 9829 
5431017 19891001 20131212 20131213 20191231 11048 
5431022 19831001 19900222 19900223 19910929 2920 
5431486 19800101 19820312 19820313 19820929 1002 
5432695 20061001 20140929 20140930 20160929 3651 
5432927 20061001 20140929 20140930 20160929 3651 
5434500 19800101 19820312 19820313 19820929 1002 
5436500 19800101 19850524 19850525 19860929 2463 
5438500 20060512 20070620 20070621 20070929 505 
5439000 19800101 19810524 19810525 19810929 637 
5440000 19800101 19810524 19810525 19810929 637 
5446500 19800501 19820405 19820406 19820929 881 
5447500 19800101 19810524 19810525 19810929 637 
5451500 19880321 19930918 19930919 19950202 2509 
5454500 19800101 19860312 19860313 19870929 2828 
5455000 19800101 19860312 19860313 19870929 2828 
5457000 19800316 19810603 19810604 19810923 556 
5465500 19800101 20111018 20111019 20190930 14517 
5466500 19800101 19810524 19810525 19810929 637 
5471050 19881001 19921212 19921213 19931231 1917 
5474000 19800101 20111018 20111019 20190930 14517 
5476000 19800101 19810524 19810525 19810929 637 
5483450 19800101 19840805 19840806 19850929 2098 
5483600 19800101 19840805 19840806 19850929 2098 
5498000 19800116 19850527 19850528 19860929 2448 
5502500 19880325 19930610 19930611 19940929 2379 
5506000 19801129 19820305 19820306 19820629 577 
5506500 19821001 19940929 19940930 19970929 5477 
5508000 19821001 19880506 19880507 19890929 2555 
5516500 19800101 19810524 19810525 19810929 637 
5520500 19800101 19921018 19921019 19951231 5843 
5525000 19800101 19921018 19921019 19951231 5843 
5526000 19800101 19921018 19921019 19951231 5843 
5527500 19800101 19921018 19921019 19951231 5843 
5527900 20071001 20160718 20160719 20180930 4017 
5527905 20071001 20160718 20160719 20180930 4017 
5527910 20071001 20170506 20170507 20190930 4382 
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5536000 19841011 19860508 19860509 19860929 718 
5543500 20030201 20080530 20080531 20090929 2432 
5548280 19971201 19990210 19990211 19990531 546 
5552500 20030218 20080603 20080604 20090929 2415 
5555300 19800601 19810624 19810625 19810929 485 
5558300 19831001 19910929 19910930 19930929 3651 
5567500 19830629 19830910 19830911 19830929 92 
5568000 19941001 19970222 19970223 19970929 1094 
5568800 19801001 19810718 19810719 19810929 363 
5570000 19801001 20071211 20071212 20140929 12416 
5570370 19800101 19850806 19850807 19861231 2556 
5583000 19801001 19940506 19940507 19970929 6207 
5585000 19801001 19940506 19940507 19970929 6207 
5587480 20061001 20100929 20100930 20110929 1824 
5588720 20000622 20090627 20090628 20110929 4116 
5591200 19800101 19940312 19940313 19970929 6481 
5594100 19800501 19940406 19940407 19970929 6360 
5599500 19800501 19940406 19940407 19970929 6360 
6088300 19800101 19820312 19820313 19820929 1002 
6088500 19800101 19820312 19820313 19820929 1002 
6130500 19821001 19930221 19930222 19950929 4746 
6191500 19850507 19910407 19910408 19920929 2702 
6192500 19850507 19860619 19860620 19860929 510 
6207500 19840301 19840817 19840818 19840929 212 
6214500 19800101 19810524 19810525 19810929 637 
6236100 19910415 20000426 20000427 20020730 4124 
6267400 19800219 19810414 19810415 19810728 525 
6268500 19800226 19850604 19850605 19860929 2407 
6308500 19800101 19840927 19840928 19851204 2164 
6313500 19830503 19840618 19840619 19840929 515 
6317000 19830427 19840615 19840616 19840927 519 
6324500 19800401 19930612 19930613 19960929 6025 
6425720 19800422 19820206 19820207 19820720 819 
6441500 20150930 20190223 20190224 20191231 1553 
6452000 19811001 20120507 20120508 20191231 13970 
6714800 19941018 19960430 19960501 19960917 700 
6719505 19810407 19810825 19810826 19810929 175 
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6758500 19820401 19840422 19840423 19841028 941 
6817000 19800101 19900313 19900314 19920929 4655 
6906150 19950708 19981124 19981125 19990929 1544 
6918070 19910124 19980103 19980104 19990929 3170 
7019000 19821006 19851126 19851127 19860909 1434 
7036100 19881110 19950303 19950304 19960929 2880 
7040100 19850220 19930815 19930816 19950929 3873 
7040450 19901001 19940929 19940930 19950929 1824 
7046600 19901001 19940929 19940930 19950929 1824 
7061270 20060123 20070812 20070813 20080101 708 
7061300 20060127 20070813 20070814 20080101 704 
7061600 20060127 20070813 20070814 20080101 704 
7068510 19800704 19850630 19850701 19860929 2278 
7077555 19870403 19900117 19900118 19900930 1276 
7103700 19950909 20141207 20141208 20190930 8787 
7103970 19970522 20150410 20150411 20190930 8166 
7103990 19980408 20091106 20091107 20120929 5288 
7104000 19960524 19970515 19970516 19970812 445 
7104905 20030403 20160612 20160613 20190930 6024 
7105500 19950907 20090501 20090502 20120929 6232 
7105530 20130401 20180612 20180613 20190930 2373 
7105600 20030401 20101105 20101106 20120929 3469 
7105800 19980401 20150612 20150613 20190930 7852 
7106300 20140401 20180824 20180825 20190930 2008 
7106500 20010531 20160223 20160224 20191031 6727 
7124200 19800102 19810422 19810423 19810820 596 
7124410 19800101 19831016 19831017 19840927 1731 
7126200 19990612 20150908 20150909 20190930 7415 
7126300 19851001 19910501 19910502 19920922 2548 
7126325 19861020 20130102 20130103 20190723 11964 
7126390 19990612 20150714 20150715 20190722 7345 
7126415 20020702 20160222 20160223 20190722 6229 
7126480 19900710 20121213 20121214 20180724 10241 
7126485 19840930 20000825 20000826 20040816 7260 
7277700 19860207 20000319 20000320 20030929 6443 
7281960 19991001 20021211 20021212 20030929 1459 
7281977 19980505 20020830 20020831 20030929 1973 
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7282000 19961001 19971006 19971007 19980107 463 
7287150 19911008 20010507 20010508 20030929 4374 
7287160 19911016 20010508 20010509 20030929 4366 
7351750 19821001 19860210 19860211 19861214 1535 
7352800 19810304 19820801 19820802 19821208 644 
8023080 19810202 19840320 19840321 19841231 1428 
8023400 19810202 19840810 19840811 19850628 1607 
8313000 20080319 20170822 20170823 20191231 4304 
8317400 19800101 19861230 19861231 19880929 3194 
8329000 20140730 20180911 20180912 20190923 1881 
8332010 19800101 20111018 20111019 20190930 14517 
8334000 19811001 20120117 20120118 20190815 13832 
8353000 19800115 20111015 20111016 20190922 14495 
8383000 19800101 19840805 19840806 19850929 2098 
8396500 19800101 19900313 19900314 19920929 4655 
9041090 19900418 19930120 19930121 19930929 1260 
9217000 19800101 19900313 19900314 19920929 4655 
9243900 19800327 19810313 19810314 19810609 439 
9251000 19800101 19821229 19821230 19830929 1367 
9302000 20060421 20080202 20080203 20080714 815 
9306500 19851001 19890930 19891001 19900930 1825 
9326500 20140501 20180710 20180711 20190728 1914 
9364500 19800101 19901230 19901231 19930929 5020 
9368000 19800101 19850524 19850525 19860929 2463 
9386300 19990710 20151125 20151126 20191230 7478 
9397300 19811002 19970920 19970921 20010918 7291 
9415000 19921001 19950222 19950223 19950929 1093 
9535100 19810110 19810803 19810804 19810924 257 

10104700 19860319 19900821 19900822 19910930 2021 
10118000 19861001 19940929 19940930 19960929 3651 
10174500 19850101 19910314 19910315 19920930 2829 
10336610 19800301 19900325 19900326 19920929 4595 
10336645 19801001 19900506 19900507 19920929 4381 
10336660 19800101 19900313 19900314 19920929 4655 
10336676 19800101 19900313 19900314 19920929 4655 
10336698 19800101 19840805 19840806 19850929 2098 
10336740 19831001 19861211 19861212 19870929 1459 
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10336780 19800301 19870111 19870112 19880929 3134 
11023000 19840101 19840723 19840724 19840912 255 
11042000 19831201 19840730 19840731 19840929 303 
11046500 19811001 19820718 19820719 19820929 363 
11046530 19861207 19880213 19880214 19880601 542 
11047300 19831205 19840731 19840801 19840929 299 
11048500 19800101 19840405 19840406 19850430 1946 
11051500 19811206 19880204 19880205 19890820 2814 
11057500 19800101 19800805 19800806 19800929 272 
11059300 19830331 19830823 19830824 19830929 182 
11074000 19800101 19811229 19811230 19820630 911 
11078000 19800108 19870106 19870107 19881006 3194 
11106550 19961001 20010719 20010720 20020930 2190 
11109000 20041001 20070223 20070224 20070930 1094 
11114000 19800108 19831224 19831225 19841220 1808 
11119745 19831201 19851104 19851105 19860430 881 
11120000 19811201 19820331 19820401 19820430 150 
11120510 19811201 19840823 19840824 19850430 1246 
11151870 19800101 19831018 19831019 19840929 1733 
11162500 19800101 19800805 19800806 19800929 272 
11167800 20071101 20100817 20100818 20110430 1276 
11169025 20021101 20160725 20160726 20191231 6269 
11172175 20031001 20110531 20110601 20130430 3499 
11173575 19991001 20100812 20100813 20130430 4960 
11176500 20191001 20191212 20191213 20191231 91 
11176900 20061001 20170507 20170508 20191231 4839 
11177000 19991001 20020905 20020906 20030531 1338 
11179000 19991001 20151212 20151213 20191231 7396 
11180825 19801201 19981129 19981130 20030531 8216 
11180900 19991001 20020905 20020906 20030531 1338 
11180960 19800101 19980923 19980924 20030531 8551 
11181040 19891001 20131212 20131213 20191231 11048 
11376000 19800101 19800430 19800501 19800531 151 
11377100 19800101 19800430 19800501 19800531 151 
11382000 19801108 19830902 19830903 19840516 1285 
11389000 19800101 19800430 19800501 19800531 151 
11389500 19800101 19800430 19800501 19800531 151 
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11391000 19800101 19800430 19800501 19800531 151 
11407150 19800101 19901230 19901231 19930929 5020 
11417500 20001108 20030914 20030915 20040531 1300 
11418000 20010113 20030927 20030928 20040531 1234 
11425000 19800101 19800430 19800501 19800531 151 
11452500 20121130 20180731 20180801 20191231 2587 
11460400 20031001 20051117 20051118 20060531 973 
11460600 19891001 19900318 19900319 19900430 211 
11460750 20031001 20051117 20051118 20060531 973 
11465200 19800101 19850216 19850217 19860531 2342 
11465750 20061001 20070318 20070319 20070430 211 
11466800 20051001 20071024 20071025 20080430 942 
11467000 19800101 19850216 19850217 19860531 2342 
11468000 19981001 20020625 20020626 20030601 1704 
11469000 20001001 20021117 20021118 20030531 972 
11476500 19801001 19810718 19810719 19810929 363 
11477000 19800101 19800805 19800806 19800929 272 
11481500 19800101 19971111 19971112 20020501 8156 
11482500 19800101 19970123 19970124 20010430 7790 
11525500 20040505 20060116 20060117 20060621 777 
11525530 20051201 20060517 20060518 20060628 209 
11525600 19800101 19980312 19980313 20020929 8307 
11525630 20041101 20060204 20060205 20060531 576 
11525655 19810428 20010712 20010713 20060731 9225 
11525670 20051201 20060516 20060517 20060627 208 
11525854 20040505 20060217 20060218 20060731 817 
11528700 19801201 19820117 19820118 19820430 515 
11532500 19801001 19810718 19810719 19810929 363 
12041200 19800101 19800217 19800218 19800229 59 
12044900 19940930 19960506 19960507 19960929 730 
12045500 19940930 19950719 19950720 19950930 365 
12048000 19991125 20000729 20000730 20000929 309 
12323600 19930301 19950324 19950325 19950929 942 
12323750 19930401 19950330 19950331 19950929 911 
12324200 19850306 20081030 20081031 20140929 10799 
12334550 19850308 20100607 20100608 20160929 11528 
12340000 19860714 20100914 20100915 20160929 11035 
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12340500 19860714 20100914 20100915 20160929 11035 
12413470 19931001 19940718 19940719 19940929 363 
12413500 19931001 19940718 19940719 19940929 363 
12413860 19931001 19940718 19940719 19940929 363 
12424000 19981001 20010222 20010223 20010929 1094 
12510500 19800101 19800831 19800901 19801031 304 
13351000 19921120 19990709 19990710 20010306 3028 
14101500 19811001 19830506 19830507 19830929 728 
14138850 19800101 19850524 19850525 19860929 2463 
14138870 19800105 19850525 19850526 19860929 2459 
14138900 19800101 19850210 19850211 19860523 2334 
14139800 19800101 19850524 19850525 19860929 2463 
14226500 19800527 19800904 19800905 19800930 126 
14232500 19800601 19800905 19800906 19800930 121 
14240525 20010201 20140601 20140602 20170930 6085 
14241500 19801031 20061006 20061007 20130331 11839 
14243000 19800518 19831112 19831113 19840926 1592 
14309000 19801202 19810423 19810424 19810529 178 

 
 
 
 
 


