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Abstract

Commercial air traffic is anticipated to increase rapidly in the coming years. The
impact of aviation noise on communities surrounding airports is, therefore, a grow-
ing concern. Accurate prediction of noise can help to mitigate the impact on
communities and foster smoother integration of aerospace engineering advances.
The problem of accurate sound level prediction requires careful inclusion of all
mechanisms that affect propagation, in addition to correct source characteriza-
tion. Terrain, ground type, meteorological effects, and source directivity can have
a substantial influence on the noise level. Because they are difficult to model, these
effects are often included only by rough approximation.

This dissertation presents a model designed for sound propagation over uneven
terrain, with mixed ground type and realistic meteorological conditions. The model
is a hybrid of two numerical techniques: the parabolic equation (PE) and fast field
program (FFP) methods, which allow for physics-based inclusion of propagation
effects and ensure the low frequency content, a factor in community impact, is
predicted accurately. Extension of the hybrid model to a pseudo-three-dimensional
representation allows it to produce aviation noise contour maps in the standard
form.

In order for the model to correctly characterize aviation noise sources, a method
of representing arbitrary source directivity patterns was developed for the unique
form of the parabolic equation starting field. With this advancement, the model
can represent broadband, directional moving sound sources, traveling along user-
specified paths. This work was prepared for possible use in the research version
of the sound propagation module in the Federal Aviation Administration’s new
standard predictive tool.
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Kármán spectrum parameters used are K−1
0 = 10 m,

C2
T

T 2
0

= 6 ∗ 10−7

m−2/3, C2
v

c20
= 2 ∗ 10−6 m−2/3. The energy-containing, inertial, and

dissipative subranges are shown. . . . . . . . . . . . . . . . . . . . 184

F.1 Comparison of the PE module with benchmark cases from refer-
ence [7] for Case 1, a homogeneous atmosphere. The PE results
of this research, shown in green, are overlaid on reference [7] re-
sults, reproduced with permission. Much of the time the lines are
indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

F.2 Comparison of the PE module with benchmark cases from refer-
ence [7] for Case 2, a downward refracting atmosphere. The PE
results of this research, shown in green, are overlaid on reference [7]
results, reproduced with permission. Much of the time the lines are
indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

xvii



F.3 Comparison of the PE module with benchmark cases from reference
[7] for Case 3, an upward refracting atmosphere. The PE results
of this research, shown in green, are overlaid on reference [7] re-
sults, reproduced with permission. Much of the time the lines are
indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

F.4 Comparison of the PE module with benchmark cases from refer-
ence [7] for Case 4, a ducting atmosphere. The PE results of this
research, shown in green, are overlaid on reference [7] results, re-
produced with permission. Much of the time the lines are indistin-
guishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

F.5 Comparison of the FFP module with benchmark cases from refer-
ence [7] for Case 1, a homogeneous atmosphere. The FFP results
of this research, shown in green or red, are overlaid on reference [7]
results, reproduced with permission. Much of the time the lines are
indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

F.6 Comparison of the FFP module with benchmark cases from refer-
ence [7] for Case 2, a downward refracting atmosphere. The FFP
results of this research, shown in red, are overlaid on reference [7]
results, reproduced with permission. Much of the time the lines are
indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

F.7 Comparison of the FFP module with benchmark cases from refer-
ence [7] for Case 3, an upward refracting atmosphere. The FFP
results of this research, shown in red, are overlaid on reference [7]
results, reproduced with permission. Much of the time the lines are
indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

F.8 Comparison of the FFP module with benchmark cases from ref-
erence [7] for Case 4, a ducting atmosphere. The FFP results of
this research, shown in red, are overlaid on reference [7] results,
reproduced with permission. Much of the time the lines are indis-
tinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

F.9 Comparison of PE results of sound pressure level relative to a source
in the free field including the effects of turbulence from reference
[1] and the PE model used in this research. Source height = 2
m, receiver height = 2 m, frequency = 500 Hz, b = -1 m/s, rigid
ground. Average over 50 realizations of turbulence, K−1

0 = 10 m,
C2
T/T

2
0 = 2.5× 10−7 m−2/3, and C2

v/c
2
0 = 1× 10−6 m−2/3 (a) Results

after reference [1] Figure 5.7. (b) Results of coded PE model used
in this research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

xviii



List of Tables

1.1 Effective flow resistivities as calculated by comparing predicted and
measured spectra, from [3], originally appeared in [8]. Reproduced
with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Description of test case geometries for the 50 and 500 ft source
heights.

87
4.2 Maximum horizontal grid step spacing, by case number and source

frequency.
88

4.3 Atmospheric absorption coefficients of the SAE-ARP-866A [9] and
ANSI S1.26 [10] standards, used in INM and NMSim, respectively.
25 ◦C air temperature and 70% relative humidity.

98

xix



Acknowledgments

I very gratefully acknowledge my advisors, Dr. Atchley and Dr. Sparrow. Dr.
Atchley not only guided me through my doctoral program as a true mentor, helping
me think deeply about my research and opening opportunities, but his class helped
impart something I will keep forever—Lee. Dr. Sparrow’s knowledge of the field
was a huge resource and his advice, invaluable. Their genuine concern for and
encouragement of my professional and personal growth have been unwavering.

I would like to thank my committee members, Dr. Swanson and Dr. Brentner
for their valuable insights, and the different perspectives they brought at various
stages of my progress. Thank you, also, to Dr. Gabrielson whose thoughtful
suggestions and classes helped me get through some of my toughest problems.

This research was funded by the Office of Environment and Energy, U.S. Federal
Aviation Administration under Contract FAA 07-C-NE-PSU, and U.S. Depart-
ment of Transportation Volpe National Transportation Systems Center. I would
like to acknowledge the support of the FAA/NASA/Transport-Canada PARTNER
Center of Excellence (www.partner.aero) and Penn State University. A special
thanks to Eric Boeker and Bill He for their guidance in this research.

I thank my friends in State College and beyond who kept up the encouragement,
especially Jes for my pre-candidacies care package and Running Buddy Becky for
motivating some much needed endorphins. Acousticians of the Research West
lab (resident and distant)—Alexandre, Amanda, Andy, Beom Soo, Denise, Joe,
Kieran, Kim, Sang, Whitney—and graduated labmate, Ki Won, thank you for the
discussions and digressions. Thank you to my Starbucks buddies, Rege and Ron.

To my parents, who always believe in me and inspire me to do my best—
Mom who meticulously edits writing in languages she doesn’t understand and
Dad who listens about my research and works to understand—thank you for your
unconditional love.

Lee, since I met you, you have been a tremendous source of support, love, and
strength. You inspired me with your successes and patiently stuck by me while I
finished up. Now I’m graduating and ready.

xx



Chapter 1
Introduction

1.1 Motivation

For people who live and work in close proximity to airports, aviation noise can be

an unwelcome disturbance. Its impact on communities has been of concern since

the late 1950s, when high volumes of jet aircraft were used for commercial services.

Soon after, regulations were established to help control and restrict the noise [3].

Today, the Federal Aviation Administration predicts a 60% increase in operations

at the nation’s 35 busiest airports over the next twenty years [11]. Accordingly,

concerns about aviation noise are more important than ever.

Methods of accurately predicting sound levels near airports can help to mini-

mize the impact of aviation noise on communities by facilitating compatible land

use management, and informing airport expansion projects. They can also help

direct mitigation efforts to areas most in need. For these reasons, viable numerical

models are desirable.

The Integrated Noise Model (INM) is the current American standard in numer-

ical aviation noise propagation. Employed by the Federal Aviation Administration

since 1978, INM is used by more than 1000 companies in more than 65 countries

around the world [12]. INM relies on an extensive database of source level infor-

mation, for a vast variety of aircraft, under reference conditions. INM algorithms

then adjust the reference levels to account for realistic flight and propagation con-

ditions. While numerous effects are included, simplified approximations are used

for many in the interest of computational speed.
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More sophisticated algorithms based on ray tracing have been implemented

in some existing transportation noise models. Such models, for example the re-

cently developed Advanced Acoustic Model (AAM) for military air base noise [13],

can employ more detailed representations of the noise source and account, more

accurately, for a larger number of noise propagation effects. However, they use

high frequency assumptions that may not accurately capture the behavior of low

frequency sound.

The research discussed in this dissertation is based on two popular methods of

propagation called the parabolic equation (PE) model and the fast field program

(FFP) which, together, can accommodate a wide range of propagation effects for

low to high frequency sound. They are joined to form a hybrid propagation model.

This chapter describes the mechanisms of outdoor sound propagation, including

an introduction to established practices of quantifying and modeling their effects.

It then provides a summary of the methodology of both the existing standard

aviation noise models as well the state of the art in propagation modeling. Finally,

it presents the goals and approach of this research and outlines the remainder of

the dissertation.

1.2 Outdoor Sound Propagation

Aviation noise moving through outdoor spaces is acted on by a variety of differ-

ent propagation mechanisms. Effects such as geometric spreading, atmospheric

absorption, ground impedance, meteorology, and terrain effects may have signifi-

cant influence on the amount of sound that reaches nearby communities. Exten-

sive research in the field of outdoor sound propagation has provided methods of

quantitatively modeling and including these effects in predictive models. A brief

description of each effect, with a focus on methods from the published literature

for quantifying them, is presented in this section. Some references will be made

to specific noise models. However, the procedures used in these models will be

elaborated on further in the following section.

Effective propagation algorithms alone are not enough to ensure accurate pre-

dictions of aviation noise. Propagation must begin with an input that correctly

characterizes the source. Therefore, a short background of the directional nature



3

of aviation noise sources and the impact of source directivity on propagation is

also included.

1.2.1 Geometric Spreading

As sound travels outward from a source like a point or line, it spreads in space. In

so spreading, the sound is attenuated with distance at a rate determined by the

source geometry. Point sources and sources small in extent compared to the wave-

length of sound experience a 6 dB decrease in sound level per doubling of distance

from three-dimensional spherical spreading. Infinite line sources experience a de-

crease of 3 dB per distance doubling from two-dimensional cylindrical spreading

[14, 15]. Geometric spreading is one of the most elementary and well-understood

propagation effects. Inclusion of this effect in numerical propagation models is

standard.

1.2.2 Atmospheric Absorption

Atmospheric absorption is another fundamental mechanism of attenuation. It in-

cludes, collectively, the effects of thermal losses, shear viscosity losses, and molecu-

lar relaxation losses of oxygen and nitrogen, experienced as sound travels through

the air. The amount of atmospheric absorption is frequency dependent and, acting

as a low pass filter, the effect significantly attenuates high frequency sound while

allowing low frequencies to propagate further. It is also a function of humidity and

temperature [14, 16].

Different standards exist for calculating atmospheric absorption in numerical

propagation models. It is commonly quantified as a decibel attenuation over a

unit of distance, called the absorption coefficient. INM adheres to the calculation

methods of the Society of Automotive Engineers (SAE) Aerospace Recommended

Practice (ARP) 866A [17] and SAE Aerospace Information Report (AIR) 1845 [9].

The International Standard Organisation (ISO) 9613-1 [18] is also commonly used.
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1.2.3 Ground Effects

Properties of the ground surface under a propagation path can also significantly

affect sound. For example, propagation over freshly fallen snow will lead to sub-

stantially lower noise levels than concrete-covered ground. The effect of the ground

also has an important influence on the interference patterns produced by propa-

gated sound of a single frequency. Sound traveling directly from the source inter-

acts with sound reflected off the ground surface to create patterns of peaks and

dips where sound adds constructively and destructively, respectively. The charac-

teristics as well as locations of these peaks and dips are affected by the properties

of the ground surface. These properties are quantified in the complex impedance

of the ground surface, defined as the ratio of the complex pressure amplitude to the

normal component of complex velocity amplitude, evaluated at the surface of the

ground [1]. In its purest form, the impedance of the ground surface is calculated as

a function both of properties of the ground and of the incident sound, which can

become prohibitively complicated. However, applying various approximations can

simplify the equations into implementable calculations for numerical propagation

models.

Certain propagation cases include more than one type of ground surface along

the path between source and receiver. For example a source may be over water

with the receiver in a grassy field. In such cases, both types of ground affect prop-

agation and can be incorporated by including a ground impedance discontinuity

in propagation calculations.

1.2.3.1 Ground Impedance

Two definitions of ground impedance are first distinguished to clarify the discus-

sion of ground effects. The characteristic impedance of a ground material is defined

as the ratio of the complex pressure amplitude to the complex velocity amplitude

for a sound wave traveling inside a medium [1]. On the other hand, the impedance

of a ground surface, as described above, is the ratio of the complex pressure am-

plitude to the normal component of the complex velocity amplitude evaluated at

the ground surface. However, if the sound speed in the ground is much smaller

than that in the air, the wave transmitted through the ground can be assumed
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to travel normal to the ground surface, regardless of the incident angle. Such an

approximated ground is called locally reacting. For a locally reacting ground, the

characteristic impedance of the ground material, a complex quantity that is not

a function of incident angle, can be used to approximate the impedance of the

ground surface [1, 15].

Delany and Bazley [19] developed an empirical method to determine the char-

acteristic impedance of a range of fibrous absorbent materials as a function of

frequency, using a single parameter model based on flow resistance. The ground

impedance normalized by the acoustic impedance of the air is calculated as [19]:

Z = 1 + 9.08
(σ
f

)0.75

+ i11.9
(σ
f

)0.73

(1.1)

where f is frequency and σ is the effective flow resistivity of the ground surface

in cgs rayls. (The sign of the imaginary part of the impedance has been changed

from the Delany and Bazley paper to accommodate a e−iωt time dependence [8]).

This work was extended by Chessell [20] and Embleton, et al.[8] to substantiate the

model for a larger variety of ground and propagation conditions. Note that effective

flow resistivity is a term for values deduced from measured sound pressure levels

using the single parameter model, and may depend not only on the flow resistivity,

but additional parameters of the ground surface, as described in [8]. The effective

flow resistivities for various types of ground surface are shown in Table 1.1.

A more precise four-parameter method of calculating impedance was later de-

veloped by Attenborough [21], requiring inputs of flow resistivity, grain shape

factor, pore shape factor ratio, and tortuosity [1]. While a different impedance

calculation method could be substituted into the hybrid model discussed in this

dissertation, the remainder of this discussion will rely on the simpler single param-

eter method of ground impedance calculation, assuming a locally reacting ground.

The ground impedance is important to propagation because it can affect the

overall levels of sound reaching a community and the interference patterns pro-

duced by each individual frequency of sound. An acoustically hard surface, like

water or concrete, can cause an approximate pressure doubling of sound above the

ground. In such a case, the interference pattern will have pronounced minima and

maxima in regions of destructive and constructive interference. Over porous, ab-
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Table 1.1. Effective flow resistivities as calculated by comparing predicted and mea-
sured spectra, from [3], originally appeared in [8]. Reproduced with permission.

sorbing ground surfaces like grass or freshly-fallen snow, phase changes stem from

the complex ground impedance and cause the interference pattern minima to be

less pronounced and shifted to lower frequencies [1, 14].

Knowledge of the ground surface impedance is sufficient for use in most of the

calculations of the PE. However, analytical model calculations, as well as the FFP

model and PE starting field input calculations require use of a reflection coefficient

parameter. The reflection coefficient is a function of the impedance of the ground

surface and is defined as the ratio of reflected to incident pressure. Plane-wave

and spherical-wave reflection coefficient equations are presented in this section.

However, detailed derivation of these equations is omitted for brevity. They can

be found in reference [1].

In plane wave propagation, the reflection coefficient is calculated as [1]:

Rp =
Z cos θ − 1

Z cos θ + 1
(1.2)

where Z is the normalized impedance of the ground surface and θ is the incident

or reflected angle as shown in Figure 1.1

To represent sound emitted from a point source, which spreads to all angles, a

single incident angle input for Equation 1.2 cannot be assigned and a different re-
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Figure 1.1. Geometry of source and receiver geometry above a ground surface, after
[1] Figure D.1.

flection coefficient must be used. The spherical-wave reflection coefficient captures

the more complicated reflections of sound from a point source. The physical rep-

resentation of the image source may be imagined as a source distributed in space,

with the largest values at the standard image source location, extending out to

infinity, both horizontally and in depth [3]. It is calculated as [1]:

Q = 1− 2
k1

Z

R2

exp(ik1R2)

∫ ∞
0

exp
(
− qk1

Z

)exp(ik1

√
r2 + (z + zs + iq)2)√

r2 + (z + zs + iq)2)
dq (1.3)

where k1 is the wave number in the air above the ground, Z is the normalized

impedance of the ground surface, R2 is the distance between the image source and

receiver, and zs is the source height.

The spherical-wave reflection coefficient can be used to calculate the analytical

complex pressure amplitude of a point source above a finite impedance ground

surface as [1]:

pc = S
exp(ik1R1)

R1

+QS
exp(ik1R2)

R2

(1.4)

where S is a constant, and R1 is the distance between the source and receiver. Use
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of this spherical-wave reflection coefficient describes the behavior not only of the

reflected sound as considered for a plane wave, but also of the ground and surface

waves that form from the spherical nature of the reflected sound waves [15].

This solution can be further simplified to the Weyl-van der Pol form of solution,

used in electromagnetic propagation theory, which takes the form [14]:

pc =
S exp(ik1R1)

R1

+ [Rp + (1−Rp)F (w)]
S exp(ik1R2)

R2

(1.5)

where F (w) is the boundary loss factor that accounts for the non-planar wavefronts

and is calculated through use of the complementary error function. However, this

form of the spherical-wave reflection coefficient is not used in the hybrid model

presented in this dissertation and further explanation is, therefore, beyond the

scope of this research.

1.2.3.2 Ground Impedance Discontinuities

Transitions between different types of ground further complicate the calculations of

sound propagation. For example, ground transitions may occur near airports where

concrete runways meet surrounding grassy fields. Airports near oceans may face

transitions between grass and water. In such cases, a diffracted field is produced

by the impedance discontinuity at the interface of the two ground types [22, 23].

The effects of ground impedance discontinuities have been measured and found

significant in experiments involving different types of ground surfaces [22, 23]. A

number of different models exist for calculating the effect of ground impedance

discontinuities: the semi-empirical solution models of de Jong [24] and Koers [25],

the numerical solution of Rasmussen [26], Fresnel zone methods, and the Boundary

Element Method [27]. The parabolic equation method includes impedance tran-

sitions with a simple change in the value of the ground impedance input between

range steps. Limitations of the model prevent inclusion of the diffracted sound at

the transition [28].

1.2.4 Meteorological Effects

Meteorological effects are made up of two main mechanisms: atmospheric refrac-

tion and atmospheric turbulence. A refractive atmosphere, caused by gradients
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of temperature and/or wind speeds, can have a large effect on the sound field,

especially at longer ranges, and when shadow zones are formed.

Atmospheric turbulence manifests as small time scale fluctuations in the tem-

perature and wind velocity around some mean value. It has the effect of filling in

interference pattern dips and increasing sound levels in shadow zones caused by

refraction or terrain obstructions [1].

1.2.4.1 Atmospheric Refraction

During the daytime, solar radiation warms the ground more quickly than the air.

As the ground warms, heat is conducted into the air above, raising the temperature

from the ground up. In typical daytime conditions, the temperature of the air can

decrease with increasing height by about 5 ◦C in the meter above the ground and

about 3 to 5 ◦C more up to 100 m above the ground [3].

The speed of sound in air is proportional to the square-root of temperature.

Therefore, a negative gradient in sound speed results from the daytime’s decrease

in air temperature with height. Sound in a negative sound speed gradient refracts

upward, as shown on the left in Figure 1.2.

Upward refraction also occurs in upwind conditions, where viscous drag effects

at the ground cause the wind speed to increase with height from the ground [3].

Because the effective speed of sound is decreased opposite to the direction of wind,

a negative sound speed gradient results and causes upward refraction, seen on the

right side of the source in Figure 1.3.

During the nighttime, the ground cools faster than the atmosphere and the

temperature of the air increases with height above ground [3]. An increasing

sound speed follows from the increasing temperature, and corresponds to a positive

sound speed gradient. The positive sound speed gradient causes sound to refract

downward, as shown on the right in Figure 1.2. In such cases, additional sound

paths involving multiple ground reflections are possible, as shown in Figure 1.4.

Downwind conditions have an opposite effect on the change in the effective

sound speed gradient as upwind. In the direction of the wind, the gradient is

positive, and downward refraction results, seen on the left side of the source in

Figure 1.3.

The effects of temperature and wind can be captured in an effective sound
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Figure 1.2. Refraction caused by themal gradients, after [2]

Figure 1.3. Refraction caused by wind gradients, after [2]

speed profile that defines the speed of sound at each position in height. Different

functions are used to model the profile, the most popular of which are linear

functions, logarithmic functions, or a combination of both. A linear sound speed

profile takes the form of [1]:
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Figure 1.4. Multiple ray paths between the source and receiver from [3]. Reproduced
with permission.

c(z) = c0 + az (1.6)

where c0 is the sound speed at the ground, a is the sound speed gradient, and z is

height. A logarithmic sound speed profile takes the form of [1]:

c(z) = c0 + b ln
( z
z0

+ 1
)

(1.7)

where b is the parameter of the logarithmic sound speed profile and z0 is the

aerodynamic roughness length of the ground surface (usually between 0.01 m and

0.1 m for an open field of grassland) [1].

The linear and logarithmic profiles can represent either the adiabatic (thermal)

sound speed c(z) or the horizontal wind velocity in the direction of propagation

u(z). While the adiabatic sound speed profile is the same in all directions horizon-

tally from the source, the horizontal wind velocity profile will change depending on

the angle between propagation and the direction of the wind. The effective sound

speed profile is the sum of the adiabatic and wind speeds as [1]:

ceff (z) = c(z) + u(z) (1.8)

This effective sound speed approximation is valid for conditions in which sound

travels at relatively small elevation angles [1].

1.2.4.2 Atmospheric Turbulence

Atmospheric turbulence is characterized by the fluctuations in the sound speed

around some average value due to variations of wind velocity and temperature.

The acoustic refractive index n = c0/ceff is a different form of effective sound
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speed representation, and can be divided into two components: the average value

and the fluctuation [1]:

n = n̄+ µ (1.9)

where n̄ is the average value of the acoustic refractive index, which may be a

function of position, and µ is the fluctuation where µ� n̄ and the average of the

fluctuation µ̄ = 0 [1]. Turbulence increases the sound levels within interference

pattern minima and shadow regions caused by upward refracting atmospheres and

raised terrain [1]. Effects of turbulence increase with distance [3].

Turbulence is manifested as eddies ranging in size from the largest, energy con-

taining eddies of the order of the height of the atmospheric boundary layer, to the

smallest, dissipative eddies, of the order of 1 mm. Energy cascades down from

the larger eddies to the smaller eddies, eventually being dissipated by viscous and

thermal losses. The spectral density of the random fluctuations (both thermal

and velocity) reveals the distribution of the different sizes of eddies in the turbu-

lent field. The shape of the spectral density is influenced by the structure of the

atmospheric boundary layer and the cascade process [3].

In turbulence models, variations in the atmospheric turbulence are assumed to

be much slower than the speed of sound. The atmospheric turbulence is, therefore,

assumed to be “frozen” as compared to the speed of the sound waves moving

through. The sound field is calculated for each frozen “snapshot” of a random

turbulence realization, defined by the refractive-index fluctuation µ. An ensemble

of these realizations is amassed using a numerical propagation model and averaged

over to determine the averaged effects of the turbulence [1].

1.2.5 Terrain Effects

Terrain features can have substantial effects on the paths of propagated sound.

Interestingly, the effects of features like hills and valleys are closely related to

effects caused by atmospheric refraction. For example, a shadow zone formed

behind a hill, as illustrated in Figure 1.5, behaves similarly to one formed in an

upward refracting atmosphere. Parallels between uneven terrain and refractive

atmospheres are further depicted in Figure 1.6.
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Figure 1.5. A shadow zone is formed behind a hill, after [1] Figure 5.1.

Figure 1.6. Parallels between terrain features and atmospheric refraction: A hill cor-
responds to a upward refraction atmosphere and a valley corresponds to a downward
refracting atmosphere, after [1] Figure 6.3.

The complexities of terrain are handled with varying levels of sophistication

in numerical models. INM uses a simplified method of calculation based on the

difference in path length between the direct, unobstructed path from source to re-

ceiver, and the path over the terrain (Section A.3.1.3) [4]. The Geometrical Theory

of Diffraction is also commonly applied, as in the ray-based propagation models,
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AAM and NMSim [29, 13]. The PE method employs a coordinate system trans-

formation to propagate sound over a flattened ground using altered propagation

algorithms.

1.2.6 Source Characteristics

Sound is not radiated uniformly in all directions from aviation noise sources. Differ-

ent sources—jet, propellor, airframe, etc.—have different characteristic directivity

patterns. The individual aviation noise sources can be modeled by elementary

monopole, dipole, and quadrupole sources. For example, a monopole can model

a pulsating jet as in a piston-engine exhaust, a dipole can model propellor noise,

and a quadrupole has been shown by Lighthill [30] to model aerodynamic noise

from a subsonic turbulent jet [31].

A solution for a monopole source above an impedance ground surface was

explored in Section 1.2.3.1. Closed-form analytical solutions for dipole and

quadrupole sources, arbitrarily oriented above a ground surface, have also been

determined [32, 33].

The sound field for an arbitrarily oriented dipole source above an impedance

plane can be represented as a superposition of horizontally- and veritcally-oriented

dipoles and can be written in a similar form as a monopole source, including terms

for the direct sound field, the image sound field, and the ground wave component

[32]. It was found that the difference between sound fields of a monopole and a

horizontal dipole is small at near-grazing angles over an impedance surface. At

larger angles, the difference is more significant.

Because a vertical dipole radiates more energy downward, toward the ground,

the ground wave component represents a larger portion of the total sound field.

Consequently, the vertical dipole field shows large differences from the monopole

field at near-grazing angles. In addition, the straightforward application of the

reciprocity theorem, in which identical results can be obtained by interchanging

source and receiver positions, was determined to be invalid for the vertical dipole

because of angular dependencies [32].

The sound field for an arbitrarily oriented quadrupole source above an

impedance plane cannot be manipulated to a similar form as a monopole, though
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a closed form solution can still be written. A lateral quadrupole over a ground sur-

face tends to behave similarly to a vertically oriented dipole at further distances

from the source. Both the vertical quadrupole and vertical dipole show larger ex-

cess attenuation, as compared to the same source in free field, than a monopole.

A vertical longitudinal quadrupole shows lower excess attenuation than a vertical

dipole. Both, again, are greater than the monopole [33].

The differences between the sound fields for different fundamental sources above

a ground indicate the importance of including source directivity effects in sound

propagation models. Sources with arbitrary directivity patterns have not previ-

ously been explored in the literature for the parabolic equation method of atmo-

spheric propagation. Therefore a technique for representing directional sources was

developed in this research.

1.3 Standard and State of the Art Aviation

Noise Models

Standard models in widespread use are inclined to meet computational require-

ments of a typical PC, achieve fast runtimes, and minimize their learning curves to

accommodate a diverse group of users. Often, to accomplish this, approximations

that separate the model from the physics of propagation are made. However, as

computational power increases, use of physics-based propagation models becomes

more realistic.

This section briefly introduces some of the major aviation noise propagation

models and state of the art modeling techniques. It begins with a description of

the popular segmentation model INM, then discusses the ray-based model AAM.

It concludes with short descriptions of the state of the art methods of noise prop-

agation including the ray model, Green’s Function Parabolic Equation model,

Crank-Nicholson Parabolic Equation model, and Fast Field Program. The Crank-

Nicholson Parabolic Equation and Fast Field Program methods, which are featured

in this research, are discussed further in Chapters 2 and 3.
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1.3.1 Existing Aviation Noise Models

INM, the FAA’s standard model of noise assessment, and NOISEMAP, the required

method for modeling noise exposure near military air bases, are segmentation

models. These models use source information compiled in large database structures

call Noise-Power-Distance (NPD) tables. NPD tables contain data separated by

aircraft type and flight operation, for a given engine power and distance from the

flight path. NPD tables represent sound level information assuming an aircraft

proceeding along straight flight paths, of infinite length, parallel to the ground,

under reference conditions. Corrections are applied to these curves to represent

realistic finite segments of more complex flight paths and to include complicated

propagation effects [4].

Many of the adjustments used in segmentation models are based on simplified

approximations. For example, in INM:

• One azimuthal directivity pattern of aircraft noise is assumed for all aircraft

configurations and speeds [4], though these variables can affect aerodynamic

noise source contributions to the directivity pattern.

• The ground effect adjustments, developed from field measurements over

acoustically soft ground, are applied for all airports. Therefore, sound lev-

els calculated around airports that border hard surfaces, such as water or

concrete, may be under-predicted [4, 34].

• Uneven terrain is addressed by invoking the optional line-of-sight blockage

adjustment, but no distinction is made between different terrain shapes (Sec-

tion A.3.1.3).

• The meteorological effects of refraction and scattering are incorporated as-

suming a generalized atmosphere. No provisions are made for atmospheric

conditions specific to the atmosphere’s sound speed profile or turbulence [4].

Ray-trace models are more sophisticated than segmentation models and can

allow for more detailed characterization of noise sources and more precise inclusion

of propagation effects. The Advanced Acoustic Model (AAM), a model developed

to replace NOISEMAP for modeling noise exposure near military air bases, is

ray-based. For example, in AAM:
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• Detailed sound spheres are used to represent sound emanating from a single

point, with a particular directivity, for different frequency representations.

• Ground effects are based on the methods that use a more descriptive ground

impedance parameter for a more accurate ground effect representation.

• Terrain features are categorized by their shapes as flat, uphill, downhill,

valley, as well as wedges and screens with varied levels of complexity.

• A curved ray model is used to incorporate meteorological effects, using a

horizontally stratified atmosphere. However, its use is limited to single event

analysis occurring over uniform, flat terrain [13].

While the ray method can account, more accurately, for a larger number of

noise propagation effects, it is a high frequency approximation and does not always

represent low frequency acoustic behavior properly. In addition, though sound

spheres are more detailed characterizations of the source, the current reach of the

available sound sphere database is small, limited by the time and expense required

for data collection. Consequently, because an extensive NPD database already

exists for a large range of aircraft and engine types, the NPD representation is

more commonly used.

A more comprehensive overview of currently used transportation noise models

and the algorithms they use can be found in Appendix A.

1.3.2 State of the Art in Propagation Modeling

Several state of the art methods of sound propagation have been developed and

used in the literature for different conditions of propagation. This section will

introduce the basic concepts of the ray model, Green’s Function Parabolic Equation

model, Crank-Nicholson Parabolic Equation model, and Fast Field Program. The

Boundary-Element Method (BEM) is also commonly used for sound propagation

near barriers, such as vertical screens. However, noise barriers are not considered

in this research and BEM is not explored further.
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1.3.2.1 Ray Model

The ray model propagates sound with an approach called geometrical acoustics.

In the model, the full sound field is obtained by adding the contributions of rays

propagated outward from a source. The ray model involves two components of

calculations: determining the ray paths and finding the contribution of each ray

to overall sound pressure [1]. The eikonal equation describes the paths sound rays

take, and the transport equation calculates their contributions to the sound field. A

series expansion, in the inverse of angular frequency, of the pressure is used to arrive

at the transport equation. Truncation of the series precludes accurate propagation

in the low frequency limit [35]. The ray model produces inaccurate results at

focusing areas called caustics, where the model over-predicts sound levels, and in

shadow zones, where it under-predicts sound levels [36]. However, as implemented

in AAM, it can accommodate range-dependent effects.

1.3.2.2 Green’s Function Parabolic Equation Model

The Green’s Function Parabolic Equation (GFPE) [37], along with the Crank-

Nicholson Parabolic Equation (CNPE) are two main formulations of the PE

method. Both PE methods utilize a vector starting field, defined for all heights at

the first range step, and extrapolate results in range. However, the method of solv-

ing the parabolic equation differs. The GFPE uses Fourier transforms combined

with a transformed Green’s function of a point source over a finite impedance

ground to propagate sound. It can use far larger step sizes in range than can

the Crank-Nicholson Parabolic Equation and, therefore, has faster computational

speed. However, it includes the effect of a refractive atmosphere as a phase factor,

multiplied into the solution with each step in range. With this approximation in

including the effects of a refractive atmosphere, errors are introduced if the change

in sound speed with height and the range step size are large. However, if a high-

order starting function is used, the GFPE maintains accuracy to higher elevation

angles than does the CNPE. It does not allow a high degree of flexibility in model-

ing boundaries, unlike finite-difference formulations of the PE, such as the CNPE,

which can [1, 38, 37].
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1.3.2.3 Crank-Nicholson Parabolic Equation Model

The Crank-Nicholson Parabolic Equation (CNPE) model begins with the same

form of parabolic equation as does the GFPE, but implements a different method

of solution. In the CNPE, an alternate expansion is utilized. The truncation of

the CNPE expansion enforces an elevation angle limitation, for which accuracy is

degraded at larger angles from the source as measured from the primary direction

of propagation. The order of the expansion determines to what angle the CNPE

results are considered accurate. In contrast to the GFPE, the CNPE method

requires much smaller steps in range, increasing computation time. However, with

a variation on the CNPE allowing it to incorporate a generalized terrain function,

it can model more complicated boundaries. Neither the GFPE nor the CNPE are

restricted to high frequencies and are, therefore, accurate for low frequencies. Both

formulations can include range-dependent effects [1, 38].

Because of its accuracy at low frequencies, range-dependent effect capabilities,

and increased flexibility and ease in modeling boundaries, the finite difference,

CNPE formulation is chosen as the basis of this research and is described in detail

in Chapter 2.

1.3.2.4 Fast Field Program

The Fast Field Program (FFP) is based on an approximate form of the wave equa-

tion that employs a transform from the horizontal spatial domain to the horizontal

wave number domain. The equation is solved numerically in the horizontal wave

number domain for a point source above a finite impedance ground, and trans-

formed back into the spatial domain to return sound field results. Because it

works only in horizontally stratified layers of the atmosphere, the FFP is limited

to range-independent effects and, therefore, cannot incorporate terrain features

or changes in the ground or atmosphere with range. It can incorporate a sound

speed profile that varies in height and does not make assumptions that degrade its

accuracy at low frequencies or large elevation angles [1].

The FFP has strengths that compliment the limitations of the finite difference

formulation of the PE. It is, therefore, used in this research to supplement the PE

and is described in detail in Chapter 3.
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1.4 Research Objectives and Outline

The goal of this research is to accurately predict aviation noise in complex propa-

gation environments, with a focus on low frequency sound, an issue that is partic-

ularly relevant to aviation noise. To realize this goal, focus was given to both the

propagation of sound and to the correct representation of the noise source. The

parabolic equation (PE) method, on which this research is based, is capable of

incorporating range-dependent propagation effects including ground impedance,

terrain, and meteorology. In addition, it can accurately capture low frequency

propagation behaviors. In order to faithfully represent the directional charac-

teristics of the sources of aeroacoustic noise, a new method was formulated to

accommodate directional sources within the PE.

The PE model is inherently limited by degraded accuracy at large angles from

the horizontal of the noise source. Because of this elevation angle limitation,

a hybrid model was devised. The hybrid model, designed in this research and

described in detail in this dissertation, uses the PE model in conjunction with an

additional propagation method, the Fast Field Program (FFP). The FFP, accurate

both at low frequencies and at large elevation angles, supplements the PE. It is,

however, limited to inclusion of non-range-dependent propagation effects.

This dissertation discusses the design of the hybrid PE-FFP model including

detailed descriptions of the PE and FFP methods, the formulation and capabil-

ities of the full hybrid model, and the contouring capabilities developed to com-

pliment those in current predictive aviation noise models. This chapter presented

an overview of the effects that contribute to the challenge of aviation noise prop-

agation in realistic conditions. Chapters 2 and 3 introduce the two-dimensional

PE and FFP propagation methods, respectively, detailing the formulation of the

models used in the research, and describing the models’ capabilities and limita-

tions. Chapter 4 describes the structure of the two-dimensional hybrid PE-FFP

model, including input requirements and test case validation. Chapter 5 outlines

the process of transforming the model from a two-dimensional space to a pseudo-

three-dimensional representation, and finally to noise contour maps. Chapter 6

describes the method of including source directivity patterns in the PE. Finally,

Chapter 7 provides a summary of this dissertation, conclusions of the research,
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and ideas for future work.



Chapter 2
The Two-Dimensional Parabolic

Equation Model

2.1 Introduction

The parabolic equation (PE) method [39] is a common approach to modeling propa-

gation when ground impedance [28, 40], meteorology [41, 42, 43], and terrain effects

[44] are significant and vary with range. Because the parabolic equation method

makes no high frequency assumptions, it can accurately capture low frequency

propagation behaviors [45] that contribute to community impact.

The parabolic equation method is based on an approximate form of the wave

equation with a preferred direction of propagation. It has been used in a wide

variety of fields including tropospheric propagation of electromagnetic waves, most

commonly radio waves, where it was first introduced by Leontovich and Fock [46,

47]. In the 1970s, parabolic equation method was applied to underwater acoustic

propagation by Tappert [48] and to geophysics applications by Claerbout [49]. It

was extended to outdoor sound propagation by Gilbert and White [41, 50] and has

since been used extensively in the field of atmospheric acoustic propagation. More

complete historical reviews of the parabolic equation method development can be

found in [48] and [51].

The PE method calculates a two-dimensional sound field by assuming axial

symmetry around a vertical axis through the source and extrapolating from a
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starting field vector input that represents the source [1]. The starting field defines

the sound at all heights in the grid for the first step in range. To extrapolate from

the starting field, one-way propagation and small angle propagation approxima-

tions are applied to the Helmoltz equation.

There are various formulations of the PE method. This research uses the Gener-

alized Terrain Parablic Equation (GTPE) method [44], that employs a wide-angle

Crank-Nicholson marching scheme. It can include the propagation effects of a

refractive atmosphere, finite ground impedance, uneven terrain, and turbulence.

This chapter outlines both the standard and Generalized Terrain PE model deriva-

tions, following [1] closely, describes the generalized terrain model implementation,

and offers numerical examples to demonstrate the model’s capabilities.

2.2 Derivation of the Parabolic Equation

The Helmholtz equation is the time-independent form of the wave equation, as-

suming a time harmonic acoustic pressure p. In its general form it is

∇2p+ k2p = 0 (2.1)

where ∇2 is the Laplacian, p the complex sound pressure amplitude, and k = ω
c

the effective wave number where ω is the angular frequency of sound and c the

effective sound speed.

The PE derivation begins with the two-dimensional, cylindrical form of the

Helmholtz equation, neglecting variations in the azimuthal direction:

∂2p

∂r2
+

1

r

∂p

∂r
+
∂2p

∂z2
+ k2p = 0 (2.2)

where r is the range variable and z the height variable. The quantity q = p
√
r, a

form of the acoustic pressure that excludes attenuation from cylindrical spreading,

is then substituted into the Helmholtz equation:

∂2q

∂r2
+

1

4r2
q +

∂2q

∂z2
+ k2q = 0 (2.3)

where the second term, q/4r2, emerges from applying the product rule in expanding



24

the derivatives of ∂2p/∂r2 = ∂2(qr−1/2)/∂r2 and ∂p/∂r = ∂(qr−1/2)/∂r.

Applying the far-field assumption r � 1
k
, the second term on the left is ne-

glected, leaving:
∂2q

∂r2
+
∂2q

∂z2
+ k2q = 0. (2.4)

This equation, derived from the general form of the Helmholtz equation by

assuming axisymmetry and far field evaluation, is the starting point for both the

standard and generalized terrain versions of the PE method.

2.2.1 Crank-Nicholson Parabolic Equation Model

In the standard PE method, results at each vertical grid point at a given step in

range are calculated from the results at all heights at the previous range step, as

illustrated in Figure 2.1. In order to accomplish such an extrapolation, an estimate

of the horizontal wave number must be reached. This is the motivation for the

manipulation of Equation 2.4 that follows.

Figure 2.1. Diagram of PE propagation method: begin with the initial field and march
forward in range, extrapolating from the previous range step.

In the standard PE, Equation 2.4 can be rewritten as:

∂2q

∂r2
+H(z)q = 0, (2.5)

where H(z) = ∂2

∂z2
+ k2(z). Here, the wave number k(z) is assumed to be constant

across each range step, but can vary with height. Equation 2.5 is factored into
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forward- and backward-propagating components:[
∂

∂r
− i
√
H

][
∂

∂r
+ i
√
H

]
q = 0. (2.6)

Assuming e−iωt time dependence, the first bracketed term represents forward-

propagating sound and the second, backward. Neglecting backward propagating

sound, Equation 2.6 reduces to:

∂q

∂r
− i
√
Hq = 0. (2.7)

Anticipating a small elevation angle assumption, where sound is assumed to

propagate primarily in the horizontal direction r, a solution to Equation 2.7 can

be written in the form

q(r, z) = ψ(r, z)eikar. (2.8)

where ka is a reference wave number, for example the wave number at the ground

or an average height value. This is a convenient representation that separates

the component eikar, which varies rapidly in r for nearly horizontal propagation,

and ψ(r, z), which varies slowly in r. An illustration for a monopole source is

shown in Figure 2.2, where the concentric circles mark the wave fronts. For sound

emitted horizontally from the source, the wave number is composed only of a

horizontal component. Thus, the wave fronts look, locally, like plane waves with

rapid oscillation in the r-direction, and no variation in the z-direction. At slight

angles from the horizontal, the oscillations are still rapid in the r-direction, but

now there is also slow variation in the z-direction. At 45 ◦, the rate of oscillation

is equal in the r- and z-directions, and Equation 2.8 no longer an advantageous

form of the solution.

To further simplify the equation for numerical implementation, the operator√
H(z), is approximated. The elevation angle range for which the PE formulation

is valid is determined by the order of the approximation for
√
H(z). The narrow-

angle formulation uses two terms of a Taylor series expansion:

√
H(z) = ka

√
1 + s ≈ ka(1 +

1

2
s) (2.9)
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Figure 2.2. Wave number break-down into horizontal and vertical components at dif-
ferent angles from a monopole source.

where s = k2(z)−k2
a

k2
a

+ 1
k2
a

∂2

∂z2
. This approximation is accurate up to elevation angles

of 10 ◦ [1].

The implications of this approximation can be better understood by considering

a plane wave propagating in a homogeneous atmosphere with acoustic wave number

ka at an angle θ from the horizontal, as shown in Figure 2.3, represented by the

equation

q(r, z) = eikar cos θ+ikaz sin θ. (2.10)

The
√
H(z) operator would then become

√
H(z) = ka

√
1− sin2 θ ≈ ka(1−

1

2
sin2 θ). (2.11)

Therefore, the narrow-angle approximation assumes the vertical wave number kz

is small compared to the acoustic wave number ka, where kz
ka

= sin θ [38] .

The wide-angle formulation, used in this research, employs a Padé expansion

of the form [49] √
H(z) = ka

√
1 + s ≈ ka

1 + 3
4
s

1 + 1
4
s
. (2.12)

This approximation, with quadratic accuracy in s, is accurate up to elevation

angles of ±35 ◦ [1]. In later discussions, the limitation of ±35 ◦ will be understood,

but the ± sign will be omitted.

Equation 2.12 is substituted into Equation 2.7 to get the wide-angle parabolic
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Figure 2.3. Diagram of plane wave propagating at a small angle θ from the horizontal.

equation (
1 +

1

4
s

)
∂q

∂r
= ika

(
1 +

3

4
s

)
q (2.13)

into which Equation 2.8 can be substituted to obtain the equivalent equation for

the envelope function (
1 +

1

4
s

)
∂ψ

∂r
=

1

2
ikasψ. (2.14)

To reach the final numerical, finite-difference form of the wide-angle parabolic

equation, the central difference formula is applied to represent ∂2ψ
∂z2

within the

variable s as (
∂2ψ

∂z2

)
zj

=
ψj+1 − 2ψj + ψj−1

(∆z)2
(2.15)

where zj = j∆z with j = 1, 2, ...,M , and ψj = ψ(r, zj), which corresponds to the

vector ~ψ(r). In matrix form, 1
2
ikas is

1

2
ikas =


γ



−2 1

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


+
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

β1

β2

β3

. . .

βM−1

βM







ψ1

ψ2

ψ3

...

ψM−1

ψM


+ γ



ψ0

0

0
...

0

ψM+1


(2.16)

where γ = i
2ka
/(∆z)2 and βj = 1

2
i(k2(zj)− k2

a)/ka. The final term of the equation

adds in the contributions of ψ0 and ψM+1 that are lost from failure to include the

preceding and following 1 in the first and last central difference matrix rows, re-

spectively. For example, the equation derived from multiplication with the second

row of the central difference matrix yields a term γ(ψ1 − 2ψ2 + ψ3) whereas the

equation derived from multiplication with the first row yields only γ(−2ψ1 + ψ2);

therefore, the missing γψ0 must be added back in separately.

Finite-difference equations can be used to approximate ψ0 and ψM+1 as

ψ0 = σ1ψ1 + σ2ψ2 (2.17)

ψM+1 = τ1ψM + τ2ψM−1 (2.18)

where σ1 and σ2 are related to the ground impedance, as further discussed in

Section 2.2.1.1.1, and τ1 and τ2 are related to the impedance at the top of the grid,

as further discussed in Section 2.2.1.1.2. Thus, the missing γψ0 can be added in

by modifying the central difference matrix to the following tridiagonal matrix T

T =



−2 + σ1 1 + σ2

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 + τ2 −2 + τ1


. (2.19)
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The wide-angle parabolic equation can then be rewritten in matrix form as(
1 +

γT +D

2ika

)
∂ ~ψ

∂r
= (γT +D)~ψ (2.20)

where D is the diagonal matrix

D =



β1

β2

β3

. . .

βM−1

βM


. (2.21)

To achieve an equation in which values of ψ at one range step are determined

from the range step before, both sides of Equation 2.20 are integrated with respect

to r. [
1 +

γT +D

2ika

](
~ψ(r + ∆r)− ~ψ(r)

)
= (γT +D)

∫ r+∆r

r

~ψdr. (2.22)

The Crank-Nicholson approximation is used to approximate the integral on the

right side of Equation 2.22 as

1

2

[
~ψ(r + ∆r) + ~ψ(r)

]
∆r. (2.23)

Rearranging the terms of Equation 2.22, after applying the Crank-Nicholson ap-

proximation, yields an equation of the form:

M2
~ψ(r + ∆r) = M1

~ψ(r), (2.24)

where M1 and M2 are tridiagonal matrices

M1 = I +
1

2
∆r(γT +D) +

γT +D

2ika
(2.25)

M2 = I − 1

2
∆r(γT +D) +

γT +D

2ika
(2.26)
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where I is the identity matrix, a diagonal matrix with each value equal to unity.

Thus, using matrix algebra for two tridiagonal matrices, the full sound field at

one range step can be extrapolated from the sound field at the previous range

step. In order to calculate the sound field in a rectangular grid, the starting field

~ψ(0) ≡ ψ(0, z) = q(0, z) is the required input.

2.2.1.1 Grid Boundary Conditions

This section discusses the treatment of the lower and upper boundaries of the

vertical PE grid to simulate the influence of a ground surface, and reduce numerical

artifacts created from a truncated “sky.”

2.2.1.1.1 Lower Grid Boundary The influence of the ground surface is in-

cluded in the PE model through the parameters σ1 and σ2, as introduced in Equa-

tion 2.17. Their calculation is based on the boundary condition at the ground(
p

vn

)
z=0

= Zρc (2.27)

where p is the complex pressure amplitude, vn is the complex velocity amplitude

normal to the ground, Z is the specific acoustic impedance of the ground, for an

assumed locally-reacting ground, and ρc is the impedance of the air just above the

ground, pointing in the negative z direction [1].

The linearized Euler equation is used to relate the complex velocity amplitude

in the normal direction to the complex pressure, assuming time harmonic sound

waves, as

vn = − 1

iωρ

∂p

∂z
. (2.28)

Discretizing the derivative ∂p
∂z

with the second-order finite-difference approximation

∂p

∂z
=
p1 − p0

∆z
− 1

2
∆z

p2 − 2p1 + p0

(∆z)2
=
−3

2
p0 + 2p1 − 1

2
p2

∆z
(2.29)

where p0, p1 and p2 are the pressures at the ground, and one, and two grid steps

above the ground, respectively, and ∆z is the vertical grid step spacing, a relation-
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ship between p0, p1, and p2 is obtained

p0 =

(
3− 2ik0∆z

Z

)−1

(4p1 − p2) (2.30)

where k0 is the wave number of sound at the ground. This relationship also holds

for the envelope function ψ, and can, therefore, be used to deduce σ1 and σ2 from

Equation 2.17 by inspection as

σ1 = 4

(
3− 2ik0∆z

Z

)−1

σ2 = −
(

3− 2ik0∆z
Z

)−1

.

(2.31)

2.2.1.1.2 Upper Grid Absorbing Layer In order to eliminate numerical ar-

tifact reflections from the upper grid boundary, an absorbing layer of approximately

50 wavelengths can be used at the top of the PE grid [1].

The equation for the top of the boundary, corresponding to Equation 2.30 for

the lower boundary, is

pM+1 = (3 + 2ik0∆z)−1(4pM − pM−1) (2.32)

where M is the point at the upper boundary of the grid, and Z has been replaced by

1, the specific acoustic impedance of air. This boundary condition is less important,

however, due to an absorbing layer that is created to attenuate the sound before

it reaches the upper boundary, to eliminate spurious reflections. The absorbing

layer is achieved by introducing an imaginary term to the wave number within the

layer. The imaginary term used in this research is determined as

iAt(z − zt)2/(zM − zt)2 (2.33)

where At is a coefficient that varies with frequency, zt is the height where the

absorbing layer begins, and zM is the height of the upper grid boundary. The

coefficient At is set to 1, 0.5, 0.4, and 0.2 at frequencies of 1000, 500, 125, and 30

Hz, respectively, is linearly interpolated between these frequencies, and is linearly

extrapolated for frequencies below 30 Hz [1].
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2.2.2 Generalized Terrain Parabolic Equation Model

To represent an uneven terrain profile with an arbitrary shape, the Generalized

Terrain extension to the PE method is employed. This method begins with the

same axisymmetric, reduced form of the Helmholtz equation, Equation 2.4, and

then applies a coordinate transformation in which the height variable now measures

the height above the ground surface, rather than an absolute reference height, as

shown in Figure 2.4. The transformation is followed through the entire calculation

method and reversed after the entire sound field has been calculated, returning to

the standard coordinate representation. The derivation in this chapter follows [1],

Appendix M.3, closely.

Figure 2.4. Coordinate transformation used in the GTPE, after [1] Figure M.4.

Beginning with the reduced Helmholtz equation, the generalized terrain method

transforms the flat terrain coordinates (r, z) to coordinates that follow the arbitrary

terrain profile (ξ, η) as:

ξ = r

η = z −H(r)
(2.34)

where, in this section, H(r) is the function of the terrain profile. It defines the

height value of the terrain at each range value r and is restricted to terrain with

local slopes of up to approximately 30 ◦.

To transform the Helmholtz equation in the form of Equation 2.4 to the new
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coordinate system, the derivative relationships

∂z = ∂η

∂2
z = ∂2

η

∂r = ∂ξ −H ′∂η
∂2
r = ∂2

ξ − 2H ′∂2
ξη −H ′′∂η +H ′2∂2

η

(2.35)

are used, where primes denote derivatives with respect to the range variable ξ.

Substituting the transform derivatives into the Helmholtz equation gives

∂2
ξ q − 2H ′∂2

ξηq −H ′′∂ηq + (H ′2 + 1)∂2
ηq + k2q = 0. (2.36)

The form of the solution used for the transformed coordinate system, corre-

sponding to Equation 2.8 and for flat terrain, is

q(ξ, η) = ψ(ξ, η)eikaξ (2.37)

and the equivalent differential equation for the envelope function, corresponding

to Equation 2.14 for flat terain, is

∂2
ξψ+2ika∂ξψ−2H ′(∂2

ξηψ+ika∂ηψ)−H ′′∂ηψ+(H ′2+1)∂2
ηψ+(k2−k2

a)ψ = 0. (2.38)

The first-order approximation of Equation 2.38 is found by neglecting ∂2
ξψ and

∂2
ξηψ to get

∂ξψ =
i

2ka
L1(ψ), (2.39)

where

L1 = α∂2
η − β∂η + γ (2.40)

and
α(ξ) = H ′2 + 1

β(ξ) = 2ikaH
′ +H ′′

γ(η) = k2(η)− k2
a.

(2.41)

The second order (wide-angle) generalized terrain parabolic equation is found

by integrating Equation 2.38 over one range step from ξ = a to ξ = b = a+∆ξ, and

using the first-order approximation, Equation 2.39, to substitute for the integral
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of ∂2
ξψ. Integrating Equation 2.38, therefore, gives

[
i

2ka
L1(ψ) + 2ikaψ − 2H ′∂ηψ

]b
a

+ Iα + Iχ + Iγ = 0 (2.42)

where the term −2H ′∂2
ξηψ has been integrated by parts as

∫ b

a

−2H ′∂2
ξηψdξ = −2H ′∂ηψ +

∫ b

a

2H ′′∂ηψdξ, (2.43)

and
Iα =

∫ b
a
α(ξ)∂2

ηψdξ

Iχ =
∫ b
a
χ(ξ)∂ηψdξ

Iγ =
∫ b
a
γ(η)ψdξ

(2.44)

where

χ(ξ) = H ′′ − 2ikaH
′. (2.45)

The integrals of Equation 2.44 can be written in the general form

IR =

∫ b

a

R(ξ)∂nηψdξ (2.46)

where n = 0, 1, and 2 for R = γ, χ, and α, respectively. The derivatives ∂nηψ in the

integrals of Equation 2.44 are approximated assuming a linear variation between

range steps ξ = a and b as

∂nηψ(ξ) =
b− ξ
∆ξ

∂nηψ(a) +
ξ − a
∆ξ

∂nηψ(b). (2.47)

Substituting Equation 2.47 into 2.46 yields an equation of the form

IR = AR∂
n
ηψ(a) +BR∂

n
ηψ(b) (2.48)

where
AR = 1

∆ξ

∫ b
a
(b− ξ)R(ξ)dξ

BR = 1
∆ξ

∫ b
a
(ξ − a)R(ξ)dξ

(2.49)

Similarly, R(ξ) in the integrals of Equation 2.44 is approximated assuming a linear
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variation between range steps ξ = a and b as

R(ξ) =
b− ξ
∆ξ

R(a) +
ξ − a
∆ξ

R(b). (2.50)

Evaluating the integrals of Equation 2.49 with the approximations of Equation

2.50 gives

AR = ∆ξ

[
1
3
R(a) + 1

6
R(b)

]
BR = ∆ξ

[
1
6
R(a) + 1

3
R(b)

]
.

(2.51)

Just as in the flat terrain CNPE derivation, a finite-difference form of the GTPE

can be reached by applying central difference approximations to the height variable

derivatives as
(∂ηψ)ηj =

ψj+1−ψj−1

2∆η

(∂2
ηψ)ηj =

ψj+1−2ψj+ψj−1

(∆η)2

(2.52)

where ηj = j∆η with j = 1, 2, ...,M , and ψj = ψ(ξ, ηj). Thus, the integrated

equation, Equation 2.42, can be rewritten in the same form as Equation 2.24 for

the flat terrain CNPE as

M2
~ψ(b) = M1

~ψ(a) (2.53)

where M1 and M2 are the tridiagonal matrices

M2 = c3δ
2 + c2δ + c1

M1 = d3δ
2 + d2δ + d1

(2.54)

with which the sound field at one range step can be extrapolated from the sound

field at the previous range step. The coefficients are given as

c3 = 1
2ika(∆η)2

(
iα(b)
2ka

+Bα

)
c2 = − 1

2ika∆η

(
iβ(b)
2ka

+ 2H ′(b)−Bχ

)
c1 = 1 + γ

4k2
a

+ Bγ
2ika

(2.55)

where α(b), β(b), and H ′(b) refer to each function evaluated at the range point
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ξ = b and

d3 = 1
2ika(∆η)2

(
iα(a)
2ka
− Aα

)
d2 = − 1

2ika∆η

(
iβ(a)
2ka

+ 2H ′(a) + Aχ

)
d1 = 1 + γ

4k2
a
− Aγ

2ika
.

(2.56)

where function evaluation is at point ξ = a, instead of b. The tridiagonal matrices

δ2 and δ are given as

δ2 =



−2 1

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


(2.57)

and

δ =
1

2



0 1

−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 0


. (2.58)

2.2.2.1 Grid Boundary Conditions

This section discusses the treatment of the lower and upper boundaries of the grid

to include the effects of a sloping ground surface, and the correspondingly sloping

sky boundary. An upper absorbing layer is again used to attenuate sound before

it reaches the upper grid boundary. Because the implementation of the absorbing

layer is the same as described in Section 2.2.1.1.2, no further discussion is included

in this section.

The lower boundary condition is applied in a similar way as in the flat ter-

rain CNPE. The derivation begins with a boundary condition equation similar to
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Equation 2.27 (
p

vn

)
η=0

= Zρc. (2.59)

However, the linearized Euler equation, corresponding to Equation 2.28 in the flat

terrain CNPE derivation, which is used to relate the velocity normal to the surface

to the pressure, becomes

vn =
1

iωρ

∂p

∂n
(2.60)

where n, the unit normal vector to the ground, pointing downward, has replaced

the vertical coordinate z in the derivate of pressure. An illustration of the grid

geometry and associated variable parameters is shown in Figure 2.5.

Figure 2.5. Diagram of the ground angle in the GTPE grid, after [1] Figure M.5.

The normal n can be broken into horizontal and vertical components as n =

(nr, nz), allowing the derivative of pressure to be written as

∂p

∂n
= nr

∂p

∂r
+ nz

∂p

∂z
. (2.61)

The unit normal vector can also be written as a function of the local elevation

angle αH as

n = (sinαH ,− cosαH) (2.62)

where αH is related to the derivative of the function of the terrain profile as H ′(r) =

tanαH . Substituting Equation 2.62 and the derivative relationships of Equation
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2.35 into Equation 2.61 gives

∂p

∂n
= sinαH

∂p

∂ξ
− 1

cosαH

∂p

∂η
. (2.63)

Substituting Equation 2.63 into Equation 2.59 gives

ik0

Z
p0 = sinαH

(
∂p

∂ξ

)
η=0

− 1

cosαH

(
∂p

∂η

)
η=0

(2.64)

where p0 and k0 are pressure and wave number evaluated just above the ground

surface.

Equation 2.64 can be written in terms of the envelope function ψ by substituting

in the relationship q = p
√
r and solution form, Equation 2.37 to get

ik0

Z
ψ0 = sinαH

[(
∂ψ

∂ξ

)
η=0

+ ikaψ0

]
− 1

cosαH

(
∂ψ

∂η

)
η=0

(2.65)

where the term −(1
2
ψ0/ξ) sinαH has been neglected. Using finite difference ap-

proximations, an equation for ψ0, analogous to Equation 2.17 for the flat terrain

CNPE, can be obtained.

To maintain second-order accuracy, a second-order finite difference approxima-

tion is used in place of the derivatives

(
∂ψ
∂ξ

)
η=0

and

(
∂ψ
∂η

)
η=0

. The approximations

are found with a similar method as used in Equation 2.29:

• The derivative in ξ is found using three consecutive points in range at ground

height: ψ0(ā), ψ0(a), and ψ0(b), where ā = a−∆ξ, as(
∂ψ

∂ξ

)
η=0

=
1

2∆ξ
[−4ψ0(a) + 3ψ0(b) + ψ0(ā)]. (2.66)

• The derivative in η is found using three consecutive points in height beginning

at the ground, at the specified point in range, for example b: ψ0(b), ψ1(b),

and ψ2(b), as (
∂ψ

∂η

)
η=0

=
1

2∆η
[4ψ1(b)− 3ψ0(b)− ψ2(b)]. (2.67)
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Equations 2.66 and 2.67 are substituted into Equation 2.65 to get an expression

for ψ0(b) in terms of neighboring grid points as

ψ0(b) = uψ1(b) + vψ2(b) + wψ0(a) + yψ0(ā) (2.68)

where

u =
4

dε
, v = −u

4
, w =

2 sinαH
d∆ξ

, y = −w
4
, (2.69)

with

ε = 2∆η cosαH (2.70)

and

d = −ik0

Z
+

3

ε
+

(
3/2

∆ξ
+ ika

)
sinαH . (2.71)

Z and αH in the previous equations are evaluated at range step b. (Salomons [1]

identifies an error in [44] in the representation of the previous equation. Therefore,

the correct equation from [1] is used.)

A similar equation can be written for ψ0(a) as

ψ0(a) = uψ1(a) + vψ2(a) + wψ0(ā) + yψ0(¯̄a) (2.72)

where ¯̄a = a− 2∆ξ, and Z and αH , as used in Equations 2.69, 2.70, and 2.71 are

evaluated at ξ = a.

The boundary condition equations for the top of the grid are found analogously

to those for the grid bottom, with adjustments to certain terms:

• sinαH and cosαH become − sinαH and − cosαH , respectively because the

unit normal is flipped to point upward as n to −n

• ∆η becomes −∆η,

• k0 becomes kM+1,

• and Z is set to 1 for the normalized impedance of the air.

Equations 2.68 through 2.71, therefore, are replaced with

ψM+1(b) = utψM(b) + vtψM−1(b) + wtψM+1(a) + ytψM+1(ā) (2.73)
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where

ut =
4

dtεt
, vt = −ut

4
, wt = −2 sinαH

dt∆ξ
, yt = −wt

4
, (2.74)

with

εt = 2∆η cosαH (2.75)

and

dt = −ikM+1 +
3

εt
−
(

3/2

∆ξ
+ ika

)
sinαH . (2.76)

A similar equation can be written for ψM+1(a) as

ψM+1(a) = utψM(a) + vtψM−1(a) + wtψM+1(ā) + ytψM+1(¯̄a) (2.77)

where αH , as used in Equations 2.74, 2.75, and 2.76, is evaluated at ξ = a.

Similar to adding in the “missing” ψ0 and ψM+1 terms into the T matrix in

the flat terrain CNPE (Equation 2.19), Equations 2.68 and 2.73 for evaluation at

ξ = b, and Equations 2.72 and 2.77 for evaluation at ξ = a, can be used to add in

the contribution of ψ0 and ψM+1 in the GTPE equation.

For evaluation at ξ = b, the δ2 and δ matrices are replaced by the T3 and T2

matrices, respectively

T3 =



−2 + u 1 + v

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 + vt −2 + ut


(2.78)

T2 =
1

2



−u 1− v
−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 + vt ut


. (2.79)
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Still, these matrix modifications cannot incorporate the values of the last two

terms of Equations 2.68 and 2.73, which are evaluated at ξ = a and ā, respectively.

Therefore, vectors k3 and k2:

k3 =



wψ0(a) + yψ0(ā)

0

0
...

0

wtψM+1(a) + ytψM+1(ā)


(2.80)

k2 =
1

2



−wψ0(a)− yψ0(ā)

0

0
...

0

wtψM+1(a) + ytψM+1(ā)


(2.81)

are added in as well so that δ2 ~ψ(b) is replaced with T3
~ψ(b) + k3 and δ ~ψ(b) is

replaced with T2
~ψ(b) + k2. The variables u, v, w, y, ut, vt, wt, and yt in the matrix

representations of T3, T2, k3, and k2 are evaluated at ξ = b.

Similarly, for evaluation at ξ = a, δ2 ~ψ(a) is replaced with S3
~ψ(a) + m3 and

δ ~ψ(a) is replaced with S2
~ψ(a) + m2, where S3 and S2 are equal to T3 and T2,

respectively for u, v, ut, and vt evaluated at ξ = a. Vectors m3 and m2 become

m3 =



wψ0(ā) + yψ0(¯̄a)

0

0
...

0

wtψM+1(ā) + ytψM+1(¯̄a)


(2.82)
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m2 =
1

2



−wψ0(ā)− yψ0(¯̄a)

0

0
...

0

wtψM+1(ā) + ytψM+1(¯̄a)


(2.83)

where w, y, wt, and yt also evaluated at ξ = a.

Equation 2.53 has, therefore, been modified to incorporate the boundary con-

ditions. The final form of the equation is

(c3T3 +c2T2 +c1)~ψ(b)+c3k3 +c2k2 = (d3S3 +d2S2 +d1)~ψ(a)+d3m3 +d2m2 (2.84)

where, in review, T3, T2, c1, S3, S2, and d1 are matrices, ~ψ, k3, k2, m3, and m2 are

vectors, and c3, c2, d3, and d2 are scalars.

2.3 Numerical Implementation

The standard Crank-Nicholson and Generalized Terrain formulations of the

parabolic equation method were derived in the earlier part of the chapter. In

the remaining sections, numerical considerations and details of their implementa-

tion will be discussed. Most of the considerations are common to both the CNPE

and the GTPE. However, the final section applies to the GTPE only.

2.3.1 Grid Parameters

The PE method places several constraints on the spatial grid of sound propagation

calculations. One such constraint is on grid step size. By the Nyquist theorem,

at least two points per wavelength are necessary to sufficiently represent a wave.

However, using a finite difference approach as the Crank-Nicholson formulation

does, sufficient numerical accuracy is obtained with a smaller computational step

size of approximately one-tenth of the acoustic wavelength λ in both range and

height [1]. These criterion are not applicable for the Green’s Function PE in range,

for which steps of many wavelengths can be used.
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Use of a step size criterion based solely on wave number would yield different

grid spacings for different frequencies, making comparison and combination dif-

ficult. It is desirable, instead, to both meet the minimum grid spacing criteria

and have data for every frequency specified at common grid points. The range

spacing is, therefore, chosen to be the smallest integer divisor of the user-specified

spatial resolution of range that yields a step size less than λ
10

. This allows each

frequency to be defined at common points so that results of different frequencies

can be easily added together, as shown for three example frequencies in Figure 2.6.

For these three frequencies, the natural range step choice of λ
10

would not overlap.

However, a step size slightly smaller than λ
10

for each frequency can be chosen to

achieve overlapping grid points. If the user-defined spatial resolution is chosen to

be too small as compared to a wavelength, however, numerical errors may result

for uneven terrain cases at lower frequencies.

Figure 2.6. Diagram of grid spacing to common points for all frequencies.



44

The height spacing of the grid is chosen as the smallest integer divisor of the

user-specified receiver height that yields a step size less than λ
10

. This allows

calculation at the exact height at which results are sought.

Two additional constraints are placed on the vertical axis of the grid.

1. There must be at least 1000 vertical grid points, including the absorbing

layer (Section 2.2.1.1.2).

2. The absorbing layer must be at least 50 wavelengths high to sufficiently

attenuate the sound before it reaches the upper boundary.

2.3.2 Starting Field

The distinctive form of the PE starting field stems from its propagation process. PE

algorithms march results forward in range by extrapolating from vertical vectors

of results at previous range steps. Therefore, to begin propagation, sound at the

first range step must be fully defined, at all heights.

The PE method algorithms and assumptions also requires that the starting field

be finite at all points and restrict energy emitted at large elevation angles from the

source. This precludes the use of standard representations of some basic sources

in the PE starting field. For example, the standard representation of a monopole

diverges at the source and emits sound at large elevation angles. While this re-

striction prevents accurate representation of the near field for compact sources,

far field predictions can be accurate if the starting field closely approximates the

physical source at larger distances.

The traditional PE representation for a monopole takes the form of a Gaussian

function with the same order as the square-root approximation (Equations 2.9 and

2.12). The Gaussian starting field can be derived from the exact expression for a

monopole, applying far field and small elevation angle approximations [48, 52]. It

is a smooth function, finite at all points, with limited energy in the larger vertical

wave numbers. It, therefore, satisfies the requirements of the PE while serving as

an acceptable substitute for the exact monopole expression.
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2.3.2.1 Narrow-Angle Starting Field

The starting field for the narrow-angle PE was proposed by Tappert [48]. The

following derivations for both the narrow- and wide-angle starting fields adheres

closely to those in [1], based on work by Greene [52].

This derivation of the narrow-angle PE starting field assumes a free-field source

located at the origin. It begins by considering the narrow angle PE equation,

assuming a constant k(z) = ka. The narrow-angle equation, found by substituting

Equation 2.9 into Equation 2.7, is

∂q

∂r
− ikaq −

i

2ka

∂2q

∂z2
= 0. (2.85)

The solution to this equation can be written as a plane-wave expansion

q =

∫ ∞
−∞

S(kz) exp(ikzz + ikrr)dkz, (2.86)

which, when substituted into Equation 2.85, yields the relationship between wave

numbers:

kr = ka −
k2
z

2ka
. (2.87)

The method of stationary phase can be used to approximate the plane-wave

expansion integral. The stationary phase approximation is written as

I =

∫ b

a

g(t)eikh(t)dt ≈ g(t0)eikh(t0)

(
2π

k|h′′(t0)|

)1/2

eiµπ/4 (2.88)

for large k, where

µ = sign[h′′(t0)], (2.89)

sign(x) =

{
1 for x > 0

−1 for x < 0
,

and t0 is the point of stationary phase where h′(t0) = 0 [1].

With this approximation, the plane-wave expansion integral is solved as

q ≈

√
2π

|F ′′(kz,0)|
S(kz,0) exp

[
iF (kz,0)− i1

4
π

]
(2.90)
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where

F (kz) = kzz +

(
ka −

k2
z

2ka

)
r, (2.91)

and the point of stationary phase where F ′(kz,0) = 0 (prime denotes derivatives

with respect to kz) is

kz,0 =
kaz

r
. (2.92)

Therefore, q can be rewritten as

q ≈ 1√
r

√
2πka
i
S(kz,0) exp

(
ikar

(
1 +

z2

2r2

))
. (2.93)

Using the narrow-angle approximation R =
√
r2 + z2 ≈ r(1+ 1

2
z2/r2), and com-

paring Equation 2.93 to the exact expression for a monopole q =
√
r exp(ikaR)/R,

the coefficient S(kz,0) is found to be

S(kz,0) =

√
i

2πka

r

R
. (2.94)

To eliminate range dependence, using Equation 2.92, R =
√
r2 + z2 = r

√
1 +

k2
z,0

k2
a

can be substituted into Equation 2.94 to get

S(kz,0) =

√
i

2πka

(
1 +

k2
z,0

k2
a

)−1/2

, (2.95)

which corresponds to the form of S(kz) to be substituted into equation 2.86

S(kz) =

√
i

2πka

(
1 +

k2
z

k2
a

)−1/2

. (2.96)

A final small angle approximation is made where

(
1 + k2

z

k2
a

)−1/2

≈ exp

(
− k2

z

2k2
a

)
to

obtain

S(kz) =

√
i

2πka
exp

(
− k2

z

2k2
a

)
, (2.97)

which is substituted back into Equation 2.86 for r = 0. The integral is solved and
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the standard Gaussian form of the starting field is found to be

q(0, z) =
√
ika exp

(
− 1

2
k2
az

2

)
. (2.98)

This PE starting field approximates a monopole source for narrow angles in the

far-field.

2.3.2.2 Wide-Angle Starting Field

A similar process can be used to obtain a starting field with second-order accuracy

for use in the wide-angle PE. The wide-angle PE equation, Equation 2.13, assuming

a constant k(z) = ka, becomes(
1 +

1

4k2
a

∂2

∂z2

)
∂q

∂r
− ika

(
1 +

3

4k2
a

∂2

∂z2

)
q = 0. (2.99)

The plane-wave expansion solution, Equation 2.86, is substituted into this equation

to find the relationship between wave numbers

kr = ka
1− 3

4
k2
z/k

2
a

1− 1
4
k2
z/k

2
a

. (2.100)

The function F (kz) and its first and second derivatives with respect to kz are then

F (kz) = kzz + rka
1− 3

4
k2
z/k

2
a

1− 1
4
k2
z/k

2
a

(2.101)

F ′(kz) = z − r kz/ka
(1− 1

4
k2
z/k

2
a)

2
(2.102)

F ′′(kz) = − r

ka

1 + 3
4
k2
z/k

2
a

(1− 1
4
k2
z/k

2
a)

3
. (2.103)

The stationary phase point, where F ′(kz,0) = 0, can be found to second order from

Equation 2.102 as

kz,0 ≈
kaz

r
. (2.104)
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Therefore, using the stationary phase approximation, Equation 2.90, yields

q ≈ 1√
r

√
2πka
i

(1− 1
4
z2/r2)3/2

(1 + 3
4
z2/r2)1/2

S(kz,0) exp

(
ikar

z2

r2
+ ikar

1− 3
4
z2

r2

1− 1
4
z2

r2

)
. (2.105)

With a geometric series expansion of 1
1− 1

4
z2/r2

≈ 1+ 1
4
z2/r2 + 1

16
z4/r4, the argument

of the exponential, neglecting terms of order r(z/r)6 and higher, becomes ikar(1 +
1
2
z2/r2 − 1

8
z4/r4) ≈ ikaR for a second-order narrow-angle approximation of R =

√
r2 + z2 ≈ r(1 + 1

2
z2/r2 − 1

8
z4/r4). This simplifies the previous equation to

q ≈ 1√
r

√
2πka
i

(1− 1
4
z2/r2)3/2

(1 + 3
4
z2/r2)1/2

S(kz,0) exp(ikaR). (2.106)

Comparing this to the exact expression for a monopole q =
√
r exp(ikaR)/R,

and using the substitution of R = r
√

1 + z2/r2 ≈ r
√

1 + k2
z/k

2
a in the denominator

of the exact expression, the coefficient S(kz) is found to be

S(kz) =

√
i

2πka

1

(1 + k2
z/k

2
a)

1/2

(1 + 3
4
k2
z/k

2
a)

1/2

(1− 1
4
k2
z/k

2
a)

3/2
. (2.107)

This equation can be written approximately as

S(kz) =

√
i

2πka

(
1 + a2

k2
z

k2
a

)
exp

(
− b2

k2
z

k2
a

)
(2.108)

for adjustable parameters a2 and b2. Good agreement is found with a2 = 1.02 and

b2 = 0.75. For these parameter values, the starting field becomes

q(z, 0) =
√
ika(A0 + A2k

2
az

2) exp

(
− k2

az
2

B

)
(2.109)

where A0 = 1.3717, A2 = −0.3701, and B = 3. This second-order, wide-angle

starting field accurately represents a monopole source to elevation angles up to

±35 ◦.

Other starting field implementations have been developed for the PE that

present more intuitive forms of the source, including an “analytical start” field

that uses an exact representation of a monopole and its image source, computed
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a small distance in range from the source [53]. However, the standard Gaussian

representation is used in the wide-angle PE model discussed in this dissertation.

2.3.2.3 Sources Near the Ground

For a low frequency source near a ground surface, the Gaussian function used to

represent a monopole “runs into” the ground. Therefore, to accurately represent

the source, the contribution of the image source must be included in the starting

field. This section describes a starting field that satisfies the appropriate boundary

conditions at the ground, based on the ground’s impedance [1, 45].

To include the image source contribution, the starting field is represented as

q(0, z) = q0(z − zs) + Cq0(z + zs). (2.110)

The first term on the right-hand side corresponds to the source assumed to be

Gaussian distributed, centered at height zs. The second term corresponds to the

contribution of the image source, representing the sound reflected off the ground

surface. C is a general reflection coefficient [1].

The form of the reflection coefficient employed in this code is the spherical-wave

reflection coefficient, Equation 1.3, with r = 0

Cs = 1− 2
ka
Z

R2

i

∫ ∞
0

exp[−qka(Z + 1)/Z]

q +R2/i
dq (2.111)

where R2 = z + zs, k1—the wave number in the air above the ground—becomes

ka, and q is the integration variable, rather than the propagated PE quantity [1].

This equation can be re-written in an exponential integral function form

Cs = 1− 2
ka
Z

R2

i
exp

(
ka
Z + 1

Z

R2

i

)
E1

(
ka
Z + 1

Z

R2

i

)
(2.112)

where E1 is the exponential integral function [1, 54]. At lower frequencies, this

form of the spherical-wave reflection coefficient is used. At higher frequencies,

numerical errors arise, and an asymptotic expansion of the spherical wave number
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is applied instead

Cs = Cp −
2

Z + 1

∞∑
n=1

(−1)nn!

(
i

kaR2

Z

Z + 1

)n
(2.113)

where Cp is the plane-wave reflection coefficient following Equation 1.2 with θ = 0

as

Cp =
Z − 1

Z + 1
. (2.114)

Comparison of the two spherical-wave reflection coefficient calculation methods

suggest that the expansion form, with only two terms, can be used in place of the

exponential integral form for larger frequencies with negligible decrease in accuracy.

An example of the contributions of the direct and image sources to the total

start field for a 5 m high source over a finite impedance ground can be seen in

Figure 2.7. The dashed line shows the source component, the dash-dot line shows

the image component, and the solid line shows the total start field. Because the

width of the Gaussian distribution is inversely proportional to the frequency, the

source function intersects the ground for low frequency, low altitude sources, as

indicated by the dashed line. The difference between the total field (solid line) and

the source field (dashed line) indicates the significance of the contribution of the

image source to the total start field.

2.3.3 Atmospheric Absorption

Atmospheric absorption is included in the propagation model by adding an imag-

inary component to the acoustic wave number as

k =
ω

c(z)
+ jβ. (2.115)

The atmospheric absorption is often given in the form of the absorption coefficient

α, which specifies the attenuation in dB/meter. The absorption coefficient α can

be related to β by recognizing that the contribution of β in the exponential adds

a coefficient of exp(−βR). Therefore, the attenuation in dB/meter is found as

−α = 20 log(e−βR)/R, or [1]

β = α/(20 log e) (2.116)
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Figure 2.7. Magnitude of the pressure plotted against height for a start field repre-
senting a 10 Hz source at 5 m height above a ground with a normalized impedance of
Z = 38.79 + i38.41. The dashed red line represents the source, the dash-dot cyan line
represents the image source, and the solid dark blue line shows the combined contribution
of both components.

where log indicates logarithm base 10. The user may choose to manually assign

the atmospheric absorption coefficients for each frequency, or allow the model to

calculate it. If the user chooses to let the model calculate the coefficient, the model

will calculate using a script based on equations in Bass, et al. [16] for the current

frequency, and the specified relative humidity and absolute temperature in kelvins.

2.3.4 Refractive Atmosphere

To define the refractive state of the atmosphere, the code uses an effective sound

speed profile, Equation 1.8, which accounts for wind and temperature gradients [1].

Standard linear and logarithmic profiles have been preprogrammed for the effective

sound speed, the linear profile defined by Equation 1.6 and the logarithmic profile

defined by Equation 1.7.



52

2.3.5 Turbulence

The turbulent fluctuations in the sound speed due to variations of wind velocity

and temperature are included using a refractive-index fluctuation (Equation 1.9).

The refractive-index fluctuations is applied through a phase factor in the PE prop-

agation algorithms. This process is repeated for many realizations of turbulence,

constituting an ensemble over which the average effect of turbulence on the sound

field is obtained [1].

The phase factor is calculated from the refractive-index fluctuation (Section

1.2.4.2) assuming a certain spectral density function for the distribution of the

eddy sizes. Gaussian, von Kármán, and Kolmogorov are popular functions used to

model the spectrum. Turbulence is often described in terms of three spectrum sub-

ranges: the energy-containing subrange, the inertial subrange, and the dissipative

subrange. The energy-containing subrange contains the largest eddies; the inertial

subrange, within which energy from large eddies gets passed to smaller eddies,

which pass energy to even smaller eddies, contains mid-sized eddies; the dissipa-

tive subrange, in which energy from the eddies is converted into heat, contains

the smallest eddies. The Kolmogorov spectral density function is valid in the iner-

tial subrange. The von Kármán spectral density function follows the Kolmogorov

spectral density function in this region and flattens out in the energy-containing

subrange. Turbulent eddies in the energy-containing and inertial subranges most

significantly impact acoustic propagation as their size is on the order of acoustic

wavelengths, while the size of eddies in the dissipative subrange are small com-

pared to acoustic wavelengths [1]. This research uses the two-dimensional the von

Kármán spectral density function, calculated as

F (kr, kz) =

A
(k2+K2

0 )8/6

(
Γ( 1

2
)Γ( 8

6
)

Γ( 11
6

)

C2
T

4T 2
0

+

[
Γ( 3

2
)Γ( 8

6
)

Γ( 17
6

)
+ k2

z

k2+K2
0

Γ( 1
2

)Γ( 14
6

)

Γ( 17
6

)

]
22C2

v

12c20

)
(2.117)

where A ≈ 0.0330, Γ is the gamma function, K0 relates to the scales of the wave

numbers used, and C2
T and C2

v are the structure parameters of turbulent tem-

perature and wind velocity fluctuations, respectively. The two-dimensional von

Kármán spectral density function F is proportional to k−8/3 in the inertial sub-
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range [1]. The turbulent fluctuations are assumed to be homogeneous and isotropic

in this research. However, this is most often not the case in realistic atmospheric

conditions. For a more complete description of inhomogeneity and anisotropy in

turbulence, and their implications, the reader is directed to Wilson’s dissertation,

“Acoustic tomographic monitoring of the atmospheric boundary layer” [55].

To find the refractive-index fluctuation µ(r, z) from the spectral density func-

tion F (kr, kz), an intermediate statistical function is used. The correlation function

is defined for a random function f(r) as

B(r1, r2) = f(r1)f(r2) (2.118)

where the overbar denotes a time average. If the function f(r) depends only on

the difference r = r1−r2 and is not a function of either r1 or r2 alone, it is referred

to as homogenous and can be written B(r1, r2) = B(r).

The correlation function can also be written as the inverse spatial Fourier trans-

form of the spectral density of the random function f(r). In two dimensions, they

are related as

B(r) =

∫ ∞
−∞

∫ ∞
−∞

exp(ik · r)F (k)dk (2.119)

F (r) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

exp(−ik · r)B(r)dr (2.120)

where r = (r, z) and k = (kr, kz).

The correlation function of the refractive-index fluctuation µ is an even func-

tion. For r1 = r + s and r2 = r the correlation function of the refractive-index

fluctuations is defined as

B(s) ≡ µ(r + s)µ(r). (2.121)

Using the even characteristic of the function, the exponential function can be

replaced by a cosine function in Equation 2.119 to give

B(s) =

∫ ∞
−∞

∫ ∞
−∞

cos(k · s)F (k)dk (2.122)

where F (k) is the two-dimensional spectral density of the refractive-index fluc-

tuation, which was previously defined with Equation 2.117 for a von Kármán
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spectrum.

With a relationship between the refractive-index fluctuation µ and its corre-

lation function B (Equation 2.121), and a relationship between the correlation

function B and spectral density function F (Equation 2.122), an equation for the

refractive-index fluctuation as a function of the spectral density function can be

found. To derive the equation, the correlation function is first transformed to a

polar kθ coordinate system where k = (k cos θ, k sin θ)

B(s) =

∫ 2π

0

∫ ∞
0

cos(k · s)F (k)kdkdθ. (2.123)

This can be further rewritten as

B(s) = 2π <

∫ ∞
0

cos(k · s)F (k)kdk >θ (2.124)

for which the integral over θ has been evaluated by defining the bracketed term

< . >θ to be the average over the angle θ.

For numerical implementation, the integral is converted to a summation with

a discretized wave number kn as

B(s) = 2π < ∆k
∑
n

cos(kn · s)F (kn)kn >θ . (2.125)

It is proven in the following lines that a random realization of the random

refractive-index fluctuations field µ(r) can be found from the spectral density func-

tion of the turbulent eddies F (k) as

µ(r, zj) =
∑
n

G(kn) cos(rknr + zjknz + αn) (2.126)

where G(kn) =
√

4π∆kF (kn)kn, knr = kn cos θn, and knz = kn sin θn. The angles

θn and αn are random angles assigned for different turbulence mode wave numbers

where θn indicates the direction of the mode’s turbulent eddy structure in space

and αn adds a random initial phase [1].

From the initial definition in Equation 2.121, the relationship between correla-
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tion function and random function µ can be written as

B(s) =< µ(r + s)µ(r) >θ,α . (2.127)

Here the bracketed term is defined to be the average over the random angles θ

and α, which represent the different random realizations of the refractive-index

fluctuations.

Substituting Equation 2.126 into Equation 2.127 yields

B(s) = 4π∆k <
∑

n cos(kn · r + αn + kn · s)
√
F (kn)kn

×
∑

m cos(km · r + αm)
√
F (km)km >θ,α .

(2.128)

For n 6= m, the average of the term

cos(kn · r + αn + kn · s)
√
F (kn)kn cos(km · r + αm)

√
F (km)km (2.129)

is zero. After manipulating the equations using trigonometric relationships, the

average this term for n = m becomes

< cos2(kn · r + αn) cos(kn · s)F (kn)kn

− sin(kn · r + αn) cos(kn · r + αn) sin(kn · s)F (kn)kn >θ,α

= 1
2
< cos(kn · s)F (kn)kn >θ .

(2.130)

When Equation 2.130 is substituted back into Equation 2.128, Equation 2.125

is obtained, verifying the above-stated equation for µ(r) (Equation 2.126). The

refractive-index can found with more computational efficiency by rewriting the

cosine function of Equation 2.126 as

cos(rknr + zjknz + αn) = R
{

exp(iknrr + iαn)[exp(iknz∆z)]j
}

(2.131)

where zj = j∆z and R indicates the real part.

The turbulent phase factor is applied in two factors to achieve a slight increase

in accuracy. One factor is applied after the propagation algorithms from range

step r to r + ∆r, multiplying the field by exp[1
2
ikaµ(r, z)∆r] and the other is

applied before propagation from range step r + ∆r to r + 2∆r multiplying by
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exp[1
2
ikaµ(r + ∆r, z)∆r]. The effective refractive-index fluctuation is, therefore,

equivalent to

µ2 =
1

2
[µ(r, z) + µ(r + ∆r, z)], (2.132)

resulting in a phase factor of exp(ikaµ2∆r).

Additional discussion of turbulence, including a more detailed description of

user-input parameters can be found in Appendix C.

2.3.6 Ground Impedance

Ground effects are included by defining variables σ1 and σ2 based on the ground

impedance, as calculated in the CNPE with Equation 2.31, or variable d, as cal-

culated in the GTPE with Equation 2.71.

The user may choose to manually assign the complex, normalized impedance

of the ground for a particular frequency, or allow the model to calculate it by

specifying the flow resistivity parameter that corresponds to the desired ground

type as outlined in the work of Delany and Bazley [19], and extended by Embleton,

et al. [8] and Chessell [20]. If the user chooses to let the model calculate the

impedance, the model will calculate using Equation 1.1.

To include a transition from one type of ground to another, the value of the

impedance is changed between range steps, so that the impedance value remains

constant within each step [1]. Diffraction theory applied at an impedance discon-

tinuity shows that some sound is diffracted in the negative r direction. However,

the parabolic equation method cannot account for backscattering and is, therefore,

unable to include this effect [28].

2.3.7 GTPE-Specific Numerical Implementation

Because of its added terrain capability, the GTPE requires additional implemen-

tation description.

2.3.7.1 Terrain

To include terrain effects, an arbitrary terrain profile can be specified by defining

the height of the ground at each range point [1, 44]. The local slope of the ground
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profile input should not exceed 30 ◦. The derivatives of the terrain profile function

H ′ and H ′′ are found using a finite difference approach.

2.3.7.2 First Three Range Steps

The GTPE requires extrapolation from not just the previous range step, but the

previous 3 range steps. Therefore, the first 3 range steps are calculated with the

simpler, flat terrain CNPE formulation that extrapolates from only the previous

range step. Once results for the first 3 columns are calculated, the GTPE has

enough information about the previous range steps to be implemented.

2.4 Numerical Examples

Several numerical examples, shown in Figure 2.8, are presented to illustrate the

effects of different conditions on the interference patterns of propagated, single-

frequency (100 Hz) sound; they are plotted as the sound pressure level relative to

free field:

Figure 2.8a shows sound propagated in a homogeneous atmosphere over a flat,

rigid ground. Because of the limitations of the PE formulation, the accuracy

of the PE model is degraded at elevation angles larger than approximately 35 ◦.

Therefore, these regions in Figures 2.8a-e have been marked by dash-dot lines.

Figure 2.8b shows the effect of uneven terrain, where the terrain feature is filled

in with white. A comparison of Figures 2.8a and 2.8b illustrates the distortion of

the interference pattern as sound passes over a hill, and the shielding effect on the

region behind the hill, shown as a marked decrease in sound level.

Figure 2.8c shows the effect of a finite ground impedance discontinuity where

there is a transition from rigid to soft ground at 300 m in range. A comparison of

Figure 2.8a and 2.8c illustrates a broadening of the first destructive interference dip

and a decrease in the level of the constructive interference peak near the ground,

beginning after sound passes over the impedance discontinuity at 300 m.

Figure 2.8d shows the effect of an upward-refracting atmosphere. A comparison

of Figure 2.8a and 2.8d illustrates that the shapes, locations, and levels of the peaks

and dips have shifted in the refractive atmosphere, especially at large ranges and

low altitudes where a shadow zone has formed.
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Figure 2.8e shows the effect of turbulence. It is a composite figure obtained

by averaging over 50 individual realizations of sound speed fluctuations caused

by strong turbulence. A comparison of Figure 2.8d and 2.8e (both with upward

refracting atmospheres) illustrates an increase in the sound levels within the inter-

ference pattern minima and in shadow regions when turbulence is present.

By comparing Figures 2.8a–e, it can be seen that including each propagation

effect has consequences for the resulting sound field. If these effects are neglected by

a noise propagation model when physical conditions dictate that they be included,

inaccurate results will be obtained.

2.5 Conclusions

In this chapter, the parabolic equation method formulation included in the hy-

brid propagation model was derived. The details of the model’s implementation

were presented, along with numerical examples to demonstrate the strengths of the

model and justification for its use. While the PE model is used as the foundation of

the hybrid model because it can include a wide range of range-dependent propaga-

tion effects, limitations call for a method to compensate for its degraded accuracy

at large elevation angles. Therefore, the fast field program (FFP) method, de-

scribed in the following chapter, is used in combination with the PE in the hybrid

model.
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Figure 2.8. Sound pressure level relative to free field [dB] for 100 Hz source at 20
m height calculated with PE. (a) Homogeneous atmosphere, flat, rigid ground. (b)
Homogeneous atmosphere, rigid ground with hill–peak at range of 400 m, height of
30 m, and width of 500 m. (c) Homogeneous atmosphere, flat ground with σ = ∞
for range 0–300 m and σ = 150 cgs Rayls for range 300-1000 m. σ is the effective flow
resistivity. (d) Refractive atmosphere: b = −1 m/s, flat, rigid ground. b is the parameter
of logarithmic sound speed profile. (e) Refractive atmosphere: b = −1 m/s, flat, rigid
ground, 50 realizations of turbulence, C2

T /T
2
0 = 6 ∗ 10−7m−2/3, C2

v/c
2
0 = 2 ∗ 10−6m−2/3.

C2
T and C2

v are the structure parameters of turbulent temperature and wind velocity
fluctuations, respectively.



Chapter 3
The Two-Dimensional Fast Field

Program Model

3.1 Introduction

Because of the elevation angle limitation of the PE method formulation, the fast

field program (FFP) method [56, 57] is used in the hybrid model as a supplement to

fill in the areas where the PE’s accuracy is diminished. In exchange for the FFP’s

large elevation angle accuracy, the user endures the limitation of a homogeneous

ground surface and a layered (non-range-dependent) atmosphere. However, over

short ranges, range-dependent effects are assumed to be small.

Like the PE, the FFP gained acceptance in the underwater acoustics community

before being applied to atmospheric acoustic propagation. It was developed in the

early 1970s [58, 59, 60] for underwater applications, and extended to atmospheric

propagation in the 1980s by Raspet et al. [61] and Lee et al. [62].

The FFP used in this research calculates the sound field in two dimensions,

although the FFP has also been extended to three-dimensional formulations [63,

64]. The FFP is based on an approximate form of the wave equation that employs

a transform from the horizontal spatial domain to the horizontal wave number

domain. The equation is solved numerically within each stratified layer of the

atmosphere, and transformed back to the spatial domain. This chapter outlines

the FFP model derivation, following [1] and [57] closely, and details the model
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implementation.

3.2 FFP Derivation

The FFP is derived from the inhomogeneous Helmholtz equation for a monopole

source. The pressure radiated by a monopole source with unit amplitude, in the

free-field is p(R) = exp(ikR)
R

, where R is radial distance from the source. The

corresponding inhomogeneous Helmholtz equation is written as

∇2p+ k2p = −4πδ(r− rs) (3.1)

where k is the acoustic wave number and, in Cartesian coordinates, rs = (xs, ys, zs)

and δ(r− rs) = δ(x−xs)δ(y− ys)δ(z− zs). The wave number k is replaced by the

effective wave number keff, based on the effective sound speed profile approximation

(Section 1.2.4.1). To find the inhomogeneous Helmholtz equation in the horizontal

wave number domain, the two-dimensional Fourier transform

P (kx, ky, z) =

∫ ∞
−∞

∫ ∞
−∞

exp(−ikxx− ikyy)p(r)dxdy (3.2)

is evaluated over x and y, where kx and ky are the x and y components of the

effective wave number, respectively. Applying this transform to the Helmholtz

equation and assuming that the effective wave number keff(z) is a function of

height only yields [1]

k2
eff

∂

∂z

(
k−2

eff

∂P

∂z

)
+ (k2

eff − k2
x − k2

y)P = −4πδ(z − zs). (3.3)

In the two-dimensional formulation of the FFP, an axisymmetry approximation

is applied to reduce the problem from three dimensions to two (as is done in the

PE). Therefore, a transformation from the Cartesian coordinate system to a cylin-

drical coordinate representation of the Fourier transform is made for convenience.

Substituting x = r cosφ and y = r sinφ, the Fourier transform becomes

P (kx, ky, z) =

∫ 2π

0

∫ ∞
0

exp(−ikxr cosφ− ikyr sinφ)p(r)rdrdφ. (3.4)
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This form of the transform can be substituted into Equation 3.3 as

k2
eff

∂

∂z

(
k−2

eff

∂

∂z

[ ∫ 2π

0

∫ ∞
0

exp(−ikxr cosφ− ikyr sinφ)p(r)rdrdφ

])
+(k2

eff − k2
x − k2

y)

[ ∫ 2π

0

∫∞
0

exp(−ikxr cosφ− ikyr sinφ)p(r)rdrdφ

]
= −4πδ(z − zs). (3.5)

With the assumption of a homogeneous atmosphere within each horizontal stra-

tum, and the axisymmetry approximation, keff, kx, and ky are functions only of z

and can be brought inside the integrals. In addition, as in the parabolic equation

method, the quantity q = p
√
r replaces pressure and the Helmholtz equation in

the horizontal wave number domain becomes

∫ 2π

0

∫∞
0

exp(−ikxr cosφ− ikyr sinφ)

[
k2

eff
∂
∂z

(
k−2

eff
∂q
∂z

)
+ (k2

eff − k2
x − k2

y)q

]
√
rdrdφ

= −4πδ(z − zs).
(3.6)

Next, the Cartesian wave number components are replaced with their cylin-

drical counterparts kx = kr cosψ and ky = kr sinψ, and the trigonometric rela-

tionships cos(u − v) = cosu cos v + sinu sin v and cos2 u + sin2 u = 1 are used to

obtain:

∫∞
0

[
k2

eff
∂
∂z

(
k−2

eff
∂q
∂z

)
+ (k2

eff − k2
r)q

]
√
r
∫ 2π

0
exp(−ikrr cos(φ− ψ))dφdr

= −4πδ(z − zs)
(3.7)

The integral over φ resembles the integral representation of the zero-order Bessel

function of the first kind [54]:∫ 2π

0

exp(−ikrr cosα)dα = 2πJ0(krr). (3.8)

Therefore, the Bessel function representation is substituted in for the integral over

angle φ. With a large argument asymptotic approximation, the Bessel function
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can be simplified to:

J0(krr) =

√
2

πkrr
cos(krr −

1

4
π). (3.9)

Substituting Equation 3.9 into Equation 3.8, and the resulting equation into Equa-

tion 3.7 yields∫ ∞
0

[
k2

eff

∂

∂z

(
k−2

eff

∂q

∂z

)
+(k2

eff−k2
r)q

]
2

√
2π

kr
cos(krr−

1

4
π)dr = −4πδ(z−zs). (3.10)

If a transform is defined as

Q(kr, z) =

∫ ∞
0

q cos(krr −
1

4
π)dr =

∫ ∞
0

q√
2

cos(krr) +
q√
2

sin(krr)dr, (3.11)

the horizontal wave number domain, inhomogeneous Helmholtz equation can be

written

k2
eff

∂

∂z

(
k−2

eff

∂Q

∂z

)
+ (k2

eff − k2
r)Q = −

√
2πkrδ(z − zs). (3.12)

The FFP method begins with this equation, employs numerical methods to solve it,

and uses an inverse transform to return to the spatial domain. The corresponding

inverse transformation is [1]:

q√
2

=
1

π

∫ ∞
−∞

Q(kr, z) cos(krr)dkr =
1

π

∫ ∞
−∞

Q(kr, z) sin(krr)dkr. (3.13)

3.2.1 FFP Method Solution of the Horizontal Wave Num-

ber Domain Helmholtz Equation

In deriving Equation 3.12, assumptions of axisymmetry and range-independence

were made while variation in the vertical atmospheric profile were permitted. Ac-

cordingly, the FFP method makes use of a layered representation of the atmo-

sphere. The atmosphere consists of a stack of horizontal homogeneous layers with

effective wave numbers that remain constant within each layer. An illustration of

the stratified atmosphere model is shown in Figure 3.1.

In the stratified atmosphere representation, care must be taken to ensure that

solutions are accurate both within each layer and between layers. This is accom-
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Figure 3.1. The atmosphere in the FFP method is modeled as a combination of hori-
zontally homogeneous layers within which the wave number is constant, after [1] Figure
F.1.

plished by enforcing continuity of pressure at all layer interfaces, and continuity of

normal particle velocity at all layer interfaces that do not fall at the source height.

3.2.1.1 Inter-Layer Boundary Conditions

The boundary condition for continuity of pressure between layers is written as

pj(zj) = pj−1(zj) (3.14)

where zj is the height at the bottom of layer j and pj is the acoustic pressure

solution within layer j, as shown in Figure 3.1. After employing the substitution

pj = qj/
√
r and canceling the like-factor 1/

√
r, the corresponding wave number

domain boundary condition is

Qj(zj) = Qj−1(zj) for j = 1, 2, . . . , N. (3.15)

Assuming a time-harmonic sound field, the particle velocity in layer j normal

to the layer boundary, uzj(r, z), is given by the linearized Euler’s equation

uzj(r, zj) =
i

ωρj,av

∂pj(r, zj)

∂z
(3.16)

where ρj,av is the average density of the atmosphere within layer j for j =
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1, 2, . . . , N and ρ0,av is the density of the ground material. Continuity of normal

velocity, with pj = qj/
√
r and like terms cancelled, can be written

1

ρj,av

∂qj(r, zj)

∂z
=

1

ρj−1,av

∂qj−1(r, zj)

∂z
. (3.17)

The corresponding wave number domain equation is

ρ−1
j,av

∂Qj(zj)

∂z
= ρ−1

j−1,av

∂Qj−1(zj)

∂z
for j = 1, 2, . . . , N (j 6= m). (3.18)

The final boundary condition defines the discontinuity in the normal particle

velocity at the source height. To derive this condition, Equation 3.12 is integrated

over z from slightly below the source height to slightly above∫ zs+ε

zs−ε

∂

∂z

(
∂Qm

∂z

)
dz + k2

z

∫ zs+ε

zs−ε
Qmdz = −

√
2πkr. (3.19)

As ε goes to zero, the second term on the left-hand side goes to zero, assuming

that the wave number is continuous across the source height, as would be true in

a real profile. The boundary condition becomes

∂Qj(zj)

∂z
=
∂Qj−1(zj)

∂z
−
√

2πkr for j = m. (3.20)

Equations 3.15, 3.18, and 3.20 constitute the boundary conditions that define

the propagation scheme. In practice, the factors ρ−1
j,av and ρ−1

j−1,av have negligible

effect for the layer interfaces j = 1, 2, . . . , N . They are, however, significant for

j = 0, where they account for the effect of the ground surface.

3.2.1.2 Intra-Layer Solution

Now that the rules for layer boundaries are established, the method of propagating

between the reaches of each layer must be derived. If it is assumed that the effective

wave number is constant within each stratum, Equation 3.12 simplifies to

∂2Q

∂z2
+ k2

zQ = −
√

2πkrδ(z − zs) (3.21)
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where k2
z = k2

eff − k2
r . Therefore, the solution to Equation 3.21 is written within

each stratum layer in the following form

Qj(z) = Aje
ikzjz +Bje

−ikzjz for zj ≤ z ≤ zj+1 (3.22)

where Aj and Bj are constants, and kzj is the value of kz in layer j.

The goal of the rest of this section is to determine an equation from which

the solution at z + ∆z can be calculated from the solution and its derivative with

respect to z, at z. The reflection coefficient is also derived for use in the next

section, where the effect of ground is included.

The derivative of the solution with respect to z, from Equation 3.22, is:

Q′j(z) = ikzj
(
Aje

ikzjz −Bje
−ikzjz

)
(3.23)

The corresponding equations at height z+ ∆z, also found from Equation 3.22, are

Qj(z + ∆z) = Aje
ikzjzeikzj∆z +Bje

−ikzjzeikzj∆z (3.24)

Q′j(z + ∆z) = ikzj
(
Aje

ikzjzeikzj∆z −Bje
−ikzjzeikzj∆z

)
. (3.25)

Within the uppermost layer, there should be no sound traveling downward, so

BN−1 is set to 0. Also, below the ground surface, there should only be downward

traveling sound, so A0 is set to 0, yielding

Q0 = B0e
−ik0z for z ≤ 0 (3.26)

where k0 is the complex wave number in the ground.

From the first boundary condition, Equation 3.15, evaluated at the ground

surface z1 = 0, the relationship between coefficients is found to be:

A1 +B1 = B0. (3.27)

The second boundary condition, Equation 3.18, evaluated at z1 = 0 is:

ρ−1
1

∂Q1(z1)

∂z
= ρ−1

0

∂Q0(z1)

∂z
. (3.28)
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From this boundary condition, the relationship between coefficients is found to be:

ikz1
ρ1

[
A1 −B1

]
= −ikz0

ρ0

B0. (3.29)

Substituting Equation 3.27 into Equation 3.29 gives the relationship between

A1 and B1

A1 = R(kz1)B1 (3.30)

where

R(kz1) =
ρ0kz1 − ρ1kz0
ρ0kz1 + ρ1kz0

. (3.31)

Using the local reaction approximation (Section 1.2.3.1), kz0 ≈ k0, and the nor-

malized impedance of the ground surface is approximately equal to the normalized

ground impedance, Zs ≈ Z = ρ0c0/ρ1c1. With these substitutions, the reflection

coefficient R(kz1) is written

R(kz1) =
kz1 − k(z1)/Zs
kz1 + k(z1)/Zs

(3.32)

where k(z1) is the acoustic wave number in the atmosphere at the height z1 = 0.

Seeking a solution at height z + ∆z that can be calculated from results at z,

the solution takes the form

Qj(z + ∆z) = CjQj(z) +DjQ
′
j(z) (3.33)

or

Aje
ikzjzeikzj∆z +Bje

−ikzjzeikzj∆z

= Cj
[
Aje

ikzjz +Bje
−ikzjz

]
+Dj

[
ikzj
(
Aje

ikzjz −Bje
−ikzjz

])
. (3.34)

Equating coefficients of like terms, Cj and Dj are found to be:

Cj = cos(kzjz) (3.35)

Dj = k−1
zj sin(kzjz). (3.36)

Following a similar process to calculate Q′j(z + ∆z), Q is found in each mid-grid
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horizontal stratum as:

Qj(z + ∆z) = cos(kzj∆z)Qj(z) + k−1
zj sin(kzj∆z)Q

′
j(z)

Q
′
j(z + ∆z) = −kzj sin(kzj∆z)Qj(z) + cos(kzj∆z)Q

′
j(z).

(3.37)

As was the goal, with these equations, results can extrapolated in height from one

vertical grid step to the next within layer j.

3.2.1.3 Calculating the Sound Field with the FFP

In the two preceding sections, methods for vertically extrapolating results within

each layer, and maintaining accurate relationships between layers were described.

This section outlines how these relationships can be used to arrive at correct results

for sound levels in the propagation grid. Calculation of the sound field using the

FFP proceeds with the following steps:

1. An arbitrary solution field at the ground is assumed.

2. The extrapolation methods previously discussed are applied to the arbitrary

solution field at the ground, extrapolating up the grid, to find relative solu-

tions for each layer until the source height is reached.

3. An arbitrary solution field at the top of the grid is assumed.

4. The extrapolation methods previously discussed are applied to the arbitrary

solution field at the grid top, extrapolating down the grid, to find relative

solutions for each layer until the source height is reached.

5. The difference in the solutions found at the source height from extrapolating

up from the ground and down from the grid top are used to find the correct

sound field results.

3.2.1.3.1 Assuming an Arbitrary Solution at the Ground In the first

step, the value of the coefficient representing sound traveling in the downward

direction B1 is arbitrarily set to 1, yielding, from Equations 3.22 and 3.30:

Q1(z1) = R(kz1) + 1 (3.38)
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Q′1(z1) = ikz1
[
R(kz1)− 1

]
. (3.39)

These definitions are equivalent to dividing the full solutions for Q1, Equation 3.22,

and Q′1, Equation 3.23, by B1 for j = 1 and z = 0:

Q1

B1

=
A1

B1

+ 1 = R(kz1) + 1 (3.40)

Q′1
B1

= ikz1
[A1

B1

− 1
]

= ikz1
[
R(kz1)− 1

]
. (3.41)

The ratio of these equations for arbitrarily set coefficients is equivalent to the ratio

of the general equations:
Q′1/B1

Q1/B1

=
Q′1
Q1

. (3.42)

However, the values are not correct for Q1 or Q′1 alone.

3.2.1.3.2 Extrapolating Up From the Ground The second step is com-

pleted using Equations 3.37 with z = zj and ∆z = zj+1 − zj and the inter-layer

boundary conditions, Equations 3.15 and 3.18, to extrapolate from the arbitrary

field defined at the ground. The solution is determined from successive calcula-

tions for j = 2, 3, . . . ,m, where zm = zs is the source height. Once the source

height is reached in the layer directly below the source, the values of Qm−1(zm)

and Q′m−1(zm) are stored as Qml and Q′ml, designating that the values came from

the lower region of the grid.

3.2.1.3.3 Assuming an Arbitrary Solution at the Top of the Grid Sim-

ilar to Step 1, in the Step 3, the solution is set to QN−1(zN) = 1 at the top of

the grid. Because it is assumed that no sound is traveling downward and, thus,

BN−1 = 0, the equations for the top of the grid become

QN−1(zN) = 1 (3.43)

Q′N−1(zN) = ikzN . (3.44)

Once again, the ratio of these two equations is correct, but neither is correct alone.
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3.2.1.3.4 Extrapolating Down From the Top of the Ground To perform

the fourth step, Equations 3.37 are used with z = zj+1 and ∆z = zj − zj+1

and the inter-layer boundary conditions, Equations 3.15 and 3.18 are applied,

to extrapolate from the arbitrary field defined at the grid top. The solution is

determined from successive calculations for j = N − 1, N − 2, . . . ,m. Once the

source height zm is reached in the layer directly above the source, the values of

Qm(zm) and Q′m(zm) are stored as Qmu and Q′mu, designating that the values come

from the upper region of the grid.

3.2.1.3.5 Calculating Correct Sound Field Results Finally, in the fifth

step, the correct numerical values of Qj and Q′j are determined by using the differ-

ence between the ratios Q′mu/Qmu and Q′ml/Qml calculated just above and below

the source height. The boundary condition at the source height defined by Equa-

tion 3.20 specifies the relationship that should exist between the derivative of the

solution calculated in the layers directly below and above the source. This bound-

ary condition can be written(
Q′mu
Qmu

)
Qm −

(
Q′ml
Qml

)
Qm = −

√
2πkr (3.45)

where Qm is the correct solution at the source height zm. Rearranging the equation,

Qm is found in terms of calculated quantities:

Qm =
−
√

2πkr
(Q′mu/Qmu)− (Q′ml/Qml)

. (3.46)

Thus, to find the correct values of the solution in the lower and upper grid regions,

the extrapolated relative solutions are multiplied by the ratio of the correct result

to the calculated result at the source height, from the lower and upper regions:

(Qm/Qmu) for zj > zm

(Qm/Qml) for zj < zm.
(3.47)

The value of q is found by performing an inverse Fourier transformation of the
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new, correct Q in each layer of atmosphere, from 3.13 [1]:

q(r, z) =
1

π
√

2

∫ ∞
−∞

[
eikrr + e−ikrr

]
Q(kr, z)dkr. (3.48)

Thus, correct solutions are determined by transforming the wave number domain

solutions back into the spatial domain.

3.2.2 Numerical Considerations of the Inverse Transform

Evaluation

Certain numerical aspects of the inverse transform integral, Equation 3.48, must

be taken into consideration to represent the integral accurately.

First, the integrand in Equation 3.48 contains poles near kr = ±k. So that

these regions will not dominate the integral, a small imaginary term ikt is added

to or subtracted from the integration path for negative and positive values of the

real part of kr, respectively. This serves to deform the path and avoid the poles, as

shown in Figure 3.2. The added factor exp(−ktr) can be taken out of the integral

so that Fourier techniques may still be used to numerically solve the integration.

Figure 3.2. Integration path for the inverse transform integral that avoids poles at
kr = ±k, after [1] Figure F.2.

To simplify the integral further, it is recognized from Equation 3.12 that

Q(−kr, z) = ±iQ(kr, z). With this substitution, the limits of the integral can

be adjusted from [−∞,∞] to [0,∞]:

q(r, z) =
1− i
π
√

2

∫ ∞
0

[
exp(ikrr) + exp(−ikrr)

]
Q(kr, z)dkr. (3.49)
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To allow for numerical implementation, the horizontal wave number is dis-

cretized, including the small imaginary term as:

kr,n = ks,n − ikt (n = 1, 2, . . . ,M) (3.50)

where

ks,n =
1

2
∆k,

3

2
∆k, . . . , ks,M . (3.51)

Assignment of the wave number spacing ∆k and the largest wave number ks,M

require examination of the desired geometry of the results grid and consideration of

the frequency of sound. The wave number spacing ∆k affects the range over which

the result field will be periodic. Thus, the spacing must be chosen small enough

that the periodicity does not have a significant effect within the range to which

results are sought. The guideline of 2π/∆k ≥ 3r can be applied, where r is the

range variable. In addition, the largest wave number used in the Fourier transform

depends on the frequency of sound and should be chosen much larger than the

location of the pole at kr = k = ω/ceff. For this, the guideline ks,M ≈ 3ω/c0 can

be applied, where c0 is the speed of sound at the ground. Finally, for the small

imaginary component ikt subtracted from the integration variable, a value of i∆k

can be used.

Another concern in truncating the range of wave numbers in the integration is

the introduction of small, rapid oscillations in q caused by a discontinuity between

the beginning and ending values of the wave number spectrum, which leads to a

discontinuity in the assumed periodic spectrum. A window function that consists

of ones through the middle of the spectrum and goes smoothly to zero at both the

lower and upper integration limits can be applied as a factor to the integrand in

Equation 3.49 to avoid these oscillations.

A final method of increasing numerical accuracy addresses errors that result

from including a large number of vertical layers in the FFP calculations. In such

conditions, when Equations 3.37 are applied numerous times, the imaginary com-

ponent of kzj may cause the values of Qj to grow large with increasing j in the

region below the source (from the factor exp(−ikzj∆z)) and with decreasing j in

the region above the source (from the factor exp(+ikzj∆z)).

To avoid the exponential growth, the quantities Qj and Q′j can be multiplied
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by the factors

exp(ikz0∆z) for ∆z > 0

exp(−ikz0∆z) for ∆z < 0
(3.52)

after each step from height z to z + ∆z, where kz0 can be set as the vertical wave

number at the ground. Applying the factor to both Qj and Q′j does not change

the ratio between the two. Thus, no change to the extrapolation procedure is

necessary. However, a correction factor of exp(ikz0|z − zs|) must be applied when

calculating the correct values of Qj using the ratios factors in Equation 3.47.

3.3 Numerical Implementation

In the remaining sections, numerical considerations and implementations in this

research are discussed. A number of the implementation techniques are common

to both the parabolic equation and the fast field program, for example ground

impedance calculation and refractive atmosphere definition. Where implementa-

tion is the same, the reader is referred to the corresponding descriptions in Chapter

2.

3.3.1 Grid Parameters

While the derivation of the FFP method includes the use of integral transforms, in

practice, numerical implementation uses discrete points and finite limits. Conse-

quently, as specified in Section 3.2.2, certain guidelines are applied to the integra-

tion variable kr used in the inverse transform of the FFP, Equation 3.49, to avoid

numerical inaccuracies.

As suggested by Salomons, the guideline of 2π/∆k = 3r is followed to avoid

the influence of the periodicity of the result field. Therefore, to ensure that results

at all ranges are calculated accurately, the wave number spacing ∆k is set to

∆k =
2π

3rf
(3.53)

where rf is the range to which the user desires accurate results. By sampling

theory, the relationship ∆k∆r = 2π/N must be observed and the range used in
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the FFP calculations becomes

N∆r = rN = 3rf . (3.54)

Thus, the range to which calculations are made is much larger (by a factor of three)

than the range for which the results are used [65].

This research also complies with the other guidelines suggested by Salomons

regarding discretization of the integration variable kr: ∆k is used for the value of

the small imaginary term kt introduced to the wave number to avoid poles in the

integrand and ks,M = 3ω/c0 is used for the maximum wave number included in

the transform spectrum.

3.3.1.1 Grid Point Spacing

For ease of combining PE and FFP results in the hybrid model, the spacing of grid

points in the FFP follows similar procedures as the PE (Section 2.3.1), with one

exception:

The FFP does not require the small resolution of range steps necessary in the

PE. Therefore, so long as the range step resolution the user desires is not exceeded,

the range step of the FFP is set to twice that of the PE. With this spacing, the

horizontal grid spacing may be as large as λ/5, increasing computational efficiency.

The PE does not use the stratified atmosphere representation. However, the

spacing of the vertical layers of the atmosphere used in the FFP is set equal to the

vertical grid point spacing of the PE in order to maintain common vertical grid

point spacing between models.

Finally, because it is required that the source height used in the FFP lie between

layers, the source height is rounded to the height of the nearest layer boundary.

While this likely changes the source height slightly, the difference between the real

and implemented height will be no more than λ/20.
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3.3.2 Atmospheric Absorption, Refractive Atmosphere,

and Ground Impedance

A number of propagation mechanisms including atmospheric absorption, refractive

atmosphere, and ground impedance, are implemented in a similar manner in the

FFP as in the PE. Atmospheric absorption is included with the same imaginary

component added to the acoustic wave number (see Section 2.3.3). The effective

sound speed profile definition of the PE model implementation using specified

profiles (see Section 2.3.4) is also used in the FFP.

The method of including the effect of the ground with the reflection coefficient

R(kz1) was described in Section 3.2.1.2. The normalized ground impedance is

used as an input into the reflection coefficient equation, Equation 3.32. Just as in

the PE (see Section 2.3.6), the user may choose to manually assign the complex,

normalized impedance. However, if the user chooses to let the model calculate the

impedance from the flow resistivity parameter, Equation 1.1 will be used.

Turbulence is not included in this implementation of the FFP method. How-

ever, the effects of turbulent scattering have been included in the FFP in other

work by accounting for the amplitude and phase decorrelation introduced between

direct and reflected sound [66].

The FFP cannot accommodate range-depenedent effects. Therefore, neither

discontinuities in ground impedance, nor terrain features can be included.

3.4 Conclusions

In this chapter, the fast field program method formulation included in the hybrid

propagation model was derived and the details of the model’s implementation were

presented. Although the FFP is unable to incorporate range-dependent effects, it is

a good complement to the PE model, providing accurate results at large elevation

angles where the PE’s accuracy is limited. Thus, the FFP is used to support the

PE in the hybrid model. The two models combined, as described in the following

chapter, achieve an accurate sound field at all points in a vertical two-dimensional

grid.



Chapter 4
Hybrid PE-FFP Model

4.1 Introduction

The hybrid propagation model developed in this research is a composite model

of two different propagation methods: the parabolic equation method and the

fast field program. Utilizing the strengths of each model, the full two-dimensional

vertical sound field produced for a stationary point source is represented accurately

at each grid point. The two hybrid model components were described in detail in

the previous chapters. The method for combining them, and the performance of

the resulting hybrid model, is detailed in this chapter.

4.2 Procedure for Model Combination

As discussed in Chapter 2, the wide-angle formulation of the parabolic equation

method used in this research is valid for elevation angles of up to approximately

35 ◦. The hybrid model is, thus, formed by running both PE and FFP models for

the desired results grid, retaining the PE results for elevation angles within 35 ◦

and using FFP results at all other grid points. Although only PE results at low

elevation angles are used in the hybrid model, these results are calculated purely

with the PE, extrapolated in range from a starting field at the first range step.

Similarly, FFP results are calculated purely with the FFP method. Transitions

between models is implemented only after all propagation calculations are complete
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and, thus, the PE and FFP results are entirely uncoupled. Figure 4.1 shows an

illustration of the hybrid model formation process. In the upper left figure, the

FFP results are calculated and the values at grid points inside of 35 ◦ are set to

0. In the upper right figure, the PE results are calculated and the values at grid

points outside of 35 ◦ are set to 0. The FFP and PE results grids are then added

together in the lower left figure to produce a results grid accurate at all points.

The lower right figure shows a slice of the sound field from the figure on the lower

left, at a height of 2 m. The values of the curve to the left of the black arrow were

calculated with the FFP. The values to the right were calculated with the PE.

Their rather seamless union confirms the validity of combining the two models.

Figure 4.1. Method of combining the PE and FFP methods into the hybrid model.
Upper Left Figure: contribution of the FFP to the vertical two-dimensional sound field,
retaining data at elevation angles greater than 35 ◦ from the source. Upper Right Figure:
contribution of the PE, retaining data at elevation angles of 35 ◦ and smaller. Bottom
Left Figure: PE-FFP union. Bottom Right Figure: PE-FFP union at a height of 2 m
over the ground. The arrow marks the transition from FFP to PE data.

The process of combining the PE and FFP models is used through the remain-

der of this chapter and is the foundation of the hybrid model. Substantiation of
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the model is achieved by verifying both individual FFP and PE components and

validating their combination into the hybrid model.

4.3 Validation and Verification

The PE and FFP methods have been extensively used in the field of sound propaga-

tion. There are, therefore, established benchmark results available for verification

of the models. Comparisons were made between model-produced and published

results for the both the PE and FFP. To validate that the models were producing

accurate results, model results collected under varied test cases were evaluated, to

confirm the diverse capabilities of the model were working correctly.

4.3.1 Verification: Individual Model Comparisons with

Published and Accepted Results

To verify both the PE and FFP models, results have been compared to three

sets of computations: (1) the published results of Salomons in “Computational

Atmospheric Acoustics” [1], (2) an analytical model that adds the contributions

of direct and reflected sound and uses a homogeneous atmosphere, and (3) the

published results of Attenborough, et al. “Benchmark cases for outdoor sound

propagation models” [7]. The models’ agreement with these results, spanning a

large range of frequencies, ground impedances, and atmospheric conditions suggest

that the models have been coded correctly. Comparisons with [7] for different sound

speed profiles and a comparison with [1] for a condition of turbulence are included

in Appendix F.

4.3.2 Validation: Near Ground Operation Test Cases

In order to explore the performance capabilities of the hybrid PE-FFP propagation

model, results for five test cases were calculated. The test cases were designed by

the U.S. Department of Transportation Volpe National Transportation Systems

Center and the Federal Aviation Administration (FAA) to be simple enough for

analytical study, and yet representative of certain aspects of real world applica-

tions. Penn State, in conjunction with Volpe and the FAA, then picked specific
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quantitative parameters to apply to the general test case designs. The test cases

serve as reference benchmarks for comparison between the hybrid model and other

analytical and numerical models.

4.3.2.1 Description of Test Cases

The five test cases explore different combinations of terrain and ground impedance

features, with increasing complexity. The first case uses a flat, soft ground geom-

etry; the second, a flat, hard ground, with a patch of soft ground in the middle;

the third, a soft ground with an upward slope terrain feature; the fourth, a soft

ground with a downward slope terrain feature; and the fifth, a hard ground that

transitions to soft and includes a hill feature.

All five test cases were run for 50, 500, and 2500 ft source heights. The 50 and

500 ft sources were run for 1/3-octave bands from 50-1000 Hz and octave bands

from 2000-8000 Hz in a homogeneous atmosphere. Calculations were performed

for a large frequency range because aviation noise is not well represented by single

tones, but rather is broadband in nature. The 2500 ft source was run at 100, 800,

and 4000 Hz in a homogeneous atmosphere. A 50 ft source was run at 100 and

800 Hz in a downward refracting atmosphere. The two lower altitude sources in a

homogeneous atmosphere were run for the full range of frequencies with the aim

of achieving meaningful broadband results to use in validation with other models.

The high altitude source in a homogeneous atmosphere was run at low, middle, and

high frequencies, and the two low altitude sources in a refractive atmosphere were

run at low and middle frequencies to get a sense of performance in more extreme

and complex conditions while maintaining moderate runtimes. Other parameters

used in the test cases are as follows:

• Omni-directional point sources, 94 dB re 1 m

• Receivers: 4 ft height

• Soft ground: 150 cgs rayls flow resistivity, hard ground: 20,000 cgs rayls flow

resistivity

The test case geometries for the 50 and 500 ft sources are illustrated in Table

4.1. The tables and figures have been grouped together for ease of comparison.
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The ranges at which transitions in impedance and terrain occur are increased by

2,953 ft (900 m) for the 2500 ft source height condition. Otherwise, these test

case geometries for the 2500 ft source are equivalent to those of the 50 and 500 ft

sources.

4.3.2.2 Numerical Implementation of the Test Cases in the Hybrid

Model

General numerical implementation of propagation effects was described in Sections

2.3 and 3.3, for the PE and FFP, respectively. This section describes the specific

numerical implementation of the test cases, referencing Sections 2.3 and 3.3 when

needed.

4.3.2.2.1 PE Start Field To avoid numerical errors resulting when the expo-

nential integral form is used at high frequencies, the series representation of the

spherical-wave reflection coefficient, introduced in Section 2.3.2.3 is utilized at and

above 500 Hz, with two summation terms. The exponential integral and series

expansion methods were found to be nearly equivalent at higher frequencies.

4.3.2.2.2 Grid Step Spacing Grid spacings that both meet the minimum PE

spacing criteria and have data for every frequency specified at common grid points,

as discussed in Sections 2.3.1 and 3.3.1.1, were utilized in the test cases. However,

larger maximum step sizes were used for smaller frequencies in cases with sloping

ground to avoid numerical errors. The maximum horizontal grid step size for the

various frequency ranges and test cases was specified as shown in Table 4.2. If this

step size is less than λ
10

, this step size is used. If this spacing is greater than λ
10

,

the maximum step size in Table 4.2 is divided by the smallest integer divisor that

yields a step size less than λ
10

.

4.3.2.2.3 Atmospheric Absorption Utilizing the option to manually assign

the atmospheric absorption coefficients for each frequency, discussed in Section

2.3.3, atmospheric absorption is included using the standard SAE 866A [9] atmo-

sphere absorption coefficients. These are the coefficients used in INM/AEDT.
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4.3.2.2.4 Refractive Atmosphere For the cases run with a downward re-

fracting atmosphere, a logarithmic effective sound speed profile, defined with Equa-

tion 1.7, is used. The speed of sound at the ground c0 is set to 343 m/s, the

parameter of logarithmic sound speed b is set to 1 m/s, and the roughness length

z0 is set to 0.1 m.

4.3.2.2.5 Terrain To avoid discontinuities in the slope of the terrain, a

sinusoid-taper smoothing algorithm was applied for 50 meters after the start and

50 meters before the end of the terrain slopes. The smoothed slopes can be seen

for the Test Case 5 example in Figure 4.2. The resulting change to the terrain is

small.

Figure 4.2. Smoothed terrain geometry plotted against discontinuous-slope terrain,
Test Case 5.

4.3.2.2.6 Propagation Range The range at which propagation calculation

was terminated was determined by the Detectability Level, as defined in the INM

7.0 Technical Manual [4], using a 94 dB re 1 m source. As their geometries were

specified in English units, test case result distances are presented in feet. A mini-

mum propagation distance was set to 3281 ft (1 km) for source heights of 50 and

500 ft, and 6562 ft (2 km) for the source height of 2500 ft (where the ranges at

which transitions in impedance and terrain occur are larger by 2,953 ft (900 m) ).

The maximum allowable propagation range was 75,130 ft (22.9 km).
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4.3.2.3 Test Case Results

Results generated by the hybrid model for the five test cases are presented in Fig-

ures 4.3 through 4.8. Figures 4.3 through 4.7 show results for low, middle and high

frequencies: 100, 800, and 4000 Hz, and low, middle, and high source heights: 50,

500, and 2500 feet, in a homogeneous atmosphere. A dashed curve representing

spherical spreading and atmospheric absorption is shown for comparison. The fig-

ures also include averaged results for frequencies of 50-8000 Hz with source heights

of 50 and 500 ft. Figure 4.8 shows results for low and middle frequencies: 100 and

800 Hz, and a low source height: 50 ft, in a downward refracting atmosphere. A

curve representing results for a homogeneous atmosphere is included, for compar-

ison. The geometry for each test case is shown below the figures. Distances in the

geometry illustrations correspond to those in the results figures.

The test case results conform well to expectations for the different geometries.

Test Case 1 results (Figure 4.3) show standard interference patterns with interfer-

ence dip locations varying for different frequencies. Discontinuities in levels can be

seen for the higher source heights at the transition from the FFP model calcula-

tions to the PE model calculations but are mostly small, especially for broadband

calculations. (Transitions occur at 72, 712, and 3570 ft for 50, 500, and 2500 ft

source heights, respectively.) Averaged broadband results for frequencies 50-8000

Hz were determined by averaging results from runs at each 1/3-octave band cen-

ter frequency, weighted by the bandwidth of the 1/3-octave band. The averaged

results follow the spherical spreading and atmospheric absorption curve closely for

both 50 and 500 ft source heights. (Averaged results were not computed for the

2500 ft source because only 3 frequencies were run.)

In Test Case 2 (Figure 4.4) levels trend slightly higher than in Test Case 1 for

the first 984 ft (300 m) of propagation, where the ground is now hard, rather than

soft. Results show minimal effect of the impedance change for lower frequencies

and a more significant effect for higher frequencies. In the soft segment, the level

drops slightly, as compared to the hard segment, and interference dips are less

severe. The averaged results for frequencies 50-8000 Hz again follow the spherical

spreading and atmospheric absorption curve closely. However, a slight effect of the

impedance changes can be seen for the 50 ft source, while the effect is negligible

for the 500 ft source.
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Test Case 3 results (Figure 4.5) show the shadowing effect of an upward slope.

The shadow zone begins after the transition from sloping ground to flat ground.

The effects of the upward slope on the sound levels on the higher flat ground

are smaller for low frequency sources, for which diffraction causes higher levels in

the shadow zone. The effects are significant for higher frequency sources at lower

altitudes, for which diffraction into the shadow zone is not as substantial. The

effects of the upslope are small for high altitude sources where a more direct path

exists from source to receiver. Interference-pattern behavior can also be seen over

the sloping ground for most Test Case 3 runs. However, because of the one-way

limitations of the PE, sound cannot be reflected backward from the upward slope.

Therefore, sound levels before the slope are the same as in Test Case 1. The

averaged results for frequencies 50-8000 Hz show a significant effect of the shadow

zone for the 50 ft high source, but follow the spherical spreading and atmospheric

absorption curve closely for the 500 ft source.

Test Case 4 results (Figure 4.6) show the shadowing effect of a downward

slope. Here, the shadow zone begins after the transition from the flat to the

sloping ground. The effects of the downward slope—a sharp decrease in sound

level over the sloping ground, followed by a moderate increase over the lower flat

ground, due to diffraction—are significant for both high and low frequency sound

from low sources, though they remain larger for higher frequencies. Effects are,

again, smaller for high altitude sources where a more direct path exists from source

to receiver. Unlike in Test Case 3, the interference-pattern behavior is not as

prominent over the sloping ground because there are no direct reflections off the

ground. The small notches in level that are seen after the beginning and before

the end of the sloping ground are results of the terrain smoothing. To make a

more gradual transition between the flat and slanted ground segments, the slope

of the terrain is increased in part of the smoothed region (see Figure 4.2). This

temporarily increases the severity of the shadow zone, and decreases sound level.

The averaged results for frequencies 50-8000 Hz again show a significant effect of

the shadow zone for the 50 ft high source and follow the spherical spreading and

atmospheric absorption curve closely for the 500 ft source (though the effect of the

terrain smoothing can still be seen).

Test Case 5 results (Figure 4.7) show the effect of both a hill and an impedance
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change from hard to soft ground. Here, again, the effect of the impedance change is

minimal for low frequencies, but significant for higher frequencies. The shadowing

effect of the upward slope on the flat top of the hill is small for low frequencies but

significant for high frequencies, with the low altitude (50 ft) source. The shadowing

effect on the downward slope of the hill is present for both high and low frequency

sound. However, in this case, the direct path behind the hill is blocked even for the

500 ft source height, so the shadow zone is present for both 50 and 500 ft sources

and a sharp decrease in level is seen. The 2500 ft source is high enough that a

direct path exists from the source to the receivers behind the hill and the extreme

decrease in level is not observed. In the averaged results for frequencies 50-8000

Hz and source height of 50 ft, the figure shows a slight effect of the impedance

change at the transition from hard to soft ground, interference-pattern behavior

over the upward slope, a small shadow zone over the flat top of the hill, a large

shadow zone over the downward slope, and diffraction over the flat ground on

the other side of the hill. In the averaged results for frequencies 50-8000 Hz and

source height of 500 ft, the figure shows close adherence to the spherical spreading

and atmospheric absorption curve until the downward slope, over which there is a

shadow zone, and diffraction over the flat ground on the other side of the hill. The

most significant deviation from spherical spreading and atmospheric absorption

occurs where a shadow zone is present.

Results for the five test cases run with a downward refracting atmosphere,

as described above, for 100 and 800 Hz sources at 50 ft height, are shown in

Figure 4.8. Results obtained using a homogeneous atmosphere are included for

comparison. For all test cases, results using the refractive atmosphere follow those

of the homogeneous atmosphere at small ranges. The levels deviate as the range

increases, and a trend toward slightly higher levels can be seen in Test Cases 1 and

2. However, the effect of the refractive atmosphere shows the largest significance

in cases where a shadow zone forms. In the shadow zones, the level is raised

appreciably. The effect is larger for the 800 Hz source, for which increases reach

more than 20 dB.

The sensitivity of the results to the precise shape of terrain profile was inves-

tigated further by examining the effect of the terrain smoothing implemented in

the test cases. Terrain smoothing was initially used because of indications in the
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literature that changes in terrain slope should not be discontinuous. However, in

our test case runs, the model appears to handle discontinuous changes in slope

without issue. Therefore, additional hybrid model runs were performed for three

different conditions of Test Case 4, where notches in level, evident after the be-

ginning and before the end of the sloping ground, are attributed to the effects of

terrain smoothing.

Figure 4.9 shows results for Test Case 4 for a 100 Hz source at heights of 50 and

500 ft, and for a 800 Hz source at a height of 50 ft. These conditions showed the

clearest appearance of the notches in sound level. In this figure, comparisons are

made between results with and without terrain smoothing. In all conditions inves-

tigated, the notches disappear when the terrain is not smoothed and the results

over a portion of the middle of the downward slope agree for the two treatments

of terrain. For the 100 Hz, 50 ft high source, the results at ranges beyond the

downward slope agree well, with slightly larger levels shown for the terrain that

has not been smoothed. Results for the 100 Hz, 500 ft high source condition at

ranges beyond the downward slope show some small differences between the peaks

and dips in level, as well as some difference in the pattern at the larger ranges. The

condition of the 800 Hz, 50 ft high source shows larger differences between the two

terrain treatments for ranges beyond the downward slope. In this condition, lev-

els calculated for the unsmoothed terrain significantly exceed the levels calculated

for the smoothed terrain. These preliminary results indicate that results beyond

a terrain feature may be sensitive to the terrain shape that is used. However,

these difference have not been exhaustively investigated. Therefore, if the user is

particularly interested in a region either near transitions in the slopes of terrain

features, or even within the region beyond the terrain feature, the user should exer-

cise caution and avoid inattentively applying the model. Furthermore, care should

be taken to accurately define the terrain profile because a greatly approximated

combination of straight line segments may not be an adequate representation of

the real profile.

All test cases were run using Matlab on a 64-bit computer workstation with an

Intel Xeon Quad Core processor. Runtimes were strongly dependent on frequency

and vertical grid size. For the 50 and 500 ft source heights, low frequency runs

(up to the low to mid hundred Hz) took on the order of seconds and minutes,
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mid frequency runs (upper hundred Hz to lower thousand) took on the order of

hours, and high frequency runs (upper thousand Hz) took on the order of tens of

hours. To run one test case for a source height of 50 or 500 ft at all frequencies

included in this report would take approximately 24 to 34 hours. To run one test

case for a source height of 2500 ft for frequencies 100, 800, and 4000 Hz would take

approximately 36 to 40 hours.

The model, as a prototype, was programmed in Matlab for ease of development.

However, Matlab is not a compiled language and suffers from long runtimes. The

model is, therefore, being reprogrammed in C#.net by the Volpe Center to achieve

gains in computational speed. Additionally, because runs at each frequency are

independent, the recoded model could make use of parallel processing for huge

computational gains.
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Table 4.1. Description of test case geometries for the 50 and 500 ft source heights.

Test Case 1: Flat, Soft Ground

Test Case 2: Flat, Hard-Soft-Hard Ground

Test Case 3: Upward Slope, Soft Ground

Test Case 4: Downward Slope, Soft Ground

Test Case 5: Hill, Hard-Soft, Ground
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Table 4.2. Maximum horizontal grid step spacing, by case number and source frequency.

Frequency [Hz]
Case No. 10-20 25-40 50+

1-2 0.5 m 0.5 m 0.5 m
3-5 2.0 m 1.0 m 0.5 m
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50 ft source 500 ft source 2500 ft source

100 Hz

800 Hz

4000 Hz

50-8000 Hz

Figure 4.3. Results for Test Case 1, flat, soft ground. The first, second, and third columns show results for 50, 500, and 2500
ft source heights, respectively. The first, second, and third row show results for 100, 800, and 4000 Hz source, respectively. The
fourth row shows averaged results for frequencies 50-1000 Hz in 1/3-octave bands and 2000-8000 Hz in octave bands for the 50
and 500 ft source heights. Geometries of the test cases are illustrated below the result figures. Note the different range used for
the 2500 ft source.
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50 ft source 500 ft source 2500 ft source

100 Hz

800 Hz

4000 Hz

50-8000 Hz

Figure 4.4. Results for Test Case 2, flat, hard-soft-hard ground. The first, second, and third columns show results for 50,
500, and 2500 ft source heights, respectively. The first, second, and third row show results for 100, 800, and 4000 Hz source,
respectively. The fourth row shows averaged results for frequencies 50-1000 Hz in 1/3-octave bands and 2000-8000 Hz in octave
bands for the 50 and 500 ft source heights. Geometries of the test cases are illustrated below the result figures. Note the different
range used for the 2500 ft source.
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50 ft source 500 ft source 2500 ft source

100 Hz

800 Hz

4000 Hz

50-8000 Hz

Figure 4.5. Results for Test Case 3, upward sloping, soft ground. The first, second, and third columns show results for 50,
500, and 2500 ft source heights, respectively. The first, second, and third row show results for 100, 800, and 4000 Hz source,
respectively. The fourth row shows averaged results for frequencies 50-1000 Hz in 1/3-octave bands and 2000-8000 Hz in octave
bands for the 50 and 500 ft source heights. Geometries of the test cases are illustrated below the result figures. Note the different
range used for the 2500 ft source.
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50 ft source 500 ft source 2500 ft source

100 Hz

800 Hz

4000 Hz

50-8000 Hz

Figure 4.6. Results for Test Case 4, downward sloping, soft ground. The first, second, and third columns show results for 50,
500, and 2500 ft source heights, respectively. The first, second, and third row show results for 100, 800, and 4000 Hz source,
respectively. The fourth row shows averaged results for frequencies 50-1000 Hz in 1/3-octave bands and 2000-8000 Hz in octave
bands for the 50 and 500 ft source heights. Geometries of the test cases are illustrated below the result figures. Note the different
range used for the 2500 ft source.
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50 ft source 500 ft source 2500 ft source

100 Hz

800 Hz

4000 Hz

50-8000 Hz

Figure 4.7. Results for Test Case 5, hill, hard-soft ground. The first, second, and third columns show results for 50, 500, and
2500 ft source heights, respectively. The first, second, and third row show results for 100, 800, and 4000 Hz source, respectively.
The fourth row shows averaged results for frequencies 50-1000 Hz in 1/3-octave bands and 2000-8000 Hz in octave bands for the
50 and 500 ft source heights. Geometries of the test cases are illustrated below the result figures. Note the different range used
for the 2500 ft source.
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100 Hz

800 Hz

TC3 TC4 TC5

100 Hz

100 Hz

Figure 4.8. Results for Test Cases 1–5, for a downward refractive atmosphere, b = 1 m/s. Results are shown for 100 and 800
Hz sources at 50 ft height. The magenta lines show refractive atmosphere results and are compared to blue lines, which shows
homogeneous atmosphere results. Geometries of the test cases are illustrated below the result figures.
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50 ft source 500 ft source

100 Hz

800 Hz

Figure 4.9. Results for Test Case 4, downward sloping, soft ground, in a homogeneous
atmosphere with and without terrain smoothing. The first and second columns show
results for 50 and 500 ft source heights, respectively. The first and second rows show
results for 100 and 800 Hz sources, respectively. Geometries of the test cases are illus-
trated below the result figures. The dash-dot lines show results for which the terrain
profile was represented as a series of straight line segments and are compared to the solid
lines, which show results for a smoothed terrain profile.

4.3.2.4 Comparison with NMSim

While flat ground conditions have been validated against analytical and theoreti-

cal models, such benchmarks are not available to validate the model’s performance

in the presence of topography. Therefore, a comparison between results of the

hybrid model and Wyle Laboratories’ Noise Model Simulation (NMSim) propaga-

tion model [67], was made for further investigation of the hybrid model’s terrain

performance. The NMSim propagation algorithms are based on ray tracing and

incorporate the effects of spherical spreading, atmospheric absorption, terrain, fi-

nite ground impedance, and directional sources. The effect of a vertically stratified

atmosphere can be included, but only over flat terrain [29]. As a simulation model,

NMSim is able to produce time histories of sound produced by moving sources.

However, it is also capable of producing results using standard cumulative metrics
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such as sound exposure level (SEL) and equivalent noise level (Leq). With high

computational efficiency, NMSim runtimes are generally quite short, on the order

of seconds, even for complicated propagation conditions.

Results for Test Cases 3 and 4, upward and downward sloping ground, respec-

tively, were compared with NMSim. To establish a baseline of comparison, results

of Test Case 1, flat soft ground, were compared between the two models as well.

The input file of terrain elevation for NMSim is defined in the x − y plane, while

the test case terrains were defined only in one range dimension. Therefore, the

geometries of the test cases were extruded into the second range dimension. The

resulting geometry can be observed at the bottom of Figures 4.11 and 4.13, which

show elevation contour plots of Test Cases 3 and 4, respectively. While the terrain

geometry used in NMSim is not an exact comparison to the assumed axisymmetric

geometry of the hybrid model, the differences were assumed to be small.

The source definition in NMSim is formed from user-defined segment endpoint

locations. These segments are combined to form a realistic flight or ground track.

The user specifies source speed and heading at the endpoints. To achieve the

stationary point source conditions of the test cases, two endpoints at the same

location were defined with a source speed equal to zero. An omnidirectional source

option is available within NMSim. However, a specific source spectrum is assumed.

Therefore, the associated source files were altered to perform comparisons for single

1/3-octave bands at a time.

NMSim is able to produce noise contour plots of level predictions. However,

exact receiver locations can also be specified for user-controlled data output. The

user-defined receiver location option was utilized and receiver locations were posi-

tioned along a straight line from the source, perpendicular to the terrain features.

They were positioned with higher spatial resolution where quicker changes in level

were expected—near the source, over the terrain feature, and just beyond the end

of the sloped regions. Receivers were placed at a height of 4 ft above the ground.

NMSim and hybrid model results are shown in Figures 4.10, 4.12, and 4.14

for Test Cases 1, 3 and 4. They are again plotted against a line that denotes

the combined effects of spherical spreading and atmospheric absorption, with the

same absorption coefficients used in the hybrid model runs. These coefficients

are different than those applied in NMSim, which uses the ANSI S1.26 (R2004)



97

standard.

Two different sources were run for each case: a 100 Hz source, and a 4000 Hz

source. The reference level at 1 meter was arbitrary. However, it was recorded and

used to correct the results to the 94 dB reference used in the hybrid model runs.

4.3.2.4.1 Test Case 1 Results were collected for Test Case 1, flat, soft ground,

to identify any differences in the two models for the simplest propagation condi-

tions. The comparison of results from the hybrid model and NMSim are shown in

Figure 4.10. Figures 4.10a and 4.10b show results for 100 Hz and 4000 Hz sources,

respectively.

The results for both the 100 Hz and 4000 Hz sources show generally good

agreement between the two models. Differences that do emerge are larger for the

4000 Hz source. However, the results are quite similar at small ranges, and grow

larger with distance, eventually reaching approximately 6.1 dB at 3281 ft (1000 m)

from the source in range. NMSim shows higher noise levels than does the hybrid

model. The range- and frequency-dependence of the disagreement between the

hybrid model and NMSim suggests they may stem from differences in atmospheric

absorption calculation. The atmospheric absorption standards used by INM and

NMSim, SAE-ARP-866A and ANSI S1.26, respectively, are different, as shown in

the comparison in Table 4.3. The standard used by INM, and the hybrid model,

produces larger attenuation at 4000 Hz, consistent with the comparison of Figure

4.10b.

4.3.2.4.2 Test Case 3 A screenshot of the NMSim environment with Test

Case 3 conditions is shown in Figure 4.11. The upward sloping ground can be seen

at the top of the figure, where the designation of soft ground is also indicated. The

center window shows the level over time—here constant for the stationary source.

The illustration at the bottom of the window shows a top-down contour plot of

the terrain, where receiver locations are marked by circles.

The comparison of results from the hybrid model and NMSim for Test Case

3 are shown in Figure 4.12. Figures 4.12a and 4.12b show results for 100 Hz and

4000 Hz sources, respectively. The basic patterns of sound level results are similar

between the hybrid model and NMSim:
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Table 4.3. Atmospheric absorption coefficients of the SAE-ARP-866A [9] and ANSI
S1.26 [10] standards, used in INM and NMSim, respectively. 25 ◦C air temperature and
70% relative humidity.

Absorption coefficient [dB/km]
Frequency [Hz] SAE-ARP-866A ANSI S1.26

50 0.3 0.0484
63 0.3 0.0765
80 0.3 0.121
100 0.7 0.190
125 0.7 0.296
160 1.0 0.460
200 1.3 0.706
250 1.3 1.06
315 2.0 1.57
400 2.3 2.24
500 3.0 3.08
630 3.6 4.05
800 4.6 5.09
1000 5.9 6.19
1250 7.5 7.35
1600 9.8 8.68
2000 13 10.4
2500 17 12.8
3150 23 16.3
4000 31 21.9
5000 36 30.5
6300 52 44.1
8000 72 65.4

Consistent with the hybrid model, NMSim shows a decrease in level beyond

the terrain incline where the receiver enters the shadow zone. Here, the level drops

below spherical spreading and atmospheric absorption. The decrease from line-of-

sight obstruction occurs over a short distance, after which the results decrease is

more gradual, closer to the pattern of spherical spreading and atmospheric absorp-

tion. The dip in level beyond the incline is small for the low frequency, 100 Hz

source and larger for the high frequency, 4000 Hz source.

Results for the 100 Hz source agree well in the regions before and after the

terrain incline. Above the incline, where interference pattern behavior is observed,
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the complicated pattern is not recreated in precisely the same form for both models.

However, the patterns do resemble one another, capturing the nature of the sound

behavior in this region. From comparison of results after the terrain flattens out,

the overall effect of line-of-sight obstruction is found to be similar.

Results for the 4000 Hz source again agree well in the region in front of the

topographical incline, and reveal similar complicated interference pattern behavior

over the incline. Both models show severe drops in level immediately beyond

the obstruction of the direct source-receiver path. However, there is a significant

difference in the amount of attenuation registered, the hybrid model showing more

than 20 dB additional attenuation than NMSim. Such a severe drop, as shown in

the hybrid model, is unlikely to occur in realistic outdoor propagation conditions.

In this case, there is an attenuation of more than 130 dB from the 94 dB reference

level, corresponding to a ratio in intensity of 1 : 10−13. Rapid oscillations in level

experienced below -40 dB are also shown in the hybrid model results. Because for

the levels of sound this model is meant to process, these highly attenuated levels

would not be detectible over ambient noise, the cause of these oscillations has not

been thoroughly explored. If there was an interest in looking into this performance

further, attention might first be directed to any reflections off the top of the grid

that have not been completely attenuated by the absorbing layer of the PE.

4.3.2.4.3 Test Case 4 A screenshot of the NMSim environment with Test

Case 4 conditions is shown in Figure 4.13. Here, the downward sloping ground can

be seen at the top of the figure. Receiver locations are unchanged.

The comparisons for Test Case 4 are shown in Figure 4.14. Figures 4.14a and

4.12b show results for 100 Hz and 4000 Hz sources, respectively. Again, results for

both sources are quite similar in the region before the start of the terrain feature.

Over the downward sloping terrain, where line-of-site is broken, both models show

a decrease in level.

A significant difference in attenuation exists between the two models over the

downward sloping terrain for the 100 Hz source. Both models show a steeper

decrease in level just beyond the start of the downward slope and more gradual

decrease further over the slope. However, the level decrease is much larger in the

hybrid model calculations and, as the terrain flattens again, a significant increase
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in level is shown in the hybrid model results due to diffraction, which levels out at

further distances from the terrain feature. NMSim results do not show a similar

increase, remaining fairly flat. The results of the two models converge to similar

levels at distance farther from the terrain feature.

Some differences between the two propagation models were anticipated to

emerge for low frequency sound conditions. Because ray trace methods utilize

high frequency limits while the PE and FFP have no such limitations, the hybrid

model is expected to more accurately capture low frequency propagation behav-

ior. The large differences that are seen between the models in this test case reveal

that propagation in shadow zones that produce extreme drops in level benefit from

prediction by models accurate to low frequencies.

The test case results shown in Figure 4.14a were produced for the hybrid model

in a simple, homogeneous atmosphere. Additional hybrid model results were cal-

culated to include the effects of turbulence to determine if the difference between

the two models would be diminished in more realistic meteorological conditions.

Hybrid model turbulence results are shown with a dash-dot line in Figure 4.15

for fairly strong atmospheric turbulence with normalized structure parameters

C2
T/T

2
0 = 6 × 10−7 m−2/3 and C2

v/c
2
0 = 2 × 10−6 m−2/3. NMSim does not pro-

vide a method of explicitly introducing turbulence into the model and, therefore,

the same NMSim data from Figure 4.14a is used. Over the downward sloping

ground, the steep initial decrease in level is still observed. However, the decrease

is smaller under turbulent conditions. Further, the level remains approximately

constant over the remaining downward sloping region, rather than experiencing the

gradual decrease of the non-turbulent conditions. The level does increase into the

flat region behind the slope due to diffraction and maintains slightly higher levels

for the rest of the propagation range. While the differences between the hybrid

model and NMSim results are diminished under turbulent conditions, a significant

difference ranging from approximately 7 to 18 dB is still observed.

The difference between the two models is less significant over the downward

sloping ground for the 4000 Hz source. Figure 4.12b shows a severe drop in level

for both models just past the start of the slope, which persists to longer ranges. For

the 4000 Hz source, the hybrid model results generally level off, while experiencing

rapid oscillation similar to those of Test Case 3. Therefore, the exact levels recorded
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are likely less meaningful than the illustration of a significant decrease. Here, again,

realistic outdoor propagation conditions would prohibit such small levels. Still, the

presence of the rapid, severe drop is similar between the models.

While some differences were found between the hybrid model and NMSim, the

influence of the terrain features do appear to be similar in the two models. Some

differences manifest in shadow zones where predicted levels are too low to occur

under realistic propagation conditions. However, for the lower frequency, 100 Hz

sound, differences between results of the hybrid model and NMSim remain, even

when turbulence is included. NMSim predicts significantly larger levels in the

region over the downward sloping ground, where the shadow zone effects are most

extreme. This difference may be the effect of high frequency limits used in the

ray-based NMSim while the hybrid model has no such limitations. The differences

in results directly above terrain features tend to decrease at larger ranges beyond

the features.

4.3.2.5 Comparison with the INM Line-Of-Sight Adjustment

INM uses a Line-of-Sight Blockage Adjustment (LOSADJ) to roughly include the

effect of terrain obstructions based on the difference in path length between the

direct, obstructed path from source to receiver, and the path over the terrain [4].

The method of LOSADJ calculation is discussed in Section A.3.1.3. As an addi-

tional validation measure for the hybrid model test case results including terrain,

the INM algorithms were programmed for comparison.

The INM method of terrain effect implementation utilizes “attenuation caps”

with a maximum allowable attenuation of 18 dB. Only extremely small path length

differences (less than 0.1 m) produce attenuation below the cap. Therefore, the 18

dB cap is reached just beyond the break in line-of-sight. The 18 dB attenuation

in shadow zones is consistent with the broadband results of Test Case 3 and the

initial line-of-sight blockage of Test Case 5. However, they do not resemble the

more significant line-of-sight blockage conditions in Test Case 4 and longer ranges

in Test Case 5. More significant attenuation is experienced over the downward

incline of Test Case 4 than after the upward incline of Test Case 3 because the

line-of-sight blockage occurs at smaller ranges from the source—approximately 984

ft (300 m) versus 1968 ft (600 m). However, at ranges larger than 1968 ft (600 m)
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from the source, the results of Test Case 4 increase, approximately matching the

results of Test Case 3 at 3281 ft (1000 m), and approaching the 18 dB cap of INM.

Therefore, INM’s LOSADJ does resemble test case results for less extreme breaks

in the line-of-sight

4.4 Conclusions

A hybrid PE-FFP model has been developed and tailored for use in aviation noise

propagation modeling. The model was used to run five simple test cases in order to

explore the effects of ground impedance, terrain, and a refractive atmosphere, for

different source heights and frequencies. The results conformed well to expecta-

tions. The most significant effect was found to be the formation of shadow zones.

The impact of this effect was highly dependent on source height and frequency

and atmospheric conditions. Impedance discontinuity effects were found to be less

significant. Some discontinuities were observed at the range point where the transi-

tion from FFP results to PE results occurred. However, these discontinuities were

mostly small and occurred primarily for higher altitude, single frequency sources.

The hybrid model behavior at the FFP to PE transition point was not investigated

exhaustively. Therefore, the user is advised to use caution in applying the model

if the FFP to PE transition occurs at a location that is of particular interest.

Where possible, the hybrid model has been validated against analytical models

and published benchmark cases. Analytical models and published results do not

exist for some of the test case results presented. For the effect of terrain features,

comparisons with NMSim results and algorithms used in INM were made. Results

were similar under many conditions between calculation methods. Some differ-

ences exist between the hybrid model and NMSim in the more extreme conditions

including regions of interference behavior with rapidly varying levels and regions

of significantly reduced levels caused by line-of-sight obstructions.
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a.

b.

Figure 4.10. Comparison of Hybrid Model and NMSim results for Test Case 1, with
(a) 100 Hz and (b) 4000 Hz sources. The solid line shows the Hybrid Model results, the
dots show NMSim results, and the dash line shows spherical spreading and atmospheric
absorption. Geometries of the test cases are illustrated below the result figures.
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Figure 4.11. Screenshot of the NMSim run environment for Test Case 3. A cross
section of the upward sloping terrain geometry and ground impedance specification are
shown at top. The black line shows the terrain profile and the red line draws a straight
connection between the source and the currently selected receiver. It is represented in
red here because the path is obstructed by the terrain. A time history of level at a
specific receiver location is shown in the center window. A top down, elevation contour
view of the upward sloping terrain is shown with receiver locations at bottom.
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a.

b.

Figure 4.12. Comparison of Hybrid Model and NMSim results for Test Case 3, with
(a) 100 Hz and (b) 4000 Hz sources. The solid line shows the Hybrid Model results, the
dots show NMSim results, and the dash line shows spherical spreading and atmospheric
absorption. Geometries of the test cases are illustrated below the result figures.
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Figure 4.13. Screenshot of the NMSim run environment for Test Case 4. A cross
section of the downward sloping terrain geometry and ground impedance specification
are shown at top. The black line shows the terrain profile and the red line draws a straight
connection between the source and the currently selected receiver. It is represented in
red here because the path is obstructed by the terrain. A time history of level at a
specific receiver location is shown in the center window. A top down, elevation contour
view of the downward sloping terrain is shown with receiver locations at bottom.
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a.

b.

Figure 4.14. Comparison of Hybrid Model and NMSim results for Test Case 4, with
(a) 100 Hz and (b) 4000 Hz sources. The solid line shows the Hybrid Model results, the
dots show NMSim results, and the dash line shows spherical spreading and atmospheric
absorption. Geometries of the test cases are illustrated below the result figures.
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Figure 4.15. Comparison of Hybrid Model and NMSim results for Test Case 4 with
a 100 Hz in a turbulent atmosphere with normalized structure parameters C2

T /T
2
0 =

6 × 10−7 m−2/3 and C2
v/c

2
0 = 2 × 10−6 m−2/3. The solid line shows the Hybrid Model

results without turbulence, the dots show NMSim results, the dash-dot line shows the
Hybrid Model results with turbulence, and the dash line shows spherical spreading and
atmospheric absorption. The geometry of the test case is illustrated below the result
figure.



Chapter 5
Pseudo-Three-Dimensional Hybrid

PE-FFP Model

5.1 Introduction

Once the PE and FFP have been combined in the hybrid model, the full two-

dimensional vertical sound field for a stationary point source is represented accu-

rately at each gridpoint for cases without extreme range-dependent changes near

the source. However, aviation noise maps are customarily presented as noise con-

tours in a two-dimensional horizontal plane at a specified receiver height. To

produce this form of contour, the hybrid PE-FFP model must be expanded from

the two-dimensional vertical plane to a three-dimensional model. The noise levels

at a specific height can be obtained from the three-dimensional model [68].

This chapter describes the expansion of the hybrid model from two to three

dimensions. It begins with a summary of the process. It continues with a more de-

tailed explanation of the extension from single point source to flight path represen-

tation, including the transformation process of terrain and impedance information

into a form that can be interpreted by the propagation model. Finally, numerical

examples are presented to demonstrate the contouring capabilities of the expanded

model.
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5.2 Summary of the Two- to Three-Dimension

Expansion Process

This section outlines the high level steps of constructing the pseudo-three-

dimensional model from the required user inputs. Much of this process is centered

around the diagram in Figure 5.1. This diagram shows a top-down view of a hori-

zontal area over which propagation is to take place. Using numerical methods, this

propagation area must be described by a finite number of discrete points within the

space. The Cartesian system underlying the three cylindrical systems represents

the grid on which terrain and impedance information is imported into the model

as well as the ultimate representation of the returned aviation noise contour maps.

The cylindrical coordinate systems represent the points at which direct calculation

is performed by the hybrid propagation model. Each cylindrical coordinate system

is employed for a particular representative source point along the given flight path

and each system’s origin is offset from the others’ by the distance between the

source points. The diagram demonstrates the disconnect between the Cartesian

grid system on which information about the propagation area is initially provided,

and ultimately returned, and the multiple cylindrical coordinate systems on which

numerical propagation actually takes place. The following outline of the expansion

process describes how this disconnect is resolved.

1. Defining the contouring grid

The user defines the boundaries of the horizontal Cartesian grid on which

results are to be returned. For example, the grid may include the range

in x: [-175 m, 175 m] and in y: [-30 m, 320 m]. The grid definition is

used to determine the ranges, in both horizontal dimensions, to which

the contouring grid will extend.

2. Representing the continuous flight path with discrete source loca-

tions

The user defines the flight path as a set of representative (x, y, z) coordi-

nates along the continuous path. The model is run separately for each

individual source point and the results are later combined.
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Figure 5.1. Radial systems centered at each source point along a flight path, superim-
posed on the Cartesian coordinate results grid.

3. Determining terrain and ground impedance geometries for each

source point

The user provides a definition of terrain elevation and ground impedance in

a rectangular, Cartesian grid form. However, the PE and FFP models

propagate sound outward from the source. Therefore, data from rect-

angular terrain and impedance grids is interpolated to separate radial

coordinate systems with a specified number of radial angles, centered at

each representative source point, as shown in Figure 5.1. In this form

it can be used in the two-dimensional hybrid propagation model.

4. Calculating the effective sound speed profile for all azimuthal an-

gles from each source, including scalar contributions of tempera-

ture and vector contributions of wind

The user provides information about the sound speed profile produced from

temperature gradients as well as the wind speed and direction. The vec-

tor characteristic of the wind produces an effective sound speed profile

that varies with azimuthal angle from the source. Therefore, the cor-

rect parameter at each angle from the source is determined by including

both temperature and wind contributions.
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5. Running the model

Once all parameters of propagation effects are fully defined along all radial

paths from each source point, the vertical propagation model can be

run. It is run separately both for each source representation along the

flight path and for each frequency. The user selects an angle increment

that defines the discrete set of radial angles at which the vertical hybrid

model will be run outward from the source. In Figure 5.1, for example,

an angle increment of π/8 or 22.5 ◦ has been selected, requiring 16 in-

dependent runs of the vertical hybrid model around the source point,

extending outward to the edge of the propagation grid.

6. Calculating cumulative results

To allow for easier calculation of the aggregate levels from all source points,

noise data is interpolated back to a rectangular grid to show the total

noise produced by the flight path.

Using this process, a horizontal sound field at a specified receiver height can be

calculated to include the effects of three-dimensional terrain, impedance discon-

tinuities, and meteorology for a given frequency. To generate the sound field for

propagation from broadband sources, the model is run at each 1/3-octave band cen-

ter frequency within the given frequency range and results are averaged together,

weighted by the bandwidth of the 1/3-octave band. The sound field is used to

generate standard aviation noise contours [69]. Results are saved and plotted.

5.3 Propagation from a Single Point Source

This section describes, in further detail, the process of finding the sound field pro-

duced by a single point source along the flight path. Figure 5.2 shows an example

of a vertical flight path in the x− z plane, where the symbols indicate the location

of each represented point source. For each point, a two-dimensional horizontal

sound field must be constructed. The transition from the two-dimensional vertical

sound fields produced by the standard forms of the PE and FFP methods to the

two-dimensional horizontal sound field proceeds as follows:
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Figure 5.2. Vertical flight profile in the x− z plane: symbols represent locations of 21
point sources along a sample flight profile.

1. The two-dimensional vertical hybrid model is run radially outward from the

source location at specified increments of the polar angle. The form of these

results corresponds to a three-dimensional cylindrical coordinate system (Fig-

ure 5.3).

2. A slice of the three-dimensional sound field at the desired receiver height

is taken. The form of these results correspond to a two-dimensional polar

coordinate system.

3. The sound field is interpolated to a rectangular grid. The form of the results

now corresponds to a two-dimensional Cartesian coordinate system (Figure

5.4).

Figure 5.5 shows the contours produced at a height of 2 m by this process for a

50 Hz source at 100 m height in a homogeneous atmosphere over a soft ground. The

contours produced by the four point linear interpolation in the polar coordinate

system are smooth.
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Figure 5.3. Radial run results are defined in a cylindrical coordinate system.

Figure 5.4. Polar gridpoints calculated with hybrid model (x) and interpolated Carte-
sian gridpoints (+).

5.4 Propagation from a Flight Path

Section 5.3 described the method for constructing the two-dimensional horizontal

field for each individual point along the flight profile. This section shows the results

of adding these sound fields together to find the cumulative noise level produced by

the flight path. Figure 5.6a shows the transmission loss for a 50 Hz source moving

along the vertical flight path shown in Figure 5.2 and a horizontally straight path
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Figure 5.5. Transmission loss [dB] contours for 50 Hz source at 100 m height, homo-
geneous atmosphere, flat, soft ground with σ = 200 cgs rayls, receiver height of 2 m,
calculated with hybrid model.

from left to right at a y-range of 0 m with a receiver at 2 m height. Transmission

loss is defined as the total acoustic pressure calculated at a gridpoint as referenced

to the acoustic pressure of the direct sound field at a distance of 1 m from the source

[1]. Conditions include a homogeneous atmosphere and a flat, soft ground with

an effective flow resistivity of 200 cgs rayls. Figure 5.6b shows the corresponding

contour representation of the transmission loss. Length scales are shown in meters.

The flight profile (Figure 5.2) shows the aircraft leaving the ground at a range

of -200 m. In the horizontal sound field figure, the sound field begins to decrease

at -200 m and continues to decrease at larger x-range values as the airplane climbs.

Thus, the figure agrees well with what is expected for an airplane traveling with

the given flight profile.

Although the general trend of the transmission loss field was as expected, an

initially unanticipated concave shape is observed in the contours. To investigate

this result, the hybrid PE-FFP model calculations were compared to, and found

to be consistent with, the results of an analytical model. The concave contour

shape was determined to be the result of the interference pattern of the single fre-

quency computation. Because it runs more quickly than the hybrid model for high
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a.

b.

Figure 5.6. Transmission loss [dB] for a 50 Hz source following a given flight profile at
a y-range of 0 m left to right, homogeneous atmosphere, flat, soft ground with σ = 200
cgs rayls, calculated with the hybrid model. (a) Sound field. (b) Contours.

frequency sound, the analytical model was used to test the contour construction

methodology. As shown in Figures 5.7a and 5.7b, where the analytical model was

run for a source comprised of 49 frequencies from 50 to 2000 Hz in 1/9-octave

frequency bands, the broadband noise contours do not display the concave shape.

Thus, it was confirmed that, when a broadband source is modeled, the different in-

terference patterns of the various frequencies cause the concave shape to be washed
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out.

a.

b.

Figure 5.7. Transmission loss [dB] for a broadband source 50-2000 Hz, 1/9-octave
bands, following a given flight profile at a y-range of 0 m left to right, homogeneous
atmosphere, flat, soft ground with σ = 200 cgs rayls, calculated with the analytical
model. (a) Sound field. (b) Contours.
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5.5 Numerical Examples of Contouring with

Range-Dependent Effects

While the FFP is unable to include the effects of range-dependent conditions,

including such effects is a strength of the PE. Thus, two scenarios were investi-

gated in order to test the range-dependent contouring capabilities of the PE model

component in a horizontal field. These two scenarios include uneven terrain, an

impedance discontinuity, and a downward refracting atmosphere. Model results

were calculated for a source traveling along a simple flight path [69].

Two sets of propagation conditions, designed to be fairly simple, while still

displaying the capabilities of the model, are described. The second scenario, where

uneven terrain is included, is a representation of an aircraft taking off in front

of a barrier. The main concern in such a scenario is the sound that reaches the

area behind the barrier, where a community may be located. Because the ranges

behind the barrier are covered by the PE region of validity, this section will focus

on the PE results. In the following descriptions, the x − y plane corresponds to

two-dimensional horizontal ranges and the z-axis represents height. Length scales

are represented in meters.

The first scenario includes flat ground with an impedance discontinuity, from

hard to soft ground, at y = 30 m. The second scenario includes the same impedance

discontinuity from hard to soft ground, but also includes a hill with a width of 100

m and height of 10 m, centered at y = 150 m. The height of the terrain, as a

function of range, is given by:

H(r) = a cos2

[
πs

2

(
1− r

rtop

)]
, s =

2rtop
W

(5.1)

where H(r) is the height of the terrain in meters, r is range, a is the peak height

of the hill, rtop is the range at which the hill peak occurs, and W is the width

of the hill [44]. In both scenarios, a downward refracting atmosphere with the

logarithmic profile, as described above, is used, with b = 1 m/s.

The flight path travels at y = 0 m, moving level to the ground at height 5 m

until x = −90 m, at which point the aircraft takes off at a 10 ◦ angle from hori-

zontal. Receivers are placed 1.22 m (4 ft) above the ground surface and code runs
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are performed for 1/3-octave band center frequencies from 50-500 Hz and com-

bined assuming the level of the center frequency is representative of the equivalent

sound level over the 1/3-octave band. Illustrations of the flat and uneven terrain

geometries, Scenarios 1 and 2, are shown in Figures 5.8 and 5.9, respectively.

Figure 5.8. Geometry of Scenario 1, Flat Terrain. Hard ground, shown in tan, effective
flow resistivity, σ = 20, 000 cgs rayls from y = −30 m to 30 m. Soft ground, shown in
green, effective flow resistivity, σ = 150 cgs rayls from y = 30 m to 320 m. Source path,
shown in light blue, is level to the ground at 5 m height until x = −90 m, then increases
height at 10 ◦ angle. Dark blue stem plot shows representative source locations.

The PE method is increasingly inaccurate at large elevation angles from the

source. Therefore, although results are shown for all elevation angles in the follow-

ing sections, results near the flight path will not be reliable. In Figures 5.10 and

5.12, the region outside the valid elevation angle range is shown between dashed

lines [69].

5.5.1 Results from Flat Terrain Case

Figure 5.10 shows the results from Scenario 1, with flat ground propagation con-

ditions. The figure is a top-down view of the sound field at the receiver height of

1.22 m (4 ft). The flight path is located at y = 0 m and increased source altitude

extends out of the page. Sound level contours illustrate transmission loss [68].
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Figure 5.9. Geometry of Scenario 2, Uneven Terrain. Hard ground, shown in tan,
effective flow resistivity, σ = 20, 000 cgs rayls from y = −30 m to 30 m. Soft ground,
shown in green, effective flow resistivity, σ = 150 cgs rayls from y = 30 m to 320 m.
Source path, shown in light blue, is level to the ground at 5 m height until x = −90
m, then increases height at 10 ◦ angle. Dark blue stem plot shows representative source
locations. Hill spans y = 100 m to 200 m with peak height 10 m at y = 150 m.

Results in Figure 5.10 show lower values of transmission loss at the larger

positive y-axis values. This decrease is caused by the geometrical spreading and

atmospheric absorption of sound traveling away from the sources of the flight path

representation. Figure 5.10 also illustrates a decrease in level near the sources at

larger x-axis values. Here, larger distances exist between source and receiver as

the source altitudes increase.

The effect of the impedance discontinuity at y = 30 m is small relative to the

large changes in sound level occurring near the flight path and is, therefore, hard

to distinguish in the coarse contouring. However, Figure 5.11, displaying only the

contribution of the source at (0 m, 0 m, 15.9 m) for 500 Hz, shows a noticeable

change in the pattern of the sound level at the impedance discontinuity [69].

5.5.2 Results from Uneven Terrain Case

Figure 5.12 shows the results from the uneven ground propagation conditions.

Because the PE method is unable to include backscattering from the terrain, the
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Figure 5.10. Transmission Loss Results of Scenario 1, Flat Terrain, in dB. Contours
are shown as a bandwidth-weighted average of 1/3-octave band center frequency results
from 50-500 Hz. Propagation geometry is as shown in Figure 5.8. Region between dashed
lines is outside valid PE elevation angle range.

contours for this scenario are identical to the flat ground conditions from y = −30

m to y = 100 m, where the uneven terrain begins.

When a comparison is made of Figures 5.10 and 5.12 from y = 100 m to y = 150

m, the sound level results of Scenario 2, uneven terrain, are shown to be larger

than those of Scenario 1, flat terrain. This occurs because of the interaction of

sound with the upslope in Scenario 2. However, as the sound travels beyond the

peak of the hill at y = 150 m, the levels in Scenario 2 drop rapidly. This reveals

the effect of the shadow zone formed behind the hill. The shadow zone effect is

more extreme beyond the hill at lower x-values as, here, the source is closer to the

ground. As the source altitude increases and a more direct path exists from source

to receiver at larger x-values, higher levels result [69].

These results, and those of Scenario 1, show the expected behavior of sound

propagation in the specified conditions and geometries.
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Figure 5.11. Transmission Loss Results of Scenario 1, Flat Terrain, in dB. Contours
are shown for a single 500 Hz source at (0,0,15.9 m). Propagation geometry is as shown
in Figure 5.8.

5.6 Conclusion

The process of extending the two-dimensional vertical sound field, calculated by

standard propagation methods, to a pseudo-three-dimensional model was discussed

in this chapter. The method interpolates terrain, ground impedance, and meteo-

rological data to the polar coordinate systems required by the propagation models,

and then interpolates the sound field results back to the more convenient Carte-

sian grid representation. By achieving pseudo-three-dimensional representation, a

conventional noise contour map of a flight path is constructed.

Because the FFP is limited to range-independent conditions, two contouring

scenarios were run with the PE component of the model to explore pseudo-three-

dimensional, range-dependent effects. The scenarios included an impedance dis-

continuity, a downward refracting atmosphere, and a simple takeoff flight path.

Scenarios with and without a hill were compared. The hill was found to cause an

increase in level as sound interacts with the upslope of the hill, and a decrease

in level past the peak of the hill as the receiver enters the shadow zone. The in-
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Figure 5.12. Transmission Loss Results of Scenario 2, Uneven Terrain, in dB. Contours
are shown as a bandwidth-weighted average of 1/3-octave band center frequency results
from 50-500 Hz. Propagation geometry is as shown in Figure 5.9. Region between dashed
lines is outside valid PE elevation angle range.

creasing source altitude represented in the takeoff flight path also illustrates the

decrease in strength of the shadow zone effect as the line-of-sight blockage became

less extreme [69].



Chapter 6
Inclusion of Elevation Angle Source

Directivity in the Parabolic Equation

Method with an Inverse Fourier

Transform Technique

6.1 Introduction

Propagation models not only implement algorithms that predict the travel of sound

after it leaves the source, but must also bridge the gap between the available form

of source data, whether simulated or measured, and the required form of input

for the propagation model. Therefore, the source data must be preprocessed and

transformed into a useable model input while retaining all characteristics of the

source. Adjustment of the overall source level is achieved by modifying the source

strength. However, correct representation of directivity requires more complicated

implementation. If enough information is known to determine the field at all

points in height using a reverse propagation method, and other propagation effects,

for example ground reflections, can be neglected, this representation can be used

for the starting field. However, for more complicated propagation conditions, a

generalized source directivity technique, outlined in this chapter, is derived for the

unique source representation of the parabolic equation method.
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The distinctive form of the PE starting field stems from the method used to

advance the propagated sound in space. PE algorithms march results forward in

range by extrapolating from vertical vectors of results at previous range steps.

Therefore, to begin propagation in range, sound at the first range step must be

fully defined, at all heights. Such a starting field can be regarded as a vertical

source array. With this perspective, Fourier techniques can be used to synthesize

an array that produces the desired far field source directivity [70].

The PE method has two inherent limitations that do not allow straightforward

implementation of array synthesis techniques:

1. Vertical PE grid points must have a spacing of approximately λ/10, where λ

is an average wavelength, for accurate prediction.

2. The starting field must be finite at all points and restrict energy emitted at

large elevation angles from the source [1].

As a result of the first limitation, the required spacing of PE grid points is

smaller than the achievable resolution, λ/2, of the sources of array synthesis from

a far field directivity pattern [71]. The Fourier transform technique requires an

extension of the vertical wave number spectrum, beyond the range of propagating

wave numbers defined by the directivity pattern, into evanescent modes, to achieve

the decreased spacing between array sources that meets the PE constraints.

The second limitation precludes the use of standard representations of some

types of sources in the PE starting field. For example, the standard representation

of a monopole diverges at the source and emits sound at large elevation angles.

While this restriction prevents accurate representation of the near field for compact

sources, approximations can be imposed on the starting field that allow for accurate

far field predictions.

Two approaches to the array synthesis technique are explored in this chapter.

Both approaches overcome the PE limitations, but differ in the order of execution

of two critical steps.

Approach 1: Synthesize Array → Extend Resolution

1. An array of sources with the spacing of λ/2 is synthesized based on the

defined source directivity pattern.
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2. Each array element is treated as a monopole source with a weighted

source strength. The standard Gaussian monopole representation, cen-

tered at each array element, is used to populate intermediate grid points

in the starting field, achieving finer PE grid point spacing.

Approach 2: Extend Resolution → Synthesize Array

1. The vertical wave number spectrum is extended beyond the range of

propagating wave numbers, defined by the far field directivity pattern,

to achieve λ/10 PE grid point spacing resolution. This extended direc-

tional function is constructed using a modified form of zero-padding.

The spectrum is windowed to filter out evanescent vertical wave num-

ber components and diminish large propagating vertical wave number

components.

2. The windowed spectrum is used to synthesize the starting field with PE

grid point spacing.

6.2 Array Synthesis for Directional PE Sources

Assuming linear superposition, the total field produced by an array is calculated

as the sum of the fields of each individual element in the array. The PE starting

field uses a vertical line array composed of monopole elements.

For the N -element linear array shown in Figure 6.1, the acoustic pressure field

is calculated as

p(R) =
∑̀
n=−`

An
Rn

eikRn (6.1)

where An is the aperture function that defines the weighting for each array element,

Rn is the distance from each element to the receiver and, for N odd, ` = (N−1)/2.

Assuming that the extent of the array is small compared to the distance between

the source and receiver allows the distance from each array element to the receiver

to be approximated as Rn ≈ R − n∆z sin θ in the exponential, where ∆z is the

array element spacing and θ is the elevation angle from the source, and Rn ≈ R

in the denominator, where R = R0 is the source-receiver distance measured from
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Figure 6.1. Geometry of the starting field grid parameters. The shaded circles represent
monopole elements of the source array.

the center of the array

p(R, θ) =
eikR

R

∑̀
n=−`

Ane
−ik(n∆z sin θ). (6.2)

The term in front of the summation takes the form of a unit amplitude

monopole located at the center of the array. It is referred to as the axial pres-

sure

Pax(R) =
eikR

R
. (6.3)

The summation term is the far field directional function, accounting for the

variation of the pressure with angle from the center of the array

D(θ) =
∑̀
n=−`

Ane
−ik(n∆z sin θ). (6.4)
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Thus, Equation 6.2 can be rewritten

p(R, θ) = Pax(R)D(θ). (6.5)

The vertical orientation and discrete and finite nature of the array place limi-

tations on the vertical wave number components able to be resolved by the array.

By the Nyquist criterion, the smallest wavelength that is resolvable by the array

in the vertical axis is twice the element spacing λz,min = 2∆z. Thus, the largest

resolvable vertical wave number is

kz,max =
π

∆z
. (6.6)

The largest resolvable wavelength is equal to the length of the array λz,max =

N∆z. Thus, the smallest resolvable wave number is ∆kz = 2π/N∆z. The vertical

wave number can be discretized as kz = m∆kz where, for N odd, m = −(N −
1)/2,−(N − 1)/2 + 1, . . . , 0, . . . , (N − 1)/2− 1, (N − 1)/2. Then, kz can be written

as

kz = k sin θ =
2πm

N∆z
. (6.7)

Substituting Equation 6.7 into Equation 6.4 leads to the far field directional

function taking the (shifted) form of a discrete Fourier transform

Dm =

(N−1)/2∑
n=−(N−1)/2

Ane
−i2πnm/N . (6.8)

The inverse Fourier transform can then be used to find the aperture function An,

given the discrete far field directional function Dm

An =
1

N

(N−1)/2∑
m=−(N−1)/2

Dme
i2πnm/N . (6.9)
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6.3 Two Approaches for the Generalized Source

Directivity Technique

Section 6.2 lays the groundwork for the two approaches to PE directivity dis-

cussed in this section. However, the implications of Equation 6.6 prevent the

direct implementation of array synthesis. If a fine vertical PE grid point spacing,

for example λ/10, is chosen, the maximum value of the vertical wavelength will

be kz,max = 10π/λ = 5k. By Equation 6.7 the vertical wave number component

for large N will range from approximately −5k ≤ kz ≤ 5k. Outside the range of

−k ≤ kz ≤ k, the horizontal wave number kr =
√
k2 − k2

z is an imaginary quantity.

These components are evanescent and do not propagate into the far field. They

are, therefore, not resolvable in the far field directional function, used as input to

Equation 6.9. Consequently, either

1. the propagating wave number range −k ≤ kz ≤ k can be used in the array

synthesis, forcing the array element spacing to be ∆z = λ/2 by Equation 6.6,

and requiring a different method of achieving a finer starting field resolution

(Approach 1), or

2. the larger vertical wave numbers can be artificially defined in an extended

directional function to achieve array synthesis that produces a fine-resolution

starting field (Approach 2).

In this section, the results of the proposed approaches for directivity inclusion

are compared to analytical results for horizontal and vertical dipole sources both

in the free field and at low altitude above a rigid ground. The two different

orientations and two different heights of the dipoles are used to test the limits

of the methods. While the horizontal dipole emits sound primarily at smaller

elevation angles where the PE is expected to perform well, the vertical dipole

emits sound primarily at larger elevation angles where PE accuracy is degraded.

Similarly, the high altitude source field is unimpeded by a ground surface, while

reflection of sound off the ground may degrade results for the low altitude sources.

The acoustic pressure inputs for the unit amplitude horizontal and vertical dipole

sources are

ph(R, θ) =
eikR

R
cos θ (6.10)
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pv(R, θ) =
eikR

R
sin θ, (6.11)

respectively, where again θ is the angle from the horizontal.

Figure 6.2 shows the sound levels for (a) horizontal and (b) vertical dipole

sources with a frequency of 50 Hz in the free field and a homogeneous atmosphere

as calculated with Equations 6.10 and 6.11, respectively. The horizontal dipole

results show a single lobe in the range direction, extending horizontally from the

source point. The vertical dipole results for the range direction show two half-lobes,

extending vertically from the source point.

a.

b.

Figure 6.2. Sound field, in dB, produced by a (a) horizontal and (b) vertical dipole in
free field, calculated with an analytical model. The source is at 1500 m height.
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The analytical solutions for horizontal and vertical dipole sources above a rigid

ground are

ph(R, θ) =
eikR

R
cos θ +

eikRimage

Rimage

cos(−θ) (6.12)

pv(R, θ) =
eikR

R
sin θ +

eikRimage

Rimage

sin(−θ) (6.13)

respectively, where the first term in both equations represents the direct source,

the second term represents the image source, and Rimage is the distance from the

image source to the receiver.

Figure 6.3 shows results for a (a) horizontal and (b) vertical dipole 4 m above

a rigid ground. Here interference patterns from the interaction of the direct and

ground-reflected sound are illustrated. Levels are large near the ground for the

horizontal dipole and small for the vertical dipole.

These four conditions will be used as references to test the performance of

the two generalized source directivity starting field techniques discussed in the

remainder of this chapter.

6.3.1 Approach 1: Synthesize Array → Extend Resolution

In the first approach to implementing generalized source directivity, the demands

placed on calculating the far field directional function Dm are small. As dictated

by its discetization, Dm is defined at linear increments of kz space and, thus, linear

increments of sin θ (Equation 6.7). As a consequence, the directional function

elements are more densely concentrated around the horizontal, where the elevation

angle θ = 0.

Applying Equation 6.9 to the directional function Dm, which encompasses a

range of vertical wave numbers −k ≤ kz ≤ k, yields an aperture function An

defined for elements of spacing ∆z = λ/2, centered at the source height. Each

array element represents a monopole source with weighting An.

The traditional PE representation for a monopole takes the form of a Gaussian

function with the same order of accuracy as the square-root approximation, Equa-

tion 2.12. The Gaussian starting field can be derived from the exact expression for

a monopole, applying far field and small elevation angle approximations [48, 52]. It

is a smooth function, finite at all points, with limited energy in the larger vertical
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a.

b.

Figure 6.3. Sound field, in dB, produced by a (a) horizontal and (b) vertical dipole 4
m above a rigid ground, calculated with an analytical model.

wave numbers. It, therefore, satisfies the requirements of the PE while serving as

an acceptable substitute for the exact monopole expression.

The second-order, wide-angle Gaussian start field used in this research is [1]

q(0, z′) =
√
ika
(
A0 + A2k

2
a(z
′ − zs)2

)
exp

(
− k2

a(z
′ − zs)2

B

)
(6.14)

where z′ is the vector of vertical PE grid points, zs the source height, A0 = 1.3717,

A2 = −0.3701, and B = 3. Because an amplitude weight in pressure corresponds
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to the same amplitude weight in the PE propagated quantity q, the total starting

field can be constructed as the sum of N Gaussian functions,

qtot(0, z
′) =

(N−1)/2∑
n=−(N−1)/2

An
√
ika
(
A0 +A2k

2
a(z
′−z′n)2

)
exp

(
− k

2
a(z
′ − z′n)2

B

)
(6.15)

where z′n is the vector of array element heights, with λ/2 spacing.

6.3.1.1 Numerical Considerations for Approach 1

Approach 1 attempts to avoid evanescent wave numbers by employing, and com-

pensating for, wider-spaced array elements. However, increasing the resolution of

the starting field with the Gaussian function (Equation 6.14), by nature, extends

the wave number spectrum to include evanescent wave numbers, by Equation 6.7.

The effect of the Gaussian functions on wave number spectrum must, therefore,

be investigated to ensure there is no significant impact on the propagated sound.

Figure 6.4 shows the PE results using Approach 1, with N = 1025, for the

(a) horizontal and (b) vertical dipole sources under the same conditions as Figure

6.2. The vertical grid point spacing is 0.61 m, slightly smaller than λ/10 for a

sound speed of 343 m/s. The source is positioned high above a very soft ground

(an effective flow resistivity of 10 cgs rayls was used with the Delany and Bazley

calculation method), so that it may be considered to be in the free field. Therefore,

the image source is neglected.

While results at small elevation angles from the source are reasonable for the

horizontal dipole, the behavior at larger elevation angles is inaccurate. These re-

sults, when compared to Figure 6.2, show two additional lobes formed at large

elevation angles above and below the source. The absolute difference between the

levels of the PE results using Approach 1 and the analytical results is shown in

Figure 6.5. Only absolute differences in the range of 0 to 1 dB are differentiated

in order to show the smaller disparities with adequate contrast. All absolute dif-

ferences of 1 dB and above are shown in white. The figure shows that not only are

the levels at the large elevation angles inaccurate, as might be expected for a PE

method, but the sound emitted at large elevation angles causes reduced accuracy

in the smaller elevation angles at larger ranges. This is seen in Figure 6.5a as a
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a.

b.

Figure 6.4. Sound field, in dB, produced by a (a) horizontal and (b) vertical dipole
high above a soft ground, calculated with Approach 1. The source is at a height of 1500
m.

sudden onset of degradation that begins at a range of about 300 m and persists

for the remainder of the propagation range. The reduction in accuracy is caused

by the reflection of the spurious sound emitted at large elevation angles off the

distant, soft ground. The reflected sound eventually reemerges in the region of

small elevation angles from the source, beginning at a removed distance from the

source.

The results of Approach 1 for the vertical dipole also show deviation from the

analytical results. Here, an erroneous, striated pattern develops. Although the



135

a.

b.

Figure 6.5. Absolute difference in the sound fields of a free field (a) horizontal and (b)
vertical dipole in dB, calculated with Approach 1 and the analytical model. The source
is at a height of 1500 m. The dashed line indicates the elevation angles of ±35 ◦, within
which the PE results are expected to be valid. All absolute differences of 1 dB and larger
are shown in white.

accuracy deteriorates with larger elevation angles, Figure 6.5 shows that the error

is greater than 0.5 dB at all angles.

These results indicate that the placement of the Gaussian functions at incre-

ments of λ/2 and subsequent extension of the represented angular spectrum to

evanescent wave numbers influences the propagating wave number content of the

starting field. The directional function that is transformed in the synthesis of the



136

array is untreated and, thus, may not go to zero at θ = ±π/2. A discontinuity

between the values of the directional function at the two extreme values θ = ±π/2
would cause ringing in the spatial domain, as is shown for the vertical dipole source.

Additionally, energy at kz = 2k is introduced by the periodicity of the Gaussian

placement every one-half wavelength. Because kz = 2k likely does not fall on-bin,

spill-over to surrounding bins can occur. Such additions to the wave number

spectrum violate the PE requirement that sound not be emitted at large vertical

wave numbers. The impact is seen in the PE run results.

In order to decrease the additional angular spectral content of the Gaussian

array starting field (Equation 6.15), a window can be applied using the following

process:

1. The starting field is transformed with Fourier techniques to obtain the wave

number spectrum.

2. An exponential window, used in holographic processing, is applied to filter

out larger wave number content [71]

∏
=

{
1− 1

2
e−(1−|kz |/k)/α |kz| < k

1
2
e(1−|kz |/k)/α |kz| > k

(6.16)

where α determines how quickly the window decays.

3. An inverse discrete Fourier transform is taken to return the new PE starting

field.

6.3.1.2 Numerical Examples with Modified Approach 1

Figure 6.6 shows the absolute difference between the PE results using the modified

Approach 1 and the analytical model for the (a) horizontal and (b) vertical dipole

sources under the same conditions as Figure 6.5. The window decay rate is α = 0.1

and the source height is 1500 m. Again, all absolute differences of 1 dB and larger

are shown in white.

The additional lobes at large elevation angles from the source in the horizon-

tal dipole results have been removed by the window. The absence of the lobes
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a.

b.

Figure 6.6. Absolute difference in the sound fields of a free field (a) horizontal and (b)
vertical dipole in dB, calculated with modified Approach 1 and the analytical model.
The source is at a height of 1500 m. The dashed line indicates the elevation angles of
±35 ◦, within which the PE results are expected to be valid. All absolute differences of
1 dB and larger are shown in white.

eliminates the erroneous reflections off the ground of the sound coming from these

lobes.

Striations still appear in the vertical dipole results, likely because the exponen-

tial window function does not force the angular spectrum to zero at θ = ±π/2,

but rather to half its original value. However, the overall error has improved to

below approximately 0.5 dB within most of the valid PE angle range.
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Figure 6.7 shows the absolute difference between the levels of the PE results

using the modified Approach 1 and the analytical model for sources at a height of

4 m above a rigid ground.

a.

b.

Figure 6.7. Absolute difference in the sound fields of (a) horizontal and (b) vertical
dipole 4 m above a rigid ground, in dB, calculated with modified Approach 1 and the
analytical model. The dashed line indicates the elevation angles of ±35 ◦, within which
the PE results are expected to be valid. All absolute differences of 1 dB and larger in
(a) and 3 dB and larger in (b) are shown in white.

The absolute difference between the PE and analytical model for the horizontal

dipole is well under 1 dB for the smaller elevation angles. The error increases in

the first interference minimum where the level is quite low, but regains accuracy
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entering the second region of constructive interference.

The accuracy of the vertical dipole results is significantly degraded. The errors

are high near the ground where the levels are small. However, even in the region

of constructive interference, the error is approximately 2 dB (note the change of

grayscale limit).

The modified Approach 1 performs well for a horizontal dipole source in both

the free field and at low altitudes over a rigid ground. However, it is less accurate

for the vertical dipole source, especially when ground effects must be included.

6.3.2 Approach 2: Extend Resolution → Synthesize Array

In Approach 2, the problem of the fine starting field resolution is tackled imme-

diately. Acknowledging the inevitable extension of the wave number spectrum to

include evanescent modes, this approach shapes the final wave number spectrum

of the starting field at the outset.

6.3.2.1 Defining the Directional Function

Approach 2 begins by determining the final wave number spectrum range, using

the PE vertical grid point spacing ∆z as input in Equation 6.6. (A spacing of

λ/10, yielding a wave number spectrum range of −5k ≤ kz ≤ 5k, is used in this

discussion for descriptive ease; however, a different spacing may be used so long

as it complies with PE requirements.) The extended directional function is then

computed in three steps:

Step 1. The far field directional function is assigned to the extended directional

function within the range −k ≤ kz ≤ k. The extended directional function

is set to zero at the evanescent wave numbers.

The top plots (Step 1 plots) of Figures 6.8a and 6.8b show the directivity

patterns plotted as functions of the normalized vertical wave number kz/k,

where k is the acoustic wave number, assumed to be constant over height,

for a (a) horizontal and (b) vertical dipole, respectively, with N = 57. The

envelope of the function is relatively smooth for the horizontal dipole, but

exhibits extreme discontinuities for the vertical dipole. A discontinuity in



140

wave number space will cause contamination of the aperture function over

all array elements in space. The discontinuity, therefore, must be eliminated.

Step 2. Anticipating that Step 3 will be used to diminish energy at the evanes-

cent wave numbers, the directional function at the evanescent wave numbers

is filled with the value at the nearest propagating wave number, to avoid

discontinuities.

The middle plots (Step 2 plots) of Figure 6.8 show the modified directional

function for the horizontal and vertical dipoles. Because the next step in the

approach will remove most of the added energy, the method of removing the

discontinuity between propagating and evanescent wave numbers is of little

importance. It is most important that the discontinuity be removed.

Step 3. The energy at evanescent wave numbers is restricted using the exponential

window defined by Equation 6.16.

The bottom plots (Step 3 plots) of Figure 6.8 show the windowed functions,

with α = 0.1. The original functions and their windowed counterparts are

similar. However, the windowed functions have been smoothed. With this

process, the windowed directional functions have sufficient spectral range to

represent a fine resolution PE starting field while minimizing evanescent and

large propagating vertical wave number components.

6.3.2.2 Calculating the Starting Field

With the extension of the vertical wave number spectrum, a standard inverse

Fourier transform is taken to obtain the aperture function An at the PE resolution

in space (Equation 6.9). However, to calculate the PE starting function, the aper-

ture function, derived using the quantity of acoustic pressure, must be converted to

the propagated quantity of the PE, q. The relationship between the pressure and

this quantity q = p
√
r cannot be used at the starting field range r = 0. Therefore,

a relationship employing the far field approximation as r approaches 0 is used.

The derivation begins with the one-way form of the Helmholtz equation, Equa-
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tion 2.7, re-written as

∂q

∂r
− ik

(√
1

k2

∂2

∂z2
+ 1

)
q = 0. (6.17)

A Fourier transform pair is defined to transform Equation 6.17 into the angular

spectrum domain

Q(r, u) = F{q(r, z)} =

∫ ∞
−∞

q(r, z)e−i2πuzdz (6.18)

q(r, z) = F−1{Q(r, u)} =

∫ ∞
−∞

Q(r, u)ei2πuzdu. (6.19)

The second-order partial derivative with respect to z and the partial derivative

with respect to r for a regular function q(r, z) can, therefore, be rewritten as

F

{
∂2q

∂z2

}
= −4π2u2F{q} (6.20)

F

{
∂q

∂r

}
=
∂(F{q})
∂r

, (6.21)

respectively. Using Equations 6.20 and 6.21, the Fourier transform of Equation

6.17 is
∂Q

∂r
− ikMQ = 0 (6.22)

where MQ =
√

1− 4π2u2

k2 Q . The solution to Equation 6.22 is given by

Q(r, u) = Q(0, u)eikMr. (6.23)

An inverse transform can be performed to express the field q(r, z) in terms of

the starting field q(0, z)

q(r, z) = F−1
{
F{q(0, z)}eikMr

}
. (6.24)

Looking ahead to the use of the convolution theorem to represent this equation

in integral form, the inverse Fourier transform of the propagator eikMr can be
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expressed in terms of a Hankel function as [38]

F−1
{
eikMr

}
=

ikr

2
√
r2 + z2

H
(1)
1

(
k
√
r2 + z2

)
(6.25)

where H
(1)
1 is the Hankel function of the first kind of order 1. The asymptotic

expansion of this Hankel function for large arguments is

H
(1)
1 (kρ) ≈

√
2

πkρ
eikρ−i3π/4. (6.26)

This equation can be related to Equation 6.25 with the variable definition ρ(z) =
√
r2 + z2 and Equation 6.25 can be rewritten [38]

F−1
{
eikMr

}
=

ikr

2
√
r2 + z2

H
(1)
1

(
k
√
r2 + z2

)
≈ r

ρ(z)3/2

√
1

iλ
eikρ(z). (6.27)

Multiplication in the angular spectrum domain corresponds to convolution

in the spatial domain. Therefore, using the convolution properties f(x) ∗
g(x) =

∫∞
−∞ f(x − x′)g(x′)dx′ for the corresponding Fourier transform equation

F−1
x [F (u)G(u)] = f(x) ∗ g(x) [71], Equation 6.24 can be transformed as

q(r, z) = q(0, z) ∗ F−1
{
eikMr

}
=

∫ ∞
−∞

√
1

iλ
q(0, z′)

r

ρ′(z − z′)3/2
eikρ

′(z−z′)dz′ (6.28)

where ρ′(z − z′) =
√
r2 + (z − z′)2 and z − z′ is interpreted as a vector quantity

of the height difference between the receiver and all points along the source array.

Plugging Equation 6.28 into the original relationship q = p
√
r, the pressure is

represented as

p(r, z) =
q(r, z)√

r
=

∫ ∞
−∞

√
1

iλ
q(0, z′)

√
r

ρ′(z − z′)3/2
eikρ

′(z−z′)dz′. (6.29)

Assuming that the extent of the array is small compared to the distance between

the array elements and receiver, |z′ − zs| � ρ′(z − z′), where zs is the source

height, the receiver range can be approximated as r ≈ ρ′(z − z′) cos θ, where θ

is the elevation angle from the source. Using the trigonometric identity cos θ =
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√
1− sin2 θ and a small angle approximation that preserves the 2nd order accuracy,

√
cos θ =

4
√

1− sin2 θ ≈ 1− sin2 θ

4
, (6.30)

Equation 6.29 becomes

p(r, z) =

∫ ∞
−∞

√
1

iλ

(
1− sin2 θ

4

)
q(0, z′)

eikρ
′(z−z′)

ρ′(z − z′)
dz′. (6.31)

Using a method similar to Equation 6.1 for a continuous line source, an equation

for the pressure can also be written

p(r, z) =

∫ ∞
−∞

B(z′)

ρ′(z − z′)
eikρ

′(z−z′)dz′. (6.32)

By comparing Equations 6.31 and 6.32, a relationship between q(0, z′) and the line

source weightings B(z′) is found

q(0, z′) =
√
iλ

B(z′)

1− sin2 θ/4
. (6.33)

Finally, it is recognized that a discretized form of the coefficients B(z′) can be

related to the discretized aperture function as An = Bn∆z. Therefore, the discrete,

N -element PE starting field can be calculated from the aperture function as

q(0, z′n) =

√
iλ

∆z

An
1− sin2 θ/4

. (6.34)

Note: because the elevation angle θ is not defined in the starting field, the factor

1/(1− sin2 θ/4) must be applied during the definition of the directional function,

before the inverse transform is performed.

Using the method described in Section 6.3.2.1, in conjunction with Equation

6.34, the PE starting field can be calculated with an inverse Fourier transform

of the extended far field directional function. Thus, the calculation procedure of

Approach 2 is complete.
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6.3.2.3 Numerical Examples with Approach 2

Figure 6.9 shows the absolute difference between the levels of the PE results using

Approach 2 with window decay rate α = 0.1 and the analytical model for a (a)

horizontal and (b) vertical dipole, respectively, under the same conditions as Figure

6.6. The source is at a height of 1500 m and is assumed to be in the free field.

The absolute difference between the PE and analytical models is well under 1

dB for all angles in the valid PE range for the horizontal dipole. The region of

accuracy stretches further into high elevation angles than does that of the modified

Approach 1.

The vertical dipole results also agree with the analytical results to within 1

dB for most angles inside the valid elevation angle range, a marked improvement

over the results from the modified Approach 1. However, accuracy falls off quickly

outside the valid elevation angle region. Nonetheless, accurate results using the

PE are achieved, despite sound being emitted at larger elevation angles.

Figure 6.10 shows the absolute difference between the levels of the PE results

using Approach 2 and the analytical model for a (a) horizontal and (b) vertical

dipole, respectively, under the same conditions as Figure 6.7. The sources are at

a height of 4 m above a rigid ground.

The absolute difference between the PE and analytical models for the horizontal

dipole is well under 1 dB for the smaller elevation angles, showing an improvement

over the modified Approach 1. However, large errors begin at the first region

of destructive interference and remain large in the next region of constructive

interference, where modified Approach 1 recovers. Thus, accuracy to the full range

of elevation angles ±35 ◦ is not achieved.

The vertical dipole results agree with the analytical results to within 1 dB for

all angles in the valid PE range. Accuracy is achieved even near the ground where

an interference dip exists and sound levels are low, and extends well into the region

of constructive interference where the levels are high.

The model agreement demonstrates that the dipole directivity for a low altitude

source over a rigid ground surface can be accurately represented by this starting

field calculation method, with image source inclusion for regions of high sound

levels. It may or may not be accurate at or after regions of destructive interference.
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6.4 Comparison of Approaches 1 and 2

A comparison of propagation results from horizontal and vertical dipole sources in

the free field and at low altitude above a rigid ground indicate that both approaches

generally perform well within the valid PE angle range. Results were mostly within

1 dB of analytical results, and often much closer.

The two approaches use different strategies to accomplish the objective of gen-

eralized source directivity representation. Approach 1 remains in touch with the

accepted Gaussian start field for a monopole, which limits energy at higher wave

numbers. It tries to avoid evanescent wave numbers by using a course resolution

aperture function. However, in extending starting field resolution with the Gaus-

sian array, energy is reintroduced into the evanescent wave numbers that must

later be windowed out. Approach 2 deviates from the standard Gaussian starting

field. However, it addresses the problem of evanescent wave numbers directly and

no later fix is required.

Because Approach 2 shows a slight advantage in accuracy and consistency and,

needing no modification, is more straightforward in implementation, it is identified

as the preferred generalized source directivity starting field technique. Motivated

by efforts to model aviation noise in communities surrounding airports, the most

relevant results are those near the ground. Here, Approach 2 shows excellent

accuracy for both the horizontal and vertical sources.

Figure 6.11 plots the sound pressure level relative to spherical spreading for

three source heights of 4, 60, and 200 m over a rigid ground with a receiver height

of 1.22 m. Results calculated with Approach 2 are shown in gray and analytical

results are shown in black. The transitions to valid elevation angle ranges occur

at 4, 85, and 284 m for the 4, 60, and 200 m high sources, respectively.

The figures show quick convergence of the PE results to the analytical results

for both the horizontal and vertical dipole sources at all three heights for receivers

near the ground. By the range of transition to valid elevation angles, results for

both the horizontal and vertical dipoles at all heights show errors of less than 1

dB. Accuracy of propagation increases at longer ranges.



146

6.5 Conclusions

Two approaches were investigated for generalized source directivity representation.

Both approaches use Fourier techniques to transform between the directivity pat-

tern and weightings of starting field elements. To overcome the PE limitations that

require a finite, high resolution starting field, Approach 1 synthesizes an array with

course element spacing, and increased starting field resolution by populating inter-

mediate grid points with Gaussian functions. It requires modification to eliminate

evanescent components inadvertently added by the Gaussian array. Approach 2

extends the angular spectrum to include evanescent wave numbers and directly

synthesizes an array of finer element spacing.

While both approaches proved to be generally accurate to within 1 dB, Ap-

proach 2 achieves slightly better accuracy, particularly near the ground, where it is

most important that results be correct for community noise concerns. It also offers

a simpler implementation procedure. Therefore, it is identified as the preferred

generalized source directivity starting field technique.

Results for horizontal and vertical dipole directivities are discussed in this chap-

ter. However, it is a straightforward process to replace the dipole directivity with

an arbitrary, user-specified profile. The examples used were not meant to closely

resemble realistic directivity patterns of commercial aviation noise sources, which

tend to show less severe directivity than the dipoles, but rather to test the limits of

the model—the horizontal dipole expected to show high accuracy, and the vertical

dipole expected to challenge the capabilities of the PE. Because the method per-

formed well for both sources, with and without ground reflections, it is expected to

be accurate for more realistic aviation noise directivity profiles, so long as variation

with elevation angle is not extreme.
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a.

b.

Figure 6.8. Process of directional function calculation for Approach 2 for (a) horizontal
and (b) vertical dipole sources.
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a.

b.

Figure 6.9. Absolute difference in the sound fields of a free field (a) horizontal and (b)
vertical dipole in dB, calculated with Approach 2 and the analytical model. The source
is at a height of 1500 m. The dashed line indicates the elevation angles of ±35 ◦, within
which the PE results are expected to be valid. All absolute differences of 1 dB and larger
are shown in white.
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a.

b.

Figure 6.10. Absolute difference in the sound fields of (a) horizontal and (b) vertical
dipole 4 m above a rigid ground, in dB, calculated with Approach 2 and the analytical
model. The dashed line indicates the elevation angles of ±35 ◦, within which the PE
results are expected to be valid. All absolute differences of 1 dB and larger are shown
in white.
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a.

b.

Figure 6.11. Sound pressure level relative to spherical spreading, in dB, at a receiver
height of 1.22 m for (a) horizontal and (b) vertical dipoles over a rigid ground. Lines a
and b, c and d, and e and f represent sources at heights of 4, 60, and 200 m, respectively.
Lines a, c, e and b, d, f are calculated with an analytical model and Approach 2,
respectively. Lines a and b are largely indistinguishable in both figures.



Chapter 7
Conclusion

7.1 Summary

This dissertation presents a model designed to accurately predict aviation noise

levels under complicated propagation conditions, particularly at low frequencies.

The model was constructed as a composite of the parabolic equation and fast

field program methods. The PE allows the hybrid model to incorporate range-

dependent effects at smaller elevation angles from the source. The FFP ensures

that the model is accurate at low frequencies to moderate elevation angles, for

cases without extreme range-dependent changes near the source. The resulting

model can include terrain, ground impedance, meteorology, and directional source

effects in noise levels presented in a standard aviation noise contour map.

The contributions of this research can be summarized as follows:

Progress in hybrid modeling

PE and FFP methods combined. Taking a hybrid approach utilizes the

strengths of complementary numerical models. In this research, the PE and

FFP, discussed in Chapters 2 and 3, respectively, are combined to increase

the effectiveness of the propagation model as a whole. The construction of

the hybrid model, discussed in Chapter 4, begins by joining the PE and FFP

components in the appropriate regions in the two-dimensional vertical plane.

PE results are used in elevation angles of 35 ◦ and below, and FFP results are

used above 35 ◦. The performance of both individual PE and FFP models
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was verified against both analytical solutions and published results. Merging

them into a hybrid model was validated by running test cases that explored

results of different source heights, source frequencies, and propagation con-

ditions.

Methodology developed for extending a two-dimensional model to a pseudo-

three-dimensional form. The standard two-dimensional formulations of the

PE and FFP methods propagate sound from a point source in a vertical

plane. To run correctly, they require knowledge of the terrain profile, ground

impedance, and meteorological conditions in that vertical plane. However,

available data describing propagation environments may be stored in formats

(e.g., terrain elevation or ground impedance raster files) that are inconsistent

with these input needs of the propagation model. Consequently, the data

must be interpolated into usable forms for the model.

In the two-dimensional hybrid PE-FFP model developed for this research, an

extension is made to a pseudo-three dimensional form, discussed in Chapter

5, to better represent aviation noise in communities. The extended model cal-

culates propagation results on multiple polar coordinate systems, centered at

each source point along a flight path. These results are then transformed to

a Cartesian coordinate system grid to be combined into a cumulative sound

exposure of the full flight path. However, in using the propagation model in

polar coordinate systems, the model must access terrain, ground impedance,

and meteorological inputs defined along these systems. Therefore, a method

of interpolation between coordinate systems was established to navigate the

gap between Cartesian grid-defined data and the hybrid model polar coordi-

nate input form. Thus, a pseudo-three-dimensional representation of aviation

noise from a full flight path is achieved.

The progress in hybrid modeling is understood as the combination of different

facets of prior research and propagation techniques into a new aviation noise

contouring model. The synthesis of the full model provides an advanced and

versatile engineering tool.

Advancement in characterizing a realistic aviation noise source for

input into the PE model
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Two methods of representing a directional source based on array processing

techniques were developed for the unique form of the PE starting field, dis-

cussed in Chapter 6. Both approaches recognize the elevation angle limitation

of the PE method and the required resolution of vertical grid points in the PE

starting field. Approach 1 calculates an aperture function with the standard

half-wavelength array element spacing and uses the traditional Gaussian PE

representation of a monopole to populate intermediate grid points and in-

crease resolution. Approach 2 anticipates the starting field resolution and

extends the vertical wave number spectrum of the directional function to

allow use of straightforward inverse Fourier transform techniques. Both ap-

proaches produce accurate results within the valid PE elevation angle range

for horizontal and vertical dipole examples. However, Approach 2 is more

direct and slightly more accurate. Therefore, it is identified as the preferred

generalized source directivity starting field technique.

These advancements constitute building blocks in developing accurate avia-

tion noise propagation models. They were used in this research to create a self-

contained, inclusive model. However, they can also be applied separately for other

propagation applications. For example, the hybrid model alone can be used with-

out employing the directional source option, or the directional source capability

can be utilized in a standard PE model. Either option can also be used for simple,

range-independent conditions for which interpolation of terrain or impedance data

is unnecessary.

Further, the model developed for this research was designed to accept a variety

of user-specified option combinations and was programmed to be modular. By

choosing different user-specified inputs in the input text file, the model can be

directed, for example, to return a single vertical sound field at one chosen angle

from a source, or to return a full, horizontal noise contour map. In addition, either

a pure PE or pure FFP model can be called, instead of the hybrid model option, for

the purposes of comparison. The ability to adapt to the user’s chosen application

extends the versatility of the model.
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7.2 Future Work

While there are numerous conditions for which the hybrid PE-FFP model re-

sults are anticipated to be accurate, scenarios involving, for example, a flight path

traveling directly over complicated topography or ground impedance transitions

challenge the limitations of the model. In such cases, the range-dependence limi-

tation of the FFP may produce errors at larger elevation angles from the source.

The extent of the errors should be assessed if such areas are of particular concern,

with special consideration given to conditions where range-dependent effects are

expected to be significant. Further, if a discontinuity between the results of the

two models is found, more extensive investigation into the difference between the

results may be performed. Methods that limit the errors in this large elevation

angle region, potentially ray-trace and higher-order PE methods, could also be

explored.

In future work, a continued investigation of the sensitivities of the hybrid model

is also encouraged. Chapter 4, for example, introduced the significant effect of

terrain shape definition. It was shown that, though the changes in a particular

terrain definition may be small, large differences in sound level can emerge. In

this discussion, results using a simple, straight line segment terrain representation

were compared to a terrain profile that had been smoothed. Differences were most

noticeable near locations where the terrain profile had been altered. However,

in some conditions, differences were also seen at ranges well beyond the end of

the terrain feature. Consequently, care should be taken to avoid inattentive or

imprecise application of the model, especially when the cause of sensitivities occurs

at locations of particular interest.

Another possible improvement to the hybrid model is the addition of a direc-

tional source capability to the FFP module. Models exist for calculating prop-

agation from dipole [32] and quadrupole [33] sources with the FFP method. A

multipole expansion could determine the contribution of the monopole, dipole,

and quadrupole components of a particular source in order to fully incorporate

directional sources into the hybrid model.

Finally, the full hybrid PE-FFP propagation model is computationally expen-

sive and requires a variety of inputs to define the propagation environment. The
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model’s need for specific meteorological data limits its use to those with access to

or means of calculating such data. The ability of the American Meteorological So-

ciety (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model

(AERMOD) to provide the necessary meteorological inputs to the propagation

model is explored in Appendix C. It is suggested that an interface between the

outputs of AERMOD and inputs of the hybrid model could be developed to utilize

existing capabilities, originally developed to calculate meteorology parameters for

emissions models.

To ease computational demand and further increase the model’s accessibility, an

approximate, fast access version of the code could be constructed. If numerous full

model runs in different scenarios were compiled to create a representative collection

of transfer functions, as described in Appendix B, the data could be assembled into

manageable database forms. Methods of transfer function manipulation might then

be used to represent a variety of meteorology and ground conditions without need

to run the full hybrid model. Alternately, to reduce computation time while still

using the full version of the model, low frequencies could be run with the full

hybrid model and higher frequencies could be run with a faster method, such as

ray tracing.



Appendix A
Existing Standard Aviation Noise

Models

A.1 Introduction

In the following description and gap analysis for aviation noise assessment models,

the Advanced Acoustic Model (AAM), the Integrated Noise Model (INM), and

NOISEMAP have been investigated and compared.

The Advanced Acoustic Model (AAM) was developed by Wyle Laboratories

under the Strategic Environmental Research and Development Program project SI-

1304. It was designed to, eventually, replace NOISEMAP as the required method

of modeling noise exposure near military air bases caused by flights and engine

run-ups [13].

The Integrated Noise Model (INM) was developed by Volpe National Trans-

portation Systems Center. It is the standard noise-modeling program employed by

the Federal Aviation Administration (FAA) since 1978 and is designed to predict

noise levels near airports [4].

NOISEMAP was developed by Wasmer Consulting and the Air Force Research

Laboratory. It is the required method of modeling noise exposure near military air

bases caused by flights and engine run-ups [72, 73].

A description and analysis of the algorithms in the four models is included

below. It is separated into two categories: source representation and propagation

algorithms.
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A.2 Source Representations

A.2.1 INM

INM is a segmentation model that uses tabulated data known as Noise-Power

(or operational mode, for helicopters)-Distance (NPD) curves in combination with

spectral classes, which represent frequency content, to characterize the noise gen-

erated by infinitely long, straight flight tracks [74, 4]. Each curve corresponds to a

particular aircraft engine power setting, determined by a measure called the cor-

rected net thrust for fixed-wing aircraft or operational mode for helicopters, and

provides noise levels at specific distances from the source. The helicopter noise-

distance data are presented in sets of three curves for the dynamic operational

modes, in order to account for the asymmetrical directivity of helicopter noise.

A single curve, in combination with a helicopter-specific directivity adjustment,

is presented for static operational modes. Actual flight paths are then modeled

as combinations of finite, straight segments for fixed wing aircraft or an ordered

set of procedure steps for helicopters, whose contributions are calculated based on

corrections to the NPD data. INM does not correct helicopter procedure steps

for nonstandard atmospheric conditions. As will be discussed later, the program

adds other corrections for different effects that influence propagation such as at-

mospheric absorption, lateral attenuation, and terrain line-of-sight blockage [4].

A.2.2 NOISEMAP

NOISEMAP also uses data in the form of NPD curves, based on flyover spectral

sound power levels for many aircraft, power settings and airspeeds, to represent a

source. In fact, some NPD data for INM aircraft is used, specifically. However,

NOISEMAP can also utilize hemisphere files for new aircraft in RNM, if available.

A.2.3 AAM

AAM uses sound spheres to characterize noise sources. The sound spheres may

be broadband or pure tone noise data for a single flight condition. For fixed-wing

aircraft, they represent a specific thrust, speed, and engine thrust vector angle. For

conventional helicopters, they represent a specific flight path angle and airspeed.
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For quasi-steady flight conditions for a rotorcraft, they represent a specific flight

path angle, pylon angle, and airspeed [13].

A.3 Propagation Algorithm Adjustments

A.3.1 INM

Algorithms in this section are obtained from the INM Version 7.0 Technical Manual

[4]. The following adjustments are applied to all INM aircraft in order to account

for propagation effects:

• Atmospheric absorption (AAADJ), to correct for non-reference temperature

and relative humidity.

• Acoustic impedance (AIADJ), to correct for non-reference temperature, at-

mospheric pressure and, indirectly, altitude of the airport.

• Noise fraction (NFADJ), to correct for a finite-length flight segment instead

of an infinitely long flight path.

• Duration (DURADJ), to correct for the flight segments finite duration, for

non-reference aircraft speeds.

• Lateral attenuation (LAADJ), to correct for engine-installation, ground re-

flection, refraction, and scattering effects.

• Line-of-sight blockage (LOSADJ), to correct for any line-of-sight blockage

between source and receiver due to terrain. Note: Invoking the LOSADJ is

optional. If it is invoked, LOSADJ and LAADJ are compared, and the larger

adjustment is applied while the other is ignored.

Two additional adjustment terms, used only for fixed-wing aircraft, include:

• Ground-based directivity adjustment (DIRADJ), used only for calculating

noise behind the start-of-takeoff ground roll and for run-up operations.

• Thrust Reverser Adjustment (TRADJ), applied only when thrust reversers

are deployed as part of the landing ground roll.
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For a fixed-wing aircraft, the sound exposure ratio (Eseg) for a single flight-path

segment operation, when the LOSADJ is invoked, is calculated as

Eseg = 10
[LE,P,d−ADJ+NFADJ+DURADJ−Max[LAADJ,LOSADJ ]+TRADJ+DIRADJ ]

10 (A.1)

where LE,P,d−ADJ corresponds to LAE, LCE, or LEPN , as the desired sound expo-

sure metric, in dB, resulting from interpolation of the NPD data and including

atmospheric absorption and acoustic impedance.

Adjustment terms that are only applicable to helicopter flight operations in-

clude:

• Source noise due to advancing Mach Number (MNADJ), to correct for the

non-reference, helicopter-specific airspeed, temperature and/or rotor RPM.

• Lateral Directivity (LDADJ), to correct for an elevation angle, β, different

than those represented by the three sets of NPDs (45 ◦ to the right, 45 ◦ to

the left, and 90 ◦ at the center), as shown in Figure A.1.

Figure A.1. Diagram of the elevation angle for helicopter lateral directivity adjustment.
(Figure appeared as Figure 3-15 in the INM 7.0 Technical Manual [4]. Reproduced with
permission.)

The sound exposure ratio (Eseg HELI) for a single flight-path segment of a flight

operation, when the LOSADJ is invoked, is calculated as

Eseg HELI = 10
[LE,P,d−ADJ+NFADJ+DURADJ−Max[LAADJ,LOSADJ ]+MNADJ+LDADJ ]

10 (A.2)
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where LE,P,d−ADJ corresponds to LAE, LCE, or LEPN , as the desired sound expo-

sure metric, in dB, resulting from interpolation of the NPD data and including

atmospheric absorption and acoustic impedance.

Adjustment terms that are only applicable to helicopter static operations in-

clude:

• Static directivity (DIRHELI ADJ), to correct for the directivity of static op-

erations at different angles around the helicopter.

• Static operation duration (tHELI ADJ), to correct for the duration of time

spent on a segment during a static operation.

The sound exposure ratio (Eseg HELI static) for helicopter static operations, when

the LOSADJ is invoked, is calculated as

Eseg HELI static = tHELI static10
[LE,P,d−ADJ+NFADJ−Max[LAADJ,LOSADJ ]+DIRHELI ADJ ]

10

(A.3)

Out of all the listed adjustment terms, noise fraction, lateral attenuation, and

line-of-sight blockage have been chosen to be discussed in further detail. These

terms were selected because they have more elaborate implementations and may

have larger implications for the accuracy of the physical situation being repre-

sented.

A.3.1.1 Noise Fraction

The noise fraction is calculated by assuming a “fourth-power, 90-degree dipole

model of sound radiation.” This corresponds to the equation

p2
r = p2

s

(
s4

r4

)
(A.4)

where pr, ps, s, and r are defined in Figure A.2. The description “dipole” refers

to the assumed directivity of the source and the description “fourth-power” comes

from the inverse proportionality of p2
r to r4.

The noise fraction is calculated as the ratio between the mean-square receiver

pressure integrated over the time range taken to cover the flight segment and the

mean-square receiver pressure integrated for all time.
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Figure A.2. Diagram of the observer/flight-path geometry. (Figure appeared as Figure
C-1 in the INM 7.0 Technical Manual [4]. Reproduced with permission)

A.3.1.2 Lateral Attenuation

The lateral attenuation adjustment incorporates the engine-installation and other

airplane shielding effects, ground reflection effects, and refraction and scattering ef-

fects. INM uses the algorithms specified in the SAE-AIR-5662 standard, “Method

for Predicting Lateral Attenuation of Airplane Noise” to calculate the lateral at-

tenuation for two different types of engine mountings for fixed wing aircraft. A

geometric illustration of the variables used in the following equations can be seen

in Figure A.3.

The directivity correction that incorporates the engine-installation effects,

EENGINE(φ), is a function of φ, the depression angle, and is governed by differ-

ent equations for jet aircraft with fuselage-mounted engines and jet aircraft with
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Figure A.3. Diagram of the lateral attenuation geometry. (Figure appeared as Figure
3-5 in the INM 7.0 Technical Manual [4]. Reproduced with permission.)

wing-mounted engines. A polar plot of these functions can be seen in Figure A.4.

Because directivity is represented by the set of 3 NPD curves and additional

directivity adjustments for helicopters, the helicopter directivity correction for

engine-installation effects is set to zero.

The lateral attenuation correction that incorporates ground effects G(lseg) is

a function of lseg, the sideline distance (meters) in the horizontal plane from the

observer to the projection of the closest point of approach of the flight segment.

The ground effect attenuation, increases with increasing sideline distance and then

levels off.

The lateral attenuation correction that incorporates the refraction and scatter-

ing effects Λ(β) is a function of β, elevation angle. The refraction and scattering

effect attenuation decreases with increasing elevation angle and reaches 0 dB at

about 50 ◦.

The total lateral attenuation adjustment, LAADJ , combines the contributions

of engine-interaction, ground, and refraction-scattering effects for each receiver
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Figure A.4. Directivity of the engine-installation effects for wing-mounted and fuselage-
mounted engines of jet-powered airplanes. (Figure appeared as Figure 3-7 in the INM
7.0 Technical Manual [4]. Reproduced with permission.)

location and is calculated as

LAADJ(INM) = −
[
EENGINE(φ)− G(lseg)Λ(β)

10.86

]
(A.5)

Different algorithms are used for the lateral attenuation adjustment for

“NOISEMAP aircraft,” which are included in the INM database. As in the algo-

rithms used in the NOISEMAP model, the lateral attenuation adjustment neglects

engine installation effects.

A.3.1.3 Line-of-Sight Blockage

The line-of-sight blockage adjustment is used to incorporate the effects of terrain

that blocks the direct path from the source to the receiver. It is based on the

difference in length between the direct path and the path over the top of the



164

terrain. This path length difference is calculated as

δ0 = (A+B)− C (A.6)

where A is the length of the path from the source to the diffraction point, B is the

length of the path from the diffraction point to the receiver, and C is the length

of the direct path from source to receiver, as can be seen in Figure A.5.

Figure A.5. Diagram of the line-of-sight (LOS) blockage geometry. (Figure appeared
as Figure 3-12 in the INM 7.0 Technical Manual [4]. Reproduced with permission.)

The path length difference is used to predict the Fresnel Number N0 as

N0 = ±2

(
δ0

λ

)
= ±2

(
fδ0

c

)
(A.7)

where the positive sign is used when the line of sight between source and receiver

is lower than the diffraction point and the negative sign is used when the line of

sight is higher than the diffraction point, λ is the wavelength of the sound, f is

the frequency of the sound, and c is the speed of sound.
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The Fresnel Number is used to calculate the Barrier Effect as

Barrier Effect =


5 + 20 log10

(
(2π|N0|)1/2

tan
(

(2π|N0|)1/2
)) N0 < 0

5 + 20 log10

(
(2π|N0|)1/2

tanh
(

(2π|N0|)1/2
)) N0 > 0

(A.8)

The Barrier Effect for each of the one-third octave-band center frequencies is

used to calculate line-of-sight blockage adjustment as

LOSADJ = 10 log10

( 40∑
i=17

10
Barrier Effecti

10

)
(A.9)

where Barrier Effecti is the Barrier Effect for the ith one-third octave band. As

previously stated, if the line-of-sight blockage is invoked, the line-of-sight blockage

adjustment is compared to the lateral attenuation adjustment and only the larger

is used. A limit of 18 dB is imposed on the line-of-sight blockage adjustment.

A.3.2 NOISEMAP

Algorithms in this section are obtained from the NMAP 7.0 User’s Manual [73].

NOISEMAP incorporates atmospheric absorption, lateral attenuation, two mod-

eled categories of aircraft events—flight (departure, arrival, closed pattern and

interfacility), and static (preflight and maintenance), an adjustment to correct

for non-reference aircraft speeds, an adjustment to correct for non-reference air-

craft altitudes, a takeoff roll model, and corrections for topography and ground

impedance.

Atmospheric absorption is calculated using the ANSI S1.26-1995 (ASA 113-

1995), “Method for Calculation of the Absorption of Sound by the Atmosphere”

standard [10]. Monthly average temperature, relative humidity and atmospheric

pressure are incorporated.

NOISEMAP uses the lateral attenuation algorithm of “Prediction Method for

Lateral Attenuation of Airplane Noise During Takeoff and Landing” SAE AIR 1751

for civilian jet and propeller-driven aircraft and that of “Lateral Attenuation of

Military Aircraft Flight Noise” Technical Report AAMRL-TR-89-034, for military

jet and propeller-driven aircraft and helicopters. In this standard, the lateral
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attenuation algorithm is based on ground effects and neglects engine installation

effects.

The airspeed correction is used to correct the source data from the 160 knot

reference speed to the actual speed of the aircraft. It is calculated as:

Airspeed Adjustment = −10 log10(V/160) (A.10)

An adjustment is also applied to correct the source data from the sea-level

reference condition to a better estimate of the aircrafts height, decreasing the

reference noise level by 2 dB per 10,000 feet. The correction is applied under the

assumption that the effective thrust decreases with altitude and that as effective

thrust decreases, the noise produced decreases. The correction is calculated as:

Altitude thrust adjustment = log−1
10 [0.00002(1000− alti)] (A.11)

where alti is aircraft altitude in feet.

Takeoff roll modeling is divided into two parts, initial directivity for the run-up

and an acceleration model. Data for the run-up directivity is stored in look-up

tables and the acceleration model calculates two different adjustment terms, one

for the start-of roll position and another for the aircraft rotation position.

Corrections for ground impedance incorporate effects of hard, soft, or a mix-

ture of hard and soft surfaces for flat ground. Topography, including valleys and

hills, can also be accounted for. However, when the topography mode is invoked,

the lateral attenuation adjustment is not used. The algorithms are based on the

developments of the NATO/CCMS Working Group on Topography, including the

Plovsing paper, “Aircraft Sound propagation over Non-flat Terrain. Development

of Prediction Algorithms.” They are rooted in the Maekawa and Rasmussen algo-

rithms for shielding and diffraction effects. However, as in INM, anisotropic effects

such as terrain (and weather) are not handled properly.

A.3.3 AAM

Algorithms in this section are obtained from the Advanced Acoustic Model Techni-

cal Reference and User Manual [13]. AAM is a ray-trace model. It applies the gen-
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eral adjustments of geometric spreading (Aspread), atmospheric absorption (Aatm),

and ground reflection and attenuation losses (Agrd). Nonlinear propagation effects

(Anlin) are incorporated for high thrust military aircraft. Optional effects include

topographic attenuation (Atopo) and wind attenuation or amplification (Awind). To

add the contribution of all these adjustment terms, the sound levels at a distance r

for a single flight-path segment operation, when the topographic attenuation and

wind attenuation or amplification are invoked, is calculated as

L(r) = L(r0) + Aspread + Aatm + Agrd + Atopo + Awind + Anlin (A.12)

where L(r0) is the free-field, lossless sound level at a distance r0 from the source.

Atmospheric absorption is calculated using the ANSI S1.26 (R2004) method.

It is computed at height intervals of 1,000 feet.

Ground impedance effects are based on the work by Chien and Soroka and

then by Chessel with corrections of Daigle, using Doppler-shifted frequencies. The

properties of the ground are characterized by the flow resistivity parameter.

Nonlinear effects are based on the theory developed by Gee, et. al., utilizing the

Burgers Equation. The adjustment term is obtained by calculating the difference

between the nonlinear calculation and a corresponding linear calculation.

Varying terrain effects are based on a theoretical model, developed by Ras-

mussen, which extends the geometrical theory of diffraction to finite impedance

ground. AAM categorizes terrain features as flat terrain, uphill, downhill, val-

ley, wedge or screen with one flat, or wedge or screen with two flats. It accounts

for shielding (by wedges), structures (screens), multiple reflections in valleys, and

ground impedance.

Wind and temperature gradient effects are based on the theory developed by

Plotkin and Huber. The model can either use effects calculated with a straight

ray propagation model that calculates atmospheric absorption based on the user

defined atmospheric profile at different altitudes, or it can use effects calculated

with the weather module RNMwea pre-processor that utilizes a curved ray tracing

propagation model. Curved ray effects have only been incorporated when analyzing

a single event analysis occurring over uniform, flat terrain. A horizontally stratified

media is assumed. A turbulent decoherence effect, as described by Chessell, can be
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included by specifying a turbulence parameter. Diffraction of sound into a shadow

zone is calculated using the method developed by Berry and Daigle.

Contributions of broadband, narrowband, and pure tone sound to noise levels

at observer points are tracked independently, combined accounting for phase and

coherence, and tracked over time.

A.4 Discussion of Algorithms

A.4.1 Source Representation

Among the more standard noise calculation methods such as INM, NOISEMAP,

and AAM, there are two types of noise source characterizations: NPD-type data

and sound spheres. The NPD-type data, as used in INM and NOISEMAP, rep-

resents an infinite flight path. Corrections are applied to these curves to make

them represent finite segments. Sound spheres, as used in AAM, represent sound

emanating from a single point with a particular directivity built in for different

frequency representations.

While a sound sphere is a more detailed characterization of the source (AAM is

even capable of producing a time history of sound levels) and has the potential to

yield more accurate noise level calculations, the sound spheres are rather expensive

and time-consuming to obtain. Consequently, as an extensive NPD database al-

ready exists for a large range of aircraft and engine types, the NPD representation

prevails for the time being.

Although the effects incorporated by the different models are often different in

form or implementation, certain categories of effects emerge and will be discussed

below. A distinction is made between physical propagation effects and adjustments

required to compensate for the NPD source representation. Therefore, the first

section in the following analysis will discuss the adjustments used in INM and

NOISEMAP. The second will discuss the physical propagation effects.

While the considered models all contain adjustments for atmospheric absorp-

tion, often the same or similar standards are used. It will, therefore, not be con-

sidered here in depth.
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A.4.2 Segmentation Model Adjustments

A.4.2.1 NPD-specific adjustments

Because of the nature of the NPD data and segmentation method, adjustments

must be added in order to convert an infinite flight path representation at reference

conditions to a finite flight segment representation at actual conditions. Such terms

in INM are the noise fraction adjustment and the duration adjustment. These

additional approximations are applied only to correct the simplified representations

of the source. In order to apply these approximations, certain assumptions must

be made regarding the nature of the sound produced. INM justifies the directivity

pattern it assumes as an incorporation of the phenomena that “include atmospheric

absorption, which is accentuated in front of the aircraft due to Doppler shift, sound

refraction away from the hot gases behind the airplane, and ground attenuation”

[4]. However, the directivity pattern does not seem to incorporate the cardioid-

like shape that might be expected from jet directivity and convection effects, or

the dipole directivity of unsteady drag, but does resemble the trailing edge noise

dipole directivity. Therefore, a generalization is made, as the calculated directivity

is applied indiscriminately to all flight segments regardless of flight operation being

performed (which might affect the configuration of the aircraft and, thus, which

sound sources are present or dominant). These types of adjustment terms and the

assumptions that accompany them are not included in AAM, which characterizes

sources differently.

A.4.2.2 Lateral attenuation

The lateral attenuation adjustment used in INM, for INM aircraft, incorporates

the engine-installation and other airplane shielding effects, ground reflection ef-

fects, and refraction and scattering effects. Similar to INM’s noise fraction ad-

justment, the lateral attenuation adjustment implies a certain directivity profile,

dependent on the characteristics of a representative aircraft. It also assumes gen-

eral ground and atmospheric conditions. The lateral attenuation adjustment used

in NOISEMAP does not incorporate the airplane shielding effects. Again, this is a

generalization that applies certain assumptions and approximations that may not

be accurate for all types of aircraft and all ground and atmospheric conditions.
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Alternatively, AAM does not use any explicit lateral attenuation adjustment.

It relies on the source representation to provide the directivity profile and adds

separate corrections, which allow for more variety in representation, for ground

and atmospheric conditions.

A.4.3 Physical Propagation Effects

A.4.3.1 Uneven terrain

One of the only range-dependent effects taken into account in the noise models

discussed is uneven terrain. Uneven terrain can be incorporated, to an extent, in

INM by invoking the optional line-of-sight blockage adjustment. The approach

used has been validated for distances up to 1000 feet. However, it does not make a

distinction between different terrain shapes. NOISEMAP goes one step further by

distinguishing between flat ground, valleys, and hills. However, when the topogra-

phy mode is invoked, calculation times can be expected to increase by an order of

magnitude. AAM goes further still by categorizing terrain features as flat terrain,

uphill, downhill, valley, wedge or screen with one flat, or wedge or screen with two

flats.

A.4.3.2 Ground Effects

In INM, ground effects are built into the lateral attenuation adjustment. However,

the lateral attenuation algorithms were developed from field measurements over

acoustically soft ground and the user is warned that sound levels may be under-

predicted if the ground being represented is a hard surface. INM does accept

directivity data for static helicopter operations for both hard and soft ground.

NOISEMAP has two ways of applying ground effects. The first is similar to that

of INM, where it is included in the lateral attenuation adjustment. However, it can

also be invoked in a separate mode in which an impedance file, which specifies a

grid of ground impedance data, is used. The ground effects for AAM are based on

the method developed by Chien and Soroka, extended by Chessel with corrections

by Daigle. These use a more descriptive ground impedance parameter for a more

accurate ground effect representation.
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A.4.3.3 Meteorological Effects

INM does correct for the effect of headwind on the power required of an aircraft

during the beginning of the flight model (for example, it is incorporated in such

parameters as takeoff ground-roll distance, climb angle, and acceleration segment

distance). However, INM only minimally accounts for meteorological effects in

propagation with the atmospheric attenuation adjustment (calculated using the

temperature and relative humidity entered by the user), the acoustic impedance

adjustment (a function of temperature, atmospheric pressure and, indirectly, al-

titude), and the lateral attenuation adjustment (meant to incorporate, in part,

effects of refraction and scattering, but including no atmospheric input parame-

ters).

NOISEMAP’s treatment of meteorological effects is no more sophisticated than

that of INM.

AAM includes a curved ray model for incorporation of meteorological effects,

using a horizontally stratified atmosphere. However, its use is limited to single

event analysis occurring over uniform, flat terrain.

A.5 Conclusion

In the comparison of INM, NOISEMAP, and AAM, it was found that many of the

necessary aviation noise production and propagation effects have been addressed.

However, terrain and meteorology were the effects most often neglected.

The comparison also revealed different degrees of accuracy in the models’ source

representations. These included a simplified representation, with a compact, ex-

tensive database and smaller computational requirements and a detailed source

representation with a limited database.



Appendix B
Guidance on Full Model-Fast Access

Model Conversion

B.1 Introduction

The full version of the Hybrid Parabolic Equation (PE)-Fast Field Program (FFP)

Model is primarily a research tool to develop accurate predictions including a wide

variety of real-world propagation and environmental effects. It is not intended

to be a fast model. In order to manage runtime, additional work is needed to

translate typical outputs of the Hybrid Model into a fast access approach. This can

be accomplished by choosing appropriate classes of conditions, running the code

under those conditions, amassing a database of results, and formulating transfer

functions for each combination of conditions. The transfer functions can be used

as the basis of a fast access propagation model.

B.2 Meteorology

B.2.1 Refractive Atmosphere Classes

In the full Hybrid Model, a refractive atmosphere is described with an effective

sound speed profile, defined by an unrestricted parameter. The Parabolic Equation

and Fast Field Program methods do not limit the definition of the sound speed

profile to specific functions and, without too much adjustment of the Hybrid Model
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code, an arbitrary sound speed profile could be accommodated. In order to con-

struct a fast access model with a more reasonable runtime, the range of possibilities

for characterizing the atmosphere must be restricted. This can be accomplished

by defining different classes of the atmosphere, based on realistic conditions. Each

class is characterized by a specific sound speed profile.

It has been found that using 9 different classes of a combined logarithmic-linear

sound speed profile to characterize many random (though realistic) atmospheric

conditions “reduced the risk to less than 20% that the average sound level at 1000

m range in an arbitrary climate is estimated with an error of more than 2 dB” [75].

Additionally, 25 classes could “further reduce the risk of exceeding 2 dB deviation

from the reference to less than 10% of the cases” [75].

The European Harmonoise propagation model specifies a logarithmic-linear

sound speed profile function:

cm(z) = c0 + am ln

(
1 +

z

z0

)
+ bmz (B.1)

where cm is the effective sound speed of profile m (m = 1, 2, . . . ,M), z is height,

c0 is a constant sound speed, z0 is the roughness length of the ground surface,

and am and bm are parameters of the sound speed profile m. It is stated that

M = 25 is a typical number of profiles and typical parameter values are z0 = 0.1

m, am = −1.0,−0.4, 0, 0.4, 1.0 m/s and bm = −0.12,−0.04, 0, 0.04, 0.12 1/s [76].

A similar manner of classifying states of the atmosphere is described in detail

in E. M. Salomons, et al. “Long-term average sound transfer through the atmo-

sphere: predictions based on meteorological statistics and numerical computations

of sound propagation” [5]. Schemes of the meteorological model and the method

for computing long-term average transfer functions are shown in Figures B.1 and

B.2, respectively, as they appear in the paper [5].

In Salomons, et al. [5], 27 different sound speed profiles are used to classify

the atmosphere. A meteorology model uses inputs of the part of the day (day-

time or nighttime), season, ground roughness, and direction of sound propagation

to construct 1620 sound speed profiles by way of Pasquill stability classes and

Businger-Dyer profiles. The representative 27 profiles are chosen from these 1620

profiles. Because calculations of average sound levels are dominated by downward
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Figure B.1. Scheme of meteorological model used in [5]. Reproduced with permission.

refracting atmospheric conditions, which produce higher sound levels, the classes

are not split evenly between upward and downward refracting profiles, and more

downward refracting profiles are used [5].

Once the 27 profile classes are determined, each is input into a PE run for a

specific frequency, source height, and ground impedance. Therefore, a database

of 27 different transfer functions is constructed for each frequency-source height-

ground impedance combination [5]. Numerous combinations should be run for each

of the 27 meteorology classes until an adequate database is amassed. Salomons,

et al. [5] averages over 10 frequencies per octave band in order to obtain octave

band average transfer functions.

If one average transfer function is sought to predict long-term average sound

levels for a specific location, the statistical properties of the locations meteorolog-

ical conditions must be known. In this case, statistical weights can be applied to

give appropriate contributions of each meteorology class to the total level [5, 77].

Because of the consideration for efficient categorization of classes, and a detailed

and complete method description in Salomons, et al. [5], it is recommended that

this technique for calculating transfer functions be used to formulate the fast access

version of the Hybrid Model. Transfer functions can be stored in lookup tables,
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Figure B.2. Scheme of long-term average transfer function computation used in [5].
Reproduced with permission.

or polynomials (20th order polynomial had been found adequate in one instance

[78]) for each octave band, ground type, meteorological class, source height, and

receiver height.

B.2.2 Turbulence

The main effects of turbulence on sound propagation are the scattering of sound

into shadow zones by turbulent eddies, and loss of coherence between sound trav-

eling different paths, due to phase fluctuations [76]. Turbulence is not included

in the Salomons, et al. [5] reference because, although the effect of turbulence in

shadow zones can be large, the low levels in the shadow region have a negligible

contribution to the average transfer function [5]. Since the influence of turbulence

on average level values is small, and the computational requirements of modeling

it accurately with numerous realizations are large, the effect of turbulence can be

simplified and incorporated into propagation models as an upper allowable limit of

excess attenuation (not including atmospheric absorption or spherical spreading).

The Harmonoise reference model uses a limit of 15 dB [76]. A similar restriction



176

can be imposed in the fast access version of the Hybrid Model.

B.3 Ground Impedance Discontinuities

The full Hybrid Model can include the effects of propagation over varying

impedance ground (for example grass to water) when it is provided the differ-

ent impedances of ground and the ranges over which they are present. A separate

full model run is then performed for each different heterogeneous ground condition.

To quickly include the effects of propagation over ground with varying

impedance in a fast access model, an interpolation method has been developed

by E. M. Salomons and F. H. A. van den Berg [6]. As described in their paper,

the effects of a heterogeneous ground can be computed from correctly combining

results using separate calculations over each homogeneous ground surface. With

this method, results for arbitrary distances of different ground surfaces could be

quickly calculated from a smaller subset of code runs for each representative type

of ground surface.

Salomons and van den Berg found that, when sound propagated over a grass-

water (soft-hard ground) interface in a downward refracting atmosphere, a transfer

function calculated with a PE model follows the grass curve up to the transition,

and next continues with the slope of the water curve [6]. Using the simple formulae:

L(r) = Lg(r) for r < rx

L(r) = Lw(r) + Lg(rx)− Lw(rx) for r > rx
(B.2)

where L is the heterogeneous ground transfer function, Lg and Lw are the transfer

functions for grass and water, respectively, r is range, and rx is the range of the

transition between ground surfaces, good agreement was achieved between the

heterogeneous ground PE results and the interpolation of homogeneous ground

PE results. A comparison of the results for a grass-water transition can be seen

in Figure B.3. This method gave poor agreement when the g and w indices were

interchanged. However, when the principle of reciprocity was utilized to compute

reciprocal situations, agreement between models was, again, good.

The method was also tested on ground surfaces with both grass-water-grass-

water and water-grass-water-grass combinations. Good agreement was achieved
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Figure B.3. Transfer function versus range for propagation in a downward refracting
atmosphere over homogeneous water and grass (thick lines) and over various grounds
with a grass-water transition (thin lines). Thin solid lines were calculated with a single
PE run, using the exact grass-water configuration. Thin dashed lines were calculated
using the interpolation method to combine homogeneous grass and homogeneous water
PE runs [6]. Reproduced with permission.

when the ground was permuted such that all grass areas were moved toward the

source and all water areas were moved to the receiver. In the paper, a low alti-

tude source and only hard and soft ground conditions were explored [6]. Thus,

application of this method to other conditions should be validated.

B.4 Terrain

All discussion in this report so far has assumed a flat ground surface. Because there

are an unlimited number of possible configurations of terrain geometry, other than

Fresnel number methods (i.e., “A+B-C” methods) we are not aware of a general

simplified method of including terrain effects into a fast access form. Fast ac-

cess techniques for canyon-like environments, where there are multiple reflections,

would be especially challenging. If a fast access model including terrain effects is

needed for a specific location with a fixed geometry, a location-specific database

could be created with full Hybrid Model runs using only that terrain geometry.

However, as results illustrated in Chapter 4 for the Near Ground Operations

Test Cases suggest, unless terrain obstructions cause a break in the direct line of

sight, forming a shadow zone, terrain effects may be minimal. If the effects are

small enough, they could be neglected.
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B.5 Conclusion

In order to construct a fast access version of the Hybrid Model, transfer functions

can be generated for different combinations of meteorological and (homogeneous)

ground conditions. These transfer functions can be stored in lookup tables or

polynomials for each octave band, ground type, meteorological class, source height,

and receiver height. Turbulence can be approximated by setting an upper limit to

the allowable excess attenuation.

To incorporate the effects of a heterogeneous ground, an interpolation method

that correctly combines transfer functions from homogeneous ground runs can be

used. Therefore, the fast access model can utilize existing transfer functions, elim-

inating the need for individual runs of specific heterogeneous ground conditions.

Because there are an unlimited number of possible terrain configurations, a

method of incorporating terrain effects into a general fast access model is not

known. However, test case results suggest that inclusion of terrain effects may be

necessary only when shadow zones are formed.

Finally, if long-term transfer functions are desired, they can be constructed by

statistically weighting the individual transfer functions by the probability distri-

bution of the chosen set of meteorological classes.



Appendix C
Assessment of the Potential for

Using Emissions Meteorological

Models for Noise Propagation

C.1 Introduction

The Hybrid PE-FFP Propagation Model can incorporate meteorological effects

such as a refractive atmosphere and homogeneous, isotropic atmospheric turbu-

lence. However, it requires specific meteorological input parameters to charac-

terize the atmosphere. The viability of exploiting emissions model, AERMOD,

meteorological capabilities to compute Hybrid Model inputs is explored.

C.2 Model Requirements

Inputs required to adequately define the state of the atmosphere in the Hybrid

Model in terms of both refractive sound speed profiles and refractive-index fluctu-

ations of turbulence are discussed below.
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C.2.1 Refractive Sound Speed Profiles

To define the refractive state of the atmosphere, the Hybrid Model code uses an

effective sound speed profile defined as

ceff = c+ u (C.1)

where c is the adiabatic sound speed and u is the wind velocity in the direction of

propagation. The effective sound speed profile is a way of approximating a moving

atmosphere by a non-moving atmosphere [1]. Currently, the code has built-in

linear and logarithmic profile options defined as

ceff = c0 + az

ceff = c0 + b ln

(
z
z0

+ 1

)
(C.2)

respectively, where c0 is the sound speed at the ground, a the sound speed gradient,

z the height above the ground, b the parameter of logarithmic sound speed, and

z0 the roughness length of the ground surface. The user must specify the sound

speed at the ground, chose either the linear or logarithmic function to represent

the profile, and provide either the linear gradient, if the linear function is chosen,

or the parameter of logarithmic sound speed profile, if the logarithmic profile is

chosen. For a logarithmic profile, the roughness length of the ground surface must

also be specified.

Without major code adjustment, either an alternate profile function, a detailed

vector definition of effective sound speed at specified height values, or a detailed

matrix definition of sound speed at specified height and range values could be

accommodated.

C.2.2 Atmospheric Turbulence

To describe the turbulent state of the atmosphere, the code assumes frozen turbu-

lent fluctuations and approximates the turbulence as homogeneous and isotropic

with a von Kármán spectrum [1]. This is a simplified representation, but such ap-

proximations have been successfully used in modeling outdoor sound propagation
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experiments [42]. To characterize the turbulence, the model requires inputs of the:

• Outer length scale of turbulence L0

• Normalized structure parameters of temperature and wind velocity fluctua-

tions,
C2
T

T 2
0

and C2
v

c20
, respectively

The model uses these inputs to calculate the von Kármán spectral density func-

tion, from which the refractive-index fluctuation (fluctuation of the effective sound

speed) is calculated. The refractive-index fluctuation is used to introduce a phase

factor at each range step, mimicking the effect of turbulence [1].

C.3 AERMOD Outputs Transformed to Noise

Propagation Model Inputs

The American Meteorological Society (AMS) and U.S. Environmental Protection

Agency (EPA) Regulatory Model (AERMOD) [79] can calculate a number of me-

teorological parameters using measured and estimated inputs. The calculated pa-

rameters can, with manipulation, be useful inputs to the Hybrid Model.

C.3.1 Refractive Atmosphere Parameters

To supply all necessary Hybrid Model refractive atmosphere inputs, AERMOD

must provide the parameters to fully define the effective sound speed profile. This

can be accomplished by providing both a wind speed profile (including direction)

and an adiabatic sound speed profile (based on temperature). AERMOD is able

to estimate vertical wind speed profiles based on measurements and similarity

parameterizations. Divided into three vertical layers, the wind speed is calculated

as:

u{z} = u{7z0}
(

z
7z0

)
for z < 7z0

u{z} = u∗
k

[
ln

(
z
z0

)
−Ψm

{
z
L

}
+ Ψm

{
z0
L

}]
for 7z0 ≤ z ≤ zi

u{z} = u{z0} for z > zi

(C.3)
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where u is wind speed, z is height, z0 is the roughness length, u∗ is friction velocity,

k is the von Kármán constant, Ψm is defined by the 1984 Panofsky and Dutton

paper for the convective boundary layer and by the 1985 van Ulen and Holtslag

paper for the stable boundary layer, L is the Monin-Obukhov length, and zi is the

mixing height [79].

The wind direction is defined by AERMOD to be constant with height both

above the highest and below the lowest measurement and to vary linearly between

measurements [79]. While AERMOD is able to calculate the potential temperature

gradient [79], ultimately, an absolute temperature profile is required to compute

an effective sound speed profile. Following Salomons [1], the potential temperature

can be related to the absolute temperature and pressure as:

θ = T

(
p0

p

)(γ−1)/γ

, (C.4)

where θ is potential temperature, T is absolute temperature (in kelvin), p0 = 105

Pa, p is pressure, and γ is the specific-heat ratio (γ = 1.4 for air). Assuming a

vertical gradient of the average pressure:

dpav
dz

= −ρavg, (C.5)

where pav is average pressure, ρav is the average density, and g is the acceleration

of gravity, and applying the adiabatic equation of state and ideal gas law, the

temperature gradient can be defined as:

α0 ≡
dT

dz
= −γ − 1

γ

ρT

p
g. (C.6)

From Equations C.4 and C.6, and approximating p ≈ p0 + dp
dz
z the relationship

between potential and absolute temperature is:

θ ≈ T − α0z. (C.7)

This can be used to calculate the absolute temperature profile. The absolute

temperature profile can be used to determine the adiabatic sound speed profile
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with the relationship:

c =
√
γRT (C.8)

where R = 287 J kg−1 K−1 is the universal gas constant [1].

Therefore, using the above manipulations of AERMOD outputs, it seems likely

that an effective sound speed profile can be calculated. However, this has yet to

be tested.

C.3.2 Turbulence Parameters

Because atmospheric turbulence is approximated as homogeneous and isotropic,

and a von Kármán spectrum of refractive-index fluctuations is assumed, the Hybrid

Model only requires inputs of the outer scale of turbulence, and the normalized

structure parameters of temperature and wind velocity fluctuations.

Turbulence is often described in terms of a spectrum including three subranges:

the energy-containing subrange, the inertial subrange, and the dissipative sub-

range, shown in Figure C.1, as it appears in Salomons [1]. In the energy-containing

subrange, the von Kármán spectral density levels off, due to the limiting boundary

conditions of the flow. In the inertial subrange, the von Kármán spectral density

follows the Kolmogorov spectral density, based on the cascade process in which

energy from large eddies gets passed to smaller eddies, which pass energy to even

smaller eddies, etc. In the dissipative subrange, energy from the eddies is converted

into heat. However, these eddies are small compared to acoustic wavelengths and

are, therefore, unimportant to sound propagation [1].

The “outer scale of turbulence” is the length scale that marks the transition

between the energy-containing and inertial subranges, or the size of the largest,

energy-containing eddies. This size is on the order of the boundary layer height [1].

The “outer scale” is also referred to in the literature as essentially equivalent to

the “integral length” [80] and “mixing length” [81]. Therefore, the mixing height

zi calculated by AERMOD, should be a satisfactory input for L0.

The structure parameters of temperature and velocity fluctuation, C2
T and C2

v

are measures of the temperature and velocity fluctuations in a turbulent atmo-

sphere [82]. If a homogeneous, isotropic turbulence is assumed, as in the Hybrid

Model, these parameters will be constants. AERMOD, however, does not make
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Figure C.1. Example of a von Kármán spectrum, after [1] Figure I.3. The von Kármán
spectrum parameters used are K−1

0 = 10 m, C2
T

T 2
0

= 6 ∗ 10−7 m−2/3, C2
v

c20
= 2 ∗ 10−6 m−2/3.

The energy-containing, inertial, and dissipative subranges are shown.

these assumptions, and calculates variances of the mechanical (caused by wind)

and convective (caused by temperature) components of turbulence as functions of

height. Therefore, a gap exists in achieving compatible definitions of the struc-

ture parameters. To reconcile this difference, either (1) a method of calculating

effective temperature and velocity fluctuation variance constants can be sought, or

(2) a different model of turbulence can be substituted for the one currently used

by the Hybrid Model. If the first option is chosen, the variances of temperature

and velocity fluctuations can then be related back to the structure parameters of

temperature and velocity fluctuations using the outer scale of turbulence as

σ2
t
∼= 0.523C2

TK
−2/3
0

σ2
v
∼= 0.523C2

vK
−2/3
0

K0 = 2π
L0

(C.9)

where σ2
t is the variance of temperature fluctuations, C2

T the structure parameter

of temperature, σ2
v the variance of wind velocity fluctuations, C2

v the structure
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parameter of wind velocity, and L0 the outer scale of turbulence (largest eddy

size).

Finally, the normalized structure functions can be calculated using a represen-

tative temperature and sound speed for T0 and c0.

C.4 Conclusion

To incorporate meteorological effects into the Hybrid Model, input parameters

that fully define the effective sound speed profile and the assumed homogeneous,

isotropic turbulence must be provided. Most of the necessary parameters can be

obtained by manipulation of meteorological parameters calculated by AERMOD.

The AERMOD outputs of vertical wind speed profile and vertical potential tem-

perature gradients can likely be utilized to define the effective sound speed profile.

However, this should be confirmed through testing of the variable manipulation

method. The AERMOD outputs of mixing height, and turbulence variance pa-

rameters can be utilized in the effort to define the turbulence. However, the gap

between use of a homogeneous, isotropic turbulence assumption in the Hybrid

Model and no such assumption in AERMOD must be closed if compatible defi-

nitions of the structure parameters of temperature and wind velocity fluctuations

are to be achieved. If this difference is reconciled and the method of determining

sound speed profile is validated, the turbulence and refractive atmosphere will be

fully defined.



Appendix D
Hybrid PE-FFP Model Code

Diagram

D.1 Description of the Diagram

This appendix presents a flow chart of the hybrid PE-FFP model code. The first

section provides a list of the input options available to the user within the input

text file, ‘Hybrid Model Parameters.txt’. The second section gives an overview of

the main functions of the code and brief descriptions of their purpose. The third

section gives a detailed breakdown of all functions used in the code, where the

supplemental functions are called, and the steps of calculations within the major

functions.
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Appendix E
Hybrid PE-FFP Model Code

E.1 Description of the Code Presentation

This appendix includes the hybrid PE-FFP model code. All functions used in the

hybrid model are presented here in published Matlab form. The main functions

appear first, followed by the supplemental functions in alphabetical order. Function

inputs, processes, and outputs are summarized at the top of the function. The

code, with comments, follows.
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HybridPropagationQuicker Function 
This function is called to run the Hybrid Propagation Model. 

 

Inputs: 

 

• fileString - the full name of the folder in which the user-input files are located 

(including an extra slash at the end).         (For example, 'E:\Hybrid Propagation 

Model Version 5 All-Inclusive\Run1\') 

• caseNumber - number of the Test Case being run.  This input was added                       

for easier labeling of test case run figures.  It does not free the user of the 

responsibility to correctly input the Test Case run parameters.  If the current run is 

not a test case, sit has no real meaning. 

 

Function Process: 

 

1. Calls readText.m to read the user inputs 

2. Defines the corresponding necessary parameters based on the model          

capabilities chosen by the user 

3. Calls the MultiFreqQuickerRev.m function to run the rest of the model 

4. If broadbandResults option is invoked, broadband levels are calculated, saves, and 

plotted 

 

The function can catch errors and/or send an email to the user at the completion of the 

run. 

 

(Note: 'Quicker' in the function name is a remnant of the original division of the code into 

2 versions, a slower version that was able to plot the 2D vertical sound field, and a 

quicker version that would save only data at the specified receiver height.  These 

capabilities have been combined into the current version which provides the user this 

choice in the 'Hybrid Model Parameters.txt' input file.) 

 

*Start Code Description:* ........................................................................................... 1 

Read in inputs from .txt file......................................................................................... 2 

Define user input parameters to be passed through to model........................................ 2 

Run the model through all the frequencies in freqvector.............................................. 3 

If the broadband results calculation is invoked, combine the results for the different 

frequency runs ............................................................................................................ 3 

Email user that code is finished running...................................................................... 5 

 

*Start Code Description:* 
function []= HybridPropagationQuicker(fileString,caseNumber) 

 

%try 

tic 
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Allow for the PC file naming convention that uses '\' and Mac convention of using '/', 

 
indexFileString= strfind(fileString,'\'); 

if isempty(indexFileString) 

    indexFileString= strfind(fileString,'/'); 

end 

 

Identify the file path 'fileStringModel' that is used to locate the 'Auxiliary Functions' 

folder, and add that folder path so Matlab can access the necessary functions 

 
fileStringModel= fileString(1:indexFileString(length(indexFileString)-1)); 

 

[fileStringModel 'Auxiliary Functions'] 

addpath([fileStringModel 'Auxiliary Functions']); 

 

Read in inputs from .txt file 

Read off the inputs from a correctly structured text file and assign appropriate variable 

input names: 

 
[propagationModel,gridGeometry,axisymmetric,verticalPlot2D,levelat1m,directionalSource,discrete_or_bands,... 

    freqvector,startandstop,broadbandResults,range,height,deg,deltatheta,receiverHeight,deltarPlot,terrain,... 

    

impedances,inputZorEFR,ZorEFR,lengthefr,atmosphere,czero,ctype,ssThermal,ssInWindDirection,windDirection,z

0,turbulence,... 

    realizN,A,K0,CTovT0,Cvovc0,user_or_code_AtmAbs,relativeHumidity,absTemperature]... 

    = readText([fileString 'Hybrid Model Parameters.txt']); 

 

Define user input parameters to be passed through to model 

These parameters can be defined at the highest level, using only user inputs.  They are 

passed through the model so that they are calculated only once 

 

Define the logical argument that converts user input to 1 (yes) 0 (no) dictating if 

model (both PE and FFP) should produce a 2D vertical sound field figure 

 
if strcmp(verticalPlot2D,'yes') 

    verticalPlot2D= 1; 

elseif strcmp(verticalPlot2D,'no') 

    verticalPlot2D= 0; 

else error('The entry for the ''Vertical_2D_Plot'' input category is invalid.  Please enter either ''yes'' or ''no''.') 

end 

 

Form the vector of specified frequencies to be run in the model 

 
% Set of valid frequencies for model runs: 1/3 octave band center frequencies 

% from 10 Hz to 10 kHz 

fullbands= [10 12.5 16 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 ... 

    630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000]; 

if strcmp(discrete_or_bands,'bands') 

    startFreqIndex= find(fullbands==startandstop(1)); 

    stopFreqIndex= find(fullbands==startandstop(2)); 

    freqvector= fullbands(startFreqIndex:stopFreqIndex); 

    if isempty(freqvector) 

        error('Either the entered start or stop frequency is not a valid frequency band. Please enter the center 

frequency of a 1/3 octave band.') 

    end 

elseif strcmp(discrete_or_bands,'discrete')==0 
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    error('Please enter either ''discrete'' or ''bands'' for ''discrete_or_bands:'' input category'); 

end 

 

Form the vector of atmospheric absorption parameters, defined only if the user 

chooses to define these parameters, rather than relying on the model to calculate 

them 

 
betaAll= NaN; 

if strcmp(user_or_code_AtmAbs,'user') 

    [betaAll]= readAtmAbsText(fileString,freqvector); 

end 

 

Form the vector of azimuthal angles at which runs will be performed outward from 

the source, based on the user provided angle increment (only one angle is run if 

axisymmetry is assumed, 

 
if or(strcmp(axisymmetric,'yes'),strcmp(gridGeometry,'vertical')) 

    deltatheta= 2*pi; 

elseif strcmp(axisymmetric,'no') 

    deltatheta= deltatheta*(pi/180); 

else error('The entry for the ''Axisymmetric'' input category is invalid.  Please enter either ''yes'' or ''no''.') 

end 

thetas= 0:deltatheta:2*pi; 

 

Run the model through all the frequencies in freqvector 
for (freqnumber= 1:length(freqvector)) 

    freq= freqvector(freqnumber); 

 

    MultiFreqQuickerRev(freq,freqnumber,propagationModel,gridGeometry,... 

        verticalPlot2D,levelat1m,directionalSource,range,height,deg,deltatheta,thetas,... 

        receiverHeight,deltarPlot,terrain,impedances,inputZorEFR,ZorEFR,... 

        lengthefr,atmosphere,czero,ctype,ssThermal,ssInWindDirection,windDirection,z0,turbulence,realizN,A,... 

        K0,CTovT0,Cvovc0,user_or_code_AtmAbs,relativeHumidity,absTemperature,... 

        betaAll,fileString,caseNumber); 

 

end 

 

If the broadband results calculation is invoked, combine the 
results for the different frequency runs 

The following section of code currently assumes that the spectrum is flat over all 

frequencies that were run.  In more advanced versions of the code, this section could be 

made into a function that accepts a more realistic spectrum. 

 
if strcmp(broadbandResults,'yes') 

    bandwidths= [2 3 4 5 6 7 9 11 15 19 22 28 40 44 56 75 95 110 150 190 220 280 400 440 560 750 950 1100 1500 1900 

2200]; % bandwidths for 10-10,000 Hz 

    freqIndices= zeros(1,length(freqvector)); % initialize the vector that will contain the indices of the frequencies 

used in this code run in the full 

                                              % 1/3 octave band frequency vector from 10-10,000 Hz 

 

Loop through the 1/3 octave band frequencies 

 
    for freqnumber= 1:length(freqvector) 

 

        % Find the index of the current frequency in the full frequency 

        % band 
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        freqIndices(freqnumber)= find(fullbands==freqvector(freqnumber)); 

 

        % Form the name of the file the results are stored in for the 

        % current frequency 

        if rem(freqvector(freqnumber),1)==0 

            levelPlotName= strcat(gridGeometry,'grid_',propagationModel,'_',num2str(freqvector(freqnumber)),'Hz'); 

            levelPlotName= levelPlotName{1,1}; 

        else freqString= num2str(freqvector(freqnumber)); 

            indexfreqString= strfind(freqString,'.'); 

            freqString= [freqString(1:indexfreqString-1) '_' freqString(indexfreqString+1)]; 

            levelPlotName= strcat(gridGeometry,'grid_',propagationModel,'_',freqString,'Hz'); 

            levelPlotName= levelPlotName{1,1}; 

        end 

 

Load the results file for the current frequency 

 
        load([fileString,levelPlotName,'.mat']); 

 

Save the (intensity quantity) results for the current 1/3 octave band frequency, 

weighted by its bandwidth, in a matrix that stores all results (in the matrix's 3rd 

dimension, to allow for the 2D results of the horizontal plots). 

 
        % If the horizontal plot option is invoked, the variable 

        % 'levelPlotName' will contain a matrix.  If only 1 azimuthal run 

        % was done, 'levelPlotName' will contain a cell array and must 

        % be accessed accordingly. 

        if strcmp(gridGeometry,'horizontal') 

            str2evaluate= ['allFreq(:,:,freqnumber)= 

bandwidths(freqIndices(freqnumber))*10.^(',levelPlotName,'/10);']; 

        else str2evaluate= ['allFreq(:,:,freqnumber)= 

bandwidths(freqIndices(freqnumber))*10.^(',levelPlotName,'{1,1}/10);']; 

        end 

 

        eval(str2evaluate); 

    end 

 

Calculate the level of the different frequency contributions, averaged together, 

weighted by their bandwidths. 

 
    tot= 10*log10(sum(allFreq,3)/sum(bandwidths(freqIndices))); 

 

Save and plot the broadband averaged results. 

 
    % Form name of file to save broadband results in 

    broadbandName= strcat(gridGeometry,'grid_',propagationModel); 

    broadbandName= broadbandName{1,1}; 

    % If the 'horizontal' option was employed 

    if strcmp(gridGeometry,'horizontal') 

 

        % Save the broadband results with the xVals and yVals variables to 

        % allow for easier future plotting 

        save([fileString,broadbandName,'broadband.mat'],'tot','xVals','yVals','freqvector'); 

 

        % Show results in a 2D imagesc plot 

        figure(89); imagesc(xVals,yVals,tot) 

        axis equal; 

        axis xy; 

        xlabel('x-axis, range [m]','FontSize',32);ylabel('y-axis, range [m]','FontSize',32); 

        if strcmp(discrete_or_bands,'bands') 

            title(['Level [dB], ' num2str(freqvector(1)) '-' num2str(freqvector(end)) ' Hz in 1/3 Octave 

Bands'],'FontSize',32) 

        else title(['Level [dB], ' mat2str(freqvector) ' Hz'],'FontSize',32) 

        set(gca,'Fontsize',32); 

        end 
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    % Otherwise, the 'vertical' option was employed 

    else 

        % Define the range vector the results are returned for 

        plotr= 0:deltarPlot:range-deltar; 

 

        % Save the broadband results with the plotr variable to 

        % allow for easier future plotting 

        save([fileString,broadbandName,'broadband.mat'],'tot','plotr','freqvector'); 

 

        % Show results in a line plot 

        figure(89); plot(plotr,tot) 

        xlabel('range [m]','FontSize',32) 

        ylabel('Level [dB]','FontSize',32) 

        if strcmp(discrete_or_bands,'bands') 

            title(['Level [dB], ' num2str(freqvector(1)) '-' num2str(freqvector(end)) ' Hz in 1/3 Octave 

Bands'],'FontSize',32) 

        else title(['Level [dB], ' mat2str(freqvector) ' Hz'],'FontSize',32) 

        set(gca,'Fontsize',32); 

        end 

 

    end 

 

end 

 

toc 

 

Email user that code is finished running 
% Define these variables appropriately: 

mail = 'jerosenbaum@gmail.com'; %Your GMail email address 

password = '####'; %Your GMail password 

 

% Then this code will set up the preferences properly: 

setpref('Internet','E_mail',mail); 

setpref('Internet','SMTP_Server','smtp.gmail.com'); 

setpref('Internet','SMTP_Username',mail); 

setpref('Internet','SMTP_Password',password); 

props = java.lang.System.getProperties; 

props.setProperty('mail.smtp.auth','true'); 

props.setProperty('mail.smtp.socketFactory.class', 'javax.net.ssl.SSLSocketFactory'); 

props.setProperty('mail.smtp.socketFactory.port','465'); 

 

% Send the email 

sendmail('jerosenbaum@gmail.com','Code is done','Hello! The MATLAB code is done running!!') 

 

% Uncomment to send email if there is an error: 

% catch 

%     mail = 'jerosenbaum@gmail.com'; %Your GMail email address 

%     password = '####'; %Your GMail password 

% 

%     % Then this code will set up the preferences properly: 

%     setpref('Internet','E_mail',mail); 

%     setpref('Internet','SMTP_Server','smtp.gmail.com'); 

%     setpref('Internet','SMTP_Username',mail); 

%     setpref('Internet','SMTP_Password',password); 

%     props = java.lang.System.getProperties; 

%     props.setProperty('mail.smtp.auth','true'); 

%     props.setProperty('mail.smtp.socketFactory.class', 'javax.net.ssl.SSLSocketFactory'); 

%     props.setProperty('mail.smtp.socketFactory.port','465'); 

% 

%     % Send the email 

%     sendmail('jerosenbaum@gmail.com','Uh oh...error','Bummer, there was an error') 

% end 
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MultiFreqQuickerRev Function 
This function is called to set up the single frequencey propagation runs. It calculates 
model parameters from user inputs compiled in 'HybridPropagationQuicker' and passes 
them to the PE and FFP models 
 
Inputs: 
 

• freq - frequency used in this run of the model 
• freqnumber - index of frequency used in this run in full frequencey vector 

 
• propagationModel - propagation model to be used ('PE', 'FFP', or 'hybrid') 
• gridGeometry - final desired grid geometry ('vertical' or 'horizontal') 
• verticalPlot2D - option for producing vertical 2D plot ('yes' or 'no') 
• levelat1m - reference source level at 1 m distance 
• directionalSource - option for using a source directivity pattern ('yes') or 

assuming an omnidirectional source ('no') 
 

• range - grid range (used only for gridGeometry 'vertical'; the range is determined 
using subfunction ImportHorizontalTerrainParameters for gridGeometry 
'horizontal'.) 

• height - grid height 
• deg - elevation angle limit used for PE 
• deltatheta - increment angle for azimuth 
• thetas - vector of azimuthal angles at which runs will be performed outward from 

the source 
• receiverHeight - receiver height at which horizontal contour maps are calculated 
• deltarPlot - range step for desired resolution of results 

 
• terrain - characteristic of the terrain ('flat' or 'uneven') 

 
• impedances - number of different impedances of the ground (1, 2, or 3) 
• inputZorEFR - option to input impedance or the effective flow resistivity ('Z' or 

'EFR') 
• ZorEFR - vector with different impedances 
• lengthefr - vector with range values at which the discontinuities occur 

 
• atmosphere - characteristic of the atmosphere ('homogeneous' or 'refractive') 
• czero - sound speed at 0 m height 
• ctype - type of sound speed profile ('linear' or 'ln') 
• ssThermal - sound speed parameter from thermal profile 
• ssInWindDirection - sound speed parameter from wind profile, in the direction of 

the wind 
• windDirection - direction of the wind in degrees (corresponding to the azimuthal 

angle toward which the wind vector points) 
• z0 - aerodynamic roughness (ignored if ssp is linear) 
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• turbulence - option to include turbulence ('yes' or 'no') 
• realizN - number of realizations to include 
• A , K0 , CTovT0 , Cvovc0 - turbulence parameters A, K0, CTovT0, and Cvovc0 

 
• user_or_code_AtmAbs - option for user to define parameter or allow model to 

calculate it ('user' or 'code') 
• relativeHumidity - relative humidity 
• absTemperature - absolute temperature 
• betaAll - vector of atmospheric absorption parameters, empty if model-calculated, 

or full if user-calculated 
 

• fileString - the full name of the folder in which the user-input                        files 
are located (including an extra slash at the end).         (For example, 'E:\Hybrid 
Propagation Model Version 5         All-Inclusive\Run1\') 

• caseNumber - number of the Test Case being run (this does not free                       
the user of the responsibility to correctly input the                       Test Case run 
parameters. It is used mostly for figure                       labeling purposes) 

 
Function Process: 
 
1. Calculate constants and model parameters 
 
2. Define the Flight Path 
 
3. Compute and/or Assign the Ground Impedance 
 
4. Compute and/or Assign the Atmospheric Absorption Coefficient 
 
5. Define the name of the data file to save to at the end of the function 
 
6. If the contouring option is chosen: 
 

• Define the contouring grid 
• Run each source along the flight path separately 
• Import info about terrain and impedance geometries specific to the current source 

along the path 
• Calculate the sound speed profile for all azimuthal angles, including contributions 

of both temperature and wind 
• Run the model for the current source 
• Interpolate the sound field on the polar coordinate system to a Cartesian 

coordinate grid, so that sound field from different sources can be combined later 
• Logarithmically add the sound levels for each source along the flight path 
• Save and plot the sound field data for the flight path at the current frequency 
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7. If the contouring options is not chosen and the model is run for one 2D vertical sound 
field corresponding to a single source: 
 

• Import terrain data 
• Calculate the sound speed profile, including contributions of both temperature and 

wind 
• Run the model for the current frequency 
• Save the data (at receiver height) 

 
8. Save the current figure as a .fig file 
 
This function saves the 2D contouring grid matrix or the 2D vertical run data at the 
specified receiver height with the name: 
[gridGeometry,'grid_',propagationModel,'_',freqString,'Hz' '.mat'] where gridGeometry 
can be 'vertical' or 'horizontal', propagationModel can be 'hybrid', 'PE', or 'FFP', and 
'freqString' is the frequency. 
 

*Start Code Description:* ........................................................................................... 3 
Calculate constants and model parameters................................................................... 3 
Define the flight path, reading in 'User Defined Flight Path.xls'................................... 4 
Compute and/or assign the ground impedance............................................................. 4 
Compute and/or assign the atmospheric absorption coefficient.................................... 5 
Define the name of the data file to save to at the end of the function ........................... 5 
Contouring (horizontal sound field) runs ..................................................................... 5 
2D Vertical sound field runs (single source, no contouring)......................................... 8 
Save the current figure as a .fig file ............................................................................. 9 
ImportHorizontalTerrainParameters Subfunction ........................................................ 9 

 

*Start Code Description:* 
function []= 
MultiFreqQuickerRev(freq,freqnumber,propagationModel,gridGeometry,verticalPlot2D,levelat1m,directionalSour
ce,range,height,deg,deltatheta,thetas,receiverHeight,deltarPlot,terrain,impedances,... 
    
inputZorEFR,ZorEFR,lengthefr,atmosphere,czero,ctype,ssThermal,ssInWindDirection,windDirection,z0,turbulence
,realizN,A,K0,CTovT0,Cvovc0,user_or_code_AtmAbs,... 
    relativeHumidity,absTemperature,betaAll,fileString,caseNumber) 

 

Calculate constants and model parameters 
Angular frequency, reference wave number, reference wavelength, range grid spacing, 
height grid spacing, the range vector, number of range grid points, height vectors for both 
PE and FFP, and number of height grid points for both PE and FFP are defined.  The 
height is redefined to satisfy the requirements of the PE in terms of number of height 
points and upper absorbing layer. 
 
Constraints: 
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• The range spacing must be a divisor of deltarPlot (spacing must be able to 
multiply an integer to get deltarPlot).  This allows each frequency to be defined at 
common points so that results of different frequencies can be easily added 
together.  However, if deltarPlot is too small as compared to a wavelength, 
numerical errors may result for uneven terrain cases (at lower frequencies). 

• There must be at least 1000 vertical grid points, including the absorbing layer. 
• The absorbing layer, at the top of the grid, must be at least 50 wavelengths high. 

 
omega= 2*pi*freq; 
kzero= omega/czero; 
lambda= 2*pi/kzero; 
 
deltarlim = .1*lambda;                          %deltar must be less than 1/10 of a wavelength 
deltar= deltarPlot/ceil(deltarPlot/deltarlim);                  %determine deltar that will be divisor of deltarPlot 
clear deltarlim 
 
deltazlim = .1*lambda;                                  %deltaz must be less than 1/10 of a wavelength 
deltaz= receiverHeight/ceil(receiverHeight/deltazlim);  %determine deltaz that will be divisor of receiver height 
 
height= ceil(height/deltaz)*deltaz;                     %corrected height so that height is integer multiple of deltaz and 
deltaz is divisor of receiver height 
clear deltazlim 
 
% Set number of points in r and z directions: 
absorbLength= ceil(50*lambda/deltaz)*deltaz;    %length of absorbing layer, larger than 50 wavelengths 
if (height+absorbLength)/deltaz<1000;           %if total height with absorbing layer has 1000 points or less 
    heightwabs= 1000*deltaz;                    %make the height with absorbing layer have 1001 points 
    height= heightwabs-absorbLength;            %and redefine the height without the absorbing layer 
else heightwabs= height+absorbLength;           %otherwise, leave dimensions as they are 
end 
 
% Define the z-axis 
z= [0:deltaz:heightwabs]; 
zN= length(z);                                  %number of height points for PE (includes absorbing layer) 
 
z_FFP= [0:deltaz:height]; 
zN_FFP= length(z_FFP);                          %number of height points for FFP (excludes absorbing layer) 

 

Define the flight path, reading in 'User Defined Flight Path.xls' 
A matrix with 3 columns, and sourceN rows, where sourceN is the number of points 
along the flight path, is read into the variable flightTrack.  The first, second, and third 
columns of flightTrack correspond to the x, y, and z coordinates of each represented point 
along the flight path. 
 

[flightTrack]= xlsread([fileString 'User Defined Flight Path.xls']); 
xflightPositions= flightTrack(:,1).'; 
yflightPositions= flightTrack(:,2).'; 
zflightPositions= flightTrack(:,3).'; 

 

Compute and/or assign the ground impedance 
if strcmp(inputZorEFR,'EFR') 
    [Z]= DandB(freq,ZorEFR); 
 
elseif strcmp(inputZorEFR,'Z') 
    Z= ZorEFR; 
 
else error('Please enter either ''Z'' or ''EFR'' for ''Input_Z_or_EFR:'' input category') 
 
end 
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Compute and/or assign the atmospheric absorption coefficient 
If the user choses the option to manually assign the atmospheric absorption coefficients, 
the defined coefficient corresponding to the current frequency is used.  If the option of 
letting the model calculate the coefficient is used, the model will calculate using a script 
based on equations in Bass, et. al, JASA, vol 97, 680, 1995 for the current frequency, and 
the specified relative humidity and absolute temperature in K 
 

if strcmp(user_or_code_AtmAbs,'user') 
    betaAtmAbs= betaAll(freqnumber); 
elseif strcmp(user_or_code_AtmAbs,'code') 
    [betaAtmAbs]= airatten_2006_Function(freq,relativeHumidity,absTemperature); 
else error('The entry for the ''User_or_code_defined'' input category is invalid.  Please enter either ''user'' or 
''code''.') 
end 

 

Define the name of the data file to save to at the end of the 
function 
Name is defined as [gridGeometry,'grid_',propagationModel,'_',freqString,'Hz' '.mat']. For 
example, 'verticalgrid_PE_500Hz.mat' 
 

if rem(freq,1)==0 
    levelPlotName= strcat(gridGeometry,'grid_',propagationModel,'_',num2str(freq),'Hz'); 
    levelPlotName= levelPlotName{1,1}; 
else freqString= num2str(freq); 
    indexfreqString= strfind(freqString,'.'); 
    freqString= [freqString(1:indexfreqString-1) '_' freqString(indexfreqString+1)]; 
    levelPlotName= strcat(gridGeometry,'grid_',propagationModel,'_',freqString,'Hz'); 
    levelPlotName= levelPlotName{1,1}; 
end 

 

Contouring (horizontal sound field) runs 
For gridGeometry= 'horizontal' 
 

if strcmp(gridGeometry,'horizontal') 
 
Define 2D horizontal (Cartesian) grid for contours 
 

    % Define the ranges of x and y values the contouring grid will cover 
    [xminTerrain,xmaxTerrain,yminTerrain,ymaxTerrain]= ImportHorizontalTerrainParameters(); 
 
    % Set the x and y vectors 
    xVals= xminTerrain:deltarPlot:xmaxTerrain; 
    xValsN= length(xVals); 
    yVals= yminTerrain:deltarPlot:ymaxTerrain; 
    yValsN= length(yVals); 
 
    %Construct the contouring grid 
    [Xgrid,Ygrid]= meshgrid(xVals,yVals); 
 
    sourceN= length(xflightPositions); % number of represented points along the flight path 
    runN= length(thetas); % number of runs needed to cover all azimuthal angles from source 
 
    LevelAll= zeros(yValsN,xValsN,sourceN); % initialize matrix to contain contour 
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                                            % data for each source 
 
Run the model for all the represented points along the flight path 
 

for (l=1:sourceN) 
 
Import information about the terrain and impedance geometries in the contouring 
grid, broken down for each aziumthal angle run for the current point along the 
flight path 
 
Call to TerrainTransformV3 returns 
 

• a vector specifying the necessary range for runs at each azimuthal angle (distance 
from source to boundary will change with angle) rangesAtThetas 

• a cell array of terrain heights that includes different cells for each azimuthal angle 
polarTerrain 

• a vector of the number of impedances to be included for each azimthal run 
impedancesAtThetas 

• a matrix with the values of the different impedances for each azimuthal run 
ZAtThetas 

• a matrix with the ranges at which the impedance transitions occur for each 
azimuthal run lengthefrAtThetas 

 
    [rangesAtThetas,polarTerrain,impedancesAtThetas,ZAtThetas,lengthefrAtThetas]= 
TerrainTransformV3(thetas,runN,xflightPositions(l),yflightPositions(l),freq,deltar,deltarPlot,inputZorEFR,xminTer
rain,xmaxTerrain,yminTerrain,ymaxTerrain,terrain); 

 
Calculate the sound speed profile, including contributions of both temperature and 
wind 
 
The sound speed parameter for the effective sound speed profile, including both 
temperature and wind contributions are calculated.  Currently it is calculated for a non-
range-dependent sound speed profile.  If a range-dependent profile is needed, a function 
similar to 'TerrainTransformV3' should be constructed to interpolate the wind vector 
(magnitude--ssInWindDirection and direction--windDirection) broken down at each 
range point for each azimuthal run for the current point along the flight path.  (These 
lines of code were placed inside the flight path 'for' loop with the consideration that range 
dependence may be added in.  For non-range-dependent conditions, it will be the same 
for each source and could be calculated once for all points, outside the loop.) 
 

    ssWind= ssInWindDirection*cos(thetas-(windDirection*pi/180)); % vector of sound speed profile parameters due 
to wind for each azimuthal angle 
    ssGradientAtThetas= ssWind+ssThermal; % vector of the combined contribution of wind and thermal profiles--
assumes use of the same profile type (linear or ln) 

 
Run the model for the current frequency and source point along the flight path 
 

    [receiver,strArraySSP]= 
Combine_PE_FFP_QuickerRev(propagationModel,verticalPlot2D,directionalSource,terrain,atmosphere,impedance
sAtThetas,freq,czero,rangesAtThetas,height,z0,... 
    zflightPositions(l),deltarPlot,deg,ZAtThetas,lengthefrAtThetas,ctype,ssGradientAtThetas,receiverHeight,... 
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runN,omega,kzero,deltar,deltaz,heightwabs,zN,z,zN_FFP,z_FFP,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cv
ovc0,levelat1m,caseNumber,polarTerrain); 

 
Prepare grid and matrices necessary for combining sound fields for different 
sources, and plotting 
 

    [thetaGrid,rGrid]= cart2pol(Xgrid-xflightPositions(l),Ygrid-yflightPositions(l));                                                   
%convert plotting grid to polar coordinate system 
 
    thetaGrid(1:ceil(abs(yminTerrain-yflightPositions(l))/deltarPlot),:)= (2*pi)-
abs(thetaGrid(1:ceil(abs(yminTerrain-yflightPositions(l))/deltarPlot),:));     %convert thetaGrid so that it goes from 
0 to 2*pi, instead of including positive and negative theta values 
 
    Level= zeros(yValsN,xValsN); %sound field for the current source on the flight path at the current frequency 

 
Interpolate from polar coordinate grid to Cartesian coordinate grid 
 

    for mm= 10:yValsN-10 %represent the y axis.  Start 30 late and end 10 early because of transformation from 
radial interpolated terrain and impedance input.  10 is relatively arbitrary. 
        for n= 10:xValsN-10 %represent the x axis 
 
            if rem(rGrid(mm,n),deltarPlot)==0 
                if rem(thetaGrid(mm,n),deltatheta)==0 
                    %if the cartesian grid point falls exactly on a polar 
                    %gridpoint, then the level at that cartesian gridpoint 
                    %equals the level at the corresponding polar gridpoint 
                    Level(mm,n)= receiver{round(thetaGrid(mm,n)/deltatheta+1)}(round(rGrid(mm,n)/deltarPlot+1)); 
                else 
                    %otherwise, if the cartesian gridpoint falls exactly on the 
                    %r value, but between two theta values of the polar 
                    %coordinate system: 
                    %set the two polar coordinate system theta values that this theta is between 
                    floorTheta= deltatheta*floor(thetaGrid(mm,n)/deltatheta); 
                    ceilTheta= floorTheta+deltatheta; 
                    %find the coordinates A and B where A and B can be found in the 
                    %Numerical Recipes book, p. 107 
                    Ainterp= (ceilTheta-thetaGrid(mm,n))/deltatheta; 
                    Binterp= 1-Ainterp; 
                    %interpolate the level at the r value between to two values 
                    %of theta 
                    Level(mm,n)= 
10*log10(Ainterp*10^(receiver{round(floorTheta/deltatheta+1)}(round(rGrid(mm,n)/deltarPlot+1))/10)+... 
                        Binterp*10^(receiver{round(ceilTheta/deltatheta+1)}(round(rGrid(mm,n)/deltarPlot+1))/10)); 
                end 
            elseif rem(thetaGrid(mm,n),deltatheta)==0 
                %if the cartesian gridpoint falls between two r values in the 
                %polar coordinate system but exactly on a theta value: 
                %set the two polar coordinate system r values that this r is between 
                floorR= deltarPlot*floor(rGrid(mm,n)/deltarPlot); 
                ceilR= floorR+deltarPlot; 
                %find the coordinates A and B where A and B can be found in the 
                %Numerical Recipes book, p. 107 
                Ainterp= (ceilR-rGrid(mm,n))/deltarPlot; 
                Binterp= 1-Ainterp; 
                %interpolate the level at the theta value between to two values 
                %of r 
                Level(mm,n)= 
10*log10(Ainterp*10^(receiver{round(thetaGrid(mm,n)/deltatheta+1)}(round(floorR/deltarPlot+1))/10)+... 
                    Binterp*10^(receiver{round(thetaGrid(mm,n)/deltatheta+1)}(round(ceilR/deltarPlot+1))/10)); 
            else 
                %if the cartesian gridpoint falls between both two r values and 
                %two theta values in the polar coordinate system: 
                %set the two polar coordinate system theta values that this theta is between 
                floorTheta= deltatheta*floor(thetaGrid(mm,n)/deltatheta); 
                ceilTheta= floorTheta+deltatheta; 
                %set the two polar coordinate system r values that this r is between 
                floorR= deltarPlot*floor(rGrid(mm,n)/deltarPlot); 
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                ceilR= floorR+deltarPlot; 
 
                %find the coordinates A and B along an r where A and B can be found in the 
                %Numerical Recipes book, p. 107 
                AinterpR= (ceilTheta-thetaGrid(mm,n))/deltatheta; 
                BinterpR= 1-AinterpR; 
                %interpolate the level at the lower r value between to two values 
                %of theta 
 
                LevelLR= 
10*log10(AinterpR*10^(receiver{round(floorTheta/deltatheta+1),1}(1,round(floorR/deltarPlot+1))/10)+... 
                    BinterpR*10^(receiver{round(ceilTheta/deltatheta+1),1}(1,round(floorR/deltarPlot+1))/10)); 
                %interpolate the level at the upper r value between to two values 
                %of theta 
                LevelUR= 
10*log10(AinterpR*10^(receiver{round(floorTheta/deltatheta+1),1}(1,round(ceilR/deltarPlot+1))/10)+... 
                    BinterpR*10^(receiver{round(ceilTheta/deltatheta+1),1}(1,round(ceilR/deltarPlot+1))/10)); 
                %find the coordinates A and B between the r's at the correct theta value 
                %where A and B can be found in the Numerical Recipes book, p. 107 
                AinterpTheta= (ceilR-rGrid(mm,n))/deltarPlot; 
                BinterpTheta= 1-AinterpTheta; 
                %interpolate the level at the correct theta value between to 
                %two values of r 
                Level(mm,n)= 10*log10(AinterpTheta*10^(LevelLR/10)+... 
                    BinterpTheta*10^(LevelUR/10)); 
            end 
        end 
    end 
    LevelAll(:,:,l)= Level; 
end 

 
Logarithmically add the sound levels for each source along the flight path 
 

levelTotal= 10*log10(sum(10.^(LevelAll/10),3)); 
 
Save the sound field data for the flight path at the current frequency 
 

eval([levelPlotName '= levelTotal;']); 
save([fileString levelPlotName '.mat'],levelPlotName,'xVals','yVals'); 

 
Plot the sound field data for the flight path at the current frequency 
 

figure(1); 
imagesc(xVals,yVals,levelTotal); 
xlabel('range [m]') 
ylabel('range [m]') 
title('Transmission Loss [dB] for Flight Path') 
colorbar 
%caxis([20,90]) 
axis xy 
axis equal 
xlim([xminTerrain+30,xmaxTerrain-30]);ylim([yminTerrain+30,ymaxTerrain-30]) 

 

2D Vertical sound field runs (single source, no contouring) 
elseif strcmp(gridGeometry,'vertical') 
    %'I''ve reached the call to Combine' 

 
Import terrain data 
 

    if strcmp(terrain,'uneven') 
        [terrainVector]= ImportTerrainGrid(range,deltar); 
        terrainGrid{1}= terrainVector; 
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    elseif strcmp(terrain,'flat') 
        terrainGrid{1}= zeros(1,range/deltar+1); 
    else error('Please enter either ''uneven'' or ''flat'' in the ''Terrain'' user-input'); 
    end 

 
Calculate the sound speed profile, including contributions of temperature and wind 
 
Assumes the parameter for wind speed, ssInWindDirection, reflects the strength of the 
wind in the direction being considered. 
 

    ssGradient= ssInWindDirection+ssThermal; % combined contribution of wind and thermal profiles--assumes use 
of the same profile type (linear or ln) 

 
Run the model for the current frequency 
 

    [receiver,strArraySSP]= 
Combine_PE_FFP_QuickerRev(propagationModel,verticalPlot2D,directionalSource,terrain,atmosphere,impedance
s,freq,czero,range,height,z0,... 
    zflightPositions(1),deltarPlot,deg,Z,lengthefr,ctype,ssGradient,receiverHeight,... 
    
2,omega,kzero,deltar,deltaz,heightwabs,zN,z,zN_FFP,z_FFP,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cvovc0
,levelat1m,caseNumber,terrainGrid); 

 
Save the data (at receiver height) at the current frequency 
 

    eval([levelPlotName '= receiver;']); 
    save([fileString levelPlotName '.mat'],levelPlotName,'deltar'); 
 
else error('The entry for the ''Grid_Geometry'' input category is invalid.  Please enter either ''horizontal'' or 
''vertical''.') 
 
end 

 

Save the current figure as a .fig file 
Figure is saved in the same folder as the .mat results and the user input files. 
 

saveas(gcf,[fileString levelPlotName '_figure.fig']) 
 

ImportHorizontalTerrainParameters Subfunction 
This subfunction is called to import the boundaries of the contouring grid space on the x-
y plane 
 
xminTerrain and xmaxTerrain are the smallest and largest x-axis values for which terrain 
and impedance data is available.  yminTerrain and ymaxTerrain are the smallest and 
largest y-axis values for which terrain and impedance data is available. 
 

%========================================================================== 
function [xminTerrain,xmaxTerrain,yminTerrain,ymaxTerrain]= ImportHorizontalTerrainParameters() 
 
% The body of this function is a placeholder until a better way of 
% inputting the data is determined 
xminTerrain= -1300; 
xmaxTerrain= 500; 
yminTerrain= -500; 
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ymaxTerrain= 700; 
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Combine_PE_FFP_QuickerRev Function 
This function is called to run the PE and/or the FFP models, depending on the 

propagationModel option selected.  The function runs for the current frequency and 

current source point along the flight path.  It runs the model for all azimuthal angles, as 

defined by the user.  The results of the PE, FFP, or a combination at the receiverHeight 

are returned, depending on the propagationModel option 

 

Inputs: 

 

• propagationModel - propagation model to be used ('PE', 'FFP', or 'hybrid') 

• verticalPlot2D - option for producing vertical 2D plot ('yes' or 'no') 

• directionalSource - option for using a source directivity pattern ('yes') or 

assuming an omnidirectional source ('no') 

• terrain - characteristic of the terrain ('flat' or 'uneven') 

• atmosphere - characteristic of the atmosphere ('homogeneous' or 'refractive') 

• impedancesAtThetas - a vector of the number of impedance to be included for 

each azimthal run for the current source point along the flight path 

• freq - frequency used in this run of the model 

• czero - sound speed at 0 m height 

• rangesAtThetas - a vector specifying the necessary range for runs at each 

azimuthal angle for the current source point (distance from source to boundary 

will change with angle) 

• height - grid height (not including PE absorbing layer) 

• z0 - aerodynamic roughness (ignored if ssp is linear) 

• zflightPositions - z-coordinate of the current source point along the flight path. 

• deltarPlot - range step for desired resolution of results 

• deg - elevation angle limit used for PE 

• ZAtThetas - a matrix with the values of the different impedances for each 

azimuthal run for the current source point 

• lengthefrAtThetas - a matrix with the ranges at which the impedance transitions 

occur for each azimuthal run for the current source point 

• ctype - type of sound speed profile ('linear' or 'ln') 

• ssGradientAtThetas - sound speed parameter at all azimuthal angles 

• receiverHeight - receiver height at which horizontal contour maps are calculated 

• runN - number of runs needed to cover all azimuthal angles from source 

• omega - angular frequency used in this run of the model 

• kzero - reference wave number used in this run of the model 

• deltar - horizontal grid spacing used in the PE propagation model, dependent on 

frequency.  Also constrained to be a divisor of number chosen in 

'MultiFreqQuickerRev.m' 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• heightwabs - grid height for PE including PE absorbing layer 

• zN - number of height points in grid for PE (includes absorbing layer) 
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• z - height vector for PE 

• zN_FFP - number of height points in grid for FFP (excludes absorbing layer) 

• z_FFP - height vector for FFP 

• betaAtmAbs - atmospheric absorption coefficient for current frequency 

• turbulence - option to include turbulence ('yes' or 'no') 

• realizN - number of realizations to include 

• A , K0 , CTovT0 , Cvovc0 - turbulence parameters A, K0, CTovT0, and Cvovc0 

• levelat1m - reference source level at 1 m distance from the current point source 

• caseNumber - number of the Test Case being run (this does not free the user of 

the responsibility to correctly input the Test Case run parameters. It is used mostly 

for figure labeling purposes) 

• polarTerrain - a cell array of terrain heights that includes different cells for each 

azimuthal angle 

 

Function Process and Outputs: 

 

• If 'hybrid' propagationModel option is chosen: 

 

1. Assign necessary parameters for each azimuthal angle (if the vertical plot option 

is chosen, return entire vertical run grid, otherwise only return results at the 

receiver height) 

2. Run the FFP model for all azimuthal angles (if the vertical plot option is chosen, 

return entire vertical run grid, otherwise only return results at the receiver height) 

3. Combine them as required for valid results at all elevation angles for the specified 

receiver height (if the vertical plot option is chosen, use the validPEmat function 

to combine results for the entire grid and plot them) 

 

• If 'PE' or 'FFP' propagationModel options are chosen, run the PE or FFP model 

for all azimuthal angles respectively 

 

• Return the cell array of sound level results from the propagation(s) at the 

specified receiver height for each azimuthal angle run, receiver 

• Return the string array of the sound speed profile parameters (stored as string) for 

each azimuthal angle run, strArraySSP 

 

*Start Code Description:* ........................................................................................... 2 

Using the hybrid PE-FFP model.................................................................................. 3 

Using the only the PE model ....................................................................................... 4 

Using the only the FFP model ..................................................................................... 5 

Plot the results............................................................................................................. 5 

 

*Start Code Description:* 
function [receiver,strArraySSP]= 

Combine_PE_FFP_QuickerRev(propagationModel,verticalPlot2D,directionalSource,terrain,atmosphere,impedance

sAtThetas,freq,czero,rangesAtThetas,height,z0,... 

    zflightPositions,deltarPlot,deg,ZAtThetas,lengthefrAtThetas,ctype,ssGradientAtThetas,receiverHeight,... 
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runN,omega,kzero,deltar,deltaz,heightwabs,zN,z,zN_FFP,z_FFP,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cv

ovc0,levelat1m,caseNumber,polarTerrain) 

 

receiver= cell(runN,1); %initialize the cell array to contain results for the runs at different azimuthal angles 

 

Using the hybrid PE-FFP model 
if strcmp(propagationModel,'hybrid')==1 %if the 'hybrid' propagationModel is invoked 

 

Assign necessary parameters for each azimuthal angle 

 

(For the current source along the flight path) 

 
    for n= 1:runN-1 %only to runN-1 because the first (angle= 0) and last (angle= 2*pi) azimuthal angle runs will be 

the same 

        n 

 

        % Set necessary input variables 

        range= rangesAtThetas(n)-deltar;                                                        %Range for model to progagate out to.  A 

deltar is subtracted because polarTerrain includes one less range value terrain point (due to limits of interpolation). 

        H= polarTerrain{n};     %Terrain data for radial slice at theta(n) 

        impedances= impedancesAtThetas(n,1);                                                    %Number of impedances for radial slice 

at theta(n) 

        Z= ZAtThetas(n,:);                                                                      %Vector of impedance values for radial slice at 

theta(n) 

        lengthefr= lengthefrAtThetas(n,:);                                                      %Vector of impedance discontinuity indexes 

for radial slice at theta(n) 

        ssGradient= ssGradientAtThetas(n); % effective sound speed parameter at angle theta(n) 

 

Call the PE model 

 

(For the current azimuthal angle and current source point along the flight path) 

 

If the vertical 2D plot option is invoked, an additional output argument containing the full 

2D vertical grid results will be returned 

 
        if verticalPlot2D==1 

            [receiver{n,1},grad,lowPEIntercept,highPEIntercept,cutoffrange,gridsq]= 

JRPEModelQuickerRev(verticalPlot2D,directionalSource,terrain,atmosphere,impedances,freq,czero,range,height,.

.. 

            

z0,zflightPositions,deltarPlot,deg,Z,lengthefr,ctype,ssGradient,receiverHeight,n,omega,kzero,deltar,deltaz,heightwa

bs,zN,z,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cvovc0,levelat1m,H); 

        else [receiver{n,1},grad,lowPEIntercept,highPEIntercept,cutoffrange]= 

JRPEModelQuickerRev(verticalPlot2D,directionalSource,terrain,atmosphere,impedances,freq,czero,range,height,.

.. 

            

z0,zflightPositions,deltarPlot,deg,Z,lengthefr,ctype,ssGradient,receiverHeight,n,omega,kzero,deltar,deltaz,heightwa

bs,zN,z,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cvovc0,levelat1m,H); 

        end 

        strArraySSP(n)= cellstr(grad); 

 

Call the FFP model 

 

(For the current azimuthal angle and current source point along the flight path) 

 

If the vertical 2D plot option is invoked, an additional output argument containing the full 

2D vertical grid results will be returned 
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        if verticalPlot2D==1 

            [receiverFFP,receiverFFPgrid]= 

JRFFPModelQuickerRev(verticalPlot2D,atmosphere,freq,czero,min(max(lowPEIntercept,highPEIntercept),range

),height,z0,zflightPositions,Z(1),ctype,ssGradient,... 

            receiverHeight,n,omega,kzero,deltarPlot,deltar,deltaz,zN_FFP,z_FFP,betaAtmAbs,levelat1m); %with 

range of max(lowPEIntercept,highPEIntercept) 

        else [receiverFFP]= 

JRFFPModelQuickerRev(verticalPlot2D,atmosphere,freq,czero,min(max(lowPEIntercept,highPEIntercept),range

),height,z0,zflightPositions,Z(1),ctype,ssGradient,... 

            receiverHeight,n,omega,kzero,deltarPlot,deltar,deltaz,zN_FFP,z_FFP,betaAtmAbs,levelat1m); %with 

range of max(lowPEIntercept,highPEIntercept) 

        end 

 

Combine the PE and FFP results at the specified receiver height 

 

Use PE where valid and FFP at larger elevation angles 

 
        validRangeStartN= ceil(abs(zflightPositions-receiverHeight)/(tan(deg*pi/180)*deltarPlot)+1); %number of 

points into range at which PE starts to be valid at receiverHeight 

 

        receiver{n}(1:min(validRangeStartN,length(receiverFFP)))= 

zeros(1,min(validRangeStartN,length(receiverFFP)));         %set invalid range steps to zero 

        receiver{n}(1:min(validRangeStartN,length(receiverFFP)))= 

receiver{n}(1:min(validRangeStartN,length(receiverFFP)))+receiverFFP(1:min(validRangeStartN,length(receiver

FFP))); %add in FFP results 

 

Combine the PE and FFP results for the entire grid if the vertical sound field option 

is invoked 

 

Use PE where valid and FFP at larger elevation angles 

 
        if verticalPlot2D==1 

 

            % Combine the PE and FFP results 

            vPE= validPEmat(zflightPositions,deg,deltarPlot,deltaz,range,height); 

            grid_PE_FFP= gridsq(1:zN_FFP,:).*vPE+[receiverFFPgrid zeros(zN_FFP,size(gridsq,2)-

size(receiverFFPgrid,2))].*(1-vPE); 

 

            % Plot the vertical sound field 

            figure(n+3) 

            imagesc(0:deltarPlot:range-deltar,z_FFP,grid_PE_FFP); 

            colormap(jet) 

            colorbar; 

            axis xy 

            ylim([0,height]) 

            axis square 

            xlabel('range [m]','fontsize',22) 

            ylabel('height [m]','fontsize',22) 

            title(['Hybrid model, source (0,',int2str(zflightPositions),') f=',int2str(freq),' Hz, ',grad],'fontsize',22); 

        end 

    end 

 

Using the only the PE model 
elseif strcmp(propagationModel,'PE')==1 

 

Assign necessary parameters for each azimuthal angle 

 

(For the current source along the flight path) 
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    for n= 1:runN-1 %only to runN-1 because the first (angle= 0) and last (angle= 2*pi) azimuthal angle runs will be 

the same 

        n 

 

        % Set necessary input variables 

        range= rangesAtThetas(n)-deltar;                                                        %Range for model to progagate out to.  A 

deltar is subtracted because polarTerrain includes one less range value terrain point (due to limits of interpolation). 

        H= polarTerrain{n};     %Terrain data for radial slice at theta(n) 

        impedances= impedancesAtThetas(n,1);                                                    %Number of impedances for radial slice 

at theta(n) 

        Z= ZAtThetas(n,:);                                                                      %Vector of impedance values for radial slice at 

theta(n) 

        lengthefr= lengthefrAtThetas(n,:);                                                      %Vector of impedance discontinuity 

distances for radial slice at theta(n) 

        ssGradient= ssGradientAtThetas(n); % effective sound speed parameter at angle theta(n) 

 

Call the PE model 

 
        [receiver{n,1},grad,lowPEIntercept,highPEIntercept,cutoffrange]= 

JRPEModelQuickerRev(verticalPlot2D,directionalSource,terrain,atmosphere,impedances,freq,czero,range,height,.

.. 

        

z0,zflightPositions,deltarPlot,deg,Z,lengthefr,ctype,ssGradient,receiverHeight,n,omega,kzero,deltar,deltaz,heightwa

bs,zN,z,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cvovc0,levelat1m,H); 

        strArraySSP(n)= cellstr(grad); 

 

    end 

 

Using the only the FFP model 
elseif strcmp(propagationModel,'FFP')==1 

 

Assign necessary parameters for each azimuthal angle 

 
    for n= 1:runN-1 %only to runN-1 because the first (angle= 0) and last (angle= 2*pi) azimuthal angle runs will be 

the same 

        n 

        range= rangesAtThetas(n)-deltar;                %Range for model to progagate out to.  A deltar is subtracted 

because polarTerrain includes one less range value terrain point (due to limits of interpolation).  Even though the FFP 

does not use terrain data, this is done for consistency. 

        %(Range-dependent effects not included) 

        ssGradient= ssGradientAtThetas(n); % effective sound speed parameter at angle theta(n) 

        strArraySSP(n)= cellstr(' '); 

 

Call the FFP model 

 
        [receiver{n,1}]= 

JRFFPModelQuickerRev(verticalPlot2D,atmosphere,freq,czero,range,height,z0,zflightPositions,ZAtThetas(1),ctyp

e,ssGradient,... 

            receiverHeight,n,omega,kzero,deltarPlot,deltar,deltaz,zN_FFP,z_FFP,betaAtmAbs,levelat1m); 

    end 

 

else error('The ''Propagation_Model'' category input you have entered is invalid.  Please enter either ''hybrid'', 

''PE'', or ''FFP''') 

end 

 

Plot the results 
receiver{runN,1}= receiver{1,1}; %first (angle= 0) and last (angle= 2*pi) azimuthal angle runs are the same 

labels= [1 sqrt(([200 400 630 1000 2000 4000 6300 10000 16000 25000 50000 75000]/3.2808).^2-

zflightPositions(1)^2)]; 
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labels= round(labels)+1; 

 

figure(102); 

 

hPlot=semilogx([0:deltarPlot:rangesAtThetas(1)-deltar]*3.2808,receiver{1,:},'LineWidth',2); 

 

xlabel('range [ft]','Fontsize',32) 

ylabel('Level [dB]','Fontsize',32) 

title(['Test Case ',num2str(caseNumber), ', ', num2str(freq), ' Hz, source ', 

num2str(round(zflightPositions(1)*3.2808)), ' ft height'],'Fontsize',32) 

set(gca,'Fontsize',32); 
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JRPEModelQuickerRev Function 

This function is called to run the Parabolic Equation Model for the current frequency, 

current source point in the flight path, and current azimuthal angle run. 

 

Inputs: 

 

• verticalPlot2D - option for producing vertical 2D plot ('yes' or 'no') 

• directionalSource - option for using a source directivity pattern ('yes') or 

assuming an omnidirectional source ('no') 

• terrain - characteristic of the terrain ('flat' or 'uneven') 

• atmosphere - characteristic of the atmosphere ('homogeneous' or 'refractive') 

• impedances - number of impedances encountered at the current azimthal run for 

the current source point along the flight path 

• freq - frequency used in this run of the model 

• czero - sound speed at 0 m height 

• range - range for model to progagate to 

• height - grid height (not including PE absorbing layer) 

• z0 - aerodynamic roughness (ignored if ssp is linear) 

• sourceHeight - z-coordinate of the current source point along the flight path. 

• deltarPlot - range step for desired resolution of results 

• deg - elevation angle limit used for PE 

• Z - a vector with the values of the different impedances for the current azimuthal 

run and source point 

• lengthefr - vector of the ranges at which the impedance transitions occur, for the 

current azimuthal run and source point 

• ctype - type of sound speed profile ('linear' or 'ln') 

• ssGradient - sound speed parameter 

• receiverHeight - receiver height at which results are returned 

• omega - angular frequency used in this run of the model 

• kzero - reference wave number used in this run of the model 

• deltar - horizontal grid spacing used in the PE propagation model, dependent on 

frequency.  Also constrained to be a divisor of number chosen in 

'MultiFreqQuickerRev.m' 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• heightwabs - grid height for PE including PE absorbing layer 

• zN - number of height points in grid for PE (includes absorbing layer) 

• z - height vector for PE 

• betaAtmAbs - atmospheric absorption coefficient for current frequency 

• turbulence - option to include turbulence ('yes' or 'no') 

• realizN - number of realizations to include 

• A , K0 , CTovT0 , Cvovc0 - turbulence parameters A, K0, CTovT0, and Cvovc0 

• levelat1m - reference source level at 1 m distance from the current point source 
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• H - a vector of terrain heights at all ranges for the current azimuthal run and 

source point 

 

Function Process and Outputs: 

 

1. Find range after which all PE calculations are valid to pass to the FFP model by 

calculating lowPEIntercept and highPEIntercept 

2. Define the range parameters for the current azimuthal angle run 

3. Define the terrain parameters 

4. Define the atmosphere, returning a string that describes the sound speed profile, 

used for figure titles, grad 

5. Define the indices of results that will be saved (separated by deltarPlot) 

6. Start Generalized Terrain Model Code, saving results at only the receiverHeight if 

the vertical plot option is not invoked, and saving results at all heights if the 

option is invoked 

7. Call simpler PE model to calculate results for the first 3 range steps 

8. Loop through realizations if turbulence is invoked 

9. Initialize the values of the 3 previous range steps 

10. Initialize result variables 

11. Save results at any range steps that are at steps with the desired resolution 

12. If turbulence is invoked, calculate the turbulent fluctuation of the acoustic 

refractive index 

13. Run the generalized terrain model for the rest of the grid 

14. Save results at any range steps that are at steps with the desired resolution 

15. Determine where to stop propagation, cutoffrange 

16. Calculate the sound level in dB, receiver 

17. If the vertical sound field option is invoked, calculate the sound field grid, gridsq, 

and plot the results 

18. If turbulence is invoked, save the averaged results to the function outputs 

 

*Start Code Description:* ........................................................................................... 3 

Find range after which all PE calculations are valid..................................................... 3 

Define the range parameters for the current azimuthal angle run ................................. 3 

Define the derivatives of terrain .................................................................................. 3 

Define the atmosphere................................................................................................. 3 

Define the indices of results that will be saved ............................................................ 4 

Start Generalized Terrain Model Code ........................................................................ 4 

Call simpler PE model to calculate results for the first 3 range steps............................ 5 

If use of turbulence is not invoked, only one realization will be calculated .................. 5 

If turbulence is invoked, initialize a vector to store the results [dB], averaged over the 

realizations, at the receiver height.  If the vertical 2D plot option is invoked, initialize a 

matrix to store all vertical grid results.......................................................................... 5 

Loop through the realizations...................................................................................... 6 

Initialize the values of the 3 previous range steps ........................................................ 6 

Initialize result variables ............................................................................................. 6 

Save results at any range steps that are at steps with the desired resolution.................. 6 
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If turbulence is invoked, calculate the turbulent fluctuation of the acoustic refractive 

index, mu.................................................................................................................... 6 

Run the generalized terrain model for the rest of the grid ............................................ 6 

Save results at any range steps that are at steps with the desired resolution.................. 8 

Determine where to stop propagation .......................................................................... 8 

Calculate the sound level in dB ................................................................................... 9 

Define a string representing the frequency that can be stored in a file name................. 9 

If the turbulence option is invoked, save the results for all the realizations separately, 

and calculate the level averaged over realizations........................................................ 9 

Plot the results............................................................................................................. 9 

If turbulence is invoked store the averaged results in the function outputs and, if the 

vertical 2D plot option is invoked plot them.............................................................. 10 

 

*Start Code Description:* 
function [receiver,grad,lowPEIntercept,highPEIntercept,cutoffrange,gridsq]= 

JRPEModelQuickerRev(verticalPlot2D,directionalSource,terrain,atmosphere,impedances,freq,czero,range,height,.

.. 

    z0,sourceHeight,deltarPlot,deg,Z,lengthefr,ctype,ssGradient,receiverHeight,runNumber,... 

    omega,kzero,deltar,deltaz,heightwabs,zN,z,betaAtmAbs,turbulence,realizN,A,K0,CTovT0,Cvovc0,levelat1m,H) 

 

Find range after which all PE calculations are valid 

This is used as an input to the FFP model, so propagation can be stopped after it is no 

longer needed 

 
lowPEIntercept= sourceHeight/tan(deg*pi/180);                           %This is the range value at which valid PE triangle 

intersects the ground 

highPEIntercept= min(range,(height-sourceHeight)/tan(deg*pi/180));      %This is the range value at which valid PE 

triangle intersects the top of the grid 

 

Define the range parameters for the current azimuthal angle run 
r= 0:deltar:range; %the range is defined here because it is specific to each aziumthal angle run 

rN= length(r); 

 

Define the derivatives of terrain 
dH= [0 diff(H)]/deltar; 

d2H= [0 diff(dH)]/deltar; 

 

Define the atmosphere 

Calculate the sound speed profile and apply the absorbing layer at the top of the grid, and 

atmospheric absorption. 

 
absorbz= height+deltaz;                                             %height of the start of absorbing layer start in meters 

absorbN= absorbz/deltaz+1;                                          %height of the start of absorbing layer in number of points 

absorb= AbsorbTermRev(freq,deltaz,absorbN,zN,absorbz,heightwabs);   %absorptive term to be added to 

wavenumber 

 

if strcmp(atmosphere,'homogeneous') 
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    % cz is the sound speed profile from 0 to the top of the absorbing 

    % layer 

    % grad is a string for plotting labels 

    [cz,grad]= AtmosphereRev(czero,zN); 

elseif strcmp(ctype,'linear') 

    [cz,grad]= AtmosphereRev(czero,zN,ssGradient,deltaz); 

elseif strcmp(ctype,'ln') 

    [cz,grad]= AtmosphereRev(czero,zN,ssGradient,deltaz,z0); 

else [cz,grad]= AtmosphereRev(czero,zN,a,deltaz,z0,a2); 

end 

 

% Add the atmospheric attenuation and absorbing layer attenuation 

keta= omega./cz.'+j*betaAtmAbs; 

keta(absorbN:zN)= keta(absorbN:zN)+absorb; 

 

Define the indices of results that will be saved 

In order to conserve memory, not all calculated results at all ranges will be saved to the 

results variables 

 
rindex= round(1:deltarPlot/deltar:length(r));       %indices of each range value where results will be saved 

groundN= round(H(rindex)/deltaz);                   %height of the ground at each plotted range value in number of points 

(defined for plotting purposes only) 

 

Start Generalized Terrain Model Code 

Generalized Terrain code follows closely to the description of the Generalized Terrain PE 

method in Section M.3 in E. M. Salomons, "Computational Atmospheric Acoustics," 

2001. 

 
ktop= keta(zN); 

k0= keta(1); 

 

 

deltaeta= deltaz; 

deltaxi= deltar; 

 

% Form delta^2 matrix 

D=sparse(1:zN-1,1:zN-1,-2*ones(1,zN-1),zN-1,zN-1); 

E=sparse(2:zN-1,1:zN-2,1*ones(1,zN-2),zN-1,zN-1); 

T3=D+E+E'; 

S3= T3; 

 

% Form delta matrix 

E=sparse(2:zN-1,1:zN-2,1*ones(1,zN-2),zN-1,zN-1); 

T2=.5*(-E+E'); 

clear('D','E'); 

S2= T2; 

 

alphaH= atan(dH); 

%alphaH= zeros(1,length(r)); 

 

epsilon= 2*deltaeta*cos(alphaH); 

 

%k is dependent on eta, not xi.  Therefore, k0 will be the same at every 

%ground point as it depends only on how high the receiver is off the ground 

%(not how high the ground is). 

 

if impedances == 1 

    d= ((-j*k0)/Z(1))+(3./epsilon)-((1.5/deltaxi)+j*kzero)*sin(alphaH); 

 

elseif impedances == 2 

 

    d= ((-j*k0)/Z(1))+(3./epsilon)-((1.5/deltaxi)+j*kzero)*sin(alphaH); 
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    d(round(lengthefr/deltar)+2:length(d))= ((-j*k0)/Z(2))+(3./epsilon(round(lengthefr/deltar)+2:length(d)))-

((1.5/deltaxi)+j*kzero)*sin(alphaH(round(lengthefr/deltar)+2:length(d))); 

elseif impedances == 3 

    d= ((-j*k0)/Z(1))+(3./epsilon)-((1.5/deltaxi)+j*kzero)*sin(alphaH); 

    d(round(lengthefr(1)/deltar)+2:round(lengthefr(2)/deltar)+1)= ((-

j*k0)/Z(2))+(3./epsilon(round(lengthefr(1)/deltar)+2:round(lengthefr(2)/deltar)+1))-

((1.5/deltaxi)+j*kzero)*sin(alphaH(round(lengthefr(1)/deltar)+2:round(lengthefr(2)/deltar)+1)); 

    d(round(lengthefr(2)/deltar)+2:length(d))= ((-j*k0)/Z(3))+(3./epsilon(round(lengthefr(2)/deltar)+2:length(d)))-

((1.5/deltaxi)+j*kzero)*sin(alphaH(round(lengthefr(2)/deltar)+2:length(d))); 

else error('Please assign either 1, 2, or 3 to the variable impedances') 

 

end 

 

u= 4./(d.*epsilon); 

v= -u/4; 

w= 2*sin(alphaH)./(d*deltaxi); 

y= -w/4; 

 

epsilont= 2*deltaeta*cos(alphaH); 

 

dt= (-j*ktop)+(3./epsilont)+((1.5/deltaxi)+j*kzero)*sin(alphaH); 

 

ut= 4./(dt.*epsilont); 

vt= -ut/4; 

wt= -2*sin(alphaH)./(dt*deltaxi); 

yt= -wt/4; 

 

Call simpler PE model to calculate results for the first 3 range 
steps 

The generalized terrain model extrapolates from the previous 3 range steps.  Therefore a 

simpler PE model, assuming flat ground, that extrapolates from only the previous range 

step is used until enough information is gathered to begin implementation of the GTPE. 

 
[gridstart,psivectorstart]= JRPEFstartCompareRev(directionalSource,freq,keta,kzero,deltar,deltaz,zN,... 

    sourceHeight,Z(1)); 

 

If use of turbulence is not invoked, only one realization will be 
calculated 

if strcmp(turbulence,'no') % if assuming no turbulence 

    realizN= 1; % run the PE only once for each condition 

end 

 

If turbulence is invoked, initialize a vector to store the results 
[dB], averaged over the realizations, at the receiver height.  If the 
vertical 2D plot option is invoked, initialize a matrix to store all 
vertical grid results. 

if strcmp(turbulence,'yes') 

    averageReceiver= -100000000*ones(1,length(rindex)); 

    % If vertical plot is invoked, initialize a matrix to store the results [dB], 

    % averaged over the realizations, for the vertical grid. 

    if verticalPlot2D==1 

        averageVerticalGrid= -100000000*ones(max(groundN)+zN,length(rindex)); 

    end 

end 
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Loop through the realizations 
for thisrealiz= 1:realizN 

 

Initialize the values of the 3 previous range steps 

Used to extrapolate the next range step.  Variables are re-initialized for each realization 

 
    psiMinus3= psivectorstart(:,1); 

    psiMinus2= psivectorstart(:,2); 

    psiMinus1= psivectorstart(:,3); 

 

Initialize result variables 

Variables are re-initialized for each realization 

 
    receiverPressure= zeros(1,length(rindex)); %slice of the sound level at receiverHeight meters above the ground 

level 

    if verticalPlot2D==1 

        grid= zeros(zN,length(rindex)); %matrix of vertical sound field results 

    end 

 

Save results at any range steps that are at steps with the desired 
resolution 

To conserve memory, not all calculated results at all ranges will be saved to the results 

variables 

 
    for thisr= 1:3 

 

        if any(rindex==thisr) 

            receiverPressure(r(thisr)/deltarPlot+1)= gridstart(round(receiverHeight/deltaz)+1,thisr); 

            if verticalPlot2D==1 

                grid(:,round(r(thisr)/deltarPlot+1))= gridstart(:,thisr); 

            end 

        end 

    end 

 

    cutoffrange= range; %user-defined range is the maximum ranged to be propagated to.  Model can be stopped 

before if a cut-off criteria is reached 

 

If turbulence is invoked, calculate the turbulent fluctuation of the 
acoustic refractive index, mu 

Turbulence is applied starting at the fourth range step. 

 
    if strcmp(turbulence,'yes') 

        [mu]= vonKarTurb(deltar,range,rN,deltaz,zN,A,K0,CTovT0,Cvovc0); 

    end 

 

Run the generalized terrain model for the rest of the grid 
    for thisr=4:rN 

 

        if strcmp(turbulence,'yes') % if turbulence is invoked 
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            if r(thisr)>cutoffrange % if the cutoff range determined in the first realization has been exceeded 

                break % stop propagating 

            end 

            psiMinus1= psiMinus1.*exp(0.5*j*kzero*mu(:,thisr-1)*deltar); % apply turbulence with the turbulent phase 

factor, as described in E. M. Salomons "Computational Atmospheric Acoustics," (2001) in Eq. J.11 and text below 

        end 

 

        % The quantities u, v, w, y, ut, vt, wt, and yt in these expressions 

        % are evaluated at xi= b. 

 

        T3(1,1)= -2+u(thisr); 

        T3(1,2)= 1+v(thisr); 

        T3(zN-1,zN-1)= -2+ut(thisr); 

        T3(zN-1,zN-2)= 1+vt(thisr); 

 

        k31= w(thisr)*psiMinus1(1)+y(thisr)*psiMinus2(1); 

        k3top= wt(thisr)*psiMinus1(zN)+yt(thisr)*psiMinus2(zN); 

        k3= sparse([1,zN-1],[1,1],[k31 k3top],zN-1,1); 

 

        T2(1,1)= -u(thisr); 

        T2(1,2)= 1-v(thisr); 

        T2(zN-1,zN-1)= ut(thisr); 

        T2(zN-1,zN-2)= -1+vt(thisr); 

 

        k21= -w(thisr)*psiMinus1(1)-y(thisr)*psiMinus2(1); 

        k2top= wt(thisr)*psiMinus1(zN)+yt(thisr)*psiMinus2(zN); 

        k2= .5*sparse([1,zN-1],[1,1],[k21 k2top],zN-1,1); 

 

        S3(1,1)= -2+u(thisr-1); 

        S3(1,2)= 1+v(thisr-1); 

        S3(zN-1,zN-1)= -2+ut(thisr-1); 

        S3(zN-1,zN-2)= 1+vt(thisr-1); 

 

        m31= w(thisr-1)*psiMinus2(1)+y(thisr-1)*psiMinus3(1); 

        m3top= wt(thisr-1)*psiMinus2(zN)+yt(thisr-1)*psiMinus3(zN); 

        m3= sparse([1,zN-1],[1,1],[m31 m3top],zN-1,1); 

 

        S2(1,1)= -u(thisr-1); 

        S2(1,2)= 1-v(thisr-1); 

        S2(zN-1,zN-1)= ut(thisr-1); 

        S2(zN-1,zN-2)= -1+vt(thisr-1); 

 

        m21= -w(thisr-1)*psiMinus2(1)-y(thisr-1)*psiMinus3(1); 

        m2top= wt(thisr-1)*psiMinus2(zN)+yt(thisr-1)*psiMinus3(zN); 

        m2= .5*sparse([1,zN-1],[1,1],[m21 m2top],zN-1,1); 

 

        % where alpha, beta, and dH are evaluated at xi= b. 

        alphaB= (dH(thisr))^2+1; 

        betaB= 2*j*kzero*dH(thisr)+d2H(thisr); 

        gammaB= keta(2:length(keta)).^2-kzero^2; 

        chiB= d2H(thisr)-2*j*kzero*dH(thisr); 

 

        % where alpha, beta, and dH are evaluated at xi= a. 

        alphaA= (dH(thisr-1))^2+1; 

        betaA= 2*j*kzero*dH(thisr-1)+d2H(thisr-1); 

        gammaA= keta(2:length(keta)).^2-kzero^2; 

        chiA= d2H(thisr-1)-2*j*kzero*dH(thisr-1); 

 

 

        Balpha= deltaxi*((1/6)*alphaA+(1/3)*alphaB); 

        Aalpha= deltaxi*((1/3)*alphaA+(1/6)*alphaB); 

 

        Bchi= deltaxi*((1/6)*chiA+(1/3)*chiB); 

        Achi= deltaxi*((1/3)*chiA+(1/6)*chiB); 

 

        Bgamma= deltaxi*((1/6)*gammaA+(1/3)*gammaB); 

        Agamma= deltaxi*((1/3)*gammaA+(1/6)*gammaB); 

 

        c3= (1/(2*j*kzero*deltaeta^2))*(((j*alphaB)/(2*kzero))+Balpha); 

        c2= -(1/(2*j*kzero*deltaeta))*(((j*betaB)/(2*kzero))+2*dH(thisr)-Bchi); 

        c1= sparse(1:zN-1,1:zN-1,ones(1,zN-1),zN-1,zN-1)+sparse(1:zN-1,1:zN-

1,(gammaB/(4*kzero^2))+(Bgamma/(2*j*kzero)),zN-1,zN-1); 
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        d3= (1/(2*j*kzero*deltaeta^2))*(((j*alphaA)/(2*kzero))-Aalpha); 

        d2= -(1/(2*j*kzero*deltaeta))*(((j*betaA)/(2*kzero))+2*dH(thisr-1)+Achi); 

        d1= sparse(1:zN-1,1:zN-1,ones(1,zN-1),zN-1,zN-1)+sparse(1:zN-1,1:zN-1,(gammaA/(4*kzero^2))-

(Agamma/(2*j*kzero)),zN-1,zN-1); 

 

        rhs=(d3*S3+d2*S2+d1)*psiMinus1(2:zN)+d3*m3+d2*m2-c3*k3-c2*k2; 

 

        % Solve the linear system of equations 

        psivector(2:zN,1)=(c3*T3+c2*T2+c1) \ rhs; 

        psivector(1,1)= u(thisr)*psivector(2)+v(thisr)*psivector(3)+w(thisr)*psiMinus1(1)+y(thisr)*psiMinus2(1); 

 

        if strcmp(turbulence,'yes') % if turbulence is invoked 

            psivector= psivector.*exp(0.5*j*kzero*mu(:,thisr-1)*deltar); % apply turbulence with the turbulent phase 

factor, as described in E. M. Salomons "Computational Atmospheric Acoustics," (2001) in Eq. J.11 and text below 

        end 

 

        psiMinus3= psiMinus2; 

        psiMinus2= psiMinus1; 

        psiMinus1= psivector; 

 

Save results at any range steps that are at steps with the desired 
resolution 

        if any(rindex==thisr)%rem(r(thisr),deltarPlot)<10^-5 

 

            receiverPressure(round(r(thisr)/deltarPlot)+1)= 

psivector(round(receiverHeight/deltaz)+1)/sqrt(deltar*(thisr-1)); 

 

            if verticalPlot2D==1 

                grid(:,round(r(thisr)/deltarPlot+1))= psivector/sqrt(deltar*(thisr-1)); 

            end 

 

Determine where to stop propagation 

After cutoff criteria limit in sound level is reached, stop propagation 

 
            if r(thisr)>=1000 && thisrealiz==1 % if the current range is larger than 1000 m and this is the first 

realization (so that all realizations have the same cutoffrange) 

                % Find the maximum sound level value in the previous 100m range (to 

                % make sure that propagation doesn't stop because the current range is 

                % in an interference dip) 

                Lsignalband= levelat1m+20*log10(max(abs(receiverPressure((r(thisr)/deltarPlot+1)-

(100/deltarPlot):(r(thisr)/deltarPlot+1))))/abs(exp(j*kzero))); 

                % Call the DetectabilityFilter function to decide whether further 

                % propagation is necessary or if all significant levels have been 

                % calculated. 

                continueLoop= DetectabilityFilter(freq,Lsignalband); 

                % If continueLoop==1, all significant levels have been calculated, and 

                % propagation can stop, so the loop can end. 

                cutoffrange= range; 

                if continueLoop==0 

                    cutoffrange= r(thisr); 

                    ['The cut-off criteria has been reached.  Propagation has stopped at ', num2str(r(thisr)),' m.'] 

                    break 

                end 

            end 

 

        end 

 

    end 
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Calculate the sound level in dB 

Calculated results for all ranges at the specified resolution (deltarPlot) at the receiver 

height, based on the provided level 1 m from the source. 

 
    receiver= levelat1m+20*log10(abs(receiverPressure)/abs(exp(j*kzero))); 

 

Define a string representing the frequency that can be stored in 
a file name 

        freqString= num2str(freq); 

        if rem(freq,1)~=0 

            indexfreqString= strfind(freqString,'.'); 

            freqString= [freqString(1:indexfreqString-1) '_' freqString(indexfreqString+1)]; 

        end 

 

If the turbulence option is invoked, save the results for all the 
realizations separately, and calculate the level averaged over 
realizations 

    if strcmp(turbulence,'yes') % if turbulence is invoked 

        eval(['receiver_' freqString 'Hz_realiz' num2str(thisrealiz) '= receiver;']); 

        save(['receiverdata' freqString 'Hz_realiz' num2str(thisrealiz) '.mat'],['receiver_' freqString 'Hz_realiz' 

num2str(thisrealiz)]); % save results at the receiver height separately for each realization 

        averageReceiver= 10*log10(((thisrealiz-1)*10.^(averageReceiver/10)+10.^(receiver/10))/thisrealiz); % 

calculate the average results at the receiver height for all realizations run so far 

    end 

 

Plot the results 
    if verticalPlot2D==1 

        gridsq= zeros(max(groundN)+zN,length(rindex)); 

        for thisr= 1:length(rindex) 

            gridsq(:,thisr)= levelat1m+20*log10(abs([NaN(groundN(thisr),1); grid(:,thisr); NaN(max(groundN)-

groundN(thisr),1)])/abs(exp(j*kzero))); 

        end 

 

        grid= levelat1m+20*log10(abs(grid)/abs(exp(j*kzero))); 

 

        figure(runNumber); 

        imagesc(r(rindex),z,grid); 

        colormap(jet) 

        axis xy 

        ylim([0,heightwabs]) 

        axis square 

        xlabel('range [m]','fontsize',22) 

        ylabel('height [m]','fontsize',22) 

        title(['PE model, source (0,',int2str(sourceHeight),') f=',int2str(freq),' Hz, ',grad],'fontsize',22); 

 

        figure(runNumber+1); 

        imagesc(r(rindex),z,gridsq); 

        colormap(jet) 

        axis xy 

        ylim([0,heightwabs]) 

        axis square 

        xlabel('range [m]','fontsize',22) 

        ylabel('height [m]','fontsize',22) 

        title(['PE model, source (0,',int2str(sourceHeight),') f=',int2str(freq),' Hz, ',grad],'fontsize',22); 

 

        % Save results at the receiver height (separately for each 

        % realization) 
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        eval(['gridsq' freqString 'Hz_realiz' num2str(thisrealiz) '= gridsq;']); 

        save(['allverticaldata' freqString 'Hz_realiz' num2str(thisrealiz) '.mat'],['gridsq' freqString 'Hz_realiz' 

num2str(thisrealiz)]); 

        % Calculate the average results in the vertical grid for all 

        % realizations run so far 

        if strcmp(turbulence,'yes') 

            averageVerticalGrid= 10*log10(((thisrealiz-1)*10.^(averageVerticalGrid/10)+10.^(gridsq/10))/thisrealiz); 

        end 

    end 

 

end 

 

If turbulence is invoked store the averaged results in the 
function outputs and, if the vertical 2D plot option is invoked 
plot them 

if strcmp(turbulence,'yes') % if turbulence is invoked 

 

    % Define the outputs as the average results over all the realizations 

    receiver= averageReceiver; 

    if verticalPlot2D==1 

        gridsq= averageVerticalGrid; 

 

        figure(3); 

        imagesc(r(rindex),z,gridsq); 

        colormap(jet) 

        axis xy 

        ylim([0,heightwabs]) 

        axis square 

        xlabel('range [m]','fontsize',22) 

        ylabel('height [m]','fontsize',22) 

        title(['PE model average over ' int2str(realizN) ' realizations, source (0,',int2str(sourceHeight),') 

f=',int2str(freq),' Hz, ',grad],'fontsize',22); 

    end 

end 
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JRFFPModelQuickerRev Function 

This function is called to run the Fast-Field Program Model for the current frequency, 

current source point in the flight path, and current azimuthal angle run. 

 

Inputs: 

 

• atmosphere - characteristic of the atmosphere ('homogeneous' or 'refractive') 

• freq - frequency used in this run of the model 

• czero - sound speed at 0 m height 

• range - range for FFP model to progagate to (does not need to propagate past the 

range for which all PE calculations are valid) 

• height - grid height (not including PE absorbing layer) 

• z0 - aerodynamic roughness (ignored if ssp is linear) 

• sourceHeight - z-coordinate of the current source point along the flight path. 

• Z - a vector with the values of the impedances used for the FFP model at the 

current azimuthal run and source point (the first impedance in the vector is used) 

• ctype - type of sound speed profile ('linear' or 'ln') 

• ssGradient - sound speed parameter 

• receiverHeight - receiver height at which results are returned 

• runNumber - number of the current azimuthal angle run 

• omega - angular frequency used in this run of the model 

• kzero - reference wave number used in this run of the model 

• deltarPlot - range step for desired resolution of results 

• deltar - horizontal grid spacing used in the PE propagation model, dependent on 

frequency.  Also constrained to be a divisor of number chosen in 

'MultiFreqQuickerRev.m' 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• zN - number of height points in grid for FFP (excludes absorbing layer) 

• z - height vector for FFP (excludes absorbing layer) 

• betaAtmAbs - atmospheric absorption coefficient for current frequency 

• levelat1m - reference source level at 1 m distance from the current point source 

 

Function Process and Outputs: 

 

1. Redefine range and range step parameters to be appropriate for the FFP 

2. Define the atmosphere 

3. Run the FFP model saving results at only the receiverHeight if the vertical plot 

option is not invoked, and saving results at all heights if the option is invoked 

4. Transform back to the spatial domain to calculate the pressure 

5. Calculate the sound level in dB 

6. If the vertical sound field option is invoked, calculate the sound field grid 

receiverFFPgrid and plot the results 
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*Start Code Description:* ........................................................................................... 2 

Redefine range and range step parameters to be appropriate for the FFP ..................... 2 

Define the atmosphere................................................................................................. 2 

Run the FFP model ..................................................................................................... 2 

Transform back to the spatial domain to calculate the pressure.................................... 4 

Calculate the sound level in dB ................................................................................... 4 

If the vertical sound field option is invoked, calculate the sound field grid and plot the 

results ......................................................................................................................... 4 

 

*Start Code Description:* 
function [receiverFFP,receiverFFPgrid]= 

JRFFPModelQuickerRev(verticalPlot2D,atmosphere,freq,czero,range,height,z0,sourceHeight,... 

    Z,ctype,ssGradient,receiverHeight,runNumber,omega,kzero,... 

    deltarPlot,deltar,deltaz,zN,z,betaAtmAbs,levelat1m) 

 

Redefine range and range step parameters to be appropriate for 
the FFP 

% The FFP does not require range steps as small as does the PE 

if deltarPlot>=2*deltar 

    deltarFFP= 2*deltar; 

else deltarFFP= deltar; 

end 

 

% The FFP requires much larger ranges to be calculated than will be used 

range= 3*range; 

 

% Define the range vector 

r= 0:deltarFFP:range; 

rN= length(r); 

 

Define the atmosphere 

Calculate the sound speed profile and apply atmospheric absorption. 

 
if strcmp(atmosphere,'homogeneous') 

    % cz is the sound speed profile from 0 to the top of the absorbing 

    % layer 

    % grad is a string for plotting labels 

    [cz,grad]= AtmosphereRev(czero,zN); 

elseif strcmp(ctype,'linear') 

    [cz,grad]= AtmosphereRev(czero,zN,ssGradient,deltaz); 

elseif strcmp(ctype,'ln') 

    [cz,grad]= AtmosphereRev(czero,zN,ssGradient,deltaz,z0); 

else [cz,grad]= AtmosphereRev(czero,zN,a,deltaz,z0,a2); 

end 

 

k= omega./cz.'+j*betaAtmAbs; 

 

Run the FFP model 

Fast-Field Program code follows closely to the description of the FFP method in 

Appendix F in E. M. Salomons, "Computational Atmospheric Acoustics," 2001. 

 
deltak= 2*pi/(deltarFFP*rN); 
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ks= .5*deltak:deltak:ceil(3*omega/(czero*deltak))*deltak+.5*deltak; 

 

kr= ks-j*deltak;                                    %Salomons p.159 says to use deltak for kt 

krN= length(kr); 

 

KZ1= (k(1)^2-kr.^2).^(.5); 

 

Sdelta= sqrt(2*pi*kr);                              %Sdelta is 1 x krN 

Rkz1= (KZ1-k(1)/Z)./(KZ1+k(1)/Z);           %Rkz1 is 1 x krN 

 

m= round(sourceHeight/deltaz+1); 

kz0= (k(m)^2-kr.^2).^(.5); 

 

%%% 

if verticalPlot2D==1 

    Pall= zeros(zN,krN); 

    Pall(1,:)= Rkz1+1; 

end 

 

P= Rkz1+1; 

dP= j*KZ1.*(Rkz1-1); 

 

for n= 1:m-1 

    %n signifies the level number 

    KZn= (k(n)^2-kr.^2).^(.5); 

    Plzplus1= cos(KZn*deltaz).*P+(KZn).^(-1).*sin(KZn*deltaz).*dP; 

    dPlzplus1= -KZn.*sin(KZn*deltaz).*P+cos(KZn*deltaz).*dP; 

    P= Plzplus1.*exp(j*kz0*deltaz); 

    if verticalPlot2D==1 

        Pall(n+1,:)= P; 

    end 

    dP= dPlzplus1.*exp(j*kz0*deltaz); 

    if abs(z(n+1)-receiverHeight)<.00001            %essentially if they are equal, allowing for roundoff errors 

        Preceiver= P; 

    end 

end 

 

Pml= Plzplus1;                                      %Pml is 1 x krN 

dPml= dPlzplus1;                                    %dPml is 1 x krN 

 

P= ones(1,krN); 

if verticalPlot2D==1 

    Pall(zN,:)= P; 

end 

dP= j*(k(zN)^2-kr.^2).^(.5); 

 

Puzplus1= P.*exp(j*kz0*deltaz); 

dPuzplus1= dP.*exp(j*kz0*deltaz); 

 

for n= zN-1:-1:m 

    %n signifies the level number 

    KZn= (k(n)^2-kr.^2).^(.5); 

    P= cos(KZn*-deltaz).*Puzplus1+(KZn).^(-1).*sin(KZn*-deltaz).*dPuzplus1; 

    if verticalPlot2D==1 

        Pall(n,:)= P; 

    end 

    dP= -KZn.*sin(KZn*-deltaz).*Puzplus1+cos(KZn*-deltaz).*dPuzplus1; 

    if n>0 

        Puzplus1= P.*exp(j*kz0*deltaz); 

        dPuzplus1= dP.*exp(j*kz0*deltaz); 

    end 

    if abs(z(n)-receiverHeight)<.00001              %essentially if they are equal, allowing for roundoff errors 

        Preceiver= P; 

    end 

end 

 

Pmu= P;                                             %PmU is 1 x krN 

dPmu= dP;                                           %dPmU is 1 x krN 

 

Pm= -Sdelta./((dPmu./Pmu)-(dPml./Pml)); 

 

if verticalPlot2D==1 
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    Pall(1:m-1,:)= Pall(1:m-1,:).*(((exp(j*abs(z(1:m-1)-sourceHeight).'*kz0)).*(ones(m-1,1)*Pm))./(ones(m-

1,1)*Pml)); %Pm is 1 x krN 

    Pall(m+1:zN,:)= Pall(m+1:zN,:).*(((exp(j*abs(z(m+1:zN)-sourceHeight).'*kz0)).*(ones(zN-

m,1)*Pm))./(ones(zN-m,1)*Pmu)); 

    Pall(m,:)= Pm; 

end 

 

receiverHeightN= receiverHeight/deltaz+1; 

if receiverHeightN<m 

    Preceiver= Preceiver.*(exp(j*abs(receiverHeight-sourceHeight).'*kz0)).*Pm./Pml; 

elseif receiverHeightN>m 

    Preceiver= Preceiver.*(exp(j*abs(receiverHeight-sourceHeight).'*kz0)).*Pm./Pmu; 

elseif receiverHeight==m 

    Preceiver= Pm; 

end 

 

clear dP Plzplus1 dPlzplus1 Puzplus1 dPuzplus1 Pm Pml dPml Pmu dPmu Rkz1 Sdelta ks; 

 

% If you have the Matlab Signal Processing toolbox, you can uncomment the 

% next line of code and comment the chunk of code following. 

windowInt= tukeywin(length(kr),1/5).'; 

 

% % The following definition of the tukey window is after Matlab signal processing 

% % toolbox tukeywin .m script: 

% rWindow=(1/5); 

% tWindow = linspace(0,1,krN)'; 

% % Defines period of the taper as 1/2 period of a sine wave. 

% perWindow = rWindow/2; 

% tlWindow = floor(perWindow*(krN-1))+1; 

% thWindow = krN-tlWindow+1; 

% % Window is defined in three sections: taper, constant, taper 

% windowInt = [ ((1+cos(pi/perWindow*(tWindow(1:tlWindow) - perWindow)))/2);  ones(thWindow-tlWindow-1,1); 

((1+cos(pi/perWindow*(tWindow(thWindow:end) - 1 + perWindow)))/2)].'; 

 

Transform back to the spatial domain to calculate the pressure 
pc= (((1-i)/(pi*sqrt(2)))*(exp(deltak*r*(1-(i/2)))*(2*pi/deltarFFP).*ifft(Preceiver.*windowInt,rN)+exp(-

deltak*r*(1-(i/2)))*(deltak).*fft(Preceiver.*windowInt,rN)))./sqrt(r); 

 

if verticalPlot2D==1 

    pcAll= zeros(zN,rN); 

    for n= 1:zN 

        pcAll(n,:)= (((1-i)/(pi*sqrt(2)))*(exp(deltak*r*(1-(i/2)))*(2*pi/deltarFFP).*ifft(Pall(n,:).*windowInt,rN)+exp(-

deltak*r*(1-(i/2)))*(deltak).*fft(Pall(n,:).*windowInt,rN)))./sqrt(r); 

    end 

end 

 

Calculate the sound level in dB 

Calculated results for all ranges at the specified resolution (deltarPlot) at the receiver 

height, based on the provided level 1 m from the source. 

 
receiverFFP= levelat1m+20*log10(abs(pc(1:floor(range/(3*deltarFFP)+1)))/abs(exp(j*kzero))); 

rindex= round(1:deltarPlot/deltarFFP:floor(range/(3*deltarFFP)+1)); 

receiverFFP= receiverFFP(rindex); 

 

If the vertical sound field option is invoked, calculate the sound 
field grid and plot the results 

if verticalPlot2D==1 

    receiverFFPgrid= levelat1m+20*log10(abs(pcAll(:,rindex))/abs(exp(j*kzero))); 

 

    figure(runNumber+2); 
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    imagesc(r(rindex),z,receiverFFPgrid); 

    colormap(jet) 

    colorbar; 

    axis xy 

    ylim([0,height]) 

    axis square 

    xlabel('range [m]','fontsize',22) 

    ylabel('height [m]','fontsize',22) 

    title(['FFP model, source (0,',int2str(sourceHeight),') f=',int2str(freq),' Hz, ',grad],'fontsize',22); 

 

end 
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AbsorbTermRev Function 
This function is called to return the imaginary contribution to the wave number in the 
absorbing layer so that the sound will be attenuated enough to prevent reflections off the 
top of the grid 
 
Inputs: 
 

• freq - frequency used in this run of the model 
• deltaz - vertical grid spacing used in the PE and FFP propagation models. 
• absorbN - height of the start of absorbing layer in number of points 
• zN - number of height points in grid for PE (includes absorbing layer) 
• absorbz - height of the start of absorbing layer start in meters 
• _heightwabs - grid height for PE including PE absorbing layer 

 
Function Process and Outputs: 
 

1. Determine the parameter At that depends on frequency (calculated as 
recommended in Section 6.9 of E. M. Salomons "Computational Atmospheric 
Acoustics" (2001). 

2. Calculate the imaginary term to be added to the wave number in order to prevent 
spurious reflections from the top of the grid absorb 

 
*Start Code Description:* ........................................................................................... 1 
Determine parameter _At_ .......................................................................................... 1 
Calculate the imaginary term added to the wave number ............................................. 1 

 

*Start Code Description:* 
function [absorb]= AbsorbTermRev(freq,deltaz,absorbN,zN,absorbz,heightwabs) 

 

Determine parameter _At_ 
if isequal(freq, 1000) 
    At= 1; 
elseif freq>500&&freq<1001 
    At= (1/1000)*freq; 
elseif freq>125 
    At= (1/3750)*freq+(11/30); 
elseif freq<=125 
    At= (1/475)*freq+(13/95); 
else 'Please enter a frequency from 30-1000 Hz' 
end 

 

Calculate the imaginary term added to the wave number 
absorb= j*At*(deltaz*[absorbN-1:zN-1]-absorbz).^2/(heightwabs-absorbz)^2; 
absorb= absorb.'; 
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function [beta]= airatten_2006_Function(f,hr,t) 
 
% Adapted from airatten_2006.m 
 
% This mfile calculates the absorption coefficient for air using equations 
% in Bass, et. al, JASA, vol 97, 680, 1995. 
 
% f is frequency in Hz.  The default range is 10 Hz - 10 kHz. 
% hr is relative humidity in percent. 
% t is absolute temeprature in Kelvin.  The default value for t is 293.15 K, i.e., 20 deg C. 
% ps is the barometric pressure in atmospheres.  The dafault value is 1 atm, i.e. 101325 Pa. 
% The output alpha is the absorption coefficient in nepers/m. 
% The output adbperkm is the absorption coefficient in dB/km. 
% The graph is adbperkm vs f. 
 
ps = 1; 
pso = 1; 
to = 293.15; 
to1 = 273.16; 
psat = pso*10^(-6.8346*(to1/t)^1.261 + 4.6151); 
ff = f/ps; 
 
h = hr*(psat/pso)/(ps/pso); 
 
fro = (ps/pso)*(24 + 4.04e4*h*((h+0.02)/(h + 0.391))); 
frn = (ps/pso)*sqrt(to/t)*(9 + 280*h*exp(-4.17*((to/t)^0.333 - 1))); 
 
aoverps = ff.^2/pso.*(1.84e-11*sqrt(t/to) + (t/to)^-2.5*(0.01278*exp(-2239.1/t)./(fro + ff.^2/fro) + 0.1068*exp(-
3352/t)./(frn + ff.^2/frn))); 
 
alpha = aoverps*ps; 
a = 8.686*alpha 
 
 
beta= a/(20*log10(exp(1))); 
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AtmosphereRev Function 
This variable number of arguments function is called to return the sound speed profile as 

calculated using the user option for a 'homogeneous' atmosphere, or a 'linear' or 'ln' 

(logarithmic) sound speed profile. (The additional option is a remnant of matching the 

Attenborough, et al. "Benchmark cases for outdoor sound propagation models" Case 4, 

ducting type of sound profile.) 

 

Inputs: 

 

• czero - sound speed at 0 m height 

• zN - number of height points in grid for PE (includes absorbing layer) 

• param - sound speed parameter of either the linear (gradient) or logarithmic 

profile 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• z0 - aerodynamic roughness (used only if the sound speed profile is logarithmic 

• param2 - for the ducted sound speed profile, this is the second sound speed 

gradient provided 

 

Function Process and Outputs: 

 

• Depending on the type of user-specified atmosphere to be used, calculate the 

sound speed profile cz 

• Form a string that describes the atmosphere, used for figure titles grad (For 

example, 'b= 1 m/s'.  'a' is used for linear profiles, 'b' is used for logarithmic 

profiles'.) 

 

*Start Code Description:* ........................................................................................... 1 

 

*Start Code Description:* 
function [cz,grad]= AtmosphereRev(czero,zN,param,deltaz,z0,param2) 

 

if (nargin == 2) %if using a homogeneous atmosphere 

    cz= czero*ones(1,zN); 

    grad= 'a= 0 m/s'; 

 

elseif (nargin == 4) %if using a linear sound speed profile 

    a= param; 

    cz= czero+a*([0:zN-1]*deltaz); 

    grad= ['a= ',num2str(a),' s^{-1}']; 

 

elseif (nargin == 5) %if using a logarithmic sound speed profile 

    b= param; 

    cz= czero+b*log(([0:zN-1]*deltaz/z0)+1); 

    grad= ['b= ',num2str(b),' m/s']; 

 

elseif (nargin == 6) %if using a ducting type sound speed profile 

    a1= param; 

    a2= param2; 

    zN100= floor(100/deltaz)+1; 
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    zN300= floor(300/deltaz)+1; 

    cz(1:zN100)= czero+a1*([0:zN100-1]*deltaz); 

    cz(zN100+1:zN300)= cz(zN100)+a2*([1:zN300-zN100]*deltaz); 

    cz(zN300+1:zN)= cz(zN300)*ones(1,zN-zN300); 

    grad= ['a1= ',num2str(a1),', a2= ',num2str(a2),', a3= 0 s^{-1}']; 

 

end 
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DandB Function 
This function is called to return the normalized acoustic impedance value for a ground 
type described by an effective flow resistivity in cgs rayls 
 
Inputs: 
 

• freq - current frequency 
• efr - vector of (up to 3) effective flow resistivities in cgs rayls of the ground type 

 
Function Process and Outputs: 
 

1. Convert the effective flow resistivity from cgs rayls to Pa s/m^2 
2. Compute the normalized acoustic impedance Z using Eq C.15 on p. 119 of E. M. 

Salomons "Computational Atmospheric Acoustics," 2001. (This equation is 
equivalent to the Delany-Bazley equation, but uses an effective flow resistivity 
with differen units.) 

 
*Start Code Description:* ........................................................................................... 1 
Convert the effective flow resistivity from cgs rayls to Pa s/m^2................................. 1 
Compute the normalized acoustic impedance with the Delany-Bazley method ............ 1 

 

*Start Code Description:* 
function [Z]= DandB(freq,efr) 

 

Convert the effective flow resistivity from cgs rayls to Pa s/m^2 
efr= efr*1000; %because 1 cgs rayl = 1000 Pa s/m^2 

 

Compute the normalized acoustic impedance with the Delany-
Bazley method 

Z= 1+.0511*(efr/freq).^.75+i*.0768*(efr/freq).^.73; 
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DetectabilityFilter Function 
This function decides whether it is necessary to continue the propagation algorithms, or if 

the calculated level is sufficiently small that any further propagated sound can be 

neglected.  It uses the parameters EASNthreshold, tenlogetaband (derived from the 1/3 

octave band filter characteristic eta_band), and the bandwidths, as applied in determining 

detectability level in the INM 7.0 Technical Manual. 

 

Inputs: 

 

• freq - frequency used in this run of the model 

• Lsignalband - maximum sound level value in the previous 100m range (to make 

sure that propagation doesn't stop because the current range is in an interference 

dip) 

 

Function Process and Outputs: 

 

1. Determine the frequency band index 

2. Calculate the correction term applied to the difference between signal and noise 

levels 

3. Decide whether to continue propagation (for continueLoop= 1, propagation 

continues, for continueLoop= 0, propagation stops) 

 

*Start Code Description:* ........................................................................................... 1 

Determine the frequency band index and define other necessary parameters................ 1 

Calculate the correction term applied to the difference between signal and noise levels2 

Decide whether to continue propagation...................................................................... 2 

 

*Start Code Description:* 
function [continueLoop]= DetectabilityFilter(freq,Lsignalband) 

 

Determine the frequency band index and define other necessary 
parameters 

freqIndex= find([25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 

5000 6300 8000 10000]==freq); 

 

% EASN thresholds as outlined in INM 7.0 Technical Manual for 1/3 octave 

% bands from 50-10,000 Hz, extended down to 25 Hz. 

EASNthreshold= [40.2 40.2 40.2 40.2 35.0 29.8 25.8 22.2 19.0 16.2 13.4 11.6 9.3 7.8 6.3 6.3 6.3 6.1 5.4 5.2 4.0 2.8 2.4 4.0 

8.1 13.1 17.0]; 

 

% 10*log10(eta_band) values as outlined in INM 7.0 Technical Manual for 1/3 octave 

% bands from 50-10,000 Hz, extended down to 25 Hz. 

tenlogetaband= [-7 -7 -7 -6.96 -6.26 -5.56 -5.06 -4.66 -4.36 -4.16 -3.96 -3.76 -3.56 -3.56 -3.56 -3.56 -3.56 -3.76 -3.96 -

4.16 -4.36 -4.56 -4.96 -5.36 -5.76 -6.26 -6.86]; 

 

% bandwidths as outlined in INM 7.0 Technical Manual for 1/3 octave 

% bands from 50-10,000 Hz, extended down to 25 Hz. 

bandwidth= [5.6 7.5 9.5 11 15 19 22 28 40 44 56 75 95 110 150 190 220 280 400 440 560 750 950 1100 1500 1900 2200]; 
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Calculate the correction term applied to the difference between 
signal and noise levels 

Calculation process outlined in the INM 7.0 Technical Manual.  It is based on the 

10*log10(eta_band) values, and bandwidth 

 
correctionFilter= (tenlogetaband(freqIndex)+0.5*10*log10(bandwidth(freqIndex))); 

 

Decide whether to continue propagation 

The max sound level is compared to a threshold value with a correction filter applied.  

Currently, the detectibility criteria is set to 0 dB for each band.  This number is relatively 

arbitrary, chosen in place of 7 dB, as used in INM, to lessen the possibility that the cutoff 

is applied before the band's contribution to the total detectibility is negligible. Because 

the total detectibility level cutoff criteria is also 7 dB, when adding contributions of all 

the bands, a level of less than 7 dB in one band many still be a significant contribution to 

the total level. 

 

If continueLoop == 1, propagation continues, if continueLoop == 0, propagation stops 

 
if Lsignalband-EASNthreshold(freqIndex)+correctionFilter>0 

    continueLoop= 1; 

else continueLoop= 0; 

end 
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ImportImpedanceGrid Function 
This function is called to return a matrix with impedance data for the space covered by 
the specified contouring grid 
 
Function Process and Outputs: 
 
This function is meant to be a placeholder.  When the form of the input impedance data is 
known, this function can be rewritten to import the data and pass it through to the model.  
The output should be: 
 

• impedanceGrid - a matrix with impedance defined for the physical location 
specified in the contouring grid definition. 

 
The physical distance between the points defined in impedanceGrid is assumed to be the 
same as the distance between points defined in the terrainGrid 
 

*Start Code Description:* ........................................................................................... 1 
 

*Start Code Description:* 
function [impedanceGrid]= 
ImportImpedanceGrid(xmaxTerrain,xminTerrain,ymaxTerrain,yminTerrain,deltarTer) 
 
%impedanceGrid= [150*ones(111,(xmaxTerrain-xminTerrain)/deltarTer+1); 150*ones((ymaxTerrain-
yminTerrain)/deltarTer+1-111,(xmaxTerrain-xminTerrain)/deltarTer+1)]; 
impedanceGrid= 150*ones((ymaxTerrain-yminTerrain),(xmaxTerrain-xminTerrain)); 
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ImportTerrainGrid Function 
This function is called to return both a matrix or vector with terrain height data for the 
space covered by the specified contouring grid and the spacing between the defined 
terrain data grid points 
 
Function Process and Outputs: 
 
This function is meant to be a placeholder.  When the form of the input terrain data is 
known, this function can be rewritten to import the data and pass it through to the model.  
The user should be aware of the grid extension (currently extended to a square grid with 
each side equal to twice the longest range side of the original grid) to allow for 
interpolation of terrain and account for the extended grid when importing terrain.  The 
output should be: 
 

• terrainGrid - a matrix (for grid geometry 'horizontal') or vector (for grid geometry 
'vertical') with terrain heights defined for the physical location specified in the 
contouring grid definition. 

• deltarTer - the physical distance between the points defined in terrainGrid.  The 
distance between points in the x and y directions should be equal. 

 
*Start Code Description:* ........................................................................................... 1 
Vectical gridGeometry is invoked ............................................................................... 1 
Horizontal (contouring) geometry is invoked .............................................................. 2 

 

*Start Code Description:* 
function [terrainGrid, deltarTer]= 
ImportTerrainGrid(xmaxTerrain,variableParameter,ymaxTerrain,yminTerrain) 

 

Vectical gridGeometry is invoked 
For a vertical (non-contouring) geometry, a single vector, terrainGrid, defining the 
terrain heights along the vertical plane of propagation, from a range of 0 to the defined 
end range, xmaxTerrain, with a range step equal to that of the PE grid, is returned 
 

if (nargin == 2) 
 
    deltar= variableParameter; 
 
    terrainGrid= zeros(1,xmaxTerrain/deltar+1); 
 
    ater= 10; 
    Wter= 100; 
    xtopter= 230; 
    ster= 2*xtopter/Wter; 
    startNter= round((xtopter-(Wter/2))/deltar)+1; 
    endNter= startNter+round(Wter/deltar)+1; 
 
    r= 0:deltar:xmaxTerrain; 
 
    terrainGrid(startNter:endNter)= [ater*(cos((pi*ster/2)*(1-r(startNter:endNter)/xtopter))).^2]; 
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Horizontal (contouring) geometry is invoked 
For a horizontal (contouring) geometry, both a matrix, terrainGrid, definining the terrain 
heights within the contouring grid space, and the range step, deltarTer, with which the 
matrix is defined, are returned 
 

elseif (nargin == 4) 
 
    xminTerrain= variableParameter; 
 
    deltarTer= 1; 
 
    gridside= max([(ymaxTerrain-yminTerrain)/deltarTer+1,(xmaxTerrain-xminTerrain)/deltarTer+1]); 
    terrainGrid= zeros(2*gridside,2*gridside); 
    addedY= gridside-.5*(ymaxTerrain-yminTerrain)/deltarTer; 
    addedX= gridside-.5*(xmaxTerrain-xminTerrain)/deltarTer; 
 
    %THIS IS A SPECIFIC CASE OF TERRAIN! 
    Hvect= zeros(1,(ymaxTerrain-yminTerrain)/deltarTer+1); 
 
    ater= 10; 
    Wter= 100; 
    xtopter= 230; 
    ster= 2*xtopter/Wter; 
    startNter= round((xtopter-(Wter/2))/deltarTer)+1; 
    endNter= startNter+round(Wter/deltarTer)+1; 
 
    r= 0:deltarTer:(ymaxTerrain-yminTerrain); 
 
    Hvect(startNter:endNter)= [ater*(cos((pi*ster/2)*(1-r(startNter:endNter)/xtopter))).^2]; 
 
    terrainGrid(addedY:size(terrainGrid,1)-addedY,addedX:size(terrainGrid,2)-addedX)= 
Hvect.'*ones(1,(xmaxTerrain-xminTerrain)/deltarTer+1); 
 
end 
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JRPEFstartCompareRev Function 
This function is called to run a (Crank-Nicholson) formulation of the parabolic equation 

method that does not include terrain, to generate results for the first 3 range steps of the 

propagation grid 

 

Inputs: 

 

• directionalSource - option for using a source directivity pattern ('yes') or 

assuming an omnidirectional source ('no') 

• freq - frequency used in this run of the model 

• keta - wave number profile for each vertical point in the grid, including the effect 

of atmospheric absorption and attenuating term in the upper absorbing layer 

• kzero - reference wave number used in this run of the model 

• deltar - horizontal grid spacing used in the PE propagation model, dependent on 

frequency.  Also constrained to be a divisor of number chosen in 

'MultiFreqQuickerRev.m' 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• zN - number of height points in grid for PE (includes absorbing layer) 

• sourceHeight - z-coordinate of the current source point along the flight path. 

• Z - values of the normalized ground impedance of the first 3 range steps 

 

Function Process and Outputs: 

 

1. Calculate the parameters needed in model 

2. Calculate M matrices 

3. Form the starting field 

4. Run PE over range steps, generating the grid and psivector outputs 

 

References: Appendix G of E. M. Salomons, "Computational Atmospheric Acoustics," 

2001, Dr. Sparrow's VQPE, and Dr. Sparrow's Lecture Notes All units are assumed to be 

MKS. 

 

*Start Code Description:* ........................................................................................... 1 

Calculate the parameters needed in model................................................................... 2 

Calculate M matrices .................................................................................................. 2 

Form the starting field................................................................................................. 2 

Run PE over range steps.............................................................................................. 2 

 

*Start Code Description:* 
function [grid,psivector]= JRPEFstartCompareRev(directionalSource,freq,keta,kzero,deltar,deltaz,... 

    zN,sourceHeight,Z) 
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Calculate the parameters needed in model 
maxrnum= 3; %range in number of points 

grid=zeros(zN,maxrnum); % Zero out grid: 

 

dk2= keta(2:length(keta)).^2-kzero^2; 

 

gamma=j/(2*kzero*deltaz^2); 

beta= j*dk2/(2*kzero);  % This is a tiny contrast in k 

 

Ztop= 1; %this value doesn't matter because the sound will have been attenuated before reaching top 

 

[tmatrix,sigma1,sigma2]= T_matrixRev(zN-1,keta(1),deltaz,Z,Ztop); 

 

dmatrix= sparse(1:zN-1,1:zN-1,beta,zN-1,zN-1); 

 

Calculate M matrices 
[M1,M2]= M_mats_wideRev(deltar,kzero,gamma,tmatrix,dmatrix); 

 

Form the starting field 
psivectorzero= Start_Field_Wide_Fin_ImpRev(directionalSource,freq,zN,kzero,deltaz,sourceHeight,Z); 

 

% Put starting field in solution matrix as initial range. 

grid(:,1)=psivectorzero; 

 

psivector= grid; 

 

Run PE over range steps 
for thisr=2:maxrnum 

    % Form right hand side matrix M_1 times Psi at range r 

    rhs= M1*psivector(2:size(psivector,1),thisr-1); 

    % Solve the linear system of equations 

    psivector(2:size(psivector,1),thisr)= M2 \ rhs; 

    psivector(1,thisr)= sigma1*psivector(2,thisr)+sigma2*psivector(3,thisr); 

    % Put in grid matrix to be ready for next time. 

    grid(:,thisr)= psivector(:,thisr)/sqrt(deltar*(thisr-1)); 

end; 
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M_mats_wideRev Function 
This function is called to generate the matrices M1 and M2 for the wide-angle parabolic 
equation propagation method as calculated by Eq. G.33 in E. M. Salomons, 
"Computational Atmospheric Acoustics," (2001). 
 
Inputs: 
 

• deltar - horizontal grid spacing used in the PE propagation model, dependent on 
frequency.  Also constrained to be a divisor of number chosen in 
'MultiFreqQuickerRev.m' 

• kzero - reference wave number used in this run of the model 
• gamma - coefficient of T matrix, defined in section G.6 of Salomons "CAA" 
• dmatrix - diagonal PE matrix, defined in Eq. G.29 of Salomons, "CAA" 

 
Function Process and Outputs: 
 

1. Calculate M1 and M2 as in Eq. G.33 in Salomons, "Computational Atmospheric 
Acoustics," (2001). 

 
*Start Code Description:* ........................................................................................... 1 

 

*Start Code Description:* 
function [M1,M2]= M_mats_wideRev(deltar,kzero,gamma,tmatrix,dmatrix) 
 
identity=sparse(1:length(tmatrix),1:length(tmatrix),ones(1,length(tmatrix)),length(tmatrix),length(tmatrix)); 
 
M1=identity+(0.5*deltar)*(gamma*tmatrix+dmatrix)+((gamma*tmatrix+dmatrix)/(2*j*kzero)); 
M2=identity-(0.5*deltar)*(gamma*tmatrix+dmatrix)+((gamma*tmatrix+dmatrix)/(2*j*kzero)); 
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readAtmAbsText Function 

This function is called to read the 'User Defined Atm Abs Coeffs' input TXT file. 

 

Inputs: 

 

• fileString - the full name of the folder in which the user-input                        files 

are located (including an extra slash at the end).         (For example, 'E:\Hybrid 

Propagation Model Version 5         All-Inclusive\Run1\') 

• freqvector - vector of frequencies to be run in the model 

 

Function Process and Outputs: 

 

1. Function reads in: 

 

• distance over which attenuation coefficents are defined (for example, 1.1 dB per 

305 m. 

• frequencies for which user coefficients are defined 

• vector of defined atmospheric absorption coefficients 

 

2. Function corrects the coefficient to find the attenuation per 1 m 

 

3. Function creates a vector with only attenuation coefficients for each frequency in the 

freqvector, in the same order as in freqvector betaAll 

 

*Start Code Description:* ........................................................................................... 1 

Read in attenuation coefficient distance, frequency vector, and attenuation coefficient 

vector.......................................................................................................................... 1 

Correct the coefficient to find the attenuation per 1 m ................................................. 2 

Create a vector with only attenuation coefficients for each frequency in the freqvector, 

in the same order as in freqvector................................................................................ 2 

 

*Start Code Description:* 
function [betaAll]= readAtmAbsText(fileString,freqvector) 

 

 

fid= fopen([fileString 'User Defined Atm Abs Coeffs.txt']); 

 

 

fgetl(fid); fgetl(fid); 

 

Read in attenuation coefficient distance, frequency vector, and 
attenuation coefficient vector 

coefDistance, freqvectorAtmAbs, fullcoefvectorAtmAbs 

 
coefDistance= textscan(fgetl(fid),'%*s %n %*s'); 
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coefDistance= coefDistance{1,1}; 

 

fgetl(fid); 

 

freqvectorAtmAbs= textscan(fgetl(fid),'%*s %[^H]'); 

freqvectorAtmAbs= deblank(char(freqvectorAtmAbs{1,1})); 

freqvectorAtmAbs= strread(freqvectorAtmAbs); 

fullcoefvectorAtmAbs= textscan(fgetl(fid),'%*s %[^d]'); 

fullcoefvectorAtmAbs= deblank(char(fullcoefvectorAtmAbs{1,1})); 

 

Correct the coefficient to find the attenuation per 1 m 
fullcoefvectorAtmAbs= strread(fullcoefvectorAtmAbs); 

fullcoefvectorCorrected= fullcoefvectorAtmAbs/coefDistance; 

 

Create a vector with only attenuation coefficients for each 
frequency in the freqvector, in the same order as in freqvector 

a= zeros(1,length(freqvector)); 

for m= 1:length(freqvector) 

    freqIndex= find(freqvectorAtmAbs==freqvector(m)); 

    if isempty(freqIndex) 

        error('There is no defined atmospheric absorption coefficient for this frequency. Please check that you have 

entered the right frequency or that you have defined a coefficient for this frequency.') 

    end 

    a(m)= fullcoefvectorCorrected(freqIndex); 

end 

 

betaAll= a/(20*log10(exp(1))); 
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readText Function 

This function is called to read the 'Hybrid Model Parameter' input TXT file. 

 

Inputs: 

 

• fileString - the full name of the folder in which the user-input                        files 

are located (including an extra slash at the end).         (For example, 'E:\Hybrid 

Propagation Model Version 5         All-Inclusive\Run1\') 

 

Function Process and Outputs: 

 

Function reads in: 

 

1. Model Description 

 

• propagation model to be used ('PE', 'FFP', or 'hybrid') propagationModel 

• final desired grid geometry ('vertical' or 'horizontal') gridGeometry 

• axisymmetry of propagation conditions ('yes' or 'no') axisymmetric 

• option for producing vertical 2D plot ('yes' or 'no') verticalPlot2D 

• reference source level at 1 m distance levelat1m 

• directivity of the source ('yes' or 'no') directionalSource 

 

2. Frequency Specification 

 

• run for discrete frequencies or 1/3-octave bands ('discrete' or 'bands') 

discrete_or_bands 

• vector of discrete frequencies, if 'discrete' was entered freqvector 

• start and stop frequencies, if 'bands' was entered startandstop 

• option for saving broadband level data and producing broadband plot('yes' or 'no') 

with 1/3 octave bands used in this code run broadbandResults 

 

3. Propagation Grid Definition 

 

• grid range range 

• grid height height 

• elevation angle limit used for PE deg 

• increment angle for azimuth deltatheta 

• receiver height receiverHeight 

• range step to be saved for plotting purposes deltarPlot 

 

4. Terrain 

 

• characteristic of the terrain ('flat' or 'uneven') terrain 

 

5. Impedance 
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• number of different impedances of the ground (1, 2, or 3) impedances 

• option to input impedance or the effective flow resistivity ('Z' or 'EFR') 

inputZorEFR 

• vector with different impedances ZorEFR 

• vector with range values at which the discontinuities occur lengthefr 

 

6. Meteorology--Sound Speed Profile 

 

• characteristic of the atmosphere ('homogeneous' or 'refractive') atmosphere 

• sound speed at 0 m height czero 

• type of sound speed profile ('linear' or 'ln') ctype 

• sound speed parameter for the thermal profile ssThermal 

• sound speed parameter for the wind profile, in the direction of the wind 

ssInWindDirection 

• direction of the wind in degrees where 0 degrees is defined as pointing 

horizontally right (or East) windDirection 

• aerodynamic roughness (ignored if ssp is linear) z0 

 

7. Meteorology--Turbulence 

 

• option to include turbulence ('yes' or 'no') turbulence 

• number of realizations to include realizN 

• turbulence parameters A, K0, CTovT0, and Cvovc0 A , K0 , CTovT0 , Cvovc0 

 

8. Meteorology--Atmospheric Absorption 

 

• option for user to define parameter or allow model to calculate it ('user' or 'code') 

user_or_code_AtmAbs 

• relative humidity relativeHumidity 

• absolute temperature absTemperature 

 

*Start Code Description:* ........................................................................................... 2 

Model Description ...................................................................................................... 3 

Frequency Specification.............................................................................................. 3 

Propagation Grid Definition........................................................................................ 3 

Terrain ........................................................................................................................ 3 

Impedance................................................................................................................... 4 

Meteorology--Sound Speed Profile ............................................................................. 4 

Meteorology--Turbulence ........................................................................................... 4 

Meteorology--Atmospheric Absorption....................................................................... 5 

 

*Start Code Description:* 
function 

[propagationModel,gridGeometry,axisymmetric,verticalPlot2D,levelat1m,directionalSource,discrete_or_bands,freq

vector,startandstop,broadbandResults,range,height,deg,deltatheta,receiverHeight,deltarPlot,terrain,impedances,... 
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inputZorEFR,ZorEFR,lengthefr,atmosphere,czero,ctype,ssThermal,ssInWindDirection,windDirection,z0,turbulence

,realizN,A,K0,CTovT0,Cvovc0,user_or_code_AtmAbs,... 

    relativeHumidity,absTemperature]= readText(fileString) 

 

fid= fopen(fileString); 

 

fgetl(fid); 

 

Model Description 
propagationModel= textscan(fgetl(fid),'%*s %s'); 

propagationModel= propagationModel{1,1}; 

gridGeometry= textscan(fgetl(fid),'%*s %s'); 

gridGeometry= gridGeometry{1,1}; 

axisymmetric= textscan(fgetl(fid),'%*s %s'); 

axisymmetric= axisymmetric{1,1}; 

verticalPlot2D= textscan(fgetl(fid),'%*s %s'); 

verticalPlot2D= verticalPlot2D{1,1}; 

levelat1m= textscan(fgetl(fid),'%*s %n %*s'); 

levelat1m= levelat1m{1,1}; 

directionalSource= textscan(fgetl(fid),'%*s %s'); 

directionalSource= directionalSource{1,1}; 

 

fgetl(fid); fgetl(fid); 

 

Frequency Specification 
discrete_or_bands= textscan(fgetl(fid),'%*s %s'); 

discrete_or_bands= discrete_or_bands{1,1}; 

freqvector= textscan(fgetl(fid),'%*s %[^H]'); 

freqvector= deblank(char(freqvector{1,1})); 

freqvector= strread(freqvector); 

startandstop= textscan(fgetl(fid),'%*s %n %n %*s'); 

startandstop= [startandstop{1,1} startandstop{1,2}]; 

broadbandResults= textscan(fgetl(fid),'%*s %s'); 

broadbandResults= broadbandResults{1,1}; 

 

fgetl(fid); fgetl(fid); 

 

Propagation Grid Definition 
range= textscan(fgetl(fid),'%*s %n %*s'); 

range= range{1,1}; 

height= textscan(fgetl(fid),'%*s %n %*s'); 

height= height{1,1}; 

deg= textscan(fgetl(fid),'%*s %n %*s'); 

deg= deg{1,1}; 

deltatheta= textscan(fgetl(fid),'%*s %n %*s'); 

deltatheta= deltatheta{1,1}; 

receiverHeight= textscan(fgetl(fid),'%*s %n %*s'); 

receiverHeight= receiverHeight{1,1}; 

deltarPlot= textscan(fgetl(fid),'%*s %n %*s'); 

deltarPlot= deltarPlot{1,1}; 

 

fgetl(fid); 

 

Terrain 
terrain= textscan(fgetl(fid),'%*s %s'); 

terrain= terrain{1,1}; 

 

fgetl(fid); fgetl(fid); 
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Impedance 
impedances= textscan(fgetl(fid),'%*s %n'); 

impedances= impedances{1,1}; 

inputZorEFR= textscan(fgetl(fid),'%*s %s'); 

inputZorEFR= inputZorEFR{1,1}; 

ZorEFR= zeros(1,impedances); 

for n= 1:impedances 

    ZorEFRText= textscan(fgetl(fid),'%*s %n %*s'); 

    ZorEFR(n)= ZorEFRText{1,1}; 

end 

for n= impedances+1:3 

    textscan(fgetl(fid),'%*s %n %*s'); 

end 

lengthefr= zeros(1,impedances-1); 

for m= 1:impedances-1 

    lengthefrText= textscan(fgetl(fid),'%*s %n %*s'); 

    lengthefr(m)= lengthefrText{1,1}; 

end 

for m= impedances:2 

    textscan(fgetl(fid),'%*s %n %*s'); 

end 

 

fgetl(fid); fgetl(fid); 

 

Meteorology--Sound Speed Profile 
atmosphere= textscan(fgetl(fid),'%*s %s'); 

atmosphere= atmosphere{1,1}; 

czero= textscan(fgetl(fid),'%*s %n %*s'); 

czero= czero{1,1}; 

ctype= textscan(fgetl(fid),'%*s %s'); 

ctype= ctype{1,1}; 

ssThermal= textscan(fgetl(fid),'%*s %n %*s %*s %*s'); 

ssThermal= ssThermal{1,1}; 

ssInWindDirection= textscan(fgetl(fid),'%*s %n %*s %*s %*s'); 

ssInWindDirection= ssInWindDirection{1,1}; 

windDirection= textscan(fgetl(fid),'%*s %n %*s'); 

windDirection= windDirection{1,1}; 

z0= textscan(fgetl(fid),'%*s %n %*s'); 

z0= z0{1,1}; 

 

fgetl(fid); fgetl(fid); 

 

Meteorology--Turbulence 
turbulence= textscan(fgetl(fid),'%*s %s'); 

turbulence= turbulence{1,1}; 

realizN= textscan(fgetl(fid),'%*s %n'); 

realizN= realizN{1,1}; 

A= textscan(fgetl(fid),'%*s %n'); 

A= A{1,1}; 

K0= textscan(fgetl(fid),'%*s %n %*s'); 

K0= K0{1,1}; 

CTovT0= textscan(fgetl(fid),'%*s %n %*s'); 

CTovT0= CTovT0{1,1}; 

Cvovc0= textscan(fgetl(fid),'%*s %n %*s'); 

Cvovc0= Cvovc0{1,1}; 

 

fgetl(fid); fgetl(fid); 
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Meteorology--Atmospheric Absorption 
user_or_code_AtmAbs= textscan(fgetl(fid),'%*s %s'); 

user_or_code_AtmAbs= user_or_code_AtmAbs{1,1}; 

relativeHumidity= textscan(fgetl(fid),'%*s %n %*s'); 

relativeHumidity= relativeHumidity{1,1}; 

absTemperature= textscan(fgetl(fid),'%*s %n %*s'); 

absTemperature= absTemperature{1,1}; 

 

fclose(fid); 
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SigmasRev Function 
This function returns the coefficients sigma1 and sigma2, which depend on the 
normalized ground impedance, as used in Eq. G.25 in Salomons, "Computation 
Atmospheric Acoustics," (2001). 
 
Inputs: 
 

• k0 - wavenumber at the ground 
• dz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 
fall exactly at a vertical grid point 

• Z - values of the normalized ground impedance of the first 3 range steps 
 
Function Process and Outputs: 
 

1. Calculate sigma1 and sigma2 as in Eq. G.39 in Salomons, "Computational 
Atmospheric Acoustics," (2001). 

 
*Start Code Description:* ........................................................................................... 1 

 

*Start Code Description:* 
function [sigma1,sigma2]= SigmasRev(k0,dz,Z) 
 
sigma1= ((3-(2*j*k0*dz)/Z).^-1)*4; 
sigma2= -((3-(2*j*k0*dz)/Z).^-1); 
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Start_Field_Wide_Fin_ImpRev Function 
This function is called to calculate the starting field for the wide-angle PE model either 

for an omnidirectional or directional source 

 

Inputs: 

 

• directionalSource - option for using a source directivity pattern ('yes') or 

assuming an omnidirectional source ('no') 

• freq - frequency used in this run of the model 

• zN - number of height points in grid for PE (includes absorbing layer) 

• kzero - reference wave number used in this run of the model 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• sourceHeight - z-coordinate of the current source point along the flight path. 

• Z - values of the normalized ground impedance of the first 3 range steps 

 

Function Process and Outputs: 

 

1. Define constants used for determining Gaussian function for omnidirectional 

sources 

2. If the user chooses the omnidirectional source option, use the standard, wide-

angle Gaussian representation 

3. If the user chooses the directional source option, use array theory and windowing 

to calculate the starting field 

4. Create directivity pattern vector 

5. Define the wave number window function to smoothly taper the evanescent wave 

numbers 

6. Apply the window function to the directivity profile 

7. Prepare directivity pattern for Matlab ifft algorithm 

8. Calculate array weightings Ashift(z) 

9. Assign the array values at points above the ground to psivectorzerosource and 

array values at points below the ground to psivectorzeroimage, accounting for 

array point spacing 

10. Calculate the starting field psivectorzero including the effect of reflections off the 

ground 

 

*Start Code Description:* ........................................................................................... 2 

Start_Field_Wilde_Fin_ImpRev_window.m file (for Approach 2). ............................. 2 

Define constants used for determining Gaussian function for omnidirectional sources, 2 

If the user chooses the omnidirectional source option, use the standard, wide-angle 

Gaussian representation............................................................................................... 2 

If the user chooses the directional source option, use array theory and windowing to 

calculate the starting field............................................................................................ 2 

Create directivity pattern vector .................................................................................. 3 
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Define the wave number window function to smoothly taper the evanescent wave 

numbers ...................................................................................................................... 3 

Apply the window function to the directivity profile ................................................... 3 

Prepare directivity pattern for Matlab ifft algorithm .................................................... 3 

Calculate array weightings Ashift(z) ........................................................................... 3 

The array values at points above the ground to psivectorzerosource and array values at 

points below the ground to psivectorzeroimage, accounting for array point spacing .... 4 

Calculate the starting field including the effect of reflections off the ground................ 4 

 

*Start Code Description:* 
function [psivectorzero]= Start_Field_Wide_Fin_ImpRev(directionalSource,freq,zN,kzero,deltaz,sourceHeight,Z) 

 

Start_Field_Wilde_Fin_ImpRev_window.m file (for Approach 2). 

This function calculates the start field for a wide-angle parabolic equation with a given 

directivity. 

 
% It uses a vector that describes the user-input directivity profile at the necessary elevation angles to 

% achieve array point weightings Ashift(z), related to pressure, at the vertical initial field 

% gridpoints (as dictated by deltaz). 

 

Define constants used for determining Gaussian function for 
omnidirectional sources, 

as given in E. M. Salomons "Computational Atmospheric Acoustics," (2001), p. 179, 

under Ex. G.75 

 
A0=1.3717; 

A2= -.3701; 

B= 3; 

 

z=0:deltaz:zN*deltaz-deltaz;        %z vector 

R2= z+sourceHeight; 

 

If the user chooses the omnidirectional source option, use the 
standard, wide-angle Gaussian representation 

if strcmp(directionalSource,'no') % if the source is assumed to be omnidirectional 

    psivectorzerosource= sqrt(j*kzero)*(A0+A2*kzero^2*(z-sourceHeight).^2).*exp(-kzero^2*(z-

sourceHeight).^2/B); 

    psivectorzeroimage= sqrt(j*kzero)*(A0+A2*kzero^2*R2.^2).*exp(-kzero^2*R2.^2/B); 

 

If the user chooses the directional source option, use array 
theory and windowing to calculate the starting field 

elseif strcmp(directionalSource,'yes') % if the source has a directivity pattern 

 

    lambda= 2*pi/kzero;                                                             %wavelength 

    N= 1025;                                                                        %number of elements in approximated array 

 

    %Determine the full length and span of the FFT, with zero-padding 
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    spanZeroPad= lambda/deltaz;                                                     %span ( S= N*sin(phi) ) needed to acheive correct 

array spacing of deltaz 

    deltasinephi= spanZeroPad/N;                                                    %sin(phi) increment based on necessary span 

 

    sinphi= -deltasinephi*((N-1)/2):deltasinephi:deltasinephi*((N-1)/2);            %define the sin(phi) vector--this will 

have abs(sin(phi))>1, which is non-physical, but necessary to achieve the deltaz 

    phi= asin(sinphi); 

    nonZeroArrayIndices= find(abs(sinphi)<=1);%define the elevation angles at which to define the directivity pattern 

 

Create directivity pattern vector 
    % Initialized the directivity vector 

    dirPattern= zeros(1,N); 

 

    % Define the directivity pattern at designated elevation angles (in the 

    % non-evanescent wave number range 

     dirPattern(nonZeroArrayIndices)= cos(phi(nonZeroArrayIndices));                %define the directivity pattern at 

designated elevation angles 

 

    % Assign the value of the lowest non-evanescent wave number to all negative evanescent wave numbers 

    dirPattern(1:nonZeroArrayIndices(1)-1)= dirPattern(nonZeroArrayIndices(1)); 

    % Assign the value of the highest non-evanescent wave number to all positive evanescent wave numbers 

    dirPattern(nonZeroArrayIndices(end)+1:end)= dirPattern(nonZeroArrayIndices(end)); 

 

Define the wave number window function to smoothly taper the 
evanescent wave numbers 

    alpha= 0.1; 

    dirFilter= .5*exp((1-abs(sinphi))/alpha); 

    dirFilter(nonZeroArrayIndices)= 1-.5*exp(-(1-abs(sinphi(nonZeroArrayIndices)))/alpha); 

 

Apply the window function to the directivity profile 
    dirPattern=  (dirPattern./(1-sin(phi).^2/4)).*dirFilter; 

 

Prepare directivity pattern for Matlab ifft algorithm 
    dirPatternshift= [dirPattern((N+1)/2:N) dirPattern(1:(N-1)/2)]; 

 

    % Define the heights of the array sources 

    zArrayIndex= (deltaz*round(sourceHeight/deltaz))-(deltaz*(N-

1)/2):deltaz:(deltaz*round(sourceHeight/deltaz))+(deltaz*(N-1)/2); 

 

Calculate array weightings Ashift(z) 
    % Account for a phase shift caused by the source height not falling 

    % directly on a gridpoint 

    delta= deltaz*round(sourceHeight/deltaz)-sourceHeight; 

    expterm= exp((j*2*pi*delta*deltasinephi*[0:(N-1)])/lambda); 

    expshift= [expterm((N+1)/2:N) expterm(1:(N-1)/2)]; 

 

    % Apply the phase shift and determine the array source values 

    A= ifft(dirPatternshift.*expshift)/deltaz; 

    Ashift= [A((N+1)/2+1:N) A(1:(N+1)/2)]*sqrt(i*lambda);                                          %get A(z) back into form user 

expects 
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The array values at points above the ground to 
psivectorzerosource and array values at points below the 
ground to psivectorzeroimage, accounting for array point 
spacing 

    % Initialize vectors 

    psivectorzerosource= zeros(1,zN); 

    psivectorzeroimage= zeros(1,zN); 

 

    indicesAboveGround= find(zArrayIndex>=0,1,'first'):find(zArrayIndex<=z(end),1,'last'); 

    indicesBelowGround= find(zArrayIndex<=0); 

    psivectorzerosource(round(zArrayIndex(indicesAboveGround)/deltaz)+1)= ((Ashift(indicesAboveGround))); 

    psivectorzeroimage(-round(zArrayIndex(indicesBelowGround)/deltaz)+1)= ((Ashift(indicesBelowGround))); 

 

else error('The entry for the ''Directional_Source'' input category is invalid.  Please enter either ''yes'' or ''no''.') 

 

end 

 

 

if freq<80 

    expVal= kzero*((Z+1)/(Z))*(R2/j); 

    Cs= 1-2*(kzero/Z)*(R2/j).*exp(expVal).*expint(expVal); 

else 

    Cp= (Z-1)/(Z+1); 

 

    n= 1:2; 

    Cs= zeros(1,zN); 

    for thisz= 1:zN 

        Cs(thisz)= Cp-(2/(Z+1))*sum(((-1).^n).*factorial(n).*((i./(kzero*R2(thisz)))*(Z/(Z+1))).^n); 

    end 

end 

 

Calculate the starting field including the effect of reflections off 
the ground 

psivectorzero= psivectorzerosource+Cs.*psivectorzeroimage; 
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T_MatrixRev Function 
This function is called to generate the tridiagonal T matrix, as described by Eq. G.28 in E. 

M. Salomons, "Computational Atmospheric Acoustics," (2001).  It also returns the 

sigma1 and sigma2 values as used in Eq. G 25 in Salomons, "CAA." 

 

Inputs: 

 

• Nz - number of elements in both dimensions of the T matrix.  It is 1 smaller than 

the number of vertical grid points zN 

• k0 - wavenumber at the ground 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• Z - values of the normalized ground impedance of the first 3 range steps 

• Ztop - value of the normalized impedance at the top of the grid 

 

Function Process and Outputs: 

 

1. Form the basis of the T matrix 

2. Run functions to get boundary condition parameters (including sigma1 and 

sigma2, outputs of this function 

3. Finish forming tridiagonal matrix T by adding in boundary conditions 

 

*Start Code Description:* ........................................................................................... 1 

Form the basis of the T matrix..................................................................................... 1 

Run functions to get boundary condition parameters ................................................... 1 

Finish forming tridiagonal matrix T by adding in boundary conditions........................ 2 

 

*Start Code Description:* 
function [tmatrix,sigma1,sigma2]= T_matrixRev(Nz,k0,deltaz,Z,Ztop) 

 

Form the basis of the T matrix 
D=sparse(1:Nz,1:Nz,-2*ones(1,Nz),Nz,Nz); 

E=sparse(2:Nz,1:Nz-1,1*ones(1,Nz-1),Nz,Nz); 

tmatrix=D+E+E'; 

 

Run functions to get boundary condition parameters 
[sigma1,sigma2]= SigmasRev(k0,deltaz,Z); 

[tau1,tau2]= TausRev(k0,deltaz,Ztop); 
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Finish forming tridiagonal matrix T by adding in boundary 
conditions. 

tmatrix(1,1)=tmatrix(1,1)+sigma1; 

tmatrix(1,2)=tmatrix(1,2)+sigma2; 

tmatrix(Nz,Nz)=tmatrix(Nz,Nz)+tau1; 

tmatrix(Nz,Nz-1)=tmatrix(Nz,Nz-1)+tau2; 
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TausRev Function 
This function returns the coefficients tau1 and tau2, which depend on the normalized 
impedance at the top of the grid, as used in Eq. G.26 in Salomons, "Computation 
Atmospheric Acoustics," (2001). 
 
Inputs: 
 

• k0 - wavenumber at the ground 
• dz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 
fall exactly at a vertical grid point 

• Ztop - value of the normalized impedance at the top of the grid 
 
Function Process and Outputs: 
 

1. Calculate tau1 and tau2 as in Eq. G.40 in Salomons, "Computational Atmospheric 
Acoustics," (2001). 

 
*Start Code Description:* ........................................................................................... 1 

 

*Start Code Description:* 
function [tau1,tau2]= TausRev(k0,dz,Ztop) 
 
tau1= ((3+(2*j*k0*dz)/Ztop).^-1)*4; 
tau2= -((3+(2*j*k0*dz)/Ztop).^-1); 
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TerrainTransformV3 Function 
This function is called to return information about the terrain and impedance geometries 
in the contouring grid, broken down for each aziumthal angle run for the current point 
along the flight path 
 
Inputs: 
 

• thetas - vector of azimuthal angles at which runs will be performed outward from 
the source 

• runN - number of runs needed to cover all azimuthal angles from source 
• xflightPositions - vector defining the x-coordinate of the current represented point 

along the flight path 
• yflightPositions - vector defining the y-coordinate of the current represented point 

along the flight path 
• freq - frequency used in this run of the model 
• deltar - horizontal grid spacing at current frequency 
• inputZorEFR - option to input impedance or the effective flow resistivity ('Z' or 

'EFR') 
• xminTerrain - lowest value of the x-axis to which the contouring grid extends 
• xmaxTerrain - highest value of the x-axis to which the contouring grid extends 
• yminTerrain - lowest value of the y-axis to which the contouring grid extends 
• ymaxTerrain - highest value of the y-axis to which the contouring grid extends 
• terrain - characteristic of the terrain ('flat' or 'uneven') 

 
Function Process and Outputs: 
 

1. Initialize matrices to be used 
2. Find terrain and impedance parameters for each azimuthal angle run 
3. Calculate propagation range rangesAtThetas and associated parameters at the 

different azimuthal angle value 
4. Interpolate the terrain and impedance values from data points on the rectangular 

terrain and impedance grids to polar points on the source propagation run grid 
(interpolated terrain stored in polarTerrain).  The number of different impedances 
at each azimuthal angle run impedancesAtThetas, the values of the different 
impedances ZAtThetas, and the ranges at which the impedance transitions occur 
lengthefrAtThetas are also calculated. 

 
*Start Code Description:* ........................................................................................... 2 
Import the terrain and impedance data......................................................................... 2 
Initialize matrices to be used ....................................................................................... 2 
Find terrain and impedance parameters for each azimuthal angle run .......................... 2 
Plot terrain and impedance features............................................................................. 7 
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*Start Code Description:* 
function [rangesAtThetas,polarTerrain,impedancesAtThetas,ZAtThetas,lengthefrAtThetas]= 
TerrainTransformV3(thetas,runN,xflightPositions,yflightPositions,freq,deltar,deltarPlot,inputZorEFR,xminTerrain,
xmaxTerrain,yminTerrain,ymaxTerrain,terrain) 

 

Import the terrain and impedance data 
if strcmp(terrain,'flat') 
    deltarTer= 1; % assume a deltarTer=1.  This assignment is arbitrary. 
    gridside= max([(ymaxTerrain-yminTerrain)/deltarTer+1,(xmaxTerrain-xminTerrain)/deltarTer+1]); 
    terrainGrid= zeros(2*gridside,2*gridside); 
    addedY= gridside-.5*(ymaxTerrain-yminTerrain)/deltarTer; 
    addedX= gridside-.5*(xmaxTerrain-xminTerrain)/deltarTer; 
 
elseif strcmp(terrain,'uneven') 
    [terrainGrid, deltarTer]= ImportTerrainGrid(xmaxTerrain,xminTerrain,ymaxTerrain,yminTerrain); 
    gridside= max([(ymaxTerrain-yminTerrain)/deltarTer+1,(xmaxTerrain-xminTerrain)/deltarTer+1]); 
    addedY= gridside-.5*(ymaxTerrain-yminTerrain)/deltarTer; 
    addedX= gridside-.5*(xmaxTerrain-xminTerrain)/deltarTer; 
else error('Please enter either ''uneven'' or ''flat'' in the ''Terrain'' user-input') 
end 
 
[impedanceGrid]= ImportImpedanceGrid(gridside,-gridside,gridside,-gridside,deltarTer); 

 

Initialize matrices to be used 
% Define the different ranges for the different azimuthal angles 
 
rangesAtThetasShort= zeros(1,runN);        %unadjusted vector of range values at each theta angle from source 
rangesAtThetas= zeros(1,runN);        %vector of range values at each theta angle from source 
 
% Define the terrain and impedance cell arrays 
polarTerrain= cell(runN,1); 
polarImpedance= cell(runN,1); 
 
% Define the x and y values of the polar points 
xRangeValsArray= cell(runN,1); 
yRangeValsArray= cell(runN,1); 
 
 
% Define the impedance parameters for the different azimuthal angles 
impedancesAtThetas= zeros(runN,1);  %number of different impedances outward propagation will see for each 
azimuthal angle run 
ZorEFR= zeros(runN,3);              %impedance parameter values for each of the different impedances (could be an 
impedance value or an effective flow resistivity) for each aximuthal run.  A max of 3 impedances can be included 
ZAtThetas= zeros(runN,3);           %impedance (not efr) values for each of the different impedances for each 
azimuthal run 
lengthefrAtThetas= zeros(runN,2);   %distances at which impedance transitions occur for each azimuthal run 
 
thetaUR= atan((ymaxTerrain-yflightPositions)/(xmaxTerrain-xflightPositions)); 
thetaUL= atan((ymaxTerrain-yflightPositions)/(xminTerrain-xflightPositions))+pi; 
thetaLL= atan((yminTerrain-yflightPositions)/(xminTerrain-xflightPositions))+pi; 
thetaLR= atan((yminTerrain-yflightPositions)/(xmaxTerrain-xflightPositions))+2*pi; 

 

Find terrain and impedance parameters for each azimuthal angle 
run 

for thistheta= 1:runN 
 
    % Define range values for different thetas at the specific theta values 
    % of 0, pi/2, pi, 3pi/2, and 2pi 
    if thetas(thistheta)==0 
        rangesAtThetasShort(thistheta)= deltar*ceil(abs(xmaxTerrain-xflightPositions)/deltar); %distance (using and 
integer number of range grid points) to the max x boundary 
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    elseif thetas(thistheta)==pi/2 
        rangesAtThetasShort(thistheta)= deltar*ceil(abs(ymaxTerrain-yflightPositions)/deltar); %distance (using and 
integer number of range grid points) to the max y boundary 
    elseif thetas(thistheta)==pi 
        rangesAtThetasShort(thistheta)= deltar*ceil(abs(xflightPositions-xminTerrain)/deltar); %distance (using and 
integer number of range grid points) to the min x boundary 
    elseif thetas(thistheta)==3*pi/2 
        rangesAtThetasShort(thistheta)= deltar*ceil(abs(yflightPositions-yminTerrain)/deltar); %distance (using and 
integer number of range grid points) to the min y boundary 
    elseif thetas(thistheta)==2*pi 
        rangesAtThetasShort(thistheta)= deltar*ceil(abs(xmaxTerrain-xflightPositions)/deltar); %distance (using and 
integer number of range grid points) to the max x boundary (again) 
    else 
        % Define important parameters for finding the ranges at different 
        % thetas 
 
        % For first quadrant 
        if 0<thetas(thistheta) && thetas(thistheta)<pi/2 
            extreme_xVal= xmaxTerrain-xflightPositions; 
            extreme_yVal= ymaxTerrain-yflightPositions; 
 
        % For second quadrant 
        elseif pi/2<thetas(thistheta) && thetas(thistheta)<pi 
            extreme_xVal= xminTerrain-xflightPositions; 
            extreme_yVal= ymaxTerrain-yflightPositions; 
 
        % For third quadrant 
        elseif pi<thetas(thistheta) && thetas(thistheta)<3*pi/2 
            extreme_xVal= xminTerrain-xflightPositions; 
            extreme_yVal= yminTerrain-yflightPositions; 
 
        % For fourth quadrant 
        elseif 3*pi/2<thetas(thistheta) && thetas(thistheta)<2*pi 
            extreme_xVal= xmaxTerrain-xflightPositions; 
            extreme_yVal= yminTerrain-yflightPositions; 
 
        else error('Something is wrong with the aximuthal angles, out of the range of 0 to 2*pi?') 
        end 
 
        %% Calculate propagation range and associated parameters at the current azimuthal angle value, making sure 
the range value is a multiple of deltar. 
        % Range will be dependent on which boundary--top, bottom, left, 
        % right--is encountered for each angle.) 
        rangesAtThetasShort(thistheta)= 
deltar*ceil((min(abs(extreme_yVal/sin(thetas(thistheta))),abs(extreme_xVal/cos(thetas(thistheta)))))/deltar); 
    end 
 
end 
 
for thistheta= 1:runN 
 
    if thistheta==1 || thistheta==runN 
        rangesAtThetas(thistheta)= max([rangesAtThetasShort(runN-1) rangesAtThetasShort(1:2)])+deltarPlot; 
        if (thetaUR >= thetas(thistheta) && thetaUR<= thetas(thistheta+1)) ||(thetaUR >= thetas(runN-1) && 
thetaUR<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((ymaxTerrain-yflightPositions)^2+(xmaxTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        elseif (thetaUL >= thetas(thistheta) && thetaUL<= thetas(thistheta+1)) ||(thetaUL >= thetas(runN-1) && 
thetaUL<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((ymaxTerrain-yflightPositions)^2+(xminTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        elseif (thetaLL >= thetas(thistheta) && thetaLL<= thetas(thistheta+1)) ||(thetaLL >= thetas(runN-1) && 
thetaLL<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((yminTerrain-yflightPositions)^2+(xminTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        elseif (thetaLR >= thetas(thistheta) && thetaLR<= thetas(thistheta+1)) ||(thetaLR >= thetas(runN-1) && 
thetaLR<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((yminTerrain-yflightPositions)^2+(xmaxTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        end 
    else rangesAtThetas(thistheta)= max([rangesAtThetasShort(thistheta-1:thistheta+1)])+deltarPlot; 
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        if (thetaUR >= thetas(thistheta) && thetaUR<= thetas(thistheta+1)) ||(thetaUR >= thetas(thistheta-1) && 
thetaUR<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((ymaxTerrain-yflightPositions)^2+(xmaxTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        elseif (thetaUL >= thetas(thistheta) && thetaUL<= thetas(thistheta+1)) ||(thetaUL >= thetas(thistheta-1) && 
thetaUL<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((ymaxTerrain-yflightPositions)^2+(xminTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        elseif (thetaLL >= thetas(thistheta) && thetaLL<= thetas(thistheta+1)) ||(thetaLL >= thetas(thistheta-1) && 
thetaLL<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((yminTerrain-yflightPositions)^2+(xminTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        elseif (thetaLR >= thetas(thistheta) && thetaLR<= thetas(thistheta+1)) ||(thetaLR >= thetas(thistheta-1) && 
thetaLR<= thetas(thistheta)) 
            rangesAtThetas(thistheta)= max([sqrt((yminTerrain-yflightPositions)^2+(xmaxTerrain-
xflightPositions)^2)+deltarPlot,rangesAtThetas(thistheta)]); 
        end 
    end 
 
    % Define the rho vector (called 'r' in other areas of propagation 
    % code, but rho here keeping with notation for polar coordinate 
    % systems) using deltar and the appropriate range for the given theta 
 
    rho= 0:deltar:deltar*ceil(rangesAtThetas(thistheta)/deltar); 
    rhoValsN= length(rho); 
 
    % Define cell arrays storing x and y values for the polar coordinate 
    % system with origin at the source and the rectangular 
    % coordinate system boundaries of the given terrain grid.  Cell arrays 
    % are constructed by forming vectors of values for each azimuthal angle 
    % run, starting at the lowest angle of the theta vector, and storing 
    % each vector in a cell (making runN number of cells). 
    xRangeValsArray{thistheta}= rho*cos(thetas(thistheta)); 
    yRangeValsArray{thistheta}= rho*sin(thetas(thistheta)); 
 
    %% Interpolate the terrain and impedance values from data points on the rectangular terrain and impedance 
grids to polar points on the source propagation run grid. 
    % Loop only goes to rhoValsN-1 because interpolation requires data from 
    % points at larger rho values, which we do not have for rho(rhoValsN). 
    % (Used equations from p. 116-117 in Numerical Recipes in FORTRAN, 
    % The Art of Scientific Computing, Second Edition, Press, Teukolsky, 
    % Vetterling, Flannery) 
    for thisrho= 1:rhoValsN-1 
 
        if rem(xRangeValsArray{thistheta}(thisrho),deltarTer)==0 %if the x-value of the current range point along 
the current azimuthal angle run falls exactly at the x-value of a point on the terrain grid 
            if rem(yRangeValsArray{thistheta}(thisrho),deltarTer)==0 %if the y-value of the current range point along 
the current azimuthal angle run falls exactly at the y-value of a point on the terrain grid 
                polarTerrain{thistheta}(thisrho)= terrainGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(yRangeValsArray{thistheta}(thisrho)/deltarTer)+1,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(xRangeValsArray{thistheta}(thisrho)/deltarTer)+1); 
%set the terrain height at the current range point equal to the terrain height at the terrain grid point it falls on 
                polarImpedance{thistheta}(thisrho)= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(yRangeValsArray{thistheta}(thisrho)/deltarTer)+1,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(xRangeValsArray{thistheta}(thisrho)/deltarTer)+1); 
%set the impedance parameter at the current range point equal to the terrain height at the terrain grid point it falls 
on 
            else 
                floorY= deltarTer*floor(yRangeValsArray{thistheta}(thisrho)/deltarTer); %find the y-value of the 
nearest point on the terrain grid with a lower y-value 
                ceilY= floorY+deltarTer; %find the y-value of the nearest point on the terrain grid with a higher y-value 
 
                u= (yRangeValsArray{thistheta}(thisrho)-floorY)/deltarTer; 
 
                z1= terrainGrid(-yminTerrain/deltarTer+yflightPositions/deltarTer+round(floorY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(xRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dX); 
                z4= terrainGrid(-yminTerrain/deltarTer+yflightPositions/deltarTer+round(ceilY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(xRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dX); 
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                polarTerrain{thistheta}(thisrho)= (1-u)*z1+u*z4; %interpolate the terrain height linearly between the 
terrain heights at the 2 nearest terrain grid points (will have same x-values) 
 
                if u>.5 && u<1 %if the current range point is closer to the impedance grid point with a higher y-value 
                    polarImpedance{thistheta}(thisrho)= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(ceilY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(xRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dX); %set the impedance parameter at the current range point equal to the impedance parameter at the impedance 
grid point with the higher y-value 
                elseif (u<.5 && u>0) || u==.5 %if the current range point is closer to the impedance grid point with a lower 
y-value, or equally spaced between the upper and lower points 
                    polarImpedance{thistheta}(thisrho)= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(floorY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(xRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dX); %set the impedance parameter at the current range point equal to the impedance parameter at the impedance 
grid point with the lower y-value 
                else error('The u interpolation value is not in the correct range of 0<u<1') 
                end 
            end 
        elseif rem(yRangeValsArray{thistheta}(thisrho),deltarTer)==0 %else if the y-value of the current range point 
along the current azimuthal angle run falls exactly at the y-value of a point on the terrain grid (but not exactly on the 
x) 
            floorX= deltarTer*floor(xRangeValsArray{thistheta}(thisrho)/deltarTer); %find the x-value of the nearest 
point on the terrain grid with a lower x-value 
            ceilX= floorX+deltarTer; %find the x-value of the nearest point on the terrain grid with a higher x-value 
 
            t= (xRangeValsArray{thistheta}(thisrho)-floorX)/deltarTer; 
 
            z1= terrainGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(yRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dY,-xminTerrain/deltarTer+xflightPositions/deltarTer+round(floorX/deltarTer)+1+addedX); 
            z2= terrainGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(yRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dY,-xminTerrain/deltarTer+xflightPositions/deltarTer+round(ceilX/deltarTer)+1+addedX); 
 
            polarTerrain{thistheta}(thisrho)= (1-t)*z1+t*z2; %interpolate the terrain height linearly between the 
terrain heights at the 2 nearest terrain grid points (will have same y-values) 
 
            if t>.5 && t<1 
                polarImpedance{thistheta}(thisrho)= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(yRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dY,-xminTerrain/deltarTer+xflightPositions/deltarTer+round(ceilX/deltarTer)+1+addedX); %set the impedance 
parameter at the current range point equal to the impedance parameter at the impedance grid point with the higher 
x-value 
            elseif (t<.5 && t>0) || t==.5 
                polarImpedance{thistheta}(thisrho)= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(yRangeValsArray{thistheta}(thisrho)/deltarTer)+1+adde
dY,-xminTerrain/deltarTer+xflightPositions/deltarTer+round(floorX/deltarTer)+1+addedX); %set the impedance 
parameter at the current range point equal to the impedance parameter at the impedance grid point with the lower 
x-value 
            else error('The t interpolation value is not in the correct range of 0<t<1') 
            end 
        else 
            floorX= deltarTer*floor(xRangeValsArray{thistheta}(thisrho)/deltarTer); %find the x-value of the nearest 
point on the terrain grid with a lower x-value 
            ceilX= floorX+deltarTer; %find the x-value of the nearest point on the terrain grid with a higher x-value 
            floorY= deltarTer*floor(yRangeValsArray{thistheta}(thisrho)/deltarTer); %find the y-value of the nearest 
point on the terrain grid with a lower y-value 
            ceilY= floorY+deltarTer; %find the y-value of the nearest point on the terrain grid with a higher y-value 
 
            t= (xRangeValsArray{thistheta}(thisrho)-floorX)/deltarTer; 
            u= (yRangeValsArray{thistheta}(thisrho)-floorY)/deltarTer; 
 
            z1= terrainGrid(-yminTerrain/deltarTer+yflightPositions/deltarTer+round(floorY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(floorX/deltarTer)+1+addedX); 
            z2= terrainGrid(-yminTerrain/deltarTer+yflightPositions/deltarTer+round(floorY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(ceilX/deltarTer)+1+addedX); 
            z3= terrainGrid(-yminTerrain/deltarTer+yflightPositions/deltarTer+round(ceilY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(ceilX/deltarTer)+1+addedX); 
            z4= terrainGrid(-yminTerrain/deltarTer+yflightPositions/deltarTer+round(ceilY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(floorX/deltarTer)+1+addedX); 
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            polarTerrain{thistheta}(thisrho)= (1-t)*(1-u)*z1+t*(1-u)*z2+t*u*z3+(1-t)*u*z4; %interpolate the terrain 
height linearly between the terrain heights at the 4 nearest terrain grid points 
 
            impedValue1= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(floorY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(floorX/deltarTer)+1+addedX); 
            impedValue2= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(floorY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(ceilX/deltarTer)+1+addedX); 
            impedValue3= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(ceilY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(ceilX/deltarTer)+1+addedX); 
            impedValue4= impedanceGrid(-
yminTerrain/deltarTer+yflightPositions/deltarTer+round(ceilY/deltarTer)+1+addedY,-
xminTerrain/deltarTer+xflightPositions/deltarTer+round(floorX/deltarTer)+1+addedX); 
 
            imped1= 1; 
            if impedValue2==impedValue1 
                imped2= 1; 
                if impedValue3==impedValue2 
                    imped3= 1; 
                    if impedValue4==impedValue3 
                        imped4=1; 
                    else imped4= -1; 
                        otherImpedValue= impedValue4; 
                    end 
                else imped3= -1; 
                    otherImpedValue= impedValue3; 
                    if impedValue4==impedValue1 
                        imped4= 1; 
                    elseif impedValue4==impedValue3 
                        imped4= -1; 
                    else error('Cannot have 3 different impedance values in one elementary grid square'); 
                    end 
                end 
            else imped2= -1; 
                otherImpedValue= impedValue2; 
                if impedValue3==impedValue1 
                    imped3= 1; 
                    if impedValue4==impedValue3 
                        imped4= 1; 
                    elseif impedValue4==impedValue2 
                        imped4= -1; 
                    else error('Cannot have 3 different impedance values in one elementary grid square'); 
                    end 
                elseif impedValue3==impedValue2 
                    imped3= -1; 
                    if impedValue4==impedValue1 
                        imped4= 1; 
                    elseif impedValue4==impedValue2 
                        imped4= -1; 
                    else error('Cannot have 3 different impedance values in one elementary grid square'); 
                    end 
                else error('Cannot have 3 different impedance values in one elementary grid square'); 
                end 
            end 
 
            if (1-t)*(1-u)*imped1+t*(1-u)*imped2+t*u*imped3+(1-t)*u*imped4>0 
                polarImpedance{thistheta}(thisrho)= impedValue1; 
            else polarImpedance{thistheta}(thisrho)= otherImpedValue; 
            end 
 
        end 
    end 
 
    impedIndexes= find([0 diff(polarImpedance{thistheta})]); %find the impedance transition points along the current 
azimuthal angle run 
    thislengthefr= (impedIndexes-1)*deltar; %find the impedance transition point ranges for the current azimuthal 
angle run 
    if length(thislengthefr)>2 
        error('Impedance grid can have a maximum of 2 impedance discontinuities for each radial run from any source 
point'); 
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    end 
    impedancesAtThetas(thistheta,1)= length(thislengthefr)+1; %set the number of impedance transitions 
    if impedancesAtThetas(thistheta,1)==1 
        ZorEFR(thistheta,1:3)= [polarImpedance{thistheta}(1) NaN(1,2)]; %set the impedance parameter values 
        lengthefrAtThetas(thistheta,1:2)= NaN(1,2); %set the impedance transition point ranges 
    elseif impedancesAtThetas(thistheta,1)==2 
        ZorEFR(thistheta,1:3)= [polarImpedance{thistheta}(1) polarImpedance{thistheta}(impedIndexes(1)) 
NaN(1,1)]; 
        lengthefrAtThetas(thistheta,1:2)= [thislengthefr(1) NaN(1,1)]; 
    else ZorEFR(thistheta,1:3)= [polarImpedance{thistheta}(1) polarImpedance{thistheta}(impedIndexes(1)) 
polarImpedance{thistheta}(impedIndexes(2))]; 
        lengthefrAtThetas(thistheta,1:2)= thislengthefr; 
    end 
    if strcmp(inputZorEFR,'EFR') %if the impedance parameter used is the effective flow resistivity 
 
        [ZAtThetas(thistheta,1:3)]= DandB(freq,ZorEFR(thistheta,1:3)); %calculate and set the impedance value 
 
        elseif strcmp(inputZorEFR,'Z') 
            ZAtThetas(thistheta,1:3)= ZorEFR(thistheta,1:3); %set the impedance values 
 
        else error('Please enter either ''Z'' or ''EFR'' for ''Input_Z_or_EFR:'' input category') 
 
    end 
 
end 

 

Plot terrain and impedance features 
Following matrices are only created for the purpose of plotting in order to compare the 
polar coordinate system terrain profile with the given rectangular coordinate system 
terrain profile.  They reseparate the different theta value vectors into separate rows in a 
matrix. 
 

largestRange= max(rangesAtThetas); 
xPlotVals= zeros(runN,largestRange/deltar); 
yPlotVals= zeros(runN,largestRange/deltar); 
HPlotVals= zeros(runN,largestRange/deltar); 
ImpedPlotVals= zeros(runN,largestRange/deltar); 
 
for thistheta= 1:runN 
 
    xPlotVals(thistheta,1:ceil(rangesAtThetas(thistheta)/deltar))= xRangeValsArray{thistheta}(1:end-1); %minus 
one because propagating to 1 step less than the range 
    yPlotVals(thistheta,1:ceil(rangesAtThetas(thistheta)/deltar))= yRangeValsArray{thistheta}(1:end-1); %%minus 
one because propagating to 1 step less than the range 
    HPlotVals(thistheta,1:ceil(rangesAtThetas(thistheta)/deltar))= polarTerrain{thistheta}; 
    ImpedPlotVals(thistheta,1:ceil(rangesAtThetas(thistheta)/deltar))= polarImpedance{thistheta}; 
 
end 
 
% Surface plots to compare the given rectangular terrain profile with the calculated 
% polar terrain profile 
figure(3); surfc(xPlotVals+xflightPositions,yPlotVals+yflightPositions,HPlotVals) 
 
xlabel('range [m]') 
ylabel('range [m]') 
title('Terrain') 
xlim([xminTerrain+30,xmaxTerrain-30]);ylim([yminTerrain+30,ymaxTerrain-30]) 
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validPEmat Function 

This function returns a grid whose components equal 0 where the PE model is invalid 

(outside a certain angle given in degrees from a source) and 1 where the PE model is 

valid (inside the angle) 

 

Inputs: 

 

• sourceHeight - z-coordinate of the current source point along the flight path 

• deg - elevation angle limit used for PE 

• deltarPlot - range step to be saved for plotting purposes 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• range - range for model to progagate to 

• height - grid height (not including PE absorbing layer) 

 

Function Process and Outputs: 

 

1. Determine the range indices at which the PE starts being valid for each height 

point in the grid 

2. Set the matrix element equal to 1 for all points that fall at or after the first valid 

point in range for each height 

 

*Start Code Description:* ........................................................................................... 1 

Determine the range indices at which the PE starts being valid for each height point in 

the grid........................................................................................................................ 1 

Set the matrix element equal to 1 for all points that fall at or after the first valid point in 

range for each height................................................................................................... 1 

 

*Start Code Description:* 
function [vPE]= validPEmat(sourceHeight,deg,deltarPlot,deltaz,range,height) 

 

rN= floor(range/deltarPlot+1); 

zN= round(height/deltaz+1); 

 

Determine the range indices at which the PE starts being valid 
for each height point in the grid 

index= ceil(abs(sourceHeight-[0:deltaz:height])/(deltarPlot*tan(deg*pi/180)))+1; 

 

vPE= zeros(zN,rN); 

 

Set the matrix element equal to 1 for all points that fall at or after 
the first valid point in range for each height 

%These points, set to 1, are all within the valid elevation angle range 
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for m= 1:zN 

    vPE(m,index(m):rN)= ones(1,rN-index(m)+1); 

end 
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vonKarTurb Function 

This function is called to return the refractive-index fluctuations mu, for a von Karman 

spectrum, in a matrix spanning the range and height of the vertical grid. 

 

Inputs: 

 

• deltar - horizontal grid spacing used in the PE propagation model, dependent on 

frequency.  Also constrained to be a divisor of number chosen in 

'MultiFreqQuickerRev.m' 

• range - range for model to progagate to 

• rN - number of range points in grid for PE 

• deltaz - vertical grid spacing used in the PE and FFP propagation models.  

Constrained to be a divisor of the receiverHeight so that the receiverHeight will 

fall exactly at a vertical grid point 

• zN - number of height points in grid for PE (includes absorbing layer) 

• A - turbulence constant 

• K0 - turbulence constant related to the size of L of the largest eddies (as 2*pi/L) 

• CTovT0 - structure parameter of the temperature fluctuations, over T0^2 

(CT^2/T0^2) 

• Cvovc0 - structure parameter of the wind velocity fluctuations over c0^2 

(Cv^2/c0^2) 

 

Function Process and Outputs: 

 

1. Define necessary parameters (number of modes, wave number spacing, etc.) 

2. Define the random polar (thetan) and phase (alphan) angles and calculate the 

wave number components 

3. Calculate the refractive-index fluctuations matrix mu based on the von Karman 

spectrum 

 

*Start Code Description:* ........................................................................................... 1 

Define necessary parameters ....................................................................................... 2 

Define the random polar (thetan) and phase (alphan) angles........................................ 2 

Calculate the wave number components...................................................................... 2 

Calculate the von Karman spectrum............................................................................ 2 

Initialize the refractive-index fluctuations matrix ........................................................ 2 

Calculate the refractive-index fluctuations matrix mu.................................................. 2 

 

*Start Code Description:* 
function [mu]= vonKarTurb(deltar,range,rN,deltaz,zN,A,K0,CTovT0,Cvovc0) 
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Define necessary parameters 

As specified in E. M. Salomons "Computational Atmospheric Acoustics," (2001), 

Appendix J 

 
N= 100; %number of modes, p.227, Salomons 

deltak= .1; %wave number spacing, p.277 Salomons, [m^-1] 

kn= [1:N]*deltak; 

r= [0:deltar:range+deltar]; 

 

Define the random polar (thetan) and phase (alphan) angles 
thetan= rand(1,N)*2*pi; %random angle between 0 and 2*pi 

alphan= rand(1,N)*2*pi; %random angle between 0 and 2*pi 

 

Calculate the wave number components 
knr= kn.*cos(thetan); 

knz= kn.*sin(thetan); 

 

Calculate the von Karman spectrum 
F= (A./(kn.^2+K0^2).^(8/6)).*((gamma(.5)*gamma(8/6)/gamma(11/6))*(CTovT0/4)... 

    

+((gamma(3/2)*gamma(8/6)/gamma(17/6))+((knz.^2./(kn.^2+K0^2))*(gamma(.5)*gamma(14/6)/gamma(17/6))))*(

22*Cvovc0/12)); 

 

G= sqrt(4*pi*deltak.*F.*kn); 

 

Initialize the refractive-index fluctuations matrix 
mu= zeros(zN,rN+1); %rN+1 so that the last mu can be calculated, though not used (makes code easier) 

 

Calculate the refractive-index fluctuations matrix mu 
for k= 1:rN+1 

    costermLast= exp(i*knr*r(k)+i*alphan); 

    for l= 1:zN 

        costermLast= costermLast.*exp(i*knz*deltaz); 

        mu(l,k)= sum(G.*real(costermLast)); 

    end 

end 

 

 



Appendix F
Benchmarking the PE and FFP

Models

F.1 Introduction

Extensive verification of the PE and FFP models was performed to confirm that

the methods were coded correctly. This appendix includes the comparison of the

PE and FFP model results to the published benchmark cases in reference [7]. It

also includes a benchmarking of the included turbulence effect in the PE method

with a comparison to results in reference [1]. Good agreement is found for all

conditions.

F.2 Comparisons for the PE and FFP Under Dif-

ferent Sound Speed Profile Conditions

The benchmark cases from reference [7] explore four different atmospheric con-

ditions. Case 1 uses a homogeneous atmosphere, Case 2 includes a linear sound

speed profile with a constant gradient of 0.1 s−1, Case 3 includes a linear sound

speed profile with a constant gradient of -0.1 s−1, and Case 4 includes a ducting

sound speed profile with a linear sound speed profile with a gradient of 0.1 s−1

from the ground to 100 m height, a gradient of -0.1 s−1 from 100 m height to

300 m height, and a constant sound speed from 300 m height to infinite height
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[7]. The reader is directed to the paper for a complete description of all the input

conditions. Comparison with the PE results is presented first, followed by FFP

comparisons, for all four cases. Three different frequencies—10 Hz, 100 Hz, and

1000 Hz—are run for each case. Figures in the first column show results for ranges

between 0 m and 200 m, and figures in the second column show results out to 10

km range. Results produced by the PE and FFP models coded for this research

match the results of reference [7] closely for the three different frequencies in the

four different atmospheric conditions.
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Figure F.1. Comparison of the PE module with benchmark cases from reference [7] for
Case 1, a homogeneous atmosphere. The PE results of this research, shown in green, are
overlaid on reference [7] results, reproduced with permission. Much of the time the lines
are indistinguishable.
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Figure F.2. Comparison of the PE module with benchmark cases from reference [7]
for Case 2, a downward refracting atmosphere. The PE results of this research, shown
in green, are overlaid on reference [7] results, reproduced with permission. Much of the
time the lines are indistinguishable.
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Figure F.3. Comparison of the PE module with benchmark cases from reference [7]
for Case 3, an upward refracting atmosphere. The PE results of this research, shown
in green, are overlaid on reference [7] results, reproduced with permission. Much of the
time the lines are indistinguishable.
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Figure F.4. Comparison of the PE module with benchmark cases from reference [7]
for Case 4, a ducting atmosphere. The PE results of this research, shown in green, are
overlaid on reference [7] results, reproduced with permission. Much of the time the lines
are indistinguishable.
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Figure F.5. Comparison of the FFP module with benchmark cases from reference [7]
for Case 1, a homogeneous atmosphere. The FFP results of this research, shown in green
or red, are overlaid on reference [7] results, reproduced with permission. Much of the
time the lines are indistinguishable.



275

T
ra

n
sm

is
si

on
L

os
s

[d
B

]

Range [m]

Figure F.6. Comparison of the FFP module with benchmark cases from reference [7]
for Case 2, a downward refracting atmosphere. The FFP results of this research, shown
in red, are overlaid on reference [7] results, reproduced with permission. Much of the
time the lines are indistinguishable.
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Figure F.7. Comparison of the FFP module with benchmark cases from reference [7]
for Case 3, an upward refracting atmosphere. The FFP results of this research, shown
in red, are overlaid on reference [7] results, reproduced with permission. Much of the
time the lines are indistinguishable.



277

T
ra

n
sm

is
si

on
L

os
s

[d
B

]

Range [m]

Figure F.8. Comparison of the FFP module with benchmark cases from reference [7]
for Case 4, a ducting atmosphere. The FFP results of this research, shown in red, are
overlaid on reference [7] results, reproduced with permission. Much of the time the lines
are indistinguishable.
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F.3 Comparison of PE Under Turbulent Condi-

tions

In this section a comparison is made between results presented in reference [1] and

results calculated by the PE model coded for this research including the effects of

atmospheric turbulence. The von Kármán spectrum parameters used to represent

the turbulence are K−1
0 = 10 m, C2

T/T
2
0 = 2.5 × 10−7 m−2/3, and C2

v/c
2
0 = 1 ×

10−6 m−2/3. A source height of 2 m, receiver height of 2 m, frequency of 500 Hz,

and logarithmic sound speed parameter of b= -1 m/s were used for propagation

over a rigid ground for 50 realizations of turbulence.

The rise in sound level at larger ranges due to scattering from turbulence into

the shadow zone is quite similar between the two sets of results, indicating that

turbulence is included correctly in the PE model coded for this research.

a. b.

Figure F.9. Comparison of PE results of sound pressure level relative to a source in
the free field including the effects of turbulence from reference [1] and the PE model
used in this research. Source height = 2 m, receiver height = 2 m, frequency = 500
Hz, b = -1 m/s, rigid ground. Average over 50 realizations of turbulence, K−1

0 = 10 m,
C2
T /T

2
0 = 2.5 × 10−7 m−2/3, and C2

v/c
2
0 = 1 × 10−6 m−2/3 (a) Results after reference [1]

Figure 5.7. (b) Results of coded PE model used in this research.
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