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Abstract
Unmanned aerial vehicles have become increasingly prevalent in a multitude of industries
across the globe. However, many challenges prevent their wide adoption, specifically
their limited flight time. In order to alleviate this problem, previous work done by Habas
et al implemented an inverted landing strategy using bio-inspired visual cues that were
calculated with external positioning. This thesis extends the previous work by estimating
these visual cues on-board the micro unmanned aerial vehicle. Additionally, the limits
of the developed on-board visual cue estimation algorithm are explored in regards to
ceiling pattern, frame rate, and computational load. Once the visual cue algorithm was
explored, it was run through the same reinforcement learning algorithm from Habas et
al to determine the landing robustness.

In nature inverted landing maneuvers are observed in several organisms such as flies,
bees, and bats. In this thesis, the maneuvers observed in blue bottle flies are used
as inspiration to achieve the inverted landings for a small quad-copter. In order to
implement the inverted landing strategy, two biological cues are used, time to contact
and optical flow. Specifically, for the blue bottle fly, time to contact determines when
the flip maneuver should initiate, while optical flow helps with the final landing phase.
To emulate these biological cues the Horn and Schunck method is employed to segment
image data from an onboard camera. The major contribution of this work is to explore
the main variables that introduce error due to the onboard noisy sensors and how they
affect landing performance. In order to explore these variables the algorithm testing and
the landing policy learning were conducted in a physics-based simulation. Future work
will then be done in order to experimentally determine the landing robustness of the
implemented algorithm.
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Chapter 1 |
Background and Motivation

1.1 Practical Aerial Vehicle Applications
Unmanned Aerial Vehicles (UAV), have started to make a substantial impact on both the
consumer and industrial markets. In 2021, the global consumer UAV market was valued
at $6.51 billion, with a projected growth of up to $47 billion by 2029 [6]. The consumer
market typically uses UAV systems for purposes such as drone racing or photography.
While businesses use UAV systems for shipping goods [7], inspecting crops [8], as well as
navigating and mapping mines [9]. UAVs are even being used for search and rescue [10],
as well as other humanitarian tasks like delivering vaccines or medical aid [11]. Hence,
UAVs, such as quadrotor robots, have become multifaceted devices used in a many
different situations due to a multitude of factors, such as their high maneuverability as
well as ease of both autonomous and user capabilities.

Autonomous UAV systems are useful in removing workers from potentially hazardous
conditions. From the years, 2003-2008 delivery workers have accounted for 17% of all
workplace fatalities [12]. The reason a significant amount of the fatalities come from the
delivery industry is because workers are generally worked long hours with monotonous
work, notably delivery and truck drivers. One way UAVs have been seen as a solution to
this problem is by aiding delivery workers with the final part of a package’s journey, also
known as last mile deliveries. Although their wide adoption has not been implemented,
companies like Amazon, Google, UPS, and DHS have been researching UAVs for last mile
deliveries since 2005 [13]. Their aim is to reduce the most expensive part of a package’s
journey, increase efficiency, but also decrease the environmental impact, with preliminary
results showing great promise [14] [15] [16].

However, UAV technology can be potentially used more extensively, notably by
integrating multiple solutions within one platform. One such example is Precision
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Agriculture, which is a new method of managing crops by increasing the amount of
information available to those responsible so the farmers can act intelligently rather
than broadly. This increases not only the farmer’s productivity but also output, while
decreasing user input [17]. Not only does this help reduce waste and the use of harmful
chemicals, it also removes workers from contact with these potentially hazardous chemicals.
Furthermore, if less pesticides are used the resulting environmental impact on the
surrounding water, soil, and other organisms in the ecosystem will be reduced [18].

Although these technologies have great potential for large scale applications, the
high level of automation and upfront costs can be daunting due to the steep learning
curve associated with advanced hardware and software implementations. Thus, leading
to a niche group adopting the extremely specific hardware that is developed. However,
UAV systems do not need to solve the entirety of the problem, their aid can come
from decreasing the amount of effort required for certain tasks, most notably, surveying,
wildlife management, and relief and rescue operations. UAVs excel at aiding users with
collecting vast amounts information thanks to the help of powerful consumer technology
and sensors being readily available to users. Coupled with the ease of user control for
consumer products the barrier to entry can be significantly reduced.

In all of these various applications UAVs share one thing in common: they have
onboard sensors, most commonly a camera. Cameras allow users to rapidly log large
quantities of data and quickly relay it to the user. Wherein, the users can utilize it for
their specific needs. Whether it is for simply recording video, or using specialized camera
equipment to plan, sense, or gather data, cameras are essential tools for UAVs. Because
of this, the following work will utilize a camera sensor, which is commonly on many UAV
platforms.

1.2 Micro Aerial Vehicles: Limitations and Challenges
Even though UAV technology has vast applications and shows great promise, it still
suffers several limitations. Most notably, the trade-offs required to make an engineered
system capable of flight ultimately lead to UAVs that are under-actuated with limited
computational capabilities and short flight times. An under-actuated system is one in
which the movement in various Degrees of Freedom (DoF) are coupled together such that
the system cannot move in all 6 DoF independently. Thus, these coupled actions result
in systems that utilize more energy to change states compared to fully actuated ones. In
comparison fully actuated flying systems outperform engineered under-actuated flight
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by a significant margin. For example, bats, which are fully actuated, can complete 180°
turns all while maintaining their original forward velocity, while not even moving as far as
their own wingspan [19]. While newer UAV systems are actively trying to combat this by
adding more actuators this lends to even more pressure on the computational abilities of
the hardware, which as previously mentioned is limited due to the miniaturization of the
onboard components. Although computers have been advancing their computing power
and reducing their size at extraordinary rates the complex problems flight controllers
and other hardware have to synthesize and solve, like trajectory generation, remain
extremely difficult [20]. Therefore, adding even more actuators, and further complicating
the dynamics of the system, means more expensive hardware is required. In an effort to
solve these problems some systems have to rely on external sensors and ground stations
in order to collect and compute desired information because onboard systems are not
sufficiently powerful. Even if it is possible to get a powerful computer airborne powering
the system for long periods of time remains one of the biggest challenges. The problem
of powering UAVs is complicated further the smaller the system becomes due to the
smaller Reynolds number, which reduces the flight time, due to increased viscous effects.
Further, due to the aerodynamics and miniaturization of the motors, the flight velocity
also decreases the smaller the system becomes, lowering the Reynolds number even
more [21]. Ultimately, the combination of these drawbacks leads to most smaller systems
with a flight time of around thirty minutes and under. As shown in Figure 1.1 the energy
required to move a specific velocity for smaller systems is significantly lower than larger
systems. Additionally, batteries, which are commonly used power sources for UAVs, also
suffer when scaled down in size. Even though battery technology has been advancing at
an ever increasing rate their energy density still pails in comparison to typical fuels other
engineered flying systems use. For example, typical aircraft fuels are nearly 80 times
more energy dense than the average battery [22].

1.3 Solutions for Alleviating Limited Battery Life
Resolving the limited battery life is one of the major issues many researchers are
attempting to solve. Extensive studies done to increase the operating time of UAVs
for various shipping tasks do not consider how much power onboard sensors use [1].
Therefore, stationary collection of information while the system is perched will greatly
increase the operating time of the system. The reason onboard sensors are not included
in the models used to predict flight time is due to the fact that motors utilize orders of
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Figure 1.1. An example comparing the amount of energy UAVs have to use in order to move
at a certain velocity determined by different flight models [1]

magnitude more power than onboard sensors, regardless of what UAV platform is used.
Thus, in order to increase the operating time of UAVs, its imperative to decrease the
amount of time the motors are in use. However, this is where the challenge lies, how can
a drone not use the only component that keeps it in the air?

To begin to solve this problem understanding what exactly a UAV encompasses is
needed. UAVs do not have a standard definition due to the multitude of factors that they
can be classified by; from operational weight, to number of motors, and body design,
UAV is a catch-all for a multitude of UAV designs. Therefore, some of these systems rely
on more intelligence put into the frame design that aids with extending battery life, for
example, fixed wing hybrid UAVs. However, fixed wing hybrid UAVs come at the cost
of maneuverability which is the advantage other UAV platforms rely on, including this
study. For this thesis the dynamics of the system is modeled after the Bitcraze Crazyflie
2.1 Micro UAV (MAV) system, which is a quad-copter design as seen in Figure 1.2. The
reason this platform was chosen was for its maneuverability as well as its ease of control
and low level programming of the hardware due to its open source nature. The current
battery life of the Crazyflie drone is about 10 minutes which is not nearly long enough if,
for example, this drone was being used for surveying purposes.

The way many have tried to alleviate the constrained battery life of UAVs is by taking
inspiration from biology. In engineering there are countless examples of every day items
being inspired from something observed from nature, from VELCRO™ all the way to
wing design. After all, why wouldn’t designers try to copy from nature; biology has had
millions of years of survival pressure to adapt these creatures to be able to solve highly
dynamic and niche problems in extremely robust and efficient manners. This thesis
aims to investigate landing strategies that will allow the drone to extend its lifetime
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Figure 1.2. The Crazyflie 2.1 with AI Deck attached.

by decreasing the amount of time spent powering the motors. More specifically, our
inspiration for this task comes from nature’s robust ability to perch. Biological flyers
like flies have been observed rapidly determining not only where but how to land in a
multitude of complex environments [2] [23]. Which in comparison to the vasts amounts
of highly advanced sensors and controllers engineers have designed they still struggle to
solve this feat as efficiently and elegantly as nature. Achieving these perching strategies
with also only around 100,000 neurons which pails in comparison to billions of transistors
on a typical programmable logic controller. Ultimately leading researchers are attempting
to copy them.

1.4 Biological Inspirations
Specifically in this thesis the inverted landing strategy observed in blue bottle flies is of
interest for bio-inspiration. When it comes to biological flyers the same exact motivation
they have for landing is mirrored by several tasks drones routinely do. Whether it is
simply to rest or to gather more information from the surrounding area, the parallels are
apparent. If nature does not fly constantly why should our attempts at copying them be
any different. Doing so not only increases the amount of time the UAV can take in data
but it also allows for stationary collection of data, opening the door for closer and more
advanced sensors to be used. Furthermore, it allows the ability for drones to potentially
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dock and charge on specific charging locations, which will expand the drone’s operational
limits tremendously. However, simply trying to copy from nature is merely a starting
point. In order to do so one must first understand how nature completes these amazing
feats.

1.4.1 Tau Theory

Reacting to thrown objects, whether to dodge or catch them, is a trait most are familiar
with, and research has discovered that the ability to quickly respond and determine the
appropriate reaction may come from unconscious processing [24]. Research has observed
that in order to react to an object organisms of all kinds visually or audibly observe
objects of interest and determine a specific value of Time to Contact (TTC or τ), also
known as Tau, in order to couple an appropriate response to the stimulus [25]. This area
of research is known as Tau theory and its role serves as a powerful shortcut organisms
use to solve problems that arise in complex dynamic environments. The findings from
Tau theory enable organisms to solve problems by measuring one value, referred to as
Tau, as opposed to several spatial and temporal derivatives that classic kinematics uses
to solve these problems. Thankfully, research from the collaboration of biologists and
engineers has become a popular interest due to nature’s robust ability to solve difficult
problems with limited sensing and computational capabilities. Thus, allowing engineers
to apply and advance systems using the elegant solutions nature has evolved to perch.

When biological flyers approach a perching target they utilize two main visual cues,
Time to Contact and Optical Flow (OF). TTC is simply the time remaining before
anticipated contact with the target, assuming constant velocity. While optical flow relates
translational movement with respect to another object. The way these triggers are used
depends on the specific animal and behaviour. However in general, depending on the type
of landing that is initiated, these values are used by the animal to trigger the appropriate
physical response in order to ensure a successful landing. For example, pigeons maintain
a constant rate of change in TTC in order to ensure that they do not over or undershoot
their perching target [26]. This strategy ensures robust landing performance by being
able approximate the dynamics of landing as opposed to somehow determining not only
the distance but also their velocity with respect to the perching target.

Another example can be observed in blue bottle flies, which are smaller in size
than bats, yet are still able to complete impressive aerial maneuvers all in a fraction
of a second. Their ability arises from utilizing a certain threshold of Relative Retinal
Expansion Velocity (RREV), which is simply the inverse of TTC, in order to determine
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when to flip. As well as relying on mechanical intelligence that is observed in their
landing gear. An example of which can be seen in Figure 1.3. Thus, leading to where we
are getting our inspiration from biology, the inverted landing techniques observed in blue
bottle flies [2].

Figure 1.3. Inverted landing strategy of Blue Bottle flies as observed in [2]

1.4.2 Bio-inspired Landing Strategies

Several research teams have taken the angle of bio-mimicry in attempts to increase the
performance of UAVs. Many of their efforts are focused on the mechanical intelligence
that arises from perching animals. Mellinger et al have created a powerful gripping
mechanism for robust perching of drones [27]. While MIT has developed an algorithm
that detects power lines in order to perch and harvest energy [28]. The University of
Utah has designed a passive gripping mechanism that can grab onto curved surfaces [29].
However, few have applied the sensing intelligence that nature has evolved. Souhila et al
achieved obstacle avoidance utilizing optical flow [30]. While McCarthy et al developed a
strategy that utilizes TTC estimates coupled with tracking the Focus of Expansion (FOE)
of an image sequence to dock mobile robots [31]. Lastly, Mellinger et al have developed
a robust strategy that has been shown to land on various surfaces [32]. However, these
systems either do not respond fast enough for practical drone applications or rely on
external positioning. Which is where this work intends to both increase the efficiency
of the algorithms that enable robust landing strategies, while removing the reliance of
external systems.
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1.5 Goals and Objectives
This thesis is an extension of Habas et al, where they developed an EM-based Policy Hyper
Parameter Exploration (EPHE) Reinforcement Learning (RL) algorithm which learned
numerous landing control policies in both simulation and experimentally [3]. However,
the successful inverted landing strategy was implemented with external positioning.
Although, the RL algorithm was fed optical data in a fashion that specifically allowed
for future implementation of on-board sensor data to be used in place of the external
positioning information.

The same exact landing strategy will be employed in the following work however the
objective of this work is to remove all external positioning. For this purpose, specific
image processing techniques will utilize an onboard camera in order to use successive
image sequences to calculate the visual cues that are fed into the RL algorithm. The
specific desired outcomes are to determine the acceptable limits of error that arise from
the hardware limitations being modeled. As with many electromechanical systems many
of the challenges lie with the difficulties that come from utilizing digital sensors. Therefore,
the first three experiments will focus on exploring the limitations of the image processing
technique utilized. Specifically, it will be determined what ceiling pattern can be used
to garner accurate estimations, the effects of variance in frame rate, and the effects of
varying percent of image data used in the calculations. The last experiment will analyze
how these three variables affect the RL algorithm previously developed by Habas et al.
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Chapter 2 |
Methods

2.1 Optical Flow Estimation Techniques
While understanding how nature solves the complex problem of perching, the engineering
challenge is determining how to mimic or translate these strategies considering the
difference in design and hardware. First and foremost discerning the egomotion, which is
defined as the three dimensional movement of a camera within an environment, has been
of interest to researchers since digital cameras have become widely available. Determining
egomotion is useful for numerous tasks like image stabilization and visual odometry, the
latter of which is an essential tool for UAVs. Visual odometry is essential for standalone
UAV systems because traditional methods for determining position like wheel encoders
do not apply to flying systems. The goal of visual odometry is to analyze image data to
determine the position and or attitude of the camera. Specifically, we are interested in
the broad form of egomotion, as shown in previous work from Habas et al, by leveraging
minimal visual observables it is possible to formulate a robust landing strategy [3]. Of
these visual cues two are of interest, TTC and OF , with their mathematical equivalents
defined below.

TTC, τ = dceiling

Vz

(2.1)

OFy = −Vx

dceiling

(2.2)

Originally, we explored RREV in lieu of time to contact, this is because, from a
biological perspective animals are not extracting position and velocity information from
visual data per se. Instead, animals are determining how fast an object expands in their
field of view. Therefore, while RREV is mathematically equivalent to the inverse of
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TTC, it is a more visually intuitive idea in reference to visual information. While RREV

and TTC are mathematically equivalent to the inverse of the other, RREV arises from
the analysis of visual information as opposed to TTC, which encodes specific state data
that is of interest; specifically the upward velocity and distance to the ceiling as seen
in Figure 2.1. Alternatively, RREV can be thought of as a biological estimation, while
TTC is a kinematic description of the system. Further, TTC or τ , is more extensively
used throughout literature, thus more studies have been done with respect to Tau Theory.
In total, while these variables are different yet related, RREV may be referenced in place
of TTC.

Figure 2.1. RREV and Optical Flow with respect to the quad-rotor’s coordinates frame [3].

In literature there exist many methods to determine both TTC and OF, such as
derivative methods, energy methods, and phase based methods [33], while only a few are
used for visual odometry. The reason only a few of these methods are used for visual
odemetry arises from the difficulty of utilizing visual information in order to determine
specific visual cues. Particularly, monocular cameras remove the ability to directly extract
depth information without utilizing other assumptions and or information from other
sensors. Extracting all three dimensions and the corresponding motion in each is known
as the aperture problem and is at the forefront of computer vision research, an example
of which can be seen in Figure 2.2.
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Figure 2.2. An example of the aperture problem. No matter which way the solid line moves
in frame it appears to move diagonally because the edges of the object are required discern
the object’s motion. Another example of which can be seen in barbershop poles, while only
rotating the lines appear to translate down.

However, both nature and engineering have a solution for this in the form of stereo
vision an example of which is seen in 2.3. The ability to extract depth information is
something humans are very familiar with and generally take for granted how accurately
they can predict the distance of objects. While engineering has borrowed this template in
order to mimic stereopsis and calculate the visual cues we are after, they are generally too
large to fit on MAVs, such as our system. Due to the drawbacks associated with depth
sensing cameras, like the need for more computing power, and periodic calibration, in
order to extract depth information accurately the following study will not be implementing
this technology; ultimately leaving us with monocular camera estimation.

Figure 2.3. How binocular disparity is used in humans to determine depth. The difference in
where the different points (A,B,F) land on the retina can be used to infer how far the object
is [4].

Within the scope of monocular visual odometry there lies three popular options, feature
based estimation, direct (featureless) methods, or phase based methods [34] [35] [36].
Phase based methods rely on frequency domain representation of the image data which
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is generally computed using Fast Fourier Transforms (FFT). While these methods are
robust with respect to noise, they fall short on accuracy when simpler models are applied
and generally rely on nonlinear optimization techniques in order to gather accurate
data [37]. Further, because these methods rely on FFT algorithms as well as nonlinear
optimizations, this study will not consider their applications due to the direction of
future work. We know that the hardware we plan on using does not perform floating
point operations quickly, meaning this will drastically reduce the performance of these
methods.

Feature based methods rely on simplifying the problem of determining TTC by
tracking the change in size of specific objects in frame. If S is the size of an object in
frame then TTC can be determined by tracking the change of it’s apparent size: τ = S/Ṡ.
However, the accuracy of these methods now relies on the ability to accurately track
specific points in the image sequence, introducing a new problem; determining where
feature points are and how these feature points move with respect to the camera. In
order for this method to be effective it relies on precise feature point tracking algorithms
which work well on powerful computers but struggle with lightweight implementations,
especially with real image data [38]. While these segmenting and tracking algorithms
are constantly improving they generally introduce specific constraints on the tracking
points which makes highly dynamic systems, like UAVs, a bad candidate for feature
based tracking.

Lastly, featureless estimation relies on the change in pixel intensity over time in order
to determine TTC and OF. This is done by assuming a global smoothness constraint
which allows it to solve the original ill posed aperture problem. These methods are
more prone to sensitivity in noise due to the discrete nature in which the derivatives
are calculated. They also struggle with scale factor ambiguity, meaning that if there are
two objects in frame and one is twice the size and twice as far as the other they will
appear to change the exact same amount as the camera moves. However, their strength
comes from the ability to determine accurate measurements under specific conditions
with lightweight implementations.

2.1.1 Selection of Optical Flow Method

In total the problem we are trying to solve boils down to balancing two conflicting
trade offs. On one hand we observe creatures with extremely limited sensing capabilities
completing acrobatic feats that still trump what we see in engineered flight methods. On
the other, we have computational methods that exist to calculate the motion primitives
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that can be used to replicate nature’s robust ability to perch. However, they are
generally computationally complex thus requiring simplifications that generally lead to
unsatisfactory precision. Deciding what method to use complicates the problem further
because research is either focused on accuracy of the methods or the efficiency of the
methods, generally not considering both simultaneously. While there are several metrics
that these methods are measured by, it is difficult to translate these findings to different
hardware setups. Therefore, in absence of many benchmarks comparing both lightweight
implementations as well as real time calculation on mobile robots we narrowed the wide
selection of choices down by comparing two popular hardware implementations of optical
flow estimation algorithms, the Lucas-Kanade (L-K) and Horn-Schunck (H-S) methods.

The Lucas-Kanade method is a feature based tracking method, while Horn-Schunck
is a featureless method. The L-K method relies on the assumption that within a specific
window in the image, generally the center but it can be over the whole image, the
displacement of these feature points remains small. This assumption allows for a small
amount of optimization in the algorithm, if the tracked points do not move much between
frames then the computationally expensive feature tracking algorithm does not need to
run as frequently, an example of which can be seen in Figure 2.4. However, as previously
stated because of the highly dynamic nature of UAVs these assumptions are generally not
met. Meaning that the edge detection algorithm must run more frequently, which not
only leads to more computations but it also increases the variation in time to calculate.
Thus, exacerbating the downsides this method has of not performing well in dynamic
settings.

Figure 2.4. An example of the LK algorithm running on a video sequence of a checkerboard
translating to the right.

In comparison, the Horn-Schunck method relies on the assumption that the image
sequence varies smoothly. In this sense, it seems that the H-S method would suffer the
same drawbacks of the L-K method in not being able to handle highly dynamic scenarios,
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but this is not the case. The reason being, UAV’s typically follow smooth trajectories,
which in turn smoothly translates the camera through the environment. Because quad-
copters mostly accelerate smoothly this leads to image sequences that generally satisfy
the requirements of the HS method. Finally, when comparing both methods on the same
hardware setup then the conclusion becomes apparent which method is more applicable
to MAV systems. In an experiment done by Zhang et al, a mobile robot equipped with
a Raspberry Pi and camera is translated towards a wall in order to capture the image
sequence of a typical docking scenario [5]. The image sequence is then processed using
both the L-K and H-S methods and the comparison of each can be seen in Figure 2.5.
Furthermore, they also show that when running these image processing methods on the
image sequence the H-S method is also almost four times faster, while having less error.
Thus, following these results we then implemented the Horn-Schunck method to calculate
TTC and OF on board the MAV with a monocular camera.

Figure 2.5. Comparison between LK (Orange) and HS (Blue) for estimation of TTC [5].

2.1.2 Algorithm Derivation

In order to fully understand the derivation of the Horn and Schunck method we first
mathematically describe the aperture problem, then in order to explain how the visual
cues will be calculated the derivation will follow the work of Horn et al [35]. In order to
extract information from image sequences the coordinates of the pixels must be explored.
For example, take an image with respect to a stationary surface with point P on it at
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time t. Then if the camera translates, point P is expected to have moved by ∆u,∆v,
and ∆t, where up and vp denote the pixel coordinates in units of pixels with the origin
being in the Center of the Projection (COP) and I denotes the intensity of the pixel
at a certain location. The equation describing which can be seen in 2.3, is known as
the brightness constancy constraint, which assumes that between the two images the
brightness of the objects, and therefore pixels, remains the same. Which when generalized
for all pixels within the image coordinate frame can be expressed with a first order Taylor
series expansion as Equation 2.4. Then by dividing by ∆t and simplifying the final result
yields equation 2.5 which is the previously mentioned aperture problem, with ϑup and
ϑvp denoting the optical flow vectors in pixels per second. The aperture problem is ill
posed because it cannot be solved without another equation, which in the case of all
optical flow methods comes from some additional constraints.

IP (u, v, t) = I(up + ∆up, vp + ∆vp, t + ∆t) (2.3)

I(u + ∆u, v + ∆v, t + ∆t) = I(up, vp, t) + ∂I

∂up

∆up + ∂I

∂vp

∆vp + ∂I

∂t
∆t (2.4)

∂I

∂up

ϑup + ∂I

∂vp

ϑvp + ∂I

∂t
= 0 (2.5)

As mentioned above the H-S method solves the aperture problem by including a
global smoothness constraint. In order to show the implications of this constraint a
better picture of the previous example combined with the initial phase of the MAV’s
landing sequence can be seen in Figure 2.6. The previously described example of a
stationary point projected onto the image plane can be seen, where f is the focal length
of the camera lens in meters. Now consider a camera with both translational and angular
velocities (ω). If it is then assumed that the camera frame and corresponding COP
remain perpendicular to the ceiling plane equations 2.6 and 2.7 can be obtained. In
which ϑup and ϑvp denote the optical flow vectors in pixels per second in their respective
directions, and are identical to the OFx and OFy values used in the previous work [3].
While xc and Vc denotes the position and velocity of the camera and lastly, up and vp

are the pixel index of the m × n image. The limitations of this assumption will be
discussed later, but this allows the following derivation to be simplified greatly (for the
full derivation see [39] and explanation of why this assumption is made see [35]).
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Figure 2.6. Perspective projection model of a pinhole camera without distortions. With
Corresponding image visualized on the right.

ϑup = −f
Vcy

xc
+ up

Vcx

xc
+ ωcy

upvp

f
− ωcz

f2+u2
p

f
+ vpωcx (2.6)

ϑvp = −f
Vcy

xc
+ up

Vcx

xc
+ ωcy

upvp

f
− ωcz

f2+u2
p

f
+ vpωcx (2.7)

Depending on how the system moves towards the ceiling plane determines what
further simplifications can be applied to the above equations. In continuation of the
previous work by Habas et al, the typical landing sequence of the system approaches
the ceiling plane with different components of translational velocity (Vcx , Vcy , Vcz), while
minimizing rotational velocities (ωcx , ωcy , ωcz), before the flip maneuver occurs. Thus, we
will assume those same parameters to simplify and solve equations 2.6 and 2.7. Assuming
negligible rotational velocity and combining equations 2.6 and 2.7 with the brightness
constancy equation 2.3, while defining the radial gradient G in equation 2.8, we obtain a
equation 2.9 shown below. To simplify the equations ∑ is used in place of ∑m

up=1
∑n

vp=1.
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G = ( ∂I

∂up

up + ∂I

∂vp

vp) (2.8)

−∂I

∂t
= f

∂I

∂up

(ϑup) + f
∂I

∂vp

(ϑvp) + ( ∂I

∂up

up + ∂I

∂vp

vp)(1
τ

) (2.9)

∑
(∂I

∂t
+ f

∂I

∂up

vu + f
∂I

∂v
vu + G

τ
)2 (2.10)

Finally we can then use the least squares optimization method to minimize equation
2.10. Ultimately, giving the following system of equations seen in 2.11. This system of
equations contains brightness gradients in the spatial dimension on the left-hand side,
with temporal gradients on the right-hand side, all of which are then accumulated over
the range of the entire image.


f

∑ ∂I
∂up

2
f

∑ ∂I
∂up

∂I
∂vp

∑
G ∂I

∂up

f
∑ ∂I

∂up

∂I
∂vp

f
∑ ∂I

∂vp

2 ∑
G ∂I

∂vp

f
∑ ∂I

∂up
G f

∑ ∂I
∂vp

G
∑

G2




ϑup

ϑvp

1/τ

 =


− ∑ ∂I

∂t
∂I

∂up

− ∑ ∂I
∂t

∂I
∂vp

− ∑ ∂I
∂t

G

 (2.11)

In order to approximate the image gradients a 3 × 3 normalized Sobel kernel is
utilized as shown in Figure 2.7 and Equation 2.12. The discrete convolution process can
approximate the value of the partial derivatives seen in Equation 2.11 with the addition
of the 1/8 weighting factor. Specifically for our implementation, we cropped the outer
edge of the image data in order to increase the efficiency of the algorithm since it no
longer needed to use edge detection methods to determine if the kernel is over the bounds
of the m × n image.

Ku = 1/8


−1 0 1
−2 0 2
−1 0 1

 , Kv = 1/8


−1 −2 −1
0 0 0
1 2 1

 (2.12)

The system of equations can then be solved with numerous linear systems solvers but
we went with QR decomposition. While compared to LU decomposition it is objectively
slower, however because the final solution is a square 3 × 3 matrix the extra time is worth
the numerical stability due to the reduced condition number that QR decomposition
holds.
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Figure 2.7. An example of the convolution process for one pixel.

Through all of these derivations it is paramount that consistent and proper units
are used. Because this method utilizes the COP as the origin of the coordinate frame
Equations 2.14 and 2.15 are used to scale and shift the origin from the top left corner
(which is the standard origin for images) with units of pixels, to the center of the image
with units of meters. An example of which can be seen in Figure 2.8 where xp and yp

denote the pixel index in their respective directions for standard image coordinate frames.
While W represents the width of a pixel in meters. O represents the offset from the
image plane origin which is equal to half of each respective component’s value as shown
in 2.13. To not confuse the notation the lowercase values will be in units of pixels, while
uppercase denotes meters. The following equations will then be applied using the camera
parameters listed in the following section to ensure that the proper units are used when
determining τ and OF.

Ox = m/2 , Oy = n/2 (2.13)

U = (xp − Ox)W + W/2 (2.14)
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V = (yp − Oy)W + W/2 (2.15)

Figure 2.8. Image coordinate transform from pixels to meters.

2.2 Simulation Setup
The experiments of this thesis will be run solely in a simulation environment. While
experimental setups are certain to introduce unforeseen drawbacks, the previous work
done by Habas et al has shown that the simulation results translate to experiments
with reasonable accuracy, as shown in Figure 2.9. Further, our recent focus has been on
estimating the most accurate model parameters possible. This includes more accurate
moment of inertia values for all axes, the proper mass of the system with new motors,
all for each respective set of landing gears. Also more accurate sensor models, from
proper battery compensation to measuring sensor noise in order to make sure each sensor
matches what we observe in the lab.

A simulation environment allows for rapid testing to be done over a larger parameter
space than would not be feasible with physical experiments. The simulations were
run in Gazebo 11 with the Robot Operating System (ROS) Noetic package. Within
the simulation we have modeled the Crazyflie 2.1 with some slight modifications as
previously mentioned. The specific system setup used for the following tests utilized
the Narrow-Long landing gear due to it having the most robust landing success over
the tested parameter space [3]. Additionally, the systems sensors are modeled after
the onboard sensors of the Bitcraze AI-deck, specifically the Himax HM01B0 gray-scale
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Figure 2.9. Side by side comparison of the MAV in simulation and laboratory setup [3].

camera, the important values of which can be found in Table 2.1. Since we do not have a
good measure of the noise the camera generates we modeled the noise as Gaussian with
a standard deviation of 0.005.

Table 2.1. Himax HM01B0 Parameters
Focal Length (f) 3.3 × 10−4 m
Pixel Array (m × n) 160 × 160
Pixel Size (W ) 3.6 × 10−6 m
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Chapter 3 |
Simulation Experiments

3.1 Experimental Setup
Before discussing the experiments run it must be noted that due to the vast parameter
space to test over the following experiments were conducted in a specific order in order
to systematically determine certain variables.

Due to the high maneuverability of the MAV, and therefore high variability of potential
experiments, the experiments in the following section were conducted in a specific order
to understand how each variable tested impacted the performance of the estimated
visual cues. The variables that were explored were modifying the ceiling pattern and
filtering image data, modifying the frame rate of the camera, and lastly sub-sampling
the image data. The default frame rate of the camera was set to be 50 frames per
second. The effective area the partial derivatives were calculated in was 158 × 158 due
to the aforementioned cropping to remove edge detection as well as modeling the Himax
camera’s ability to utilize a 2 × 2 binning mode that reduces the image data by half.
An Exponential Moving Average (EMA) filter was applied to the TTC estimate; the
equation for which can be seen in 3.1. Where, St represents the output of the filter at
time t, and alpha represents a weighting factor, the higher the value the quicker it rejects
previous data.

St =

τ0 , t = 0

ατt + (1 − α)τt−1 , t > 0 ; α ∈ [0, 1]
(3.1)

Lastly, the first two experiments follow identical flight parameters with Vz = 3m/s

while keeping all other velocities zero. This upward velocity was chosen for two reasons.
First, the landing success rate for the entirety of the past experiments utilizing external
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positioning was almost 100% for all landing gear designs and flight angles [3]. Second,
because the H-S method prefers solutions that show more smoothness, the high vertical
velocity tests the limits of this method by having more movement between frames. Thus,
allowing for room to experiment and determine appropriate flight parameters for the
complications that arise from moving away from the motion capture system previously
used.

3.2 Effects of the Ceiling Pattern
The first problem to be tested comes from determining what ceiling pattern should be
used. Because digital cameras have to quantize optical information the collected data will
have quantization error. Additionally, the fixed focal length camera will inevitably suffer
from blurring due to the objects being out of focus. In order to solve this problem, high
contrast images, like checkerboards, are utilized to give lots of information in regards to
brightness contrast. In a controlled laboratory setting our system operates approximately
two meters from the ceiling until contact with it. Due to the wide operating range of
the modeled system it introduces the problem of feature scaling. For example, large
features would increase the accuracy when the MAV is further away. However, it then
removes information when the MAV approaches the ceiling. Especially if the features are
too large and it only has one color within the field of view during it’s final touchdown
phase as shown in Figure 3.1. To alleviate this drawback filtering incoming image data
can not only reduce noise, but also smooth out the high contrast markers in the landing
area.However, we have found that with camera noise and highly varied flight parameters
this process can be side stepped by not using high contrast images, instead utilizing ones
that smoothly transition between different intensities. All while maintaining acceptable
levels of error. An example of which can be shown in Figures 3.2 and 3.3. In order to
better compare the following experiments we set a baseline goal of keeping the error
below 0.05 when τ < 1s, which can be seen in the following examples between the dashed
black lines. For each ceiling pattern the system was flown directly towards the ceiling
with Vz = 3m/s. The software then saved the images for each flight in order to compare
the effects of raw versus Gaussian smoothed data with respect to each ceiling pattern
shown below. For the checkerboard ceiling pattern it is apparent that not only is the
feature size not scaled small enough, hence the error rising as the MAV gets closer to the
ceiling, but in order to obtain accurate results the images must be filtered as shown in
green.
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Figure 3.1. Final phase of the landing sequence the system follows [3].

Compared to the smooth ceiling pattern as shown in Figure 3.3, the error in the
estimates only changes marginally when the image data is filtered. Another reason the
smooth gradient ceiling pattern is preferred is because eventually this system will be put
to the test in a laboratory setting. In order to make a VELCRO™ checkerboard ceiling
pattern the squares are meticulously cut out making it difficult to create. Further, if the
size of the features are not right, then the whole process must be repeated again until
satisfactory results are obtained. Instead, it would be easiest to have one color put on
the ceiling then the other spray painted in order to emulate the smooth gradient pattern
depicted in Figure 3.3.

The motivation behind not smoothing the images is also done to save computation
time. In order to filter image data, it is typically smoothed with a Gaussian kernel.
However, because the brightness gradients are approximated with the same convolution
method filtering image data would nearly double computation time. Doubling the time
it takes to compute is a drawback that cannot be afforded since the system generally
executes it’s flip maneuver around 250 milliseconds before contact. Further, is has been
shown that excessive image smoothing, while helping with reducing noise, introduces
other errors, notably in the velocity estimates [40], which it also cannot be afforded as it
would further reduce landing robustness.

Now that it is apparent that a smoothed ceiling pattern, as opposed to a high contrast
one, should be used we then modeled the ceiling pattern with a sine function. Because
the ceiling pattern can now be iterated over by simply changing the periodicity of the
peaks a more uniform study can now be conducted. The equations for how the ceiling
pattern was generated is shown below. Equation 3.2 was adapted from the work of
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Figure 3.2. Comparison of Gaussian filtered image data and unfiltered images with the high
contrast ceiling pattern. Blue is the ground truth, red represents the unfiltered estimates, while
green represents the Gaussian smoothed data.

Figure 3.3. Comparison of Gaussian filtered images and unfiltered images with the smooth
gradient ceiling pattern. Blue is the ground truth, red represents the unfiltered estimates, while
green represents the Gaussian smoothed data

Chirarattananon and further extensions of the equation were made as shown in Equations
3.3 and 3.4 [41]. I0 denotes the maximum brightness of the image, which in the case of
the Himax camera is 8-bit or 255. X and Y is simply a mesh grid of points over which
the image is generated. Thus, making L the period of the sine waves and is what will be
changed in the following experiments to determine what feature size works best for the
system. Ultimately, I is the final image and examples of various periods L can be seen
in Figure 3.4.
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Ix = I0

2 (sin (2πX/L) + 1) (3.2)

Iy = I0

2 (sin (2πY/L) + 1) (3.3)

I = Ix + Iy

2 (3.4)

Figure 3.4. Comparison of different periods L used to generate the ceiling patterns

The previous Figure 3.4 shows examples of the range that was tested over, first the
exact values depicted above (L = 1, L = 0.5, and L = 0.1) were tested and the results of
which can be seen in Figures 3.5-3.7.

Figure 3.5. Flight test showing the estimated values compared to ground truth with L = 1.

25



Figure 3.6. Flight test showing the estimated values compared to ground truth with L = 0.5.

Figure 3.7. Flight test showing the estimated values compared to ground truth with L = 0.1.

These results were then used to narrow down the selection of L, the upper end of
the range was removed due to it’s constant offset from the ground truth as shown in
blue, as well as the error steadily rising when the system approaches contact with the
ceiling. The lower range of L was slowly iterated through in increments of 0.05 eventually
landing on L = 0.25 with a total of 15 ceiling patterns tested. When L was increased or
decreased the error in the estimate increased, the results of which can be seen in Figure
3.8. Therefore, in the following experiments the ceiling pattern will be kept at L = 0.25
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Figure 3.8. Final flight test showcasing the estimated values compared to ground truth for
L = 0.25.

3.3 Effects of Varying Frame Rate
The next variable to explore is the Frames Per Second (FPS) of the camera. Because the
HS method prefers solutions that show more smoothness, a higher frame rate allows the
camera to capture less movement between frames, which in turn will increase the accuracy
of the predicted values. In order to conduct this experiment and directly compare the
effects of varying the frame rate the MAV was flown at the ceiling with the same upward
velocity of Vz = 3m/s, and the ceiling pattern was constant with L = 0.25, with the only
variable changing between tests being the FPS. As show in Figure 3.9 when the frame
rate is lowered to 25 the accuracy decreases as expected. The last step was to assess how
much the accuracy improves when the frame rate is set to 100 FPS in comparison to the
baseline 50 FPS as seen in Figure 3.10.
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Figure 3.9. Flight test with FPS set to 25, Vz = 3m/s and L = 0.25.

Figure 3.10. Flight test with FPS = 50, Vz = 3m/s, and L = 0.25

When the FPS is set to 100 the error rarely crosses the baseline error threshold when
the quad-rotor is less than two seconds from contact as shown in Figure 3.11. When
compared to the previous work the camera refresh rate matches the 100 Hz refresh rate
of the motion capture system [3]. While these results are promising if the most accurate
estimates are desired, then following the trend of increasing the FPS is the obvious easy
choice. However, one must not forget that even if the camera in use can capture images at
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higher frame rates the algorithm behind the scenes must be able to keep up and calculate
the motion cues before the next frame is received. One option to achieve higher refresh
rates comes from the optimization of the implemented featureless algorithm, however
because it is already a lightweight algorithm not many improvements can be made to
increase efficiency. Therefore, the following experiment will explore whether it is possible
to decrease the computation time by only accumulating over a certain portion of the
image data, while maintaining acceptable limits of accuracy.

Figure 3.11. Flight test with FPS = 100, Vz = 3m/s, and L = 0.25.

3.4 Effects of Sub-Sampling Image Data
Although there are many benefits that come from running these experiments in simulation,
like being able to test over 15 ceiling patterns in a reasonable amount of time, there comes
drawbacks as well. In this case the following experiments will focus on the accuracy of the
algorithm while varying the total amount of the image used, instead of the computation
time. Because the simulation is run on a powerful desktop PC measuring the time it
takes to process images will not directly translate between different hardware setups.
Instead, by focusing on the accuracy of the model then the following experiments will
more easily be transferred between different hardware. First, by determining how fast the
featureless algorithm runs when utilizing all of the image data, then by determining the
acceptable balance between the time to calculate and deviation from the ground truth
for the specific hardware utilized. The following experiments were done on the same
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image sequence that was captured as the MAV traveled to the ceiling with Vz = 3m/s

and L = 0.25. The image data was kept identical to directly compare the differences of
using varying amounts of image data.

In order to remove data from the image the convolution process that approximates
the image derivatives will be moved by larger increments. Standard convolution which
utilizes all of the image data the convolution kernel will be shifted by one pixel in the Û

direction until it reaches the edge of the image. When the edge of the kernel reaches
the edge of the image the kernel will then be shifted back to the opposite end where it
is then moved by one pixel in the V̂ direction. The following process repeats until the
entire image is shifted over. Therefore, the following experiments will vary how much
each direction translates, also known as the stride N , in order to reduce the amount of
data used. While there are many ways to utilize different amounts of image data, varying
the stride in Û and V̂ was chosen over cropping the image. Because, by removing data
at the edges of the image the sensitivity decreases due to the importance that the radial
gradient G places on changes at the edge of the image. In total, reducing the amount
of image data used should have a linear relationship with respect to processing time;
meaning that the lower the amount of data used the faster the time to calculate. The
linear relationship arises from the deterministic nature of the implemented algorithm
and it’s reliance on basic operations that generally have fixed computation times. By
changing the stride the reduction in calculations compared to the standard convolution
over a square M × M image can be calculated using equation 3.5. To ensure a uniform
distribution of data points across the image is sampled the stride is kept equivalent in
both Û and V̂ directions. Examples of the strides used in the following experiment and
the corresponding computational cost reduction compared to the full image convolution
can be seen in table 3.1.

[
(M − 2)2

⌈(M − 2)/N⌉2

]
× 100 (3.5)
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Table 3.1. Computational cost for Varying strides (N) for a 158 × 158 image with 3 × 3 kernel.

Stride (N) Computational cost (%)
1 100 %
2 50 %
4 6.409 %
8 1.602 %
16 0.401 %
32 0.100 %

Figure 3.12. Error observed by varying the stride (N) in order to reduce the amount of the
image data used.

As shown from the above results the error negligibly changes when removing significant
amounts of image data. These results at first seem counter intuitive, however, while
reducing the number of convolution processes, and therefore spacing the kernels further
apart, the kernel still extends into the areas where the image information is shifted over.
Meaning, the average space skipped by removing percentages of the image data does not
exceed the dimensions of the 3 × 3 kernel utilized until approximately 16% of the image
data is used. Therefore, removing data does not have a large impact on the estimation
of TTC for the case of strictly vertical flight. In comparison similar work done using the
same featureless algorithm shows that utilizing 6.25% of the image data yields results
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that allow for accurate state estimation of a quad-copter [41]. However, further studies
must be done in order to confirm that the results shown above translate to experimental
settings.

3.5 Learning Inverted Landing Motor Control Using Rein-
forcement Learning
After determining how the ceiling pattern, frame rate, and amount of image data affect the
performance of the featureless algorithm the results were then synthesized and the best
from each variable that was explored was implemented for a final test. The ceiling pattern
of L = 0.25, frame rate of 100, and the stride N = 1 were used for the last experiment.
The ultimate goal of this work was to remove the dependence of external positioning and
in order to do so the featureless algorithm was tested using the same RL algorithm that
was used previously [3]. The RL algorithm used is a parameter optimization algorithm
which samples values of τ and My to find an optimal set of parameters that yields a
successful inverted landing. The RL algorithm then receives a reward value based off the
landing performance which is then used to converge onto an optimal set of parameters.
For example, if the MAV missed the ceiling the τ threshold (τcr) was decreased, and if
the moment did not yield a four legged landing it was also varied. The following process
is then repeated multiple times over a certain number episodes until the values of τcr

and My converged for the specific flight conditions. The same flight conditions that were
tested prior to this were also implemented in the following experiment the results from
which can be seen in Figure 3.13.
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Figure 3.13. Policy convergence plot showcasing a successful learned policy. The dashed blue
line indicates the specific value of τ that was used to trigger a flip maneuver, while the dashed
orange line depicts the corresponding moment (My) used to flip the MAV. The shaded region
represents the confidence in the current estimate of the respective parameter with ±2σ.

Because the camera algorithm introduces noise no matter how confident the RL
algorithm is with the policy values the landing robustness can still suffer from early
triggering of the flip maneuver. Hence the reasoning for the baseline goal of maintaining
an error below 0.05 when τ < 1s. The results from the learned policy above can be seen
in Figure 3.14. The highest reward is given to a successful four legged landing, with the
second highest being a two legged landing. Lastly the reward was lowered if during the
flip maneuver the body or rotors of the MAV contacted the ceiling plane.
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Figure 3.14. The reward data for the first 17 episodes. The reward shown in black indicates
the performance of the flip maneuver, the highest value indicates a four legged landing. The
red indicates the average reward for the corresponding episode.
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Chapter 4 |
Conclusions

4.1 Summary
This thesis applies the H-S method to estimate bio-inspired visual cues for an inverted
landing strategy. It first examines the effects of image processing parameters on the
estimation accuracy and then applies the H-S method in learning the landing policy with
the selected parameters. Additionally, the goal of the experiments were to determine how
these image processing parameters affect the accuracy of the implemented algorithm. In
these studies three main variables were explored, the ceiling pattern, the frame rate, and
lastly varying the stride of the kernel. First, the most abstract problem was explored,
determining what ceiling pattern yielded the best results; the findings from which showed
that L = 0.25 was the ideal pattern. The following experiment determined that increasing
the frame rate also increases accuracy. However, regardless of how promising these results
may be there are hardware limitations that prevent exceptionally large frame rates,
hence the frame rate was kept at 100 FPS. While higher frame rates could be achieved
with advanced algorithm implementations, the hardware limitations of the MAV make
it infeasible. Therefore, the following experiment focused on reducing the amount of
image data that was used in order to decrease processing time. The findings from
which determined that the implemented algorithm did not suffer from reducing the
amount of image data used until significant percentages of image data was excluded.
Further investigation and verification is required in order to determine why there is not
a significant degradation of accuracy as the image data decreases. Ultimately, the main
findings from each study were then applied to the RL algorithm in order to determine
the landing robustness in comparison to previous experiments done by Habas et al.

The policy the RL algorithm converged on has a landing success rate of 23.7% for
four legged landings. Even though the landing robustness is significantly lower compared
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to external positioning, the entire parameter space still remains unexplored with the
featureless algorithm implemented. Initial observations of the performance conclude that
the poor performance of the landing rate is due to the offset in the estimated visual cues
which trigger an early flip. However, the landing rate for two legged landings was 21.8%.
Although these are considered failed landings, because they cannot be corrected, the
increased rate of early or late triggering due to the noisy output from the featureless
algorithm may be compensated with mechanical intelligence. The mechanical intelligence
for the MAV is also inspired from the blue bottle flies. Although the static landing
gear cannot be actuated like the flies’ legs the thin plastic allows them to deflect to
absorb impacts from the high velocity approach. Therefore, further investigations using
multiple sets of landing gear may aid in reducing the number of two legged landings by
leveraging more on the mechanical intelligence of the varying designs. Further, because
the MAV is highly mobile flight angles can vary anywhere from 20° to 90°. Meaning
that while the system successfully converged with a vertical velocity of 3 m/s and a
flight angle of 90°, extending the current algorithm beyond this proves difficult. The
reason the algorithm struggles with extending the tested parameter space is due to
the assumption that the COP remains perpendicular to the ceiling plane. Due to the
underactuated nature of the MAV the body must rotate in order to translate with varying
horizontal velocities. If the system’s body angle changes then so does the apparent angle
of the ceiling. Therefore, in order to extend past strictly near vertical landings further
extensions of the implemented algorithm must be made. Horn and Schunck have made
several updates to the implemented algorithm as seen in [35]; in which they have derived
a method for determining τ for arbitrary ceiling orientations. However, when removing
the assumption that the landing area is perpendicular to the COP the derivation no
longer provides closed form solutions and instead relies on an iterative solution method.
Because the derivation no longer yields closed form solutions, this leads to a variable
calculation time along with increased computational load, as well as irregular accuracy;
which our system cannot afford. Therefore, other methods in order to solve this problem
will have to be explored in future work.

4.2 Future Work
All the previous experiments were conducted in a linear fashion in order to isolate
specific variables that were identified to contribute to the accuracy of the featureless
algorithm. However, there may be potential relationships between the variables that
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were tested and fully understanding these connections will aid future work in creating an
accurate understanding of the underlying methods and how they vary with respect to
the goal of inverted landing. Additional studies into the relationship between removing
image data and how the kernel translates, as well as varying the kernel size and the
effects these variables have on performance will aid future hardware implementations.
Further experimentation with the hardware modeled in this study will continue to aid
it’s accuracy, notably determining the approximate value for the standard deviation of
the camera noise, as well as other unknown factors that were not modeled that might
effect the performance. Potentially utilizing other onboard sensors, like the Inertial
Measurement Unit (IMU), in order to determine the angle of the quad-copter may be
used to estimate the corresponding angle of the ceiling assuming it is horizontal. Possible
solutions to the issues that arise due to the under-actuated MAV could take inspiration
from flying animals robust head stabilization techniques in order to keep the camera in a
desired orientation. However, due to the small scale nature of the MAV, as well as the
strict carrying capacity restrictions, including gimbals to stabilize the camera will prove
to be a mechanically challenging feat.

Additional improvements of the software implementation of the featureless algorithm
could include the use of spatially separable convolution. Which is a relatively recent
variation of standard convolution in which the number of total operations to calculate the
output is reduced [42]. For a standard 3 × 3 kernel the number of operations is reduced
by approximately 33%, as long as the image dimensions are much greater than the kernel
size. The reduction in calculations is achieved by splitting the convolution process into
two smaller and simpler convolutions. In the case of a 3×3 kernel the kernel is split into a
1 × 3 and 3 × 1, an example of which can be seen in Figure 4.1. Separable convolution has
the main drawback of the kernel used must be spatially separable to begin with, hence
spatially separable convolution has not seen wide application. Thankfully the kernels
used in this study are spatially separable leading to potential algorithm enhancements.

Figure 4.1. An example of the spatially separable convolution algorithm.
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