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Abstract
In this dissertation, I summarize how canonical effective methods can be applied to
describe quantum corrected gauge symmetries, non-adiabatic corrections in inflation,
and backreactions that seed correlations and inhomogeneities.

Special attention will be paid to the canonical structure and dynamics of quantum
fluctuations (which can be interpreted as the moments of a quantum state). I will
use canonical methods to highlight the role of constraints in the quantum corrected
low energy effective theory of gravity; deformed covariance is shown to be a generic
consequence. Reconciliation between seemingly different effective Hamiltonians is also
discussed in this context. I then explore the effects of dynamical quantum fluctuations
on effective potentials in inflation. I show how these fluctuations affect observables and
help us characterize the quantum state, thus establishing a state-to-observable corre-
spondence. Finally, I discuss the role of backreactions on background correlations and
inhomogeneity growth. I find that distinct oscillation behaviors arise when correlations
are present. Furthermore, the trickling of infrared inhomogeneities to smaller length
scales is demonstrated to exist with the inclusion of non-local effects from quantum
moments.
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Chapter 1 |
Introduction

1.1 Motivations
Both quantum field theory and general relativity have had countless triumphs in the
past century—from the precise calculation of the anomalous magnetic moment and ex-
plaining the perihelion precession of Mercury, to predicting the observation of the Higgs
Boson and gravitational waves. All indications seem to suggest the two theories are ex-
tremely reliable in their respective domains. Few theorists would dispute this. However,
despite countless laborious attempts by some of the greatest minds in modern history,
we have yet to unite the two theories. Even more conservative expeditions aimed at only
quantizing gravity, without attempting to unify it with the other known forces, have
been met with considerable challenges.

One might ask, why bother? If quantum gravity only matters around the Planck scale
(roughly 15 orders of magnitude away from what is accessible in near-future colliders),
does quantum gravity truly concern 21st-century humans? Surprisingly, the answer is
yes. In fact, a more poetic (and perhaps a slightly overdramatic) theorist might argue
that it is quite literally a matter of life and death.

The existence of rich chemical and biological processes on Earth owes itself to the
structure formation of our early universe. If everything was perfectly homogeneous, it
would result in a lifeless world. Structures of our universe originate from the inhomo-
geneities that are believed to be seeded by quantum processes in our early universe—
during a period of fast exponential expansion. This expansion process, known as the
paradigm of inflation, happens around a few orders of magnitude below the Planck scale
and magnifies the otherwise elusive features of the extremely-early universe. Therefore,
we have good reasons to believe that, in the initial states of inflation, there might be
footprints left behind by quantum gravity. These footprints could very well still exist in
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our skies today, offering us clues on how life arose on Earth.
On the other hand, it is surprising and worrisome that the Higgs boson—which

concerns the stability of the laws of nature—can potentially be sensitive to Planck scale
physics. Quantum corrections from the top quark, the heaviest known fundamental
particle, can cause instabilities for the Higgs particle. In an unstable or metastable
scenario, the Higgs particle will tunnel to a true stable vacuum, altering fundamental
constants of nature and destroying the chemical laws that life depends on. Traditional
wisdom assumes that this process is slow and our universe is safe. But recently, more in-
depth analysis show that Planck scale physics—quantum gravity included—can change
this conclusion. The threat of an electroweak vacuum decay in our universe thus becomes
very real. Consequently, Planck scale physics become important for our little 104 GeV
civilization to understand if (and why) one day we might simply cease to exist. (The
catastrophe that is vacuum decay can propagate at the speed of light, meaning that we
are unlikely to have any empirical evidence of its materialization until it is too late.)

In both of the aforementioned cases, the best we can do for understanding the quan-
tum physics whose full detail is obscure to us is to adopt the philosophy of effective
methods. In this paradigm, a quantum theory reduces to an effective system with new
interactions induced by quantum corrections. These interactions, from a Lagrangian
perspective, can contain any higher power operator as well as non-local terms that re-
spects the symmetries of the theory. The resulting effective theory is generally difficult
to deal with due to these new terms. To make such highly non-linear and non-local
theories manageable, one can try to postulate a state where these difficult terms are
subdominant or simply vanish. Unfortunately, in such a prescription, the role of non-
adiabatic contributions (such as large temporal derivative terms) as well as backreactions
becomes obscured and sometimes largely neglected. At the Planck scale or scales close
to the inflation era, backreactions and non-adiabatic quantum corrections can become
important. Assumptions regarding the background state tend to be too restrictive and
may exclude important quantum corrections by fiat. This calls for new methods that
are more inclusive toward time-dependent quantum corrections.

Canonical analysis is a powerful tool that can be adapted to account for non-adiabatic
evolutions and backreactions. It is also a natural framework within which gauge symme-
tries, including the diffeomorphism symmetry of general relativity, can be described with
algebras of first-class constraints. These topics will be the main focus of this dissertation.
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1.2 Outline of the dissertation
In this dissertation, we will focus on the application of canonical effective methods
to discuss modified covariance in pure gravity, homogeneous quantum corrections to
inflation models, and backreactions of inhomogeneous field theory. Emphasis will be
laid upon the description of quantum corrections with effective or semi-classical degrees-
of-freedom (DoFs).

We will start our analysis with a spherically symmetric model of gravity. When a
quantization is carried out, we expect classical covariance to be modified. While there is
little consensus on the specific quantization procedure of gravity, from a purely effective
point of view, we expect these modifications to be a generic result of the additional terms
induced by integrating out degrees of freedom. These modifications, from the canonical
perspective, manifest in the form of modified algebras between first-class constraints. In
an effective or semi-classical regime, where the notion of space-time is still expected to
hold, space-time covariance is thus modified. While the above conclusions are expected
to be independent of quantization schemes, subtleties can arise when different basic
variables are used. Gravity is the most constrained theory among all known fundamental
interactions—it also has by far the largest gauge symmetry. When the search for generic
gauge-invariant variables is still an open issue, we are often forced to pick a set of
gauge-dependent variables as a starting point of quantization. The resulting effective
corrections to space-time can appear to be variable dependent. Factoring in the fact that
first-class constraints can muddy the hierarchy of energy scales, the task of checking the
genericness of quantum corrections becomes non-trivial. In chapter 2, we take a small
step forward by showing how one can use the closure of constraint algebra as a guideline
to find the allowed quantum corrections (up to some fixed order of derivative terms in the
action). The role that derivative terms play in deforming covariance is highlighted. We
then discuss how first-class constraints can transmute the order and type of derivatives
while maintaining the closure of the gauge algebra—this can be used to show equivalence
between seemingly different effective theories.

In chapter 3, we will discuss how quantum fluctuations in an inflationary model can
induce new DoFs that behave as an additional field driving the expansion. We will
mainly focus on quantum corrections induced by the background homogeneous field.
Starting from a simple scalar model, we show how the resulting effective system essen-
tially becomes a multi-field model. We will also show how the uncertainty principle
and non-adiabatic contributions—which are often neglected or hidden when using the

3



traditional assumptions behind an effective potential calculation—set the initial and
final stages of inflation. Standard tools in multi-field inflation will be used to show
how the effective model conforms with observations without excess fine-tuning. We find
that observables are sensitive to quantities that parameterize the quantum state of the
background field.

In chapter 4, we move on to an inhomogeneous model inspired by the cosmological
perturbation theory. We will be mainly interested in the interplay between the back-
ground field and the inhomogeneous field (which plays the role of perturbations). We
show, using canonical effective methods, how correlations between the background and
the degree of freedom reflecting backreactions can arise. We also make the surprising
discovery of how backreactions allow large-scale modes to trickle down to smaller scales,
thus generating inhomogeneity buildup for the background field. The analysis will high-
light how canonical effective methods can connect observables with the parameters that
reflect the properties of the quantum state.

In chapter 5, we summarize the results of the dissertation and discuss the outlooks
of several future directions.

4



Chapter 2 |
Gravity

2.1 Brief review of canonical gravity
In this section, we briefly review how gravity can be described using canonical methods.
We will first go over the standard 3+1 splitting along with the ADM formulation. The
significance of constraints is highlighted. We will see that it is possible to enlarge our
gauge symmetries and rewrite our gravitational theory in a form that bears resemblance
to Yang-Mills type gauge theories. A key component is the introduction of the Gauss
constraint. After a brief review of the Gauss constraint in Yang-Mills theories, we will
introduce analogous connection variables to be used in gravity. This will serve as a
starting point for our later discussions regarding potential modifications to space-time
symmetries arising from quantization. We will mainly be following [7].

2.1.1 Summary of basic results: geometry
Below we list basic results of the kinematics behind a 3+1 splitting of space-time

1. Staring point: a manifold M = R × Σt. Here Σt represents a spatial slicing.

2. The slicing Σt induces time arrow tµ such that tµ∇µt = 1. (A typical choice of
coordinates requires tµ∇µ = ∂/∂t with t = x0.)

3. The normal to the slicing nµ ∝ ∂µt
1 helps introduce the induced metric hµν =

gµν + nµnν . (We stress that hµν ≡ gµρgνσh
ρσ acts not as the inverse of hµν on

space-time tensors but only on tensors tangent to Σt.)
1We always pick orientation nµnµ = −1.
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4. Lapse function and shift vector: N ≡ −nµtµ = 1/(nµ∇µt) (last equality uses
nµ ∝ ∂µt and its normalization) and Nµ = hµνtν . As a corollary, we may expand
nµ = N−1(tµ − gµνN

ν).

5. The full metric can be written as gµν = hµν −N−2(tµ − gµρN
ρ)(tν − gνσN

σ).

6. Coordinates adapted to Σt: choose coordinate functions xµ = (x0, xi) such that
tµ∇µx

0 = 1 and tµ∇µx
i = 0. (The first requirement ensures x0 = t.)

7. The determinant of the metric, which is a weight w = 1 density, is √
−g = N

√
h.

(Here we are assuming the “natural” coordinate choice, to be explained later. Also,
h refers to the determinant of the spatial part of hµν as is obvious since the full
hµν is not invertible due to habnb = 0—it has a zero eigenvalue.)

Coordinate expressions. We will now summarize how the above definition and
results lead to coordinate expressions for basic quantities, assuming the choice for coor-
dinate functions xµ = (t, xi).

• tµ = (1, 0, 0, 0) and nµ = (−N, 0, 0, 0), from the definition of our coordinate choice
and lapse. (Note that while the normal is normalized, the time vector ta is not
normalized to 1. Instead tµtµ = g00 as we will see later.)

• Nµ = (0,N) and Nµ = (N iN jhij, hijN
j).

As for the full metric and induced metric, we have

gµν =

−N2 + hijN
iN j hjiN

i

hijN
j hij

 and gµν =

− 1
N2

Nj

N2

N i

N2 hij − N iNj

N2

 , (2.1)

where hij = (hij)−1. And for the induced metric

hµν =

hijN iN j hjiN
i

hijN
j hij

 and hµν =

0 0j

0i hij

 . (2.2)

The derivation of the above component expressions requires us to compute different
parts of the normal, full metric and induced metric in parallel. A good starting point is
to find nµ using nµnµ = −1 while taking advantage of the fact that tµ and nµ are only
non-vanishing in their 0th component.

So far we are using the space-time indexed description of 3+1 decomposition. While
this description may seem more covariant, it can be mentally taxing for practical compo-
nent calculations. Alternatively, one might prefer to use coordinate functions adapted
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to the hypersurface. In the next section, we will briefly summarize an equivalent and
more calculation-friendly description based on embeddings of hypersurfaces.

2.1.2 Embedding and hypersurfaces
In this section, we will briefly review the ideas behind embeddings. We can embed a
(hyper)surface Σ into a larger manifold M with the map

X : Σ → M, ya 7→ Xµ(ya) , (2.3)

where ya are coordinates on the hypersurface Σ and Xµ are coordinates on the manifold
M. (For indices of this section, we will follow the convention that α, β . . . µ, ν, ρ are
reserved for space-time coordinates Xµ and a, b, c index the Σ-intrinsic coordinates ya

that appears in Xµ(ya). The lowercase indices i, j, k, similar to the previous section,
denoted the spatial components of a space-time tensor (which is in general different from
the a, b-indexed coordinates unless we pick the special coordinate embedding. However,
we will show that objects like hij are equivalent to the pulled-back metric using the
“natural” embedding map which we will soon define).

2.1.2.1 Expressions of components

We will sketch the key steps in deriving the previous stated results for component ex-
pressions. We will also show two ways, one geometric and one component-flavored, that
allow us to get the expression for the metric.

Starting point: We will use the natural coordinates adapted from the intrinsic
coordinates on Σt. Namely, we will use (2.10) on the constraint surface Φ(xµ) = t.
First, it is easy to show that

tµ∇µt = 1 and tµ∇µx
i = 0 (2.4)

are satisfied from (2.10). (The spatial superscript i should be interpreted as a label de-
noting the coordinate function xi. Namely, we have three is to specify three independent
spatial coordinate functions.)

The coordinate choice (2.10) along with the definition of normal to a constraint
surface trivially ensures

tµ = (1,0), nν = (n0,0) . (2.5)

The definition of the lapse function fixes the normalization for the normal n0 = −N .
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The definition of the lapse and the shift leads to nµ = 1/N(tµ − Nµ). Additionally,
natural coordinates and Nµnµ = 0 ensures Nµ = (0,N). Combine these two with (2.5)
and we get

nµ = ( 1
N
,−N

N
) , (2.6)

which agrees with previous stated results.
The metric: covariant derivation. Now we will utilize gµν = hµν−nµnν to obtain

coordinate expressions gµν . Recalling that tµ, nµ selects out the 0-th component while
Nµ selects out the spatial components we have

gij = − ninj + hij = hij (2.7)
g0j = − n0nj + h0j = tµhµj = Nj = hjµN

µ = hjiN
j (2.8)

g00 = − tµtνnµnν + tµtνhµν = −N2 + tµNν = −N2 +N0 = −N2 + g0µN
µ = −N2 + hijN

iN j ,

(2.9)

where the last equality of the last line uses the expression for g0j and the fact that
Nµ selects out spatial components when being contracted. Therefore, utilizing tµ, nµ

and Nν as projectors, we have derived the components for the full space-time metric
in natural coordinates using a relatively geometric perspective. However, we will also
show a embedding/coordinate-flavored derivation later. We first need to introduce how
we define our embedding.

Natural coordinates and embedding

Physical systems in general relativity allows a canonical decomposition M = R × Σt.
This allows for a natural coordinate system which induces an embedding. The natural
coordinate system can be thought of as choosing the time coordinate to be x0 = t (
where t parameterizes Σt) and the intrinsic coordinates to Σt as the spatial coordinates
for M = R × Σt. Specifically, this means for the space-time we pick

x0 ≡ X0(y) = t and xµ=a ≡ Xµ=a(y) = ya with a = 1, 2, 3 (2.10)

and ya as the intrinsic coordinates to Σt. Note that the relations (2.10) defines an
embedding (2.3). While the embedding map appears to be defined with coordinates, it
is not a coordinate dependent map! An embedding map is a map between points of two
manifolds Σ and M, in which coordinates xµ ≡ Xµ and ya merely serve as labels for
these points.
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A mixed tensorial object like Eµ
a = ∂xµ/∂ya is a tangent vector (to the hypersurface

Σt) with a label “a” as seen by M. This is why the object Eµ
a is actually also a projector

from the full space-time to a spatial slice. That is, it eliminates any normal component
to the constraint surface

Eµ
anµ(X)|on Φ ∝ ∂Xµ

∂ya
∂µΦ ≈ 0 , (2.11)

where the weak equivalence ≈ means the restriction to the constraint surface Φ = C

that defines the hypersurface Σt in M. The above equivalence follows trivially from the
fact that ∂aΦ = 0 by definition of the constraint surface and the intrinsic coordinates ya

on that surface.

The “Jacobian” projector

Given an embedding Xµ : Σ → M, call the following object the Jacobian projector

Eµ
a ≡ ∂Xµ

∂ya
, (2.12)

where ya are the intrinsic coordinates to Σ. This Jacobian projector is what appears in
the Jacobian. It is also responsible for the pull-backs

Φ∗(g)ab = Eµ
aE

ν
b gµν . (2.13)

Now suppose we pick the natural coordinates (2.10), clearly Eµ
a = δµa and vanishes for

E0
a. This means that hij ≡ gij is the same as the pull-back of gµν

Φ∗(g)ij = δµi δ
ν
j gµν = hij . (2.14)

So from now on we will simply use hij to also represent the pull-back or the induced
metric of gµν under the natural embedding (2.10).

Following the same line of logic as above, we arrive at a very useful conclusion
regarding the natural embedding: Eµ

a = δµa represents the pull-back to Σt and, in natural
coordinates (2.10), just trivially selects out the spatial components of the space-time
tensors. That is

Φ∗(T )ijk... = Eµ
i E

ν
jE

ρ
k . . . Tµνρ... = Tijk... . (2.15)

This conclusion means that even if we start off with the covariant definition of 3+1
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splitting (using µ, ν indices), we can calculate intrinsic quantities to Σt by only referring
to gij.

The metric: embedding derivation. The previous covariant-indexed derivation
does not rely on an explicit embedding. All our derivations refer only to spatial indices
of the full space-time. We only had to assume that the slicing of M into Σt is allowed
(hence allowing for a normal nµ to some surface).

An embedding perspective starts with a hypersurface (Σt) with its own inherent
coordinate functions ya. It is not until we embed it into the full space-time, are we
required to refer to the full space-time (typically through nµ-related quantities like the
extrinsic curvature). The natural coordinates give us a natural embedding that maps
all results derived in the embedding perspective to the results of our previous section,
which are expressed in i, j indices.

We start with the embedding-induced expansion of the full space-time element dxµ =
tµdt + Eµ

ady
a. Here we are not yet assuming xµ are natural coordinates. Then we can

express our invariant distance element as

gµνdx
µdxν =gµν(tµdt+ Eµ

ady
a)(tνdt+ Eν

b dy
b) (2.16)

=tµtνgµνdtdt+ 2tµgµνEν
ady

adt+ gµνE
µ
aE

ν
b dy

adyb . (2.17)

To bring in the lapse and shift, we recall that the normal to Σt obeys nµEµ
a = 0 which

makes Eµ
a a tangent vector to the hypersurface. We can show that the following are

consistent with the geometric definitions used previously

tµ∇µt = 1, N = −tµnµ (2.18)
nµ = −N∂µt, tµ = Nnµ +NaEµ

a , (2.19)

where we introduced the 3-shift Na, which is related to the 4-shift by Nµ = Eµ
aN

a.
(Now it’s obvious why the 4-shift has no 0-th component if we use natural coordinates.)
We also hope to point out that the above four equalities also ensure nµ is normalized.

Plugging the expressions for tµ back into (2.17), we get

gµν =(−N2 + habN
aN b)dtdt+ 2habNadybdt+ habdy

adyb (2.20)
= −N2dt2 + hab(dya +Nadt)(dyb +N bdt) , (2.21)

which resembles the more commonly found expression for the metric in an ADM expo-
sition.

10



The induced metric hab = Eµ
aE

ν
b gµν here is the pull-back of the full space-time metric

onto the hypersurface. It is the same as the spatial components of the space-time metric,
”hab” = ”hij” ≡ ”gij”, if we chose natural coordinates (2.10).

2.1.3 Dynamics of hypersurfaces: the ADM formalism
Here we list the main results of the Arnowitt-Deser-Misner (ADM) formalism, which
describe how hypersurfaces evolve in time. A reminder on notation: The space-time
tensors will be labeled by Greek indices µ, ν, ρ while tensors tangent to the embedding
surface (i.e. the ones orthogonal to the hypersurface normal) will be labelled by indices
a, b, c.

The 3+1 decomposition of the space-time allows us to express the (space-time) Ricci
scalar R into quantities that are intrinsic and extrinsic to the hypersurface. Intuitively,
the extrinsic quantities tell us how the space-time is actually decomposed into slices using
nµ, while the intrinsic quantities describe how the resulting slices Σt look geometrically
with the help of spatial covariant derivative Da. The dynamics of the theory require a
time direction, which we can supply with the previously defined time-flow vector (field)
tµ = tµ(N,Nµ, nµ). Specifically, the vector field tµ identifies points on different Σt slices
as the same spatial point—points P and P ′ that have the same spatial coordinate, e.g.
ya(P ) = ya(P ′). (Geometrically, the vector uses the data on an initial slice Σt0 and
generates a congruence of curves. For a given curve in the congruence, the different
intersections between this curve and different future slices are identified as the same
spatial point.) What Einstein’s equations need to do, in this context, is to make sure
that this identification is physically correct—the evolution of physical distance between
two spatially separated points are in line with observations.

The geometry intrinsic to a spatial slice is described by hab while the extrinsic prop-
erties are described by how nµ “moves” along the spatial hypersurface. Similar to the
space-time case, to describe how a tensor moves along a direction we can use the covari-
ant derivative. In our case we define the spatial covariant derivative as the pull-back of
space-time covariant derivative onto the spatial slice. Using the projector we previously
described, we have

DaT
b
c ≡ Eµ

aE
b
νE

ρ
c∇µT

ν
ρ , (2.22)

For the purpose of ADM formulation, the projector Eµ
a is chosen to be the one associated

with natural embedding (2.10).
Things get easier if we are acting on a spatial tensor Sbc . Because the projector
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annihilates nµ after contraction, one can prove that

DaS
b
c = ∂aS

b
c + ΓbadSdc − ΓdacSbd , (2.23)

meaning that when acting on a spatial tensor, Da is compatible with the spatial metric
and is simply the covariant derivative associated with the “spatial” Christoffel symbol
produced by hab.

Now we can introduce the extrinsic quantity of interest—the extrinsic curvature Kab

Kab ≡ Eµ
aE

ν
b ∇µnν . (2.24)

Using orthogonality between the normal and the projector, along with Eµ
[a∇|µ|E

ν
b] = 0

(easily proven with (2.10)), we can show that

Kab = Kba . (2.25)

Another important identity is

Kab = 1
2N

(ḣab − 2D(aNb)) , (2.26)

where ˙(. . . ) = Lt, and is the same as ∂thab since hab is spatial (however ḣab is not spatial).
This identity strongly hints that the extrinsic curvature is related to the conjugate
momentum of hab.

To obtain the ADM action, we use the Gauss-Codazzi relation to rewrite

R =(3)R +KabK
ab − (Ka

a)2 + 4∇a(n[a∇cn
c]) (2.27)

(3)R e
abcωe ≡[Da,Db]ωc , (2.28)

where we have defined the spatial Ricci scalar (3)R associated with hab. Plugging (2.27)
into the Einstein-Hilbert action we obtain

SE−H[hab, N,N c] =
∫

dtLE−H = 1
16πG

∫
d4xN

√
h((3)R +KabK

ab − (Ka
a)2) , (2.29)

where we have ignored boundary terms. (The boundary terms are important for general
relativity. Indeed, generic space-times do not always admit a good fall-off condition. In
fact, the Einstein-Hilbert action requires an additional term, called the Gibbons-Hawking-
York boundary term, to admit a good variational problem. However, boundary terms
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do not change any of our following results, so we will simply set them aside for now and
assume the variational principle works.)

2.1.3.1 The ADM Hamiltonian and constraints

Now we wish to obtain the Hamiltonian for the ADM action (2.29). To obtain the
symplectic structure, we only need to look at the terms with the extrinsic curvature
because the spatial Ricci scalar does not contain any time derivatives. Following this
strategy we find the momenta to be

pN =δLE−H

δṄ
= 0

pNa =δLE−H

δṄa
= 0

pab =δLE−H

δḣab
=

√
h

16πG
(Kab −Kc

ch
ab) ,

where we used Kab ∼ 1/2Nḣab in the last line. After a Legendre transform (with the
help of multipliers) we obtain the Hamiltonian

HE−H =
∫

d3x

(
16πGN√

h
(pabpab − 1

2
(pcc)2) − N

√
h

16πG
(3)R + 2pabDaNb

)

+
∫

d3x(λpN + µapNa) . (2.30)

The fact that momenta of N and Na vanish is a primary constraint. The restric-
tion that these constraints are preserved throughout evolution gives rise to secondary
constraints called the Hamiltonian (scalar) and diffeomorphism (vector) constraints

CHam ≡ − ṗN = −{pN , HE−H} = 0 (2.31)
CDiff
a ≡ − ṗNa = −{pNa , HE−H} = 0 (2.32)

Because the shift and lapse appear in the Hamiltonian (2.30) linearly (after integration
by parts on the 2pabDaN

b term), a trivial rearrangement gives

HE−H =
∫

d3x(NCHam +NaCDiff
a + λpN + µapNa) . (2.33)

The Hamiltonian for gravity is a fully constrained one!
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2.1.3.2 Interpreting the constraints

If one computes the bracket between the smeared secondary constraints in (2.33) one
would arrive at the hypersurface deformation algebra (HDA)

{D[N b], D[Ma]} =D[LNbMa] (2.34)
{D[Na], H[N ]} =H[LNaN ] (2.35)
{H[N ], H[M ]} = −D[hab(N∂bM −M∂bN)] (2.36)

D[Na] ≡
∫

d3xNaCDiff
a (2.37)

H[N ] ≡
∫

d3xNCHam . (2.38)

The fact that brackets between constraints equal to constraints means that the Hamil-
tonian and diffeomorphism constraints are first-class. Physically, this means that they
generate gauge transformations—in our case these are the space-time diffeomorphisms
that make gravity so unique. (Also, notice that the resulting smearing function of
the H − H bracket now is a function of phase-space variables. A consequence of this
is that brackets between constraints like

∫
N(x)CA and

∫
M(hab(y))CB can contain a

(. . . ){CA, hab}CB term. Ultimately, it means that the gauge transformations are only
generated after imposing the on-shell condition in the final step of the bracket compu-
tation.)

We will show more concrete examples of how first-class constraints generate gauge
transformations when we talk about Yang-Mills theory in later sections.

2.1.3.3 Example calculation: inflationary space-times

In this section, we will illustrate how constraints and gauge redundancies are dealt with
in the ADM formalism using the example of inflationary (quasi de Sitter) space-times.
These space-times are essentially the perturbed versions of the familiar FLRW space-
time. The perturbed metric, in this case, is not unique due to gauge redundancies
induced by the first-class constraints introduce in the previous section. The logic of our
calculation is straightforward (following [8]): We chose a gauge which then specifies a
form of the perturbed metric, solve the constraints perturbatively and plug the solution
back into the original action to obtain a new action that contains only the true degrees
of freedom.

We start with a general action that contains a scalar field minimally coupled to
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gravity (in units where reduced Planck mass is set to 1)

S = 1
2

∫
d4x

√
|g|(R − gµν∂µϕ∂νϕ− 2V (ϕ)) . (2.39)

Using (2.1), (2.2) and
√

|g| = N
√
h (with h ≡ det(hab)) we have

S =1
2

∫
d4xN

√
h(R +N−2(ϕ̇−Na∂aϕ)2 − hab∂aϕ∂bϕ− 2NV ) (2.40)∫

d4x
√

|g|R =
∫

d4xN
√
h((3)R +KabK

ab − (Ka
a)2) + boundary terms , (2.41)

where we used the Gauss-Codazzi relations to decompose R. (Note that in the La-
grangian formalism Kab is a function of N as well as derivatives of Na and hab, while
(3)R only depends on derivatives of hab.)

We want to expand the action (2.39) perturbatively around the FLWR metric to ob-
tain a quadratic action. So up to what order do we need to solve the constraints? One
might naively think we need everything up to second order. But fortunately, solving the
constraints up to first order in lapse and shift is sufficient! Here is the proof: The La-
grangian is a functional of lapse, shift, and the spatial metric (which we denote with the
shorthand notation h in the following). We now expand the Lagrangian in perturbations
of only lapse and shift (where δn represents the n-th order of perturbation)

N =N0 + δ1N + δ2N + . . .

Na =Na
0 + δ1Na + δ2Na + . . .

L[N,Na, h] ≈L[N0, N
a
0 , h]

+ δL

δN
[N0, N

a
0 , h](δ1N + δ2N + . . . ) + ∂L

δNa
[N0, N

a
0 , h](δ1Na + δ2Na + . . . )

+ 1
2

δ2L

δNδN
L[N0, N

a
0 , h](δ1N + δ2N + . . . )2

+ 1
2

δ2L

δNaδN b
[N0, N

a
0 , h](δ1Na + δ2Na + . . . )(δ1N b + δ2N b + . . . )

+ δ2L

δNδNa
[N0, N

a
0 , h](δ1N + δ2N + . . . )(δ1Na + δ2Na + . . . ) . (2.42)

Clearly, if we are keeping up to second order, we only need to examine up to quadratic
δ1(. . . ) terms and linear δ2(. . . ) terms. This means that δ2(. . . ) terms can only come
from the second line of the L[N,Na, h] expansion, which is multiplied with the constraint
δL/δN and δL/δNa evaluated with zeroth-order lapse, shift, and metric (metric too
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because we are only keeping up to second order). They vanish. In fact, the constraints
evaluated at zeroth order is simply one of the background equations of motion (the
Hubble-parameter squared equation). The story is similar for hab expansion: We need
not worry about δ2hab when restricting the Lagrangian up to second order because these
terms are multiplied with the background equations of motion for hab.

We fix our gauge to be the comoving gauge defined by

δϕ = 0, hab = a2((1 + 2ζ(x))δab + γab), N = 1 + α, Na = ∂aψ + Ña (2.43)
γaa = 0, ∂aγab = 0, ∂aÑ

a = 0 . (2.44)

Note that the indices of perturbations (or derivatives thereof) can simply be raised
with a2δij since we only need to keep up to the first order. Due to similar reasons,
the spatial covariant derivatives acting on shift vectors can be replaced with spatial
partial derivatives because the Christoffel symbols contain only spatial derivatives of
the metric—they are proportional to perturbations.

After a lengthy calculation one can show that the diffeomorphism constraint gives

Db(Kb
a −Kc

ch
b
a) ≈ 2∂a(αH − ζ̇) − 1

2
∂b∂bÑa = 0 , (2.45)

which can be solved by

α = ζ̇

H
, Ña = 0 . (2.46)

Using these two solutions we can show that Hamiltonian constraint becomes

(3)R− (2V + 1
1 + 2α

ϕ̇2) − (KabKab − (Ka
a)2) ≈ − 4

a2 δ
ab∂a∂bζ+ 2 ζ̇

H
ϕ̇2 − 4H

a2 δ
ab∂a∂bψ = 0 ,

(2.47)
which can be solved by

δab
∂a∂bψ

a2 = −δab∂a∂bζ
a2H

+ 1
2
ϕ̇2

H2 ζ̇ . (2.48)

(There is an apparent a−2 factor difference before the term ∂a∂bψ compared to Malda-
cena’s original result. This is because Maldacena defines ψ as N i = ∂iψ + N i

T , which
differs to our ψ by a factor of a−2. We also wish to point out that it is common in
literature for (∂)2 to be defined as δab∂a∂b rather than being raised with hab. In our
results, all a, b, c . . . indices are raised with the inverse spatial metric hab.)

After plugging the above solutions back into the action, using equations of motion
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and integration by parts we obtain the quadratic part of the perturbations

S2 = 1
2

∫
d4xa3 ϕ̇

2

H2 (ζ̇2 − a−2δab∂aζ∂bζ) . (2.49)

This action can be directly used for the quantization of perturbations.

2.1.4 Gravity as a gauge theory
We have shown previously how the gravitational Hamiltonian can be described with
canonical variables hab and its conjugate pab. However, these are not the only variables
allowed. In fact, it is possible to use tetrad and connection variables to make the
gravitational Hamiltonian look more similar to the one in a Yang-Mills theory. In the
process, we will however have to pay a price by introducing additional redundancies.
Fortunately, these redundancies can be interpreted as the familiar ones generated by the
Gauss constraint in a standard Yang-Mills theory.

2.1.4.1 Lightning review of Yang-Mills

In this section, we aim to show how classical pure Yang-Mills theory exhibit gauge
freedom due to constraints. The calculation in gravity is (non-trivially) analogous but
much more tedious. In gravity, we also have more complicated constraints and gauge
group(oid)s making the corresponding algebra contain phase-space dependent structure
functions (as opposed to constants). However, by understanding the process for the
Yang-Mills case, it will become clear how we can use triads and connections as basic
variables for gravity.

Definition and conventions: we make the following representation-independent
conventions

[T a, T b] = ifabcT c, Tr[T aT b] = TRδ
ab , (2.50)

where the structure constants fabc are totally anti-symmetric and TR is the index of
a representation—for SU(N), they are T (def.) ≡ TF = 1/2 and T (adj) ≡ TA = N .
(In the context of SU(N), the name defining rep. and fundamental rep. will be used
interchangeably.) The adjoint representation is defined by its generator

T abcA = −ifabc . (2.51)
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A note on representation: There are two important representations used in the
context of Yang-Mills: the fundamental/defining rep. and the adjoint rep. Matter fields
transform naturally in the fundamental rep.

ψi → (eiαaTa)ijψj . (2.52)

Preservation of local gauge symmetry requires our gauge/connection field to transform
(infinitesimally) as

Aaµ → Aaµ + 1
g
∂µα

a + fabcAbµα
c , (2.53)

where the structure constant refers naturally to an adjoint action adA(α) = [A,α]. This
results in the field strength to transform as

F a
µν → F a

µν − fabcαbF c
µν , (2.54)

which again means that the field strength transforms in the adjoint representation. Also
note that when acting with D on gauge fields or functions thereof we should use the
adjoint action

(DρFµν)a =∂ρF a
µν − igAcρT

cab
A F b

µν (2.55)
=∂ρF a

µν − gAcρf
cabF b

µν

=∂ρF a
µν − gi[T c, T b]aAcρF b

µν

=∂ρF a
µν − ig[A,Fµν ]a , (2.56)

where we have used the definition of D and the total anti-symmetry of indices for the
structure constants.

The pure Yang-Mills action 2 is written as

SYM = − 1
2

∫
Tr[FµνF µν ]fund. = −1

4

∫
F a
µνF

µνa|adj. ≡
∫

LYM (2.57)

F a
µν =∂µAaν − ∂νA

a
µ − ig[Aµ, Aν ]a = 2∂[µA

a
ν] + fabcAbµA

c
ν . (2.58)

To get the momentum we first compute

∂LYM

∂∂µA
f
ν

= − 1
4

2 ∂

∂∂µA
f
ν

(2∂[αAβ])aF a
ρση

αρηβσ (2.59)

2We are ignoring the topological θ term for now.
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= − (δ[µ
α δ

ν]
β )ηαρηβσF f

ρσ (2.60)
= − F f

ρση
ρ[µην]σ , (2.61)

where we have used the fact that ∂/(∂∂µAfν) does not see the non-derivative terms in
F a
αβ and ηµν is the Minkowski metric. The momentum is therefore obtained if we restric

to µ = 0
πνf = −1

2
(F 0νf − F ν0f ) = F ν0f . (2.62)

Recall that the “electric” and “magnetic” fields can be defined as (Aµ = (ϕ,A) in E&M)

Ei
a = −πia = F 0i

a

U(1)−−→ −∂0Ai − ∂iϕ (2.63)

Bi
a =1

2
εijkF jk

a . (2.64)

Notice that the electric field is the negative of the conjugate momentum for Ai. (De-
pending on the context, the above definitions can differ by an overall sign.) This is why,
in gravity, triad variables are sometimes called electric fields as they are conjugate to
the connection variable.

Now it is clear that, due to anti-symmetry of the field strength, we have our primary
and thus also secondary constraint

πν ≈0 (2.65)
π̇ν ≈0 . (2.66)

The secondary constraint is expected to give us the non-Abelian version of Gauss’s
law

DiE
i ≈ 0 , (2.67)

which reduces to the U(1) Gauss’s Law when the group is Abelian (meaning that the
adjoint action vanishes).

To show explicitly that the secondary constraint implies Gauss’s law, we use the
Euler-Lagrange equation for fields (denoting L ≡ LYM)

∂α
∂L

∂∂αA
f
0

− ∂L
∂Af0

= 0 . (2.68)
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Isolating the π̇0
f = ∂0(∂L/∂Ȧf0) part of the EoM we obtain

π̇0
f = ∂L

∂Af0
− ∂j

∂L
∂∂jA

f
0
. (2.69)

Using (2.58), the first term on the RHS is

∂L
∂Af0

= − 1
4

∂

∂Af0
(F a

µνF
µνa) (2.70)

= − 1
2
g(fafcAcνF 0νa + fabfAbµF

µ0a) (2.71)

= − fafcAcνF
0νa (2.72)

=ig[AciT c, F 0iaT a]f , (2.73)

where we are allowed to use ∂(F a
µνF

µνa) = 2∂F a
µνF

µνa in the second line because the
non-commutative matrix part already has been traced into a δab, so every quantity in
the calculation commutes.

Using again (2.58), the second term on the RHS of (2.69) is

−∂j
∂L

∂∂jA
f
0

=∂j
(

1
4

2 ∂

∂∂jA
f
0
(2∂[µA

a
ν])F µνa

)

=∂j
(
δj[µδ

0
ν]F

µνf

)
=∂jF j0f

= − ∂jE
jf , (2.74)

where have we used the definition for the electric field, F 0j = Ej = Ej. Finally, plugging
(2.73) and (2.74) into (2.69) we get

π̇0 = −(∂iF 0if − ig[Ai, F 0i]f ) = (Diπ
i)f = −(DiE

i)f ≈ 0 . (2.75)

This is Gauss’s law/constraint for Yang-Mills.

2.1.4.2 Constraint algebra and gauge transformations

Given a Lagrangian, students are typically taught to look for gauge transformations by
using the naked eye. In simple Lagrangians, this simple trick is good enough. However,
the canonical (Hamiltonian) formalism offers a much more systematic way of finding and
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describing gauge redundancies, which is especially useful for non-linear systems such as
gravity.

In the context of a Yang-Mills theory, a canonical analysis reveals the Gauss con-
straint to be a non-trivial constraint—categorized as a first-class constraint, meaning
the algebra of constraints is closed. Indeed, the Gauss constraint is expected to generate
the original gauge transformation of the theory. This is not a trivial fact and needs to
be checked. Specifically, we should check whether: (1) the constraint algebra is indeed
isomorphic to the original algebra of the gauge group; and (2) the constraint does indeed
recover the correct expression for gauge transformations.

The gauge algebra. In the phase space of Yang-Mills, the generators of gauge
transformations (not to be confused with generators of the Lie group) are the first-class
constraints—in our case it is the smeared version of the Gauss constraint (2.75)

G[Na(x)] = −
∫

d3xNa(x)(DiE
i)a , (2.76)

where we only smear over the spatial slice as we are in the canonical formalism. (The −1
factor can be absorbed if we express Gauss constraint using the canonical momentum
to Ai, as is often done in the context of gravity.)

Using the fact that {Aai (x), Ejb(y)} = −δji δabδ(x − y) (up to some absorbable con-
stants of π) we have

{G[Na(x)], G[Md(y)]} =
∫ ∫

Na(x)Md(y)

×
(

{∂iEia(x) + gfabcAbi(x)Eic(x), ∂jEjd(y) + gfdefAej(y)Ejf (y)}
)

= −
∫ ∫

Na(x)Md(y)
(

− gfdafEjf (y)∂jδxy + gfadcEic(x)∂iδyx

+ g2(fafcEjc(x)fdefAej(x) − fabeAbj(x)fdefEjf (x))δxy
)
, (2.77)

where we have introduced the notation ∂iδxy = ∂xiδ(x− y) = −∂iδyx and that ∂i always
means derivative with respect to xi or yi depending on whether it acts on δxy or δyx.

We can simplify the Poisson bracket further by using the trick

Ejf (y)∂iδyx = Ejf (x)∂iδyx − ∂iE
jf (x)δxy , (2.78)

where its validity requires the existence (but not the use) of an overall
∫

d3x. The trick
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allows us to simplify the first line of the last equality in (2.77)

−gfdafEjf (y)∂jδxy + gfadcEic(x)∂iδyx = − gfdaf∂jE
jf (x)δxy , (2.79)

where we used ∂iδxy = −∂iδyx and the anti-symmetry of structure constants.
The second line can be simplified with some index gymnastics and the Jacobi identity

g2(fafcEjcfdefAej − fabeAbjf
defEjf )δxy (2.80)

= g2AejE
jc(fafcfdef − faeffdfc)

= g2AejE
jc(−facff fde − f faef cdf )

= g2AejE
jcfdaff fce

= g2fdaf (−1)(−i)[Aj, Ej]f

= ig2fdaf [Aj, Ej]f . (2.81)

Combining (2.79) with (2.81) we get back the factor DjE
j inside a smeared Gauss

constraint. Therefore, we ultimately obtain

{G[Na(x)], G[Md(y)]} = G[fadfgNa(x)Md(y)] (2.82)

and thus recover the algebra of the gauge group through structure constants fadf . (The
factor g can be gotten rid of if we define our action with a re-scaled Aµ.) In the case of
E&M the structure constant vanishes and the Gauss constraints form the algebra of the
U(1) gauge group.

Gauge transformations. From the bracket between the constraints, it is clear that
the Gauss constraints are first-class. This means that they generate gauge transforma-
tions. We will show that we can generate the familiar Yang-Mills gauge transformations
with { , G[Na]}, making the Gauss constraints bona fide generators of gauge transfor-
mations.

A straightforward computation reveals

{Aai (x), G[N b(y)]} = −
∫
N(y)b{Aai , ∂jEjb + gf bceAcjE

ej}

= −
∫
N(y)b(δab∂iδyx + gf bcaAciδyx)

=
∫
∂iN

a + gfacbAciN
b

=(DiN)a . (2.83)
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This agrees with the standard result (2.53) for infinitesimal gauge transformations

Ai → Ai + DiN
U(1)−−→ Ai + ∂iN . (2.84)

We stress that N = NaT a is a Lie-algebra valued object and should be acted on using the
adjoint action; otherwise, we cannot obtain the correct U(1) limit. (The transformation
law for A0 is not obtained as the variable is not dynamical and instead can be seen as
a Lagrangian multiplier associated with the secondary constraint.)

2.1.4.3 Gauge fields for gravity: tetrads and connections

While the metric represents an intuitive distance-measuring object, using it to express the
action for gravity leads to a highly non-linear Hamiltonian. The equations of motion, in
this case, are also second-order partial differential equations. In this sense, both classical
calculations and quantization can be difficult when using the metric as a fundamental
field. Sometimes it is worthwhile to look for first-order formulations of a system by
viewing certain derivative terms in the Lagrangian as independent variables. When this
is done, we typically pay the price of having more equations of motion (albeit of lower
order) while also introducing redundancies in the form of new gauge symmetries. A
familiar example of introducing redundancies is when we introduce 4-vector potentials
in classical electrodynamics instead of using the electric and magnetic fields. In gravity,
we can do something similar by using tetrads and connections as our basic fields.

On our space-time manifold, we can find four independent vectors to describe a
basis. It is typically convenient to combine these independent vectors into a set of four
(Lorentzian)-orthogonal basis vectors, called tetrads eµI , obeying

gµνe
µ
I e
ν
J = ηIJ , (2.85)

where I labels which basis vector it is and µ denotes the usual space-time components.
We can think of index I as one referring to an internal Lorentzian space (an SO(1, 3)
index). An example of a set of tetrads is the four orthonormal vectors that describe the
frame of a time-like observer, called frame fields.

Tetrads offer a two-way map between I-indexed and µ-indexed objects thanks to its
invertability in both I and µ indices

eµKeµJ = gµνe
µ
I e
ν
Jη

IK = ηIJη
IK ⇒eµKeµJ = δKJ

eµI(eµJeJν ) = gµρe
ρ
Ie
µ
Je

J
ν = ηIJe

J
ν = eνI ⇒eµJe

J
ν = δµν , (2.86)
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where the last line used the fact that tetrads eµJ make up a basis (in µ index), so if eµJeJν
acts like a δµν on eµJ , it does so on all µ-indexed objects.

Due to (2.85), if we know the tetrads we can effectively reconstruct the local geometry
by using its invertibility

ηIJeµI e
ν
J = gµν . (2.87)

However, we immediately notice that a Lorentz transformation of the form eaI → ΛJ
I e

a
J

reproduces the same metric. So we have introduced a new gauge symmetry on top of the
already existent diffeomorphism symmetries. This new gauge symmetry is very similar
to the gauge symmetry of SU(N) in Yang-Mills theory. Indeed, we will show later that
it is closely related to the Gauss constraint.

We can understand our construction intuitively by imagining gluing an internal space
to every point in space-time. Naturally, we would hope to have a way of comparing
internal vectors vI at different points. Just like on a curved space-time manifold or
Yang-Mills, we would need a connection (space-time-)one-form ωµIJ for the construction
of a covariant derivative Dµ with the following properties

(Dµv)I =∇µv
I + ωµKJη

KIvJ

Dµ(Λv)|ω′ = ΛDµ(v)|Λ−1ω′Λ+Λ−1∇Λ

Dµ(ηIJ) =0 ⇒ ωµIJ = −ωµJI , (2.88)

where the subscript on the second line indicates what connection is being used in the
covariant derivative Dµ.

Geometry with tetrads. From a kinematical point of view, we hope that by
knowing tetrads we would know about the geometry. This can be done by using the first
and second structure equations (assuming there is no torsion)

de =eJ ∧ ω J
I (2.89)

R J
I =dω J

I + ω K
I ∧ ω J

K , (2.90)

where we suppressed the space-time indices on which the differential-form operators act.
(The first equation can be obtained by demanding that the tetrads are constants as
seen by the covariant derivative. Using the same assumption, we can obtain the second
equation by fully contracting the tetrads with the space-time Riemann tensor and using
the definition R ∼ [∇,∇].)

If one starts off with the known tetrads, then using (2.89) one can solve for ω J
I . Then
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plugging into the second structure equation (2.90) we would find the (mixed-)Riemann
tensor. The original space-time Riemann tensor can be obtained by mapping the mixed
Riemann tensor RIJ ≡ RµνIJdx

µ ∧ dxν back using tetrads.
Now we know what to expect from a candidate dynamical theory built from tetrads

and connections. Whatever action we come up with, the resulting equations of motion
should be consistent with kinematical equations (2.89) and (2.90). It should also tell
about the dynamics, namely how the tetrads evolve, and it better be consistent with
Einstein’s equations!

2.1.4.4 Action for gravity

We hope to write the theory of gravity akin to a gauge theory. We know that a Yang-
Mills action is written in terms of a 2-form that is the field strength. In gravity, the
mixed curvature tensor seems like a good candidate. However, the Yang-Mills action is
quadratic in field strength while we expect the gravitational action to be linear in the
(contracted) curvature tensor. So we need objects, like the tetrads, to contract with the
indices of a linear curvature 2-form. Furthermore, the integration over space-time would
also require that the measure d4x is multiplied with some density of weight 1, with the
convention that

√
|g| is a weight-1 scalar density. (This fact is important in dynamical

theories of gravity because the excess weights are neutralized by determinants of the
metric, which is itself a function of phase space variables.) The above observations lead
us to try the following action

S[e, ω] ∼
∫

d4x|e|eµI eνJF IJ
µν (ω) ∼

∫
ϵIJKLeK ∧ eL ∧ FIJ (2.91)

FIJ =dωIJ + ωIK ∧ ω J
K , (2.92)

where using the definition (2.85) and invertibility of the tetrad, the determinant of
tetrads is shown to be the same as the determinant of the metric |e| ≡ |det(eIa)| =√

−det(gµν) =
√

|g|.
We emphasize that while the definition of the curvature tensor (2.92) resembles the

second structure equation (2.90), the connections in the curvature tensor F need not
obey the first structure equation. It is only after the equations of motion are imposed
that the curvature tensors agree. (To distinguish, we will call the F the curvature tensor,
while referring to R as the Ricci curvature tensor.) Indeed, the equations of motion can
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be obtained by varying the action with respect to eI and ωIJ

εµνρσϵIJKLDµ(eKµ eLν ) =0 (from δωIJ) (2.93)
εµνρσϵIJKLe

I
µF

JK
νρ =0 (from δeIµ) , (2.94)

where the first equation gives us the compatibility condition between the connection
and the tetrad. Therefore it leads us to the first structure equation (2.89). The second
equation can be shown, after some Levi-Civita index gymnastics, to be equivalent to
Einstein’s equation in vacuum.

So we have shown that (2.91) is a good action that gives rise to the correct local
equations of motion. However, similar to the theta term in Yang-Mills theory, we can
add a topological term to the our gravitational Lagrangian, parameterized by the so
called Barbero-Immiriz parameter

L =Loriginal + Lγ (2.95)

Lγ = 1
2γ

|e|eµI eνJϵIJKLFKL
µν (ω) . (2.96)

From now on, we will assume that our full Lagrangian contains the Lγ term. (Our
guess for the action (2.91) has an overall constant ambiguity. It is expected to contain
Newton’s constant G. The exact expression for the constant can be fixed by coupling
gravity to matter and demanding that we regain Einstein’s equations with matter. The
result is an overall constant of 1/(16πG) for the first ∼ relation in (2.91).)

2.1.4.5 ADM for a first-order formulation

Even though we are now using tetrad variables eµI instead of the space-time metric gµν ,
we still need to perform an ADM splitting (in space-time, i.e. in index µ) in order to carry
out a canonical analysis. This splitting will allow us to use triads instead of tetrads and
deal with spin connections Γ and extrinsic curvature instead of the original connection
1-form ω. A canonical analysis in this context will reveal 4 types of constraints: the
original Hamiltonian (scalar) constraint and diffeomorphism (vector) constraints, the
Gauss constraint similar to Yang-Mills, and lastly a constraint which we will call the
compatibility constraint for lack of a better name. The compatibility constraint combined
with the Gauss constraint will give us the compatibility condition between the spatial
covariant derivative (defined using Γ) and the triads, as well as relate components of
the connection 1-form ω to the extrinsic curvature. The ADM splitting and canonical
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analysis are tedious but straightforward. So instead of deriving them in detail, we will
simply list important results while only sketching how they are obtained.

First, let us clarify some notations. Regarding indices we will use the following
convention

Original space-time (gµν)

Greek letters like µ, ν, ρ for space-time indices
Coordinate names like t, x, y, z for specific space-time components
Lowercase letters like a, b, c for spatial indices of space-time

Internal space-time (ηIJ)

Capital letters like I, J,K for internal space-time indices
Numbering of components 0, 1, 2, 3 for specific internal space-time components

Lower case letters like i, j, k for internal spatial indices .

Additionally, while we will not a priori assume the use of natural embedding coordinates
(2.10), it will be worthwhile to use the intuition they provide; the most immediate
one being the observation that contractions with nµ and tµ select out the “temporal”
components of the contracted indices. This intuition will help us keep track of which
objects are considered spatial (or on the slice Σt) and which are temporal based on their
orthogonality with nµ and tµ.

The ADM split. With now two spaces (the original space-time and the internal
space), we ought to do two splittings. The original space-time can be split up using the
original method. The key relation we will be using is simply nµ = 1/N(tµ −Nµ).

Moving on to the internal space. We first construct, using the tetrads, a space-time
vector EµI that lies on Σt

EµI = eµI + nµnνe
ν
I .

We can check that EµI nµ = EµI nI = 0 (where nI = eIνn
ν) is satisfied. So this EµI is a

spatial vector on Σt. Therefore, when the I index is restricted to the spatial ones, we
will call objects that are proportional to EµI a triad.

Because gµν = ηIJe
I
µe
J
ν , we have an additional SO(1, 3) redundancy when using

tetrads. It will be convenient to reduce this redundancy with partial gauge fixing

eµ0 = nµ ,
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which can be done by demanding nI = (1, 0, 0, 0) in the usual Minkowski coordinates.
This partial gauge fixing allows us to select out the temporal components of internal
space tensors, that are later shown to be related to the extrinsic quantities that make up
canonical conjugates and multipliers for constraints. (This is similar to what happens
in the original ADM construction using metric variables. A rough analogy is: nI is to
internal space what tµ is to space-time in the original ADM construction.) Kinematically,
we now have everything we need for a canonical analysis. With the introduction of Lγ

we will see that we can find at least two sets of canonical variables to use.
Finding a canonical pair. While we could look for the canonical pairs with brute

force calculation, it is tedious and not very telling. The structure of the theory will
become much clearer if we instead try to finesse our way through by utilizing analogies
with the Yang-Mills theory.

Starting with the action

S[e, ω] = 1
16πG

∫
d4x|e|eµI eνJ(δ[I

Kδ
J ]
L − 1

2γ
ϵIJKL)FKL

µν (ω) , (2.97)

we look for a canonical variable as starting point. While our action is very different
from a Yang-Mills action, the expression of the curvature tensor (analogous to the field
strength) along with the role the connection 1-form plays in the covariant derivative hints
that the connection should be the fundamental field, while the tetrad plays the role of
the canonical momentum. So we can try using the tetrad as a canonical momentum.
However, there is one more subtlety. In curved space-time, the Legendre transform of a
covariant action typically contains a term like

∫
d3x

√
hpφφ̇ .

This indicates that densitized quantity
√
hpφ should be the conjugate to φ̇ instead of

pφ. In the context of tetrads and connections, this observation suggests that we should
define a candidate canonical momentum as the tetrad with a

√
h factor

P µ
i =

√
h

8πγG
Eµi . (2.98)

We will call these vectors densitized triads. So far we have not proven anything, but
are only defining objects. Our goal is to show that starting with (2.97), P µ

i is indeed
a canonical momentum to the canonical coordinate that is some combination of the
connection ω.
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We first re-express all the triads eµI in terms of P µ
I , nµ and nI . Then combined

with the expansion of nµ = 1/N(tµ − Nµ), we can identify the time-derivative terms
associated with P µ

i by picking out, in the action, any term that contains a factor of the
form

P µ
i t

ν∂ν(. . . )iµ . (2.99)

(This trick relies on the assumption that we are using the temporal coordinate natural
to tµ. A more coordinate-independent way of finding “time-derivative” terms is by
looking for Lie derivative terms Lt along tµ. However, this more generic method requires
integration by parts as an additional step.) Our previous ADM split (including the
partial gauge fixing nI = (1, 0, 0, 0)) and anti-symmetry of indices ensures that many
terms in the expanded action vanish after contraction. Consequently, the terms that fit
our criteria turn out to be

∫
d4xP ν

j t
µ∂µ(γω0j

ν + 1
2
ϵjklω

kl
ν ) ⊂ S[e, ω] . (2.100)

Immediately, we see that the canonical conjugate to P ν
j is

Ajν ≡ 1
2
ϵjklω

kl
ν + γω0j

ν . (2.101)

This quantity is called the Ashtekar-Barbero connection (AB connection). Note that
with coordinates (2.10), the triad is “spatial”, P ν

j = P a
j δ

ν
a , due to its orthogonality with

nν = (1, 0, 0, 0). So only the pull-back of Ajν (to Σt) can be considered as the canonical
momentum to P ν

j . Therefore, whenever we write Ajµ and P ν
j (upper and lower indices

matter), we will implicitly assume that the pull-back is already performed, namely, their
Greek letter indices will only be spatial. (In fact, we could define a quantity by naively
forcing ν = t in (2.101). This term does exist in the action but its time derivative does
not. Eventually, the term Ajt will turn out to be a multiplier for the Gauss constraint,
similar to A0 in electrodynamics.)

With a bit of foreshadowing, we can rewrite the AB connection as

Aiµ =Γiµ + γKi
µ

Γiµ =1
2
ϵiklω

kl
µ

Ki
µ =ω0i

µ ,

where after imposing the Gauss and compatibility constraint, Ki
µ will become the (mixed-

29



index) extrinsic curvature. Here, Γiµ is the spin connection that appears in the spatial
covariant derivative defined as

Dµv
i ≡ ∇µv

i + hνµω
i
ν jv

j = ∇µv
i − ϵijkΓjµvk . (2.102)

Finding a second canonical pair. One might wonder what happens if we did not
introduce Lγ in our action. Obviously, one should not try to find out by naively taking
γ → 0 as P µ

i ∝ 1/γ will blow up. What ought to be done is to take γ → ∞ after the
following canonical transformation and obtain

(Aiµ, P ν
j ) → (γ−1Aiµ, γP

ν
j ) γ→∞−−−→ (Ki

µ,
1

8πG
Eν
j ) , (2.103)

where we have introduced the densitized triad Eµ
i ≡

√
hEµi . After imposing the some

of the previously mentioned constraints, we are left with a second canonical pair that
allows us to describe the geometry with extrinsic curvature and densitized triads. This
second canonical pair has the advantage of being independent of γ whose value can be
imaginary, leading us to a complex phase space. In quantum theory, the value of γ can
lead to complications regarding both the quantization procedure as well as the allowed
semi-classical corrections.

The Hamiltonian and constraints. The (primary) constraints in the first-order
formulation with triads are found, again, by looking for independent combinations of
connections that have no time derivatives in the Lagrangian. The original Hamiltonian
(scalar) and diffeomorphism (vector) constraints are easy to find since they are expected
to be proportional to N and Nµ just like the case in the original ADM formulation
(because the old constraints are obtained from the Poisson bracket between the conjugate
to the lapse or shift and the Hamiltonian). Indeed, after our previous substitution of
eµI = eµI (EµI , n) and nµ = nµ(t, N,Nµ) into the action (2.97), the new constraints resulting
from the use of triads and connections must be proportional to tµ. This makes our search
easier, especially since we have already made sense of some of the tµ∂µ(. . . ) terms in
the previous section. Employing this strategy, it is straightforward to find the terms of
interest are contained in the action as

∫
d4x

(
AjtD(A)

µ P µ
j + (1 + γ2)ϵ n

jmω
0j
t ω 0m

µ P µ
n

)
⊂ S[e, ω] , (2.104)

where we had to integrate by parts and do some gymnastics with ϵ − ϵ contractions.
The superscript on the covariant derivative D(A) means that the connection associated
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with it is the AB connection (instead of ω) and Ajt is (2.101) but with ν = t. These
t-subscripts are results of contractions with tµ.

Just like we hinted before, the term Ajt indeed does not have any time derivatives, and
neither does ω 0j

t . In an extended Hamiltonian Hext where they are considered canonical
variables, their momenta is 0, which is a primary constraint. The secondary constraints
are obtained by demanding their conjugate momenta

π̇Aj
t orω 0j

t
= {πAj

t orω 0j
t
, Hext} = 0 . (2.105)

These conditions give us the remaining 2 of the 4 types of constraints we mentioned
previously

Gj ≡D(A)
a P a

j = 0 (2.106)
Sj ≡ϵ n

jmω
0m
a P a

n = ϵjmK
m
a P

a
n = 0 , (2.107)

where we recall that a, b, c indicate spatial indices of space-time objects. Here, Gj is the
Gauss constraint and Sj is the compatibility constraint. The two combined together
ensures D (the spatial covariant derivative) is compatible with P a

j along with the justi-
fication for Ki

a being the mixed-index extrinsic curvature.
There is one more remaining issue we need to address before we can write out the

Hamiltonian: Our search for time derivatives (or absence thereof) is not yet exhaustive.
So far we have only looked for the conjugates to the triads, which have accounted for
specific combinations of connections ω. As a simple analogy, in a 2-dimensional plane,
x+y is not a faithful representation of independent coordinates x and y. However, x+y

along with x can faithfully represent the two independent coordinates. In our context,
we have only talked about A = Γ + γK (indices suppressed). To cover all independent
components of connection ω, we also check whether Γ has any canonical conjugate. One
can check that it doesn’t and we obtain more constraints. These constraints, with the
help of the Gauss and compatibility constraint, can be partially solved to give us an
expression for the spin connection Γ in terms of the triads. In this sense, we say that
the spin connections are compatible with the triads.

Now we can write down the Hamiltonian using only first-class constraints. This is
because by using compatible spin connections in the action, we can now simply ignore
the secondary (and second class) constraint Si = 0 due to the fact that

D(A)
a P a

j − DaP
a
j ∝ γSj = 0
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is already imposed as a result of the Gauss constraint and spin connection compatibility.
The Hamiltonian for triads and AB connection is

H[A,P ] =
∫

d3x(−ΛiGi +NCHam +NaCDiff
a ) (2.108)

where CHam and CDiff
a are the Hamiltonian (scalar) and diffeomorphism (vector) con-

straints. The AB connection here is understood to contain the triad-compatible spin
connection Γ.

2.2 Modified symmetries: motivations
Canonical effective methods offer a systematic way to discuss potential corrections to the
symmetries of a theory. As we have previously alluded to, classical gravity is ultimately
a gauge theory, albeit one with a complicated algebraic structure. Therefore, symmetries
are a key element for constructing models of quantum gravity. At the effective level, a
given quantum gravity theory will induce corrections that generate new terms in a semi-
classical Lagrangian. These terms must not break the gauge symmetry for the theory to
be consistent. When there are no experiments to help us construct a quantum theory of
gravity, these consistency conditions make up one of the few guiding principles available
to us.

In this chapter, we apply canonical effective methods to analyze quantum corrections
arising from quantization that uses different canonical variables. We will exemplify how
symmetries of gravity guide us in clarifying ambiguities in effective theories. However,
unlike the usual analysis of effective field theories which takes place in Lagrangian for-
malism, we will adopt the canonical (Hamiltonian) perspective. Special emphasis will be
laid on the closure of Poisson brackets between first-class constraints—more commonly
known as the Dirac hypersurface deformation algebras (HDA) in the context of gravity.
We will chose to consider effective theories coming from loop quantum gravity as this
theory follows more directly from canonical quantization. However, our analysis can be
easily generalized to any theory of quantum gravity so long as an effective Hamiltonian
(or Lagrangian) is obtainable.
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2.3 Canonical quantum gravity corrections
Several independent studies have shown that holonomy and inverse-triad corrections
from loop quantum gravity (LQG) modify hypersurface-deformation brackets for spher-
ically symmetric gravity and related midisuperspace models [9–18], thereby realizing a
deformation of general covariance [19–22]. These modifications are closely related [23]
to anomaly-free models of perturbative cosmological inhomogeneity constructed within
the same framework [24–28], suggesting that modified space-time structures may be a
generic consequence of quantum-geometry effects in loop quantum gravity. In [29] (see
also [30]), however, it has been shown that such modifications may be avoided if one uses
self-dual connections and a densitized lapse function, as in [31–33], instead of real vari-
ables [34]. These models, valid for self-dual Lorentzian gravity with Barbero–Immirzi
parameter γ = ±i or Euclidean gravity with Barbero–Immirzi parameter γ = ±1, are
rather special because the Hamiltonian constraint simplifies considerably compared with
general γ. It is therefore of interest to compare the structures encountered in various
models in order to determine whether undeformed space-time structures could be real-
ized more broadly.

Such a comparison is not obvious, for instance, because the modifications considered
in [29] are different from those found in anomaly-free models using real variables. In
particular, those modifications cannot be implemented in an anomaly-free manner for
arbitrary choices of the Barbero–Immirzi parameter: We will show that the classical
form of the constraint brackets can be retained only with a specific class of holonomy
modifications for γ = ±i (self-dual Lorentzian gravity) or γ = ±1 (a special version of
Euclidean gravity). More general treatments of the self-dual or Euclidean case, imple-
mented in close analogy with the real connection formulation, lead to either anomalies
or deformations of the space-time structure. This result then allows us to draw con-
clusions about properties of the Hamiltonian constraint required for certain types of
modifications to be consistent.

At a technical level, an analysis of the Hamiltonian constraint and its Poisson brack-
ets indicates a formal relationship between modifications of space-time structures and
the appearance of spatial derivatives of the densitized triads (canonically conjugate to
the connection). Spatial derivatives of the triad generically appear in the Hamiltonian
constraints of gravitational theories because they are required for curvature components.
But for γ2 = ±1, and only in this case, they are completely absorbed in the connection
components through the spin connection which, in combination with extrinsic-curvature
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components, forms the Ashtekar connection in the self-dual case [31], or the Ashtekar–
Barbero connection in the real case [34].

This structural statement allows us to draw a first conclusion about the genericness
of modified space-time structures. Using standard arguments from effective field theory
(generalized here to a canonical setting), modified brackets should be considered generic,
unless one can show that the full quantum theory has a symmetry that protects the
derivative structure of terms in the Hamiltonian constraint as encountered for self-dual
variables, or more generally for γ2 = ±1. No such symmetry is known. Although it has
been shown that the real Ashtekar–Barbero connection, unlike the self-dual one, cannot
be identified with the pull-back of a space-time connection, this result is of an “aesthetic
nature” [35] and does not characterize the case of γ2 = ±1 via a physical symmetry
that could restrict possible quantum corrections. Moreover, applying this result in the
present context would amount to pre-supposing the classical space-time structure in
a model of quantum gravity. In canonical quantum gravity, the structure of space-
time is determined intrinsically, based on the observation that space-time symmetries
of a gravitational theory are gauge transformations, generated in Hamiltonian form by
the constraints that are to be quantized in order to define canonical quantum gravity.
Poisson brackets of these constraints, or commutators of their operator versions, then
encode the structure of space-time. An analysis of possible consistent modifications of
these brackets, such that they remain closed but possibly with non-classical structure
functions, show whether the symmetries remain unviolated after quantization. As we
will see, such modifications with intact (but possibly deformed) symmetry exist for any
value of γ. Therefore, no value of γ is distinguished by the presence of a symmetry.

In this work, we will mainly focus on an interpretation of the constraints as repre-
senting Euclidean gravity. We will then be exempt from having to consider a possible
role of reality conditions, the implementation of which remains poorly understood in a
quantum theory of self-dual variables. However, as the constraints are formally identi-
cal in Euclidean gravity with γ = ±1 and self-dual Lorentzian gravity, our results can
formally be used also in the latter case.

2.4 Unsolved Gauss constraint
The model considered in [29], following [32], consists of three canonical pairs of fields
— Ai(x) and Ei(x) for i = 1, 2, 3 depending on the radial coordinate x of a spherically
symmetric manifold — subject to three constraints. Two of the constraints function as
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generators of hypersurface deformations in space-time and therefore encode the structure
of space-time. The third one, a Gauss constraint, implements an internal symmetry of
SO(2)-rotations of two of the canonical pairs.

While the form of the Gauss constraint and the spatial generator of hypersurface
deformations (the diffeomorphism constraint) are strictly determined by the canonical
structure together with the corresponding Lie algebras of infinitesimal rotations and
1-dimensional diffeomorphisms, respectively, there is much freedom in specifying the
normal generator of hypersurface deformations, or the Hamiltonian constraint, even if
the physical dynamics is fixed. The version used in [29, 32] is rather special in that it
is quadratic in the canonical fields and does not contain spatial derivatives of Ei (while
first-order spatial derivatives of Ai do appear). In the first part of this section, we
will strengthen the result of [29] by showing that the consistent deformation found in
this paper is unique within a family of models that preserve the quadratic nature and
derivative structure of the Hamiltonian constraint. In the second part of this section,
however, we will show that this rigidity is not stable within a larger class of models
that determine the same classical dynamics but do not respect the restricted derivative
structure (parameterized by the so-called Barbero–Immirzi parameter γ [34, 36]). The
following sections will then place our discussion in a setting of effective field theory, and
highlight the role played by the Gauss constraint.

2.4.1 Regaining the quadratic Hamiltonian constraint
In order to derive our rigidity result, we start from the condition that the Poisson
brackets of constraints are closed and see what kind of restrictions it imposes on the
form of constraints. The specific procedure follows the classical (and classic) result [37]
that the full Hamiltonian constraint, up to second order in derivatives, can be regained
uniquely from the classical hypersurface-deformation brackets, as specified in [38]. This
procedure has already been applied to spherically symmetric models in [19], but only
for modifications of the dependence of the Hamiltonian constraint on the triad variables
Ei. Our calculations here differ from [19] in that we use connection variables Ai, and
take into account potential modifications of the dependence on these variables.

As already indicated, we assume for now that the Hamiltonian constraint is quadratic
in the canonical fields without spatial derivatives of the triad Ei. This version of the
constraint is realized in spherically symmetric gravity if one uses self-dual connection
variables [31] in Lorentzian signature, or real Barbero-type variables [34] in Euclidean
signature such that the Barbero–Immirzi parameter is equal to γ = ±1. (One should
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also smear the Hamiltonian constraint with a lapse function of density weight minus
one to guarantee the quadratic nature. We will come back to the subtleties arising from
densities later.) This parameter is therefore fixed and does not appear in the remainder
of this subsection. Working with

{A1(x), E1(y)} = 2Gδ(x, y) (2.109)

and
{A2(x), E2(y)} = Gδ(x, y) , {A3(x), E3(y)} = Gδ(x, y) (2.110)

while all other brackets of basic variables vanish. (Note the missing factor of 2 in the last
two brackets, compared with (2.109), which is a consequence of the fact that (A2, E

2) and
(A3, E

3) encode the same degree of freedom after the Gauss constraint is implemented.)

{A1(x), E1(y)} = 2{A2/3(x), E2/3(y)} . (2.111)

This canonical structure completely determines the Gauss constraint

G[Λ] = 1
2G

∫
dxΛ

(
(E1)′ − 2E2A3 + 2E3A2

)
(2.112)

and the diffeomorphism constraint

D[M ] = 1
2G

∫
dxM

(
2A′

3E
3 + 2A′

2E
2 − A1(E1)′

)
(2.113)

but not the Hamiltonian constraint. Sometimes, it is convenient to combine the diffeo-
morphism constraint D[M ] and the Gauss constraint G[Λ] to form the vector constraint

V [M ] = D[M ] +G[A1M ] (2.114)

= 1
G

∫
dxM

(
(A′

3 + A1A2)E3 + (A′
2 − A1A3)E2

)
.

2.4.1.1 Constraints algebra and densities

We will now use these constraints and attempt to derive the most general form of the
Hamiltonian constraint, purely quadratic in the canonical fields and with up to first
derivatives of Ai but no derivatives of Ei, such that all constraints have closed Poisson
brackets. With this assumption, we can write the local (unsmeared) constraint as

H = H110E1E2 +H101E1E3 +H011E2E3
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+H200(E1)2 +H020(E2)2 +H002(E3)2 , (2.115)

where we use the convention that H[N
∼

] = (2G)−1 ∫ dxN
∼

(x)H, H ijk may be functions of
A1, A2, A3 and their spatial derivatives up to first order.

The appearance of densitized smearing function stems from the way we organize
our integrand inside the full Hamiltonian constraint H. For instance, if we chose to
write our Hamiltonian in terms of the metric, we would typically not use a densitized
smearing function but instead write it as H ∼

∫
dxNHmetric with a smearing function

N of density weight ω = 0. However, if we wish to obtain a Hamiltonian polynomial in
canonical variables then we should use densitized triads and connections; but the price
we pay is the introduction of densitized smearing function N

∼
.

As shown in the introductory sections, rewriting the Hamiltonian with densitized
triads is straightforward albeit tedious in the classical theory. Among the steps is an
absorption of 1/

√
|h| into the smearing function. We may subsequently calculate brackets

concerning H in two ways: We can be rigorous and treat the densitized smearing function
as a function of phase space variables (metric or triads), or we can pretend it is a generic
(−1)-weighted scalar function. The differences between these two operations vanish
on-shell

{H[N(x)], D[M(y)]} =
∫

dxdy{N
∼

(A,E)H,M(x)D}

=
∫

dxdy
(

{H,D}N
∼

(A,E)M(x) + {N
∼

(A,E),D}HM(x)
)

≈{H[N(x)
∼

], D[M(y)]}pretending N
∼

=N
∼

(x) , (2.116)

where the second term in the second line vanishes on-shell. Note that so far the con-
clusion applies to any constraint as opposed to just first-class ones. It is essentially the
bracket {H,D} that informs us of the first-class nature of the constraints and thus the
gauge structure.

The choice to ignore brackets containing densitized smearing functions is not so
innocent anymore in a quantum theory; path integral quantization tells us that off-
shell paths contribute to the dynamics of a quantum system. Therefore, the quantum
version of the constraints algebra (whatever that means in quantum gravity) should
be analyzed by treating the smearing function’s dependence on phase space variables
rigorously. However, as we have argued, the space-time structure is mainly encoded in
the first-class nature of the constraints. At least in a semi-classical regime, the first-class
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information is contained in the bracket {H,D} ∼ H as opposed to {N
∼
,D}, which exists

even if H and D are not first-class. Therefore, we will still be able to obtain valuable
information on the allowed modifications to the bracket algebras by just by focusing on
the H-D bracket (and similarly the H-H bracket).

2.4.1.2 Diffeomorphism constraint

We first consider the bracket of the Hamiltonian and diffeomorphism constraints, writing
it in local form as

{H(x),D(y)} = G
∫

dz
(

2 δH(x)
δA1(z)

δD(y)
δE1(z)

− 2 δH(x)
δE1(z)

δD(y)
δA1(z)

(2.117)

+ δH(x)
δA2(z)

δD(y)
δE2(z)

− δH(x)
δE2(z)

δD(y)
δA2(z)

+ δH(x)
δA3(z)

δD(y)
δE3(z)

− δH(x)
δE3(z)

δD(y)
δA3(z)

)

where D[M ] = (2G)−1 ∫ dxM(x)D(x). If this bracket is to correspond to classical hy-
persurface deformations, it should be equal to

{H(x),D(y)} = 2G (H′(x)δ(x, y) + 2H(x)δ′(x, y)) , (2.118)

using the convention that a prime on a delta function always indicates a derivative with
respect to the first argument. Therefore,

δ′(x, y) = −δ′(y, x) . (2.119)

If the bracket is of the given form, the smeared constraints have the bracket

{H[N
∼

], D[M ]} = 1
4G2

∫
dxdyN

∼
(x)M(y){H(x),D(y)}

= 1
2G

∫
dxdyN

∼
(x)M(y) ((∂xH(x))δ(x, y) − 2H(x)∂yδ(x, y))

= −H[(N
∼
M)′] + 2H[N

∼
M ′] = −H[MN

∼
′ −M ′N

∼
] (2.120)

as required if N
∼

has density weight minus one for the purpose of having a quadratic
Hamiltonian constraint.

We proceed by evaluating the Poisson bracket. Considering the assumed dependence

38



(2.115) of H on the canonical variables, we have

{H(x),D(y)} = 2G
∫

dz
((

∂H(x)
∂A1(z)

δ(x, z) + ∂H(x)
A′

1(z)
δ′(x, z)

)
(−A1(y)δ′(y, z))

− ∂H(x)
∂E1(z)

δ(x, z)
(
−(E1)′(y)δ(y, z)

)
+
(
∂H(x)
∂A2(z)

δ(x, z) + ∂H(x)
A′

2(z)
δ′(x, z)

)
A′

2(y)δ(y, z)

− ∂H(x)
∂E2(z)

δ(x, z)E2(y)δ′(y, z)

+
(
∂H(x)
∂A3(z)

δ(x, z) + ∂H(x)
A′

3(z)
δ′(x, z)

)
A′

3(y)δ(y, z)

− ∂H(x)
∂E3(z)

δ(x, z)E3(y)δ′(y, z)
)

= 2G
(
∂H(x)
∂A2(x)

A′
2(x) + ∂H(x)

∂A3(x)
A′

3(x) + ∂H(x)
∂E1(x)

(E1)′(x)
)
δ(x, y)

−
(
∂H(x)
∂A1(x)

A1(y) + ∂H(x)
∂E2(x)

E2(y) + ∂H(x)
∂E3(x)

E3(y)

+ ∂H(x)
∂A′

2(x)
A′

2(y) + ∂H(x)
∂A′

3(x)
A′

3(y)
)
δ′(y, x)

−
∫

dz ∂H(x)
∂A′

1(z)
A1(y)δ′(x, z)δ′(y, z) , (2.121)

where we used (2.119).
The last term has a product of two derivatives of delta functions, which does not

occur in (2.118). Integrating by parts can remove one of the derivatives, but it also gives
a second-order derivative of a delta function which does not appear either in (2.118).
The term, therefore, must be zero, so that we already know that H cannot depend on
A′

1. In order to bring the remaining terms to a form close to (2.118), we use the identity

A(x)B(y)δ′(y, x) = A(x)∂y (B(y)δ(y, x)) − A(x)B′(y)δ(x, y)

= A(x)∂y (B(x)δ(y, x)) − A(x)B′(x)δ(x, y)

= A(x)B(x)δ′(y, x) − A(x)B′(x)δ(x, y) (2.122)

and write

{H(x),D(y)} = 2G
(
∂H(x)
∂A1(x)

A′
1(x) + ∂H(x)

∂A2(x)
A′

2(x) + ∂H(x)
∂A3(x)

A′
3(x)
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+ ∂H(x)
∂A′

2(x)
A′′

2(x) + ∂H(x)
∂A′

3(x)
A′′

3(x)

+ ∂H(x)
∂E1(x)

(E1)′(x) + ∂H(x)
∂E2(x)

(E2)′(x) + ∂H(x)
∂E3(x)

(E3)′(x)
)
δ(x, y)

+2G
(
∂H(x)
∂A1(x)

A1(x) + ∂H(x)
∂A′

2(x)
A′

2(x) + ∂H(x)
∂A′

3(x)
A′

3(x)

+ ∂H(x)
∂E2(x)

E2(x) + ∂H(x)
∂E3(x)

E3(x)
)
δ′(x, y) . (2.123)

Since H does not depend on A′
1, the first parenthesis (multiplied by a delta function)

is equal to H′ without any further restriction on the dependence on other canonical
variables. In order to evaluate the second parenthesis, which according to (2.118) should
equal 4GH, we use the quadratic form (2.115) and obtain the condition

∂H(x)
∂A1(x)

A1(x) + ∂H(x)
∂A′

2(x)
A′

2(x) + ∂H(x)
∂A′

3(x)
A′

3(x)

+H110E1E2 +H101E1E3 + 2H011E2E3 + 2H020(E2)2 + 2H002(E3)2

= 2
(
H110E1E2 +H101E1E3 +H011E2E3 +H020(E2)2 +H002(E3)2

)
(2.124)

or

∂H(x)
∂A1(x)

A1(x) + ∂H(x)
∂A′

2(x)
A′

2(x) + ∂H(x)
∂A′

3(x)
A′

3(x) = H110E1E2 +H101E1E3 + 2H200(E1)2

after some cancellations. Comparing coefficients of EiEj in this equation, we obtain

∂H110

∂A1
A1 + ∂H110

∂A′
2
A′

2 + ∂H110

∂A′
3
A′

3 = H110 (2.125)

∂H101

∂A1
A1 + ∂H101

∂A′
2
A′

2 + ∂H101

∂A′
3
A′

3 = H101 (2.126)

∂H011

∂A1
A1 + ∂H011

∂A′
2
A′

2 + ∂H011

∂A′
3
A′

3 = 0 (2.127)

∂H200

∂A1
A1 + ∂H200

∂A′
2
A′

2 + ∂H200

∂A′
3
A′

3 = 2H200 (2.128)

∂H020

∂A1
A1 + ∂H020

∂A′
2
A′

2 + ∂H020

∂A′
3
A′

3 = 0 (2.129)

∂H002

∂A1
A1 + ∂H002

∂A′
2
A′

2 + ∂H002

∂A′
3
A′

3 = 0 . (2.130)

If we assume polynomial dependence of H on the connection variables, we can conclude
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that the coefficients H110 and H101 must be linear in A1, A′
2 and A′

3, while H200 must
be quadratic in these variables. The coefficients H011, H020 and H002 cannot depend on
A1, A′

2 or A′
3.

2.4.1.3 Bracket of Hamiltonian constraints

The Poisson bracket of two Hamiltonian constraints can be computed in a similar way.
Classically, we expect

{H(x),H(y)} = 2G
(
E1(x)2V(x)δ′(y, x)

−E1(y)2V(y)δ′(x, y)
)

(2.131)

with the local vector constraint V(x) such that V [M ] = (2G)−1 ∫ dxM(x)V(x). If the
space-time structure is deformed, the bracket is multiplied by a non-constant function β
which, for a comparison with [29], we assume to depend only on the Ai. (This function
should approach β = 1 in some classical limit, usually for small Ai.) After using (2.115)
and comparing coefficients of EiEj, we obtain the equations

2
(

−2∂H
110

∂A′
1
H200 − ∂H200

∂A′
1
H110

)
− ∂H110

∂A′
2
H110 − 2∂H

200

∂A′
2
H020 − ∂H110

∂A′
3
H101 − ∂H200

∂A′
3
H011

= 4β(A′
2 −A1A3) (2.132)

2
(

−2∂H
101

∂A′
1
H200 − ∂H200

∂A′
1
H101

)
− ∂H101

∂A′
2
H110 − 2∂H

200

∂A′
2
H011 − ∂H101

∂A′
3
H101 − ∂H200

∂A′
3
H002

= 4β(A′
3 +A1A2) , (2.133)

which are sensitive to the modification the function β, as well as several β-independent
equations:

4∂H
200

∂A′
1
H200 + ∂H200

∂A′
2
H110 + ∂H200

∂A′
3
H101 = 0 (2.134)

2
(
∂H110

∂A′
1
H110 + 2∂H

020

∂A′
1
H200

)
+ 2∂H

110

∂A′
2
H020 + ∂H020

∂A′
2
H110 + ∂H110

∂A′
3
H011 + ∂H020

∂A′
3
H101

= 0 (2.135)

2
(
∂H101

∂A′
1
H101 + 2∂H

002

∂A′
1
H200

)
+ ∂H101

∂A′
2
H011 + ∂H002

∂A′
2
H110 + 2∂H

101

∂A′
3
H002 + ∂H002

∂A′
3
H101

= 0 (2.136)

2
(

2∂H
011

∂A′
1
H200 + ∂H101

∂A′
1
H110 + ∂H110

∂A′
1
H101

)
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+∂H011

∂A′
2
H110 + 2∂H

101

∂A′
2
H020 + ∂H110

∂A′
2
H011 + ∂H011

∂A′
3
H101 + ∂H101

∂A′
3
H011 + 2∂H

110

∂A′
3
H002

= 0 . (2.137)

Four additional equations,

2∂H
020

∂A′
1
H110 + 2∂H

020

∂A′
2
H020 + ∂H020

∂A′
3
H011

= 0 (2.138)

2∂H
002

∂A′
1
H101 + ∂H002

∂A′
2
H011 + 2∂H

002

∂A′
3
H002

= 0 (2.139)

2
(
∂H011

∂A′
1
H110 + ∂H020

∂A′
1
H101

)
+ 2∂H

011

∂A′
2
H020 + ∂H020

∂A′
2
H011 + ∂H011

∂A′
3
H011 + 2∂H

020

∂A′
3
H002

= 0 (2.140)

2
(
∂H011

∂A′
1
H101 + ∂H002

∂A′
1
H110

)
+ ∂H011

∂A′
2
H011 + 2∂H

002

∂A′
2
H020 + 2∂H

011

∂A′
3
H002 + ∂H002

∂A′
3
H011

= 0 (2.141)

are identically satisfied, given that H011, H020 and H002 cannot depend on A′
i. Because

H cannot depend on A′
1, we may simplify the set of equations to

−∂H110

∂A′
2
H110 − 2∂H

200

∂A′
2
H020 − ∂H110

∂A′
3
H101 − ∂H200

∂A′
3
H011 = 4β(A′

2 − A1A3) (2.142)

−∂H101

∂A′
2
H110 − 2∂H

200

∂A′
2
H011 − ∂H101

∂A′
3
H101 − ∂H200

∂A′
3
H002 = 4β(A′

3 + A1A2) (2.143)

∂H200

∂A′
2
H110 + ∂H200

∂A′
3
H101 = 0 (2.144)

2∂H
110

∂A′
2
H020 + ∂H110

∂A′
3
H011 = 0 (2.145)

∂H101

∂A′
2
H011 + 2∂H

101

∂A′
3
H002 = 0 (2.146)

2∂H
101

∂A′
2
H020 + ∂H110

∂A′
2
H011 + ∂H101

∂A′
3
H011 + 2∂H

110

∂A′
3
H002 = 0 .(2.147)

2.4.1.4 Gauss constraint

The Gauss constraint further restricts the combinations of basic variables which can
appear in the Hamiltonian constraint. The gauge-invariant combinations that con-
tribute to the classical constraint are E1, (E2)2 + (E3)2, A2E

2 + A3E
3, A2

2 + A2
3 and
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A1(A2E
2 + A3E

3) − (A′
2E

3 − A′
2E

2). (The identity (2.122) is useful for seeing that the
last combination has a vanishing Poisson bracket with the unsmeared Gauss constraint.)
These expressions show that A1, A′

2 and A′
3 can appear in gauge-invariant form only in

combination with E2 and E3. It is therefore impossible to fulfill the condition that H200

be quadratic in A1, A′
2 and A′

3 because H200 is defined as the E-independent coefficient
of (E1)2 in the Hamiltonian constraint. For Hamiltonian constraints quadratic in Ei,
we have H200 = 0.

Equations (2.142) and (2.143) then simplify to

−∂H110

∂A′
2
H110 − ∂H110

∂A′
3
H101 = 4β(A′

2 − A1A3) (2.148)

−∂H101

∂A′
2
H110 − ∂H101

∂A′
3
H101 = 4β(A′

3 + A1A2) . (2.149)

For β = 1, these equations are obeyed by the classical H110
cl = 2(A1A2 + A′

3) and
H101

cl = 2(A1A3 − A′
2), as they should. For β 6= 1, we can solve these two equations

by H110 = β1H
110
cl and H101 = β2H

101
cl , provided that β1 and β2 do not depend on

spatial derivatives of Ai and are such that β1β2 = β. Invariance under transformations
generated by the Gauss constraint, which mix the terms of H110

cl and H101
cl , implies that

β1 = β2, and therefore β > 0 and β1 = β2 =
√
β. This modification function can be

eliminated from the contributions of H110 and H101 to the constraint by absorbing it in
the lapse function, thus moving the modification to the remaining contributions from
H020 = β−1/2H020

cl and H002 = β−1/2H002
cl . Therefore, the only non-trivial modification

of the dynamics is in the contributions from H020 and H002 which, as already shown,
can only depend on A2 and A3. Again invoking transformations generated by the Gauss
constraint, the modified term β−1/2(H020

cl + H002
cl ) is an arbitrary (positive) function of

A2
2 +A2

3, which is equivalent to the modification found in [29] and therefore strengthens
their result.

If we relax the condition that the Hamiltonian constraint does not depend on spatial
derivatives of the densitized triad, additional gauge-invariant combinations are possible.
For instance, the extrinsic-curvature component

K1 = A1 − (E2)′E3 − E2(E3)′

(E2)2 + (E3)2 (2.150)

is gauge invariant. Moreover, if spatial derivatives of the densitized triad are allowed, the
Gauss constraint can be used to rewrite the Hamiltonian constraint without changing
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the on-shell behavior. For instance, the identity

A1(A2E
2 + A3E

3) + 2E2A′
3 − 2E3A′

2 (2.151)
= (E1)′′ + A2(A1E

2 + 2(E3)′) + A3(A1E
3 − 2(E2)′) − G ′

eliminates spatial derivatives of A2 and A3 from the Hamiltonian constraint, in favor of a
second-order spatial derivative of E1. This new form is much closer to the expression of
the Hamiltonian constraint in extrinsic-curvature variables [39], and may allow different
modified brackets than the quadratic version (2.115) even if one works with the reduced
Ashtekar connections Ai.

The possibility of rewriting the Hamiltonian constraint by using the Gauss constraint
explains why different formulations of the same classical theory may give rise to differ-
ent modified brackets: The Gauss constraint depends on A2 and A3, and therefore,
depending on how it is used in writing the Hamiltonian constraint, restricts possible
modifications. In extrinsic-curvature variables, this ambiguity does not appear because
the Gauss constraint is solved explicitly.

From the perspective of effective field theory, applied here to the classical structure of
up to second-order derivatives, restricting the dependence of the Hamiltonian constraint
on spatial derivatives of Ei leads to non-generic models. The classical constraint is
quadratic in Ai, which, according to the field equations implied by the theory, amounts
to terms with up to two derivatives. Any term that is consistent with the symmetries
of the theory (generated by the constraints) and has up to two derivatives (temporal or
spatial) should then be allowed for a generic model. Such theories should include terms
with up to second-order spatial derivatives of Ei, in addition to the quadratic terms in
Ai which contribute two time derivatives. (A higher-derivative theory beyond second
order would be obtained by including quantum back-reaction effects, which is not the
purpose of this paper.)

2.4.2 Arbitrary Barbero–Immirzi parameter
We will now show that the preceding rigidity result is not stable within a class of models
in which spatial derivatives of the densitized triad are allowed to appear. A suitable set
of constraints that describes the same classical physics as, depending on the signature,
Euclidean or self-dual gravity is obtained by letting the Barbero–Immirzi parameter
vary, instead of fixing it to a specific value such that γ2 = ±1. The modification found
in [29] is therefore not generic. To this end, we will now switch to a general setting
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of spherically symmetric gravity in which the Barbero–Immirzi parameter and other
numerical factors (as well as the gravitational constant G) are included.

Spherically symmetric gravity can be formulated as a Hamiltonian theory with phase
space given by the canonical pairs, subject to three constraints. This setting has been
formulated in [32] for self-dual variables and in [39] for real variables. In order to avoid
having to impose reality conditions, we follow the latter notation, in which the canonical
pairs (A1, E

1), (A2, E
2) and (A3, E

3) are such that

{A1(x), E1(y)} = 2γGδ(x, y) (2.152)

and

{A2(x), E2(y)} = γGδ(x, y) (2.153)
{A3(x), E3(y)} = γGδ(x, y) (2.154)

(a version of (2.109) and (2.110) for arbitrary real γ). They are subject to the Gauss
constraint

G[Λ] = 1
2γG

∫
dxΛ

(
(E1)′ + 2A2E

3 − 2A3E
2
)

(2.155)

smeared with a multiplier Λ, the diffeomorphism constraint

D[Nx] = 1
2γG

∫
dxNx

(
−A1(E1)′ + 2A′

3E
3 + 2A′

2E
2
)

(2.156)

smeared with the shift vector Nx, and the Hamiltonian constraint

H[N
∼

] = 1
2G

∫
dxN

∼

(
2A1E

1(A2E
2 + A3E

3)

+(A2
2 + A2

3 − 1)
(
(E2)2 + (E3)2

)
+ 2E1

(
E2A′

3 − E3A′
2

)
+ (ϵ− γ2)

(
2K1E

1(K2E
2 +K3E

3) + ((K2)2 + (K3)2)((E2)2 + (E3)2)
))

(2.157)
= HE[N

∼
] +HL[N

∼
]

smeared with the lapse function N
∼

of density weight −1. The non-polynomial relation-
ship between the extrinsic-curvature components K1, K2 and K3 with the basic variables
is given below.

In all three constraints, the prime represents a derivative with respect to the radial
coordinate x. Moreover, γ in (2.157) is the Barbero–Immirzi parameter [34, 36] and
ϵ = ±1 the space-time signature, such that ϵ = 1 in the Euclidean case and ϵ = −1 in
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the Lorentzian case. As usual, it is convenient to split the Hamiltonian constraint into
the Euclidean part

HE[N
∼

] = 1
2G

∫
dxN

∼

(
2A1E

1(A2E
2 + A3E

3)

+ (A2
2 + A2

3 − 1)
(
(E2)2 + (E3)2

)
+ 2E1

(
E2A′

3 − E3A′
2

))
(2.158)

and the “Lorentzian” contribution

HL[N
∼

] = − γ2 − ϵ

2G

∫
dxN

∼

(
2K1E

1(K2E
2 +K3E

3)

+((K2)2 + (K3)2)((E2)2 + (E3)2)
)
. (2.159)

Thus, H[N
∼

] = HE[N
∼

] for γ = ±1 in Euclidean signature (ϵ = 1), while the “Lorentzian”
contribution (a slight misnomer) also contributes in Euclidean signature if γ 6= ±1. (The
Lorentzian contribution is always required in Lorentzian signature if one works with real
γ such that the Poisson brackets are real.) The canonical variables A1, E2 and E3 have
density weight one.

The geometrical meaning of the phase-space variables is determined as follows: The
fields E1, E2 and E3, as the components of a spherically symmetric densitized triad,
describe a spatial metric qab according to the line element

ds2 = qabdxadxb (2.160)

= (E2)2 + (E3)2

|E1|
dx2 + |E1|(dϑ2 + sin2 ϑdφ2) .

The densitized triad also determines a spin connection such that it is constant with
respect to the resulting covariant derivative. The components of this spin connection
are functions of the densitized triad and its first spatial derivatives:

Γ1 = E3(E2)′ − E2(E3)′

(E2)2 + (E3)2 (2.161)

Γ2 = −1
2

(E1)′E3

(E2)2 + (E3)2 (2.162)

Γ3 = 1
2

(E1)′E2

(E2)2 + (E3)2 . (2.163)

The densitized triad is canonically conjugate to components of extrinsic curvature, Ki,
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i = 1, 2, 3. Since the Γi depend only on Ei, one can add them to Ki without chang-
ing the latter’s canonical relationships with Ei. In this way, the canonical connection
components Ai = Γi + γKi are obtained, using the Barbero–Immirzi parameter γ.

The constrained system is first-class, with brackets of the constraints D[Nx] and
H[N

∼
] according to Dirac’s hypersurface deformations [38] (taking into account the den-

sity weight of N
∼

in the Hamiltonian constraint used here). In particular, the bracket
{H[N

∼
], H[M

∼
]} should be proportional to the diffeomorphism constraint, up to possi-

ble contributions from the Gauss constraint. We display the relevant derivations in
a more general setting, following the observation [29] that, for γ2 = ϵ, the constraint
brackets remain closed in the presence of a “magnetic-field” modification, replacing
B1 := A2

2 +A2
3 −1 in the Euclidean part of the Hamiltonian constraint with an arbitrary

function f(A2
2 + A2

3 − 1). Our aim is to determine whether this modification can be
carried over to the Lorentzian contribution.

We begin with the bracket of two modified Euclidean parts, {HE[N
∼

], HE[M
∼

]}. Thanks
to antisymmetry of the bracket in N

∼
and M

∼
, we need consider only those brackets of

terms that lead to derivatives of delta functions. There are two such contributions,

{2A1(x)E2(x)(A2(x)E2(x) + A3(x)E3(x)), 2E1(y)(E2(y)A3(y)′ − E3(y)A2(y)′)}

= (· · · )δ(x, y) − 4γGA1(x)E1(x)E1(y)
(
A3(x)E2(y) − A2(x)E3(y)

)
∂yδ(x, y)(2.164)

and

{2E1(x)(E2(x)A3(x)′ − E3(x)A2(x)′), 2E1(y)(E2(y)A3(y)′ − E3(y)A2(y)′)}

= (· · · )δ(x, y) − 4γGE1(x)E1(y)
((
E2(x)A2(y)′ + E3(x)A3(y)′

)
∂xδ(x, y)

−
(
E2(y)A2(x)′ + E3(y)A3(x)′

)
∂yδ(x, y)

)
. (2.165)

With these two ingredients, we obtain

{HE[N
∼

], HE[M
∼

]} = γ

G

∫
dx
(
N
∼

′M
∼

−N
∼
M
∼

′
)

(E1)2
(
A1(A2E

3 − A3E
2) + E2A′

2 + E3A′
3

)
= γ2V [(E1)2(N

∼
′M

∼
−M

∼
′N

∼
)] (2.166)

where
V [Λ] = 1

γG

∫
dxΛ

(
A1(E2A3 − E3A2) + A′

3E
3 + A′

2E
2
)

(2.167)

is the vector constraint constraint (2.114), V [Λ] = D[Λ] +G[A1Λ], related to the diffeo-
morphism constraint D through a contribution from the Gauss constraint (2.155).

47



Using
√

det q =
√

|E1|((E2)2 + (E3)2) from (2.160), we can write the smearing func-
tion in (2.166) as

(E1)2
(
N
∼

′M
∼

−M
∼

′N
∼

)
= |E1|

(E2)2 + (E3)2 (N ′M −M ′N) (2.168)

where N =
√

|E1|((E2)2 + (E3)2)N
∼

and M =
√

|E1|((E2)2 + (E3)2)M
∼

are lapse func-
tions without density weight. The coefficient |E1|/ ((E2)2 + (E3)2) in (2.168) is, accord-
ing to (2.160), the radial component of the inverse spatial metric, in agreement with the
classical form of hypersurface-deformation brackets. The system is therefore anomaly-
free for any modification f in (2.157) without any modification of the constraint brackets
and the space-time structure — provided the Lorentzian part does not contribute to the
Hamiltonian constraint, that is in Euclidean gravity with γ = ±1 or in Lorentzian
gravity with γ = ±i. This is consistent with the results reported in [29].

It is easy to see that any function f(A2
2+A2

3−1) can be used in the modified Euclidean
part because this term does not produce derivatives of delta functions in the Poisson
bracket of two Euclidean constraints. Moreover, because A2 and A3 are scalars without
density weight, any such term has the correct Poisson bracket with the diffeomorphism
constraint. However, if γ2 6= ϵ, the cross-term {HE[N

∼
], HL[M

∼
]} in the Poisson bracket

of two Hamiltonian constraints does receive a contribution from f(A2
2 +A2

3 −1) in HE[N
∼

]
because HL[M

∼
], written in the canonical variables Ai and Ei, contains spatial derivatives

of Ei through Γi. An explicit calculation is therefore required to check whether the
bracket can still be closed for f(A2

2 + A2
3 − 1) 6= A2

2 + A2
3 − 1.

We first compute The Poisson brackets of each individual term in HE[N
∼

] with the
full HL[M

∼
]: We obtain

1
G

{∫ dxN(x)A1(x)E1(x)(A2(x)E2(x) + A3(x)E3(x)), HL[M
∼

]}

= γ2 − ϵ

2γ2G2

∫
dxdyN(x)M(y) ((· · · )δ(x, y)

−2A1(x)E1(x)E1(y)(A2(y)E2(y) + A3(y)E3(y)){A2(x)E2(x) + A3(x)E3(x),Γ1(y)}

+E1(x)(A2(x)E2(x) + A3(x)E3(x))
(
E2(y)2 + E3(y)2

)
× {A1(x),−2(A2(y)Γ2(y) + A3(y)Γ3(y)) + Γ2(y)2 + Γ3(y)2}

)
= γ2 − ϵ

2γG

∫
dxdyN(x)M(y)

(
−2A1(x)E1(x)E1(y)(A2(y)E2(y)

+A3(y)E3(y))E
2(x)E3(y) − E2(y)E3(x)

E2(y)2 + E3(y)2
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+2E1(x)(E2(y)2 + E3(y)2)(A2(x)E2(x) + A3(x)E3(x))

×A2(y)E3(y) − A3(y)E2(y) − E3(y)Γ2(y) + E2(y)Γ3(y)
E2(y)2 + E3(y)2

)
∂yδ(x, y)

= −γ2 − ϵ

2γG

∫
dxN(x)M ′(x)E1(A2E

2 + A3E
3)
(
(E1)′ + 2A2E

3 − 2A3E
2
)

= −(γ2 − ϵ)G[NM ′E1(A2E
2 + A3E

3)] (2.169)

up to terms that cancel out when inserted in the antisymmetric {HE[N
∼

], HL[M
∼

]} +
{HL[N

∼
], HE[M

∼
]}. In the detailed calculations, we have used the explicit expressions for

the Γi, from which we also obtain the useful identity

γ(K2E
2 +K3E

3) = A2E
2 + A3E

3 (2.170)

because Γ2E
2 + Γ3E

3 is identically zero.
The second term,

1
2G

{∫ dxN(x)f(A2(x)2 + A3(x)2 − 1)(E2(x)2 + E3(x)2), HL[M
∼

]}

= γ2 − ϵ

2γ2G2

∫
dxdyN(x)M(y)

(
(· · · )δ(x, y)

−2ḟ(x)(E2(x)2 + E3(x)2)E1(y)(A2(y)E2(y) + A3(y)E3(y)){A2(x)2 + A3(x)2,Γ1(y)}
)

= γ2 − ϵ

2γG

∫
dxdyN(x)M(y)

(
(· · · )δ(x, y)

−2ḟ(x)(E2(x)2 + E3(x)2)E1(y)(A2(y)E2(y) + A3(y)E3(y))

×2A2(x)E3(y) − A3(x)E2(y)
E2(y)2 + E3(y)2 ∂yδ(x, y)

)

= 2(γ2 − ϵ)G[NM ′ḟE1(A2E
2 + A3E

3)] − γ2 − ϵ

2γG

∫
dxNM ′ḟE1(E1)′(A2E

2 + A3E
3) , (2.171)

does not vanish on the constraint surface. Therefore, the function f , whose derivative
by its argument we have denoted by ḟ , is now relevant for closed brackets. In particular,
the last contribution containing (E1)′ must be canceled by a corresponding term in the
remaining bracket.

In this last bracket,

B := 1
G

{∫ dxN(x)E1(x)(E2(x)A3(x)′ − E3(x)A2(x)′), HL[M
∼

]}

= γ2 − ϵ

2γ2G2

∫
dxdyN(x)M(y)

(
(· · · )δ(x, y)
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+2E1(x)E1(y)(A2(y)E2(y) + A3(y)E3(y)){E2(x)A3(x)′ − E3(x)A2(x)′,−Γ1(y)}

+2E1(x)E1(y)(A1(y) − Γ1(y)){E2(x)A3(x)′ − E3(x)A2(x)′, A2(y)E2(y) + A3(y)E3(y)}

−2E1(x)(E2(y)2 + E3(y)2)
(
(A2(y) − Γ2(y)){E2(x)A3(x)′ − E3(x)A2(x)′,Γ2(y)}

+(A3(y) − Γ3(y)){E2(x)A3(x)′ − E3(x)A2(x)′,Γ3(y)}
))

= γ2 − ϵ

2γG

∫
dxdyN(x)M(y)

(
(· · · )δ(x, y)

−2E1(x)E1(y)(A2(y)E2(y) + A3(y)E3(y))E
2(x)E2(y)′ + E3(x)E3(y)′

E2(y)2 + E3(y)2 ∂xδ(x, y)

+2E1(x)E1(y)(A2(y)E2(y) + A3(y)E3(y))E
2(x)E3(y) + E3(x)E2(y)

E2(y)2 + E3(y)2 ∂x∂yδ(x, y)

+2(A1(y) − Γ1(y))E1(x)E1(y)(E2(x)A3(y) − E3(x)A2(y))∂xδ(x, y)

+E1(x)E1(y)
(
(A2(y) − Γ2(y))E2(x) + (A3(y) − Γ3(y))E3(y)

)
∂xδ(x, y)

)
, (2.172)

we have a contribution from a second-order derivative of the delta function. Integrating
by parts once in this term and taking into account its contributions to NM ′ and N ′M ,
respectively, (noting that terms with N ′M ′ cancel out in the final antisymmetric bracket)
we write

B = γ2 − ϵ

2γG

∫
dxdyN(x)M(y)

(· · · )δ(x, y)

−2 E1(x)E1(y)
E2(y)2 + E3(y)2

(E2(x)E2(y)′ + E3(x)E3(y)′)(A2(y)E2(y) + A3(y)E3(y))

+(E3(y)E2(y)′ − E2(y)E3(y)′)(E2(x)A3(y) − E3(x)A2(y))
)
∂xδ(x, y)

+E1(x)E1(y)
(
2A1(y)(E2(x)A3(y) − E3(x)A2(y))

+E1(x)E1(y)′(A2(y)E2(x) + A3(y)E3(x))
)
∂xδ(x, y)

−2E1(x)E1(y)
(
A2(y)E2(y)′ + A3(y)E3(y)′ + A2(y)′E2(y) + A3(y)′E3(y)

−2(A2(y)E2(y) + A3(y)E3(y))E
2(x)E2(y)′ + E3(x)E3(y)′

E2(y)2 + E3(y)2

∂xδ(x, y)


= γ2 − ϵ

2γG

∫
dxdyN(x)M(y)

(· · · )δ(x, y) + 2E1(x)E1(y)

×
(
A1(y)(E2(x)A3(y) − E3(x)A2(y)) − (A2(y)′E2(y) + A3(y)′E3(y))

)
∂xδ(x, y)

= (γ2 − ϵ)
(
D[(E1)2N ′M ] +G[A1(E1)2N ′M ]

)
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−γ2 − ϵ

2γG

∫
dxN ′ME1(E1)′(A2E

2 + A3E
3) . (2.173)

This result provides the diffeomorphism constraint as well as a term which cancels
the previous non-constraint contribution in (2.171), but only if ḟ = 1. Therefore, if
the Lorentzian contribution is included, no modification of the classical A2

2 + A2
3 − 1 is

allowed. The final bracket now equals

{H[N
∼

], H[M
∼

]} = {HE[N
∼

], HE[M
∼

]} + {HE[N
∼

], HL[M
∼

]} − {HE[M
∼

], HL[N
∼

]}

= γ2D[(E1)2(N
∼

′M
∼

−N
∼
M
∼

′)] + γ2G[A1(E1)2(N
∼

′M
∼

−N
∼
M
∼

′)]

−(γ2 − ϵ)G[E1(A2E
2 + A3E

3)(1 − 2ḟ)(N
∼

′M
∼

−N
∼
M
∼

′)]

−(γ2 − ϵ)
(
D[(E1)2(N

∼
′M

∼
−N

∼
M
∼

′)] +G[A1(E1)2(N
∼

′M
∼

−N
∼
M
∼

′)]
)

= ϵ
(
D[(E1)2(N

∼
′M

∼
−N

∼
M
∼

′)] +G[A1(E1)2(N
∼

′M
∼

−N
∼
M
∼

′)]
)

+(γ2 − ϵ)G[E1(A2E
2 + A3E

3)(N
∼

′M
∼

−N
∼
M
∼

′)]

≈ −ϵD[(E1)2(N
∼
M
∼

′ −N
∼

′M
∼

)] , (2.174)

using ḟ = 1 in the last step because the bracket would not be closed otherwise. (Note
that {HL[N

∼
], HL[M

∼
]} = 0, which can most easily be seen if one uses the canonical vari-

ables Ki and Ei, of which no spatial derivatives appear in the Lorentzian contribution.)

2.5 Connection variables in a canonical effective field the-
ory
We have seen a crucial difference between gravitational theories governed by the Eu-
clidean Hamiltonian constraint HE and the full HE + HL, respectively. Formally, the
reason is the difference in derivative structures implied by the spin-connection terms in
HL: While HE contains derivatives only of the spatial connection, HL also contributes
spatial derivatives of the triad. As a consequence, the two versions allow different mod-
ifications while maintaining closed brackets.

Derivative structures are best dealt with in a setting of effective field theory, in which
one formulates generic theories by selecting the basic fields and the maximum order of
derivatives to which they contribute, as well as relevant symmetries. For our purposes,
we need an adaptation of the usual arguments to a canonical formulation, in which
some derivatives may not be explicit because they appear only if some of the canonical
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equations are used, mainly in the relationship between momenta and “velocities.”
In order to determine the correct derivative orders in a canonical theory, we must

first choose which of the basic fields should play the role of configuration variables and
therefore are considered free of time derivatives. We are looking for a canonical theory
of triads, which will correspond to a space-time metric or triad theory, and therefore
choose as our basic fields a densitized spatial triad with momenta. The latter may be
given in terms of a connection or extrinsic curvature. The derivative order depends
on the quantum effects we wish to include. For now, we will analyze the classical
setting and therefore consider up to second-order derivatives of the fields. Symmetries
are implemented by the requirement that the constraint brackets be closed, and in the
classical case amount to hypersurface-deformation brackets.

2.5.1 Basic strategy
In our explicit calculations of generic terms, we again follow the conventions of section
2.2 and set γ = 1 for simplicity. For our effective Hamiltonian, we choose to allow up to
second-order in derivatives of densitized triads. Since the conjugate momenta are of the
form A ∼ ∂E, using the equations of motion for Ė, we have the following general form
of the Hamiltonian constraint H[N

∼
] = (2G)−1 ∫ dxN

∼
(x)H(x) with

H = αi(Ej, ∂Ej)Ai + βij(Ek)Aij + γi(E)∂Ai +Q(E, ∂E, ∂2E) , (2.175)

where we have introduced the notation ∂ ≡ ∂/∂x, Aij···k = AiAj · · ·Ak and Eij···k =
EiEj · · ·Ek. We can already observe some preliminary restrictions on the coefficients
αi(E, ∂E) and Q(E, ∂E, ∂E∂E, ∂2E). Both coefficients are initially allowed to depend
on ∂Ei and ∂2Ei. But since we only allow up to second-order derivatives in the Hamil-
tonian constraint, the dependence cannot be arbitrary. Specifically, we have

 αi = ᾱi(E) + αij(E)∂Ej

Q = Q̄(E) + ai(E)∂Ei + bij(E)∂Ei∂Ej + ci(E)∂2Ei .

We want the Hamiltonian density H to respect the classical symmetries,


{H(x),G(y)} = 0

{H(x),D(y)} = 2G(∂H(x)δxy + 2H(x)δ′
xy)

{H(x),H(y)} ≈ −2G(∂(E11D(x))δxy + 2E11D(x)δ′
xy) ,

(2.176)
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whereG[Λ] = (2G)−1 ∫ dxΛ(x)G(x) andD[N ] = (2G)−1 ∫ dxN(x)D(x) are the diffeomor-
phism and Gauss constraints, respectively. We have introduced the shorthand notation
δ′
xy := ∂xδ(x − y), and ≈ means “equal” when setting G = 0 in the final step of the

calculation. These symmetries will impose restrictions on the coefficients αi, βij, γi, Q in
(2.175), telling us what a generic Hamiltonian constraint looks like.

2.5.2 Brackets
The first bracket, {H,G}, represents the restriction to gauge-invariant terms for any
allowed H. Inserting (2.175), we have

{H(x),G(y)} = 2G
∫

dz[(α1 + 2β1jAj)δxz + γ1δ′
xz](x)δ′

yz

+[(α2 + 2β2jAj)δxz + γ2δ′
xz](x)(−A3(y)δyz)

−[(δxz∂2 + δ′
xz∂2′)(αi)Ai + (δxz∂2 + δ′

xz∂2′ + δ′′
xz∂2′′)Q

+δxz∂2β
ijAij + δxz∂2γ

i∂Ai](x)E3(y)δyz
+[(α3 + 2β3jAj)δxz + γ3δ′

xz](x)(A2(y)δyz)

−[(δxz∂3 + δ′
xz∂3′)(αi)Ai + (δxz∂3 + δ′

xz∂3′ + δ′′
xz∂3′′)Q

+δxz∂3β
ijAij + δxz∂3γ

i∂Ai](x)(−E2(y)δyz)

= 0 ,

where we have introduced further shorthand notation ∂i := ∂/∂Ei and ∂i′ := ∂/∂(∂xEi).
To make the right-hand side of the equation vanish, we need several cancellations. We
can do this by first making all functions depend on x using delta functions and integrating
over z. Then we group terms with the same dependence on Ai and derivatives of δxy
together and demand that each grouping vanish by itself. (Different order of derivatives
on δ may be dependent, for instance in δ′

yxA(x) = A(y)δ′
yx+∂yA(y)δyx. Therefore, some

δ′ can produce terms that group with a δ.) This procedure produces several dozens of
partial differential equations which we will list later along with those from the {H,D}
bracket.

Inserting our form of H into the H-D bracket, we obtain

{H(x),D(y)} = 2G
∫

dz[δxz(α1 + 2β1jAj) + γ1δ′
xz](x)(−A1(y)δ′

yz)

−[(δxz∂1 + δ′
xz∂1′)(αi)Ai + δxz∂1β

ijAij

+δxz∂1γ
i∂Ai + (δxz∂1 + δ′

xz∂1′ + δ′′
xz∂1′′)(Q)](x)(−∂E1(y)δyz)
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+[δxz(α2 + 2β2jAj) + γ2δ′
xz](x)(∂A2(y)δyz)

−[(δxz∂2 + δ′
xz∂2′)(αi)Ai + δxz∂2β

ijAij

+δxz∂2γ
i∂Ai + (δxz∂2 + δ′

xz∂2′ + δ′′
xz∂2′′)(Q)](x)(E2(y)δ′

yz)

+[δxz(α3 + 2β3jAj) + γ3δ′
xz](x)(∂A3(y)δyz)

−[(δxz∂3 + δ′
xz∂3′)(αi)Ai + δxz∂3β

ijAij

+δxz∂3γ
i∂Ai + (δxz∂3 + δ′

xz∂3′ + δ′′
xz∂3′′)(Q)](x)(E3(y)δ′

yz)

= 2G(∂xH(x)δxy + 2H(x)δ′
xy) .

Similarly to how we dealt with the condition of gauge invariance, we first integrate over
z to make all functions depend on x, then match term by term with the right-hand side,
expanded in Ai and derivatives of δxy. Again, we obtain a few dozen partial differential
equations.

We next list the partial differential equations that the coefficients of terms in H
have to obey. These equations will completely determine the dependence on E2 and
E3, leaving free functions of E1 which the H-H bracket will further restrict. These
conditions then determine possible modifications of the classical Hcl. In the following
equations, we use the differential operators D̂ := E2∂2 + E3∂3 and Ĉ := E2∂3 − E3∂2.

2.5.2.1 The H-G bracket

For βij and γi we have
Ĉβ11 =0

Ĉβ12 = − β13

Ĉβ13 =β12


Ĉβ22 = −2β23

Ĉβ33 = 2β23

Ĉβ23 = β22 − β33


Ĉγ1 = 0

Ĉγ2 = −γ3

Ĉγ3 = γ2

(2.177)

For αi we have
Ĉᾱ1 = 0

Ĉᾱ2 = −ᾱ3

Ĉᾱ3 = ᾱ2


Ĉα1

1 = 0

Ĉα2
1 = −α3

1

Ĉα3
1 = α2

1


Ĉα1

2 = −α1
3

Ĉα2
2 = −α3

2 − α2
3

Ĉα3
2 = α2

2 − α3
3


Ĉα1

3 = α1
2

Ĉα2
3 = α2

2 − α3
3

Ĉα3
3 = α3

2 + α2
3

(2.178)

For Q we have
ĈQ̄ = 0 (2.179)
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
Ĉa1 = 0

Ĉa2 = −a3

Ĉa3 = a2


Ĉb11 = 0

Ĉb12 = −b13

Ĉb13 = b12


Ĉb22 = −2b32

Ĉb33 = 2b32

Ĉb23 = b22 − b33


Ĉc1 = 0

Ĉc2 = −c3

Ĉc3 = c2

(2.180)

The remaining equations mix different coefficients:
E2a3 − E3a2 = ᾱ1

(−α1
j + 2E2b3j − 2E3b2j)∂Ej = −2(∂E2c3 − ∂E3c2)

E2c3 − E3c2 = γ1


E2α1

3 − E3α1
2 = 2β11

E2α2
3 − E3α2

2 = 2β12 − γ3

E2α3
3 − E3α3

2 = 2β13 + γ2

(2.181)

2.5.2.2 The H-D bracket

For βij and γi we have 
D̂β11 = 0

D̂β12 = β12

D̂β13 = β13


D̂β22 = 2β22

D̂β33 = 2β33

D̂β23 = 2β23


D̂γ1 = 0

D̂γ2 = γ2

D̂γ3 = γ3

(2.182)

For αi we have
D̂ᾱ1 = ᾱ1

D̂ᾱ2 = 2ᾱ2

D̂ᾱ3 = 2ᾱ3


D̂α1

1 = 0

D̂α2
1 = α2

1

D̂α3
1 = α3

1


D̂α1

2 = −α1
2

D̂α2
2 = 0

D̂α3
2 = 0


D̂α1

3 = −α1
3

D̂α2
3 = 0

D̂α3
3 = 0

E
2α2

2 + E2α2
3 = 0

E2α3
2 + E3α3

3 = 0
(2.183)

For Q we have 
D̂Q̄ = 2Q̄

E2c2 + E3c3 = 0

E2a2 + E3a3 = 0


c1 + 2(b12E

2 + b13E
3) = 0

3c2 + 2(b22E
2 + b23E

3) = 0

3c3 + 2(b32E
2 + b33E

3) = 0

(2.184)


D̂c1 = 0

D̂c2 = −c2

D̂c3 = −c3


D̂a1 = a1

D̂a2 = 0

D̂a3 = 0


D̂b11 = 0

D̂b12 = −b12

D̂b13 = −b13


D̂b22 = −2b22

D̂b33 = −2b33

D̂b23 = −2b23

(2.185)

One equation mixes different coefficients:

E2α1
2 + E3α1

3 = −γ1 . (2.186)
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2.5.2.3 The H-H bracket

Matching term by term for H-H is quite tedious, mainly because the classical bracket
{H,H} is fully determined only after setting G = 0. For example, if there is a term
f(α, β, γ,Q)∂E1 on the left-hand side of {H(x),H(y)} ≈ −2G(E11∂xD(x)δxy+2E11D(x)δ′

xy)
which is not on the right hand side, do we demand f(α, β, γ,Q) = 0 or do we demand
f(α, β, γ,Q) ∝ G or ∂G, or does f(α, β, γ,Q)∂E1 combine with possible f(α, β, α,Q)(−E2A3+
E3E2) terms to become something proportional to G? There are about 102 terms on the
left-hand side of the H-H bracket, each of which has several possibilities of respecting the
symmetry (in the form of second-order polynomial equations of α, β, γ,Q). It is therefore
necessary to check whether these (102)n, n ∼ 100 possibilities are consistent with one
another, rendering our current strategy impractical. Luckily, we can use an alternative
strategy to find a subset of the most generic Hamiltonian by adding “semi-symmetric
Gaussian” terms to the classical Hamiltonian constraint.

2.5.3 Real vs. self-dual variables
We define a semi-symmetric term to be any term in a generic Hamiltonian constraint
that is allowed by the {H,D} and {H,G} brackets. These terms are solutions to our
previous partial differential equations (2.177)-(2.186). We define a Gaussian term to
be any term that is a polynomial of G and ∂nG, with coefficients denoted collectively
as C(E), which may depend on densitized triads and its derivatives. Namely, for a
semi-symmetric Gaussian term g(x) := g[G(x), ∂nG(x), C(E(x))] we demand

{g(x),G(y)} = 0

{g(x),D(y)} = 2G(∂g(x)δxy + 2g(x)δ′
xy) ,

(2.187)

Any semi-symmetric Gaussian term, g[G, ∂nG, C(E)], that we add to the classical Hamil-
tonian constraint Hcl is guaranteed to respect all our symmetries as shown below.

Suppose we add one semi-symmetric Gaussian term g[G, ∂nG, C(E)] to the classical
Hamiltonian constraint Hcl

H[N
∼

] = 1
2G

∫
dxN

∼
(x)(Hcl + g) . (2.188)

Since Hcl respects all symmetries by definition and g is built out of semi-symmetric
Gaussian terms,

{H[N
∼

], G[M ]} = 0 (2.189)
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is trivial. Similarly, the H-D bracket is satisfied:

{H[N
∼

], D[M ]} = 1
4G2

∫
dxdyN

∼
(x)M(y)({Hcl,D} + {g,D})

= 1
2G

∫
dxdyN

∼
(x)M(y)(∂xHcl(x)δxy + 2Hcl(x)δ′

xy + ∂xg(x)δxy + 2g(x)δ′
xy)

= 1
2G

∫
dxdyN

∼
(x)M(y)(∂xH(x)δxy + 2H(x)δ′

xy) = −H[MN
∼

′ −M ′N
∼

]
(2.190)

because g is built out of semi-symmetric Gaussian terms. The H[N
∼

]-H[M
∼

] bracket then
has additional terms compared with the classical case, given by {Hcl, g} and {g, g}. Both
terms are of the form {f, g} with some semi-symmetric f , and share the property that∫

dxdyN(x)M(y){f(x), g(y)} vanishes when G = 0: In
∫

dxdyN(x)M(y){f(x), g[G(y), ∂nG(y), C(E)]}

=
∫

dxdyN(x)M(y)
(

{f(x),G(y)} ∂g
∂G

(y) + {f(x), ∂nyG(y)} ∂g

∂(∂nyG)
(y)

+ {f(x), C(E)} ∂g

∂C(E)

)

=
∫

dxdyN(x)M(y)
(

{f(x),G(y)} ∂g
∂G

(y) + {f(x), C(E)} ∂g

∂C(E)

)

+
∫

dxdyN(x)(−∂y)n
(
M(y) ∂g

∂(∂nyG)
(y)
)

{f(x),G(y)} , (2.191)

the first and last term vanish because f is semi-symmetric, while ∂g/∂C(E) ≈ 0 because
C(E), by definition, represents coefficients in g of the Gauss constraint or its spatial
derivatives.

With this result, we confirm that

{H[N
∼

], H[M
∼

]} = 1
4G2

∫
dxdyN

∼
(x)M

∼
(y)({Hcl(x),Hcl(y)}

+{g[G(x), ∂nG(x), C(E)], g[G(y), ∂nG(y), C(E)]}

+{Hcl(x), g[G(y), ∂nG(y), C(E)]}

+{g[G(x), ∂nG(x), C(E)],Hcl(y)})

≈ 1
4G2

∫
dxdyN

∼
(x)M

∼
(y){Hcl(x),Hcl(y)}

(2.192)

obeys the classical brackets for any semi-symmetric g. Thus, semi-symmetric Gaussian
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terms indeed preserve all symmetries.
When written in real variables, the classical Hamiltonian constraint contains a term

with second-order derivative of E1 ∼ Ex, given by 2∂ΓϕEx = −∂(∂Ex/(Eφ))Ex. But
when using self-dual variables, there are no second-order derivative of triads. As already
mentioned, this discrepancy is caused by the fact that G ≈ 0 is already solved in the
real variable case. Indeed, using semi-symmetric terms (see appendix 1) for constructing
modifications we have the following allowed terms when using self-dual variables

H2(A,E) = Hcl(A,E) + c1(E1)
(
∂G − 1

2
∂((Eφ)2)

(Eφ)2 G
)

+∂E1[b11(E1)∂E1 + C̃α2
1
(E1)(E3A2 − E2A3)] , (2.193)

where ∂G ∼ ∂2E1 provides the second-order derivative. Note that the second semi-
symmetric term (proportional to ∂E1) becomes a semi-symmetric Gaussian term if we
pick b11 = 1

2C̃α2
1
.

Substituting Ai = γKi + Γi, c1 = E1, b11 = 1
2C̃α2

1
= 1/2 in the classical Hamiltonian

constraint and de-densitizing, we obtain

H2(K,E) = |Ex|−1/2

K2
φE

φ + 2KφKxE
x −

1 −
(
∂Ex

2Eφ

)2
Eφ + Ex∂2Ex

Eφ
− Ex∂Ex∂Eφ

(Eφ)2

 ,

(2.194)
where we used the Gauss constraint in real variables. This result matches the standard
classical Hamiltonian constraint in real variables. Thus, including semi-symmetric Gaus-
sian terms in the quadratic constraint, it is equivalent to the classical one written in real
variables.

Revisiting the setting of the previous section, it follows that a further restriction of
our H to be only quadratic in densitized triads implies that all allowed modifications to
the classical Hcl are in the form of semi-symmetric Gaussian terms:

Hquad = C1(∂A3E
21 − ∂A2E

31 + A12E
12 + A13E

13) + C2

(
A22 + A33 + C3

C2

)
(E22 + E33)

+C4∂E
1G + C5(A2E

2 + A3E
3)G . (2.195)

The first two terms are present in Hcl while the last two are new semi-symmetric Gaussian
terms and all Ci are constants. However, the complexity of the general equations makes
it difficult to show that all possible modifications to the Hamiltonian constraint up to
second order in derivatives can be constructed from semi-symmetric Gaussian terms.
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2.6 Eliminating the Gauss constraint
Our analysis of gravitational theories in a setting of effective field theory has highlighted
the role of the Gauss constraint, which implies that the hypersurface-deformation gen-
erators are not uniquely defined. Since the Gauss constraint contains a spatial deriva-
tive, and spatial derivatives of this constraint can also be added to the hypersurface-
deformation generators, the derivative structure and therefore the possibility of modifi-
cations is ambiguous as long as the Gauss constraint remains unsolved. We will there-
fore now solve the Gauss constraint explicitly and analyze the resulting hypersurface-
deformation generators and their brackets.

2.6.1 Gauge-invariant variables
We begin with the classical constraint

H[N ] = 1
2G

∫
dx N√

E1((E2)2 + (E3)2)

(
2E1(E2A′

3 − E3A′
2) (2.196)

+2A1E
1(A2E

2 + A3E
3) + (A2

2 + A2
3 − 1)((E2)2 + (E3)2)

+ (ϵ− γ2)(2K1E
1(K2E

2 +K3E
3) + (K2

2 +K2
3)((E2)2 + (E3)2)

)
in which the lapse function no longer has a density weight. The next few transformations
closely follow the derivations given in [39], but are presented here in a different form
using vector notation.

The pairs (E2, E3) and (A2, A3) (as well as (K2, K3)) transform under the defining
representation of SO(2) with respect to the Gauss constraint. It will be convenient to
arrange them in 3-vectors, such that

E⃗ = E2e⃗2 + E3e⃗3 (2.197)
A⃗ = A2e⃗2 + A3e⃗3 (2.198)
K⃗ = K2e⃗2 +K3e⃗3 (2.199)

with standard basis vectors e⃗i. Obvious invariant variables are therefore

Eφ = |E⃗| =
√

(E2)2 + (E3)2 (2.200)

Aφ = |A⃗| =
√
A2

2 + A2
3 (2.201)

Kφ = |K⃗| =
√
K2

2 +K2
3 . (2.202)
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Moreover, we obtain another invariant α from the angle between E⃗ and A⃗,

cosα = E⃗ · A⃗
EφAφ

. (2.203)

While E1 and K1 are also invariant, A1 has a non-trivial transformation. A final gauge-
invariant expression can be written as A1 + β′, where

cos β = e⃗2 · A⃗
Aφ

. (2.204)

Using our definitions of α and β, we can write the unit vectors

e⃗A = A⃗

Aφ
= e⃗2 cos(β) + e⃗3 sin(β) (2.205)

e⃗E = E⃗

Eφ
= e⃗2 cos(α + β) + e⃗3 sin(α + β) . (2.206)

From the last relation one can derive the spin-connection component Γ1 = −(α+β)′ [39].
Therefore, γ−1(A1+α′+β′) = K1 is nothing but an extrinsic-curvature component. Since
α and K1 are gauge invariant, A1 + β′ must be gauge invariant, as claimed above.

Moreover, computing the extrinsic curvature and spin connection for a spherically
symmetric triad [39] shows that the angular part K⃗ points in the same internal direction
as the triad,

e⃗K = e⃗E , (2.207)

while the angular part of the spin connection, Γ⃗, is orthogonal,

e⃗Γ = −e⃗1 × e⃗E , (2.208)

with coefficient
Γφ = −(E1)′

2Eφ
; (2.209)

see (2.161). Therefore,

A2
φ = |A⃗|2 = |Γφe⃗Γ + γKφe⃗K |2 = Γ2

φ + γ2K2
φ . (2.210)

The term in (2.196) containing spatial derivatives of the connection can now be
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written as

E2A′
3 − E3A′

2 = e⃗1 · (E⃗ × A⃗′) = Eφe⃗1(e⃗E × (Aφe⃗A)′)

= Eφ(−A′
φ sin(α) + Aφβ

′ cos(α)) .

We then express connection terms through spin connection and extrinsic curvature, using

Aφ sin(α) = Aφe⃗A · e⃗Γ = Γφ (2.211)

and
Aφ cos(α) = Aφe⃗A · e⃗K = γKφ . (2.212)

Therefore,

E2A′
3 − E3A′

2 = Eφ(−(Aφ sin(α)) + Aφ(α′ + β′) cos(α))

= Eφ
(
−Γ′

φ + γKφ(α′ + β′)
)
. (2.213)

The angles in the last term can be combined with a similar contribution from the second
term in (2.196), which adds A1 to α′ + β′. (In (2.196), A1 is multiplied with A2E

2 +
A3E

3 = A⃗ · E⃗ = γKφE
φ, which does not depend on Γφ because e⃗Γ · e⃗E = 0.) Since

α′ + β′ = −Γ1 [39] and A1 − Γ1 = γK1, we have

E2A′
3 − E3A′

2 + A1(A2E
2 + A3E

3) = Eφ
(
−Γ′

φ + γ2KφK1
)
. (2.214)

Thus, by using variables invariant under transformations generated by the Gauss con-
straint, we have been led to an expression in which all spatial derivatives of the connec-
tion have been replaced by spatial derivatives of the triad (through Γφ).

Again in [39], the Poisson brackets

{Kφ(x), Eφ(y)} = Gδ(x, y), {K1(x), E1(y)} = 2Gδ(x, y) (2.215)

for the new gauge-invariant variables have been derived. (Note that this is only consistent
if (2.207) is true.) If we express the diffeomorphism and Hamiltonian constraints in these
variables, we restrict the previous theory to the solution space of the Gauss constraint.
We obtain

D[Nx] = 1
2G

∫
dxNx

(
2EφK ′

φ −K1(E1)′
)

(2.216)
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and

H[N ] = 1
2G

∫
dx N√

E1

(
K2
φE

φ(ϵ− γ2) + 2ϵKφK1E
1

+(Γ2
φ + γ2K2

φ − 1)Eφ − 2E1Γ′
φ

)
. (2.217)

2.6.2 Modified constraint with classical brackets
In the Hamiltonian constraint, the two terms with γ2K2

φ cancel out, showing that, for
ϵ = −1, we obtain the Hamiltonian constraint as considered in [39]. Our calculation here
extends this result to Euclidean signature, ϵ = 1. Since all γ-dependent terms drop out
of the final expression, it is no longer clear why γ2 = ϵ should lead to different options for
modified constraints. Nevertheless, the previous distinction between γ2 = ϵ and γ2 6= ϵ

can still be realized if we do not cancel the γ-dependent terms in (2.217) before we try
to modify the constraint. In particular, the previous modification, using an arbitrary
function of f(A2

2+A2
3−1), can still be implemented in the invariant version if we recognize

the combination Γ2
φ + γ2K2

φ − 1 as the correct substitute of A2
2 + A2

3 − 1 = A2
φ − 1. We

therefore consider the modified constraint

H[N ] = 1
2G

∫
dx N√

E1

(
K2
φE

φ(ϵ− γ2) + 2ϵKφK1E
1

+f(Γ2
φ + γ2K2

φ − 1)Eφ − 2E1Γ′
φ

)
. (2.218)

Given the form of this new constraint, it is not obvious that it can lead to closed brackets
for f not equal to its classical form because, compared with our previous derivation, we
now have up to second-order spatial derivatives of the triad (through Γφ) instead of
first-order derivatives of its momenta.

Thanks to antisymmetry of the Poisson bracket, the only terms that give non-zero
contributions to BNM := {H[N ], H[M ]} are combinations of a term from H[N ] depend-
ing on one of the Ki and a term from H[M ] depending on a (first or second order) spatial
derivative of one of the Ei, or vice versa. Therefore,

BNM = 1
4G2

∫
dxdy N(x)M(y)√

E1(x)E1(y)

(
−(ϵ− γ2){K2

φ(x), (Eφ)′}E
1(y)E1(y)′Eφ(x)

(Eφ(y))2

−2ϵ{Kφ(x), Eφ(y)′}K1(x)E
1(x)E1(y)E1(y)′

(Eφ(y))2

−2ϵKφ(x){K1(x), E1(y)′}E
1(x)E1(y)Eφ(y)′

(Eφ(y))2
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−{f, Eφ(y)′}E
φ(x)E1(y)E1(y)′

(Eφ(y))2 + 2ϵKφ(x){K1(x), f}E1(x)Eφ(y)

+2ϵKφ(x)E
1(y)

Eφ(y)
{K1(x), E1(y)′′}E1(x)

)
− (N ↔ M) . (2.219)

Integrating by parts, we obtain

BNM = 1
4G

∫
dxNM ′

(
(2(ϵ− γ2)Kφ

(E1)′

Eφ
+ 2ϵ E1

(Eφ)2K1(E1)′ + 4ϵKφ(Eφ)′ E1

(Eφ)2

−4ϵ E1

(Eφ)2E
φK ′

φ − 4ϵKφ
E1(Eφ)′

(Eφ)2 + ∂f

∂Kφ

(E1)′

Eφ
− 4ϵKφE

φ ∂f

∂(E1)′

)
− (N ↔ M)

= −ϵ
2G

∫
dx E1

(Eφ)2 (NM ′ −N ′M)(2EφK ′
φ −K1(E1)′)

+ 1
4G

∫
dx(NM ′ −N ′M)

(
2(ϵ− γ2)Kφ

(E1)′

Eφ
+ ∂f

∂Kφ

(E1)′

Eφ
− 4ϵKφE

φ ∂f

∂(E1)′

)

= −ϵD
[
E1

(Eφ)2 (NM ′ −N ′M)
]

(2.220)

+ 1
4G

∫
dx(NM ′ −N ′M)

(
2(ϵ− γ2)Kφ

(E1)′

Eφ
+ ∂f

∂Kφ

(E1)′

Eφ
− 4ϵKφE

φ ∂f

∂(E1)′

)
.

For a closed bracket, therefore,

2(ϵ− γ2)Kφ
(E1)′

Eφ
+ ∂f

∂Kφ

(E1)′

Eφ
− 4ϵKφE

φ ∂f

∂(E1)′ = 0 . (2.221)

Since f depends on Kφ and (E1)′ only through 1
4(E1′)2/(Eφ)2 + γ2K2

φ − 1, the chain
rule implies that

∂f

∂Kφ

= 2γ2Kφḟ and ∂f

∂(E1)′ = 1
2(Eφ)2 (E1)′ḟ , (2.222)

and (2.221) is equivalent to

2(ϵ− γ2)Kφ
(E1)′

Eφ

(
1 − ḟ

)
= 0 . (2.223)

If γ2 = ϵ, the equation holds identically for any f . If γ2 6= ϵ, however, ḟ = 1, and only
the classical case is allowed. The modification found in [29] can therefore be found also
in gauge-invariant variables, in which case the Hamiltonian constraint contains second-
order derivatives of the triad, with the same restriction that it is allowed only for a
specific value of γ.
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2.6.3 Modified brackets
A generic modification that does not require a specific value of γ can be obtained for
the theories considered here, as has been known for some time for real variables [9, 13].
Since the Hamiltonian constraint in real variables has the same form as the general
spherically symmetric constraint in gauge-invariant variables, the same modification
can be transferred also to self-dual type variables (γ2 = ϵ) provided we implement it at
the gauge-invariant level. At the level of variables that are not gauge invariant, this new
modification (compared with [29]) is possible provided we use the Gauss constraint to
reintroduce second-order derivatives of triads in the Hamiltonian constraint.

Starting with (2.217), the new modification is derived in a way very similar to the
case of real variables, found in [9]. Nevertheless, we reproduce the calculation of brackets
here for the sake of completeness. We modify (2.217) to

H[N ] = 1
2G

∫
dxN(x)(E1)−1/2

(
ϵf1(Kφ)Eφ + 2ϵf2(Kφ)E1K1

+
(

(E1′)2

4(Eφ)2 − 1
)
Eφ + E1(E1)′′

Eφ
− E1(E1)′(Eφ)′

(Eφ)2

)
(2.224)

with two functions, f1 and f2, that will be restricted further by the condition of having
closed brackets. We first interpret this modification based on arguments within canon-
ical effective field theory. We are now allowing for a non-quadratic dependence of the
Hamiltonian constraint on Kφ. If Kφ is still a first-order time derivative, a non-quadratic
dependence would be non-generic unless we also allow for higher-order spatial derivatives
of the densitized triad, which we do not do in (2.224).

However, modifying the Hamiltonian constraint in this form also modifies the equa-
tions of motion that classically imply the first-order nature of Kφ. An analysis of these
modified equations of motion should then be performed in order to reveal the derivative
order of the Hamiltonian constraint. Schematically, we obtain the modified derivative
dependence of Kφ from the equation of motion

Ė1 = 2N
√
E1f2(Kφ) +N1(E1)′ (2.225)

Ėφ = N
√
E1K1

df2(Kφ)
dKφ

+ NEφ

2
√
E1

df1(Kφ)
dKφ

(2.226)

+(N1Eφ)′

provided we can invert the function f2. This can explicitly be done only in examples,
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which we restrict here to the common case of f1(Kφ) = sin2(Kφ), which implies f2(Kφ) =
sin(Kφ) cos(Kφ) or f2(Kφ)2 = f1(Kφ)(1 − f1(Kφ)). The latter equation can be solved
for

f1(Kφ) = 1
2

(
1 ±

√
1 − 4f2(Kφ)2

)
= f2(Kφ)2 + f2(Kφ)4 + · · · . (2.227)

According to (2.225), f2(Kφ) is strictly of first order in derivatives, but f1(Kφ) is not
polynomial in f2(Kφ), and therefore a derivative expansion of f1(Kφ) does not terminate.
Similarly,

df2(Kφ)
dKφ

= cos(2Kφ) = 1 − 2f1(Kφ) =
√

1 − f2(Kφ)2 (2.228)

has a derivative expansion that does not terminate. Therefore, K1 has a non-terminating
derivative expansion becauseK1

√
1 − f2(Kφ)2 must be of first order according to (2.226).

We conclude that the constraint (2.224) contains a derivative expansion in both
space and time derivatives, which can consistently be truncated at any finite derivative
order. The resulting effective theory is therefore meaningful, but it may not be the most
general one because the derivative expansion results only from the K-dependent terms
in (2.224) while we have not included higher-derivative corrections of the E-dependent
terms. (Higher spatial derivatives may be expected from an expansion of non-local
holonomies used in the Hamiltonian constraints for models of loop quantum gravity;
see for instance [40, 41]. However, it is difficult to find consistent constraint brackets
with such modifications [13].) The mismatch does not violate (deformed) covariance
because the constraint brackets still close. However, unless the symmetries implied by
the closed constraints select only this specific derivative structure, the modified theory
is not generic. (It resembles Born–Infeld type theories.) Since no other consistent
modifications are known as of now, it remains unclear whether the apparently non-
generic model is selected by symmetries.

In order to confirm that the constraint brackets can be closed, we compute

{H[N ], H[M ]} = 1
4G2

∫
dxdy N(x)M(y)√

E1(x)E1(y)

(
−ϵE

φ(x)E1(y)E1(y)′

(Eφ)2(y)
{f1(Kφ(x)), Eφ(y)′}

−2ϵE
1(x)E1(y)E1(y)′K1(x)

(Eφ)2(y)
{f2(Kφ(x), Eφ(y)′}

+ϵf2(Kφ(x))E1(x)
2Eφ(y)

{K1(x), (E1(y)′)2}
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+2ϵf2(Kφ(x))E1(x)E
1(y)

Eφ(y)
{K1(x), E1(y)′′}

−2ϵf2(Kφ(x))E1(x)E
1(y)Eφ(y)′

Eφ(y)2 {K1(x), E1(y)′}
)

− (N ↔ M) ,(2.229)

writing only terms that produce non-zero contributions. All terms are multiplied with
ϵ, and therefore the possibility of modifications does not depend on the space-time
signature.

The first two lines contain Poisson brackets of f1(Kφ) and f2(Kφ) and therefore lead
to derivatives of the modification functions:

1
G

Eφ(x)E1(y)E1(y)′

(Eφ)2(y)
{f1(Kφ(x)), Eφ(y)′} = Eφ(x)E1(y)E1(y)′

(Eφ)2(y)
df1(Kφ)

dKφ

∂yδ(x, y)

(2.230)
and

2
G

E1(x)E1(y)E1(y)′K1(x)
(Eφ)2(y)

{f2(Kφ(x)), Eφ(y)′} = 2E
1(x)E1(y)E1(y)′K1(x)

(Eφ)2(y)
df2(Kφ)

dKφ

∂yδ(x, y) .

(2.231)
Another derivative of f2(Kφ) results from the second-order derivative of the delta func-
tion obtained after evaluating {K1, (E1)′′} in the fourth line of (2.229). This contribution
follows from

2f2(Kφ(x))E
1(x)E1(y)
Eφ(y)

{K1(x), E1(y)′′} = 4f2(Kφ(x))E
1(x)E1(y)
Eφ(y)

∂2
yδ(x, y) . (2.232)

Upon integrating by parts twice in the resulting expression in (2.229), we initially
produce a term with N(x)M(y)′′ times a delta function without derivatives. Integrating
over y, the delta function is eliminated and we can integrate by parts once again to
obtain a term with N ′M ′ (which cancels out in the antisymmetric bracket) and a term
with NM ′ times the derivative of the entire coefficient in (2.232):

− 4
(
f2(Kφ)(E1)2

Eφ

)′

= −4
(

df2

dKφ

K ′
φ

(E1)2

Eφ
+ f2(Kφ)

(
2E

1(E1)′

Eφ
− (E1)2(Eφ)′

(Eφ)2

))
.

(2.233)
The last term (containing (Eφ)′) cancels out with the fifth line of (2.229), while only half
the second term cancels out with the third line of (2.229), for any f2. In order for the
remaining terms to be proportional to the diffeomorphism constraint, only expressions
proportional to K1 or K ′

φ can remain. Therefore, the other half of the second term in

66



(2.233) must cancel out with (2.230), which requires

f2(Kφ) = 1
2

df1(Kφ)
dKφ

. (2.234)

Only two terms are then left, (2.231) and the first contribution in (2.233). They are
both proportional to df2(Kφ)/dKφ and combine to form the diffeomorphism constraint:

{H[N ], H[M ]} = − ϵ

2G

∫
dxN ′M

E1

(Eφ)2
df2

dKφ

(2EφK ′
φ −K1(E1)′) − (N ↔ M)

= −ϵD
[

df2(Kφ)
dKφ

E1

(Eφ)2 (NM ′ −N ′M)
]
. (2.235)

This modification, following [9, 13], differs from the modification of [29] in that it
modifies not only the constraints but also their brackets (while the latter remain closed).
It, therefore, implies a new non-classical space-time structure [20,21]. This modification
is consistent for all γ and is therefore generic. From this perspective, the modification of
[29], which preserves the brackets, requires γ2 = ϵ and is not generic; it does not provide
a way to avoid non-classical space-time structures without fine-tuning. Our derivations
have shown that the different outcomes of [29] versus [9, 13] are not a consequence of
working with self-dual connections (used in [29]) or real variables (used in [9, 13]). The
crucial difference is that modified constraints with unmodified brackets, as in [29], can
be obtained only for specific γ, while modifications of constraints as well as brackets
exist for all γ.

2.7 Conclusion
We have shown that deformations of the classical space-time structure appear generically
in spherically symmetric models of loop quantum gravity. For self-dual variables or
Euclidean gravity with γ = ±1, we have derived the most general form of the quadratic
Hamiltonian constraint free of triad derivatives, such that a system with unmodified
closed brackets is obtained. This rigidity result, just like the setting of [29] which it
generalizes, relies on the absence of derivative terms of the triad. However, from the
point of view of an effective field theory, this result is not generic because it depends
on a restriction of derivative terms even within the classical structure of second-order
derivatives. Moreover, this rigidity result can be obtained only for specific values of the
Barbero–Immirzi parameter γ.
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The results of [29] have sometimes been interpreted as saying that deformations
arising in the hypersurface-deformation brackets, obtained originally using holonomy
modifications in real-valued variables, might be avoided in the self-dual case. Self-dual
variables represent a specific choice for the Immirzi parameter, and therefore do not
lead to generic results. These variables (or the values of γ they correspond to) are not
distinguished intrinsically by symmetries because constraint brackets, which define the
symmetries of a canonical theory, can be closed for any γ.

Moreover, we have shown that the possibility of modifications, even within a self-
dual setting, formally depends on the derivative structure which can be changed by
adding multiples of the Gauss constraint or its spatial derivatives to the Hamiltonian
constraint. This ambiguity can be eliminated by solving the Gauss constraint explic-
itly, following [39], in which case the same derivative structure is obtained in self-dual
type variables and in real variables, which agrees with the form originally used in an
analysis of modified brackets [9, 13]. We therefore conclude that modified brackets and
non-classical space-time structures are generic in any spherically symmetric model with
holonomy modifications, even for self-dual variables. We also pointed out that the cur-
rently known modifications may not be generic from the point of view of canonical
effective theory introduced here: After translating momenta into time derivatives, dif-
ferent derivative orders appear in the terms of a modified Hamiltonian constraint. This
observation suggests that there is room for further explorations of possibly new mod-
els. A likely candidate for a generic extension is the inclusion of canonical quantum
back-reaction effects [42–44], which in an action formulation provide higher-curvature
terms with generic higher derivatives. However, quantum back-reaction on its own does
not modify the hypersurface-deformation brackets of constraints [45] and is therefore
unlikely to change our conclusions about modified space-time structures.

Euclidean and self-dual type variables are special also in an analysis of cosmological
perturbations [46,47], in which case non-generic modifications of constraint brackets have
been observed as well. Our results present useful indications for operator calculations
[48–54] which have demonstrated the possibility of off-shell closure of commutators of
constraint operators, mainly in the Euclidean case. So far, these investigations have
not yet given rise to indications that the commutators of constraint operators may be
modified, in contrast to effective derivations as well as the operator constructions in [14,
55]. (However, it is not always clear how to read off modifications of structure functions
in the operator setting, which should be some function of a spatial metric or densitized
triad and therefore requires a suitable notion of states of a semi-classical geometry which
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does not yet exist in the operator formulation.) Our results show that the Euclidean
setting is, in fact, inconclusive as regards modifications of structure functions because
it is a non-generic case that allows closed brackets with and without modifications.
Current effective and operator treatments are therefore consistent with one another.
For a complete picture of space-time structures in loop quantum gravity, it will be
important to extend off-shell operator calculations to the full Lorentzian constraint.

While the issues above remain open, they share roots with other common attempts
to quantize gravity and are not unique to loop quantum gravity. For example, even in
string theory, the construction of stable semi-classical states, such as ones corresponding
to the quasi de Sitter space-time, has been a longstanding challenge. Ambiguities of the
state propagate down to the resulting effective theory and force us to cast doubt on the
traditional predictions in quantum cosmology—stability of de Sitter, equation of state
of dark energy, and what inflaton models are allowed, just to name a few. Canonical
effective methods provide a systematic way of analyzing consistencies and determine
how much the notion of space-time still holds. In the next chapter, we will also see
how we can parameterize the state in hopes of alleviating some of the state ambiguities.
Canonical effective methods will play a key role in describing the evolution of these
parameters and provide us with a time-dependent way to describe effective potentials.
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Chapter 3 |
Cosmology

3.1 Introduction
As we have alluded to in the previous chapter, in many physical situations of interest,
it can be cumbersome or even impossible to specify the exact quantum state. As an
alternative, we look for an effective description that parameterizes our state with a set of
observables. A set of observables are the quantum fluctuations (also known as moments)
associated with a state. In principle, a quantum state can be reconstructed if we know the
moments of all the operators of the Hilbert space. In practice, we can make predictions
with just a few important ones—among them are the second-order moments (2-point
functions) and the non-Gaussianities (3-point functions). In a Lagrangian framework,
these moments typically have non-linear couplings between their equations of motion.
Moreover, within a given truncation of the order of moments, not all of them are true
independent degrees of freedom. We will see how these difficulties are naturally resolved
in the canonical framework. Consequently, an effective system with an enlarged number
of degrees-of-freedom (DoFs) is produced. The new DoFs characterize time-dependent
corrections to the low energy effective potential (which is traditionally approximated by
assuming strict spatially and temporally homogeneous vacuum in its computation).

There are more practical reasons why treating quantum corrections as effective DoFs
in phase space can be helpful. They help support certain single-field inflaton models
and offer ways to evade trans-Planckian issues without resorting to fine-tuning or new
physics.

It is a natural requirement that self-consistent inflationary models should be largely
independent of the high energy quantum gravity theory, viewed in an effective field
theory framework. However, an exact decoupling of scales relevant for inflation from
high-energy modes can happen only if the low-energy Lagrangian consists entirely of
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terms that are renormalizable using Wilsonian effective actions). This condition restricts
single-field models of inflation to be of the chaotic type with quartic potentials.

If the inflationary action contains terms beyond mass-dimension four, then the theory
is liable to be affected by as yet unknown high-energy physics. In fact, one even has
to rely on ultraviolet physics in order to derive a suitable higher-order form of the
potential. In common single-field inflation, this problem can rarely be avoided as the
models preferred by observations [56] depend crucially on non-renormalizable terms in
the potential, for instance in Starobinsky inflation [57]. Fundamentally, such terms have
to be understood as remnants in an effective description of some underlying theory of
gravity and matter, such as quantum gravity or string theory, but specific top-down
justifications of suitable forms of the potential are usually hard to come by.

Alternatively, if chaotic-type potentials, which have been ruled out by data as single-
field models, can somehow be resurrected, then the burden of explaining these potentials
does not have to fall on quantum gravity. Motivated by this observation, we begin with
a Higgs-inspired classical potential,

Vcl(ψ) = M4
(

1 − 2ψ
2

v2 + ψ4

v4

)
(3.1)

with two parameters, M and v, assumed to be positive. While the only known scalar to
have been discovered to date is the standard-model Higgs particle, it is well-known that
this type of an inflaton potential, by itself, is found to be inconsistent with cosmological
observations. To make matters worse, even renormalization-group improvements do not
suffice to make Higgs-like potentials compatible with data [58–60]. The only observa-
tionally consistent formulations proposed up until now have been based on a scalar field
non-minimally coupled to the Ricci scalar [61, 62], modifying the kinetic term of the
Higgs field. Non-minimal coupling terms, however, mean that one is forced to modify
the nature of the standard model at high energies [63], amongst other issues [64].

In the present work, we will preserve the simple nature of a minimally coupled
field with a quartic classical potential (3.1). Applying a canonical formalism of effec-
tive theory which, crucially, remains valid in non-adiabatic regimes. Heuristically, this
formalism includes effects of higher time derivatives in the quantum effective action with-
out requiring a derivative expansion. We emphasize that this notion of non-adiabatic
behavior refers to the background state of the scalar field, describing its homogeneous
contribution, rather than its inhomogeneous modes which may well remain largely adia-
batic if the slow-roll regime is sufficiently long. By these methods, the classical potential
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will be quantum extended to a two-field model with a specific potential derived from
(3.1). The second field, φ, will be shown to be an authentic field degree of freedom
representing quantum fluctuations of the background inflaton, ψ. (Our application of
quantum fluctuations in the context of inflation is different from the way they appear
in stochastic or eternal inflation [65–70]. We are using back-reaction effects implied
by quantum fluctuations in the deterministic evolution of wave functions, rather than
stochastic properties implied by fluctuations for the measurement process. Our model
could certainly be extended by including suitable stochastic terms in the equations of
motion [66,71–74], but we will not attempt to do so in the present paper. As such, it is
subject to uncertainty relations that will be used to obtain important lower bounds on its
initial value. Initial evolution is then non-adiabatic, but it automatically sets the stage
for a long slow-roll phase (in a so-called waterfall regime of the two-field model) that
is consistent with observational constraints. A final non-adiabatic phase automatically
ends inflation with just the right number of e-folds in a large region of the parameter
space.

Coefficients of the two-field potential are determined by the same two parameters, M
and v, that appear in the single-field model (3.1). In addition, there are new coefficients
derived from moments of the inflaton state, such as parameters for non-Gaussianity of
the background state. In inflation models, this is a new kind of non-Gaussianity different
from what one usually refers to in primordial fluctuations during inflation. In our case,
non-Gaussianity is present already in the wave function of the homogeneous quantum
inflaton field (referred to here as the background state), and not only in the perturbation
spectrum. It is therefore possible to put constraints on the two-field potential based on
known properties of states, or conversely, to determine conditions on suitable inflaton
states based on observational constraints. An important finding is that constraints on
the spectral index, its running, and the tensor-to-scalar ratio prefer small background
non-Gaussianity.

In Section 3.2, we present a review of relevant methods of non-adiabatic quantum
dynamics, which have appeared in various forms in fields as diverse as quantum field
theory, quantum chaos, quantum chemistry, and quantum cosmology. The same sec-
tion presents a comparison with Gaussian methods and shows how non-adiabatic dy-
namics can include non-Gaussian states. These methods are applied to cosmology in
Section 3.3, focusing on Higgs-like inflation. The results are, however, more general and
can easily be adapted to any potential. This section will demonstrate the importance
of going beyond Gaussian dynamics, including higher-order moments, and maintaining
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non-adiabatic regimes. A detailed cosmological analysis, including numerical simula-
tions and analytical approximations, is performed in Section 3.4, where observational
implications are discussed. The derivations in the present paper justify the more concise
physical discussion presented in [75].

3.2 Canonical effective potentials
Our construction is based on canonical effective methods for non-adiabatic quantum
dynamics, which in a leading-order treatment has appeared several times independently
in various fields [2, 76–80], including quantum chaos, quantum chemistry, and quantum
cosmology, but has only recently been worked out to higher orders using systematic
methods of Poisson manifolds [81,82]. While higher orders go beyond Gaussian dynam-
ics, the leading-order effects are closely related to Gaussian approximations and can
therefore be used for an illustration of the method.

Throughout this paper, the term “adiabatic” will by default refer to the concepts
discussed in the present section, unless otherwise stated. That is, adiabatic behavior
is by definition realized when it is possible to capture crucial physical phenomena in a
derivative expansion, for instance in a quantum effective action or, as used below, in the
equations of motion for expectation values and moments of a state. The behavior is non-
adiabatic when a derivative expansion does not faithfully capture the dynamics. In this
case, new non-classical degrees of freedom play an important role, which may be given
by auxiliary fields in a non-local effective action, or independent moments of a quantum
state. In general, this notion has no relationship with the concept of adiabatic modes
which is often used in cosmology. Later on, we will however briefly use an adiabatic
combination of fields when deriving observables in the context of multi-field inflation.

3.2.1 Relation to the time-dependent variational principle
In order to illustrate our claim that quantum fluctuations can provide an independent
degree of freedom that can influence the inflationary dynamics, we first consider a canon-
ical formulation of the time-dependent variational principle for Gaussian states.

The most general parametrization of Gaussian fluctuations around the homogeneous
field ψ can be represented by the wave function [76]

Ψ(ψ′|ψ, πψ, φ, πφ) = 1
(2πφ2)1/4 exp

(
−1

4φ
−2(1 − 2iφπφ)(ψ′ − ψ)2

)
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× exp(iπψ(ψ′ − ψ)) exp(−1
2iφπφ) . (3.2)

The notation is such that Ψ is a wave function depending on a free variable ψ′ for any
choice of the parameters ψ, πψ, φ and πφ, which determine a specific ψ′-dependent
wave function. Despite its lengthy form, this variational wave function has some useful
properties: It is normalized, 〈Ψ|Ψ〉 = 1, and has basic expectation values

〈Ψ|ψ̂|Ψ〉 = ψ , 〈Ψ|π̂ψ|Ψ〉 = πψ (3.3)

and variances

〈Ψ|(ψ̂ − ψ)2|Ψ〉 = φ2 , 〈Ψ|(π̂ψ − πψ)2|Ψ〉 = π2
φ + 1

4φ2 (3.4)

where operators are defined with respect to the dependence of Ψ on ψ′. Moreover, Ψ
obeys the conditions

i〈Ψ|∂/∂ψ|Ψ〉 = πψ , i〈Ψ|∂/∂φ|Ψ〉 = πφ (3.5)
〈Ψ|∂/∂πψ|Ψ〉 = 0 , 〈Ψ|∂/∂πφ|Ψ〉 = 0 . (3.6)

The equations of motion for the variational parameters, ψ, φ, πψ and πφ, are given
by the variation of the action

S =
∫

dt
〈
Ψ
∣∣∣(i∂t − Ĥ

)∣∣∣Ψ〉
=

∫
dt
(
iψ̇ 〈Ψ|∂/∂ψ|Ψ〉 + iφ̇ 〈Ψ|∂/∂φ|Ψ〉 − 〈Ψ|Ĥ|Ψ〉

)
(3.7)

using the chain rule. The identities obeyed by Ψ therefore allow us to write the action
in canonical form,

S =
∫

dt
(
ψ̇πψ + φ̇πφ −HG

)
(3.8)

where we defined the Gaussian Hamiltonian HG = 〈Ψ|Ĥ|Ψ〉. The variation of this action
gives Hamilton’s equations

ψ̇ = ∂HG

∂πψ
, π̇ψ = −∂HG

∂ψ
, φ̇ = ∂HG

∂πφ
, π̇φ = −∂HG

∂φ
. (3.9)
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For example, if we consider the Hamilton operator

Ĥ = 1
2
π̂2
ψ +M4

1 − 2 ψ̂
2

v2 + ψ̂4

v4

 (3.10)

with the Higgs-like potential, the Gaussian Hamiltonian is

HG = 1
2
π2
ψ + 1

2
π2
φ + 1

8φ2 +M4
(

1 − 2ψ
2

v2 + ψ4

v4 + 6ψ
2φ2

v4 − 2φ
2

v2 + 3φ
4

v4

)
. (3.11)

3.2.2 Canonical effective methods
While the Gaussian approximation is useful in a wide range of applications a more
general class of states is relevant for our application to inflation where non-Gaussianities
should be included in the analysis. Canonical effective methods [42, 43] provide a good
alternative because they allow for generally non-Gaussian states while still retaining the
canonical structure that makes Gaussian states attractive. Importantly, it is not required
to find a specific representation of non-Gaussian states as wave functions, which would
be much more involved than (3.2). Instead, one can formulate states of a quantum
system in terms of expectation values and moments assigned by a generic state to the
basic operators ψ̂ and π̂ψ. The evolution of a state is then formulated as a dynamical
system for the basic expectation values ψ = 〈ψ̂〉 and πψ = 〈π̂ψ〉 as well as the moments

∆(ψaπbψ) =
〈
(ψ̂ − 〈ψ̂〉)a(π̂ψ − 〈π̂ψ〉)b

〉
Weyl

, (3.12)

using Weyl (or completely symmetric) ordering in order to avoid overcounting degrees
of freedom.

The basic expectation values and moments inherit a Poisson structure from the
commutator, {

〈Â〉, 〈B̂〉
}

= 1
iℏ
〈
[Â, B̂]

〉
, (3.13)

augmented by the Leibniz rule in an application to moments. The equations of motion
for some phase space function, F (ψ, πψ,∆(·)), are then given in the form of the usual
Hamilton’s equations,

Ḟ (ψ, πψ,∆(·)) = {F,HQ} (3.14)

with a quantum Hamiltonian HQ = 〈Ĥ〉 defined as the expectation value of the Hamilton
operator Ĥ in a generic (not necessarily Gaussian) state. For a Hamiltonian of the form
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Ĥ = 1
2 π̂

2
ψ + V̂ (ψ), this definition implies the quantum Hamiltonian

HQ = 〈Ĥ〉 = 1
2
π2
ψ + 1

2
∆(π2

ψ) + V (ψ) +
∞∑
n=2

1
n!
∂nV

∂ψn
∆(ψn) . (3.15)

The formulation of the system in terms of expectation values and moments allows for
a systematic canonical analysis at the semiclassical level. Written directly for moments
as coordinates on the quantum phase space, the Poisson structure, based on (3.13)
together with the Leibniz rule, is rather complicated. For instance, one can see that
the Poisson bracket of two moments is not constant and not linear in general [42, 83].
Using moments as coordinates on a phase space, therefore, leads to a more complicated
inflationary analysis lacking a clear separation between configuration and momentum
variables. It is then unclear how to determine kinetic and potential energies or a unique
relationship between specific phenomena and individual degrees of freedom.

In order to make the semiclassical analysis more clear, it is preferable to choose a
coordinate system on phase space that puts the Poisson bracket in canonical form as in
the variables used in (3.11), but possibly extended to higher orders in moments. The
Darboux theorem [84] or its extension to Poisson manifolds [85] guarantees the existence
of such coordinates, but explicit constructions are in general difficult. For second-order
moments, the moment phase space is 3-dimensional and can be handled more easily than
in the general context. In this case, a canonical mapping has been found several times
independently [76–79]. It is accomplished by the coordinate transformation

∆(π2
ψ) = π2

ϕ + U

φ2 , ∆(ψπψ) = φπφ , ∆(ψ2) = φ2 (3.16)

where {φ, πφ} = 1. The parameter U = ∆(ψ2)∆(π2
ψ) − ∆(ψπψ)2 is a conserved quantity

(or a Casimir variable of the algebra of second-order moments), restricted by Heisen-
berg’s uncertainty relation to obey the inequality U ≥ ℏ2/4. Direct calculations show
that the transformation (3.16) is a canonical realization of the algebra of second-order
moments. At this stage, we already have a departure from the Gaussian states, because
the uncertainty for a pure Gaussian equals ℏ2/4, while we retain the uncertainty as a
free (but bounded) parameter.

Additional non-Gaussianity parameters, relevant for inflation, are revealed by an ex-
tension of the canonical mapping to higher-order moments. Considering higher order
semiclassical corrections implies more canonical degrees of freedom. (For a single clas-
sical degree of freedom, the moments up to order N form a phase space of dimension
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D = ∑N
j=2(j + 1) = 1

2(N2 + 3N − 4).) A canonical mapping for these higher-order semi-
classical degrees of freedom has only recently been derived in [81, 82] up to the fourth
order. For the relevant moments, the results are

∆(π2
ψ) =

5∑
i=1

π2
φi

+
∑
i>j

U

(φi − φj)2 (3.17)

∆(ψ2) =
5∑
i=1

φ2
i (3.18)

∆(ψ3) = C
5∑
i=1

φ3
i (3.19)

∆(ψ4) = C2
5∑
i=1

φ4
i +

∑
φ2
iφ

2
j (3.20)

while all other moments up to fourth order can be derived from the relevant ones using
suitable Poisson brackets. There are now five canonical pairs, (φi, πφi

) and two Casimir
variables, U and C, forming a 12-dimensional phase space of moments.

In order to parametrize the entire fourth-order semiclassical phase space we had to
introduce a total of five pairs of canonical degrees of freedom and two Casimir variables,
U and C. In principle, we could consider all ten non-constant semiclassical degrees of
freedom, but in order to keep the analysis simple, we take inspiration from some more
terrestrial applications [82,86,87] and choose a moment closure, thereby approximating
higher-order moments in terms of lower-order ones. In particular, we choose ∆(π2

ψ) =
π2
φ + U/φ2, ∆(ψ2) = φ2, ∆(ψ3) = a3 (or, alternatively, a3φ

3) and ∆(ψ4) = a4φ
4.

This closure corresponds to (3.17) written in higher dimensional spherical coordinates
with the assumption that the angular momenta are small enough to be ignored. The
parameter values U = ℏ2/4, a3 = 0 and a4 = 3 correspond to the Gaussian case. We can
therefore think of this closure as describing the non-Gaussianities by three parameters,
U , a3, and δ = a4 − 3, while maintaining the same number of degrees of freedom as in
the Gaussian case.

Considering a Higgs-inspired matter field coupled to a classical and isotropic space-
time background with spatial metric hij = a(t)2δij in terms of proper time t, the standard
Lagrangian

L =
∫

d3x
√

deth
(1

2
ψ̇2 − 1

2
hij∂iψ∂jψ − V (ψ)

)
(3.21)
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is first reduced to homogeneous form by assuming spatially constant ψ and integrating:

Lhom = 1
2
a(t)3V0ψ̇

2 − a(t)3V0V (ψ) . (3.22)

The new parameter V0, defined as the coordinate volume of the spatial region in which
inflation takes place, does not have physical implications but merely ensures that the
combination a(t)3V0 represents the spatial volume in a coordinate-independent way.
(The value of a(t)3V0 would be determined by the maximum length scale on which
approximate homogeneity may be assumed in the early universe just before inflation
[88, 89].) This Lagrangian implies the scalar momentum

πψ = ∂Lhom

∂ψ̇
= a(t)3V0ψ̇ (3.23)

such that the Hamiltonian is given by

H = 1
2a(t)3V0

π2
ψ + a(t)3V0V (ψ) . (3.24)

Quantizing the scalar field, using our explicit potential (3.1), the Hamilton operator
is

Ĥ = 1
2a(t)3V0

π̂2
ψ + a(t)3V0M

4

1 − ψ̂2

v2

2

, (3.25)

keeping the background scale factor a(t) classical. The closure we choose here implies
the reduced version

Hclosure
Q = 1

2a(t)3V0
π2
ψ + 1

2a(t)3V0
π2
φ + U

2a(t)3V0φ2 (3.26)

+a(t)3V0M
4
(

1 +
(

6φ2

v4 − 2
v2

)
ψ2 + ψ4

v4 − 2φ
2

v2 + a4φ
4

v4 + 4a3ψ

v4

)

of the quantum Hamiltonian. Hamilton’s equations generated by Hclosure
Q are, as usual,

deterministic, even though here they contain variables representing quantum fluctuations
and higher moments. This dynamics presents an approximation of the deterministic
evolution of a wave function that is implicitly determined by the momemts. We therefore
do not include stochastic effects of fluctuations that would be present if the inflaton were
somehow measured while inflation is still going on.

While parameterizing some higher moments through a moment closure is required
for a tractable model, keeping at least one quantum degree of freedom, φ, independent is
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crucial for a description of non-adiabatic phases. In this way, our quantum Hamiltonian
goes beyond effective potentials of low-energy type, in particular, the Coleman–Weinberg
potential [90]. As shown in [91], it is possible to derive the Coleman–Weinberg potential
from a field-theory version of (3.26) if one minimizes the Hamiltonian with respect to φ.
This step eliminates all independent quantum degrees of freedom and, in the traditional
treatment, is equivalent to ignoring non-adiabatic effects by using a low-order truncation
of the derivative expansion, in addition to the semiclassical expansion also applied here.
In this sense, by including the new variable φ as an authentic degree of freedom we
retain non-adiabatic information of our dynamics.

In our cosmological scenario, this degree of freedom will be relevant at the beginning
and end of inflation. Since the long, intermediate phase of slow-roll inflation remains by
necessity adiabatic, a traditional low-energy effective action or a derivative expansion
of a quantum field theory for the inflaton may be applied. As shown in [42–44], the
background contribution of such an effective theory [92] is equivalent to an adiabatic
approximation applied to moment corrections in a quantum Hamiltonian. All relevant
phases are therefore included in our formalism.

The effective Hamiltonian (3.26) is very similar to the Gaussian Hamiltonian (3.11),
which also retains an independent quantum variable, but it is more general because of
the presence of the new parameters U , a3 and a4. As shall be shown later, the charac-
teristics of our inflationary phase depend crucially on these parameters. In particular
for a Gaussian state, inflation never ends, but if we consider small non-Gaussianities
parametrized by U , a3 and a4, we can obtain a phenomenologically viable inflationary
phase. Moreover, these parameters are determined by the quantum state of the early
universe, and so constraining them with data would shed light on the character of the
quantum state of the early universe.

3.3 Two-field model
After our transformation to canonical moment variables, we can uniquely extract an
effective potential from (3.26),

1
M4Veff(ψ, φ) = 1 + U

2M4a6V 2
0 φ

2 +
(

6φ
2

v4 − 2
v2

)
ψ2 + ψ4

v4 − 2φ
2

v2 + 4a3ψ

v4 + a4
φ4

v4

≈ 1 + 2
(
φ2 − φ2

c

φ2
c

)
ψ2

v2 + 4a3 ψ

v4 + ψ4

v4 − 2
3
φ2

φ2
c

+ a4
φ4

v4 , (3.27)
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where φ2
c ≡ v2/3. By construction, the second field, φ, represents the quantum fluctua-

tion associated with the classical field ψ. As explained earlier, the additional parameters,
U , a3 and a4 describe a possibly non-Gaussian quantum state of the background inflaton.

3.3.1 Initial conditions and the trans-Planckian problem
In the second line of the equation, we ignored the U -term U/(2M4a6V 2

0 φ
2) in an approxi-

mation valid for sufficiently large scale factors (or, rather, averaging volumes a3V0). The
origin of this term is purely quantum and represents a potential barrier that enforces
Heisenberg’s uncertainty relation for the fluctuation variable φ. This term can be easily
ignored after a few e-folds of inflation, but at early times its presence necessitates φ to
start out with non-zero values. The subsequent non-adiabatic phase will be crucial for
our model, and therefore this term alleviates our need to fine-tune the initial condition
for φ.

The main effect of this repulsive term in the potential is to push out φ to large values
to begin with, after which we are always able to neglect it throughout inflation. The
initial φ obtained in this way is indeed consistent with requirements on inflation models.
In particular, we can easily obtain the initial condition φ > φc of hybrid inflation [93]:
We expect the initial φ to be large and can therefore restrict the effective potential
(3.27) to the term quartic in φ, together with the U -term relevant at early times. This
restricted potential has a local minimum at

φ = 6

√
Uv4

4a6V 2
0 M

4a4
. (3.28)

We do not know much about the volume a3V0 of the initial spatial region that was
meant to expand in an inflationary way. But in order to avoid the trans-Planckian
problem [94–96], we should require that a3V0 > ℓ3

P. This lower bound implies the upper
bound

φini <
1
ℓP

6

√
Uv4

4a4M4 (3.29)

for (3.28). For parameters of the order v ∼ O(MP) and M4 � M4
P, as common in hybrid

models and used in our analysis to follow, the upper bound on φini is much greater than
φc.
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3.3.2 Waterfall: Phase transitions
Our effective potential (3.27), depending on the classical field ψ and its fluctuation, φ
is of the hybrid-inflation type. These models typically produce a blue-shifted tilt when
one starts with a large φ and small ψ [93]. Inflation in this scenario essentially relies on
the near-constant vacuum energy of ψ. However, there is an alternative scenario in the
same model, the so-called waterfall regime [97,98], realized at a later stage in our model
in which φ has moved to and stays close to a minimum while ψ gradually inches away
from its vacuum value that has by then become an unstable equilibrium position.

As we will show, initial conditions for the waterfall regime to take place are generated
in our extension of the model by a non-adiabatic phase in which φ is still large. The
subsequent waterfall regime then generates a significant number of e-folds and leads
to a red-shifted tilt for a wide range of parameters. For this scenario to take place,
it is important that our effective potential differs from the traditional hybrid one in
that we have an a4φ

4 term as well as a Z2-breaking term a3ψ, which is assumed to be
small but not exactly zero. The symmetry breaking term is parameterized by a3, which
represents background non-Gaussianity. In a perfect vacuum, such a term would vanish.
In a less fine-tuned state, this term relieves us of the burden of supplying a non-zero
initial value for ψ, which is required to start the dynamics of the waterfall regime, as
we shall demonstrate later. Because both new terms depend on state parameters in our
semiclassical approximation, the resulting description of inflation is characterized by an
intimate link between observational features and properties of quantum states.

Another difference with the traditional hybrid model is that the hierarchy between
our set of parameters is more rigid, leaving less room for tuning and ambiguity and
making our results more robust. The traditional potential has three parameters that
can be adjusted independently, while in our case only two (non-state) parameters are
independent. This is so because we do not have a generic two-field model but rather
a single-field model accentuated by its quantum fluctuation. As opposed to the tradi-
tional hybrid model [97], we have two phase transitions characterized by non-adiabatic
behavior, and the majority of e-folds are created in between.

As in the original hybrid model, we start with some φ > φc with φ quickly rolling
down to its minima under an effective φ4 term. This phase is driven by a simplified
potential of the form

V φ
eff
M4 = 1 − 2

3
φ2

φ2
c

+ a4
φ4

v4 (3.30)
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Figure 3.1. Shape of the potential V (ψ) for constant φ at early (top) and late times (bottom),
defined relative to the time when φ crosses φc.

since ψ sits in its local minimum at the origin during this time and therefore all ψ-terms
can be ignored. Once φ crosses φc, the new true minima of ψ are displaced from the
origin due to a tachyonic term in its effective potential, of the form

V ψ
eff
M4 = 1 + 2

(
φ2 − φ2

c

φ2
c

)
ψ2

v2 + 4a3ψ

v4 + ψ4

v4 − 2
3
φ2

φ2
c

+ a4
φ4

v4 . (3.31)

Due to the a3 term, the Z2 symmetry of ψ is broken and the field starts slowly
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Figure 3.2. Shape of the potential V (φ) for constant ψ at early (top) and late times (bottom),
defined relative to the time when φ crosses φc. Here, we are ignoring the contribution from
the uncertainty principle that prevents φ from crossing φ = 0.

rolling away from the origin. This gradual change enables φ to closely follow its vacuum
expectation value, φ∗. (Its gradual nature also means that the back-reaction of homo-
geneous fluctuations φ on the homogeneous expectation value ψ is small, justifying our
semiclassical approximation. The combined system of ψ and φ has a pronounced effect
on the background space-time, driving its expansion. However, since energy densities
always remain sub-Planckian, our model is semiclassical also in the sense of quantum
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Figure 3.3. After a brief non-adiabatic phase when it rolls down a steep potential wall,
φ traces its minimum for the majority of inflation. The growth of ψ2 moves the φ-minima
closer to zero, causing another non-adiabatic phase that ends with an approximate symmetry
restoration for φ. The parameters used are v = 3, a3 = 0.05 and δ = 0.1.

gravity and we are justified in keeping the scale factor a unquantized.) Eventually, φ∗

approaches zero but never reaches it due to the uncertainty principle, thereby almost
restoring the symmetry for φ; this is the second phase transition mentioned above. As
shown in Figs. 3.1 and 3.2, φ causes the traditional phase transition when it crosses φc,
and then the slow roll of ψ down its tachyonic hilltop will end in a second phase tran-
sition. The whole process is clarified further by examining how the effective potential
changes in time, shown in Figs. 3.3 and 3.4.

The hilltop phase generates the dominant number of e-folds, and it ends automati-
cally when ψ reaches its new minimum. This is a new feature compared to the traditional
hybrid inflation and relies on the existence of a φ4 term in our effective potential. Our
model is not a variant of the original hybrid model [99], such as the inverted-hybrid
model [100] or a modified hilltop model [101], or having corrections to the potential
coming from supergravity-embedding of the model [102]; rather, we start with a Higgs-
like model and include effects from an initial quantum state that turn it into a hybrid
model with some additional terms.
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Figure 3.4. During the initial non-adiabatic phase, a phase transition akin to traditional
hybrid models occurs. Reflection symmetry in the potential is slightly broken by the a3-term
(which is not apparent in the figure due to its smallness). This non-Gaussianity term drives ψ
to its new stable point where ψ2 approaches v2. The parameters are the same as Fig. 3.3.

3.3.3 UV-completion and the swampland
One of the conceptual requirements for inflation models is that they should have a well-
defined quantum completion. One way to implement this is to derive specific forms of
inflationary potentials from string theory constructions as was done, for instance, in
the case of natural inflation. Another recent idea has been that of the swampland, a
complement of the string landscape, which stems from the fact that not all low-energy
effective field theories can be consistently completed in the ultraviolet into a quantum
theory of gravity [103,104]. In order for an effective field theory to be consistent, it would
have to satisfy the eponymous swampland constraints. This is a much more general way
in which quantum gravity may restrict the form of the potential, amongst other things,
in the low-energy effective field theory used as the starting point for inflation. More
specifically, it has been argued that many models of (at least) single-field inflation are not
consistent with the swampland conjectures since the latter require either a large value for
the slope of the potential, |V ′|/V > O(1), or large tachyonic directions, V ′′/V < −O(1)
[105, 106].

Taken together, these conjectures severely restrict the lifetime of metastable (quasi-
)de Sitter spacetimes that can be built from string theory. In order to obtain an estimate
for the numbers of order one that appear in one of them, the so-called de-Sitter conjec-

85



ture, one has to resort to fundamental properties of quantum gravity such as the absence
of eternal inflation [107,108] or the trans-Planckian censorship conjecture [109,110]. The
latter has put a more concrete bound on the duration of inflation which, when combined
with the observed power spectrum, imposes severe constraints on the allowed models
for inflation. It has been shown that only hilltop type of models, which generically
allow for a small slow-roll parameter ϵ but a big η, are the ones that survive amongst
all single-field models unless one invokes additional degrees of freedom as in non-Bunch
Davies initial states or warm inflation. Even for hilltop potentials, which seem to be the
most compatible with the swampland, one has to resort to an arbitrary steepening of the
potential to end inflation so as not to have too many e-folds since that would once again
make the model incompatible with the constraints. To date, there are no string theory
realizations of any such single-field potential that can abruptly stop inflation after a
finite amount of time.

The remarkable feature of our new model is that it is able to give a viable inflationary
cosmology as well as a graceful exit with a tachyonic (p)reheating, all starting from a
Higgs-like single-field potential as the main input. We are using only standard quantum
mechanics in a non-adiabatic semiclassical approximation and do not have to rely on
unknown features of quantum gravity. In addition, by virtue of the fact that the classical
field ψ plays the role of the inflaton relevant for observable scales, this model is essentially
of the hilltop type which has recently been shown to be preferred by the swampland and
to be able to ameliorate the η-problem [111]. Quantum effects imply that the single-
field classical potential is, upon quantization, no longer a single-field model that would
have to be tuned in order to avoid having too many e-folds of inflation or require any
additional mechanism to achieve stability against radiative corrections [112]. Moreover,
our detailed derivations below reveal that the model maintains a large value of the slow-
roll parameter η throughout inflation (in addition to a small ϵ, as is usually the case
for a prototype hilltop model). Indeed, it is when the value of η becomes too large that
inflation ends in this model, once again thanks to effects of quantum fluctuations of the
classical field (as opposed to a generic second field). All of this is possible even though
we start with a single-field model with a monomial potential, but then take into account
the effects of quantum fluctuations in a systematical manner.
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3.4 Analysis
The effective Hamiltonian (3.26) describes a two-field model with standard kinetic terms
in an expanding universe and an interaction potential similar to hybrid models. A nu-
merical analysis can be applied directly to Hamilton’s equations for ψ and ϕ generated
by Hclosure

Q , (3.26), using suitable initial values. We will present such solutions in com-
parison with a slow-roll approximation to be developed first.

3.4.1 Slow-roll approximation
For inflationary applications of (3.26), we are interested in a long phase of slow roll that
can be generated by ψ staying near its initially stable and then metastable equilibrium
position at ψ = 0. As long as ψ2 � v2 and φ2 ≈ φ2

∗ is near a local minimum, the slow-
roll approximation can be used and evaluated analytically. This phase is adiabatic and
therefore does not require all terms in (3.26) that are implied by semiclassical methods
for non-adiabatic quantum dynamics. However, as we have already seen, the remaining
terms are essential in achieving suitable initial values for the slow-roll phase and to
end it early enough. Throughout this analysis, we will also assume small background
non-Gaussianity. As our results will show, this assumption is justified by observational
constraints on the spectral index.

Given these conditions, the slow-roll parameters can be approximated as

ϵφ ≡ 1
2
M2

P

(
Vφ
V

)2
≈ 1

2
M2

P

(
M4

P

)2 ( 4φ
3φ2

c

(
1 − 3ψ2

v2

)
− 4a4φ

3

v4

)2

(3.32)

ϵψ ≡ 1
2
M2

P

(
Vψ
V

)2
≈ 1

2
M2

P

(
M4

P

)2 (4ψ
v2

(
φ2

φ2
c

+ ψ2

v2 − 1
)

+ 4a3

v4

)2

(3.33)

ηφφ ≡ M2
P
Vφφ
V

= −M4

P

(
4

3φ2
c

(
1 − 3ψ2

v2

)
− 12a4φ

2

v2

)
(3.34)

ηψψ ≡ M2
P
Vψψ
V

= M4

P

4
v2

(
φ2 − φ2

c

φ2
c

+ 3ψ2

v2

)
(3.35)

ηψφ ≡ M2
P
Vφψ
V

= M4

P

8ψφ
v2φ2

c

, (3.36)

where Vφ = ∂V/∂φ and Vψ = ∂V/∂ψ, iterated for higher derivatives. The constant
P is the initial potential energy, evaluated when φ ≈ φc and ψ ≈ 0. In the following
we set MP = 1. We will see later that small background non-Gaussianity ensures that
φ2/φ2

c − 1 � 1. Along with the adiabatic approximation for φ, this inequality can
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ensure that ϵψ and ηψψ are very small. However ηφφ is not necessarily small, even
though φ̈ � 3Hφ̇ and φ̇2 � V .

Our equations of motion, under slow roll, then read

3Hφ̇
M4 = 4φ

3φ2
c

(
1 − 3ψ2

v2

)
− 4a4φ

3

v4 (3.37)

3Hψ̇
M4 = −4ψ

v2

(
φ2 − φ2

c

φ2
c

+ ψ2

v2

)
− 4a3

v4 . (3.38)

where we can make M implicit by rescaling t → t/M2. The regime covered by our
approximations can be split into two phases followed by an end phase.

3.4.1.1 Phase 1

In early stages, we have ψ2 � v2 and can thus ignore the term 3ψ2/v2 in (3.37). There-
fore, the constant φ2 ≈ φ2

∗ ≈ 3φ2
c/a4 is an approximate solution. Adiabaticity ensures

that we can expand the equation of motion around the critical point φ∗ where Vφ(φ∗) = 0:

φ̇ ≈ − 1
3H

Vφφ(φ∗)(φ− φ∗) . (3.39)

Defining φ′ := dφ/dN where N is the number of e-folds, we obtain

φ′ ≈ −ηφφ(φ = φ∗, ψ ≈ 0)(φ− φ∗) . (3.40)

For small background non-Gaussianity, we have a4 = 3 + δ with δ � 1. Choosing the
initial value φ(0) = φc for Phase 1 therefore implies

φ1(N) ≈ φcδ

2a4
exp(−ηφφ(φ∗, 0)N) + φ∗ . (3.41)

Note that small non-Gaussianity also implies φ2
∗ = φ2

c +O(δ) +O(ψ2).
We can expect φ2/φ2

c − 1 ≈ −δ/a4 to be much bigger than ψ2/v2 at early times.
This reduces the second equation of motion, (3.38), to

ψ′ ≈ 1
P

4
v2

(
δ

a4
ψ − a3

v2

)
(3.42)

which is solved by

ψ1(N) ≈ −a3a4

δv2

(
exp

(
4δ

v2a4P
N

)
− 1

)
(3.43)
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for an initial ψ1 at the origin. To summarize, Phase 1 is characterized mathematically
by the possibility to ignore the ψ2/v2 terms in (3.37) and (3.38).

3.4.1.2 Phase 2

As ψ moves away from its metastable position at ψ = 0, the terms ψ2/v2 in the equations
of motion will eventually have noticeable effects even while they may still be small. In
particular, the local minimum of φ at

φ∗(ψ(t))2 = v4

3φ2
ca4

(
1 − 3ψ(t)2

v2

)
(3.44)

is then time-dependent. The solution for φ in Phase 2 can therefore be obtained directly
from (3.41) by inserting the time-dependent ψ and φ∗,

φ2(N) = φ1(N)|ψ→ψ(N) , (3.45)

using the solution for ψ(N) ≡ ψ2(N) to be derived now. As implied by adiabaticity, we
still have φ2 ≈ φ2

∗, tracking the local minimum.
Our phase now is described by the first two terms of (3.38) dominating over the

a3-term. Therefore,

ψ′ ≈ − 1
P

4ψ
v2

(
φ∗(ψ(t))2 − φ2

c

φ2
c

+ ψ2

v2

)

= 1
P

4ψ
v2

(
δ

a4
+ 2ψ2

v2 +O(δψ2/v2)
)
. (3.46)

which is solved by

ψ2(N) ≈ −sgn(a3)

√√√√ δ

(2a4/v2 + δ/ψ2
g) exp(−8δ(N −Ng)/(v2Pa4)) − 2a4/v2 . (3.47)

(Although a3 does not appear in our approximate equation (3.46), its sign determines the
direction in which ψ starts moving as a consequence of reflection symmetry breaking.)
Here, the subscript “g” denotes the value of solutions at the “gluing” point of the two
phases, defined as the point where the cubic term in (3.38) is on the order of the a3-term;
see Fig. 3.6 below for an illustration.
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3.4.1.3 End phase

Even though Phase 1 and Phase 2 are sufficient to describe the majority of inflation,
finding the point at which inflation ends requires a qualitatively different approximation
compared with the above two phases. The physics is also quite different. To see this,
note that if we extend the approximations of Phase 2 too far, we arrive at two wrong
conclusions. First, ψ will eventually cross the point ψ2 = v2/3, such that the two minima
of Veff(φ) meet at φ∗ = 0. Second, this behavior causes φ to approach zero, such that the
field ψ ends up at its new Veff(ψ)-minimum, ψmin = −v (assuming a3 is positive). The
former (φ → 0) is forbidden by the uncertainty principle, embodied in our U -term in Veff

neglected so far in the slow-roll analysis, and the latter is erroneous since it implies that
once everything has settled, H2, which is proportional to Veff during slow roll, would
seem to approach a negative value 4a3ψ/v

4 < 0.
However, this last conclusion certainly cannot be correct because our classical poten-

tial (3.1), a complete square Vcl(ψ) = M4(1−ψ2/v2)2, is positive semidefinite. Therefore,
it is quantized to a positive, self-adjoint operator V̂ which cannot possibly have a nega-
tive expectation value Veff = 〈V̂ 〉 in any admissible state. In terms of moments used in
our canonical effective description, after ψ crosses the value v2/3, the fluctuation vari-
able φ shrinks. Therefore, according to our moment closure introduced after equation
(3.17), the variance ∆(ψ2) = φ2 as well as the fourth-order moment ∆(ψ4) = a4φ

4 ap-
proach zero, while ∆(ψ3) = a3 has so far been assumed constant. This latter assumption
violates higher-order uncertainty relations for small φ.

We will not require a precise form of such higher-order uncertainty relations, or a
specific decreasing behavior of ∆(ψ3) because, referring to positivity, we know that the
magnitude of the a3-term in the potential is not allowed to be larger than the sum
of the rest of the terms in Veff . (But see the next subsection for numerical examples
with decreasing ∆(ψ3).) This observation places an implicit bound on non-Gaussianity
parameters when our potential energy decreases at the end of inflation. Taking this
outcome into account, our effective potential eventually becomes

Veff

M4 ≈
(

1 − ψ2

v2

)2

+ 2
3
φ2

φ2
c

(
3ψ2

v2 − 1
)

+ U

2M4a6V 2
0 φ

2 , (3.48)

where we have neglected the φ4 and a3 terms for small fluctuations. The corrected values
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φ∗ of the two φ-minima are now

φ∗ ≈ ±
(

u

K(ψ2)
φ2
c

)1/4

(3.49)

where
u = U

M4a6V 2
0

and K(ψ2) = 4
3

(
3ψ2

v2 − 1
)
. (3.50)

Since u is extremely small after 60 e-folds, we have |φ∗| � 1. The symmetry restoration
for φ is therefore only an approximate one. In addition, we neglected the O(δψ2/v2)-
term in (3.46), but kept δ/a4. These two terms become comparable around ψ2 = v2/3
for our chosen parameters. However, as we will see later in a comparison with numerical
solutions, setting φ = 0 and using the ψ(N) expression of Phase 2 during the end phase
gives a sufficiently accurate number of e-folds. This also means that only a negligible
amount of e-folds forms in the non-adiabatic phases of our evolution, and while non-
adiabatic effects are crucial for the beginning and the end of inflation, they do not affect
observations directly.

3.4.2 Comparison of analytical and numerical solutions
Our analytical solutions were obtained with certain approximations, but they generally
agree well with numerical solutions of the full equations,

φ̈+ 3Hφ̇ = 4φ
3φ2

c

(
1 − 3ψ2

v2

)
− 4a4φ

3

v4 (3.51)

ψ̈ + 3Hψ̇ = −4ψ
v2

(
φ2 − φ2

c

φ2
c

+ ψ2

v2

)
− 4a3

v4 , (3.52)

in situations relevant for inflation. To be specific, we choose parameters v = 3, δ = 0.1
and a3 = 0.05 in our numerical solutions. Figure 3.5 shows a representative example
of full numerical evolution. To test our analytical assumptions, Fig. 3.6 shows the
magnitudes of individual terms that contribute to the equation of motion (3.52) for ψ,
while Figs. 3.7 and 3.8 compare analytical and numerical solutions of both equations.

Cosmological parameters relevant for inflation are shown in the next figures, Fig. 3.9
for the slow-roll parameter ηψψ which eventually ends inflation, Fig. 3.10 for the spectral
index according to both analytical and numerical solutions, as well as its running in
Fig. 3.11. As shown by these figures, the parameters easily imply solutions compatible
with observational constraints. It is also shown how ηψψ increases at an opportune time
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Figure 3.5. Overview of full numerical evolution. The field ψ remains small during inflation
while φ follows its vacuum expectation value φ∗ very closely throughout the whole evolution.
After inflation ends, ψ2 approaches v2, a value cut off in this presentation. While the fields
may take Planckian values, of the order one in natural units, except for very early times they
hover near their potential minima where they imply sub-Planckian energy densities. Quantum-
gravity effects are therefore negligible during inflation. The field ψ2 increases at the end of
inflation, but it merely approaches its new minimum seen in Fig. 3.4 and is not a run-away
solution.

to end inflation with just the right number of e-folds in order to avoid the trans-Planckian
problem.

The role of non-Gaussianity parameters can also be studied. For instance, parameter-
izing a3 = 0.01φ3 instead of a constant a3 = 0.05 leads to comparable results, as shown
for the number of e-folds in Fig. 3.12. The effects of different choices of δ = a4 − 3
on the spectral index and the tensor-to-scalar ratio (computed as r ≈ 16ϵσ, σ being
the effective adiabatic field [97]) are shown in Figs. 3.13 and 3.14. An important new
result is that the non-Gaussianity parameters effectively control the onset and duration
of inflation, such that observationally preferred numbers of e-folds can be obtained for
reasonable choices of background non-Gaussianity. In particular, only small deviations
from a nearly Gaussian ground state are required.
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Figure 3.6. The magnitudes of individual terms in (3.38) as functions of N . The term ψ3/v4

in (3.38) approaches the order of a3/v
4 around N = 50, marking the transition point to Phase

2.

3.4.3 Analytical results for cosmological observables
As we have argued previously, our system is essentially a two-field model, such that we
may directly apply tools from multi-field inflation to predict the number of e-folds N
(starting from the crossing of ϕ = ϕc) and the spectral index. Using our analytical so-
lutions for the background variables, we may obtain approximate analytical expressions
for the observables, which are based on perturbative inhomogeneity. The standard
treatment of inflation quantizes the inflaton fields, subject to a given potential, on an
expanding space-time and computes power spectra from correlation functions of inho-
mogeneous modes. Here, we have already used quantum properties to generate our
extended 2-field potential. As a consequence, the variable φ, derived from quantum fluc-
tuations of ψ, cannot give rise to a quantum field that could imply correlation functions
to be used in a multi-field calculation of power spectra. In a field quantization of our
model, there would be only one field operator, ψ̂, rather than two quantum fields.

Nevertheless, we are able to formulate our model in a multi-field manner even for
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Figure 3.7. Comparison of analytical and numerical solutions for φ(N). Our analytical
solution for φ(N) agrees well with the full numerical one, justifying the adiabatic approximation
during inflation.

perturbative inhomogeneity. In our formalism, we would describe the full system of
background variables and perturbative modes within the same setting of canonical effec-
tive theory. As before, such a framework would be based on moments which, now, also
include the sought-after correlation functions of modes. While a complete treatment is
well beyond the scope of the present paper, it is not difficult to see that the correct
field degrees of freedom would be present. In particular, instead of deriving correlation
functions for a quantized fluctuation field φ, which does not exist in our model, we
can describe relevant correlation functions through higher moments: Standard correla-
tion functions are quadratic expressions in modes of φ, which as a fluctuation is itself
quadratic in the original field ψ. Suitable fourth-order moments of modes of the field ψ,
which is associated with a quantum field, can therefore be used as correlation functions
for the derived field φ. Since higher-order moments are subdominant for near-Gaussian
states, as encountered here, the mode dynamics do not include terms beyond those rel-
evant for the required correlation functions. We are therefore able to apply standard
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Figure 3.8. Comparison of analytical and numerical solutions for ψ(N). The analytical
solution agrees extremely well with the exact one in Phase 1 (before N = 50), while small
deviations occur in ψ2 occur Phase 2 (after about N = 50).

methods from multi-field inflation.

3.4.3.1 Perturbation modes

In our model, both the classical background variable ψ and its quantum fluctuation φ

undergo slow-roll evolution in different phases of the dynamics. Therefore, they should
both contribute to the curvature perturbation once inhomogeneous modes are included
and one can write down the effective adiabatic field σ as a combination of both these
fields, ψ and ϕ. (Here, we use the term “adiabatic” in its standard meaning applied to
modes of perturbative inhomogeneity.)

In terms of the adiabatic field σ, consider the spectral index at around horizon exit,

ns = 1 − 6ϵσ + 2ησσ . (3.53)
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Figure 3.9. Late time behavior (Phase 2) of ηψψ(N) obtained from analytical solutions for
ψ(N) and φ(N). The slow-roll assumption starts being violated around N ∼ 70, effectively
ending inflation.

At early times, using the slow-roll approximation for ϕ and small ψ, we have

ϵσ = ϵψ + ϵφ ≈ 0 +O(ψ2, δ2, a2
3) . (3.54)

For ησσ we have [97]

ησσ = ηφφ cos2 θ + ηψψ sin2 θ + 2ηφψ sin θ cos θ (3.55)
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Figure 3.10. Analytical and numerical solutions for the spectral index ns(N) in Phase 1.
Since Hubble exit takes place at least a ∆N ∼ 60 prior to the end of inflation, it can only
occur in Phase 1. Importantly, ns ≈ 0.96 at ∆N ∼ 60.

Figure 3.11. Analytical solution for the running αs ≈ dns/dN [1] at early times, using a
non-Gaussianity parameter a3 = 0.05. Estimating Hubble exit at N ∼ 10, αs is well within
Planck’s upper bound on the magnitude (∼ 10−3).
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Figure 3.12. Evolution of φ(N)2, from numerical solutions using a3 = 0.01φ3. Inflation ends
at Ne where φ(Ne) ≈ 0. Different curves correspond to different values of a4, or δ = a4 − 3,
where δ = 0.05, 0.1, 0.15, 0.2, 0.25, 3. Smaller δ increase the duration of inflation.

where θ is defined such that

cos θ = φ̇√
φ̇2 + ψ̇2

, sin θ = ψ̇√
φ̇2 + ψ̇2

. (3.56)

Based on the slow roll equations of motion for ψ and φ̇ ≈ φ̇∗ = −3ψ(a4φ∗)−1ψ̇ we obtain

cos θ ≈ − 3ψ
a4φ∗

sin θ , sin θ ≈ 1 , (3.57)

where we used Vψ � Vφ ≈ 0. To leading order of ψ, we therefore have

ηφφ cos2 θ ≈ 0 +O(δ2, α2
3, ψ

2) (3.58)
ηφψ sin θ cos θ ≈ 0 +O(ψ2) (3.59)

ηψψ sin2 θ ≈ − 4δ
a4Pv2 +O(ψ2) , (3.60)

such that
ns ≈ 1 − 8δ

a4Pv2 . (3.61)

Evaluating
P ≡ V (φ∗(ψ = 0), ψ = 0) = 1 − 1

a4
≈ 2

3
+ δ

9
+O(δ2) (3.62)
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Figure 3.13. Spectral index ns(N) as a function of e-folds N at Hubble exit from numerical
solutions, using a3 = 0.01φ3. Different curves correspond to different values of a4, or δ = a4−3,
where δ = 0.05, 0.1, 0.15, 0.2, 0.25, 3. Smaller δ brings the spectral index closer to one.

Figure 3.14. Tensor-to-scalar ratio r(N) as a function of e-folds at Hubble exit from numerical
solutions, using a3 = 0.01φ3. Different curves correspond to different values of a4, or δ = a4−3,
where δ = 0.05, 0.1, 0.15, 0.2, 0.25, 3. A smaller δ decreases r.

leads to the final expression

ns ≈ 1 − 12 δ

a4v2 +O(δ2) . (3.63)

Imposing a slow-roll condition such as ηψψ ∼ 10−2 requires v2/δ ∼ O(102), which implies
typical values of ns in the range 0.9 < ns < 1.
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3.4.3.2 Number of e-folds

Now, for total number of e-folds Ne we first need to find the value ψe of ψ at which
inflation ends. Approximately, this stage occurs when

ηψψ(φ∗, ψe) = Vψψ
V

|φ=φ∗,ψ=ψe ≈ 1 (3.64)

during the end phase. Under the approximation φ ≈ 0, we have

Vψψ
V

≈ 4
v2

3ψ2/v2 − 1
(1 − ψ2/v2)2 . (3.65)

Then Vψψ ≈ V (φ∗, ψ) gives

ψ2
e

v2 ≈ 1 + 6
v2 ± 2

√
9
v4 + 2

v2 (3.66)

= 1 + 6
v2

1 −
√

1 + 2v2

9

 , (3.67)

where we chose the minus sign in the second line. From the above expression we see
that typically ψ2

e/v
2 − 1/3 ∼ O(10−1). Then using

∆ψ ∼ −Vψ
V

∆N ∼ O(1)∆N , (3.68)

we see that beyond ψ2/v2 = 1/3, we do not get many e-folds before reaching the point
ηψψ ≈ 1, effectively ending inflation. In terms of the total number of e-folds, it is
therefore justified to approximate

ψ2(N)2 ≈ v2/3 such that φ2
∗ = 0 (3.69)

as the end point of inflation.
Since our analytical solution consists of ψ1 and ψ2, to find the total number of e-folds

Ne at ψ2
2 = v2/3, we must first find the number of e-folds Ng at the gluing point. By

definition of the latter,
ψ3

g ≡ ψ1(Ng)3 = −a3 . (3.70)

Denoting
η ≡ |ηψψ(φ1, ψ1)| ≈ 4δ

a4Pv2 ≈ 6δ
a4v2 +O(δ2) , (3.71)
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we have
2η = 1 − ns . (3.72)

Using (3.43),

exp(ηNg) = v2

ψ2
g

δ

a4
+ 1 (3.73)

which, inserted in (3.47), using (3.72) and setting ψ2(Ne)2 = v2/3, implies

Ne = 1
1 − ns

(
log

( 2
v2 + 1 − ns

12
χ
)

+ 2 log
(1 − ns

12
χv2 + 1

)
− log

( 2
v2 + 1 − ns

4

))
,

(3.74)
where χ ≡ v2/ψ2

g . The relationship (3.74) is illustrated in Fig. 3.15.
Aside from the parameter v that appears in common Higgs-like or hybrid models, our

observables depend on two new parameters a3 and δ which describe the non-Gaussianity
of the background state. Background non-Gaussianity effectively controls the amount of
non-adiabatic evolution due to its modulation on the shifting of local φ-minima at φ∗.
The dependence of the number of e-folds on the non-Gaussianity parameter a3 is shown
in Fig. 3.16, using the analytical solutions.

The dependence (3.74) of Ne on ns is more complicated than in non-minimal Higgs
models, but it is nevertheless related. To facilitate a comparison, we rewrite the expres-
sion as

Ne ≈ f(1 − ns, v, a3)
1 − ns

(3.75)

where the function f describes a weak, logarithmic dependence on 1−ns. In non-minimal
Higgs inflation, the analog of the function f(1 −ns, v, α3) is constant (f = 2) [61]. Here,
the function increases logarithmically with growing 1 − ns, taking values in the range
1 ≲ f(1 − ns, v, a3) ≲ 5 for typical parameter values considered in our analysis. (An
abbreviated derivation of (3.75) can be found in [75].)

3.5 Conclusions
Typically, potentials for the inflaton field are postulated so as to match existing obser-
vations. On the other hand, one of the most remarkable successes of inflation is that it
explains the large-scale structure of the universe as originating from quantum fluctua-
tions. It is inconceivable to quantize the fluctuations of the inflaton field alone without
taking into account the quantum corrections to the background field potential. In other
words, one cannot simply express the inflationary potential in terms of expectation val-
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Figure 3.15. The number of e-folds, Ne, increases as a function of the spectral index ns,
using the approximate relation (3.74). The function is shown for varying parameters v in the
potential, while a3 = 0.05. As a function of the non-Gaussianity parameters, the number of
e-folds decreases; see Fig. 3.16. (Note that in the analytical relation (3.63), the variation of ns
mirrors the non-Gaussianity ratio δ/(a4v

2).)

Figure 3.16. The number of e-folds, Ne, decreases with the amount of non-Gaussianity,
parameterized by a3, shown here for fixed ns ≈ 0.96, δ = 0.1 and using (3.74). Background
non-Gaussianities increases the departure from adiabatic evolution, effectively ending inflation
earlier than desired.
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ues of the homogeneous background field, but should also take fluctuations and higher
moments of the quantum state into account. It is customary to express the resulting
effective potential in a derivative expansion (of the Coleman-Weinberg type); however,
this method is not sufficient if one has to consider non-adiabatic evolution of quantum
fluctuations. An adiabatic approximation is certainly valid during a slow-roll regime,
but, as shown here, it can miss important features at the beginning and the end of
slow-roll. Non-adiabaticity can play a crucial role in setting up the initial conditions for
a slow roll phase as well as helping to ending it at the right time. We have presented a
more general procedure for calculating the effects of such non-adiabatic evolution in the
context of early-universe cosmology.

Using non-adiabatic effective methods, we have constructed an observationally con-
sistent extension of Higgs-like inflation by introducing non-adiabatic quantum effects in
a semiclassical approximation, although our formalism is applicable more generally for
any inflationary potential. As shown, these effects imply that the classical potential is
not only corrected in its coefficients but is also amended by new terms for independent
quantum degrees of freedom, in particular the quantum fluctuation of the Higgs field.
The original single-field model is therefore turned into a multi-field model. The multi-
field terms incorporate quantum corrections of the background field, corresponding to
backreaction of radiative corrections. Since the single-field potential is renormalizable,
our quantum scenario is robust from the perspective of quantum field theory.

New interaction terms in the multi-field potential have coupling constants that de-
pend on the background state, parameterizing its non-Gaussianity. They imply two
new non-adiabatic phases that cannot be seen in low-energy potentials or in cosmo-
logical studies based completely on slow-roll approximations. In particular, an initial
non-adiabatic phase, combined with the uncertainty relation for the fluctuation degree
of freedom, sets successful initial conditions for inflation to take place, and a second
non-adiabatic phase ends inflation after the right number of e-folds. In an indirect way,
observational constraints show that background non-Gaussianity should be small, but it
must be non-zero for the non-adiabatic phases to be realized. (The observational input
we use here is not a limit on statistical non-Gaussianity in the inhomogeneity spectrum.
Rather, the new link between the number of e-folds and background non-Gaussianity,
shown in Fig. 3.16, makes it possible to use readily available limits on the number of
e-folds and, in conjunction with Fig. 3.15, the spectral index in order to limit quantum
non-Gaussianity of the background state of the inflaton.) Our model is highly con-
strained because this non-Gaussianity is bounded from below, but we are nevertheless
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able to derive successful inflation in the range of parameters available to us.
Our model presents a new picture of the role of the quantum state in inflationary

cosmology. Quantum fluctuations not only provide the seeds of structure as initial
conditions for perturbative inhomogeneity, they also play a crucial role in guiding the
inflationary dynamics of the background state. With further analysis and observations,
it may be possible to further constrain the quantum state of the inflaton based on
cosmological investigations.
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Chapter 4 |
Backreactions

4.1 Introduction
As we have argued in previous chapters, given a generic quantum system, it is often
impossible to solve the theory exactly. In extreme cases—like those involving gravity—
we are currently not even able to write down a self-consistent quantum equation of
motion. Fortunately, in situations where curvature and energies are not too high, we
may still make reliable predictions by treating the theory as a part-quantum and part-
classical system. In such a treatment we often assume that the quantum contributions of
the system evolve on a classical background. Discrimination between classical evolution
and quantum evolution is often implicitly assumed—the quantum degrees-of-freedom
(DoFs) are directly affected by the classical background but not the other way around.
How quantum DoFs influence, or backreact on, the classical background still remains an
open question.

In the context of cosmological backreactions, we are concerned with the question of
how an evolving or fluctuating quantum field in an expanding universe might affect the
expansion rate of the background geometry on which it is defined. In the absence of
a complete and consistent quantum theory of gravity or cosmology, the background is
mainly treated as a classical system. Such is the route typically taken in a standard
analysis of cosmological perturbations in the inflationary epoch of our early universe.
During this stage, we divide the system into a homogeneous background and inhomoge-
neous perturbations. The classical potential of the background is often an effective one
obtained by integrating out quantum contributions or heavy DoFs. In principle, it will
contain contributions from non-local effects. However, these non-local contributions are
often assumed to be small if we are only interested in a low energy effective potential.
As for the inhomogeneous perturbations, they are quantized and ultimately used to com-
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pute the n-point functions, which are then compared to observations. The significance
of the backreaction problem is now obvious. It is relevant not only for observational and
conceptual questions in cosmology (see for instance [74, 113–115] for recent contribu-
tions), it also offers general lessons for the classical-quantum correspondence [116–128]
and the validity of hybrid schemes in which only one part of an interacting system is
quantum [129–132]. In this chapter, we apply recent advances in canonical descriptions
of semiclassical expansions to a system that has been used recently as a cosmological
model [2], to what turns out to be the leading semiclassical order of our systematic
scheme.

We will utilize a systematic inclusion of quantum fluctuations to construct effec-
tive models for early-universe cosmology which may be interpreted as being of hybrid
type. While we will not directly address the quantum-to-classical transition, we will
be able to shed new light on the related homogeneity problem of inflationary struc-
ture formation [124], which states that it should be impossible for translation-invariant
quantum evolution to generate inhomogeneity out of an initial homogeneous vacuum
state. We will examine the assumption of homogeneity more closely and enter a crucial
new ingredient into this discussion, given by quantum non-locality. We will argue that
quantum non-locality is able to imply a gradual process of transfer of super-horizon
inhomogeneity—suggested to occur generically according to the Belinskii–Khalatnikov–
Lifshitz (BKL) scenario [133])—down to smaller distance scales and eventually into the
cosmological horizon. As an implication of quantum non-locality, this process may hap-
pen even in the quantization of a classical covariant theory. As we will observe for
the first time in an application to quantum field theory, canonical moment methods
give efficient access to spatial non-locality. (As has been known for some time, moment
methods allow one to describe quantum non-locality in time by foregoing an adiabatic
approximation of usual effective potentials.)

Let us first consider the canonical moments method in a quantum-classical correspon-
dence context. For comparison sake, we will use a model considered in the treatment
of [2]

H = 1
2
p2
x + 1

2
p2
z − ax+ 1

2
(ω2 + λx2)z2 (4.1)

with two degrees-of-freedom x and z, where a, ω and λ are positive constants. The
degree-of-freedom x remains completely classical in the original treatment and serves as
a background which, while rolling down its linear potential −ax, excites the oscillator
given by z via the interaction term 1

2λx
2z2. In [2], z is quantized and its backreaction

effects on the roll-down rate of x are studied. This dynamics could be considered a toy
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model representing the effects of particle creation on a classical background.
Here, we extend the model in a way that goes beyond a strict background treat-

ment of x. In the cosmological situation, the usual separation into background and
perturbations exists only as an approximation of some inhomogeneous dynamics. Be-
cause both background and perturbation variables depend on the same fundamental
degrees of freedom, given by the space-time metric and suitable matter fields, a separate
quantization has a certain limited range of validity. To make matters worse, there may
potentially be a problem of re-quantization as the potential of the matter system is often
a quantum-corrected effective one—it either describes the vacuum, which is not appli-
cable for inhomogeneous systems, or it includes inhomogeneous effects meaning that
inhomogeneity has already been quantized before. Finally, even classically, the separa-
tion is not compatible with full general covariance but is maintained only by coordinate
transformations that are small in the same sense in which inhomogeneity is considered
a small perturbation on the background.

A complete treatment would have to be done within an elusive theory of quantum
gravity, but while such a theory is still being constructed, some generic implications
can be tested. In particular, if background and perturbations depend on the same
fundamental fields, upon quantization there may well be correlations between them.
Such correlations might even be required for general covariance to hold at the quantum
level: A small coordinate change from t to t+ ξ with an inhomogeneous ξ � t, allowed
at the perturbative level, maps a pure background variable such as the scale factor a(t)
into an inhomogeneously perturbed quantity, a(t+ ξ) ≈ a(t) + ȧξ. Assuming vanishing
quantum correlations between background and perturbations is therefore too restrictive
for a covariant quantum theory of the system.

The task then is to introduce correlation parameters between background and per-
turbations while maintaining a suitable level of tractability. We solve this problem here
by utilizing a quasiclassical formulation of quantum dynamics [76–79] which introduces
(or derives) canonical variables for moments of a quantum state. (As we will also demon-
strate, the constructions of [2] are equivalent to these quasiclassical methods up to a
certain order.) Recent advances in [81, 82] have extended these methods from a single
degree of freedom to a pair of coupled and possibly correlated degrees of freedom. This
extension makes it possible to derive a systematic formulation of cosmological perturba-
tions with background correlations.

In [134], a quantum-field version of the model of [2] was introduced and studied,
concluding that it was not possible to solve the homogeneity problem. We describe and
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extend related models by applying systematic quasiclassical methods to a quantum field
on a semiclassical background. Also here, we are able to introduce correlations between
the field and the background. Importantly, we will be able to reveal a new effect implied
by the evolution of cross-correlations of different modes of a quantum field which can be
used to address the homogeneity problem. In particular, we will observe that the usual
assumption of an exactly homogeneous initial state is not always justified because super-
Hubble inhomogeneity (as implied at early times by the BKL scenario) may trickle down
to within the Hubble radius when quantum correlations are considered. We interpret
this new effect as a consequence of quantum non-locality.

4.2 Canonical description of quantum dynamics
In order to facilitate the mathematical description of a quantum degree of freedom
interacting with a classical variable, the construction presented in [2] uses a semiclassical
approximation. Motivated by the well-known form of energy eigenstates of the harmonic
oscillator, in particular of the Gaussian ground state, the authors observe that the
first semiclassical correction of an oscillator can be described by doubling its degrees of
freedom. In an energy eigenstate (in which the expectation value of ẑ vanishes), instead
of a single classical variable z, one may use a pair of fluctuation degrees of freedom,
χ and ξ with momenta pχ and pξ, such that the quadratic potential z2 is replaced by
χ2 + ξ2, and similarly for p2

z. One can think of these replacements as an approximation
inspired by a harmonic oscillator system (with potentially time-dependent frequency).
The equations of motion in a system with Hamiltonian (4.1) are then given by

ẍ = a− xλ(ξ2 + χ2), ξ̈ = −(ω2 + λx2)ξ χ̈ = −(ω2 + λx2)χ . (4.2)

In addition, the angular momentum in the new (χ, ξ)-plane is constrained to be non-
zero and equal to ξpχ − χpξ = 1/2, restricting the allowed initial values. It is therefore
impossible for only one of the new variables to be non-zero, in which case we would have
equivalence with the classical formulation.

In [2], this doubling of degrees of freedom of a semiclassical oscillator in an energy
eigenstate is obtained by including the variance as an independent degree of freedom,
in addition to the expectation value of a basic variable such as z (which vanishes in an
energy eigenstate). The expectation value of p̂2

z in an uncorrelated Gaussian state with
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variance σ2 is given by
〈p̂2
z〉 = 〈p̂z〉2 + ℏ2

4σ2 (4.3)

while the expectation value of ẑ2 (in any state) equals

〈ẑ2〉 = 〈ẑ〉2 + σ2 . (4.4)

The Gaussian expectation value of (4.1) in which only (z, pz) has been quantized is
therefore

〈Ĥ〉 = 1
2
p2
x + 1

2
〈p̂z〉2 + ℏ2

8σ2 − ax+ 1
2

(ω2 + λx2)(〈ẑ〉2 + σ2) . (4.5)

The contribution ℏ2/(8σ2) may be interpreted as a centrifugal potential of planar motion
expressed in polar coordinates with radius σ, together with a spurious angle that does
not appear in the potential of (4.5). Transforming to Cartesian coordinates implies the
two degrees of freedom, χ and ξ such that χ2 + ξ2 = σ2, with the condition that their
angular momentum has to equal ℏ/2 for ℏ2/(8σ2) in (4.5) to be the correct centrifugal
potential. The harmonic potential is then turned into 1

2(ω2 +λx2)(〈ẑ〉2 + ξ2 +χ2), which
implies the equations of motion (4.2) for vanishing expectation value 〈ẑ〉, as assumed in
(4.2). To complete this construction, we also need a kinetic energy of the new variable σ
or its Cartesian analogs ξ and χ, which will be provided naturally by our more general
treatment below.

For comparison, we briefly recall an alternative derivation of the equations of motion
closer to the approach of [2]: The two degrees of freedom can be derived directly by
introducing Heisenberg operators

ẑ(t) = z(t)∗â0 + z(t)â†
0 (4.6)

p̂z(t) = ż(t)∗â0 + ż(t)â†
0 (4.7)

with the time-independent annihilation operator â0 and a time-dependent complex func-
tion z = ξ + iχ. Commutation relations then imply that

ẑ2 = z∗z(1 + 2n̂0) + (z∗)2â2
0 + z2(a†

0)2 (4.8)
p̂2
z = ż∗ż(1 + 2n̂0) + (ż∗)2â2

0 + ż2(â†
0)2 (4.9)

where n̂0 is the number operator associated with a0. In the ground state, which we
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assume initially and where 〈ẑ〉 = 0 = 〈p̂z〉, we have

∆(z2) ≡ 〈(ẑ − 〈ẑ〉)2〉 = z∗z = ξ2 + χ2 (4.10)
∆(p2

z) ≡ 〈(p̂z − 〈p̂z〉)2〉 = ż∗ż = ξ̇2 + χ̇2 , (4.11)

valid at all times. Fluctuations therefore imply two dynamical real degrees of freedom.
Moreover, the covariance (in the standard sense) equals

∆(zpz) = 1
2

〈ẑp̂z + p̂z ẑ〉 − 〈ẑ〉〈p̂z〉 = ξξ̇ + χχ̇ (4.12)

such that the uncertainty product

∆(z2)∆(p2
z) − ∆(zpz)2 = (ξχ̇− ξ̇χ)2 (4.13)

implies a constant ξχ̇ − ξ̇χ = ℏ/2 in the Gaussian ground state. The specific angular
momentum required by (4.5) is therefore closely related to the uncertainty relation.

We point out that the canonical formulation underlying this procedure has been
known for some time, and has in fact been (re)discovered independently in various fields,
including quantum field theory [76], quantum chaos [78] and quantum chemistry [77,79].
Leading semiclassical corrections of a particle moving in one dimension with coordinate z
and momentum pz can be described by coupling the basic expectation values 〈ẑ〉 and 〈p̂z〉
to three additional variables, the quantum fuctuations ∆(z2) and ∆(p2

z), as well as the
covariance ∆(zpz) = 1

2〈ẑp̂z + p̂z ẑ〉 − 〈ẑ〉〈p̂z〉. It is useful to introduce a uniform notation
that can easily be extended to higher moments, which we write, following [42,135,136],
as

∆(zapbz) = 〈(ẑ − 〈ẑ〉)a(p̂z − 〈p̂z〉)b〉Weyl (4.14)

in completely symmetric, or Weyl ordering.
According to [42, 43], the expectation values and moments form a phase space

equipped with a Poisson bracket defined by

{〈Â〉, 〈B̂〉} = 〈[Â, B̂]〉
iℏ

(4.15)

and extended to moments by using the Leibniz rule. As a simple consequence, the Pois-
son bracket of basic expectation values equals the classical Poisson bracket, {〈ẑ〉, 〈p̂z〉} =
1, and moments have zero Poisson brackets with basic expectation values. A closed-form
expression exists for the bracket of two moments [42, 83], but it is rather complicated.
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In particular, it is not canonical.
For instance, for second-order moments, we have the brackets

{∆(z2),∆(zpz)} = 2∆(z2) , {∆(zpz),∆(p2
z)} = 2∆(p2

z) , {∆(z2),∆(p2
z)} = 4∆(zpz) .

(4.16)
With hindsight, the semiclassical formulation of [76–79] can be interpreted as a mapping
from the 3-dimensional Poisson manifold with brackets (4.16) to canonical, or Casimir–
Darboux coordinates. Explicitly, defining the mapping from

(∆(z2),∆(zpz),∆(p2
z)) −→ (s, ps, U)

by
s =

√
∆(z2) , ps = ∆(zpz)√

∆(z2)
, U = ∆(z2)∆(p2

z) − ∆(zpz)2 (4.17)

or its inverse,

∆(z2) = s2 , ∆(zpz) = sps , ∆(p2
z) = p2

s + U

s2 , (4.18)

one can see that we have the canonical Poisson bracket {s, ps} = 1, while {s, U} =
{ps, U} = 0.

These equations hold for all states as they only rely on kinematical properties coming
from (4.15). If we make the additional assumption that second-order moments provide a
good approximation of quantum dynamics at least for some time, we may insert (4.18) in
the expectation value of the harmonic Hamiltonian, taken in an arbitrary semiclassical
state. We then obtain the effective Hamiltonian

Heff = 〈Ĥ〉 = 1
2
p2
x − ax+ 1

2
p2
z + 1

2
(ω2 + λx2)z2 + 1

2

(
p2
s + U

s2

)
+ 1

2
(ω2 + λx2)s2 , (4.19)

still quantizing only (z, pz). This Hamiltonian is equivalent to (4.5) if U = ℏ2/4, the
minimum value allowed by Heisenberg’s uncertainty relation. It is more general if U
is allowed to be greater than this value, in which case we are no longer restricted to
Gaussian states. The derivation shows how the conserved quantity U is related to
the uncertainty relation as well as angular momentum in an effective description after
transforming to Cartesian coordinates. Transforming s as the radial coordinate in an
auxiliary plane (together with a spurious angle) to Cartesian coordinates (ξ, χ) on this
plane, the centrifugal potential U/(2s2) can be eliminated by doubling the fluctuation
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degree of freedom s:

HCartesian = 1
2
p2
x − ax+ 1

2
(
p2
z + p2

ξ + p2
χ

)
+ 1

2
(ω2 + λx2)(z2 + ξ2 + χ2) . (4.20)

The kinetic energy of s, or ξ and χ, is automatically provided by (4.19). In general,
angular momentum for motion on the plane is bounded from below but not required to
equal ℏ/2 for generic states.

The effective Hamiltonian generates equations of motion for x, z, and s, as well as
their momenta. Semiclassical aspects of quantum evolution can therefore be described
by an enlarged phase space of classical type. Compared with the classical equations,
solutions require additional initial values which partially encode properties of quantum
states. The specification of an arbitrary state would require infinitely many parameters,
for instance, all moments required for the Hamburger problem that asks how a proba-
bility density can be reconstructed from all its moments. A semiclassical approximation
replaces this infinite number with finitely many values, given by a minimum of three
non-classical parameters s, ps, and U at leading semiclassical order.

A simple initial state, which may be Gaussian but would not be required to stay so
in an interacting system, can be specified by the choice

px(0) = x(0) = 0 , pz(0) = z(0) = 0 , s(0) = 1√
2ω

, ps(0) = 0 . (4.21)

The specific value chosen for s mimics the ground state of a harmonic oscillator with fre-
quency ω. We may leave the Casimir variable U as a free parameter, which is restricted
by the inequality U ≥ ℏ2/4 but need not saturate it if the state is not required to be
Gaussian. It would then be more difficult to find a specific wave function or density ma-
trix that belongs to these parameters, but semiclassical evolution based on the equations
given here can be performed without problems. As shown in Fig. 4.1, the dynamics of
the model applied in [2] to Gaussian states are indeed sensitive to the value of U .

4.3 Correlations with the background
Having established the close relationship between [2] and canonical effective methods,
we now use extensions of the latter to generalize the dynamics by including correlation
degrees of freedom.
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Figure 4.1. Classical evolution (blue) of the background variable x(t), coupled to a semiclas-
sical oscillator according to (4.1), compared with semiclassical evolution generated by (4.19)
for the values U = 0.25, 0.3 and 0.35. Minimal uncertainty (U = 0.25, thick green) agrees
with the CQC formulation of [2] (red), while other values of U lead to different dynamics. The
yellow curve shows the evolving quantum fluctuation s of the coupled oscillator for the case of
U = 0.25. To fix units, the same choices ω = λ = ℏ = 1 as in [2] have been made.

4.3.1 Motivation
In a traditional background treatment, the variable x is treated completely classically, as
in [2] and reviewed in the preceding section. However, if our ultimate goal is to analyze
gravitational systems, the separation between background and quantum perturbation
becomes a non-trivial issue; this is mainly because gravitational systems are subject
to diffeomorphism symmetries that influence both the space-time geometry and matter.
Consequently, the notion of perturbations on top of a homogeneous background is formal
and ambiguous—in practice it can mean different things prior to fixing a gauge. At
this stage mixing between background and perturbations seem almost unavoidable. We
expect the mixing to carry over to the quantum theory in the form of correlations. When
quantizing cosmological perturbations, we either quantize the system after fixing a gauge
and solving the constraints, or we look for gauge-invariant objects, where a clear-cut
separation of background and perturbations is often not guaranteed. For gauge-invariant
properties, it is therefore of interest to go beyond a pure background treatment.

In particular, one commonly uses curvature perturbations or Mukhanov–Sasaki vari-
ables in order to put perturbative inhomogeneity into “gauge-invariant” form [137]. (In
the present discussion, we may ignore the fact that these expressions are not fully gauge-
invariant, but are so only with respect to a subset of all gauge transformations even in
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the linearized setting [138, 139].) These variables combine scalar modes of the metric
with scalar fields. The former degrees of freedom form a single tensorial object together
with the background metric, and therefore pure matter perturbations, distinct from the
background, can be obtained only if a gauge is chosen in which the scalar modes of the
metric vanish. In a gauge-invariant treatment, by contrast, it is not clear in which sense
background and perturbations may be considered sufficiently independent to justify the
assumption of vanishing correlations in a generic state upon quantization. (Thanks to
general covariance, the quantum description of cosmological perturbations on an ex-
panding background is not the same as quantum field theory on a curved background
space-time, in which form it is often presented.)

In fact, the expressions for curvature perturbations in terms of metric and matter
fields depend on the background scale factor and the Hubble parameter. Background and
perturbations are therefore not independent in a framework that may derive quantized
perturbations from some fundamental, unperturbed quantum theory of gravity. Such a
derivation would, of course, be challenging, but it suggests that background correlations
should be relevant. Unless it can be shown that quantum gravity could not possibly
lead to quantum correlations between background and perturbations, it is not justified
to assume that such correlations are absent or can be ignored. In this section, we derive
a new theory of canonical effective equations with correlations, still applied to the toy
Hamiltonian (4.1).

4.3.2 Canonical variables for second-order moments of two degrees
of freedom
The technical task is then to generalize the simple mapping (4.18) to the moments of two
classical degrees of freedom, x with momentum px and z with momentum pz. To second
order, each canonical pair has three individual moments, given by two fluctuations and
a position-momentum covariance. These six individual moments are accompanied by
four cross-covariances that contain one variable from each pair, such as ∆(xz). We
therefore have a ten-dimensional Poisson manifold, which requires some work to put
into canonical form with Darboux coordinates and Casimir variables. This derivation
has been completed only recently, in [81,82], where explicit expressions for the ten second-
order moments in terms of four pairs of Darboux coordinates — (s1, ps1), (s2, ps2), (α, pα)
and (β, pβ) — and two Casimir variables, C1 and C2, have been provided.

The resulting expressions are rather complicated and, in contrast to (4.18), have mo-

114



mentum variances that cannot be put into a form suitable for canonical kinetic energies
with constant coefficients. (A proof of this claim has been provided in [81].) Fortunately,
as we will show here, they can be reduced in an approximate way that provides canonical
kinetic energies and retains a single independent correlation parameter, β.

We will quote here only the relevant moments. The new fluctuation parameters s1

and s2 as well as the correlation parameter β are introduced by the equations

∆(x2) = s2
1 , ∆(z2) = s2

2 , ∆(xz) = s1s2 cos β , (4.22)

straightforwardly generalizing (4.18). Momentum variances also have a form similar to
(4.18), given by

∆(p2
z) = p2

s2 + U2

s2
2

(4.23)

for the variance of pz. In contrast to (4.18), however, U2 is not constant but rather
depends on the canonical (Darboux) coordinates in the complicated form

U2 = (pα − pβ)2 + 1
2 sin2 β

(
(C1 − 4p2

α) −
√
C2 − C2

1 + (C1 − 4p2
α)2 sin (α + β)

)
(4.24)

where C1 and C2 are the two Casimir variables, and therefore conserved. A similar
expression exists for ∆(p2

x). This rather long expression has been derived in [82] from
the conditions that the moments, expressed in canonical variables, (i) obey the required
Poisson brackets and (ii) are represented in a one-to-one manner without losing degrees
of freedom in the canonical parameterization. This process, in particular the second
condition, requires the inclusion of a canonical pair (α, pα) in (4.24) whose physical
interpretation is not as clear as that of the fluctuation and correlation parameters s1, s2

and β together with their momenta.
A possible interpretation can be obtained from the fact that moments can be defined

for any pure or mixed state. While the known meaning of s1, s2 and β as well as their
momenta shows that they are free parameters even if one restricts oneself to pure states,
there must be additional parameters in a parameterization of all states that determine
how much they deviate from a pure state. The new canonical coordinates α and pα, as
well as C2, are candidates for such impurity parameters, a conjecture which has been
tested with some success in a new canonical derivation of low-energy effective potentials
given in [82].
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4.3.3 Reduction of degrees of freedom
A minimal model that goes beyond the mapping for a single degree of freedom and
retains a correlation parameter can be constructed by assuming small correlations. It
turns out that many terms in (4.24) are then suppressed. Consequently, a minimal
correlation model can be built as follows: We first assume that pα and 4

√
C2 are much

smaller than pβ and
√
C1. The square root in (4.24) is then small, suppressing the

dependence on α via sin(α + β). The variable α therefore need not be assumed small,
and it may in fact grow because, according to the cross-term of the first square in U2,
any effective Hamiltonian to which ∆(p2

z) contributes in the kinetic energy, generates
an equation of motion of the form α̇ ∝ pβ + · · · where dots indicate terms independent
of pβ. It is therefore impossible for α to be exactly zero if pβ (a correlation parameter
like β) is non-zero, while we need a non-zero pβ in order to consistently ignore pα unless
this variable is exactly zero. However, α appears in a bounded function in (4.24) that is
suppressed by a small square root if our assumption about pα and C2 is satisfied, such
that the dependence on α can be ignored in this case. The interpretation of α, pα and
C2 as impurity parameters suggests that our approximation should be valid whenever a
state is close to being pure.

We then have the simplified expression

∆(p2
2) = p2

s2 +
p2
β

s2
2

+ C1

2s2
2 sin2 β

(4.25)

which, in a generalization of the momentum terms in (4.19), can be interpreted as
(twice) the kinetic energy of a particle moving in three dimensions, expressed in spherical
coordinates (s2, β, φ) with a spurious degree of freedom φ. In contrast to the Cartesian
version of (4.19), one of the angles, β, now is physically meaningful. It is, in fact, the
correlation parameter relevant for our present aims.

As shown by the last term in (4.25), the momentum pφ of the spurious angle is
constrained to equal the constant

√
C1/2. If we include the second degree of freedom in

the mapping, given by the background variable x, it would have a similar kinetic energy
with the same angle β and its momentum pβ. The two 3-dimensional systems would
therefore be subject to constraints.

Here, we apply the 3-dimensional model only to the oscillating degree of freedom, z,
while the background degree of freedom x is extended only by a fluctuation variable, s,
as in a mapping for a single degree of freedom. In this way, we are able to construct a
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minimal extension of the model by parameterizing the correlation variable, β. For x, we
therefore have the kinetic contribution

1
2

(
p2
x + p2

s + U

s2

)
= 1

2
(p2
x + p2

X + p2
Y ) (4.26)

as before, see (4.20), implying the contribution

− ax+ 1
2
λ(x2 + s2)z2 = −ax+ 1

2
λ(x2 +X2 + Y 2)z2 (4.27)

to the effective potential in Cartesian coordinates for quantum fluctuations, in the style
of [2] but now applied also to the background.

For z, we transform the kinetic energy implied by (4.25) to 3-dimensional Cartesian
coordinates (ξ, χ, ζ), such that

1
2

(
p2
z + p2

sz
+ U2

s2
z

)
= 1

2
(p2
z + p2

ξ + p2
χ + p2

ζ) . (4.28)

This variable contributes several terms to the effective potential:

1
2

(ω2 + λx2)(z2 + ξ2 + χ2 + ζ2) + 2λxzsζ (4.29)

where the last term comes from the correlation (4.22). In our Cartesian-inspired coordi-
nates ∆(xz) = s1s2 cos(β) ≡ sζ, so the coordinate ζ is a direct indication of the amount
of correlation between “background” x and the “quantum” DoF z. The Hamiltonian is
therefore

H = 1
2

(p2
x + p2

z + p2
X + p2

Y + p2
ξ + p2

χ + p2
ζ) − ax+ 1

2
(ω2 + λx2)(z2 + ξ2 + χ2 + ζ2)

+1
2
λ
(
z2(X2 + Y 2) + 4xz

√
X2 + Y 2ζ

)
. (4.30)

For zero cross-correlations, we have ζ = 0 and the Hamiltonian is reduced to a strict
background model if we also set X2 + Y 2 = 0 = p2

X + p2
Y (to obtain vanishing x-

fluctuation).

4.3.4 Diagonalization
Like many prototypical models, the consequences of a dynamical background include
a time-dependent frequency for the perturbations. However, unlike the typical mod-
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els, our system also has additional degrees-of-freedom representing quantum fluctua-
tions. Indeed, our new effective Hamiltonian (4.30) can be interpreted as a system
of four harmonic oscillators—z, ξ, χ, and ζ—with frequencies that depend on time
through the background variable x and its fluctuation parameter,

√
X2 + Y 2. The term

xz
√
X2 + Y 2ζ in (4.30) implies that z and ζ are not normal coordinates of the oscillator

system.
We may attempt to (time-dependently) diagonalize this coupling between z and the

component ζ of its fluctuation/correlation. In order for the diagonalization to be feasible,
we assume that the typical time scale of evolution for z and ζ is much smaller than the
time scale of x and its fluctuations. We will then be able to treat the coefficients
as approximately time-independent, allowing a straightforward diagonalization of the
quadratic form.

Considering the entire Hamiltonian H, the time scale for x is of the order 1/a ∼ O(1)
(noting that we set the mass to one and use natural units), while the time scale for
∆(x2) = X2+Y 2 is of the order 1/(λz2)1/2 � 1, as will be confirmed in Fig. 4.5. Turning
to z and ζ, we see that their time scales are roughly 1/(λx2)1/2 and 1/(x

√
X2 + Y 2)1/2

which are typically very small because x2 and ∆(x2) grow large at late times. The
hierarchy in time scales, along with the assumption ω2 ∼ O(1), such that ω2 � λx2,
justifies the following approximation.

We may rewrite the z − ζ part of (4.30) as

Hz−ζ = K + 1
2
λ
(
(x2 + δ2)z2 + x2ζ2

)
+ 2λxδzζ (4.31)

where
δ =

√
X2 + Y 2 and K = 1

2
(p2
z + p2

ζ) . (4.32)

Upon diagonalization we obtain the normal (angular) frequencies

ω2
1 = λ

(
x2 + 1

2
δ2 − δ

√
16x2 + δ2

)
(4.33)

ω2
2 = λ

(
x2 + 1

2
δ2 + δ

√
16x2 + δ2

)
. (4.34)

Since δ is the fluctuation of the classical degree of freedom, x, we expect it to be much
smaller than x in magnitude. This result implies that the typical behavior of evolution
of z and ζ can be described as a fast, nearly harmonic oscillation with frequency ω1 +
ω2 ≈

√
λx, modulated by a slow oscillation with frequency ω2 − ω1 ≈ 4

√
λδ. The

introduction of the correlation parameter β (or equivalently ζ) therefore gives rise to beat-
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like behavior, which is new and only present if we capture the effect of the background
degree of freedom and its fluctuation using the 2-particle mapping.

The “normal coordinates” are given by

e1 = N1

 δ

4x
−
√

1 + δ2

16x2

 z +

 δ

4x
+
√

1 + δ2

16x2

 ζ
 (4.35)

e2 = N2(z + ζ) , (4.36)

where N1 and N2 are normalization constants. We see in Fig. 4.2 that the coefficients
of z and ζ in the first line grow to be of similar magnitude but opposite signs, as a
consequence of a decreasing δ/x such that the background degree of freedom is becoming
more and more classical.

Figure 4.2. Behavior of the normal coordinate e1 in (4.35). The general trend indicates
that e1 → −z + ζ asymptotically. The parameters and initial values used here are specified in
Section 4.3.5.

4.3.5 Dynamical implications
At the beginning of this section, we showed that the semiclassical equations of motion
agree with those of [2], but only if z(0) = pz(0) = 0 as appropriate for a system in an
initial vacuum state and only if a single degree of freedom, z, is quantized. We can mimic
the same initial conditions for the case where both degrees of freedom are quantized if
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Figure 4.3. Numerical evolution for 〈x(t)〉 with (red) and without (green) background correla-
tions, respectively, and equivalence conditions imposed. Starting with the same initial values,
the evolutions do not deviate from each other.

Figure 4.4. Fluctuations ∆(z2) with (red) and without (green) background correlations,
respectively, imposing equivalence conditions.

we also impose ζ(0) = pζ(0) = 0, which we call the equivalence conditions. We also
choose Y (0) = χ(0) = 1√

2 = pX(0) = pξ(0) and other variables initially 0. The last
two equalities for momenta are required by the interpretation of the Casimir variables
identified with angular momentum.

Numerical simulations with these conditions do not reveal any additional features as
seen in Figs. 4.3 and 4.4. Therefore, the equivalence conditions turn the mapping for
two degrees of freedom into a system equivalent with [2]. Even though we do introduce
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Figure 4.5. Expectation value 〈z(t)〉with (blue) and without (orange) background correla-
tions, respectively. Using the more general mapping for two degrees of freedom, we see a
slow frequency modulation of the original the fast oscillations. This is the beat-like behavior
mentioned in the text.

couplings of X,Y and ζ to x, the initial conditions z(0) = 0 and hence ṗζ(0) = 0 imply
ζ(t) = 0 throughout evolution, meaning that x effectively couples only to ξ2 +χ2, exactly
as in the mapping for a single degree of freedom.

Interesting new effects are, however, obtained if the initial value of z is not zero,
such that we do not start in a vacuum state. Physically, it could be justified to use
such initial values after a phase transition, where the inflaton field acquires a non-zero
vacuum expectation value. For instance, using z(0) = 1, Figs. 4.5 and 4.6 show that
both 〈z〉 and ∆(z2) obtain new oscillatory features from the mapping for two degrees
of freedom. In addition to fast oscillations, z(t) is also modulated by a low-frequency
oscillation. The x-fluctuation, ∆(x2), also increases with time. Using (4.30), we can
think of ∆(x2) as a particle in a central-force problem, in which ∆(x2) is subject to a
central force that decreases with time due to the decrease of z2 and xzζ. Since ∆(x2)
started off with a non-zero initial momentum p2

X + p2
Y due to the uncertainty relation,

the particle (fluctuation) will eventually escape to a larger distance from the center.
The correlation between the two degrees of freedom is shown in Fig. 4.7. Two inter-

esting features are the boundedness of ∆(x2)∆(z2) in Fig. 4.8, and the upper bound of
the background correlation between z and x for a given state in Fig. 4.7. The latter is
explained by the interpretation of the correlation parameter β as a spherical angle in
an auxiliary space, implied by the appearance of (4.25) in the form of kinetic energy
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Figure 4.6. Fluctuation ∆(z2) with (blue) and without (orange) background correlations,
respectively. There is again an enhanced oscillation behavior due an additional dimension in
the fluctuation space given by the ζ direction.

Figure 4.7. Time-dependent background correlation ρx,z = ∆(xz)/
√

∆(x2)∆(z2). Its local
maxima are near but not equal to one at late times. There is therefore a maximum correlation
for the state implied by our initial conditions.

in spherical coordinates. The angular momentum
√
C1/2 in this auxiliary space is con-

served and generically non-zero for a given initial state. For a non-zero value, it is then
impossible for the correlation angle to get arbitrarily close to the poles of the spherical
system, such that cos β keeps a certain distance from its general limiting values ±1. This
function equals the combination of moments plotted in Fig. 4.7, confirming the reduced
upper bound for the given state implied by our initial values.
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Figure 4.8. Boundedness of ∆(x2)∆(z2). Since ∆(x2) increases while ∆(z2) decreases, the
balance between the two in their product is unexpected.

Let us briefly summarize what we have learned so far. Firstly, we have shown that
canonical methods can be extended to multi-DoF systems to describe correlations be-
tween the background and the quantum DoFs. The multi-DoF model reduces to the one
in [2] if we set correlations to zero. Moreover, we find that the magnitude of correlations
is bounded from above. The boundedness is related to the Casimir variable C1, which
is generically not zero unless we fine-tune our initial state.

4.4 Field theory model
The formalism of [2] has also been applied to a quantum field back-reacting on a classical
homogeneous background [80]. In this section, we will show how these methods are
related to moments of a quantum field; see [91] for a general formulation of quantum fields
by moments with a derivation of the Coleman–Weinberg potential [90]. The Coleman–
Weinberg potential is conceptually related to the setting considered in [80] as it results
from an expansion of a quantum field around a homogeneous background expectation
value. The backreaction equations of [80] can therefore be embedded in a canonical
effective theory by a suitable extension of [91]. In particular, the equations correspond to
a leading-order formulation of moment equations by canonical Darboux coordinates. In
contrast to the previous section, however, a complete Darboux formulation of a quantum
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field is challenging because a single quantum field implies a multitude of independent
degrees of freedom, which are hard to describe by canonical variables for moments if all
possible cross-correlations are included. Nevertheless, an embedding of [2] is feasible.

4.4.1 Modes on a compact homogeneous background
We consider a two-field model with a single spatial dimension, which will be reduced to
a quantum field ψ and a classical field ϕ. Both fields are scalar and real. Extending the
interactions of (4.1), we introduce the classical action

S =
∫

dtdx
(1

2
(
ϕ̇2 − (∂xϕ)2

)
− V (ϕ) + 1

2
(
ψ̇2 − (∂xψ)2

)
− 1

2
(m2 + λϕ2)ψ2

)
(4.37)

with the mass m of ψ and a coupling constant λ that may be interpreted as providing a
ϕ-dependent correction to the mass of ψ. The field ϕ moves in a potential V (ϕ) which,
generically, may also include a mass term. As an extension of the preceding section,
however, we will continue to assume that V (ϕ) is linear in our numerical examples.

In a typical effective potential calculation, one seeks to integrate out the “quantum”
degrees-of-freedom ψ, resulting in a ϕ-parameterized correction to the potential energy
V (ϕ). In this process, a crucial assumption of space-time homogeneity of the state is of-
ten made to make the explicit integration tractable. This assumption effectively neglects
higher-order derivative terms resulting from the integration—the real-time corrections
as well as non-local effects are thus lost. This is not desirable when we wish to discuss
dynamic backreactions and inhomogeneity growth. Canonical methods applied to quan-
tum fluctuations offer a way to circumvent the need to assume a complete homogeneous
state. The price we pay is that the backreactions usually have to be calculated numer-
ically. But this is already common practice for calculations done in curved space-time,
especially in cosmology. In the following, we will first analyze the backreaction of model
(4.37) assuming background spatial homogeneity but allowing ψ to depend on position.
Then we will discuss how the backreactions in the canonical description may generate
the growth of homogeneity.

In the quantum-mechanical model of the previous section, backreaction of z on x

causes an exchange of energy: the quantum degree of freedom z backreacts on the clas-
sical one and saps its energy, causing x to roll down more slowly on its linear potential.
We expect similar transfer in energy in the field version, where the energy lost by the
classical field excites particle production for the quantum field.
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Using Legendre transformation we derive the Hamiltonian density

H = 1
2
(
Π2
ϕ + (∂xϕ)2

)
+ V (ϕ) + 1

2
(
Π2
ψ + (∂xψ)2 + Ωϕ(t, x)2ψ2

)
, (4.38)

introducing
Ωϕ(t, x) = m2 + λϕ2(t, x) . (4.39)

In order to facilitate an analysis of particle production, we should expand ψ in Fourier
modes with respect to a 1-dimensional, spatial wave number k. The resulting system
can then be interpreted as a background field, ϕ, coupled to a large number of oscillators
with ϕ-dependent mass and frequency.

Fourier transforms of the basic canonical field are given by

ψ(x) = 1√
2π

∫ ∞

−∞
dkeikxψ̃(k) (4.40)

Πψ(x) = 1√
2π

∫ ∞

−∞
dke−ikxΠ̃ψ(k) , (4.41)

making time dependence implicit in this notation. Note that we have chosen to write
the Πψ(x) expansion (4.41) in terms of canonical conjugates to ψ̃(k), which accounts for
the negative sign in the exponential. The modes obey the reality conditions

ψ̃(−k) = ψ̃(k)∗ and Π̃ψ(−k) = Π̃ψ(k)∗ . (4.42)

Choosing opposite signs in the exponentials used to transform ψ and Πψ, respectively,
simplifies the canonical structure of modes. In particular, the calculation

∫
dxψ̇Πψ = 1

2π

∫
dx
∫ ∞

−∞
dk
∫ ∞

−∞
dlei(k−l)x ˙̃ψ(k)Π̃ψ(l) =

∫ ∞

−∞
dk ˙̃ψ(k)Π̃ψ(k) (4.43)

implies that Π̃ψ(k) is canonically conjugate to ψ̃(k).
Keeping the ϕ-Hamiltonian density Hϕ unchanged, the Hamiltonian for Fourier

modes is then given by

H =
∫

dxHϕ + 1
4π

∫
dxdkdl

(
e−i(k+l)xΠ̃ψ(k)Π̃ψ(l) + (−kl + Ωϕ(t, x)2)ei(k+l)xψ̃(k)ψ̃(l)

)
=

∫
dxHϕ + 1

2

∫ ∞

−∞
dk
(
|Π̃ψ(k)|2 + k2|ψ̃(k)|2 +Nk[ψ]

)
(4.44)
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with the non-local (in k-space) contribution

Nk[ψ] = ψ̃(k) 1
2π

∫ ∞

−∞
dl
∫

dxΩϕ(t, x)2ei(l+k)xψ̃(l) . (4.45)

In order to decouple different k and obtain a local k-Hamiltonian, we now assume
that Ωϕ(t, x) is homogeneous in x, such that the x-integration in Nk[ψ] results in a
delta function that removes non-locality. Since Ωϕ(t, x) depends on the background field
ϕ(x) according to (4.39), the background field is assumed to be spatially homogeneous
from now on. It may, however, be time-dependent. With this assumption, the classical
Hamiltonian

H =
∫

dxHϕ + 1
2

∫ ∞

−∞
dk
(
|Π̃ψ(k)|2 + (k2 + Ωϕ(t)2)|ψ̃(k)|2

)
(4.46)

is local.
A final transformation introduces real fields in k-space by splitting ψ̃(k) and Π̃ψ(k)

into real and imaginary parts,

ψ̃(k) = 1√
2

(A(k) + iB(k)) (4.47)

Π̃ψ(k) = 1√
2

(C(k) − iD(k)) . (4.48)

Reality conditions imply that A(k) and C(k) are even functions while B(k) and D(k)
are odd. Continuing the calculation in (4.43), we have
∫ ∞

−∞
dk ˙̃ψ(k)Π̃ψ(k) = 1

2

∫ ∞

−∞
dk(Ȧ(k) + iḂ(k))(C(k) − iD(k)) (4.49)

= 1
2

∫ ∞

−∞
dk
(
Ȧ(k)C(k) + Ḃ(k)D(k) − i(Ȧ(k)D(k) − Ḃ(k)C(k))

)
.

The imaginary contribution vanishes because it integrates an odd function Ȧ(k)D(k) −
Ḃ(k)C(k) over the full real range of k. The real contribution is even and can therefore
be restricted to only positive k, such that

∫ ∞

−∞
dk ˙̃ψ(k)Π̃ψ(k) =

∫ ∞

0
dk
(
Ȧ(k)C(k) + Ḃ(k)D(k)

)
. (4.50)

If we restrict to positive k, we therefore have the momenta ΠA(k) = C(k) and ΠB(k) =
D(k) of A(k) and B(k), respectively.
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Our final expression for the classial Hamiltonian in terms of real modes is therefore

H =
∫

dxHϕ + 1
2

∫ ∞

0
dk
(
ΠA(k)2 + ΠB(k)2 + ω2

ϕ(k)(A(k)2 +B(k)2)
)
, (4.51)

providing two harmonic oscillators per mode k, each with a time-dependent frequency

ωϕ(k) =
√
k2 + Ωϕ(t)2 (4.52)

that depends parameterically on the homogeneous background field ϕ. The ψ-contribution
to the Hamiltonian can directly be quantized to

Ĥ =
∫

dxHϕ + 1
2

∫ ∞

0
dk
(
Π̂A(k)2 + Π̂B(k)2 + ωϕ(k)2(Â(k)2 + B̂(k)2)

)
. (4.53)

Numerical simulations of our dynamics will be simpler if we replace the continuum of
modes obtained so far with a discrete set by introducing periodic boundary conditions in
space. We therefore assume that space is compactified to a circle with circumference L.
This finite size also makes the ϕ-Hamiltonian well-defined for a homogeneous ϕ. (The
ϕ-Hamiltonian is described by a minisuperspace treatment, in which the averaging size
L would play an important role in quantum corrections if ϕ were quantized; see [88,89].
Here, it is relevant for a consistent technical implementation of the background.) Our
values of k are then restricted to the discrete set

k = 2πn
L

(4.54)

with a positive integer n. The Hamiltonian for discrete modes can be derived by following
the previous steps but replacing

∫
dk with (2π/L)∑n, δ(k − l) with (L/2π)δkl, ψ̃(k(n))

with
√
L/(2π)ψn. (These choices are not unique. We can always rescale them with field

redefinition so long as the integrated quantities stay the same.)
We should also adjust the ϕ-Hamiltonian to its minisuperspace form. Starting with

the original action (4.37) and introducing homogeneity such that 1
2
∫

dtdxϕ̇2 = 1
2L
∫

dtϕ̇2,
we see that the minisuperspace momentum is given by Πϕ = Lϕ̇ and depends on L. The
ϕ-Hamiltonian of the minisuperspace contribution therefore differs from (4.38) in that
Π2
ϕ is replaced by Π2

ϕ/L
2. The Hamiltonian operator that combines a minisuperspace
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ϕ-contribution with a discrete set of ψ-oscillators is then

Ĥ =
Π2
ϕ

2L
+ LV (ϕ) + 1

2

∞∑
n=1

(
Π̂2
A,n + Π̂2

B,n + ωϕ(k(n))2(Â2
n + B̂2

n)
)

+ 1
2

(Π̂2
A,0 + ωϕ(0)2Â2

0) .

(4.55)
Compared with a continuum of modes, we have to be careful with n = 0 because the
zero mode ψ(0) is real and therefore implies only one oscillator, A0.

4.4.2 Effective mode equations

As before, the Hamilton operator Ĥ implies a quantum HamiltonianHQ = 〈Ĥ〉 evaluated
in a generic state. We evaluate this Hamiltonian to second semiclassical order and, in a
first step, ignore all cross-correlations. While this assumption constitutes a restriction
on the class of states that can be studied with the model, we will show that it is self-
consistent. The assumption relies on the condition that the k-modes of ψ are initially
decoupled in terms of moments or cross-correlations. The consequence is that cross-
correlations will remain 0 throughout evolution. The assumption is quite natural in
low-energy effective models and will allow us to utilize canonical coordinates for fields.
(Inclusion of correlations will be discussed in later sections.)

The modes are decoupled in our classical Hamiltonian. A sufficient condition for
self-consistency of our assumption at the semiclassical level is then that all quadratic
moments that involve different ks remain zero if they vanish in an initial state. The
relevant equations of motion are obtained from Poisson brackets, derived from (4.15),
of the form {∆(sn1sn2),∆H}, where sN denotes any degree-of-freedom and ∆H is a
moments that appears in the quantum Hamiltonian 〈Ĥ〉.

For a second-order expansion of 〈Ĥ〉 with an H free of classical interactions between
the modes, any ∆H is of the form of either ∆(Π2

N) or ∆(s2
N) where each ΠN or sN refers

to a single mode. In this case, we have

{∆(sn1sn2),∆(Π2
N)} = 2∆(sn1ΠN)δn2N + 2∆(sn2ΠN)δn1N . (4.56)

For a cross-covariance ∆(sn1sn2), we have n1 6= n2. Therefore, any moment that may
appear on the right-hand side of (4.56) with a non-zero coefficient is a cross-covariance.
Analogous arguments hold for cross-covariances ∆(sn1Πn2) and ∆(Πn1Πn2) of different
modes. In general, therefore, calling the set of these mixed moments of k-modes M,
Hamilton’s equations generated by 〈Ĥ〉 using the Poisson bracket for moments are neces-
sarily of the form {m, 〈Ĥ〉} ∝ ∑

m′∈M am′m′ for any m ∈ M, with moment-independent
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coefficients am′ . Therefore, if all m ∈ M vanish initially, they remain zero at all times
in this model.

Moments of the state, on which HQ depends, can therefore self-consistently be ex-
pressed in canonical Darboux variables by using the same mapping (4.18) known for a
single degree of freedom, but applied independently to each mode. This procedure leads
to

HQ =
Π2
ϕ

2L
+ LV (ϕ) + 1

2

∞∑
n=1

(
Π2
A,n + Π2

B,n + ωϕ(k(n))2(A2
n +B2

n)
)

+ 1
2

(Π2
A,0 + ωϕ(0)2A2

0)

+1
2

∞∑
n=1

(
p2
A,n + p2

B,n + UA,n
s2
A,n

+ UB,n
s2
B,n

+ ωϕ(k(n))2(s2
A,n + s2

B,n)
)

(4.57)

+1
2

(
p2
A,0 + UA,0

s2
A,0

+ ωϕ(0)2s2
A,0

)
+O(ℏ3/2)

with canonical quantum degrees of freedom (sA,n, pA,n), (sB,n, pB,n), UA,n and UB,n such
that

∆(A2
n) = s2

A,n , ∆(Π2
A,n) = p2

A,n + UA,n
s2
A,n

(4.58)

∆(B2
n) = s2

B,n , ∆(Π2
B,n) = p2

B,n + UB,n
s2
B,n

. (4.59)

All other variables in (4.57) are understood as expectation values of the basic mode,
taken in the same state in which moments are computed.

Using canonical Poisson brackets for all variables in (4.57) except for the constant
UA,n and UB,n, we derive second-order equations of motion

ϕ̈+ V ′(ϕ) + λϕ

L

( ∞∑
n=1

(A2
n +B2

n + s2
A,n + s2

B,n) +A2
0 + s2

A,0

)
= 0 (4.60)

Än + ω2
ϕ(k(n))An = 0 and B̈n + ω2

ϕ(k(n))Bn = 0 (n > 0)(4.61)

s̈A,n − UA,n
s3
A,n

+ ω2
ϕ(k(n))sA,n = 0 and s̈B,n − UB,n

s3
B,n

+ ω2
ϕ(k(n))sB,n = 0 (n > 0)(4.62)

Ä0 + ω2
ϕ(k(0))A0 = 0 . (4.63)

In the first line, we have used the specific frequency (4.39).
Equations (4.60)–(4.63) are coupled and hard to solve analytically, but numerical

solutions can be obtained for specific initial values. We assume a background potential
V (ϕ) = −1

2ϕ in what follows and choose the moments of each k-mode to correspond to
the Gaussian ground state inititally, with frequency ωϕ(k)|t=0 =

√
k2 +m2 + λϕ(0)2. In
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Figure 4.9. The backreaction term 〈ψ̂2〉 and background evolution ϕ(t) as functions of t,
using λ = 0.3.

particular, UA,n = UB,n = ℏ2/4 for all n. The initial value for ϕ that appears in the
frequencies is assumed to vanish, as are all other dynamical variables.

Figures 4.9 and 4.10 show the background evolution ϕ(t) and the magnitude
∫

dx〈ψ̂2〉 ≈∑
k>0(A2

k + B2
k + s2

A,k + sB,k) + A2
0 + s2

A,0 of back-reaction, using a momentum cutoff of
kΛ = 50 × 2π/L and the parameters m = 0.1, L = 100, λ = 0.3. Except for the
momentum cutoff, these parameters match the ones used in Figures 3–5 of [80]. Their
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Figure 4.10. The backreaction term 〈ψ̂2〉 and background evolution ϕ(t) as functions of t,
using λ = 1.0. With this value, compared with Fig. 4.9, back-reaction is strong enough to turn
around ϕ before it grows large.

momentum cutoff is k′
Λ = 4 while for us it is kΛ = 3.96. There are also differences in

the treatment of quantum fields, which explains why numerical evolutions in these two
approaches do not align precisely in quantitative terms. In addition, [80] also considers
non-linear potentials V (ϕ) in detail, from which we refrain here in a first analysis. For
smaller λ, it takes longer and longer for ϕ to turn around as a consequence of back-
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Figure 4.11. Background evolution ϕ(t) as functions of t for various values of λ. The turn-
around of ϕ is delayed for smaller λ, implying weaker back-reaction.

reaction. The longer phase of increasing ϕ makes it difficult to resolve the turn-around
numerically for very small λ, but the general trend of a delayed turn-around is illustrated
in Figure 4.11.

Nevertheless, our numerical results are qualitatively comparable with those of [80].
The models are not identical because we evolve mode equations on a compact space,
while [80] considers a lattice approximation to evolve spatial fields. The homogeneity
assumption on the background is shared by both approaches, except for a small excursion
into inhomogeneous backgrounds at the end of [80]. The underlying equations are also
identical because equation (2) of [80], given by

□ϕ+ V ′(ϕ) + λ〈ψ̂2〉ϕ = 0 , (4.64)

is equivalent to our mode equations for a homogeneous background. In particular, our
mode equations correspond to the Klein–Gordon equation

□ϕ+ V ′(ϕ) + λ

L

∫
dx〈ψ̂2〉ϕ = 0 (4.65)

with a source term for back-reaction. This equation is the same as equation (9) of [80]
for a homogeneous ϕ.
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4.4.3 Interactions and correlations with the background
The homogeneity problem in inflationary cosmology is concerned with the question of
how it can be possible for inhomogeneity to develop out of an initial homogeneous
vacuum state, subject to translation-invariant dynamics that should not break this sym-
metry. (See for instance [116, 117, 124, 126–128].) Effective equations for moments of a
quantum field or their canonical variables can be a powerful tool to determine conditions
under which inhomogeneity may build up. Similar considerations show that quantum
correlations with the background may be relevant in certain situations. Specific details
of such back-reaction effects may also be relevant for observational questions in cosmo-
logical eras at later times [74, 113–115].

4.4.3.1 Inhomogeneity from a back-reacting vacuum

In this section we will show how minimal ingredients from the quantum sector can give
rise to inhomogeneity growth of the background field ϕ. We will assume homogeneous
initial conditions for the background as part of the following initial conditions

〈ψk 6=0〉 = 0 and therefore ∂

∂x
〈ψ〉 = 0 when t = 0 , (4.66)

ϕ = ϕ0(t) +
∑
K 6=0

ϕK(t)eiKx with ϕK(0) = 0 , (4.67)

where we have absorbed factors of π into the mode functions as they are not important
for our present analysis.

At this point, it is important to note that choosing a specific initial state poses a
condition on initial values for evolution, but it should not restrict the general dynamics
of a background interacting with a quantum field. Therefore, in order to consider the
possibility of background inhomogeneity being generated, the Hamiltonian should con-
tain kinetic, potential, and interaction terms for a generic inhomogeneous background
field ϕ(x, t), including its momentum Π(x, t) in a canonical formulation. If we were to
represent the background as a homogeneous minisuperspace model as in (4.55), back-
ground inhomogeneity would be excluded by fiat. In order to see how inhomogeneity
may be generated, we should start with the more general Hamiltonian (4.53) with a field
Hamiltonian density Hϕ and study the evolution it generates starting with symmetric
initial conditions (4.66) for a homogeneous (background) initial state. The expectation
value Heff = 〈Ĥ〉 in a generic field state is a suitable effective Hamiltonian for this anal-
ysis. Here we encounter the important distinction between quantum field theory on a
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homogeneous background, which would be described by our minisuperspace background,
and a more complete treatment of an interacting field and background.

In order to have growth of inhomogeneity we need to non vanishing values for ΠK , the
canonical conjugate to ϕK . Clearly, with our initial conditions, terms that are diagonal
in K-modes are not going to contribute to initial growth of ΠK . The only source of
inhomogeneity growth is in the coupling term
∫

dxλϕ(x)2ψ(x)2 ∼
∫

dx
∑
k,l

ψkψl

×

ϕ2
0e
i(k+l)x +

∑
K 6=0

ϕ0ϕKe
i(K+k+l)x +

∑
K,L 6=0

ϕKϕLe
i(K+L+k+l)x

 .

(4.68)

Upon taking the expectation value of the Hamiltonian and computing Π̇K , the clas-
sical part (terms containing only 〈ϕ〉 and 〈ψ〉) of (4.68) will not contribute due to our
initial conditions (4.66). The terms of interest, after integrating

∫
dx and using the

resulting delta functions, are

Π̇K ≡{ΠK , 〈H〉}

∼ −
∑
k

(
ϕ0∆(ψkψ−k−K) + 2

∑
L

ϕL∆(ψkψ−k−K−L)
)
, (4.69)

where the notation O = 〈Ô〉 is again used for linear field operators. Imposing our
homogeneous initial conditions we have

Π̇K(0) ∼ −
∑
k

ϕ0(0)∆(ψkψ−k−K) .

Now we see how quantum correlations of field ψ may induce the growth of mode
functions for our background field ϕK . Even for an initially homogeneous ϕ, the coupling
ϕ2〈ψ2〉 implies that the background field ϕ, seen as a harmonic oscillator, may have
a position-dependent frequency 〈ψ2〉. If the initial state is completely homogeneous,
the frequency 〈ψ2〉 is homogeneous and no background inhomogeneity is generated, in
accordance with the expectation based on translation-invariant dynamics. However, in
cosmological space-times, this condition on the initial state is rather strong because it
imposes homogeneity in all of space at an initial time, potentially far beyond the Hubble
radius that would be accessible by causality. This assumption is not consistent with the
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generic behavior of space-time expected near a spacelike singularity such as the big bang
according to the Belinskii–Khalatnikov–Lifshitz (BKL) scenario [133].

There should therefore be a certain mode number at which strict homogeneity breaks
down. On these scales, the background field oscillates differently at different places and
cannot stay homogeneous. One might expect that such large-scale inhomogeneity far
outside the Hubble radius may not be relevant, but we will now show that moment
dynamics of the field ψ implies that large-scale inhomogeneity eventually trickles down
to smaller scales, at which the background inhomogeneity it generates will be relevant.

It is perhaps surprising that moment terms from a quantum field allow inhomogeneity
to travel from large scales into a cosmological horizon. Our results show that this is
indeed possible even in a quantization of a classically causal theory because we start
with the standard covariant action of a scalar field. In fact, as our derivation shows,
inhomogeneity builds up on smaller scales through a gradual process of growing cross-
correlations, rather than direct propagation that would be impossible in a causal theory.

A useful interpretation of the gradual process we derived is as an effect of quantum
non-locality. Moment methods make it possible to formulate effective field theories with-
out performing a derivative expansion. This feature has been known for some time in an
application to quantum mechanics, such as in quantum chemistry [79] where they give
access to non-adiabatic reaction dynamics. In [42–44], it was shown explicitly that a
combination of moment methods with an adiabatic approximation yields results equiva-
lent to the low-energy effective potential [92] or higher-derivative corrections. Similarly,
in an application to scalar field theories, a combination of moment methods and an adia-
batic approximation [91] allows one to rederive the Coleman–Weinberg potential [90]. In
the present paper, however, we have applied moment methods to quantum field theories
without using an adiabatic approximation.

Instead of higher-derivative corrections, our effective Hamiltonians implement quan-
tum corrections through coupling terms to non-classical fields as new independent de-
grees of freedom, such as the modes sA,k and sB,k in canonical terms or ∆(ψkψl) directly
in terms of moments. It is possible to interpret such an extended field theory as a local
formulation of a non-local theory without extra degrees of freedom: If one were able
to solve equations of motion for the new fields as functions of the classical fields and
to insert them in the extended Hamiltonian, local terms would be replaced by integrals
representing solutions of partial differential equations. It would be cumbersome to do so
in practice, and it is in fact easier to analyze the local extended system. Nevertheless,
the argument demonstrates that the build-up of inhomogeneity derived here is a conse-
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quence of quantum non-locality, a crucial new ingredient in early-universe cosmological
models.

4.4.3.2 Field correlations

In the previous section, we have seen how quantum correlations ∆(ψkψ−k−K) can back-
react on the background and seed the growth of mode ϕK . In this section, we will look at
the reverse—how background inhomogeneity open up interaction channels for oscillator
moments that are not contained in models with strictly homogeneous background. We
will show how correlations ∆(ψaψb) (here a, b denote modes) will grow by adding a single
mode to ϕ. For our purpose, the initial conditions will be

ϕ(0, x) =ϕ0(0) + ϕK(0)eiKx + ϕ−K(0)e−iKx

〈ψk〉(0) =0

∆(ψkψl) 6=0 initially only for k = −l . (4.70)

The term that will source correlations is still the coupling term λϕ2ψ2. Direct computa-
tion shows the growth of ∆(ψaψb) is

∆̇(ψaψb) ∼ ∆(ψaΠ−b) + (a ↔ b) .

Given our initial conditions, the growth of the right hand side is directly dependent on
mode ϕ±K

∆̇(ψaΠ−b) ∼ − ϕ2
K∆(ψaψb−2K) − ϕ0ϕK∆(ψaψb−K) + (K → −K) . (4.71)

Since initial conditions (4.70) only allows ∆(ψkψl) to be non-zero if k + l = 0, equation
(4.71) tells us that we will have

∆̈(ψaψb=−a±2K) 6= 0

∆̈(ψaψb=−a±K) 6= 0 . (4.72)

Thus, we have shown how correlations ∆(ψaψ−a±2K) and ∆(ψaψ−a±K) will grow given
a seed of ϕ±K .

Combined with the analysis in the previous section and result (4.69), we now find
the following surprising interplay between quantum correlations and background inho-
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mogeneity

ϕ±K
seed−−→ ∆(ψaψ−a±K) and ∆(ψaψ−a±2K) backreaction−−−−−−−→ ϕ±K , ϕ±2K growth . (4.73)

Namely, the inhomogeneous mode ϕK have trickled down to ϕ2K due to backreactions.
Continuing the same analysis, we will find growth in more infrared modes. Even if the
initial ψK was zero, therefore, background inhomogeneity develops in a large number
of modes (all integer multiples of K) provided there was some initial inhomogeneity in
just one mode, K. If the wavelength corresponding to the initial K is super-Hubble, as
suggested by the BKL scenario, correlations in ψ and then inhomogeneity in ϕ trickles
down to smaller wavelengths (larger k) that eventually enter the Hubble radius and
become relevant for the history of our visible universe. These results provide a consistent
picture of the generation of background inhomogeneity in cosmology. (We note that the
situation in cosmology is different from quantum phase transitions in which structure
may also form, as studied for instance in [140]. In the latter case, an infinite-volume
limit is required for a mathematical description of the phase transition, and homogeneity
of the pre-transition state may be assumed even in the limit. In cosmology, the BKL
scenario prevents one from making the same assumption.)

4.4.3.3 Background correlations in quantum field theories

In addition to the indirect effects of field correlations on the background dynamics as just
discussed, a general quantum description of background and field modes may contain
direct quantum correlations between the background and the field. Such correlations
are also excluded by fiat in a strict background treatment, but they can be included in
an extended model using our new methods. We briefly present here such models, but
for now refrain from analyzing them.

The restricted second-order Hamiltonian (4.30) suggests an extension of the background-
field model to multiple canonical fields for background and oscillators. Some of the new
fields represent quantum degrees of freedom for fluctuations, as before, and others cross-
correlations between background and oscillator fields. Promoting all variables in (4.30)
to fields, we obtain the Hamiltonian density

H = 1
2
(
Π2
ϕ + Π2

ϕ1 + Π2
ϕ2 + (∂xϕ)2 + (∂xϕ1)2 + (∂xϕ2)2

)
+ V (ϕ)

+1
2
(
Π2
ψ + Π2

ψ1 + Π2
ψ2 + Π2

ψ3 + (∂xψ)2 + (∂xψ1)2 + (∂xψ2)2 + (∂xψ3)2
)
(4.74)
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+Ωϕ(t, x)2
(
ψ2 + ψ2

1 + ψ2
2 + ψ2

3

)
+ 1

2
λ(ϕ2

1 + ϕ2
2)ψ2 + 2λϕ

√
ϕ2

1 + ϕ2
2ψψ3

with five new fields, ϕ1, ϕ2, ψ1, ψ2 and ψ3, and the same Ωϕ(t, x) as before. The field ψ3

describes background correlations.
For a homogeneous background (ϕ, ϕ1, ϕ2), a mode expansion is still possible, result-

ing in local, decoupled Hamiltonians for the modes. The potential

Ωϕ(t)2
(
ψ2 + ψ2

1 + ψ2
2 + ψ2

3

)
+ 1

2
λ(ϕ2

1 + ϕ2
2)ψ2 + 2λϕ

√
ϕ2

1 + ϕ2
2ψψ3

= Ω1(t)2ψ2 + Ω2(t)2(ψ2
1 + ψ2

2) + Ω2(t)2ψ2
3 + ω(t)ψψ3 (4.75)

then implies three different frequencies,

Ω1(t)2 = Ωϕ(t)2 + 1
2
λ(ϕ1(t)2 + ϕ2(t)2) (4.76)

for ψ and
Ω2(t)2 = Ωϕ(t)2 (4.77)

for
√
ϕ2

1 + ϕ2
2 as well as ψ3, and a rotation coefficient

ω(t) = 2λϕ(t)
√
ϕ1(t)2 + ϕ2(t)2 (4.78)

between ϕ and ϕ3. As before, beat-like effects are expected by mode mixing.
If the background is homogeneous, a single correlation field ψ3 is sufficient to extend

the model to background correlations. In addition, there may be correlations between
different modes of the field ψ, which at present is hard to describe in canonical quasi-
classical form because a complete set of Casimir–Darboux for a quantum field remains
unknown. Instead, one may construct a completely correlated background-field model
by keeping the background correlation field ψ3 in canonical quasiclassical form, while
fully quantizing the field ψ or its modes as before. In (4.74), ψ, ψ1, and ψ2 as well as
their momenta would then be replaced by a single field operator ψ and some momenta
Π, while ψ3 remains a single field of classical type. (We hope to stress that we are not
re-quantizing (4.74). Instead, we are starting from a quantized system of interest, then
analyze directly the quantum Hamiltonian but with the coupling term between different
field mapped to a classical quantity like ψ3 or its function.) In this formulation, hybrid
methods of classical-quantum dynamics, such as [129–132], would find a useful place in
cosmology.
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4.5 Conclusions
We have significantly extended a back-reaction model considered in [2] in order to study
the implications of backreactions and the build-up of inhomogeneity in cosmological
evolution. To this end, we first showed that the formalism of [2] is equivalent to a
special case of non-adiabatic semiclassical approximations obtained from the dynamics
of moments parameterizing an evolving state. The restricted nature of the formalism
developed in [2] implies that there are key distinctions between the two approaches that
provide different advantages, depending on what physical system is being studied.

The formalism of [2] is efficient in tackling quadratic Hamiltonians and Gaussian
approximations. For anharmonic systems, its approximate equations of motion remain
quite simple, but there is no self-consistent way to determine whether the approximation
is reliable. This shortcoming is related to a lack of physical interpretation of the degrees
of freedom, ξ and χ, used in [2] to describe quantum variables. The derivation of
how these variables appear in a Hamiltonian or in equations of motion requires a wave
function ψ, usually assumed Gaussian, but the reduction of infinitely many quantum
degrees of freedom implicitly described by the functional dependence of ψ to just two
relevant ones is not systematic. In cases in which no suitable wave function is known,
for instance in situations of particle creation that lead one away from a vacuum state,
the predictability of the formalism remains unclear. No recipe for going beyond leading
order (in some kind of loop expansion) has been developed.

Our embedding of the formalism of [2] in the systematic framework of canonical
effective theory helps to make the approximations much more systematic. The quantum
degrees of freedom are now physically interpreted as moments of a state, not just in
Gaussian or near-Gaussian situations. There is a clear extension to higher orders of
moments, mimicking the loop expansion of interacting theories. To low orders, as we
have shown, explicit canonical realizations are available and can be used to extend the
model of [2] to correlation degrees of freedom. As we have argued, these degrees of
freedom are crucial for cosmological back-reaction in which no sharp physical separation
between background and perturbations exists, owing to general covariance. Correlation
degrees of freedom are then seen to give rise to new beat-like effects that may be relevant
in particle production.

Extended models also show how background inhomogeneity may be generated out
of a symmetric sub-horizon initial state, and what role may be played by various forms
of quantum correlations. We recognized that the extension to moments as independent
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degrees of freedom can be interpreted as a local formulation of quantum non-locality,
which in this form has not been considered before in early-universe models. By an explicit
calculation of equations of motion for moments we showed that quantum non-locality
implies a gradual build-up of inhomogeneity within a cosmological horizon, even if the
initial sub-horizon state is completely homogeneous but inhomogeneity exists on much
larger scales. This build-up of inhomogeneity is a consequence of quantum non-locality
and does not violate causal propagation. The new effect is therefore able to solve the
homogeneity problem of inflationary structure formation.
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Chapter 5 |
Conclusions, discussions, and out-
looks

In this dissertation, we have shown how quantum corrections can be examined in a canon-
ical effective setting. We have mainly focused on quantum corrected gauge symmetries
in gravity, effective potentials in inflation, and backreactions between fields.

In chapter 2, we focused on the canonical structure of a gauge theory to discuss first-
class constraints and their algebras; these algebras are intimately linked to the gauge
symmetries of a given theory. In gravity, the quantum corrected constraint algebras
are interpreted as modifications to (and possibly the destruction of) the notion of space-
time covariance. As the quantization procedure of gravity remain elusive (and canonical
transformations in a quantum field theory are non-trivial), the use of different basic
variables can lead to seemingly different conclusions in a low energy limit, each with
a different derivatives structure. (Derivative structures also affect gravity uniquely as
the derivatives in the Hamiltonian are essentially what affect the H −H bracket in the
hypersurface deformation algebras.) By demanding the closure of constraint algebras,
we constructed a strategy to find the most general form of symmetry preserving Hamilto-
nians up to a given derivative order. A surprising role is played by the Gauss constraint,
which can be used to relate different types of derivatives to each other. (An intuition we
gain is that we can expect any first-class constraint that generates effects of rotations
or shifts in space-time to be able to mix derivatives.) Consequently, we can change the
derivative structure and possibly induce superficially different space-time modifications.
In the context of loop quantum gravity, space-time modifications can disappear when
using special types of canonical pairs such as the self-dual variables. Our analysis shows
that one cannot completely trust these conclusions because there are no symmetries that
select out self-dual variables as the special canonical pair. This highlights the need for
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gauge-invariant variables and restriction to the solution space of the Gauss constraint.
Only then are we able to remove ambiguities of space-time deformations arising from
the Gauss constraint. Finally, using again the strategy of algebra closure, we find that
generic modifications of covariance still exist.

In chapter 3 we showed how one can obtain an effective description of a quantum sys-
tem by parameterizing quantum corrections with quantum fluctuations. These quantum
fluctuations are naturally interpreted as moments of a quantum state. They also make
up authentic degrees of freedom in phase space. So while there is only one quantum
DoF, reduction to an effective semi-classical model naturally produces one classical DoF
along with many parameters containing information about the state. The resulting effec-
tive theory not only produces a quantum-corrected classical equation of motion but also
contains equations that describe the evolution of state-dependent parameters. However,
not all quantum fluctuations are independent DoFs—a naive Lagrangian analysis would
produce equations of motion that contain redundancies. Hence, a canonical analysis is
in order so as to reveal the symplectic structures of the effective theory and its canonical
coordinates. The search for canonical coordinates for higher-order moments or systems
with multiple background DoFs is a difficult task of solving non-linearly coupled partial
differential equations. But, as we have shown, it is often sufficient to find approximate
solutions for cosmological applications.

In cosmology, we first applied our canonical effective methods to cosmic inflation.
At the background level, instead of relying on traditional effective potentials that of-
ten neglect non-adiabatic corrections—the higher-order derivative term contributions in
the quantum action—we use a real-time corrected effective potential. The real-time
corrections originate from the evolution of moments, which we describe with canonical
coordinates. We then analyze a Higgs-inspired inflation model. The single field model
transmutes into a multi-field model, with the additional DoFs coming from quantum
fluctuations. We find that the uncertainty principle naturally induces a non-zero field
value for the fluctuation field. This initial value, along with the potential deformation
induced by non-adiabatic corrections, ignites the slow-roll and inflationary expansion.
Observables are computed both analytically and numerically. The two methods are
shown to match up well. Observables such as the number of e-folds, the spectral index,
and the tensor-to-scalar index are shown to depend on the non-Gaussianity of the back-
ground field. Even without excess fine-tuning, the observables conform with current
observations.

Our analysis serves as a proof of concept that the often neglected higher derivative
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contributions in an effective action can qualitatively change an inflationary model. (One
should not confuse higher-order derivatives of the effective action with ones in the original
action; one can have negative-mass dimension interactions in the effective action. While
we would like the original action to be renormalizable, renormalizability on its own
is not something we require of the effective action since its tree-level results already
describe the all-orders scattering amplitude of the original theory.) With the inclusion
of (background) non-adiabatic contributions, many ruled-out inflationary models might
have a second chance. However, one shortcoming of our analysis is that we have not
examined in detail how the inhomogeneous perturbations of our effective model, which
by construction already contain quantum corrections, are related to the quantization of
inhomogeneities in traditional literature. In principle, we expect the latter to contain
some overlap with the quantum corrections considered in our work. If the overlap is
too large, then one should not naively apply the formulas of multi-field inflation to
the calculation of observables. Instead, one ought to carry out the quantization of
inhomogeneous perturbations from scratch.

As a second application of our canonical effective method, in chapter 4 we looked at
quantum corrections to models that contain multiple degrees of freedom prior to quanti-
zation. These models are especially important for cosmic backreactions, where splitting
of DoFs is assumed. We compare our methods to backreaction calculations that rely on
Gaussian approximations. We also show one can overcome the difficulty of generalizing
Gaussian approximations to include anharmonic interactions. By using the canonical
mapping for multiple degrees of freedom, distinct beat-like oscillation features arise due
to correlations. In a cosmological setting, these correlation-induced features can appear
in the background field when backreactions from perturbations are considered. As an ex-
tension of our analysis, one can look for distinct backreaction oscillation features induced
by quantum gravity. We can expect these features to manifest themselves in the form
of noise. The analysis can be embedded in the framework of stochastic inflation, where
noise affects observables. Traditionally, only the noise coming from short-wavelength
modes of the inflaton field is considered. They are often assumed to be white noise,
which differs from the model-dependent backreaction noise. Therefore, a distillation
of quantum gravitational backreaction signals in this context is both interesting and
possible.

Another interesting effect of backreactions emerges when we extend our analysis to
include inhomogeneous fields. Specifically, we considered a two-field model with an-
harmonic coupling—one field plays the role of the background while the other is the
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to-be-quantized field. The set-up mirrors the splitting of fields in cosmology, where only
the perturbations are quantized. We have shown that a positive feedback loop exists
between the internal cross-correlations of the perturbation field and the inhomogeneity
growth of the background field. A large-scale inhomogeneity will source internal cross-
correlations, which then source inhomogeneity of a smaller scale. The existence of cos-
mological horizons, combined with its evolution, ensures that there are initial infrared
inhomogeneities that will trickle down to the ultraviolet. This result exemplifies the
genericness of structure growth—unless the entire universe, equip with causal horizons
and interactions between fields, is in an exact homogeneous vacuum, inhomogeneities
will grow.
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Appendix |
Covariance in spherically symmet-
ric euclidean gravity

1 Restrictions on the coefficients of semi-symmetric Gaus-
sian terms
We list the solutions to partial differential equations resulting from the H-G and H-D
brackets. These will give us the so called semi-symmetric Gaussian terms. Denoting
(Eφ)2 = E22 + E33, for βij we have


β11 = β11(E1)

β12 = E3C̃β(E1) + E2C̄β(E1)

β13 = E3C̄β(E1) − E2C̃β(E1)


β22 = 1/2[−8C̄β23(E1)E23 + (CΣ(E1) + C̃β23(E1))E22 + (CΣ(E1) − C̃β23(E1))E33]

β33 = 1/2[8C̄β23(E1)E23 + (CΣ(E1) + C̃β23(E1))E33 + (CΣ(E1) − C̃β23(E1))E22]

β23 = C̃β23(E1)E23 + 2(E22 − E33)C̄β23(E1)

For γi we have 
γ1 = γ1(E1)

γ2 = E3C̃γ(E1) + E2C̄γ(E1)

γ3 = E3C̄γ(E1) − E2C̃γ(E1)

145



For αi we have 
ᾱ1 = Cα1(E1)Eφ

ᾱ2 = (C̃ᾱ(E1)E3 + C̄ᾱ(E1)E2)Eφ

ᾱ3 = (−C̃ᾱ(E1)E2 + C̄ᾱ(E1)E3)Eφ



α1
1 = α1

1(E1)

α2
1 = E3C̃α2

1
(E1) + E2C̄α2

1
(E1)

α3
1 = E3C̄α2

1
(E1) − E2C̃α2

1
(E1)

α1
2 = (E2C̃α1

2
(E1) + E3C̄α1

2
(E1)) 1

(Eφ)2

α1
3 = (−E2C̄α1

2
(E1) + E3C̃α1

2
(E1)) 1

(Eφ)2



α2
2 = (−C̃α2

2
(E1)E23 + C̄α2

2
(E1)E33) 1

(Eφ)2

α3
3 = (C̃α2

2
(E1)E23 + C̄α2

2
(E1)E22) 1

(Eφ)2

α2
3 = (−C̄α2

2
(E1)E23 + C̃α2

2
(E1)E22) 1

(Eφ)2

α3
2 = (−C̄α2

2
(E1)E23 − C̃α2

2
(E1)E33) 1

(Eφ)2

For Q we have


Q̄ = (Eφ)2CQ̄(E1)

a1 = EφCa1(E1)

a2 = E3

Eφ
Ca2(E1)

a3 = −E2

Eφ
Ca2(E1)



c1 = c1(E1)

c2 = E3

(Eφ)2Ck(E
1)

c3 = − E2

(Eφ)2Ck(E
1)



b11 = b11(E1)

b12 = (−c1(E1)E2/2 + E3Cb(E1)) 1
(Eφ)2

b13 = (−c1(E1)E3/2 − E2Cb(E1)) 1
(Eφ)2



b22 = (E33Cb22(E1) − 3E23Ck(E1)) 1
(Eφ)4

b33 = (E22Cb22(E1) + 3E23Ck(E1)) 1
(Eφ)4

b23 = [3
2
Ck(E1)(E22 − E33) − E23Cb22(E1)] 1

(Eφ)4

We also have mixing conditions


Ck(E1) = −γ1(E1) = C̃α1
2
(E1)

Ca2(E1) = −Cα1(E1)

Cb(E1) = −1
2
α1

1(E1)

Cb22(E1) = −1
2
C̄α1

2
(E1)


C̄α1

2
(E1) = −2β11(E1)

− C̄α2
2
(E1) = 2C̃β(E1) − C̄γ(E1)

C̃α2
2
(E1) = 2C̄β(E1) + C̃γ(E1)
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2 Some useful identities
In calculating the {H[N(x)], H[M(x)]} bracket, we can often make use of anti-symmetry
and integration by parts to simplify our calculations. Suppose we only have one canonical
pair (K,E), then typically we have

H[N(x)] ∼
∫

dxN(x)[· · · + f(E(x), K(x))n(x) + . . . ]

where n(x) is a function of phase-space variables depending on x. Plugging this form of
Hamiltonian into the Poisson bracket, we obtain the non-trivial term

{H[N(x)], H[M(x)]} 3
∫

dxdy{N(x)M(y)[n(x){f(E(x), K(x)), ∂nyE(y)}m(y)]

− (N ↔ M)}

Here m(y) is again some phase-space function, which came along with ∂nyE(y). Denote
ḟ(x) ≡ ∂f(E(x), K(x))/∂K(x) and K

(n)
NM for the above integral term (including the

(N ↔ M)), then for n = 1 we have

K
(1)
NM = −

∫
dx[M ′(x)N(x) −N ′(x)M(x)]n(x)m(x)ḟ(x) .

For n=2 we have

K
(2)
NM =

∫
dx[M ′(x)N(x) −N ′(x)M(x)][n(x)ḟ(x)m′(x) −m(x)(n(x)ḟ(x))′] .
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