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ABSTRACT 

Problem-/project-based learning (PBL) is a well-established pedagogical approach that allows 

students to learn by solving complex real-world problems. There is a wide range of studies on the 

effectiveness of PBL for various learner groups across different disciplines. Moreover, there is a 

growing interest in using immersive technologies such as virtual reality (VR) in education. 

Immersive technologies provide a virtual/simulated learning environment that mimics real-world 

problems. These technologies provide risk-free learning environments that also facilitate remote 

learning. A combination of  virtual learning environments and PBL enables the benefits of both 

concepts and further improves students’ problem-solving skills, active-learning, and critical 

thinking. In the research presented here, bibliometric analysis and literature review of relevant 

papers published in the proceedings of previous American Society for Engineering Education 

(ASEE) annual conferences are used to investigate: (1) where (in what disciplines/subjects) PBL 

and VR have been used together in engineering education? And, (2) how are VR and PBL 

integrated and used in engineering education? Our findings suggest that there is a lack of formal 

assessment for the efficacy of virtual learning environments, which we aim to address in our 

analysis of ISBL effectiveness. 

 

In the second part of this research, we introduce and evaluate the effectiveness of the Immersive 

simulation-based learning (ISBL) modules in an undergraduate engineering economy course. 

ISBL aims to combine the benefits of PBL and virtual learning environments and provides 

technology-enhanced problem-based learning, where the problem context is represented via a 

three-dimensional (3D) animated discrete-event simulation model that resembles a real-world 

environment. In a set of controlled experiments, students are randomly assigned into two different 

groups: Control and Intervention. Students in the intervention group use ISBL modules as part of 

their assignments, while the control group completes a set of traditional textbook problems. Well-

established survey instruments help us collect data from students’ demographics, personality, prior 
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preparation, motivation, experiential learning, engineering identity, and self-assessment of 

learning objectives based on Bloom’s taxonomy. The results from our statistical analysis suggest 

that ISBL enhances certain learning outcomes related to motivation and experiential learning. We 

also provide a qualitative assessment of the proposed intervention based on detailed, one-on-one 

user testing and evaluation interviews. 

 

In the third component of this research, we implement a set of ISBL modules in a computer science 

course to understand the relationship between the user’s interaction and navigation in a 

virtual/simulated environment and their learning outcomes. The students are also asked to record 

their screens while navigating through the simulation environment. Our research team develop a 

video analytics tool via a machine learning algorithm to extract interaction’s data from students’ 

screen recorded videos, namely total time spent in the virtual/simulated environment, a modified 

standard deviation, and flag rate. We use the data collected from the surveys perform multivariable 

stepwise regression analysis to assess if/how the navigation related variables are predictors of the 

students’ learning outcomes.  
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Chapter 1 

Introduction 

Problem-/project-based learning (PBL) is a student-centered teaching and learning approach  

that enable students to learn through solving complex real-world problems. PBL motivates 

students to engage in the learning process, build strong critical thinking skills, and apply what 

they learned to solve real-world problems [1][2].  

 

Immersive technologies including virtual reality (VR) presents an interactive and hands-on 

environment that increase students’ engagements in learning activities [3]. These technologies 

offer an accessible, adaptable, and risk-free remote learning environment. The use of the 

combination of PBL and VR motivates students to be more engaging, improve their 

communication and problem-solving skills.   

 

Immersive simulation-based learning (ISBL) offers an alternative teaching and learning approach 

that involves technology-enhanced PBL where the problem context is represented via a three-

dimensional (3D), animated discrete-event simulation model that mimics a real user problem that 

students may face in their future career. The simulation is intended to help with contextualizing 

and visualizing the problem setting, allowing students to navigate through the virtual 

environment to observe and understand the underlying dynamics, collect data, and apply what 

they learned into solving real-world problems [4].  

 

This thesis is done as part of an overarching research project that is summarized in Figure 1. Our 

research team build a simulation model of a real system to resemble real-world environment and 

develop a set of problems/projects activities around that simulation model. The simulation model 

and the PBL activities are what we call them ISBL modules. Moreover, the ISBL modules are 

implemented in various STEM courses at the Pennsylvania State University. The survey 
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instruments and video analytics tool are then utilized to collect data from students. In this thesis, 

we use the data collected from the students to assess the effectiveness of ISBL in STEM education. 

The collected data are also used to assess the impact of navigation in the simulated environment 

on learning outcomes. 

   

 

 

 

 

 

 

 

  

 

 

  

 

  

 

 

 

 

 

 

 

  

Figure 1. General design of overarching project 

(2) Development of PBL and ISBL modules 

Develop ISBL 

Modules 

Develop 

problems and 

projects Develop Instructor 

Manuals: Guidelines, 

Solutions, Rubrics 

Develop 

Accompanying 

Material 
Develop Student 

Manuals 

Predict “success” in the 

next educational level 

and, ultimately, as the 

next generation of 

systems and production 

engineering workforce 

Formative& 

Summative 

Evaluations 

(3) Deployment and Dissemination 

Dissemination 

via the project’s 

website 

Implement in existing 

resident courses in 2- 

& 4-year programs 

Implement in existing 

online & resident 

courses for 

undergraduate  

students 

(1) “Real” industry 

systems/environment 

(4) Data Collection 

Surveys Screen recorded videos 

(5) Thesis Methodology 

Controlled Experiment 

Multivariable   

Stepwise Regression 

Statistical 

Comparison 

Control  vs 

Intervention group 

Extract user-simulation 

interaction/navigation 

data via video analytics 

Bibliometric Analysis and Literature review  



3 

 

 

This thesis combines three research papers that form the subsequent chapters. 

Chapter 2: Combining Immersive Technologies and Problem-Based Learning in Engineering 

Education: Bibliometric Analysis and Literature Review [5].  

Chapter 3: An assessment of the effectiveness of ISBL modules for teaching and learning 

engineering economy concepts [4]. 

Chapter 4: Quantification and Impact of Learner Navigation in Immersive Simulation 

Environments [6]. 

 

Chapter 2 provides an overview of the bibliometric analysis and literature review to show where 

and how VR and PBL have been applied in engineering education. We perform bibliometric 

analysis of the relevant papers published in the proceedings of the American Society of 

Engineering Education (ASEE) annual conferences from 1996 to 2020. The bibliometric analysis 

is used to show in what engineering discipline PBL and VR are applied together.  We then perform 

a literature review to highlight how the combination of PBL and VR have been integrated together 

in engineering education. We also analyze the trends related to PBL and VR application in 

engineering education over time and identify the research gaps [5]. 

 

In chapter 3, We propose and assess the effectiveness of ISBL modules in an undergraduate 

engineering economy course. In this experiment, students are randomly assigned to two different 

groups: an Intervention group that uses ISBL module as part of their assignments, and a Control 

group that completes a set of traditional textbook problems. Well-established survey instruments 

are utilized to collect data from students’ demographics, personality, motivation, experiential 

learning, engineering identity, and self-assessment based on bloom’s taxonomy of learning 

objectives. We use the data collected from the students to compare the two groups via statistical 

hypothesis testing. We also provide a qualitative assessment from the interviews conducted with 

student volunteers from the class [4].   

 

Chapter 4 provides an assessment of the impact of user’s navigation in immersive simulation 

environments. We implement a set of ISBL modules in a Computer Science course. In this 

experiment, students need to navigate through the virtual/simulated environment and record their 
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screens as part of  their assignment. We use a video analytics tool developed by our research team 

to extract interactions data from students’ screen recorded videos, namely total time spent in the 

virtual/simulated environment, a modified measure of deviation from appropriate time allocations 

among different areas within the virtual environment (standard deviation), and percentage of 

unrecognized frames in a video (Flag Rate). We then perform multivariable stepwise regression 

analysis to determine if/how navigation-related measures can be predictors of learning outcomes 

[6].  

 

Lastly, Chapter 5 summarizes the main findings of the three important topics of this project. 

First, we provide an overview of the bibliometric analysis and literature review results together 

with relevant future extensions. We then provide the concluding results of our statistical 

comparison to assess the effectiveness of the ISBL modules on students’ learning outcomes. 

Furthermore, we provide the results and predictive models for our multivariable regression 

analysis. And, we discuss possible directions for future investigations.  
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Chapter 2 

 

Combining Immersive Technologies and Problem-Based Learning in 

Engineering Education: Bibliometric Analysis and Literature Review 

2.1  Introduction  

Problem-/project-based learning (PBL) is a form of student-centered active-learning approach in  

which students learn by solving complex problems that resemble those encountered in the real  

world. After decades of evolution, PBL has grown into an extensive teaching and learning  

method in a wide range of disciplines, including engineering education. Current studies show  

that students find PBL more engaging and effective, as they actively apply the information  

learned in the classroom to tackle real-life problems [1]. 

 

Immersive technologies, including virtual reality (VR), augmented reality (AR), and mixed  

reality (MR), use computerized environments and objects to simulate a “real” user experience 

[2]. There is a wide range of research on the effectiveness of immersive technologies in  

education. For example, several papers suggest immersive technologies to enhance specific  

learning outcomes in engineering by enabling remote/online teaching and providing a flexible  

and safe virtual environment [3]. Furthermore, immersive technologies can facilitate teaching  

and learning of design concepts (e.g., 3-dimensional design for a new product) while enhancing  

students’ interactions, creativity, and spatial skills [3]. 

  

(a) Discipline breakdown for PBL. (b) Discipline breakdown for VR. 

Figure 2. 1. Search results for PBL and VR in the Scopus bibliography database. 
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The use of immersive technologies in the context of PBL can potentially enable the advantages  

of both paradigms and further improve critical thinking and problem-solving skills, encourage  

effective communication and enhance students’ motivation and learning experience. Motivated  

by the above and the fact that engineering is one of the main application areas for both PBL and  

VR (Figure 2.1), the objectives of this paper are to:  

1) Use bibliometric analysis to show where (in what engineering disciplines/subjects) PBL  

and VR have been applied.  

2) Provide a literature review to assess and understand how VR has been used in a PBL  

setting in engineering education. 

The remainder of the paper is organized as follows. We first provide a brief overview of the  

bibliometric analysis technique. We then present the main results of our bibliometric analysis  

along with the observed trends over time in the use of PBL and VR. We then narrow down our 

focus and provide a summary and qualitative assessment of only those papers that discuss the use 

of VR in a PBL setting (i.e., integrated use of both tools). Finally, we present the conclusions  

and potential future opportunities. Figure 2.2 summarizes the general process used in this paper. 

2.2  Bibliometric analysis: Where PBL and VR are used in engineering education  

 

Bibliometric analysis involves statistical techniques that can be used to analyze a scientific field 

by its publications and their characteristics [4]. Here, we use the Vosviewer tool to perform a 

bibliometric analysis of the proceedings of the American Society for Engineering Education 

(ASEE) annual conferences over a 25-year period from 1996 to 2020 collected via Scopus searches 

 

 

 

 

 

 

Figure 2.2. The general review process followed in this paper 

Two sets of searches in proceedings of the 
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in their title, abstract, and keywords, using various search phrases related to PBL and VR. Our 

bibliography search using the phrases "problem-based learning", "project-based learning", and 

“PBL” led to 762 papers. Similarly, 409 papers are identified using “virtual reality” and “VR” as 

search phrases. An example of the complete Scopus search expression is:  

TITLE-ABS-KEY ( ( "Problem-based learning" OR "Project-Based Learning" OR “PBL”) ) AND 

( LIMIT-TO ( EXACTSRCTITLE , "ASEE Annual Conference and Exposition Conference 

Proceedings" ) OR LIMIT-TO ( EXACTSRCTITLE , "ASEE Annual Conference Proceedings" ) 

) Next, we perform co-occurrence analysis [5]–[7] to classify and map co-occurred words and 

phrases among the collected papers related to PBL and VR to describe research trends. Figure 2.3 

presents an illustrative example of co-occurrence analysis with three hypothetical documents (Doc 

1-3) and the resulting map/network of keywords/phrases (denoted by A, B, C, E, R, W, X). 

 

(a) The three documents and their keywords used in the example of co-occurrence analysis. 

  

 

(b) The co-occurrence map/network of keywords in the three documents in Figure 3(a). 

Figure 2.3. An illustrative example of co-occurrence analysis. 
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2.3  Results of the co-occurrence analysis 

Figure 2.4 shows the co-occurrence map of keywords in the two sets of publications related to 

PBL and VR considered in this paper. The two maps help us identify clusters of keywords that 

cooccurred, which are then used to extract the related topic and engineering discipline as 

summarized in Table 2.1 for PBL and in Table 2.2 for VR along with a list of sample references. 
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Table 2. 1. Engineering discipline and topics derived from the co-occurrence map for PBL. 

Discipline/Field Keywords/Topics Sample Papers 

Electrical Engineering Electrical equipment, Analog electronics and transistor, 

Electric system, frequency devices, Electronics technology 

program 

[8]–[15] 

Mechanical Engineering Machine concepts, Finite element analysis, HVAC, Fluid 

and Thermal design, Thermodynamics, Dynamic 

[16]–[22] 

Aerospace Engineering Aerospace research materials [23] 

Computer Engineering Concepts of CE (generic) [24] 

Biosystem Engineering Biosystem engineering concepts (generic) [25] 
 

 

Table 2.2. Engineering discipline and topics derived from the co-occurrence map for VR. 

Discipline/Field Keywords/Topics Sample Paper 

General Engineering Mathematical models, Probability 

and statistics, Engineering design 

education, Laboratory accident 

training, medical care technology, 

Community health, Building 

environment, Web-based learning, 

Simulation, Visualization 

[2],[26]–[33] 

Computer Engineering CE technology, VR Development, 

Computer game application, Mobile 

robot simulations, Game training 

environment, Engineering design 

 

[34]–[36] 

Mechanical Engineering Wind tunnels, Prototype vehicles, 

Robot system, physical experiment, 

Virtual dynamic laboratory, 

Uncertainty analysis 

[37]–[39] 

Electrical Engineering Nanotechnology, VR simulation [40] 

Biomedical Engineering Simulations in biosystems [41] 
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(a) Project-based learning 

 

(b) Virtual Reality 

Figure 2.4. The co-occurrence network for the two sets of papers related to PBL and VR. 
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Figure 2.5 presents the trends in the use of PBL and VR in engineering education measured by the 

number of papers published on the corresponding topic in the proceedings of ASEE annual 

conferences.  We observe a clear increasing trend in the use of PBL over the years. However, we 

observe an initial uptick trend in the use of VR in the early 2000s after which the trend seems to 

have leveled out.  By comparing Figures 2.5(a) and 2.5(b), we can see that PBL is used much more 

frequently than VR in engineering education.  This is expected as PBL has been around for much 

longer and is well-established in educational settings with a more cohesive body of research, 

empirical evidence, and theoretical support in comparison to VR. 

 

2.4  Literature review: How PBL and VR are integrated in engineering education  

This section aims to provide a review of papers published in the proceedings of ASEE annual 

conferences to highlight how PBL and VR have been integrated and used together in engineering 

education.  Through full-text review of the original 409 papers returned by our keyword search 

related to VR, 18 papers are selected that use a combination of PBL and VR, which are 

summarized in the following subsections.  We divide the reviewed papers into the following 

groups based on the engineering discipline they belong to: Computer Engineering and 

 

 

(a) Problem-based learning (PBL) 

 

 

(b) Virtual Reality(VR) 

Figure 2.5. Trend analysis for PBL and VR. 
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Information Sciences, Mechanical Engineering, Electrical Engineering, Biomedical Engineering, 

Geotechnical Engineering and Environmental Engineering, and Industrial and Manufacturing 

Engineering.  If a paper belongs to multiple disciplines or does not neatly fall under a single 

category, then it is included under “General Engineering”. At the end of this section, we discuss 

the main findings and insights derived from our literature review. 

 

General engineering  

In [26], the author employs a combination of formal and informal learning using immersive 

technologies and PBL for interdisciplinary teams consisting of engineering and nursing students.  

The team project involves developing healthcare-related apps that patients can use on their 

smartphones, including apps that use immersive technologies (e.g., for cognition and memory 

health).  The main goal of the study is to expose STEM and non-STEM students to various fields, 

such as health care, virtual reality, and social and community issues and understand how 

interdisciplinary instruction affects students’ ability to identify, formulate, and solve problems, 

communicate effectively, appreciate the impact of planning and engineering solutions, and develop 

understanding of ethics-related factors.  The effectiveness of integration of PBL and immersive 

technologies is measured with pre/post surveys related to the above outcomes and the results 

indicate increased technical and collaborative skills in students. 

 

The authors in [42] work with graduate and undergraduate students to develop a web-based 3D 

visualization and cluster computing system for disaster data management, resource distribution 

and communication between local authorities and disadvantaged populations affected by a 

disaster.  The developed tool can be used on Google Earth-enabled mobile and desktop devices as 

well as a Cave Automatic Virtual Environment (CAVE).  More than 30 graduate and 

undergraduate students participated in the research and hands-on experiences involving PBL and 

VR in order to develop the web-based disaster management and communication system.  The 

authors mention that three graduate students completed their master’s thesis based on this project, 

and more than 10 undergraduate students completed their senior design project based on this 

research.  However, they do not provide any additional assessment data related to the impact of 

PBL-VR integration on student learning or motivation. 
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The work in [43] develops a prototype of a multi-dimensional Desktop Virtual Reality (dVR) 

framework to help students organize, present, and visualize engineering and technological 

literature (as an alternative to reading textual information). The literature is represented as 

geometry objects embedded in a graphic interface where users can navigate within the 3D 

environment, view the literature from multiple perspectives, and interact with the virtual 

environment by sorting and re-structuring the visualized literature. The authors discuss the 

extension and application of the dVR prototype in PBL exercises, for example, an IT project 

involving generation of a taxonomy to classify operating systems or programming languages for a 

Computer Information Technology course.  However, no assessment results are reported on the 

effectiveness of PBL-based exercises enabled by the proposed dVR environment. 

 

Computer engineering and information sciences  

In [44] , the authors propose novel immersive simulation-based learning (ISBL) modules for 

teaching and learning database concepts. The proposed modules include a three-dimensional, VR-

compatible simulated environment with PBL activities defined around the virtual environment to 

mimic a real-world situation where the student is hired as an intern to design a database for a 

hypothetical company/system. Students observe the simulation as it is running and are asked to 

create an entity-relationship (ER) diagram and relational schema by identifying relevant entity 

types, their relationships, and attributes. As part of the assessments, students are divided into two 

groups. The “intervention group” uses the ISBL module, while the “control group” is assigned to 

an equivalent PBL assignment without the accompanying immersive simulation.  The authors 

collect data on demographics, motivation, usability, and students’ grades in pre/post quizzes.  The 

results confirm the effectiveness of the proposed modules with potential improvements in certain 

constructs related to motivation. 

 

The work in [45]  proposes a PBL-based approach wherein an interactive VR framework is used 

for delivering instructional materials to the students in an introductory computer animation course.  

The framework includes a VR laboratory capable of delivering conceptual and practical training 

and extensible VR modules designed to support immersion, navigation, and interaction. However, 
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this is a work in progress paper and does not discuss any formal assessment results on the 

effectiveness the proposed PBL-VR integration. 

The authors in [46] develop an advanced learning lab equipped with tablet PCs, wireless slates, 

and a SMART interactive whiteboard as an educational infrastructure to promote problem-based 

learning, collaborative learning, and assessment. A supplementary VR learning platform is also 

discussed for enhancing student learning outcomes by converting abstract concepts into vivid 

animations and providing game-like interactivities, and by making the learning experience fun 

while still retaining the underlying content.  The authors report that the lab and support VR 

platform are at the initial implementation and testing phase, hence no quantitative assessment data 

are provided,  but they lay out future assessment plans involving both formative and summative 

evaluations in a data structures course and an object-oriented design and analysis class.   

 

Mechanical engineering  

The authors in [47] develop, implement, and test two immersive prototype applications called AR-

Skope and VR- Skope to support collaboration among Architecture, Construction, and Mechanical 

Engineering students.  The prototype integrates AR and VR with Building Information Modeling 

(BIM), visual simulations, and interactive lessons.  One course from each of the three participating 

disciplines is selected for implementation.  Students are divided into four different groups to 

complete a project that involves physically visiting a campus building and a walk-through using 

VR and AR Skope (like having an interactive x-ray vision) to explore its various components such 

as the façade system, structure, mechanical systems, plumbing, etc.  Pre/post attitude surveys, 

technical reports, videos and interviews are used to assess the effectiveness of the integration of 

VR and AR in interdisciplinary projects. The results suggest that the proposed method can 

effectively decrease students’ negative attitudes toward collaborative learning and improve 

interdisciplinary team interactions. 

 

In an effort to improve student learning and engagement, the authors in [48] develop and integrate 

an interactive virtual laboratory in a pneumatics and hydraulics systems course designed based on 

a PBL pedagogical model.  The framework allows students to compare virtual experimentation 

using Automation Studio software with physical real-world experiments in a traditional lab setting.  
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Preliminary assessment results from student skills in pre-lab preparation, lab report grades, and a 

survey indicate that incorporating virtual experiments in conjunction with physical experiments in 

a PBL setting is advantageous to student preparedness and understanding of the course material. 

 

In an early paper [49], the authors develop an interactive virtual environment using the LabView 

software to support both inquiry-based and project-based learning in a Thermal Systems 

Laboratory course.  Traditionally, the course involves equipment-intensive experiments where 

students are given detailed and rigid procedures to follow, creating a passive learning environment 

and suppressing students’ motivation.  The virtual environment aims to address these issues and 

overcome cost, safety, and other limitations of the physical lab.  The PBL activities in the virtual 

environment involve designing instruments and data acquisition systems.  However, the paper does 

not present any assessment results related to the effectiveness of the virtual lab. 

 

Electrical engineering  

The authors in [50] propose a set of interactive simulations and virtual experiments intended to 

facilitate “learning-by-doing” and PBL in fiber optics, photonics, and telecom courses and for 

onsite, online, and hybrid delivery methods.  For example, in the simulation, learners can explore 

the procedure of switching or handing off a mobile phone from one cell to another as it moves 

across cell boundaries in a system of different sized cells. The student can also change the 

parameters (e.g., probability of blocking, traffic intensity, and number of users) and see their effect 

on the simulated system.  However, no assessment data are reported on the effectiveness of the 

simulations and virtual experiments. 

 

Biomedical engineering  

In [51], besides traditional teaching and learning methods, and laboratory activities, the author 

presents case-based  and problem-based learning using browser-readable interactive 2D and 3D 

objects, animation, videos, 3D objects of real components, and 3D internal and external human 

body virtual tours, that the students can study.  According to our reviewers, learners and assessors, 

this an effective method for problem solving and assessment in biomedical engineering because it 
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forces both the student as well as the tutor to focus, create new wealth, and encourage outcome-

oriented educational practices.  However, no formal assessment experiments are discussed. 

 

Geotechnical and environmental engineering  

 

The work in [52] studies the use of VR for teaching Concentrating Solar Power (CSP) technology. 

A scale model of an actual alternative energy research facility in Louisiana is developed in the 

CAD software and imported into a VR game engine with interactive educational activities placed 

throughout the VR environment and students complete them to virtually produce solar power.  The 

VR environment is then used in conjunction with PBL, where students are presented with a 

problem, that is, to start up the (virtual) CSP plant in order to produce the needed solar power.  

Pre/post-tests and a questionnaire are administered for college and high school students.  The 

assessment results show a substantial improvement on the post-tests as well as positive feedback 

about the VR experience, exploration, collaboration, and interaction combined with PBL as an 

effective educational method. 

 

The game-based module for geotechnical engineering students in [53] develops a mixed-reality 

and mobile game-based learning environment called “GeoExplorer” that supports PBL and 

experiential learning, and enables students to experience field testing to design and assess a 

particular site’s flood-protection levee.  Students are assigned to games related to cone penetration 

tests and levee design and assessment capabilities after attending lectures.  As part of the 

assessments, pre/post surveys are administered, which contain the same technical questions as well 

as additional questions designed to assess the game quality and students’ perception of its 

effectiveness.  The results indicate students’ positive attitude towards the VR-PBL integration with 

over 90% of participants perceiving this to be an effective way to implement class learning in 

practice.  There was also a 20% improvement in students’ understanding of the material measured 

by their scores on the technical questions. 

 

The authors in [54] combine PBL and VR in wind/green energy education by assigning students 

to projects that involve designing and testing different components (such as wind turbine blades) 

using 3D modeling software, including SolidWorks and Unity.  Preliminary assessments suggest 
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students can effectively complete the design tasks in a virtual setting and the feedback received 

from the students was mainly positive, especially with regard to exposure to the green product 

topic surrounding materials, fabrication, testing, and measurements. 

In another paper related to green energy[55] , a VR learning environment and laboratory is 

developed using the VRLE platform and SolidWorks to support project-based learning and 

improve students’ learning related to Proton Exchange Member (PEM) fuel cells.  During VR 

simulation, students can vary the fluid parameters and explore the changes in current and voltage, 

perfectly mimicking the physical laboratory activity.  Assessments are yet to be conducted to 

establish the effectiveness of these VR learning modules of PEM fuel cells.  

 

The work in [56] deliver interactive GIS instructional material using an immersive CAVE-based 

technology named iSpace and a low-cost desktop VR (dVR). While the dVR lacks the high fidelity 

and immersion of CAVE, it addresses accessibility and affordability issues.  A three-tiered 

framework is used including a concept model for GIS instruction, mapping component, and 

customization for mode-specific delivery of design materials.  The framework enables PBL, 

experiential learning, and active learning in the context of VR.  However, this is a work-in-progress 

paper and does not report any assessment data. 

 

Industrial and manufacturing engineering  

In [57], the authors introduce an interactive VR, PBL and case-based learning environment to 

support student collaboration and problem-solving related to Failure Risk Analysis.  The goal is to 

for students to work on open-ended, interdisciplinary problems and interact with real-life 

challenges, where students can learn by doing in an interactive 3D multimedia environment. For 

example, students can disassemble and then re-assemble 360-degree panoramic and 3D VR 

interactive objects by virtually going to factories, R&D studios, and laboratories.  In addition, 

spreadsheets and video are used as part of the integrated PBL-VR modules.  This work has been 

ongoing for several years, and several universities and companies have adopted the technology, 

however, the paper does not provide any formal assessments on its effectiveness. 
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The authors in [58] develop a set of VR models, PBL, and case studies to be integrated with various 

courses in the industrial engineering curriculum and help address competency gaps in 

manufacturing workforce.  Student teams are assigned to work on industry-based projects that 

require VR walk-through tours enabled by a discrete-event simulation model of an actual Boeing 

manufacturing line.  A formal rubric is used for scoring the projects as recommended by the “Field-

Tested Learning Assessment Guide”, classifying the assessment based on the students’ learning 

outcomes such as knowledge, skills, or attitude.  The results indicate that integrating VR and PBL 

can address students’ competency gaps by incorporating the knowledge and skills gained from 

various course lectures.  

2.5 Discussion and qualitative assessment of the reviewed literature 

This section discusses the main insights derived from our qualitative assessment of the papers 

included in our literature review.   

• Increased attention to learning theories: While Figure 2.5(b) shows that the number of 

papers that discuss VR in engineering education seems to have plateaued in the last decade, 

the number of papers that integrate VR and PBL seems to be increasing according to Figure 

2.6 with a clear uptick during the 2016-2020 period.  This is an interesting an important 

finding as it can be an indication of a possible shift from development of computerized VR 

simulation environments to designing meaningful immersive learning activities that are 

supported by pedagogical and psychological theories enabled by PBL such as 

constructivism theory, self-determination theory, and information processing theory. 
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• Breadth of application domains: The 18 articles included in our literature review cover seven 

engineering disciplines and several related subjects, indicating a broad interest in the integration 

of PBL and VR in engineering education.  However, these applications are not uniformly 

distributed among engineering disciplines.  For example, we see more examples of PBL-VR 

integration in geotechnical, environmental, and mechanical engineering. 

 

• Type of learning activity: Our literature review reveals that VR has been integrated with both 

problem-based and project-based learning as the reviewed papers report different types of learning 

activities from small assignment-like modules to more complex, semester-long projects and case 

studies.  We also see that PBL-VR integration is used for both individual activities and teamwork 

including interdisciplinary teams from different programs/courses.  Therefore, it does not seem 

that integrating VR into PBL affects the team aspects and potential for collaborative and 

interdisciplinary learning. 

 

• Lack of formal assessments: The most important gap in the reviewed papers is the lack of formal 

assessments of the effectiveness of PBL-VR integration.  The majority of the reviewed papers 

discuss the technical details related to development of the VR environment and/or explore potential 

uses in a certain course or program, but do not perform assessments (e.g., controlled experiments) 

or report quantitative assessment data on the impact of their intervention on student learning, 

 

Figure 2.6. Trend analysis for the use of PBL in the context of or enabled by a VR 

environment. 
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motivation, skill development, retention, and other important outcomes. However, the few studies 

that did perform assessments indicate improvements as a result of combining VR and PBL. 

2.6  Conclusions, limitations, and future work   

In this paper, we first perform a bibliometric analysis on the ASEE annual conference 

proceedings from 1996 to 2020 to identify the engineering disciplines and related topics where  

PBL and VR are used. Our trend analysis on the number of publications over the years shows an  

increase in the use of both PBL and VR and their integration in engineering education. The  

increased popularity of VR can be partly due to the increased availability and affordability of  

immersive technologies in recent years that have led to many engineering programs adopting VR  

technologies (e.g., in the form of virtual learning factories/laboratories) due to the flexible, cost-

effective, and risk-free environment they offer (e.g., compared to physical laboratories that  

involve expensive and complex equipment). 

 

We also perform a qualitative assessment of the studies that implement VR in conjunction with  

PBL across different engineering fields. Perhaps the most critical gap in the reviewed literature  

is related to lack of formal assessments as many papers report on developing a new and/or  

implementation of an existing immersive environment without providing rigorous evidence on  

the effectiveness and impact on student learning, motivation, and other outcomes. Far more  

attention needs to be given to assessments given the paucity of scientific evidence on the  

effectiveness of immersive technologies, and especially given the existence of mixed findings in  

some cases related to impact on students’ motivation vs. learning and task performance (for  

example, see [59]).  

 

Scalability (in terms of learners’ access to VR equipment) and high development time/cost of VR  

learning environments are among the significant factors that affect the adoption and use of 

immersive technologies in education including engineering education. While there are several  

studies aim to reduce or eliminate such scalability barriers, we believe future research could  
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focus more on these issues. For example, the immersive simulation-based learning (ISBL) 

method proposed in [44] supports both a “desktop mode” or “low-immersion mode” of use on a  

typical 2D display as well as a “VR mode” or “high-immersion mode” via a VR headset (if  

available) for an enhanced immersive experience. Moreover, by using a commercial discrete-

event simulation software with 3D animation features and VR compatibility, the development 

time/cost of their ISBL modules is significantly less than the programming effort required to  

implement similar simulations in a VR platform such as Unity. Finally, we found a small  

number of studies that integrate artificial intelligence within immersive virtual environments.  

Design, development, and assessment of combined AI-VR learning environments is another rich  

area for future research. 

 

We hope that this paper accelerates the discussions and ongoing research on PBL enabled by  

immersive virtual environments in engineering education. We plan to extend our literature  

analysis to encompass all STEM fields and other journals and conferences that publish  

educational research.  
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Chapter 3 

An Assessment of Simulation-Based Learning Modules 

in an Undergraduate Engineering Economy Course 

3.1  Introduction and Background 

The Immersive Simulation-Based Learning (ISBL) approach proposed in this paper aims to close 

the gap between learning and skills that the students attain during their education and the real-life 

problems they face and solve in their professional life. ISBL offers an alternative teaching and 

learning method that combines the benefits of immersive simulated environments and problem-

based learning (PBL). ISBL is student-centered and aims to motivate students to formulate 

engineering problems and situations based on real-life context. This paper focuses on an 

implementation and assessment of ISBL for teaching and learning engineering economy. The 

interested reader is referred to [1] for another application of ISBL in a database design course. 

 

Engineering economy is one of the fundamental courses in an engineering curriculum and one of 

the core engineering competencies covered in the Fundamentals in Engineering (FE) exam. The 

concepts learned in an engineering economy course aim to help engineers make informed and 

economical decisions in engineering settings [2]–[5]. The topics covered are useful to the students 

in their personal and professional life, providing many opportunities to incorporate real-life 

examples to enhance teaching and learning. Nevertheless, engineering economy is generally 

characterized as a course with a high failure rate, which is often attributed to engineering students’ 

low engagement and motivation toward the topics covered in the course [6]. In addition, students 

usually struggle to apply what they have learned in class in actual engineering applications [6]. 

Through the proposed ISBL approach, we aim to improve students' motivation and engagement 

by providing a contextualized learning experience designed to enhance problem-solving skills. 
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PBL is a well-known student-centered approach that utilizes active learning where students solve 

complex problems that mimic problems encountered in real-life applications [7]. PBL has proved 

to improve innovation [8], metacognition [9], engagement and meaningfulness [10], [11]. In 

addition, it encourages design thinking [12] as well as curriculum integration [13], [14]. PBL helps 

students learn by applying the learned knowledge rather than memorizing it [15] and is 

recommended as an effective teaching and learning method in engineering economy courses [16]. 

 

On the other hand, simulated and immersive environments, such as virtual reality (VR), insert the 

user into a virtual world with which the user can interact [17]. Several studies have investigated 

the effectiveness of immersive technologies in engineering education [18]. Immersive 

technologies provide portable and risk-free learning environments that facilitate location-

independent learning [18]. Moreover, these technologies are shown to enhance certain learning 

outcomes in engineering disciplines such as creativity and spatial skills [18]. The reader is referred 

to [19] for a comprehensive review of immersive virtual environments in higher education, and to 

[20] for a bibliometric analysis on the combination of PBL and immersive technologies in 

engineering education. 

 

In this paper, we propose and investigate the effectiveness of ISBL as an alternative teaching and 

learning method that enables PBL in the context of an immersive simulated environment. In the 

following sections, we first describe the different components of ISBL, supporting pedagogical 

and psychological theories, as well as the sample ISBL modules used in our experiments related 

to an undergraduate engineering economy course.  We then describe the experimental design and 

present the results of our quantitative assessments and statistical comparisons as well as a set of 

qualitative assessments based on user interviews. Finally, we will conclude the paper by discussing 

the lessons learned and future research opportunities. 

3.2  Immersive Simulation-Based Learning (ISBL) 

The proposed ISBL modules are specified by: 
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a) A three-dimensional, VR-compatible discrete-event simulation model that resembles a 

real system or environment. The simulation serves as the context and enables technology 

enhanced PBL. The simulation models used in the proposed ISBL modules can be 

explored in 2D on any typical display or via a VR headset for an enhanced immersive 

experience. 

b) A set of entities in the simulation that can represent people, products, raw material, 

information/data that are processed, assembled, manufactured, stored, transferred, or 

transported depending on the context being simulated. 

c) A set of processes in the simulated environment that represent the stages or stations that 

the entities go through during the simulation run. 

d) A learning activity in the form of problem- or project-based learning defined around the 

simulated system. The learning activity is inspired by and resembles real-world situations 

that learners may face in a professional setting or future workplace. 

Many of the pedagogical and psychological theories that support PBL also apply to ISBL 

or are augmented as a result of the integration with a virtual/simulated environment.  For 

example: 

• ISBL enables long-lasting development of critical thinking and problem-solving skills by: 

(a) activating relevant prior knowledge; (b) providing a contextually-enriched 

environment (via immersive simulations) that mimics future professional settings; and (c) 

encouraging learners to elaborate on their knowledge to solve a real-world inspired 

problem. These are the three principles of the Information Processing Approach to 

Learning theory [21]. 

• The immersive simulations in ISBL provide the context and an environment to interact 

with, which are often missing in STEM education. This enables knowledge to be 

constructed via interactions with the virtual environment and indexed by relevant 

contexts. This aligns with the Constructivism Theory [22], which suggests learners 

construct their interpretations of the real-world world through cognitive and interpretive 

activities and help construct mental models by accommodating new ideas/phenomena 

with prior knowledge. 
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• ISBL enables learners to consider their views and take greater responsibility for their 

learning. As a result, ISBL aligns with the Self-determination Theory [23] by promoting 

autonomous motivators, unlike traditional methods that are primarily based on controlled 

motivators such as rewards and punishments (e.g., passing or failing a test), which often 

lead to superficial learning and cause a sense of pressure and anxiety. 

• ISBL is also suitable for professional and continuing education as it supports some of the 

main pillars of the Adult Learning Theory [24] by providing a self-directed and problem-

centered learning experience that draws on previous work experiences and integrates into 

the professional learner’s everyday life as ISBL problems/projects resemble real-world 

situation.  

For the ISBL modules investigated in this paper, the immersive simulations are developed using 

the Simio® simulation software [25], which does not incur any technology fee for academic and 

classroom use and is compatible with VR, giving the learner the option to view the simulated 

environment on a 2D display (low-immersion mode) or via a VR headset (high-immersion 

mode). Students use virtual site visits (by navigating in the simulation) to make observations and 

collect any necessary data (as opposed to visiting a real-world facility in person). This helps 

eliminate several critical barriers in current STEM education and workforce development, 

namely: (a) geographical barriers that prohibit contextualized learning, e.g., lack of proximity to 

industries or geographically dispersed formal/informal learners in online education; (b) 

companies' reluctance to provide access to their facilities and data; and/or, (c) logistics/schedule 

constraints that prohibit real-world site visits (e.g., conflict with other classes or work 

commitments for professional students). 

 

The following section describes the integration of several ISBL modules in an undergraduate 

engineering economy class that we used in our assessment experiments. For a list of ISBL 

modules developed for other STEM courses/disciplines, please see our project website at 

https://sites.psu.edu/immersivesimulationpbl. 

https://sites.psu.edu/immersivesimulationpbl
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3.3  ISBL Implementation in an Undergraduate Engineering Economy Course 

The Industrial Engineering (IE) Department at Penn State University - The Behrend college 

offers an undergraduate introductory course in engineering economy. This is a required course 

for IE students and an elective course for other engineering and engineering technology majors. 

The course is offered in the fall and spring semesters. The high-level objectives of the course can 

be summarized as follows: 

• Apply the theoretical and conceptual basics of financial analysis including time-value of 

money, cash flow diagrams, economic equivalence, present worth analysis, annual worth 

analysis, cost-benefit analysis, rate-of-return, depreciation, and income taxes. 

• Make informed financial decisions when selecting among several viable alternative 

projects. 

• Identify how engineering decisions during product design, process selection, 

manufacturing system design, etc. can affect a company's financial performance. 

• Develop skills that extend the basic concepts needed to solve various problems 

encountered in professional and personal financial situations. 

 

The class is structured to be taught online and includes video lectures, online assessment 

questions for each lecture, quizzes, homework assignments, and three exams. The course 

sections used in this study were offered in Fall 2020 and Spring 2021. Our experiment (as 

described in the following section) involved a “control” and an “intervention” group. Both 

groups used the same material offered by the same instructor and via the same delivery method. 

The only difference was the use of the ISBL learning module instead of traditional homework 

assignments for the intervention group.  

 

Four ISBL modules are integrated into the course to mimic real-life systems and engineering 

economy problems. Students are given a week to complete each ISBL assignment following the 

lecture on the respective topic. The document that comes with each module includes a 

description of the system at hand and the engineering economy problem(s) to be solved. In each 

ISBL module, the students are given a role. For example, in one of the modules the student is 
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“hired” as a consultant to help a restaurant compare different loan options and select the most 

economical alternative.  Each module is also accompanied by a 3D, VR-compatible, animated 

simulation model that is to be treated as the “real-world system” under study. The ISBL modules 

used in our experiments are related to a restaurant, a manufacturing assembly plant, a warehouse, 

and an airport terminal. Figure 3.1 provides a screenshot of some of the simulated systems used 

in the ISBL modules.  

 

 

  

Figure 3. 1.The simulation environments associated with the ISBL modules used in this paper. 

For the sake of conciseness, we describe only one of the ISBL modules here and refer the interested 

reader to our project website at https://sites.psu.edu/immersivesimulationpbl where all ISBL 

modules developed as part of our ongoing project are shared publicly. The airport terminal has two 

areas with several self-check-in kiosks, a check-in counter, one ID/boarding pass check-point 

station, and two advanced imaging technology (AIT) stations for scanning passengers and their 

luggage. There are two gates in the boarding area at the terminal each having its own 

https://sites.psu.edu/immersivesimulationpbl
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seating/waiting area, where passengers wait before boarding on their flight. Flights board and leave 

according to a stochastic process specified in the simulation model.   

 

The engineering problem to be solved is as follows. The airport terminal plans to purchase and 

install vending machines near the gates to serve the passengers. Six candidate options have been 

identified that vary in terms of the number and type of vending machines to be installed, the 

number of choices (menu items), price, and quality of the drinks/snacks. Students are asked to treat 

the simulation as the “real” system and use virtual site visits to collect the data that they need to 

perform an economic analysis.  

As for the learning objectives, after successful completion of the ISBL module, the student will be 

able to: 

1. Collect data from the real-world system under study and estimate the cash flows needed 

for the economic analysis. 

2. Compute the internal rate of return (IRR) for the investment options under consideration. 

3. Perform rate of return (ROR) analysis to compare multiple alternatives and select the most 

economical option. 

4. Perform present worth (PW) analysis to compare multiple alternatives and select the most 

economical option. 

5. Verify the ROR and PW analyses by comparing the outcomes of the two methods.   

3.4 Research and Experiment Design  

Our study compares two groups of students: an “intervention” group that used ISBL modules as 

part of their assignments; and a “control” group that used traditional textbook problems as 

assignments. All other factors including the instructor, course syllabus/structure, instructional 

mode, textbook, etc. remain the same for both groups.  Figure 3.2 summarizes the experiment 

process. 
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Figure 3.2. General design of the assessment experiments 

 

We use the following instruments to collect data from research participants (all necessary IRB 

approvals are obtained prior to the experiment and data collection). 

1. Demographics survey: The survey is used to collect data on gender, race, grade point 

average (GPA), major, semester standing, prior work experience, and personality type.  

2. Big Five Inventory (BFI-10) personality test: The BFI survey questionnaire collects data 

about students’ behavioral personalities and behavior across various situations [26]. The 

10-item BFI measurement is developed to allow effective assessment of the five 

personality dimensions including Extraversion, Agreeableness, Conscientiousness, 

Neuroticism, and Openness. 

3. Instructional Materials Motivation Scale (IMMS): The IMMS [27] survey is used to 

assess the student’s motivation. The survey consists of 12 Likert scale questions measuring 

attention, relevance, confidence, and satisfaction for students earning a degree in 

engineering.   

4. Experiential Learning Survey: Experiential or experience-based learning generally refers 

to settings where students participate in activities that enable learning by doing. This 

instrument is a 12-item questionnaire that evaluates the student’s perception of experience-

based educational instruction as established in the experiential learning theory  [27].  Here, 

we specifically focus on two of the constructs measured by this instrument, namely how 

the environment influenced learning, and how useful the learning experience was in terms 

of potential utility in future endeavors. It is worth noting that the original experiential 

learning instrument includes two other constructs, namely active learning, and relevance, 

which were excluded in our implementation of this instrument due to their overlap with the 

constructs measured by the other instruments that we used here. For example, relevance is 

 

Collect data on outcome 

variables (motivation, 

experiential learning, 

engineering identity, self 

assessment of learning) 

Administer a 

demographics survey 

(gender, race. major, 

GPA, personality type) 

to establish baseline 

Students are 

randomly assigned 

to Control and  

ISBL (intervention) 

groups 

Control 

ISBL 
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measured by the IMMS survey, and active learning, which refers to the student’s level of 

engagement with the learning material, is directly related to “Attention” – also measured 

by IMMS. 

5. Engineering Identity Survey: The engineering identity survey is created to understand 

students’ career choices and interests in engineering fields [28]. The 10-item questionnaire 

is constructed to measure three constructs related to the student’s: (a) perception of their 

performance and competency, i.e., ability to perform well in gaining engineering 

knowledge; (b) interest in the (engineering) subject; and (c) recognition, i.e., being 

acknowledged by their peers/instructors as a successful engineering student.  

6. Self-assessment based on Bloom’s Taxonomy of learning objectives: This self-

assessment survey is designed to provide insights into students’ self-perceived knowledge 

related to a set of topics/concepts [29]. In our study, students are asked to rank their 

knowledge of various engineering economy topics by selecting one of six levels adapted 

from Bloom’s taxonomy that they think best describes their level of learning. For each 

topic, the six levels that the respondent can choose from are as follows: (1) I can remember 

related concepts/methods; (2) I can explain related concepts/methods; (3) I can apply this 

topic/method to a different problem/situation; (4) I can analyze the meaning of and 

justification for related concepts/methods; (5) I can evaluate and ensure the correct use of 

the related concepts/methods; (6) I can create new solutions by using this topic/method in 

other problem-solving situations without an example. 

7. Student interviews: Interviews are conducted with student volunteers from the class to 

obtain a qualitative assessment of their experience with the ISBL modules. Interviews are 

influenced by ethnographic methods and followed six structured questions designed to fit 

into a twenty-minute interview format [30]. Questions covered what students like best 

about the ISBL modules, suggestions for improvement, navigation experience, impact on 

learning, recommendations for future users, and an “Anything else to add” question. 

Interview notes were taken and analyzed using qualitative data analysis techniques from 

Grounded Theory to produce a set of themes across student experiences [31]. 
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3.5 Student Population  

We use the demographics and BFI personality surveys to establish a baseline and ensure that the 

two groups are comparable. Table 3.1 shows the gender composition of the students in the control 

and ISBL group. As shown in Figure 3.3(a), most students in both groups are from engineering 

majors, but the ISBL group has a higher percentage of non-engineering majors (8.2%) compared 

to 3.1% in the control group (this has important implications for the results related to engineering 

identity as discussed later). As shown in Figure 3.3(b), most students in both groups are seniors. 

 

 

 

 

 

 

 

 

ISBL group 

 

Control group 

(a) Major 

 

ISBL group 

 

Control group 

(b) Semester standing 

Figure 3.3. Group composition based on major and semester standing 
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Table 3. 1. Gender composition of the two groups 

 Female Male Other 

Control group 9.1% 90.9% 0% 

ISBL group 17.6% 82.4% 0% 

 

Table 3.2 shows the mean, median, and standard deviation of the five BFI personality dimensions 

for the two groups. Our two-sample t-tests indicate no statistical differences between the two 

groups related to these dimensions at a 5% level of significance. As shown in Table 3.3, a two-

sample t-test at a 5% significance level indicates no significant statistical difference between the 

two groups in terms of the average GPA (i.e., we fail to reject H0: µ𝐺𝑃𝐴
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − µ𝐺𝑃𝐴

𝐼𝑆𝐵𝐿 = 0). Figure 

3.4 shows that the GPA distribution is also similar for the two groups of students being compared. 

 

Table 3.2. BFI personality test results for the two groups 

BFI dimension 
Control ISBL Test outcome 

Mean Median Stdev Mean Median Stdev p-value 

Extroversion 5.636 5 1.782 6.118 6 1.740 0.227 

Agreeableness 4.788 4 2.073 4.804 5 1.442 0.969 

Conscientiousness 3.82 3 1.67 4.12 4 1.35 0.391 

Neuroticism 6.515 6 2.167 6.275 6 1.877 0.603 

Openness 4.909 5 1.156 4.980 5 1.407 0.801 

Overall 25.668 23 8.848 26.297 26 7.816 2.991 

 

 

 

 

Table 3.3. GPA comparison between the two groups 

 Control ISBL Test outcome 

 

GPA 

Mean Median Stdev Mean Median Stdev p-value 

3.111 3.20 0.531 2.917 2.85 0.623 0.132 
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Figure 3. 4. GPA distribution comparison 

 

3.6 Research Hypotheses  

Based on the above results, it would be reasonable to assume that the two groups are comparable 

in terms of academic and personality factors and that any statistical difference observed between 

the two groups regarding the outcome variables can be attributed to the intervention implemented, 

i.e., the ISBL modules. More specifically, our experiment aims to investigate the following 

hypotheses: 

1. The ISBL group shows higher motivation than the control group as measured by the IMMS 

instrument.  

2. The ISBL group shows higher levels of experiential learning than the control group as 

measured by the experiential learning survey.  

3. The ISBL group shows higher engineering identity than the control group as measured by 

the engineering identity instrument.  

4. Students in the ISBL group perceive higher levels of learning as measured by the self-

assessment questionnaire based on Bloom’s taxonomy of learning objectives. 
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3.7 Quantitative Assessments: Statistical Comparisons and Results  

All statistical tests presented in this section are performed at a 5% level of significance. As for 

the first research hypothesis, Table 3.4 shows the mean, median, and standard deviation of the 

four dimensions related to motivation as measured by the IMMS instrument for the control and 

ISBL group. The ISBL group shows a higher mean and median for all IMMS constructs 

compared to the control group. Especially, our two-sample t-tests indicate a highly statistically 

significant improvement for “Confidence”. For “Relevance”, we barely fail to reject the null 

hypothesis with a p-value of 0.051, just over the cut-off point of 0.05, deserving of further 

investigation with additional data. The improvement in motivation can be explained by noting 

that ISBL is inspired by and resembles real-world situations that the learner may encounter at the 

future workplace, hence students see higher relevance and report a more positive attitude towards 

success as they feel more confident about their ability to handle real-world problems. 

 

 

Table 3. 4. Motivation comparisons (H0: µ𝑅𝐼𝑀𝑀𝑆
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − µ𝑅𝐼𝑀𝑀𝑆

𝐼𝑆𝐵𝐿 = 0) 

IMMS 

dimension 

Control ISBL 
Test 

outcome 

Mean Median Stdev Mean Median Stdev p-value 

Attention  8.588 8 2.851 9.633 10 3.264 0.126 

Relevance  7.059 7 2.51 8.265 8 3.012 0.051 

Confidence  6.618 6 2.57 9.286 9 3.075 0.000** 

Satisfaction  9.824 10 3.406 10.83 11 3.406 0.158 

Overall 32.9 31 11.337 38.02 38 12.75 0.335 

 

 

As for the second research hypothesis, Table 3.5 shows the mean, median, and standard deviation 

of the two constructs investigated via the experiential learning instrument, namely “Environment” 

and “Utility”. According to the test results, the ISBL group shows a higher level with respect to 

“Utility” compared to the control group and that the observed difference is highly statistically 

significant. We believe this improvement is because ISBL resembles real-world inspired problems, 

allowing the students to more clearly see that what they learn is useful and applicable in real-world 

settings. 
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Table 3.5. Experiential learning comparisons (H0: µ𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑡𝑖𝑎𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − µ𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑡𝑖𝑎𝑙

𝐼𝑆𝐵𝐿 = 0) 

Experiential 

learning construct 

Control ISBL 
Test 

outcome 

Mean Median Stdev Mean Median Stdev p-value 

Environment  17.41 17.5 3.88 17.12 17.0 4.40 0.753 

Utility  19.68 18 7.33 24.49 22 9.12 0.009** 

 Overall 37.09 35.5 11.21 41.61 39 13.52 0.762 

 

As for the third research hypothesis, Table 3.6 shows the mean, median, and standard deviation of 

the constructs related to engineering identity. We observe a statistical difference between the two 

groups for “Recognition”; however, this time the Control group seems to be performing better with 

respect to this construct. We believe that this finding is primarily due to two reasons: (a) the ISBL 

group has a higher percentage of non-engineering majors (8.2%) compared to the control group 

which has only 3.1% non-engineering students as shown in Figure 3.3(a); hence it would be 

unreasonable to expect a statistically higher engineering identity for the ISBL group; and, (b) the 

scope and duration of our intervention is too limited/short to make a significant impact on the 

student’s engineering identity (i.e., we implemented only a few ISBL modules in a single course). 

There is a need for a longitudinal study over an extended period and multiple courses to investigate 

the impact of ISBL on engineering identity. 

  

Table 3. 6. Engineering identity comparisons (H0 : µEng identity
Control − µEng identity

ISBL = 0) 

Engineering 

identity construct 

Control ISBL 
Test 

outcome 

Mean Median Stdev Mean Median Stdev p-value 

Recognition 7.32 6.5 2.86 5.94 6.5 2.33 0.023* 

Interest 5.91 6 2.44 4.92 4 1.88 0.051 

Performance 11.15 11 3.71 11.67 10 4.53 0.564 

Overall 24.38 23.5 1 22.53 20.5 8.74 0.638 
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As for the fourth research hypothesis, Table 3.7 shows the mean, median, and standard deviation 

of the self-assessment results for the control and ISBL groups. Two sample t-tests are performed 

for every concept/topic related to the ISBL modules used.  The results indicate no significant 

statistical difference between the two groups related to self-assessment, while both groups report 

the same median for all topics. In conclusion, the results show that the ISBL modules enhanced 

motivation and experiential learning without any adverse impact on students’ self-perceived 

learning. 

 

 

3.8 Qualitative Assessment 

Qualitative interviews about the ISBL module experience were conducted with ten students in the 

fall of 2020 and the spring of 2021. Themes emerged from the data which support three of the four 

hypotheses and findings from the results of the quantitative analysis. The first theme for discussion 

is “Real World Context.” For this theme, students discussed the applicability of the ISBL modules 

for their future careers. To this point, one student stated that the modules were a “nice 

representation of what you would actually do in the workplace.” Similarly, another student said, 

“looking at real life situations helped understand the data collection.” Students also recognized the 

real-world value of the simulations during the COVID-19 pandemic, as one student mentioned: “It 

was valuable to have this during a pandemic when we can’t actually visit a site.” This theme 

supports both the development of motivation found in the assessments of hypothesis 1 and the 

recognition of utility found in the assessment of hypothesis 2 as a result of operating in a more 

Table 3. 7. Self-assessment results (H0: µ𝑆𝑒𝑙𝑓−𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − µ𝑆𝑒𝑙𝑓−𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡

𝐼𝑆𝐵𝐿 = 0) 

Concept/Topic 
Control ISBL 

Test 

outcome 

Mean Median Stdev Mean Median Stdev p-value 

Commercial loans 4.00 4 1.56 3.75 4 1.58 0.523 

Effect of inflation 4.09 4 1.40 3.88 4 1.27 0.486 

Annual worth analysis 3.82 4 1.66 4.12 4 1.44 0.398 

Rate of return analysis 3.82 4 1.45 3.67 4 1.66 0.663 

Overall 15.74 16 5.21 15.45 16 4.23 0.792 
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real-world context. As one student succinctly put it, you are “seeing the overall picture and not 

just focused on pizza slices.” 

 

A second theme related to “Engagement” emerged from the interview data. For this theme, 

students described the ISBL modules as “fun, like playing a game”, “better than a lecture for 

engagement,” and “made me look forward to using the assignments in class.” Another student 

summed this up as, “overall, a very interesting part of the course.” This theme supports hypothesis 

1 related to motivation. In this interpretation, students become engaged in the modules, and this 

leads to the development of their confidence as the statistical test results also indicate.  

 

A third theme that emerged related to “Learning about a Career.” In this theme, students described 

the impact of the ISBL modules on understanding potential career tracks after school. One student 

stated, “going to be a good experience if I get an internship, would help understand what it would 

be like to work in this field.” Another student stated that the modules were a “great indicator of 

what to expect when going into this type of work.” This theme provides some support for 

hypothesis 3 related to identity development. Although quantitative assessment results did not 

show a statistical improvement, these qualitative results show that students are learning about a 

possible career track and additional tracking of career identity over time might eventually lead to 

significant development in this area.  

3.9  Conclusions 

In this paper, we proposed and implemented ISBL for teaching and learning engineering 

economy.  ISBL involves an immersive simulation that serves as the context for problem-

/project-based learning. Students can make virtual site visits and interact with the simulation in 

desktop mode (low-immersion) or in VR mode (high-immersion). The statistical comparisons 

from a controlled experiment conducted in an undergraduate engineering economy course show 

that ISBL improves motivation and experiential learning. These findings are also manifested in 

the qualitative user interviews with a sample of research participants.  
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ISBL modules can be used as in-class examples during lectures, homework/exam problems, or 

an individual or group project. Implementing ISBL does not require any technology fee or access 

to special immersive technologies as the simulation software is free for academic use and the 

simulations can be used on any typical computer. In the implementations discussed in this paper, 

we replaced a set of traditional homework problems with related ISBL modules without 

restructuring or modifying other aspects of the course. In order to further facilitate ISBL 

adoption by other instructors and educational researchers, we publicly share a set of ISBL 

modules for various STEM topics on the website for our ongoing project available at 

https://sites.psu.edu/immersivesimulationpbl. 

 

Our experiment results reveal two important areas for future extensions. First, a longitudinal 

study is needed to assess the effect of ISBL on engineering identity and its related constructs, as 

intervention in a single course is less likely to make a significant impact on students’ engineering 

identity. Secondly, additional experiments are needed to assess the impact of ISBL on learning. 

Our self-assessment survey failed to capture a statistical difference between the control and 

intervention groups, hence we would recommend use of alternative instruments to measure 

learning. 

 

We hope that this paper and its extensions will encourage the use of immersive simulations in 

conjunction with PBL in engineering education. 

 

 

  

https://sites.psu.edu/immersivesimulationpbl
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Chapter 4 

Quantification and Impact of Learner Navigation in Immersive Simulation 

Environments 

4.1  Introduction  

The results of a comprehensive literature analysis on the use of virtual immersive learning 

environments in higher education [1] indicates that while there is general interest in studying 

user interaction with virtual environments, only a small subset of current educational research 

studies (around 7%) collect and analyze usage and navigation data. Moreover, [1] identify three 

methods for collecting usage/navigation data: (a) manual, physical observation of the 

participants; (b) survey instruments and questionnaires; and, (c) usage logs of user activities 

collected automatically by the virtual platform software.   

 

Manual observation of participants is extremely tedious, is subject to human error, and is only 

feasible for small studies (in terms of number of participants and length of interaction with the 

virtual environment).  Most well-established and validated survey instruments are primarily 

designed for assessing overall “usability” and “user experience” and do not provide any data on 

specific interactions and actions the learner performs within the virtual learning environment.  

On the other hand, questionnaires that ask for users’ freeform response/explanation about their 

interaction and navigation are opinionated and obtrusive, and often fail to collect data on 

important details compared to when the user is observed in real time as they interact with the 

virtual learning environment.  Moreover, data logs automatically collected by virtual platforms 

and software apps are generic (i.e., the same data points are logged regardless of the virtual 

environment used) hence often do not contain the specific interaction/navigation data needed for 

educational research studies.  As a result, the is a general paucity of scientific evidence on the 
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relationship between learning outcomes and usage/navigation in virtual learning environments. 

Figure 4.1 summarize an overview of the general experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1. General design of the experiment 

4.2 Overview of The Virtual Learning Environment and Course Implementation 

We implement sample ISBL modules in an undergraduate course on “object-oriented 

programming in Java”, a required course for the B.S. in Computer Science program at Penn State 

Abington. The high-level objectives of the course are to enable students to: 

• program in an object-oriented language (Java) 

• write code to interface databases using Java 
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• create graphical user interfaces (GUIs) using Java 

• understand web-based object-oriented programming and design including the concepts of 

net-centric computing. 

• understand interface prototyping, program design, implementation of both client and server 

programs, unit testing, and documentation. 

The course is structured to be taught online and includes video lectures, online quiz questions for 

each lecture, homework assignments, a class project, and two exams. The course section used in 

this study was offered in Spring 2021. The ISBL modules used in the experiments and analysis 

presented in this paper are related to an airport terminal and aim to mimic a real-life system and 

object-oriented programming problems. Figure 4.2 provides a screenshot of the immersive 

simulation used in the ISBL modules.  Students are given two weeks to complete each ISBL 

assignment following the lecture on the respective topic. The document that comes with each 

module includes a description of the system at hand and the object-oriented programming 

problems to be solved. Each module is accompanied by a 3D, VR-compatible, animated simulation 

model that is to be treated as the “real-world system”. 

 

Figure 4. 2. The immersive simulation model of an airport terminal 

 

We developed and implemented three related ISBL modules (i.e., three assignments) defined 

around the immersive simulation (which serves as the context). In these modules, the student is 

“hired” as a software engineer to develop an information system using an object-oriented 

programming language for the airport terminal. Students need to interact with and navigate through 
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the simulation to make observations and collect the necessary data/information needed to complete 

the assignments. The learning objectives for the three ISBL modules can be summarized as 

follows: 

• Identify relevant classes, attributes of classes, methods of classes, and their relationships 

to a given problem by observing a real system. 

• Develop a pseudocode of the system based on the identified classes and their attributes, 

methods, and relationships. 

• Create a UML class diagram from a pseudocode. 

• Import data into the database using SQL scripts. 

• Create a CRUD (Create-Read-Update-Delete) database application and a graphical user 

interface (GUI). 

• Test the CRUD application and associated GUI using real/simulated events/test cases. 

4.3 Research Data and Methodology  

This section describes the research data, our approach to quantification navigation in the simulated 

environment, and the multi-variable regression analysis experiments. 

4.3.1 Data collection  

The following instruments/methods are used for data collection (all necessary IRB approvals are 

obtained prior to our data collection): 

• Demographics Survey: The demographics survey is used to collect data on the 

student’s gender, race, grade point average (GPA), major, semester standing, prior 

work experience, and prior experience with computer simulation, and experience 

with video games.  

• Big-Five Inventory (BFI) Personality Test: This instrument [1] consists of 10 

Likert scale questions and measures five personality traits, namely extroversion, 

agreeableness, conscientiousness, neuroticism, and openness. 
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• Experiential Learning Survey: Experiential learning or experience-based education 

is generally referred to settings where learners apply what they learned to solve real-

world problems [2]. This survey involves 12 Likert scale questions measuring 

student’s perception of incorporation of active, participatory learning in the course 

[3]. This instrument consists of four different constructs such as environment, utility, 

active learning, and relevance. We mainly focus on two of the constructs, namely 

how effective the environment was in students’ learning, and how beneficial the 

hands-on experiment was in terms of utility in the student’s future activities.  

• Self-assessment based on Bloom’s Taxonomy: In this instrument, adapted from [4] 

students are asked to rank their perceived level of understanding for various concepts 

based on six cognitive levels [5]: (1) Remembering relevant knowledge; (2) 

Understanding, classifying, and explaining the material; (3) Applying the knowledge 

learned; (4) Analyzing and dividing materials through separating and organizing; (5) 

Evaluating by examining and criticizing based on standards; (6) Creating solutions 

to new problems. 

• Screen-recorded videos of interaction with the simulation environment: We 

asked students to record their screen while navigating in the simulation environment 

as they made observations and collected the data needed for solving the ISBL 

assignments.  We then used the proposed video analytics tool to extract data on 

multiple interaction measures as described in the following section.  

 

4.3.2 Quantifying Learner Navigation in the Simulated Environment via Video Analytics  

In order to analyze the collected screen-recorded videos and extract students’ navigation data, we 

use a video analytics tool developed by our research team as part of the overarching NSF project 

associated with this thesis. Here, we provide a brief overview the main methods used and refer the 

interested reader to [7] for technical details related to the video analytics tool as the focus of this 

chapter is on assessing the relationship between learning outcomes and navigation in the simulated 

environment. 
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The video analytics tool uses two classification models and provides three statistics (two 

navigation-related measures and a score related to the recording quality).  More specifically, a 

multiclassification convolutional neural network (CNN) is used for predicting time spent at areas 

of interest in a simulated environment. Once trained based on manually labelled frames, the CNN 

takes extracted frames from the videos as inputs, runs convolutions over the pixel arrays, and 

outputs a categorical prediction of the airport area being viewed in each frame. For each student, 

the tool computes a standard deviation-like measure (hereafter referred to as “Stdev”) based on the 

percentage of time spent in different areas of the simulated environment (e.g., check-in area, 

security checkpoint, gate, …).  For each student, the Stdev measure is computed as follows: 

 

𝑆𝑡𝑑𝑒𝑣 =  √
∑ (𝑋𝑖 − 𝜇𝑖)2𝑁

𝑖=1

𝑁
 

 

where 𝑁 denotes the number of areas of interest in the simulated environment, 𝑖 is the index for 

the areas (𝑖 = 1,2, … , 𝑁), 𝑋𝑖 denotes the percentage of time the student under study spent in area 

𝑖, and 𝜇𝑖 denotes the percentage of time the “average” student spends in area 𝑖.  In our experiment, 

𝜇𝑖 values represent the class average (i.e., percentage of time student participants spend in each 

area on average).  

 

The intuition and justification behind the proposed Stdev measure can be described as follows. 

Based on the problems and activities to be completed in each ISBL module, students need to 

interact with, study and/or collecting data from a certain area or areas of the simulated 

environment. For example, the first ISBL module used in our experiment asks students to study 

the “entire” airport to develop a pseudocode of the airport system by identifying relevant object 

classes and their attributes, methods, and relationships. Therefore, we expect a student that 

“successfully” completes the ISBL module to spend some time in all areas of the airport. For a 

class where the majority of students successfully complete the ISBL module (and with some 

inspiration from the Law of Averages), we expect the class average time for different areas to 

converge to the “right” time allocation among the areas needed for successful completion of the 
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ISBL module. For example, if the entire class on average allocates the interaction time uniformly 

among the check-in, security checkpoint, and gate areas, then we consider a uniform time 

allocation among these areas to be the appropriate way to navigate the simulated airport for that 

ISBL module.  Consequently, for each student, the greater the discrepancies in their time allocation 

to different areas, the greater the deviation from a uniform time allocation among the areas, hence 

the greater the deviation from the proper way to navigate in the simulated environment for that 

ISBL module.  

 

It is important to clarify that we use percentage of time rather than the absolute time to avoid large 

differences in video lengths to skew the class average and our results. This way, the following two 

sample students would both have a small Stdev as they both allocated their time almost uniformly 

among the three areas, even though Student 2 spends twice the total time in the virtual 

environment. 

 

• Student 1 spends a total of 16 minutes in the simulated airport with 5 minutes (31.25%) 

spent in check-in area, 6 minutes (37.5%) in security checkpoint, and 5 minutes (31.25%) 

in the gate area.   

• Student 2 spends a total of 32 minutes in the simulated airport with 11 minutes (34.38%) 

spent in check-in area, 10 minutes (31.25%) in security checkpoint, and 11 minutes 

(34.38%) in the gate area. 

 

Due to issues that may arise during recording the videos and the unpredictable nature of 

participants interacting with a computer program, screen recordings may sometimes capture video 

frames in which the participant navigates away from the simulation program. In the videos that we 

collected, we sometimes see frames that show the desktop, an empty/black screen, or a different 

window/application when the student switches between programs in the middle of the assignment 

(say, the student switches to a chat application to respond to a message and then returns back to 

the simulation to continue their assignment).  These video frames can disrupt the overall accuracy 

of the multiclassification prediction process as they are not included in the original manually 

labelled training set. This is a common problem in machine learning and is generally known as 
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open-set recognition in which the trained model will still output a prediction on unknown frames 

(e.g., the CNN will still classify a bank screen as one of the areas in the airport). To combat this 

issue, a separate binary classification model is included in the video analytics tool for identifying 

frames outside the training set and a “Flag Rate” is reported for each video indicating the 

percentage of unrecognizable frames in that video. A video with a high Flag Rate contains a high 

percentage of such frames, hence the less reliable the predictions of the multiclassification CNN. 

We use this Flag Rate to identify poorly recorded videos and assess the reliability of calculated 

measures of navigation. 

 

In addition to the Stdev and Flag Rate measures, the video analytics tool also calculates the total 

time that the student spent in the simulated environment, hereafter referred to as “Total Time”, 

which we also use as a second measure of navigation (besides Stdev) in our multi-variable 

regression analysis described next. 

4.3.3 Multivariable Regression Analysis  

A set of multivariable regression analyses are conducted to investigate how/if the two dependent 

variables (i.e., aggregate measures of experiential learning and self-assessment) can be explained 

by a set of independent variables or predictors measured via the demographics and BFI surveys 

and video analytics. Prior to performing the analysis, the normality, homoscedasticity, and linear 

relationship assumptions are validated. All stepwise regressions are performed at a 5% level of 

significance. Using a stepwise regression approach, we start with the full model including all 

explanatory variables followed by sequential elimination of the least statistically significant 

variables based on a prespecified criterion (i.e., standardized beta coefficient) until the 

significant predictor(s) are identified to build the final regression model. For instance, equation 

(1) shows the general model structure, where the students’ overall experiential learning score is 

the dependent variable, 𝑎0 is a constant, 𝑥𝑖  (𝑖 = 1, 2, … , 𝑛) denotes the predictor variables, and 

𝑎𝑖(𝑖 = 1, 2, … , 𝑛) denotes the standardized coefficient for 𝑥𝑖. A similar general structure will be 

investigated for the average self-assessment level as shown in equation (2). Tables 4.1 and 4.2 

summarize the predictor and dependent variables used in our study, respectively. 
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Table 4. 1. Predictor variables 

 

  

Overall Experiential Learning =  a0 + a1x1 + a2x2 + ⋯ + anxn (1) 

Overall Self-Assessment =  b0 + bx1 + b2x2 + ⋯ + bnxn (2) 

Data collection 

method 
Predictor variables Indicator Measure 

 

 

 

 

 

Demographic 

Survey 

Year of birth Numerical Value 20-26 

Gender Categorical data Female, Male, Other 

Race Categorical data White, Asian, Hispanic, Black 

Semester Level Categorical data Freshman, Sophomore, Junior, 

Senior 

GPA Numerical value 0-4.00 

Major Categorical value Information science, Other 

Work experience Categorical value Yes, No 

Experience with Computer 

Simulation 

Categorical value Expert, Some experience, None 

Experience with Video games Categorical value Expert, Some experience, None 

 

 

 

 

 

BFI personality 

traits 

Extroversion (Reserved, Sociable) Score 1-5 

Agreeableness (Generally Trusting, 

Find faults with others) 

Score 1-5 

Conscientiousness (Does a 

thorough job, tends to be lazy) 

Score 1-5 

Neuroticism (Relaxed, Gets 

nervous easily) 

Score 1-5 

Openness (active imagination, 

artistic interests) 

Score 1-5 

 

 

 

 

Interaction in 

virtual/simulated 

environment 

Total time Sum of duration 

of all virtual visits 
[0, ∞) in seconds 

Standard deviation (Stdev) Average deviation 

from class 

average for 

amount of time 

spent in different 

areas of the 

simulation 

[0, ∞) in seconds 

 

Flag rate 

Percentage of 

unrecognized 

frames in a video 

 

0%-100% 
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Table 4. 2. Dependent variables 

  

Figure 4. 3. Design of stepwise regression experiment 

 

 

Figure 4.3  summarizes the stepwise regression experiments. We analyzed a total of twelve models 

(six for each dependent variable). For instance, we experimented with the following six models 

for Overall Experiential Learning score as the dependent variable: 

• Model 1: All predictor variables in Table 1 and including all student videos regardless of 

the flag rate.  

• Model 2: All predictor variables in Table 1 but only including those videos with a flag rate 

less than 10%.  

Data collection method Dependent variables Indicator Measure 

 

Experiential learning  

Environment Environment score 1-5 

Utility Utility Score 1-5 

Overall Overall average score 1-5 

 

 

Bloom’s self-assessment 

Object oriented programming Level/Score  1-6 

Database design Level/Score 1-6 

CRUD development  Level/Score  1-6 

GUI development Level/Score  1-6 

Overall Overall 1-6 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Experiential Learning Bloom’s Taxonomy Self-assessment 

All Flag Rates Flag Rates<10% Flag Rates<5% 

Including BFI Variables Excluding BFI Variables 
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• Model 3: All predictor variables in Table 1 but only including those videos with a flag rate 

less than 5%.  

• Model 4: All predictor variables except BFI factors and including all student videos 

regardless of the flag rate. 

• Model 5: All predictor variables except BFI factors and only including those videos with a 

flag rate less than 10%. 

• Model 6: All predictor variables except BFI factors and only including those videos with a 

flag rate less than 5%. 

4.4 Results  

This section provides the results of our regression analysis. For the sake of conciseness, and to 

keep the focus on the role of user-simulation interaction, we only present the results where the 

interaction-related factors “Total Time” and “Stdev” enter the final regression model. 

4.4.1 Predictors of  Experiential Learning  

Equation (3) presents the resulting regression model when all videos are included (regardless of 

flag rate) and BFI factors are excluded from the analysis. The model indicates that year of birth, 

total time spent in the virtual environment, and prior experience with computer simulation are 

the most significant predictors of the Overall Experiential Learning (OEL) measure. Table 4.3 

illustrates the three models returned by the stepwise regression procedure. The adjusted 𝑅2 

indicates that 76% of the variance could be explained by the regression model shown in equation 

(3). There is a negative correlation between the year of birth and OEL, indicating older students 

tend to report higher levels of experiential learning and OEL score. This could be explained by 

noting that older students have more life experience and knowledge, which are important factors 

in developing applied problem-solving skills [6]. Furthermore, current studies in [7] suggest that 

more mature  learners are better at connecting new concepts and their experiences, as well as  

immediately applying what they already know to new real-world situations. The results also show 
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that the amount of time spent in the virtual/simulated environment is negatively associated with 

students’ OEL score. After further review of student-simulation interaction videos, we partially 

attribute this negative relationship to the level of familiarity and ability to use/navigate the 

simulation software. In other words, a portion of the time in the simulation is spent on becoming 

familiar with and getting used to usage/navigation features. In addition, some of the longer 

interaction videos indicate that some students spent a significant time navigating to certain parts 

of the simulated environment that are irrelevant to the learning activity (perhaps they wanted to 

see what was going on in other parts of the simulation out of curiosity). Therefore, a high Total 

Time does not necessarily lead to high experiential learning as the regression model also suggests. 

Lastly, the model suggests a positive correlation between OEL and prior experience with computer 

simulation. This can be explained in two ways: (a) prior experience with computer simulation 

enables students to apply/activate their past knowledge/information to build new knowledge and 

better relate to the ISBL modules; (b) having prior experience with simulation environments allows 

the student to focus and spend the majority of the interaction time on performing the tasks related 

to the learning activity, while students without prior experience tend to spend more time on 

becoming familiar with and getting used to usage/navigation in a new type of environment [8]. 

 

 

 

 

Table 4. 3. Predictors of OEL 

Model Predictor variables 𝑅2 
Adjusted 

𝑅2 

Standardized 

Beta 
t-value Sig. 

1 Year of birth 0.61 0.593 -.786 -5.080 0.00 

2 
Year of birth 

0.71 0.67 
-.883 -6.067 0.00 

Total time  -.333 -2.210 0.043 

3 

Year of birth 

0.80 

 

0.76 

 

-.827 -6.597 0.00 

Total time  .440 -3.347 0.005 

Experience with computer 

simulation 
.341 2.619 0.020 

 

 

OEL =  −0.827 ∗ Year of birth − 0.440 ∗ Total time  
+ 0.341 ∗ Experience with computer simulation        

(3) 
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Equation (4) shows the regression model including BFI factors when only videos with a flag rate 

of less than 5% are included in the analysis. The model indicates that year of birth, doing a 

thorough job, previous work experience, active imagination, and the proposed Stdev navigation 

measure are the most significant predictors of the OEL score.  The adjusted 𝑅2 suggests that 93% 

of the variance could be explained by the regression model shown in equation (4). Table 4.4 

summarizes the five models returned by the stepwise regression procedure. Once again we see a 

negative correlation between year of birth and OEL as in the previous model. According to [9], 

“doing a thorough job” is one of the consciousness personality factors, describing individuals who 

tend to be more responsible and goal oriented. Students with higher levels of conscientiousness 

tend to seek their career goals by persistent studying, which can explain higher levels of 

experiential learning reported by these students. The positive correlation between this personality 

trait and OEL can also be explained by existing research findings that suggest such personality 

traits are also expected to enhance students’ acceptance of computer-based assessments such as 

the ISBL modules used in our experiment [10].  

 

The negative correlation between previous work experience and OEL suggests that work 

experience may reduce experiential learning via ISBL. More experienced students tend to blend 

the instructions materials with their (often irrelevant) work experience, which could negatively 

affect their ability in absorbing new concepts [11]. Therefore, having work experience is not 

necessarily a helpful resource to improve student’s experiential learning outcomes. We find a 

negative correlation between our proposed Stdev navigation measure and OEL, which can be 

explained as follows. The learning activity for each ISBL module focuses on certain parts/areas of 

the simulated airport terminal. Since we assume the class average converges to the “appropriate” 

time allocations among areas in the simulation, then a student that spends too much or insufficient 

time in the relevant area(s) compared to the class average is most likely not doing the assignment 

properly, which in turn is expected to negatively affect their OEL score. Lastly, there is a positive 

correlation between active imagination and OEL, suggesting that active imagination enhances 

students’ overall experiential learning outcomes in ISBL. Active imagination allows students to 

be more creative and improves their critical thinking skills and ability to find alternative solutions 

for real-life problems [12]. Since the ISBL modules mimic real-world situations, the observed 

positive correlation is expected. 
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OEL =  −.264 ∗ Year of birth + .897 ∗ Thorough job 

−.468 ∗ Previous work experience − .258 ∗ Stdev 

+.213 ∗ Active imagination 

(4) 

 

 

 

Table 4. 4. Predictors of OEL 

Model Predictor variables 𝑅2 
Adjusted 

𝑅2 

Standardized 

Beta 
t-value Sig. 

1 Year of birth 0.617 0.593 -.786 -5.08 0.00 

2 
Year of birth 

0.80 0.781 
-.516 -3.87 0.002 

Thorough job .512 2.89 0.012 

3 

Year of birth 

0.874     0.847 

-.359 -2.86 0.012 

Thorough job .749 5.30 <0.001 

Prior work experience -.330 -2.73 0.016 

4 

Year of birth 

0.915 0.889 

-.256 -2.23 0.044 

Thorough job 1.030 6.25 <0.001 

Previous work 

experience 
-.474 -4.02 0.001 

Stdev -.283 -2.50 0.026 

5 

Year of birth 

0.947 0.926* 

-.264 -2.81 0.016 

Thorough job .897 6.24 <.001 

Previous work 

experience 
-.468 -4.85 <0.001 

Stdev -.258 -2.77 0.017 

Active imagination .213 2.71 0.019 

4.4.2 Predictors of Learner’s Self-Assessment  

Equation (5) shows the regression model when BFI factors and videos with a flag rate of less 

than 10% are included in the analysis. The model indicates that trust, doing a thorough job, year 

of birth, and the proposed Stdev navigation measure are the most significant predictors of the 

overall self-assessment score. The adjusted 𝑅2 suggests that 92% of the variance could be 

explained by the regression model in equation (5).  Table 4.5 summarizes the four models 

returned by the stepwise regression procedure. We see a negative correlation between being 

generally trusting and the overall learners’ self-assessment score. Those who introduced 
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themselves as more generally trusting, report a lower self-assessment score. Our literature review 

did not find specific evidence for the negative relationship between trusting personality and self-

assessment scores. As an extension to this study, we believe that further investigation with 

additional experiment and data could be conducted to understand the impact of trusting 

personality trait and learner’s self-assessment scores. Once again we see a positive correlation 

between  doing a thorough job and the learner’s self-assessment as in the previous OEL model. 

We see a positive correlation between year of birth and the learners’ self-assessment, suggesting 

younger students tend to report higher levels of self-assessment score. This could be explained 

by the main findings in [14] that indicate younger minds are intrinsically more flexible, 

exploratory, and adaptable to new pedagogical practices in comparison to their older 

counterparts, and as our knowledge grows with age, we become less open to new ideas/methods. 

As a result,  younger students seem to better evaluate their own learning abilities.  Lastly, we 

find a similar correlation between Stdev and learner’s self-assessment as in the previous model.  

 

Overall Self-Assessment = −1.496 ∗ 𝑇𝑟𝑢𝑠𝑡 + 1.591 ∗ 𝑇ℎ𝑜𝑟𝑜𝑢𝑔ℎ 𝐽𝑜𝑏 

+.768 ∗ 𝑌𝑒𝑎𝑟 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ − .317 ∗ 𝑆𝑡𝑑𝑒𝑣 

(5) 

 

 

Table 4. 5. Predictors of self-assessment 

  Model 
Predictor 

variables 
𝑅2 

Adjusted 

𝑅2 

Standardized 

Beta 

t-

value 
Sig. 

1 Trust 0.67 0.63 -.82 -4.52 0.001 

2 
Trust 

0.79 0.75 
-1.234 -5.39 <.001 

Thorough job .546 2.38 .041 

3 

Trust 
0.90 

 

0.86 

 

-1.320 -7.59 <.001 

Thorough job 1.145 4.22 .003 

Year of birth .623 2.84 .022 

4 

Trust 

0.94 0.92 

-1.496 -10.0 <.001 

Thorough job 1.591 5.93 <.001 

Year of birth .768 4.3 .003 

Stdev -.317 -2.60 .035 
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4.5 Conclusions  

In this paper, we implemented a set of ISBL modules for teaching and learning in computer 

science engineering. ISBL provide a learning environment that enables students to interact and 

navigate through a virtual environment that mimics real-world situations. Students are asked to 

record their screens while navigating through the virtual/simulated environment as part of their 

assignments. We then used a video analytics tool to extract navigation data from students’ screen 

recorded videos and performed multivariable regression analysis. We also used a set of surveys 

to collect data on students’ demographics, personality, experiential learning, and self-assessment 

of learning.  We then performed a set of multi-variable regression analyses to characterize and 

explain the relationship between user-simulation navigation and constructs assessed via survey 

instruments to determine how/if user navigation in the simulated environment can be a predictor 

of their learning outcomes. Our results from the multi-variable regression analysis suggest that 

total time spent in the virtual/simulated environment and modified measure of deviation from 

average are predictors of OEL and learner’s self-assessment.  

 

The result of this study reveals a few gaps to be investigated as future works. First, there is a 

need for collecting additional data from students’ screen recorded videos over an extended 

period of time to obtain more statistically reliable predictive models. Secondly, we believe that 

the development and assessment of additional measures of navigation and interaction with 

simulation environment could be a great addition and a potential future research topic. Lastly, we 

recommend the development of a system to determine the interaction of other constructs with 

new navigation metrics assessed via other survey instruments.  
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Chapter 5  

Conclusions and Future work  

In this thesis, we first presented a bibliometric analysis, literature review, and trend analysis over 

time from the relevant papers published in ASEE proceeding conferences from 1996-2020. The 

bibliometric analysis and literature review helped us identify the engineering disciplines that used 

the combination of VR and PBL. Our trend analysis from the 1996-2020 indicated that the use of 

virtual environments has been increased over time, and this can be attributed to the increased 

accessibility and affordability of immersive technologies such as VR. Furthermore, we observed 

that there is a lack of formal assessments for the efficacy of virtual learning environments, which 

we aimed to address in our analysis of ISBL effectiveness.  

 

We proposed and implemented ISBL for teaching and learning engineering economy.  ISBL 

involves an immersive simulation that serves as the context for problem-/project-based learning. 

Students can make virtual site visits and interact with the simulation in desktop mode (low-

immersion) or in VR mode (high-immersion). The statistical comparisons from a set of controlled 

experiments performed in an undergraduate engineering economy course show that ISBL 

improves motivation and experiential learning. These findings are also manifested in the results of 

qualitative user interviews with a sample of research participants.  

 

We implemented a set of  ISBL modules in an undergraduate computer science course. The 

modules required students to record their videos in order to complete their assignments. We then 

used a video analytics tool to extract data from students’ screen recorded videos and performed 

multivariable stepwise regression analysis to see if factors related to learner-simulation interaction 

are predictors of student’s learning outcomes, namely experiential learning, and self-perceived 

level of learning. The results indicate that the total time spent in the simulation and time allocations 

among different areas within the simulated environment are predictors of experiential learning and 

students’ self-assessment.  
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There are several limitations in this research which can be improved in future research:  

(1) There is a need for longitudinal study over an extended period of time to assess the impact 

of ISBL on engineering identity and its related constructs.  

(2) In our experiment, we did not find any evidence on the statistical significance in terms of 

learner’s self-assessment. We suggest that further investigation with additional experiment 

is needed to assess the impact of the ISBL on learning, perhaps via analyzing students’ 

actual academic performance (e.g., grades) as opposed to self-assessments. 

(3) Time limitations and class sizes limited some of the sample sizes that were available to us 

in this thesis. Our research team will be collecting additional data from more students for 

enhanced statistical reliability and deeper analysis on the effectiveness of ISBL on 

students’ learning outcomes in STEM education.  

 

We hope that this research and its extensions will encourage the use of immersive simulations in 

conjunction with PBL in STEM education. In order to further facilitate ISBL adoption by other 

instructors and educational researchers, we publicly share a set of ISBL modules for various 

STEM topics on the website for our ongoing project available at 

https://sites.psu.edu/immersivesimulationpbl. 

 

 

 

 

 

 

 

 

  

  

https://sites.psu.edu/immersivesimulationpbl
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Appendix A  

A detailed result from the experiential learning regression models 

Predictors of Experiential Learning  

Equation(A.1) presents the resulting regression model when all videos (regardless of flag rate) are 

included in the analysis. The model indicates that year of birth, doing a thorough job, previous 

work experience and being black are the most significant predictors of the OEL measure. Table 

A.1 illustrates the four models returned by the stepwise regression procedure. The adjusted 𝑅2 

indicates that 88% of the variance could be explained by the regression model shown in equation 

(A.1). 

 

OEL =  −0.334 ∗ Yearofbirth + 0.8 ∗ Thorough Job − 0.389

∗ Previous work experience + 0.206 ∗ Black      

(A.1) 

 

Table A. 1.Predictors of Experiential Learning 

 

 

  

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of birth 0.617 0.592 -.786 -0.508 0.00 

2 
Year of birth 

0.807 0.781 
-.516 -3.87 0.002 

Thorough job .512 3.383 0.002 

3 

Year of birth 

0.874 0.848 

-.359 -2.868 0.012 

Thorough job .749 .309 0.00 

Previous work 

experience  
-.330 -2.739 0.016 

4 

Year of birth 

0.915 0.88 

-.334 3.017 0.008 

Thorough job .8 6.539 0.00 

Previous work 

experience  
.389 -3.68 0.003 

Black  .206 2.478 0.028 
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Equation(A.2) presents the resulting regression when all videos with lower than 10% flag rates are 

included in the analysis. The model indicates that doing a thorough job, relax, lazy, reserved, and 

year of birth are the most significant predictors of the OEL measure. Table A.2 illustrates the five 

models returned by the stepwise regression procedure. The adjusted 𝑅2 indicates that 99% of the 

variance could be explained by the regression model shown in equation (A.2). 

 

OEL =  0.842 ∗ Thorough job −  0.307 ∗ Relax +  0.315 ∗ Lazy +  0.212

∗  Reserved + 0.246 ∗ Year of birth 

(A.2) 

 

Table A. 2. predictors of Experiential Learning 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Thorough job  0.801 0.781 0.895 6.347 0.00 

2 
Thorough job 

0.91 0.89 
0.784 7.424 0.00 

Relax -.348 -3.293 0.009 

3 

Thorough job 
0.95 

 

0.94 

 

0.696 8.454 0.00 

Relax -.304 -3.889 0.005 

Lazy .245 3.002 0.017 

4 

Thorough job 

0.985 0.976 

.67 12.501 0.00 

Relax -.288 -5.681 0.001 

Lazy .252 4.787 0.002 

Reserved .167 3.489 0.01 

5 

Thorough job 

0.99 0.991 

.842 14.164 0.001 

Relax -.307 -9.596 0.001 

Lazy .315 8.428 0.001 

Reserved .212 6.539 0.001 

Year of birth  .246 3.482 0.013 
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Equation(A.3) presents the resulting regression when all videos with lower than 10% flag rates are 

included and BFI factors are excluded from in the analysis. The model indicates year of birth is 

the only significant predictor of the OEL measure. Table A.3 illustrates the model returned by the 

stepwise regression procedure. The adjusted 𝑅2 indicates that 68% of the variance could be 

explained by the regression model shown in equation (A.3). 

 

 

Table A. 3. Predictor of OEL 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of birth  0.713 0.684 -.844 -4.979 0.001 

 

 

 

Equation(A.4) presents the resulting regression when all videos with lower than 5% flag rates are 

included and BFI factors are excluded from in the analysis. The model indicates year of birth is 

the only significant predictor of the OEL measure. Table A.4 illustrates the model returned by the 

stepwise regression procedure. The adjusted 𝑅2 indicates that 59% of the variance could be 

explained by the regression model shown in equation (A.4). 

 

OEl =  −0.786 ∗ Year of birth (A.4) 

 

Table A. 4. predictor of OEL 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of birth  0.617 0.593 -.786 -5.080 0.00 

 

  

OEL =  −0.844 ∗ Year of birth (A.3) 



74 

 

Appendix B  

A detailed result from the motivation regression models 

Predictors of Motivation  

Equation(B.1) presents the resulting regression when all videos(regardless of the flag rates) are 

included in the analysis. The model indicates that year of birth and relax are the most significant 

predictors of the motivation measure. Table B.1 illustrates the model returned by the stepwise 

regression procedure. The adjusted 𝑅2 indicates that 70% of the variance could be explained by 

the regression model shown in equation (B.1). 

 

Motivation =  0.79 ∗ Year of birth − 0.389 ∗ Relax (B.1) 

 

 

Table B. 1. Predictors of Motivation 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of  birth  0.594 0.569 -.771 -4.841 0.00 

2 
Year of birth 

0.74 0.70 
.79 -5.177 0.00 

Relax -.389 -2.901 0.011 
 

 

Equation(B.2) presents the resulting regression when all videos with lower than 10% flag rates are 

included in the analysis. The model indicates that year of birth and relax are the most significant 

predictors of the motivation measure. Table B.2 illustrates the model returned by the stepwise 

regression procedure. The adjusted 𝑅2 indicates that 75% of the variance could be explained by 

the regression model shown in equation (B.2). 

 

Motivation =  −0.554 ∗ Year of birth − 0.515 ∗ Relax (B.2) 
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Table B. 2. Predictors of Motivation 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of  birth  0.574 0.532 -.758 -3.674 0.004 

2 
Year of birth 

0.798 0.753 
-.554 -3.393 0.008 

Relax -.515 -3.152 0.012 

 

Equation(B.3) presents the resulting regression when all videos with flag rates lower than 5% are 

included in the analysis. The model indicates that year of birth and relax are the most significant 

predictors of the motivation measure. Table B.3 illustrates the model returned by the stepwise 

regression procedure. The adjusted 𝑅2 indicates that 75% of the variance could be explained by 

the regression model shown in equation (B.3). 

 

Motivation =  −0.695 ∗ Year of birth − 0.389 ∗ Relax (B.3) 

 

 

Table B. 3. Predictors of Motivation 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of  birth  0.594 0.569 -.771 -3.674 0.004 

2 
Year of birth 

0.798 0.753 
-.695 -5.177 0.00 

Relax -.389 2.901 0.011 

 

Equation(B.4) presents the resulting regression when all videos (regardless of the flag rates) are 

included, and the BFI factors are excluded in the analysis. The model indicates that year of birth 

is the most significant predictor of the motivation measure. Table B.4 illustrates the model returned 

by the stepwise regression procedure. The adjusted 𝑅2 indicates that 56% of the variance could be 

explained by the regression model shown in equation (B.4). 

 

Motivation =  −0.771 ∗ Year of birth (B.4) 
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Table B. 4. Predictors of Motivation 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of birth  0.59 0.569 -.771 -4.841 0.00 

 

Equation(B.5) presents the resulting regression when all videos with flag rates lower than 10% are 

included, and the BFI factors are excluded in the analysis. The model indicates that year of birth 

is the most significant predictor of the motivation measure. Table B.5 illustrates the model returned 

by the stepwise regression procedure. The adjusted 𝑅2 indicates that 53% of the variance could be 

explained by the regression model shown in equation (B.5). 

 

Motivation =  −0.758 ∗ Year of birth (B.5) 

 

Table B. 5. Predictors of Motivation 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Year of birth  0.574 0.532 -.758 -3.674 0.004 
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Appendix C  

A detailed result from the motivation regression models 

Predictors of Learner’s Self-Assessment 

Equation(C.1) presents the resulting regression when all videos (regardless of the flag rates) are 

included in the analysis. The model indicates that trust and lazy are the most significant predictors 

of the learner’s self-assessment measure. Table C.1 illustrates the model returned by the stepwise 

regression procedure. The adjusted 𝑅2 indicates that 41% of the variance could be explained by 

the regression model shown in equation (C.1). 

 

Self − Assessment =  −0.466 ∗ Trust − 0.462 ∗ Lazy (C.1) 

 

Table C. 1. Predictors of self-assessment 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 Trust  0.27 0.22 -.522 -2.449 0.026 

2 
Trust 

0.48 0.41 
-.466 -2.494 0.025 

Lazy -.462 -2.472 0.026 

 

Equation(C.2) presents the resulting regression when all videos (regardless of the flag rates) are 

included, and the BFI factors are excluded in the analysis. The model indicates that GPA is the 

most significant predictor of the learner’s self-assessment measure. Table C.2 illustrates the model 

returned by the stepwise regression procedure. The adjusted 𝑅2 indicates that 18% of the variance 

could be explained by the regression model shown in equation (C.2). 

 

Self − Assessment =  0.481 ∗ GPA (C.2) 
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Table C. 2. Predictors of self-assessment 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 GPA  0.231 0.183 .481 2.192 0.044 

 

 

Equation(C.3) presents the resulting regression when all videos with flag rates lower than 10% are 

included, and the BFI factors are excluded in the analysis. The model indicates that GPA is the 

most significant predictor of the learner’s self-assessment measure. Table C.3 illustrates the model 

returned by the stepwise regression procedure. The adjusted 𝑅2 indicates that 28% of the variance 

could be explained by the regression model shown in equation (C.3). 

 

Self − Assessment =  0.588 ∗ GPA (C.3) 

 

Table C. 3. Predictors of self-assessment 

Model Predictor variables 𝑅2 Adjusted 𝑅2 Standardized Beta t-value Sig. 

1 GPA  0.346 0.281 .588 2.30 0.044 

 


