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Abstract

This dissertation develops solutions for optimized resource allocation in vari-
ous distributed systems, including data-intensive applications in edge clouds
and SCADA-based control systems in power grid networks.

The abstract resource allocation problem concerns how to optimally use
resources for different tasks. In the context of this dissertation, the resources
are CPU cycles, wireless link bandwidth, and storage space in mobile edge
computing networks or the budget for deploying communication links in the
smart grid network.

The optimized resource allocation problem for data-intensive applications
in edge clouds: Mobile edge computing provides a highly distributed com-
puting environment that can be used to deploy applications and services as
well as to store and process content in close proximity to mobile users. In this
dissertation, the research on mobile edge computing begins by jointly consid-
ering service placement and request scheduling problems for data-intensive
applications in edge clouds under communication, computation, and storage
constraints. A budget constraint to control the operation cost due to service
replication/migration is also imposed. To properly formulate this problem,
we separate the time scales of the two decisions: service placement occurs at
a larger scale (frames) to prevent system instability, and request scheduling
occurs at a smaller scale (slots) to support real-time services. We fully char-
acterize the complexity of our problem by analyzing the hardness of various
cases. By casting our problem as a set function optimization, we develop
a polynomial-time algorithm that achieves a constant-factor approximation
under certain conditions. Furthermore, we develop a polynomial-time re-
quest scheduling algorithm by computing the maximum flow in a constructed
auxiliary graph, which satisfies hard resource constraints and is provably op-
timal in the special case where requests have homogeneous resource demands.
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Extensive synthetic and trace-driven simulations show that the proposed al-
gorithm serves 90% of the requests that could be served from the edge under
the optimal solution.

The optimized resource allocation problem for smart grid systems: In this
dissertation, the research on the control network of the smart grid addresses
the optimized allocation of budget for deploying the communication links in
a system in which the power grid is coupled with a geographically co-located
SCADA-based communication network. We consider the problem of Power
Line Carrier Communication (PLCC) and non-PLCC (fiber, microwave, etc.)
link allocation and study the impact of the coupling between the communica-
tion and the power networks as it affects a SCADA-based preventive control
system in the occurrence of the cascading failures. Loss of a power transmis-
sion line disables PLCC links; hence failure in the power network leads to an
outage in the communication network and consequently disrupts monitoring
and control of the power system. Non-PLCC links are immune to failures in
the power grid; however, they are costly.

In the first part of the research on optimized resource allocation in smart
grids, we start with a baseline where all the communication links are PLCC.
Next, we pose the problem of allocating non-PLCC communication links with
a budget constraint for a given power system with a given control center lo-
cation. The ultimate objective of the design of the communication network
is to ensure that the re-dispatch-based preventive control can effectively re-
strict the propagation of cascade. We propose a heuristic that enhances the
total demand served at the end of cascade, and show its effectiveness when
tested in a 2383-bus Polish network.

In the second part, we focus on (a) relaxing the idealistic assumption that
the topology of the power grid (all breaker statuses of the lines) are known,
and (b) assuming that only the minimum number of lines are associated with
communication links. Meanwhile, the observability of all nodes at the con-
trol center before cascade is provided. Such a realistic scenario poses new
challenges that were not present in the previous case. In the absence of a
fully known admittance matrix (which provides the topology of the power
system), we use the estimated admittance matrix proposed in [1]. In this
work, the authors divide the problem of the admittance matrix estimation
into two steps, first detecting the islands formed within in power grid due
to failure, and second estimating connectivity of unobservable lines within
islands. The effectiveness of the redispatch-based control depends upon the
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accuracy of these two steps. Here, we propose a novel scheme in designing
the communication network comprised of both PLCC and non-PLCC links in
preparation of possible failures under a budget constraint on the communica-
tion link deployment cost. First, we characterize the fundamental hardness
of our problem. Next, we develop a solvable MILP-based algorithm, which
attains a constant-factor approximation under certain conditions. Finally,
we show via simulations on the IEEE 118-bus system that the proposed al-
gorithm achieves superior performance in terms of enabling more accurate
topology estimation and more served demand in the face of cascades.
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Chapter 1

Introduction

This chapter presents an introduction to the work presented in this disserta-
tion. It begins with a description of the key concepts in optimally determining
the allocation of resources in edge cloud computing applications. Next, it ad-
dresses optimal resource allocation problems in the smart grid, with a focus
on allocating different types of communication links for the control network.

This is followed by a brief discussion on motivations and challenges per-
taining to the problems we address, and our contributions.

1.1 Background and Motivation

Resource allocation is the process by which network elements try to satisfy
the competing demands that applications have for network resources such
as CPU cycles, wireless link bandwidth, and storage space in mobile edge
computing networks, or the budget for deploying communication links in the
smart grid networks. Note that some applications/users may be allocated
fewer network resources than they request, where selecting the appropriate
amount is part of the resource allocation problem.

1.1.1 Mobile Edge Computing

The first part of this work focuses on resource allocation in mobile edge com-
puting technology.

Progress in performance, cost, and availability of Internet user devices,
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distributed computing platforms, and network technologies have resulted in
the introduction of many novel applications such as augmented reality, cloud
robotics, automated vehicles, video surveillance, streaming, smart homes,
and Internet of Things (IoT) in diverse areas including healthcare, security,
entertainment, mining, and transportation. These applications intensify the
importance of supervision in managing and handling data and latency in the
network. The new distributed applications are often bandwidth-hungry (in
applications such as video conferencing/monitoring) and latency-sensitive
(in applications such as robotic surgery and automated vehicles). These
characteristics introduce challenges in terms of reliability, operating cost,
and performance of applications and services [2].

The distributed mobile edge clouds give new opportunities to manage
computing resources and allocate those resources to applications to mini-
mize the overall cost of deployment while satisfying user demands. From
desktop computing, through grid computing, and now to cloud computing,
the concept of distributed computational power being made available to a
huge number of end-users in an efficient fashion has evolved through different
stages and moved onto different platforms. Cloud computing, another avatar
of distributed computing, brings flexibility, scalability, and cost-effectiveness
into various sciences and commercial practices [3].

However, as the computing power in the mobile edge computing environ-
ment increases, the demands on these networks have grown tremendously [4].
Disparate wireless users are running resource-intensive and delay-sensitive
applications from the edge of mobile networks. The environments that run
these applications are referred to as edge clouds [5], cloudlets [6], fog [7],
follow me cloud [8], or micro clouds [9]. Mobile applications are increasingly
resource-demanding as they address use cases based on big data and ma-
chine learning problems. As users access these resource-hungry applications
via bandwidth-limited wireless links, how to optimally allocate the limited re-
sources at edge clouds to competing demands (e.g., to minimize the response
time or the operation cost) poses a difficult but intriguing research question,
which has attracted tremendous interest in the research community.

The use of a centrally placed cloud to address these demands is now
proved inadequate. The concept of mobile edge computing is emerging as an
answer to meet the need of resource-intensive and delay-sensitive applications
that need data processing in real-time. Optimally allocating the limited re-
sources at edge clouds to competing demands is the focus of current research.
There are notable subjects in this field that are being targeted here: (i) allo-
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cation of computing resources, (ii) allocation of network resources, (iii) where
to execute applications, and (iv) when to execute applications.

1.1.2 Smart Grid

The concept of the smart grid with the promise of revolutionizing the pro-
duction, delivery, and utilization of electricity has attracted significant re-
search attention in recent years. Power grids are critical infrastructures and
their proper functioning is vital for modern society. For example, large-scale
blackouts in the power grid due to natural disasters or malicious attacks can
potentially lead to huge damage and could cost billions of dollars [10].

In the electrical energy cyber-physical system (CPS), the physical system
includes generators, transformers, loads, and transmission lines, whereas the
legacy Supervisory Control and Data Acquisition (SCADA) system along
with the more modern Wide-Area Monitoring, Protection, and Controls
(WAMPAC) system constitute the cyber system [11]. Cascading failure prop-
agation influences the physical components coupled with the cyber compo-
nent in a complex fashion, such that the failure of one or a few components
may cause the failure of the entire interconnected system. The efficient pre-
ventive process requires the system to be designed precisely, particularly in
the face of massive failures in the power grid.

In the smart grid, a Control Center (CC) attempts to mitigate cascading
failures via monitoring node/link states in the grid and taking preventive
control actions through actuators deployed in selected nodes (e.g., genera-
tors/loads). The communication medium, especially whether a communi-
cation link is realized through Power Line Carrier Communication (PLCC)
[12], has a significant impact on the interdependency between the power and
communication networks. A PLCC link piggybacks on a power line, and
hence the outage of the power line will lead to the failure of the link. In con-
trast, a non-PLCC link carries information on a dedicated communication
medium, and outages in the power grid do not directly fail the link. How-
ever, deploying such links incurs nontrivial costs and thus must be designed
carefully.

This dissertation examines the impact of coupling between the commu-
nication and the power networks as it affects a SCADA-based preventive
control system. In this regard, we combine the cost efficiency of PLCC links
and the reliability of non-PLCC links to improve the robustness of the power
system against cascading failures under a budget constraint.
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1.2 Challenges & Our Contributions

The main focus of this dissertation is allocating resources in distributed sys-
tems to best serve the applications of interest under resource capacity and
operation budget constraints. However, there are multiple challenges that
need to be fully addressed in order to achieve our goal.

1.2.1 Mobile Edge Computing

There are issues that must be considered to optimally allocate resources in
edge cloud computing applications:

(i) Data and Service Placement: Certain applications require a large
amount of data on the server, and demands may arise from multiple parts
of the network. This creates the need to offer the service at multiple edge
clouds.

Early experimental studies were conducted under the strategy of always
serving each user request from the closest edge cloud [13]. However, for
mobile users to be continuously connected to the nearest location, the issue
of when and where [14, 15, 5, 16], and how [17] to migrate services while
maintaining a balance between service quality and migration cost becomes a
challenge. It has been observed that at times of heavy demands, the nearest
edge cloud may not be the answer for the best service [18, 19, 20]. Meanwhile,
there are initiatives to develop standards [21, 22, 23] for pooling available
edge computing resources within the same geographical region that can be
shared among contending user requests. Hence, for the best placement of the
services, where and how many, have to be determined carefully.

(ii) Optimized Request Scheduling: Scheduling in large scale computing
clusters is critical to job performance and resource utilization. As a cluster
size grows to thousands of users and scheduling needs become complex and
varied, request scheduling in cloud-scale clusters poses unique challenges, i.e.,
on which edge server, if any, to schedule each user request such that certain
objectives (e.g., cost, completion time) can be optimized [24, 25]. Existing
works typically assume that serving each request requires a dedicated share
of resources (e.g., CPU cycles, memory space, network bandwidth), such that
the total resource consumption at a server is the accumulation of resource
requirements scheduled to it.

Scheduling approaches for data-intensive applications may couple user
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movement to request submission. Initial efforts in scheduling centered on
the reuse of cached requests, namely heuristics for scheduling independent
tasks sharing common files, on a Grid made of interconnected clusters [26].
While this approach works for applications that do not require huge amounts
of data on the server applications, data-intensive applications i.e, applications
dealing with augmented reality, video analytics, distributed machine learning
and so on, require both a dedicated share of resources and a nontrivial amount
of data at the server (e.g., object database, trained machine learning models).
Resources required for storing such data as trained machine learning models
or object databases differ critically from standard resources in that they are
amortized over all requests over the same copy of data. Further, many other
data-intensive applications use enormous amounts of user-provided data (e.g.,
images captured by the user), even though resources for collecting/storing
such requests are dedicated on a request-by-request basis.

Thus, in addition to the traditional resources of CPU cycles and mem-
ory, resource allocation algorithms for data-intensive applications must also
consider storage resources for storing server data and network bandwidth for
receiving requests that contain large amounts of user-provided data.

(iii) Joint Service Placement and Request Scheduling: Joint allocation of
dedicated and amortized resources splits one big challenge into two smaller
ones [27]: (i) service placement, which determines replication and placement
of each service (including server code and data) within the storage capacity of
each edge cloud, and (ii) request scheduling, which determines whether and
where to place scheduling requests according to the communication and com-
putation capabilities of edge clouds and other constraints, such as maximum
delay. However, these issues, i.e., service placement and request scheduling,
are not decoupled from each other as the edge cloud scheduled to process a
request must have a replica of the requested service.

(iv) Budget Constraints: The ability to serve requests and the overall cost
depends on the selection of the replica of the requested service of sources and
their scheduling. Selection of the best computing resources regardless of the
placement of data, as is done in existing scheduling algorithms, does not
give time and cost-efficient schedules when time to fetch data is compara-
tively larger than the computation time of requests. Significant bandwidth
is required to stage-in and stage-out these data prior to serving requests.
Similarly, if the data is to be re-used, the scheduling policy must select closer
(in terms of network distance) computing resources. This affects the time
and cost of transferring output data, and hence the overall execution time
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and cost. The transfer time is drastically reduced by picking a computing
host closer to the data-host.

Thanks to the fog and edge computing paradigms, maintaining the re-
quirements of highly demanding services is attainable because computation
capabilities have been shifted towards the edge of the network. To ensure
that the quality of such services is still met in the event of user mobility, it
is essential to migrate services across computing hosts. Several studies have
been conducted to address service migration in different edge-centric research
areas, including fog computing, multi-access edge computing, cloudlets, and
vehicular clouds [28].

However, in cases of limited coverage of the computing sources, when
users move, user communication may need to pass through multiple hops,
which can impact the quality of service (QoS). To mitigate the consequences
of such QoS degradation, services must be dynamically migrated to a better
source, closer to the new user location [28]. Such a need for migration at the
edge can be observed in the advent of the “Follow Me” trend, which leads
to emerging terms in studies, such as Follow Me Cloud [29], Follow Me Edge
[30], Follow Me Edge Cloud [31], Follow Me Fog [32], Move With Me [33],
and Companion Fog Computing [34]. These works, along with many others,
reemphasize the need for no interruption of service during migration, along
with the need to adjust migration costs. In our work, we force a budget
constraint to control the operation cost due to service replication/migration.
These changes facilitate a controllable trade-off between the performance of
serving requests and the reconfiguration cost, which requires critical changes
in the underlying optimization problem.

Our main contributions in allocating resources in edge clouds are:
First, we aim to provide solutions for jointly considering service placement

and request scheduling for data-intensive applications. We separate the time
scales of the two decisions: to prevent system instability, service placement
occurs at a larger scale (frames); to limit scheduling delay, request schedul-
ing occurs at a smaller scale (slots). Besides, to control the operation cost
due to service replication/migration, we force a budget constraint for service
placement. Then, we extend the problem formulation to accommodate two
formulations for the request scheduling subproblem, one under soft resource
constraints where the resource capacities are only enforced on the average,
and the other under hard resource constraints where the resource capacities
are strictly enforced. This extension significantly improves the applicability
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of our solutions, while introducing new challenges in terms of harder schedul-
ing subproblem.

1.2.2 Power Grid

To optimally allocate different types of communication links for the control
network in the smart grid, the following challenges must be met:

(i) Lack of Information: Lack of information is a serious challenge in
the recovery phase of a power grid, which can be produced by the failure
of sensors due to the same event that prompted power grid failure (e.g., a
flood can destroy both the substation and the sensor/actuator at the sub-
station), or the CC losing observability of sensors (e.g., due to the failure of
a PLCC link). In either case, the CC faces uncertainty in the states (e.g.,
failed/operational) of both power grid elements (lines and substations) and
communication network elements (sensors, actuators, PDCs, and communi-
cation links) in parts of the system that it can no longer reach. Moreover,
the loss of a power line also leads to the loss of the corresponding PLCC link
in the control network. This, in turn, may result in lack of observability and
controllability, which negatively impacts the preventive control.

(ii) Budget Constraints: In the design of a SCADA communication net-
work, budget constraints play a crucial role. Since power lines are already
deployed in power grid, the deployment costs of PLCC links are largely con-
fined to connecting repeaters and modems to the existing electrical grids,
which typically costs much less than installing dedicated physically-separate
communication media. Hence, PLCC links provide a means of supporting
the SCADA system at a lower cost. However, power lines are primarily de-
signed to be a transmission medium for electrical energy; hence, they may
not be as suitable as data network media in terms of reliability, controlla-
bility, and security for data communication applications. Non-PLCC links
are immune to failures in the power grid; however, they are more expensive
than PLCC links. For non-PLCC links, fiber, copper, and microwave have
been considered. Among these non-PLCC technologies, microwave provides
the best flexibility and cost savings [35]. In our work, we force a budget
constraint to control the deployment cost of communication networks in the
smart grid.

In this dissertation, a coupled cascading failure model of a power grid with
a SCADA-based communication network is studied, in which all the commu-
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nication links are initially based on PLCC. To impose preventive control
which restores power services in the the power grid as quickly as possible, we
pose the problem of situating a set of non-PLCC links, albeit with a budget
constraint limiting the number of such links.

We also minimize the chance of forming unobservable islands after cascade
failure while addressing the cost of deploying both PLCC and non-PLCC
links. Furthermore, we assumed that we are not aware of the full topology of
the network (status of breakers), so our proposed algorithms must perform
well in identifying islands correctly as well as maximizing total demands after
failure.

1.3 Organization

In Chapter 2, we describe related works to our problems.
Chapter 3 presents our resource allocation problem for data-intensive ap-

plications in edge clouds by proposing a two-time-scale framework that jointly
optimizes service (data/code) placement and request scheduling, under stor-
age, communication, computation, and budget constraints [36]. Furthermore,
we extend the problem formulation to improve the applicability of our solu-
tions.

In Chapter 4, we study the progressive failure recovery under uncertainty
on DC quasi-steady-state (QSS) models of cascading failure in power grid
networks by optimally allocating non-PLCC communication links.

In Chapter 5, we propose a novel scheme in optimal design of the com-
munication network comprised of both PLCC and non-PLCC links in the
face of uncertain knowledge of failure and system topology, under a budget
constraint on both PLCC and non-PLCC link deployment cost.

Finally, we summarize and conclude this dissertation in Chapter 6.
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Chapter 2

Related Work

In this chapter, we provide a high-level overview of related work in resource
allocation. Next, we narrow it down to edge cloud and smart grid applica-
tions. We include relevant related work in each chapter as well.

There are well-known methods for solving resource allocation problems.
The most widely used mathematical optimization technique is linear pro-
gramming (LP) [37, 38]. However, the chances of being able to formulate the
problem using LP are rare. Researchers often attempt to approximate the
non-linear parts of their problem by linear functions and then solve the mod-
ified problem using LP techniques. Branch and Bound, which first relaxes
some of the constraints of the problem, is a technique often used to solve
Integer Linear Programming (ILP) and Mixed-Integer Linear Programming
(MILP) problems [39]. Lagrangian duality is another technique used for solv-
ing resource allocation problems. This method is based on dualizing all the
major constraints, i.e., except for the non-negativity constraints [40]. This
method uses the classical KKT conditions, assuming the relaxed problem is a
convex programming problem [41, 42]. Lagrangian relaxation uses dualizing
some of the constraints of an ILP problem [43, 44]. Usually, some constraints
are relaxed in this method to approximate a difficult problem by a simpler
one. It sets an initial value for the dual variables for those constraints and
modifies the values through an iterative process.

Heuristics methods are problem-specific solutions in general and have
been seen as techniques that are based on logical ideas on how to improve
solutions [45]. There are also metaheuristic methods such as [46] and [47],
which are based on genetic algorithms, simulated annealing, tabu search, ant
colony, particle swarm, etc.
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While early works on mobile edge computing assumed that every user
can only access its closest edge server, studies in [18, 19, 20] have shown that
users can benefit from accessing services on edge servers that are multiple
hops away. Allowing the use of non-local edge servers creates the problem
of edge workload scheduling, which has been extensively studied in recent
years.

Existing works have used various objectives (e.g., minimizing the cost
[24] or the makespan [25]), workload models (e.g., fluid model [24], tasks
[25], multi-component applications [48]), and edge cloud architectures (e.g.,
flat versus hierarchical [49]). These works typically assume that each work-
load requires its own resource for execution, i.e., the resources are dedicated.
Here “dedicated” means that each unit of resource can only be used by one
workload, e.g., two workloads can share a processor, but each CPU cycle is
only used by one workload.

While this assumption usually holds for computation and communication
resources (assuming unicasts), it can be too restrictive for storage resources.
Note that although [25] allows each service replica to serve multiple jobs,
it does not optimize the service placement. For example, in data analytics
applications, multiple requests based on the same data can be served by one
replica of the data, although processing each request and communicating the
input/output still require dedicated CPU and bandwidth. In [50], authors
provide an ILP model for virtual machine (VM) placement in fog computing.
The use of future user positions is adopted to improve the VM placement
and decrease the number of migrations.

Meanwhile, works on content placement in cache networks have consid-
ered storage resources that can be shared among requests of the same type.
Various solutions have been developed to place contents under cache capacity
constraints based on predicted content popularities [51, 52], or request his-
tory [53]. Variations of the problem have been studied, e.g., a cache can serve
requests from other caches [54], or the content placement and the routing of
requests can be jointly optimized [55]. However, the content placement prob-
lem only considers the storage resource (i.e., cache space), while the other
types of resources (e.g., CPU, bandwidth) are ignored. Note that although
[53] was motivated by “hosting services”, the problem was actually about
caching.

In the spirit of content placement, the goal of [56] is to replicate services
(and also delete replicas) so that latency is minimized. However, there is
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no thorough complexity analysis, and also the authors do not consider re-
quest scheduling. In [57], a stochastic optimization problem is formulated to
minimize the long-term average latency given a long-term cost budget. The
authors analyze the impact of frequent migrations in the mobile edge cloud
as a performance-cost tradeoff.

Only a few works have considered multiple types of resources (e.g., stor-
age, computation, communication). In [58, 59], MILPs were formulated for
placing contents or service functions and activating storage, computation,
and communication resources in a distributed cloud network. However, no
formal complexity analysis or algorithm with performance guarantee was
provided.

In [60], a dynamic service placement and workload scheduling framework
was proposed to jointly allocate storage and computation resources, but there
is no hard constraint on computation resources and no consideration of band-
width constraints. In [61], an algorithm with a performance guarantee was
developed for placing virtual network functions (VNFs) in distributed cloud
networks and routing service flows among the placed VNFs under chaining
constraints. However, each unit of resource (CPU, memory, bandwidth) is
dedicated to a flow (i.e., not amortized), and there is no “storage capacity”
constraint on the VNF placement. In [62], an optimal algorithm was devel-
oped for joint resource placement and assignment in distributed networks,
where a “resource” means a service, and a “type of resources” means a type
of services. The solution assumed that each placed service can only serve one
request (i.e., dedicated).

In [63], the authors consider the problem of resource provisioning and
replica placement in cloud CDNs, where the objective is to minimize the
cost. In contrast, our goal is to maximize the expected number of served
requests per time slot. Furthermore, all the requests in [63] are of equal size,
and have an identical computation requirement, as opposed to our setup
where these parameters are different for different requests.

This is critically different from our problem in Chapter 3, which considers
both sharable and non-sharable resources, leading to very different conclu-
sions: the problem in [62] is polynomial-time solvable, but our problem is
NP-hard.

The work closest to our problems is [27], which considers joint service
placement and request scheduling under hard constraints on both dedicated
resources (communication, computation) and amortized resources (storage).
However, it assumed full knowledge of the requests, which means that to ap-
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ply its solution in an online setting, one must batch requests and make place-
ment/scheduling decisions simultaneously. To reduce cost and improve sta-
bility, we separate the time scales of service placement and request scheduling
and impose a budget constraint on the cost of each service placement. These
changes induce critical changes in the underlying optimization problem.

In this work, we also focus on the interaction between the power grid and
the control network during cascading failures. Any degradation that limits
the ability of the control network to either monitor or control elements in
the power grid will increase the risk of a larger cascade of failures. Ideally,
the control network should be deployed independently of the power grid.
However, this is an expensive solution. Therefore, it is of high importance
to optimally allocate the budget for deploying communication links in the
smart grid network.

In general, interdependence tends to happen because of cross-system func-
tional dependencies and geographical topology similarities [64]. These two
factors imply the possible influences each network can have on the other in
the state of cascading failures. Study [65] notes that blackouts in the US
cost billions of dollars, and the losses due to blackouts increase dramatically
with blackout duration. This example shows how inter-connectivity can sig-
nificantly increase the scope and intensify the damage in an interdependent
system during a large-scale cascade.

It is important to be able to accurately model cascading failures in the
power grid to develop and evaluate solutions for preventing them. There are
three well-accepted cascading failure models of power systems: DC-quasi-
steady-state (QSS) [66, 67, 68, 69, 70], AC-QSS [71, 72, 73, 74, 75, 76, 77, 78,
79], and dynamic [80, 81, 82]. AC-QSS models are based on AC power flow,
which can capture voltage collapse in addition to line overloading. Usually,
these models suffer from divergence issues due to voltage collapse [75]. The
dynamic models [81] present the most precise mechanism of cascade propa-
gation. However, they are computationally costly for large-scale networks.

DC-QSS models work based on DC power flow and are computation-
ally economical and easily implementable [83]. These advantages offer the
chance to build interdependent models of power and communication control
networks and apply statistical analysis on a large-scale system. These mod-
els assume a uniform voltage profile and neglect the resistive loss; therefore,
they cannot consider reactive power in the power system.

Although there is a significant body of literature in the area of cascading
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failures in power grid, very few papers [70, 83] focus on the coupled cascad-
ing failure of power grid and the associated communication network. The
authors in [70], [64] and [83] use the DC-QSS model for the power grid. Ref-
erence [70] compares a topological contagion model to a power grid model
and a percolation model of internetwork cascading to three models of inter-
dependent power-communication systems. The authors also propose a model
of a smart power grid coupled to a communication network and show that
increased power-communication coupling decreases vulnerability, in contrast
to the percolation model. The overall results suggest that robustness can
be enhanced by interconnecting networks with complementary capabilities if
modes of internetwork failure propagation are constrained. Authors in [84]
came to the same conclusion.

Reference [83] considers the real-world scenario, where the location of
failures in a coupled power-communication network might be unknown or
only partially known. A model is considered where functionality of the power
grid and its failure assessment relies on the operation of a monitoring system
and vice-versa. The paper addresses ongoing cascading failures with a twofold
approach – cascade prevention by re-dispatching generation and shedding
loads, and formulation of a recovery plan to maximize the total amount of
load served during the recovery intervention.
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Chapter 3

Service Placement and Request
Scheduling for Data-intensive
Applications in Edge Clouds

Mobile edge computing provides the opportunity for wireless users to ex-
ploit the power of cloud computing without a large communication delay.
To serve data-intensive applications (e.g., video analytics, machine learning
tasks) from the edge, we need, in addition to computation resources, stor-
age resources for storing server code and data as well as network bandwidth
for receiving user-provided data. Moreover, due to time-varying demands,
the code and data placement needs to be adjusted over time, which raises
concerns of system stability and operation cost.

In this work [36, 85], we address these issues by proposing a two-time-
scale framework that jointly optimizes service (code and data) placement and
request scheduling, while considering storage, communication, computation,
and budget constraints. First, by analyzing the hardness of various cases,
we completely characterize the complexity of our problem. Next, we develop
a polynomial-time service placement algorithm by formulating our problem
as a set function optimization, which attains a constant-factor approxima-
tion under certain conditions. Furthermore, we develop a polynomial-time
request scheduling algorithm by computing the maximum flow in a carefully
constructed auxiliary graph, which satisfies hard resource constraints and is
provably optimal in the special case where requests have homogeneous re-
source demands. Extensive synthetic and trace-driven simulations show that
the proposed algorithms achieve 90% of the optimal performance.
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3.1 Introduction

The emerging technology of mobile edge computing [4] enables wireless users
to run resource-intensive and delay-sensitive applications from the edge of
mobile networks. As users access these resource-hungry applications via
bandwidth-limited wireless links, how to optimally allocate the limited re-
sources at edge clouds to competing demands (e.g., to minimize the response
time or the operation cost) poses a difficult but intriguing research question,
which has attracted tremendous interest in the research community.

The remainder of this chapter is organized as follows. Section 3.3 formu-
lates our problem within a single frame, for which Section 3.4 analyzes the
complexity, and Section 3.5 presents our algorithms and their performance
analysis. Section 3.6 extends our solution to multiple frames. Section 4.4
evaluates the proposed solution against benchmarks. Finally, Section 3.8
concludes the chapter.

3.2 Background & Contribution

Intuitively, one should strive to serve every user request from the nearest
edge cloud. While this intuition has been supported by empirical studies
[13], maintaining service locality for mobile users poses a significant chal-
lenge, including how to migrate services [17] and when/where to migrate
services [14, 15, 5, 16], in order to attain a desirable tradeoff between the
quality of service and the migration cost. When some of the edge clouds are
heavily loaded, it has been shown that users can benefit from getting served
by non-nearest edge clouds in the same metropolitan area network [18, 19,
20]. Meanwhile, there have been standardization initiatives [21, 22, 23] to
create an open edge computing environment, such that edge clouds within
the same geographical region form a shared resource pool, which can then be
distributed among contending user requests. The existence of a shared re-
source pool creates the need for request scheduling, i.e., on which edge server,
if any, to schedule each user request such that a given objective can be op-
timized [24, 25]. Existing works typically assume that serving each request
needs a dedicated share of resources including CPU cycles, memory space,
and network bandwidth, and that the total resource consumption at a server
is the summation of resource demands scheduled to it.

While the above assumption holds for applications that do not need no-
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table amounts of data on the server, it fails to capture the requirements of
data-intensive applications. In such applications (e.g., video analytics, dis-
tributed machine learning), serving a request needs both a dedicated amount
of resources and a significant amount of data at the server (e.g., object
database, trained machine learning models). The storage resource for storing
such data fundamentally differs from the other types of resources in that it is
amortized over all requests against the same copy of data. Note that many
data-intensive applications also require a nontrivial amount of user-provided
data (e.g., images captured by the user), although the resources for collect-
ing/storing such data are typically dedicated to each request. Hence, in
addition to the conventional resources of CPU cycles and memory, resource
allocation algorithms for data-intensive applications should also consider the
storage resources for storing server data and the network bandwidth for re-
ceiving user-provided data.

Jointly allocating dedicated and amortized resources induces a decompo-
sition of the resource allocation problem into two subproblems [27]: (i) service
placement, which decides how to replicate and place each service (including
server code and data) within the storage capacity of each edge cloud, and
(ii) request scheduling, which decides whether/where to schedule each request
within the communication and the computation capacities of edge clouds, as
well as other constraints (e.g., maximum delay). The two subproblems are
coupled by the fact that the edge cloud scheduled to process a request must
have a replica of the requested service. The existing solution [27] makes both
decisions at the same time, and thus may adjust service placement as fre-
quently as the scheduling of requests, risking a high operation cost and even
system instability.

In this work, we jointly consider service placement and request scheduling
for data-intensive applications. In contrast to [27], we separate the time scales
of the two decisions: to prevent system instability, service placement hap-
pens at a larger scale (frames); to limit scheduling delay, request scheduling
happens at a smaller scale (slots). Frame length is tuned based on dynamics
of user mobility and user request patterns, while slot length is tuned based
on the desired scheduling delay and expected execution time of jobs. Fur-
thermore, to control the operation cost due to service replication/migration,
we impose a budget constraint for service placement. These changes enable
a controllable trade-off between the cost of reconfiguration and the perfor-
mance of serving requests, while inducing critical changes in the underlying
optimization problem. For the request scheduling subproblem, we separately
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consider a version with soft constraints where the resource capacities are
only enforced on the average, and a version with hard constraints where the
resource capacities are strictly enforced.

The main contributions of this chapter are as follows:

• We propose a two-time-scale framework for joint service placement and
request scheduling, and formulate the underlying optimization as a mixed
integer linear program (MILP) that jointly considers dedicated and amor-
tized resources.

• By examining the complexity of our problem in carefully selected special
cases, we not only prove that both the service placement subproblem and
the request scheduling subproblem (under hard constraints) are generally
NP-hard, but also determine all the cases that are polynomial-time solv-
able and identify the root cause of the hardness.

• By reformulating the service placement subproblem as a set function op-
timization, we develop a greedy service placement algorithm based on
shadow request scheduling computed by a linear program (LP). By prov-
ing that our objective function is monotone sub-modular under certain
conditions and our constraints form a p-independence system, we derive a
constant-factor approximation guarantee for the proposed algorithm.

• We show that in the special case where all the requests demand the same
amount of communication/computation resources, the request scheduling
subproblem under hard constraints can be converted to a maximum flow
problem in a carefully constructed auxiliary graph, based on which we
develop a polynomial-time algorithm that is provably optimal.

• We show that both our formulation and our service placement algorithm
can be extended to exploit request prediction over multiple frames.

• We perform extensive performance evaluations via synthetic and trace-
driven simulations. The evaluations show that: (i) the key performance
differentiator is the service placement algorithm (i.e., a simplistic algo-
rithm suffices for request scheduling), (ii) the proposed service placement
algorithm consistently outperforms benchmarks and achieves over 90% of
the optimal performance, even when the approximation guarantee does not
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hold, and (iii) the performance can be notably improved by jointly plan-
ning service placements for multiple frames, while most of the improvement
is already achieved by considering two frames at a time.

3.3 Problem Formulation

3.3.1 System Model

As illustrated in Fig. 3.1, we consider a wireless edge network consisting of a
setN of edge clouds, each accessible via a wireless access point or base station
covering a specified area. We assume that all the edge clouds are connected
by back-haul links that can be used for inter-cloud communications. There
is a set L of services, of which a subset can be hosted by each edge cloud at
a given point in time, subject to storage capacity constraints.

Services may be migrated/replicated between edge clouds, and/or from a
remote cloud to an edge cloud. To access a certain service, a user will first
send a request for this service to its local edge cloud, which may then route the
request to another edge cloud for processing. Serving a request for service
l submitted to edge cloud n at edge cloud m (possibly m ̸= n) consumes
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Figure 3.2: Time scales of service placement and request scheduling.

communication resources for transferring input/output between the user and
edge cloud n, and computation resources at edge cloud m. Additionally, edge
cloud m must have a replica of service l. If m ̸= n, communication resources
are also consumed for transferring input/output between edge cloud n and
edge cloud m, but as back-haul links usually have much higher bandwidth
than access links, we will focus on the communication resources consumed
at the access link in edge cloud n.

To ensure system stability while providing timely services, we adopt a
two-time-scale framework as illustrated in Fig. 3.2, where service placement
is performed once per frame at the beginning of the frame, and request
scheduling is performed once per slot at the beginning of the slot. We discuss
how to tune the values of frame and slot length in Section 4.4. Furthermore,
we impose a budget B to control the cost of migrating/replicating services in
each frame. We refer to a request for service l that is submitted to edge cloud
n as a “type-(l, n)” request. The average rate of type-(l, n) requests in frame
f is denoted by λf

ln (unit: requests/slot), which is assumed to be predictable
based on the request history [86], [87], [88]. The actual number of type-(l, n)
requests in slot t is denoted by λt

ln, which is only known at the beginning of
slot1 t. We evaluate the impact of predicting the request rate in Section 4.4.

Each edge cloud has limited communication, computation, and storage
capacities. The capacities of different edge clouds may be different. Like-

1This is feasible by considering all the requests received during slot t − 1 as being
“submitted” in slot t.
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wise the size of each service replica and the communication/computation
resources required by each request may be different. There may be other
constraints (e.g., latency, security) on whether a given edge cloud m is per-
mitted to serve type-(l, n) requests, and we model that by an indicator alnm
(‘0’: not permitted; ‘1’: permitted). The main notations used in this work
are described in Table 5.4.

Table 3.1: Table of notations

Notation meaning
N set of edge clouds

N+ = N ∪ {n0} set of edge clouds plus the remote cloud n0

L set of all possible services
Rn storage capacity of edge cloud n
Wn processing capacity of edge cloud n (per slot)
Kn communication capacity of edge cloud n (per slot)
rl size per replica of service l
κl size of input/output data per request for service l
ωl computation requirement per request for service l

alnm ∈ {0, 1} indicates whether edge cloud m is permitted to serve
type-(l, n) requests

λt
ln, λ

f
ln actual number of type-(l, n) requests in slot t and

average number of type-(l, n) requests per slot in frame
f

cln′n cost of replicating or migrating service l from cloud n′

to edge cloud n, where cloud n′ can be either a remote
cloud or an edge cloud

B maximum cost for service placement in one frame

xf
ln ∈ {0, 1} placement variable for frame f , 1 if service l is placed

on edge cloud n and 0 otherwise

ytlnm, y
f
lnm∈[0, 1] scheduling variable representing the probability that a

type-(l, n) request is scheduled to edge cloud m in slot
t (under soft resource constraints) or frame f

ztlnm scheduling variable representing the number of
type-(l, n) requests that are scheduled to edge cloud m
in slot t (under hard resource constraints)
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3.3.2 Underlying Optimization Problems

Although at different time scales (Fig. 3.2), service placement and request
scheduling are solving the same optimization problem with different decision
variables as explained below. We now formulate the optimization problems
for service placement and request scheduling formally. The service placement
problem is solved once per frame; once the placement is set, the request
scheduling problem is solved once per slot within the frame. Variables related
to the frame are denoted with f and those related to a slot are denoted with
t.

For the scheduling problem we consider both soft and hard constraints.
For soft constraints we use probabilistic scheduling knowing that in some
cases requests will not be accommodated within their slot but must be served
in a subsequent slot. For hard constraints we guarantee that all scheduled
requests are served within the next slot.

3.3.2.1 Service Placement with Shadow Scheduling

To evaluate the service placement cost, we assume that the services always
exist on the remote cloud n0, i.e., x

f
ln0
≡ 1, and deleting a service replica from

an edge cloud incurs no cost. Furthermore, we always replicate a service from
the nearest location hosting the service. That is, the cost of placing service
l at edge cloud n in frame f is cfln = minn′∈N+:xf−1

ln′ =1 cln′n, where clnn ≡ 0.

The optimization problem for service placement can be formulated as
(3.1): Objective (3.1a) maximizes the expected number of requests served
per slot. Constraint (3.1b) guarantees that the scheduling variables are valid.
Constraint (3.1c) ensures that each edge cloud n does not store more than its
storage capacity Rn. Constraint (3.1d) guarantees that the total communi-
cation demand on an edge cloud n stays within its communication capacity
Kn on the average. Constraint (3.1e) ensures that the total computation
demand scheduled to an edge cloud m is within its computation capacity
Wm on the average. Constraint (3.1f) states that an edge cloud can only
serve a request if it contains the requested service and is a candidate server.
Constraint (3.1g) ensures that the total service placement cost is within the
budget. Constraint (3.1h) specifies valid ranges of the decision variables.
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max
∑
l∈L

∑
n∈N

λln

∑
m∈N

ylnm (3.1a)

s.t.
∑
m∈N

ylnm ≤ 1, ∀l ∈ L, n ∈ N, (3.1b)∑
l∈L

xlmrl ≤ Rm, ∀m ∈ N, (3.1c)∑
l∈L

λlnκl

∑
m∈N

ylnm ≤ Kn, ∀n ∈ N, (3.1d)∑
l∈L

ωl

∑
n∈N

λlnylnm ≤ Wm, ∀m ∈ N, (3.1e)

ylnm ≤ alnmxlm, ∀l ∈ L, n ∈ N,m ∈ N, (3.1f)∑
l∈L

∑
n∈N

xlncln ≤ B, (3.1g)

xln ∈ {0, 1}, ylnm ≥ 0, ∀l ∈ L, n ∈ N,m ∈ N. (3.1h)

At the beginning of each frame f , we solve (3.1) with the predicted re-
quest rates2 λln = λf

ln and the placement costs cln = cfln for the service

placement xf
ln and the corresponding request scheduling yflnm. Then only xf

ln

will be used (to place services). Although the scheduling variable yflnm will
not be used for actual scheduling, it is needed to evaluate the served request
rate (3.1a) under a given service placement. For this reason, we refer to yflnm
as the shadow scheduling variable.

3.3.2.2 Request Scheduling under Soft Resource Constraints

Depending on whether requests submitted in a slot can be postponed till a
later slot, the optimization problem for request scheduling differs slightly.
If the requests can be postponed, then the average resource constraints
(3.1d,3.1e) suffice, as temporary bursts in demands can be absorbed over
time. In this case, at the beginning of each slot t within frame f , we solve
(3.1) with the current demands3 λln = λt

ln and the previously determined

2Recall that the superscript f indicates parameters/variables corresponding to frame
f .

3Recall that the superscript t indicates parameters/variables corresponding to slot t.
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service placement xlm = xf
lm for the scheduling variable ytlnm, which is then

used to schedule requests probabilistically in this slot.

3.3.2.3 Request Scheduling under Hard Resource Constraints

If the requests cannot be postponed, e.g., for services with hard deadlines,
then we must impose hard resource constraints such that all the requests
scheduled to the edge clouds in slot t can be finished within the same slot (the
unscheduled requests will be routed to the remote cloud for processing). The
corresponding optimization problem can be formulated as (3.2) (N : natural
numbers):

max
∑
l∈L

∑
n∈N

∑
m∈N

zlnm (3.2a)

s.t.
∑
m∈N

zlnm ≤ λln, ∀l ∈ L, n ∈ N, (3.2b)∑
l∈L

κl

∑
m∈N

zlnm ≤ Kn, ∀n ∈ N, (3.2c)∑
l∈L

ωl

∑
n∈N

zlnm ≤ Wm, ∀m ∈ N, (3.2d)

zlnm ≤ alnmxlmλln, ∀l ∈ L, n ∈ N,m ∈ N, (3.2e)

zlnm ∈ N, ∀l ∈ L, n ∈ N,m ∈ N. (3.2f)

Optimization (3.2) is similar to (3.1) under a fixed feasible service place-
ment xlm, after replacing λlnylnm by a new variable zlnm. The only difference
is that we now impose an integer constraint (3.2f), which means that instead
of only specifying the expected number of type-(l, n) requests to schedule to
edge cloud m (i.e., λlnylnm), we specify the exact number (i.e., zlnm). At the
beginning of each slot t, we solve (3.2) with the demand λln = λt

ln and the ser-
vice placement xlm = xf

lm (f : the current frame) for the scheduling variable
ztlnm, which is used to schedule requests deterministically in this slot. The
deterministic scheduling ensures that instead of satisfying the communica-
tion/computation capacities on the average as in (3.1d,3.1e), we now satisfy
them strictly, which ensures that all the scheduled requests can finish within
the slot. Note also that since we solve optimization problem (3.2) under a
given feasible service placement xl,m, constraints (3.1c) and (3.1g) are lifted
as the service placement already satisfies those two constraints.
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Discussion: At each decision epoch of service placement, we only know
the average request rates over the next frame, and thus cannot impose the
hard resource constraints. Therefore, soft constraints are assumed for the
shadow scheduling problem to evaluate the objective (3.1a) under a given
service placement. While our optimization formulation shares similarities
with [27], there are several critical changes. First, while [27] assumes full
knowledge of the requests, we only assume knowledge of the expected re-
quest rates. Accordingly, our objective becomes the expected rate of served
requests, and our scheduling decision becomes probabilistic. Moreover, while
[27] allows the service placement to change completely every time, we limit
it to incremental adjustments by imposing a budget constraint. Probabilis-
tic scheduling relaxes the integer constraints on scheduling variables, thus
invalidating previous hardness results. Meanwhile, the added constraint in-
troduces a potential cause of hardness (verified in Theorem 3.4.1).

3.4 Complexity Analysis

The service placement problem (3.1) is amixed integer linear program (MILP),
and the request scheduling problem is a linear program (LP) under soft con-
straints and an integer linear program (ILP) under hard constraints. While
LP can always be solved in polynomial time [89], MILP and ILP can both be
NP-hard [90]. We thus need to understand the complexity of our instances
of the MILP/ILP problem.

3.4.1 Complexity of Service Placement

The service placement problem (3.1) is related to, but different from several
known problems in the literature, including the knapsack problem, the data
placement problem (DPP) [91], the generalized assignment problem (GAP)
[92], the distributed caching problem (DCP) [93]. These problems can all
be seen as special cases of the separable assignment problem (SAP) [93].
SAP considers packing items into bins under general packing constraints
that can model both dedicated and non-dedicated resources. For example, if
items represent requests and bins represent edge clouds, then SAP can model
service placement where requests for the same service can share a service
replica, while each consuming a dedicated share of computation resource and
bandwidth. However, SAP requires all the resources consumed for serving a
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request to be with a single edge cloud. This requirement is satisfied by [94],
but not our problem.

We analyze the complexity of (3.1) by considering important special cases.
In this optimization problem, there are four types of resource constraints:
the R-constraint (3.1c), the K-constraint (3.1d), the W -constraint (3.1e),
and the B-constraint (3.1g). In practice, the arrival rate must be lower than
the service rate, and therefore the actual application of our solution will
need to set K and W to be strictly smaller than the physical communication
capacity and the physical computation capacity for each edge cloud. For
example, it is well known that for an M/M/1 queue with arrival rate λ and
service rate µ, having λ ≤ ϵ1/Cµ, where 0 < ϵ < 1 and C > 1, ensures that
P [Queue length ≥ C] ≤ ϵ. This implies that if we model the downlink and
server queue as M/M/1 queues with service rates K ′ and W ′, respectively,
then setting K = ϵ1/CK ′ and W = ϵ1/CW ′ guarantees that the probability
for queue length to be at least C is no more than ϵ.

3.4.1.1 Having B-constraint Only

Consider the special case where the edge clouds and the services are ho-
mogeneous (although having B-constraint only gives the same formulation
for homogeneous and heterogeneous scenarios), and R, W and K are large
enough that they are unconstrained, i.e., R ≥ |L| (i.e., every edge cloud
can store all the services), W ≥

∑
n∈N

∑
l∈L λln and K ≥ maxn∈N

∑
l∈L λln.

Then, the MILP in (3.1) changes to:

max
∑
l∈L

∑
n∈N

λln

∑
m∈N

ylnm (3.3a)

s.t. (3.1b), (3.1f), (3.1g), (3.3b)

xln ∈ {0, 1}, ylnm ∈ [0, 1], ∀l ∈ L, n ∈ N,m ∈ N. (3.3c)

Theorem 3.4.1. The B-constraint alone makes the problem NP-hard.

Proof. We prove the NP-hardness of (3.3) by a reduction from the 0-1 knap-
sack problem: given a set of k items, each with value vi and weight wi (i =
1, ..., k), select a subset S ′ such that

∑
i∈S′ vi is maximized while

∑
i∈S′ wi ≤

Ω, for a given size Ω of the knapsack. The problem is well-known to be NP-
hard [95].
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Construction: For each item i, construct a service li with total demands∑
n∈N λlin = vi and the placement cost clin = wi,∀n ∈ N . Let B = Ω and

almn ≡ 1.
Claim: The optimal service placement of (3.3) gives the optimal solution

to a knapsack problem.
Proof of the claim: The optimal service placement places at most one

replica among all the edge clouds. Therefore, the scheduling decision is to
simply schedule all the requests for service li to edge cloud n, if ∃n ∈ N with
xlin = 1; or, not schedule any of these requests if xlin = 0,∀n ∈ N . Let S ′

be the set of indices of all the placed services under the optimal solution to
(3.3). Then, the expected number of served requests equals

∑
i∈S′ vi, and∑

i∈S′ wi ≤ B = Ω. Selecting all the items corresponding to the services
placed by the optimal solution of (3.3) provides the optimal solution to the
knapsack problem.

Remark: Proving NP-hardness for the special case shows that the problem
is NP-hard in the general case as well.

3.4.1.2 Having R-constraint Only

Here we consider the special case in which the edge clouds and the services
are homogeneous, and W , K and B are large enough to be unconstrained,
i.e., W ≥

∑
n∈N

∑
l∈L λln, K ≥ maxn∈N

∑
l∈L λln, and B ≥

∑
l∈L
∑

n∈N cln.
In this case, the MILP in (3.1) becomes:

max
∑
l∈L

∑
n∈N

λln

∑
m∈N

ylnm (3.4a)

s.t. (3.1b), (3.1f), (3.3c), (3.4b)∑
l∈L

xln ≤ R, ∀n ∈ N. (3.4c)

Theorem 3.4.2. The R-constraint alone makes the problem NP-hard.

Proof. We prove the hardness by showing that the optimization (3.4) can
be reduced to the 2-Disjoint Set Cover (2DSC) problem, which is proved
to be NP-complete [96]. Given a bipartite graph G = (A,B, E), with edges
E between two disjoint vertex sets A and B, 2DSC determines whether
there exist two disjoint sets B1,B2 ⊂ B, such that |B1| + |B2| = |B| and

26



A = ∪b∈B1N (b) = ∪b∈B2N (b), where N (b) (∀b ∈ B) is the set of neighbors of
node b.

Construction: Denote A by {a1, ..., aI} and B by {b1, ..., bJ}. WLOG,
assume I ≤ J . Construct J edge clouds N = {n1, ..., nJ}, each with R = 1.
Construct two services L = {l1, l2}, each with a unit of demand in the first
I edge clouds, i.e., λlni

= 1,∀i ∈ {i, ..., I}, l ∈ {l1, l2}. Note that λlni
=

0,∀i > I. For each i ∈ {1, ..., I} and j ∈ {1, ..., J}, we allow edge cloud nj

to serve requests of type (l1, ni) and (l2, ni), if and only if (ai, bj) ∈ E , i.e.,
alkninj

= 1, k = {1, 2}, if (ai, bj) ∈ E , otherwise alkninj
is zero.

Claim: 2DSC is feasible if and only if the optimal value of (3.4) for the
above instance is 2I.

Proof of the claim: If 2DSC is feasible, then storing l1 at edge clouds
corresponding to B1 and l2 at the remaining edge clouds will serve all the
requests. If there is a service placement that serves all the requests, then
B1 = {bi ∈ B : ni stores l1}, and B2 = B\B2 is a feasible solution to
2DSC. Figure 3.3 illustrates the proof. In this figure, solution to 2DSC is
B1 := {b1, b2}, and B2 := {b3, b4} while solution to (3.4) is xl1n1 = xl1n2 = 1,
xl2n3 = xl2n4 = 1, and xln = 0 otherwise.

Figure 3.3: Illustration of 2DSC.

3.4.1.3 Removing R- and B-constraints

Lemma 3.4.1. Removing R- and B-constraints makes the problem polynomial-
time solvable.

Proof. If Rn (∀n ∈ N) and B are both large enough, i.e., minn∈N Rn ≥ |L|
(every edge cloud can store all the services) and B ≥

∑
l∈L
∑

n∈N cln, the
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Theorem 1
(NP-hard)

Theorem 2
(NP-hard)

Lemma 1
(solvable)

No R-
constraints

No B-
constraints

all other cases

Figure 3.4: Complexity of service placement (3.1).

optimal solution to xln is trivially xln ≡ 1 (∀l ∈ L and n ∈ N). Under this
service placement, constraints (3.1c,3.1g) in (3.1) disappear, and constraint
(3.1f) changes to ylnm ≤ alnm (∀l ∈ L, n ∈ N,m ∈ N). Removing the con-
straints (3.1c,3.1g) reduces the original problem (3.1) into a linear program
(LP), which is polynomial-time solvable [89].

3.4.1.4 Summary of All Cases

Together, Theorems 3.4.1, 3.4.2 and Lemma 3.4.1 cover all the cases. By
Theorem 3.4.1, the solvable instances must be cases without theB-constraint.
By Theorem 3.4.2, the solvable instances must also be cases without the R-
constraint. On the other hand, Lemma 3.4.1 shows that all the cases without
either of B- or R-constraint are polynomial-time solvable. Therefore, the
colored region in Fig. 3.4 captures all the solvable cases of (3.1).

3.4.2 Complexity of Request Scheduling

Under soft resource constraints, the request scheduling problem ((3.1) with
given xlm) is an LP and hence polynomial-time solvable. Under hard resource
constraints, however, the problem has a different complexity, as analyzed
below.
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3.4.2.1 General Case

Theorem 3.4.3. Under hard resource constraints, the request scheduling
problem (3.2) is generally NP-hard.

Proof. We reduce the partition problem to our problem (3.2). Given a set
of positive integers A = {t1, . . . , tm}, the partition problem is the task of
deciding whether A can be partitioned into two subsets A1 and A2, such that∑

ti∈A1
ti =

∑
tj∈A2

tj. This problem is known to be NP-complete.
We construct an equivalent instance of the request scheduling problem as

follows. We construct two edge clouds n1 and n2, each having unlimited com-
munication capacity, unlimited storage capacity, and a computation capacity
of W = 1

2

∑
ti∈A ti. For each ti ∈ A, we construct a request for a service li

with computation requirement ωli = ti, submitted to edge cloud n1. Suppose
that each edge cloud hosts all the services l1, . . . , lm, and is allowed to serve
any request. For this instance, (3.2) reduces to ([m]{1, . . . ,m}):

max
m∑
i=1

2∑
j=1

zlin1nj
(3.5a)

s.t.
2∑

j=1

zlin1nj
≤ 1, ∀i ∈ [m], (3.5b)

m∑
i=1

tizlin1nj
≤ W, ∀j ∈ [2], (3.5c)

zlin1nj
∈ {0, 1}, ∀i ∈ [m], j ∈ [2]. (3.5d)

Since W = 1
2

∑
ti∈A ti, if A cannot be partitioned into two subsets of equal

sum, then the sum for one of the subsets must be greater than W . This
implies that we cannot serve every request while satisfying constraint (3.5c),
and hence the optimal value of (3.5a) must be smaller than m. If A can
be partitioned into subsets A1 and A2 of equal sum, then we must have∑

ti∈A1
ti =

∑
ti∈A2

ti = W . Then setting zlin1nj
= 1 if and only if ti ∈ Aj

(j = 1, 2) gives a feasible solution to (3.5) with an objective value of m.
Therefore, the partition problem has a solution if and only if all the requests
can be served in the above instance of the request scheduling problem.

Remark: The proof of Theorem 3.4.3 holds even if we require the edge
clouds to be homogeneous, i.e., Kn ≡ K and Wn ≡ W (∀n ∈ N). Thus,
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Figure 3.5: Complexity of request scheduling under hard constraints (3.2).

the request scheduling problem under hard resource constraints is NP-hard
as long as the requests have heterogeneous resource demands.

3.4.2.2 Homogeneous Special Case

But what if the requests are homogeneous (i.e., κl ≡ κ, ωl ≡ ω)? We show
that the problem is no longer NP-hard in this case.

Theorem 3.4.4. In the special case when all the requests have identical
communication and computation demands, the scheduling problem (3.2) is
polynomial-time solvable.

We prove this theorem by developing a polynomial-time optimal solution
in Section 3.5.3.1.

3.4.2.3 Summary of All Cases

Together, Theorems 3.4.3 and 3.4.4 characterize the complexity of the re-
quest scheduling problem under hard constraints in all cases, as illustrated
in Fig. 3.5.

3.5 Algorithms

We now develop efficient algorithms for the service placement problem and
the request scheduling problem separately.
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3.5.1 Approximation Algorithm for Service Placement

Due to the NP-hardness of finding the optimal service placement in general
(Section 3.4.1), we seek efficient service placement algorithms with approxi-
mation guarantees.

3.5.1.1 Conversion to Set Function Optimization

We start by reformulating our problem as a set function optimization prob-
lem. Let S ⊆ L × N denote the set of selected single-service placements,
where (l, n) ∈ S means to place a replica of service l at edge cloud n. Let
Ω(S) denote the optimal objective value of (3.1) for a fixed x given by xln = 1
if and only if (l, n) ∈ S. This can be calculated by solving the following
(shadow) request scheduling problem, where 1l,m is the indicator function:

max
∑
l∈L

∑
n∈N

λln

∑
m∈N

ylnm (3.6a)

s.t. (3.1b), (3.1d), (3.1e), (3.6b)

ylnm ≤ alnm1(l,m)∈S, ∀l ∈ L, n ∈ N,m ∈ N, (3.6c)

ylnm ∈ [0, 1], ∀l ∈ L, n ∈ N,m ∈ N. (3.6d)

After that, we can rewrite the service placement problem as:

max Ω(S) (3.7a)

s.t.
∑

l:(l,n)∈S

rl ≤ Rn, ∀n ∈ N, (3.7b)

∑
(l,n)∈S

cln ≤ B, (3.7c)

S ⊆ L×N, (3.7d)

where SnL × {n} is the set of all possible single-service placements at edge
cloud n.

First, we prove that, under certain conditions, the objective function of
(3.7) has a desirable property.

Definition 3.5.1 ([97]). A set function f : 2x → R is monotone increasing
if ∀ S1 ⊆ S2 ⊆ x , f(S1) ≤ f(S2). Moreover, the function f(.) is sub-modular
if ∀S1 ⊆ S2 ⊆ x and e ∈ x\S2, f({e} ∪ S1)− f(S1) ≥ f({e} ∪ S2)− f(S2).
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Lemma 3.5.1. The objective function Ω(S) in (3.7a) is a monotone sub-
modular function for all feasible S if κl ≡ κ (∀l ∈ L), and

1. ⌊Rnrl⌋ ≤ 1 for all n ∈ N and l ∈ L , or

2. Wm ≥
∑

l∈L ωl

∑
n∈N λln for all m ∈ N .

Proof. It is easy to see that Ω(S) is monotone, as expanding S will relax the
constraint (3.6c), hence enlarge the solution space for (3.6) and increase its
optimal objective value.

To show that Ω(S) is sub-modular, we need to show that for any sets
S1, S2 ⊆ L × N and any (l1, n1) ∈ (L × N) \ S2, such that S1 ⊆ S2 and
S2 ∪ {(l1, n1)} is feasible, the following relationship holds

Ω(S1 ∪ {(l1, n1)})− Ω(S1) ≥ Ω(S2 ∪ {(l1, n1)})− Ω(S2). (3.8)

Suppose that y(0) and y(2) are the optimal scheduling solutions according
to (3.6) under service placements S1 and S2, respectively. Moreover, sup-
pose that y(1) and y(3) are the optimal scheduling solutions under service
placements S1∪{(l1, n1)} and S2∪{(l1, n1)}, respectively, that minimize the
request rate scheduled to the replica (l1, n1), i.e., minimizing

∑
n∈N λl1nyl1nn1 .

We can then decompose the objective function as:

Ω(S1) =
∑

(l,m)∈S1

∑
n∈N

λlny
(0)
lnm, (3.9)

Ω(S1 ∪{(l1, n1)}) =
∑

(l,m)∈S1

∑
n∈N

λlny
(1)
lnm+

∑
n∈N

λl1ny
(1)
l1nn1

, (3.10)

Ω(S2) =
∑

(l,m)∈S2

∑
n∈N

λlny
(2)
lnm, (3.11)

Ω(S2 ∪ {(l1, n1)}) =
∑

(l,m)∈S2

∑
n∈N

λlny
(3)
lnm +

∑
n∈N

λl1ny
(3)
l1nn1

. (3.12)

Due to this decomposition, we have

LHS of (3.8) =
∑

(l,m)∈S1

∑
n∈N

λln(y
(1)
lnm− y

(0)
lnm) +

∑
n∈N

λl1ny
(1)
l1nn1

, (3.13)

RHS of (3.8) =
∑

(l,m)∈S2

∑
n∈N

λln(y
(3)
lnm− y

(2)
lnm) +

∑
n∈N

λl1ny
(3)
l1nn1

. (3.14)

32



The first term in (3.13) is the difference in the request rate served by replicas
in S1 after/before placing the replica (l1, n1). Under condition (1) or (2) in
the lemma, there is no contention of computation resources between replicas,
and hence replicas in S1 can still process requests scheduled to them under
y(0). Meanwhile, as the communication demands κl are the same for all types
of requests, dropping requests originally scheduled to S1 to admit requests to
be scheduled to (l1, n1) will not improve the objective value of (3.6). Thus,
the first term in (3.13) is zero. Similarly, the first term in (3.14) is also zero.
The second term in (3.13,3.14) is the minimum request rate served by the
replica (l1, n1) under an optimal scheduling, in the presence of replicas S1

and S2, respectively. Again, as there is no computation resource contention
between replicas, requests that used to be served by replicas in S1 under
service placement S1∪{(l1, n1)} can still be served there after adding replicas
in S2\S1, but these added replicas may offload some requests that used to be

served by the replica (l1, n1). Therefore,
∑

n∈N λl1ny
(1)
l1nn1

≥
∑

n∈N λl1ny
(3)
l1nn1

.
This proves (3.8) and hence the sub-modularity of Ω(S).

The constraints of (3.7) also have a desirable property.

Definition 3.5.2 ([98]). Let X be a universe of elements. Consider a collec-
tion I ⊆ 2X of subsets of X. (X, I) is called an independence system if: (a)
∅ ∈ I, and (b) if Z ∈ I and Y ⊆ Z, then Y ∈ I as well. The subsets in I
are called independent; for any set S of elements, an inclusion-wise maximal
subset T of S that is in I is called a basis of S.

Definition 3.5.3 ([98]). Given an independence system (X, I) and a subset
S ⊆ X, the rank r(S) is defined as the cardinality of the largest basis of S,
and the lower rank ρ(S) is the cardinality of the smallest basis of S. The
independence system is called a p-independence system (or a p-system) if

maxS⊆X
r(S)
ρ(S)
≤ p.

Lemma 3.5.2. The constraints (3.7b)-(3.7d) form a p-independence system
for p=

⌈
max cln

mincln>0 cln

⌉
+
⌈

max rl
minl:rl>0 rl

⌉
.

Proof. By Definition 3.5.1, (L×N, I), where I ⊆ 2L×N is a set of all feasible
solutions to (3.7) is an independent system, as S = ∅ is a feasible service
placement, and the subset of any feasible service placement remains feasible.
Consider any S ⊆ L × N and any two maximal feasible service placements
S1, S2 ⊆ S1. To add a pair (l, n) ∈ S2\S1 to S1, we need to take out a set
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Algorithm 1: Greedy Service Placement based on Shadow
Scheduling (GSP-SS)

1 Input: Input parameters of (3.1)
2 Output: Service placement x(xlm)l∈L,m∈N

1: S ← ∅;
2: while ∃ (l, n) ∈ (L×N) \S such that S ∪ {(l, n)} satisfies (3.7b)-(3.7d)

do
3: (l∗, n∗)← argmax(l,n): S∪{(l,n)} satisfies (3.7b)-(3.7d) Ω(S ∪ {(l, n)});
4: S ← S ∪ {(l∗, n∗)};
5: Convert S to its vector representation x;

S ′ of pairs form S1, such that (S1\S ′) ∪ {(l, n)} remains a feasible service
placement. The set S ′ contains at most

⌈
max rl

minl:rl>0 rl

⌉
pairs from {l} × N

corresponding to removing service replicas from edge cloud n to satisfy (3.7b),
and at most

⌈
max cln

mincln>0 cln

⌉
other pairs that correspond to removing service

replicas with non-zero placement costs to satisfy (3.7c). Note that in the
worst case all the existing service replicas under S1 at edge cloud n have zero
placement cost, and hence we need to remove replicas at other edge clouds
to satisfy the budget constraint (3.7c). Repeating this swap to each pair in
S2\S1 shows that we reduce the number of placed service replicas by at most
p-fold in modifying S1 into S2. Since the above holds for any S ⊂ L×N and
any maximal independent subsets of S, the constraints (3.7b)-(3.7d) form a
p-independent system.

Combining Lemmas 3.5.1 and 3.5.2 gives the following result.

Theorem 3.5.1. Under the conditions in Lemma 3.5.1, greedily optimizing
(3.7) (Algorithm 1) yields a 1/(1 + p)-approximation for (3.1), where p=⌈

max cln
mincln>0 cln

⌉
+
⌈

max rl
minl:rl>0 rl

⌉
.

Proof. From [97], for maximizing a monotone sub-modular function subject
to a p-system constraint, the greedy algorithm has an approximation ratio
of 1/(1 + p).
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3.5.1.2 Algorithm

Algorithm 1 gives the pseudo code for the greedy algorithm. Note that it
differs from the simple greedy heuristic in that each evaluation of Ω(·) requires
solving an instance of the shadow scheduling problem (3.6) using LP.

3.5.1.3 Complexity

There are O(|N |×Rmax

rmin
) iterations in Algorithm 1, where Rmax = maxn∈N Rn

and rmin = minl∈L:rl>0 rl. For each iteration, the algorithm considers O(|L|×
|N |) single service placements, and for each single service placement, we
need to evaluate the objective function by solving an O(|L| × |N |2)-variable
O(|L| × |N |2)-bit input LP, which takes O(|N |11 × |L|5.5) time [99]. There-
fore, the overall complexity of Algorithm 1 is O(|N |13 × |L|6.5 × Rmax

rmin
) =

O(|N |13× |L|6.5). We expect this complexity to be acceptable in practice, as
this algorithm is only run once per frame, and the frame length will be at
the scale of changes in request rates (usually tens of minutes or longer).

3.5.2 Optimal Request Scheduling under Soft Constraints

Given the number of requests of each type observed at the beginning of a
slot and the service placement determined at the beginning of the current
frame, the request scheduling problem under soft constraints is identical to
(3.6), which can be solved by a generic LP solver in O(|N |11 × |L|5.5) time
(see complexity analysis for Algorithm 1). We then use the resulting ylnm to
perform probabilistic scheduling, where a type-(l, n) request will be scheduled
to each edge cloud m ∈ N with probability ylnm. All the scheduling decisions
in a frame are based on the same service placement, while the decisions in
different slots can differ due to variations in request rates within the frame.
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Figure 3.6: Auxiliary graph G for request scheduling.

3.5.3 Optimal and Heuristic Request Scheduling un-
der Hard Constraints

3.5.3.1 Optimal Algorithm for Homogeneous Requests

Consider the special case where all the requests have identical communication
and computation demands. Without loss of generality4, assume κl ≡ 1,
ωl ≡ 1, and Kn and Wn are integers for all n ∈ N . We will show that in
this special case, (3.2) can be converted to a maximum flow problem in an
auxiliary graph, and is thus polynomial-time solvable by existing maximum
flow algorithms.

Graph construction: Given parameters of (3.2) (including the service
placement xlm of the current frame), we construct an auxiliary graph G as in
Fig. 3.6. The nodes in G consist of a source s, a destination d, a set of nodes
U in 1-1 correspondence with the types of requests {(l, n)}l∈L,n∈N , and two
sets of nodes N1 and N2, each in 1-1 correspondence with the edge clouds.
Node s is connected to each node n ∈ N1 by a directed link of capacity Kn,
and each node m ∈ N2 is connected to node d by a directed link of capacity
Wm. Moreover, each node n ∈ N1 is connected to each node uln ∈ U (repre-
senting type-(l, n) requests) by a directed link of capacity λln, and each node
uln ∈ U is connected to each node m ∈ N2 by a directed link of capacity
alnmxlmλln.

Conversion to a maximum flow problem: We will show that for homo-
geneous requests, the problem of request scheduling under hard resource

4We redefine Kn as the maximum number of requests that an edge cloud can communi-
cate with its covered users in a slot (for input/output), and Wn as the maximum number
of requests that an edge cloud can process in a slot.
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Algorithm 2: Maximum Flow-based Request Scheduling (MFRS)

input : Input parameters of (3.2), assuming κl ≡ 1, ωl ≡ 1, and Kn

and Wn are integers (∀n ∈ N)
output: Request scheduling z = (zlnm)l∈L,n,m∈N

1 G ← auxiliary graph as in Fig. 3.6;
2 compute the maximum integral flow from s to d in G;
3 foreach (l, n,m) ∈ L×N ×N do
4 zlnm ← flow rate on link (uln,m) in G;

constraints is equivalent to a maximum flow problem in G.

Theorem 3.5.2. For homogeneous requests, the optimal value of (3.2) equals
the maximum flow between s and d in G, and the optimal solution is to set
zlnm to the flow rate on link (uln,m) under the maximum integral flow from
s to d.

Proof. First, an s-to-d flow satisfies the link capacities in G if and only if the
corresponding z = (zlnm)l∈L,n,m∈N satisfies constraints (3.2b)–(3.2e). This
is because if the rate on link (uln,m) represents the number of type-(l, n)
requests that are served by edge cloud m, then by flow conservation, the
flow rate on link (s, n) represents the number of served requests that are
submitted to edge cloud n, the rate on link (n, uln) represents the number of
served requests of type (l, n), and the rate on link (m, d) represents the total
number of requests served by edge cloud m. Thus, by construction, satisfying
the capacities of these links is equivalent to satisfying the corresponding
constraints in (3.2b)–(3.2e). If we impose a further integral flow constraint,
i.e., the flow rate on every link must be an integer, then constraint (3.2f)
is also satisfied. Moreover, by the Integral Flow Theorem [100], there exists
an integral flow between s and d that achieves the maximum flow rate, as
the link capacities in G are all integers. Thus, the optimal objective value
of (3.2) equals the maximum integral s-to-d flow, which in turn equals the
maximum s-to-d flow.

Algorithm: By Theorem 3.5.2, we develop a scheduling algorithm called
Maximum Flow-based Request Scheduling (MFRS), shown in Algorithm 4.
We can leverage existing maximum flow algorithms to implement line 2. In
particular, the Ford-Fulkerson algorithm [100] has guaranteed termination
and optimality. More importantly, for a graph with integral link capacities,
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Algorithm 3: LP Relaxation-based Request Scheduling (LRRS)

input : Input parameters of (3.2)
output: Request scheduling z = (zlnm)l∈L,n,m∈N

1 z′ ← optimal solution to the LP relaxation of (3.2);

2 λ̃ln ← λln for all l ∈ L, n ∈ N ;

3 K̃n ← Kn for all n ∈ N ;

4 W̃m ← Wm for all m ∈ N ;
5 foreach (l, n,m) ∈ L×N ×N do

6 zlnm ← min
(
round(z′lnm), min(alnmxlmλ̃ln, ⌊ K̃n

κl
⌋, ⌊W̃m

ωl
⌋)
)
;

7 λ̃ln ← λ̃ln − zlnm;

8 K̃n ← K̃n − κl · zlnm;
9 W̃m ← W̃m − ωl · zlnm;

this algorithm gives an integral solution, i.e., only sending an integral amount
of flow per link. The optimality of this algorithm is implied by Theorem 3.5.2.

Corollary 3.5.2.1. For homogeneous requests, MFRS (Algorithm 4) maxi-
mizes the number of requests served by the edge clouds.

Complexity: It is easy to see that constructing G (line 1) takes O(|L|·|N |2)
time, and converting the maximum flow solution to a scheduling solution
(lines 3–4) also takes O(|L| · |N |2) time. It is known that for integral link
capacities, the Ford-Fulkerson algorithm has complexity O(|E| · ϕ), where
|E| is the number of links and ϕ is the maximum flow. In our case, |E| =
O(|L||N |2) and ϕ ≤ min(

∑
n∈N Kn,

∑
m∈N Wm,

∑
l∈L
∑

n∈N λln). Therefore,
the overall complexity of Algorithm 4 isO(|L||N |2min(

∑
n∈N Kn,

∑
m∈N Wm,∑

l∈L
∑

n∈N λln)).

Remark: We note that Algorithm 4 extends our previous algorithm Op-
timal Request Scheduling in [27], which requires both the requests and the
edge clouds to be homogeneous.

3.5.3.2 Heuristic Algorithm for Heterogeneous Requests

In the general case where requests for different services can have different
communication/computation demands, we resort to LP relaxation, i.e., re-
placing the integer constraint (3.2f) by a linear constraint zlnm ≥ 0. The
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key is how to round the fractional solution to this LP relaxation to a fea-
sible integral solution to (3.2). To this end, we propose LP Relaxation-
based Request Scheduling (LRRS), shown in Algorithm 9. LRRS sequentially
rounds each fractional scheduling variable z′lnm to the nearest integer while
staying within the constraints of (3.2). This is achieved by maintaining

the residual number of requests λ̃ln, the residual communication capacity
K̃n, and the residual computation capacity W̃m. For each triple (l, n,m),

min(alnmxlmλ̃ln, ⌊ K̃n

κl
⌋, ⌊W̃m

ωl
⌋) is the maximum number of type-(l, n) requests

that can be scheduled to edge cloud m without violating any constraint or
changing any existing scheduling decision. Thus, line 6 results in a best-
effort approximation of the optimal fractional solution while enforcing the
hard constraints of (3.2).

Complexity: Line 1 of Algorithm 9 is the same as request scheduling under
soft constraints, whose complexity is O(|L|5.5 × |N |11) (see Section 3.5.2).
The rounding takes O(|L| × |N |2) time, as there are O(|L| × |N |2) iterations
and each iteration (lines 6–9) takes a constant time. Thus, LRRS has a
complexity of O(|L|5.5 × |N |11).

3.6 Extension to Multi-frame Optimization

So far we have only considered the optimizations within one frame, with
the assumption that the solutions will be repeatedly applied in each frame.
However, for recurrent workloads, it is possible to predict the request rates
for a larger time window (e.g., 24 hours) that contains multiple frames, each
being a time interval with constant request rates. In this case, the frame-by-
frame optimization framework for service placement can incur sub-optimality,
as it neglects the correlation across frames, in the sense that the cost of
placing a replica of service l at a given edge cloud depends on where service
l was placed in the previous frame. To capture the correlation, we need to
jointly optimize the service placement across all the predictable frames.

Let F be the set of frames for which request rate prediction is available.
Our objective is to maximize the expected number of requests served over
all the frames:
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max
∑
f∈F

Tf

∑
l∈L

∑
n∈N

λf
ln

∑
m∈N

yflnm (3.15a)

s.t.
∑
m∈N

yflnm ≤ 1, ∀l ∈ L, n ∈ N, f ∈ F, (3.15b)∑
l∈L

xf
lmrl ≤ Rm, ∀m ∈ N, f ∈ F, (3.15c)∑

l∈L

λf
lnκl

∑
m∈N

yflnm ≤ Kn, ∀n ∈ N, f ∈ F, (3.15d)∑
l∈L

ωl

∑
n∈N

λf
lny

f
lnm ≤ Wm, ∀m ∈ N, f ∈ F, (3.15e)

yflnm ≤ alnmx
f
lm, ∀l ∈ L, n,m ∈ N, f ∈ F, (3.15f)∑

l∈L

∑
n∈N

xf
ln· min

n′∈N+

(cln′nx
f−1
ln′ + cmax(1− xf−1

ln′ ))

≤ B, ∀f ∈ F, (3.15g)

xf
ln∈{0, 1}, y

f
lnm≥0, ∀l ∈ L, n,m ∈ N, f ∈ F. (3.15h)

This formulation is similar to the single-frame formulation (3.1), but the
scope is extended to multiple frames. The real difference is the non-linear
constraint (3.15g), where cmax > maxl,n′,n cln′n is a large constant. Essentially,

minn′∈N+(cln′nx
f−1
ln′ +cmax(1−xf−1

ln′ )) is the minimum cost of placing a replica of
service l at edge cloud n in frame f , which depends on the service placement
in frame f − 1.

The multi-frame optimization (3.15) is a mixed integer non-linear pro-
gram (MINP) that is even harder than (3.1). Given a service placement
(xf

ln)f∈F,l∈L,n∈N , the remaining optimization is still an LP in (yflnm)f∈F,l∈L,n,m∈N .
Thus, GSP-SS (Algorithm 1) still applies, where we iteratively place one
replica at a time in a selected frame, subject to constraints (3.15c, 3.15g), to
maximize the objective value of the corresponding LP.

3.7 Performance Evaluation

We have evaluated the performance of the proposed algorithms using both
synthetic and trace-driven simulations under soft and hard constraints. For
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the synthetic cases we show the impact of varying constraints and character-
istics of service requests to show that our algorithms are robust. For the trace
cases, we show how frame and slot sizes should be set to achieve desirable
performance.

3.7.1 Benchmarks

To assess the performance of the proposed service placement algorithm, we
use the following benchmarks:

1. the optimal solution of (3.1) using an MILP solver (MATLAB intlinprog);

2. LP-relaxation with rounding, which first solves the LP relaxation of
(3.1), and then rounds the placement variables to {0, 1}, subject to R-
and B-constraints;

3. top-k service placement, which sequentially considers each edge cloud
m ∈ N , computes the total demand for each service l that can be sched-
uled to m, defined as Λlm =

∑
n∈N λlnalnm, and then places services at

m in the descending order of Λlm until reaching Rm or exhausting the
budget.

To assess the performance of the proposed request scheduling algorithm
under hard constraints, we use the following benchmarks:

1. the optimal solution of (3.2) using an ILP solver (MATLAB intlinprog);

2. greedy request scheduling, which sequentially considers each triple (l, n,m) ∈
L×N ×N and schedules as many type-(l, n) requests to edge cloud m
as possible, without violating any constraint in (3.2) or changing any
existing scheduling decision.

We note that no benchmark is needed for request scheduling under soft
constraints, as the problem is an LP and hence polynomial-time solvable.

3.7.2 Results on Service Placement

3.7.2.1 Synthetic simulation

For synthetic simulations, we show results under two settings.
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Setting 1: First, we set |N | = 6 and |L| = 100. We initially draw the
values for Rn, Kn and Wn (∀n ∈ N) uniformly from the intervals [24, 36],
[16, 24] and [32, 48], respectively. We then set these values differently based
on a representative set of applications.5 Assuming that the edge clouds are
associated with hexagon cells arranged into two rows, we set the costs of
replicating a service from an edge cloud k hops away or the remote cloud
to 0.2k and 2, respectively, and the budget B to 0.2 · |N | · |L|. We set alnm
such that each request can only be served by edge clouds within 2 hops of
the edge cloud it is submitted to. The arrival rate of request l is obtained as
λln = λnpln, where λn (total request rate in edge cloud n) is drawn randomly
from the interval [3, 5]. For pln (popularity of service l in edge cloud n), we
draw a random subset of services Ln, and set pln ∝ i−α

l for each l ∈ Ln,
where il is the rank of l in Ln, and α = 0.5 is the skewness parameter
of Zipf’s distribution. We initialize the system by randomly placing |L|/8
services. For each service l, κl, ωl and rl are drawn uniformly from [0.5, 1]. All
results are averaged over 50 Monte Carlo runs. In the above settings, we set
communication resource to be the most restrictive, followed by storage and
then computation. This is to model the resource demands of data-intensive
applications. Besides the above default settings, we will also explore the
parameter space by varying these parameters one by one in order to evaluate
the impact of each parameter.

Figs. 3.7 (a-d) illustrate the effect of increasing various resource parame-
ters on the percentage of served requests, including the computation capacity
Wn, the service placement budget B, the storage capacity Rn, and the com-
munication capacity Kn. As expected, an increase in the resource capacities
leads to a higher percentage of served requests. This trend is more obvious
in Figs. 3.7 (b-c), as these resources directly affect the set of feasible service
placements. When comparing the performance of different algorithms under
the same resource capacities, we observe that GSP-SS considerably outper-
forms LP-relaxation with rounding and top-k. Furthermore, it is very close
to the optimal solution. We have verified that GSP-SS achieves over 90% of
the optimal performance, i.e., the ratio of served requests when using GSP-
SS versus the optimal solution is greater than 0.9 on the average. Similar
observations have been made in the other simulations as well.

We further vary parameters of request generation. Fig. 3.7 (e) shows

5The values of κl and Kn are in KBps, rl and Rn in TB, and ωl as well as Wn in
Mflops/s.
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Figure 3.7: Performance evaluation for service placement under the
synthetic simulation setup in Section 3.7.2.
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that as we increase the average request rate, the percentage of served requests
decreases notably due to the contention of resources. Increasing λn (the total
request rate in edge cloud n) 3× and 9×, respectively, we go from 97.54%
of satisfied requests to 88.42% and 69.49%, respectively, for our optimal
solution. When it comes to the greedy solution, the level of satisfied requests
drops from 95.88% to 88.04% and 69.36%, respectively. This is reasonable
as in every step we increase the total amount of requests. Fig. 3.7 (f) shows
that as we increase the skewness of service popularities (by increasing α),
the optimal solution and GSP-SS remain the same, while the baselines (LP
relaxation with rounding and top-k) improve slightly. This is because the
increased skewness causes the requests to be more and more concentrated on
a few popular services, making service placement easier.

Finally, we vary the number of edge clouds |N | in Fig. 3.7 (g). As ex-
pected, the more edge clouds, the more resources, and hence the performance
improves. However, we see from Figs. 3.7 (a-d) that similar improvements
can be achieved by increasing the capacities of existing edge clouds or the
service placement budget. This shows the effect of resource pooling.

We note that our simulation setup does not satisfy the condition in The-
orem 3.5.1 as the κl’s are different, and thus the theoretical approximation
guarantee does not apply. Nevertheless, we have observed empirically that
GSP-SS always yields near-optimal performance.

Setting 2: Next, we consider scenarios in which the values of the input
parameters are at the same order of magnitude as those corresponding to
specific highly popular data-intensive services [101], [102], i.e., video analytics
and ultra-reliable virtual reality.

Figs. 3.8 (a-d) depict the percentage of served request for different values
of communication capacity, arrival rate, storage and computation capacity.
The communication capacity of the edge clouds is chosen uniformly on [20, 30]
Mbps, computation capacity is uniform on [320, 480] Mflops/s, whereas stor-
age capacity is chosen uniformly from the range [24, 36] TB. The storage
requirement for the services is chosen uniformly from the interval [0.5, 1]
TB, bandwidth requirement is uniform in [5, 10] Mbps and computation re-
quirement is uniform in [50, 100] Mflops/s. We see that the trend and the
comparison between different algorithms are qualitatively the same as those
in Fig. 3.7. In particular, the proposed algorithm GSP-SS performs nearly as
well as the optimal and notably better than the benchmarks of LP-relaxation
with rounding and top-k.
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Figure 3.8: Performance evaluation for service placement under highly
popular data-intensive service input.

3.7.2.2 Trace-driven simulation

We cross-validate our observations in a more realistic scenario driven by
traces. For the trace-driven simulation, we extract user and edge cloud loca-
tions from real mobility traces and cell tower locations. We use the taxicab
traces from [103], by extracting the traces of 36 users over a 520-minute period
with location updates of 1 and 10 minutes. We assign users into Voronoi cells
based on cell tower locations obtained from http://www.antennasearch.com,
from which we select a subset of 6 cell towers that are at least 9.5 km apart
to represent the locations of edge clouds.

User requests are generated from a wireless trace from [104], containing
transmission timestamps generated by 5 different applications from 36 wire-
less devices. We associate each device with a user in the taxicab trace, and
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duplicate each trace 5 times to obtain |L| = 25 services. As each timestamp
in the original trace represents a single packet, we stretch the time axis by
60 (by treating the time unit as ‘minute’ instead of ‘second’) to simulate the
arrival process of service requests. The obtained request rates range from
288,935 to 650,415, with a mean of 521,070 (requests/slot).

For each edge cloud, we randomly choose a storage capacity Rn of 3-6 TB,
a communication capacity of 16-48 Mbps (i.e., Kn ∈ [0.12, 0.36] GB/slot),
unless stated otherwise, and a computation capacity of 50-100 Gflops/s (i.e.,
Wn ∈ [3, 6] Tflops/slot), unless stated otherwise.

The other parameters are as before, except that the units of κl and ωl

change to GB/slot and Tflops/slot.

Setting Frame and Slot duration: The frame and slot durations are en-
gineering decisions based on the characteristics of the system and desired
performance. The frame duration is the time during which a deployment
of services on servers remains constant. The re-deployment of services has a
cost which in our system is constrained by budget B. How often to move ser-
vices is driven by how stable the system is in terms of user mobility and user
request characteristics (e.g., rate, resource requirements). A system operator
will know the expected dynamics of a system based on trends determined
over time. As trends change, the duration of the frames can change.

Slot duration is set based on the scheduling delay and job execution time
in a system. In our system, jobs are expected to complete their processing
within one slot. Therefore, slot duration should be set as small as possible
so that jobs can complete so that scheduling delays are small.

To set the frame duration for the trace evaluation, we plotted the perfor-
mance of the system for different frame and slot durations. Fig. 3.9 illustrates
the effect of varying the frame size. In this scenario, the slot duration is 1
min. Fig. 3.9 depicts the percentage of served requests vs. frame size. As
can be seen from Fig. 3.9, the performance starts deteriorating considerably
for frames that are longer than 30 slots. Choosing a shorter frame provides
only a slightly higher percentage of served requests, but increases the cost.
Therefore we choose a frame duration of 30 minutes (slots in this case).

Next, we look at the impact of the slot duration on the performance.
We consider a frame length of 30 minutes, with 5 different slot durations:
1, 2, 3, 5 and 10 minutes. This means that the frames consist of 30, 15,
10, 6 and 3 slots, respectively. The values of K and W are scaled with the
duration of the slot so overall system resources are kept constant. Fig. 3.10
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Figure 3.9: Varying the frame size.

illustrates the percentage of served requests vs. slot duration. As can be seen
from Fig. 3.10, the performance is almost completely insensitive to the slot
duration. Since we are interested in providing the shortest possible delay, we
choose the slot duration to be 1 minute.

In this set of experiments we use a frame duration of 30 minutes and slot
duration of 1 minute as described above.

Having shown the impact of slot and frame duration on the performance
of the system, we proceed with looking at how the number of users varies in
a given cell over time, with users leaving and coming into the cell. Slots are 1
minute, and a frame consists of 30 slots. Fig.3.11 shows the results. On the
same plot, we also show the actual arrival rate of the requests for services in
the cell and the predicted arrival rate of those requests. Note that there is a
similar trend in the behavior of the three parameters considered here.

Results: Fig. 3.12 shows the performance of each algorithm over time.
‘Predicted’ values are the predicted percentage of served requests when solv-
ing (3.1) at the beginning of each frame. ‘Actual’ values are the actual
percentage of requests served in each slot under soft constraints, obtained by
solving (3.6) for the requests arrived in that slot and the service placement of
the corresponding frame. Fig. 3.12 shows that GSP-SS closely approximates
the optimal not only in the predicted performance but also in the actual
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Figure 3.10: Varying the slot duration.
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Figure 3.11: The variability of the user and requests in a cell

performance, while outperforming the baselines.
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3.7.3 Results on Request Scheduling

3.7.3.1 Soft Constraints

Fig. 3.12 (‘actual’) already shows the performance achieved by probabilistic
scheduling under soft resource constraints. Since the optimal probabilistic
schedule is not hard to compute (by solving (3.6)), the focus here is to un-
derstand to what extent this probabilistic schedule adheres to the resource
constraints.

Given that probabilistic scheduling only satisfies the K-constraint (3.1d)
and the W -constraint (3.1e) on the average, it is possible that the scheduled
requests temporarily exceed the communication/computation capacity of an
edge cloud. To understand the extent of capacity violations, we evaluate
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Figure 3.12: Performance evaluation in trace-driven simulation under soft
constraints.

49



both the frequency and the severity of capacity violations. Table 3.2 shows
the results for each type of resource (computation/communication) at each
edge cloud. These results are obtained under the default parameter setting
for synthetic simulations specified in Section 3.7.2. As can be seen from
Table 3.2, there are capacity violations in about 5% of the slots, and in these
slots, the amount by which the capacities are exceeded is about 10%. These
are moderate violations, which justifies the use of probabilistic scheduling
and soft resource constraints for services that are not highly delay-sensitive.

Table 3.2: Capacity Violations ( %)

Edge cloud # 1 2 3 4 5 6
% of time K violated 6.33 4.64 2.85 2.86 4.66 2.28
% of time W violated 1.29 1.65 3.26 4.15 3.59 0.95
Amount K violated 3.05 11.48 2.47 7.68 5.61 7.84
Amount W violated 10.69 0.72 9.61 2.87 0.51 2.90

3.7.3.2 Hard Constraints

Similar to Fig. 3.7, we use synthetic simulations to evaluate the impacts of
different input parameters for request scheduling under hard resource con-
straints. All the results are obtained under the optimal service placement.

The results are shown in Fig. 3.13, where (a) shows the impact of increas-
ing the computation capacity (W ), (b) shows the impact of increasing the
communication capacity (K), (c) shows the impact of increasing the rate of
requests (λ), and (d) shows the impact of increasing the skewness parameter
(α). In every plot, we compare the proposed LRRS algorithm (Algorithm 9)
with the optimal solution and the greedy solution that are explained in Sec-
tion 3.7.1. Note that MFRS (Algorithm 4) requires κl = ωl = 1 for all l ∈ L,
which is not satisfied here. While the impacts of these parameters are similar
to those observed in Fig. 3.7, these results differ from Fig. 3.7 in that there is
not much difference between different algorithms. In particular, the greedy
request scheduling already approximates the optimal request scheduling, and
LRRS performs in between. This observation indicates that the key perfor-
mance differentiator is the service placement algorithm, and it suffices to use
a simple algorithm for request scheduling.

We now show results for hard constraints using the same trace inputs as
described above. As in Fig. 3.12, we show in Fig. 3.14 both the ‘predicted’
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Figure 3.13: Performance evaluation for request scheduling under hard
constraints.

percentage of served requests, computed at the beginning of each frame based
on the predicted request rates, and the ‘actual’ percentage of served requests
in each slot. The difference from Fig. 3.12 is that the ‘actual’ values are
computed by LRRS under hard resource constraints (while the ‘predicted’
values are the same as in Fig. 3.12). Comparing Fig. 3.12 and 3.14, we
see that imposing hard resource constraints does not significantly reduce
the percentage of served requests, while having the advantage that every
scheduled request is guaranteed to finish within one slot. This justifies the
use of deterministic scheduling and hard resource constraints for real-time
services.
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Figure 3.14: Performance evaluation in trace-driven simulation under hard
constraints (scheduling done by LRRS).

3.7.4 Results on Multi-frame Extension

Although |F | = 2 suffices in this evaluation, we have observed that if we
increase the resource contention, a larger prediction window can help. For
example, if we double the request rates, then the predicted (actual) percent-
age of served requests will become 73.63% (72.11%) for |F | = 1, 74.37%
(72.90%) for |F | = 2, and 79.11% (78.50%) for |F | = 3.

Finally, we evaluate the extended GSP-SS for the multi-frame optimiza-
tion (3.15). Fig. 3.15 shows the performance based on request prediction over
an |F |-frame sliding window. We skip the other algorithms in this evaluation,
as top-k performs the same as in Fig. 3.12, the optimal solution is hard to
compute due to nonlinearity of (3.15), and LP relaxation does not apply. As
in Fig. 3.12, ‘predicted’ values are based on the request rates predicted at the
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Figure 3.15: Performance of extended GSP-SS for multi-frame optimization
in trace-driven simulation.

beginning of each window, and ‘actual’ values are based on the actual request
rates in each slot. We see that prediction over a larger window improves the
performance of GSP-SS in terms of the actual values, and 2-frame prediction
appears to be sufficient.

3.8 Conclusion

We proposed a two-time-scale solution for joint service placement and request
scheduling in a system of networked edge clouds under communication, com-
putation, and storage constraints. We not only proved the NP-hardness of
the problem in the general case, but also characterized its complexity in all
the special cases. By combining the greedy heuristic with shadow request
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scheduling, we developed a polynomial-time service placement algorithm,
which was proved to give a constant approximation ratio under certain con-
ditions. We further showed that the problem of request scheduling under hard
resource constraints, although NP-hard in general, can be solved in polyno-
mial time if all the requests demand the same amounts of communication and
computation resources, in which case we developed a polynomial-time opti-
mal solution based on the maximum flow algorithm. Extensive simulations
showed that the key performance differentiator is the service placement algo-
rithm, and the proposed service placement algorithm achieves near-optimal
performance.
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Chapter 4

Budget-Constrained
Reinforcement of SCADA for
Cascade Mitigation

We study the impact of coupling between the communication and the power
networks as it affects a SCADA-based preventive control system. Today
power grids use power lines to carry control information between compo-
nents in the grid and a control center using power line carrier communication
(PLCC). Thus a failure in the power grid will cause a failure in the control
network and may reduce the capability of preventive control that in turn
increases the risk of cascading failures. We pose the problem of allocating
a limited number of non-PLCC communication links (e.g., microwave links)
that are immune to failures in the power grid to maximize our controllability
over the grid under power system failures, so as to maximize the total demand
served at the end of cascade. By formulating the problem as a nonlinear in-
teger programming problem, we establish its hardness and identify a generic
heuristic that can find an approximate solution within controllable time. We
further develop a domain-specific heuristic that utilizes both graph-theoretic
and power system information to achieve similar performance as the generic
heuristic at a much lower computational complexity. Our evaluations based
on a 2, 383-bus Polish system demonstrate that only a few non-PLCC links,
when placed correctly, can substantially improve the robustness of the grid
as measured by the total demand served at the end of cascade.
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4.1 Introduction

Cascading failures in power grids have led to widespread socio-economic dis-
ruptions [68]. Therefore, it is of high importance to improve our understand-
ing of this phenomenon and develop defense mechanisms.

In this chapter, we focus on the interaction between the power grid and
the control network during cascading failures. The control network monitors
elements of the power grid, and issues command to some of these elements
when failures occur to mitigate a cascade. Any degradation that limits the
ability of the control network to either monitor or control elements in the
power grid will increase the risk of a larger cascade of failures. Ideally,
the control network, consisting of sensors/actuators, communication links,
routers, and a controller, should be deployed independently of the power grid,
with battery backup for all its components. However, this is an expensive
solution, especially for deploying dedicated communication links to connect
the controller to all the elements in the power grid.

For this reason, utility companies have used power lines to carry con-
trol information using the technique of power line carrier communication
(PLCC) [105, 106, 107, 108, 109]. PLCC enables communication between
substations using low [110, 111], medium [111, 112], or high voltage [113, 114]
power lines. PLCC links are much less expensive than non-PLCC (i.e., ded-
icated) links [115, 116, 117], but will fail when power lines fail if no backup
communication medium is used, thereby degrading connectivity of the con-
trol network. In this chapter, we examine the problem of reinforcing a fully
PLCC-based communication network with the addition of a limited number
of reliable more expensive dedicated non-PLCC communication links.

Traditionally, PLCC was used for one-way communication to monitor,
control, and tele-protect the power grid [118]. In the 1980s and early 1990s,
after studies regarding the implementation of the Supervisory Control and
Data Acquisition (SCADA) in both Europe and the United States, bi-directional
communication by PLCC was invented [115]. The strong growth of PLCC
data services and its economic benefit has made it a promising component of
information infrastructure [109, 119, 120, 121]. The mixture of PLCC and
other technologies extends the utilization of PLCC for power generation and
control [122]. While it may seem that the advances of non-PLCC commu-
nications to fiber-optic technology [123, 124] eliminate the need for PLCC,
PLCC links remain an essential component of modern power grids [110],
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such as the Siemens PowerLink PLCC system [116] and General Electric
T&D Power Utilities [125], due to their cost savings.

In this chapter, we show that a carefully designed communication network
containing a few strategically placed non-PLCC links together with PLCC
links can provide almost the same protection against cascading failure as a
dedicated communication network with 100% non-PLCC links at a fraction
of the cost.

4.1.1 Summary of Contributions

In this chapter, we consider cascading failures in a coupled system of a power
grid with a SCADA-based communication network that is geographically co-
located with the power grid, through which a Control Center (CC) collects
data from sensors and dispatches preventive control commands to generators
and loads. Our contributions are:

1) We propose to combine the cost efficiency of PLCC links and the
reliability of non-PLCC links in designing the communication network [126],
posed as an optimization of maximizing the total power demand served after
cascade by selecting a limited number of non-PLCC links, leaving the rest as
PLCC.

2) As the demand served after cascade is not an explicit function of the
decision variables, we propose a proxy objective function capturing the con-
trollability of nodes in the grid, weighted by their importance in the system
topology and the contribution of generation/load. We formulate the un-
derlying optimization as a nonlinear programming (NLP) problem, which
is proved to be NP-hard. We then apply a generic heuristic and develop a
domain-specific heuristic that explicitly enhances the controllability of the
generators and the loads most likely to be needed in preventive control.

3) We evaluate the proposed algorithms on a 2, 383-bus Polish power sys-
tem. The results show that (i) the algorithms designed to maximize the proxy
objective function can effectively increase the demand served after cascade,
(ii) a small number of properly placed non-PLCC links together with (unre-
liable) PLCC links can achieve almost the same performance as a perfectly
reliable communication network, and (iii) while performing similarly as a
properly configured generic heuristic, the proposed domain-specific heuristic
is significantly faster [127].

Roadmap: Section 4.2 provides background information about cascad-
ing failures and preventive control. Section 4.3 formulates our problem of
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Figure 4.1: Flow chart highlighting the modeling of the coupled cascading
failure in power and communication networks.

budget-constrained design of communication links and presents our proposed
algorithms. Section 4.4 evaluates our algorithms against benchmarks. Fi-
nally, Section 4.5 concludes the chapter.

4.2 Background and Motivation

4.2.1 Modeling Coupled Cascading Failure

DC-QSS models [68, 69, 70, 83], which neglect resistive losses and assume
a uniform voltage profile, are computationally efficient and thus suitable for
statistical analysis of large-scale systems. Therefore we use DC-QSS models
of cascades in this chapter. Figure 4.1 illustrates the model of cascading
failure in a coupled power and communication network.

After the impact of the initial outages, the power grid may be segmented
into islands. The generation and load in each island are balanced. In order to
achieve the balance, either generation is curtailed or the load is reduced uni-
formly across all generation or load nodes, respectively. If an island does not
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have any generators, then a complete blackout is assumed in the island. The
overloaded branches, which result from the updated line flows, are tripped
according to the tripping delays of overcurrent relays, meaning that for a
particular line to trip, it must remain overloaded for the duration of its trip
time. Once more lines are tripped, the power grid may be segmented into
further islands, where load and generation need to be re-balanced, and the
entire process is repeated until there are no potential line trips, i.e, no over-
loaded lines in the network. At this stage, the cascade propagation comes to
an end.

As described earlier, we consider a geographically collocated SCADA-
based communication network that connects the CC to sensors and actuators.
This is a common assumption in work on power-communication overlays
[70]. The connections between the CC and these sensors/actuators can be
affected by failures in the power grid if PLCC communication is used under
the assumption that no backup communication is deployed. Therefore, the
cascading failure propagates in a coupled manner through both power and
communication networks.

4.2.2 Modeling Preventive Control

A preventive controller at the CC is introduced, as illustrated in Fig. 4.1,
which is assumed to have updated information of all the elements in the
power grid, e.g., line flows, breaker status, and power output/consumption
of generators and load centers. Based on this information, the controller tries
to alleviate line overloading by issuing control commands. Both the sensing
information and the control commands are communicated via a communica-
tion network.

The objective of the preventive controller is to stop cascade propagation
by reducing the overloading in lines, which is defined as Lover. This objective
is achieved by solving the following optimization problem [70]:
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min
∆PG,∆PL

− 1T∆PL + λTLover (4.1a)

s.t. ∆PG −∆PL = B∆θ, ∆θi = 0,∀i ∈ Ωref (4.1b)

∆Lij =
∆θi −∆θj

xij

, ∀ i, j ∈M (4.1c)

|LM +∆L| ≤ Lmax + Lover, Lover ≥ 0 (4.1d)

− (PG)M ≤ (∆PG)M ≤ 0 (4.1e)

− (PL)M ≤ (∆PL)M ≤ 0 (4.1f)

(∆PG)M = 0, (∆PL)M = 0 (4.1g)

Here, the elements of vectors PG and PL represent the generation and
load power at each bus, respectively, and ∆ represents the change in these
quantities. The objective function (4.1a) minimizes the total amount of load
shedding (−1T∆PL) and the weighted sum of all overloads such that no
further controls on generators or loads can improve the objective. λ is the
uniform weight vector. Similarly, a change in the phase angle at the ith bus
is defined as ∆θi. The matrix B is the admittance matrix of the network.
The variables L and Lmax represent the actual power flow and its allowable
maximum value, respectively. The subscriptM implies that the correspond-
ing quantities belong to the measurable set, and the subscriptM implies the
opposite. To get more details of the optimization problem (1), please refer
to [70]. As presented in Fig. 4.1, line status and branch flows LM are taken
as inputs to the optimization problem, and the solution gives load shedding
and generation reduction values as outputs.

A communication network with 100% non-PLCC links is cascade-free.
In this case, M = ∅ and the preventive control produces the best possible
performance. However, in the presence of PLCC-based links the coupled cas-
cade propagation is affected in a complex manner because power line failure
impacts the preventive control. The larger the number of such link failures,
the larger the setM. This implies that more sensors become unobservable
and more actuators become uncontrollable. This limits the effectiveness of
cascade prevention, which in turn exacerbates the loss of controllability in a
closed-loop fashion.

In practice, preventive control algorithms will run at regular intervals,
and there will be a delay in line tripping. To evaluate these effects, we run
preventive control optimization following the first outage for every 30 s, which
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is the shortest possible time for SCADA-based preventive control systems,
and take the tripping delay into account.

4.2.3 Motivating Example

To understand the potential value of preventive control in mitigating cas-
cading failures, we evaluate the performance of a network with preventive
control. Considering the Polish network during winter 1999 − 2000 [128] as
a test system, which includes 2, 383 buses and 2, 896 branches, we randomly
fail 5% of the buses in the power grid and calculate the served power after
cascade propagation in scenarios (i) having a network of 100%-PLCC links
versus (ii) no communication network. Results in Table I show superior
performance in presence of a communication network.

We use a specific example in Fig. 4.2 to illustrate why a suitably designed
communication network can help preventive control to mitigate cascade. The
red links in Fig. (4.2a) are the failures initiating the cascade, which prompt
the overloading and tripping of the black links in Figs. (4.2b-c), respectively.
In Fig. (4.2b), there is no communication network. In Fig. (4.2c), the CC
communicates with and controls the two red generators.

Without control (Fig. (4.2b)), the cascade causes the loss of 134 lines with
the residual power 13653.30 MW. The active power injections of the left (g1)
and the right (g2) red generators after the cascade are 96.90 MW and 643.0
MW, respectively. With control of only the two nodes g1 and g2 (Fig. (4.2c)),
e.g., by connecting them to the CC through non-PLCC links, the cascade only
causes the loss of 10 lines with the residual power 24460.20 MW(99.60% of
the initial power). This is achieved by changing the active power injections
at generators g1 and g2 to 56.34MW and 645.13MW, respectively, which
prevents line overload while satisfying energy conservation.

This example not only demonstrates the benefit of preventive control, but
also shows that much of the benefit can be achieved by controlling a small
number of critical nodes.

Table 4.1: The effect of preventive control on cascade in (i) 100%-PLCC
links and (ii) no communication network.

Scenario no. of cascade steps no. of tripped lines residual power

(i) 5 308 22472.14 MW
(ii) 20 504 7790.8 MW
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(a) (b) (c)

Figure 4.2: The effect of preventive control on cascade propagation. (a)
initial failures in the Polish grid (red links), (b) cascading failures (black
links) without control (as a zoom-in of the rectangle in (a)), (c) cascading
failures (black links) with control of the two red nodes (as a zoom-in of the

rectangle in (b)).

4.3 Budget-Constrained Reinforcement of Com-

munication Network

We develop algorithms to design the communication network as a mix of
PLCC and non-PLCC links under a budget constraint to facilitate the mit-
igation of cascading failures through preventive control. To rule out other
impacts, we assume that all the communication nodes (including sensors,
actuators, and relays) have battery backups and are hence immune to the
cascade and cannot be affected by failures in the power grid.

4.3.1 Problem Formulation

We formulate the problem as an optimization of non-PLCC link placement
under a budget constraint. As PLCC links are much less expensive than
non-PLCC links [115, 116, 117], we start with a baseline where all the com-
munication links are PLCC, and then turn a selected subset of links into
non-PLCC links to improve the robustness against cascades. To capture re-
source limitations, we impose a budget B on the number of non-PLCC links,
but our solution can be easily extended to incorporate heterogeneous costs
of non-PLCC links.

Ideally, we want to maximize the total demand served when the cascade
stops. This objective function, however, faces the challenge that it is not
an explicit function of the placement of non-PLCC links. To address this
challenge, we propose to use a proxy objective function as follows.
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We model the power grid as an undirected graph G(N ,L) with no self-
loops or multiple edges. Let P i, ∀i ∈ N denote the set of all possible paths
between the CC and node i. Modeling each path m ∈ P i as a set of links it
traverses, the total reliability of the network [129], measured by the expected
number of nodes connected to the CC after (initial) failure, is defined as
(assuming nodes do not fail):∑

i∈N

[1−
∏
m∈P i

(1−
∏
l∈m

ρl)], (4.2)

where ρl denotes the reliability (i.e., complement of failure probability) of
link l. Let Rl ∈ {0, 1} indicate whether link l is a non-PLCC link, and
p1/p0 denote the reliability of non-PLCC/PLCC link, respectively (assuming
p1 > p0). Then ρl = Rlp1 + (1 − Rl)p0. We formulate the optimization of
non-PLCC links as follows:

max
∑
i∈N

γi(1−
∏
m∈P i

(1−
∏

l∈m∩L

(Rlp1 + (1−Rl)p0)) (4.3a)

s.t.
∑
l∈L

Rl ≤ B, (4.3b)

Rl ∈ {0, 1}, ∀l ∈ L. (4.3c)

In words, (4.3) aims at selecting up to B non-PLCC links to maxi-
mize the controllability after (initial) failure, measured by the expected
total weight of all the nodes remaining connected to the CC. Intuitively,
the more nodes the CC is connected to, the better it can observe/control
the grid, and hence the better it can mitigate the cascading of failures.
However, not all the nodes are equally important, and hence we use the
weight γi ≥ 0 to reflect the importance of observing and controlling node
i.

Remark: Intuitively, γi should reflect both the topological importance
(e.g., centrality) and the service importance (e.g., power injection) of node
i. We find that defining γi as “the betweenness centrality (BC) of node i” ×
“the real power injected at node i” yields the best performance (see Fig. 4.4),
where BC of a node is the frequency that it appears on the shortest paths
between all pair of nodes in the graph [130].
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4.3.2 Complexity Analysis

We prove that (4.3) is NP-hard by a reduction from the Steiner tree problem.

Theorem 4.3.1. Problem (4.3) is NP-hard.

Proof. The (graph) Steiner tree problem takes as input an undirected graph
G0 with non-negative edge weights and a subset of vertices called terminals,
and seeks to find a tree that is a subgraph of G0 with minimum weight to
connect all the terminals. The decision problem associated with the Steiner
tree problem is “whether exists a solution to the Steiner tree problem with
integer edge weights, such that the total weight of the Steiner tree is no
greater than a given natural number k”. This problem is one of Karp’s 21
NP-complete problems [131].

Using the above problem, we will show that the decision problem of
“whether there is a feasible solution to (4.3) that connects the CC to all
the non-zero-weight nodes by non-PLCC links” is NP-hard.

The NP-hardness of this decision problem implies the NP-hardness of a
special case of the optimization problem (4.3) for p1 = 1 > p0, as otherwise
we can solve the optimization problem and compare the achieved objective
value with

∑
i∈N γi. As each node i with γi > 0 contributes ≤ γi to the

objective value, with “=” achieved only if it is connected to the CC via a
perfectly reliable path (consisting of only non-PLCC links), it is easy to see
that the optimal objective value equals

∑
i∈N γi if and only if there is a fea-

sible solution to (4.3), under which every non-zero-weight node is connected
to the CC by a path of non-PLCC links, thus solving the decision problem.

Construction: We construct G according to G0, except that each edge in
G0 of weight e (a positive integer) is represented by a tandem of e links in G.
The budget B is set to k. One of the terminals is set as the CC, and the other
terminals as nodes with non-zero weights. The rest nodes have zero weight.

Claim: The answer to the Steiner tree decision problem is “yes” if and
only if the answer to the decision version of the above-constructed instance
of (4.3) is “yes”.

Proof of the claim: If the decision problem associated with the Steiner
tree gives “yes”, i.e., there is a tree T0 in G0 with total weight no more than
k that connects all the terminals, then the corresponding tree T in G will
connect the CC with all the non-zero-weight nodes while covering no more
than B links. Hence, setting Rl = 1 for links in T and Rl = 0 otherwise will
connect the CC to all the non-zero-weight nodes by non-PLCC links within
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budget B. Conversely, if the CC can reach all the non-zero-weight nodes
through no more than B non-PLCC links, then G must contain a tree T of
no more than B links that contains the CC and all the nodes with non-zero
weights. Then, the corresponding tree T0 in G0 must be a Steiner tree with
a total weight no greater than k that connects all the terminals.

4.3.3 Algorithm Design

The NP-hardness of the optimal solution to (4.3) motivates our search for
efficient heuristics.

4.3.3.1 Generic heuristic

We first apply a generic heuristic algorithm that is a genetic algorithm [132],
that belongs to a non-deterministic class of algorithms that provide subop-
timal solutions in controllable time. It works by modifying a population of
possible solutions repeatedly such that the population evolves toward an op-
timal solution. At each step, the genetic algorithm arbitrarily picks solutions
from the current population to be parents and produces the children for the
next step. Due to the possibly exponential complexity in enumerating all
possible paths, we limit P i for each i ∈ N to a set of up to N simple paths
[133] from the CC to node i with length ≤ L, where L and N are design
parameters that will be tuned later (see Fig. 4.5).

4.3.3.2 Domain-specific heuristic

As shown later (Fig. 4.5), the generic heuristic needs to search a large so-
lution space to achieve reasonable performance, which is computationally
expensive. This motivates us to develop the following alternative that uses
domain-specific insights. As the ultimate objective is to ensure that the re-
dispatch-based preventive control can effectively mitigate the propagation
of cascading failure, we will focus solely on maximizing the controllability
of the generators and the loads whose re-dispatching is most likely to be
needed during preventive control – given the budget constraint. Although
this method appears more complicated, we will show that it is much more
computationally efficient than the generic heuristic in Section 4.3.3.1 while
achieving almost the same performance in terms of served loads.
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To this end, we propose a two-part algorithm, shown in Algorithms 4
and 5. In the first algorithm, we follow the steps described below to identify
subgraphs and candidate non-PLCC links. The second algorithm selects the
non-PLCC links.

Identify subgraphs (Step 1): Ideally, extensive planning studies should
give us the information regarding subgraphs that are likely to form during
cascading failures. In absence of this information for the system under con-
sideration, we propose a simple heuristic that is motivated by the intuition
to partition the power grid by clustering nodes around each high-degree gen-
erator/load into a subgraph, which is likely to form an island during cascade.
Then, we try to find candidate non-PLCC links connecting the CC to the
actuators in each subgraph. Alternative graph clustering algorithms can be
found in [134] – exploration of such algorithms are beyond the scope of this
work.

To that end, we first sort the generation and load buses according to their
degree, then we build subgraphs around them consecutively. We consider the
subgraphs formed by all nodes that can be reached in a pre-determined num-
ber of hops from the root node (the radius of the neighborhood). We ignore
the nodes that are already included by an existing subgraph. This procedure
is repeated until we cover all the nodes. In this context, we use words ‘sub-
graph’ and ‘area’ (a power grid domain-specific terminology) interchangeably.

Algorithm 4: Candidate Non-PLCC Link and Candidate Node Selec-

tion
input : Power grid data, location of Control Center (CC)
output: Set of candidate non-PLCC links Ln and candidate control

nodes Nn, and subgraphs V
1 Step 1: Identify subgraphs based on the degree of load and generation

nodes and a pre-determined hop count h. Gi/Li: total generation/load
in the ith subgraph;

2 Step 2: Within the ith subgraph – If Gi > Li(Li > Gi), then choose all
generator nodes (load nodes) with degree > 1 as candidate control
nodes. If Gi = Li, choose all load nodes (degree > 1) in this subgraph as
candidate control nodes. Set of such nodes are Nn;

3 Step 3: Solve the problem of finding the tree of shortest paths on graphs
to connect the CC to all candidate control nodes from Step 1. Set of
such links are Ln;

4 return Ln, Nn, V;
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Algorithm 5: Non-PLCC Link Selection

input : Budget B, Ln, Nn, V, location of CC, power grid data
output: Set of non-PLCC links Lc

1 Calculate subgraph weights: Define ki: no. of nodes of the ith subgraph ∈ V
connected to the remaining portion of the grid. Calculate weights
wi = min(Li, Gi)/ki;

2 Sort subgraphs: Order the subgraphs in descending order of weights;
3 Lc ← ∅, i← 1,Gc ← ∅ ;
4 while |Lc| ≤ B do
5 while i ≤ |V| do
6 if the ith subgraph does not contain the CC then
7 Connect one Gateway node g ∈ Nn in the subgraph to one Gateway

node g ∈ Nn in a subgraph containing the CC using minimum
number of non-PLCC links l ∈ Ln;

8 i← i+ 1, Lc ← Lc ∪ {l},Gc ← g;

9 else
10 i← i+ 1

11 return i;
12 i← 1;
13 while i ≤ |V| do
14 if the ith subgraph contains the CC then
15 Calculate betweenness centrality (BC) of nodes within the area

w.r.t. the gateway nodes ∈ Gc and the CC. Assign non-PLCC links
l ∈ Ln incident on the node with highest BC;

16 i← i+ 1, Lc ← Lc ∪ {l},Gc ← g;

17 else
18 i← i+ 1

19 return i;
20 i← 1;
21 while i ≤ |V| do
22 if the ith subgraph does not contain the CC then
23 Calculate BC of nodes within the area w.r.t. the gateway nodes

∈ Gc and the candidate control nodes. Assign non-PLCC links l
∈ Ln incident on the node with highest BC;

24 i← i+ 1, Lc ← Lc ∪ {l},Gc ← g;

25 else
26 i← i+ 1

27 return i;

28 return Lc;

Figure 4.3 shows the graph of the Polish system with subgraphs marked
on it with different colors, where roots are specified by increasing the sizes
of their markers. Nodes within the same subgraph are at most 10 hops away
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from the root.

Figure 4.3: Subgraphs of the system for the domain-specific heuristic,
h = 10.

Find candidate non-PLCC links and candidate control nodes (Steps 2, 3):
This is a two-step process. Keeping in mind that generation and load nodes
need to be connected to the CC for receiving preventive control commands
(see, Section 4.2.2), we aim to find a subset of such nodes that are candidates
for this. In Step 2, we find the subgraphs where Gi ̸= Li – these areas
affect line flows in external areas. Since we always reduce generation and
load, we choose generator nodes as candidates when Gi > Li and vice-versa.
The reason behind neglecting nodes with degree 1 is that outage of a line
connected to this node will result in disconnection of the generator/load,
thereby rendering the non-PLCC communication useless. In Step 3, we solve
the problem of finding the tree of shortest paths on graphs to connect the
CC to all candidate control nodes.

Algorithm 5 aims to select the non-PLCC links from the candidate control
nodes based on graph-theoretic and domain-driven metrics. The steps are
described next:

Calculate subgraph weights (Line 1) and sort subgraphs (Line 2): The
proposed algorithm prioritizes subgraphs based on weights wi, which depend
on the value of the generation or load, whichever is smaller (min(Li, Gi)),
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and the connectivity between this subgraph and the rest of the grid (ki).
The logical argument is as follows: (a) higher wi = min(Li, Gi)/ki implies
that the subgraph has a relatively lower connectivity with other subgraphs
and thus a higher probability to form an island during cascade, while (b)
a subgraph with a higher wi also contains relatively more generation and
load, and is thus more critical to control in the case of islanding to prevent
further cascade propagation within the subgraph. We define a gateway node
as one of the candidate control nodes connecting the particular subgraph
to another gateway node in another subgraph. We use the term ’gateway’
because this particular subgraph joins rest of the system through this node
via a non-PLCC link. Thus, we connect a gateway node of a subgraph with
high wi but not the CC, to a gateway node in a subgraph containing the CC.
If there are multiple options to do this, then the shortest path is chosen.

Establish non-PLCC links (Lines 3 − 28): For establishing non-PLCC
links within each area, we use BC measures considering the CC, gateway
nodes and candidate control nodes as shown in Algorithm 5.
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Figure 4.4: Performance evaluation in terms of change in Dp
tot with respect

to 100% PLCC case for different node weights (non-PLCC links are placed
by the generic heuristic under L = 200, N = 50, and B = 17).

4.4 Performance Evaluation

We evaluate the proposed solutions on the Polish network during winter
1999 − 2000 peak condition from Matpower [128]. This system includes
2, 383 buses, 2, 896 branches, and 327 generators. We consider initial bus
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Figure 4.5: Performance evaluation for the generic heuristic under different
design parameters: (a) N = 50 & varying L, (b) L = 200 & varying N

(B = 17 in both cases).

outages varying from 1% − 10% of all the buses. For each failure scenario,
500 random sets of node (i.e., bus) outages have been considered. The CC
is situated on bus 7 of the Polish network, which is one of the highest degree
nodes. We set p0 and p1, the reliability of PLCC and non-PLCC links in
(4.3) to 0.99 and 0.9999, respectively [135].

Impact of node weight definition: We start by comparing the performance
under different definitions of node weight γi.

We compare four different definitions of weights: (i) power injection, (ii)
degree, (iii) BC, and (iv) power injection × BC. Under each definition, we
solve (4.3) by the generic heuristic under L = 200, N = 50 and B = 17.
Figs. 4.4(a-b) show the lower adjacency, the smallest data point that is not
an outlier in the plot which is 1st quartile - 1.5×inter-quartile range, and the
mean of the change in total post-contingency demand served (∆Dp

tot) with
respect to the case of 100% PLCC links, where Dp

tot = 24558 MW before
any failure. The results show that representing a node weight by “the BC of
the node” × “the real power injected at the node” performs the best, as it
considers both the topological and the service importance of the node. We
also calculated the reliability of the network as defined in (5.2) under the
non-PLCC links placed under each of these objectives for different defini-
tions of weights. The results follow the same trend as Figs. 4.4(a-b), but
are not shown in the images. This leads us to conclude that a higher reli-
able network leads to higher post-contingency served demand after cascade.
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In the sequel, we will use this definition of weight for the generic heuris-
tic.

Configuration of generic heuristic: We then compare the performance of
the generic heuristic under different limits on the length (L) and the number
(N) of paths between each node and the CC. For comparison, we also eval-
uate a variation of this heuristic that requires the paths in each P i (i ∈ N )
to be disjoint with each other (without limitation on path length). Fig. 4.5
shows the performance in mitigating cascades in terms of the lower adjacency
of the improvement in post-contingency demand served (similar comparison
has been observed for the mean and other percentiles). The results indi-
cate that when using the generic heuristic, allowing overlap between paths,
and choosing a smaller N and a larger L improve the efficacy in mitigating
cascades. The reason lies in the limitation of genetic algorithm where the
solution quality may deteriorate with the increase of problem size.

Configuration of domain-specific heuristic: Next, we evaluate the per-
formance of the domain-specific heuristic under different settings of the de-
sign parameter h, the maximum hop count in generating subgraphs in Algo-
rithm 4. Fig. 4.6 shows the impact of the h, evaluated by the lower adjacency
and the mean of ∆Dp

tot as in Fig. 4.4. The results suggest that the parame-
ter h significantly affects the performance of the resulting control system as
it determines the number and sizes of the generated subgraphs. As it can
be seen, the performance starts deteriorating for h that are larger than 10.
Choosing a smaller h, doesn’t provide a higher percentage of served demands
as it excessively increases the number of candidate control nodes/candidate
Non-PLCC links. For this particular power grid, we find that setting h = 10
leads to better performance, which will be the setting used for this heuristic
in the sequel.

Under the above setting, the Polish system is divided into 227 subgraphs
by Algorithm 1. Table. 4.2 summarizes different statistics of these subgraphs,
including their sizes (defined as the number of nodes within the particular
subgraph) and the variables ki and wi used by Algorithm 2 in placing non-
PLCC links. Recall that ki is the number of nodes connecting the ith sub-
graph to the remaining portion of the grid, and wi = min(Li, Gi)/ki where
Gi/Li is the total generation/load in the ith subgraph.

We have also evaluated a variation of the domain-specific heuristic, where
the subgraph weight is defined as ui = αwi+(1−α)vi, where vi := |Gi−Li|×ki
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Figure 4.6: Performance evaluation for the domain-specific heuristic under
different design parameters (B = 17).

Table 4.2: Statistical measures of variables in the domain-specific heuristic
under B = 17

Variable min max mean median STD

size 1 596 10.5 1 46.2
ki 1 139 2.47 1 9.89
wi 0 83.16 3.816 0 12.26

and the variable α = (0, 1] determines the relative importance of weights wi

and vi. The intuitive motivation is that a subgraph with higher vi has a
higher probability to remain connected to other subgraphs and a higher im-
pact due to higher |Gi − Li| (excess generation or load). The results, which
are omitted due to space limitation, indicate that setting α = 1 leads to
better performance.

Overall comparison: Finally, Fig. 4.7 compares the performance of all
the algorithms in terms of the change in total post-contingency demand
served ∆Dp

tot with respect to the case of 100% PLCC links (‘B = 0’). In
addition to the proposed heuristics and the baseline of randomly selecting
non-PLCC links (‘Random’), we consider an intuitive benchmark of allocat-
ing non-PLCC links by ranking the nodes in descending order of their BC
and selecting all the links incident to each node as non-PLCC links until the
budget runs out (‘BC’). Different statistical measures of ∆Dp

tot are shown.
Results show that while both of the proposed heuristics outperform ran-

dom selection, the BC-based benchmark performs slightly better than the
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Figure 4.7: Performance evaluation of change in Dp
tot with respect to 100%

PLCC case (non-PLCC links are placed by different methods under (a-d)
B = 174, (e-h) B = 17 (L = 200 and N = 50 in the generic heuristic and

h = 10 in the domain-specific heuristic).
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proposed heuristics when the budget is sufficiently high (e.g., B = 174 as in
Figs. 4.7 (a-d)). However, for a lower budget (e.g., B = 17 as in Figs. 4.7 (e-
h)), the BC-based benchmark degrades severely, and the proposed heuristics
perform much better. This demonstrates the importance of jointly consider-
ing the topology information and the power system information in selecting
non-PLCC links, instead of solely based on the topology information as in
the BC-based method. Moreover, with suitably tuned parameters (L = 200,
N = 50), the generic heuristic can slightly outperform the domain-specific
heuristic (h = 10), justifying the choice of objective function in (4.3).

However, we note that the domain-specific heuristic runs significantly
faster than the generic heuristic (with an average running time of 32.5 s
compared to 2441 s). Furthermore, it can be seen from Fig. 4.7(f) that using
as few as 17 non-PLCC links, the proposed heuristics can serve a median post-
contingency demand that is close to the ideal case where all the 2, 886 links
are non-PLCC. On the other hand, the performance deteriorates significantly
with simplistic placement of these non-PLCC links (e.g., ‘Random’, ‘BC’).
This result signals the importance of placing non-PLCC links properly when
under a budget constraint.

We also see from Fig. 4.7(d,h) that the comparison in terms of the number
of outliers (extremely rare cases) is in line with the comparison in terms of
the other statistics: a design leading to statistically higher demand served
also has fewer outliers. We note that the upper adjacency, the largest data
point that is not an outlier in the plot which is 3rd quartile + 1.5×inter-
quartile range, demonstrates insignificant variations among different designs,
which are not shown here since they represent outages that are non-critical.

Fig. 4.8 shows the communication layer of the system under different
designs with a budget of 17 and 174, respectively, before imposing any failure.
The plots visually describe the different design principles followed by each
heuristic: the BC-based heuristic (Fig. 4.8(c,f)) builds a “backbone” of non-
PLCC links, which works well when there is sufficient budget but poorly when
the budget is highly limited; in contrast, the proposed heuristics strategically
place non-PLCC links at the weakest parts of the network and leverage PLCC
links when there is sufficient connectivity.
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4.5 Conclusion

We study the impact of coupling between the communication and the power
networks as it affects a SCADA-based preventive control system that lever-
ages power line carrier communication (PLCC) to reduce the cost of deploy-
ing the communication network. As the failure of a power transmission line
will fail the piggybacked PLCC link, we focus on improving the robustness
of such a control system against cascading failures by allocating a limited
number of non-PLCC links that are immune to power grid failures, which is
formulated as a nonlinear integer programming problem. We establish the
NP-hardness of the optimal solution and propose two heuristics that achieve
different tradeoffs between the computational efficiency and the efficacy in
mitigating cascades. Our evaluations based on a 2, 383-bus Polish network
demonstrate the promising result that a control system using only a few
strategically-placed non-PLCC links and PLCC links elsewhere can achieve
almost the same efficacy in mitigating cascading failures as a much more
expensive control system that only employs non-PLCC links.
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(a) Generic heuristic (B=17) (b) Domain-specific heuristic (B=17)

(c) BC heuristic (B=17) (d) Generic heuristic (B=174)

(e) Domain-specific heuristic (B=174) (f) BC heuristic (B=174)

Figure 4.8: Graphs showing the non-PLCC links selected by different
heuristics. Dark edges: non-PLCC, light edges: PLCC, CC: control center.
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Chapter 5

Improvement of SCADA-based
Preventive Control Under
Budget Constraints

Catastrophic disasters in real-world systems, such as large-scale blackouts in
power grids, are usually triggered by minor incidents, which culminate in a
complex cascading failure in an interdependent system. Because the loss of
a power transmission line disrupts the control information piggybacked on
the line, failures in the power network may consequently disrupt monitoring
and control of the system. Hence, reliable functioning of the communica-
tion network in support of monitoring and control is vital to ensure that the
re-dispatch-based preventive control effectively restricts cascade propagation.
In this chapter, we address this issue by proposing a novel scheme in designing
the communication network comprised of both power line carrier communi-
cation (PLCC) links and non-PLCC (e.g., microwave) links in preparation
of possible failures under the lack of knowledge of system topology and a
budget constraint on the communication link deployment cost. First, we
characterize the fundamental hardness of our problem. Next, we develop a
solvable Mixed-integer linear programming (MILP)-based algorithm, which
attains a constant-factor approximation under certain conditions. Finally,
we show via simulations on the IEEE 118-bus system that the proposed al-
gorithm achieves superior performance in terms of enabling more accurate
topology estimation and more served demand in the face of cascades.
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5.1 Introduction

As discussed in the previous chapter, cascading failure is the process in an
interconnected system in which damage or loss in one part of the system
triggers damage or loss throughout the system.

The efficient and secure operation of power systems relies heavily on the
associated SCADA system. The advantage of PLCC is that it is less expen-
sive than dedicated communication links (including wireless links) [35, 136],
which makes it a vital component of the SCADA system. One major limi-
tation of PLCC links is their unreliability due to power line failures. This
is caused by the open circuit problem. Situations such as open switches or
disconnected power lines caused by disruptive events in the physical grid will
lead to the loss of communication in certain parts of the grid, which results in
less observability and controllability by the CC. This in turn makes it more
difficult for the CC to halt the propagation of failure in the physical grid,
which can then cause more failures in the PLCC links and hence further loss
of observability and controllability. To break this harmful cycle without in-
curring exorbitant costs, it is crucial to judiciously combine PLCC and more
reliable (and expensive) non-PLCC links in constructing the SCADA system,
which is the goal of this chapter.

5.1.1 Background & Contribution

Communication links – PLCC vs. non-PLCC: PLCC links provide a
means of supporting the SCADA system at a lower cost than using dedicated
communication links, but PLCC has its own drawbacks. Power lines are
primarily designed to be a transmission medium for electrical energy; hence,
they may not be as suitable as data network media in terms of reliability,
controllability, and security for data communication applications. Due to
the complexity of transmitting data reliably over power lines, such systems
also incur a nontrivial cost, albeit typically less than installing dedicated
physically-separate communication media.

Due to the transmission properties of power lines, transmitted signals tend
to attenuate over distance. Noise is added to the system by various loads and
switching devices. PLCC links also radiate signals so the PLCC link itself
has to meet current EMC (Electromagnetic compatibility) regulation limits
to control radio signal interference [137]. To overcome the losses resulting
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from physical characteristics of power lines, repeaters are used to transmit
signals over long distances, which re-amplify and re-package the signal to
restore its previous signal level [138]. PLCC technology is being deployed
mainly in the MV (medium voltage) distribution substations that have more
suitable communication channels due to lower attenuation, time-invariant
behavior, simplified network configurations without any branches, and fewer
noise sources [139]. In MV topologies, the positions of repeaters are fixed at
distribution substations [139].

Since power lines are already deployed in power grid, deployment costs of
PLCC links are largely confined to connecting repeaters and modems to the
existing electrical grids. In this work, for the sake of simplicity, we consider
the average cost of placing PLCC links per meter as calculated in [35]. For
non-PLCC links, fiber, copper, and microwave have been considered. Among
these non-PLCC technologies, microwave provides the best flexibility and
cost savings [35].

Admittance matrix for preventive control: The CC requires knowl-
edge of the admittance matrix of the power grid to run the preventive control.
In a power system with N buses, where each bus is connected to the other
buses through transmission lines, an N × N admittance matrix (a.k.a. B-
matrix) describes the nodal admittances of the various buses. Admittance,
expressed in the unit ”mho”, is the reciprocal of impedance, which is a com-
plex number that measures how easily an element will allow a current to flow.
Note that the impedance of a circuit element is the ratio of the phasor voltage
across the element to the phasor current through the element [140]. Most
prior works in the domain of coupled power and communication networks as-
sume constant availability of the B-matrix [70]. In practice, the B-matrix is
completely known before the cascade but only partially known as the cascade
propagates. This is because some buses may lose their connectivity to the
CC if the power lines that fail are used to implement PLCC links, the failure
of which causes these buses and their incident lines to become unobservable
to the CC.

This chapter presents a procedure to design the control communica-
tion network of a power grid under PLCC as well as non-PLCC links bud-
get constraint, using an objective that represents the expected observabil-
ity/controllability of the grid (to the CC) after initial failure. Our empirical
evaluation shows that the proposed design effectively improves the accuracy
of B-matrix estimation as well as the demand served after cascade.

The previous chapter assumes that all lines are equipped with PLCC
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links. It proposes algorithms to select a set of PLCC lines accompanied by
non-PLCC links with a budget constraint on such links. Moreover, it deals
with an idealistic assumption that all lines’ breaker status, i.e., the B-matrix,
are known. Therefore, the resource allocation focus is solely on maximizing
the controllability of generators and loads, given the budget constraint of
non-PLCC links. However, this chapter examines the DC-QSS model of cas-
cading failures in a power grid coupled with a SCADA-based communication
network, while:

1. The ideological assumption of the known B-matrix is relaxed, so we
rely solely on the status of observable breakers. The new assumption
poses new challenges, e.g., the preventive control requires estimating
the B-matrix. It also realistically captures the impact of the loss of
observations due to communication links failing because without full
sensor readings, the B-matrix cannot be fully reconstructed. The es-
timation of the admittance matrix can be divided into two parts; first
the islands formed after failures must be detected, and second the con-
nectivity of unobservable lines/nodes within islands must be estimated.
The effectiveness of the preventive control depends upon the accuracy
of both.

2. While ensuring observability of all nodes at the CC before cascade,
we consider the total cost of all communication technologies, including
both PLCC and non-PLCC link types. The reason is that deploying
PLCC links also incurs a cost, and it is not realistic to assume all links
are PLCC.

Optimization for resource allocation: There are several well-known
techniques for solving resource allocation problems. The most widely used
optimization technique is linear programming (LP) [38]. However, many
problems of interest cannot be exactly formulated as LP, in which cases re-
searchers often attempt to approximate the non-linear constraints/objective
function of their problem by linear functions and then solve the modified
problem. Mixed-integer linear programming (MILP) is a generalization of
LP such that some of the variables are constrained to be integers, while
other variables are allowed to be non-integers. MILP is often used to solve
large and complex optimization problems, as it balances imprecision from
linearization while taking advantage of the well-defined global optima and
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efficient commercial-grade solvers that are generally unavailable for mixed-
integer non-linear programming formulations [141, 142, 143].

This chapter develops an approximation solution to the proposed resource
allocation problem by relaxing the original non-linear programming problem
into a MILP (see Section 5.4).

Our main contributions of this chapter are as follows:

• In designing the communication network, we intend to mix the cost effi-
ciency of PLCC links with the reliability of non-PLCC links. The opti-
mization problem is formulated as maximizing an objective capturing the
controllability of nodes in the grid, which is weighted by the node’s im-
portance in system topology and its generation/load contribution. The
solution is a set of communication links, either PLCC or non-PLCC, in a
coupled power grid with a geographically co-located SCADA-based com-
munication network, albeit with a budget constraint limiting the number
and type of links (either PLCC or non-PLCC). We formulate the underly-
ing optimization as non-linear programming (NLP).

• By analyzing the complexity of our NLP problem, we prove that it is gen-
erally NP-hard. We derive a constant-factor approximation guarantee for
the proposed formulation, computable by mixed-integer linear program-
ming (MILP).

• We perform extensive evaluations on IEEE 118-bus power system. The
proposed algorithm consistently outperforms baselines while it effectively
(i) estimates system topology in the absence of fully known B-matrix, (ii)
increases the demand served after cascade.

5.1.2 Research Gap and Challenges

Table 5.1 summarizes literature on cascading failure in the power grid in
presence/absence of control network, indicating the interaction between the
power grid and control network as well as the authors’ assumption about the
type of communication links. Real-world examples [151, 152, 65] emphasize
the significance of understanding the interdependency between the coupled
systems of the power grid and communication network to prevent cascading
failures from causing massive blackouts. The majority of the existing works
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Literature Dependency Comm. link

[69, 144,
145]

none (standalone grid) -

[146, 147,
148]

one-way (control→ grid) non-PLCC

[70, 83, 64,
84, 149, 150]

two-way (control↔ grid) non-PLCC

[127] two-way (control↔ grid) PLCC & non-PLCC

Table 5.1: Literature on cascading failure in power grid in presence/absence
of control network

focus on the interdependency between the control network and the power sys-
tem under the simplistic assumption of secure and full connectivity between
all the nodes and the control center via non-PLCC links such as fiber optic
links. The important questions of “how to build that secure connectivity”
and “what will happen in the absence of the secure and full connectivity” of
the control network have remained unanswered. Our work addresses this gap
by characterizing the impact of having a realistic control network coupled to
the power grid on the algorithms for detecting and stopping cascades, and
optimizing the tradeoff between the reliability and the cost of constructing
such a control network.

To the best of our knowledge, we are the first to study the design of
control networks comprised of PLCC and non-PLCC links while considering
the communication needs during cascade mitigation. The main challenges
in solving this problem are: (i) the effect of control network design on the
propagation of cascade is highly non-linear and non-explicit, and (ii) the
solution space for the design is discrete and can be very large for large grids.
In this chapter, we present an optimization-based approach to tackle both
challenges that is shown to effectively support control algorithms in topology
estimation and preventive control in the face of cascading failure.

5.2 System Model & Motivation

This chapter studies cascading failure in a coupled power grid with a geo-
graphically co-located SCADA-based communication network. In summary,
a Control Center (CC) gathers data from sensors/actuators and dispatches
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preventive control commands to generators and loads. This section provides
specifics of the cascading failure and preventive control model of the power
grid.

5.2.1 System Model

Here, we model the power grid as a undirected graph G = (V,E) with no self-
loops or multiple edges, where the V and E are the buses and the transmission
lines, respectively. We also consider a geographically co-located SCADA-
based communication network, albeit with a budget constraint limiting the
number and type of links. Refer to Fig. 4.1, which shows the interaction
between the power system and the communication network during cascade.
After applying initial disturbance-based outages, we detect islands in the
power grid and balance the generation and load in each of them. The bal-
ance is obtained either by curtailing the generation across all generators or
reducing the load over all load nodes uniformly. A complete blackout in an
island results from the lack of at least one active generator within the island.

If the preventive controller is activated, all the known power grid informa-
tion, including line flows, the status of breakers, power output of generators
and consumption at load centers, are communicated through communication
links, either by power lines (PLCC links) or dedicated communication in-
frastructures (non-PLCC links). Once all the relevant information is passed
on to the preventive controller, the CC tries to reduce line overloading by
issuing control commands, which are communicated back to the power grid.

5.2.2 Preventive Control & Topology Estimation

To prevent cascade propagation, centralized generation redispatch and load
shedding can be deployed using the control network. The admittance matrix
(B-matrix) provides the topology of the power grid, as well as the information
needed for the load/generation reduction or the power flow study of buses.
Although the complete system information is available before the outage, it
is only partially known as the cascade proceeds. Due to interdependency be-
tween cyber and physical layers of the grid, failure in the power grid during
a cascade leads to outages in the communication network, which gradually
decreases the observable areas. Hence, in the absence of a fully known ad-
mittance matrix, we need to estimate it. In the following, we focus on the
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preventive control and estimation of the power grid admittance matrix (B̂)
in detail.

5.2.2.1 Example Application 1 - Preventive Control

The CC houses the preventive controller in the geographically co-located
SCADA-based communication network and by running the optimization prob-
lem (4.1) in previous chapter at regular intervals, minimizes the sum of total
amount of load shedding and weighted overloads in the power grid.

5.2.2.2 Example Application 2 - Topology Estimation

The admittance matrix is of critical importance because it is used to analyze
the data needed in the load/generation reduction or the power flow study
of buses; for example, breaker statuses indicate tripped lines in the power
system. In summary, the B-matrix explains the admittance and the topology
of the power system. In the absence of a fully known B-matrix, formulation
(4.1) takes B̂ (the estimated admittance matrix of the power grid), proposed
in [1] as input, such that (4.1b) is replaced with

∆PG −∆PL = B̂∆θ, ∆θi = 0,∀i ∈ Ωref (5.1a)

As the cascade propagates, multiple line outages may happen in sequence,
which leads to the formation of many islands within the power grid. Authors
in [1] first identify the buses forming the connected components and then de-
tect further line outages within the individual islands. Their topology identi-
fication algorithm uses power system measurements and observable breaker
statuses. Also, their proposed estimation is verified at every step of the cas-
cading failure. As the estimation methodology of the admittance matrix is
outside the scope of this chapter, we skip the detailed explanation of it and
refer the audience to [1]. We use this method of estimating the admittance
matrix in preventive control of cascading failure, in a closed-loop fashion.

The principle of energy conservation in each island requires the existence
of at least one active generator to produce power and at least one non-zero
load to consume the power. The island will be dead if there is no active gen-
erator or non-zero load within it. As this chapter focuses on the re-dispatch
control sub-problem, it necessitates an accurate island estimation. To that
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end, at least one generator and one load must be observable within that par-
ticular island. The results in [1] show that the identification is accurate in
more than 95% of cases when at least 50% of nodes are observable in each
island (including at least one generator and one load bus). Hence, for the
purpose of preventive control, we focus on ensuring observability of gener-
ator and load nodes from the CC’s points of view that can provide these
two objectives: (i) observing at least one active generator and one non-zero
load in each island and (ii) observing at least 50% of nodes in each island.
Satisfying these objectives helps identify the islands, followed by identifying
the B̂ within each island.

These two focus areas are complementary, but neither is solely enough
to ensure maximum served demand. The former approaches the cascade
prevention purely from a controllability standpoint, while the latter considers
the sub-problem from the observability side. For the sake of simplicity, we
refer to islands consisting of at least one active generator and one non-zero
load as valuable islands. Highly observable islands are valuable islands with
at least 50% nodes observable by the CC.

5.2.3 Motivating Experiment
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Figure 5.1: Performance evaluation of scenarios (a) randomly selecting
PLCC links under B = 40 and (b) mixture of suitably placed PLCC and
non-PLCC links under B = 35, in terms of median and lower adjacency of

Dp
tot.

To understand the potential value of preventive control in mitigating
cascading failures, we evaluate the performance of a network with preventive
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control. Considering the IEEE 118-bus system[153] as a test system, which
includes 118 buses, 186 branches, and 54 generators. We randomly fail 5%
of the buses in the power grid and calculate the served power after cascade
propagation in scenarios (i) having no communication network versus (ii) a
network of 100%-PLCC links and (iii) a network of 100%-non-PLCC links.
In scenarios (ii) and (iii), the communication networks are geographically
co-located with the power grids and have the same topology as power grids.
Assuming each PLCC link costs 0.3 and non-PLCC costs 0.6, the total cost
for the communication network is B = 55.8 and B = 111.6 for scenarios (ii)
and (iii), respectively. In this experiment, 100 random cases were tested.
Results show that the mean of residual power after cascade propagation are
2041.3 MW (47.57% of the initial power), 2492.1 MW (58.08% of the initial
power), and 3038.3 MW (70.81% of the initial power) for scenarios (i), (ii),
and (iii), respectively. As it was expected superior performance is achieved
with a pure non-PLCC communication network, albeit at a higher cost.

In the next example, we show that by strategically-placing non-PLCC
and PLCC links, we achieve better efficacy in mitigating cascading failures
compared with a more expensive communication network that only employs
PLCC links. We describe the algorithms we use to determine this placement
in the remainder of the chapter; here we are just summarizing the large

Table 5.2: Percentage of (i) valuable and (ii) highly observable islands in
different scenarios (a) randomly selecting PLCC links under B = 40 and (b)

mixture of suitably placed PLCC and non-PLCC links under B = 35.

scenario (a) scenario (b)

(i) 16.38 32.97
(ii) 3.01 26.34

Table 5.3: Percentage of estimation accuracy in different scenarios (a)
randomly selecting PLCC links under B = 40 and (b) mixture of suitably
placed PLCC and non-PLCC links under B = 35 for (i) valuable, (ii) highly

observable and (iii) slightly observable islands.

scenario (a) scenario (b)

(i) 39.54 87.48
(ii) 51.67 93.55
(iii) 33.11 52.20
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benefit of a good solution. We randomly fail 1%-10% of the buses in the power
grid and calculate the served power after cascade propagation in scenarios
(a) having a network of randomly placed PLCC links under budget B = 40
versus (b) communication network that is mixture of appropriately placed
PLCC and non-PLCC links under budget B = 35. In this experiment, 100
random cases were tested. Results in Fig.5.1 show superior performance in
the latter scenario, although its budget is tighter.

In support of topology estimation and the accuracy of the B̂ (the es-
timated admittance matrix of the power grid), Table 5.2 and Table 5.3
demonstrate the importance of installing the appropriate type of links in
the communication network. Table 5.2 compares the percentage of valuable
and highly observable islands, where valuable islands consist of at least one
active generator and one non-zero load. Highly observable islands are the
valuable islands with at least 50% nodes observable by the CC, otherwise
they are considered as slightly observable islands (the valuable islands with
less than 50% nodes observable by the CC). Furthermore, Table 5.3 checks
the percentage of correctly identified islands.

These examples demonstrate the potential value of preventive control and
the role of types of links in mitigating cascading failures, jointly considering
the budget.

5.3 Problem Formulation

Without a properly designed communication network, a SCADA-based sys-
tem cannot work adequately. All supervisory control and data acquisition
aspects of the SCADA system rely entirely on the communication system to
provide a conduit for data flow.

This chapter’s main improvement in providing sufficient observability and
controllability for cascade prevention is observing and mitigating cascades in
valuable islands. Also, to guarantee the CC’s communication with these
islands, it is crucial to correctly place PLCC and non-PLCC links, as failure
in the power line fails the PLCC link piggybacked on the line. Moreover,
we assume all the communication nodes, i.e., sensors, actuators, and relays,
have battery backups and are immune from power grid failures.
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Table 5.4: Table of notations

Notation meaning
B admittance matrix

B̂ estimated admittance matrix
V set of nodes in the power grid
E set of links in the power grid
C set of communication link platforms
wc cost of communication link type c
sce binary variable shows type c of communication link e
fk
ij flow of commodity k from node i to node j
B communication links budget
Pi the set of all possible paths between the CC and node i
γi the importance of observing/controlling node i by the CC
pc reliability of communication link type c

5.3.1 Underlying Optimization Problem

We formulate the problem as link placement optimization in the communi-
cation network, considering both PLCC and non-PLCC links, albeit under
a budget of B to capture the resource constraints. In this way, we com-
bine the cost efficiency of PLCC links and the robustness against cascades of
non-PLCC links. Although cascade prevention aims to maximize the total
demand served after the cascade, this objective function is not an explicit
function of link placement. To address this challenge, we propose using an
objective function as follows, which is the same objective function in previous
chapter.

Without loss of generality, we assume that the given power grid topology
G = (V,E) is a undirected graph with no self-loops or multiple edges. Let
Pi, ∀i ∈ V denote the set of all possible paths between the CC and node
i. By modeling each path m ∈ Pi as a set of traversing links, the total
reliability of the network is defined as follows (assuming nodes never fail),
where ρe denotes the reliability of link e.

∑
i∈V

(
1−

∏
m∈Pi

(1−
∏
e∈m

ρe)

)
, (5.2)

Let the binary variables sce ∈ {0, 1} indicate selection of link e by type
c ∈ C, and pc denote the reliability of type c link (PLCC or non-PLCC).
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Reliability of link e is defined as ρe :=
∑

c∈C s
c
epc. Thus, the link placement

problem (5.3) maximizes the total reliability of the network under a given
budget of PLCC and non-PLCC links, while ensuring each node is observable
by the CC. The principal used notations are described in Table 5.4.

max
∑
i∈V

γi

(
1−

∏
m∈Pi

(1−
∏
e∈m

∑
c∈C

scepc)

)
(5.3a)

s.t.
∑
e∈E

∑
c∈C

sce.wc ≤ B (5.3b)∑
c∈C

sce ≤ 1,∀e ∈ E (5.3c)

∑
j∈V

fk
ij −

∑
j∈V

fk
ji =


1 i = CC

−1 i = k

0 otherwise

∀i ∈ V, ∀k ∈ V \ {CC}

(5.3d)

fk
ij ≤

∑
c∈C

sle,∀e = {(i, j) ∨ (j, i)} ∈ E, k ∈ V \ {CC} (5.3e)

fk
ij ≥ 0,∀e = {(i, j) ∨ (j, i)} ∈ E, k ∈ V \ {CC} (5.3f)

sce ∈ {0, 1},∀e ∈ E,∀c ∈ C (5.3g)

Here, binary variables sce ∈ {0, 1} indicate the selection of type c for link
e and the variable fk

ij for each arc (i, j) symbolizes the flow of commodity
k from node i to node j. Briefly, the Non-Linear Programming (NLP) (5.3)
aims at selecting PLCC and non-PLCC links up to budget B to maximize
the expected total weight of all the nodes remaining connected to the CC
after the initial failure. Intuitively, the more nodes connected to the CC,
the better the CC observes and controls the grid, and hence mitigates the
failure cascading properly. However, not all the nodes are equally important;
therefore, we use the weight γi to consider the importance of observing and
controlling node i. Constraints (5.3b) and (5.3c) make sure that the budget
is not exceeded, and for each link at most one type of communication link
is selected, respectively. Constraints (5.3d)-(5.3f) guaranty the observability
of each node by the CC before any failure occurs, which is based on the
link constrained Steiner tree problem in undirected graphs, described in the
following.
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Definition 5.3.1 ([154]). Given the undirected graph G(V,E) with non-
negative edge cost, Link Constrained Steiner Tree problem of V determines
the Steiner tree T = (V,E(T )) rooted at a source node with minimum cost
and such that the number of edges E(T ) ∈ E is less than or equal to a given
threshold.

Graph construction: Given the undirected graph G(V,E), construct the
bi-directed graph H =(V,A) such that an edge e ∈ E incident to nodes i
and j, is replaced by two arcs, that is, {(i, j), (j, i)} ∈ A. Considering a
commodity k for each node V \{CC}, the variable fk

ij for each arc (i, j) ∈ A,
represents the flow of commodity k from node i to node j.

Claim: The solution of link constraint Steiner tree problem on graph
H =(V,A) provides a solution to the constraints (5.3d)-(5.3f) on graph G =
(V,E).

Proof of the claim: The Steiner tree T = (V,E(T )) of graph H obtains
a Steiner arborescence rooted at node CC, containing a directed path from
node CC to every other terminal node in V \ {CC}. The variable sce takes
value equal to 1 if corresponding edge e ∈ E(T ) and 0 otherwise.

5.3.2 Complexity analysis

Consider the special case that the costs of different communication links
are {1, 0} for non-PLCC and PLCC links, respectively. Since PLCC costs
nothing, without loss of generality we can assume that

∑
c∈C s

c
e = 1 for every

link e, thus constraint (5.3c) is unnecessary. Moreover, constraints (5.3d)-
(5.3f) are no longer needed as there is a communication path between the
CC and every other node (assuming the power grid topology is connected
before failure through PLCC links). Thus, the NLP formulation (5.3) changes
to (5.4) by keeping equations (5.3a), (5.3b) and (5.3g).

max
∑
i∈V

γi

(
1−

∏
m∈Pi

(1−
∏
e∈m

∑
c∈C

scepc)

)
(5.4a)

s.t.
∑
e∈E

∑
c∈C

sce ≤ B (5.4b)

sce ∈ {0, 1} ∀e ∈ E,∀c ∈ C (5.4c)
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Theorem 5.3.1. Problem (5.4) is NP-hard.

Proof. Formulation (5.3) is a generalization of the NP-hard optimization in
Chapter 4.

NP-hardness of the special case (5.4), proves (5.3) is NP-hard too.

5.4 Approximation Algorithm

In the previous section, we proposed the link placement problem (5.3), which
maximizes the total reliability of the network from the CC’s point of view,
based on jointly considering the topology and power system information met-
rics. In this section, we explore an efficient solvable solution, which derives
a constant-factor approximation algorithm for the formulation (5.3) that is
computable by MILP.

Optimization link placement problem (5.3) aims at maximizing (5.3a),
which is the root of non-linearity. Let pmin := minc∈C pc and pmax := maxc∈C pc
denote the minimum and maximum reliability per link, where pc shows the
reliability of link type c.

Assume V = V1∪V2∪V \{V1∪V2} such that V1 := {i ∈ V :
∑

m∈Pi

∏
l∈m pmax

≤ 1} and V2 := {i ∈ V :
∏

l∈m2,max
pmin ≥ 1} can be any subsets of V , where

|m2,max| is the maximum hop count per path over all the paths in
⋃

i∈V2
Pi.

For the sake of simplicity, let Al =
∑

c∈C s
c
lpc. Hence, the objective func-

tion (5.3a) changes to (5.5):

max
∑
i∈V1

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
+

∑
i∈V2

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
+

∑
i∈V \ {V1∪V2}

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

) (5.5)

Theorem 5.4.1. The optimal solution to (5.6) yields a (1−ϵ)-approximation

for (5.3) under the condition of p
|m3,max|
min ≥ p

|m3,min|
max (1 − 1

e
)|Pmax|, where
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ϵ := (e− (e− 1)(1− pmin)|m1,max|)−1 such that |m1,max| denotes the max-
imum hop count per path over all the paths in

⋃
i∈V1

Pi. Moreover, |m3,min|
defines the minimum hop count per path over all the paths in

⋃
i∈V \ {V1∪V2} Pi

and |Pmax| := maxi∈V \ {V1∪V2} |Pi|.

max UB + UB′ + UB”

s.t. (5.3b)− (5.3g),
(5.6)

where UB, UB′ and UB” are the upper-bounds of the first, the second, and
the third terms of (5.5), respectively, defined as:

UB :=
∑
i∈V1

γi
∑
m∈Pi

(
(1− (1− 1

e
)
∑
l∈m

(1− Al)

)
(5.7)

UB′ :=
∑
i∈V2

γi (5.8)

UB” :=
∑

i∈V \ {V1∪V2}

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

pmax)

)
(5.9)

PROOF OF THEOREM 5.4.1:

Proof.

Definition 5.4.1 ([155]). Goemans-Williamson inequality gives the follow-
ing bound (5.10) for any sequence of yi ∈ [0, 1], i ∈ {1, ..., n}:

(1− 1

e
)min{1,

n∑
i=1

yi} ≤ 1−
n∏

i=1

(1− yi) ≤ min{1,
n∑

i=1

yi} (5.10)

By applying (5.10) to the first term in (5.5), for all nodes in V1 we have

∑
i∈V1

γi(1−
1

e
)min{1,

∑
m∈Pi

∏
l∈m

Al} ≤
∑
i∈V1

γi(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤
∑
i∈V1

γi min{1,
∑
m∈Pi

∏
l∈m

Al}.
(5.11)
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As for i ∈ V1 :
∑

m∈Pi

∏
l∈m Al ≤

∑
m∈Pi

∏
l∈m pmax ≤ 1, so min{1,

∑
m∈Pi∏

l∈m Al} =
∑

m∈Pi

∏
l∈m Al. Thus,

(1− 1

e
)
∑
i∈V1

γi
∑
m∈Pi

∏
l∈m

Al ≤
∑
i∈V1

γi×(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤
∑
i∈V1

γi
∑
m∈Pi

∏
l∈m

Al.

(5.12)

Let |m1,max| denotes the maximum hop count per path over all the paths
in
⋃

i∈V1
Pi. Define

ϵ := (e− (e− 1)(1− pmin)|m1,max|)−1 . (5.13)

If (1 − pmin)|m1,max| < 1, then
∑

l∈m(1 − Al) < 1 for all m ∈
⋃

i∈V1
Pi ,

ϵ ∈ [1
e
, 1), and

ϵ ≥

(
e− (e− 1)

∑
l∈m

(1− Al)

)−1

, ∀m ∈
⋃
i∈V1

Pi. (5.14)

By applying (5.10) to (5.12), we have

LB := (1− 1

e
)
∑
i∈V1

γi
∑
m∈Pi

(
1−

∑
l∈m

(1− Al)

)
≤

∑
i∈V1

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤

∑
i∈V1

γi
∑
m∈Pi

(
(1− (1− 1

e
)
∑
l∈m

(1− Al)

)
:= UB.

(5.15)

From (5.14), we get

(1− 1

e
)

(
1−

∑
l∈m

(1− Al)

)

≥ (1− ϵ)

(
1− (1− 1

e
)
∑
l∈m

(1− Al)

)
,

(5.16)
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which implies

LB ≥ (1− ϵ)
∑
i∈V1

γi
∑
m∈Pi

(
1− (1− 1

e
)
∑
l∈m

(1− Al)

)
= (1− ϵ)UB.

(5.17)

Hence,

(1− ϵ)UB ≤
∑
i∈V1

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤ UB. (5.18)

By applying (5.10) to the second term in (5.5), for all nodes in V2 we have

∑
i∈V2

γi(1−
1

e
)min{1,

∑
m∈Pi

∏
l∈m

Al} ≤
∑
i∈V2

γi×(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤
∑
i∈V2

γi min{1,
∑
m∈Pi

∏
l∈m

Al}.
(5.19)

As for all nodes in V2 ,
∑

m∈Pi

∏
l∈m Al ≥

∏
l∈m2,max

pmin ≥ 1, so

min{1,
∑

m∈Pi

∏
l∈m Al} = 1. Thus,

(1− 1

e
)
∑
i∈V2

γi ≤
∑
i∈V2

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤∑

i∈V2

γi := UB′.

(5.20)

From (5.14), 1
e
≤ ϵ. Hence,

(1− ϵ)UB′ ≤
∑
i∈V2

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤ UB′. (5.21)

Considering the third term in (5.5), for all nodes in V \ {V1 ∪ V2} we
have (5.22), where |m3,max| denotes the maximum hop count per path over
all the paths in

⋃
i∈V \ {V1∪V2} Pi.
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LB” :=
∑

i∈V \ {V1∪V2}

γi
∏

l∈m3,max

pmin ≤

∑
i∈V \ {V1∪V2}

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤

∑
i∈V \ {V1∪V2}

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

pmax)

)
:= UB”

(5.22)

Special case: Consider the condition of p
|m3,max|
min ≥ p

|m3,min|
max (1 − 1

e
)|Pmax|,

where |m3,min| defines the minimum hop count per path over all the paths in⋃
i∈V \ {V1∪V2} Pi and |Pmax| := maxi∈V \ {V1∪V2} |Pi|.
In this special case, by applying binomial expansion, we get

UB” =
∑

i∈V \ {V1∪V2}

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

pmax)

)

≤
∑

i∈V \ {V1∪V2}

γi

1− (1−
∏

l∈m3,min

pmax)
|Pi|

 .

(5.23)

So,

∑
i∈V \ {V1∪V2}

γi

1− (1−
∏

l∈m3,min

pmax)
|Pi|

 <

∑
i∈V \ {V1∪V2}

γi

1− (1− |Pi|
∏

l∈m3,min

pmax)

 =

∑
i∈V \ {V1∪V2}

γi |Pi| p|m3,min|
max ≤ (1− 1

e
)−1×

∑
i∈V \ {V1∪V2}

γi p
|m3,max|
min = (1− 1

e
)−1 LB”.

(5.24)
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From (5.14), 1
e
≤ ϵ. Hence,

(1− ϵ)UB” ≤∑
i∈V \ {V1∪V2}

γi

(
1−

∏
m∈Pi

(1−
∏
l∈m

Al)

)
≤ UB”.

(5.25)

Finally, by (5.18), (5.21) and (5.25), we have

(1− ϵ)(UB + UB′ + UB”) ≤ (5.3a) ≤
UB + UB′ + UB”

. (5.26)

5.5 Performance Evaluation

This section demonstrates the performance of the proposed approximation
algorithm on an electric power system.

5.5.1 Benchmarks and metrics

To assess the performance of the proposed algorithm, we use the following
benchmarks:

• The approximation algorithm (5.6), using a MILP solver (MATLAB
intlinprog);

• LP-relaxation with rounding, which first solves the LP-relaxation of
proposed approximation algorithm (5.6), and then rounds the link se-
lection variables to {0, 1}, subject to constraints (5.3b)-(5.3c);

• (1 + ε, 1)-approximation algorithm of CMST, which is explained in
part 5.5.1.1 in the following;

• (1, 1 + ε)-approximation algorithm of CMST, which is explained in
part 5.5.1.1 in the following;

• BC method, which is explained in part 5.5.1.2 in the following;

• Random, which randomly selects links and their type until exhausting
the budget or assuring the CC’s connectivity to all nodes.
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5.5.1.1 (α, β)-Approximation of CMST

The general NP-hardness of MILP approximation algorithm (5.6) motivates
us to develop the following alternative solution by focusing solely on the
graph-theoric metric of the network. In this method, we form a special case
of the constrained minimum spanning tree (CMST) problem based on the
power grid topology. Then, we apply an (α, β)-approximation of it, albeit
with a budget constraint. Although this method differs from (5.3) in the
objective function, we will show that it is polynomial-time solvable while
achieving considerably better performance compared to random in terms
of served loads and accuracy of B̂. Recalling that the solution of (5.3) is
a spanning tree, the output of this method is also a spanning tree. This
method reveals that having a connected communication network such that
the CC is connected to all nodes, does not necessarily guarantee the best
performance, as shown later in Fig. 5.7.

Let H′ = (V,A′) be a undirected graph and W is a positive integer.
Assume two different non-negative functions, weight and cost, associate on
edges in A′.

Definition 5.5.1 ([156]). The constrained minimum spanning tree (CMST)
problem on graph H′ is to identify a minimum total cost spanning tree on
graph H′, such that the total weight is at most W .

Definition 5.5.2 ([156]). Given two positive real numbers α and β, an
(α, β)-approximation algorithm for the CMST problem on graph H′ is de-
fined as a polynomial-time algorithm that returns a solution with the total
weight at most α times the bound W , and the total cost at most β times the
total cost of the optimal solution for the CMST problem.

Graph construction: Given the power grid topology G(V,E), construct
graph H′ = (V,A′), such that an edge e ∈ E is replaced by two edges with
associated weights equal implementation cost of PLCC and non-PLCC link.
Assign each edge in A′ the cost equals 1 − pc, where pc is the reliability of
edge e with type c.

Claim: Assume W equals B (the budget of communication links), and
ε > 0 is a positive constant. Then, (1, 1 + ε)-approximation algorithm [156]
and (1+ ε, 1)-approximation algorithm [157] of the CMST problem on graph
H′, provide (1, 1+ ε) and (1+ ε, 1)-approximation solutions of problem (5.3)
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on graph G, respectively.

Proof of the claim: The approximation solution T ′ = (V,E(T ′)) on graph
H′ = (V,A′) obtains a spanning tree rooted at node CC, containing a di-
rected path from node CC to every other node in V \ {CC}. The variable sce
takes value equal to 1 if corresponding edge e ∈ E(T ′) and 0 otherwise.

Complexity: Given undirected graph H′ = (V,A′), the time complexity of
two polynomial time (1, 1+ε)-approximation and (1+ε, 1)-approximation al-
gorithms of CMST on graphH′ areO((|V | log log |V |+|V |1/((1+ε)ζ−1) log log(1+

ε))(|A′| log2 |V |+|V | log3 |V |)) [156], andO(|V |O( 1
ε
)(|A′| log2 |V |+|V | log3 |V |))

[157] for any constant ε > 0, respectively. ζ > 0 is a constant. As we con-
struct graph H′ = (V,A′) from the power grid topology G(V,E), hence
|A′| = 2|E|.

5.5.1.2 BC method

Given the power grid topology G(V,E), this method sequentially considers
each link e ∈ E and computes the value of BCe equal to the maximum be-
tweenness centrality of its two endpoints. The betweenness centrality of a
node is the frequency that it appears on the shortest paths between all pairs
of nodes in the graph [130]. Then, in the descending order of BCe, it selects
non-PLCC links until reaching 5% of the total budget (the proposed ap-
proximation algorithm (5.6) utilizing almost the same non-PLCC links), and
PLCC links until exhausting the budget or assuring the CC’s connectivity
with all other nodes.

Remark: The BC method gives priority to links incident to nodes with
higher betweenness centrality. Intuitively, these nodes have substantial in-
fluence over the information passing between other nodes. Thus, the goal is
to maintain as many paths from these elements in the power grid to the CC.

To demonstrate the effectiveness of the proposed algorithm, we use two
metrics supporting different applications: the ratio of valuable and highly
observable islands in support of topology estimation, and the statistical mea-
surements of load served after failure cascade in support of preventive con-
trol. Recall that valuable islands are islands consisting of at least one active
generator and one non-zero load, and highly observable islands are the valu-
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able islands with at least 50% nodes observable by the CC. In the former
metric, the total numbers of formed islands are normalized by the 2-norm
method [158]. For the latter metric, we show the lower adjacency and the me-
dian of the change in total post-contingency demand served (Dp

tot). The lower
adjacency is the smallest data point that is not an outlier in the plot, which
is 1st quartile - 1.5×inter-quartile range. Dp

tot before any failure is 4291 MW .
Moreover, to examine the accuracy of the B̂, we check the percentage of cor-
rectly identified islands in some scenarios and eventually compare misses and
false alarms in identifying the connected/tripped lines within the islands.

5.5.2 Simulation Setup

We evaluate the proposed solution on the IEEE 118-bus system[153], includ-
ing 118 buses, 186 branches, and 54 generators. We study cases with initial
bus outages varying from 1% − 10% of the total buses. For each case, 100
random sets of node outages have been considered, such that all result in
cascade. The CC is situated on bus 49, one of the highest degree nodes in
the power grid system. The preventive control optimization and the delay in
line tripping are both set to 80 seconds.

It is difficult to get data on the implementation cost of different types
of communication links. In general, fiber and then microwave links have
the highest implementation cost, while PLCC links are the cheapest [159].
Authors in [35] and [136] estimate the implementation cost of PLCC, mi-
crowave, and fiber as $123, $241 and $450 per meter, respectivey, where in
this work, we normalize these costs. For the sake of simplicity, we consider
all non-PLCC links as microwave, and set the cost of non-PLCC links twice
the cost of PLCC links, which are 0.6 and 0.3, respectively. Note that this
parameter setting implies that all links are assumed to have the same length,
but our solution can be easily extended to incorporate heterogeneous lengths.

We set reliability, pc, of PLCC and non-PLCC links to 0.99 and 0.9999 [135].
Therefore, equations (5.21) and (5.25) hold for special cases V2 = {∅},
|Pmax| = 1 and |m3,max| ≤ 45.

5.5.3 Results

To provide a general understanding of different algorithms, we depict design
outcomes of the benchmarks discussed in part 5.5.1 in Fig. 5.2. Figure 5.2(a)
shows the IEEE 118-bus power grid topology, and Figs. 5.2(b-g) offer the
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(a) Power grid topology (b) Approximation method

(c) BC method (d) LP-relaxation method

(e) (1,1.02)-approximation of CMST (f) (1.02,1)-approximation of CMST

(g) Random method

Figure 5.2: Graphs showing (a) the power grid topology and (b-g) the
communication network obtained from different design methods. Black

edges: PLCC, red edges: non-PLCC, CC: control center
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communication layers of the IEEE 118-bus power system under different de-
signs before imposing any failure. The budget is set to 40. It is sensible
to conclude that different link selection policies lead to picking various links
as PLCC and non-PLCC, which further affect the performance of cascade
prevention. Next, we will explain the settings used in these benchmarks to
produce the corresponding communication networks in more detail.

5.5.3.1 Setting Design Parameters

Comparison under node weight definition: Recalling that γi represents the
importance of observing node i by the CC, we examine both the topological
(centrality and degree) and the service (power injection) importance of node
i. Moreover, we impose upper-bounds L and N on the length and number
of paths between the CC and any particular node. This is justified because
the throughput of a flow drops as the hop count increases.

We compare performance of the approximation algorithm (5.6) under
four different definitions of weights: (i) power injection × BC (Betwenness
centrality), (ii) BC, (iii) degree, and (iv) power injection of nodes solely.
Upper-bounds B = 40, N = 5 and L = 20 are also imposed.

The results in Fig. 5.3 and Table 5.5 show that the node weight definition
of “the BC of the node × the real power injected at the node” attains the
best performance in both the total load served after cascade and topology
estimation, as it considers both the topological (BC) and the service (power
injection) importance of node i. For the rest of the results in this section, we
will use this definition of weight for the approximation algorithm.

Table 5.5: The effect of different node weight definition on approximation
algorithm on percentage of (i) valuable and (ii) highly observable islands

under B = 40, N = 5 and L = 20.

BC × power BC degree power

(i) 54.55 48.82 48.30 47.07
(ii) 42.48 38.01 37.60 36.80

Configuration of proposed approximation algorithm: We compare perfor-
mance of the proposed approximation algorithm under different limits on
number (N) of paths in Fig. 5.4 and Table 5.6 between each node and the
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Figure 5.3: Performance evaluation of approximation algorithm in terms of
median and lower adjacency of Dp

tot for different node weight definition
under B = 40, N = 5 and L = 20.

CC. Figure 5.5 and Table 5.7 show the effect of length (L) of paths between
each node and the CC in the approximation algorithm. We also evaluate the
approximation algorithm such that the paths in each Pi (i ∈ V ) are disjoint
with each other, without limitation on path length and number. The re-
sults note that topology estimation and cascade prevention achieve the best
performance by allowing overlap between paths, picking a smaller N and a
larger L. For the rest of the results, we set N = 5 and L = 20 in the ap-
proximation algorithm. Also, Fig. 5.2(b) shows the designed communication
network of the approximation algorithm for IEEE 118-bus system under these
settings. In this figure, budget and node weight definition are considered 40
and “the BC of the node × the real power injected at the node”, respectively.

Table 5.6: The effect of varying N on percentage of (i) valuable and (ii)
highly observable islands under B = 40 and L = 20.

disjoint path N = 15 N = 10 N = 5

(i) 42.83 48.82 51.79 54.78
(ii) 34.04 37.91 39.84 42.66

Comparison under different budget: In Fig. 5.6 and Table 5.8, we show the
proposed approximation algorithm’s performance under different budgets.
As expected, the higher budget performs the best, as it produces a better-
connected communication graph with more links, especially non-PLCC links.
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Figure 5.4: Performance evaluation of approximation algorithm in terms of
median and lower adjacency of Dp

tot for different N under B = 40 and
L = 20.
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Figure 5.5: Performance evaluation of approximation algorithm in terms of
median and lower adjacency of Dp

tot for different L under B = 40 and N = 5.

Table 5.7: The effect of varying L on percentage of (i) valuable and (ii)
highly observable islands under B = 40 and N = 5.

disjoint path L = 20 L = 15 L = 10

(i) 45.85 58.65 47.41 46.05
(ii) 36.44 45.68 37.41 36.64

To compare the proposed method with existing solutions where all the
communication links are considered as non-PLCC, we compare the results
from the motivating experiments (Section 5.2.3) with Fig. 5.6 under 5% ini-
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tial bus outages. The existing solutions require a budget of B = 111.6, and
the mean value of the served power after cascade propagation is 3038.3 MW
(70.81% of the initial power). Meanwhile, using the proposed technique, we
can achieve a mean served power after cascade propagation of 2993.75 MW
(69.78% of the initial power) at a budget of B = 50. This comparison shows
that our solution can significantly reduce the cost of constructing the com-
munication network with little negative impact on the efficacy of preventive
control.

We also calculate the network’s reliability as defined in (5.3a), under
different budget scenarios. The results are 1.96, 0.84, 0.75 and 0.51 for
budgets of 50, 45, 40 and 35, respectively. The results follow the same
trend as Figs. 5.6 and note that a more reliable network delivers higher post-
contingency served demand after cascade. The nodes’ weights are normalized
here.

To analyze the accuracy of the B̂, Table 5.9 provides the percentage of
islands that have been correctly identified for different budget scenarios. For
each scenario, 100 random cases were tested. In this table, the “slightly
observable” islands are the valuable islands that are not highly observable;
in other words, they include less than 50% nodes observable by the CC. As
was expected, a higher budget leads to higher accuracy of island detection
obtained from a more resilient communication network.
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Figure 5.6: Performance evaluation of proposed approximation algorithm in
terms of median and lower adjacency of Dp

tot for different B under N = 5
and L = 20.

Configuration of (α, β)-approximation of CMST algorithm: Recalling that
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Table 5.8: The effect of varying budget in proposed approximation
algorithm on percentage of (i) valuable and (ii) highly observable islands

under N = 5 and L = 20.

B = 35 B = 40 B = 45 B = 50

(i) 32.97 43.40 52.74 64.80
(ii) 26.34 33.80 38.76 46.71

Table 5.9: The effect of varying budget in proposed approximation
algorithm on percentage of estimation accuracy for (i) valuable, (ii) highly
observable and (iii) slightly observable islands (under N = 5 and L = 20).

B = 35 B = 40 B = 45 B = 50

(i) 87.48 90.87 95.99 99.57
(ii) 93.55 95.79 98.38 99.82
(iii) 52.20 67.23 87.32 98.57

the (1 + ε, 1)-approximation of CMST algorithm allows an extra budget of
εB, hence, larger ε supplies a larger budget. We evaluated the communica-
tion network of (1 + ε, 1)-approximation of CMST algorithm under varying
ε, which are not shown in the chapter. Results indicate that larger ε returns
a graph with more links, especially more non-PLCC links; hence it performs
better. To make the result of (1 + ε, 1)-approximation of CMST algorithm
comparable with other benchmarks, we fix ε to a small value of 0.02.

We also found that the (1, 1 + ε)-approximation of CMST design is not
sensitive to ε. The reason is that this method focuses on minimizing the cost
of the constructed MST such that the total weight is at most B. In words,
this algorithm groups links based on their cost, defined as “1− reliability of
the link”. Then, in ascending order of the costs, it constructs a MST from
the links’ groups of not bigger than that particular cost. The cost of a non-
PLCC link is smaller than PLCC; however, the MST of all non-PLCC links
doesn’t satisfy the weight budget constraint. So the (1, 1+ ε)-approximation
of CMST algorithm gives the same MST of PLCC links, independently of ε.

Figures 5.2(e/f) depicts the designed communication networks of (1, 1.02)/
(1.02, 1)-approximation of CMST algorithm for IEEE 118-bus system. Bud-
get is 40 in these figures.

Overall comparison of all algorithms:
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Figure 5.7: Performance evaluation of all algorithms in terms of median
and lower adjacency of Dp

tot under B = 40, (N = 5 and L = 20 for
approximation).

Table 5.10: Performance of different methods in terms of (i) percentage of
valuable and (ii) percentage of highly observable islands under B = 40,

(N = 5 and L = 20 for approximation).

Approximation BC LP-relaxation

(i) 43.46 38.95 39.15
(ii) 33.85 27.20 23.18

(1.02,1)-aprx of CMST (1,1.02)-aprx of CMST Random

(i) 38.10 33.63 18.93
(ii) 15.39 10.23 3.05

5.5.3.2 Overall Comparison of All Algorithms

Finally, Fig. 5.7 and Table 5.10 compare the performance of all algorithms
in terms of total post-contingency demand served Dp

tot and the percentage
of valuable/highly observable islands in the power grid after cascade. Re-
sults show the proposed approximation algorithm consistently exceeds all
the baselines, which emphasizes the importance of strategically placing links
considering both the system topology and its generation/load contribution.
The second best algorithm, the BC method, outperforms the LP-relaxation
with rounding benchmark and works notably better than (1, 1.02)/(1.02, 1)-
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Table 5.11: Performance evaluation of all algorithms in terms of percentage
of estimation accuracy in (i) valuable, (ii) highly observable and (iii)
slightly observable islands under B = 40, (N = 5 and L = 20 for

approximation method).

Approximation BC LP-relaxation

(i) 92.55 90.16 88.89
(ii) 96.22 94.23 93.62
(iii) 70.00 66.67 64.86

(1.02,1)-aprx of CMST (1,1.02)-aprx of CMST Random

(i) 72.33 61.62 42.42
(ii) 89.62 74.29 60.40
(iii) 63.92 54.69 33.16

approximation of CMST algorithms due to placing non-PLCC links at the
network’s weakest parts. In (1, 1.02)/(1.02, 1)-approximation of CMST de-
signs, although there is not a notable gap in the percentage of valuable islands
with respect to the LP-relaxation and BC methods, Only a small portion of
these islands are highly observable. The reason is that these approximation
of CMST algorithms create a spanning tree; hence the created graph is not
well-connected and can be broken into subtrees simply in failure occurrence.
Furthermore, the (1, 1.02)-approximation of CMST graph only uses PLCC
links that are not immune to failure, while (1.02, 1)-approximation of CMST
picks non-PLCC links without any specific strategy. We have also added the
”upper bound” of 100% non-PLCC case with no budget constraint. This case
gives the potential room of improvement on top of the proposed algorithm.

Table 5.11 gives the percentage of correctly identified islands for different
methods. For each scenario, 100 random cases were tested, and 2% of initial
node outages are considered. Results are in line with Table 5.10 which higher
observability leads to higher accuracy of island identification.

Figure 5.8 illustrates the increase in the percentage of misses and false
alarms as the cascade proceeds from one to two to the final tier of line out-
ages. Misses are the cases in which certain lines are out but are identified
as healthy. We compare these values for all benchmarks. For each scenario,
100 random cases and 2% of initial node outages are considered here. By
comparing the first and final tier of line outages in all scenarios, it is logical to
conclude that as the cascade progresses, the error accumulates, which further
diminishes the accuracy of B̂. Furthermore, the approximation method out-
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performs the other methods, especially against the random method, which
highlights the importance of a well-designed communication network. Taking
into account Figs. 5.7, 5.8 and Table 5.10 together, it seems that different
methods follow the same trend in these two figures and the table. The ori-
gin of this stems from the resilience of the communication network against
failures, both at the initiation and during the cascade. The more the com-
munication network is observable by the CC, the higher the percentage of
valuable/highly observable islands, and the more accurate B̂ is. This, in
turn, leads to better results in term of total post-contingency demand served
since the preventive controller produces a more accurate result in a closed-
loop manner while solving (4.1), which depends on B̂.
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Figure 5.8: Performance evaluation of different methods in terms of
percentage of misses and false alarms of line outage identification under
B = 40, (N = 5 and L = 20 for proposed approximation method).

5.6 Conclusion

We study the impact of coupling between the power grid and a SCADA-based
communication network. We combine the cost efficiency of PLCC links and
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the reliability of non-PLCC links and allocate a limited number of communi-
cation links while focusing on improving the robustness of such control system
against cascading failures under the assumption of uncertain knowledge of
failure and system topology. We not only proved the NP-hardness of the pro-
posed solution in the general case, but we also developed a polynomial-time
algorithm giving a constant approximation ratio under certain conditions.
Extensive simulations on the 118-IEEE bus power system showed that the
proposed algorithm achieves efficacy in estimating the system topology and
different statistical measures of total demand served at the end of the cascade.
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Chapter 6

Conclusion and Future Works

This chapter summarizes our research contributions toward resource allo-
cation in distributed systems to properly serve the applications of interest
under resource capacity and operational budget constraints. We then outline
several interesting future directions of the works in this dissertation.

6.1 Summary of Contributions

This dissertation provides solutions to selected problems in optimally deter-
mining the allocation of resources in both edge cloud computing networks and
power grid networks with a SCADA-based communication network. Mobile
edge cloud computing is a new paradigm to provide cloud computing capa-
bilities at the edge of pervasive radio access networks in close proximity to
mobile users. A smart grid is a modernized power grid that uses information
and communication technologies to collect information and dispatch control
commands to the power grid. This information is used to remotely regulate
the production and distribution of electricity or adjust power consumption
to save energy and reduce losses.

In the following, we summarize the main contributions of each chapter.

• Chapter 3: In this chapter, we propose a two-time scale framework for
joint service placement and request-scheduling in a mobile edge computing
environment and formulate the underlying optimization as a mixed-integer
linear program (MILP) that jointly considers dedicated and amortized re-
sources.
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By analyzing the complexity in carefully selected special cases, we not
only prove that our problem is generally NP-hard but also characterize all
the cases that are polynomial-time solvable and identify the root cause of
hardness.

Then, by reformulating our problem as a set function optimization, we
develop a greedy service placement algorithm based on shadow request
scheduling computed by a linear program (LP). By proving that our ob-
jective function is monotone submodular under certain conditions and our
constraints form a p-independence system, we derive a constant-factor ap-
proximation guarantee for the proposed algorithm.

We extend the problem formulation under hard resource constraints and
substantially improve the complexity analysis for the request scheduling
subproblem under hard constraints. We prove that in the special case
where all the requests demand the same amount of communication and
computation resources, the request-scheduling subproblem under hard con-
straints can be converted to a maximum-flow problem in a carefully con-
structed auxiliary graph, based on which we develop a polynomial-time
algorithm that is provably optimal.

We show that both our formulation and our algorithm can be extended to
exploit request-prediction over multiple frames.

In the end, we perform extensive performance evaluations via synthetic
and trace-driven simulations. The proposed algorithm consistently out-
performs baselines while achieving over 90% of the optimal performance in
all the evaluated cases, even when the approximation guarantee does not
hold.

• Chapter 4: We study the impact of coupling between the communication
and the power networks as it affects a SCADA-based preventive control
system under the assumption that loss of a power transmission line disables
PLCC links.

In this chapter, we model the problem of allocating non-PLCC communi-
cation links to maximize the total demand served at the end of cascade
failure under a budget constraint on the number of non-PLCC links for a
given power system with a given control center location.

We propose a heuristic to solve this problem that takes into account both
graph-theoretic and power-system information.
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The performance of the proposed algorithm is evaluated using the DC-QSS
model on a 2383-bus Polish network. The proposed method demonstrates
superior performance as quantified by different statistical measures of total
demand served at the end of cascade.

• Chapter 5: We improve the formulation in Chapter 4 by combining the
cost efficiency of PLCC links and the reliability of non-PLCC links. We
allocate a limited number of both types of communication links while fo-
cusing on improving the robustness of the control system against cascading
failures under the assumption of uncertain system topology and knowledge
of failure.

We prove the NP-hardness of the proposed solution in the general case.
Then, we developed an algorithm giving a constant approximation ratio
under certain conditions.

Next, we show the superior performance of the communication network de-
signed by the proposed algorithm in facilitating topology estimation and
demand satisfaction in the event of cascading failure by performing exten-
sive simulations on the 118-IEEE bus power system.

6.2 Conclusion & Future Works

Communication networks have profound impacts on the development of our
science and society, enabling enhanced data streaming, automation, and com-
munications. However, limited budgets and rapid increases in demand have
necessitated more efficient use of resources. This dissertation addresses op-
timized algorithms to allocate resources in mobile edge computing and the
smart grid applications.

Mobile edge computing provides computation and storage resources for
applications for networking nearby end-users, typically within or at the edge
of operator networks. For data-heavy ultra-low latency applications, such
as autonomous drones or remote telesurgery, even with 5G, sending data
constantly back to the cloud will be costly and deteriorate the customer
experience. However, with edge technology, full stream transmission of data
is required only as far as a local edge, and only what is necessary is streamed
and stored in the centralized cloud. Accordingly, the combination of 5G and
edge computing is essential. These enhancements will enable organizations
to harness huge amounts of data to drive advanced analytical and artificial
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intelligence programs and support mission-critical services that require Ultra-
Reliable, Low Latency Communication (URLLC). As future work, research
opportunities in developing resource allocation solutions for data-intensive
applications that infuse the power of the edge clouds directly into the 5G
network can be sought.

A smart grid is an electricity network enabling a two-way flow of elec-
tricity and data with digital communications technology enabling control al-
gorithms to control issues caused by malicious attacks, element failure, and
disturbances provoked by nature or humans. This purpose is served by re-
motely regulating the production and distribution of electricity or adjusting
power consumption to save energy and reduce losses. Therefore, connectiv-
ity of the power grid components to a communication network in a reliable
fashion is essential. Most modern SCADA systems use a variety of communi-
cation options within one system to meet their needs. Typically, there is no
one-size-fits-all solution, so the SCADA system should be designed carefully
to fit the system’s needs. Nevertheless, budget is a limiting factor in design-
ing a communication network. Our study shows that strategic placement of
non-PLCC and PLCC links is crucial in the efficacy of power grids in miti-
gating cascading failures. Moreover, it is important to remember that these
technologies are not mutually exclusive. Different types of Non-PLCC and
PLCC options can be used alone or in tandem, depending on the system’s
size and nature. Extension to more complex models is left to future works.

With the emerging 5G technology, the need for extensive cabling in power
grids is relaxed, especially in distribution systems. The diversity of monitor-
ing and controlling services requires different levels of security, latency, rate,
reliability, etc. 5G network slicing may be used to satisfy these demands,
which enables future research on the appropriate allocation of network band-
width to different slices of 5G networks, such that maximum connectivity of
the power grid’s components is ensured, and the diverse services of industrial
control and information collection are served.
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