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Abstract

This thesis presents an approach to near-optimal target localization for small and
micro unmanned aerial vehicles using a family of pre-computed parameterized
trajectories. These trajectories are pre-computed for a set of nominal target lo-
cations uniformly distributed over the sensor field of view and stored offline in a
non-dimensionalized form. In the first part of this research, the trajectories are
parameterized and stored as a sequence of turn-rate commands. In the second
part of this research, the trajectories are parameterized and stored as a sequence
of non-dimensional waypoints. Upon target detection, a trajectory corresponding
to the nearest nominal target location is selected and dimensionalized. An onboard
navigation controller follows the dimensionalized trajectory. Thus, trajectory gen-
eration occurs in near-constant time, which allows for fast adaptation as the target
state estimate is refined. Non-dimensionalization of the trajectories with respect
to relative vehicle speed, sensor range, and sensor update rate allows the same
table to be used for various combinations of sensor package and vehicle or vehicle
operating conditions.
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Chapter 1
Introduction

This thesis describes the development of a technique for fast, adaptive trajectory

planning suitable for deployment on micro air vehicles (µavs) or autonomous sub-

munitions. Missions envisioned for these vehicles typically include surveillance and

target tracking. The research was motivated by a combination of the limited com-

puting power typically available on these vehicles and the limited sensing which

can be carried. The sensing limitations complicates the problem of target tracking

due to the limited information which can be obtained about the target. Generally,

only the availability of a bearing sensor, such as a monocular camera, is assumed.

The target tracking problem is further complicated by the non-linearity of the

measurement model.

The combination of limited information (a bearing to the target provides no in-

formation about the range to the target) and the non-linearity of the measurement

model leads to a problem of dynamic observability

This thesis: (a) describes a framework for adaptive trajectory generation based

on a non-dimensionalized table of optimal trajectories; (b) describes the process of

generating the trajectory table; (c) presents simulation results demonstrating the

performance of this table-based approach to trajectory planning.

1.1 Motivation

Unmanned aerial vehicles are not a new idea in the world of aerospace engineering.

Originally known as “drones,” unmanned aerial vehicles, or uavs, were initially
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used as targets for air combat practice. In the late 1960s, a new mission for un-

manned aerial vehicles was developed: surveillance. Surveillance missions often

meet the so-called “three Ds” criteria, missions that are dull, dangerous, or dirty.

Long duration surveillance missions can be dull for the pilot as the search or surveil-

lance pattern is flown. If the surveillance mission is flown in a hostile environment,

the mission is inherently dangerous. Finally, unmanned vehicles can be used to

enter areas contaminated by radiological, biological, or chemical weapons - dirty

areas - that cannot be safely surveyed by humans.

An example of early use of uavs for reconnaissance is the Teledyne Ryan AQM-

34 Firebee, derived from the BQM-34 family of target drones, shown in Figure 1.1.

It was used extensively during the Vietnam War in the 1960s and early 1970s.

Versions of unmanned aerial vehicles developed through the early-to-mid 1990s

still relied on a pilot guiding the vehicle from a ground station. The pinnacle

of unmanned aerial vehicles are autonomous aerial vehicles. These vehicles use

onboard computers and special software to complete a pre-defined task. With

the computational power available today, autonomous aerial vehicles are generally

capable of performing one or more of the following tasks - transport, scientific

research, remote sensing or surveillance, and precision bombing. As computers

become both more powerful and require less resources including space and electrical

power, the size of the autonomous aerial vehicle can decrease. From 1992 to 2008,

the size of unmanned aerial vehicles designed primarily for surveillance missions

has decreased significantly and can also be seen in Figure 1.1.

Actually being able to complete a surveillance or target tracking mission using

a µav requires advances in several fields, including though not limited to - flight

control, sensing systems, obstacle avoidance, state estimation, and trajectory plan-

ning. The small size of µavs complicates the problem because of the limited power,

sensing, and computation which can be carried on board. Managing the trade-offs

requires careful system design.

This thesis is concerned with target tracking and state estimation, specifically

trajectory design to maximize the information gained about the target. It is as-

sumed that observer vehicle state is known precisely (for example, using gps) and

that the only sensing available is a monocular camera fixed to the observer vehicle.

A monocular camera provides bearings to targets (or features) in the environ-
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(a) Firebee uav (b) Predator uav

(c) Mosquito µav (d) Wasp µav

Figure 1.1. Representative uavs designed for surveillance missions.

ment. A single bearing provided by a monocular camera does not provide enough

information to localize a target. Fusing bearings from multiple vantage points,

however, allows target localization by triangulating measurements. This problem

of triangulation can readily be cast as a non-linear estimation problem and a re-

cursive estimator such as an Extended Kalman Filter (ekf) or Unscented Kalman

Filter (ukf) can be implemented.

When an estimator is implemented to solve the bearings-only target localization

problem, the lack of range information results in dynamic observability : multiple

measurements, collected over time, from varying vantage points, allow estimation of

target state. Because of sensor noise, the geometry of observer positions and target

position greatly affects the accuracy of the target state estimate. This leads to the

subject of this thesis: What is the optimal trajectory which will localize a target



4

risk zone
initial uncertainty

sensor field
of view

target

B

x1

x2

x3

xn-1

xn

O

xo

yo

Figure 1.2. Schematic of target localization task showing a sequence of targets to be
tracked.

with the smallest degree of uncertainty? Furthermore, how can this trajectory be

computed in real-time on computing hardware likely to be available on a µav or

autonomous sub-munition?

While the technology is general to many trajectory generation problems, the

motivating mission is target state estimation for a µav. A schematic of a sequential

target localization task (where the sequence of targets to be visited is determined

a priori) is shown in Figure 1.2.

A human operator provides a sequence of targets and initial (possibly highly

uncertain) estimates of target positions. Each target has an associated risk zone

which must be avoided to reduce the likelihood of detection and possible loss of

the observer vehicle. The vehicle has a limited field of view sensor, and must plan

a sequence of trajectories to minimize the uncertainty in the final state estimate

of each target.
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1.1.1 Some Important Terms

Throughout the remainder of this thesis, a few important terms are used that

should be defined.

For the purposes of this work, an unmanned aerial vehicle, or uav, shall refer

to an autonomous unmanned aerial vehicle. The ground station for this vehicle is

used only to send high-level commands rather than low-level control inputs. For

example, the human operator could send the command “Fly the pattern defined

by the following set of way points.” The vehicle has enough autonomy that it can

fulfill this high-level command. This research is concerned with one aspect of this

higher level autonomy, namely trajectory generation. The vehicle used here is a

micro air vehicle (µav), which is a uav with wingspan less than six (6) inches.

An observer refers to the unmanned aerial vehicle coupled with the on-board

sensor package. The observer follows the trajectory specified by the trajectory

generator. Because the on-board sensor package is rigidly attached to the flight

vehicle, the trajectory followed by the observer is the same as the trajectory of the

sensor. Note that this is not the same as the usual controls-theoretic definition of

observer.

The target is the object of interest in the surveillance mission. The target’s

state (i.e. its position and velocity) is estimated by the observer.

Trajectory generation refers to the optimization of a path to be followed by the

observer. This path may also be called a trajectory.

Finally, monocular vision is the process of using a single digital camera and

computer system to determine information about the world around the camera

from a series of pictures taken over time.

1.2 Fast, Adaptive Trajectory Selection

A schematic of a system for target tracking using a µav is shown in Figure 1.3. It

consists of 5 parts: (a) an aircraft, which is acted upon by external disturbances

and has as input control commands; (b) a flight control system which enables

controlled flight and has as input a desired trajectory; (c) a trajectory generator;

(d) an estimator which combines vehicle state information with measurements
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aircraft
dynamics
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camera
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table
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xt
^
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Figure 1.3. Block diagram of the system.

from a vision system to compute an estimate of target state; (e) a camera, which

provides bearing measurements to the target.

The problem of state estimation for autonomous vehicles such as µavs has

been studied in great detail and seems to be well understood for these systems:

indeed, several textbooks dealing with state estimation and target tracking have

been published [1, 2, 3]. Low-dimensional state estimation problems (such as tar-

get tracking) can easily be implemented on relatively simple computers; planning

trajectories which maximizes information gain is, however, still a difficult problem.

This thesis proposes a method for fast, adaptive trajectory selection based

on a table of trajectories for a set of nominal target locations. Upon receipt

of an initial (highly uncertain) target location, the trajectory corresponding to

the nearest nominal target location is selected and the observer vehicle begins

to fly the trajectory. Bearing measurements to the target are obtained and an

estimator updates the target state estimate in real time. As the target state

estimate improves, a new trajectory can be selected from the table.

1.2.1 The Trajectory Generation Problem

The critical technology described is the development of a table of trajectories for

a set of nominal target locations. Two main questions are addressed:
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• What is the appropriate parameterization of the trajectory?

Two parameterizations are discussed: in the first, the trajectory is repre-

sented as a sequence of turn-rate commands. In the second, the trajectory

is represented as a sequence of waypoints, and it is assumed that the vehicle

follows a spline path between waypoints.

• Can the trajectory table be generalized to different vehicle and sensor com-

binations?

The planning problem is first non-dimensionalized using sensor range, vehicle

speed and sensor frame rate as parameters. The resulting table of trajecto-

ries is thus general to variations in vehicle speed, sensor range and sensor

frame rate.

This thesis demonstrates the utility of the trajectory table using constant-

altitude (two-dimensional) flight path target localization examples. The extension

to three dimensions is in principle straightforward, and should in fact result in

even greater improvement in on-board computation requirements compared with

online trajectory optimization.

1.3 Related Work

The main focus of this thesis is trajectory generation. However, state estimation is

a key contributing technology, thus a brief (and necessarily incomplete) overview

of the state of the art in target state estimation is provided. Here the focus is

on state estimation using vision and on planning algorithms which attempt to

maximize information gain.

1.3.1 Estimation

Estimation is the problem of transforming noisy measurements into information

about the variables of interest (states). In the context of autonomous vehicles and

mobile robots, estimation problems can be loosely divided into three categories: lo-

calization, where vehicle position, orientation and velocity are the states of interest

(direct information concerning the environment is unnecessary); mapping, where



8

information about the environment is desired (typically vehicle state is assumed

known); and simultaneous localization and mapping (slam), where the vehicle

must obtain information about its own state and about the environment.

Localization using vision has been used in many contexts including approach

and landing for uavs [4], as an aid for inertial navigation [5, 6], aircraft state

estimation [7, 8], navigation for autonomous underwater vehicles [9, 10, 11], and

for wheeled vehicles such as the Mars Exploration Rovers [12].

Mapping applications include terrain reconstruction for landing autonomous

helicopters [13], obstacle avoidance in urban environments [14], relative position

sensing for underwater vehicles [15], reconstruction of archaeological sites [16],

and stereo vision to create digital reconstructions of three-dimensional scenes and

collision avoidance systems [17, 18, 19]

slam has become a very important field of research, described in several text-

books (e.g. Thrun et al. [20]) and hundreds of conference and journal publica-

tions. Vision-based methods have been applied to problems in wearable comput-

ing [21, 22], wheeled ground robots [23] and uavs [24, 25].

The problems of target localization (this assumes a stationary target) and tar-

get tracking (which allows for a moving target) can be considered examples of a

mapping problem, since the position of the observer vehicle is assumed known.

1.3.2 Trajectory Design

The field of robot motion planning is similarly broad, with a long history of study.

Two notable textbooks are Latombe [26] and LaValle [27].

Because of the dynamic observability caused by the bearings-only sensor, the

trajectory followed by the observer vehicle has an enormous effect on the quality

of state estimates [28] and optimal trajectory generation for target localization or

tracking has become an active area of research [29, 30, 31].

Computing the optimal trajectory for a realistic vehicle model and realistic

sensor models can become computationally prohibitive, and simplified models are

generally used. For example, vehicle dynamics have been modeled as a point mass

with velocity and acceleration constraints [31] and sensor models have been lin-

earized [32]. Solution methods including dynamic programming [33] and direct
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collocation [34] have been used to generate the optimal trajectories. These tech-

niques still require fairly powerful computers and depending on the complexity

of the model (e.g. field of view constraints also increase complexity) may not be

suitable for real-time operation on the processors likely to be available on a µav.

1.4 Summary of Contributions

The main contributions of this thesis are:

• A method for fast, adaptive trajectory selection.

A method of trajectory selection based on a table of pre-computed trajec-

tories for a set of nominal target locations is proposed. When a target is

detected or specified by a human operator, the vehicle selects the trajectory

corresponding to the nearest nominal target location and follows the trajec-

tory. Adaptation to improvements in the target state estimate is enabled

by selecting a new trajectory when it is determined that sufficient change in

target state estimate has occurred.

• Non-dimensionalization of the table of trajectories.

This non-dimensionalized table of trajectories is general to variations in ve-

hicle speed, sensor range, and sensor frame rate, and is thus applicable to

different vehicle and sensor combinations.

• Performance verification through simulations.

Results of Monte Carlo simulations show that the information gained about

the target using the trajectory table is almost the same as that gained by

direct computation of optimal trajectories (90% of the information is gained

when following trajectories obtained from the table) at vastly reduced com-

putational overhead. Using the waypoint parameterization, a trajectory can

be selected and dimensionalized 130 times faster than a trajectory optimized

online.

1.5 Reader’s Guide

The remainder of this thesis is organized as follows:
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• Chapter 2: Theory begins with a formulation of the trajectory genera-

tion problem. It defines models for the observer vehicle kinematics, vision

measurements and target model, and then describes the solution of the state

estimation problem. Finally it describes the use of the Fisher Information

Matrix in trajectory generation.

• Chapter 3: A Table of Optimized Trajectories describes the table of

trajectories which is used for trajectory selection. The chapter discusses non-

dimensionalizing the trajectory generation problem and two methods of tra-

jectory parameterization (turn-rate and waypoint). It describes the process

for generating non-dimensional optimal trajectories and how the trajectories

are stored for use by the observer vehicle.

• Chapter 4: Simulation Results presents results of simulations showing

the performance of the proposed system.

• Chapter 5: Conclusion summarizes results of this research and discusses

areas for future work.



Chapter 2
Theory

This chapter will provide an overview of the problem formulation as well as provide

some background on the relevant theories and ideas used throughout the research.

First, the problem formulation is presented in Section 2.1. After the problem for-

mulation is presented, the kinematics and sensor models of the observer vehicle

will be given in Section 2.2. In Section 2.3 a brief statement about target state

estimation is made and the algorithm for the Unscented Kalman Filter (UKF)

is presented. This is followed by an introduction to information theory and the

Fisher Information Matrix in Section 2.4. To illustrate the use of the Fisher In-

formation Matrix in trajectory planning two sample problems are described and

solved analytically in Section 2.5.

2.1 Problem Formulation

The problem of a µav or autonomous submunition performing a surveillance and

target tracking task is considered in this thesis. An on-board vision system (e.g.

a monocular camera) obtains bearing measurements to the target. The observer

vehicle position is assumed to be known precisely. The speed of the target vehicle

is assumed to be constant.

A schematic of a target localization task is shown in Figure 2.1. Observer

vehicle and target positions are denoted xv and xt, respectively, in an inertial frame

O. A highly uncertain initial target position is assumed to be given and shown in

the figure by the dashed line surrounding the target position. The target has a
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R
γmax-γmax

safety zone

initial uncertainty

target position
(xt , yt)

initial vehicle position
(xv , yv)

Figure 2.1. Schematic of target localization task.

safety zone surrounding it, denoted in the figure by the gray circle surrounding the

target position. The safety zone ensures the observer vehicle does not fly too close

to the target, putting the observer vehicle at risk from target defense systems or

collision. The vision system obtains a bearing γ to the target in the vehicle body

frame B. The vision system has a limited field of view, defined by ±γmax. The

maximum range of the sensor system is shown in the figure by the top arc at range

R. An estimation algorithm uses knowledge of vehicle position and the bearing

measurements to compute an estimate of target position. Two implementations

of this problem were used over the course of the research and will be discussed

further in Chapter 3.

In determining the position of the target, the following states are estimated:

xt =


xt

yt

vt

ψt

 (2.1)
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where xt and yt are the two-dimensional position of the target, vt is the speed of

the target, and ψt is the heading of the target, or direction in which the target is

moving. For a stationary target, vt and ψt are zero.

For this problem, the initial uncertainty of the target position is assumed to be

unbiased in any direction and greater in area than the area determined by the safety

zone around the target. A safety zone is included in this problem formulation as

oftentimes targets for UAVs may be hostile or located in an environment dangerous

for a UAV, e.g. close to trees or other structures. As such the safety zone defines

the area with a large amount of risk for the UAV. In the case of an autonomous

munition, the edge of the safety zone is where a terminal guidance algorithm would

take over control of the vehicle.

As mentioned earlier, in the case of sequential target localization a human

operator specifies the sequence of targets to be visited, and the problem reduces

to solving a series of independent single target localization problems.

The problem of target state estimation is clearly critical in the target tracking

problem. Solutions to this problem have been well-represented in the literature,

and the focus here is on planning trajectories to maximize information gained

about the target. Because of the non-linearities in the system models, estimation

and planning are tightly coupled, and a discussion of this coupling follows.

2.2 Sensor and Vehicle Models

2.2.1 Monocular Vision System Model

The vision system obtains a bearing to the target:

γ = arctan

(
yt − yv
xt − xv

)
− ψv + ν (2.2)

where xt, yt represent the location of the stationary target in the 2d plane;

xv, yv, ψv represent the vehicle position and heading; and ν is uncorrelated zero-

mean Gaussian random noise with covariance Σν . Maximum sensor range is R and

the sensor field of view is limited to −γmax ≤ γ ≤ γmax. The sensor sample period,

which is the inverse of the frame rate for the vision system, is Tf .
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2.2.2 Observer and Target Motion Model

Onboard the µav, a guidance controller provides velocity and turn rate commands,

leading to a kinematic vehicle model. The velocity of the observer vehicle is as-

sumed to be a constant, v:

ẋv = v cosψv (2.3)

ẏv = v sinψv (2.4)

ψ̇v = u (2.5)

where u is a commanded turn rate from the waypoint-following controller.

The target motion model is also that of a non-holonomic vehicle, such as a car,

ship, or fixed-wing airplane. Again, the velocity of the target vehicle is assumed

to be a constant, vt:

xt,k = xt,k−1 + ∆t vt,k−1 cosψt,k−1 (2.6)

yt,k = yt,k−1 + ∆t vt,k−1 sinψt,k−1 (2.7)

vt,k = vt,k−1 + νv (2.8)

ψt,k = ψt,k−1 + νψ (2.9)

where νv and νψ are uncorrelated zero-mean Gaussian random noise terms associ-

ated with uncertainty in the velocity and heading, respectively.

2.3 Target State Estimation

For the results presented in this thesis, the target is assumed to be stationary, hence

the target state vector can be reduced to xt,k = [xt yt]
T and xt,k+1 = xt,k. The

bearing model given in Equation 2.2 results in a non-linear estimation problem,

and the algorithm for a Sigma Point Kalman Filter (i.e. an Unscented Kalman

Filter) given in van der Merwe and Wan[35] is used to compute the target state

estimate, x̂t. The algorithm used in the Sigma Point Kalman Filter is given in

Figure 2.2.



15

The purpose of the estimator is to compute an estimate, x̂t, of the state xt and

an estimate, P, of the covariance of the estimation error. The trajectory planning

algorithm will find a path which minimizes the uncertainty P of the target state

estimate.
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initialize with x̂0 and P0|0.

For tk, k ∈ (1, . . . ,∞) compute sigma points:

Xk−1|k−1 =
[

x̂k−1|k−1 x̂k−1|k−1 + η
√

Pk−1|k−1 x̂k−1|k−1 + η
√

Pk−1|k−1

]
(2.10)

Time update (prediction):

Xk|k−1 = f(Xk−1|k−1,uk−1) (2.11)

x̂k|k−1 = Xk|k−1wm (2.12)

Pk|k−1 =
[
Xk|k−1 − x̂k|k−11

]T
Wc

[
Xk|k−1 − x̂k|k−11

]
+ Q (2.13)

Measurement update (correction):

Zk|k−1 = h(Xk|k−1) (2.14)

ẑk|k−1 = Zk|k−1wm (2.15)

Pzz =
[
Zk|k−1 − ẑk|k−11

]T
Wc

[
Zk|k−1 − ẑk|k−11

]
+ R (2.16)

Pxz =
[
Xk|k−1 − x̂k|k−11

]T
Wc

[
Zk|k−1 − ẑk|k−11

]
(2.17)

K = PxzP
−1
zz (2.18)

x̂k|k = x̂k|k−1 + K(zk − ẑk|k−1) (2.19)

Pk|k = Pk|k−1 −KPzzK
T (2.20)

There are 2N + 1 sigma points, where N is the dimension of the state vector.
In this algorithm η is a weight factor, wm is a vector of weights, Wc is a
diagonal matrix of weights, 1 is a (1 × 2N + 1) matrix of ones, Q is process
noise and R is measurement noise. The weight factors are calculated as

η = α
√
N (2.21)

The constant α is a parameter which determines the spread of the sigma points.
Typically 10−4 ≤ α ≤ 1. The weight vector wm and weight matrix Wc are

wm,1 = α2−1
α2 wm,i = 1

2Nα2 (2.22)

Wc,1 = α2−1
α2 + (1− α2 + β) Wc,ii = 1

2Nα2 (2.23)

where i = 2, . . . , (2N + 1). The parameter β incorporates prior knowledge
of the distribution of the state vector. For Gaussian distributions β = 2 is
optimal [35].

Figure 2.2. Algorithm for Unscented Kalman Filter.
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2.4 The Fisher Information Matrix (FIM)

The idea of information was developed first in the research of thermodynamics

and exists as a way to measure the amount of “information” a known variable

contains about a second unknown variable. In this research, the accuracy of the

state estimate is measured using the tracking error e = xt − x̂t. Minimizing the

uncertainty P in this error is equivalent to maximizing the information Y as the

two are inverses of each other, Y = P−1.

To illustrate the use of Fisher Information in a target tracking application,

consider a discrete time system with trivial dynamics and non-linear measurement

model

xk+1 = xk (2.24)

zk = h(xk) + vk (2.25)

where vk is uncorrelated zero-mean Gaussian random noise.

As shown by Ousingsawat and Campbell[31], the FIM for the estimation prob-

lem associated with this system can be computed recursively

Yk = Yk−1 + HT
kΣ−1

v Hk (2.26)

where Hk is the Jacobian of the measurement model evaluated at time k, i.e.

Hk =
δ

δx
h(xk) (2.27)

For the vision model given by Equation 2.2 the Jacobian of the sensor model with

respect to the estimate of the target is

Hk =
[
− sin γk

rk

cos γk

rk

]
(2.28)

where rk =
√

(xt − xv,k)2 + (yt − yv,k)2. The information gained about the target

from a single measurement can now be expressed as

Yk = Yk−1 + HT
kΣ−1

ν Hk (2.29)
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For a single bearing measurement to a single target, Σν = σ2
ν . Expanding gives

Yk = Yk−1 +
1

r2
kσ

2
ν

[
sin2 γk − sin γk cos γk

− sin γk cos γk cos2 γk

]
(2.30)

Writing Equation 2.30 as Yk = Yk−1 + ∆Yk, the information gained about a

target over a trajectory can be expressed as

Y = Y0 +
K∑
k=1

∆Yk (2.31)

This presentation of the Fisher Information Matrix is applicable when the tar-

get is stationary and the FIM itself is representative of the information gained

about the position of the target. In the moving target case, the target motion

causes a loss of information that can be accounted for in the FIM by including

terms related to the uncertainty in the target motion.

2.5 Uncertainty Minimization Using the Fisher

Information Matrix

To see how how the uncertainty associated with a target position estimation can

be minimized using the Fisher Information Matrix, consider the following two

simplified examples. In the first example, the case where the observer vehicle is

flying a constant radius circle around the target is analyzed. The vehicle is initially

aligned with the x-axis, no sensor measurements have been taken, and the initial

uncertainty is given by

P0 =

[
σ2
r 0

0 σ2
r

]
(2.32)

The information is the inverse of the uncertainty

Y0 =

[
σ−2
r 0

0 σ−2
r

]
(2.33)
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safety zone

initial uncertainty target

x

y

γk

Figure 2.3. First example problem setup for using the FIM to minimize target location
uncertainty. Here the initial uncertainty in target position is equal along the x and y
axes.

This example problem is demonstrated in Figure 2.3. In these simplified uncer-

tainty minimization problems, the goal is to locate the angle around the circle

the observer vehicle needs to travel to minimize the uncertainty in the estimated

position (or maximize the information gain) through just a single measurement.

Using Equation 2.31, and making the appropriate substitutions

Y =

[
σ−2
r 0

0 σ−2
r

]
+

1

r2
kσ

2
ν

[
sin2 γk − sin γk cos γk

− sin γk cos γk cos2 γk

]
(2.34)

Allowing σν and rk to go to unity for simplification

Y =

[
σ−2
r + sin2 γk − sin γk cos γk

− sin γk cos γk σ−2
r + cos2 γk

]
(2.35)

For an optimization problem, the Fisher Information Matrix must be converted to

a scalar value. Any number of matrix operations are acceptable, for this example,

the natural log of the determinant of the inverse of the FIM is used. Recalling
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Y = P−1, the determinant of Y−1 has geometric significance as the area of ellipse

defined by the uncertainty matrix P. It is important to note Y is positive-definite,

thus guaranteeing the existence of the determinant. The optimization problem as

set up is a minimization.

J = log det Y−1 (2.36)

J = − log det Y (2.37)

After taking the determinant

det Y = σ−4
r + σ−2

r (2.38)

it is easy to see that there is no relation on the angle between the starting posi-

tion of the vehicle and optimal location of the next measurement when the initial

uncertainty is the same in both the x- and y- axes of the problem.

If, however, the initial uncertainty along the x-axis of the problem is signifi-

cantly larger than the initial uncertainty along the y-axis of the problem, i.e.

P0 =

[
(2σr)

2 0

0 σ2
r

]
(2.39)

Then the initial information is greater along the y-axis of the problem than along

the x-axis

Y0 =

[
(2σr)

−2 0

0 σ−2
r

]
(2.40)

there does exist a non-trivial optimal angle between the starting position of the

vehicle and the location of the next measurement. This updated situation is given

in Figure 2.4. Again, using Equation 2.31 as the starting point, and making the

same simplifications as above, but using the new initial uncertainty

Y =

[
(4σ2

r)
−1

+ sin2 γk − sin γk cos γk

− sin γk cos γk σ−2
r + cos2 γk

]
(2.41)
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target
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γk

Figure 2.4. Second example problem setup for using the FIM to minimize target
location uncertainty. Here the initial uncertainty in target position is greatest along the
x axis.

Using the same operations to find a scalar information cost

− log det Y = − log

(
1

4σ4
r

+
cos γk
4σ2

r

+
sin γk
σ2
r

)
(2.42)

The optimal angle, γopt, can be found by solving

∂ (− log det Y)

∂γk
= 0 (2.43)

or by plotting − log det Y against γk as shown in Figure 2.5. The plot shows, and

the differential equation confirms, the optimal angle between the initial position of

the vehicle (aligned with the x-axis) and the location of the first measurement is

±π
2
. Intuitively, this result shows the maximum information will be gained when

the vehicle takes measurements at orthogonal angles.



22

!3.1416 !2.3562 !1.5708 !0.7854 0 0.7854 1.5708 2.3562 3.1416
!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

!l
og

 d
et

 Y

!k

Figure 2.5. Plot of − log det Y versus γk for the second example of using the FIM to
minimize target location uncertainty

2.6 Summary

This chapter has presented an overview of the uav performing a surveillance and

target tracking task as considered in this thesis. Because the uav only has a monoc-

ular camera onboard, the path flown by the uav greatly affects the uncertainty in

the estimated position of the target being tracked. The Fisher Information Matrix

(FIM) provides a convenient way to calculate the information gained by flying a

unique path and is directly related to the uncertainty in the target position esti-

mation. In the most simplified form, the target tracking problem can be defined

as

minimize − log det Yk (2.44)

subject to trajectory constraints (2.45)

where Yk is the Fisher Information Matrix at the end of the trajectory.

In the simplified form, this problem can be solved analytically, however, when

complications like safety zones, sensor field of view limits, and more involved vehicle

models are considered, the problem must be solved using numerical optimization.
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This problem becomes even more difficult when high performance sensor systems

and longer planning horizons are considered, e.g. if 15 measurements per sec-

ond were sensed and processed and a 15 second planning horizon considered, the

problem yields 225 measurements that must be optimized. With the limited com-

putational power available on small uavs, this size optimization problem generally

cannot be solved in real-time.



Chapter 3
A Table of Optimal Trajectories

As stated in Chapter 2, real time solution of the trajectory optimization problem

is generally intractable on the computing hardware likely to be available on a µav.

To avoid this problem, a set of trajectories for representative target locations are

pre-computed and then stored in a lookup table. To make the resulting table of tra-

jectories generally applicable to different sensors and vehicles, the problem is first

non-dimensionalized using sensor parameters and the observer vehicle speed. This

chapter first discusses the non-dimensionalization of the problem in Section 3.1 and

then discusses two methods of parameterizing the optimal trajectories. The first

parameterization represents each trajectory as a sequence of turn-rate commands;

the second parameterization represents each trajectory as a sequence of GPS-like

waypoints. Both parameterizations are described in Section 3.2. Solution methods

for the trajectory optimization problems defined by the two parameterizations are

discussed in Section 3.3. A few comments about using the generated trajectories

on vehicles with different flight characteristics and sensor properties are provided

in Section 3.4. Finally, Section 3.5 enumerates the steps to perform in a single

target localization task. In Chapter 4, simulation results showing the localization

ability of the trajectory tables will be given.

3.1 Non-Dimensionalization of the Problem

For this work, the problem is non-dimensionalized to make the solution - the

generated lookup tables of trajectories - more general. By non-dimensionalizing
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with respect to sensor parameters, two vehicles with different speeds or maximum

turn rates can use the same lookup table given the same or similar sensor packages.

In the waypoint-implementation, external influences like wind, can be compensated

for by the trajectory-following controller, allowing a single lookup table to be used

in almost all conditions for a given sensor package.

3.1.1 Kinematics Model

To non-dimensionalize the problem, vehicle kinematics are scaled with respect to

sensor parameters. In this work, distances are scaled by sensor range R and time

is scaled by the sensor frame sample time Tf :

˙̃xv =
Tf
R
v cosψv (3.1)

˙̃yv =
Tf
R
v sinψv (3.2)

˙̃ψv = Tfu (3.3)

3.1.1.1 Discrete Time Kinematics Model

A second order approximation is used to generate a discrete time model for vehicle

kinematics with sample time Ts. The integration time is also scaled by the sensor

frame sample time (i.e. ∆̃t = Ts/Tf ):

x̃k+1 = x̃k +
Ts
Tf


Tf

R
v cosψ

Tf

R
v sinψ

Tfu

+
1

2

T 2
s

T 2
f


−T 2

f

R
vu sinψ

T 2
f

R
vu cosψ

0

 (3.4)

The non-dimensionalized discrete time vehicle kinematics are therefore

x̃k+1 = x̃k + Ts


v
R

cosψ
v
R

sinψ

u

+
T 2
s

2


− v
R
u sinψ

v
R
u cosψ

0

 (3.5)
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3.1.2 Fisher Information Matrix

The Fisher Information Matrix is based on the sensor measurement model, which

also must be non-dimensionalized. Non-dimensionalizing the sensor model with

respect to the sensor range gives

H̃k =
[
−R sin γk

rk

R cos γk

rk

]
(3.6)

The non-dimensionalized information gained about the target from a single mea-

surement can now be expressed as

Ỹk = Ỹk−1 + H̃
T

kΣ−1
ν H̃k (3.7)

After non-dimensionalization, Equation 2.30 becomes

Ỹk = Ỹk−1 +
R2

r2
kσ

2
ν

[
sin2 γk − sin γk cos γk

− sin γk cos γk cos2 γk

]
(3.8)

Again, assuming a stationary target and writing Equation 3.8 as Ỹk = Ỹk−1 +

∆Ỹk, and the non-dimensional information gained about a target over a trajectory

can be expressed as

Ỹ = Ỹ0 +
K∑
k=1

∆Ỹk (3.9)

The Fisher Information Matrix will later be used in the cost function of the

optimization problem.

3.2 Trajectory Parameterization

In this section, the two methods of trajectory parameterization, turn-rate com-

mands and GPS-like waypoints, are discussed and the resulting optimization prob-

lems are defined. The first parameterization was simply the optimization of a se-

quence of turn-rate commands. This approach, however, has several drawbacks.

First, the number of turn-rate commands for a given trajectory varied with the

initial distance from the observer vehicle to the target, i.e. a shorter trajectory

had fewer turn-rate commands. This required either unused space to be reserved
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in the lookup table, or complicated memory access algorithms to be employed.

On the other hand, a longer trajectory may have more than 200 turn-rate com-

mands, which requires significant computational time even on a workstation-class

computer. This led to the development of a second parameterization using way-

points. The waypoint parameterization allowed for easier optimization and storage

as every trajectory relied on ten waypoints. The waypoint trajectories are also eas-

ier to non-dimensionalize and allow for easier implementation of the optimization

constraints. Potentially the greatest benefit of this parameterization is that the

parameterization is independent of external disturbances, such as wind.

To generate a target localization table for both the turn-rate- and waypoint-

based implementations, the sensor field of view was uniformly discretized in the

radial and angular directions: i.e. a 10× 10 polar grid was defined over the sensor

field of view and a nominal target location was defined at each grid point. This

discretization is shown in Figure 3.1. In this figure, there are N and M divisions in

the radial and axial directions, respectively. The optimal trajectory is generated

for potential target located at the centroid of each cell. A schematic of the target

localization tables showing nominal target locations and three sample trajectories

associated with three nominal locations is shown in Figure 3.2. The figure shows

nominal target locations and three representative trajectories for both the turn-

rate- and waypoint-based implementations.

3.2.1 Turn-Rate Trajectory Parameterization

For the turn-rate-based implementation, each trajectory consists of a sequence of

turn rate commands

umn =
[
umn,1 umn,2 . . . umn,N

]
(3.10)

where N is a planning horizon that extends from t = t0 until the time the risk zone

is encountered. The duration of each turn rate input is equal to the kinematics

update rate of the vehicle.
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Figure 3.1. Discretization of the sensor field of view.
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(a) Turn-rate-based implementation
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(b) Waypoint-based implementation

Figure 3.2. Sample trajectory table target locations and sample trajectories for turn-
rate- and waypoint-based implementations.
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3.2.2 Turn-Rate Trajectory Optimization

For the turn-rate-based implementation, the trajectory generation problem for

target (m,n) can now be summarized as

minimize J(umn) (3.11)

subject to x̃k+1 = f(x̃k, uk,mn) (3.12)

umin ≤ uk,mn ≤ umax (3.13)

where the cost function J is disclosed in Section 3.3; vehicle kinematics are given

by Equation 3.5; and inputs uk are limited by turn rate constraints.

3.2.3 Waypoint Trajectory Parameterization

The trajectories exist in non-dimensional space as a sequence of ten waypoints,

X̃mn = [x̃mn,1, . . . , x̃mn,N ]. Each waypoint, x̃mn,N , consists of an angle, θ, and a

distance, r, to the waypoint relative to the nominal target location. Thus, relative

to the target location, each waypoint exists at Cartesian coordinates

xn = rn cos θn (3.14)

yn = rn sin θn (3.15)

where

θn = [0 . . . π] (3.16)

rn = r (θ) (3.17)

For this work, each waypoint exists at a fixed angle from the target location

and the distance of the waypoint from the target is allowed to vary, subject to

constraints. To prevent the observer from flying a path that forces the observer into

the risk zone after the path is flown, the final two waypoints are fixed to provide

a pseudo-tangency constraint at the end of the path. The final fixed waypoint

assures the observer will not enter the risk zone at the end of the optimized path.

This is shown in Figure 3.3.
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Figure 3.3. Waypoints are defined by a distance r from the target location at fixed
angles.
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Figure 3.4. Ten waypoints are interpolated and dimensionalized to form a complete
path.

Each trajectory consists of a sequence of ten waypoints in non-dimensional

space. To compute a path in physical space the way-points are first dimensionalized

by multiplying by sensor range

Xmn = RX̃mn =
[

xmn,1 xmn,2 . . . xmn,10

]
(3.18)

Finally a spline is used to compute the complete path (Figure 3.4).
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3.2.4 Waypoint Trajectory Optimization

For the waypoint-based implementation, the trajectory generation problem for

target (m,n) can be summarized as

minimize J(X̃mn) (3.19)

subject to x̃k = f(X̃mn, Ts
v

R
, k) (3.20)

Rψ̇min
v
≤ κ̃k ≤

Rψ̇max
v

(3.21)

where, again, the cost function J is disclosed in Section 3.3; the vehicle path is

computed using the interpolating function f and κ̃k is the curvature of the path

(non-dimensionalized using sensor range), constrained by vehicle turn rate limits.

3.3 The Trajectory Optimization Problem

3.3.1 Cost Function

The cost function in this research is implementation dependent. Factors including

the number of dimensions of the vector optimization problem and type of opti-

mization method used greatly influence the components of the cost function.

For the turn-rate-based implementation, the cost function includes a term re-

lated to the uncertainty in the target state estimate, a term to keep the target

within the field of view, and a term defining the safety or risk zone cost

J = (winfo + wfov) Jinfo + wsafeJsafe (3.22)

The waypoint-based implementation cost function is similar, but removes the

risk zone cost term as the optimizer implements the risk zone as a constraint

J = (winfo + wfov) Jinfo (3.23)
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3.3.1.1 Information Cost

The information cost is computed using the Fisher Information Matrix. Note that

the target is assumed to be stationary. A scalar value for information cost is then

given by

Jinfo = log det Ỹ
−1

(3.24)

Jinfo = − log det Ỹ (3.25)

It is important to note that minimizing Ỹ
−1

is mathematically equivalent to max-

imizing Ỹ, or information about the target. Alternatively, minimizing Ỹ
−1

is a

way of minimizing the uncertainty in the target state estimate.

3.3.1.2 Field of View Weight

To keep the target in the field of view, a weight is computed based on the bearing

to the target, γk

wfov =

(
γk
γmax

)4

(3.26)

While the field of view is also accounted for in the information cost, this term assists

the optimization routine in finding a valid solution. Initial optimizations that did

not include this weight resulted in poor, or no, convergence of the optimization.

3.3.1.3 Safety Cost

A safety zone is included around the target to ensure that sufficient stand-off

distance is maintained to prevent collision with the target or detection of the

vehicle. A high-order polynomial function is used to ensure high cost close to the

target and low cost far away.

Jsafe =
K∑
k=1

(
rsafe
rk

)8

(3.27)
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3.3.2 Solution for Turn-Rate Parameterization

In principle, any optimization method could be used to generate a solution to

the optimization problem defined by Equation 3.13. In this work the trajectory

is discretized into K steps with constant turn rate in each step. The resulting

vector optimization problem is solved using MATLAB’s fmincon function. The

information and safety zone weights (i.e. winfo and wsafe) were set to 1. To assure

the optimizer finds a valid solution, a starting path with the observer vehicle flying

straight at the target location is used to initialize the optimizer for each series of

trajectories.

3.3.3 Solution for Waypoint Parameterization

To calculate solutions to the vector optimization problem defined by Equation 3.21,

a minimization routine using a modified version of a gradient-based line search

method was programmed and used. A Newton-Raphson method was not able to

be used because the problem could not be proved to be strictly convex analytically.

Thus, using the Hessian in the calculation of the search direction could cause the

optimizer to search in the wrong direction.

The optimizer is able to handle constrained optimization problems, such as the

one presented in this work. If the step in the search direction yields a minimization

point that violates a constraint, the step size is reduced by an optimization param-

eter, β. A new minimization point is then calculated using the reduced step size

and the process repeats if necessary until a point is found that no longer violates

the constraints of the optimization problem.

To improve the generated trajectories, a pseudo-tangency constraint is imposed

by fixing the distance of the last two waypoints to the distance specified by a

logarithmic spiral fitting the fixed final waypoint as well as the initial location of

the observer vehicle. The distance of a waypoint from the target vehicle defined

by the logarithmic spiral is given by

rn = rsafe exp (bθn) (3.28)
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where

b =
(log rk − log rsafe)

π
(3.29)

Again, because of the nature of the line search method, a feasible initial guess

of a starting path is necessary to find a solution. To quickly generate valid paths,

the optimizer is initialized with a path defined by a logarithmic spiral from the

initial observer position to the target position. Strictly speaking, the path which

results from the optimization is a local optimum near the initial guess. This is true

also for the turn-rate parameterization.

3.3.4 Table Implementation

After solving the optimization problem for each of the nominal target locations,

a set of trajectories is created. These trajectories are then stored in a table to

be used on a variety of vehicles. For ease of implementation, the storage of the

trajectories for this research has been in a two-dimensional table. Each trajectory is

indexed by both a non-dimensional range and the bearing to each nominal target

location. A trajectory can then be selected by matching as closely as possible

the non-dimensional range and bearing to the actual target to those available in

the lookup table. With the waypoint parameterization, the trajectory is then

dimensionalized into real space. The turn-rate parameterized trajectories do not

require dimensionalization as they are still inherently dependent on the observer

vehicle speed.

3.3.4.1 Reflection Symmetry of the Table

For both the turn-rate- and waypoint-based implementations, only half of the

sensor field of view is covered by the trajectory tables shown in Figure 3.2. Early

results from the optimization routines showed near-perfect reflection symmetry

about the longitudinal axis of the vehicle. Thus, the size of the lookup table can

be made 50% smaller by exploiting this reflection symmetry. Targets in the left

half plane of the observer vehicle are localized with a reflected trajectory from the

lookup table.
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3.4 Observer Vehicle and Sensor Variations

For the waypoint-based implementation, a trajectory following controller allows

vehicles of different speeds to use the single trajectory stored in the lookup table

to best localize a target. Since the table was generated by non-dimensionalizing

the target localization problem using sensor range R, sensor update period Tf ,

and vehicle speed V , intuition suggests that trajectories stored in the lookup table

are optimal for any vehicle and sensor package that has the same “characteristic

number” as the generated trajectory table. This “characteristic number” relates

the sensor range and sample time, R and Tf to the observer vehicle speed, v.

CN =
(R/Tf )

v
(3.30)

Intuitively, CN is a measure of measurements of the target that can be obtained

before the target is reached. Intuition also suggests, and simulations will later

show, that two vehicles which share the same characteristic number can use the

same lookup table for selecting optimal target localization trajectories. Simulations

will also show that good, though sub-optimal, trajectories can be still be used for

vehicles with differing characteristic numbers.

3.5 Target Localization

This chapter has discussed the development of a lookup table to allow fast tra-

jectory generation or selection even on the limited computing power available of

a µav of autonomous submunition. Target localization using the lookup table

follows three steps:

1. An initial target location is passed to the table. If it is within the field of

view, the trajectory associated with the closed cell centroid is selected. If the

initial target location is outside the field of view the vehicle is commanded to

turn towards the initial given position of the target and fly until the target

is seen.

2. The trajectory, umn for the turn-rate-based implementation or Xmn for the

waypoint-based implementation, is followed in open loop over a control hori-
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zon Tc. A target state estimate is computed using a Sigma Point Kalman

Filter[35, 36]. The control horizon is dependent on the initial distance be-

tween the vehicle and the target at the time of the first camera measurement.

When the control horizon is reached, a new trajectory is selected based on

the current estimate of the target position.

3. The task is complete when the vehicle reaches the risk zone or the vehicle

passes the target. This is defined to happen when the observer vehicle reaches

the last waypoint or turn-rate command defining the trajectory. The next

target in the sequence is selected, and the process repeats for all given targets.

3.6 Summary

This chapter has presented a method for computing and storing a set of trajec-

tories for representative target locations to use in a target localization task for

small- and micro- uavs. This method is needed because current computational

power available on these vehicles is not powerful enough to optimize the trajectory

in real-time. To make the resulting table of trajectories generally applicable to

different sensors and vehicles, the problem was non-dimensionalized using sensor

parameters and the observer vehicle speed. Two parameterizations, using turn-

rate commands and waypoints, were then described and solution methods for the

trajectory optimization problems defined by the two parameterizations were dis-

cussed. Lastly, the steps to perform a single-target localization task were given.

The next chapter will provide simulation results showing the localization ability of

the trajectory tables.



Chapter 4
Simulation Results

This chapter presents simulation results of target localization using the method of

trajectory selection described in Chapter 3. Simulation results using trajectories

with the turn-rate parameterization are presented first in Section 4.1. Using the

turn-rate parameterization, a study on lookup table size, i.e. the number of nom-

inal target locations, is presented in Section 4.1.2. This study was performed to

evaluate the effect of table density on target localization accuracy and was con-

ducted using Monte Carlo simulations with 500 runs each. Surprisingly, this study

found that the lower density trajectory table outperformed the higher density ta-

bles in the target localization task. This is followed in Section 4.1.3 by a sample

sequential target localization task using the turn-rate parameterized table with five

sequential targets. The waypoint-parameterized trajectories are then presented

in Section 4.2. Comparison of the waypoint-parameterized trajectories from the

lookup table with direct optimized trajectories is shown in this section as well. As

suggested in Chapter 3, observers that share the same “characteristic number” but

have different observer vehicle and sensor parameters can use the generate table

directly. Results supporting this claim are presented in Section 4.2.2. Comparison

of table trajectories with direct optimized trajectories for observer vehicles with

different “characteristic numbers” is also presented in this section. A Monte Carlo

simulation of a single target task to determine the localization performance is given

in Section 4.2.3. Using these simulations, a study of the ratio of information cost

and information gain for table trajectories versus direct optimized trajectories is

presented. In Section 4.2.4 a comparison of computation power required for table
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lookup trajectories and direct optimized trajectories is performed. The results from

the localization performance and required computational power for the waypoint

parameterization show that good localization performance can be achieved using

significantly less computational power than an online optimization. A sequential

target task problem and simulation results are presented in Section 4.2.5. Finally,

a statement of the ability for fast adaptation using the table lookup trajectories

is made and simulation results showing the importance of adaptation are given in

Section 4.3.

4.1 Target Localization Using Turn-Rate Param-

eterization

This section discusses simulation results for the turn-rate parameterization. First,

target localization using the trajectory table is illustrated using a sample single-

target task. Next, a method for table compression is discussed. Finally, the use of

the table for localizing multiple targets is illustrated.

4.1.1 Using the Table

A sequence of images showing localization of a single target is given in Figure 4.1.

In the figure, true target location shown with ∗, estimated target location shown

with + and associated error ellipse. The green line in the figure shows the current

path selected from the trajectory table, blue line shows the path flown. The

procedure described in Section 3.5 is used to complete the target localization task.

The target is initially within the field of view of the sensor, so a trajectory can be

selected immediately. The vehicle follows the trajectory while estimating target

state for a control horizon Tc = 2 seconds, hence 4.1 seconds into the flight, shown

in subfigure (b), the vehicle is following its third trajectory. The vehicle continues

to fly, selecting new trajectories as the control horizon is reached. The target

localization task is concluded as the vehicle passes the target. Recall that sensor

noise is assumed to be Gaussian, here σν = 0.0175 rad (i.e. 1◦) was used.

By the end of the task, the target has been localized to an accuracy of 0.42

meters and 0.24 seconds of CPU time was spent performing trajectory selection.
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(c) t = 8.0 s
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(d) t = 11.8s

Figure 4.1. Snapshots of a single target localization run using the turn-rate-
parameterized trajectory table.

As a comparison, direct optimization of the trajectory resulted in a localization

accuracy of 0.26 meters, but required 289 seconds to optimize the trajectory with

this parameterization. CPU times for this comparison were measured using a

desktop workstation with an Intel 2.4 GHz processor.
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4.1.2 Compression by Decimation

Because the lookup table is designed to be used on vehicles that are very small

and might even be destroyed when the mission is complete (e.g. autonomous muni-

tions), minimizing the amount of memory required to store the table is desired. In

addition to compressing the table through reflective symmetry, density of nominal

target locations in the trajectory table has a large effect on the memory required

to store the table.

A simple study showing the effects of the number of trajectories stored in

the lookup table on the localization error was performed. Two lookup tables,

one with 100 trajectories and one with 400 trajectories, were created directly. A

third lookup table, with 25 trajectories, was created by post-processing the 100

trajectory lookup table: every second row and every second column was deleted

from the table.1 A Monte Carlo simulation was then performed for each of the three

lookup tables. Random target locations within the sensor field of view were chosen

and the vehicle flew the target localization algorithm as described in Section 3.5.

Target state estimation was performed on-line.

The results of the Monte Carlo simulation, with 500 runs for each lookup table,

are given in Table 4.1. The table shows values for the determinant, trace, and

maximum eigenvalue of the covariance Σ of the true target localization error over

the 500 run Monte Carlo simulation. The results show the 5× 5 trajectory lookup

table actually performed the best job localizing the random single targets, with

the 10× 10 and 20× 20 trajectory tables performing slightly worse. A scatter plot

of the target localization error for all three Monte Carlo simulations is shown in

Figure 4.2. Finally, a plot of the weighted error for each simulation run for each

trajectory lookup table is given in Figure 4.3. The weighted, or normalized, error

ei for each run is computed from

ei =

√
1

2
(xi − x̂i)TP−1(xi − x̂i) (4.1)

1This is compression by decimation, and is an easy but very crude method of data compression.
More sophisticated approaches which compute average trajectories over neighboring nominal
target positions may allow greater compression with less loss of accuracy. Incidentally, the term
decimation originally referred to the punishment of a garrison of Roman legionnaires convicted
of cowardice in battle: the soldiers were lined up and every tenth soldier was executed.
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Table 4.1. Effect of trajectory table compression on target localization accuracy.
table size det Σ TrΣ max (eigΣ)

5× 5 0.0186 0.4330 0.3846
10× 10 0.0254 0.4818 0.4217
20× 20 0.0281 0.4815 0.4136
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Figure 4.2. Scatter plot of target localization error for 500 run Monte Carlo simulation.

where xi is the true target position for run i, x̂i is the estimated target position

at the end of the run and P is the estimated covariance. The factor 1/2 accounts

for the dimension of the estimation problem (2d target position estimation), and

for a consistent estimator the average value of ei is unity. This is the case for all

three trajectory lookup tables.

These results suggest that using the turn-rate parameterization there is very

little difference between the optimal target localization trajectory and a trajectory

that is sub-optimal but still “pretty good”. In the 5×5 trajectory table the actual

target position will generally be farther away from the nominal target position

used to generate the trajectory than for either the 10 × 10 or 20 × 20 tables. It

can thus be inferred that the cost function used in this turn-rate parameterization
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Figure 4.3. Weighted (i.e. normalized) error for 500 simulations with different size
lookup tables.

is very “flat” in the vicinity of the optimal value.

4.1.3 Sequential Target Localization

The trajectory table can also be used in a sequential target localization task. The

order of targets to be visited and an initial estimate of position is determined by
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a human operator or higher level planner and sent to the vehicle. The vehicle

chooses an appropriate trajectory from the table for the first target and flies the

path. When a terminal condition for the target is reached (e.g. the covariance of

the target state estimate has reached a certain value, or the safety zone for the

target has been reached), the next target is selected from the list and the process

repeats.

If a target is outside sensor range, the vehicle is commanded to turn towards

the initial assumed position of the target and fly straight towards that point until

the target enters the field of view. A trajectory can then be selected from the

table. If the target does not enter the field of view, the observer vehicle will fly

a search path of expanding circles until a target is located or the search area is

cleared.

Results of a simulation of this mission are shown in Figure 4.4. In all of the

figures, Blue ‘wings’ show vehicle position, solid blue line shows the path flown,

the dotted line shows path selected from trajectory table. True target position

is shown with red ∗, estimated target position (for the target currently being

localized) is shown with + and error ellipse. The first subfigure shows the layout

of the targets and position of the vehicle immediately after takeoff. The observer

vehicle has picked an optimal trajectory out of the lookup table for the first target,

shown by the magenta dotted line. The vehicle continues to fly this path for the

control horizon before choosing a new trajectory. Subfigure (b) shows the S-shaped

trajectory flown between the first and second targets, along with a long optimal

trajectory flown to localize the third target. Because the fourth target is not in

view, the control system chooses to fly a hard right turn to acquire the target

with the sensor system. Once acquired, an optimal trajectory is selected from the

lookup table and shown by the magenta dotted line. The third subfigure shows

the vehicle after passing the fourth target. Because the fifth target is well outside

the sensor range of the vehicle, the control system flies a trajectory to minimize

the distance between the observer vehicle and suspected location of the target as

quickly as possible. This trajectory is not obtained directly from the trajectory

look up table, hence no dotted line is shown. Finally, in subfigure (d), the complete

path flown by the observer vehicle is shown. The long straight line between the

fourth and fifth targets indicates the time during which the fifth target was outside
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of the sensor range of the observer. When the sensor does acquire the target, a

curved optimal path is flown to localize the fifth target. During the flight, portions

of 18 trajectories in the lookup table were flown.
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Figure 4.4. Sequential target localization using the turn-rate parameterization.
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4.2 Target Localization Using Waypoint Param-

eterization

This section discusses simulation results for the waypoint parameterization. Simi-

lar to Section 4.1, target localization using the trajectory table is illustrated first

using a sample single-target task. Observer vehicle and sensor variations are then

discussed. A comparison of localization performance and computation power re-

quired for the parameterized method versus a direct optimization is presented.

Finally, the use of the waypoint-parameterized table for localizing multiple targets

is illustrated.

4.2.1 Using the Table

A sequence of images showing localization of a single target using the waypoint-

based parameterization is given in Figure 4.5. In the figure, true target location

shown with ∗, estimated target location shown with + and associated error ellipse.

The green line shows the current path selected from the trajectory table, blue line

shows the path flown. The results show the target is initially within the field of view

of the sensor, so a trajectory can be selected immediately. Exactly like the turn-

rate-based parameterization, the vehicle follows the trajectory while estimating

target state for a control horizon Tc = 2 seconds and the target localization task

is concluded as the vehicle passes the target. Again, sensor noise is assumed to be

Gaussian, here σν = 0.0175 rad (i.e. 1◦) was used. Using this parameterization and

allowing for adaptation, the target was localized to an accuracy of 0.075 meters

using 0.13 seconds of CPU time. Direct optimization resulted in a localization

accuracy of 0.064 meters using 2.2 seconds of CPU time. Again, CPU times for

this comparison were measured on a desktop workstation with an Intel 2.4 GHz

processor.

Figure 4.6 shows that the trajectory created by dimensionalizing a set of ten

waypoints stored in the lookup table and then interpolating generates essentially

the same trajectory as a direct optimization in dimensional space. For practical

purposes, the trajectories are the same because the small variation in paths near

the target occur when the target is outside the field of view of the observer vehicle’s
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(b) t = 4.1 s
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(c) t = 8.0 s
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(d) t = 11.8s

Figure 4.5. Snapshots of a single target localization run using the waypoint-
parameterized trajectory table.

sensor package and, thus, is not providing any information gain.

4.2.2 Observer Vehicle and Sensor Variations

Because the trajectory is stored as a series of waypoints, a trajectory following

controller allows vehicles of different speeds to use the single trajectory stored
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Dimensionalized trajectory from waypoints
Direct optimized dimensional trajectory

Figure 4.6. Direct optimization in dimensional space and using waypoints from a
lookup table yield essentially the same path.

in the lookup table to best localize a target. Since the table was generated by

non-dimensionalizing the target localization problem using sensor range R, sensor

update period Tf and observer vehicle speed v̂, intuition suggests that trajectories

stored in the lookup table are optimal for any vehicle and sensor package that

has the same “characteristic number” as the generated trajectory table. This

“characteristic number” relates the sensor range and sample time, R and Tf to

the observer vehicle speed, v and is given by Equation 3.30. Figure 4.7 shows that

different observer vehicle and sensor combinations can still fly near-optimal paths

using the same table generated for a single “characteristic number.” Flying at a

slower airspeed and with a short-range sensor, the vehicle in the left figure has the

same “characteristic number” as the vehicle in the right figure that is flying at a

faster airspeed but also has a longer-range sensor. Both vehicles can directly use

the lookup table generated using the waypoint parameterization for the specific

“characteristic number.”

Simulations have further shown that observer setups having different CN from

that of the table (e.g. due to a difference in observer vehicle speed) can still

localize a given target well using the trajectory from the lookup table. Because

the trajectories are stored as non-dimensional waypoints, an observer vehicle setup



49

!10 0 10 20 30 40 50 60
!30

!20

!10

0

10

20

Forward Distance (meters)

H
or

iz
on

ta
l D

is
ta

nc
e 

(m
et

er
s)

 

 
Dimensionalized trajectory from waypoints
Direct optimized dimensional trajectory

(a) v = 9m/s,R = 100m
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Dimensionalized trajectory from waypoints
Direct optimized dimensional trajectory for
faster vehicle with long!range camera

(b) v = 18m/s,R = 200m

Figure 4.7. Different observer vehicle and sensor combinations yield observers with the
same “characteristic number” and can use the generated table directly.
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Figure 4.8. Comparison of a directly optimized path versus the trajectory table for
different “characteristic numbers.”

with a sensor of any range can dimensionalize the trajectories to a valid real space

path. Figure 4.8 shows a path that was optimized within dimensional space for

a vehicle and sensor package with “characteristic number” CN twice as large as

the CN of the trajectory table compared with the path from the trajectory table.

Simulation results have shown that the difference in cost is less than 0.5% when a

path (i.e. sequence of waypoints) obtained from the trajectory table is flown.
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Figure 4.9. Comparison of the cost for trajectories from the lookup table versus a
direct optimized trajectory for 500 random target locations.

4.2.3 Simulation Results

A series of simulations was conducted to evaluate the performance of the trajectory

table versus a direct optimization. For the simulations, a target was placed at a

random location within the field of view of the sensor. The trajectory correspond-

ing to the nearest nominal target location was chosen and the observer aircraft flew

and took measurements along the entire trajectory. In this study, no adaptation

of the trajectory occurred as the target state estimate was refined. This was then

compared to a trajectory optimized for the actual (random) target location. The

ratio of optimization cost from the lookup table trajectory to the optimization cost

from a direct optimized trajectory versus target distance is shown in Figure 4.9.

On average, a trajectory from the lookup table results in 81.0% the optimization

cost as the direct (true) optimized trajectory for a random target placed in the

sensor field of view. It is important to note that the optimization cost, J , is the pa-

rameter minimized during the optimization. A larger magnitude negative number,

as provided by direct optimization, in the optimization cost is thus preferable to

a smaller magnitude negative number that is calculated from the table trajectory.

The 81% average “return” on optimization cost provided by the table trajectories

is thus sub-optimal.
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Figure 4.10. Comparison of the information gain alone for trajectories from the lookup
table versus a direct optimized trajectory for 500 random target locations.

When comparing information gain alone, which is directly representative of

the target localization performance of the trajectory, the table lookup method

performs extremely well. For the 500 simulations, the lookup table method pro-

vides, on average, 90.0% the information gain as the true optimized path. This is

because the field of view weight in the optimized cost function, while necessary for

the optimizer to find a solution, does not affect the information gain in real-life.

As can be seen in Figure 4.10, in some cases, the table lookup method performs

significantly (greater than 20%) better than the directly optimized path. In these

cases, small differences in the trajectory result in the observer vehicle obtaining a

small increase in number of measurement locations where the target is within the

field of view of the sensor. It is important to note in these results that the differ-

ence in performance is due mostly to difference in the actual target location and

the nominal target location associated with the initial waypoint trajectory. Ad-

ditionally, adaptation was not considered in these simulations, which likely would

significantly improve the localization performance when using the waypoint-based

lookup table trajectories.
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4.2.4 Comparison of Required Computational Power

The table trajectory can also be retrieved from memory and dimensionalized online

much faster than an optimization can take place. Times for generating a sequence

of ten waypoints in dimensional space for a waypoint-following controller are given

in Table 4.2 and shows that, on average, the table lookup occurs more than 130

times faster than the online optimization. It should be noted that the median

optimization time of 1.28 seconds represents flight over 10-15% of the sensor range

for a nominal µav. Thus, trajectories computed online are likely to be obsolete

before they can be flown. Note also that the CPU times reported were measured

using a workstation-class computer with an AMD Opteron processor clocked at 2.6

GHz. The computation time will be significantly longer using a processor carried

onboard a µav.

Table 4.2. Comparison of CPU times for generating a dimensional trajectory from the
lookup table versus online optimization using a 2.6 GHz AMD Opteron processor.

Lookup Table Online Optimization
Minimum 0.0084 s 0.4822 s
Maximum 0.0403 s 2.5074 s

Median 0.0084 s 1.2779 s
Mean 0.0089 s 1.2364 s

4.2.5 Sequential Target Localization

A mission for a small or micro uav may consist of localizing and tracking a se-

quence of targets provided by a human operator. Here it is assumed that initial

uncertain estimates of target locations are available and that the ‘visit sequence’

is determined by the human operator.

Results of a simulation of this mission are shown in Figure 4.11. In the figures,

blue ‘wings’ show vehicle position, the solid blue line shows the path flown, and the

dotted line shows path selected from trajectory table. True target position is shown

with red ∗, estimated target position (for the target currently being localized) is

shown with + and error ellipse.
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Figure 4.11. Sequential target localization using the waypoint parameterization.

4.3 Adaptation

As the vehicle follows a trajectory selection from the table, target state estima-

tion occurs in real time. By selecting a new trajectory from the table when the

estimated target state has changed, the target localization trajectory can be made

adaptive to changes. In this research, a particular trajectory is followed for a

control horizon Tc and a new trajectory is selected at the end of the control hori-
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(b) Adaptation: Tc = 2s

Figure 4.12. Allowing for path adaptation as the target state estimate is refined im-
proves the localization accuracy of the lookup table provided paths.

zon. The benefits of adaptation is shown in Figure 4.12. Without adaptation, the

lookup table method localizes the target within 0.16 meters. With adaptation and

a control horizon of two seconds, the lookup table method localizes the target to

within 0.075 meters, or better than double the localization accuracy.

4.4 Summary

Simulation results showing the usefulness and accuracy of the parameterized tra-

jectories stored in lookup tables for target localization tasks have been presented.

First, a turn-rate parameterization was used in both single- and multiple- target

localization tasks. A study of table nominal target density was performed and

found the surprising result that a 5× 5 table performed the localization task bet-

ter than both the 10×10 and 20×20 sized tables. This smaller density 5×5 table

requires 75% less storage space than the 10×10 table, also reducing the cost of the

observer vehicle. Results using the waypoint parameterization are then presented.

Single and multiple target localization using the stored trajectories provide excel-

lent localization when compared to direct optimized trajectories. On average, the

table trajectories will provide 90% of the information gain about a target that the
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online optimization would. This result does not take into account the advantage

of fast trajectory adaptation that is possible when using the table trajectories. A

study of required computational power showed that the mean time required to

compute a trajectory dropped from 1.24 seconds using true optimization to 0.0089

seconds using the table trajectories on an AMD Opteron processor. Finally, a sim-

ple study shows that allowing adaptation when using the table trajectories doubles

the accuracy of the localization task. Because of the minimal computation time

required (0.0089 seconds mean) to calculate a trajectory using the table, allowing

for adaptation would have no significant effect on other observer vehicle tasks.



Chapter 5
Conclusion

Target localization and tracking is a key application of micro air vehicles (µavs)

and autonomous submunitions. Because of limitations in sensing that can be

carried, state estimation and the coupled problem of trajectory generation must

be solved to enable useful operation in realistic scenarios.

This thesis has focused on the problem of real-time trajectory generation to

maximize the information gained about a target. The motivating problem is track-

ing a target using a µav, and this led to the major contribution of this research:

development of a system for trajectory selection suitable for use on the limited

computing hardware likely to be available on a µav or autonomous submunition.

The system is based on a pre-computed lookup table of trajectories. A trajec-

tory is represented as either a sequence of turn-rate input commands or a sequence

of waypoints non-dimensionalized with respect to sensor range. The turn-rate com-

mands or waypoint positions are computed off-line for a particular choice of vehicle

speed, sensor update period, and sensor range. A characteristic number, CN , is

defined and provides an indication of the number of measurements of target state

that can be obtained.

This parameterized approach to trajectory generation for optimal target lo-

calization significantly reduces the real-time computational load on a small- or

micro- uav’s processor, freeing capacity for other tasks such as state estimation,

navigation, or communication. The goal of this research, to develop a method of

near-optimal trajectory planning for target localization that is practical for use on

small uavs with limited computational power was met with trajectories providing
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90% of the information gain as a true optimal trajectory and trajectory design

occurring 137 times faster than the direct optimization.

Simulation results for two different parameterizations for the target localization

trajectory design problem, turn-rate- and waypoint-based, are presented in this

research.

In the turn-rate-based approach, the results show good localization perfor-

mance. In a Monte Carlo simulation consisting of 500 simulations, the maximum

localization error was less than 6%. More interesting, however, was that the tra-

jectory table does not need to have a dense nominal target distribution to achieve

this localization performance. Results from a table compression test showed that

a trajectory table with 25 nominal target locations performed as well as tables

with 100 and 400 nominal target locations. This test conclusively proves that this

method to generating near-optimal trajectories for target localization not only

reduces computational load on the observer vehicle, but also uses only a small

amount of storage memory.

To conclude the turn-rate parameterization results, an error study on the afore-

mentioned Monte Carlo simulation was performed. The study confirmed the es-

timator used within the simulations, an Unscented Kalman Filter (UKF), works

correctly. Finally, a sequential target localization task simulation was performed

using the trajectory table. In this task, portions of 18 trajectories were flown,

showing how the table can be extended for multiple target missions and showing

the ability of the table to allow the observer vehicle to perform fast adaptation.

The initial results of the waypoint-parameterization also show good localization

performance. Because the trajectories are stored as a finite set of ten waypoints,

the memory requirements for this parameterization are minimal, with the entire

trajectory table and associated information taking up only 10kb of memory storage

space. The waypoint-based trajectories were then dimensionalized and compared

with trajectories that were optimized directly in real-space. The results of this

comparison show the two trajectories are nearly identical in real-space and the

small differences have little or no effect on the localization as the path differences

occur when the target is outside of the field of view of the sensor system. The

waypoint-based trajectory was then dimensionalized for an observer vehicle with

a significantly different “characteristic number” and compared with a trajectory
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created through direct optimization. Again, the two paths are nearly identical,

with only small differences in some turns.

A Monte Carlo simulation consisting of 500 runs was performed using the

waypoint-based trajectory table. Localization results were then compared with

those obtained by optimizing a trajectory for the random target location. The

dimensionalized waypoint-based table trajectories provide, on average, 81% of the

information cost and 90% of the information gain, when compared to the direct

optimized trajectory for a random target location. A few factors influence the lo-

calization performance and were detailed in the initial presentation of the results.

Finally, a comparison of computation times required for the trajectory design

was done. This comparison shows that direct optimization of a trajectory takes

1.28 seconds on average, or about 10-15% of the sensor range of the observer

vehicle. However, retrieving a non-dimensional trajectory from the lookup table

and then dimensionalizing the waypoints occurs 137 times faster, or approximately

0.0084 seconds. This trajectory design time is constant for trajectories of any size,

from 25-100% of the sensor range.

5.1 Summary of Contributions

5.1.1 Fast, Adaptive Trajectory Selection

A table of trajectories for a set of nominal target locations has been proposed and

implemented. When a target is detected, or specified by a human operator, the

vehicle selects the trajectory corresponding to the nearest nominal target location

and follows the trajectory. An estimator fuses data from the vision system with

knowledge of the observer vehicle state to compute an estimate of the target state

along with an associated covariance. When the target state estimate has sufficiently

improved, or when a control horizon is reached, a new trajectory is selected from the

lookup table. This enables adaptive replanning of the trajectory. This approach

results in greatly reduced on-board computing time.
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5.1.2 Non-dimensional Trajectories

To generalize the trajectory table to various vehicle/sensor combinations the tra-

jectory generation problem was non-dimensionalized using sensor range, vehicle

speed and sensor update rate. The trajectory table thus has an associated charac-

teristic number which is an indication of the number of measurements which can

be obtained while following a path. Any vehicle/sensor combination which shares

this characteristic number with the table can obtain optimal trajectories for tar-

get localization. Vehicle/sensor combinations with differing characteristic numbers

can still use the same table, although the trajectories may be sub-optimal. In the

cases investigated in this research it was found that the performance reduction

associated with differing characteristic numbers was actually very small.

5.1.3 Performance Verification

Results of Monte Carlo simulations show that the information gained about the

target using the trajectory table is almost the same as that gained by direct com-

putation of optimal trajectories (90% of the information is gained when following

trajectories obtained from the table) at vastly reduced computational overhead.

On average, trajectory generation using the trajectory table occurs 137 times faster

than trajectory generation using an online optimization routine.

5.2 Suggestions for Future Work

There are a number of directions to be taken for future work on this research. To

demonstrate the applicability of this research in real-world problems, the gener-

ated trajectory tables should be initially tested on a ground-based robot. After

successful testing, the trajectory tables can then be demonstrated on small uavs.

Extending the optimization and table-based trajectories to localize the target

in three dimensions while maintaining the versatility and applicability afforded

by the non-dimensional problem formulation should also be considered. Other

optimization criteria, such as minimizing the time or fuel required to achieve a

specified maximum localization error could also be considered and trajectory tables

could be created using those criteria.
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Finally, this method of generating near-optimal trajectories could also be used

to provide better estimates of “cost-to-go” in dynamic programming problems and

other methods of online optimization in observer vehicles where enough computa-

tion power is available.
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