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Abstract 

Effective product platforms must strike an optimal balance between commonality and variety.  

Increasing commonality can reduce costs by improving economies of scale while increasing 

variety can improve market performance, or in our robot family example, satisfy a wide range of 

different missions.  Two metrics that have been developed to help resolve this tradeoff are the 

Generational Variety Index (GVI) and the Product Family Penalty Function (PFPF).  GVI 

measures the amount of product redesign that is required for subsequent product offerings to 

meet new requirements, whereas PFPF measures the dissimilarity or lack of commonality 

between design (input) parameters during product family optimization.  GVI is examined 

because it is the most widely used metric applicable during conceptual development to determine 

platform components.  PFPF is used to validate GVI because of its ease of implementation for 

parametric variety, as used in this example.  This work describes a product family trade study 

that has been performed using GVI for a robot product family and compares the results to those 

obtained by optimizing the same family using PFPF.  Additionally, this work provides a first 

attempt to validate the output of GVI by using a complementary set of results obtained from 

optimization.  PFPF optimization is made possible by a fast, comprehensive, and accurate 

mathematical model that is developed as part of this work to calculate design parameters and 

functional capabilities of a robotic ground vehicle.  Additionally, a design method for iteratively 

populating the trade space with robots using this model is presented.  The results of this study 

indicate that while there are sometimes similarities between the results of GVI and optimization 

using PFPF, there is limited correlation between them.  Moreover, the platform recommended by 

GVI is not necessarily the most performance-optimized platform, but it can help improve 
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commonality.  In the same regard, PFPF may miss certain opportunities for commonality.  The 

benefits of integrating the two approaches are also discussed.   
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Chapter 1 

Introduction 

1.1 Overview and Problem Statement 

Product family design involves tradeoffs between commonality and performance – 

increasing commonality in the family provides multiple benefits (e.g., reduces development, 

procurement, inventory, and supporting costs), but too much commonality can yield suboptimal 

product performance.  The benefits of commonality are many [1,2], and several examples of the 

pitfalls of commonality can be found in the literature [3].  For the robot product families 

considered in this thesis, shared parts and supporting systems and thus reduced inventory in the 

field is of great importance, yet commonality can translate into increased weight, decreased 

range or operating time, reduced mobility, or even excessive and/or unused functionality.  

Determining the appropriate level of commonality in a new product family, however, can be a 

difficult and challenging task [1,4]. 

A variety of methods and tools exist to help resolve the tradeoff between commonality 

and product performance in a product family.  In this Chapter 6, two popular approaches for 

resolving this tradeoff are compared, namely, the Generational Variety Index (GVI) developed 

by Martin and Ishii [5] and an optimization-based approach that uses a commonality index – the 

Product Family Penalty Function developed by Messac, et al. [6].  As described in the next 

section, GVI provides a measure of the amount of product redesign that is required for 

subsequent product offerings, whereas PFPF measures the dissimilarity or lack of commonality 

between design (input) parameters during product family optimization.  Both were applied 

independently to a family of robots (see Chapter 6), and comparison of the results provides the 
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first known attempt to validate the output of GVI by using a complementary set of optimization 

results. 

 

1.2 Literature Review 

1.2.1 Generational Variety Index 

The Generational Variety Index (GVI) was developed by Martin and Ishii [5] to assist in 

identifying components within products that are likely to change over time in order to meet 

anticipated future market requirements.  The value for GVI is based on an estimate of the 

required changes in a component due to uncontrollable factors including customer needs, 

reliability requirements, reduced prices, etc. [5].  GVI is computed using the seven step process 

outlined in Figure 1. 

 

 

Figure 1: Steps to Compute GVI [5] 

 

The first step in this process is to estimate the life of the product platform along with 

current and future market predictions.  Then, two matrices are created.  The first is the traditional 

Quality Function Deployment (QFD) matrix [7], which maps customer needs to engineering 
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metrics.  The second matrix maps the engineering metrics from the first matrix to actual physical 

components used in the design of the product.  Third, a column is added to the first QFD matrix 

to define the expected amount of change over the number of years specified in Step 1 

qualitatively as high, medium, or low.  This matrix visually describes how customer needs are 

expected to change.  Next, target values for each engineering metric are added to the matrix for 

each timeframe that the product platform will be developed as described in the first step.  The 

matrix is then normalized in order to graphically display the changes for the target values.  The 

costs of changing components in order to meet engineering objectives on the product platform 

are evaluated as 0, 1, 3, 6, or 9 where a 0 indicates no changes are necessary and a 9 indicates 

that major redesign of the component would be necessary and cost more than 50% of the initial 

design cost.  Table 1 provides descriptions for each of these values.  The final step is to calculate 

the GVI for each component by summing each of the columns of the GVI matrix from Step 6.  

Components with low GVI scores require little redesign and can therefore be part of the 

platform, while high GVI scores indicate extensive redesign may be required; therefore, these 

components should not be part of the platform, but the interfaces to these components should be 

standardized to allow easy upgradability as the product evolves.   

 

Table 1: Descriptions of GVI Component Scores [5] 

Rating Description

9 Requires major redesign of the component

(>50% of initial redesign costs)

6 Requires partial redesign of component

(<50%)

3 Requires numerous, simple changes

(<30%)

1 Requires few, minor changes

(<15%)

0 No changes requires  
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GVI has started to find applications in industry.  Nomaguchi et al. [8] discuss the value in 

using perception-based approaches such as the GVI in concept design as a way to externalize 

design knowledge and further consider it.  Unfortunately, despite its effectiveness, GVI is often 

criticized because the results are based on judgment and experience, which makes the metric 

subjective [9].  In addition to the subjectivity, the metric is poorly suited to capture change 

propagation across a modular platform because structural elements are much more strongly 

connected within a single product than across members of a family [10].  Moreover, modules are 

often designed to be functionally independent and thus have minimal interactions, limiting the 

propagation of change into other modules [11].  More recently, an Analytic Network Process 

(ANP) approach was created to measure the impact of design changes of modular products by 

measuring the relative change impact (RCI) among parts and modules [12].  Algorithms for 

clustering Design Structure Matrices (DSMs) have been used to identify modules [13].  Kang 

and Hong [14] note that GVI only offers binary information as to whether a characteristic should 

be differentiated or not; therefore, they developed a versatility measure to provide more 

information for the market.  Alternatively, optimization can much more accurately represent the 

functional performance metrics and requirements of a product platform that depend more on 

functionality than a customer‟s ability to differentiate a product.  GVI commonality is a binary 

yes or no decision on what to make common; however, as shown in Chapter 6, PFPF 

optimization can identify varying degrees of similarity. 

 

1.2.2 Product Family Optimization 

Product family optimization takes a completely different approach to solving the 

commonality-performance tradeoff by relying heavily on mathemetical models and optimization 
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algorithms to reach similar conclusions.  Takai and Ishii [15] classify such evaluation methods 

into perception-based approaches (e.g., GVI) and analytic approaches (e.g., optimziation).  

Perception-based approaches such as GVI rely on experts quantifying their observations while 

analytic approaches calculate the performance of design concepts by optimizing performance 

functions [15].  As such, a mathematical model or other forms of performance functions relating 

design parameters must exist in order to use an analytic approach.  The physics-based 

mathematical model for the robots considered in this thesis is presented in Chapters 2 and 3. In 

an analytical approach, commonality can be determined by modeling the product as an 

optimization problem where product performance across the family is considered, and tradeoffs 

are explored.  Simpson [16] reviews more than 40 such optimization-based approaches that fall 

into this category of analytical approaches.   

A challenge when using optimization is developing a suitable metric for commonality 

[17].  In this work, because we are considering parametric variations of the design (input) 

variables, we use the Product Family Penalty Function (PFPF), which measures the dissimilarity 

or lack of commonality in a family of products [6].  This metric allows commonality and 

performance to be appropriately balanced within the product family through the careful selection 

of common parameters that define the product platform.  More specifically, PFPF helps 

determine which parameters should be held common (i.e., be part of the product platform) 

throughout the family and which should be varied during optimization. 

PFPF works by penalizing design parameters that do not have a high degree of similarity 

throughout the product family while optimizing the desired objectives or fitness function for the 

family.  PFPF is defined as the sum of the variability in the key design parameters normalized by 

the average value of each parameter [6]: 
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where xij is the individual value of the i
th

 design parameter for the j
th

 product.  Finally, n is the 

number of parameters being evaluated, and p is the number of products in the family that are 

being optimized.  The variation is a percentage of the mean for the design (input) parameter in 

question so that while the parameters change during the optimization, the percent variation is 

always based on the mean of the variables [6].  

 

1.3 Overview of Thesis 

The mathematical model on which the robot product family optimization heavily depends 

is presented in Chapters 2 and 3.  Chapter 2 provides a high level outline of the model by 

describing the tools used for modeling, integration of various software packages, simplification 

of the model by breaking it into subsystems, and how interdependencies are accounted for.  

Chapter 3 presents detailed descriptions of each subsystem within the model as well as each 

subsystem‟s corresponding equations.   

Four existing robots are used to validate the model.  The results of this validation are 

offered in Chapter 4.   Upon generating over fifteen thousand robot designs, numerous design 

tradeoffs were discovered and presented in Chapter 5. 

Chapter 6 provides and compares the results from the GVI and PFPF trade studies.  A 

unique optimization method came out of this comparison.  This unique optimization method 

combines the use of both GVI and PFPF.  The method follows the steps outlined in Table 2.  The 
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contents of this thesis present all of the relevant work necessary to carry out this optimization 

method for a family of robots. 

 

Table 2: Optimization Method Combining GVI and PFPF Metrics 

Step Description

1 Perform GVI analysis

2 Create a mathematical model

3 Perform individual PFPF optimization to populate the trade space

4 Search the trade space for designs most closely resembling GVI commonality suggestions

5 Choose the best design: that which has the highest effectiveness and lowest PFPF  
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Chapter 2 

Mathematical Modeling Overview  

2.1 Modeling Overview 

The physics-based mathematical model for this project was written in Simulink®, a 

simulation and model-based design package within Matlab® [18].  The Applied Research 

Laboratory (ARL) Trade Space Visualizer (ATSV) is used to visually steer and iteratively define 

inputs to populate new designs from the Simulink® model.  In the subsequent text, the model 

inputs created by ATSV are referred to as user-defined inputs.  ATSV is also used to view the 

robot designs populated by the model in order to examine tradeoffs.  Both software packages and 

their applications are discussed in more detail in Section 2.2.  A more detailed description of the 

interaction between software packages is discussed in Section 2.3.  Additionally, the use of 

continuous versus discrete input values is discussed in Section 2.6. 

The Simulink® model is partitioned into fifteen subsystems.  Twelve subsystems are 

used to either calculate geometric parameters or size components for the robot, two are used to 

determine capabilities, and the final subsystem is used to determine how well the design meets a 

set of predefined threshold and objective requirements.  Breaking the model into separate 

subsystems helps to organize the model diagram within Simulink® by grouping similar 

calculations together.  Using a subsystem modeling approach also allows subsystems to be 

validated individually as shown in Chapter 4.  This subsystem breakdown is further discussed in 

Section 2.4.  The interdependent parameters that exist within the model are discussed in Section 

2.5. 

Equations coded into each subsystem are derived by either experimental testing and 

creation of best fit curves or by static kinematic analysis.  While this model is capable of 
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providing accurate design representations as shown in Chapter 4, the intent was never to create a 

high fidelity model capable of predicting complex capabilities such as a three-dimensional reach 

envelope of a robot manipulator.  Rather the intent of the modeling efforts were to be able to 

quickly populate a trade space consisting of thousands of design possibilities over a wide range 

of input parameters and evaluate basic capabilities.  Figure 2 is a graphical representation of the 

level of design detail that this model provides.  Rather than focusing on track patterns or 

suspension system design, the model outputs higher level parameters such as track width, battery 

dimensions, maximum vehicle velocity, etc.  The ensuing chapter discusses in more detail how 

the equations in each particular subsystem are modeled and what they are capable of providing.  

 

 

Figure 2: Graphical Representation of Robot based on Model Output 
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2.2 Modeling Tools 

Simulink® is a mulitdomain simulation and Model-Based Design environment within 

Matlab® for dynamic and embedded systems [18].  Simulink® is used for several reasons.  The 

primary rationale for use is Matlab®‟s nearly universal understanding and use amongst the 

engineering community.  An earlier version of this model was written in Mathematica®.  The 

Mathematica® model presented challenges to the users because it was very difficult to debug 

and integrate with ATSV.  This problem was alleviated in the switch to Simulink® due to its 

inherent block diagram format where an arrow is drawn from the output of an embedded 

function to the location it is used next.  In additional to being able to trace variables as they are 

used throughout the diagram, it is also very easy for a user to attach a “scope” to any signal path 

and monitor how that particular variable converges with each iteration.  Furthermore, 

breakpoints can be set within an embedded function, and values of all of the variables used 

within that function can be examined for error.  Simulink® is also very fast.  Whereas the 

previous generation Mathematica® model took well over two minutes to converge upon a single 

design iteration, the Simulink® model is capable of running a complete design iteration in 

approximately four seconds.  It should also be mentioned that the bottleneck in the speed of the 

Mathematica® model was the link between Mathematica® to the solver built into Excel.  

Matlab® is able to generate an executable file that directly interfaces with ATSV, thus 

significantly speeding up the optimization process. 

The Applied Research Laboratory‟s Trade Space Visualizer (ATSV) is used to sample 

the model‟s inputs and perform trade studies [19,20].  ATSV is a Java-based application created 

by Penn State that is connected to the mathematical model.  Once the model is linked to ATSV, 

designs are generated “on-the-fly,” giving the user control over the trade space exploration 
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process.  ATSV allows users to explore the design space using random sampling, manual 

sampling and/or Pareto sampling, which implements Pareto-based Differential Evolution along 

the entire Pareto front [21].  The “in the loop” user can also visually steer the model with the use 

of an Attractor Sampler to search near a specific point, a Preference Sampler to search within an 

area of interest, and/or a Guided Pareto Sampler to search the trade space using a combination of 

attractor and preferences [22].  By combining multi-dimensional data visualization techniques 

with visual steering commands, the user is able to guide the optimization process while 

“shopping” for Pareto optimal designs [23].  ATSV is also used in the post processing of the data 

generated by the model.  The software is capable of plotting data in multiple dimensions using 

such plots as glyphs, histograms, scatter matrices, and parallel coordinates [24].  Tradeoffs in 

design parameters are determined using these plots. 

 

2.3 Software Integration 

As mentioned in Section 2.2, the model for this work was created using Simulink®.  An 

executable Windows® file was created from the Simulink® model using the Real-Time Toolbox 

in Simulink® (see Appendix A for the method used to create this executable file).  This 

executable file was then embedded within another executable file that reads in a text file 

containing the model inputs, which are determined by ATSV, and outputs a text file containing 

the model outputs that are read into ATSV. 

The basic interaction of the two software packages used to run the model is outlined in 

Figure 3.  ATSV first generates values for the input variables between a user-defined upper and 

lower bound.  These values are then written to a text file called “inputs.txt”.  ATSV then runs the 

packaged Windows® executable package which is boxed together in Figure 3.  Contained within 
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this package is a Windows® executable file to provide an interface between ATSV and the 

executable Simulink® model.  This executable interface within the executable package first 

writes the inputs from “inputs.txt” to a Matlab® .mat file called “inputs.mat”.  This step is 

necessary because the Windows® executable file created in Simulink® is incapable of reading 

and writing .txt files to the system.  However, Simulink® inherently reads and writes .mat files 

when run.  Upon loading the inputs to the .txt file, the Windows® executable Simulink® model 

is run.  The model writes the outputs to another .mat file called “outputs.mat”.  The primary 

Windows® executable file then writes the .mat file to a .txt file called “outputs.txt”.  The output 

parameters contained within “outputs.txt” are then read and stored by ATSV.  This completes 

one design iteration, i.e., one robot design is created ad analyzed.  ATSV then generates a new 

set of input variables, and the process is repeated. 

 

 

Figure 3: Software Interaction 

 

2.4 Subsystem Overview 

As mentioned previously, the robot model contains fifteen subsystems.  A top-level block 

diagram of the entire model is shown in Figure 4.  The subsystems are organized such that the 

subsystems requiring exclusively user-defined model inputs are oriented to the left most side of 

the model.  These subsystems are evaluated first.  The subsystems to the right depend on user-
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defined inputs as well as outputs from other subsystems.  The block diagram shown in Figure 4, 

outlines which subsystems are dependent on one another by mapping the subsystem output 

parameters to each subsystem where those parameters are used as inputs.  The two parameters 

which are interdependent between subsystems (e.g., maximum velocity and total vehicle mass) 

can be identified in this figure by their left directed arrows into the two transfer functions which 

then point back into the subsystems which depend on them.   

 

 

Figure 4: Top Level View of Simulink® Model 

 

These fifteen subsystems, from the first to be evaluated to the last are Manipulator (see 

Section 3.1), Batteries (see Section 3.2), Motor Controller (see Section 3.3), Drive Motor (see 

Section 3.4), Chassis (see Section 3.5), Chassis Structure (see Section 3.6), Wheels (see Section 

3.7), Tracks (see Section 3.8), Power Requirements (see Section 3.9), Endurance (see Section 

3.10), Total Vehicle Dimensions (see Section 3.11), Total Vehicle Mass (see Section 3.12), 
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Functional Capabilities (see Section 3.13), Manipulator Capabilities (see Section 3.14), and 

Effectiveness (see Section 3.15).  Contained within each subsystem is another sub-block-diagram 

containing embedded Matlab® functions and Simulink® operators as described in Chapter 3. 

As previously mentioned, two variables with a right to left flow can be identified in 

Figure 4.  These two variables are (1) maximum vehicle velocity and (2) vehicle mass.  Both of 

these variables travel in the reverse direction in relation to the rest of the model because they 

must be solved for iteratively.  The vehicle velocity must also be iteratively solved for within the 

Endurance subsystem.  The chassis mass must be iteratively solved for within the Chassis 

Structure subsystem.  These interdependencies are further discussed in the next section. 

 

2.5 Interdependencies (Iterative Loops) 

As mentioned in Section 2.4, the robot model contains two interdependent variables 

between subsystems.  The first interdependent variable is maximum velocity.  This 

interdependency first appears when sizing the drive motor gearbox.  Additionally, vehicle 

velocity and chassis mass are interdependent variables within two separate subsystems. 

As outlined in Figure 5, the Drive Motor subsystem depends on several user-defined 

inputs including the number of driven wheels, wheel diameter, drive motor configuration, bus 

voltage, and auxiliary power draw.  The subsystem also depends on the total power available 

from the Batteries subsystem, and the motor controller efficiency from the Motor Controller 

subsystem.  Finally, the Drive Motor subsystem depends on maximum vehicle velocity, which is 

not evaluated until much later in the chain of subsystems.  This interdependency appears because 

a velocity must first be known to size the drive motor gearbox such that the motor operates at 
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peak efficiency.  However, the efficiency losses from both the drive motor and gearbox are 

needed to accurately calculate the maximum vehicle velocity. 

 

 

Figure 5: Drive Motor Subsystem Interdependency 

 

The problem of circular dependency is accounted for with the implementation of a 

feedback loop.  The feedback loop connects the maximum vehicle velocity output from the 

Power Requirements subsystem to the input of the transfer function shown in Figure 6.  The 

output of the transfer function is then the input for the Drive Motor subsystem. 

The integrator block in the state space transfer function shown in Figure 6 contains an 

initial guess for maximum vehicle velocity.  The model uses this initial guess to size the drive 

motor as well as the subsystems between the Drive Motor subsystem and the Power 

Requirements subsystem.  The model then calculates the maximum vehicle velocity and passes 

this value for maximum vehicle velocity through the dependent subsystems.  This loop is 

repeated for a total of 40 seconds at 0.05 second time steps, thus resulting in 800 iterations.  The 
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simulation time and time step are both specified in the configuration parameter window in 

Simulink®. 

In order to be sure that all of the initial conditions can be user-defined, an all-integrator 

representation of a transfer function is used.  A portion of the feedback loop for maximum 

vehicle velocity is shown in Figure 6.  In this figure, the blocks highlighted in orange are 

collectively the all-integrator representation of the transfer function shown in Equation 2. 

 

 

Figure 6: Vehicle Velocity Feedback Loop in Simulink 

 

                 

                   
 

 

   
 (2) 

 

The feedback loop also contains a saturation block, highlighted in blue in Figure 6, to 

apply an upper and lower bound on the maximum vehicle velocity.  This bound is set at 1000 

m/s, and 0.01 m/s respectively.  The only way that the feedback loop could hit one of these 

bounds is if maximum vehicle velocity were increasing without bounds and would never 

converge.  If this would happen then the model either outputs nonsensical results or results in an 

error.  The latter would cause the model to stop running during trade space exploration.  If a 

design happens to hit either this minimum or maximum bound, then it is removed during post 

processing.  Hitting this minimum or maximum bound did not occur during trade space 
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exploration; however, the saturation block should remain in the model to prevent possible error 

when sampling outside of the input bounds used for this particular trade space exploration. 

The feedback loop shown in Figure 6 also contains two scopes.  These scopes allow the 

user to monitor the convergence of maximum vehicle velocity.  Using these scopes, model 

convergence can be proven using the final value theorem.  To do so, the initial values for the 

three interdependent variables are guessed as shown in Table 3.  The model is then run with a 

fixed set of inputs.  Once the simulation is complete, the scope to the left of the transfer function 

labeled cruisingVelocityNewScope is examined.  It can be seen from Figure 7 that maximum 

vehicle velocity initially begins at 2 m/s and then overshoots the final value of 7.52604317 m/s 

to which it eventually converges. 

 

Table 3: Initial Values for Feedback Loops 

chassisMassFeedback 10 kg

maxCruiseVelocityFeedback 2 m/s

vehicleMassFeedback 30 kg  
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Figure 7: Maximum Vehicle Velocity Scope Using Initial Guesses 

  

Figure 7 shows that the model is asymptotically stable [25].  Because the system is stable, 

the final value theorem is used to ensure local convergence of the model given a finite domain of 

input parameters [25].  This is done by using the same set of model inputs, but specifying the 

initial guesses for the three interdependent variables as the final values from the previous 

simulation.  These values are shown in Table 4.  Examining either scope after simulation, as 

shown in Figure 8, the maximum vehicle velocity begins and ends at precisely 7.52604317 m/s.  

There is absolutely no deviation from this value at any point during iteration, thus ensuring local 

convergence of the model given a finite domain of input parameters.  Additionally, this process 

was used to ensure that the other interdependent variables are asymptotically stable and locally 

convergent. 
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Table 4: Calculated Values for Feedback Loops 

chassisMassFeedback 13.53389737 kg

maxCruiseVelocityFeedback 7.52604317 m/s

vehicleMassFeedback 101.76047305 kg  

 

 

Figure 8: Maximum Vehicle Velocity Scope Using Calculated Values 

 

In the next chapter, the Drive Motor subsystem, as well as the fourteen other robot model 

subsystems are explained in detail.  The subsystems are presented in the order that they are 

evaluated within the model as described in Section 2.4. 

 

2.6 Use of Discrete or Continuous Input Parameters  

ATSV is capable of inputting either discrete or continuous input parameters to the model.  

Utilization of continuous values allows, for example, wheel diameter to be specified as 0.3724 

[m].  Use of continuous parameters allows the robot to be optimized as much as possible; 

however, it is unlikely that an off-the-shelf wheel of precisely that diameter exists.  Rather, a 
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wheel of this diameter would have to be custom made or a close substitution would have to be 

found.  Custom parameters are not always possible due to development and production cost and 

time constraints.   

On the other hand, discrete values can be used to allow only off-the-shelf components to 

be specified within the design.  Discrete values for parameters such as wheel diameter can be 

specified directly in ATSV.  On the other hand, utilization other discrete parameters involves 

modeling certain subsystems differently.  For or example, the use of a standard BB2590U battery 

versus a custom Lithium-Ion battery is discussed in Section 3.2.  The performance hit with the 

use of a BB2590U battery is shown in Section 5.3. 
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Chapter 3 

Subsystem Modeling 

 This chapter provides a detailed description of each subsystem within the model.  Each 

section within the chapter outlines the inputs and outputs of the subsystem at hand.  Each section 

also explains the equations used in each subsystem and how each equation is related to another. 

 

3.1 Manipulator Modeling 

3.1.1 Subsystem Overview 

The manipulator subsystem is the first subsystem to be evaluated in the model because all 

of the input parameters are user-defined.  A high level view of the subsystem is shown in Figure 

9.  The inputs to this subsystem are the light blue boxes to the left of the subsystem „black box‟, 

which is actually shaded green.  The light blue coloring of the input boxes indicates that the 

parameters are user-defined inputs.  

A diagram of the manipulator that is modeled in this subsystem is shown in Figure 10.  

This diagram also defines the nomenclature used throughout this chapter.  As shown in Figure 9, 

inputs to the manipulator subsystem include primarily geometric parameters including the length 

of units [m] and mass of units [kg] defining the end-effector or gripper, lengths of each segment 

(L1A1Length, L2A1Length, L3A1Length) of units [m], density of the manipulator material 

[kg/m
3
], and inner arm radii of each segment tube (innerArmRadiusL1A1, 

innerArmRadiusL2A1, innerArmRadiusL3A1) [m].  The subsystem also includes inputs that 

factor into the dexterity and mobility of the manipulator.  These inputs include the dimensionless 

number of degrees of freedom at each joint (nDOFL1A1, nDOFL2A1, nDOFL3A1).  The 

maximum weight that the manipulator is sized to lift, before tipping of the robot during a fully 
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extended reach is considered, is an input defined as FLift and has units of [kg].  Gearbox ratios 

for each motor (gearboxRatioWrist, gearboxRatioElbow, gearboxRatioShoulder, 

gearboxRatioTorso) are inputs to the subsystem.  Finally, the number of links, ranging from 1 to 

3, is an input.  
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Figure 9: Simulink® Manipulator Subsystem 
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Figure 10: Manipulator Diagram Highlighting Nomenclature 

 

As seen in Figure 9, the first group of outputs from this subsystem is the peak power [W] 

draw from each motor.  Peak power is assumed to occur at the motor stall torque, when the 

maximum load is lifted in the fully extended position.  Peak power of each motor is labeled 

MotorL1A1PeakPower, MotorL2A1PeakPower, MotorL3A1PeakPower, and 

MotorL4A1PeakPower, respectively. 

The second group of outputs are the no load speeds of each motor.  This is the speed, in 

[rad/sec], at which the motor could spin without any load applied.  These are labeled 

L1A1SpeedMaxEff, L2A1SpeedMaxEff, L3A1SpeedMaxEff, and L4A1SpeedMaxEff, 

respectively. 

The third group of outputs contain the masses [kg] of each motor and gearbox 

combination.  As shown in the subsequent section, the motors are sized based off of a curve fit 

relating torque to mass.  The gearboxes are then sized based off of a curve fit relating the 

gearbox ratio and the mass of the motor to the mass of the gearbox.  The motor mass is added to 

Robot Chassis

L4A1
motor

L1A1 segment

L3A1
motor

L2A1
motor

L1A1
motor

FLift
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the gearbox mass and output as L1A1TotalMotorMass, L2A1TotalMotorMass, 

L3A1TotalMotorMass, and L4A1TotalMotorMass, respectively. 

Masses of the motors and gearboxes are followed by their respective maximum output 

torques in units of [N-m].  The torque of each motor and gearbox combination is labeled 

L1A1torque, L2A1torque, L3A1torque, and L4A1torque, respectively.  These torques are 

obtained from moment balance equations during a horizontal lift. Derivation is detailed in the 

next section. 

Each segment of the manipulator is assumed to be hollow cylindrical tubes. The inner 

radius of each segment is a user-defined input.  The outer radius is calculated through an iterative 

loop which increases the wall thickness until it satisfies a maximum stress condition.  This loop 

is described in more detail in the next section.  The outer segment radii are labeled L1A1radius, 

L2A1radius, and L3A1radius, respectively.  These radii have units of [m]. 

Finally, the Manipulator subsystem sums the total number of user-defined degrees of 

freedom that are actually used by the manipulator.  This output is labeled totalDOF and is 

dimensionless.  While the user can specify three degrees of freedom at motor L4A1, the user 

may not have defined enough segment lengths to actually utilize those degrees of freedom.  This 

summation provides a foolproof check to determine the number of defined degrees of freedom 

that the manipulator actually has. 

The four red lines splitting from the path of the bus creator within the „black box‟ 

subsystem to the bus selector, shown in Figure 9, indicates that the outputs from this subsystem 

are then used as inputs to four other subsystems.  These subsystems are Batteries, Total Vehicle 

Dimensions, Total Vehicle Mass, and Manipulator Capabilities. 
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3.1.2 Model Derivation 

 From a high level, the manipulator subsystem follows a simple creation path.  As shown 

in Figure 11, all of the manipulator components are sized beginning with the wrist motor 

(L1A1), followed by the elbow motor (L2A1), and sequentially followed by the forearm segment 

(L1A1).  If the user defines only one segment link, then the subsystem outputs zeros for all of the 

remaining parameters.  If the user defines two or more segment links, then the subsystem sizes 

the shoulder motor (L3A1) followed by the humeral segment (L2A1).  Again, if the user defines 

three segment links, then the subsystem continues calculating the torso motor (L4A1) and finally 

the torso segment (L3A1).  
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Figure 11: Manipulator Block Diagram 

 

 Sizing a motor first requires calculation of how much torque the motor must be able to 

support.  This is done by isolating the motor in question with any links between the lifting force 

and the motor to be sized, from the rest of the system.  This isolation is shown in Figure 12.  The 

motors are sized for the most difficult static lifting situation: when the arm is stretched 

horizontally to lift mass FLift, which has units of [kg].  From this diagram, and the assumption 

that the motors are point masses and that the segment lengths are uniform along their lengths, 
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thus placing their centers of gravity at half of their lengths, Equation 3 can be derived from a 

moment balance about the point mass motor. 

 

 

Figure 12: L1A1 Motor Sizing Diagram 

 

                 = 

             

 
                                         

(3) 

 

Once the required torque for this motor is determined, all remaining parameters for this 

motor are calculated.  First, the motor torque apart from the gearbox is determined from 

Equation 4.  The gearboxes in the manipulator are used to slow down the motors and increase 

their torque output. Thus, in Equation 4, the total required lifting capacity is divided by the 

gearbox ratio to determine the portion of torque that the motor must be sized to lift. 

 

 
                 

               

                
 (4) 
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All of the remaining parameters are calculated using best-fit-curves from vendor data for 

several electric motors [26].  The first parameter to be calculated from these fit curves is the 

efficiency of the gearbox, shown in Equation 5.  Once the gearbox efficiency is calculated the 

required torque of the motor is recalculated to make up for this efficiency loss, via Equation 6.  

 

                                                         (5) 

 

                                                       (6) 

 

The mass of the motor is calculated using Equation 7.  This equation was created by 

fitting an equation to the vendor data in Figure 13.  In this figure, the curve fit is shown in 

relation to the vendor data.  A curve fit is used to relate the gearbox ratio and the mass of the 

motor to the mass of the gearbox as shown in Equation 8.  The mass of the gearbox is then added 

to the mass of the motor and output as L1A1TotalMotorMass. 

 

                                            (7) 
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Figure 13: Motor Mass as a Function of Peak Torque 

 

                                                              (8) 

 

Motor speed at maximum efficiency is then calculated as a function of the peak motor 

torque defined in Equation 6, using Equation 9.  This equation‟s fit to vendor data is shown in 

Figure 14. 

 

                                                                        (9) 
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Figure 14: Speed at Maximum Efficiency as a Function of Peak Torque 

 

 Finally, the maximum power draw of the motor is calculated using Equation 10.  This 

curve fit is compared to vendor data in Figure 15. 

 

                                                                            (10) 
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Figure 15: Peak Power Draw as a Function of Peak Torque 

  

 Once all of the parameters have been determined for MotorL1A1, the next motor, 

MotorL2A1, can then be sized.  However, the mass of segment L1A1 factors into the lifting 

equation for Motor L2A1.  The length of the segment, inner radius of the segment, and material 

density are all user-defined inputs to the model.  Thus, segment L1A1 can be accurately sized by 

iteratively increasing the segment‟s thickness.  The segment‟s thickness is initially defined as 0.1 

[cm].  The value for segment thickness will be iteratively increased until the segment will not 

break.  The mass of the segment is calculated as density multiplied by volume, shown in 

Equation 11.  

 

                                                              

                                              
(11) 
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MotorL2A1 is sized similarly to MotorL1A1 but calculated using a slightly revised lifting 

equation.  The revised lifting equation is also derived from a simple moment balance but derived 

from the free body diagram in Figure 16, and shown in Equation 12.  

 

 

Figure 16: L2A1 Motor Sizing Diagram 

 

                  
          

 
                              

                                                         

(12) 

 

Once MotorL2A1Torque is known, GearboxL2A1Efficiency is calculated using Equation 

5, and MotorL2A1Torque is recalculated as it was for MotorL1A1Torque using Equation 6.  

MotorL2A1mass and GearboxL2A1mass are calculated using Equation 7 and Equation 8, 

respectively.  

Next a check is performed to make sure that the segment does not break while lifting the 

user-defined capacity, FLift.  If FLiftMax, as defined in Equation 13, is greater than FLift 

multiplied by a safety factor of two, then the arm yields.  Equation 13 is derived from a stress 
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calculation.  If the segment yields, then the thickness of the arm segment is increased by 0.1cm, 

and the analysis for sizing the segment and motor is repeated.   

 

              

 

                        
 

 
                                                                        

                                    
 

               1 1      +             2            1 1        

1 1        1 1        1 1      2          

(13) 

 

 Once an appropriate segment thickness is determined, the maximum power draw and 

speed at peak efficiency are determined using the same fit curves as for the wrist motor shown in 

Equation 9 and Equation 10.  

Per Figure 11, if the user has specified two or more segments, then the same analysis is 

performed for the next motor and segment link. If the user has specified only one segment, then 

the model outputs null values for all of the remaining parameters. 

 Once the entire manipulator has been appropriately sized, all of the user-defined degrees 

of freedom are summed together and output from the subsystem as totalDOF. A check is 

performed to ensure that only the degrees of freedom that are actually used are summed together.  

For example, if the user specifies only one segment link but specified degrees of freedom at the 

shoulder and torso motors, the model ignores those unused degrees of freedom. 

Likewise, the masses of all of the motors, gearboxes and segments are summed together 

and output as TotalManipulatorMass. The power draw of each motor is summed together along 
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with a user-defined value for the end-effector power draw and control electronics and output as 

MaxManipulatorPowerDraw. 

 

3.2 Battery Modeling 

3.2.1 Subsystem Overview 

A high level view of the Battery subsystem is shown in Figure 17.  Like the Manipulator 

subsystem, the inputs to the Battery subsystem are the light blue boxes to the left of the 

subsystem „black box‟, which is shaded green.  The light blue coloring of the input boxes 

indicates that the parameter is a user-defined input.  The Battery subsystem relies almost entirely 

on user-defined inputs.  These inputs include batteryType [NiCad, niH2, PbAcid, NiMH, LiIon, 

or BB2590U], busVoltage [V], and batteryCapacity [Amp-hrs].  Additionally, the subsystem also 

relies on one output from the Manipulator subsystem.  It can be seen that this input is from 

another subsystem because a bus selector is used to select the appropriate output parameter from 

its originating subsystem.  In addition to tracing the path of this variable from the Manipulator 

subsystem from within the Simulink® diagram, it can be seen that this input is output from the 

Manipulator subsystem from its red foreground color.  Each subsystem has its own unique color 

to indicate the subsystem of origin when the outputs are used in other subsystems.  

Outputs of the Battery subsystem include the dimensionless Peukert number, which is 

used to calculate runtime in the Power Requirements subsystem [26].  Dimensions of the 

batteries are output as batteryLength, batteryWidth, and batteryHeight each with units of [m]. 

The volume of the battery is output as batteryVolume [m
3
].  The mass of the battery is labeled 

batteryMass [kg], and the maximum power output is batteryPower [W]. If an off-the-shelf 

BB2590U battery (batteryType = 6) is specified, then the subsystem calculates the required 
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number of batteries as numberOfBatteries.  If a non-standard battery is specified (i.e., 

batteryType = 1 through 5) then the subsystem always outputs a required number of batteries 

equal to one with the mass and capacity determined by the subsystem.  Because it is harmful to 

many battery chemistries to completely discharge a battery, the subsystem outputs the battery 

capacity factoring in a safe depth of discharge capacity as batteryCapacityWithDOD with units 

of [Amp-hrs].  Finally, the subsystem outputs a flag to indicate whether or not the batteries are 

capable of supplying the manipulator with its peak power demand.  This flag is labeled 

manipulatorPowerFlag and outputs a 0 if the batteries are able to meet the peak power demands 

or outputs a 1 if the batteries are unable to meet the peak power demands.  
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Figure 17: Simulink® Battery Subsystem 

  

 Just as in the Manipulator subsystem, it can be seen from Figure 17, that the outputs from 

the Batteries subsystem are used as inputs for five other subsystems.  Again, this is shown by the 

five gray colored signal buses branching from the subsystem output.  These five subsystems 

include the Motor Controller, Drive Motor, Power Requirements, Endurance, and Total Vehicle 

Mass subsystems.  
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3.2.2 Model Derivation 

As mentioned in Section 3.2.1, there are three input parameters that must be known in 

order to size a battery.  The model-defined MaxManipulatorPowerDraw input is not critical to 

sizing of the battery, but rather it is used to determine if a flag should be output if the user does 

not input a large enough battery capacity to meet the peak power demands of the manipulator.  

From these three inputs, this subsystem can output all of the necessary power parameters 

required to output a robot to the tradespace.  

The first action performed within the Battery subsystem is selection of five chemistry-

specific battery constants.  These constants and their associated units can be found in Table 5 and 

include the Peukert Number, specific energy, specific density, cell voltage and maximum depth 

of discharge percentage.  The subsystem determines the constants to pull from Table 5 based on 

the user-defined battery type. The Peukert Number is directly output from this subsystem to be 

used later in the Power Requirements subsystem. The other constants are used for subsequent 

calculations within the Batteries subsystem. 

 

Table 5: Chemistry Specific Battery Constants 

Number Battery Type Peukert Number Specific Energy Specific Density Cell Voltage Depth of Discharge

[ ] [W-hrs/kg]  [W-hr/m^3] [V] [%]

1 NiCad 1.2 45 105000 1.2 100

2 NiH2 1.2 48 150000 1.5 80

3 PbAcid 1.4 40 100000 2.1 80

4 NiMH 1.2 70 175000 1.2 80

5 LiIon 1.1 102.5 200000 3.6 80

6 BB2590U 1.1 127.5 202160 3.6 80

 

After determination of the chemistry-specific battery constants, the subsystem splits into 

two directions.  The subsystem takes one path if a custom battery (battery types 1 though 5) is 

selected and the other path if an off-the-shelf battery such as the BB2590U (battery type 6) is 
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selected.  The model can easily be expanded to include other battery chemistries or off-the-shelf 

batteries. 

 

Custom Battery: 

The volume of a battery is a function of its capacity, voltage, and battery density.  Battery 

density is a constant based on battery chemistry.  As previously mentioned, capacity and voltage 

are user-defined model inputs.  The volume of the custom battery is calculated using Equation 

14. 

 

 
               

                                  

              
 (14) 

 

 The mass of a battery is a function of its capacity, voltage and battery specific energy.  

Like battery density, specific energy is a constant based on battery chemistry; additionally, 

battery capacity and voltage are user-defined model inputs.  The mass of the battery is calculated 

using Equation 15. 

 

 
             

                                  

                     
 (15) 

 

The maximum power that a battery can supply is a function of mass and specific energy.  

The mass of the battery is calculated in Equation 15, and it is assumed that specific energy is a 

constant based on battery chemistry; therefore, the maximum power available from the battery is 

calculated using Equation 16. 
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                                                (16) 

 

 Finally, the physical dimensions of the battery are calculated.  While custom batteries can 

take a variety of shapes depending on how individual cells are manufactured, the custom 

batteries in this analysis are assumed to be a rectangular prism.  The height of the battery is held 

constant at 0.125 [m], the same as the BB2590U.  The height is held constant in order to make 

trade studies slightly easier during post processing.  The width of the battery is calculated as a 

function of volume and height as shown in Equation 17.  Finally, the length of the battery is 

calculated as a function of width as shown in Equation 18. 

 

 

              
 

             

             
    

 
(17) 

 

                                (18) 

 

Off-The-Shelf Battery (BB2590U): 

If a BB2590U battery type is selected then all of the parameters that must be calculated 

for a custom battery are already known.  The BB2590U is commonly used in military and 

civilian systems and shares a common size with several other off-the-shelf batteries.  The length, 

width, and height of one BB2590U is 0.11176 [m], 0.06223 [m], and 0.127 [m], respectively.  

The mass of each battery is fixed at 1.4 [kg].  The required number of batteries is chosen by 

Equation 19.  In Equation 19, the Matlab® function „ceil‟ rounds up to the nearest integer.  

Because a BB2590U has eight cells per battery, this parameter is fixed at eight.  
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  (19) 

 

The maximum battery power available is calculated the same way as for a custom 

battery, using Equation 16, however, it is scaled by the number of BB2590U batteries in the 

system.  Finally, the total battery mass is merely the predefined 1.4 [kg] mass of one BB2590U 

multiplied by the number of batteries in the system. 

 

3.3 Motor Controller Modeling 

3.3.1 Subsystem Overview 

Sequentially, the next subsystem processed after the Batteries subsystem sizes the drive 

motors‟ motor controller.  The Simulink® „black box‟ for this subsystem is shown in Figure 18.  

This subsystem contains three user-defined inputs including auxiliary power draw [W], which is 

the average power draw of any on-board auxiliary systems; the number of wheels driven by a 

motor; and the drive motor configuration, which determines how the drive motors connect to 

each driven wheel.  The drive motor configuration cases are (1) a single motor to drive all driven 

wheels, (2) one drive motor per driven axle, and (3) one drive motor per wheel. 

The first output from the subsystem is a binary flag that triggers a value of one if the 

batteries are unable to provide enough power to run an electric motor.  If a motor is incapable of 

being sized, then a zero is output.  This minimum power output value is set as 3 [W].  This value 

was chosen because it is not only the smallest value that would work in the best fit curves within 

the Drive Motor subsystem but also the smallest power value found in the electric motor vendor 

data.  Additionally, mass [m], length [m], width [m], height [m], and efficiency [%] are output 

from the subsystem. 
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Figure 18: Simulink® Motor Controller Subsystem 

 

 It can be seen in Figure 18, from the five cyan colored signal buses branching from the 

output of the Motor Controller subsystem that the outputs from this subsystem are used as inputs 

to five other subsystems.  These five subsystems include the Drive Motor, Chassis Dimensions, 

Power Requirements, Endurance, and Total Vehicle Mass subsystems. 

 

3.3.2 Model Derivation 

 The motor controller is sized based off of experimental data best fit curves.   The outputs 

are all scaled based on the total power available at each wheel, MCPower, as shown in Equation 

20.  In Equation 20, the total battery power [W] is calculated in the Battery subsystem and the 

average auxiliary power draw [W] is a user-defined input.  Average auxiliary power draw 

accounts for the power needed for sensors, computers, and other robot electronics.  The 

dimensionless number of motors is determined based on the number of driven wheels and the 

drive motor configuration user-defined inputs.  If the drive motor configuration is equal to one, 

then the number of motors is one.  If the configuration parameter is equal to two, which is the 

“one motor per axle” configuration, then the number of drive motors is equal to the number of 

driven wheels divided by two.  If the third drive motor configuration is selected, which is the 
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“one motor per wheel” configuration, then the number of motors is equal to the number of driven 

wheels. 

 

 
        

                                 

              
 (20) 

 

 Four outputs from this subsystem are computed from best fit curves created from 

available vendor data.  These outputs are motor controller mass [kg], length [m], width [m], and 

height [m].  The best fit curves are shown in Equation 21, Equation 22, Equation 23, Equation 

24, respectively.  The maximum motor controller efficiency is set equal to a constant 94.798% 

and the average motor controller efficiency is set to a constant 92.235%.  Values for both 

maximum and average motor controller efficiency located in vendor data were consistently 

found to have little deviation.  Therefore, these two parameters were determined to be the 

average of the values found in the vendor data.  

 

                                           (21) 

 

                                                               (22) 

 

                                     (23) 

 

                                           (24) 
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3.4 Drive Motor Modeling 

3.4.1 Subsystem Overview 

Sequentially following the Motor Controller subsystem is the Drive Motor subsystem.  

As shown in Figure 19, this subsystem is preceded by the Motor Controller and Battery 

subsystems because it depends on outputs from both subsystems.  Sizing a drive motor depends 

on the total battery power available which is calculated in the Battery subsystem.  It also depends 

on the maximum motor controller efficiency and knowledge of whether or not the auxPowerFlag 

was output in the Motor Controller subsystem.  As mentioned in Section 2.5, the gearbox within 

the Drive Motor subsystem depends on maximum vehicle velocity which must be iteratively 

solved for between subsystems with the use of a feedback loop.  Additionally, the subsystem 

depends on five user-defined inputs.  These inputs are the number of driven wheels, wheel 

diameter [m], drive motor configuration, bus voltage [V], and auxiliary power draw [W].  Wheel 

diameter is the only user-defined input used for the first time within the model.  

There are 19 parameters output from this subsystem.  These parameters are the motor 

constant K, motor mass [kg], motor length [m], motor diameter [m], no load current [amps], 

armature resistance [ohms], motor reference voltage [V], motor stall torque [N-m], maximum 

motor efficiency [%], motor no load speed [rad/s], gearbox efficiency [%], combined motor and 

gearbox efficiency [%], maximum output torque of the motor and gearbox [N-m], maximum 

output steady state torque [N-m], gearbox ratio, number of motors as defined by the number of 

driven wheels and drive motor configuration, gearbox mass [kg], and finally the total mass of the 

motor and gearbox combination [kg]. 
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Figure 19: Simulink® Drive Motor Subsystem 

  

As shown in Figure 19, there are seven other subsystems that depend on outputs from the 

Drive Motor subsystem. These dependent subsystems are Chassis Dimensions, Power 

Requirements, Endurance, Total Vehicle Dimensions, Total Vehicle Mass, Functional 

Capabilities, and Manipulator Capabilities. 

 

3.4.2 Model Derivation 

Many of the drive motor parameters are calculated based on best fit curves scaled on the 

available power supplied to each motor, which, as shown in Equation 20, is a function of 

available power from the battery, the number of driven wheels, and the drive motor 

configuration.  Additionally, Equation 20 is reduced by an efficiency loss from the motor 

controller.  There are ten parameters that are scaled based on curve fits.  These parameters are 
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the motor armature resistance, no load current, motor constant K, no load speed, motor length, 

motor diameter, stall torque, continuous torque, speed at maximum efficiency, and mass.  All ten 

of these equations are either outputs from the model or used in further calculations.  These curve 

fits were created from the same vendor data as the electric motors in the Manipulator subsystem.  

The curve fits are given in Equation 25 through Equation 34, respectively. 

 

                                            (25) 

 

                                                           (26) 

 

                                                             (27) 

 

                                     (28) 

 

                                       (29) 

 

                                        (30) 

 

                                                        (31) 

 

                                                        (32) 

 

                                      (33) 
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                                    (34) 

 

 Once the previous ten parameters have been evaluated, the gearbox is sized based on the 

necessary wheel speed.  The rotational speed of the wheels, in units of [rad/s], required for the 

vehicle to travel a given velocity is shown in Equation 35.  As shown in Equation 36, the 

gearbox is sized to match the speed of the motor at peak efficiency to the necessary rotational 

speed.  The drive motor gearbox mass is calculated using the same fit curve used in the 

Manipulator subsystem shown in Equation 8.  The mass of the gearbox is then added to the drive 

motor mass to obtain the total drive motor and gearbox mass.  

 

 
                           

                   

               
 (35) 

 

 
              

                

                         
 (36) 

 

 Next, the maximum efficiency of the drive motor is determined by first calculating the 

loss resistance, Rh, in Equation 37 having units of [ohms].  Armature resistance and loss 

resistance are then used in Equation 38 to calculate the dimensionless motor constant M.  The 

voltage drop across the brushes is calculated using Equation 39.  Finally, the maximum motor 

efficiency is calculated as a function of reference voltage, which is set equal to the user-defined 

bus voltage, voltage drop across the brushes, and the motor constant M using Equation 40. 
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 (37) 

 

 

    
     

  
 (38) 

 

                                                               (39) 

 

 
             

                       

                
 
   

   
 (40) 

 

 Similarly to the gearboxes in the Manipulator subsystem, gearbox efficiency is calculated 

using Equation 5.  The output efficiency is simply a combination of the drive motor efficiency 

multiplied by the gearbox efficiency.  The drive motor torque is then adjusted to incorporate the 

gearbox ratio and efficiency loss as shown in Equation 41 and Equation 42. 

 

                                                                   (41) 

 

                                                                  (42) 
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3.5 Chassis Dimensions 

3.5.1 Subsystem Overview 

The Chassis Dimension subsystem is used to determine the necessary dimensions of the 

robot‟s chassis.  These chassis dimensions are outputs of the subsystem and include chassis 

width [m] and chassis height [m], as well as the total vehicle length [m]. 

As shown in Figure 20, the first three user-defined inputs to the subsystem are allotted 

dimensions for payload: payload length [m], payload width [m], and payload height [m]. This 

payload can be used to store computers, sensors, communications systems, etc.  The Chassis 

Dimensions subsystem depends on two user-defined inputs that were first used in the Drive 

Motor and Motor Controller subsystems, respectively.  These two inputs are wheel diameter [m] 

and the drive motor configuration.  The final user-defined input is the desired additional front 

length [m]. This input is necessary to design a robot such as the BomBot because one of its 

batteries is positioned in front of the front wheels and its other battery is positions behind its rear 

wheels.  
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Figure 20: Simulink® Chassis Dimensions Subsystem 

 

 As seen in Figure 20, the outputs from this subsystem are used as inputs to eight other 

subsystems. These subsystems are the Structure, Wheels, Tracks, Power Requirements, Total 

Vehicle Dimensions, Functional Capabilities and Manipulator Capabilities subsystems.  

 

3.5.2 Model Derivation 

The first dimension to be calculated is the required length and width of the chassis to fit 

the drive motors and motor controllers.  These dimensions are named PowerLength and 

PowerWidth, respectively.  How these two dimensions are calculated depend on the user-defined 
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input for drive motor configuration whose input range is between one and three.  The two 

equations used for these calculations are shown in Equation 43 and Equation 44. 

 

 

    

                         
                         
                         

                    

  

                 
                 

                         
              

 
                    

  

(43) 

 

 

    

                         

                         

                         

                    

  

                
                

                  
  

(44) 

 

 Once PowerLength and PowerWidth are known, the chassis width [m] can be calculated.  

The chassis width is calculated as the maximum of powerWidth, payloadWidth, and guessWidth. 

GuessWidth is calculated using Equation 45.  This equation first calculates an estimate for how 

long the chassis should be: payloadLength + powerLength.  The equation then divides by an 

experimental length to width ratio of 1.65 to determine chassis width. 

 

 
           

                         

    
 (45) 

  

VehicleLength [m] is calculated next.  VehicleLength uses the same length to width 

experimental value as guessWidth.  In Equation 46, 1.65*chassisWidth represents the required 
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length of the chassis.  To obtain the overall length of the vehicle, wheel diameter is added to the 

chassis length because half of the wheel would hang over the front of the chassis and half over 

the rear of the chassis.  The drive motor diameter is subtracted from this value in order to give 

the motors a location on the chassis to mount.  The user-defined value for additionalFrontLength 

increases the overall length of the chassis if it is assigned a value.  

 

                                                                 

                       
(46) 

 

 The height of the chassis is a much simpler calculation. It first determines powerHeight 

as the drive motor diameter plus the motor controller height. Chassis height is then determined as 

the maximum of the user-defined payloadHeight or powerHeight. 

 

3.6 Chassis Structure 

3.6.1 Model Overview 

Once the Chassis Dimensions have been calculated, a suitable chassis structure is 

determined.  The Chassis Structure subsystem does not attempt to provide an optimized design 

shape but rather determines the thickness of the rectangular platform on which to mount all of 

the vehicle components (refer to Figure 2 for a graphical representation of this chassis structure). 

As shown in Figure 21, this subsystem depends on two outputs from the Chassis 

Dimensions subsystem, namely vehicle length [m] and chassis width [m].  It also depends on 

three user-defined inputs.  The manipulator lifting capacity, FLift [kg] and wheel diameter [m] 

have already been used in previous subsystems.  The internal payload mass [kg] is used for the 
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first time in this subsystem.  This parameter is the mass of any computer, sensor, camera, etc. 

equipment stored on the vehicle.  Finally, the subsystem depends on material properties for the 

desired material.  The properties for aluminum have been hard-coded into the model.  These 

properties include the elastic modulus [GPa], density [kg/m
3
], yield stress [MPa], a safety factor, 

and the maximum allowable deflection [m].  These hard-coded material properties could easily 

be turned into user-defined inputs if trade studies involving various chassis materials are desired. 

As shown in Figure 21, the first output from the Chassis Structure subsystem is the 

thickness of the chassis structure, labeled finalChassisHeight with units of [m].  The next output 

is the mass of the chassis, labeled chassisMass, with units of [kg].  The last output is the final 

chassis deflection, labeled finalDeflection, with units of [mm]. 
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Figure 21: Simulink® Chassis Structure Subsystem 

  

 As shown in Figure 21, the outputs from this subsystem are used as inputs to three other 

subsystems.  These subsystems include Endurance, Total Vehicle Dimensions, and Total Vehicle 

Mass. 

 

3.6.2 Model Derivation 

There are two limiting cases for which the thickness of the chassis must be designed.  

The first is the deflection-limited case, and the second is the stress-limited case.  However, as 

mentioned in Section 2.5, the Chassis Structure subsystem contains a circular dependency on 
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chassis mass.  Because the chassis structure has mass, it must be considered when calculating 

how much stress is in the structure or how much the chassis deflects.  The user can determine the 

initial value for chassis mass when defining inputs to the model.  The variable defining the initial 

chassis mass is called chassisMassFeedback.  

To ensure that the model runs without error, a saturation block is placed after the state 

space feedback transfer function.  The saturation block contains a lower limit of 0.001 [kg] and 

an upper bound of 500 [kg].  These bounds should never be hit by a feasible robot.  They are in 

place to prevent the vehicle‟s mass from potentially increasing without bounds, which would 

cause the model to crash.  Like the saturation block used to ensure that maximum velocity does 

not increase without bounds, the saturation block used to prevent vehicle mass from increasing 

without bounds is never utilized during the trade space exploration presented in this thesis.  The 

saturation block remains in the model to prevent an error that could possibly result from the user 

selecting input parameters outside of the minimum and maximum bounds sampled by ATSV in 

this trade study. 

The maximum deflection is at the center of the chassis as shown in Figure 22.  The 

equation for the maximum deflection is shown in Equation 47 [27].  Solving this equation for the 

deflection limited chassis thickness results in Equation 48. 

 



 56   

 

Figure 22: Chassis Maximum Deflection and Stress Schematic 
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 (48) 

 

 The maximum stress also occurs at the center of the chassis.  The maximum chassis stress 

is calculated using Equation 49.  Solving Equation 49 for chassis thickness results in the stress 

limited chassis thickness shown in Equation 50. 
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(50) 

 

 Once the deflection-limited and the stress-limited chassis thicknesses have been 

calculated, the larger (or thicker) value of the two is chosen.  Chassis mass is then determined by 

multiplying the chassis material density by the volume of the chassis structure.  Volume is 

simply the product of the chassis length, width, and thickness.  This calculation for chassis mass 

is then used to recalculate chassis thickness. 
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3.7 Wheels 

3.7.1 Subsystem Overview 

Because a robot is specified by the user as either a wheeled vehicle or a tracked vehicle 

these two subsystems are evaluated side-by-side within the model as shown in Figure 23.  Once 

outputs to both the Wheels and Tracks subsystems have been calculated, they all enter a block 

that selects the wheel output parameters if the user specifies a wheeled vehicle or the track output 

parameters if the user specifies a tracked vehicle. 

These subsystems are discussed independently from one another; however, there are eight 

outputs from this Wheels/Tracks subsystem combination.  These outputs include the vehicle 

wheelbase [m], the mass of the wheels or tracks [kg], the mass of the tracked vehicle drive 

sprockets [kg], width of the wheels or tracks [m], additional width of the vehicle necessary if the 

wheeled vehicle is not skid-steer capable [m], the thickness of the track [m].  Additionally two 

flags ensure that the design is feasible.  The first flag is to let the user know that the width of the 

wheels had to be increased in order to satisfy the user-defined ground pressure requirement.  The 

second flag lets the user know that the user-defined wheel diameter is greater than the chassis 

length. If the wheel diameter is greater than the chassis length, then the wheels would rub on one 

another.  In both cases, a flag equal to one indicates the robot is infeasible. 

 



 59   

 

Figure 23: Wheels/Tracks Subsystem Combination 

  

 As can be seen in Figure 23, the outputs from the combined Wheels and Tracks 

subsystem are used as inputs in three other subsystems.  These three subsystems are Total 

Vehicle Dimensions, Total Vehicle Mass, and Functional Capabilities. 

 As shown in Figure 24, the Wheels subsystem depends on two model-dependent inputs.  

The first is vehicle mass [kg], which is calculated using the feedback loop described in Section 

2.5.  The second model-dependent input is vehicle length [m].  The subsystem also depends on 

three user-defined inputs.  These inputs are wheel diameter [m], ground pressure (shown in the 

model as MMP: Max-Mean-Pressure) [N/m
3
], and the number of wheels on the vehicle. 
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Figure 24: Simulink® Wheels Subsystem 

 

3.7.2 Model Derivation 

The Wheels subsystem first calculates the width of the wheels based on a correlation 

based on wheel diameter found in production wheels [26]. This correlation is found in Equation 

51.  

 

                                 (51) 

 

This calculated wheel width is then input into an iterative logic loop.  The first block 

within the loop determines if the contact length flag is triggered.  The calculated value from 

Equation 51 should be used on the initial pass; therefore, there is initially no flag, i.e., 
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contactLengthFlagged=0. If the flag is triggered, i.e., if contactLegnthFlagged=1, then the loop 

increments the width of the wheels by 0.1 cm. 

The next block determines the contact patch length based on the user-defined ground 

pressure and number of wheels as well as model-defined inputs of vehicle mass and wheel width. 

Contact length is derived as shown in Equation 52. 

 

 
               

             

                                         
 (52) 

  

 The next block triggers a flag (contactLengthFlagged=1) if the contact patch length is 

greater than 40% of the wheel diameter.  The value of 40% was arbitrarily chosen, on the high 

side, to allow larger mud-bogging tires to be populated within the tradespace.  If the block 

triggers a flag then the wheel width is increased by 0.1cm, and this process is repeated until the 

flagging condition is satisfied.  

If a flag is not triggered, then the loop finishes, and the mass of the wheels is calculated 

via Equation 53.  The value for density is hard-coded into the subsystem as 313.67 kg/m
3
 as 

determined as an approximated average density of rubber tire treads with an aluminum rim [26]. 

 

 
                              

             

 
 
 

                     (53) 

 

 Equation 54 is used to calculate the additional width needed for turning the wheels when 

steering.  In this equation, angleSteer is hard-coded into the subsystem as 10 [degrees].  
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(54) 

 

 The wheel diameter flag is triggered when the vehicle length is less than two times the 

wheel diameter.  Thus an infeasible vehicle would have wheelDiameterFlag=1.  Again, this flag 

tells the user that the wheels are so big that they overlap and are not able to turn.  Finally, the 

vehicle‟s wheelbase is calculated as the vehicle length minus the wheel diameter. 

 

3.8 Tracks 

3.8.1 Subsystem Overview 

The Tracks subsystem is evaluated in parallel to the Wheels subsystem.  The subsystem 

is evaluated similarly to the Wheels subsystem.  As shown in Figure 25, there are two model 

determined inputs.  Like the Wheels subsystem, these inputs are vehicle length [m] and vehicle 

mass [kg].  Additionally, there are five user-defined inputs to the system.  The first is the wheel 

material selection, which has a dimensionless input ranging from 1 – 4: 1 is aluminum (2700 

[kg/m
3
]), 2 is carbon fiber (1760 [kg/m

3
]), 3 is steel (7850 [kg/m

3
]), and 4 is the Talon‟s 

composite material (2000 [kg/m
3
]).  The other user-defined inputs are wheel diameter [m], 

ground pressure [N/m
3
], the number of wheels, and a parameter to select wheel type.  The input 

range for wheel type ranges from 1 – 3: 1 is a 0.0063 [m] (1/4 inch) thick thin disk, 2 is an I-

beam with disk thickness of 0.0063 [m] with a cylindrical thickness of 0.0021 [m] (1/8 inch), and 

3 is a solid cylinder the entire width of the track.  
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Figure 25: Simulink® Tracks Subsystem 

 

3.8.2 Model Derivation 

Like the Wheels subsystem, the Tracks subsystem determines if the wheels rub by 

outputting wheelDiameterFlag=1 if the vehicle length is less than two times wheel diameter. 

Wheelbase is calculated as the vehicle length minus wheel diameter. This value is then used to 

determine the width of the track, as shown in Equation 55. 

 

 
            

             

                          
 (55) 
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 Track thickness is calculated as a function of vehicle mass.  This function was created by 

scaling thickness based on the Talon.  The function is shown in Equation 56. 

 

 
                

                               

                
             (56) 

 

 Track width and thickness are then used to determine the volume of the drive sprocket 

and tire. The diameter of the rim is first calculated as shown in Equation 57. The volume of the 

rim is then calculated as shown in Equation 58.  Representations of the three different wheel 

types are shown in Figure 26.  Finally, the volume of the tire is calculated as per Equation 59. 

 

                                       (57) 
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Figure 26: Three Wheel Type Graphical Representations 

 

 

    

           
           
           

                  

 

 
 
 
 
 

 
 

 
                                                       

 

 
                                                        

 
 
 
 

 

(59) 

 

 The mass of all of the sprockets (generically called wheels when combined with the 

wheels subsystem) on the tracked vehicle are then calculated using Equation 60. The density of 

the wheels in this equation is user-definable based on the wheelMaterial input.  Currently, the 

density of the tires is hard-coded into the subsystem as that of aluminum (2700 [kg/m
3
]). 

 

                                                             (60) 

  

 The final output to be calculated in the subsystem is the mass of the track. As shown in 

Equation 61, the mass of both of the tracks depend on the track geometry as well as the material 
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density, which is hard-coded into the model as 404.18 [kg/m
3
]. This density was approximated 

from the Talon‟s track. 

 

                                 (61) 

 where:  

                                                    

 where:  

                                                

 

3.9 Power Requirements 

3.9.1 Subsystem Overview 

The Power Requirements subsystem follows the Wheels and Tracks subsystems.  As seen 

in Figure 27, this subsystem depends on seven model-defined input variables. The subsystem 

depends on chassis height and chassis width, both of units [m], from the Chassis Dimensions 

subsystem. It depends on vehicle mass [kg]. The total battery power is the only model-defined 

input from the Batteries subsystem, and motor controller efficiency is the only input from the 

Motor Controller subsystem. Finally, the gearbox efficiency and motor efficiency are calculated 

in the Drive Motor subsystem. The user-defined inputs include selecting a wheeled or tracked 

vehicle configuration, ground clearance [m], and the average auxiliary power draw [W]. 

The Power Requirements subsystem has a single output, namely, maximum vehicle 

velocity [m/s]. 
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Figure 27: Simulink® Power Requirements Subsystem 

 

 The only output from this subsystem is used as an input to only one other subsystem, the 

Endurance subsystem. Additionally, as mentioned in Section 2.5, the output of this subsystem is 

fed back through the transfer function as shown in Figure 6. 
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3.9.2 Model Derivation 

The Power Requirements subsystem calculates all of the resistive forces on the vehicle 

and then determines how fast the vehicle can drive based on how much power is available from 

the batteries. 

Like the Chassis Structure subsystem, the Power Requirements subsystem also contains a 

feedback loop within the subsystem.  Therefore, the first step in this subsystem is to guess an 

initial maximum vehicle velocity.  The user can define this initial value, maxCruiseVelocity, at 

the same time as all of the input parameters are defined; however, the model converges 

regardless of what this value is. 

The first calculations to be made are those to determine the forces resisting vehicle 

motion. If a wheeled vehicle configuration is selected, then the forces that resist vehicle motion 

are rolling resistance and wind resistance. The power loss associated with rolling resistance is a 

function exclusively of vehicle weight. The rolling resistance equation is shown in Equation 62, 

where Crr is the dimensionless coefficient of rolling resistance on asphalt equal to 0.0133 [28].  

 

                                       (62) 

 

Wind resistance is nearly negligible; however, it does have a slight impact on resistive 

power loss, especially at higher velocities. The equation to calculate the forces due to wind 

resistance is shown in Equation 63. In this equation, the dimensionless coefficient of wind 

resistance, cW is equal to 0.9, and the density of air is 1.2 [kg/m
3
]. Additionally, the vehicle‟s 

frontal area [m
2
] is approximated as the quantity of the hull thickness plus ground clearance 

multiplied by the chassis width. 
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 (63) 

 

If a tracked vehicle configuration is selected, then the resistive forces include an 

experimentally determined power loss and terrain resistance loss.  The equation for the 

experimentally determined power loss was calculated by measuring the power consumption of 

the Tankbot driving on various surfaces while varying speed [26].  This curve fit is shown in 

Equation 64.  Additionally, the power consumption due to plowing effects on asphalt is shown in 

Equation 65. 

 

                                                                   (64) 

 

                                                              (65) 

 

 These resistive forces are then summed together and increased by dividing by the product 

of the motor controller, gearbox, and drive motor efficiencies.  The average auxiliary power 

draw is added to this value to obtain the total power required to drive the vehicle at the 

designated speed.  Finally the maximum vehicle velocity is calculated using Equation 66. 

 

 
                     

                 

              
 (66) 

 

 As previously mentioned, the resistive forces due to wind, drivetrain power loss, and 

terrain loss depend on the maximum vehicle velocity.  Therefore, once the maximum vehicle 
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velocity has been calculated, it is passed through a feedback loop to ensure convergence of the 

parameter.  Like the feedback loop for maximum vehicle velocity in the high level view of the 

model, the feedback loop within this subsystem contains a saturation block with an upper limit of 

1000 [m/s] and a lower limit of 0.01 [m/s].  

 

3.10 Endurance 

3.10.1 Subsystem Overview 

As shown in Figure 28, the Endurance subsystem depends on eight model-defined inputs.  

Because this subsystem calculates how far the vehicle can drive based on the batteries, the 

subsystem is highly dependent on outputs from the Battery subsystem.  The three model-defined 

inputs from the Battery subsystem are the dimensionless Peukert Number, total battery power 

[W], and battery capacity with depth of discharge factored [Amp-hrs].  The Endurance 

subsystem is dependent on both of the iteratively solved for parameters in the model: vehicle 

mass [kg] and maximum vehicle velocity [m/s].  The Endurance subsystem depends on the same 

three efficiency losses as the Power Requirements subsystem: motor controller, gearbox, and 

drive motor efficiency.  The Endurance subsystem also depends on two user-defined input 

parameters: the average auxiliary power draw [W] and bus voltage [V]. 

The subsystem calculates two parameters.  The first is battery time [hr], which is how 

long the vehicle can drive at the maximum vehicle velocity. The second is battery distance [km], 

which is defined as the distance that the vehicle can drive at the maximum vehicle velocity.  

Additionally, the subsystem outputs a flag (batteryVelocityFlag=1) if the vehicle does not have 

enough battery power to drive at this velocity. Thus, if the value for the maximum cruising 

distance is zero, the battery velocity flag is set equal to one. 
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Figure 28: Simulink® Endurance Subsystem 

 

 The outputs from this subsystem are used as inputs to the Effectiveness subsystem.  

 

3.10.2 Model Derivation 

In order to obtain a better model prediction to actual measurement correlation, a different 

set of equations was used to determine the resistive force acting on the vehicle than were used in 

the Power Requirements subsystem. The two resistive losses are shown in Equation 67 and 

Equation 68. The total power required to drive the vehicle with no inefficiencies at the maximum 

vehicle velocity, in units of [W], is the sum of these two values [26]. 
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                                                     (67) 

 

 
                                  

           

    
 (68) 

 

 Just as in the Power Requirements subsystem, the total power required to drive the robot 

is increased by dividing the power required to overcome the resistive losses by the product of the 

motor controller, gearbox, and drive motor efficiencies.  This power is then added to the average 

auxiliary power draw to obtain the total power required from the batteries in order to drive the 

robot and power all system devices. 

 The total power required from the batteries is then used by a Modified Peukert Number 

function, shown in Equation 69, to determine how long, in units of [hrs], the batteries can supply 

the required power [26]. In this equation the rated time of the battery is assumed to be 20 [hrs]. 

Discharge current is calculated as the power supplied by the batteries divided by the bus voltage. 

Battery capacity [Amp-hrs] and Peukert Number are calculated in the Batteries subsystem. 

Finally, the distance [km] is calculated as the battery time multiplied by the maximum cruise 

velocity. 

 

            

                   
                      

                                 
 
             

 

(69) 
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3.11 Total Vehicle Dimensions 

3.11.1 Subsystem Overview 

The Total Vehicle Dimensions subsystem is a very simple subsystem that sums the 

necessary vehicle parameters to obtain the vehicle width [m] and height [m].  The subsystem 

sums the total torque [N-m] available from the drive motors and gearboxes.  The subsystem also 

calculates centers of gravity [m] in three dimensions.  CGy is defined from either side of the 

vehicle to the center of gravity.  CGySAE is defined from the geometric center to the center of 

gravity; thus, CGySAE is always equal to zero.  GCx is the distance from the rear of the vehicle 

to the center of gravity while CGxSAE is defined from the rear axle to the center of gravity.  

CGz and CGzSAE are both defined from the ground to the center of gravity.  

In order to calculate these parameters, as shown in Figure 29, the subsystem depends on 

the outputs from five other subsystems.  Total Vehicle Dimensions depends on the chassis width 

[m] and vehicle length [m] from the Chassis Dimensions subsystem.  It depends on the width [m] 

and mass [kg] of the wheels or tracks from the Wheels or Tracks subsystem.  It uses the chassis 

structure thickness [m] and chassis mass [kg] from the Chassis Structure subsystem.  The 

number of drive motors, drive motor mass [kg], and maximum drive motor/gearbox output 

torque [N-m] are outputs from the Drive Motor subsystem.  Total vehicle height depends on the 

radii of each arm segment [m], which are sized in the Manipulator subsystem.  Finally, the total 

manipulator mass [kg] is required to calculate the center of gravity in the z-direction. 

The subsystem also relies on six user-defined input parameters including a binary wheel 

or track configuration, ground clearance [m], payload height [m], internal payload mass [kg], 

wheel diameter [m], and the number of manipulator segments. 
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Figure 29: Simulink® Total Vehicle Dimensions Subsystem 

 

 The outputs of the Total Vehicle Dimensions subsystem are used in three of the final four 

remaining subsystems including Functional Capabilities, Manipulator Capabilities, and 

Effectiveness.  
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3.11.2 Model Derivation 

The total vehicle width is calculated differently for wheeled and tracked vehicles.  On a 

tracked vehicle, half of the width of each track is assumed to cover the chassis, whereas this is 

not possible for a tracked vehicle.  Thus the total vehicle width for a wheeled vehicle is the 

chassis width [m] plus two times the width of the wheels [m].  The total vehicle width for a 

tracked vehicle is the chassis width [m] plus two times the width of the tracks [m].  The value for 

CGy [m], the distance from one side of the vehicle to the center of gravity, is then determined as 

half the value for the total vehicle width.  Because the center of gravity in the width direction of 

the vehicle, y, is assumed to be at the geometric center, CGySAE [m], the distance from the 

geometric center of the vehicle to the center of gravity, is assumed to be zero. 

The value for CGx [m], the distance from the rear of the vehicle to the center of gravity is 

assumed to be half of the vehicle length.  CGxSAE [m] is calculated as CGx subtracted by the 

radius of a wheel, to give the distance from the rear axle to the center of gravity.  

CGz [m], the distance from the ground to the center of gravity, is calculated by dividing 

the moment about the ground due to each of the components of the vehicle by the masses of each 

component.  The relative heights of each component with respect to one another are also used to 

determine the total height of the vehicle [m].  CGzSAE [m] is equal to CGz, as it is also defined 

as the distance from the ground to the center of gravity. 

Total drive motor torque is simply the number of drive motors multiplied by the torque of 

each motor. 
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3.12 Total Vehicle Mass 

The Total Vehicle Mass subsystem is more of a state-space summation block than it is an 

analytical subsystem like the previously discussed subsystems.  Nonetheless, this subsystem 

sums all of the component masses together to calculate a parameter called total vehicle mass. 

Because many subsystems depend on vehicle mass as an input, the final convergent value for the 

total vehicle mass must be solved for using a feedback loop described in Section 2.5. 

As shown in Figure 30, the masses that are summed together in this subsystem are the 

mass of the wheels or tracks from the Wheels or Tracks subsystem, the user-defined value for 

internal payload mass, the chassis mass from the Chassis Structure subsystem, the total battery 

mass from the Battery subsystem, the mass of the user-defined battery controls, the mass of the 

user-defined sensor package, the mass of the motor controllers from the Motor Controller 

subsystem, the mass of the drive motors from the Drive Motor subsystem, and finally the total 

mass of the manipulator from the Manipulator subsystem.  All of these masses are in [kg]. 
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Figure 30: Simulink® Total Vehicle Mass Subsystem 

 

 As with maximum vehicle velocity in Section 2.5, convergence of the total vehicle mass 

was confirmed by proving the final value theorem, i.e., by defining the initial conditions for the 

three interdependent variables as the final values to which they are expected to converge.  

 The total vehicle mass is used as an interdependent input to four subsystems: Endurance, 

Power Requirements, Wheels, and Tracks. Total vehicle mass is also an input to all three 
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remaining subsystems in the model: Functional Capabilities, Manipulator Capabilities, and 

Effectiveness. 

 

3.13 Functional Capabilities 

3.13.1 Subsystem Overview 

At this point in the model, the robot‟s specifications have been completely defined.  The 

final three subsystems, including Functional Capabilities, are merely subsystems to determine 

functionality of the robot design. 

As shown in Figure 31, the Functional Capabilities subsystem depends on the robot‟s 

center of gravity in all three directions (CGxSAE, CGzSAE, and CGySAE) [m] and vehicle 

width [m] from the Total Vehicle Dimensions subsystem.  It depends on the quantity and torque 

[N-m] of the drive motors from the Drive Motors subsystem.  Total vehicle mass [kg] in an input 

to the subsystem.  The vehicle‟s length [m] is calculated in the Chassis Dimensions subsystem.  

The wheelbase [m] and width of the wheels or tracks [m] are calculated in the Wheels or Tracks 

subsystem.  

The Functional Capabilities subsystem depends on three user-defined input parameters.  

Two of them have been previously described: wheel diameter [m] and selection of a wheeled or 

tracked configuration.  Additionally, the friction-based failure modes within the subsystem 

depend on a coefficient of static friction. 
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Figure 31: Simulink® Functional Capabilities Subsystem 

 

3.13.2 Subsystem Derivation 

Because the Functional Capabilities subsystem is described in significant detail in 

another work [26], only an outline of this subsystem is provided.  
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This subsystem outputs the maximum slope that the robot can climb based on three 

possible failure modes: (1) tipping, (2) torque, and (3) friction.  The subsystem also indicates in 

which of these three conditions the vehicle fails.  The maximum slope is determined by 

calculating the maximum climbable angle based on tipping, torque, and friction independent of 

one another and then selecting the minimum of the three angles.  The maximum traversable slope 

is calculated in a similar manner; however, it has only two possible failure modes: (1) tipping 

and (2) friction. Like slope climbing, the failure mode is output from the subsystem. 

Next, curb climbing is evaluated.  A curb is defined as a single step.  Curb climbing 

capability has six failure modes: three for climbing the face of the step and three for climbing up 

over the step.  Climbing the face of the step is limited by (1) tipping, (2) torque, and (3) friction.  

Climbing up over the step is also limited by (4) tipping, (5) torque, and (6) friction.  The 

maximum height of a curb [m] that can be ascended is determined using a trigonometric 

function.  The maximum staircase climbing slope [deg] is determined in a similar fashion from 

which the maximum rise [m] and run [m] of the staircase stairs are determined. 

The maximum width of a ditch that the vehicle can traverse [m] is calculated differently 

for a wheeled and a tracked vehicle.  In either case, the maximum traversable distance is 

calculated using simple geometric parameters of the vehicle. 

A static force analysis is done on the vehicle to determine if the drive motors can provide 

enough torque to perform a zero degree radius turn.  This analysis is done on two surfaces: 

asphalt and grass.  If the vehicle can perform a zero degree radius turn, a zero is output from the 

model; if it cannot, a one is output. 

Finally, the minimum hallway width [m] in which the vehicle can maneuver is calculated 

as a function of geometric properties and an experimental deviation value.  
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3.14 Manipulator Capabilities 

3.14.1 Subsystem Overview 

The Manipulator Capabilities subsystem is essentially an extension of the Functional 

Capabilities subsystem but focuses on the capabilities of the manipulator. 

As would be expected, the subsystem depends on several parameters calculated within 

the Manipulator subsystem.  As shown in Figure 32, these parameters include the torque [N-m] 

and mass [kg] of each motor and gearbox combination within the manipulator.  Also input from 

the Manipulator subsystem is the mass of each segment link.  The Manipulator Capabilities 

subsystem also depends on many of the same user-defined input parameters as the Manipulator 

subsystem.  These inputs include the gripper mass [kg], number of links, gripper length [m], 

length of each segment [m], and close lifting capacity (FLift) [kg]. 

The subsystem also depends on the final converged value of vehicle mass [kg], vehicle 

length [m] from the Chassis Dimensions subsystem, distance from the rear of the vehicle to the 

center of gravity (CGx) [m] from the Total Vehicle Dimensions subsystem, and drive motor 

diameter [m] from the Drive Motor subsystem.  The subsystem also depends on the user-defined 

wheel diameter [m]. Finally, it depends on a parameter to adjust the location where the base of 

the manipulator connects to the vehicle‟s chassis: percentManipToCGx.  This dimensionless 

parameter, varying from 0 to 1, allows the base motor of the manipulator to be mounted 

anywhere from just in front of the center of gravity to in line with the front axle.  

The Manipulator Capabilities subsystem outputs five values.  The first is a binary 

can/cannot (0/1) self-right if the vehicle happens to flip itself completely upside down.  The 

second is the fully extended length of the manipulator.  Third is the distance, from the front of 

the chassis, that the manipulator can extend without tipping over the robot solely due to the 
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weight of the arm.  Tipping must be considered because it is possible to design a robot within the 

model that has a very light chassis and a very heavy manipulator.  The fourth parameter is 

similar to the third; however, it is the distance in front of the chassis that the manipulator can 

extend without tipping the robot while lifting not only its own inherent mass but also the close 

lift capacity.   Finally, it is possible to define a robot with one segment link that, because it can 

only touch the ground in its fully extended configuration, the robot is not able to lift the close lift 

capacity without tipping the robot.  If a robot with this configuration is defined, then a flag is 

output (cantLiftFLiftFlag = 1). 

Outputs from the Manipulator Capabilities subsystem are used only in the Effectiveness 

subsystem. 
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Figure 32: Simulink® Manipulator Capabilities Subsystem 
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3.14.2 Model Derivation 

Self-Righting Capability 

 Self-righting capability is the ability of a robot to flip itself over if it ends up upside 

down.  This condition, where the robot is oriented upside down, is often referred to as a 

“turtleback” as shown in Figure 33.  Because of how the Manipulator subsystem is driven, the 

strongest motor in the manipulator is the motor fixed to the chassis.  In addition, applying torque 

at this motor relieves the need to also lift the other links and motors of the manipulator.  

Therefore, torque is applied by the manipulator motor fixed to the chassis.  This motor applies a 

torque that pushes the rest of the manipulator against the ground as shown in Figure 33. 

 

 

Figure 33: Turtleback Configuration 

 

 In order to self-right, this motor, motor L2A1 in Figure 33, must be able to provide 

enough torque to overcome the moment created by the mass of the chassis.  This condition is 

described in Equation 70.  In this equation, the parameter called percentManipToCGx was added 

after initial trade studies were performed yielding only light robots with very heavy manipulators 
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capable of self-righting themselves due to the increased torque required by the base manipulator 

motor when the manipulator is mounted far from the center of gravity.  

 

                                                     (70) 

 where:  

 
                                                

             

 
        

 

Additionally, the segment link closest to the motor in question must be longer than the 

distance from the center of gravity to the mounting location of the base manipulator motor.  This 

capability within the manipulator capabilities subsystem outputs a binary flag of 0 if the 

manipulator can self-right or 1 if it does not have a self-righting capability. 

 

Far Reach Distance 

 There are three functional reach capabilities calculated in this subsystem.  As mentioned 

in Section 3.14.1, the subsystem first calculates the maximum reach of the manipulator without 

considering tipping.  This maximum reach is merely the total length of the manipulator as shown 

in Equation 71.  Note that this equation is defined for a three segment manipulator.  If fewer 

segments have been defined then their lengths are omitted from this calculation. 

 

                       

                                                

(71) 
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Far reach distance is next calculated as the maximum distance that a manipulator can 

reach without tipping the robot.  This far reach distance is first calculated for the manipulator 

supporting only its own weight.  It is also calculated for the manipulator lifting the close lift 

capacity at the to-be-determined far reach distance.  The far reach distance for the manipulator 

supporting its own weight is simply output from the model for reference.  The far reach distance 

while supporting the close lift capacity is used to determine effectiveness. 

Far reach distance is calculated by balancing the moments about the point where the 

manipulator connects to the chassis.  This connecting point labeled “CG Chassis to Manipulator” 

in Figure 34 varies from just in front of the chassis‟s center of gravity to the front of the chassis 

in line with the front wheels or sprockets. As mentioned in Section 3.14.2, this variance is 

controlled by a model input called percentManipToCGx.  
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Figure 34: Far Reach Distance Configuration 

 

There are two unknowns in Figure 34: (1) far reach distance and (2) the distance from the 

base of the manipulator to the manipulator center of gravity.  Finding the equivalent center of 

gravity of the manipulator involves first determining the distance of each horizontally stretched 

manipulator component from its base.  This equation for a three segment manipulator is given by 

Equation 72.  
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 (72) 

 

 The distances listed in Equation 72 are then used to sum the moment of each component 

at the location where the manipulator attaches to the chassis.  The equation for this moment 

calculation is given for a three segment manipulator in Equation 73.  Note that in this equation, 

gravity is not included because it cancels out in Equation 74 when dividing by the total 

manipulator weight. 

 

               

                                          

                                          

                                          

                                                

(73) 

 

Using Equation 73, a scaling factor for the far reach distance is calculated.  This scaling 

factor, shown in Equation 74, allows the distance from the base of the manipulator to the 
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manipulator‟s center of gravity to be approximated without knowledge of the relative angles that 

each segment has to one another.  

 

 
                 

              

                                           
 (74) 

 

 Summation of the moments at the base of the manipulator from the entire robot results in 

Equation 75.  The farthest distance that the manipulator can reach from the base of the 

manipulator is solved for using Equation 75. This distance is given in Equation 76.  In the case of 

the manipulator supporting only its own weight, FLift [kg] is equal to zero. 

 

                    

                                            

                                               

(75) 

 

 

 
    

                                 

                                   
 (76) 

 where:  
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The distance that the arm must reach to first get past the front of the chassis is subtracted 

from the total far reach distance as given in Equation 77. 

 

                                  

                    
             

 
  

(77) 

 

A check is done as a final step to ensure that the manipulator is long enough to attain the 

far reach distance by selecting the minimum of the far reach distance, given by Equation 76, and 

the manipulator length, given by Equation 71.  For this minimum function, the manipulator 

length first is subtracted by the length to get to the front of the chassis.  Additionally, far reach 

distance is limited to a value of zero – such a value would indicate that if the robot extends its 

manipulator any more, then the robot would tip. 

 

3.15 Effectiveness 

The effectiveness subsystem is used to determine how well the simulated robot meets 

each of the pre-defined threshold and objective capability requirements.  This subsystem is not 

discussed in detail because effectiveness metrics change drastically based on user needs.  

The capability requirements vary based on the numerical value for size.  Therefore, the 

size of the robot is first determined by determining if the simulated robot is a small, medium, or 

large robot.  This is based purely on vehicle mass.  From this point on, the subsystem simply 

evaluates how well each requirement is achieved, either as a binary yes or no or as a percent of 

the objective or threshold value.  The subsystem first calculates how well the robot meets the 

threshold capabilities.  Threshold values are the minimum values for each of the capabilities that 
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the robot is required to meet.  The subsystem then determines how well the robot meets the 

objective capabilities.  Objective values are the user-defined ideal target capabilities.  Both 

threshold and objective effectiveness values are output as a percentage of the robot‟s ability to 

meet each of these sets of capabilities.  Finally, an average effectiveness is calculated.  Average 

effectiveness is a hybrid measure between the threshold and objective values on which the model 

is visually steered.  Average effectiveness is used to bridge the gap between a design being 

classified as infeasible because of not meeting the hard set minimum threshold values and the 

objective targets.   

 Effectiveness is the last of fifteen subsystems for which a detailed description was 

presented.  The inputs and outputs for each subsystem were presented.  Finally, the equations 

used in each subsystem and how each equation is related to another were described.  Chapter 4 

offers validation for each of these subsystems.  
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Chapter 4 

Subsystem Validation 

To validate the majority of the subsystem models discussed in Chapter 3, geometric and 

functional measurements of four robots were taken.  These four robots include the Innovative 

Response Techologies, Inc. (IRT) BomBot®
1
, Foster-Miller Talon®

2
, Penn State Tankbot

3
, and 

the REMOTEC, Inc. RONS
4
.  Several of the measurements taken are inputs to the subsystem 

models while the remainder are outputs from the subsystems.  The subsystem outputs were 

plotted against the measurements from the four robots, and the results are discussed in Chapter 4.  

A parameter with 100% agreement of model prediction to an actual measurement would lie on 

the 45 degree line in the figures. 

 

4.1 Manipulator Subsystem Validation 

The Manipulator subsystem is difficult to validate against any of the currently fielded 

robots because of the complexity of many of these designs.  For example, the Talon has cameras 

attached to the manipulator.  The Talon also has a humeral link that is not cylindrically shaped.  

It also has a prismatic joint within the forearm segment.  The Talon utilizes brushless motors 

unlike the brushed motors modeled in this subsystem.  It uses the same motor in the 

manipulator‟s elbow, manipulator‟s shoulder and drive train.  The use of all common motors in 

the manipulator means that the designers did not design the manipulator the same way that this 

model is driven, i.e., the shoulder motor is not stronger than the elbow motor.  Finally, it is 

                                                 
1
 http://www.irt-robotics.com/BomBot2EOD.htm 

2
 http://foster-miller.qinetiq-na.com/lemming.htm 

3
 http://controlfreaks.mne.psu.edu/previous_research.htm 

4
 http://www.is.northropgrumman.com/by_solution/remote_platforms/index.html 
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impossible to know what lifting capacity the manipulator was designed for without running the 

risk of breaking the manipulator while testing.  Therefore, at this time the manipulator subsystem 

has not been validated against an industrially available manipulator.  

 

4.2 Batteries Subsystem Validation 

The Batteries subsystem is validated against the batteries used in the four benchmarked 

robots.  This subsystem was run by inputting the batteryType, busVoltage, and 

batteryUnitCapacity of the four robots.  The mass and volume that were predicted by the 

subsystem for the batteries of each of the four robots were then plotted against the actual mass 

and volume of the corresponding batteries.   

As can be seen in Figure 35 and Figure 36, as well as the corresponding Table 6 and 

Table 7, the model is very capable of predicting the mass and volume of a robot battery, 

respectively.  The primary reason for error within the subsystem is due to numerous available 

packaging options that can affect the battery mass and volume.  For example, not only can the 

battery be oriented in several different ways in order to change the length, width, and height of 

the vehicle, but some batteries may contain extra packaging in order to maintain the same form 

factor across multiple battery options.  Additionally, the model does not account for additional 

components for extra protection of the batteries.  This additional battery packaging may be part 

of the reason for the discrepancy between the Talon batteries and the design derived from the 

model.  Further supporting this reasoning is that the BomBot has two different “sizes” of 

batteries available, yet their packages have the same dimensions and differ only in mass and 

power. 
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 Another source of error in this validation is that the exact battery specifications have 

large variance for a given battery chemistry. For example, specific density for a lithium-ion 

battery can range anywhere from 200 to 280 [W-hr/m^3] [29].  Values for all of the chemistry 

specific constants described in the previous section were chosen in the middle of published 

ranges. 

 

 

Figure 35: Comparison of Model Prediction to Actual Battery Mass 
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Table 6: Comparison of Model Prediction to Actual Battery Mass 

Actual Mass [kg] Predicted Mass [kg] Percent Error

Bombot 2.668 1.440 46.027

Talon 7.470 7.305 2.203

Tankbot 10.640 10.800 1.504

RONS 37.358 33.000 11.666  

 

 

Figure 36: Comparison of Model Prediction to Actual Battery Volume 

 

Table 7: Comparison of Model Prediction to Actual Battery Volume 

Actual Volume [m3] Predicted Volume [m3] Percent Error

Bombot 0.0018 0.0060 233.333

Talon 0.0067 0.0037 44.776

Tankbot 0.0047 0.0043 8.511

RONS 0.0174 0.0132 24.138  
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4.3 Motor Controller Subsystem Validation 

Validation was not done on this subsystem because power into each motor controller was 

not measured during benchmarking thus leaving no voltage on which to scale the motor 

controllers. 

 

4.4 Drive Motor Subsystem Validation 

Four subsystem outputs of the Drive Motor subsystem were compared.  The outputs 

compared are mass of each drive motor (see Figure 37 and Table 8), volume of the drive motor 

(see Figure 38 and Table 9), the gearbox ratio (see Figure 39 and Table 10), as well as the 

combined motor and gearbox mass (see Figure 40 and Table 11).  

The primary factor contributing to the discrepancies in the model‟s conceptual designs 

and the actual robots is that the model consists of technologies that are different than what is 

used in the current robots and that technology is consistently improved over time. The primary 

discrepancy of the volume of the Talon motor is because the fit curves in the Simulink® model 

are based on brushed motor designs while the Talon uses brushless motors. The discrepancy of 

the mass and volume of the RONS is most likely due to technology improvements made over the 

years in motor packaging, power to mass ratio, etc.  
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Figure 37: Comparison of Model Prediction to Actual Drive Motor Mass 

 

Table 8: Comparison of Model Prediction to Actual Drive Motor Mass 

Actual Mass [kg] Predicted Mass [kg] Percent Error

Bombot 0.25 0.25 0.58

Talon 2.02 1.66 17.99

Tankbot 2.03 1.90 6.39

RONS 10.28 8.88 13.63  
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Figure 38: Comparison of Model Prediction to Actual Drive Motor Volume 

 

Table 9: Comparison of Model Prediction to Actual Drive Motor Volume 
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Bombot 68.28 69.04 1.12
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RONS 1814.92 4423.06 143.71  

 

 

0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

0.5

1

1.5

2

2.5

3

3.5

4

x 10
-3 Drive Motor Volume [m3]

Actual

M
o
d
e
l

 

 

bombot

talon

tankbot

RONS



 99   

 

Figure 39: Comparison of Model Prediction to Actual Drive Motor Gearbox Ratio 

 

Table 10: Comparison of Model Prediction to Actual Drive Motor Gearbox Ratio 

Actual Gear Ratio [ ] Predicted Gear Ratio [ ] Percent Error

Bombot 6.00 6.18 2.95

Talon 20.00 20.01 0.04

Tankbot 10.00 9.78 2.25

RONS 20.00 19.05 4.75  
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Motor subsystem sizes the gearbox so that the drive motor operates at peak efficiency.  It is 

impossible to know for what speed the engineers of these four actual robots designed their 

gearboxes.  Therefore, the input values for velocity were chosen such that the gearbox ratios 

6 8 10 12 14 16 18 20
6

8

10

12

14

16

18

20
Drive Motor Gearbox Ratio []

Actual

M
o
d
e
l

 

 

bombot

talon

tankbot

RONS



 100   

match.  Once the gearbox ratios match, then the curve fit to calculate the mass of the gearbox 

was used and validated. 

 

 

Figure 40: Comparison of Model Prediction to Actual Drive Motor and Gearbox Mass 

 

Table 11: Comparison of Model Prediction to Actual Drive Motor and Gearbox Mass 

Actual  Motor & Gearbox Mass [kg] Predicted  Motor & Gearbox [kg] Percent Error

Bombot 0.50 0.39 21.22

Talon 4.05 2.72 32.75

Tankbot 4.06 3.04 25.15

RONS 15.42 14.53 5.79
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4.5 Chassis Dimensions Subsystem Validation 

All three of the Chassis Dimensions subsystem outputs were compared to actual 

measured dimensions.  The three outputs compared are chassis length, chassis width, and vehicle 

length.  Plots comparing the model predictions to the actual measurements are shown in Figure 

41 through Figure 43.  Tables comparing the same predictions and measurements can be found in 

Table 12 through Table 14. 

The chassis‟ width has very good model to measurement agreement primarily due to the 

subjective payload dimensions.  Payload dimensions were adjusted until there was a good model 

to measurement agreement of chassis width. 

 

Figure 41: Comparison of Model Prediction to Actual Chassis Width 
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Table 12: Comparison of Model Prediction to Actual Chassis Width 

Actual Chassis Width [m] Predicted  Chassis Width [m] Percent Error

Bombot 0.14 0.13 0.84

Talon 0.44 0.44 1.01

Tankbot 0.37 0.37 0.56

RONS 0.40 0.40 0.19  

 

The lengths for the Talon and RONS are not as long as the model predicts them to be.  

The model first calculates width and then scales width to calculate length.  Thus, if the same 

length to width ratio is not used for one of the benchmarked robots, then the value for length will 

exhibit error.  Nonetheless, as shown in Table 13, the percent error is very small for the BomBot, 

Tankbot, and RONS. At just over 22%, the Talon is still within a reasonable tolerance of error.  
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Figure 42: Comparison of Model Prediction to Actual Vehicle Length 

 

Table 13: Comparison of Model Prediction to Actual Vehicle Length 

Actual Vehicle Length [m] Predicted Vehicle Length [m] Percent Error

Bombot 0.64 0.64 0.24

Talon 0.74 0.90 22.09

Tankbot 0.96 0.96 0.42

RONS 0.74 0.80 7.88  
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only three drive motor configurations defined within the model.  The Tankbot and RONS drive 

motor configurations were approximated as similar but not equivalent configurations, thus 

explaining a probable reason for error.  

 

 

Figure 43: Comparison of Model Prediction to Actual Chassis Height 

 

Table 14: Comparison of Model Prediction to Actual Chassis Height 

Actual Chassis Height [m] Predicted Chassis Height [m] Percent Error

Bombot 0.13 0.13 1.57

Talon 0.19 0.19 0.52

Tankbot 0.17 0.33 93.88

RONS 0.25 0.32 29.29  
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4.6 Chassis Structure Subsystem Validation 

Calculating chassis mass is slightly ambiguous because it involves specifying a safety 

factor.  It also assumes that the chassis is a rectangular aluminum slab which is not always the 

case in current robots.  For example, the BomBot has a plastic structure that is not rectangular.  

The maximum payload capacity that the chassis was designed to be able carry is also not known.  

Nonetheless, it is possible to output correct chassis masses of all four actual robots as shown in 

Figure 2 and Table 15. 

 

 

Figure 44: Comparison of Model Prediction to Actual Chassis Mass 
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Table 15: Comparison of Model Prediction to Actual Chassis Mass 

Actual Chassis Mass [kg] Predicted Chassis Mass [kg] Percent Error

Bombot 2.98 2.98 0.00

Talon 9.26 9.27 0.02

Tankbot 9.88 9.89 0.09

RONS 18.68 18.68 0.01  

 

4.7 Wheels Subsystem Validation 

Only one of the tested robots is a wheeled vehicle; the other three are tracked vehicles.  

Nonetheless, the same method of validation was used on this vehicle, namely the Bombot.  Three 

output parameters were compared for this subsystem: wheelbase length, wheel width, and wheel 

mass.  

The 39% error in the wheelbase length, seen in Table 16, is due to the fact that wheelbase 

length is calculated as the vehicle length minus the wheel diameter.  However, the BomBot‟s 

wheels are not positioned at the very ends of its chassis as assumed in the model. 

 

Table 16: Comparison of Model Prediction to Actual Wheelbase Length 

Actual Wheelbase Length [m] Predicted Wheelbase Length [m] Percent Error

Bombot 0.31 0.43 39.06  

 

Because the wheel width is calculated as a function of ground pressure, the 32% error 

shown in Table 17 is associated with how the contact length is flagged, thus resulting in an 

increased wheel width.  If the contact length is flagged when it is greater than 20% of the wheel 

diameter, instead of 40% as coded in the model, then the predicted wheel width matches the 

actual wheel with almost exactly (0.81% error). While this adjustment may be appropriate for 

smaller vehicles it may not be the case for larger vehicles with stiffer tires.  
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Table 17: Comparison of Model Prediction to Actual Wheel Width 

Actual Wheel Width [m] Predicted Wheel Width [m] Percent Error

Bombot 0.13 0.09 32.28  

 

Error in the wheel mass, shown in Table 18, propagates from the error in the wheel 

width.  Additionally, the value used for density is assumed to be a constant value of an average 

of experimental wheel and rim densities. 

 

Table 18: Comparison of Model Prediction to Actual Wheel Mass 

Actual Wheel Mass [kg] Predicted Wheel Mass [kg] Percent Error

Bombot 2.99 3.47 15.83  

 

4.8 Tracks Subsystem Validation 

Validation of the tracks subsystem involved first finding an equivalent vehicle length that 

would output the appropriate length of the track in contact with the ground.  The model 

calculates the wheelbase length as the vehicle length minus the wheel diameter.  The model 

predicts a wheelbase length that looks similar to the Talon.  Notice in Figure 45 that the tread of 

the track is the only thing separating the sprockets from the ground.  However, the outermost 

sprockets on the Tankbot and the RONS do not come in contact with the ground (see Figure 45 

for a photograph of the Tankbot‟s tracks), therefore, the length of the vehicle was adjusted to 

obtain an accurate basis for comparison for all of the other output parameters which depend on 

wheelbase length. 
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Figure 45: Talon (Left) and Tankbot (Right) Track Configurations 

  

 Once an accurate wheelbase length was determined, three model outputs were compared 

to the actual measurements for the three tracked robots.  These three parameters are track width, 

track mass, and sprocket mass. The model predictions are compared to the actual measurements 

in Figure 46 through Figure 48 and Table 19 through Table 21 respectively. 

 The model predicted track width shows 100% agreement with the actual measurements, 

as shown in Figure 46 and Table 19.  This agreement is due to the fact that width is scaled based 

on ground pressure as given by Equation 55; however, the ground pressure was calculated based 

on track width.  Thus, this validation confirms that the ground pressure was initially accurately 

calculated, and it is correctly coded. 
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Figure 46: Comparison of Model Prediction to Actual Track Width 

 

Table 19: Comparison of Model Prediction to Actual Track Width 

Actual Track Width [m] Predicted Track Width [m] Percent Error

Talon 0.16 0.16 0.00

Tankbot 0.08 0.08 0.00

RONS 0.06 0.06 0.00  

 

Track mass for the Talon matches nearly exactly, as shown in Figure 47 and Table 20.  

This agreement is due to the scaling rule for mass, which is based on the Talon.  However, the 

track mass of the Tankbot is significantly off due to a number of factors.  First, the approximated 

thickness, which is based on the Talon, is less than half as thick as the measured value.  Second, 

the material as well as the shape of the links of the tracks, are different than those of the Talon.  
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Figure 47: Comparison of Model Prediction to Actual Track Mass 

 

Table 20: Comparison of Model Prediction to Actual Track Mass 

Actual Track Mass [kg] Predicted Track Mass [kg] Percent Error

Talon 1.20 1.21 0.96

Tankbot 3.20 0.64 80.03

RONS 1.91 2.54 33.38  
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Figure 48: Comparison of Model Prediction to Actual Sprocket Mass 

 

Table 21: Comparison of Model Prediction to Actual Sprocket Mass 

Actual Sprocket Mass [kg] Predicted Sprocket Mass [kg] Percent Error

Talon 2.10 2.12 0.81

Tankbot 2.39 3.29 37.75

RONS 13.43 16.70 24.36  
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curve fits and estimations of auxiliary power draw.  These approximations and estimations led to 

a high level of agreement between the model predictions and the actual velocity measurements as 

shown in Figure 49 and Table 22.  

 

 

Figure 49: Comparison of Model Prediction to Actual Maximum Cruising Velocity 

 

Table 22: Comparison of Model Prediction to Actual Maximum Cruising Velocity 

Actual Cruise Velocity [m/s] Predicted Cruise Velocity [m/s] Percent Error

Bombot 4.52 4.53 0.27

Talon 2.25 1.60 28.90

Tankbot 2.37 1.47 38.19

RONS 0.97 1.45 49.84  
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4.10 Endurance Subsystem Validation 

As shown in Figure 50 and Table 24, the model very accurately predicts the maximum 

cruising time on a single battery charge.  Additionally, as shown in Figure 51 and Table 24, the 

model accurately predicts the distance that the vehicle can drive on a single battery charge.  The 

distance that the vehicle can drive is based on the duration of time that it can drive. 

 

 

Figure 50: Comparison of Model Prediction to Actual Battery Time 
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Table 23: Comparison of Model Prediction to Actual Battery Time 

Actual Time [hrs] Predicted Time [hrs] Percent Error

Bombot 1.19 1.31 10.41

Talon 2.67 2.58 3.10

Tankbot 1.32 1.36 2.88

RONS 0.99 1.05 6.07  

 

 

Figure 51: Comparison of Model Prediction to Actual Battery Distance 

 

Table 24: Comparison of Model Prediction to Actual Battery Distance 

Actual Distance [km] Predicted Distance [km] Percent Error

Bombot 5.24 5.79 10.41

Talon 20.92 20.27 3.10

Tankbot 4.75 4.89 2.88

RONS 2.85 3.03 6.07  
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4.11 Total Vehicle Dimensions Subsystem Validation 

As can be seen in Section 3.11.2, the Total Vehicle Dimensions subsystem model has a 

lot of assumptions.  Yet as can be seen in Figure 52 through Figure 55 and  

Table 25 through Table 28, these assumptions result in reasonably accurate vehicle 

dimensions and centers of gravity.  

 

Figure 52: Comparison of Model Prediction to Actual Vehicle Width 
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A percent error for CGySAE, shown in Figure 53 and Table 26 is not able to be 

calculated because CGySAE is always defined as zero, which would always result in an infinite 

percent error.  The BomBot, Talon, and RONS all have a value for the center of gravity in the y-

direction very close to the geometric center as assumed by the model. 

 

 

Figure 53: Comparison of Model Prediction to Actual CGySAE 
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The assumption is made that the distance from the rear axle to the center of gravity is half 

of the total vehicle length minus the wheel radius as described in Section 3.11.2.  As shown in 

Figure 54 and Table 27, this is a reasonably valid approximation. 

 

 

Figure 54: Comparison of Model Prediction to Actual CGxSAE 
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 The disagreement shown in Figure 55 and Table 28 is likely due to any of the internal 

payload mass that is not located in the designated payload bay, which is positioned on the top of 

the chassis structure.  Thus, if any computers or sensors are located in a higher up position than 

assumed in the model, as in the cases of the BomBot, Talon and Tankbot, the model under-

predicts CGzSAE. 

 

 

Figure 55: Comparison of Model Prediction to Actual CGzSAE 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CGz (From Ground) [m]

Actual

M
o
d
e
l

 

 

bombot

talon

tankbot

RONS



 119   

Table 28: Comparison of Model Prediction to Actual CGzSAE 

Actual CGz [m] Predicted CGx [m] Percent Error

Bombot 0.21 0.13 39.84

Talon 0.37 0.22 39.70

Tankbot 0.22 0.15 29.77

RONS 0.22 0.26 18.05  

 

 

4.12 Functional Capabilities 

Because the equations used in this subsystem are validated against the same four robots 

in another work [26], they are not validated here.  The validation presented in this work shows 

that the equations used in the Functional Capabilities subsystem are very capable of accurately 

predicting capabilities.  

 

4.13 Manipulator Capabilities 

Like the Manipulator subsystem, the Manipulator Capabilities subsystem is difficult to 

validate against any of the currently fielded robots because of the complexity of many of these 

designs.  Because of the numerous assumptions that would need to be made to validate this 

subsystem, the output values from the subsystem were only checked for feasibility. 

 

4.14 Validation Summary 

It was shown in this chapter that each of the subsystems presented in Chapter 3 is capable 

of accurately sizing components and predicting the capabilities of a robot.  This validation was 

conducted by presenting comparisons of four existing robots to model representations of each of 

those robots. 
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The level of agreement in the model predictions to actual measurements is even more 

impressive when considering that the model is built on approximation after approximation.  A 

small error due to one approximation would be multiplied by the small error due to another 

approximation.  Over the course of the model, all of the small errors due to approximations 

would result in a very large error if not for a very detailed and rigorous validation process.  

Additionally, this model is significantly more accurate than prior versions of the model.  

The previous version of this robot model, which was written in Mathematica®, often exhibited 

very large error.  For example, the predicted cruising range was previously an entire order of 

magnitude off.  However, due to the rigorous validation process described in this chapter and 

ensuring correct derivation of all of the equations used within the model, the cruising range now 

has at most a 10.5% error as shown in Table 24.   
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Chapter 5 

Robot Parameter Trade Studies 

5.1 Overview of Trade Studies 

Tradeoffs exist between design parameters for any optimization problem.  Increasing one 

parameter may inevitably cause another to decrease.  Using ATSV, many of the competing 

design parameters existing within the model can be discovered.  Some of these tradeoffs in robot 

design are obvious: an increase in close lifting capacity and manipulator length lead to an 

increase in total manipulator mass.  Another example of an obvious tradeoff is an increase in 

manipulator mass or payload mass resulting in an increase in vehicle mass.  However, many 

tradeoffs are not as obvious, and parallel coordinates plots in ATSV can be used to discover 

them. 

Parallel coordinates plots are used to display multiple design variables for multiple design 

possibilities simultaneously [24].  These plots have been used in related work to display the same 

design variable for each product in a family simultaneously, thus making it easy to put the 

designer “in the loop” to make commonality decisions [23].  In the parallel coordinates plots 

shown in the subsequent sections, each vertical axis represents a design variable, and each 

horizontal line corresponds to a robot design.  The location that a horizontal line intersects a 

vertical axis indicates the value that a particular design has for the given variable.  The designs 

are colored based on the variable for which correlation is being explored as indicated by the 

legend on each plot.  The designs on the high end of the variable being considered are red; the 

designs on the low end are blue.  Strong correlations are found by looking for prismatic bands of 

color within the parallel coordinates plots.  
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5.2 Manipulator Tradeoffs 

As mentioned in Section 5.1, there are several tradeoffs that are to be expected within the 

manipulator design variables.  In these instances, ATSV is used to ensure that the outputs from 

the model make sense.  The parallel coordinates plot shown in Figure 56 confirms that an 

increase in the close lifting capacity (2
nd

 axis) almost directly correlates with an increase in the 

total manipulator mass.  There are other parameters that affect the total manipulator mass such as 

the total manipulator length (5
th

 axis), number of degrees of freedom (1
st
 axis), etc.;  however, in 

general, a greater close lifting capacity translates to a greater manipulator mass.   

It can also be seen in Figure 56 that the total manipulator mass is inversely proportional 

to the farthest distance that the robot can lift the close lifting capacity (4
th

 axis).  This is because 

a heavier manipulator tends to tip the vehicle over when stretching horizontally.  The mass of the 

vehicle and length of the chassis would both play into this inverse proportionality; however, as 

can be seen in Figure 56, the far reach distance is primarily dependent on the manipulator‟s 

mass.   
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Figure 56: Parallel Coordinates of Manipulator Design Variables Colored on Total Mass 

 

 As shown in Figure 57, specifying a larger close lift capacity (2
nd

 axis) yields electric 

motors with higher torques in the manipulator.  Higher torques are also correlated with longer 

manipulator segments.  Because the motors in the manipulator are scaled based on torque, 

manipulator motors that generate more torque also have higher total masses.  This tradeoff can 

be seen in the third vertical axis of Figure 57.  Similarly, a higher torque requires a stronger 

segment link.  Thus, as shown in Figure 58, higher torques (3
rd

 axis) result in larger outer 

segment radii.   
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Figure 57: Parallel Coordinates of Manipulator Design Variables Colored on L1A1 Torque 

 

Figure 58: Parallel Coordinates of Manipulator Design Variables Colored on L1A1 Radius 
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 As shown in Figure 59, a longer manipulator (5
th

 axis) does not necessarily result in a 

longer far reach distance (4
th

 axis).  Rather, it can be seen from the parallel coordinates plot that 

an ideal balance must be found for a particular vehicle.  Interestingly, the manipulators with 

lengths of approximately 1.5 [m] have the greatest far reach distance.  A balance must be found 

because a longer manipulator not only weighs more but will be more prone to tipping before it 

can be fully extended. 

 

 

Figure 59: Parallel Coordinates of Manipulator Design Variables Colored on Total Length 

 

 Figure 60 shows a parallel coordinates plot of the same manipulator design variables as 

shown in Figure 56 through Figure 59.  In this figure, the parallel coordinates plot is colored 

based on the manipulator‟s far reach distance.  Additionally, the robots that are not able self-right 

in the event of a turtleback have been brushed out.  The designs that are brushed out appear in 
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gray.  Many of the designs with a greater far reach distance (4
th

 axis) are not able to self-right.  

Interestingly, almost none of the robots with a far reach distance close to zero are brushed out; 

hence, a very large tradeoff is presented between the close lift capacity (2
nd

 axis), far reach 

distance (4
th

 axis and color) and self-righting capability (brushed designs).  The robots that can 

most easily self-right typically have very heavy and strong manipulators in comparison to the 

rest of the robots.  There are several robots that can self-right themselves that have large far 

reach distances; however, they have relatively small close lift capacities.  There seems to exist an 

ideal range, or a “sweet spot” of close lift capacities that also have large far reach distances 

combined with self-righting capabilities. 

 

 

Figure 60: Parallel Coordinates of Manipulator Design Variables Colored on Far Reach 
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 ATSV is also capable of producing two-dimensional scatter plots.  Figure 61 shows a 

similar trend found in Figure 56, that is: increasing the close lifting capacity results in a heavier 

manipulator.  Additionally, a steady decline in far reach distance can be seen in this plot for an 

increase in close lift capacity due to the total mass of the manipulator tipping the vehicle when 

fully extended.  It can again be seen that there are several designs that seem to be able to reach 

farther and have more lifting capacity than the main cluster of designs shown in Figure 61.  

These manipulators are sized well for the chassis that they are attached to.  All of these well-

paired manipulators have a moderate total manipulator length that results in a moderate total 

mass.   

To prevent ATSV from finding only one local minima, the search algorithm was stopped 

and started six times. On the last run, the upper bound on close lift capacity was increased to 70 

[kg] thus explaining the cluster just under 50 [kg]. 
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Figure 61: Scatter Plot of Far Reach Distance versus Close Lift Capacity 

 

The robots that are not able to self-right can be brushed out of the scatter plot shown in 

Figure 61.  The corresponding plot, in which only the robots that are able to self-right are shown 

in Figure 62.  The majority of the designs with a self-righting capability are found in two 

locations: at very low close lift capacities or at far reach distances of zero (the robot would tip 

regardless of the location where it attempted to lift its close lift capacity).  However, it can be 

seen that there are numerous designs that do not fall on either axis.  The farther up and to the 

right in the plot that designs are, the better the tradeoff between close lift capacity and far reach 

distance while still retaining the self-righting capability.   
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Figure 62: Far Reach Distance versus Close Lift Capacity Brushed on Self Righting 

 

As seen in Equation 70, positioning the base of the manipulator closer to the robot‟s 

center of gravity in the x-direction, results in a greater ability to self-right.  As shown in Figure 

63, none of the over fifteen thousand designs with the manipulator positioned at the very front of 

the chassis is able to self-right.  Rather most of the robots with the bases of their manipulators 

positioned just in front of their centers of gravity are able to self-right. 
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Figure 63: Parallel Coordinates of Manipulator Design Variables Brushed on Self Righting 

 

5.3 Battery Tradeoffs 

The tradeoffs of using an off-the-shelf battery such as the standard BB2590U versus a 

battery with no predetermined specifications were a question from the start of this project.  It can 

be seen in Figure 64 that the custom batteries result in very large ranges of capacity (4
th

 axis), 

volume (5
th

 axis), mass (6
th

 column), and power (7
th

 column).  Because of an upper limit of 

battery capacity, which is much higher than the fixed capacity of the BB2590U, these batteries 

can output much more power.  This power is then used to size the drive motor.  Therefore, 

Figure 64 shows a parallel coordinates plot for the battery parameters colored based on the drive 

motor mass.  The first axis in this plot is battery type.  The batteries of type 5 (custom Lithium 

Ion batteries) have a much larger range of specifications; thus, they can also support much larger 
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electric motors.  This plot also shows that, as they should, volume, mass and power are all 

directly correlated with one another.  

 

 

Figure 64: Parallel Coordinates of Battery Design Variables Colored on Drive Motor Mass 

 

 Heavier batteries result in greater power supplied to the electric drive motors.  More 

power supplied to the electric drive motors results in heavier drive motors.  Heavier batteries (6
th

 

axis) and heavier drive motors thus correlate with an overall heavier robot as shown in Figure 65. 
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Figure 65: Parallel Coordinates of Battery Design Variables Colored on Vehicle Mass 

 

 Allocating more mass on the batteries and drive motors results in a robot with a higher 

maximum vehicle velocity.  This tradeoff is shown in Figure 66.  The heaviest batteries result in 

the largest total motor masses, which typically correspond to the most powerful electric motors 

that can typically drive the fastest. 
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Figure 66: Parallel Coordinates of Battery Design Variables Colored on Maximum Velocity 

 

 The correlation of battery type to mass of the vehicle and maximum velocity is further 

explored in Figure 67.  In this two-dimensional scatter plot, it can be seen that the BB2590U 

batteries (batteryType = 6) are confined to a much smaller area in the plot than the custom 

Lithium Ion batteries (batteryType = 5).  The maximum velocity of a robot powered by a 

BB2590U is approximately 3 [m/s] while the maximum velocity of a robot powered by a custom 

Lithium Ion battery is approximately 8.3 [m/s].  The custom Lithium Ion batteries also lend 

themselves to higher overall vehicle masses.  As shown in Figure 67, the maximum vehicle mass 

of a robot powered by two BB2590U batteries is approximately 110 [kg] while it is possible to 

power a 387 [kg] robot with a custom Lithium Ion battery.  However, additional BB2590U 

batteries could be added to the 387 [kg] robot to provide the necessary driving power.  
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Figure 67: Vehicle Mass versus Maximum Velocity Highlighting Battery Type 

 

 While a robot powered by a BB2590U battery may not be able to drive as fast as one 

powered by a custom Lithium Ion battery, the robot powered by the BB2590U can drive for 

longer periods of time as shown in Figure 68.  This can be explained by the modified Peukert 

number equation (see Equation 69).  The lighter nature of these batteries result in lighter drive 

motors, lighter overall vehicle mass, and ultimately smaller resistive forces when driving.  

Therefore the electric current used in the modified Peukert number equation is smaller for a 

robot with a BB2590U battery, resulting in longer driving abilities. 
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Figure 68: Parallel Coordinates of Battery Design Variables Colored on Endurance 

 

5.4 Drive Motor Tradeoffs 

As mentioned in Section 5.1, there are several tradeoffs that are not very intuitive that 

must be discovered using ATSV.  Likewise, there are other tradeoffs that are to be expected.  In 

these instances, ATSV is used to ensure that the model is generating accurate results.  As would 

be expected, the electric drive motor length, diameter, and mass all increase proportionally to 

one another as shown in Figure 69. 
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Figure 69: Drive Motor Diameter versus Length Colored on Mass 

 

 Once the proportionality of motor length, diameter, and mass has been confirmed it can 

be used to further examine tradeoffs within the drive motor design parameters.  It has already 

been shown that higher battery capacities result in heavier drive motors because the model 

optimizes velocity for a given power supplied by the batteries.  Figure 70 extends that tradeoff.  

As previously mentioned but shown in Figure 70 for completeness, larger drive motors result in 

vehicles with higher maximum velocities (7
th

 axis).  Because the gearbox ratio (3
rd

 axis) is sized 

to allow the drive motor to spin at the maximum velocity some drive motors do not require 

gearboxes.  Ultimately, there is a tradeoff between torque and velocity.  The motors that do not 

use gearboxes, e.g., the vehicles with the highest maximum vehicle velocities, also have the least 
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amount of torque.  A design with less torque may not be able to climb as steep of a slope, drag a 

very heavy mass, or skid steer. 

 

Figure 70: Parallel Coordinates of Motor Design Variables Colored on Motor Mass 

 

 Figure 71 shows the parallel coordinates plot of the drive motor design parameters 

colored based on the drive motor gearbox ratio.  Here the effect of wheel diameter on gearbox 

ratio can be seen.  As discussed in Section 3.4.2, the gearbox ratio is determined as a function of 

maximum velocity, continuous rotation speed of the drive motor, and wheel diameter.  However, 

Figure 71 shows that the gearbox ratio is most strongly correlated with wheel diameter.  It can 

again be seen that the total mass allocated to the batteries and thus the drive motors results in an 

increase in the maximum vehicle velocity. 
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Figure 71: Parallel Coordinates of Motor Design Variables Colored on Gearbox Ratio 

 

 Figure 72 shows that a “sweet spot” exists within the drive motor parameters that 

optimizes the endurance of the vehicle.  The vehicles that can drive for the longest amount of 

time have high battery capacities, medium wheel diameters, lower gearbox ratios, moderate 

continuous drive motor speeds, and lower maximum velocities. 
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Figure 72: Parallel Coordinates of Motor Design Variables Colored on Endurance 

 

5.5 Chassis Dimensions Tradeoffs 

Figure 73 yields more insight into how payload dimensions are determined.  Vehicle 

length (10
th

 axis) is primarily a function of chassis width (9
th

 axis) as shown in Figure 73.  

Because chassis width is calculated as the maximum of several parameters, payload width (2
nd

 

axis) is sometimes directly correlated with the chassis width (9
th

 axis).  However, it is sometimes 

not at all correlated, which explains the sporadic red lines crossing the 2
nd

 axis. 
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Figure 73: Parallel Coordinates of Chassis Design Variables Colored on Chassis Width 

 

5.6 Chassis Structure Tradeoffs 

The chassis structure is sized to support the mass of the structure as well as all of the 

weight that it must support.  The mass of the chassis is based on its dimensions.  This correlation 

is shown in Figure 74.  It can also be seen that vehicle length correlates fairly well with chassis 

width as discussed in Section 0.  These dimensions also correlate with the maximum deflection 

that the chassis could display. 
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Figure 74: Parallel Coordinates of Chassis Design Variables Colored on Chassis Mass 

 

5.7 Wheel/Track Tradeoffs 

As given in Equation 52, wheel width is first sized based on a correlation between wheel 

diameter to wheel width and then increased if necessary to maintain a minimum ground pressure.  

When the wheeled vehicles that have had their wheel width increased (to maintain ground 

pressure) are brushed out, as shown in Figure 75, the total design count drops from 15,211 to 

14,445.  It can be seen that all of the wheels with excessively wide wheels (7
th

 axis) are removed.  

Removing all of the excessively wide wheels also removes all of the excessively heavy wheels. 
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Figure 75: Parallel Coordinates of Wheel/Track Design Variables Colored on Velocity 

 

The effect of wheel width being increased can be further examined with Figure 76.  In 

addition to the wheeled vehicles, whose width had to be adjusted to achieve an equivalent ground 

pressure, tracked vehicles are brushed out.  There are a few exceptions, but the vehicles with 

higher ground pressures have narrower wheels. 
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Figure 76: Wheel Diameter versus Wheel Width Colored based on Ground Pressure 

 

5.8 Power Requirements Tradeoffs 

Throughout this chapter it has been mentioned that maximum velocity, vehicle mass, and 

the mass allocated to the drive motors are very strongly correlated parameters.  Maximum 

velocity and vehicle mass are plotted against one another in Figure 77 and are colored based on 

the total drive motor mass.  In this two dimensional scatter plot it can again be seen that 

expending more mass on the drive motor and batteries results in a faster vehicle and also a 

heavier vehicle.   
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Figure 77: Maximum Velocity versus Vehicle Mass Colored On Motor Mass 

 

5.9 Endurance Tradeoffs 

Using the parallel coordinates plot shown in Figure 78, battery capacity is found to be 

very closely related to the two primary outputs from the Endurance subsystem: battery time and 

battery distance.  As would be expected, implementation of a battery with a greater capacity for a 

robot of the same size results in a vehicle that can drive for longer periods of time.  An increased 

distance that the vehicle can drive is to be expected because the calculation for battery distance is 

based on battery time as discussed in Section 3.10.2.  Specifying a very large battery capacity on 

a very heavy robot will not necessarily achieve high endurance parameters.  As discussed in 

Section 5.3, even allocating more mass to the batteries results in lower endurance. 
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Figure 78: Parallel Coordinates of Endurance Variables Colored on Battery Time 

 

5.10 Functional Capabilities Tradeoffs 

It is important to study the design tradeoffs of the variables input to and output from the 

Functional Capabilities subsystem because these variables ultimately determine the usefulness of 

the robot.  Maximum slope and traversal angles are the first parameters to be calculated in the 

Functional Capabilities subsystem; therefore, their tradeoffs are studied first.  Figure 79 shows 

the failure mode (1
st
 axis) corresponding to the maximum climbable slope (2

nd
 axis), the total 

vehicle mass (3
rd

 axis) and the failure mode (4
th

 axis) corresponding to the maximum traversable 

slope (5
th

 axis). 

The limiting factor for slope climbing can never be greater than 36.44 [degrees] because 

the failure mode (mode #3) for friction is purely a function of the coefficient of friction which is 

assumed to be a constant value.  As shown in Figure 79, these robots have large amounts of 
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torque.  Very few robots fail due to tipping (failure mode #1).  The rest of the robots fail due to 

having an insufficient amount of torque (failure mode #2). 

 

 

Figure 79: Parallel Coordinates of Slope Maneuvering Variables Colored on Motor Torque 

 

 Curb climbing also presents numerous tradeoffs.  First, as shown in Figure 80, the 

minimum horizontal length (6
th

 axis) of ground required by the robot in order to climb over the 

curb of height specified in the 5
th

 axis, increases with the distance from the center of gravity to 

the rear axle of the vehicle (specified by color).  Additionally, the vehicles requiring the largest 

platform length tend to most often have a failure mode associated with torque.  
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Figure 80: Parallel Coordinates of Curb Climbing Variables Colored on CGx 

 

 The height of a curb is plotted against the minimum platform length and colored based on 

the maximum curb climbing angle in Figure 81.  Figure 82 shows the same two parameters 

plotted against one another; however, it is colored based on the failure mode that limits the 

variables on either axis.  Here it can be seen that the robots colored blue fail in friction.  Thus, in 

Figure 81, the maximum curb climbing angles of these robots colored blue are all the same, and 

the height of the curbs is a function of robot geometry.   
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Figure 81: Curb Height versus Stair Length Colored on Maximum Curb Angle 

 

 

Figure 82: Curb Height versus Stair Length Colored on Curb Angle Limiting Factor 
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 The next functional capability to be analyzed is the ditch crossing capability.  It can be 

seen in Figure 83 that, as expected, the maximum crossable ditch width for a wheeled vehicle is 

purely a function of wheel diameter.  This is determined by noticing the prismatic bands of color 

entering the wheel/track axis (2
nd

 axis).  Figure 83 also shows that the maximum crossable ditch 

width for tracks is directly correlated with the robot‟s wheelbase and distance from the center of 

gravity to the rear axle.  Both of these variables are functions of the robot‟s length and wheel 

diameter.   

 

 

Figure 83: Parallel Coordinates of Ditch Crossing Variables Colored on Ditch Width 

 

The ability of the robot to perform a zero radius turn (skid steer) is analyzed next.  Robots 

that are not able to do a zero radius turn have been brushed out of the parallel coordinates plot 

shown in Figure 84.  Of the 15,211 robots in the tradespace, only 680 (4.5%) do not have enough 
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torque to perform a zero radius turn on asphalt.  Nonetheless, the minimum torque required by 

the motors in order to skid steer follow somewhat of a trend correlating with all of the variables 

used in the calculation. 

 

Figure 84: Parallel Coordinates of Skid Steer Variables Colored on Required Torque 

 

 The minimum hallway width through which the vehicle can maneuver exhibits 

dependencies on the distance from the center of gravity to the rear axle, wheel diameter, and 

vehicle length.  Though the distance from the ground to the center of gravity of the robot is an 

input to the minimum hallway maneuverability equation, it does not seem to show evidence of 

driving the output. 
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Figure 85: Parallel Coordinates of Hallway Width Variables Colored on Minimum Width 

 

 The maximum mass that a robot can drag has two failure modes: (1) the robot cannot 

apply enough torque to drag the mass and (2) the robot‟s wheels or tracks slip as it tries to drag 

the mass.  These are referred to as the torque-limited and friction-limited cases, respectively.  

The effect of having two failure modes can be seen in Figure 86.  The only parameter that varies 

in the friction limited case is vehicle mass.  Total motor torque and wheel diameter are inputs to 

the torque limited case.  In any regard, two separate bands of color can be seen in Figure 86. 
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Figure 86: Parallel Coordinates of Dragging Force Variables Colored on Mass on Tile 

 

 Trade studies were presented in this chapter using the 15,211 feasible results generated 

from the model presented in Chapter 3.  These trade studies show that several parameters work 

against one another (i.e., close lift capacity and far reach distance).  These trade studies are 

important to understand when interpreting the results presented in the next chapter and when 

designing a robot.  
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Chapter 6 

Robot Family GVI and PFPF Application  

6.1 Product Family Motivation 

The purpose of this work is to create a product family of robots for the location, 

identification, render-safe, recovery, and disposal of foreign or domestic objects.  While the 

existing robot systems offered by companies like Foster-Miller (e.g., the Talon) and iRobot (e.g., 

the Packbot) are effective, there is no sharing or part commonality across their systems.  As a 

result, users must maintain multiple sets of spare parts, tools, and repair manuals; keep multiple 

specialized technicians on staff for logistical and maintenance support; and conduct different sets 

of operator training and certification procedures for each robot since the operating systems and 

user controls are different for each robot.  Furthermore, there is no plug-and-play capability 

across robot systems from different vendors since the operating systems and user controls are 

different for each robot.  Furthermore, there is no plug-and-play capability across robot systems 

from different manufacturers, e.g., a manipulator arm from one manufacturer may not work on 

the other manufacturer‟s robot and vice versa.  In this chapter, opportunities for commonality 

(and modularity) within the next-generation family of robots are investigated. 

 

6.2 GVI Application 

Starting with a set of requirements (e.g., range, lift capacity, weight, reach) for various 

robot missions, the goal is to determine a suitable level of commonality for the corresponding 

family of small, medium, and large robots that the military would like to field.  We began by 

dissecting and analyzing several existing systems, including the Talon, Packbot, Bombot, and 
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RONS (see Figure 87).  These systems were used to construct a “generic” robot architecture that 

was used for GVI analysis, which requires a reference design to study the impact of changes in 

one component or module on another.   

 

 

 

The “generic” robot architecture is shown in Table 29 using a Design Structure Matrix 

(DSM).  This DSM shows not only which components are connected to which, but also to what 

extent a change in one component likely impacts another component (L = low, M = medium, H = 

high) by taking into consideration change propagation throughout the system [30].  As seen in 

                          

             (a) Bombot                                           (b)  Talon 
                        http://www.defensetech.org                                        http://www.foster-miller.com  

                                          

                   (c)  Packbot                                            (d)  RONS 
                http://www.irobot.com                                        http://www.globalsecurity.org  

 

Figure 87: Robots Dissected and Analyzed  

 

 

http://www.defensetech.org/
http://www.foster-miller.com/
http://www.irobot.com/
http://www.globalsecurity.org/
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Table 29, the DSM handles product variants, such as the individual components and connections 

varying by robot, by showing which subsystems are connected rather than individual 

components.  Using this as the “generic” reference architecture for the robot family, the steps 

outlined in Figure 1 are used to compute GVI for each major subsystem in the robot. 

 

Table 29: “Generic” Reference Architecture for GVI Analysis 

Chassis Battery

Battery 

Bays Flipper

Main 

Track

Com 

Box

Elect 

Box Arm Mast Head

Gripper/ 

Wrist

3 

Camera

Payload 

Bay

Aiming 

laser Antenna OCU

Chassis M M M M M L L H L

Battery M M

Battery Bays M

Flipper M M

Main Track M M

Com Box M L M

Elect Box M M L L L

Arm M L L M H L

Mast L L L

Head M L L

Gripper/Wrist L H

3 Cameras L L L L L L

Payload Bay H

Aiming Laser L L L

Antenna L M M

OCU M  

 

Table 30 shows the GVI matrix and resulting GVI values for the “generic” robot 

architecture.  The matrix is read: “How much would meeting the requirement in (column name) 

cause redesign of the subsystem in (row name)?”  Values of 1 = minimal redesign, 3 = some 

redesign, 6 = major redesign, 9 = complete redesign are used following GVI‟s redesign scale [5].  

The scores in each row are then summed to achieve the GVI score for each subsystem.  These 

scores are shown in the far right column of the table.  This analysis was conducted by a group of 

graduate students in mechanical engineering and industrial engineering at Penn State University 

in conjunction with researchers and staff at the Applied Research Laboratory (ARL), several of 

whom had previous experience designing, building, operating, and testing robot systems [31].  

Information was obtained through dissection of the existing robot systems as well as consultation 
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of each company‟s website and each robot‟s accompanying documentation and user manuals.  

Finally, the analysis results were discussed with several expert users who had experience 

operating these systems in the field. 

 

Table 30: GVI Analysis for the “Generic” Robot Architecture 

 

 

To understand the results of the GVI analysis, chassis design is examined as an example.  

As seen in Table 30, it can be seen that the chassis‟ GVI score is high for many of the mission 

requirements listed along the top row, meaning that many different requirements drive the design 

of the chassis in different ways.  Maneuvering as well as carrying capacity and reach 

requirements all impact chassis design, and each has a wide range of values across the missions 

provided for this study. 

Such a high GVI score suggests that the chassis should vary in the robot family based on 

the needs of their missions; however, there may be opportunities to scale the chassis in one or 

more dimensions as discussed next.  Unfortunately, this level of assessment is typically not 

addressed with GVI, and the implications of this are discussed in Sections 6.4 and 6.5. 
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A common length across all three robots would be very difficult to achieve unless some 

of the heavy-load-carrying scenarios are excluded.  The length of the chassis has a direct impact 

on its ability to maneuver up stairs and over obstacles and also factors into the ability to turn into 

doors and hallways.  Reaching or carrying objects also relies on a long, stable chassis and a 

lower center of mass to avoid tipping.  The major tradeoffs for a common chassis length is 

lifting, stair climbing, and gap traversal versus maneuvering.  The robot needs sufficient length 

to traverse stairs or ditches and to handle the heavy lifting requirements of the scenarios, but a 

robot that is too long could have limited maneuverability in hallways and openings.  When 

performing trade studies, the goal is to find a suitable chassis length for picking up the heaviest 

objects at their respective arm extensions.  Chassis lengths that satisfy this requirement and have 

the ability to maneuver through a standard sized doorway could be used as a common length. 

Even if a common length is achieved, there might be adverse effects as many missions 

require little more than a small “scout” robot with no manipulator (e.g., the Bombot).  Giving a 

robot a long chassis length would mean added weight and power consumption.  It may also 

preclude it from fitting in small depressions or ditches for a closer look.  Therefore, the 

maximum permissible value of any possible common length should be carefully evaluated.  

Sharing the length between just “scout” type and non-load-carrying robots would be easier to 

achieve and should be explored, since they have much higher maneuverability requirements than 

the load-carrying robots. 

Common width across all robots would be very difficult to achieve; however, if the 

heavy-load carrying scenarios are excluded, then this again becomes easier to achieve.  The non-

object-manipulating scenarios may be prime candidates for a common width if two robots are 

needed.  The robot‟s overall width includes the width of the chassis plus the width of the tracks 
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extending beyond the chassis edges.  Narrow maneuvering requirements already imply a narrow 

robot including its tracks, while object carrying requirements generally imply wider widths.  A 

robot attempting to drag very heavy weights over slightly uneven terrain would have to handle 

that weight shifting to either side of the robot, and widths narrower than a doorway might require 

a high weight and low height to prevent tipping.  Exploration of the trade space can be used to 

confirm the feasibility of common chassis width for heavy-load-carrying robots.  Meanwhile, 

sharing a common width across the non-heavy load carrying robots seems more feasible and 

should be examined further.  

Finally, a common height for all robots is possible, especially across all non-heavy-load-

carrying robots.  The height dimension is basically limited by the minimum opening height 

requirement; any manipulator must also fit inside that same height.  The missions that do not 

require manipulators could all share a common height.  If an arm capable of dragging the weight 

from the heaviest dragging scenario can fold into a similar space (which may be possible), then 

all of the scenarios could have a common chassis height. 

Similar analysis is applied to the other subsystems to arrive at the GVI matrix shown in 

Table 30.  The complete analysis can be found in another work [31].  Based on the results in 

Table 30, several potential opportunities for commonality (see Table 31) are identified by 

looking at the low GVI values.  Only the parameters that will be analytically evaluated with 

PFPF, in Section 6.3, are shown here.  These opportunities include making the batteries, tracks, 

communication and electronic boxes, masts, cameras, payload bays, antennas, and OCUs 

common across the three robots.  While some commonality is certainly possible, the chassis, 

arm, and gripper should not be part of the platform, but standardizing their interfaces facilitates 

plug-and-play capability in the family.  GVI analysis could be complemented with a market 
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segmentation grid in future work; however, at this point segmentation is done solely on the basis 

of weight class. 

 

Table 31: Possible Commonality Opportunities based on GVI Analysis 

Robot V
eh

ic
le

 L
en

gt
h 

[m
]

Ch
as

si
s 

W
id

th
 

[m
]

Ch
as

si
s 

H
ei

gh
t 

[m
]

W
he

el
s(

=1
)/

 

Tr
ac

ks
(=

2)

W
he

el
 

D
ia

m
et

er
 [m

]

W
he

el
 o

r T
ra

ck
 

W
id

th
 [m

]

Ba
tt

er
y 

Le
ng

th
 

[m
]

Ba
tt

er
y 

W
id

th
 

[m
]

Ba
tt

er
y 

M
as

s 

[k
g]

O
ut

er
 A

rm
 

Ra
di

us
 [m

]

A
rm

 S
eg

m
en

t 

Le
ng

th
 [m

]

N
um

be
r o

f A
rm

 

Li
nk

s

Small

Medium

Large

GVI Suggests Commonality

Chassis Mobility Batteries Manipulator

 

 

6.3 Product Family Optimization using PFPF 

In parallel to the dissection and GVI analysis, a set of design rules were created for the 

robots to allow for the generation and analysis of new robot design alternatives as discussed in 

Chapter 3.  Once these rules had been validated against the four existing robot systems (i.e., the 

Bombot, Talon, Packbot, and RONS) as shown in Chapter 4, a more analytical approach was 

taken to identify the platform in the robot family, namely, product family optimization using 

PFPF.  The sampling and visual steering commands in ARL‟s Trade Space Visualization 

(ATSV) tool [32] were used to generate 15,211 robot design alternatives spanning the small, 

medium, and large robot design space.  Each robot was then evaluated against its corresponding 

mission requirements (e.g., small robots were compared against the requirements for the 

missions that needed small robots).  The effectiveness of each robot is computed based on the 
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corresponding set of requirements by comparing the calculated value of the requirement, Ri, to 

the Threshold, Ti, and Objective, Oi, values for that requirement as follows: 

 

1.  Effthreshold, Threshold Effectiveness (i.e., how well are the threshold requirements met?): 

 
                                              For requirements with min. values:          For requirements with max values: 
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2. Effobjective, Objective Effectiveness (i.e., how well are the objective requirements met?): 

 
                                                    For requirements with min. values:        For requirements with max values: 
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3. Effoverall, Overall Effectiveness (i.e., how well are the requirements met overall?): 

 

                                                   For requirements with min. values:           For requirements with max values: 
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 Effectiveness is thus computed as a percentage of the requirements that were met.  As 

calculated using Equation (78 through Equation (80, an effectiveness of 100% means that the 

robot meets all of the requirements; 0% means that none of the requirements are met.   

Upon completion of the effectiveness calculations and upon being classified as small, 

medium or large robots, each size was sorted by highest to lowest average effectiveness.  The top 

performing 90 robots of each size were considered candidates for the product family as shown in 

Figure 88.  This filtering process reduced the number of robot designs to 270 promising 

candidates: 90 designs for the small robot, 90 for the medium robot, and 90 for the large robot.  

Even though this is a relatively small number of robot designs, it leads to 729,000 (= 90 x 90 x 

90) possible robot families when every possible combination of one small, one medium, and one 

large robot is considered.  In preliminary studies a minimum value for effectiveness was used as 

a cutoff.  However, generation of a larger number of robots resulted in numerous robots with 

very similar effectiveness values.  Additionally, the small and medium robots have significantly 

higher effectiveness values than the large robots.  Therefore, it was determined that the largest 

number of families would be evaluated as possible.  Additionally, an equal number of small, 

medium, and large robots would be considered.  The most effective 90 robots in each size were 

selected because addition of more robots would run the computer out of memory.  A computer 

program was written in JavaTM to create every combination of small, medium, and large robots.  

This code also calculates PFPF and average effectiveness for each family.   
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Figure 88: Effectiveness vs. Robot Size & Mass 

   

 A sensitivity analysis was performed to determine which objective requirements are the 

most difficult to meet.  The small, medium and large robots consistently have difficulty meeting 

the slope climbing, staircase climbing, far reach distance, and endurance requirements.  The 

medium and large robots consistently have difficulty meeting the slope traversal, payload mass 

and lift capacity.  The large robots additionally struggle to meet stair climbing requirements. 

Even though visual steering tools were used within ATSV during trade space exploration, 

it can be seen in Figure 88 that a significantly higher quantity of medium robots were created 

than small or large robots.  This is because the genetic algorithm within ATSV depends on a 

“seed” for which to create more similar designs.  Thus, if most of the designs are medium or 

large robots, the genetic algorithm will have difficulty determining which input parameters will 
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result in a small robot.  Even though the model may be visually steered toward creation of a 

small robot, it does not guarantee a small robot will be output from the model. 

 

 

Figure 89: Robot Mass Histogram 

 

For each one of these 729,000 possible robot families, two calculations are made. First 

PFPF is calculated as shown in Equation 1.  The parameters included in the PFPF analysis 

include vehicle length, chassis width, chassis height, ground clearance, wheel or track 

configuration, wheel diameter, wheel/track width, battery length, battery width, battery mass, 

number of batteries, drive motor diameter, drive motor length, manipulator segment radius, 

manipulator segment length, and the number of manipulator segments.  Secondly, the objective 

overall effectiveness is calculated.  The objective overall effectiveness, which is the average 

effectiveness across the three robots, is defined in Equation 81. 
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Obj_Eff_Overall = 

3

arg,,, eLoverallMediumoverallSmalloverall EffEffEff 
 (81) 

 

Table 32 shows examples of the robot families enumerated in this study.  Each row 

indicates a family of robots where the number under the small, medium, and large column 

headings refer to the row index of the robots in the data set that remain after filtering out the 

ineffective robot designs (i.e., not the most effective 90 for each size). 

 

    

Table 32: Example of Robot Family Analysis 

Family 

Number 

Small 

Robot 

Medium 

Robot 

Large 

Robot 

Dissimilarity 

(PFPF) 

Overall Effectiveness (Effoverall) Avg_Eff_ 

Overall Small Medium Large 

1 1 1 1 7.342 89.182% 88.855% 79.571% 85.869% 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

3881 1 44 11 8.552 89.182% 89.865% 81.079% 86.709% 

3882 1 44 12 8.135 89.182% 89.865% 81.389% 86.812% 

3883 1 44 13 7.420 89.182% 89.865% 79.977% 86.341% 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

5482 1 61 81 6.956 89.182% 89.545% 79.988% 86.238% 

5483 1 61 82 4.577 89.182% 89.545% 79.313% 86.013% 

5484 1 61 83 6.345 89.182% 89.545% 78.518% 85.748% 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

248681 31 62 11 6.084 89.404% 89.563% 81.079% 86.626% 

248682 31 62 12 5.820 89.404% 89.563% 81.389% 86.730% 

248683 31 62 13 6.294 89.404% 89.563% 79.977% 86.259% 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

729000 90 90 90 8.297 82.924% 87.333% 79.538% 81.646% 
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Using the data in Table 32, Obj_Eff_Overall is plotted versus PFPF to identify promising 

robot families.  The result is shown in Figure 90, which shows the tradeoff between commonality 

(i.e., low PFPF values) and performance (i.e., high effectiveness) within the robot families.  

Preliminary trade studies involving fewer product family options showed a much more dramatic 

tradeoff between commonality and performance; however, due to more densely populating the 

tradespace with design alternatives, numerous good design choices can exist.  In any regard, in 

Figure 90, each point represents a robot family, and the most promising robot families are 

marked with +‟s.  Color indicates preference in the figure: red points are more preferred to blue 

points, assuming an equal importance weighting is placed on PFPF and Effectiveness.  The six 

families marked by the +‟s represent the Pareto frontier among the designs in that they dominate 

all of the other families by offering the best combination of commonality and overall objective 

effectiveness. 
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Figure 90: PFPF vs. Objective Effectiveness 

 

Of these six families, three are of particular interest as highlighted in the figure: (1) the 

Most Effective Family, (2) the Most Common Family, and (3) the Best Compromise Family.  

The Most Effective Family does the best job of all the families in satisfying the effectiveness 

requirements for the small, medium and large robots (Objective Effectiveness = 86.8%), but it 

has less commonality (higher PFPF) than the other designs, although it is by no means the worst 

among those evaluated.  The Most Common Family is the reverse – it has the most commonality 

among the three designs, but this comes at a slight loss in performance (Objective Effectiveness 

= 86.0%).  Finally, the Best Compromise Family falls between the two – it has more 

commonality than the Most Effective Family but with less sacrifice in performance compared to 
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the Most Common Family.  In fact, its Objective Effectiveness = 86.7%, indicating a remarkably 

good compromise in this robot family.   

The corresponding parameter settings for these three robot families are listed in Table 33.  

Here, color is used to highlight parameter values that are common (in orange) and similar (in 

yellow), i.e., within 5% across two or more robots within a given family.  Note that even though 

some of the parameter values are the same across families (i.e., they all use tracks, and nearly all 

of them have the same battery specifications), the color coding for common and similar 

parameter values are within a single robot family, not across the three robot families.  For 

example, it is only a coincidence that the Large Robot in the Best Compromise Family has a 

similar value to the Large Robot in the Most Common Family for vehicle length. 

 

Table 33: Possible Common, Similar, and Unique Parameter Settings in the Robot Family 
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Small 0.542 0.206 0.198 0.019 2 0.264 0.033 0.112 0.062 1.4 0.064 0.096 0.021 0.418 3

Medium 0.788 0.416 0.249 0.016 2 0.078 0.039 0.112 0.062 2.8 0.064 0.096 0.021 0.243 3

Large 1.007 0.498 0.257 0.021 2 0.175 0.058 0.112 0.062 2.8 0.064 0.096 0.021 0.229 3

Small 0.543 0.224 0.135 0.036 2 0.251 0.025 0.112 0.062 1.4 0.079 0.112 0.021 0.105 3

Medium 0.732 0.409 0.163 0.017 2 0.051 0.047 0.112 0.062 1.4 0.063 0.096 0.021 0.283 3

Large 1.007 0.475 0.170 0.030 2 0.178 0.049 0.112 0.062 1.4 0.052 0.083 0.021 0.218 3

Small 0.543 0.224 0.135 0.036 2 0.251 0.025 0.112 0.062 1.4 0.079 0.112 0.021 0.105 3

Medium 0.792 0.418 0.236 0.010 2 0.057 0.033 0.112 0.062 1.4 0.051 0.082 0.021 0.292 3

Large 0.763 0.371 0.117 0.010 2 0.115 0.108 0.112 0.062 2.8 0.064 0.096 0.022 0.408 3

# = Common Values # = Similar (< 5%) Values

Best 

Compromise 

Family

Most 

Common 

Family

Most 

Effective 

Family

 

Based on the results in Table 33, there are several opportunities for using common and 

similar components within the robot family as revealed by PFPF optimization.  As expected, the 

Most Effective Family, i.e., the one that is able to complete the mission scenarios most 
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effectively, has the least commonality among the specific parameter settings as seen from the 

color coding, and while it may appear that there is more similarity in the Best Compromise 

Family, there is less variability in the Most Common Family, which gives it a lower PFPF score 

(i.e., higher commonality).  In terms of each family: 

Best Compromise Family: There seems to be a much higher degree of commonality and 

similarity between the medium and large robots in this family.  A common drive motor can be 

used across the three tracked vehicles.  All three robots utilize a common BB2590U battery: the 

small robot uses one while the medium and large use two.  The manipulator is able to share 

common segment radii across their three segments.  The medium and large robots look like they 

can share chassis height and manipulators.  The small and large robots may be able to share a 

common ground clearance. 

Most Common Family:  This family seems to be able to share the exact same battery 

specifications across these three tracked vehicles.  All three robots are equipped with the same 

manipulator segment radii and three manipulator segments.  The chassis height can again be 

shared between the medium and large robots.  Additionally, the medium and large robots can 

share a common track width. 

Most Effective Family:  The Most Effective Family consists of three tracked vehicles.  All 

three robots have three segment links of which segment radii is common.  Like the Best 

Compromise Family, all three robots utilize common BB2590U batteries: the small and medium 

robots in Most Effective Family have two BB2590U batteries while the large has two.  It is again 

noticed that commonality tends to favor similarity among the medium and large robots in a 

family.  Similar parameters between the medium and large robots include vehicle length and 

ground clearance. 
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Finally, looking across the families, it appears that tracked vehicles are consistently the 

most effective.  There also appear to be opportunities for scaling the quantity of BB2590U 

batteries used across the family.  There appear to be several opportunities to share some 

manipulator parameters within a robot family.  

 

6.4 GVI to PFPF Comparison 

At this point, there are two different sets of suggestions for commonality based on GVI 

and PFPF analysis.  The question to consider is: are the results the same, i.e., do GVI and PFPF 

recommend the same platform for the robot family?  Does the perception-based approach (GVI), 

which is subjective to expert opinion, provide comparable results to the analytical approach 

(PFPF), which relies on detailed models?  The following comparisons examine the four major 

subsystems – chassis, mobility, batteries, and manipulator – that were considered during both 

GVI and PFPF analysis to answer these questions. 

Chassis: The GVI suggests that a large portion of the chassis design should be common.  

The PFPF suggests that very few of the chassis parameters be similar.  In Table 34, the 

parameters for which the GVI and PFPF agree should be common are highlighted in green, those 

that the GVI and PFPF disagree on being common are highlighted in red, and the parameters that 

are not highlighted are not recommended by either the GVI or PFPF to be common.  The GVI 

and PFPF suggestions show only partial agreement when considering the Best Compromise and 

Most Common families.  The only commonality suggestions offered by the PFPF are for the 

chassis height in the medium and large robots of the Best Compromise and Most Common 

families.  The GVI recommends that all three chassis heights be common.  In disagreement with 

the PFPF, the GVI suggests that the small and medium robots share a common length and width.  
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The Most Effective family recommends the exact opposite vehicle lengths be held common to 

those suggested by the GVI (e.g., the GVI recommends common vehicle length for the small and 

medium, while PFPF suggests commonality of the medium and large). 

 

Table 34: Comparison of Commonality Recommendations of GVI and PFPF 
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Small 0.542 0.206 0.198 2 0.264 0.033 0.112 0.062 1.4 0.021 0.418 3

Medium 0.788 0.416 0.249 2 0.078 0.039 0.112 0.062 2.8 0.021 0.243 3

Large 1.007 0.498 0.257 2 0.175 0.058 0.112 0.062 2.8 0.021 0.229 3

Small 0.543 0.224 0.135 2 0.251 0.025 0.112 0.062 1.4 0.021 0.105 3

Medium 0.732 0.409 0.163 2 0.051 0.047 0.112 0.062 1.4 0.021 0.283 3

Large 1.007 0.475 0.170 2 0.178 0.049 0.112 0.062 1.4 0.021 0.218 3

Small 0.543 0.224 0.135 2 0.251 0.025 0.112 0.062 1.4 0.021 0.105 3

Medium 0.792 0.418 0.236 2 0.057 0.033 0.112 0.062 1.4 0.021 0.292 3

Large 0.763 0.371 0.117 2 0.115 0.108 0.112 0.062 2.8 0.022 0.408 3

# = GVI & PFPF Commonality Suggestions Agree

# = GVI & PFPF Commonality Suggestions Disagree

# = Neither Suggest Commonality

Manipulator

Best 

Compromise 

Family

Most 

Common 

Family

Most 

Effective 

Family

Chassis Mobility Batteries

 

 

Mobility: Neither the GVI nor PFPF suggest much commonality among the mobility 

parameters (see Table 34).  GVI suggests no commonality (with the exception of all tracked 

robots).  For the Most Common Family, PFPF disagrees with the GVI recommendation by 

suggesting a common track width. 

Batteries: GVI suggests using the same batteries, just increasing the number of these 

batteries used, to obtain the necessary power for the three robots.  The Most Common Family 

exactly matches this suggestion as shown in Table 34.   
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Manipulator: Studying Table 34, PFPF suggests commonality for the outer radii of each 

segment as well as the number of segment links for all three robots.  The GVI suggests 

commonality of only those parameters for the small and medium robots.  PFPF suggests no 

commonality for arm segment length while the GVI suggests that the lengths should be common 

for the small and medium robots. 

Ultimately, it can be seen that there are a significant number of overlapping suggestions 

for commonality when comparing the results of GVI and PFPF.  This is a promising first step in 

validating the use of GVI for product family design, i.e., to have results match so well for a 

perception-based approach when compared to a rigorous analytical approach using optimization.  

It has been difficult to compare the results of GVI in published studies as few analytical models 

exist for the same family.  In this robot family example, both options could be explored given the 

duration and nature of the project.  Thus, the results of this analysis are offered as a unique 

contribution of this work.  The question still remains, however: which commonality 

recommendations should be used – those from GVI or those from PFPF? 

 

6.5 Combining GVI With PFPF for Optimization 

The 729,000 families created from the robots output from the updated model were also 

compared to the GVI commonality recommendations.  Unlike the preliminary study, the updated 

families contain five families that exhibit all of the GVI commonality recommendations.  A few 

hundred more families lack only one common parameter from the GVI commonality 

recommendations.  Table 35 shows the five robot families that exhibit all of the same common 

parameters as suggested by the GVI.  In this table, the parameters that the GVI and PFPF both 

suggest to be common are highlighted in green.  The parameters for which the PFPF suggests 
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more commonality than suggested by the GVI are highlighted in red.  These parameters 

highlighted in red indicate that the GVI may have overlooked a feasible commonality suggestion.  

Finally, those parameters not highlighted are not recommended by either the GVI or PFPF to be 

common.     
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Small 0.557 0.227 0.318 2 0.261 0.028 0.112 0.062 1.4 0.021 0.565 3

Medium 0.592 0.221 0.334 2 0.291 0.032 0.112 0.062 1.4 0.021 0.524 3

Large 0.665 0.301 0.344 2 0.181 0.13 0.112 0.062 1.4 0.021 0.306 3

Small 0.544 0.203 0.079 2 0.269 0.034 0.112 0.062 1.4 0.021 0.134 3

Medium 0.575 0.191 0.086 2 0.279 0.043 0.112 0.062 1.4 0.021 0.133 3

Large 0.911 0.5 0.079 2 0.121 0.061 0.112 0.062 1.4 0.021 0.112 3

Small 0.578 0.208 0.08 2 0.277 0.03 0.112 0.062 1.4 0.021 0.569 3

Medium 0.603 0.205 0.08 2 0.297 0.035 0.112 0.062 1.4 0.021 0.568 3

Large 0.911 0.5 0.079 2 0.121 0.061 0.112 0.062 1.4 0.021 0.112 3

Small 0.646 0.223 0.35 2 0.307 0.025 0.112 0.062 1.4 0.021 0.104 3

Medium 0.608 0.224 0.32 2 0.301 0.035 0.112 0.062 1.4 0.021 0.11 3

Large 0.665 0.301 0.344 2 0.181 0.13 0.112 0.062 1.4 0.021 0.306 3

Small 0.643 0.234 0.349 2 0.307 0.021 0.112 0.062 1.4 0.021 0.104 3

Medium 0.608 0.224 0.32 2 0.301 0.035 0.112 0.062 1.4 0.021 0.11 3

Large 0.665 0.301 0.344 2 0.181 0.13 0.112 0.062 1.4 0.021 0.306 3

# = GVI & PFPF Suggest Commonality

# = PFPF Suggests Additional Commonality

# = Neither GVI or PFPF Suggest Commonality

Family 2

Chassis Mobility Batteries Manipulator

Family 1

Family 3

Family 4

Family 5

 

Table 35: PFPF-Optimization Families that Most Closely Resemble GVI Recommendations 

 

The five families with all of the commonality suggested by the GVI are shown as red 

points in Figure 91.  The 243 families that differ in only one common parameter than 

recommended by the GVI are shown as green points.  It is interesting to note the orientation of 
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all of these families within the tradespace.  They are all clumped very near to the most common, 

most effective region of the tradespace. 

 

 

Figure 91: PFPF Families that Resemble GVI Analysis 

 

 Furthermore, plotting the objective effectiveness overall of all 729,000 families against 

PFPF and colored based on their similarity to the GVI recommendations for commonality the 

most similar families not only orient with lower PFPF values but also show a slight preference 

toward higher effectiveness as shown in Figure 92.  
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Figure 92: PFPF Families Colored Based on Similarity to GVI Recommendations 

 

An important take-away from this analysis is that it is possible for experts completing 

GVI to suggest too much commonality, which may over-constrain the problem and limit the 

maximum effectiveness or performance of the family.  While it may not match exactly, it is very 

likely for the results of the GVI to be similar to the family identified using PFPF as having the 

best tradeoff between commonality and performance.  If the goal is to locate the family in the 

trade space that most closely matches GVI, then it may be beneficial to suggest commonality for 

a parameter when in doubt, and use optimization to examine the performance tradeoff from 

having that parameter common.  In this regard, GVI and PFPF could be used effectively together 

to explore the trade space for the product family at hand.   

Otherwise, more densely populating the trade space may result in the existence of several 

families matching the GVI suggestions for commonality.  If this approach is taken, cost analysis 

and user needs can be considered during GVI analysis to ease the difficult decision of choosing 
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from several families with similar effectiveness and commonality.  As seen in Figure 90 it can be 

very difficult to make a final selection between numerous families with very little differences in 

effectiveness and commonality.  Thus, searching the trade space for families displaying similar 

commonality as suggested by the GVI can lead to a much easier decision.  For the example being 

considered, the upper left red point in Figure 91 (see Family 2 in Table 35) benefits from all of 

the advantages to commonality discovered during GVI analysis yet still benefits from PFPF 

optimization.  This family has a PFPF value of 4.291 and an objective effectiveness overall of 

85.8%. 

Finally, Table 35 may appear to indicate that PFPF proposes greater amounts of 

commonality than GVI; however, GVI is determined at the subsystem level whereas PFPF is 

calculated at the parametric level of each subsystem.  For example, because GVI is binary at the 

modular level, it may say “batteries should be scalable” rather than determining which 

dimensions to make common while PFPF allows for scalability (e.g., “keep battery length and 

width common but scale height”). 

 

 

6.6 Summary of Optimization Method 

This chapter presents the results of both the GVI analysis and PFPF optimization.  

Additionally, the results of both of these methods were compared.  It was concluded from this 

comparison that there are a significant number of overlapping suggestions for commonality when 

comparing the results of GVI and PFPF.  GVI may either over-constrain commonality or may 

miss opportunities for commonality.  However, PFPF optimization does not benefit from expert 

opinion when making commonality decisions. 
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In order to maintain the benefits from both GVI and PFPF optimization a new method 

which combines both methods is suggested.  This new method, which was first presented in 

Chapter 1, adheres to the following five steps: 

 

(1) Perform GVI analysis 

(2) Create a mathematical model of the product 

(3) Perform individual PFPF optimization to populate the trade space 

(4) Search the trade space for designs most closely resembling GVI commonality 

suggestions 

(5) Choose the best design, that which has the highest effectiveness and lowest PFPF 

 

It is possible to constrain commonality and create one family at a time.  However, doing 

so has the potential to over-constrain the optimization problem.  In some cases, the GVI may 

suggest commonality which presents a hindrance to the effectiveness of the individual robots.  

Rather, the method presented in this chapter will indicate to the designer when it is not possible 

to enforce all of the parameters suggested to be common by the GVI (i.e., the best family may 

lack one GVI suggested commonality parameter). 
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Chapter 7 

Closing Remarks and Future Work 

7.1 Summary of the Research 

This work presents a mathematical model for determining geometry, sizing components, 

and calculating capabilities of a ground robot in Chapter 2 and 3.  Chapter 4 presents validation 

of this model.  Several tradeoffs in design parameters and capabilities were discovered and 

outlined in Chapter 5.  Over fifteen thousand design iterations were generated using this model.  

These results were used to compare the results of the GVI to PFPF in Chapter 6. 

The results of this product family trade study show that there are several opportunities for 

commonality within the robot family with minimal sacrifice in performance.  Several common 

subsystems were identified using the GVI.  Using the PFPF and optimization, three promising 

robot families were identified, including a Best Compromise Family that had a high Objective 

Overall Effectiveness (90%) and high degree of similarity among the parameter settings that 

defined the small, medium, and large robots in the family.  It was shown that there can be a 

significant amount of similarity in the suggestions of GVI and PFPF optimization for 

commonality.  If the ultimate goal is to maximize commonality where performance is not of a 

primary concern and a family member size is not specified as an output of the model (resulting in 

numerous family designs being invalid), then the method of starting with GVI for commonality 

may be a wise choice.  Values for parameters that are known to be or desired to be common can 

then be evaluated.  However, using all of the suggestions from GVI may add too many 

commonality constraints to the model and thus limit the maximum possible effectiveness of 

product family designs.  The best method seems to be to first perform PFPF optimization and 
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then search the trade space for families that exhibit the closest commonality recommendations as 

the GVI. 

 

7.2 Research Contributions 

This work presents several unique contributions to the literature.  First, the mathematical 

model presented in Chapters 2 and 3 is one of a kind in that it is a very fast, comprehensive, 

accurate (as shown in Chapter 4), yet simple model.  Nearly all of the modeling efforts found in 

the existing literature involve very complex, multi-dimensional, computationally intensive 

algorithms.  The model presented in Chapters 2 and 3 is necessary in order to be able to quickly 

and effectively perform trade studies such as those presented in Chapter 5.  Such a model is also 

necessary in order to determine the best possible product family as discussed in Chapter 6.  As 

previously mentioned, the comparison of PFPF to GVI is also unique to this work.  

 

7.3 Future Work 

The next step in this research is to perform more detailed analyses of these commonality 

recommendations to verify the results further.  In addition, because some parameters may be 

harder to make common or some requirements may be more critical to mission success, which 

could be determined with GVI, the sensitivities of the weightings on (i) commonality and (ii) 

effectiveness must be understood in case prioritization or varying importance of weightings on 

parameters in future trade studies is requested.  The results of this study are promising; however, 

more work is needed to better understand the role of expert opinion during product family 

optimization. 
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There are five robot families within the PFPF optimization trade space that have all of the 

same commonality suggested by the GVI.  Therefore, the model will be reconfigured so that 

entire product families can be created with each design iteration. 

Finally, the model needs to be validated further against a higher fidelity model.  As 

previously mentioned, the higher fidelity model is not capable of sampling such a large portion 

of the trade space as quickly as this model; however, it is potentially capable of predicting more 

accurate results.  
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Appendix A 

Method to Create an Executable Simulink® Model 

(1)  Using a computer with Matlab® and the Real-Time Workshop toolbox installed open the 

Simulink® model. 

(2) Open the script that imports values into the variables used in the model. Define each input 

value as something sequential yet random. For example, use 999234231432, 

998324678234, 997273650283, etc. 

(3) Run the Matlab® script that imports the values specified in step 2 and pass them through 

the model. However, using these values may cause the model to crash, therefore, set a 

breakpoint to prevent the model from actually running. 

(4) Create a Windows executable version of the Simulink® model. In the menu of the 

Simulink® model click on: Tools  Real Time Workshop  Build Model 

(5)  Type:  param_struct = rsimgetrtp(„robot_design_model_5‟)  into the Matlab® workspace 

(6)  Search for the values specified in step 2 by typing:  find(param_struct.parameters.values == 

999234231432) 

(7)  Save the .mat file by typing:  save RobotSimParams.mat param_struct 

(8) Ensure that the Micorsoft Software Development Kit (SDK) is installed correctly by 

selecting a compiler: 

(a)  First, in the command window type “mex –setup” and select your desired 

compiler. 

(b) Second, in the command window type “mbuild –setup” and select your desired 

compiler. 
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(c)  If the SDK is installed incorrectly the “mbuild –setup” command results in an 

error.  The SDK can be downloaded for free from Microsoft‟s website. 

(9)  Run a Matlab® script that does the following. See Appendix B for a copy of this script. 

(a)  Read in the model inputs to a vector named tinput from a text file 

(b) Load the .mat file created in step 7. 

(c)  Pass the values from the text file from step 8a to the necessary locations in the 

.mat file by typing 

(d)  Save the .mat file 

(e) Clear all variables 

(f)  Delete the old mat file created from the model 

(g) Run the executable model 

(h) Load the .mat file created by the model 

(i)  Write the output variables to a text file 

(10)  Launch the Matlab® deployment tool by typing “deploytool” into the command window. 

(11) Name the file and specify a location.  Be sure to select a standalone application. 

(12)  Add the main file which was created in step 9 

(13) Add additional files: the executable model file created in step 4, the .mat files 

(RobotSimParams.mat and RobotSimParams.mat), input.txt and output.txt 

(14) If the executable model needs to be run on another computer, be sure to include the library 

files. 

(15)  Click on build package. 

(16)  Double clicking on the .exe file installs the library files if selected, as well as unpack all of 

the additional files and run the simulation.   
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Appendix B 

Matlab® Script to Deploy Executable Package 

%-------------------------------------------------------------------------- 
% Created by Aaron Bobuk 
% Last Updated 7/14/2010 

  
% This script is used to package the simulation using the 
% deployment tool in Matlab to create an executable model 

  
%-------------------------------------------------------------------------- 

  

  
% Read in a text file from ATSV 

% ATSV required a format of: variable1, value 

%                            variable2, value   etc 
fid = fopen('inputs.txt','r'); 
S = textscan(fid,'%s %f','delimiter',','); 

  
% Define tinput vector as the second column 
tinput = S{2}; 

  
% Close the text file 
fclose(fid); 

  

  
%-------------------------------------------------------------------------- 

  
% Place the values of the input variables in the correct  
% locations within the .mat file 

  
load RobotSimParams.mat; 
param_struct.parameters.values([101, 153]) = tinput(1); 
param_struct.parameters.values([102, 157]) = tinput(2); 
param_struct.parameters.values([108, 154]) = tinput(3); 
param_struct.parameters.values([114, 155]) = tinput(4); 
param_struct.parameters.values([120, 156]) = tinput(5); 
param_struct.parameters.values([107]) = tinput(6); 
param_struct.parameters.values([105]) = tinput(7); 
param_struct.parameters.values([113]) = tinput(8); 
param_struct.parameters.values([119]) = tinput(9); 
param_struct.parameters.values([109]) = tinput(10); 
param_struct.parameters.values([115]) = tinput(11); 
param_struct.parameters.values([121]) = tinput(12); 
param_struct.parameters.values([83, 103, 150, 151]) = tinput(13); 
param_struct.parameters.values([100]) = tinput(14); 
param_struct.parameters.values([110]) = tinput(15); 
param_struct.parameters.values([116]) = tinput(16); 
param_struct.parameters.values([122]) = tinput(17); 
param_struct.parameters.values([80, 117, 152]) = tinput(18); 
param_struct.parameters.values([177]) = tinput(19); 
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param_struct.parameters.values([178]) = tinput(20); 
param_struct.parameters.values([1]) = tinput(21); 
param_struct.parameters.values([8, 56, 128]) = tinput(22); 
param_struct.parameters.values([15]) = tinput(23); 
param_struct.parameters.values([22, 26, 27, 124]) = tinput(24); 
param_struct.parameters.values([29, 32]) = tinput(25); 
param_struct.parameters.values([28, 31, 34]) = tinput(26); 
param_struct.parameters.values([55,59,61,69,78,84,145,158]) = tinput(27); 
param_struct.parameters.values([36]) = tinput(28); 
param_struct.parameters.values([37]) = tinput(29); 
param_struct.parameters.values([25, 98]) = tinput(30); 
param_struct.parameters.values([60]) = tinput(31); 
param_struct.parameters.values([82, 99, 142, 149]) = tinput(32); 
param_struct.parameters.values([63]) = tinput(33); 
param_struct.parameters.values([62, 73]) = tinput(34); 
param_struct.parameters.values([65, 70]) = tinput(35); 
param_struct.parameters.values([64]) = tinput(36); 
param_struct.parameters.values([23, 68, 147, 148]) = tinput(37); 
param_struct.parameters.values([33, 81]) = tinput(38); 
param_struct.parameters.values([143]) = tinput(39); 
param_struct.parameters.values([144]) = tinput(40); 
param_struct.parameters.values([146]) = tinput(41); 
param_struct.parameters.values([159]) = tinput(42); 

  

  
% Save the .mat file created above 
save RobotSimParams.mat param_struct; 

  
%-------------------------------------------------------------------------- 

  
% Clear all variables 
clear all;  

  
% Delete the old .mat file created by the model 
delete('robot_design_model_5.mat'); 

  
% Run the Simulation 
system('robot_design_model_5 -p RobotSimParams.mat'); 

  
%-------------------------------------------------------------------------- 

  

  
% Load the .mat file created by the model 
load('robot_design_model_5.mat'); 

  
% Determine the last value in the vector output by the model 
lastIteration = length(rt_MotorL1A1PeakPower); 

  
% Initialize the output vector 
toutput = zeros(123,1); 

  
% Delete the old output file 
% NOTE: you must have a file called outputs when you start 
delete('soutputs.txt') 
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% Create a new output txt file 
fid = fopen('soutputs.txt','a'); 

  

  
%-------------------------------------------------------------------------- 

  

  
% Write the final values to a text file 
%-----------------------------Manipulator---------------------------------- 
toutput(1) = rt_MotorL1A1PeakPower(lastIteration); 
    fprintf(fid,'%s, %f \n','MotorL1A1PeakPower',toutput(1)); 
toutput(2) = rt_MotorL2A1PeakPower(lastIteration); 
    fprintf(fid,'%s, %f \n','MotorL2A1PeakPower',toutput(2)); 
toutput(3) = rt_MotorL3A1PeakPower(lastIteration); 
    fprintf(fid,'%s, %f \n','MotorL3A1PeakPower',toutput(3)); 
toutput(4) = rt_MotorL4A1PeakPower(lastIteration); 
    fprintf(fid,'%s, %f \n','MotorL4A1PeakPower',toutput(4)); 
toutput(5) = rt_L1A1SpeedMaxEff(lastIteration); 
    fprintf(fid,'%s, %f \n','L1A1SpeedMaxEff',toutput(5)); 
toutput(6) = rt_L2A1SpeedMaxEff(lastIteration); 
    fprintf(fid,'%s, %f \n','L2A1SpeedMaxEff',toutput(6)); 
toutput(7) = rt_L3A1SpeedMaxEff(lastIteration); 
    fprintf(fid,'%s, %f \n','L3A1SpeedMaxEff',toutput(7)); 
toutput(8) = rt_L4A1SpeedMaxEff(lastIteration); 
    fprintf(fid,'%s, %f \n','L4A1SpeedMaxEff',toutput(8)); 
toutput(9) = rt_L1A1TotalMotorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','L1A1TotalMotorMass',toutput(9)); 
toutput(10) = rt_L2A1TotalMotorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','L2A1TotalMotorMass',toutput(10)); 
toutput(11) = rt_L3A1TotalMotorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','L3A1TotalMotorMass',toutput(11)); 
toutput(12) = rt_L4A1TotalMotorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','L4A1TotalMotorMass',toutput(12)); 
toutput(13) = rt_L1A1torque(lastIteration); 
    fprintf(fid,'%s, %f \n','L1A1torque',toutput(13)); 
toutput(14) = rt_L2A1torque(lastIteration); 
    fprintf(fid,'%s, %f \n','L2A1torque',toutput(14)); 
toutput(15) = rt_L3A1torque(lastIteration); 
    fprintf(fid,'%s, %f \n','L3A1torque',toutput(15)); 
toutput(16) = rt_L4A1torque(lastIteration); 
    fprintf(fid,'%s, %f \n','L4A1torque',toutput(16)); 
toutput(17) = rt_L1A1radius(lastIteration); 
    fprintf(fid,'%s, %f \n','L1A1radius',toutput(17)); 
toutput(18) = rt_L2A1radius(lastIteration); 
    fprintf(fid,'%s, %f \n','L2A1radius',toutput(18)); 
toutput(19) = rt_L3A1radius(lastIteration); 
    fprintf(fid,'%s, %f \n','L3A1radius',toutput(19)); 
toutput(20) = rt_totalDOF(lastIteration); 
    fprintf(fid,'%s, %f \n','totalDOF',toutput(20)); 
toutput(21) = rt_TotalManipulatorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','TotalManipulatorMass',toutput(21)); 
toutput(22) = rt_MaxManipulatorPowerDraw(lastIteration); 
    fprintf(fid,'%s, %f \n','MaxManipulatorPowerDraw',toutput(22)); 
%-----------------------------Batteries------------------------------------ 
toutput(23) = rt_peukertNumber(lastIteration); 
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    fprintf(fid,'%s, %f \n','peukertNumber',toutput(23)); 
toutput(24) = rt_batteryLength(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryLength',toutput(24)); 
toutput(25) = rt_batteryWidth(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryWidth',toutput(25)); 
toutput(26) = rt_batteryHeight(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryHeight',toutput(26)); 
toutput(27) = rt_batteryVolume(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryVolume',toutput(27)); 
toutput(28) = rt_totalBatteryMass(lastIteration); 
    fprintf(fid,'%s, %f \n','totalBatteryMass',toutput(28)); 
toutput(29) = rt_totalBatteryPower(lastIteration); 
    fprintf(fid,'%s, %f \n','totalBatteryPower',toutput(29)); 
toutput(30) = rt_numberOfBatteries(lastIteration); 
    fprintf(fid,'%s, %f \n','numberOfBatteries',toutput(30)); 
toutput(31) = rt_batteryCellCapacityWithDOD(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryCellCapacityWithDOD',toutput(31)); 
toutput(32) = rt_manipulatorPowerFlag(lastIteration); 
    fprintf(fid,'%s, %f \n','manipulatorPowerFlag',toutput(32)); 
%-----------------------------Motor Controller----------------------------- 
toutput(33) = rt_auxPowerFlag(lastIteration); 
    fprintf(fid,'%s, %f \n','auxPowerFlag',toutput(33)); 
toutput(34) = rt_motorControllerMass(lastIteration); 
    fprintf(fid,'%s, %f \n','motorControllerMass',toutput(34)); 
toutput(35) = rt_motorControllerLength(lastIteration); 
    fprintf(fid,'%s, %f \n','motorControllerLength',toutput(35)); 
toutput(36) = rt_motorControllerWidth(lastIteration); 
    fprintf(fid,'%s, %f \n','motorControllerWidth',toutput(36)); 
toutput(37) = rt_motorControllerHeight(lastIteration); 
    fprintf(fid,'%s, %f \n','motorControllerHeight',toutput(37)); 
toutput(38) = rt_motorControllerMaxEfficiency(lastIteration); 
    fprintf(fid,'%s, %f \n','motorControllerMaxEfficiency',toutput(38)); 
toutput(39) = rt_motorControllerEfficiency(lastIteration); 
    fprintf(fid,'%s, %f \n','motorControllerEfficiency',toutput(39)); 
%-----------------------------Drive Motor---------------------------------- 
toutput(40) = rt_motorConstantK(lastIteration); 
    fprintf(fid,'%s, %f \n','motorConstantK',toutput(40)); 
toutput(41) = rt_motorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','motorMass',toutput(41)); 
toutput(42) = rt_motorLength(lastIteration); 
    fprintf(fid,'%s, %f \n','motorLength',toutput(42)); 
toutput(43) = rt_motorDiameter(lastIteration); 
    fprintf(fid,'%s, %f \n','motorDiameter',toutput(43)); 
toutput(44) = rt_noLoadCurrent(lastIteration); 
    fprintf(fid,'%s, %f \n','noLoadCurrent',toutput(44)); 
toutput(45) = rt_armResistance(lastIteration); 
    fprintf(fid,'%s, %f \n','armResistance',toutput(45)); 
toutput(46) = rt_motorRefVoltage(lastIteration); 
    fprintf(fid,'%s, %f \n','motorRefVoltage',toutput(46)); 
toutput(47) = rt_motorStallTorque(lastIteration); 
    fprintf(fid,'%s, %f \n','motorStallTorque',toutput(47)); 
toutput(48) = rt_motorContTorque(lastIteration); 
    fprintf(fid,'%s, %f \n','motorContTorque',toutput(48)); 
toutput(49) = rt_motorMaxEff(lastIteration); 
    fprintf(fid,'%s, %f \n','motorMaxEff',toutput(49)); 
toutput(50) = rt_motorNoLoadOmega(lastIteration); 
    fprintf(fid,'%s, %f \n','motorNoLoadOmega',toutput(50)); 
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toutput(51) = rt_gearRatioEff(lastIteration); 
    fprintf(fid,'%s, %f \n','gearRatioEff',toutput(51)); 
toutput(52) = rt_outputEff(lastIteration); 
    fprintf(fid,'%s, %f \n','outputEff',toutput(52)); 
toutput(53) = rt_maxOutputTorque(lastIteration); 
    fprintf(fid,'%s, %f \n','maxOutputTorque',toutput(53)); 
toutput(54) = rt_maxSteadyStateTorque(lastIteration); 
    fprintf(fid,'%s, %f \n','maxSteadyStateTorque',toutput(54)); 
toutput(55) = rt_gearRatio(lastIteration); 
    fprintf(fid,'%s, %f \n','gearRatio',toutput(55)); 
toutput(56) = rt_numberMotors(lastIteration); 
    fprintf(fid,'%s, %f \n','numberMotors',toutput(56)); 
toutput(57) = rt_gearboxMass(lastIteration); 
    fprintf(fid,'%s, %f \n','gearboxMass',toutput(57)); 
toutput(58) = rt_totalDriveMotorMass(lastIteration); 
    fprintf(fid,'%s, %f \n','totalDriveMotorMass',toutput(58)); 
%-----------------------------Chassis Dimensions--------------------------- 
toutput(59) = rt_chassisWidth(lastIteration); 
    fprintf(fid,'%s, %f \n','chassisWidth',toutput(59)); 
toutput(60) = rt_vehicleLength(lastIteration); 
    fprintf(fid,'%s, %f \n','vehicleLength',toutput(60)); 
toutput(61) = rt_chassisHeight(lastIteration); 
    fprintf(fid,'%s, %f \n','chassisHeight',toutput(61)); 
%-----------------------------Structure------------------------------------ 
toutput(62) = rt_finalChassisHeight(lastIteration); 
    fprintf(fid,'%s, %f \n','finalChassisHeight',toutput(62)); 
toutput(63) = rt_chassisMass(lastIteration); 
    fprintf(fid,'%s, %f \n','chassisMass',toutput(63)); 
toutput(64) = rt_finalDeflection(lastIteration); 
    fprintf(fid,'%s, %f \n','finalDeflection',toutput(64)); 
%-----------------------------Wheels/Tracks-------------------------------- 
toutput(65) = rt_wheelbase(lastIteration); 
    fprintf(fid,'%s, %f \n','wheelbase',toutput(65)); 
toutput(66) = rt_massWheelTrack(lastIteration); 
    fprintf(fid,'%s, %f \n','massWheelTrack',toutput(66)); 
toutput(67) = rt_massWheelsForTrack(lastIteration); 
    fprintf(fid,'%s, %f \n','massWheelsForTrack',toutput(67)); 
toutput(68) = rt_widthWheelTrack(lastIteration); 
    fprintf(fid,'%s, %f \n','widthWheelTrack',toutput(68)); 
toutput(69) = rt_widthSteerWheels(lastIteration); 
    fprintf(fid,'%s, %f \n','widthSteerWheels',toutput(69)); 
toutput(70) = rt_heightTrack(lastIteration); 
    fprintf(fid,'%s, %f \n','heightTrack',toutput(70)); 
toutput(71) = rt_contactLengthFlagged(lastIteration); 
    fprintf(fid,'%s, %f \n','contactLengthFlagged',toutput(71)); 
toutput(72) = rt_wheelDiameterFlag(lastIteration); 
    fprintf(fid,'%s, %f \n','wheelDiameterFlag',toutput(72)); 
%-----------------------------PowerReq------------------------------------- 
toutput(73) = rt_maxCruiseVelocity(lastIteration); 
    fprintf(fid,'%s, %f \n','maxCruiseVelocity',toutput(73)); 
%-----------------------------Endurance------------------------------------ 
toutput(74) = rt_batteryTime(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryTime',toutput(74)); 
toutput(75) = rt_batteryDistance(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryDistance',toutput(75)); 
toutput(76) = rt_batteryVelocityFlag(lastIteration); 
    fprintf(fid,'%s, %f \n','batteryVelocityFlag',toutput(76)); 
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%-----------------------------Total Vehicle Dimensions--------------------- 
toutput(77) = rt_vehicleWidth(lastIteration); 
    fprintf(fid,'%s, %f \n','vehicleWidth',toutput(77)); 
toutput(78) = rt_CGy(lastIteration); 
    fprintf(fid,'%s, %f \n','CGy',toutput(78)); 
toutput(79) = rt_CGx(lastIteration); 
    fprintf(fid,'%s, %f \n','CGx',toutput(79)); 
toutput(80) = rt_CGz(lastIteration); 
    fprintf(fid,'%s, %f \n','CGz',toutput(80)); 
toutput(81) = rt_vehicleHeight(lastIteration); 
    fprintf(fid,'%s, %f \n','vehicleHeight',toutput(81)); 
toutput(82) = rt_totalMotorTorqueMax(lastIteration); 
    fprintf(fid,'%s, %f \n','totalMotorTorqueMax',toutput(82)); 
toutput(83) = rt_CGxSAE(lastIteration); 
    fprintf(fid,'%s, %f \n','CGxSAE',toutput(83)); 
toutput(84) = rt_CGySAE(lastIteration); 
    fprintf(fid,'%s, %f \n','CGySAE',toutput(84)); 
toutput(85) = rt_CGzSAE(lastIteration); 
    fprintf(fid,'%s, %f \n','CGzSAE',toutput(85)); 
%-----------------------------Vehice Mass---------------------------------- 
toutput(86) = rt_vehicleMass(lastIteration); 
    fprintf(fid,'%s, %f \n','vehicleMass',toutput(86)); 
%-----------------------------Functional Capabilities---------------------- 
toutput(87) = rt_thetaMaxSlopeClimb(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxSlopeClimb',toutput(87)); 
toutput(88) = rt_thetaMaxSlopeClimbLimitingFactor(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxSlopeClimbLimitingFactor',toutput(88)); 
toutput(89) = rt_thetaMaxTraverse(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxTraverse',toutput(89)); 
toutput(90) = rt_thetaMaxTraverseLimitingFactor(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxTraverseLimitingFactor',toutput(90)); 
toutput(91) = rt_heightStepface(lastIteration); 
    fprintf(fid,'%s, %f \n','heightStepface',toutput(91)); 
toutput(92) = rt_thetaMaxCurbLimitingFactor(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxCurbLimitingFactor',toutput(92)); 
toutput(93) = rt_thetaMaxCurb(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxCurb',toutput(93)); 
toutput(94) = rt_heightStep(lastIteration); 
    fprintf(fid,'%s, %f \n','heightStep',toutput(94)); 
toutput(95) = rt_LengthStair(lastIteration); 
    fprintf(fid,'%s, %f \n','LengthStair',toutput(95)); 
toutput(96) = rt_canSpanMultiSteps(lastIteration); 
    fprintf(fid,'%s, %f \n','canSpanMultiSteps',toutput(96)); 
toutput(97) = rt_HStairSpan(lastIteration); 
    fprintf(fid,'%s, %f \n','HStairSpan',toutput(97)); 
toutput(98) = rt_thetaStairSpan(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaStairSpan',toutput(98)); 
toutput(99) = rt_LStairSpan(lastIteration); 
    fprintf(fid,'%s, %f \n','LStairSpan',toutput(99)); 
toutput(100) = rt_maxDitchWidth(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDitchWidth',toutput(100)); 
toutput(101) = rt_torqueMotorAsphalt(lastIteration); 
    fprintf(fid,'%s, %f \n','torqueMotorAsphalt',toutput(101)); 
toutput(102) = rt_zeroTurnRadiusAsphalt(lastIteration); 
    fprintf(fid,'%s, %f \n','zeroTurnRadiusAsphalt',toutput(102)); 
toutput(103) = rt_torqueMotorGrass(lastIteration); 
    fprintf(fid,'%s, %f \n','torqueMotorGrass',toutput(103)); 
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toutput(104) = rt_zeroTurnRadiusGrass(lastIteration); 
    fprintf(fid,'%s, %f \n','zeroTurnRadiusGrass',toutput(104)); 
toutput(105) = rt_WHallway(lastIteration); 
    fprintf(fid,'%s, %f \n','WHallway',toutput(105)); 
toutput(106) = rt_HallwayWidthTurn(lastIteration); 
    fprintf(fid,'%s, %f \n','HallwayWidthTurn',toutput(106)); 
toutput(107) = rt_HallwayWidthDoorway(lastIteration); 
    fprintf(fid,'%s, %f \n','HallwayWidthDoorway',toutput(107)); 
toutput(108) = rt_maxDraggingMassTile(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassTile',toutput(108)); 
toutput(109) = rt_maxDraggingMassConcrete(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassConcrete',toutput(109)); 
toutput(110) = rt_maxDraggingMassGrass(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassGrass',toutput(110)); 
toutput(111) = rt_maxDraggingMassAsphalt(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassAsphalt',toutput(111)); 
toutput(112) = rt_maxDraggingMassGravel(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassGravel',toutput(112)); 
toutput(113) = rt_maxDraggingMassDirt(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassDirt',toutput(113)); 
toutput(114) = rt_maxDraggingMassClay(lastIteration); 
    fprintf(fid,'%s, %f \n','maxDraggingMassClay',toutput(114)); 
toutput(115) = rt_rubbleDiameter(lastIteration); 
    fprintf(fid,'%s, %f \n','rubbleDiameter',toutput(115)); 
toutput(116) = rt_thetaMaxStepfaceFrictionFlag(lastIteration); 
    fprintf(fid,'%s, %f \n','thetaMaxStepfaceFrictionFlag',toutput(116)); 
%-----------------------------Manipulator Capabilities--------------------- 
toutput(117) = rt_selfRightingCapability(lastIteration); 
    fprintf(fid,'%s, %f \n','selfRightingCapability',toutput(117)); 
toutput(118) = rt_manipulatorLength(lastIteration); 
    fprintf(fid,'%s, %f \n','manipulatorLength',toutput(118)); 
toutput(119) = rt_farReachDistanceNoLift(lastIteration); 
    fprintf(fid,'%s, %f \n','farReachDistanceNoLift',toutput(119)); 
toutput(120) = rt_farReachDistanceWithLift(lastIteration); 
    fprintf(fid,'%s, %f \n','farReachDistanceWithLift',toutput(120)); 
toutput(121) = rt_cantLiftFLiftFlag(lastIteration); 
    fprintf(fid,'%s, %f \n','cantLiftFLiftFlag',toutput(121)); 
%-----------------------------Effectiveness-------------------------------- 
toutput(122) = rt_size(lastIteration,1); 
    fprintf(fid,'%s, %f \n','size',toutput(122)); 
toutput(123) = rt_effectiveness(lastIteration,1); 
    fprintf(fid,'%s, %f \n','effectiveness',toutput(123)); 
toutput(124) = rt_thresholdEffectiveness(lastIteration,1); 
    fprintf(fid,'%s, %f \n','thresholdEffectiveness',toutput(124)); 
toutput(125) = rt_objectiveEffectiveness(lastIteration,1); 
    fprintf(fid,'%s, %f \n','objectiveEffectiveness',toutput(125)); 

     

  
% Close the .txt file 
status=fclose(fid); 

  

 


