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ABSTRACT 

 

DC-DC converters and their respective control systems are commonly used in photovoltaic (PV) energy 

systems in order to maximize the power that can be extracted from a PV source and supply a steady DC 

signal to a load while providing a desired amount of gain.  Since PV cells have low power efficiency and 

contain variable I-V and P-V characteristics, a maximum power point tracking-based (MPPT) control 

system for the converter must be designed and implemented in order for the converter to consistently draw 

maximum possible power from the PV source and thus apply maximum possible power to a load.  However, 

noise present in the DC-DC converter and its sensors can lead to tracking failure for many of the common 

MPPT algorithms in use today. In this thesis, a MPPT algorithm is proposed where a Kalman filter is 

combined with the Incremental Conductance (INC) algorithm in order to track maximum PV power. 

Moreover, the control of a custom topology DC-DC boost converter is performed in an optimal control 

scheme comparable to that of Model Predictive Control (MPC) by using the tracked value. The design 

utilizes an averaged state space model of the DC-DC converter that a Kalman filter uses to estimate system 

states, filter out noise from existing sensors, and predict future states of the system given a small amount 

of change in duty cycle, thus allowing for a reduction in sensor count and an improvement in tracking ability 

given the presence of noise. The Incremental Conductance algorithm then generates the desired reference 

signal that is compared to the predicted signals generated from the Kalman Filter to control the converterôs 

duty cycle as needed.  The proposed system in its entirety is designed and simulated in MATLAB /Simulink 

software, and the results show that the proposed algorithm can not only reduce sensor count, but also 

achieve higher accuracy and efficiency in the presence of noise. Specifically, accurate tracking is seen to 

be maintained when sensor noise power levels exceed beyond 1*10-10, which, from results, is a threshold 

value where other tracking algorithms are seen to begin to lose tracking. Additionally, an FPGA-based 

hardware-software co-simulation platform is implemented, verified, and analyzed. The results show that 

under real-world noise situations, the proposed design can still achieve high efficiency results under the 

reduced sensor count conditions. Meanwhile, the FPGA maintains low power levels, with thermal power 
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estimates as low as 468.87 mW. The functionality of this design is compared to that of the Incremental 

Conductance and Model Predictive Control ï Incremental Conductance (MPC-INC) algorithms, and 

analysis of transient response, steady state oscillations, and power efficiency is conducted under various 

levels of PV solar irradiance, PV temperature, and sensor noise. 
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Chapter 1 

Introduction  

1.1 Overview 

 Driven by both increases in population growth and energy-consuming technologies, the energy 

requirements of both developed and developing countries are consistently increasing every year [1][2]. 

However, conventional energy resources such as fossil fuels are reducing in availability and come with the 

cost of having a harmful impact on the environment [3]. The world is therefore undergoing a transitional 

period where its focus on energy extraction is switching from fossil fuels to renewables. Of the types of 

renewable energy resources available, solar energy extraction through the use of photovoltaic (PV) cells, 

modules, and arrays has gained a large amount of attention.  This is primarily due to solar energy being 

readily available and capable of being extracted anywhere with sunlight, as well as because PV systems 

have minimal operational and maintenance costs.  Additionally, the overall cost of development and 

implementation of PV systems is continuing to decrease [4][5][6].  That said, even with costs decreasing, 

there is still a need for a large amount of capital investment for PV systems, primarily due to the high cost 

of PV panels, and there is also a ógrid-parityô issue where the cost per unit of PV energy extraction still 

outweighs the cost of energy extraction from traditional utility companies [7].  Therefore, if solar energy is 

to continue to be more widely accepted and available, further optimization of existing energy extraction 

practices from PV cells will need to occur. 

As stated, PV energy and power efficiency rates are still considerably low and it would therefore be 

considered advantageous to always have the PV system operating within its maximum power point.  

However, the maximum power point that exists within a PV system at any given time is dependent on many 

variables, which include environmental temperature, solar irradiance, shadowing effects, PV surface 

cleanliness, PV cell and array arrangement, as well as other internal characteristics of the PV cell itself [8]. 

This causes complexity in determining the optimal design of a DC-DC converter and control system that 
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must function as a link between a PV source and a load, and function to impedance match the PV source, 

thus determining what amount of power is extracted.  Due to constant changes in the previously stated 

variables, the maximum power point is always changing with time, and continuous adjustments to the 

circuit that functions as an impedance matching load that extracts power must be made.  Therefore, 

designing a maximum power-point tracking (MPPT) controlled converter system that both provides a 

steady output voltage while also tracking and maintaining maximum power efficiency is of high 

importance, and is considered to be a major focus of solar energy research [9]. 

1.2 Motivation  

A large amount of research has been conducted for the development and testing of various MPPT algorithms 

[10].  These models have been designed and implemented in order to allow for energy transfer to occur at 

optimum efficiency through the use of controllers with high tracking accuracy, as well as provide fast and 

stable transient and steady-state responses, capable of driving a steady output voltage containing minimum 

oscillations.  The overall effectiveness of these designs can be determined through analysis of power 

efficiency, cost, hardware complexity, number of sensors, steady state tracking efficiency, algorithm 

complexity, transient response, and degree of steady state oscillations [10] [11]. More specifically, in 

reference to tracking efficiency, many popular tracking algorithms that perform efficiently in ideal 

conditions have been seen to reduce in efficiency or lose tracking completely when noise is introduced via 

the nonideal, real-world environmental conditions present in the combination of PV sources, embedded 

microcontrollers, and voltage and current sensors [12].  

Through the analysis of existing designs, it can be seen that many proposed systems have varying levels of 

flaws due to excessive levels of complexity and cost or low performance and efficiency [7]. Additionally, 

many designs come with significant tradeoffs [11] [13].  As an example of tradeoffs, a simple circuit design 

topology could have few components and simple algorithms, but will likely track maximum power point 

(MPP) poorly and have low power efficiency.  In contrast, some complex design topologies and algorithms 

could track MPP efficiently and have high boost efficiency, but also contain many hardware components 



3 
 

and complex algorithms.  This is evident in existing research such as that from table 1-1, where a review of 

common MPPT algorithms was conducted by the authors of [7]. 

Table 1-1: Excerpt from óThe Review of Most Common MPPT Algorithmsô by authors of [7] 

MPPT Algorithm Category Oscillations Efficiency Tracking Speed Complexity Cost 

Fractional Short Circuit Indirect Sometimes Low Fast Simple Cheap 

Fractional Open Circuit Indirect Sometimes Low Fast Simple Cheap 

Perturb & Observe Direct Yes Medium Slow Simple Medium 

Incremental Conductance Direct Sometimes Good Medium Medium Medium 

Fuzzy Logic Soft No Very Good Fast Complex Very Expensive 

Neural Network Soft No Very Good Fast Complex Very Expensive 

Particle Swarm Optimization Soft Sometimes Good Fast Complex Very Expensive 

 

With specifics to how noise affects the ability of a system to track and perform efficiently, a large amount 

of existing research in this area offers little in terms of hardware design, implementation, and verification. 

Thus, many studies often come to conclusions based on software simulation alone, which lack the analysis 

and validation of systems with real-world noise interference.  Because of this, ideal system conditions are 

typically simulated, and real-world disturbances such as noise from sensors and the circuit are ignored. 

Thus, problem criteria such as how noise and other disturbances could affect the control algorithm and PV 

system as a whole are typically not considered [14].  However, of the research that does exist for monitoring 

how noise affects system performance, considerable limiting effects on algorithm performance have been 

discovered for many of the most popular and common tracking algorithms [14] [15] [16] [17]. Additionally, 

many of the standard and common MPPT algorithms typically require at least two sensors, one for voltage 

and one for current [18], and some of the more complex MPPT algorithms contain sensor counts greater 

than this [13].  More specifically, the process of measuring current from a circuit has the capacity to directly 

correlate to noisy data from measurement, power loss, and increased expenses [18]. 
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Therefore, the ability to design a MPPT algorithm that has strong tracking performance comparable to that 

of more complex systems while also being able to maintain its performance in the presence of noise and 

also keeping sensor count low, especially through the removal of the current sensor, can be considered 

desirable both for low-cost applications as well as those that are likely to be subject to noisy environments. 

 As a result of this, the objective of this thesis is to model a Kalman filter-based MPC-MPPT algorithm in 

order to control the duty cycle of a DC-DC converter, which thus controls its output load voltage-to-current 

ratio. The Kalman filter will estimate the states of the system in order to reduce sensor count and filter any 

system and output noise that would be present in real applications.  It also functions to predict future states 

of the system, given an incremental decrease or increase in the duty cycle. Then, the output of the Kalman 

filter will be passed to an Incremental Conductance (INC) algorithm, which finds the maximum power 

point from the provided state information and creates a reference photovoltaic current signal that will be 

compared to the predicted states from the Kalman filter. Then, by choosing the predicted state that most 

closely resembles the reference signal, a change in the duty cycle will occur.  This process of state prediction 

and reference comparison is structurally similar to a Model Predictive Control (MPC) system.   

1.3 Significance 

With existing evidence of MPPT tracking problems relating to noise combined with the increasing 

complexity involved with newer MPPT algorithms (in particular sensor count), also combined with little 

literature on how to address this problem, the proposed algorithm will attempt to aid in providing insight 

for possible solutions to problems in this area. More specifically, the significant aspects of this thesis 

include: 1) optimizing the overall MPPT performance in the presence of noise via the Kalman filterôs ability 

to minimize mean square error of estimated states, 2) reducing sensor count through the Kalman filterôs 

ability to perform state estimation, 3) creating an optimized hardware design of the algorithm on a field 

programmable gate array (FPGA), and 4) testing the FPGA design on actual hardware for real-time data 

analysis of results.  In further explanation of 3) and 4), after the algorithm is designed, it will be tested and 

compared to the MPC-INC and INC algorithms in MATLAB simulation under various noise conditions 
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and with various design parameters chosen.  There will then be a hardware implementation that will assess 

the accuracy and hardware requirements related to moving the design to the FPGA platform.  This 

experimentation will not only aid in understanding the usefulness and practicality of the proposed 

algorithm, but also provide insight into how noise affects the functionality of all three algorithms under test 

when their parameters are modified. 

 

Figure 1-1: Proposed control scheme (top) versus MPC-INC method of [13] (middle) versus direct duty 

cycle control INC method (bottom) 

The design centers around 1) deriving an averaged state space model of the DC-DC converter under 

consideration, 2) applying the space model to the Kalman filter algorithm and estimating system states in 

the presence of noise without the need for an additional sensor for each state, 3) modulating the state space 

model for slight increases in duty cycle and slight decreases in duty cycle, 4) predicting future states based 

on these modifications, and 5) having results be applied to the traditional incremental conductance 

algorithm, where a reference signal will be generated and compared to the future state predictions for direct 

duty cycle control of the circuit.   

 



6 
 

1.4 Thesis Structure 

This thesis functions to review existing literature surrounding PV DC-DC converter systems and MPPT 

algorithms, perform mathematical modeling of the proposed systems, implement the models in simulation 

software and hardware, and analyze and discuss acquired results. Chapter 1 provides an overview of the 

state of PV systems and MPPT algorithms, as well as objectives and proposed solutions for their existing 

problems. Chapter 2 provides a literary background regarding photovoltaics, converter topologies, MPPT 

algorithms, Model Predictive Control, and Kalman filters, as well as a literature review of existing research 

regarding how noise affects MPPT algorithms.  Chapter 3 discusses the system design, which includes the 

derivations of the mathematical models of the proposed system to be designed and tested.  Chapter 4 

discusses the experimentation process. Chapter 5 discusses the results obtained from the experiment.  

Chapter 6 discusses concluding remarks and future work. 
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Chapter 2 

Background 

2.1 Overview  

Existing research explores the various circuit topologies, MPPT algorithms, control algorithms, and other 

design criteria for designing the best possible PV DC-DC converter system given specific constraints.  

There is no single system design that is considered best since certain design specifications could be 

considered more favorable in a specific application when compared to others.  For example, a certain PV 

system design that is considered optimal for satellite applications could also be considered suboptimal for 

residential applications [19].  Likewise, a PV system designed to regulate charge to a low-voltage battery 

pack will benefit from very specific design criteria while a PV system designed to be directly fed into a 

high-voltage utility grid will not benefit from the same criteria [20].  

Since the goal of this thesis is to design a MPPT algorithm that filters noise and reduces sensor count while 

maintaining a high level of tracking efficiency, the analysis of literature focuses on research regarding 

existing high accuracy, high complexity MPPT and control algorithms, high resource cost system designs, 

and systems that underperform or fail under noisy conditions. Within general MPPT algorithms, an analysis 

of power efficiency, MPPT tracking speed, and controller efficiency with and without the presence of noise 

is conducted to review overall system performance, and analysis of circuit resource utilization, algorithm 

complexity, and sensor count is conducted in order to gauge overall system complexity.  Additionally, 

fundamental yet necessary concepts such as the functionality of photovoltaics, DC-DC converter 

topologies, Kalman filters, and model predictive control are discussed. 

2.2 Photovoltaics 

Photovoltaic energy systems convert solar irradiation to electricity through the use of two-layer PN 

junctions.  Photons that reach the junction increase charge carriers and thus create a potential difference 
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which results in current flow through a respective circuit [21].  The equivalent circuit of a solar cell can be 

represented using equation 2.1 and figure 2-1: 

Ὅ Ὅ Ὅ Ὡ
ᶻ
ᶻ ρ

ᶻ
    (2.1) 

Where Ὅ  is solar-generated current, Ὅ is diode saturation current, ὠ thermal array voltage, ὥ is diode 

ideality constant, Ὑ is series resistance representing physical contact and semiconductor resistances, 

and Ὑ  is a parallel, parasitic resistance [22]. 

 

Figure 2-1: Equivalent circuit model of a solar cell 

The value of Ὅ  is dependent on both solar irradiance and temperature, as seen in the following equation: 

Ὅ Ὅ ὑ Ὕ Ὕ      (2.2) 

Where Ὅ  is the solar current generated at nominal conditions, Ὃ is irradiance, Ὃ  is nominal irradiance, 

Ὕ is cell temperature, Ὕ is nominal cell temperature, and ὑ is short-circuit current/temperature coefficient 

[22].  Furthermore, the value of the diode saturation current, Ὅ is dependent on temperature as well, with 

the following: 

Ὅ Ὅ Ὡ
ᶻ

ᶻ      (2.3) 

Where Ὅ  is nominal diode saturation current, ή is the electron charge, Ὧ is Boltzmannôs constant, and Ὁ 

is the bandgap energy [22].  Ὅ  can further be expressed as follows: 
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Ὅ
ᶻ

      (2.4) 

ὠ  is the open circuit voltage, ὠ  is nominal cell thermal voltage, and Ὅ  is the short circuit nominal 

current. 

From the previous equations, the relationship of the solar cellôs output current and voltage can be analyzed 

graphically through its I-V relationship curve.   

 

Figure 2-2: I-V and P-V characteristics of Kyocera Solar KC200GT solar cell with a fixed temperature of 

25 deg. C  

Figure 2-2 shows solar cell characteristics when a constant temperature of 25 deg. C and varying irradiances 

of 600, 800, 1000, and 1200   are applied, with the cellôs maximum power point dotted. From this, it can 

be seen that irradiance changes cause changes in the characteristics of the PV cellôs I-V and P-V relationship 

when other factors are held constant, with an increase in irradiance causing vertical shift upwards in the I-

V curve. 
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Figure 2-3: I-V and P-V characteristics of Kyocera Solar KC200GT solar cell with a fixed irradiance of 

1000   

Figure 2-3 shows solar cell characteristics when a constant irradiance of 1000 , and specified 

temperatures of 25, 50, 75, and 100 deg. C are applied, with the cellôs maximum power point dotted.  From 

this, it can be seen that temperature changes cause changes in the solar cellôs I-V and P-V characteristics 

when other factors are held constant, with a horizontal shift left associated with an increase in temperature. 

For any set of operational conditions, there is a specific voltage value and current value that results in 

maximum power output, known as the maximum power point [23].  This is seen as the dotted bubble in the 

previously mentions figures located towards the knee of each I-V curve.  In reference to each P-V curve, it 

can be seen that maximum point occurs where the slope of the curve is equal to zero, or in other words, 

when π.  This maximum power value can be obtained through the process of impedance matching a 

load that will allow for the desired voltage and current values to exist.  From the previous figures, it can be 

concluded that the maximum power point is constantly changing given constantly changing atmospheric 

temperature and irradiance values, and therefore the point must be regularly tracked, and the resulting loadôs 

impedance must be regularly controlled. 
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2.3 DC-DC Converter Topologies 

The load applied to the PV cell is typically in the form of a DC-DC converter system.  Non-isolated boost 

converters are typically used in order to boost low PV voltages to a higher value so that an inverter can 

successfully apply the signal to the AC grid [24].  Likewise, buck converter topologies can be utilized for 

battery charging and universal power supply applications [25]. Non-isolated converters have the advantage 

of reducing system cost and improving system efficiency when compared to their isolated counterparts [26].   

Research generally used in the design of PV DC-DC converter systems involve the use of custom topology 

boost, buck, buck-boost, SEPIC, cuk, flyback, dual-active bridge, and push-pull converters [20][26], as 

well as many other topologies that capitalize on achieving high gain, reducing switch voltage stress, or 

reducing the need for high duty cycles [26]. The overall classification for PV converter topologies can be 

categorized into isolated and non-isolated systems, where isolated systems are multi-staged in order to have 

complete separation of inputs and outputs, typically through the use of a transformer. Specialized, high 

voltage applications typically benefit most from isolated systems [27]. In general, the non-isolated topology 

of the boost converter is considered most favorable for general applications, due to its low number of 

components, simple drive circuit, and non-pulsating input current (the input pulsates in correlation to the 

switching rate) [28]. At the same time, the main drawback of the boost converter is its limited gain 

capabilities, as well as the need for high voltage rating diodes, and the presence of copper and core losses 

in the inductor.  Many custom-designed boost converter topologies attempt to perform voltage multiplying 

in order to address problems with gain.  However, this typically comes with the cost of increased 

components, increased voltage stress, and variable efficiency ratios given the condition of the system (i.e., 

input voltage, switching frequency) [28].  

The sample topology used in this experiment involves a custom, high gain boost converter (shown in figure 

2-4) designed by the authors of [13]. However, additional example application topologies could be 

interchanged with the boost converter, with examples including the bidirectional SEPIC converter (shown 
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in figure 2-5) presented by the authors of [29], as well as the synchronous buck converter (shown in figure 

2-6) presented by the authors of [25].  

 

Figure 2-4: Custom Topology High Gain Boost Converter 

 

Figure 2-5: Bidirectional SEPIC Converter 

 

Figure 2-6: Synchronous Buck Converter 

 Boost converters typically have higher efficiency compared to SEPIC converters [28].  However, SEPIC 

converters are typically favored over traditional buck-boost converters for higher efficiency rates and 

continuous input current [28].  Boost converters suffer from the need for high switching conduction rates, 

causing sharp current spikes and high current stress, a problem the authors of [13] attempt to address 

through the custom-designed topology [13] [28].  These high stress values correlate with the increased 
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probability of the breakdown of circuit components. Alternatively, the synchronous buck converter 

functions to reduce diode conduction losses seen in the traditional buck converter topology [25].  

2.4 MPPT Algorithms and Controllers 

There are a wide variety of MPPT algorithms in existence today, with more complex algorithms being 

researched more recently. Some of the most common and modern MPPT algorithms throughout literature 

involve the Incremental Conductance (INC), Perturb and Observe(P&O), Fuzzy Logic Controller, Neural 

Network, and Particle Swarm Optimization algorithms [19].  MPPT algorithms can be categorized into 

three classes: Direct, Indirect, and Soft Computing.  Direct MPPT applies control signals to the converter 

and observes how those signals affect the MPP through observation. These methods are sometimes 

classified as óonlineô techniques, and other times as óhill-climbingô techniques, due to their method of 

applying a stimulus, analyzing how power is affected by the stimulus, and modifying the stimulus 

accordingly, thus óclimbing a hillô to maximum possible power.  Indirect, or óofflineô MPPT exploits 

characteristics of the PV panel in order to determine MPP. This is usually done through analysis of the short 

circuit current and open circuit voltage of the PV cell when it is isolated from the load.  An example of this 

is the open-circuit voltage method.  Soft computing MPPT uses computing methods that are applied to 

approximation and predictive models [7]. A common example of soft computing is the Fuzzy Logic Control 

MPPT method. The most popular and commonly used MPPT algorithms fall within the Direct class and 

most commonly involve variations on the Perturb and Observer algorithm, as well the Incremental 

Conductance algorithm [7].  

The P&O algorithm is considered a simple algorithm but has drawbacks due to the system never achieving 

steady state, errors occurring when irradiance drops below 400  as well as rapid changes in atmospheric 

conditions causing tracking failures [30].  P&O functions by applying a perturbation of ɝὈ to the duty cycle 

of the converter with a perturbation frequency of Ὢ .  It is then observed if the resultant change in PV 

power is positive or negative.  If positive, the perturbation continues in the same direction.  If negative, the 

perturbation is applied in the opposite direction [31].   
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The other major Direct MPPT algorithm, the Incremental Conductance algorithm, has a higher level of 

algorithmic complexity which results in the need for high sampling rates, digital implementation, and high 

levels of speed control. However, it is capable of reducing output oscillations by reaching a steady state. It 

can also track faster than P&O, and has a very high degree of accuracy [19][30].  Incremental Conductance 

functions by assuming that the rate of change of PV power with respect to voltage is equal to zero at the 

maximum power point, as follows [32]: 

Ὅ ὠ π        (2.5) 

Which assumes current is a function of voltage, and which then can be rearranged as follows: 

      (2.6) 

From these equations, the following inequalities can be derived to determine where the system is with 

respect to the maximum power point [32]: 

      ὥὸ ὓὖὖ                     (2.7.1) 

     ὰὩὪὸ έὪ ὓὖὖ        (2.7.2) 

     ὶὭὫὬὸ έὪ ὓὖὖ        (2.7.3) 

Therefore, the algorithm identifies where on the photovoltaic P-V curve it is located by calculating the 

relationship between the rate of change of conductance and instantaneous conductance. 

The MPPT algorithms function to track maximum power points, and therefore either aid in the control of 

what is typically the voltage or current parameters of the circuit, or directly control the system on its own.  

The MPPT algorithms that only identify what voltage or current values are needed for MPP require a 

controller to implement control (Current/Voltage MPPT Control). This occurs through the design of a 

control system that can interpret the desired reference MPPT signal, compare it to the existing MPPT signal, 
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apply control as needed.  This contrasts to MPPT algorithms that directly control the duty cycle of the 

circuit switches (Direct Duty Cycle MPPT Control), where the control system is built into the algorithm 

and an additional controller is not needed [7]. 

2.5 Model Predictive Control 

With the advent of high-speed microprocessor technology, applications of Model Predictive Control (MPC) 

in power electronics have become increasingly popular [33].  The main principle of MPC involves 

predicting the future behavior of desired control variables over a predetermined time horizon [34].  The 

MPC system typically does this by having information about the system it is controlling, typically through 

the use of a discrete state space model, as seen in equations 2.8.1 and 2.8.2: 

  ὼὯ ρ ὃὼὯ ὄόὯ     (2.8.1) 

ώὯ ὅὼὯ ὈόὯ      (2.8.2) 

A cost function is then compared with the predicted values at the end of the time horizon, as seen below: 

Ὣ ὪὼὯȟόὯȟȣȟόὯ ὔ     (2.9) 

Where N is the time horizon. The predicted value that minimizes the cost function at time N is chosen, and 

the control actuation associated with the value is applied only for time k+1.  The sample time then moves 

up one step and the entire process is repeated over again [34].   

With DC-DC converters, the MPC algorithm functions to predict future switching states of the system 

through the mathematical model of the converter, define a cost function that represents the desired behavior 

of the system (typically correlated to maximum power point), and applying control to the switching state 

associated to the input that minimizes the cost function.  This form of control is considered useful when PV 

systems undergo rapid atmospheric condition changes. The cost function is typically represented as a PV 

current or PV voltage reference signal generated from the P&O or Incremental Conductance MPPT 

algorithms [35].   
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MPC techniques typically provide fast dynamic responses with high stability when compared to classic 

control techniques [36].  Furthermore, robust control, higher convergence speeds, and less steady state 

oscillation is seen in the simulation of MPC-MPPT systems [37][38][39].  However, hardware 

implementation has shown for these results to be inconclusive when compared to simulation [35]. 

2.6 Kalman Filters 

The Kalman filter is an algorithm that uses a series of data samples observed over time to estimate unknown 

system states with as much accuracy as possible. Built from Bayesian filter theory, the Kalman filter further 

assumes that the data being observed contains both noise and disturbances [40].  The states estimated are 

based on linear dynamical systems presented in a state space format. The process model then defines how 

a state develops per unit timestep as follows: 

ὼ Ὂὼ ὄό ύ      (2.10) 

Where Ὂ is the state transition matrix, which is applied to the previous state vector ὼ , ὄ is the control-

input matrix, which is applied to the previous control vector Ὗ , and ύ  is the process noise vector, 

assumed to be a zero-mean Gaussian distributed white noise with a covariance matrix defined as ὗ [41].  

The covariance matrix functions to determine the uncertainty of a prediction, with larger covariance values 

(or weights) correlating to higher amounts of uncertainty.  The states of the process model are correlated to 

the measurements (or observations) of the system through the following equation: 

ᾀ Ὄὼ ὺ      (2.11) 

Where ᾀ is the measurement vector, Ὄ is the measurement matrix, and ὠ is the measurement noise vector, 

assumed to be a zero-mean Gaussian distributed white noise with a covariance matrix defined as Ὑ [41].  

The goal of the Kalman filter is to estimate the state vector ὼ through consistent analysis and comparison 

to the measured output, ᾀ, given that the other system information (ὊȟὄȟὌȟὗȟὙ is provided. 
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The information from the previously mentioned models is then used in the following two-stage recursive 

mathematical algorithm to form the structure of the Kalman Filter, where ὼȿ is the value of ὼ at time ὥ, 

given observations up to and including at time ὦ: 

Predict: 

ὼȿ Ὂὼ ȿ ὄό     (2.12.1) 

ὖȿ Ὂὖ ȿ Ὂ ὗ                 (2.12.2) 

Update: 

ώ ᾀ Ὄὼȿ             (2.13.1) 

Ὓ Ὄὖȿ Ὄ Ὑ                           (2.13.2) 

ὑ ὖȿ ὌὛ                 (2.13.3) 

ὼȿ  ὼȿ ὑώ                (2.13.4) 

ὖȿ Ὅ ὑὌ ὖȿ               (2.13.5) 

Where equation 2.12.1 is the predicted state estimate, equation 2.12.2 is the predicted error covariance, 

equation 2.13.1 is the measurement residual, equation 2.13.2 is the Innovation covariance, equation 2.13.3 

is the Optimal Kalman gain, equation 2.13.4 is the updated state estimate, and equation 2.13.5 is the updated 

error covariance. 

The prediction stage uses the existing input value to estimate the states of the system and the error 

covariance using previously estimated state estimates and error covariances.  The update stage uses the 

existing output to determine the error in the prediction, create a gain that minimizes the error covariance, 

and applies said gain in order to correct or óupdateô the existing state and error estimations.  Furthermore, 
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a future timestep prediction can be made by feeding the corrected state estimation back into the first 

equation of the prediction stage. 

 

Figure 2-7: Predict and update stages of the Kalman filter, showing the recursive nature of the discrete 

algorithm [42] 

This two-step algorithm is executed in its entirety for each discrete timestep k, with previously estimated 

values being recursively fed back into the algorithm at the next timestep.  This can be seen as a form of 

feedback control, in that the filter estimates the process state at time k, and then obtains feedback in the 

form of noisy measurements.  It can also further be considered a form of optimal control; in that it minimizes 

the estimated error covariance [42].  

2.7 Field Programmable Gate Arrays (FPGAs)  

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be configured as any 

kind of digital circuit and are also capable of being programmed in the field as opposed to in the same 

fabrication facility where the chip was manufactured [43].  FPGAs allow for designers to quickly develop 

and simulate sophisticated digital circuits, realize the circuits on prototyping devices, and verify the design 

results in a quick and efficient manner [44].  This process allows for faster and less expensive design cycles 

when compared to the design of application specific integrated circuits (ASICs), as well as fast and efficient 
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reconfiguration of existing designs on existing architectures [45]. However, this usually comes at the cost 

of a larger silicon area, higher dynamic power consumption, and reduced performance when compared to 

ASICs [46]. 

The FPGA contains a two-dimensional array of generic logic cells and programmable switches. The logic 

cells are configured to perform a specific logic function, and the programmable switches allow for custom 

interconnections between logic cells on the FPGA [44]. Input/output (IO) blocks allow for the FPGA to 

interface with external devices. As the technology surrounding FPGAs developed over the previous 

decades, the architecture of the FPGA has developed to additionally include various forms of embedded 

interfaces, memory blocks, communication ports, processor subsystems, and other forms of hard blocks 

and interfaces, as seen in figure 2-9. 

 

Figure 2-8: Basic Logic Element displaying a lookup table (LUT) for logic operations, a flip flop for 

synchronous timing, and multiplexers (MUX) for routing [45] 

 

Figure 2-9: Traditional FPGA architecture (left side of chip) versus modern FPGA architecture (right side 

of chip) [45] 
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Digital circuits are programmed onto an FPGA using hardware description languages (HDL), with the 

standard languages being VHDL, Verilog, and SystemVerilog. After the HDL is written, it is converted 

into a logic circuit through the process of logic synthesis, where tools take the register transfer level (RTL) 

design specified by the HDL and convert it into a circuit of logic gates.  Further tools then function to 

perform additional design procedures such as place and route and bitstream generation, where the design 

gets mapped to the hardware of a specific FPGA and where the programming information gets written to a 

file, respectively.  

 

Figure 2-10: FPGA Development Flow 

When compared to the fixed size of general-purpose processors (CPUs) and graphic processing units 

(GPUs), the FPGAôs ability to be reconfigurable at the bit level allows for it to be designed with exact 

hardware requirements and specifications. Therefore, higher efficiency systems can be created through 

custom-designed, instruction-free hardware architectures, or through customizable soft-core processor 

architectures [45].  This allows for the FPGA to be utilized in a range of fields, including machine learning, 

signal processing, finance, embedded systems, and networking, all of which have benefited from the unique 

hardware capabilities of the FPGA. 
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2.8 Literature Review 

In reference to hill climbing MPPT algorithms (includes the Perturb and Observe and Incremental 

Conductance algorithms) the authors from [17] concluded that erroneous measurement of solar array 

voltage and current sensors affects MPPT performance, primarily from the nonideal conditions of sensors, 

amplifiers, and ADCs, causing a measurement bias that causes the MPPT algorithm to settle or track away 

from the MPP. The authors also stated that these systems are subject to large amounts of noise due to the 

use of switching power converters that control operating points of solar arrays [17].  Since these algorithms 

are highly nonlinear and work with mathematical derivatives in their formulation, noise present in the 

voltage and current sensors cause significant effects on the decisions made by these algorithms [17].  These 

authors concluded that low pass filtering of sensors has a high probability of suppressing useful information, 

sacrificing algorithm speed, and destabilizing the MPPT loop [17].  Through experimentation, the authors 

from [17] found that positive DC-bias (resultant from noise) causes the settling point to side with lower 

incremental conductance (settling to the left of MPP), while a negative DC-bias causes higher incremental 

conductance (settling to the right of MPP).  This is particularly noticeable for biased current values since 

its value directly depends on solar irradiation values, and lower current values cause more extreme shifts 

away from MPP [17].  These erroneous values are also present in smaller degrees with voltage 

measurement. 
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Figure 2-11: P&O performance with current DC bias, high (left) and low (right) current [17] 

 

Figure 2-12: P&O performance with voltage DC bias, high (left) and low (right) current [17] 

Additionally, the authors from [17] found that the frequency of erroneous decisions was directly correlated 

to noise severity and the location of the operating point, with noise in voltage measurements causing a shift 

of settling point to the right-hand side of the MPP, with noise in current measurements reducing tracking 

speed. Additionally, they found that variable step-size algorithms lost their ability to optimally change their 
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increment and decrement rates.  These authors experimented with a P&O algorithm and concluded that 

large step sizes and extensive filtering could help with tracking, but only under specific noise conditions.  

The authors from [17] concluded that noise has a significant effect on a hill-climbing algorithmôs ability to 

track MPP efficiently, and explained how very little research exists in terms of mitigation efforts needed to 

correct this problem. Their only solution to the problem was to introduce low pass filters at the cost of 

information loss, speed, and destabilization.  They also did not perform hardware experimentation and only 

provided solutions for the P&O algorithm, with no provided solution or insight for the Incremental 

Conductance algorithm. 

The authors from [14] emphasized how existing current measurement methods are particularly noisy, with 

Hall Effect transducers being capable of generating considerable amounts of noise, and sense resistors 

entailing a tradeoff between signal-to-noise ratio and measurement and power loss through the resistor.  

They also emphasized that the presence of noise had a considerable effect on steady state efficiency, which 

is defined as the ratio of average output power to the power at the maximum power point.  These authors 

found that specific parameters, including the sampling frequency and change in duty cycle rate affect how 

well the algorithm responds to noise, with decreases in sampling rate causing improvements due to 

removing higher frequency noise, and decreases in duty cycle steps reducing oscillatory problems that are 

exacerbated with the presence of noise.  The authors from [14] experimented with optimizing algorithm 

parameters with the P&O method in order to enhance tracking accuracy and reaction rate. 

The authors from [14] found that the P&O method could be optimized using specific system parameters, 

but did not provide any information on optimizing the Incremental Conductance algorithm, which is subject 

to the same set of problem criteria with regard to noise. 

The authors from [47] assessed potential drawbacks of the Incremental Conductance algorithm, and 

emphasized how π at MPP only holds true when noise and system dynamics are negligible, weather 

conditions are stationary, quantize error with digital control is negligible, and change in array voltage tends 
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to zero. They also emphasized how the presence of noise combined with small step sizes could cause a 

measurement recording to repeat, causing the system to settle away from the MPP, until a needed change 

in irradiance levels interrupts and breaks this erroneous process. Small step sizes in general cause major 

issues in that the systemôs response to noise begins to become comparable to that of the MPPT 

perturbations.  These authors proposed that the delay associated with filter implementation may influence 

the decision-making of the algorithm. In application of the filter, it was concluded that the measured system 

waveforms oscillated between three different levels, with further swings to additional levels when smaller 

step sizes were introduced.  However, higher perturbation frequencies caused the system to respond faster 

at the cost of faster deviations away from MPP and high chances of system instability.  If a PI controller is 

used, higher perturbation rates become correlated to an increased probability of losing system stability. 

Increased probability of loss of stability was also correlated with the addition of low-pass filters. 

The authors from [47] analyzed how the integration of low pass filters assisted in the filtering of noise for 

the Incremental Conductance algorithm, and concluded that it correlated with loss of system stability with 

PI control, slow transient response, and poor performance with rapidly changing irradiance values with 

direct duty cycle control.  They also emphasized that system parameters such as step size and perturbation 

frequency changed how well the algorithm responded to the noise, normally with specific parameters 

needed in order to handle noise efficiently. 

The authors from [13] proposed a Model Predictive Control-Incremental Conductance algorithm that adds 

a Model Predictive Control scheme to the Incremental Conductance in order to improve on the speed, 

accuracy, and robustness involved with tracking MPP under various conditions.  One significant aspect of 

the design is that it determines if the DC-DC converterôs switches should be on or off per sample period, 

allowing for a variable frequency duty cycle and thus more complete control over the state of the switches 

when compared to fixed frequency duty cycles schemes such as pulse width modulation (PWM).  It used 

three sensors that could be reduced down to 2 if using the gain equation with an associated circuit topology. 

The algorithm was considered to improve upon the traditional INC algorithm with increased efficiency, 
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tracking capability, reliability, and response to variations, as well as lowered steady state oscillations, at the 

cost of increased system complexity. 

While the authors of [13] were able to create an MPC-Incremental Conductance algorithm that 

outperformed the regular Incremental Conductance algorithm, it comes with the additional costs of 

moderate system complexity and increased sensor count.  Additionally, no information regarding how this 

system operates under the presence of noise is indicated.  Furthermore, while it is suggested to reduced 

sensor count from three to two by using the circuit topology gain equation, there is no proof of how well 

the practical application of this equation stands when considering noise.  Additionally, this algorithm 

requires the use of current sensing, which, from previously state literature [14] is naturally subject to noise. 

The authors from [48] analyzed how the presence of noise affects the P&O and Incremental Conductance 

algorithms.  Their results concluded that considerable levels of ripple and oscillations are seen in fixed and 

adaptive step size Incremental Conductance. 

 

 

Figure 2-13: 3-Point P&O in the presence of noise [48] 
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Figure 2-14: Fixed Step Inc. Cond. in the Presence of Noise [48] 

 

Figure 2-15: Variable Step Inc. Cond. in the Presence of Noise [48] 

 

Figure 2-16: Power Comparison of Algorithms with and without Noise [48] 
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These authors concluded that even low levels of noise present in real systems have a significant effect on 

algorithm performance when compared to ideal simulations. 

The authors from [48] concluded that noise has a significant effect on algorithm performance for P&O and 

Incremental Conductance, but gave no proposals or possible solutions for solving the problem. 

The authors from [15] analyzed the effect of noise on the direct duty cycle Incremental Conductance 

algorithm and its correlation to parameter step sizes and sampling/perturbation rates and concluded that 

high sampling/perturbation rates and small step sizes allow for high rates of tracking error when noise is 

introduced.  However, increasing step size to offset this problem results in increases in steady state 

oscillations, reduction in overall system stability, and lower overall efficiency. 

There is some existing research involved with using the Kalman filter in MPPT algorithms. However, some 

of this research involves creating an independent MPPT algorithm that uses the PV characteristic curve as 

a state space model for the Kalman filter [49][50][51], as opposed to optimizing an existing MPPT 

algorithm to account for noise or complexity.  Additionally, other authors have used the Kalman filter for 

approximating parameters such as settling time for step size optimization through the use of Dual-Kalman 

Filters [52][53] or speed rotation for MPPT algorithms in wind turbines[54].  Furthermore, some authors 

used the Kalman filter to improve tangentially related systems, such as the authors from [55] using the 

Kalman filter to optimize P&O for thermoelectric generator systems. 

Overall, the previously listed literature emphasizes multiple points regarding problems with PV systems 

and MPPT algorithms. The main point being emphasized is the need for solutions regarding algorithm error 

in the presence of noise. Additional points include the need for reduced system complexity, reduced system 

cost, and the need for more research that explores the difference in results between software simulation and 

hardware implementation of MPPT algorithms.   
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Chapter 3 

System Design 

3.1 Circuit Model 

The proposed algorithm design involves creating a mathematical state space model of the circuit being 

controlled.  There are various methods for the modeling of switching circuits, including bilinear switch 

models, average models, sampled-data models, large-signal models, and small signal models [56]. Each 

model is considered effective under specific conditions. Additionally, each model contains some level of 

correlation with the other models in terms of its mathematical derivation, as seen in figure 3-1. 

 

Figure 3-1: Relationship Between Mathematical Circuit Models in Terms of Derivation [56] 

Additionally, what model type is being chosen depends on the form of control law intended to be 

implemented for the system.  
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Figure 3-2: Relationship Between Circuit Models and Possible Control Laws [56] 

The bilinear switching model is a compact form version of the switch model and takes the form of: 

ὼ ὃὼ В ὄὼ ὦ όz Ὠ    (3.1) 

The variable ὴ is the number of binary functions of the system.  Depending on the circuit being modeled, 

this model can yield nonlinear results [56].  However, a small signal model, as shown in equation 3.2, which 

linearizes the model around an operating point (typically a duty cycle or binary switch value) can be 

deduced from the bilinear switching model.  

ὼ ὃὼ ὄό      (3.2) 

In addition to these two methods, the averaged model method can also be considered. This is a well-known 

modeling method that, like the bilinear switching and small signal models, involves determining the state 

equations of each switching state, with on (1) and off (0) occurring in the case of single switch devices [57].  

A weighted average of the two sets of equations correlating to the two switching states can be found using 

the ratio Ὀ and ρ Ὀ as a weighting factor, where ὸ  is the amount of time the switch is on, 

ὸ  is the amount of time the switch is off,  Ὕ is the switching period, and Ὀ is the duty cycle [57].  

The following shows the derivation of the bilinear switching and small signal averaged state space model 

for the high gain boost converter of [13] when resistors are added in series with the inductors, and a PV 

resistor is added in series with the PV voltage source.  These two models are then modified to create a 
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linearized averaged state space model. This model utilizes the exact value of the duty cycle Ὀ in its A-

matrix, and uses the PV voltage ὠ  as an input, as opposed to the binary state of the switch. This 

mathematical circuit model proves to be more accurate than the small signal averaged model for this specific 

circuit and application. 

 

Figure 3-3: Overall Boost Converter Circuit Design 

Table 3-1: Circuit Parameters for Boost Converter 

ὠ  Photovoltaic Voltage Source 

Ὑ  Resistor in Series with Photovoltaic Voltage Source 

ὅ  Photovoltaic Capacitor 

Ὑ  Resistor in Series with Inductor 1 

ὒ Inductor 1 

Ὑ  Resistor in Series with Inductor 2 

ὒ Inductor 2 

ὅ  Output Capacitor 

Ὑ  Output Resistor 
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Figure 3-4: Boost Converter Circuit when switch is on 

The KVL and KCL equations of the circuit when the switch is on are as follows: 

ὅ ᶻ Ὅ Ὅ     (3.3.1) 

Ὅ Ὑz ὒᶻ ὠ      (3.3.2) 

Ὅ Ὑz ὒᶻ ὠ      (3.3.3) 

ὅ ᶻ        (3.3.4) 

The equations can be rearranged in terms of state variables as follows: 

 

ὠ
ᶻ ᶻ

    (3.4.1) 

Ὅ
ᶻ

       (3.4.2) 

Ὅ
ᶻ

     (3.4.3) 

ὠ  
ᶻ

     (3.4.4) 
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Figure 3-5: Boost Converter Circuit when switch is off 

The KVL and KCL equations of the circuit when the switch is on are as follows: 

ὅ ᶻ
 
Ὅ      (3.5.1) 

ὠ Ὅ Ὑz ὒᶻ Ὅ Ὑz ὒ ὠ    (3.5.2) 

ὠ Ὅ Ὑz ὒᶻ Ὅ Ὑz ὒᶻ ὠ    (3.5.3) 

Ὅ ὅ ᶻ      (3.5.4) 

 

The equations can be rearranged in terms of state variables as follows: 

ὠ
ᶻ ᶻ

     (3.6.1) 

Ὅ
ᶻ ᶻ

    (3.6.2) 

Ὅ
ᶻ ᶻ

    (3.6.3) 

ὠ
ᶻ

     (3.6.4) 
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The equation set for when the switch is on (equation set 3.4) and the equation set for when the switch is off 

(equation set 3.6) can be combined into a net set of equations as shown below. The new set incorporates 

both when the switch is on by distributing the variable U (representing the switch on) through the first set 

of equations, and when the switch is off by distributing (1-U) through the second set of equations.  The 

following shows the results after combining equations, distributing values, and canceling terms: 

 

ὠ Ὗz
ᶻ ᶻ

        (3.7.1) 

 

Ὅ ὠz Ὗz
ᶻ

Ὅz Ὗz
ᶻ ᶻ

Ὅz Ὗz Ὗz  

   (3.7.2) 

 

Ὅ ὠz Ὗz
ᶻ

Ὅz Ὗz
ᶻ ᶻ ᶻ

Ὗz Ὗz  

    (3.7.3) 

 

ὠ
ᶻ

Ὗz    (3.7.4) 

The bilinear switching model follows the format of ὼ ὃὼ ὄὼ ὦό Ὠ, and the previous set of 

equations can be incorporated into the model as follows: 
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However, this model is not linear, nor is it in the typical state space form needed for the Kalman Filter.  

Therefore, the small signal averaged model, which is in the form of ὼ ὃὼ ὄό is developed by 

combining the A and B matrices of the switching model in terms of the averaged switching value, denoted 

as ὟȢ  The B matrix is calculated by determining the rate of change of the switch Ὗ after setting the rate of 

change of the state variables equal to zero and solving for the value of the unknown state variables. 

ụ
Ụ
Ụ
Ụ
Ụ
ợὠὅὴὺ
Ὅὒρ
Ὅὒς

ὠὅέόὸỨ
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Ụ
Ụ
ợ ᶻ

Ὗz π 

ᶻ ᶻ ᶻ ᶻ

ᶻ ᶻ ᶻ

π π
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ủ
ủ
Ủ

ụ
Ụ
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However, the small signal averaged model proves to have problems with accuracy for the specific circuit 

under test, which will be seen later in experimentation, and therefore the model is modified so that Ὗ  of 

the A matrix is replaced with the actual value of the switching duty cycle D for a given time t, and the B 

matrix is modified so that it incorporates the d matrix of the bilinear switching model, with the input, Ὗ 

replaced by ὠ .  This is modified to the following averaged state space model: 
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π
π
π Ứ
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ủ
ủ
Ủ

ᶻὠ  

Given that the exact value of the duty cycle can be determined and the value of ὠ  can be accessed, this 

model proves to have high accuracy in terms of representing the functionality of the circuit under 

consideration in a state space form. 

3.2 Kalman Filter Design 

The Kalam filter used in this system assumes the availability of ὠ , ὠὅ , and the existing duty cycle rate, 

Ὀ at the existing time of sampling ὸ Ὧ.  That said, the need for access to ὠ  can be removed by 

estimating its value either by working backwards using KVL and KCL equations provided there is access 

to state variable values via Kalman filter, or by using the gain equation associated with the corresponding 

DC-DC converter. 

The Kalman filter also requires a discretized state space model of the system it is observing.  The previously 

stated state space model from equation 3.10 is discretized using the forward Euler method of approximation: 

ὼὯ ρḙ Ὅ ὃ Ὕz ὼὯ Ὕ ὄzόὯ    (3.11) 

Where Ὅ is the identity matrix, ὃ and ὄ are the A and B matrices of the state space model under 

consideration, and Ὕ is the chosen sampling rate of the system. C and D matrices of the state space model 

remain unchanged through this forward Euler method of discretization.  The resultant Ὅ ὃ Ὕz  and Ὕᶻ

ὄ) matrices of the discretized state space model are then respectively used as the state transition matrix (Ὂ) 
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and control-input matrix (ὄ) of the Kalman filter system model seen in  ὼ Ὂὼ ὄό ύ  from 

equation 2.10 of Chapter 2. The C matrix is chosen as 

π π π ρ

ὠ

Ὅ
Ὅ
ὠ

      (3.12) 

This is because ὠὅ  is considered the output of the system. The C matrix is then used as the measurement 

matrix (Ὄ) in the Kalman filter system model ᾀ Ὄὼ ὺ from the equation 2.11 of chapter 2.  Both 

the process noise covariance matrix ὗ and measurement noise covariance matrix Ὑ used in the Kalman 

filter must have coefficient values that scale up in correlation with the amount of noise added to the 

simulation states and simulation output, respectively.   

Given this system setup, the algorithm will compute the set of equations corresponding to predict and 

update, as seen in equations 2.12.1 through 2.13.5.  After predicting and correcting for the states of the 

system for time ὸ Ὧ, the Kalman filter algorithm will  then make future state predictions.  It performs these 

predictions by slightly increasing the existing duty cycle D value by a small amount, recomputing the 

discrete state space system with this new value, and iterating through the prediction process again.  It then 

slightly decreases the existing duty cycle D and again recomputes state space and prediction states.  At this 

point, there is an estimation of states for time t=k given the existing duty cycle, as well as an estimation of 

future states for time ὸ Ὧ ρ given a slightly increased D, and slightly decreased D.  These values will 

then be used in the MPC-Incremental Conductance algorithm. 
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Figure 3-6: Flow chart describing simplified Kalman filter process 

3.3 MPC-Incremental Conductance Design 

On every discrete timestep, the MPC-Incremental Conductance algorithm will receive the existing and 

future state estimates of the circuit from the Kalman filter.  It will then use these values to calculate Ὅ  

using the following equation: 

Ὅ           (3.13) 

Equation 3.13 is derived through circuit analysis of the converter both when the switch is on and off, as 

seen in figures 3-4 and 3-5.  As an alternative method to solve for Ὅ  that allows for the removal of the 

resistor Ὑ , the averaged value of the sum of ὅ  and the Inductor currents Ὅὒ and Ὅὒ for when the 

switch is on (figure 3-4) and ὅ   and Ὅὒ or Ὅὒ for when the switch is off (figure 3-5) should yield 

similar results. This is expressed in the following equation: 

Ὅ ὅ Ὅ Ὅ Ὀz ὅ Ὅ  ᶻρ Ὀ   (3.14) 

 Access to these values should be available from estimations of the Kalman filter. The incremental 

conductance algorithm then uses ὠ  and Ὅ  in the following flow chart in order to derive the desired 

reference current, Ὅ . 
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Figure 3-7: MPC-Incremental Conductance Algorithm Flowchart 

Where Z and Y are predetermined step values for incrementing or decrementing Ὅ  and Ὀ respectively. 

On each discrete timestep, the variables from the Kalman filter (Ὅ  , ὠ  , Ὅ  , Ὅ ) are received, and the 

change in current and voltage is computed (ὨὩὰὸὥὍͅ and ὨὩὰὸὥὺͅ).  The Incremental Conductance algorithm 

from equation set 2.7 of Chapter 2 is then computed, and a reference signal Ὅ  is computed accordingly.  

The predicted values of Ὅ  and Ὅ  are compared to Ὅ , and the duty cycle Ὀ is increased or decreased 

with respect to the predicted duty cycle that is closest in value to the reference signal.  This duty cycle value 

is applied to a pulse width modulated (PWM) signal, which determines how long the switch of the DC-DC 

converter is on and off per sampling period.   

Additionally, variable frequency duty cycle control such as that seen by the authors of [13] could replace 

the direct duty cycle control through the design of an additional algorithm that detects duty cycle by 

monitoring past samples of the 1 and 0 outputs of the switch, determining when the last period occurred, 

what the ratio of 1 to 0 was for that period, and feeding value into the state space model as the duty cycle 

Ὀ.  The incremental changes in duty cycle for prediction and control could then be replaced with control of 

a switch ON (1) or OFF (0) per sample period. 
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Chapter 4 

Experimentation 

4.1 System Setup 

The high-level system design is shown below in figure 4-1.  Ὅ  and ὠ  represent the photovoltaic current 

and voltage respectively, and act as a current and voltage source to the DC-DC converter circuit. Values of 

ὠὅ , which represents the voltage across the DC-DC converter capacitor and its parallel output resistor, 

and ὠ  are sent to the Kalman filter, where estimations of the DC-DC converter states at time ὸ Ὧ and 

predictions at time ὸ Ὧ ρ are made.  The MPC-INC algorithm then uses this information to determine 

a duty cycle, Ὀ that will control the DC-DC converter to allow for maximum power to be extracted from 

the PV module.  The present value of the duty cycle, Ὀ is needed in the A matrix of the Kalman filter, and 

therefore must be fed back to the Kalman filter block. 

 

Figure 4-1: Block diagram showing how each part of the KF-MPC-INC design interacts 

ὠ  has a dotted line due to its capability  of being estimated, thus further reducing the system from two 

sensors to one.  However, it was not estimated during the experimentation process.  This is because the gain 
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equation is only useful during ideal circuit conditions, and the added resistors used in this simulation prevent 

it from being accurate. Additionally, if using circuit analysis techniques for ὠ  estimation, this requires 

modifying the initial condition parameters of the Kalman filter to make sure the system converges during 

the initial stages of assessment.    

4.2 MATLAB Simulation  

The entire system simulation is set up in the MATLAB software platform. In Simulink, the PV simulation 

model chosen is the Kyocera Solar KC200GT (seen in Figure 4-2), with its typical I-V and P-V responses 

to irradiance and temperature seen in figures 2-2 and 2-3 of Chapter 2. The array is modeled as a single 

parallel string with a single series-connected module, with inputs of temperate and irradiance that are 

functions of time. 

 

Figure 4-2: PV Array Module in Simulink 
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The following table shows the specific PV characteristics of the model: 

Table 4-1: Parameters of Simulated Kyocera Solar KC200GT 

Maximum Power (W) 200.143 

Cells Per Module 54 

Open Circuit Voltage, VOC (V) 32.9 

Short Circuit Current, ISC (A) 8.21 

Voltage at MPP, VMP (V) 26.3 

Current at MPP, IMP (A) 7.61 

Temp. Coefficient of VOC -.355 

Temp. Coefficient of ISC .06 

 

The irradiance and temperature inputs are configured so that they have the following values over the course 

of 2.5 seconds of simulation time, with the necessary values of voltage, current, and power needed for 

maximum power extraction given those values: 

Table 4-2: PV Input Parameters and Expected V, I, and P Values at Maximum Power Point 

Simulation Time 

(seconds) 

PV Input Irradiance 

(W/m2) 

PV Input Temperature 

(deg. C) 

Power at 

MPP (W) 

0 800 25 161.5 

.5 1000 25 200.2 

1 800 25 161.5 

1.25 1000 25 200.2 

1.5 1000 45 182.8 

2 1000 25 200.2 
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For testing the algorithms, the high gain boost converter modelled in figure 3-3 is implemented as a circuit 

in Simulink, as seen in figure 4-3. Table 4-3 shows the circuit parameters chosen for simulation. 

 

Figure 4-3: Simulink circuit model of high gain boost converter with PV array containing characteristics 

of tables 4-1 and 4-2, and circuit parameters of table 4-3 

Table 4-3: Circuit Parameters of Simulated High Gain Boost Converter 

ὅ  260 ‘Ὂ Ὑ  1 ɱ 

ὅ  260 ‘Ὂ Ὑ  1 ɱ 

ὒ 3 mH Ὑ  1 ɱ 

ὒ 3 mH Ὑ  100 ɱ 

 

 

Before implementing and testing the MPPT algorithms with the simulation setup of figure 4-3, the state 

space models of the circuit that were developed in chapter 3 (equations 3.9 and 3.10) are implemented as 

MATLAB function blocks and compared to the physical circuit model for accuracy. In order to create a 

fixed step response scenario, the circuit model of figure 4-3 is modified to that of figure 4-4, with a fixed 
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duty cycle of 50%, fixed switching frequency of 66.67kHz, and fixed input voltage of 30V.  The small 

signal averaged model of equation 3.9 is coded as a MATLAB function block, as seen in figure 4-5 with 

the same circuit parameters, duty cycle, switching frequency, and input voltage of figure 4-4. Its step 

response results for ὠ ȟὍὒȟὍὒȟ and ὠὅ  are compared to both the physical circuit of figure 4-4 and the 

averaged model of equation 3.10 (also implemented as a MATLAB function block seen in figure 4-6). The 

stand-alone Kalman filter is also evaluated with the previously mentioned test data as the input to ensure 

the estimated results functioned as desired, which is also seen in figure 4-6. 

 

Figure 4-4: Simulink circuit model of high gain boost converter with a fixed voltage input ὠ  of 30 volts 

and fixed duty cycle of 50% at 66.66kHz for verifying mathematical model accuracy 

 

Figure 4-5: Equivalent circuit model from figure 4-4 using the mathematical small signal state space 

model of the circuit derived from equation 3.9 
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As seen in figure 4-5, the 30-volt input and PWM switching signals are fed as inputs to the MATLAB 

Function block, labeled as ófcnô, which contains the MATLAB code for the state space model of the DC-

DC converter.  The output scopes include ὠὅ , Ὅὒ, Ὅὒ, and ὠὅ . 

 

Figure 4-6: Mathematically equivalent averaged model setup using equation 3.10 as well as the Kalman 

filter setup, which estimate states given an input of ὠ , an output of ὠὅ , and duty cycle Ὀ 

As seen in figure 4-6, the averaged state space model utilizes the same input signals as those from figures 

4-4 and 4-5, and the Kalman filter design, which utilizes the state space averaged model, receives values 

of ὠὅ  and ὠ  in order to estimate all states of the system. 

The following shows the results of each state variable of the circuit, both from the actual circuit model of 

figure 4-3 and from each of the equivalent mathematical models.  The values from the circuit model function 

as a reference in that the values from the mathematical models should replicate them as much as possible. 
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Figure 4-7: ὠὅ  response comparison 

Figure 4-7 shows the response of ὠὅ  across the variously designed models, with a 30V voltage source 

and 50% duty cycle applied. The averaged model (red) and Kalman filter (purple) both match the circuit 

model (blue) of ὠ  given the input conditions.  The small signal model (yellow) deviates from the circuit 

model by about 27 volts in steady state, showing that it has less accuracy when compared to the averaged 

model and the Kalman filter which uses the averaged model. 
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Figure 4-8:  Ὅὒ and Ὅὒ responses 

Figure 4-8 shows the response of Ὅὒ and Ὅὒ across the previously mentioned models, with a 30V voltage 

source and 50% duty cycle applied. Ὅὒ and Ὅὒ are equal to each other because their inductance values 

have been set to equal values and they are either in series or parallel when the switch is off or on, 

respectively. The averaged model (red) and Kalman filter (purple) both match the circuit model (blue) of 

Ὅὒ and Ὅὒ given the mentioned conditions.  The small signal model (yellow) deviates from the circuit 

model by about two amps in steady state, thus showing less accuracy when compared to the averaged 

models. 
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Figure 4-9: ὠὅ  responses 

Figure 4-9 shows the response of ὠὅ  across the previously mentioned models, with a 30V voltage source 

and 50% duty cycle applied. The averaged model (red), Kalman filter (purple), and small signal model 

(yellow) all match the circuit model (blue) of ὠὅ .   

In the analysis of the previous figures, it can be seen that averaged state space model accurately models the 

DC-DC converter circuit, and that the Kalman filter accurately estimates states given the averaged state 

space model. After verifying this, the proposed Kalman Filter MCP-Incremental Conductance algorithm is 

then written as a MATLAB function block within Simulink. The algorithm is implemented with inputs of 

ὠ  and ὠὅ , and with a constant value output that determines the duty cycle of the circuit switches. Aside 

from the proposed algorithm, two other algorithms will be used for functionality comparison. These 

algorithms are the traditional, direct duty cycle controlled Incremental Conductance algorithm and the 

MPC-Incremental Conductance algorithm from [13].  The results of the algorithms will be compared to the 

proposed algorithm under conditions with and without noise.  
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In reference to the figure 4-10, tags that route to MATLAB function blocks of the various algorithms under 

test can be seen around the switches. These tags route the signals from the outputs of the algorithms to the 

inputs of the MOSFET switches, and include the Incremental Conductance algorithm (Y_INC), Incremental 

Conductance-Model Predictive Control algorithm (Y_MPC), and Kalman Filter (Y_KF). 

 

Figure 4-10: Simulink circuit model with box emphasizing the routing from the control algorithms to the 

MOSFET switches 

 

Figure 4-11: Incremental Conductance Algorithm Simulink Block 
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Figure 4-12: MPC-Incremental Conductance Algorithm Simulink Block 

 

Figure 4-13: Proposed Kalman filter MPC-INC Algorithm Simulink Block 

The flow charts shown in chapter 3 (figure 3-6 and 3-7) used to describe each MPPT algorithm were coded 

as MATLAB functions and routed to their respective Simulink function block as seen in figures 4-11, 4-

12, and 4-13. The INC algorithm contains a simplified version of the MPC-INC algorithm seen in figure 3-

7. The commented out (gray) blocks above the inputs are noise generators that can be uncommented so that 

noise is mixed with the input signals. 

4.3 FPGA Hardware-in-the-Loop and Cyclone V FPGA 

Hardware-in-the-loop (HIL) simulation is a process where an FPGA development board can be integrated 

via JTAG or Ethernet to a MATLAB/Simulink project so that a hardware/software co-simulation can occur.  

This method allows for an engineer to implement the designed control algorithm in an FPGA as a prototype, 

and then test the FPGA design with the simulation design it is controlling in MATLAB/Simulink.  HIL 

creates a virtual real-time environment for testing algorithms without the need to build a real circuit. Thus, 

the development time cycle can be reduced to a minimum amount while still maintaining high-level 
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accuracy because the control algorithm is still running on a real circuit. This specific experiment allows for 

testing the FPGA prototype with the controlled circuit model without actually having to design and 

implement a circuit model prototype.  Since HIL moves the proposed algorithm from a simulation 

environment to actual hardware, it is capable of more accurately displaying how the design would function 

in a real-world environment, and therefore, its reaction to noise becomes more realistic. This aims to address 

the conflicting results seen in previously mentioned literature regarding differences in results regarding 

simulation and hardware experimentation. 

The Kalman Filter MPC-Incremental Conductance Algorithm is written in Verilog HDL, and ported to the 

DE1-SOC development board, which contains an Intel/Altera Cyclone V FPGA-SOC. The board is then 

interfaced with the HIL simulation in Simulink while the remaining simulation system (PV module, DC-

DC converter circuit) stays in simulation software.   

 

Figure 4-14: FPGA block (FIL) in Simulink  

Figure 4-14 shows the high-level block diagram architecture that describes the hardware-software co-

simulation environment.  Circuit information such as ὠ  and ὠ  is sent to the FPGA development board 

via the FIL block.  The FPGA then processes the data and sends the processed information back to the FIL 

block and generates the output through the Y_FPGA tag.  The transfer of information between the FPGA 

development board and the MATLAB simulation environment occurs via a JTAG-USB interface. The 

transmission speed and response time fully meet the requirements for real-time monitoring and control. 

Thus, this emulation platform can fully reflect real-world usage scenarios. 
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In Simulink, circuit information entering the FPGA, such as ὠ  and ὠ  , is quantized at a discrete interval, 

then sampled using a zero-order-hold (ZOH) method.  The quantization block uses a óround to nearest 

valueô quantization algorithm and the ZOH block then holds the quantized input for a given sample period. 

In this experiment, the quantization rate is set to the sampling period of the algorithm (15‘S chosen in this 

experiment) and the zero-order-hold rate is set to the clock frequency of the FPGA (5MHz chosen in this 

experiment).  With this setup, Simulink will send input data on every clock cycle of the FPGA clock 

(correlated to ZOH sampling rate), and of the data being sent to the FPGA on every clock cycle, it is updated 

once for every algorithm sampling period (correlated with quantization rate).  In this manner, the FPGA 

can effectively count clock cycles and determine that, after a fixed number of clock cycles equal to the 

sampling period (75 clock cycles seen in this experiment), new data has arrived. 

For FPGA development, how a system is designed in digital hardware depends on both hardware 

requirements and timing requirements. The Cyclone V FPGA used in this simulation contains 32070 logic 

elements, 87 DSP blocks, 5MB of block RAM, and 457 pins.  The sampling rate for this design is set at 

66.67kHz, which is approximately 15‘Ὓ of time for the system to compute an output given an input.  The 

number of FPGA clock cycles that 15‘Ὓ equates to scales with the chosen clock frequency of the system. 

For example, a 50MHz clock contains 750 clock cycles in a 15‘Ὓ period.  The means that, at this speed, 

the FPGA has 750 clock cycles worth of processing time from when input data is received to when output 

data must be sent out. The maximum possible clock frequency that an FPGA and is determined based on 

how the FPGA logic is designed (meeting setup and hold requirements that account for propagation delay 

between logic elements).   

The Cyclone V fabric utilizes logic elements in the form of adaptive logic modules (ALMs).  ALMS are of 

higher complexity than basic logic elements, with each block containing data, clock, 

synchronous/asynchronous clear, and synchronous load ports, as well as multiple lookup tables, adders, flip 

flops, and multiplexers. 
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Figure 4-15: Basic logic element architecture (left) [45] versus the Cyclone V ALM architecture (right) 

[58] 

4.4 FPGA Register Transfer Level (RTL) Design  

The design for the proposed algorithm is broken down into three modules: a top module for controlling the 

external IO, performing the sampling of data, and handling of dataflow between all other modules, a 

Kalman filter module for executing the full Kalman Filter algorithm, and an Incremental Conductance-

MPC module for executing the MPPT and control algorithm. 

 

Figure 4-16: System hierarchy for the FPGA modules 
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As stated, the Hardware-in-the-Loop Simulation sends data on each clock cycle that updates with respect 

to the zero-order-hold discretization/sampling rate chosen in the corresponding function block that feeds in 

the FPGA block.  Because of this, the top module utilizes a counter that counts each clock cycle until the 

value of the sampling rate is achieved.  Once that value is achieved, it registers the input data at the given 

clock cycle, and sends a data-valid to the Kalman Filter, thus beginning the computation process. 

 

Figure 4-17: FPGA dataflow overview at the top module 

The diagram from figure 4-17 shows the functionality of the Top Module used in the design. Input data 

from Simulink is passed to the Kalman filter when the counter reaches a certain value. The Kalman filter 

then processes the data and passes it to the MPC-INC module, where it determines the change of the duty 

cycle. The new duty cycle value is registered in an update block and is sent to Simulink as output data. 

The data format chosen is 32-bit signed fixed point with the 16 least significant bits being fractional bits.  

This is commonly known as a Q(16,16) format. The chosen data width is sufficient to handle the system 

requirements and maintain a low level of power consumption and high level of precision. This is determined 
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after considering the trade-off of system requirements and onboard resource cost. Due to the flexibility of 

the FPGA design, the data width can be increased or decreased to cater to different system needs for an 

optimized design. An increase in computational accuracy can be achieved by increasing both the bit width 

and the number of fractional bits at the cost of increased risk of expanding hardware resources.  

Additionally, the number of fractional bits can be increased while maintaining a fixed bit width to also 

increase decimal precision at the cost of increased probability of overflow error. 

 

Figure 4-18: Signed, 32-bit fixed point numbering in Q(16,16) format displaying the value of 2.5 

From a computational perspective, the Kalman Filter algorithm can be considered a long chain of 

multiplications and accumulations.  However, the need to take an inverse arises when computing the 

Kalman gain.  That said, given the number of state variables and subsequent state space matrix dimensions 

for this specific application, the matrix inverse operation simplifies to a multiplicative inverse of a single 

value ὼ, as  . The synthesis tools used by Quartus implement three pre-designed logic blocks (IP cores) 

when a division operator is written in Verilog. These cores attempt the perform a division within a single 

clock cycle at the cost of considerable amounts of logic and maximum possible clock frequency.  There is 

a broad amount of literature regarding approaches to division and inverse operations in FPGA logic, but, 

as will be later discussed, this specific design is still able to function as intended with the increase in logic 

utilization and decrease in maximum possible clock frequency.  

SIGN INTEGER FRACTION

BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INPUT x[k] = 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 4-19: Kalman Filter Module design in the FPGA 

In figure 4-19, input signals from the Top module of the FPGA are fed into the Kalman Filter module.  

Once the Kalman Filter module is initialized at startup, it then allows for the óBegin Computationô signal 

to trigger a state estimate and state prediction using the existing values of ὠ ȟὠ ȟ and duty cycle Ὀ.  Both 

the óState Estimationô and óState Predictionô state machines utilize the Multiply-Accumulate block for 

performing matrix multiplication and addition, as well as the óUpdate A-Matrixô block for using the value 

of the duty cycle to recalculate values within the A matrix that are dependent on the duty cycle.  Output 

values are registered and a data-valid signal is generated (óBegin Computationô) for the MPC-INC module. 
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Figure 4-20: High level state machine diagram for Kalman Filter Module   

In figure 4-20, each numbered item under a state explains the additional clock cycles/states needed for the 

specific computation. The largest computation within the algorithm (in terms of the number of multiplies 

and adds needed to get a result when computing a value) is a 4x4 matrix multiplied by another 4x4 matrix 

to get a 4x4 result.  This result requires 64 multiplies and adds.  Since there are a limited number of DSP 

blocks, a fixed multiply-accumulate processing unit (MAC) is created and the subsequent Kalman filter 

state machine routes specific registers and wires to and from the MAC on each state.  This method prevents 
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the FPGA from generating a separate DSP block for every specific multiplication that occurs within the 

algorithm.  

 

 

Figure 4-21: Block diagram illustrating how using a MAC reduces the number of DSP blocks by 

swapping out the IO of MAC on each clock cycle (right) as opposed to having a specific multiplication 

block for every multiply that occurs in the algorithm (left) 

The chosen number of multiply blocks was 16, which allows for a full 4x4 matrix to be multiplied with a 

1x4 vector within a single clock cycle, as seen in ὃ ὼz of the ὼ ὃ ὼz ὄ όz state space model when 

there are four states.  Thus, when a 4x4 matrix must be multiplied by another 4x4 matrix, the columns of 

the second matrix must route to the MAC column by column over four clock cycles.  This design tradeoff 

is intended to create a balance between DSP block utilization and the number of clock cycles needed for a 

computation. The Incremental Conductance-MPC module can be written so that only a single multiply and 

single divide is needed, with all other mathematical operations only being addition and subtraction. 
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Figure 4-22: MPC-INC Module design in the FPGA 

Figure 4-22 shows input signals from the Kalman Filter module routing into the MPC-INC module within 

the FPGA.  The MPC-INC module registers incoming data when a óBegin Computationô signal triggers, 

and begins the process of executing the flow chart of figure 3-7.  Preliminary mathematical operations 

included computing óDelta_Iô, óDelta_Vô, and óDelta_I / Delta_Vô occur so that the nested IF-ELSE 

statement seen in figure 3-7 can be executed in one clock cycle and thus be synthesized as a priority encoder 

within the FPGA. After the I_REF signal is computed from the IF-ELSE statement, it is compared to the 

predicted values (óIPV Predicted (DC+)ô and óIPV Predicted (DC-)ô), and additional operations occur 

before sending the computed duty cycle control value and data-valid signal up to the top module, and is 

further explained in the state machine of figure 4-23. 
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Figure 4-23: High level MPC-INC State machine diagram 

Figure 4-23 shows how the MPC-INC algorithm is broken down across each clock cycle of its computation. 

When a data-valid signal is received from the Kalman filter module, ɝὍ and ɝὠ values are computed by 

comparing incoming voltage and current values to previous voltage and current values.  Then the division 



60 
 

operation for  occurs over two clock cycles, and the result is multiplied by ὠ  and added to Ὅ .  This 

result allows for the value of ὠz Ὅ  to be calculated ahead of time for use in the óif elseô chain of 

determining Ὅ , which occurs in a single clock cycle after this computation is made. After the new Ὅ  is 

calculated, a difference calculation between the predicted values from the Kalman filter and Ὅ  is made, 

and the absolute value of the result is computed. The absolute value is found through analysis of the most 

significant bit of the result (MSB), which is equal to one when negative and zero when positive since the 

data is in signed, twoôs complement form.  If the MSB equals one, the twoôs complement of the data value 

is taken by reversing all bits of the word, and a value of one is added to the result.  Based on a comparison 

of previously mentioned absolute value results, duty cycle adjustment is made via an addition or subtraction 

of a delta value to the existing duty cycle, Ὀ. After it is verified that the new duty cycle value is between 

zero and one, the output data is latched and a data-valid is sent to the top module. 

After each module was written, it was tested separately with a testbench that contained input data mirroring 

an equivalent MATLAB function with equiv alent input data in order to check for accuracy and error. 

Individual module resource utilization and timing analysis was also conducted.  After ensuring the accuracy 

of the Verilog modules through testbenches, the system was integrated into the Simulink Hardware-in-the-

Loop simulation for full system testing to ensure it functioned in the same manner as its simulation 

equivalent.  
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Chapter 5 

Results 

5.1 MATLAB Simulation  

The simulation was conducted multiple times for the three algorithms using various sets of parameters, both 

with and without noise.  Under noisy conditions, white Gaussian noise was added to ὠὅ  for the Kalman 

filter, as well as ὠὅ  and Ὅ  for the MPC-INC algorithm, and Ὅ  and for the INC algorithm (Ὅ  is 

estimated using estimated state variables for the Kalman Filter, and the INC algorithm does not use ὠὅ ).  

The noise power was incremented from zero towards one until the algorithms began losing their ability to 

track. 

Analysis of steady state oscillations, response time to changes in irradiance, response time to changes in 

temperature, and overall power efficiency was conducted for various parameter values of the algorithms.  

These values are evaluated both at the PV location (using PV voltage and current) and the DC-DC converter 

output location (using the voltage across and current through the output resistor). 

The following shows the results of the algorithms without noise and with baseline parameters chosen, as 

seen in the following table: 

Table 5-1: Baseline Algorithm Parameters 

 Perturb/Sample 

Rate 

Duty Cycle 

Step Size 

Reference 

Step Size 

Q 

Covariance 

R Covariance 

KF 15‘S .0001 .001 .0000001 .01 (no Noise) 

10 (noise) 

MPC 15‘S - .001 - - 

INC 15‘S .0001 - - - 
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Figure 5-1: Steady State Oscillations ï Baseline Parameters ï No Noise (Top: PV Power, Bottom: Output 

Power) 

Figure 5-1 shows that the steady state oscillations are more significant with the INC and KF algorithms, 

resulting in slightly lower output power values. This is expected when the Kalman filter must estimate the 

value of Ὅ  and when the INC and KF algorithms utilize direct duty cycle control. 
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Figure 5-2: Transient Response to Rapid Irradiance Change ï Baseline Parameters ï No Noise (Top: PV 

Power, Bottom: Output Power) 

Figure 5-2 shows that all three of the algorithms have similar transient responses on the output when 

irradiance change is present, with the KF and MPC algorithms exhibiting slight overshoot.  This is expected 

because all three algorithms have similar control step size parameters implemented. The INC algorithm 

also exhibits a slightly higher transient response rate across the PV panel. 
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Figure 5-3: Transient Response to Rapid Temperature Change ï Baseline Parameters ï No Noise (Top: 

PV Power, Bottom: Output Power) 
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Figure 5-3 shows that all three algorithms exhibit similar transient responses on the circuit output in the 

presence of a temperature change. Similar to the irradiance change result, this should be expected when 

step size parameters are equal across each algorithm.  

 

Figure 5-4: PV Power Efficiency During Steady State ï Baseline Parameters ï No Noise 

Figure 5-4 shows the PV power efficiency rate during steady state.  This was calculated by dividing the 

steady state PV power value of each algorithm by the expected PV power seen in table 4-2.  The oscillatory 

spikes seen in the KF and INC algorithms contribute to lower overall power efficiency when compared to 

the MPC algorithm.  This is likely due to the direct duty cycle control exhibited by these algorithms. 

The noise was then added to the circuit parameters mentioned at the beginning of page 58. With baseline 

parameters, as the noise power approaches ρz ρπ , The MPC-INC has variable tracking ability and the 

INC has no tracking ability. The visual results of the responses with noise power at ρz ρπ  is seen below: 
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Figure 5-5: Overall PV Power Response ï Baseline Parameters ï Noise 

Figure 5-5 shows that, at a power level of ρz ρπ , the KF algorithm maintains its tracking throughout 

the entire simulation.  The MPC algorithm only tracks under certain irradiance and temperature conditions 

(those exhibited between 1 and 2.5 seconds). The INC does not track at all. 
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Figure 5-6: Overall PV Power Efficiency ï Baseline Parameters ï Noise 

Figure 5-6 shows the power efficiency values of the three algorithms under the same simulation conditions 

as figure 5-5. Other than during initial conditions and transients, the KF algorithm exhibits high power 

efficiency, while the MPC only maintains high efficiency when it is able to track MPP, and the INC does 

not at all. 

The step sizes across all parameters were then increased and decreased so that the effects of step size on 

response with and without noise could be analyzed. The following table shows the step ranges used: 
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Table 5-2: Modified Algorithm Step Parameters 

 Perturb/Sample 

Rate 

Duty Cycle Step Size Reference 

Step Size 

Q 

Covariance 

R Covariance 

KF 15‘S .00005 - .001 .0005 - .01 .0000001 .01 (no Noise) 

10 (noise) 

MPC 15‘S - .0005 - .01 - - 

INC 15‘S .00005 - .001 - - - 

 

With modified parameters, the simulation process was performed again as seen below: 

 

 

Figure 5-7: Steady State Oscillations ï Modified Step Parameters (Decreased on Left, Increased on Right) 

ï No Noise (Top: PV Power, Bottom: Output Power) 
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Figure 5-7 shows that decreasing the step sizes allows for less steady state oscillation to occur across all 

three algorithms, with a more significant reduction seen in the KF and INC algorithms. It also shows that 

increasing step size results in an increase in steady state oscillations, with a more significant oscillatory 

nature seen in the KF and INC algorithms. 

 

 

Figure 5-8: Transient Response to Rapid Irradiance Change ï Modified Step Parameters (Decreased on 

Left, Increased on Right) ï No Noise (Top: PV Power, Bottom: Output Power) 

Figure 5-8 shows how step size affects transient responses to irradiance changes.  Decreased step sizes 

result in longer transient response time with little to no overshoot occurring, while increased step sizes 

allow for rapid transient response at the cost of increased overshoot and decreased accuracy.  
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Figure 5-9: Transient Response to Rapid Temperature Change ï Modified Step Parameters (Decreased on 

Left, Increased on Right) ï No Noise (Top: PV Power, Bottom: Output Power) 

Figure 5-9 shows transient response to temperature change with modified step parameters.  The results are 

similar to that of the previous irradiance changes, with faster, but more inaccurate responses seen with 

increasing step values. 

 

 


