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ABSTRACT

DC-DC convertersaand their respective control systeare commonly used in photovoltaic (PV) energy
systems in order to maximize the power that can be extracted from a PV source and supply a steady DC
signal to a loadvhile providinga desiredamount of gain SincePV cells have low power efficiency and
contain variable-V and RV characteristics, a maximum power point trackitased (MPPT) control

system for the converter must be designed and implemented in order for the converter to consistently draw
maximum posible power from the PV source and thus apply maximum possible power to &ioadver,

noise present in the DDC converter and its sensors can lead to tracking failure for many of the common
MPPT algorithms in use todain this thesis a MPPT algorithmis proposed where Kalmanfilter is
combined with the Incremental Conductar{ldC) algorithm in order tarack maximumPV power.
Moreover the control of a custom topology DOC boost converteis performedn an optimalcontrol
schemecomparableo that of Model Predictive ContrdMPC) by using the tracked valu&he design
utilizesan averagestate space model of the ElIC convertethata Kalmanfilter usego estimatesystem
statesfilter out noise fromexistingsensos, and predit future states of the system giv@amall amount

of change induty cycle, thusllowing for a reduction in sensor coamdanimprovement in tracking ability

given the presence of noisehe Incremental Conductan@gorithmthengenerateshe desiredreference

signal that is compared to the predicted signals generated from the Kalmato Eiftetrol thec onver t er 6 s
duty cycle as needed’he proposed system in its entiretglesigned and simulated inALAB /Simulink

software, and the resulshow that the proposed algorithm can not only reduce sensor botirdlso

achieve higher accuracy and efficiency in the presence of. 18pseifically, accurate tracking is seen to

be maintainedvhen sensor noise powevels exceetheyond 1*10°, which, from resultsjs a threshold

value where othetracking algorithms are seen begin tolose tracking Additionally, an FPGAbased
hardwaresoftware cesimulation platform is implemented, verified, and analyzed. The results show tha
under realworld noise situations, the proposed design can still achieve high efficiency results under the

reduced sensor count conditioMeanwhile, the FPGA maintaiow power levels, with thermal power



estimates as low as 468.87 mW. The functiopaditthis design is compared to that of the Incremental
Conductance and Model Predictive Contfollncremental Conductance (MABC) algorithms, and
analysis of transient responsteady state oscillatisnand power efficiency is conducted under various

levels of PV solar irradiance, PV temperature, and sensor noise.
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Chapter 1

Introduction

1.1 Overview

Driven by both increases in population growth and eneomsuming technologies, the energy
requirements of both developed and developing courdriesonsistentlyincreasing every yedd][ 2].
However, onventional energy resources such as fossil arelseducing in availability and come with the
cost of having a harmful impact on thavironment §]. The world is therefore undergoingransitional
periodwhereits focus on energy extractiaa switching fromfossil fuels to renewabseOf the types of
renewable energy resources availabtdar energy extraction through the uselbtovoltaic (PV)cells
modules,and arraydiasgained a large amount of attention. Tisiprimarily due tosolar energyeing
readily availableand capable of beingxtracted anywhere with sunligtas well asdbecausdPV systems
have minimal operational and maintenance cosAslditionally, the overall cost of development and
implementation of PV systems is continuing to de@d4l$5][6]. That saideven with costs decreasing,
there is still a need for a large amount of capital investment for PV systems, primarily due to the high cost
of PV panelsand there is alsad@rid-p ar i t y 6 thecestper unitdf 8V energyextractionstill
outweighs the cost of energytractionfrom traditional utility companies/]. Therefore, if solar energy is
to continue to be more widely accepted and availdbtéher optimization of existing energy extraction

practicedrom PV cellswill need to occur.

As stated,PV energy andoower efficiency rates arestill considerably lowand it would herefore be
consideredadvantageous to always have the PV system operating within its maximum power point.
However, thenaximum power poirthat exists within &V systemat any given timé dependent on many
variables,which include environmental temperature, solar irradiance, shadowing effects, PV surface
cleanliness, P\¢ell andarray arrangemenas well as othanternalcharacteristicef the PV cell itself §].

This causes complexity in determining the optimal design of eD0Converterand controlsystemthat



must function as a link between a Bburceand a loagdandfunction to impedance match the Bvurce
thus determining what amount of power is extractddue to constant changes in the previously stated
variables, themaximum power points alwayschangingwith time, and continuous adjustments to the
circuit that functionsas an impedance matching load teatracts power must bemade Therefore,
designing amaximum poweipoint tracking (MPPT) controlledonvertersystemthat both provides a
steady output voltage while also tracking and maintaining maximum power efficisnoy high

importanceand is considered to l@amajor focus of solagnergyresearchq).

1.2 Motivation

A large amount of research has beenductedor the development and testingwairiousMPPTalgorithms

[10]. These models have been designed and implemented in oadlemtdor energy transfeo occur at
optimum efficiencythrough the use of controllers wittigh tracking accuragyas well agprovidefastand

stable transient and steasiate responsgesapable of driving steady output voltageontainingminimum
oscillations. The overall effectiveness of these designs can be determined through analysis of power
efficiency, cost, hardware complexity, number of sensors, steady state tracking efficiency, algorithm
complexity, transient response, addgreeof steady state oscillatier{10] [11]. More specifically in
reference to tracking efficiencynany popular tracking algorithmshat perform efficiently in ideal
conditionshave been sedn reduce in efficiency or l@stracking completelyvhen noise is introduced via

the nonideal, realvorld environmental conditions presenttire combination oPV sources, embedded

microcontrollers, and voltage and current senskigs [

Throughtheanalysis of existing designis canbeseerthatmanyproposedystemsave varying levels of
flaws due toexcessive levels of complexignd cosor low performance and efficiendy]. Additionally,
many designs come witlignificant tradeoff$11] [13]. As an exampleof tradeoffs a simplecircuit design
topology could have few components and simple algorithms, bulikeily track maximum power point
(MPP) poorly and have loywowerefficiency. In contrassomecomplex design topolagsand algorithrs

could track MPP efficiently and have high boost efficiency,disi contairmanyhardware components

2



and complex algorithmsThis is evident in existing researstich as that from tablel, where a review of

common MPPT algorithms was conduchgahe aithors of{ 7].

Tablel-1: Excerpt fromd fie Review ofMostCommon MPPTAIgorithmby authors of T]

MPPT Algorithm Category | Oscillations | Efficiency Tracking Speed | Complexity Cost
Fractional Short Circuit Indirect Sometimes Low Fast Simple Cheap
Fractional Open Circuit Indirect Sometimes Low Fast Simple Cheap

Perturb & Observe Direct Yes Medium Slow Simple Medium
Incremental Conductance Direct Sometimes Good Medium Medium Medium

Fuzzy Logic Soft No Very Good Fast Complex Very Expensive
Neural Network Soft No Very Good Fast Complex Very Expensive
Particle Swarm Optimization Soft Sometimes Good Fast Complex Very Expensive

With specifics to how noise affects the ability of a system to track and perform efficaetahge amount

of existing research in this area offers little in terms of hardwlasggn, implementatiomndverification.
Thus, many studies often conteconclusions based on software simulation glagch lack the analysis
and validation of systems with reabrld noise interferenceBecause of this, ideal system conditions are
typically simulated, and reaborld disturbances such as noise from sensnd the circuit are ignored
Thus,problem criteria such as how noised other disturbancesuld affect the control algorithm and PV
system as a whole are typically not consid¢teil However, of the research that does exist for monitoring
how noke affects system performancensiderable limiting effectsn algorithm performanceavebeen
discoveredor many of the most popular and common tracking algorifisig 15] [16] [17]. Additionally,
many of the standard and common MR#Jorithms typically require at least two sensors, one for voltage
and one for curreritL8], andsome of the more complex MPPT algorithms congginsor counts greater
than thig13]. More specificallythe process aheasuring current from a circtiaisthe capacity to directly

correlate to noisglata frommeasurement, power loss, and increased expetfes [



Therefore, the ability to design a MPPT algorithm tiegstrong tracking performan@@mparable to that
of more complex systems while also being able to maintain its perfornratiee presence of noisad
alsokeepng sensor countow, especially through the removal of the current sercaor,be considered

desirabléboth forlow-cost aplicationsas well as those that dikely to besubject to noisy environments.

As a resulpf this, the objective of thishesisis to model &alman filterbased MPEMPPT algorithm in

order to control theuty cycleof aDC-DC converter, which thusontrols its output load voltage-current

ratio. The Kalman filter will estimatéhe states of the system in order to reduce sensor count and filter any
system and output noise that would be present in real applications. It also functions to ptedistdtes

of the systemgivenan incremental decrease or increastha@duty cycle.Then, the output of the Kalman
filter will be passedo an Incremental Conductan@i®C) algorithm which finds the maximum power
point from the provided state informati and creates a reference photovoltaic current signal that will be
compared to the predictetiates from the Kalmatfilter. Then,by choosing the predicted state that most
closely resembles the reference signal, a chartgedtuty cycle will occur. This process state prediction

and reference comparisastructurallysimilar to a Model Predictive Contr(MPC) system
1.3 Significance

With existing evidence of MPPT tracking problems relating to noise combined with ¢hemsing

complexity involved with newer MPPT algorithms (in particular sensor coalst)combined with little

literature on how to address this problehe proposedlgorithmwill attempt to aid in providing insight

for possiblesolutionsto problems inthis area.More specifically,the significant aspectsf this thesis

include 1) optimizing the overall MPPT performance in the presence of m@iseh e Kal man fil ter
to minimize mean square error of estimated st&esedudng sensor count througthe Kalman filteés

ability to performstate estimatior3) creating an optimized hardware design of the algorithm fielch
programmable gate arrgifPGA), and 4) testing the FPGA design on actual hardware fotinealdata

analyss ofresults. In further explanation 8§ and 4, after the algorithm is designed, it will be tested and

compared to the MPONC and INC algorithms itMATLAB simulation under various noise conditions

4



and with various design parameters chosen. There will then be a hardware implementation that will assess

the accuracy and hardware requirements related to moving the dediga RBGA platform. This

experimentation will not only aid in understanding theefulness angbracticality of the proposed

algorithm, but also provide insight into how noise affects the functionality of all three algorithms under test

when their parameters are modified.
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The design centers arourdd deriving an averaged state space model of theD@Cconverter under

consideration2) applying thespace modebo the Kalman filter algorithm and estimagj system states in

the presence of noise without the needafoadditional sensor for each staB modulatinghe state space

model for slight increases in duty cycle and slight decreases in duty 4yptedicing future states based

on these modifiations and 5) having results bapplied tothe traditional incremental conductance

algorithm, where a reference signal will be generated and compared to the future state predictions for direct

duty cycle control of the circuit.



1.4 Thesis Structure

This thesis functions to review existing literature surrounding PVYOCconverter systemasnd MPPT
algorithms perform mathematical modeling of the proposed systems, implement the models in simulation
software and hardware, and analyre aiscuss acquired resul@hapter 1 provides an overview thie

state ofPV systemsand MPPTalgorithms as well abjectivesandproposed solutionr their existing
problems Chapter 2orovidesa literary backgroundegardingphotovoltaicsconverter topologies, MPPT
algorithms, Model Predictive Control, and Kalmiters, as wellas aliterature review oéxisting research
regardinghow noise affectMPPT algorithms Chapter 3 discusses thgstem design, which includédse
derivations ofthe mathematical models of the proposed system to be designed and tested. Chapter 4
discusses the experimentation process. Chdptliscusses the results obtained from the experiment

Chapter 6 discusses concluding remarks and futork.



Chapter 2

Background

2.1 Overview

Existing research explores the various circuit topologies, MPPT algorithms, control algorithms, and other
design criteria for designing the best possible P convertersystemgiven specific constraints.

There is no single system design that is considered best since certain design specifications could be
considered more favorable in a specific application when compared to others. For example, a certain PV
system design thas iconsidered optimal for satellite applications could also be considered suboptimal for
residential applicationslp]. Likewise, a PV system designed to regulate charge to-adthage battery

pack will benefit from very specific design criteria whilé® system designed to be directly fed into a

high-voltage utility grid will not benefit from #asame criteriaZ0].

Sincethegoal of thisthesisis to design a MPPT algorithm that filters noise and reduces sensor count while
maintairing a high level oftracking efficiency, the analysis of literature focuses on reseaegarding
existing high accuracyigh complexity MPPT and control algorithms, Inigesource cost system design

and systems that underperform or fail under noisy conditWitein generaMPPT algorithmsan analysis

of power efficiency, MPPT trackingpeedand controller efficiencwith and without the presence of noise

is conductd to reviewoverall system performancand analysis of circuit resource utilization, algorithm
complexity, and sensor count égenductedn order to gauge overall system complexitdditionally,
fundamental yet necessary concepts sashthe functionality of photovoltaics DC-DC converter

topologies Kalman filters, and model predictive contratediscussed.

2.2 Photovoltaics

Photovoltaic energy systems convert solar irradiatmrelectricity through the use dvo-layer PN

junctions Photons that reach the junction increase charge carriers and thus getgetialdifference



which results in current flow through a respective cirf2di. The equivalent circuit of a solar cell can be

representedsingequation2.1 and figure2-1:

O 0 0OQ - p

2.1)

WhereO is solargenerated currenfQis diode saturation currenty thermal array voltagapis diode

ideality constant,Y is series resistancepresenting physical contact and semiconductor resistances

andY is aparalle|] parasitiaesistanceZ2].

Iph Rp

<+

Figure2-1: Equivalent circuit model of a solar cell
The vale of O is dependent on both solar irradiaseeltemperature, as seen in the followeguation
©c — 0 oY Y (2.2

Where’O isthesolar current generated at nominal conditio@ss irradiance;O is nominal irradiance,
"Yis cell temperatur€y is nominal cell temperature, andis shortcircuit current/temperature coefficient
[22]. Furthermore, the value of the diode saturation curi@ms, dependent on temperature as well, with

the following:

0 0 — QO (2.3)

WhereO is nominal diodesaturation current) istheelectronchargéd s Bol t zmann®s const

isthebandgap energy22]. 'O can further be expressed as follows:



(2.4)

@ istheopen circuit voltagew is nominal cell thermal voltage, affd is the short circuit nominal

current.
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Figure2-3: 1-V and RV characteristics of Kyocera Solar KC20DGolar cell with a fixed irradiance of

1000—

Figure 2-3 shows solar cell characteristics when a constant irradiance of 400@nd specified

temperatures of 25, 50, 75, and 100 degre&Capplied wi t h t he cel | odottethBresm mum po
this,it can be seenthate mper at ur e changes ¢ advsard RY bharactgrisics i n  t h «

when other factors are held constamith a horizontal shift lefassociateavith an increasenitemperature.

For any set of operational conditions, there is a specific voltage value and current value that results in
maximum power output, known as the maximum power @jt This is seen as the dotted bubble in the
previously mentions figures lated towards the knee of edeX curve. In reference to each-YP curve, it

can be seen that maximum point occurs where the slope of the curve is equal to zero, or in other words,
when— 1t This maximum power value can bbtainedthrough the process of impedance matching a

load that will allow for the desired voltage and current values to exist. From the previous figures, it can be
concludedthatthe maximum power point is constantly chamgggivenconstantly changingtmospheric
temperature and irradiance values, and therefore the point must be regularly tackdéd t he r esul t i n
impedance must be regularly controlled.
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2.3 DC-DC Converter Topologies

The load applied to the PV cedl fypicallyin the form of a DEDC converter systemNon-isolated boost
converters are typically used in order to boost low PV voltages to a highersalina@an invertercan
successfully apply the signal to the AC grédl]f Likewise, buck converteiopologies can be utilized for
battery charging and universal power supply applicati®fls Non-isolated converters have the advantage

of reducing system cost and improvingtsys efficiency when compared to their isolated counterp26ts [

Research generally used in the design of PVIRCconverter systems involve the use of custom topology
boost, buck, buckoost, SEPIC, cuk, flyback, duattive bridge, and pugbull conveters R0][26], as

well as manyother topologies that capitalize on achieving high gain, iaguwitch voltage stress, or
redwing the need for high duty cycl¢26]. The overall classification for PV converter topologies can be
categorizednto isolated and noeisolated systems, where isolated systems are-stalgied in order to have
complete separation of inputs and outptypically through the use of a transf@mSpecialized, igh
voltage applications typically benefit most from isolated syst@1jslh general, the neisolated topology

of the boost converter is considered most favorable for general applicalien$o its low number of
components, simple ighe circuit, and nospulsating input current (the input pulsates in correlation to the
switching rate) 28]. At the same time, the main drawback of the boost converter is its limited gain
capabilities, as well as the need for high voltage rating dioddshampresence of copper and core losses

in the inductor. Many custolesigned boost converter topologies attempt to perform voltage multiplying
in order to address problems with gain. However, this typically comes with the cost of increased
componentsincreased voltage stress, and variable efficiency ratios given the condition of the system (i.e.,
input voltage, switching frequency2g.

Thesamplegopology usedin thisexperimeninvolvesa custom, high gain boost convertgnown in figure

2-4) designed by the authors otJ. However, additional example application topologeesild be

interchanged with the boost convertaith examplesncluding the bidirectionalSEPIC convertefshown
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in figure 2-5) presented by the authors @8], as well as theynchronouduck converte(shown in figure

2-6) presented by the authors @H].
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Figure2-4. Custom Topology High Gain Boost Converter
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Figure2-5: Bidirectional SEPIC Converter
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Figure2-6: Synchronous Buck Converter
Boost converters typically have higher efficiercmmpared t&SEPIC convertere2B]. However,SEPIC
converters are typically favored over traditional bidclost converters for higher efficiency rates and
continuous input curren2f]. Boost converters suffer from the ndedhigh switching conduction rates,
causing sharp current spikes and high current stress, a problem the autidjsattefnpt to address

through the custordesigned topologyl3] [28]. These high stress values correlate wftdincreased
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probability of the breakdown of circuit components. Alternativelge tsynchronous buck converter
functions to reduce diode conduction losses seen in the traditional buck converter ta@logy [

24 MPPT Algorithms and Controllers

There are a wide variety of MPPT algorithms in existence today, with more complex algorithms being
researched more recentyome of the most commamd moderMMPPT algorithms throughout literature

involve the Incrementa&Conductancg€INC), Perturb and Obser{fe&O), Fuzzy Logic Controller, Neural

Network, andParticle Swarm Optimizatioalgorithms [L9]. MPPT algorithms can be categorized into

three classes: Direct, Indirect, and Soft Computing. Direct MPPT applieslcsigtrals to the converter

and observes how those signals affect the MPP through observEtiese methods are sometimes
classified as o6onl i ne$06 htcel cl hhmbii guugeds ,t eathmbidmietjed befessr,  tdiure
applying a stimulus, analyzing how power is affected by the stimulus, and modifying the stimulus
accordingly, thus oOcl i mbi ng Indirechdrl | @ o MRBT expédetdi mu m p
characteristics of the PV panel in order teedetine MPPThis is usuallydone through analysis tifeshort

circuit current and open circuit voltage of the PV wdien itis isolated from the load. An example of this

is the opertircuit voltage method.Soft computing MPPT uses computing methods tre applied to
approximaibn and predictive model§]. A common example of soft computing is the Fuzzy Logic Control

MPPT methodThe most populaand commonly useMPPT algorithmsfall within the Direct class and

most commonlyinvolve variations on th Perturb and Observer algorithm, as well the Incremental

Conductance algorithn7].

The P&O algorithm is considered a simple algorithm but has drawbacks due to the system never achieving
steady state, errors occurring when irradiance drops below-488 well as rapid changes in atmospheric
conditions causing tracking failure¥(]. P&O functions byapplying a perturbation afOto the duty cycle

of the converter with a perturbation frequency®f . It is then observed if the resultant change in PV

power is positive or negative. If positive, the perturbation contimugeisame direction. If negative, the

perturbation is applied in the opposite directidf [
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The other major Direct MPPT algorithrthe Incremental Conductance algorithmas a higher level of
algorithmic complexity which results in the need for higimpling rates, digital implementation, and high
levels of speed control. However, it is capable of reducing output oscillations by reaching a steady state. It
can also track faster than P&O, and has a very high degree of acd#jggg|[ Incremental Coductance
functions byassuming that the rate of change of PV power with respect to voltage is equal totkero at

maximum power point, as followW82]:

— — 06— T 2.5

Which assumes current is a functiorvoftage, and wichthencan be rearranged as follows:

S (2.6

From these equations, the following inequalities can be derived to determine where the system is with

respect to the maximum power pojidg]:

— - O®0D (2.7.9
— - aQOXIU (2.7.2
— - 1 000 (2.73)

Therefore the algorithm identifies where on the photovoltai¥ urve it is located byalculating the

relatiorshipbetween the rate of change of conductargdinstantaneous conductance.

The MPPT algorithms function to track maximum power points, and therefore either aid in the control of
what is typically the voltage or current parametdrthe circuit, or directly control the system on its own.
The MPPT algorithms that only identify what voltage or current values are needed for MPP require a
controller to implement control (Current/VVoltage MPPT Control). This occurs through the désign o

control system that can interpret the desired reference MPPT signal, compare it to the existing MPPT signal,
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apply control as needed. This contrasts to MPPT algorithms that directly control the duty cycle of the
circuit switches (Direct Duty Cycle MAPControl), where the control system is built into the algorithm

and an additional controller is not need@d [
2.5 Model Predictive Control

With the advent dfigh-speednicroprocessarechnology applications oModel Predictive ContrdMPC)
in power electronics have become increasingly popwu88}. [ The mainprinciple of MPC involves
predictingthe future behavior of desired control variables over a predetermined time hai#onThe
MPC system typically does this by having information allbetsystem it is controlling, typically through

the use of aiscretestate spaceode| as seeim equatios 2.8.1 and 2.8.2
OQ p O0WQ 6060 (2.81)
O 8¢ 0067 (2.8.2)
A cost functionis then compared with the predicteslues at the end of the time horizon, as seen below:
Q Qe OB Q 29

Where N ighetime horizon.The predicted value that minimizes the cost funcéibtime N is chosen, and
the control actuation associated with the valugpiglied only for time k+1. The sample time then moves

up one step and the entire process is repeated over adjain [

With DC-DC converters, the MPC algorithm functions to predict future switching states of the system
through the mathematical model b&tconverter, define a cost function that represents the desired behavior

of the system (typically correlated to maximum power point), and applying control to the switching state
associated to the input that minimizes the cost funcfldns form of contol is considered useful when PV
systems undergo rapid atmospheric condition changes. The cost function is typically represented as a PV
current or PV voltage reference sigrgdnerated from the P&O or Incremental Conductance MPPT

algorithms[35].
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MPC tediniques typically provide fast dynamic responses with high stability when compared to classic
control techniques3g]. Furthermore, robust control, higher convergence speeds, and less steady state
oscillation is seen inthe simulation of MPGMPPT systems J7][38][39]. However, hardware

implementation has shown for these results to be inconclugiga compared to simulatig85].
2.6 Kalman Filters

The Kalman filter is an algorithm that uses a series ofsdatplebserve over time to estimate unknown
systemstatesvith as much accuracy as possiliailt from Bayesian filter theoryhe Kalman filtefurther
assumes that the data being observed corbaifienoise and disturbancg40]. The states estimated are
based on linear dynamical systems presented in a state space Towenatocess model then defines how

a state develops per unit timestep as follows:

® @ 00 0 (2.10
Where"Ois the state transition matrix, which is applied to the previous state wectqro is the control
input matrix, which is applied to the previous control ve¥or , ando is the process noise vector,
assumed to be a zensean Gaussian distributed white noise with a covariance nuftied ag) [41].
The covariancenatrix functions to determinthe uncertainty of a prediction, with larger covarianedues

(or weightg correlatingto higher amounts of uncertaintyhe states of the process model are correlated to

the measuremesifor observatiog) of the system through the following equation:

g Cw 0 (2.1)
Whered is the measurement vect®js the measurement matrix, adis the measurement noise vector,
assumed to be a zenpean Gaussian distributed white noise with a covariance matrix definéf4ak

The goal of the Kalman filter is to estimate thetestvectorw through consistent analysis and comparison

to the measured output,, giventhat the other system informatici®® FCHD AY is provided.
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The information from the previously mentioned modslithen used in the followingvo-stagerecursive

mathematical algorithm to form tisructure of the&Kalman Filter wherew ¢ is the value ofvat timec

given observations up to and including at tidme

Predict:
W LTA T 6 6 (2.121)
0 s 00 ¢ O O (2.122)
Update:
® & O, (2.131)
Y '00g O Y (2.132)
b 0g O (2.133)
By @ 0 (2.134)
0g ©O VO D, (2.135)

Where equatior2.12.1is the predicted state estimate, equafidiR.2is the predicted error covariance,
equation2.13.1is the measurement residual, equaftdl3.2is the Innovation covariance, equat®@i3.3
is the Optimal Kalman gain, equatigri3.4is the updated state estimate, and equatib®.5is the updated

error covariance.

The prediction stage uses the exgtiinput value to estimate the states of the system and the error
covariance using previously estimated state estimates and error covariances. The update stage uses the
existing output taletermine the error in the prediction, create a gain that minirttizesrror covariance,

and applies said gain in order to cor Fuwtletmore,r o6upd
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equation of the préction stage.

a future timestep prediction can be made by feeding the corrected state estimation back into the first

Time Update (“Predict”)

masuremem Update (*Correct™)

(1) Project the state ahead
X, = A%, +Bu,_ |

(2) Project the error covariance ahead

P, = AP, AT+ Q

(1) Compute the Kalman gain
— p.HT -yT -1
K, = P;HT(HP,HT + R)
(2) Update estimate with measurement 7.
i, = &+ K (z, - H%p)

(3) Update the error covariance

\_/ e

Initial estimates for %;_; and P, _;

Figure2-7: Predict and update stages of the Kalril®r, showing the recursive nature of the discrete

algorithm @2

This two-step algorithm is executed in its entirety for each discrete timestep k, with ptgwdstimate

values beingecursively fed back into the algorithm at the next timesfEfis can be seen as a form of
feedback controlin that the filter estimates the process state at time k, and then obtains feedback in the
form of noisy measurements. It can also further be considered a form of aqatittral;in that it minimizes

the estimated error covarian@g].
2.7 Field Programmable Gate Arrays (FPGAS)

Field Programmable Gate Arrays (FPGAs) arefpbgicated silicon devices that can be configuasdny
kind of digital circuitandare alsocapable of being programmed in the fialsl opposed to in the same
fabrication facilitywherethe chip was manufactur¢d3]. FPGAsallow for designers to quickly develop
and simulate sophisticated digital circuits, realizecircuitson prototyping devices, and verify tbesign
results in a quick and efficient manijiéd]. This process allows for fastand less expensivdesigncycles

when compared to the design of application specific integrated circuits (ASICs), as well as fast and efficient
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reconfiguration of existing desigas existing architecturdg]. However, thisusuallycomes athe cost
of alarger silicon area, higit dynamic power consumption, and reduced performance when compared to

ASICs [46].

The FPGA contains a twdimensional array of generiogic cells and programmable switch&e logic
cells are configured to perform a specific logic function, angrtbgrammable switches allow for custom
interconnections between logic cells on the FP@4A. [Input/output (10) blocks allow for the FPGA to
interface with external device#&s the technology surrounding FPGAs developed dkerprevious
decades, the ardbrture of the FPGA has developed to additionally include vaf@muss ofembedded
interfaces memory blocks, communication ports, processor subsystardspther forms ohard blocks

and interfacesas seen in figura-9.
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Figure2-8: Basic LogicElement displaying a lookup table (LUT) for logiperationsa flip flop for

synchronous timing, and multiplexers (MUX) for routiip]
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Figure2-9: Traditional FPGA architecture (left side of chip) versus modern FPGA architecture (right side
of chip) [45]
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Digital circuits are programmed onto an FPGA using hardware description languages (itDLthe
standard languages being VHDL, Verilog, and SystemVeridgr the HDL is written, itis converted

into a logic circuit through the process of logic synthesis, where tools take the register transfer level (RTL)
design specified by the HDL and convirinto a circuit of logic gates.Further tools then function to
perform additional desigprocedures such as place and route and bitstream generation, where the design
gets mapped to the hardware of a specific FPGA and where the programming information gets written to a

file, respectively.

HDL SOURCE

v

SYNTHESIS

v

TRANSLATEMAP

|

PLACE & ROUTE

v

GEMNERATE
BITSTREAM

|

FPGA HARDWARE

Figure2-10: FPGA Development Flow

When comparedotthe fixed size ofgeneralpurpose processor€PUs) and graphic processing units
(GPUs), thee PGA 6 s a biedonfigusabe at the Hit éevel allows foit to be designed with exact
hardware requiremenend specificationsTherefore, higher efficiary systemscan becreatedthrough
customdesigned, instructiofree hardware architectures, or through customizabfecore processor
architectures45]. This allows for the FPGA to be utilized in a range of figldsludingmachine learning,
signal processing, finanoembedded systems, and networking, all of whighebenefiedfrom the unique

hardwarecapabilities of the FPGA.
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2.8 Literature Review

In reference to hill climbing MPPT algorithms (includéee Perturb and Observand Incremental
Conductanceaalgorithmg the authors from1[7] concluded that erroneous measurement of solar array
voltage and current sensors affects MPPT performance, primarily from the nonideal conditions of sensors,
amplifiers, and ADCs, causing a measurement bias that causes the MPPT algorithm to seklawayrac

from the MPP. The authors also stated that these systeraghjeet to large amounts of noise due to the
use of switching power converters that control operating points of solar atvay$ince these algorithms

are highly nonlinear and work \kitmathematical derivatives in their formulation, noise present in the
voltage and current sensors cause significant effects on the decisions made by these aljdritfirese
authors concluded that low pass filtering of sensors has a high probdlsliyypwessing useful information,
sacrificing algorithm speed, and destabilizing the MPPT 14@h [Through experimentation, the authors
from [17] found that positive D&ias (resultant from noise) causes the settling point to side with lower
incrementatonductance (settling to the left of MPP), while a negativebia6 causes higher incremental
conductance (settling to the right of MPP). This is particularly noticeable for biased current values since
its value directly depends on solar irradiation ealuand lower current values cause more extreme shifts
away from MPP 17]. These erroneous values are also present in smaller degrees with voltage

measurement.
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Figure2-11: P&O performance with current DC bias, high (left) and low (right) cufrEft
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Figure2-12: P&O performance with voltage DC bias, high (left) and low (right) cufreft

Additionally, the authors froml[/] found that the frequency of erroneous decisions was directly correlated
to noise severity and the location of the operatingtpwiith noise in voltage measurements causing a shift
of settling point to the righhand side of the MPP, with noise in current measurements reducing tracking

speedAdditionally, they found that variable stegize algorithms lost their ability to optimally change their
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increment and decrement rates. These authors experimentea R&BD algorithm and concluded that

large step sizes and extensive filteragoyld helpwith trackirg, but only under specific noise conditions.

The authors from1[7] concluded that noise has a significant effectonechlli mbi ng al gor i t hmo
track MPP efficientlyand explained how very little research exists in terms of mitigation effeetded to

correct this problem. Their only solution to the problem was to introduce low pass filters at the cost of
information loss, speednddestabilization. They also ditbt performhardwareexperimentation andnly

provided solutions for the P&O grithm, with noprovided solution or insight for thencremental

Conductance algorithm.

The authors fronj14] emphasized how existing current measurement methods are particularly noisy, with
Hall Effect transducers being capalaegenerating considerable amounts of noesgd sense resistors
entailing a tradeoff between sigrtatnoise ratio and measurement armvpr loss through the resistor.

They alscemphasizethat the presence of noise had a considerable effect on steady state efficiency, which
is defined as the ratio of average output power to the power at the maximum powerTbeisg authors

found thatspecific parameters, including the sampling frequency and change in duty cycle rate affect how
well the algorithm responds to noise, with decreases in sampling rate causing improvements due to
removing higher frequency noise, and decreases in duty cgpie iiducing oscillatory problems that are
exacerbated with the presence of noise. The authors frdnexperimented with optimizing algorithm

parameters with the P&O method in order to enhance tracking accuracy and reaction rate.

The authors from1[4] found that the P&O method could be optimized using specific system parameters,
but did not provide any information on optimizing the Incremental Conductance algorithm, which is subject
to the same set of problesriteriawith regard to noise.

The authors fsm [47] assessed potential drawbacks of therementalConductance algorithm, and
emphasized how— T1Tat MPPonly holds true when noise and system dynamics are negligible, weather

conditions arestationary, quantize error with digital control is negligible, and change in array voltage tends
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to zero. They also emphasized how the presence of noise combined wltstemaizes could cause a
measurement recording to repeat, causing the system to settle away from the MPP, until a needed change
in irradiance levels interrupend breakshis erroneous procesSmall step sizes in general cause major

issues in thathe systend gesponse to noise begins to become comparable to that of the MPPT
perturbations. These authors proposed that the delay associated with filter implementation may influence
the decisiormaking of the algorithin application of the filter, it wasoncluded that the measured system
waveforms oscillated between three different levels, with further swings to additional levelsmdiéar

step sizes were introducetlowever, ligher perturbation frequencies causeesystem to respond faster

at thecost of faster deviatiorsvayfrom MPP and high chances ®fstem instability If a PI controller is

used, higher perturbation ratbecomecorrelated tcan increased probabilitgf losing systemstability.

Increased probability obks ofstability was also correlated with the addition of {pass filters.

The authors from47] analyzed how the integration of low pass filters assisted in the filtering of noise for

the Incremental Conductance algorithm, and concluded that it correlateldssgitbf system stability with

PI1 control, slow transient responsmd poor performance with rapidly changing irradiance values with
direct duty cycle control. They also emphasized that system parameters such as step size and perturbation
frequency changk how well the algorithm responded ttoe noise, normally with specific parameters

needed in order to handle noise efficiently.

The authors from1[3] proposed a ModdPredictiveControkincremental Conductance algorithm that adds
a Model Predictive Contracheme to the Incremental Conductance in order to improvbespeed,
accuracy, and robustnessatved withtracking MPP under various condition®ne significant aspect of
the design is that determines ifthe DOC converter6s switches should b
allowing for a variable frequency duty cycle and thus more complete control over the state of the switches
when compared to fixed frequency duty cycles schemes such asapdik modulation (PWM).It used
threesensors that could be reduced down to 2 if using the gain equation with an associated circuit topology.

The algorithm was considered to improveonphe traditionallNC algorithmwith increased efficiency,
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trackingcapability, reliability, and response to variations, as well as lowered steady state oscillations, at the

cost of increased system complexity

While the authors of 23] were able to create an MR@cremental Conductance algorithm that
outperformed the redmr Incremental Conductance algorithm, it cenwith the additional costs of
moderate system complexity and increased sensor count. Additionally, no information regarding how this
system operates under the presence of noise is indicated. Furthermbwet ishsuggested to reduced
sensor count frorthreeto two by using the circuit topology gain equation, there is no proof of how well
the practical application of this equatistands when considering noise. Additionally, this algorithm

requires the usef current sensing, which, from previously state literati#if naturally subject to noise.

The authors from4g] analyzed how the presence of noise affects the P&Qramemental Conductance
algorithms. Their results concluded that considerable levels of ripple and oscillations are seeramfixed

adaptivestep size Incremental Conductance
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These authors concluded that even low levels of noise presesatl isystem$iavea significant effect on

algorithm performance when compared to ideal simulations.

The authors from48] concluded that noise has a significant effect on algorithm performance for P&O and

Incremental Conductance, but gavepnoposals or possible solutions for solving the problem.

The authors from15] analyzed the effect of noise on the direct duty cycle Incremental Conductance
algorithm and its correlation to parameter step sizes and sampling/perturbation rates and ctratluded
high sampling/perturbation rates asmall step sizes allow for high rates of tracking error when noise is
introduced. However, increasing step size to offset this problem results in increases in steady state

oscillations, reduction in overall systestability, and lower overall efficiency.

There is some existing research involved with using the Kalman filter in MPPT algorithms. However, some
of this research involves creating an independent MPPT algorithm that uses the PV characteristic curve as
a gate space model for the Kalman filtet9[50)[51], as opposed to optimizing an existing MPPT
algorithm to account for noise or complexity. Additionally, other authors have used the Kalman filter for
approximating parameters such as settling time forsite optimization through the use of D#alman

Filters [b2)[53] or speed rotation for MPPT algorithms in wind turbiss[ Furthermore, some authors

used the Kalman filter to improve tangentially related systems, such as the authorSSraomsirig the

Kalman filter to optimize P&O for thermoelectric generator systems.

Overall, the previously listed literatummphasizes multiple points regarding problems with PV systems
and MPPT algorithm&’he main point being emphasizisdhe needor solutions regarding algorithm error

in the presence of nois&dditional points include¢he need for reduced system complexigduced system
cost, and the need for more research that explloesdifferencen resultsbetweersoftware simulatiomnd

hardware implementatioof MPPT algorithms
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Chapter 3

System Design

3.1 Circuit Model

The proposedalgorithm design involves creating a mathematical state space model of the circuit being
controlled. There are various methods for the modeling of switching circuits, includiimgar switch
models, average models, samptieda models, largsignal models, andmsall signal modelsH6]. Each
modelis consideredaffective under specific condition®\dditionally, each modetontairs some level b

correlationwith the othemodelsin terms ofits mathematicatlerivation, as seen in figuBel.

| Knowledge about system |

Equation writing

. Switched model
Solving recurrent

cqualions on one
operating period

Averaging on one
Euler operating period
approximation

‘ Discrete-lime large-signal model Averaged large-signal model |
Averaging the
recurrent equation

Differentiation Euler Differentiation
approximation
‘ State-space discrete-time small-signal model Stale-space averaged small-signal model |
Averaging the B N
Transformation recurrent equation I'ransformation

state-space state-space
transfer function Bilinear transfer function
transformation

‘ z-domain Lransfer [unclion s-domain transfer [unclion |

Figure3-1: Relationship BetweeklathematicalCircuit Models inTerms of Derivation§6]

Additionally, what model type is being chosen depends on the form of control law intended to be

implemented for the system.
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Switched Large-signal Large-signal Small-signal Small-signal
model averaged model sampled model averaged model sampled model
Variable- Nonlincar Nonlinear Linear Linear
structure control control control control control

I I I I

Passive control
Linearizing control
Stabilizing control

Standard control
Advanced control

Figure3-2: Relationship Between Circuit Models and Possible Control L[&gjs
The bilinear switching modé a compact form version of the switch model tatastheform of:
w 0wB B6w w26 Q (3.1

The variable) is the number of bimry functions of the system. Depending on the circuit being modeled,
this model can yield nonlinear resyli§]. However, a small signal modeak shown in equatidh2, which
linearizes the modedround an operating point (typically a duty cyodebinary switch valugcan be

deduced fronthe bilinear switchingmodel
W 0w 66 (3.2

In addition to these two methqdkeaveraged modehethodcan also be considerethisis awell-known
modeling methodhat like the bilinear switching and small signal modeisplves determining the state
equations of each switching statéth on (1) and off (O)occurring inthe case of single switch devidés].

A weighted average of the twets of equationsorrelating to the two switching statesn be found using

therati— ‘Oand— p ‘Oas a weighting factowhereo is the amount of time the switch is on,

0 is theamount oftime the switch is off,"Yis theswitching periogdandOis the duty cycleg7].

The following shows the derivation of the bilinear switchamglsmall signal averagestatespace model
for the high gain boost converter o13] when resistors are add in series with the inductgrand a PV

resistor is added in series with the PV voltage souieese two models are then modified to create a
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linearizedaveragedstate space modeThis modelutilizes the exact valuef the duty cycleO in its A-
matrix, and usesthe PV voltagew as an input, as opposed to the binatgteof the switch. This

mathematical circuit moderovesto be moreaccurate than tremall signal averagedodelfor this specific

circuit andapplication.
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AA A S S UV Ll

D3
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— Cout % Rout
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VpY  vepy —— Cpv ~|I—+ B
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Figure3-3: OverallBoost Converte€Circuit Design

Table3-1: Circuit Parameterfor Boost Converter

W Photovoltaic Voltage Source

Y Resistor in Series with Photovoltaic Voltage Sour

0 Photovoltaic Capacitor

Y Resistor in Series withnductor 1

0 Inductor 1

Y Resistor in Series with Inductor 2

0 Inductor 2

0 Output Capacitor

Y Output Resistor
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Figure3-4: Boost Converte€ircuit when switch is on

The KVL and KCL equations of the circuit when gwitch is on are as follows:

The equations can be rearranged in terms of state variables as follows:

0 O
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(3.34)
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Figure3-5: Boost ConverteCircuit when switch is off

The KVL and KCL equations of the circuit when the switch is on are as follows:

o z 0 -

W 0zY 0z— 0VZzY 0 —

W 0zY 0z— 02zY 0zZ— ®
O o0 ¢z _—
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Theequatiorsetfor when the switch is on (equation 8ef) and the equatiosetfor when the switch is off
(equation seB.6) can be combined in anet set of equations as shown beldive new seincorporaes
both when the switch is on by distributing the variabl@épresenting the switch on) through the first set
of equationsand when the switch is off byistributing (1-U) through the second set of equatiorEhe

following shows the resul@ftercombining equationgistributing valuesand canceling terms

A —z7Y — - — (3.71)
0 z2¢p 2 — 27027y ’ - 2027y 27y
(3.72)
0 e 2 ———————2027Y - - — 7Y 27y
(3.73)
0 — — 27y (3.74)

z

The bilinear switching nel follows the format ofo 6 @ & @ w6 Q and the previous set of
eqguations can be incorporated into the model as follows:

, I — L T
A o W
1 I"O ' - - - N "C)
', | A ‘O (38)
11 O nop — E— -/ ,
w U I n @
u Tt Tt — . ¥}
o T L - T )
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1T X O 1 2
11 z Y] e, z é n z é 1 Tt )
(@] T s
1T (I o "
t n @ n U m
u Tt Tt e Tt W
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However, this model is not linear, nor is it in the typical state space form needed for the Kalman Filter.
Therefore, the small signal averaged model, which is in the form o6 @ 6 6is developed by
combining the A an@® matrices oftie switching modeh terms of the averaged switching value, denoted
as'Y 8 The B matrix iscalculatecby determining the rate of change of the switéhftersetting therate of

change of the state variables equal to zero and solving fealhe of theunknown state variables.

o ; — —27Y n .
:(1% h l;)l I z z oz z "'n‘% h ﬁj
“ Yo k1 l
: : @) :,: 1l 2 2 2z Nl I (3.9
Y ao N Iyl l, Q 1
) - 11 X ey
L-LQ.") € MO T Tt - I,IL% o] U
u z v
0 .
o -— ]
11 0 Iyl
1o 2w Y z0 20O Y z0 (W) il
%06 0 00 06 0 0 0 00 -
Hp:o Y0 Y :0:0 &
¥
p 00 0 0 00 0 0 0,
0] ‘0 1
u 6 U

However, thesmall signal averaged model proves to hprablemswith accuracyor the specific circuit
under testwhich will be seen later in experimentatj@amd therefore the model is modified so théatof

the A matrix is replaced with thactual value of thewitching duty cycle Oor a given time tandthe B
matrix is modified so that it incorporates the d matrix of the bilinear switching model, with the"Wput,

replaced byo . This is modified to the followingveragedtate space model:
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Given that the exact value of the duty cycle can be determainéthe value ofo can be accessgthis

model proves to have highccuracyin terms of representinthe functionality of the circuit under

considerationn a state space form
3.2Kalman Filter Design

The Kalam filter used in this system assuthesvailability ofw ,@d , and the existing duty cycle rate,
O at the existing time of sampling Q. That said, the need for accessuto can be removed by

estimating its valueither by working backwards using KVL and KCL equatipnsvided there is access
to statevariablevaluesvia Kalman filter or byusing the gain equation associated with the corresponding

DC-DC converter.

TheKalman flter also requires a discretized state space model of the system it is obs€hé@nmeviously

stated state space motteim equation3.10is discretized using the forward Euler method of approximation:
®Q pe 06z2°Y®Q Yz 6Q (3.1)

Where "Ois the identity matrix,0 and 6 are the A and B matrices of the state space model under
consideration, antl is the chosen sampling rate of the syst€rand D matricesf the state space model
remainunchangedhrough this forward Euler method of discretizatidmeresultant 'O 0z Y and "Yz

0) matrices of the discretized state space mardihenrespectivelyused as thetate transitiomatrix ('Q
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andcontrokinputmatrix (6) of the Kalman filtesystem model seeni@  "@v 60 0 from
equation2.100f Chapter 2The C matrix is chosen as

W

0

TP g (319

W
This is becaused is considered the output of the systdine C matrix ithenused ashe measurement
matrix ('O in the Kalman filter system modél Qb 0 from theequation2.11of chapter 2.Both
the processioise covariance matri and measurement noise covariance matvixised in the Kalman

filter must havecoefficient valuesthat scaleup in correlation withthe amount of noise added to the

simulation states and simulation output, respectively.

Given this system setup, tlagorithmwill compute the set of equatiom®rresponding to predict and

update, aseen in equation®.12.1through2.13.5 After predicting and correcting for the states of the
system for tim@& "Qthe Kalman filter algorithrwill thenmake future state predictions. It perforiingse
predictions by slightly increasing the existing duty cycle D vdlyea small amount, recomputing the
discrete state space system with this new value, and iterating through the prediction processthgain. |
slightly decreases the existing duty cycle D and again recomputes state space and prediction states. At this
point, there is an estimation of states for time t=k given the existing duty cycle, as well as an estimation of
future states for imé "Q p given a slightly increased D, and slightly decreased Bese values will

then be used in the MPI@cremental Conductance algorithm.
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X(k) X(k) Recompute A Matrix X(k+1)

A 4

Decrease Duty Cycle
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Recom pute A Matrix

Predict States
X(K+1)

A 4

Figure3-6: Flow chart describing simplified Kalman filter process

3.3 MPC-Incremental Conductance Design

On every discrete timestep, the MiR€remental Conductance algorithm will receive the existing and

future state estimates of the circuit from the Kalman filter. It will then use these values to cdxulate

using the following equation:

(o Ju— (3.13

Equation3.13is derived through circuit analysis of the converter both when the switch is on aag off

seen in figure§-4 and3-5. As an alternative method to solve f@& thatallows for the removal of the

resistorY , the averaged value of the sumdof — and the Inductor current® and® for when the

switch is on(figure 3-4) and0 —— and© or"© for when the switch is offfigure 3-5) should yield

similar resultsThis is expressed in the following equation:

0O § — O 0z0 & — O zp O (3.19

Access to these values should be available from estimations of the KalmanTfigeincremental
conductance algorithm then us@s and"O in the following flow chart in order to derivine desired

reference currentQ .
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Ipv(K), Vpw(k), D(K), Ipv_plus(k+1), lpv_minus(k+1)
IpV(k-1). Vpu(k-1) Iref(k-1)

l

delta_| = Ipv(k) - Ipw(k-1)
delta_V = Vpy(k) - Vpv(k-1)
|

Y T A S

IF(delta_Vv =0 IF{delta_v=0 IF (delta_v=0 IF{delta_V =0 IF{delta_V E 0 IF(delta_V E 0
& delta_| < 0) & delta_| = 0) &delta_I=0) & delta_l/delta_V*Vpv=0)| | & delta_l/delta_V*Vpv = 0)| | & delta_l/delta_V*Vpv = 0)
Irefik) = Iref(k-1) + Z | | Irefk) = Iref(k-1)-Z Iref(k) = Iref(k-1) Iref{k) = Iref(k-1) Iref(k) = Iref(k-1) - Z Iref(k) = Iref(k-1) + Z

E1=|lref-Ipv_plus(k+1) |
EO = | Iref- Ipv_minus(k+1)]

if (E1 < E0)

D(k+1)=D(k) + Y
if E1>E0)

D(k+1) = D(K)-Y

Figure3-7: MPC-Incremental Conductance Algorithm Flowchart

Where Z and Y are predetermined step vafaesncrementing or decrementii@ andO respectively
On each discrete timestep, the variables from the Kalman fltey® ,"O ,"O ) are receivedand the
change in current and voltage is compud) & "GuadQ Q & ). T he Incremental Conductance algorithm
from equation set 2.7 of Chapteti2then computedind a reference sign@® is computed accordingly.
The prelicted values 0O and’O are compared t® , andthe duty cycléOis increased or decreased
with respect to the predicted duty cycle tisatlosest in value tihe referencsignal This duty cyclevalue

is applied to gulse width modulatedPiVM) signal which determines how long the switch of the-DC

converter is on and off per sampling period.

Additionally, variable frequency duty cycle control such as that seen by the auth@8} obdild replace

the direct duty cycle control through the designaofadditional algorithm that detects duty cycle by
monitoring pastsamples othe 1 and 0 outputs of the switch, determining when the last period occurred,
what the ratio of 1 to O was for that periodddeeding value into the state space madehe duty cycle

‘0. The incrementathangesn duty cycle for prediction and control could then be repladédcontrol of

a switchON (1) or OFF (Opersampleperiod
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Chapter 4
Experimentation
4.1 System Setup

Thehigh-level system design is shown belowfigure4-1. 'O andw represent the photovoltaic current
and voltage respectively, and act as a current and voltage source to-I€ &siverter circuit. Values of
wd , which representthe voltage across the BQC converter capacitor and its parallel output resistor,
andw are sent to the Kalman filter, where estimations of thell@Cconverter states at tinte "Qand
predictions attim& Q pare made. The MRONC algorithm then uses this information to determine
a duty cycle,O that will control the DEDC caverter to allow for maximum power to be extracted from
the PV module.The present value of the duty cyd2js needed in the A matrix of the Kalman filter, and

therefore must be fed backttee Kalman filter block.

Ipv VCout
> DC-DC Converter >
Vpv
Photovoltaic ; r 2
: Y
: D
i MPC-Inc Cond.

i Statevars(k)T TPredidions(kﬂ)

e »  Kalman Filter [«

Figure4-1: Block diagramshowinghow each parbf the KF-MPC-INC design interacts

w has a dotted line due tostcapalility of beingestimatedthus further reducing the system framwo

sensors tone Howeverjt wasnot estimated during the experimentation proc&sss is because thgain
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equation is only useful during ideafcuit conditions and the added resistors used in this simulation prevent
it from being accurateAdditionally, if using circuit analysis techniques far estimation this requires
modifying theinitial condition parameters of the Kalman filter to make sure the system converges during

the initial stages aissessment

4.2 MATLAB Simulation

The entire system sirfation is set up in the MATLAB software platform. In Simulitke PV simulation
model chosen is the Kyocera Solar KC200G8&en in Figure-2), with its typical -V and RV responses
to irradiance and temperature seen in fig@@&sand2-3 of Chapter 2 The array is modeled as a single
parallel string with a single serieennected modulewith inputs of temperate and irradiance that are

functions of time

Irradiance
(W/m2)1

25

Temperature
(Deg. €)  Photovoltaic Array

Kyocera Solar KC200GT
1-module string
1 parallel strings

Figure4-2: PV Array Module in Simulink
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The following table shows the specific PV characteristics of the model:

Table4-1: Parameters of Simulated Kyocera Solar KC200GT

Maximum Power (W) 200.143

Cells Per Module 54

Open Circuit VoltageVOC (V) 32.9
Short Circuit CurrentiSC (A) 8.21
Voltage at MPRVMP (V) 26.3
Current at MPPIMP (A) 7.61

Temp. Coefficient of VOC -.355
Temp. Coefficient of ISC .06

The irradiancendtemperature inputs are configured so that they haviellbeiing values over the course
of 2.5 seconds of simulation timevith the necessary values of voltage, cutrantd power needed for

maximum power extraction given those values

Table4-2: PV Input Parameters and Expected \gnd P Values dflaximum Power Point

Simulation Time| PV Input Irradiance | PV Input Temperaturg Power at
(seconds) (W/m?) (deg. C) MPP (W)

0 800 25 161.5

5 1000 25 200.2

1 800 25 161.5

1.25 1000 25 200.2

1.5 1000 45 182.8

2 1000 25 200.2
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For testinghe algorithmsthe high gain boost converteiodeled infigure 3-3 is implementeds a circuit

in Simulink, as seen in figure-3. Table4-3 shows the circuit parameters chosen for simulation.

™
L1

=3 g

RL1

= T
U = -
cov T 2
.
&

RL2

Irradiance
(W/m2)1

b
—Rout

Pholooltai Array
Kyocera Solar KC200GT
1-module string

Figure 43: Simulink circuit model of high gain boosbnverter with PV array containing characteristics

of tables 41 and 42, and circuit parameters of table34

Table4-3: Circuit Parameters of Simulated High Gain Boost Converter

0 260 'Q Y 1m
0 260° 'Q Y 1m
0 3mH | Y 1m
0 3mH | Y 100m

Before implementing and testing the MPPT algorithms withsthrulation setup of figure-3, the state
space models of the circuit that were developed in chapter 3 (equations 3.9 and 3.10) are implemented as
MATLAB function blocks and compared to the physical circuit model for accuiaayrder to create a

fixed step response scenario, the circuddel of figure 43 is modified to that of figure-4, with a fixed
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duty cycle of 50%, fixed switchingfrequency of66.67kHz andfixed input voltage of 30V The small

signal averaged model of equati®® is coded as a MATLAB function block, as seerfigure 45 with

the same circuit parameterduty cycle, switching frequency, and input voltagefigure 44. Its step
response results fos A® O handwd  are compared tboth the physical circuitf figure 44 andthe
averaged model of equatiBl0(also implemented as a MATLAB function block seéefigure 46). The
standalone Kalman filter is also evaluated with the previously mentioned test data as the input to ensure

the estimated results functioned as desivdich is also seen in figure-@.

Figure4-4: Simulink circuit model ofhigh gain boostconverterwith afixed voltage inputo of 30 volts

and fixed duty cycle of 50% at 66.66klftr verifying mathematical model accuracy

: ‘ ! 4557

small signal model

Iillil\ﬁlil

Figure4-5: Equivalentcircuit model from figured4-4 usingthe mathematicasmall signaktate space

model of the circuitlerived from equatio.9

43



As seen in figure %, the 30-volt input and PWM switching signals are fed as inputs toMAG LAB
Functionblock,| a b e | e dwhielrsconfainctmdBATLAB code for thestate space model of the BC

DC converter.The output scopes includ® ,"© ,"© , andwd

i K

Dty
Cycle1

4+
etug

Figure4-6: Mathematically equivalent averagetbdelsetupusing equation 3.18s well as th&alman

filter setupwhich estimate states giveminput ofw , anoutput ofawd , andduty cycleO

As seen in figure 4, the averaged state space modédizass the same input signals as those from figures
4-4 and 45, and the Kalman filter design, which utilizes the state space averaged model, receives values

of 0 andw in order to estimate all statebthe system.

The following shows the results of each state variable of the cibmift,from the actual circuit model of
figure4-3and from each of the equivalent mathematical models. The values from the circuit model function

as a referere in that the values frothe mathematical models should replicate them as much as possible.
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20 VCpv - 50% Duty Cycle, 30V Vin
T T T

25 *

Circuit Model

Averaged Model
20 - Small Signal Model 7
KF using Averaged Model

Voltage (V)

15 I I 1 I 1 I 1 I I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time (seconds)

Figure4-7: X response&omparison

Figure4-7 shows the response @b across thevariously designed modelwith a 30V voltage source
and 50% duty cyclapplied The averaged model (red) and Kalmétter (purple) both match the circuit
model (blue) otv giventheinput conditions. The small signal model (yellow) deviates from the circuit

model by about 27 volts in steady stathowing thattihas less accuracyhen compared to the averaged

model and the Kalman filter which uses the averaged model.
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IL1 =1IL2 - 50% Duty Cycle, 30V Vin
T T T T T

Circuit Model

Averaged Model

9 Small Signal Model

KF using Averaged Model

0 | | | | | | | | 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time (seconds)

Figure4-8: "© and® responses

Figure4-8 shows the response@ and® across the previously mentioned models, with a 30V voltage
source and 50% duty cycle appli€d. and"© are equal to each other because their inductance values
have been set to equal values and they are either in series or parallel when the sfftcn @n,
respectively. fieaveraged model (red) and Kalméilter (purple) both match the circuit model (blue) of

‘© and® given the mentioned conditions. The small signal model (yellow) deviates from the circuit
model by aboutwo amps in steady stat¢hus showing less accuracy when compared to the averaged

models.
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VCout - 50% Duty Cycle, 30V Vin
T T T

Circuit Model

Averaged Model

Small Signal Model

KF using Averaged Model

Voltage (V)

-10 1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time (seconds)

Figure4-9: wd responses

Figure4-9 shows the response@d across the previously mentioned models, with a 30V voltage source
and 50% duty cycle appliedh& averaged model (redKalmanfilter (purple) and small signal model

(yellow) all match the circuit model (blue) o6

In theanalysis of the preésus figures, it can be seen that averagjate space modatcurately models the
DC-DC converter circujtand that the Kalmafilter accurately estimates states given délieragedstate

space modeRfter verifying this,the proposedalman Filter MCPIncremental Conductanedgorithm is
thenwritten as a MATLAB function block within Simulinkrhe algorithmis implementedvith inputs of

@ andwd , andwith a constant value outptitat determines the duty cycle of the citawiitchesAside

from the proposed algorithm, two other algorithms will be used for functionality comparison. These
algorithms are the traditional, direct duty cycle controlled Incremental Conductance algorithm and the
MPC-Incremental Conductance algoritlirom [13]. The results of the algorithms will be compared to the

proposed algorithm under conditions with and without noise.
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In reference tohefigure4-10, tags that route to MATLAB function blocks of the various algorithms under
test can beeen around the switch@hese tagsoute the signals from the outputs of the algorithms to the
inputs of theMOSFETswitches, anthcludethe Incremental Conductance algorithm (Y_INC), Incremental

ConductancaModel Predictive Control algorithm (Y_MPGind Kalman Filter(Y_KF).

RLZ Confinuous

Blal -

Cpv

Irradiance
(W/m2)1

—
i [¥_KF)| Cout _Rout

Pholooltai Array
Kyocera Solar KC200GT
1-module string

Figure4-10: Simulink circuit model with box emphasizing the routing from the control algorithms to the

MOSFETswitches

ED ¢
[

o
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-

Figure4-11: Incremental Conductance Algorith&imulink Block
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Figure4-13: Proposed Kalman filter MRONC Algorithm Simulink Block

The flow chartshownin chapter 3 (figure-8 and 37) used to describe each MPPT algorithm were coded
as MATLAB functions and routed to their respective Simulink function basdeen in figures 41, 4

12, and 413. The INC algorithm contains a simplified version of the®ARIC algorithm seen in figure-3

7. Thecommented out (graylocks above the inputse noise generators that carubeommentedo that

noiseis mixed with the input signals.

4.3 FPGA Hardware-in-the-Loop and Cyclone V FPGA

Hardwarein-the-loop (HIL) simulationis a process whemn FPGA development board can be integrated
via JTAG orEthernet taMATLAB/Simulink projectso that a hardware/software-simulationcanoccur.
This method allows for an engineer to implement the designed conwdtlahgin an FPGAas a prototype
and then test thEPGA desigrwith the simulationdesignit is controling in MATLAB/Simulink. HIL
creates a virtual redime environment for testing algorithms without the neelduild a real circuitThus,

the development time cycle can be reduced to a minimum amount while still maintainirigvagh
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accuracy becausedttontrol algorithm is still running on a real circtihis specific experiment allows for
testing the FPGAprototype with the controlled circuit model without actually having to design and
implement a circuit model prototypeSince HIL moves the propogealgorithm from a simulation
environment to actual hardware, it is capaiflsore accurately displayintgow the design would function
in areaklworld environmentandthereforeits reaction to noisebecomesnore realisticThis aimso address
the conflicting results seen in previously mentioned literategardingdifferences in results regarding

simulation and hardware experimentation.

TheKalman Filter MPGIncremental Conductance Algorithm is written in Verilog HDL, and paidte
DE1-SOCdevelopment boardyhich contains an Intel/Altera Cyclone V FP&OC. The board is then
interfaced with theHIL simulation in Simulinkwhile the remaining simulation system (PV module,-DC

DC converter circuitstaysin simulation software.

\-jPG/«‘l double ’1— o_MPC_switch i_Vpv e

{debug

debugt i_Veut

-

Figure4-14: FPGA block(FIL) in Simulink

Figure 4-14 shows the higltevel block diagram architectutbat describes the hardwaseftware ce
simulationenvironment Circuit information such a® andw is sent to the FPGA development board

via the FIL block. The FPGA then processes the data and sends the processed information back to the FIL
block andgenerates theutputthrough the Y_FPGA tag. The transferimfiormationbetween the FPGA
developmentoard and the MATLAB simulation environment occuwia a JTAGUSB interfae. The
transmission speed and response time fully meet the requirements {fioamesatonitoring and control.

Thus, this emulation platform can fully reflect reabrid usage scenars.
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In Simulink, d@rcuit information entering the FPGA, suchiasandw ,isquantized at a discrete interval,
then sampled using a zeooderhold (ZOH) method. The quantizatiorblock usesa Gound to nearest
valuedgquantization algorithm and tl#OH block thenholds thequantizednput for a given sample period.
In this experiment, the quandizonrate is set to the sampling period of the algori{h S chosen in this
experimentand the zermrderhold rate is set to the clock frequency of the FRGMHz chosen in this
experiment. With this setup,Simulink will send input data on every clock cycle of the FPGA clock
(correlated to ZOH sampling rate), and of the data beings#mt FPGA on every clock cyclejstupdated
oncefor every algorithm sampling period (correlateith quantizatiorrate). In this manner, the FPGA
can effectively count clock cycles and determine that, aftered number of clock cycles equal to the

sampling period75 clock cycles seen in this experimengw data has arrived.

For FPGA development,ow a system is designeth digital hardware depends dwoth hardware
requirements and timing requiremenithe Cyclone V FPGA used in this simulatiomtains 32070 logic
elements, 87 DSP blocks, 5MB of block RARhd 457 pins.The sampling rate for this design is set at
66.67kHz, which ispproximatelyl5 “¥f time for the system to compute an output giveimaut. The
number of FPGAlock cycleghat 15 “¥quatego scales with the chosen clock frequency of the system
For example, &0MHz clock containg50clock cycles in a 15 "Weriod. The meanshat, at this speed,
the FPGA ha§50clock cyclesworth of processing timffom when input data is received to when output
data must be sent otthe maximum possible clock frequency that an FPGA and is determined drased
how the FPGA logic is designed (meetsgfupand hold requirements that account for propagation delay

between logi@lementy

The Cyclone Mabric utilizes logic elements in th@fm of adaptive logic modules (ALMSALMS are of
higher complexity than basic logic elemerd, with each block containing data, clock,
synchronous/asynchronous clear, and synchronous loadgmwell as multiple lookup tables, adders, flip

flops, andmultiplexers
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Figure4-15: Basiclogic element architecture (lef3d5] versusthe Cyclone V ALM architecture (right)
[59]
4.4 FPGA Register Transfer Level (RTL) Design
The desigrior the proposedlgorithmis broken down into three modules: a top module for controlling the
external 10, performing the sampling of data, and handling of dataflow between all other modules, a

Kalman filter module forexecuting the full Kalman Filter algorithm, and an Increme@@hductance

MPC module foirexecuting the MPPT and control algorithm.

MATLAB Sim ulation

PC

USBWJTAG INTERFACE

FPGA

Top Module

Kalman Filter Modul MPC-INC Module

Figure4-16: System hierarchy for the FPGAodules
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As stated, te Hardwaren-the-Loop Simulation sends data on each clock cycle that updates with respect
tothe zereorderhold discretization/sampling rate chosen in the corresponding function block that feeds in
the FPGA block. Because of this, the top module utilizes a counter that counts each clock cycle until the
value of the sampling rate is achievednc® that value is achieved, it registers the input data at the given

clock cycle, and sends a datalid to the Kalman Filter, thus beginning the computation process.

To Simulink
From Simulink

Vout [31:0]

Duty Cycle Control [31:0]
Vpv [31:0]

r |

Update Block (Flip

Counter Flop)

Vpv [31:0]
Vout [31:0]

Begin Computation

TOP MODULE

Vpv [31:0]
Ipv [31:0] Duty Cycle Control [31:0]
Vout [31:0] Computation Dong

Ipv Predicted (DC+)

Ipv Predicted (DC -)
Duty Cycle Gontrol [31:0] ‘

Begin Computation l
A\ Yy L

To Kalman Filter Module

From Kalman Filter Module To MPC-Incremental From MPC-Incremental
Conductance Module Conductance Module

Figure4-17: FPGA dataflonoverviewat the top module

The diagramfrom figure 4-17 shows the functionality of the Top Module used in the desigput data
from Simulink is passed to the Kalman filter when the counter reaches a certain value. The Kalman filter
then processes the data and passes it to the-N#Omodule,where it determinethe change of the duty

cycle The new duty cycle value is registered in an update block and is sent to Simulink as output data.

The data format chosen is-B# signed fixed point witlihe 16 least significant bits beinfyactional bits.
This is commonly known as a Q(16,16) formBhe chosen data width is sufficient to handle the system

requirements and maintain a low level of power consumptioirhigh level of precisiofT his is determined
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after considering the trad#f of system requirements and onboard resource cost. Due to the flexibility of

the FPGA design, the data width can be increased or decreased to cater to different system needs for an
optimized design. Aincreaseén computatioal accuracy can be achieved by increasing both the bit width

and thenumber of fractional bits at the cost of increased risk edfpandinghardware resources
Additionally, the number of fractional bits can be increased while maintaining a fixed bit twidiBo

increasadecimal precisiomt the cost of increased probability of overflow error.

SIGN «— INTEGER > < FRACTION——*
BIT 3130292827 26252423222120191817161514131211109876543210
INPUT x[K]=25 0 0 0 0O 0 0O 0O OO OO0OO0OOOZ2101000O0O0O0O00C0O00C0OO0CO00O0

Figure4-18: Signed, 32it fixed point numbering in Q(16,16) format displaying the value of 2.5

From a computational perspectivéaet Kalman Filter algorithm cabe considered a long chain of
multiplicatiors and accumulations However, the need to take an inverse arishen computing the
Kalman gain. That said, given thember of state variables and subsegstie spacmatrix dimensions

for this specificapplication,the matrix inverse operation simplifies to a multiplicative inversa sihgle
valuew as- . The synthesis tools used by Quartus implentiergte predesigned logic block@P core$

when a division operator is written in VegloThese cores attempt the perform a division within a single
clock cycle at the cost of considerable amounts of logic and maximum possible clock freqUiegreyis

a broad amount of literature regarding approaches to division and inverse operatiB@Aitogic, but,

as will be later discussed, this specifiesign is still able téunction as intendedith the increase in logic

utilization and decrease in maximum possible clock frequency.
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. . Wpv [31:0]
Begin Computation

A lpv31:0]
Vpv [31:0]
Ayout [31:0]
Vout [31:0] A
Ipv Predicted (DC+) [31:0
Duty Cycle Control [31:0] pn (DCH31:0)
Ipv Predicted (DC-) [31:0]
A

Begin Computation

A

¥ v
[ Y
Update "A Matrix'
] with New Duty Cycle [
Block
y v 17
Kalman Filter Enable Incoming State Estimation State Prediction | OSI;;]:l —
> Data [| state Machine ™ state Machine [ Rea
Reg !
Multiply - Accumulate
Initialization » Block <
Initialization State Machin Complete
Reg KALMARN FILTER MODULE

Figure4-19: Kalman Filter Moduleadesign in the FPGA

In figure 4-19, input signals from the Top module of the FPGA are fed into the Kalman Filter module.
OncetheKalmn Fil ter modul e is initialized at startup,
to trigger a state estimate and state prediction using the existing vatoelof fand duty cycléD. Both

the 6State Est i matoinodn 6s taantde Ongatcahti erAe@imeadeiblddk fare t h e
performing matrix multiplicatiManramd bdddicki 6oy as
of the duty cycle to recalculate values within the A matrix that are dependent orytteyaa. Output

values are registeredandadatal i d si gnal i s generat ediNGndoBuegi n Cor
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System Reset

Initialization

@ Initialize Parameters, Initial
Conditions
1. AssignA,B CP,Q,5,R X
initial conditions
2. Compute A transpose from A

Wait for new data

Wait for Top
Module DV

New Data Ready = 0:
Wait

State Estimations =0: o
Must perform predictions State Estimations =0
Must Perform Predictions

1 Verify theduty cydeisbetweenOand 1
New Data Ready = 1: 2. Multiply duty cycle and A values ALU compute per clock cycle .
£ Update Nh.trn:es: 3. Getresults, apply updates to A matrix LA GE
1 Verify theduty cycleisbetween Oand 1 4, Discretize the updates, muktiply A*Ts State 2.B*U PrEglmOrl
Estimation 3. (AX)+(BU) X=AX+B"U

2. Multiply duty cycle and Avalues
3. Getresults, apply updates to A matrix
4. Discretize the updates, multiply A*Ts
5. Discretize the updates, add | +A*Ts

UpdateA S. Discretize the updates, add | +A*Ts
Matrix Using
Existing Duty
Cycle

1PV =U -X[0]
Duty Cycle
DC+/-

Perform Last Computation,
Calculate Increased Duty Cycle and
Decreased Duty Cycle

State Predictions @

1 Calculate IPV+ and IPV-

State_Estimate=1:
@ Perform state estimates:
ALU compute per clock cycle:
LA%K
2.B*U
3. (Ax)+(BU)

Calculate IPV+
and IPV-

State Estimation
P=(I-K*C)*P

Continue performing State estimates:

ALU compute per clock cycle
1K*C
.
@ Continue performing State estimates: g :zg;.::;:
ALU compute per clock cycle 2 lKC)'P(3') s S
1 A*P(1) 2 tate Predicitions
5. (KC)*P(4) 1. Iatch outputs and assert done signal

s
2ATH2) & 1{KC*P)

3.A%F(3)
4 A*P(4) Latch Qutput
5. (4P)*(AT) ) @ P
6. (AP)*(AT)(2) Continue perfforming State estimates: Trigger Strobe
for MPC-INC

7. (AP)*(AT)(3) ALU compute per clock cycle
8. (AP} *(AT)(4)

3. (AP*ATH+(Q)

@ Continue perfforming State estimates:
ALU compute per clock cycle

State Estimation
K=P*CT*S_inv

1 C%X
2. (y)=[Cx), C°P
3.(cP)*CT
4. (CP*CTH+R Continue performing State estimates:
ALU compute per clock cycle
1.5 inv=1/S. P*CT
2. (PCT)*S_inv

3.K =P°CT*S_inv

Figure4-20: High level sate machingiagramfor Kalman Filter Module

In figure 4-20, each numbered item under a state expl#ieadditional clock cycles/stateeededor the
specific computationThe largest computationithin the algorithm (in terms dhe number of multiplies

and adds needed to get a result wb@mputing a valueis a 4x4 matrix multiplied by another 4x4 matrix

to get a 4x4 result. Thresult requires 64 multiplies and adds. Since there are a limited number of DSP
blocks, afixed multiply-accumulateprocessing unifMAC) is created and the subsequiaiman filter

state machine routapecific registers and wirésand fromthe MACon each stateThis method prevents
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the FPGA from generating a separate DSP block for every specific multiplication that occurs within the

algorithm.

T ouTPUT INPUT ouTPUT

CLOCK CYCLED STATED »  Multiply Block ———» CLOCK CYCLE 0 STATE O MAC —  »
INPUT OUTPUT

CLOCK CYCLE 1 -

STATE1 Multiply Block ———» CLOCK CYCLE 1 STATE1

INPUT QUTPUT

CLOCK CYCLEZ2 STATE2 Multiply Block | — CLOCK CYCLE 2 STATE 2

Figure4-21: Block diagram illustrating how using a MAC reduces the number of DSP blocks by
swapping out the 10 of MAC on each clock cycle (right) as opposed to hasperdicmultiplication

block for every multiply that occuia the algorithn(left)

The chosenumber of multiply blocks was 16, which allows for a full 4x4 matrix to be multiplied with a
1x4 vector within a single clock cycle, as seeb ihwof thew 02w 06 Z 6 state space model when
there ardour states. Thus, when a 4rdatrix must be multiped by another4x4 matrix, the columns of
the second matrix musbuteto the MAC column by column over four clock cycles. Thissigntradeoff

is intended tareate a balance between DSP block utilizatiodthe numberof clock cyclesneeded for a
computation The Incremental Conductant#”C module can be written so that only a single multiply and

single divide is neededvith all other mathematical operations only being addition and subtraction.
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Begin Computation
Ipv [31:0]
Vout [31:0]
wpv [31:0] Computation Done
Ipv Predicted (DC+) [31:0] Duty Cycle Control [31:0]

Ipv Predicted (DC-) [31°0] y

Input Data
Reg

=0 1]

Duty Cycle

Enable Preliminary Mathematical 1213V [31:0] ) IREF [31:0] Final Mathematical [31:0] ,| OutputData
MPC-INC Operations Priority Encoder Operations Reg
Reg delta_I[31:0]

MPC-INC MODULE

Figure4-22: MPC-INC Module design in the FPGA

Figure4-22 shows input signals from the Kalman Filter module routing into the WNRCmodule within

the FPGA. The MP&€ NC modul e registers incoming data when
and begins the process of executing the flow chart ofdi®7. Preliminary mathematical operations

includedc omputing O6Delta_1| 6, 6 D & bctua so\that, the anesteéd-Ba@IEe | t a |
statement seen in figure/3can be executed in one clock cycle and thus be synthesized as a priority encoder
within the FPGAAfter the |_REF signal is computed from theEESE statement, it is compared to the
predicted values (061 PV Predidt)ed ahDC+a)ddididndnal P\
before sending the computed duty cycle control valuedaavalid signal up to théop module, and is

further explained in the state machine of figw234
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System Reset

@ make sure thatthe DCis

betweenOand 1and senda DV @
out; end of algo
if (o_DC_control >

0000_00000000)
o_DC_control <=
32'b00000000_00000001_0000
0000_00000007;

New Data Ready =0:
Wait

=

New Data Ready =1:
@ Update variables:
r_lpv_plus<=i_lpv_plus;
r_lpv_minus <= i_lpv_minus;

r_Vpv<=i Vpv; if (o_DC_control < 0}
r_lpv<=i_lpv; o_DC_control<=0;
r_Vout <= i_Vout; o V<=1,
r_Vpv_t 1<=r_Vpv; r_SM<=0;
r_lpv_t_1<=r_lpy; if(r_lref< O) r_Iref<=0;
r_lref_t_1<=r_|ref; else r_lref <= r_lref;
r SM<=1; @
apply duty cyde adjustment
if (r_G1<r_GOjo_DC_control <= o_DC_control +
@ Assign numerator Value: r btz
r_numerator[310] <= r_delta_I; else o DC_control<=0_DC_control - r_DC Z;
@ Perform Division Add 1 to complete the 2's comp computation ‘

if(r_detta_V == 0} r_cond <=0; if(r_GO_flag)'

else r_cond <= {r_numerator << r_G0<=r_GO+ 1'by,

16) / r_detta_V; ¥(r-G1 fing)

r_Gl<=r_G1+1b];
r_GO flag<=0;
r_ Gl flag=<=0;

r_SM<=10;
@ Perform Muttiplication
mult_out<=r_cond * r_Vpv; If MSB == 1, need to take the twos comp to find positive @
equivalent, if not, keep how itis
if(r_GO[31] == 1'b1)
begin
r_GO flag<=1;
for(i=0;i<32; i= i+1) r_GO[i] <="~r_GO|[il;
end
@ 93 if(r_G1[31] == 1'b1)
Perform Addition besin
r_equation_result <= [mult_out r_G1 flag <= 1;
>» 16+ r_lpy; for(i=0; i < 32; i =i+1) r_G1[i] <=~r_G1[i};

end

Begin logical statement to find new value of Iref @
((r_delta_V==0) && [r_delta_| = 0)) r_lref<=r_|ref;
Else if ([r_detta_V == 0) && (r_delta |>0)) r_lref <=r_lref-r_Z;
else if ((r_delta_V == O) && (r_deltz_|<0)) r_lref <=r_lref+r_Z;
else if ((r_delta_V '= 0) && (r_equation_result ==0)) r_Iref <= r_lIref;
else ff ([r_delta_V '= 0) && (r_equation_result > 0)) r_lIref <= r_lref-r_Z;
else if ((r_delts_V '= O} && (r_equation_result< O)) r_lref <= r_Iref+r_Z;

Figure4-23: High levelMPC-INC State machindiagram

Figure4-23 shows hovthe MPGINC algorithm is broken down across eatick cycle of its computation.
When a datavalid signal is received from the Kalman filter modw#éand 3w values are computed by

comparing incoming voltage and current values to prewoliage ancturrent values.Thenthe division
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operation for— occurs over two clock cycles, and the result is multipliedobyand added t&O . This

result allows for the valuef —z @ ‘O to be calculated ahead of time tme inthed i f elded

determiningO , which occurs in gingle clock cyclafter this computation is mad&fter the newO is
calculateda differencecalculationbetween the predicted valugem the Kalman filtemandO is made,
and the absolute value of the result is computed. The absolutes/éduad through analysis of the most
significant bit of the result (MSB), which is equal to one when negative and zero when sit&¢he
dat a i s i nconplengenferrd.,If the MSBégsialso n e , t tomplemanofdhe data value

is taken by reversing all bits of the word, andralue ofone is added to the resuBased on a comparison
of previously mentioned absolute value resulity @ycle adjustment is made via an addition or subtraction
of a delta value to the existing duty cyd@,After it is verified that the new duty cycle value is between

zero and one, the output data is latched and avddithis sent to the top module.

c ha

After each module was written, it was tested separately with a testbench that contained input data mirroring

an equivalent MATLAB function with equialent input data in order to check for accuracy and error.
Individual module resource utilization and timgianalysis was also conducted. After ensuring the accuracy
of the Verilog modules through testbenches, the system was integrated into the Simulink Hiardweare
Loop simulation for full system testing ensure it functioned in the same manner asintsilation

equivalent.
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Chapter 5
Results
5.1 MATLAB Simulation

The simulation was conductetlltiple times fotthe three algorithmagsingvarious sets of parameters, both
with and without noise Undemoisyconditions white Gaussiamoisewas added taxd  for the Kalman
filter, as well asd and"O for the MPGINC algorithm,and"O and for theINC algorithm {O is
estimated using estimated state variables for the Kalman, Bifigthe INC algorithm does notisecd ).
The noisgpowerwas incremented frorperotowardsoneuntil the algorithms began losing their ability to

track.

Analysis of steady state oscillations, response time to changes in irradiance, response time to changes in
temperature, and overall power efficiency was conducted for various parameter values of the algorithms.
These values are evaluated both at the PV location (using PV voltage and current) an®®e@@erter

output location (using the voltageross and current through the output resistor).

The following shows the results of the algorithwithout noise andavith baseline parameters chosen, as

seen in the following table:

Table5-1: BaselineAlgorithm Parameters

Perturb/Samplg Duty Cycle | Reference Q R Covariance
Rate Step Size | Step Size | Covariance
KF 15 S .0001 .001 .000001 | .01 (no Noise)
10 (noise)
MPC 15 S - .001 - -
INC 15 S .0001 - - -
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Steady State
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Figure5-1: Steady State OscillatioiisBaseline ParameteisNo Noise(Top: PV Power, Bottom: Output

Power)

Figure5-1 shows that the steady state oscillations are more significant with the INC and KF algorithms,
resulting in slightly lower output power valudshis isexpected whethe Kalman filtermustestimate the

valueof ‘O andwhenthe INC and KFalgorithmsutilize direct duty cycle control.
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Transient Response to Increase in Irradiance
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Transient Response to Increase in Irradiance
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KF
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Figure5-2: Transient Response to Rapid Irradiance Charigaseline ParametersNo Noise(Top: PV

Figure 5-2 shows that all three of the algorithms have similar transient responses on the output when
irradiance change is present, with the KF and MPC algorithms exhibiting slight overshoot. This is expected

because all three algorithms have simdantrol step &e parameters implemented. The INC algorithm

0.5

0.52 0.54 0.56 0.58
time (s)

Power, Bottom: Output Power)

also exhibits a slightly higher transient response rate across the PV panel.
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Transient Response to Increase in Temperature
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Figure5-3: Transient Response to Rapid Temperature ChaBgeseline ParametersNo Noise(Top:

PV Power, Bottom: Output Power)
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Figure5-3 shows that all three algorithms exhibit simiteansient responses on the circuit output in the
presence of a temperature change. Similar to the irradiance change result, this should be expected when

stepsize parameters are equal across each algorithm.

Power Efficiency

KF
MPC
INC

0.9995

0.999
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0.997

0.9965 1 L 1 1 I 1 L 1 1 I
1.63 1.64 1.65 1.66 1.67 1.68 1.69 17 1.71 1.72 1.73

time (s)

Figure5-4: PV Power Efficiency During Steady StdtdBaseline ParametersNo Noise

Figure5-4 shows the PV power efficiency rate during steady state. This was calculated by dividing the
steady state P@owervalue of each algorithm by the expectedwer seen itable 42. The oscillatory
spikes seein the KF and INC algorithms contribute to lower overall power efficiency when compared to

the MPC algorithm. This is likely due to the direct dutyleyamntrol exhibited by these algorithms.

The roise was then added to thiecuit parameters mentioned at the beginning of pag&V&8. baseline
parameters, abe noise power approaches p m , The MPCINC has variable tracking ability and the

INC has no tracking abilityT he visuaresults othe responses wittoise power g 2 p 11 isseen below:
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Power Response
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Figure5-5: OverallPV Power ResponseBaseline ParameteisNoise
Figure5-5 shows that, at a power level pt p 1T , the KF algorithm maintains its tracking throughout

the entire simulation. The MPC algorithm only tracks under certain irradiance and temperature conditions

(those exhibited between 1 and 2.5 seconds). The INCrddésmck at all.
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Power Efficiency
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Figure5-6: OverallPV Power Efficiencyi Baseline ParametefsNoise

Figure5-6 shows the power efficiency values of the three algorithms under the same sinudatidions

asfigure 5-5. Other than during initial conditions and transients, the KF algorithm exhibits high power

efficiency, while the MPC only maintains high efficignwhen it is able to track MPP, and the INC does

not at all.
The stepsizesacross all parametevgerethen increased and decreasedhat theeffects of step size on

response with and without noiseuld be analyzed. The following table shows the step ranges used:
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Table5-2: Modified Algorithm Step Parameters

Perturb/Sampl¢ Duty Cycle Step Sizg Reference Q R Covariance
Rate Step Size | Covariance
KF 15 S .000% - .001 .00 -.01 .0000@M1 | .01 (no Noise)
10 (noise)
MPC 15 S - .00 -.01 - -
INC 15 S .000% - .001 - - -

With modified parameters, the simulatiprocess was performed again as seen below:

ﬂu'mvmww

Vuwu

Stoady State ! Stoady State
T

T

M H ML

sssssssss

l

power (W)
& 8 8
& g &
T T
L I

Steady State

sssssssss

Figure5-7: Steady State OscillatiofisModified StepParameteréDecreased on Left, Increased on Right)

i No Noise(Top: PV Power, Bottom: Output Power)
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Figure5-7 shows thatlecreasing the step sizes allows for less steady state oscillation t@owzs all
three algorithms, witla more significant reduction seen in the KF and INC algorithms. It also shows that
increasing step size resultsanincrease in steady state oscillations, védtmore significant oscillatory

nature seen in the KF ahdC algorithms.
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Figure5-8: Transient Response to Rapid Irradiance Chargedified StepParameteréDecreased on

Left, Increased on Right) No Noise(Top: PV Power, Bottom: Output Power)

Figure 5-8 shows how step size affects transient respors@sadiance changes. Decreased step sizes
result in longer transient response time with little to no overshoot occurring, while increased step sizes

allow for rapid transient response at the cost of increased overshoot and decreased accuracy.
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power (W)

Figure5-9: Transient Response to Rapid Temperature Chaiedified StepParameter§Decreased on

Left, Increased on Right) No Noise(Top: PV Power, Bottom: Output Power)

Figure5-9 shows transient response to temperature change with modified steefgasa The results are

similar to that of the previous irradiance changes, with fabtérmore inaccurate responses seen with

increasing step values.
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