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Abstract 
 
 
 Large-scale genetic datasets have revolutionized human genetic research. As the 
cost of sequencing decreases dramatically, biobank scale datasets with millions of 
individuals and hundreds of millions of genetic variants have emerged. Given the scale of 
the sequence datasets, query and retrieval of information from them have become a central 
problem that precedes genetic analyses. We developed an R-package seqminer2 for 
efficient querying and retrieving genetic variants in biobank scale datasets. It implements 
a variant-based index and substantially improves the speed of querying sequence datasets 
by several magnitudes compared to the other state-of-the-art tools. It also requires much 
smaller memory to run making it feasible to directly read genetic data into R program. It 
supports popular file formats for statistical genetic analysis, including VCF/BCF, BGEN, 
and PLINK formats. The improved efficiency and comprehensive support for various file 
formats has greatly facilitated our method development for risk prediction in multi-ethnic 
populations and will facilitate others’ research in the genetic and genomic field as well.  

 With the help of seqminer2, we developed a novel meta-analysis approach to predict 
polygenic risk score (PRS) in multi-ethnic samples. It is currently challenging to construct 
PRS in the diverse US and worldwide populations because the majority of the available 
training data are from the European population. If using European samples as training data 
to predict PRS in non-European samples, the prediction accuracy can be low due to the 
different patterns of linkage disequilibrium (LD) and heterogeneity of genetic effects in 
diverse ethnic populations. An alternative way is to train the model with the same 
population as the target population. However, the sample size for the target population 
other than European can be much reduced and results in worse prediction performance. 
Our method integrates multi-ethnic studies as training dataset while accommodating 
heterogeneity in genetic effects and linkage disequilibrium patterns. It decomposes genetic 
effect heterogeneity into a fixed effect and top principal components (PCs) of genetic 
variation. It integrates the heterogeneous genetic effect estimates across ancestries to 
improve the PRS prediction for individuals from diverse ancestries. We showed our 
method improved the prediction accuracy for individuals from different ancestries in the 
simulation comparisons over various scenarios for heterogeneity across diverse 
populations. Applying our method to GWAS and Sequencing Consortium of Alcohol and 
Nicotine use (GSCAN) dataset improved prediction for tobacco use phenotypes. Our 
approach facilitates stratifying the risk of smoking behaviors across ancestries and would 
contribute to quantifying nicotine dependence risk in diverse populations.  
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Chapter	1	Introduction	
 
 
 With the advances in sequencing and genotyping technologies, genome-wide 
genotype data for large-scale biobanks have been collected. For example, in the Trans-
Omics Precision Medicine (TOPMed) sequencing project, over 460 million variants have 
been identified from over 100,000 whole genome deep sequenced individuals [1]; in the 
UK biobank dataset, ~500,000 individuals were genotyped [2], and after phasing and 
genotype imputation using the Haplotype Reference Consortium panel, plus the UK10K 
and 1000 Genomes reference panel, the number of variants in UK biobank can be over 80 
million. These enormous genomic data resources provide opportunities for discovering 
novel genetic associations of complex diseases and traits and offer comprehensive insights 
into human genetics research and drug development.  
 
 It is not surprising that analyzing biobank scale datasets encounters new 
computational challenges. Reading large-scale human genetics data directly into statistical 
analysis programs such as the R program is infeasible. Efficient query and retrieval of 
information from these datasets have become a central problem that precedes virtually all 
population genomic analyses and method development. Index for genetics datasets, which 
is conceptually analogous to the index for dictionaries, allows us to narrow the searches to 
the genomic intervals of interest. An effective index can be critical for efficient query and 
retrieval of sequence data. Most of the existing tools rely on tabix index [3], the default 
choice for query VCF/BCF format files. However, because of the design limitations of the 
tabix index, these tools can become very slow for the biobank scale datasets. Other efforts 
to improve the query of large sequence datasets involve defining more compact file formats, 
but these file formats have not been adopted by many downstream analysis softwares. A 
tool that is highly efficient for querying and retrieving biobank scale sequence datasets and 
at the same time comprehensive support for commonly used file formats is in demand for 
modern statistical genetics analysis. 
 
 Tobacco use is the single leading preventable cause of death globally. Previous 
family and twin-based studies have shown the heritability of smoking behaviors. Genome-
wide association studies (GWAS) also showed significant associations between smoking 
behaviors and hundreds of genetic variants which linked to biological mechanisms in 
substance use, including nicotine dependence. Identifying people at high risk of nicotine 
dependence could facilitate early prevention which could be a critical strategy in reducing 
tobacco usage. The polygenic risk score (PRS) is a commonly used estimate to gauge an 
individual’s risk for a complex disease or trait compared to others. It reflects an aggregated 
genetic variants’ effect on the likelihood of a complex disease or trait for an individual. To 
date, the majority of genome-wide studies examined European ancestry individuals. 
Because of this lack of diversity, the predictive validity of PRS in individuals of other 
ancestries is many folds less accurate than in individuals of European ancestry. Thus, it is 
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widespread concern about this disparity in PRS accuracy for diverse populations. Methods 
and tools to make PRS useful for other populations are needed before PRS can be routinely 
used in clinical practice. 

 In this dissertation, I address challenges in prediction in multi-ethnic populations 
and present tool and methods to leverage big genetic data for prediction in multi-ethnic 
studies. In Chapter 2, we develop a tool to efficiently inquire and retrieve sequencing data 
from ultra-large biobank scale datasets. In Chapter 3, we propose a meta-analysis method 
for risk prediction in multi-ethnic populations and apply it to tobacco usage.
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Chapter	2	Tool	for	Efficient	Retrieval	of	Genetic	Variants	in	
Biobank	Datasets	
 
2.1	Introduction	
 
 Human genetic studies are revolutionized by the cost-effective sequencing and 
genotyping technologies. As the cost for deep whole genome sequencing drops below 
$1,000 USD and that for genome- wide genotyping drops below $100 USD, many ultra-
large biobank scale datasets with millions of individuals begin to emerge. For sequence 
datasets with many individuals, the number of discovered variations is also increasing 
rapidly, as more rare variants can be uncovered as more samples are sequenced. For 
example, in the Trans-Omics Precision Medicine (TOPMed) sequencing project, there 
are >460 million variants identified from >100,000 whole genome deep sequenced 
individuals [1].  In the UK biobank dataset, approximately half a million individuals were 
genotyped [2]. After genotype imputation using the Haplotype Reference Consortium 
panel, plus the UK10K and 1000 Genomes reference panel, there are over 80 million 
genetic variants. Given the scale of these sequence datasets, it is infeasible to directly read 
them into RAM. Efficient query and retrieval of information from these datasets have 
become a central problem that precedes virtually all genetic analyses.  

 An effective index is critical for efficient query and retrieval for sequence datasets. 
Conceptually similar to the index used in books and dictionaries, index for computer files 
allows us to narrow down the searches to the genomic intervals that may overlap the 
variants of interest. For most sequence data formats, such as VCF/BCF format, tabix [3] 
index is the default choice for query which combines binning and linear index to query the 
files. Tabix works by clustering chromosomal positions into bins of fixed sizes. Therefore, 
the index file size is small and does not vary with the number of variants. For densely 
genotyped datasets with many individuals, each bin in the tabix index contains numerous 
variants. Even when querying and retrieving a single variant, the entire bin that contains 
the variant will be uncompressed and extracted, which greatly reduces the efficiency of 
retrieving variants. Existing R packages such as VariantAnnotation [4] and PopGenome [5] 
integrate tabix index and can become very slow for biobank scale dataset.  

 There have been efforts to improve the query of large sequence datasets. One 
approach is to define more compact file formats as BGT [6], GQT [7], so that indexing and 
queries can be more efficiently performed. A major limitation for these approaches is that 
they only support limited variant types. Multi-allelic variants or imputed genotypes may 
not be supported well. Also these new file formats have not been adopted by many 
downstream analysis softwares, such as genetic association analysis. These limitations 
prevent them from being widely used in statistical genetics research.  
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 Alternatively, to improve the query of sequence datasets, we seek to develop a novel 
variant-based index (vbi) that can work with VCF/BCF format, and provide 
implementations both in R and in command line tools for querying genomic sequence 
datasets. With the novel vbi index, seqminer2 greatly improved existing R packages for 
querying VCF/BCF files. Compared to VariantAnnotation and PopGenome, the query 
speed for seqminer2 can be magnitude faster. The companion seqminer2 command line 
tool for querying VCF files outperformed bcftools [8] in speed by 5-folds when extracting 
single range from VCF file and by more than 200-folds when extracting multiple randomly 
chosen genomic ranges. It slightly outperformed GIGGLE [9] in speed (seqminer2 
supported many other features). Such speed improvement makes it possible to retrieve 
variant genotypes on the fly for many applications such as the calculation of linkage 
disequilibrium (LD) coefficients, the calculation of LD scores, gene-level association 
analysis and transcriptomic wide association analysis. In addition to improved speed, 
seqminer2 also requires much smaller memory to run compared to other tools when 
querying or retrieving sequence variants.  

 Another uniqueness of seqminer2 is its comprehensive support for popular file 
formats. To make seqminer2 a convenient and comprehensive tool, we also reimplemented 
support for a few other file formats that are commonly used in statistical genetics analysis, 
including BGEN [10] format, which was developed to store imputed genotypes for large 
datasets and binary PLINK format, which is a state-of-art file format for storing array 
genotypes. Our implementation was considerably faster than the rbgen package for 
querying BGEN files, and of comparable speed as BEDMatrix for querying binary PLINK 
files. To our knowledge, seqminer2 is the only package that supports all commonly used 
file formats in statistical genetics analysis (Table 2.1). Its comprehensive feature and 
improved efficiency make it a valuable tool for data analysis and method development in 
R. 

Table 2.1: Feature Comparison for seqminer2, VariantAnnotation, PopGenome, 
giggle, bcftools, rbgen, snpStat, and BEDMatrix.  
 

Software Query File Types Integration with R 
seqminer2 VCF, BCF, BGEN, PLINK Yes 

VariantAnnotation VCF Yes 
PopGenome VCF Yes 

giggle VCF, PLINK No 
bcftools VCF, BCF No 
rbgen BGEN Yes 

snpStat PLINK Yes 
BEDMatrix PLINK Yes 
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2.2	Methods	
 
 In this section, I first illustrate the motivation for the development of the variant 
based index (vbi) which is implemented in seqminer2. I then describe vbi in details and the 
algorithms seqminer2 uses. I also describe the reimplementation of BGEN file support and 
how it improves the speed of query and retrieval. 

2.2.1	Motivation	for	the	Development	of	VBI	
 
	 Tabix	is	widely	used	tool	to	randomly	query	and	retrieve	sequence	variants	from	
large-scale	genomic	datasets.	It	uses	a	hybrid	of	binning	and	linear	index	to	query	bgzip	
compressed	 VCF/BCF	 or	 generic	 tab-delimited	 files.	 Binning	 index	 is	 small	 in	 size	 and	
efficient	 for	 querying	 moderate-sized	 VCF	 files	 with	 a	 few	 thousand	 individuals	 and	
millions	of	genetic	variants.	Yet,	for	densely	genotyped	biobank	scale	datasets,	tabix	index	
become	very	inefficient	owing	to	the	design	of	binning	index.		

	 For	 binning	 index,	 the	 genetic	 variants	 in	 each	 chromosome	 are	 clustered	
hierarchically	into	bins	of	different	sizes.	When	querying	a	genetic	interval,	the	smallest	
bin	that	contains	the	queried	interval	will	be	uncompressed	and	processed.	The	bin	size	
is	preset	and	not	dependent	on	the	density	of	the	variants	across	the	chromosome.	For	
modern	 sequence	datasets	with	many	 individuals,	 there	 can	be	one	 genetic	mutation	
observed	per	20	basepair	[1].	In	this	case,	for	a	sequence	dataset	with	100,000	individuals,	
the	 smallest	 bin	 of	 16,384	 bp	 used	 by	 tabix	 contains	 80	 MB	 data.	 So	 to	 query	 100	
randomly	chosen	genetic	variants,	100	bins	with	80,000	genetic	variants	and	8	GB	data	
will	need	to	be	uncompressed,	even	though	most	of	the	uncompressed	data	is	irrelevant	
to	the	queried	variants.		

	 The	limitation	for	binning	index	motivated	us	to	develop	an	alternative	method	to	
query	VCF/BCF	index.		

2.2.2	Build	an	Index	for	bgzipped	VCF/BCF	File		
 
	 As	 tabix	 index,	 vbi	 is	 also	 based	 upon	 bgzip	 file.	 In	 vbi	 index	 file,	we	 store	 the	
genomic	position	and	 the	offset	 for	each	variant	 in	 the	 index	 file.	So	 for	a	 file	with	M	
variants,	 all	 the	 indices	 form	 a	M	 by	 two	matrix.	 For	 a	 chromosome	with	 10	million	
markers,	the	index	file	size	is	107*2*	(8	byte)	=	160	MB.	The	size	of	the	vbi	index	file	does	
not	 depend	 on	 the	 number	 of	 samples,	 and	 remains	 small	 enough	 to	 be	 loaded	 to	
computer	RAM	in	entirety.	With	vbi,	we	can	directly	locate	the	location	of	the	queried	
genetic	 variants,	 and	 minimize	 the	 amount	 of	 redundant	 data	 that	 needs	 to	 be	
uncompressed.		
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2.2.3	Query	bgzip	Compressed	VCF/BCF	by	Positions		
 
	 To	locate	any	marker	in	a	large	VCF/BCF	file	by	position,	we	make	use	of	binary	
search,	which	takes	no	more	than	log2(number	of	marker)	comparisons.	It	means	that	for	
a	dataset	with	10	million	genetic	variants,	it	takes	only	up	to	24	comparisons.	In	this	case,	
to	query	100	random	selected	genomic	ranges	from	a	VCF	file,	this	index	strategy	takes	
less	than	20	s,	while	the	alternative	tabix	 index	takes	4	min,	12	times	slower.	To	query	
100	randomly	chosen	non-consecutive	ranges	from	a	BCF	file,	this	index	strategy	takes	
less	than	1	s.		

2.2.4	Reimplementation	of	BGEN	Support		
 
 BGEN format was developed to store genotype probabilities from genotype 
imputation. It has become a popular file format in statistical genetic analysis. For example, 
imputed genotypes from UK Biobank were released in BGEN format. We followed the 
BGEN file format specification and reimplemented the query and retrieval in C++. This 
reimplementation is in fact considerably faster than the official implementation. We 
attribute the speed improvement to several software engineering advances:  

 First, we seek to minimize disk I/O, which is a major bottleneck for query and 
retrieval speed. For example, to read multiple genomic ranges, we first cluster these ranges, 
and merge ranges in proximity and read the whole block of the variants of all samples into 
the memory. Second, our implementation improves by optimizing the most common cases. 
BGEN format, as developed is very general, and capable of handling multiploidy and 
multiallelic variants. Yet, human germline genome is diploid, and a majority of the variants 
are biallelic. We improve the performance by simplifying the implementation on the most 
common case, and then separately considering the more special cases. Compared to the 
original implementation that treats common and uncommon cases indifferently, seqminer2 
gains considerable efficiency. Lastly, we used the dictionary-based decompression 
algorithm in ZSTD, which has faster decompression speed compared to the system-default 
decompression algorithm for large files. Together these software engineering works 
considerably improved the speed of seqminer2 over rbgen package.  

 
2.3	Results	
 
 We extensively evaluated seqminer2 for querying VCF/BCF, BGEN and PLINK 
files using both the R package and the command line tool. We considered scenarios with 
very large number of individuals (N=487,409) as motivated by UK Biobank datasets [2]. 
We compared the query of various numbers of genomic ranges from largest chromosome 
(chr2 with number of markers M=8,129,063) and smallest chromosome (chr21 with 
number of markers M=1,261,158). Comparisons were conducted on a computer server with 
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Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz CPU, 128 GB RAM and 7,200 rpm hard 
drive. We also conducted comparisons requesting only 4 GB of memory in each node.  

 The time used for querying and parsing the output was recorded. For each scenario, 
the query was repeated 100 times to ensure stability of the results. The median time used 
was reported.  

2.3.1	Evaluation	of	Reading	VCFs	with	Variant-based	Index		
 
 First, we evaluated seqminer2 against VariantAnnotation and PopGenome R 
packages to query tabix-indexed VCF files. For a file containing 487,409 individuals and 
8,129,063 genetic variants, the function readSingleChromosomeVCFToMatrixByRange 
took 22.35 s to read a single range with 100 genetic variants, and 16.57 s to read 100 
randomly chosen ranges. The time used for querying multiple randomly selected ranges is 
often comparable and sometimes even less than the time used for querying one single range, 
which represents a unique advantage for vbi index.  

 On the other hand, the R packages based upon tabix index have greatly reduced 
speed for querying multiple randomly selected ranges. This is because randomly chosen 
ranges tend to fall into multiple distinct bins, each of which contains a large amount of data. 
Retrieval of variants in these ranges requires uncompressing all overlapping bins, which 
constitutes a severe bottle neck.  

 In our comparison, we used readGT function in VariantAnnotation package Version 
1.28.11 to query variants. It took 99.86 s to read a single range with 100 genetic-variants 
and 355.40 s to read 100 randomly selected ranges from the same file as we used for 
seqminer2. We also compared with readVCF function in PopGenome package. It took 
830.70 s to read a single range with 100 genetic variants. To the best of our knowledge, 
readVCF does not support the query of multiple tabix ranges. If simply looped through all 
100 randomly chosen ranges, the query took more than 21h. The advantage of seqminer2 
over VariantAnnotation and PopGenome increased as more ranges were queried and 
retrieved (Table 2.2 A). For instance, seqminer2 took 187.62 s to read a single range with 
1,000 genetic variants, whereas VariantAnnotation took 1,006.10 s which was more than 
5 times of seqminer2, and PopGenome took 802.90 s. When reading 1,000 randomly 
chosen ranges, seqminer2 took 166.60 s, but VariantAnnotation and PopGenome 
respectively took 4,035.86 s and >1 d, which was substantially slower than seqminer2.  

 We next evaluated seqminer2 command line tool against two other command line 
tools, GIGGLE and bcftools. Seqminer2 outperformed GIGGLE when reading a single 
range or randomly selected ranges. Bcftools was far less efficient than seqminer2. It took 
up to 4 times more time when reading a single range, and 200 times more time than 
seqminer2 when reading randomly selected ranges (Table 2.2 B).  
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2.3.2	Evaluation	of	Reading	BCF	Files		
 
 Seqminer2 is one of the few tools that support BCF format, which is a binary version 
of the VCF format. BCF format was developed as an improvement to VCF files for more 
efficient storage and query. Both seqminer2 and bcftools performed efficiently while 
reading a single region. They took less than 1 s to extract 100 variants and less than 5 s to 
extract 1000 variants, which was indeed much faster compared to reading VCF files. 
However, when reading multiple randomly selected ranges, there was a sharp increase in 
time for bcftools. Bcftools took up to 23 min to extract 1,000 randomly chosen ranges, a 
disadvantage owing to the tabix index, while seqminer2 still only took less than 5 s (Table 
2.2 C).  

2.3.3	Evaluation	of	Reading	Binary	PLINK	Files		
 
 We used the function readPlinkToMatrixByIndex in seqminer2 to query binary 
PLINK files. Seqminer2 and BEDMatrix [11] performed about equally well when read in 
a single range or multiple randomly selected ranges. The function read.plink in snpStats 
[12] failed to read in variants, which revealed its limitations for handling biobank scale 
datasets.  

 Unlike seqminer2, PLINK2 can only output extracted sequence variants from BED 
files into a text file, which needs to be read into R separately. This appears to be less 
convenient. In our evaluation, seqminer2 is also faster than PLINK2 in almost all scenarios 
for querying and reading variants into R (Table 2.2 D).  

2.3.4	Evaluation	of	Reading	BGEN	Files		
 
 We used seqminer2 and an R package specifically designed to load BGEN format 
files called rbgen to query bgenix-indexed bgen files. The function 
readBGENToMatrixByRange in seqminer2 was >10 times faster than bgen.load in rbgen 
to read a single range. When reading randomly chosen ranges, the advantage for seqminer2 
was even bigger: seqminer2 was >200 times faster than rbgen when reading randomly 
chosen ranges from largest chromosome in UK Biobank, and remained >10 times faster 
when reading from smallest chromosome in UK Biobank (Table 2.2 E).  
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Table 2.2: Comparison of Query Speed of seqminer2 with Alternative Software 
Packages. For each comparison, we used files with the largest chromosome (chr2) and 
the smallest chromosome (chr21) in the UK Biobank dataset. Sample size is N=487,409. 
We considered scenarios 1) for querying a single genomic range that contains 100 or 
1000 variants and 2) for querying 100 or 1000 randomly chosen genomic ranges with 1 
variant in each range. For each scenario, we repeat the comparison for 100 times and 
median time was recorded. The queried results were also compared and verified for the 
correctness.  
 

A) Comparison	for	Querying	VCF	Files.		

Datasets 

Total 
Number 

of 
Queried 
Variants 

Single Range Multiple Random Genomic Ranges 

seqminer2 VariantAnnotation PopGenome seqminer2 VariantAnnotation PopGenome 

chr2 
100 22.35 99.86 830.70 16.57 355.40 78,253.79 
1000 187.62 1,006.10 802.90 166.60 4,035.86 > 1d 

chr21 
100 20.48 98.22 860.15 21.15 395.70 81,948.25 
1000 193.92 979.51 903.74 250.93 5,401.41 > 1d 

 
B) Comparison	for	Querying	VCF	Files	Using	Command	Line	Tool.	

Datasets 

Total 
Number 

of 
Queried 
Variants 

Single Range Multiple Random Genomic 
Ranges 

seqminer2 giggle bcftools seqminer2 giggle bcftools 

chr2 
100 1.47 1.83 7.59 1.72 2.26 311.86 

1000 13.29 14.58 69.21 16.38 18.91 3,202.17 

chr21 
100 1.59 2.00 8.39 1.39 1.92 329.53 

1000 15.93 17.37 83.28 16.03 18.64 3,404.56 
 

C) Comparison	for	Querying	BCF	Files.	

Datasets 

Total 
Number 

of 
Queried 
Variants 

Single Range Multiple Random 
Genomic Ranges 

seqminer2 bcftools seqminer2 bcftools 

chr2 
100 0.75 0.51 0.99 128.35 

1000 2.73 4.65 4.30 1,396.00 

chr21 
100 0.25 0.18 0.63 125.04 
1000 1.21 2.02 2.80 1,296.98 
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D) Comparison	for	Querying	PLINK	Files.	

Datasets 

Total 
Number of 

Queried 
Variants 

Single Range Multiple Random Genomic Ranges 

seqminer2 snpStat BEDMatrix PLINK2 seqminer2 snpStat BEDMatrix PLINK2 

chr2 
100 13.47 ERROR 32.03 6.13	 16.89 ERROR 16.42 30.71	

1000 15.78 ERROR 34.60 39.62	 18.16 ERROR 17.02 81.04	

chr21 
100 3.16 ERROR 3.27 4.02	 3.46 ERROR 2.58 8.66	

1000 4.37 ERROR 5.69 38.84	 4.84 ERROR 5.13 52.02	
 
 

E) Comparison	for	Querying	BGEN	Files.	

Datasets 

Total 
Number 

of 
Queried 
Variants 

Single Range Random Ranges 

seqminer2 rbgen seqminer2 rbgen 

chr2 
100 2.55 25.31 3.17 75.42 

1000 23.15 233.23 27.38 736.72 

chr21 
100 2.35 22.73 2.78 30.37 

1000 21.50 212.88 22.53 293.12 
 
 
2.3.5	Evaluation	of	memory	usage		
 
 We recorded the maximum memory each software used when querying files with 
the largest chromosome (chromosome 2) in the UK Biobank dataset. Seqminer2 almost 
always required less memory than other tools (Table 2.3).  
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Table 2.3: Comparison of Memory Usage of Query. We recorded the maximum memory 
each software used to query files with the largest chromosome (chr2) in the UK Biobank 
dataset. Sample size is N=487,409. 

Tools 

Datasets Total 
Number of 

Queried 
Variants 

Single Range Multiple Random 
Genomic Ranges 

seqminer2  
R package 

VCF file 100	 1.0	GB	 2.7	GB	
BCF file 100	 1.3	GB	 2.1	GB	

BGEN file 100	 0.1	GB	 2.0	GB	
PLINK 

file 100	 1.0	GB	 1.9	GB	

seqminer2  
command line tool VCF file 100	 0.4	GB	 2.0	GB	

giggle VCF file 100	 0.4	GB	 2.1	GB	
VariantAnnotation VCF file 100	 10.9	GB	 12.5	GB	

PopGenome VCF file 100	 17.3	GB	 18.5	GB	

bcftools VCF file 100	 0.4	GB	 2.1	GB	
BCF file 100	 0.1	GB	 0.1	GB	

PLINK2 PLINK 
file 100	 1.8	GB	 1.8	GB	

BEDMatrix PLINK 
file 100	 1.6	GB	 1.8	GB	

rbgen BGEN file 100	 0.2	GB	 2.1	GB	

seqminer2  
R package 

VCF file 1000	 7.9	GB	 9.4	GB	
BCF file 1000	 3.5	GB	 4.3	GB	

BGEN file 1000	 0.1	GB	 2.0	GB	
PLINK 

file 1000	 4.4	GB	 5.3	GB	

seqminer2  
command line tool VCF file 1000	 3.0	GB	 4.1	GB	

giggle VCF file 1000	 3.0	GB	 4.4	GB	
VariantAnnotation VCF file 1000	 27.5	GB	 11.1	GB	

PopGenome VCF file 1000	 17.5	GB	 18.9	GB	

bcftools VCF file 1000	 3.0	GB	 3.0	GB	
BCF file 1000	 0.7	GB	 0.7	GB	

PLINK2 PLINK 
file 1000	 6.7	GB	 1.9	GB	

BEDMatrix PLINK 
file 1000	 3.4	GB	 3.7	GB	

rbgen BGEN file 1000	 0.2	GB	 2.1	GB	
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 We also benchmarked the performance of each software using computers with small 
memories. Specifically, we requested only 4 GB of memory in each node in the cluster 
when testing each software. In this setting, seqminer2 still remained the fastest tool. When 
extracting variants from VCF files, VariantAnnotation and PopGenome failed to run, 
because they required much more RAM than 4 GB to retrieve 1,000 variants. Seqminer2 
was the only R package that extracted variants successfully (Table 2.4).  

Table 2.4: Comparison of Query Speed of seqminer2 with Alternative Software 
Packages using Computers with 4GB of Memory. For each comparison, we used files 
with the largest chromosome (chr2) in the UK Biobank dataset. Sample size is N=487,409. 
We considered scenarios for 1) querying a single genomic range that contains 100 or 1000 
variants and 2) for querying 100 or 1000 randomly chosen genomic ranges with 1 variant 
in each range. For each scenario, we repeated the comparison for 100 times and median 
time was recorded. The queried results were also compared and verified for the correctness.  

 

A) Comparison	for	Querying	VCF	Files	Using	R	packages.	
Total 

Number 
of 

Queried 
Variants 

Single Range Multiple Random Genomic Ranges 

seqminer2 VariantAnnotation PopGenome seqminer2 VariantAnnotation PopGenome 

100 24.91 Fail to run Fail to run 23.34 Fail to run Fail to run 

1000 363.43 Fail to run Fail to run 509.54 Fail to run Fail to run 
 
 

B) Comparison	for	Querying	VCF	Files	Using	Command	Line	Tool.	
Total 

Number 
of 

Queried 
Variants 

Single Range Multiple Random Genomic Ranges 

seqminer2 giggle bcftools seqminer2 giggle bcftools 

100 1.80 2.40 11.86 1.72 2.44 328.28 

1000 22.47 22.69 111.70 16.68 19.26 3396.07 
 
C) Comparison	for	Quering	BCF	Files.	

Total Number of 
Queried Variants 

Single Range Multiple Random Genomic 
Ranges 

seqminer2 bcftools seqminer2 bcftools 

100 0.79 0.59 1.56 140.69 

1000 3.71 5.42 30.45 1493.62 
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D) Comparison	for	Quering	PLINK	Files.	

Total 
Number 

of 
Queried 
Variants 

Single Range Multiple Random Genomic Ranges 

seqminer2 BEDMatrix PLINK2  seqminer2 BEDMatrix PLINK2 

100 15.53 12.47 7.66 16.24 12.61 37.06 

1000 55.71 58.11 181.37 49.61 60.56 231.71 
* PLINK2 has some failed jobs when randomly extracting 1000 non-consecutive regions. BEDMatrix 
have some failed jobs when randomly extracting 100, or 1000 non-consecutive regions. Time was 
calculated based on the successful jobs. 
 

E) Comparison	for	Quering	BGEN	Files.	

Total Number of 
Queried Variants 

Single Range Multiple Random Genomic 
Ranges 

seqminer2 rbgen seqminer2 rbgen 

100 0.19 4.20 0.18 35.81 

1000 0.18 4.21 0.28 322.37 
 
	
2.4	Conclusions	and	Discussions	
 
 Here we showed that seqminer2 is a very efficient software tool optimized for 
indexing and querying VCF/BCF. It also accommodates other commonly used file format 
in statistical genetic analysis, such as BGEN and PLINK files. It can scale well to biobank 
scale sequence datasets with hundreds of millions of variants.  

 While seqminer2 greatly improves the efficiency over other tools, a few practical 
considerations in data analysis can also make huge differences in speed and warrants 
discussions. Disk I/O is a major bottleneck for large scale data analysis. Minimizing disk 
I/O is key to improving the speed for data analysis. If multiple ranges of data (e.g. multiple 
genes) need to be analyzed, we recommend reading in multiple ranges in one batch using 
seqminer2, instead of reading each range separately. If the goal is to analyze the entire 
chromosome, as long as the system memory allows, reading in all variants on the 
chromosome can be more efficient.  

 The current implementation focuses widely used file formats VCF/BCF, BGEN and 
PLINK. We noted that the indexing strategy can be readily extended to support generic file 
formats, e.g. tab- delimited files that include columns of chromosomal positions. Generic 
file formats have been broadly used in store annotation information, GWAS summary 
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statistics. Implementing vbi index could be extremely useful to accelerate the query of files 
of these files.  

 Taken together, the improved efficiency and comprehensive features of seqminer2 
have already greatly facilitated method development and large data analysis in our research. 
We expect it to be a very useful tool for biobank scale data analysis for others as well.  
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Chapter	 3	 Meta-analysis	 Model	 for	 Prediction	 in	 Multi-ethnic	
Studies:	Applications	to	Tobacco	Use	Phenotypes	
 
 

3.1	Introduction	
 
 Tobacco use is the single leading preventable cause of death globally. It caused 8.71 
million deaths globally (15.4% of all deaths) in 2019 [1]. 7.69 million of those deaths are 
attributable to smoking tobacco use, and the rest are attributable to chewing and non-
smokers being exposed to second-hand smoke [2, 3]. 20.2% of the deaths among males 
and 5.84% of the deaths among females result from smoking [2]. Tobacco use increases 
the risk of serious illness, including lung cancer, chronic obstructive pulmonary disease, 
heart disease, stroke, and diabetes [4]. Tobacco use behavior is heritable. From twin and 
family studies, smoking behaviors such as smoking initiation and cigarette per day are 
reported to have a heritability of 40%-60% [5-7]. Biobank study of smoking behaviors 
estimated heritability of 18% for smoking initiation and 12% for smoking cessation [6]. 
Genome-wide association studies (GWAS) showed significant associations between 
smoking behaviors and genetic variants. Work from our group analyzed up to 1.2 million 
individuals and found 566 genetic variants associated with tobacco use and alcohol use [8]. 
These variants affect multiple chemical functions related to glutamatergic and 
dopaminergic transmission, which is linked to neuronal communication and tied to reward-
related memories and learning; acetylcholine nicotinic receptors, activating of which exerts 
rewarding effects and increase drug-seeking behavior. 

 Comprehensive information on genetic liability to smoking behaviors could 
contribute to quantifying nicotine dependence risk. Identifying people at high risk of 
nicotine dependence could facilitate early prevention, which could be a critical strategy in 
reducing tobacco usage. Polygenic risk score (PRS) reflects a mathematical aggregation of 
an individual’s genetic variants’ effect on the likelihood of a complex disease or trait. 
Calculation of PRS is based on GWAS data and individual genetic profiles. It has been 
increasingly used in clinical care and applied in personalized medicine. It is more attractive 
than traditional clinical risk factors, such as high cholesterol for coronary heart disease 
(CHD) and high level of C-reactive protein (CRP) for rheumatoid arthritis, because it is 
relatively affordable and only required to test once in a life time and available from birth. 
With the increasing number of available GWAS data and the emerging methods 
development for how PRS is constructed, the PRS is improving its accuracy and 
interpretability in clinical utility. For example, PRS for CHD has been demonstrated to be 
a more accurate prediction for potential adverse CHD events when added to established 
clinical risk factors, such as Framingham risk score [9], QRISK3 score [10] and ACC 
(American College of Cardiology)/AHA (American Heart Association) pooled cohort 
equation (PCE) [9, 10]. Especially when the later-life clinical risk factors are typically 
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unknown at an early age, the prevalence of myocardial infarction is more than ten times in 
the top PRS percentile compared to the mean prevalence [11]. It suggests a potentially 
significant role of PRS in CHD risk stratification in early life. PRS for breast cancer has 
also been extensively researched and showed considerable improvement in predicting 
breast cancer incidence in carriers of established high-risk genes, such as PALB2, CHEK2 
[12], BRCA1, and BRCA2 [13]. Models which integrate PRS with conventional non-genetic 
risks (family history, demographic information such as age and lifestyle) also showed 
improved performance in stratifying risk of breast cancer and thus could benefit women 
from better risk management strategies [14-16]. Existing researches also investigated the 
association between PRS for tobacco consumptions and nicotine dependence and found 
tobacco consumption PRS can be a good genetic surrogate for nicotine dependence [17]. 
In a longitudinal study of a community-representative sample, researchers found a 
significant effect of PRS for cigarettes per day in predicting smoking behavior at age 20 
and 24 [18]. Studies also showed a meaningful genetic sharing between the smoking 
initiation and other substance usages by analyzing the variation the PRS of smoking 
initiation explained in substance usages initiation [19]. These findings and applications 
demonstrate that studies on tobacco use could benefit from integrating PRS and further 
suggest the usage of PRS of smoking-related phenotypes in clinical practice. 

 There are a few different algorithms to choose from in terms of PRS calculation. 
The PRS is a weighted sum of an individual’s genome-wide genotypes, with weights 
obtained from estimated effect size from GWAS. So basically, PRS algorithms differ by 1) 
the genetic variants got picked in the summation, and; 2) the weights assigned to each 
picked genetic variant. Calculation of PRS is challenging because of the presence of 
linkage disequilibrium (LD), i.e., variants that are close on genome tend to inherit together, 
so they are highly correlated. Also, GWAS is usually performed on samples drawn from 
particular ethnicity groups. So the generalizability of PRS can be poor to the target 
population if it is not from the same ethnic group. Following are some popular PRS 
calculation methods that address one or both issues. 

1. Lassosum	[20]	
 

Lassosum integrates summary statistics from GWAS and an LD reference panel to 
account for the underlying genetic structure in a penalized regression framework. It selects 
genetic variants and shrinks effect size 𝛽 by minimizing  

𝑓 𝛽 = 𝑦%𝑦 + 1 − 𝑠 𝛽%𝑋+%𝑋+𝛽 − 2𝛽%𝑟 + 𝑠𝛽%𝛽 + 2𝜆 𝛽
/
/
 

where 𝑋+%𝑋+  is the LD matrix estimated from the reference panel, and 𝑟 = 𝑋%𝑦	is the 
correlation between variants and the phenotype that can be calculated from GWAS 
summary statistics. s and 𝜆 are tuning parameters selected from a predefined set. s=0.2, 0.5, 
0.9 or 1, and 𝜆 are 20 values equally spaced on the log-scale from 0.001 and 0.1. When the 
validation dataset is available, the tuning parameters are optimized by maximizing the 
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correlation of the PRS with the phenotype data in the validation dataset. When the 
validation dataset is not available, tuning parameters can be optimized by a procedure 
referred to as “pseudovalidation” by the authors. In pseudovalidation, the correlation of the 
PRS with the validation phenotypes is substituted by a shrunken r that is estimated from a 
local false discovery rate (FDR), and the local FDR can be calculated using a procedure of 
Strimmer [21]. 

2. LDPred2	and	LDPred2-auto	[22]	
 
 LDPred2 also uses summary statistics from GWAS and the external LD reference 
panel. It is a Bayesian approach and assumes the prior for the variant effects sizes is a 
point-normal distribution such that only a fraction of variants are causal. The prior has the 
following form: 

𝛽1~
𝑁 0,

ℎ78

𝑀𝑝 	with	probability	𝑝

	0											with	probability	1 − 𝑝
 

where p is the fraction of causal variants, M is the number of markers and ℎ78  is the 
heritability of phenotype (the proportion of variance of a phenotype can be explained by 
genetic variants). The posterior mean of effect size can be derived as  

𝐸 𝛽1 𝛽1 =
𝑝1𝛽1

1 + 𝑀𝑝
𝑛ℎ8

 

where 𝛽1 is the residual marginal effect size by subtracting the effect of correlated variants 
in the LD region and 𝑝1 is the posterior probability that 𝛽1 is from Gaussian distribution. 

 There are two hyper-parameters, heritability ℎ8  and sparsity 𝑝  (the fraction of 
causal variants). LDPred2 uses a validation set to tune them from a grid. LDPred2-auto, as 
its name suggested, automatically estimates ℎ8 and 𝑝, so it does not require a validation 
set. LDPred2-auto is an appealing method because the external validation set with 
individual level phenotypes may not be available in many applications. Especially when 
calculating PRS for multi-ethnic populations, the dataset that has individual phenotypes 
measured usually only includes people from a specific ethnic group. Therefore, tuning 
hyper-parameters for calculating PRS for other ethnicity groups can be invalid.  

3. SBayesR	[23]	
 
 SBayesR compromises a Bayesian multiple regression with summary statistics from 
GWAS. For each standardized variant, it assumes the effect is drawn from one of four 
possible distributions with different probabilities as follows: 
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𝛽1|𝜋, 𝜎K8 =

0																																											with	probability	π/
~𝑁 0, 0.01𝜎K8 																	with	probability	π8
~𝑁 0, 0.1𝜎K8 																				with	probability	πN

~𝑁 0, 𝜎K8 												with	probability	1 − 𝜋O

N

PQ/

 

Since one of the distributions is 0, it indicates that there is π/ fraction of variants non-
causal with 0 effects to the phenotype. For the rest of the variants, their contribution to the 
phenotype varies because they can fall into a normal distribution with different variances. 

4. PRS-CS	[24]	
 
 PRS-CS also utilizes a Bayesian regression framework. It imposes a continuous 
shrinkage prior on the variant effects with the following form: 

βS|𝜓U~𝑁 0, 𝜙𝜓1 ,															𝜓1~𝑔 

where 𝜙 is a global scaling parameter common to all variants and determines the model 
sparsity in general, 𝜓U is a local variant specific parameter and 𝑔 is a continuous density 
function designed to shrink more on noise and less on truly causal effects. In their paper, 
the authors used 𝜓U~𝐺𝑎𝑚𝑚𝑎(1, 𝛿1)  and 𝛿U~𝐺𝑎𝑚𝑚𝑎(0.5,1)  and showed good 
performance in the simulation study and the real data analysis. The strength of continuous 
shrinkage prior is that it allows adaptive shrinkage for each variant; thus effect for variants 
that have weak association signals in GWAS would be shrunk more, whereas variants with 
strong association signals would be shrunk less. Another strength of continuous shrinkage 
is that it enables effects for variants in the LD block to get updated jointly in posterior 
inference. Therefore, the model can be appropriately adjusted by the actual LD pattern. 
The parameter 𝜙 can be learned from GWAS summary statistics, and no validation data is 
required. 

5. Meta-GRS	[25]	
 
 Meta-GRS combines multiple PRSs that are calculated using summary statistics 
from different GWAS and builds a new meta-score. It is a weighted average of multiple 
standardized scores: 

GRSUbcde =
𝛽/𝑍U/ + 𝛽8𝑍U8 + 𝛽N𝑍UN

𝛽/8 + 𝛽88 + 𝛽N8 + 2𝛽/𝛽8𝜌/,8 + 2𝛽/𝛽N𝜌/,N + 2𝛽8𝛽N𝜌8,N
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𝑍U/, 𝑍U8, 𝑍UN	are the PRSs for the ith individual using different summary statistics. For 
instance, 𝑍U/ is calculated by summing up genome-wide risk alleles for the ith individual 
with weights obtained from estimated effects from a specific GWAS-1. It is derived using 
the basic pruning (thinning variants in high LD with a threshold r2) and thresholding 
(filtering out variants above an association p-value Pt) approach. 𝛽/ , 	𝛽8, 𝛽N  are the 
coefficients for each PRS and 𝜌h,i are the correlation between jth and kth PRS. Meta-GRS 
requires a training dataset to train the model.  

 GRSUbcde can also be written in the following form in terms of a per-variant score: 

GRSUbcde ∝ 𝑥U1
𝛽/
𝜎/
𝛼1/ +

𝛽8
𝜎8
𝛼18 +

𝛽N
𝜎N
𝛼1N

m

1Q/

 

where 𝑥U1 is the genotype for the ith individual’s jth variant, 𝜎/, 𝜎8, 𝜎N are the empirical 
standard deviations of the scores obtained from the training data, 𝛼h/, 𝛼h8, 𝛼hN are the variant 
effect sizes for the jth variant in each of the scores, 𝛽/,	𝛽8, 𝛽N are the coefficients for each 
PRS score and 𝑚 is the total number of variants. 

6. Multi-ethnic	PRS	[26]	
 
 Similar to meta-GRS, multi-ethnic PRS also combines PRS from different GWAS, 
but it restricts each GWAS to samples from a distinct ethnic population. For example, a 
multi-ethnic PRS with two populations, European (EUR) and Latino (LAT), has the 
following form:   

𝑃𝑅𝑆qrstuv% = 𝛼/𝑃𝑅𝑆qrs + 𝛼8𝑃𝑅𝑆uv% 

where 𝑃𝑅𝑆qrs denotes PRS built using the EUR sample and 𝑃𝑅𝑆uv% denotes PRS built 
using the LAT sample. It also employs the pruning and thresholding approach for 
calculating 𝑃𝑅𝑆qrs and 𝑃𝑅𝑆uv%, but the pruning parameter r2 and thresholding parameter 
Pt are optimized using training data with a single population. The weights 𝛼/ and 𝛼8 are 
estimated from separate validation data. 

 In addition, the authors also proposed another multi-ethnic PRS that include the top 
principal component (PC) of a target dataset: 

𝑃𝑅𝑆qrstuv% = 𝛼/𝑃𝑅𝑆qrs + 𝛼8𝑃𝑅𝑆uv% + 𝛼N𝑃𝐶 

PC in the model can account for the ancestry information, but in their simulation studies 
and the real data applications, the accuracy of PRS did not gain much from this additional 
PC.  

 All these PRS approaches except multi-ethnic PRS are designed for calculating PRS 
for samples from homogeneous ancestry. Although the evidence showed that common 
causal variants for a complex trait are shared across diverse ancestries [27], and the 
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directions of these variants’ effects are also consistent across different ethnicities [28], due 
to the different patterns of LD and heterogeneity of genetic effects in different ethnic 
populations, directly applying these PRS methods to multi-ethnic samples is not 
appropriate. The majority of the training data that are currently exist are from European 
samples. During 2008-2017, 67% of PRS studies exclusively included European samples, 
19% of studies included East Asian samples, and only 3.8% of studies investigated PRS in 
African, Hispanic, or Indigenous samples [29]. It is challenging to construct PRS in the 
diverse US and worldwide populations. If using phenotypes from European samples to 
predict PRS in non-European samples, the prediction accuracy can be low. For example, 
for PRS across a few phenotypes studied during 2008-2017 (phenotypes included 
schizophrenia, myocardial infarction (MI), body mass index (BMI), breast cancer, and type 
II diabetes), the median effect size of European-derived PRS in African samples was 42% 
that of matched European samples [29]. A more recent study that investigated 17 
anthropometric and blood-panel traits in UK Biobank showed that, on average, the 
European-derived PRS accuracy was 4.5-fold lower in African samples, 2.0-fold lower in 
East Asians, and 1.6-fold lower in Hispanic Americans and South Asians compared to 
European samples [30]. Instead of relying on European training samples to predict PRS in 
other ancestry target samples, an alternative way for calculating PRS in a diverse 
population is training the model with the same population as the target population. 
However, the sample size for the target population other than European is usually much 
reduced and can result in worse prediction performance. 

 Properly modeling the genetic effects across multi-ethnic samples while 
accommodating the heterogeneity in the genetic architecture, especially LD patterns, and 
heterogeneity in genetic effects can be the key to improving the PRS prediction accuracy. 
Existing methods for aggregating summary statistics for multi-ethnic analysis (such as 
Probabilistic Annotation INTegratOR (PAINTOR) [31] and Meta-ANalysis of 
TRansethnic Association studies (MANTRA) [32]) often cluster studies into discrete 
ancestry groups and perform meta-analysis, which ignores the fact that study ancestries 
may vary continuously. Another multi-ethnic analysis approach, Meta-Regression of 
Multi-Ethnic Genetic Association (MR-MEGA), uses meta-regression to model genetic 
effects adjusting for the axes of genetic variation among diverse ancestry groups [33]. 
However, it does not model the non-ancestral heterogeneity of impact due to diet, 
geographic locations, or other environmental exposures. Better modeling the multi-ethnic 
samples will lead to improvements in the prediction accuracy of genetic effects and can 
further increase the PRS prediction accuracy.  

 To overcome the limitations of the methods that group studies into discrete ancestry 
groups and meta-regression method that only models the ancestral heterogeneity, we 
developed a novel meta-regression method which decomposed genetic effect heterogeneity 
into a fixed effect (an intercept to account for homogeneous effect across studies) and top 
principal components (PCs) of genetic variation (as derived from a matrix of genome-wide 
allele frequencies across multi-ethnic studies). We also innovatively integrated the 
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heterogeneous genetic effect estimates across ancestries to improve the PRS prediction for 
individuals from diverse ancestries. It borrows strengths from predicting PRS with better 
estimated heterogeneous genetic effects and the existing PRS methods’ capability of 
selecting and shrinking the genetic effects. We evaluated our method and compared it with 
fixed-effect method through extensive simulation studies over a range of scenarios for 
heterogeneity across diverse populations. We also presented the results from applying our 
proposed approach to ultra-large biobank scale datasets with 48 studies worldwide. We 
showed that our new meta-regression method produced estimated heterogeneous genetic 
effects with higher accuracy, especially when the heterogeneity is high among ancestry 
groups It further increased the PRS prediction accuracy and facilitated stratifying risk of 
smoking behaviors across ancestries. 

 

3.2	Methods	and	Materials	
 
3.2.1	Meta-Regression	Model	for	Genetic	Effect	in	Trans-Ethnic	Meta-Analysis	
 
 We model the genetic effect estimates from GWAS as a function of an intercept to 
account for homogeneous effect across multi-ethnic studies and up to three top allele 
frequency PCs to account for heterogeneous effect across ancestries. We allow the number 
of PCs included in the model to vary, and the model with minimal Bayesian information 
criterion (BIC) value is selected as the final model. We define our model as the following 
linear regression model: 

𝑏1y = 𝑍zy𝛾1z + 𝜖1y

u}

zQ~

 

 
where 𝑏1y is the effect size for variant j in the 𝑘�� study, 𝑍zy	is	the	𝑙�� PC in the 𝑘�� study, 
for notational convenience, we set 𝑍~y to 1, 𝛾1z is the effect size for 𝑍z in variant 𝑗, and 
𝜖1y	is	the	random	error	which	follows	𝑁 0, 𝑠1y8 	where	𝑠1y8  is the variance for 𝑏1y . 𝐿1  is 
the number of PCs in the model for variant j. We consider 𝐿1=0,1,2 or 3, and the value of 
𝐿1 is determined by minimal BIC value: 

𝐵𝐼𝐶1 = 𝐾 ∗ 𝑙𝑜𝑔 𝑅𝑆𝑆1/𝐾 + 𝐿1 ∗ 𝑙𝑜𝑔 𝐾  
 
where 𝐾 is the number of multi-ethnic studies, and 𝑅𝑆𝑆1  is the residual sum of squares 
defined as: 
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𝑅𝑆𝑆1 =
𝑏1y − 𝑍zy𝛾1zu

zQ~
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 When L=0, Z reduces to a column of 1, i.e. with only intercept in the model, the 
meta-regression model is equivalent to a fixed effect meta-analysis model. It is suitable for 
modeling genetic effects for variants whose effect size is consistent across studies. When 
at least one PC is included in the model, it can capture the heterogeneity of genetic effects 
across studies. 

 Using the weighted least square method, we can get the best linear unbiased 
estimator (BLUE) for 𝜸1 from a set of training studies as: 

𝜸𝑗 = 𝒁%𝜴1𝒁
�/𝒁%𝜴1𝒃1 

 
where 𝜴1	is	a	diagonal	matrix	with	diagonal	entries	being

/
�}�
� ,

/
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� , … ,

/
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 Based on the meta-regression coefficients estimated from training studies, we can 
estimate the genetic effect for a target study using: 

𝑏1� = 𝑍z�𝛾1z

u}

zQ~

 

 
where 𝑏1� is the estimated genetic effect for variant j in target study t and 𝑍z� is the 𝑙�� PC 
for the target study t (target study PCs are calculated from projecting the allele frequency 
vector from the target study onto the PC space of the training studies). The variance of 𝑏1� 
can be derived as: 

𝑉𝑎𝑟 𝑏1� = 𝒁𝒕 𝒁%𝜴1𝒁
�/𝒁𝒕𝑻 

 
3.2.2	Phenotype	Definition	
 
 We analyzed the cigarettes per day (CigDay) and age of smoking initiation (AgeInit) 
because they are critical measurements for studying nicotine dependence and are widely 
recorded in existing epidemiological studies. We adopted their definitions from Brazel et 
al.’s paper [34]. 

1. CigDay:	A	quantitative	trait	that	measures	current	or	former	smokers’	average	number	
of	 cigarettes	 smoked	 per	 day.	 They	 are	 binned	 into	 4	 categories:	 1=1-10,	 2=11-
20,3=21-30,4=31	or	more.	
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2. AgeInit:	A	quantitative	trait	that	measures	the	age	that	an	ever	smoker	first	started	
smoking	regularly.	

3.2.3	Dataset	Description	
 
 For real data application, we used GWAS summary statistics from GWAS and 
Sequencing Consortium of Alcohol and Nicotine use (GSCAN) which collaborates with 
ultra-large scale datasets, such as 23andMe and UK Biobank, over 50 independent studies 
worldwide with millions of participants [8]. More details about GSCAN can be found at: 
https://genome.psych.umn.edu/index.php/GSCAN. 

 

3.3	Simulation	Study	
 
3.3.1	Simulation	Design	
	

We performed extensive simulation studies to evaluate our proposed method’s 
performance. We used UK Biobank imputed exome genome data. We estimated the 
ancestry of individuals in UK Biobank using ADMIXTURE [35]. We identified 188,623 
Europeans, 2,924 Africans, and 1,602 South Asian (with proportion for putative ancestry 
of each individual greater than 80%) as the major populations. We filtered variants and 
kept common variants in all three ancestries with minor allele frequency (MAF) >0.01. 
The variants were further restricted to HapMap3 variants to ease the computational burden 
from including too many variants that exceed the capacity of some of the PRS algorithms. 
We chose the HapMap3 panel because it is well imputed with high accuracy, captures 
variants from diverse populations, and is widely used in the literature. It resulted in 
1,043,770 variants in the final simulation data. All genetic data manipulation in the UK 
Biobank was conducted using our seqminer2 tool [36] and PLINK 1.9 software [37]. 

We fixed 1% variants to be causal variants and set the heritability 
ℎ78	for	a	trait	at	0.5. The true effect size for variant 𝑗	is sampled from the following point-
normal distribution: 

𝛽1~UU¢
𝑁 0,

ℎ78

𝑀𝑝 						𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑝 = 1%

0											𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝑝 = 99%
 

 
 where M is the number of variants. 

To evaluate our proposed method in the presence of LD at large sample sizes, we 
simulated the normalized marginal effect estimates using the following distribution: 
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𝜷|𝜷~UU¢	𝑁(𝑫𝜷,
𝑫
𝑁) 

where D is the ancestry-specific LD matrix calculated from a random sample of 1,000 
individuals from each ancestry population using PLINK 1.9 software [37], and N is the 
sample size for each study we set as 2,000. For computational efficiency, we simulated 𝜷 
by chromosomes, and for large chromosomes with more variants, we chunked the 
chromosomes into 2-3 blocks and simulated 𝜷 by blocks. The breakpoints for blocks were 
chosen such that they would not break regions with strong LD. We used the pre-calculated 
breakpoints as provided by Berisa and Pickrell [38].  

 We set a proportion of causal variants to be shared across ancestries (European, 
South Asian, and African population) and have the same effects. The rest of causal variants 
to be ancestry specific. We performed simulations of genetic effect estimates under three 
different scenarios:  

1. Homogenous	 Eurasian	 effect:	 genetic	 effects	 for	 ancestry	 specific	 causal	
variants	present	in	European	and	South	Asian	population	with	identical	effect	
size.	

2. Modest	 heterogeneous	 Eurasian	 effect:	 genetic	 effects	 for	 ancestry	 specific	
causal	variants	present	in	European	and	South	Asian	population	but	the	effect	
size	in	South	Asian	is	twice	as	much	as	European.	

3. Excessive	 heterogeneous	 Eurasian	 effect:	 similar	 as	 modest	 heterogeneous	
Eurasian	effect,	but	the	effect	size	for	ancestry	specific	causal	variants	in	South	
Asian	is	triple	as	much	as	European.		

For each scenario, we also varied the proportions of causal variants that were shared 
across all three ancestries. We simulated ten replicates of 𝜷  for each ancestry, which 
represented ten independent studies from each ancestry population. 

We generated phenotype data based on the linear model: 

𝑌U = 𝑋U1𝛽1 + 𝜖U

«

1Q/

 

where 𝑋U1 is the standardized genotype for variant j in individual i, and 𝜖U represents the 
environmental effect for individual i and follows 𝑁(0, 1 − ℎ78).  
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3.3.2	Simulation	Results	
	
 In this section, we first evaluated the performance of our proposed meta-regression 
method on estimating the genetic effects. For each simulation scenario, we performed 
leave-one-out cross-validation and compared the prediction accuracy with (i) fixed effect 
model using studies from all ancestries as training data; (ii) fixed effect model using studies 
whose ancestry match the target ancestry as training data. We then calculated PRS using 
the estimated genetic effects from our meta-regression method. To find the most suitable 
PRS algorithm to integrate with our meta-regression method, we assessed the performance 
of existing PRS algorithms, including lassosum, LDPred2-auto, SBayesR, and PRS-CS. 
We used our estimated genetic effects as input of the PRS algorithms. We also calculated 
the PRS using the multi-ethnic PRS algorithm. Since multi-ethnic PRS is specifically 
designed for calculating PRS using studies from different ethnicity populations, we directly 
used the simulated genetic effects as the input for multi-ethnic PRS and compared its PRS 
prediction accuracy with our meta-regression method integrated with the above described 
PRS algorithms.  

I. Genetic	Effects	Estimation	
 
 We observed that in heterogeneous Eurasian effect scenario, our meta-regression 
approach outperformed both the fixed effect model using studies from all ancestries as 
training data and the fixed effect model using studies whose ancestry match the target 
ancestry as training data when predicting genetic effects in African and South Asian 
populations in some ranges of proportions of homogeneous effect variants (Figure 3.1). In 
Figure 3.1A, we gave the median of Pearson correlation between estimated genetic effects 
and actual genetic effects of causal variants over cross-validations in excessive 
heterogeneous Eurasian effect scenario. When estimating genetic effects in the African and 
South Asian populations, our method has higher prediction accuracy than both fixed effect 
methods when at least 50% of causal variants have homogenous effects across ancestries. 
When predicting in the European population, fixed effect model using studies from all 
ancestries as training data performs the best. Our method is the second-best method, and 
the prediction accuracy increases as the proportion of homogenous effect variants increases. 
In the modest heterogeneous Eurasian effect scenario, our method has more advantages in 
estimating genetic effects in African populations. As shown in Figure 3.1B, our method 
still has the highest prediction accuracy when estimating genetic effects in African when 
30%-60% of causal variants have homogenous effects across ancestries. As the proportion 
of homogeneous effect varies, the fixed effect model using studies from all ancestries as 
training data or fixed effect model using studies whose ancestry match the target ancestry 
as training data provides either the highest or the lowest prediction accuracy, but our meta-
regression always performs close to the best method if it is not the best method. In 
homogenous Eurasian effect scenario, the fixed effect model using studies from all 
ancestries as training data has the highest prediction accuracy, and our method provides 
slightly lower prediction accuracy than it but much higher than the fixed effect model using 
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studies whose ancestry match the target ancestry as training data (Figure 3.1C).  We also 
investigated model performance in Afrasian scenario, where a proportion of causal variants 
only exist in the African and the South Asian populations. The results are displayed in 
Figure A.1 in Appendix A. 
 
Figure 3.1: Median of the correlation of the estimated genetic effects with the true 
genetic effects in Eurasian scenario. We performed leave-one-out cross validation on 30 
studies with 10 studies from each ancestry population. Each simulated study has 1,043,770 
variants from presumably 2,000 individuals. We assessed the estimation accuracy of our 
meta-regression method versus fixed effect method using studies from all ancestries as 
training data (fixed) and fixed effect method using studies whose ancestry match the target 
ancestry as training data (fixed.match) in every ancestry across three simulation scenarios. 
(A) Estimation accuracy in excessive heterogeneous Eurasian effect scenario. A proportion 
of causal variants have homogeneous effects across all ancestries. For the rest of causal 
variants only European and South Asian populations have none-zero effects. The effect 
size in South Asian is triple as much as European. (B) Estimation accuracy in modest 
heterogeneous Eurasian effect scenario. Similar to the modest heterogeneous Eurasian 
effect, but the effect sizes for the ancestry specific causal variants in South Asian is twice 
as much as European. (C) Estimation accuracy in homogenous Eurasian effect scenario. A 
proportion of causal variants have homogeneous effects across all ancestries. For the rest 
of the ancestry specific causal variants, only European and South Asian population has 
non-zero identical genetic effects. 
 
A. 
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B. 

 
 
C. 
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II. PRS	Prediction	

 
 To find the most suitable PRS method to integrate with our meta-regression method, 
we investigated the performance of existing PRS methods using genetic effect estimates 
from our meta-regression method and two fixed effect methods in the excessive 
heterogeneous Eurasian effect scenario. We observe that the prediction accuracy in South 
Asian is higher than in African and European populations across all methods. It is 
consistent with what we observe from genetic effects estimation. It suggests the 
performance of PRS is associated with the quality of input genetic effects estimates. 
Lassosum tends to perform the best among all PRS methods in general. PRS-CS method 
gives the worst performence overall. Lassosum using genetic effects estimates from our 
meta-regression method as input provides the highest accuracy in a few situations. For 
example, when 20%, 60% or 80% of causal variants have homogenous effects across 
ancestries, the correlations between PRS.lassosum-meta-regression and true phenotypes in 
South Asian are 0.237, 0.309 and 0.312 respectively, whereas PRS.lassosum-fixed gives 
0.236, 0.258 and 0.237 respectively, and PRS.lassosum-fixed.match gives 0.236, 0.298, 
0.283 respectively. If we use LDPred2-auto to calculate PRS, PRS.LDPred2-auto-meta-
regression has the highest prediction accuracy compared to PRS.LDPred2-auto-fixed and 
PRS.LDPred2-auto-fixed.match across all proportions of causal variants when predicting 
in South Asian population (Figure 3.2A-C). 

Multi-ethnic PRS calculated with simulated genetic effects gives lower prediction 
accuracy, especially in the South Asian population (Figure 3.2D). It shows the advantage 
of using estimated genetic effects over directly using the simulated genetic effects as input 
of PRS algorithms.  
 
Figure 3.2: Median of the correlation of the PRS with the phenotype. We used 
estimated genetic effects as input for PRS algorithms lassosum, LDPred2-auto, SBayesR, 
and PRS-CS or directly used simulated genetic effects as input for PRS algorithm multi-
ethnic PRS. We calculated the correlation of the estimated PRS with the phenotypes in 30 
studies, 10 studies from each ancestry population. Each study has 1,043,770 variants from 
1,000 individuals sampled from specific estimated ancestry groups in UK Biobank 
accordingly. (A) Prediction accuracy evaluation for PRS methods using estimated genetic 
effects from our meta-regression method as input. (B) Prediction accuracy evaluation for 
PRS methods using estimated genetic effects from the fixed method as input. (C) Prediction 
accuracy evaluation for PRS methods using estimated genetic effects from the fixed.match 
method as input. (D) Prediction accuracy evaluation for multi-ethnic PRS method using 
simulated genetic effects as input. 
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A. PRS-meta-regression method 

 
 
B. PRS-fixed method 
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C. PRS-fixed.match method 

 
 
D. multi-ethnic PRS 
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3.4	Real	Data	Application	
 

To assess methodology in real data, we applied our meta-regression method on 
GSCAN. We used the summary statistics from all the studies excluding UK Biobank (total 
of 47 studies) from GSCAN to train our model and estimated the genetic effects for the 
whole genome of 3,483,748 genetic variants. We then predicted the PRS for smoking 
related phenotypes CigDay (UK Biobank fields: 2887 (number of cigarettes previously 
smoked daily), 3456 (number of cigarettes currently smoked daily (current cigarette 
smokers)), and 6183 (number of cigarettes previously smoked daily (current cigar/pipe 
smokers))), and AgeInit (UK Biobank fields: 3436 (age started smoking in current smokers) 
and 2867 (age started smoking in former smokers)) on individuals in UK Biobank with the 
estimated genetic effects. Lassosum was used for calculating PRS. We picked lassosum as 
our final PRS calculating method because most studies in GSCAN have restricted access 
to individual-level data; therefore, only summary statistics are accessible, and lassosum 
(when using the pseudovalidation option) does not require individual level data, such as 
genotypes or phenotypes to build the model. Another reason we decided to use lassosum 
is that in our simulation studies, lassosum shows the overall best performance in most 
circumstances. Lassosum is also easy to implement and requires substantially less 
computation time to process compared to other methods. This is important because there 
are over 3 million genetic variants in our real data application, whereas in the simulation 
studies we restricted the number of genetic variants to around 1 million. This dramatically 
increased number of variants made it challenging to calculate PRS with other methods such 
as PRS-CS. 

Figure 3.3 shows the first three PCs of genetic variations in allele frequencies 
separating ancestry groups from GSCAN studies. Figure 3A separates the GSCAN studies 
which have CigDay measured. Figure 3B separates the GSCAN studies which have AgeInit 
measured. Studies that are closer on plots are more likely from the same ancestry 
population. We also plotted the PCs from the 1000 Genome Projects as reference 
populations. GSCAN studies are labeled with their closest ancestry based on the Euclidean 
distance to reference population from 1000 Genome Projects. We observed that GSCAN 
studies’ labeled ancestries are consistent with their studies’ recruitment descriptions. It 
suggests the top 3 PCs are sufficient to separate ancestry groups of GSCAN studies. The 
estimated ancestries from CigDay studies are identical to the estimated ancestries from 
AgeInit studies for the studies which have both CigDay and AgeInit measured. The 
majority of studies are from the European population, but there are still 5 studies from the 
African population, 1 study from the East Asian population, and 4 studies from the Native 
American population. 
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Figure 3.3: PCs of genetic variations in allele frequencies separating ancestry groups 
from GSCAN studies and reference populations from 1000 Genomes Project. We 
identified 5 ancestry groups as African ancestry (AFR), Native American ancestry (AMR), 
East Asian ancestry (EAS), European ancestry (EUR), and Samoan, the majority of whom 
are isolated islanders. (A) The first 3 PCs of genetic variations from GSCAN studies which 
have CigDay measured. (B) The first 3 PCs of genetic variations from GSCAN studies 
which have AgeInit measured.  
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The predicted PRSs for CigDay in ever smokers, using our meta-regression method 
integrated with lassosum, are normally distributed with means of 2.541 in the African 
population, -0.062 in the European population, and 0.617 in the South Asian population 
(Figure 3.4A). If using genetic effects estimated from fixed effect methods and integrating 
with lassosum, the predicted PRSs for CigDay are also normally distributed but are more 
centered around 0 (Figure 3.4B-C). We gained extra prediction accuracy from inputting 
lassosum with estimated genetic effects from our meta-regression method in the South 
Asian population: compared with PRSs using the genetic effects estimated from fixed 
effect method using studies from all ancestries and integrating with lassosum (r=0.014), 
and PRSs using the genetic effects estimated from fixed effect method using studies from 
European ancestries (since the majority of UK Biobank are from European population) and 
integrating with lassosum (r=0.031), our method (r=0.054) attained 286% and 74% 
improvement respectively in predicting PRS of CigDay (Figure 3.5).  
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Figure 3.4: PRS distributions for CigDay of smokers from UK Biobank. We 
calculated PRSs for smokers from African (N=450), European (N=55,715), and South 
Asian (N=215) populations in UK Biobank. (A) Distributions of PRSs calculated by using 
our meta-regression method integrated with lassosum. (B) Distributions of PRSs calculated 
by using the genetic effects estimated with fixed effect method using studies from all 
ancestries and integrated with lassosum. (C) Distributions of PRSs calculated using the 
genetic effects estimated with fixed effect method using European ancestries studies and 
combined with lassosum. 

 
A. 

 
 
B. 

 
 
C. 
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Figure 3.5: Prediction accuracy comparison for CigDay across PRSs calculated 
by using our meta-regression method integrated with lassosum, PRSs calculated by 
using the genetic effects estimated with fixed effect method using studies from all 
ancestries and integrating with lassosum, and PRSs calculated by using the genetic 
effects estimated with fixed effect method using European ancestries studies and 
integrating with lassosum. We calculated the correlation of PRSs of CigDay with the 
reported CigDay for smokers from African (N=450), European (N=55,715), and South 
Asian (N=215) populations in UK Biobank. 

 

 
 
 
 

 For another smoking related phenotype, AgeInit, the predicted PRSs for AgeInit in 
ever smokers are normally distributed as well (Figure 3.6). The prediction accuracy of 
PRSs for AgeInit is in general lower than that in CigDay for African and European 
populations. LikeCigDay, our meta-regression method shows the greatest strength in 
predicting PRS in the South Asian population in UK Biobank (Figure 3.7). 
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Figure 3.6: PRS distributions for AgeInit of smokers from UK Biobank. We 
calculated PRSs for smokers from African (N=460), European (N=58,285), and South 
Asian (N=217) populations in UK Biobank. (A) Distributions of PRSs calculated by using 
our meta-regression method integrated with lassosum. (B) Distributions of PRSs calculated 
by using the genetic effects estimated with fixed effect method using studies from all 
ancestries and integrated with lassosum. (C) Distributions of PRSs calculated by using the 
genetic effects estimated with fixed effect method using European ancestries studies and 
integrated with lassosum.  
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Figure 3.7: Prediction accuracy comparison for AgeInit across PRSs calculated 
by using our meta-regression method integrated with lassosum, PRSs calculated by 
using the genetic effects estimated with fixed effect method using studies from all 
ancestries and integrated with lassosum, and PRSs calculated by using the genetic 
effects estimated with fixed effect method using European ancestries studies and 
integrated with lassosum. We calculated the correlation of PRSs of AgeInit with the 
reported AgeInit for smokers from African (N=460), European (N=58,285), and South 
Asian (N=217) populations in UK Biobank. 
 

 
 
 

 To investigate the relationship between CigDay and AgeInit, we calculated the 
correlation between predicted PRSs for CigDay and predicted PRSs for AgeInit (Table 3.1). 
Overall, we noted that the correlation between PRSs for CigDay and AgeInit is negative, 
which indicates that smokers who start to smoke early tend to consume more cigarettes per 
day than those who start to smoke at a later age. It suggests people who have more severe 
nicotine dependence are more likely to initiate smoking earlier and become heavy smokers. 
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Table 3.1: Correlation between observed value for CigDay and observed value for 
AgeInit, and correlation between predicted PRSs for CigDay and predicted PRSs for 
AgeInit. For smokers who have both CigDay and AgeInit recorded, we calculated the 
correlation between observed CigDay and observed AgeInit, and the correlation between 
predicted PRSs for CigDay and predicted PRSs for AgeInit across different methods. 
 

 observed 
values 

meta-
regression.PRS fixed.PRS fixed.match.PRS 

All 
population 

in UKB 
(N=56,006) 

-0.147 -0.397 -0.076 -0.077 

African in 
UKB 

(N=442) 
-0.072 -0.134 0.025 -0.021 

European 
in UKB 

(N=55,354) 
-0.146 -0.096 -0.079 -0.082 

South 
Asian in 

UKB 
(N=210) 

-0.164 -0.110 -0.218 -0.178 

 
 

3.5	Discussion	
 
 All existing PRS methods, to the best of our knowledge, jointly model genetic 
variants across the genome using the estimated genetic effects directly from GWAS. We 
proposed a conceptually different approach for PRSs calculation which first uses meta-
regression across ancestry studies to get the estimates of genetic effects with higher 
accuracy and then feed these better estimated genetic effects into existing PRS methods. 
Our meta-regression method gains extra prediction accuracy when there are GWAS results 
from multiple ancestries available. We showed through extensive simulation studies that 
our meta-regression method outperformed fixed effect methods in prediction accuracy 
when a fraction of causal variants for a trait are shared across ancestries with heterogeneous 
variant effects.  

 Our meta-regression method enables partitioning heterogeneity in variant effects 
between GWAS which is correlated with the ancestries by modeling the PCs of genetic 
variation. For variants whose effects are relatively homogeneous across ancestries, our 
method should still accommodate the model by picking the number of PCs adjusted in the 
model based on the smallest BIC value. BIC maximizes the likelihood while penalizing the 
number of parameters in the model. We also implemented minimal AIC and minimal p-
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value criteria, i.e., picking the number of PCs in the model based on the smallest AIC value 
or the smallest p-value. Overall, the minimal BIC criterion provides the highest prediction 
accuracy among all criteria (data not shown). Therefore, we decided to adhere to the 
minimal BIC criterion for all the analyses in this work.  

 In the simulation studies, we mainly focused on the heterogeneity scenario 
“Eurasian” where a proportion of causal variants only present in the European population 
and the Asian population, and we also differed the degree of effect sizes heterogeneity 
between European and Asian populations to the excessive heterogeneous scenario and the 
modest heterogeneous scenario. These scenarios incorporated heterogeneity between 
ancestry groups that are close to the real world. A previous study investigated the trans-
ethnic genetic correlation in 31 complex diseases and complex traits, including body mass 
index, type 2 diabetes, rheumatoid arthritis, and schizophrenia using large studies in 
European and East Asian populations from Biobank Japan, UK Biobank, and CONVERGE 
consortium [39]. They found that the squared trans-ethnic genetic correlations were 
significantly depleted or enriched in functionally vital regions. They concluded that the 
causal effect sizes are population-specific for a wide range of diseases and traits. 
Unfortunately, our meta-regression method is not universally optimal across the broad 
range of simulation scenarios for heterogeneity in every ancestry population. For example, 
the fixed method using all ancestry studies as training data provides the highest prediction 
accuracy when predicting genetic effects in the European population. It may be because, 
in our simulation settings, the causal variants effect sizes in the European population are 
between the causal variants effect sizes in the African population and the Asian population. 
Mathematically as an averaging effect, the fixed effect method using all ancestry studies 
as training data would outperform both the meta-regression method and the fixed effect 
method using only European studies as training data. Our meta-regression method focuses 
on partitioning the variant effects on the top PCs of genetic variations, which distinguish 
populations from different ancestries. It shows higher prediction accuracy in the African 
or Asian populations which have more divergent variant effect sizes in our settings. We 
also noticed that our method almost consistently outperforms the fixed effect method using 
only European studies as training data. Our meta-regression method utilizes the 
information from all the studies, and the increased sample sizes would help with the 
prediction accuracy. The only scenario that fixed effect method using only target ancestry 
(except for European as target ancestry) studies as training data outperforms our meta-
regression method is when less than 30% of causal variants are homogenous across 
ancestries.  

 When applying our meta-regression method to UK Biobank dataset, we observed 
that the PRS for CigDay is generally more accurate than the PRS for AgeInit. This is 
reasonable because the amount of cigarette consumption daily can reflect an individual’s 
dependence on nicotine from genetic prospects well especially after an individual becomes 
a regular smoker, and it is consistent with other literature which found tobacco 
consumption PRS can be a good genetic surrogate for nicotine dependence. On the other 
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hand, the age of smoking initiation is also associated with one’s nicotine dependence. Still, 
compared with amount of daily cigarette consumptions, age of smoking initiation may be 
attributable more to the environment. 

 Our work still leaves several potential improvements for future exploration. First, 
since we modeled the genetic effects in a linear regression framework, it is relatively simple 
to include more factors that potentially contribute to the heterogeneity in variant effects 
across studies. For example, we can adjust for environmental factors in predicting the PRS 
for tobacco usages, such as geographic location, socioeconomic status, and educational 
attainment, which all showed significant associations with tobacco usage. Since tobacco 
usage showed a substantially difference in males and females, adding sex information can 
also potentially increase the prediction accuracy. Second, our current method restricted to 
modeling the genetic effects for continuous or ordering phenotypes, extending our meta-
regression to categorical phenotypes using logistic regression can be addressed in the future 
work and would facilitate the risk prediction for other categorical tobacco usage related 
phenotypes such as ever been a regular smoker and ever attempt to quit smoking. Third, in 
this work, we focused on the variants that all GWAS have in common with allele frequency 
greater than 0.01. It is possible that some variants, although contribute to the phenotype of 
interest, got filtered out since they were not genotyped or their allele frequencies were less 
than 0.01 in some of the studies. For future improvement, we can keep those variants and 
estimate their effect sizes using the genotyped studies and have the allele frequency greater 
than the 0.01 threshold. Fourth, we limited our PRS calculation to lassosum in the real data 
application in UK Biobank. One of the main reasons was that lassosum was much faster 
than other PRS methods when calculating PRS using millions of variants. For example, in 
our simulation studies, it cost LDPred2 more than a day to calculate PRS for a single study, 
whereas lassosum only took a few hours. One of the bottlenecks for computational 
efficiency for LDPred2 is that it relies on the snp_readBed function from “bigsnpr” 
package to generate an rds file for the genotype data that can be later read into R for LD 
calculation. One solution to increase the computation efficiency is that instead of using 
snp_readBed function, we can implement the readPlinkToMatrixByIndex function from 
our “seqminer2” package. As we showed before, seqminer2 can read ultra large biobank 
scale data into R and it is faster than most state-of-art tools, implementing seqminer2 with 
PRS tools embedded with less efficient sequencing reading tools can potentially magnitude 
improve their computation efficiency. 
 
 In conclusion, our meta-regression method provides a way to estimate genetic 
variant effects with higher accuracy and further improve the PRS prediction in multi-ethnic 
studies. Although the PRS prediction accuracy is still not high enough to make it into 
clinical practice, we believe that with the increasing number of available GWAS from 
diverse populations, the PRS accuracy will keep improving and provides insights to the 
pathology of diseases and ultimately contribute to the personalized medicine.  
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Appendix	A	Chapter	3	
 
Figure A.1: Median of the correlation of the estimated genetic effects with the true 
genetic effects in Afrasian scenario. We performed leave-one-out cross validation on 30 
studies with 10 studies from each ancestry population. Each simulated study has 1,043,770 
variants from presumably 2,000 individuals. We assessed the estimation accuracy of our 
meta-regression method versus fixed effect method using studies from all ancestries as 
training data (fixed) and fixed effect method using studies whose ancestry match the target 
ancestry as training data (fixed.match) in every ancestry. We evaluated in the scenario 
where a proportion of causal variants have homogeneous effects across all ancestries. For 
the rest of causal variants only the African and the South Asian populations have none-
zero effects. The effect size in the South Asian is triple as much as the African.  
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