
The Pennsylvania State University
The Graduate School

EVALUATING THE ATTACK SURFACE OF CONTROL FLOW

INTEGRITY

A Dissertation in
Computer Science and Engineering

by
Dongrui Zeng

© 2021 Dongrui Zeng

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

December 2021

The dissertation of Dongrui Zeng was reviewed and approved by the following:

Gang Tan
Professor of Computer Science and Engineering
Dissertation Advisor, Chair of Committee

Trent R. Jaeger
Professor of Computer Science and Engineering

Sencun Zhu
Associate Professor of Computer Science and Engineering

Peng Liu
Professor of Cybersecurity
Director, Center for Cyber-Security, Information Privacy, and Trust (LIONS)

Ben Niu
Senior Software Development Engineer at Microsoft
Special Member

Chita R. Das
Professor of Computer Science and Engineering
Department Head of Computer Science and Engineering

ii

Abstract
Control-Flow Integrity (CFI) enforces a control-flow graph (CFG) to limit attackers’
ability to manipulate runtime control flow. The essence of a CFI enforcement is
a binary-level CFG, which we call a CFI policy. However, there are many CFI
variations, each enforcing CFGs of a certain precision level. Each precision level
achieves different effectiveness of eliminating attack surface, resulting in different
security guarantees. In general, enforcing a more precise CFG exposes a smaller
attack surface. However, the remaining attack surface after a CFI defense may
leave programs still vulnerable. Therefore, evaluating the attack surface of a
CFI-protected software is critical and desired.

The first step is to construct CFGs corresponding to different CFI implementa-
tions. Some CFI systems construct CFGs based on binaries alone but others modify
compilers to access source-level information for better CFG precision. Extracting
CFGs from different CFI implementations can be laborious. Thus, we propose to
generate CFGs of different precision levels based on standard compiler-generated
meta-information, including symbol tables, relocation information, and debugging
information. The key component of the system is a type-inference engine that
infers types of low-level storage locations, which enables various signature matching
methods for constructing CFGs at different precision levels.

Different CFGs result in different security strengths; the ideal measurement
of security strength would be the attack-surface reduction. We define the attack
surface as all attack paths that fulfill an attacker’s malicious goal. Due to the
unavoidable path explosion problem in finding all paths in a program, the key
of designing a good metric for the attack surface is to balance the completeness,
accuracy, and scalability of the static analysis used for revealing the attack surface.
Therefore, we propose two quantitative metrics for the attack surface of a CFI-
hardened program, one pursuing the completeness of covering the attack surface
with overapproximation while the other one favoring better accuracy. Computing
the two metrics requires a program’s CFG, an attack model, and a security-violation
policy as input. The first one relies on an attack-aware data dependency tracking
algorithm to identify all risky program points; and the second one relies on a
per-path value tracking analysis to determine risky paths.

iii

Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments xi

Chapter 1
Introduction 1
1.1 Control-Flow Hijacking and Defenses 1
1.2 Attack Surface of Control-Flow Integrity 2
1.3 Challenges of Evaluating the Attack Surface 5
1.4 Thesis Statement and Contributions 7
1.5 Outline . 10

Chapter 2
Related Work 11

Chapter 3
Flexible CFG Construction 15
3.1 Overview . 15
3.2 Compiler-generated Meta-information 17
3.3 Type Inference . 18

3.3.1 Debugging type information 19
3.3.2 Stack layout inference . 21
3.3.3 Constraint generation . 23
3.3.4 Constraint solving . 26

3.4 CFG Construction . 29
3.4.1 Base CFG construction . 29
3.4.2 Type-based CFG construction 31

3.5 Implementation and evaluation . 32

iv

3.5.1 Effectiveness of type inference 33
3.5.2 CFG precision and validation 34

3.6 Multi-level CFG Construction . 36
3.7 Summary . 37

Chapter 4
Risky Program Points as Attack Surface 38
4.1 Overview . 38

4.1.1 A Motivating Example . 38
4.2 System Workflow and Input Specification 42

4.2.1 CFGs . 43
4.2.2 Attack models . 43
4.2.3 Security-violation policies 45

4.3 Attack-Aware Dependency Tracking (ADT) 47
4.3.1 Conversion into RTL . 47
4.3.2 Inserting attack instructions 48
4.3.3 Conversion to a stack-free representation 49
4.3.4 Attack-aware dependency tracking 51

4.4 Security Metric Design . 55
4.5 Limitations and Discussions . 56
4.6 Summary . 57

Chapter 5
Risky Paths as Attack Surface 58
5.1 Overview . 58

5.1.1 Threat Model . 58
5.1.2 System Overview . 60

5.2 Path Discovery . 62
5.3 Per-path Security Assessment . 63
5.4 Attack Surface Evaluation . 72
5.5 Summary . 74

Chapter 6
Comprehensive Metric Comparison 75
6.1 Comparison Methodology . 75
6.2 AICT vs MazeRunner . 77

6.2.1 Understanding the metric precision 77
6.2.2 The comprehensiveness of the metric 81
6.2.3 Implications for applying CFI 83

6.3 MazeRunner vs SpaceExplorer . 85

v

6.3.1 SpaceExplorer’s precision . 85
6.3.2 SpaceExplorer’s coverage . 92
6.3.3 Security application of SpaceExplorer 93

6.4 Statistical Relation Between AICT and Attack Surface 94
6.5 Summary . 97

Chapter 7
Future Work 98
7.1 Framework Extension . 98

7.1.1 Extension to x64 . 98
7.1.2 Extension to C++ . 98

7.2 Automatic Exploit Generation . 99
7.3 Typed Binary-level Alias Analysis 99
7.4 Automatic Program Generation . 100

Chapter 8
Conclusion 101

Bibliography 103

vi

List of Figures

3.1 System architecture for high-precision CFG construction. 15

3.2 An example for debugging entries. 19

3.3 Stack layout inference for a toy function. 22

3.4 Syntax of type constraints. 24

3.5 Examples for constraint generation. 24

3.6 An example for illustrating constraint solving. Assume t1 = int,
t2 = {f1 : int, f2 : float∗}, and t3 = float∗. 27

4.1 Example dependency tracking. 40

4.2 Example for metric comparison. 42

4.3 MazeRunner’s workflow. 42

4.4 Attack-aware dependency tracking steps. 47

4.5 The major syntax of RTL [1]. 48

5.1 System Overview . 60

5.2 The storage locations and values considered in a program state. . . 64

5.3 An example CFG to show how PVTA evaluates paths. 72

vii

6.1 Comparison of 1-step attack-surface metric with AICT metric . . . 79

6.2 Comparison of different attack models for type-based CFGs. 81

6.3 CFI and DFI check reduction rates for type-based CFGs. 84

6.4 Statistical relations between metrics and AICT with G1; blue dots
are for SpaceExplorer’s metric; red dots are for MazeRunner’s metric;
gray dots are for AICT. 95

viii

List of Tables

3.1 Indirect-call and Indirect-jump type-inference results (GCC 4.8.4
with O2 optimization). 33

3.2 Average Indirect-Branch Targets for SPEC benchmarks (GCC 4.8.4). 35

3.3 Experimental results for Nginx-1.4.0 (GCC 4.8.4 with O2 optimiza-
tion). 36

4.1 Attack-aware dependency tracking rules. 54

5.1 Rules of the Per-path Value Tracking Analysis 66

6.1 AICT and 1-step attack-surface measurements for general policies. . 78

6.2 MazeRunner’s coverage of critical application functions used in PoC
attacks against nginx. 3 means the function is covered by an attack
model; N.A. means the related attack is not feasible for the attack
model. 82

6.3 ICall Policy with Ctype and Arity CFGs 87

6.4 AWrite Policy with Ctype and Arity CFGs 88

6.5 Ground Truth Security Assessment and SpaceExplorer’s Evaluation 90

6.6 SpaceExplorer’s Code Coverage . 92

ix

6.7 The percentage of safe paths determined by SpaceExplorer 93

6.8 Minimum Expected AICT Reductions for G1 96

x

Acknowledgments

First, I want to give my great gratitude to my advisor, Prof. Gang Tan, for his
patient mentoring and support for my Ph.D study. I have learned a lot from his
expertise and personality. He teaches me how to do rigorously understand issues
and solve problems. Without his guidance, I would never have been able to achieve
my current progress.

Besides my advisor, I would like to thank the members of my dissertation
committee, Prof. Trent Jaeger, Prof. Sencun Zhu, Prof. Peng Liu, and Dr. Ben
Niu, for their time and helpful comments.

Also, I was glad and honored to meet and work with my great labmates, Ben
Niu, Shen Liu, Robert Brotzman-Smith, Sun Hyoung Kim, Michael Norris, and
Yongzhe Huang, during my graduate study. Thanks to their help and company.
Last but not the least, I am truly grateful to my family for their continuous support.

This dissertation is based upon work fully/partially supported by US NSF
grants CCF-1624124, CNS-1624126, CNS-1801534 and CCF-1723571. The in-
volved research was also supported in part by the Defense Advanced Research
Projects Agency (DARPA) under agreement number N6600117C4052, DARPA
grant HR0011-19-C-0106, and Office of Naval Research under agreement number
N00014-17-1-2539.

xi

Chapter 1 |
Introduction

In this chapter, we first give an introduction on control-flow hijacking attacks and
defenses proposed to mitigate such attacks, where Control-Flow integrity (CFI) is
the most practical defense. Enforcing different CFGs by CFI results in different
effectiveness of preventing control-flow hijacking attacks. Thus, we then discuss
at a high level what factors influence the attack surface of CFI and the challenges
of evaluating the attack surface. At the end, we give the thesis statement and
summarize our contributions in addressing all challenges.

1.1 Control-Flow Hijacking and Defenses

While C/C++ programs enjoy high performance resulted from the complete pro-
grammer control of memory, memory-corruption vulnerabilities, such as out-of-
bound accesses, format string manipulation, and use-after-free bugs, are made
possible, which undermines the security of programs. Memory-corruption vulner-
abilities alone are safety issues; however, when there is an attacker who aims to
exploit the vulnerabilities to achieve a malicious goal, such as injecting malicious
code to steal private information or compromise the underlying operating system,
the safety problem is escalated to a security problem.

Control-flow hijacking is one of the attacking techniques enabled by memory
corruptions. The idea is to make use of memory corruptions to manipulate the
content of control-flow related memory locations so that the destination of a
computed control-flow transfer (i.e., indirect branches) can be controlled by the
attacker. By chaining multiple controlled indirect branches, such as a sequence
of return instructions with a crafted stack of desired code addresses (i.e., return-

1

oriented programming), the attacker compromises the program to reach a state
where the attacker’s goal is fulfilled. For example, the control flow is directed to an
execve system call to open a shell for the attacker.

Given the difficulty of eliminating all memory-corruption vulnerabilities in a
program, researchers resort to defenses that mitigate control-flow hijacking attacks,
including Data-Execution Prevention (DEP), Address Space Layout Randomization
(ASLR), Stack Canary, and Control-Flow Integrity (CFI). DEP is proposed to
prevent control-flow hijacking attacks that result in injecting malicious code (code-
injection attacks). However, the attacker can still make use of the existing code
to achieve a malicious goal (code-reuse attacks). For example, an attacker can
first lead the control flow to an mprotect system call to change the protection
flags for a memory region and continue with a code-injection attack. Therefore,
ASLR is invented to hide the memory layout from the attacker by randomizing the
starting addresses of different chunks of data and code. However, ASLR can be
compromised by information leaks, heap spraying, and even brute-force guessing.
Stack Canary achieves some level of stack protection by monitoring the integrity
of a random value injected between stack frames, which is also easy to bypass by
guessing the value or an arbitrary memory write primitive.

On top of DEP, ASLR, Stack Canary, CFI is proposed to directly protect
indirect branches. The idea is to constrain the target of each indirect branch within
a legitimate scope, which limits attackers’ ability to manipulate the program’s
control flow. A CFI scheme consists of two major components: the CFI policy
and the CFI enforcement. The CFI policy, which is a binary-level control-flow
graph (CFG), defines what control flows are legitimate in a program; and the CFI
enforcement makes sure the program’s runtime respects the policy. In this thesis,
we focus on evaluating the attack surface of CFI policies and assume a perfect
runtime enforcement for each policy.

1.2 Attack Surface of Control-Flow Integrity

While it is generally agreed that applying CFI increases a program’s security
strength, it is hard to evaluate how much strength a particular CFI variation adds.
The fundamental difficulty is because what CFI enforces is just a control-flow graph,
which does not directly tell what, or how much, security it provides. For instance,

2

it is unclear whether, or to what extent, the attacker can perform arbitrary code
execution, which is a typical attacking goal, after CFI is enforced. In other words,
there is a fundamental gap between what CFI enforces and what is desired for
security, which is the reason why previous work found that programs with a CFI
defense can still be exploited [2–10]. Therefore, CFI does not prevent all control-flow
hijacking attacks, indicating that there is still attack surface for breaking CFI.
Then, we have reached a question: can we evaluate the attack surface of CFI to
understand how much security is improved by CFI?

To evaluate the attack surface, the first step is to define what attack surface is.
However, attack surface is often used as a conceptual and opaque idea to express
the feasibility and possibility of launching attacks; there has not been a precise
definition of attack surface. Next, we use prior work’s definitions and the drawbacks
of the corresponding metrics to motivate our way of defining attack surface. In fact,
we have observed that there can be multiple reasonable definitions, each motivating
some metrics for quantitatively measuring the attack surface.

One existing way is to represent the attack surface with the available gadgets
(e.g., [8, 10, 11]), which we call the gadget-level abstraction. A metric following this
level of abstraction has a number of drawbacks. First, it depends on a particular
gadget-finding tool. Every tool counts particular kinds of gadgets. Some tools
count only code snippets ending with return instructions, while other tools also
count snippets ending with indirect calls. An incomplete gadget set is insufficient
for measuring the whole attack surface. Also, it does not take gadget chaining
into account; even if the number of available gadgets is small in a CFI-hardened
program, it does not mean good security if there are many ways of chaining gadgets
into attacks.

Another kind of abstraction is to define the attack surface based on the outgoing
edges of each indirect branch, with the intuition that enforcing a CFG with less
edges should reduce the attack surface; we call this the edge-level abstraction.
Metrics following this definition describe the average freedom of manipulating
control flow at indirect branches, which attempts to give an overall evaluation
of the control-flow manipulating space given a powerful attack model where the
target of every indirect branch can be manipulated by the attacker. Such metrics
include AIR (Average Indirect target Reduction) [12, 13], the sizes and the number
of target sets [14], AIBT (Average Indirect Branch Target) [15], the median and

3

distribution of target set sizes [16], AICT (Average Indirect Call Target) [17,18],
and runtime indirect branch targets [19]. For example, AICT is calculated as the
number of targets averaged over all indirect calls. However, there is still a gap
between the control-flow manipulation space and the whole attack surface of CFI,
since manipulating indirect branches in most cases is only part of an attack.

Therefore, to accurately measure attack surface, end-to-end attacks should be
considered. However, it is impossible to know all attacks ahead of time. We believe
the best way is to perform evaluation against a precisely defined security-violation
policy, which defines a malicious goal of an attacker. In this way, the attack-surface
evaluation can be strictly limited to a specific attacking goal so that the evaluation
result would not be over-interpreted. In fact, the control-flow manipulation space
is the attack surface for attacks only aiming at tampering the indirect branches
during runtime.

We further observe that the attack surface is influenced by the assumed attack
model; a powerful attack model shall yield a larger attack surface. The strongest
attack model assumed by CFI work is an attacker who resides in a concurrent thread
with the victim thread; thus, the memory of the victim thread can be modified
in any way and at any time. This attack model is also what the gadget-level and
edge-level metrics all assume. However, if we want to understand the attack surface
with respect to a weaker attack model (e.g., the attacker can only cause memory
corruption at a certain point), the existing gadget-level and edge-level metrics
become overapproximations. Therefore, an accurate attack-surface evaluation
should be able to adjust to different attack models.

In all, with the obvious facts that CFI is able to limit the attacker’s ability
to manipulate control flows and the attack surface should be program-dependent,
we conclude that the attack surface is influenced by five factors: the abstraction
granularity, the attack goal, the attack model, the CFI policy, and the
target program. The abstraction granularity is about what entities are used to
represent the attack surface, such as the gadgets used by the gadget-level abstraction
and the outgoing edges used by the edge-level abstraction; we call the entities
attack-surface entities, which will be discussed with more details when we propose
our metrics. The attack goal defines what kind of attacks the evaluated attack
surface is for. The attack model defines what capability the attacker has in terms
of influencing the program’s runtime. The CFI policy is the enforced CFG that

4

protects the target program. Therefore, we define that the evaluation of the attack
surface is to discover all attack-surface entities from the target program, with
respect to an enforced CFG, a specified attack goal, and an attack model.

1.3 Challenges of Evaluating the Attack Surface

Now, we have summarized the five critical factors that influence the attack surface
and defined what attack-surface evaluation is. However, each of the five aspects
brings challenges to the goal of evaluating the attack surface.

Attack-surface abstraction. There can be different abstractions of the attack
surface. The existing approaches have explored two choices: the gadget-level
abstraction and the edge-level abstraction, where the gadgets and edges are the
corresponding attack-surface entities (i.e., gadgets and edges are used to represent
the attack surface). However, a real control-flow hijacking attack needs to chain
multiple gadgets or to manipulate multiple indirect branches. Thus, these two
abstractions are simplifications of control flow hijacking attacks; in other words,
the two abstractions are coarse-grained. Therefore, a challenge is to design a fine-
grained abstraction of attack surface, while considering the complexity of evaluation.
For example, it is intuitive to define an ideal evaluation of the attack surface as
finding all real attacks. However, due to the significant difficulty of identifying a
real attack, it is challenging to discover all real attacks to reveal the whole attack
surface.

Attack goal. Control-flow hijacking is an attacking technique for an attacker
to achieve a malicious goal. However, different security scenarios pose different
applicable malicious goals. For instance, a malicious goal towards a private web
server can be stealing private information or injecting fake data; however, over-
loading the server might be less interesting, since the potential gain of such an
attack is limited. In contrast, increasing the energy consumption of a data center
or overloading a cloud server may become attractive for attackers. The existing
gadget-level metric cares about a goal that the attacker aims to identify gadgets
without chaining them into attacks; the existing edge-level metrics assume the
attacker’s goal is to manipulate the destination of an indirect branch. In all, the
attack goals considered by existing metrics only reflect initial steps in a control-flow

5

hijacking attack. Therefore, a challenge is to propose attack goals that are more
towards the ultimate purposes of attackers and to represent attack goals in a
systematic way.

Attack model. An attack model defines the attacker’s capability of influencing
the program’s runtime, which is an important factor that impacts the discovery
of attack-surface entities. For example, the powerful attack model assumed by
prior metrics makes it easy to discover all the attack-surface entities; that is, all
gadgets and all indirect-branch edges are treated as the attack-surface entities. Note
that for a weaker attack model, some of the gadgets and edges may be discharged
from the attack surface; in other words, existing metrics would exaggerate the
attack surface of a weaker attack model. Therefore, a challenge is to transform
descriptive definitions of attack models into a more systematic formalization so that
the attacker’s influences can be reflected in the discovery of attack-surface entities.
Also, we need to propose some weaker attack models to facilitate our attack-surface
evaluation. The attack model influences the difficulty of discovering attack-surface
entities. For example, if we assume the attacker can only influence a program
through legal user-interface and we would like to use real attacks to represent
the attack surface, an attack-surface evaluation is the problem of discovering all
workable exploits, which is demonstrated to be challenging [20–24].

CFI policy. A CFI policy is the enforced binary-level CFG. The main difficulty
of constructing binary-level CFGs is to compute control-flow targets for indirect
branches, which include return instructions, indirect jumps (jumps via register
or memory operands), and indirect calls (function calls via register or memory
operands). Since indirect-branch targets depend on values that are computed at
runtime, it is challenging to predict them statically.

Researchers have explored two main approaches for binary-level CFG construc-
tion: the binary-analysis approach and the compiler-modification approach. The
binary-analysis approach [12, 18, 25–27] analyzes binary code and its contained
information for CFG construction and has the benefit of not requiring source code.
However, CFGs constructed by this approach are of a relatively low precision [28].
The compiler-modification approach for binary-level CFG generation [13, 29–31]
modifies existing compilers to propagate information from source to binary code and
then performs CFG construction directly at the binary level. This approach con-

6

structs CFGs of much higher precision than the binary-analysis approach. However,
this approach relies on source code; and every implementation only corresponds to a
specific compiler and a specific version. In all, there is a wide range of CFI schemes
(e.g., [12, 13, 25, 27, 29, 32, 33]) and each makes its own choice of CFI policy (i.e.,
what precision of CFGs it enforces). A comprehensive discussion of CFI variations
can be found in [14].

Different CFI schemes may enforce different CFGs. For the goal of evaluating
the attack surface of CFI, it is necessary to acquire CFGs that are used by existing
CFI work. On the other hand, to understand how CFG precision influences
CFI’s effectiveness in reducing the attack surface, constructing CFGs of a specific
precision level is critical. Given our demand for a variety of CFGs, extracting CFGs
from existing CFI implementations is not ideal. Some CFI implementations use
the binary-analysis approach while the others employ the compiler-modification
approach. The binary-analysis approach may make assumptions about the binary
code, such as the compilers used for producing the binary and the instruction
set used by the binary. On the other hand, the compiler-modification approach
is compiler-specific; each CFI implementation of this sort relies on a specific
compiler version. Thus, CFGs extracted from different CFI implementations are
not comparable due to their different assumptions. Moreover, there is no prior
work capable of generating CFGs according to a specified precision level. In all,
a practical challenge is to design a unified CFG construction approach that can
produce CFI policies necessary for our purpose of evaluating the attack surface.

1.4 Thesis Statement and Contributions

As we introduced in this chapter, evaluating the attack surface of a CFI-protected
program needs to consider multiple aspects, while existing quantitative metrics
are coarse-grained. However, given the challenges mentioned above, are there
fine-grained quantitative metrics for evaluating the attack surface which can scale
to complicated large software?

Thesis Statement. The attack surface of a CFI-protected program can be measured
by fine-grained and scalable quantitative metrics.

Contributions. This thesis systematically explores the method of evaluating an

7

attack surface of a CFI-protected program. By following the methodology, we
propose two fine-grained quantitative metrics for measuring the attack surface. One
relies on an attack-aware dependency tracking analysis to discover risky program
points as the abstracted attack-surface entities, which pursues to cover all attack-
surface entities while improving abstraction granularity over prior metrics; the other
one identifies risky paths as the abstracted attack-surface entities, which aims to
further increase the abstraction granularity at the cost of incomplete coverage of
the attack-surface entities. With the new metrics and our flexible CFG construction
approach, we conduct a comprehensive comparison of multiple meaningful metrics
and yield a deep understanding in the relation between attack surface and CFG
precision. In detail, we make the following contributions:

• Risky program points as the attack surface. We present MazeRunner,
the first framework that applies an attack-aware dependency tracking to
quantitatively measure the attack surface of a CFI-protected program [34].
In this work, the attack surface is represented by risky program points (point-
level abstraction), which is more fine-grained than the abstractions of existing
metrics. In this work, we propose a formalization of attack goals and attack
models. Since the attack goals and attack models considered by MazeRunner
are more realistic than the those used by prior metrics, MazeRunner gives a
more informative security evaluation of CFI policies. Moreover, it takes both
control and data flow into account to better correlate to potential attacks,
also making MazeRunner’s measurement more fine-grained. Furthermore, we
propose a series of optimization techniques to make MazeRunner scalable to
large programs.

• Security application of MazeRunner. Our attack-aware dependency
tracking and the detection of risky program points are overapproximated.
Thus, with respect to an attack model and a security-violation policy, when
our metric for a program is zero, MazeRunner guarantees that the program is
secure. One can use this feature to discharge unnecessary CFI/DFI runtime
checks to improve performance.

• Risky paths as the attack surface. We propose a new metric based on
a path-level abstraction of the attack surface, where paths are the attack-
surface entities. The attack model is even weaker than what MazeRunner

8

assumes; thus, the evaluation result is more realistic and informative. The
core of the security determination for each path is a per-path value tracking
analysis, which overapproximates attack paths and achieves a 100% precision
in detecting safe paths. In all, the new metric further increases the granularity
over MazeRunner’s metric. We implement a framework called SpaceExplorer
to compute the metric.

• Security application of SpaceExplorer. The per-path value tracking
analysis can be used to improve the efficiency of automatic exploit generation.
The analysis can determine safe paths without involving SMT solvers. Thus,
it can discharge a large amount of safe paths from the candidates for symbolic
execution, which is necessary for the automatic exploit generation.

• Comprehensive metric comparison Using our path-level metric, which
is the most fine-grained measurement we can compute, as reference, we
compute all other applicable metrics and do a comprehensive comparison to
demonstrate their advantages and disadvantages. Moreover, we perform a
statistical experiment to understand the relation between the attack surface
of CFI and the CFG precision enforced by CFI.

• Flexible CFG construction. To enable the comprehensive metric compari-
son, we propose a flexible CFG construction approach. Our CFG construction
is the first one that produces CFGs from standard meta-information generated
by compilers. Compared to the approach of modifying compilers, most of our
system can be reused across compiler versions and across compilers. Com-
pared to the binary-analysis approach, our system is capable of generating
CFGs of much higher precision. In addition, our approach designs different
signature matching methods to produce CFGs used by different CFI work.
Moreover, our approach is able to produce CFGs of a specific precision level.

• Binary-level type-inference. The key step in our CFG construction is a
general binary-level type-inference procedure. Flow-based constraints are
generated from binary code together with meta information and are solved
to infer types of registers and stack locations. Our binary-level type-inference
engine can be reused for other binary analysis.

9

1.5 Outline

The rest of the dissertation is organized as following. Chapter 2 introduces necessary
background information and related work. Chapter 3 discusses our flexible CFG
construction. Chapter 4 elaborates on using risky program points as a metric for the
attack surface. Chapter 5 presents another attack-surface metric relying on risky
paths. Chapter 6 performs a comprehensive comparison of multiple meaningful
attack-surface metrics. Chapter 8 concludes this dissertation and Chapter 7 depicts
future directions.

10

Chapter 2 |
Related Work

In this section, we discuss the most related research of this dissertation.

Binary-level Type Inference. Classic binary-level type-inference systems mostly
assume stripped binaries ([35] provides a comprehensive survey). Such systems
rely on constraint solving, machine learning, and heuristics. Some of them support
type hints to improve the accuracy of type inference, where type hints may come
from the user’s expertise and type signatures of standard library calls. The type
inference used in our CFG generation system uses debugging information as hints.
This comes with the downside of assuming non-stripped binaries, but it enables
a more complete type inference since debugging information provides a wealth of
source-level types. Thanks to debugging information, our flow-based type inference
can infer most of the types in operands of indirect branches, while previous systems
on stripped binaries had trouble of inferring function-pointer types [35,36], even
after employing more complex techniques including heuristics (e.g., for classifying
whether an immediate is an integer or a pointer), points-to analysis, and dynamic
analysis.

Binary-level CFG Construction. Static disassembly of binaries and CFG
construction have always been a challenge in reverse engineering binary programs.
Other than the standard linear-sweep and recursive-traversal algorithms, other
attempts at better static disassembly and CFG construction have been presented in
previous papers. Kruegel et al. [37] proposed to combine linear sweep with recursive
traversal. Their system first identifies function boundaries using heuristics and
then performs recursive traversal within each function. The recursive traversal for
a function starts at every byte to accommodate variable-sized instructions in x86;

11

conflicts between disassembled basic blocks are resolved using a set of heuristics.
The system does not follow the control flows of indirect branches and suffers from
incomplete disassembly. Balakrishnan et al. [38] proposed Value Set Analysis (VSA)
that can sometimes statically determine the control-flow targets of indirect branches.
Wartell et al. [39,40] described a machine-learning approach for discovering the most
likely disassemblies with the help of a training corpus. TypeArmor [27] performs
liveness-analysis based arity matching to refine the control-flow targets of indirect
calls. In particular, for a caller, liveness analysis is used to decide whether there is
a return value from the callee and the number of arguments that are passed; for a
function, it deduces the number of formal parameters and whether the function
returns a value to the caller. Then an indirect call is allowed to target any function
whose number of parameters match the the number of arguments passed from the
indirect call and whose return value information matches the indirect call’s. All
previous systems assume stripped binaries.

Control-flow integrity. There are many CFI variations. According to the
precision of the CFG that is enforced, we can roughly divide CFI work into two
categories: coarse-grained and fine-grained. Coarse-grained CFI implementations
(e.g., [12, 25,26, 41–43]) enforce imprecise CFGs. Fine-grained CFI (e.g, [13, 27, 29–
31,44–49]) enforces fine-grained CFGs in the sense that each indirect branch can
have its own target set. Intuitively, fine-grained CFI provides stronger security
as it further restricts attackers’ freedom in manipulating control flow. However,
programs hardened by fine-grained CFI can still be compromised by controlling
data that is critical to control flow or through data-only attacks [5–7].

CFI policies also differ in how backward control flow is protected. For example,
MCFI [13] treats backward edges the same as forward edges in the CFG: the return
instruction of function f can return to any possible caller of f , irregardless of
the calling context. A context-sensitive way of checking backward control flow
is through a shadow stack (proposed in the original CFI [32]), ensuring that the
return instruction of f can return to f ’s immediate caller in the current calling
context. More advanced CFI systems keep track of runtime information to make
both forward and backward control-flow checks context-sensitive and sometimes
even path-sensitive [11, 48,50–52].

Another way of protecting control flow is through memory protection. For

12

example, Code-Pointer Integrity [53] isolates code pointers into a protected memory
region and prevents attacks from controlling those code pointers. However, this
method is out of scope of this dissertation. Instead, this dissertation focuses on
evaluating the security of CFI systems, which protect control flow by inserting
checks before indirect branches. Using a path-based method to evaluate the security
of memory-protection based control flow protection is left for future work. Also,
with the cloud becomes critical in computing, a variation of control-flow integrity
is applied to remote attestation [54–65]. The essence of control-flow attestation is
still a control-flow policy. For example, [61] stores paths at the server to validate
paths reported from clients, while [65] reduces the server’s burden of storage by
using an Arity CFG produced by TypeArmor [27].

CFI evaluation. In evaluating a CFI, prior systems use the reduction of gadgets
or graph-based metrics to justify their security; their limitation has already been
discussed in the introduction. Xu et al. [66] propose a set of metrics for measuring
a CFI solution’s compatibility, applicability, and relevance; it further creates
a test suite for testing CFI solutions. However, the work focuses on the CFI
implementations but is not designed to evaluate CFI policies through measuring the
attack surface as what we do. Muntean et al. [16] employ static taint tracking to
approximate the actual indirect branch targets and use the median and distribution
of target set sizes to evaluate the control-flow manipulation space; as we explained
in introduction, it is not measuring the attack surface we are interested in. Li et
al. [19] aim to investigate the difference between a CFI’s design and implementation
and estimate runtime targets of indirect branches to measure the control-flow
manipulation space under a strong attack model. In all, existing CFI evaluation
approaches do not consider how attacks can be launched in their security metrics.

Attack Generation. A few advanced systems apply symbolic execution to auto-
matically chain gadgets and search for potential attacks, such as AEG (Automatic
Exploit Generation) systems [20–24] and Proof-of-Concept (PoC) attack generation
systems [2–10]. For example, BOPC [9] chains basic blocks into a path to achieve a
user-specified functionality, such as making an infinite loop or calling a specified
library function. An attack goal can be modeled as a functionality for BOPC to
work on. Our way of generating risky paths is different. BOPC understands the
semantics of each basic block by symbolic execution and chains them together to

13

form paths according to a template parsed from the specified functionality. However,
attack generation systems discover only a small number of attack instances, which is
insufficient in revealing the complete attack surface of a CFI-protected program. In
contrast, MazeRunner attempts to overapproximate attack surface given a specific
attack and defense setup, which is different from prior systems that aim to identify
attacks, while SpaceExplorer discovers a large number of paths based on CFG only
and uses a per-path value tracking analysis to determine if a path achieves an
attack goal without involving symbolic execution.

14

Chapter 3 |
Flexible CFG Construction

3.1 Overview

As mentioned earlier, there are various CFG precision levels chosen by different
CFI implementations. Each precision level has its own merit. In terms of security,
high-precision CFGs are preferred. But as for runtime efficiency, low-precision CFGs
are more favored. Also, when source-level information is limited, low-precision
CFGs are often used due to the simplicity of construction. Due to the practical
difficulty of extracting CFGs from different CFI implementations, we propose a
CFG construction approach, capable of generating CFGs of high precision levels,
without compiler modifications [67]. Moreover, with simple customization, the
framework can flexibly accommodate a range of precision levels, which are critical
for performing a large-scale statistical analysis to understand the relation between
CFG precision and the size of attack surface.

Figure 3.1. System architecture for high-precision CFG construction.

System workflow. Figure 3.1 presents the architecture of our CFG-construction
system. The system takes source code, which is fed to an unmodified compilation
toolchain (a compiler and a linker) to generate a binary program with standard
meta-information. It then constructs the binary program’s CFG in two stages.

15

In the first stage, a recursive-traversal disassembly algorithm is applied to
disassemble the binary program and construct a coarse-grained CFG, which is
called the base CFG in the figure. The first stage also takes as input compiler-
generated meta-information, which tells the entries of all functions and makes
disassembly complete. Its generated CFG is coarse grained in that many targets
are allowed for indirect branches. On the other hand, control-flow edges out of
direct branches (gotos, if conditionals, and direct calls) are accurate because their
targets can be statically computed.

The second stage takes the base CFG and the meta information as input and
refines the control-flow targets of indirect branches. Its key component is a type-
inference engine that infers types of storage locations from types in debugging
information. From the inferred types, the second stage follows a type-signature
approach [13,29] to narrow down the targets of each indirect callsite.

Following the two-stage design, we have built a prototype system that constructs
high-precision CFGs for binaries that are generated from different compilers (GCC
and LLVM) and different compiler versions. The prototype is for Linux x86-32
binaries in the ELF format.1 Further, the prototype assumes that the source code
is in the C language because its type-inference engine infers C-like types for storage
locations. Previous work [47,68] has shown that the type-signature approach applies
equally well on C++’s type system with the help of Class Hierarchy Analysis (CHA).
This work and recent work on C++ CFG construction [69] give us confidence that
our meta-information based approach can be generalized to programs in C++, with
more work on type inference.

As a high-level note, our approach is compiler independent since the meta
information relied on by our system (symbol tables, relocation and debugging
information) all have standard formats that are independent of compilers; in
particular, ELF and DWARF. As long as a compiler supports those standard
formats, the parsing and use of meta information are compiler independent.

1The prototype relies on a previous formal model of x86-32 for decoding [1]. That model lacks
the decoding support for x86-64.

16

3.2 Compiler-generated Meta-information

Standard compiler-generated meta-information includes symbol tables, relocation
information, and debugging information. Such information is critical for our flexible
CFG construction tool. We next briefly describe the information contained in each
kind.

Symbol tables. Compilers generate information about symbols (e.g., function
and variable names) from source code in the form of symbol tables and embed the
tables in binaries. Tools such as linkers and debuggers consume symbol tables to
locate and relocate a program’s symbolic definitions for static/dynamic linking
and debugging. Symbol tables contain entries for symbols and each entry stores
a name, a binding address, the type of the symbol, and other information. Our
system compiles source code to generate unstripped binaries, which carry the full
symbol tables.

Relocation information. Before linking, memory addresses of compilation units
such as functions and global data are unknown. Compilers therefore generate
relocation entries so that static/dynamic linkers can patch the program’s code and
data after memory addresses become known. The patch process is for relocating
code and data in object code and is crucial for separate compilation.

Debugging information. There are several formats for debugging information
including STABS [70] and DWARF [71]. We focus on DWARF since it is the
standard format adopted by most compilers including GCC and LLVM and also
most debuggers.

The DWARF format is well-designed for debugging and includes several kinds
of debugging information: (1) information in source code such as types and scope
of identifiers is included in the form of Debugging Information Entries (DIEs);
(2) line-number information is included for recording the correspondence between
binary and source code; (3) location descriptions are included for describing storage
locations of variables during execution; (4) the Canonical Frame Address (CFA)
information is included for describing the stack layout; this information is used
during debugging and can also be useful for producing back traces when exceptions
are raised. More details about debugging information, especially types, will be

17

discussed in Section 3.3.1.

Incomplete and inaccurate meta-information. Symbol tables and relocation
information are critical to static and dynamic linkers and therefore it is reasonable
to assume that they are complete and accurate. The picture is different for
debugging information, however. First, while all compilers generate a basic set
of debugging information, the generation of advanced debugging information is
compiler dependent. For example, GCC generates call-site information, which
tells whether calls are tail calls and the types of arguments, while LLVM does
not produce such information. Second, debugging information may be inaccurate,
especially in optimized code. It is well known that line-number information becomes
unusable in optimized code: after optimizations such as code motion, it is often
not possible for the compiler to update the relationship between binary and source
code in terms of line numbers. Another example is that the CFA information for
describing stack layouts may become inaccurate after compiler optimizations.

3.3 Type Inference

The key component in our CFG-building framework is a generic type-inference
system that infers types of storage locations (registers and stack slots) from source-
level types included in debugging information. The type-inference engine works on
one function at a time, starting from types in debugging information (which tell at
least the entry types of parameters and local variables) and inferring the types of
storage locations in the middle of the function.

It has four major components: (1) a component that collects types from
debugging information; (2) a stack-layout inference algorithm that normalizes
the representation of stack slots with respect to a canonical frame address; (3)
a constraint-generation component that turns instructions and control flows into
type constraints; (4) a constraint-solving component that solves constraints and
computes a set of types for storage locations at every code address in the function.
We next discuss these components in detail.

18

// Assume variable i is initially at the top of the stack
addr1: ...

...
addr2: eax := mem(esp)

...
addr3: ebx := eax

...
addr4: ret

Debugging entry for i :
int; [(CFA-8,[addr1,addr2]), (eax,[addr2+1,addr3]),

(ebx,[addr3+1,addr4])]

Figure 3.2. An example for debugging entries.

3.3.1 Debugging type information

Type inference starts from those types already included in debugging information.
We next describe in detail what type information is there in debugging information.
At a high level, types of source-code identifiers are included. What types of
information are attached depends on the kinds of identifiers.

Functions. For a function, debugging information contains a debugging entry for
the function, followed by entries for the function’s formal parameters and local
variables. From the entry of the function and the entries of its formal parameters,
we can know the function’s number of parameters, the parameter types, the return
type, and also the range of code addresses of the function’s body.

Formal parameters and local variables. These are function-local identifiers.
The debugging entry for such an identifier contains the type of the identifier as well
as a location description that describes where the identifier is stored.

A location description [(st1, rng1), (st2, rng2), . . . , (stn, rngn)] is a list of pairs,
where st i is a storage location, which is either a register (such as eax in x86-32), a
stack location, or a location in global data sections (which store global variables),
and rng i is a code-address range. The above location-description list is interpreted
as follows: the identifier is stored in location st i before any instruction whose
address is within address-range rng i.

Figure 3.2 presents an example. In this and other examples of the chapter,

19

for clarity we will use a pseudo-assembly syntax whose notation is described as
follows. We use “:=” for an assignment (that is, a move instruction). When an
operand represents a memory operand, the memory address is put into mem(-).
For instance, mem(esp) is a memory operand with the address in esp, while esp

itself represents a register operand. We will also use the syntax “if ... goto

...” for conditional jumps (on x86, it represents a comparison followed by a jump
instruction).

The example in Figure 3.2 includes the skeleton code for a function. Assume
there is a local variable named i in the function and it is initially allocated on
the stack; specifically, i is stored at the top of the stack. At addr2, the storage
location of i is moved to register eax and at addr3 the location is moved to
ebx.2 The debugging entry for i is also shown in the figure (for brevity, we have
omitted information irrelevant for our discussion, such as line numbers). It tells the
source-code type of the variable and its location description, which means that the
variable is stored in stack slot “CFA-8” between addr1 and addr2, in eax between
addr2+1 and addr3, in ebx between addr3+1 and addr4.

The representation of a stack slot is normalized relative to CFA (Canonical Frame
Address). The CFA address is typically defined to be the value of the stack pointer
at the call site that invokes the current function. Therefore, the return address is
stored at “CFA-4” since the return address is pushed by the call instruction (and
the stack grows from high to low memory addresses). When local variables are
allocated on the stack, their addresses are expressed relative to CFA in location
descriptions. For the example, the relation between CFA and esp at the beginning
is shown as follows:

The types and location descriptions in debugging entries for local variables (and
parameters) tell the types of some storage locations at specific code addresses. For

2In unoptimized code, a local variable is stored in a specific stack slot for the entire function;
however, code produced by higher-optimization levels can move the storage of a variable to a
register to improve the efficiency of accessing the variable.

20

the example in Figure 3.2, the debugging entry for i tells that int is the type of
stack slot cfa-8 between addr1 and addr2, the type of eax between addr2+1 and
addr3, and the type of ebx between addr3+1 and addr4.

Global variables. Similar to local-variable entries, debugging entries for global
variables tell their types and location descriptions. However, a global variable’s
storage location does not change over the course of program execution and therefore
its location description has only one pair [(st , rng)], where st encodes the memory
address where the global variable is stored in global data sections, and rng is either
the entire range of code addresses or a portion of it depending on whether the
global variable is external or static.

Incomplete type information. As we have shown, debugging information tells
the types of some storage locations at certain code addresses. However, types
in debugging information are for source-level constructs and, when source code
is compiled to binary code, compilers are conservative in embedding types in
debugging information, resulting in incomplete type information. As an example in
Figure 3.2, the location description does not tell the type of eax between addr3+1

and addr4, even though the type should remain the same before eax is modified.
As another example, suppose a local variable is stored in eax initially and is then
copied to ebx, and the location description states that the variable is stored in eax

even after copying; then ebx’s type after copying should be the same as eax, even
though debugging information does not tell it directly. Section 3.5 will show that
for large programs types can be missing in debugging information for over 50% of
indirect-call operands.

3.3.2 Stack layout inference

As presented earlier, stack slots in debugging information are normalized and
encoded as offsets to CFA. A binary program accesses stack slots, however, via
memory addresses in the form of offsets to registers such as esp and ebp. To be
able to track and infer types of stack slots, we must infer the relationship between
registers and CFA. As a simple example, suppose the program reads the stack at
address “esp” and debugging information tells us that the value at stack slot “CFA-8”
is of type t; we cannot know the type of the value at address “esp” unless it is

21

{esp=CFA-4}
1 push ebp

{esp=CFA-8}
2 ebp := esp

{esp=CFA-8, ebp=CFA-8}
3 push ebx

{esp=CFA-12, ebp=CFA-8}
4 esp := esp - 8

{esp=CFA-20, ebp=CFA-8}
5 if eax==0 goto 7

{esp=CFA-20, ebp=CFA-8}
6 ebx := esp

{esp=CFA-20, ebp=CFA-8, ebx=CFA-20}

{esp=CFA-20, ebp=CFA-8}
7 esp := esp + 8

{esp=CFA-12, ebp=CFA-8}
8 pop ebx

{esp=CFA-8, ebp=CFA-8}
9 pop ebp

{esp=CFA-4}
10 ret

Figure 3.3. Stack layout inference for a toy function.

given that esp=CFA-8.
Some compilers generate in debugging information call-frame information that

encodes the relation between CFA and register values. However, it is often incomplete
and sometimes inaccurate. For instance, LLVM generates call-frame information for
function prologues but such information is not generated for code after prologues.
GCC’s call-frame information may become inaccurate after code is optimized,
for example, when code is moved after return instructions during optimization.
Therefore, we have built a static analysis that infers the relation between registers
and CFA; we call it stack layout inference.

The static analysis takes the assembly code of a function and its base CFG
as input and at every address builds a set of equations of the following form:
{r1 = CFA + off 1, ..., rn = CFA + off n}. If a register does not point to the stack,
then no equation for the register is included in the above set.

22

At the beginning of the function, the analysis assumes “{esp=CFA-4}” (the
four bytes between CFA and esp are the return address). The transfer function
for an instruction is built straightforwardly based on the instruction’s semantics.
Figure 3.3 provides some examples: after “push ebp”, we have “{esp=CFA-8}”; after
another instruction “ebp:=esp”, we get “{esp=CFA-8, ebp=CFA-8}”.

At a control-flow merge point, the merge function is defined to be the intersection
of the sets of equations from the paths being merged. In Figure 3.3, address 7 is
both a destination of the if-test at address 5 and the fall-through destination of
the instruction at address 6. Therefore, we take the intersection of “{esp=CFA-20,
ebp=CFA-8}” and “{esp=CFA-20, ebp=CFA-8, ebx=CFA-20}”.

For a function call, the stack layout remains the same after the call; it assumes a
function call preserves the stack layout. If the function has a loop, a standard work-
list algorithm is used to calculate a fixed point; the work-list algorithm terminates
since the underlying lattice is of finite height.

With the result of stack layout inference, accesses to the stack via registers plus
constants can be normalized with respect to CFA.

3.3.3 Constraint generation

At a high level, constraints specify relations between types of storage locations
based on how values flow in the input function. Our system tracks the types of
registers, stack slots, and locations in global data sections. It does not explicitly
track the types of heap locations that are dynamically allocated; however, values
read from memory can still be assigned types in some cases. For instance, if eax
holds a pointer to a dynamically allocated struct and debugging information tells
that eax’s type is a struct-pointer type, then a memory read via eax plus a constant
offset returns a value whose type can be inferred from the struct type and the
offset.

Figure 3.4 presents the syntax of type constraints. We use st for a storage
location, which is either a register or a stack slot in the form of CFA plus some offset.
We use gl for the location of a global variable (which resides in global data sections).
We separate gl from st since the type of a global variable does not change over
the course of program execution (further, debugging information tells the type); in
contrast, types in registers and stack slots may change over program execution.

23

st := r | CFA + off
x, y, z := st−l | st+l | gl
C := x ⊇ y | x ⊇ ∗(y + off) | x ⊇ &(y + off)

t := > | void | int | char | float | double | t∗ | t[n] |
(t1, . . . , tn)→ t | {id1 : t1, . . . , idn : tn} | tbl_ent

X, Y, Z := x | x : t
D := X ⊇ Y | X ⊇ ∗(Y + off) | X ⊇ &(Y + off)

Figure 3.4. Syntax of type constraints.

Code Constraints

10: eax:=ebx
eax+10 ⊇ ebx−10
∀st 6= eax, st+10 ⊇ st−10

// assume ebp=CFA-8
20: eax:=mem(ebp+12)

eax+20 ⊇ (CFA + 4)−20
∀st 6= eax, st+20 ⊇ st−20

// ebx unrelated to CFA
30: eax:=mem(ebx+4)

eax+30 ⊇ ∗(ebx−30 + 4)
∀st 6= eax, st+30 ⊇ st−30

// assume ebp=CFA-8
40: eax:=lea(ebp+12)

eax+40 ⊇ &(CFA + 4)−40
∀st 6= eax, st+40 ⊇ st−40

// ebx unrelated to CFA
50: eax:=lea(ebx+4)

eax+50 ⊇ &(ebx−50 + 4)
∀st 6= eax, st+50 ⊇ st−50
∀st , st−80 ⊇ st+60
∀st , st−80 ⊇ st+70

Figure 3.5. Examples for constraint generation.

We use x, y, and z for type variables. They can stand for the set of types of
registers or stack slots at a particular point, or the type of a global variable. In
particular, we use st−l to stand for the type set of storage location st before the
instruction at address l, and st+l for the type set of storage location st after the
instruction at address l. For instance, eax−10 stands for the type set of eax before
instruction at address 10 and eax+10 for the type set of eax afterwards. Since the
type of a global variable does not change, gl is used to stand for the type of the
corresponding global variable.

Type constraints are of three forms. Value-flow constraint “x ⊇ y” models the

24

case when y’s value flows to x; as a result, x’s type set should be a superset of y’s
type set. A dereference-flow constraint “x ⊇ ∗(y + off)” models the case when the
value at address y + off is read from memory and flows to x; address y + off is
assumed to not point to a stack slot, since stack slots are represented using CFA

plus an offset. An address-flow constraint “x ⊇ &(y + off)” models the case when
the memory address of y + off flows to x.

Constraints are generated conservatively from instructions. Due to space lim-
itation, we cannot enumerate all the cases. Instead, we just discuss the cases
for typical instructions and illustrate them via examples in Figure 3.5. For a
register-to-register move instruction r1 := r2, constraints are generated to express
that the type set of r1 afterwards is a superset of r2 beforehand (since r2’s value
flows to r1) and the type set of other storage locations afterwards is a superset of
the same storage locations beforehand since their values are unchanged (for brevity,
we will omit the mentioning of constraints concerning unchanged storage locations
in the rest of the discussion). An example of “eax:=ebx” is in Figure 3.5.

For a memory-to-register move r1 := mem(op), constraint generation depends
on operand op. Suppose op = r2 + off . If r2 points to the stack before the move
instruction (determined by stack layout analysis), then a constraint is generated to
state that r1’s type set afterwards is a superset of the type set of the corresponding
stack slot beforehand. An example of “eax:=mem(ebp+12)” is in Figure 3.5. If r2
does not point to the stack, then a dereference-flow constraint is generated to relate
r1 and r2. An example of “eax:=mem(ebx+4)” is included in Figure 3.5. When
op is an immediate value, our system checks whether it is a memory address that
holds a global variable. If it is, a value-flow constraint states that r1’s type set is a
superset of the global variable’s type. If it is not, no constraint is generated for r1
after the move; this is an approximation, an unconstrained type variable will be
assigned with the > type, meaning no information is there for its type. In x86, an
operand op can also use other complex addressing modes (such as a base register
plus a register times a scalar and a displacement); in these cases, we approximate
by not generating constraints for r1.

x86 also has lea (load effective address) instructions, which move memory
addresses but do not perform memory reads. Figure 3.5 shows two examples. In
example one, “eax:=lea(ebp+12)” moves the address of ebp+12 into eax. Assum-
ing ebp=CFA-8, the instruction moves the address of stack storage location CFA+4

25

to eax; we use an address-flow constraint to model that. The second example
is similar, except it moves a heap address; it is also modeled by an address-flow
constraint.

Constraints generated for a register-to-memory move mem(op) := r1 also
depend on the shape of op. If op = r2 + off , and r2 points to the stack, then a
value-flow constraint is generated to relate the type sets of r1 and the associated
stack slot. Otherwise, no constraints are generated since types of global variables
do not change and we do not infer types of heap memory locations.

For a function call, constraints are generated to state that the stack slots are
unchanged and values of certain register values are preserved according to the
calling convention and the type signature of the callee.

Finally, constraints are also generated based on the control-flow graph. When
there is a control-flow edge from instruction i1 to instruction i2, then the value
of a storage location after i1 conceptually flows to the storage location before i2.
The last row in Figure 3.5 illustrates the generation of constraints from an example
CFG.

In the next step, constraints are decorated with types that are included in
debugging information. Figure 3.4 shows the syntax of types. Type t can be either
common base types, a function type “(t1, . . . , tn)→ t” whose parameter types are t1
to tn and return type is t, a pointer type t∗, a fixed-size array type t[n], or a struct
type in the form of a list of fields and field types. We augment C’s type system with
type tbl_ent, which is used as the type of jump-table entries and helps our system
refine targets of indirect jumps. When debugging information tells that the type
of x is t, we write x : t. For instance, “eax−10 : int” means that eax before address
10 is of type int. We use capital letters X, Y , and Z for decorated type variables,
which are either x or x : t; the second form is used when debugging information
tells that x is of type t. A type constraint C is then turned into a decorated type
constraint D by annotating type variables in C with types provided in debugging
information.

3.3.4 Constraint solving

Decorated type constraints are solved in two steps: (1) constraints are turned into a
graph whose nodes are decorated type variables and whose edges model value flows;

26

(a) Constraints (b) Constraint graph (c) Solved constraint
graphx3 ⊇ &(x1 : t1)

x4 ⊇ ∗((x2 : t2) + 4)
y ⊇ x3
y ⊇ x4

Figure 3.6. An example for illustrating constraint solving. Assume t1 = int, t2 =
{f1 : int, f2 : float∗}, and t3 = float∗.

(2) types are propagated on the graph and a type set for each node is produced.

From constraints to a constraint graph. In the resulting graph, nodes are
decorated type variables and edges are of three kinds. For a constraint of the form
X ⊇ Y , we add a value-flow edge from node Y to node X, written as Y → X. For
a constraint of the form X ⊇ ∗(Y + off), we add a dereference-flow edge from node
Y to X and label the edge with off ; this is written as Y off⇒ X. For a constraint of
the form X ⊇ &(Y +off), we add an address-flow edge from node Y to X and label

the edge with off ; this is written as Y
off
99K X. An example is shown in Figure 3.6:

part (a) shows a set of constraints and part (b) shows its corresponding graph.

Constraint graph solving. Algorithm 1 presents the algorithm for solving a
constraint graph. At a high level, it uses a worklist to propagate types forward
along edges in the graph and computes a typeOf function that assigns sets of types
to nodes. In more detail, typeOf (n) is initialized according to n’s kind: if n is
x : t, then its type is t since we trust debugging information; if n has no incoming
edges, we initialize its type as >, meaning there is no information about the type;
otherwise, it is initialized to be ∅. Then a while loop is used to process the nodes
in the worklist. For a node, the algorithm iterates through its outgoing edges.
For a value-flow edge n→ n′, when n′ = y, the types for n are propagated to n′;
note if “n′ = y : t”, then there is no need to perform forward propagation since
the type of y is already known. For a dereference-flow edge n off⇒ n′, when n′ = y,
the type is propagated according to each type t in typeOf (n). For an address-flow

edge n
off
99K n′, when n′ = y, the types for n are transformed into correspondent

pointer types and propagated to n′. In the case when t is a struct type, we use
offsetTy(t, off) to compute the field type in the struct according to a static offset

27

Algorithm 1 Constraint solving
Global:

worklist : P(N)
typeOf : N → P(Type)

procedure solve(G = (N,E))
worklist ← N
for n ∈ N do

switch n do
case n = “x : t":

typeOf (n) ← {t}
case n = x and n has no incoming edges:

typeOf (n) ← {>}
case n = x and n has incoming edges:

typeOf (n) ← ∅
while worklist is not empty do

n ← remove a node from worklist
for e ∈ outgoing edges of n do

switch e do
case e = n→ y:

for t ∈ typeOf (n) do add(t, y)
case e = n

off⇒ y:
for t ∈ typeOf (n) do

switch t do
case t = {id1 : t1, . . . , idn : tn}:

add(offsetTy(t, off), y)
case t = t′∗ or t′[k]: add(t′, y)
case others: add(>,y)

case e = n
off
99K y:

for t ∈ typeOf (n) do
switch t do

case t = {id1 : t1, . . . , idn : tn}:
add(offsetTy(t, off)∗, y)

case others: add(t∗, y)

procedure add(t,y)
if t 6∈ typeOf (y) then

typeOf (y) ← typeOf (y) ∪ {t}
worklist ← worklist ∪ {y}

for both kinds of edges. Part (c) in Figure 3.6 shows the solved example according
to the algorithm.

28

3.4 CFG Construction

In this section, we present how our system constructs high-precision CFGs for
binaries in two stages. The first stage produces a coarse-grained base CFG. The
second stage uses type-inference results to enhance CFG precision. In addition,
with the type information, we can customize the indirect-branch matching method
to produce multiple CFG precision levels.

3.4.1 Base CFG construction

The base CFG construction relies on the classic recursive-traversal disassembly
algorithm, which mixes disassembly and CFG construction. It maintains a work
list, initialized with known code entries of binaries. The control flows of already
disassembled instructions are followed for finding new code addresses to add to the
work list for continuing disassembly. It can accommodate data embedded in code
since such data should not be targets of control-transfer instructions. However,
when a basic block ends with an indirect branch such as an indirect call through
a memory operand, without further information it is difficult to predict what the
branch may target and add appropriate addresses for further disassembly. A tool
may ignore the issue by not adding any address, but this would result in incomplete
disassembly. Many tools such as IDAPro make assumptions about compilers and
rely on heuristics and code patterns for remedying the situation partially, but they
still cannot achieve complete disassembly in all cases since it is limited by the
amount of information in binary code.

Our implementation of recursive traversal utilizes meta-information generated
by compilers to determine control-flow targets of indirect branches and adds those
targets to the worklist for further disassembly. Since it retrieves all possible targets
for indirect branches from meta-information, it is able to achieve a complete
disassembly and a sound base CFG for further refinement in the second stage of
CFG construction.

How our recursive traversal algorithm determines the targets of indirect branches
depends on the types of indirect branches. For both indirect calls and indirect
jumps, we take advantage of relocation information to narrow down potential
targets; therefore, we first explain how potential targets for indirect calls/jumps

29

are retrieved from relocation information.

Indirect targets retrieval via relocation information. Since a function cannot
be invoked indirectly unless its address is taken somewhere in code, several previous
systems [13,25,32] refine CFGs to allow indirect calls to target only address-taken
functions. This is possible because at compile time the compiler does not know
the exact addresses of functions and it must generate relocation entries for places
where function addresses are used so that during linking they can be patched when
the exact function addresses become known. The same applies to targets of indirect
jumps; relocation entries are generated at places where those targets are used.

Therefore, our system searches for relocation entries that require the linker to
put in absolute addresses during linking. If the symbol name of such an entry
is a function name, the function’s address must be taken and it is collected into
the set FSA (Function-Start Addresses), which is the set of start addresses of
address-taken functions. If the symbol name of such an entry is not a function
name, the corresponding address is internal to a function and possibly the target of
an indirect jump; the address is then collected into ICA (Internal Code Addresses);
that is, it is the set of code addresses that can be the targets of indirect jumps.

Handling indirect calls. In the base CFG, an indirect call is allowed to target any
address in FSA, the set of start addresses of address-taken functions; furthermore,
since functions contained in dynamically linked libraries are called through entries
in the Procedure Linkage Table (PLT) in the binary, our system also adds the start
addresses of PLT entries to the targets of indirect calls.

Handling indirect jumps. An indirect jump is allowed to target an address if (1)
the address is in FSA, or if (2) the address is in ICA and the address falls within
the code-address range of the function that contains the indirect jump. The reason
for (1) is that tail calls are implemented via indirect jumps; an indirect jump for
implementing a tail call is like an indirect call and is therefore allowed to target
any function whose address is taken. Note that based on debugging information,
we know whether the binary has passed the tail call optimization. If there is no
tail call, we do not need to allow FSA to be the targets. For (2), the justification
is that non-tail-call indirect jumps are for compiling switch statements and goto
statements through labels that are stored in composite data structures; in these

30

cases, targets of an indirect jump are local (within the function that contains the
indirect jump).

Handling returns. When processing a basic block that ends with a direct or
indirect call instruction, our recursive-traversal algorithm adds the code address
immediately following the call instruction into the disassembly worklist. This is
speculative disassembly since it assumes the callee function has a return instruction
that will return to the address following the call instruction. The speculative
disassembly can produce spurious basic blocks, because the call may target functions
that never return; for example, calling the library function exit stops the program.
Our system assumes that compilers do not put non-executable bytes after call
instructions; consequently, spurious basic blocks are not harmful.

With speculative disassembly for return addresses, the targets of return in-
structions can be computed after the disassembly is complete. Specifically, after
computing targets of indirect calls/jumps, our system computes a call graph to
compute targets of return instructions. The call graph collects a list of functions
that a call instruction can reach, either directly or indirectly through a series of
tail calls. Then, return instructions in this list of functions can target the return
address following the call instruction.

3.4.2 Type-based CFG construction

Base CFG construction results in coarse-grained CFGs: all indirect calls share
the same set of targets; indirect jumps are allowed to target either function-start
addresses or some local targets or both. In this section, we discuss how to use
the results of type inference described in Section 3.3 to substantially enhance the
CFG precision. A previous CFI system [13] adopts a type-signature approach
for CFG construction: an indirect call through an operand is allowed to invoke
any function whose type is compatible with the operand’s function-pointer type.
This type-based method requires that source code does not contain type casts that
involve function-pointer types; if this is violated, a small amount of changes can be
made to the source code to respect the requirement.

The type-signature method requires knowing two pieces of knowledge: (1) the
types of functions; and (2) the function-pointer types of operands used in indirect
calls. As presented before, types of functions can be acquired from debugging

31

information. However, debugging information does not always tell the types of
operands in indirect calls; this is where our type inference comes into play. After
type inference, an operand in an indirect call is assigned a set of types. For each
function-pointer type (t1, . . . , tn → t)∗ in the set, we allow an indirect call via the
operand to invoke any function with type “t1, . . . , tn → t”. In the worst case, the set
may contain >; for example, when the operand is loaded from a piece of memory
for which there is no type information; in this case, the target-set of the indirect
call cannot be refined.

For an indirect jump, thanks to the new type tbl_ent, the type-inference also
tells whether it is a tail call or a local jump based on jump tables. If the type set of
the indirect jump’s operand contains only function-pointer types, then it is treated
as a tail call and its target set is refined as if it were an indirect call. If the type set
of the operand contains only tbl_ent, the set of targets is refined to include only
the local targets. Each PLT entry also contains an indirect jump; we allow it to
target the address of the dynamic linker as well as a symbolic target that indicates
that the jump is allowed to jump into a dynamically linked library. The target sets
of remaining indirect jumps are not refined.

After the target sets of indirect calls and jumps are refined, a refined call graph
is constructed. The refined call graph is then used to calculate the targets of return
instructions.

3.5 Implementation and evaluation

Our system is implemented with a decoder for x86-32, 18K lines of OCaml code
for disassembly, type inference, and CFG construction, 4K lines of C code for
collecting debugging information, and a few Python and Shell scripts for relocation
information collection and data handling.

The disassembler is built based on the decoder. The disassembler first parses
the ELF file to obtain all headers and sections. Symbol tables are already retrieved
during ELF parsing. Relocation information is collected during compilation with
the help of the Linux utility readelf and a Python script. Debugging information
is collected with the help of the libdwarf library, implemented in C. Disassembly
and CFG construction are implemented in OCaml and communicate with the
debugging-information collection in C via the OCaml-C interface.

32

For evaluation, we are interested in the following questions: (1) how effective is
our type inference for inferring types of operands in indirect branches? (2) How
precise are the CFGs generated by our system and how does the precision compare
with the binary-analysis approach and the compiler-modification approach?

To answer these questions, we conducted our experiments in a Linux box running
x64 Ubuntu 14.0.4 on a PC with 16GB-memory and Intel Core i5-4590 CPU at
3.30GHz. Our evaluation was performed on SPEC2006 C benchmarks and Nginx-
1.4.0. Since the type-based approach requires that source code does not contain
type casts that involve function-pointer types, we used MCFI’s patched SPEC2006
C benchmarks and Nginx-1.4.0 (downloaded from https://github.com/mcfi);
MCFI made small changes to the benchmarks to remove type casts that involve
function pointers (mostly by adding function wrappers). Our prototype system can
construct CFGs for both GCC and LLVM at all optimization levels (from O0 to
O3). We also tested the CFG construction on multiple versions of the two compilers
(in particular, GCC 4.8.4, GCC 5.4.0, GCC 6.2.0, LLVM 3.9, LLVM 4.0). For
conciseness, we will present the detailed results only for GCC 4.8.4 and results are
generally similar for other GCC versions and LLVM.

Benchmarks NeedInfer/ ICALL- ICALL- Inferred IJUMP-
Total Precise Imprecise Rate TailCall Local PLT Imprecise

bzip2 20/20 20 0 100.0% 0 2 22 0
sjeng 1/1 1 0 100.0% 0 15 38 0
milc 0/4 0 0 N.A. 0 5 40 0

sphinx3 9/9 9 0 100.0% 0 1 60 0
hmmer 0/9 0 0 N.A. 1 24 69 0

h264ref 40/352 40 0 100.0% 0 12 44 0
perlbench 55/109 52 3 94.5% 30 80 114 0

gobmk 30/44 30 0 100.0% 0 13 49 0
gcc 292/442 291 1 99.7% 20 426 72 1
Total 447/990 443 4 99.1% 51 578 508 1

Table 3.1. Indirect-call and Indirect-jump type-inference results (GCC 4.8.4 with O2
optimization).

3.5.1 Effectiveness of type inference

Table 3.1 presents indirect-branch type-inference results for SPEC2006 C bench-
marks. In the table, the benchmarks are sorted according to their sizes in the
ascending order. We omitted small benchmarks including lbm, mcf and libquantum

33

https://github.com/mcfi

since they do not contain indirect calls/jumps. For each benchmark, column Need-
Infer/Total lists the number of indirect calls whose operands do not have debugging
type information versus the total number of indirect calls. The numbers show
that there are many indirect calls (around 50% for large benchmarks including
perlbench, gobmk, and gcc) for which debugging information misses types for their
operands.

The second half of Table 3.1 presents indirect-jump type-inference results.
Column TailCall presents the number of indirect jumps our system infers as tail
calls (recall that the operand type of such an indirect jump should be a function-
pointer type). Column Local presents the number of indirect jumps that are inferred
as jumps via jump tables. A large number of indirect jumps are in PLT entries
and their numbers are shown in Column PLT. Column IJUMP-Imprecise shows
the number of indirect jumps whose operand types include >. The data shows
that there is only one indirect jump for which our system cannot infer precise
information.

3.5.2 CFG precision and validation

For a control-flow graph, Average Indirect-Branch Targets (AIBT) introduced by
Niu [72] is defined to be the number of targets averaged over all indirect branches in
the graph.3 The smaller the AIBT is, the more precise the CFG is. In Table 3.2, we
present AIBT numbers for SPEC2006 C benchmarks for GCC 4.8.4 across different
optimization levels. Each data entry shows AIBTs for the enhanced CFG (left) and
the base CFG (right).

Comparison with binary-analysis approach. The precision of base CFGs is
roughly the same as the precision of CFGs produced by a typical binary-analysis
approach, which commonly allows all indirect calls to target the same set of functions
and employs optimizations for handling indirect jumps. As the table shows, the
improvement of our type-inference based CFG enhancement is small for small
benchmarks; since lbm, mcf, and libquantum do not contain indirect branches,
there is no improvement during CFG enhancement. However, for large benchmarks
including perlbench, gobmk, and gcc, the CFG improvement is substantial: average

3We did not use the AIR (Average Indirect-target Reduction) metric because it has been
criticized to not capture the ability of a CFG to withstand control-flow hijacking attacks [7].

34

Benchmarks O0 O1 O2 O3 AvgRed
lbm 1.7/1.7 1.7/1.7 1.7/1.7 1.7/1.7 0%
mcf 1.6/1.6 1.6/1.6 1.5/1.5 1.4/1.4 0%

libquantum 3.0/3.0 3.2/3.2 4.0/4.0 4.8/4.8 0%
bzip2 2.6/3.0 2.7/3.0 2.5/2.7 1.9/2.2 11.1%
sjeng 5.0/9.0 4.9/4.9 6.5/6.5 6.8/6.8 11.1%
milc 3.3/3.3 3.3/3.3 3.6/3.6 3.9/3.9 0%

sphinx3 4.5/4.6 4.7/4.7 4.9/4.9 5.7/5.7 0.5%
hmmer 4.1/7.8 4.8/4.9 4.9/5.0 4.9/4.9 12.9%

h264ref 4.0/31.8 4.3/32.1 6.1/34.7 6.2/34.9 84.7%
perlbench 17.2/563.0 19.5/102.8 23.6/232.6 34.1/357.6 89.6%

gobmk 19.7/104.6 22.0/61.2 19.5/58.1 28.9/68.7 67.4%
gcc 23.2/1735.0 26.2/192.8 32.3/212.3 42.3/345.5 89.4%

Table 3.2. Average Indirect-Branch Targets for SPEC benchmarks (GCC 4.8.4).

reduction is between 60 to 90%; many spurious edges were removed during type-
based CFG enhancement.

Comparison with compiler-modification approach. When compared with
the compiler-modification approach, the precision of our system’s enhanced CFGs
is only slightly worse than MCFI. A direct comparison by the AIBT statistics is
infeasible, because MCFI’s implementation does not support 32-bit targets while
our current implementation only supports 32-bit binaries. However, based on a fact
that both systems use the type-signature approach for matching indirect branches
and targets, we can still perform an indirect comparison. MCFI propagates types
inside the compiler to binaries; so an indirect call’s operand has exactly one type.
Our system performs type inference to infer the types of indirect-call operands. As
seen in a previous table, around 99% of indirect-call operands get one type signature.
Therefore, the CFG precision of our system is very close to the one of MCFI. As
a previous survey paper [14] shows, MCFI enforces the highest-precision CFGs
among all existing CFI enforcement tools. For instance, Forward-Edge CFI [29]
enforces a less precise CFG: it uses arity matching for pairing indirect calls and
functions (i.e., it matches the number of parameters) and it does not enforce CFI
on return instructions.

Experiment on Nginx 1.4.0. To further evaluate our approach, we conducted

35

an experiment on Nginx. In Table 3.3, we present experimental results for MCFI-
patched Nginx-1.4.0. As the table shows, our approach is able to generate high-
precision CFGs for practical applications such as Nginx.

Benchmarks NeedInfer/ ICALL- ICALL- Inferred IJUMP-
Total Precise Imprecise Rate TailCall Local PLT Imprecise AIBT Red

nginx 201/289 191 10 95.0% 26 60 133 0 20.7/213.0 90.3%

Table 3.3. Experimental results for Nginx-1.4.0 (GCC 4.8.4 with O2 optimization).

CFG validation. We have performed testing to validate the enhanced CFGs
our system generated for SPEC benchmarks and Nginx. We used PIN [73] to
instrument the benchmarks’ binaries to collect runtime traces for reference data sets
and configurations; the reference data sets are included in the original benchmarks
and provide good test coverage. The control-flow edges made by indirect branches
in the runtime traces were checked to see if they were included in the CFGs
generated by our system. In our experiments, CFGs generated by our system for
all benchmarks passed the validation. Because the runtime overhead introduced by
PIN is substantial and the trace output file is large, we had to perform optimizations
for large benchmarks during validation. Since the difficulty of CFG construction lies
in control transfers from indirect branches, we instrumented only indirect branches
through PIN instead of all control-flow transfer instructions. One downside of
resorting to testing for CFG validation is that it can find bugs but cannot show
correctness. Unfortunately, the CFI field lacks a method for verifying the correctness
of CFGs; addressing this problem would be an interesting research direction.

3.6 Multi-level CFG Construction

With rich source-level information, the matching of indirect branches and functions
can be designed to produce CFGs of different precision levels. In other words,
the type-signature matching process in the second stage can be customized. For
example, we can directly use the C types for matching. As another example, we
may want to only match indirect branches and functions by the arity of function
arguments. In all, different usages of source-level information lead to different
CFG precision levels. So far, we provide 3 classic precision levels: Address-Taken
CFG [12,32], Arity CFG [27,29], and C-type CFG [13].

36

On top of the three classic precision levels, we can construct more alternative
CFGs of precision levels between the C-Type CFG and the Address-Taken CFG, for
the purpose of understanding the relation between CFG precision and attack surface.
Such CFGs must cover the C-Type CFG so that the soundness is maintained. That
is, the target set of every indirect call needs to cover the targets of the same indirect
call in the C-Type CFG. Each alternative CFG is then generated with respect to
a specified number of average indirect call targets (AICT), which must be larger
than the C-Type CFG’s AICT. On top of the C-Type CFG, we need to know the
number of uncovered targets to be added to each indirect call, where uncovered
targets are those address-taken functions not covered by the C-Type CFG. To
decide the number, we first compute the distance of the specified AICT from the
C-Type CFG’s AICT as well as the distance between the C-Type CFG’s AICT and
the Address-Taken CFG’s AICT. Then, we compute the ratio of the two distances,
which tells the percentage of uncovered targets to be added to the indirect call.
The selection of uncovered targets is randomized to provide different variations of
the same input AICT number.

3.7 Summary

This chapter presents an alternative approach for high-precision CFG construc-
tion, without compiler modification. The approach uses compiler-generated meta-
information to retrieve source-level information for CFG construction. It relies
on a type-inference engine that deduces types of indirect-branch operands from
source-level types in debugging information.

The content of this chapter is based on our paper published in CODASPY
2018 [15]. The major difference is that this chapter adds an approach to generating
CFGs of multiple precision levels (Section 3.6).

37

Chapter 4 |
Risky Program Points as At-
tack Surface

4.1 Overview

In this chapter, we present a metric relying on an attack-aware dependency tracking
analysis to identify risky program points in a CFG [34]. A risky program point is
where an attacker can initiate an attack to achieve a malicious goal. Risky program
points and the CFG are used to compute a metric for the remaining attack surface.
We call the system MazeRunner.

4.1.1 A Motivating Example

Designing a more precise metric to measure the attack surface of a CFI-protected
program is critical for understanding the security strength of a CFI policy. We
present a high-level example for illustrating the key concepts of measuring the attack
surface of a CFI-protected application, which is more accurate than traditional
methods.

Security-violation policies. Since we are interested in measuring the attack
surface, we use a security-violation policy to model a type of attacks (i.e., when
security is violated). This is in contrast to a security policy, which tells when
security is preserved; intuitively, the negation of a security policy is a security-
violation policy. In our work, A security-violation policy captures a critical state in

38

a common attack. 1 When this critical state is reached, we say security is defeated
and an attack becomes possible. Also, in AEG and PoC attack generation papers,
having a list of target functions as the goal for breaking security is an unavoidable
design, which is similar to our security-violation policies.

For illustration, we present an example policy that models a critical state in
a real attack [2]. This attack has two steps. To bypass memory protection, the
first step is to change the protection of a memory region to be both writable and
executable; this can be achieved by using ROP attacks to invoke the mprotect

system call in Linux or VirtualProtect in Windows with the right arguments. The
second step of the attack is to inject malicious code to the writable and executable
region and transfer the control to the malicious code. In this attack, the crucial
step is the one that makes a region writable and executable; this step can be reused
in many other attacks.

We next present in detail how this crucial step can be modeled in a security-
violation policy for Linux; modeling it in Windows would be similar. In Linux,
programs compiled by modern compilers do not invoke system calls directly; they
instead invoke libc’s wrapper functions for system calls. For example, libc has an
mprotect wrapper, which takes three arguments: the starting address of a memory
region, the length of the region, and a protection flag. Therefore, the attacker’s
goal is to call this libc function with the right arguments to make a region both
writable and executable.

To model this in a policy, let us assume that the libc wrapper function for
mprotect is located at address libc_mprot . Given this we can formally write down
the policy, which consists of two parts:

Target: pc = libc_mprot

Attack condition: arg3 & 0x6 = 0x6

The policy first tells where security might be violated: when the program counter
(pc) is at libc_mprot . It also states an attack condition: when the second-to-last
bit and the third-to-last bit in the third argument are both one (those are the
bits for the executable and writable protection bits); we use & for the bit-wise
and operation. Where arguments can be found is specific to architecture and

1Schneider made a distinction between security and safety policies [74]; more precisely, our
security-violation policies are limited to safety-violation policies since they are about single states.

39

Figure 4.1. Example dependency tracking.

calling convention. In 64-bit x86 Linux, the third argument is in rsi. In 32-bit x86,
arguments are passed on the stack in most calling conventions; for instance, the
third argument is on the stack at address esp + 16.

Attack-aware dependency tracking. With a given policy, the next step is
to perform attack-aware dependency tracking (abbreviated as ADT) along all
control-flow paths to identify risky program points where attacks may be launched.
Starting from the target specified in the policy, the tracking process uses the attack
condition (also in the policy) to infer the initial critical storage locations; it then
performs ADT along each path to compute, for each point in the path, a set of
storage locations that can be used to launch an attack to cause a security violation
at the target location (i.e., to make the security-violation policy satisfied), if those
storage locations are controlled by the attacker. For the mprotect policy, the initial
critical storage location is the third argument.

Since ADT takes a CFG as an input and the CFG must be followed by the input
program’s control flow because of CFI, it can determine how the target can be
reached. For the example policy, the target libc_mprot is a libc function and must
be reached through a call site. Here, a call site may be either an indirect call (i.e.,
a call through a register or memory operand) or a direct call. 2 Figure 4.1 presents
a toy CFG for the example policy. The CFG contains a call site to libc_mprot and
our ADT starts with the initial critical storage location rsi (the third argument in
x86-64). The tracking result is added to each program point. For example, at P5

the dependency tracking shows that Mem[rbx] may influence rsi at P1.
2When dynamic linking is used, the direct call actually targets libc_mprot ’s PLT entry, which

then invokes libc_mprot .

40

Attack surface calculation. Intuitively, the attack surface of a program should
contain two parts: (1) the set of program points where the attacker can initiate an
attack, and (2) all paths through which the attack can happen. Therefore, based
on the inferred dependency sets and the given attack model about when and what
the attacker can influence, MazeRunner first classifies each program point into
two kinds: (1) safe, meaning that the attacker cannot make the security violation
happen with the given attack model; (2) risky, meaning that the attacker may
launch an attack at this point by influencing the storage locations in the tracked
dependency set. Then, MazeRunner counts the paths according to the CFG. In all,
we would like to define the number of paths that connect any risky program point
to the target location as the metric for the attack surface. This metric represents
the total risk for a program being influenced to cause a security violation; a larger
value means a larger attack surface.

We use Figure 4.1 to illustrate the classification process and our metric compu-
tation. We first consider an attacker who can manipulate the heap, but not the
stack nor any register. Program point 1 (P1) is safe, since rsi cannot be influenced
at this point. Program point 2 (P2) is safe, because the dependency set contains an
uninfluenceable stack location, assuming rsp points to stack. Program point 3 (P3)
is safe, because the dependency set contains only a constant. Program point 4 (P4)
is safe for the same reason as P1. But program point 5 (P5) is risky because rax

is assigned from a memory location on the heap, assuming rbx points to a heap
location. In total, there is only one risky program point with one feasible attack
path; we have 1 as the measurement. In comparison, if we change the attack model
so that the attacker can control both the heap and the stack, only P1 is still safe
and other points become risky 3. In all, there are 4 risky program points, each with
one attack path; so, we have 4 as the measurement.

An intuitive comparison with other metrics. With our metric, we can perform
a more precise security evaluation for different CFI mechanisms than previous work.
We use another toy CFG in Figure 4.2 to explain the advantage of our metric
over previous metrics. Suppose the program in Figure 4.1 is part of function foo

and there exists another function foobar, which indirectly calls foo. Thus, the
attacker can launch an attack from foobar. For simplicity, we assume foobar

3When a program point is determined to be risky, its predecessors are overapproximated to be
risky. In this example, P3 and P4 are risky because P2 is risky.

41

Figure 4.2. Example for metric comparison.

Figure 4.3. MazeRunner’s workflow.

contains only the indirect call instruction; and we also assume two different sound
CFI implementations, where the indirect call is allowed to target only foo in CFI1
but both foo and bar in CFI2. In this case, graph-based metrics would determine
that the CFI1 is safer than CFI2, since CFI1 has less edges. However, if the goal of
the attacker is to launch an attack according to the mprotect policy, neither the
additional gadget in bar nor the extra freedom of calling bar gives the attacker
more freedom to launch attacks; that is, the attack surface of the program is
not enlarged. In contrast, MazeRunner would compute the same attack-surface
measurement for both CFI implementations; we believe it gives a more precise
comparison in terms of security.

4.2 System Workflow and Input Specification

System workflow. MazeRunner’s workflow is presented in Figure 4.3. MazeRun-
ner takes three inputs: a binary-level CFG, an attack model, and a security-violation
policy. The input program and its CFI protection are abstracted as a CFG. The
security-violation policy defines what kind of attacks we are evaluating against.
The attack model specifies the attacker’s capabilities of manipulating control

42

flow and memory. The attack-aware dependency tracking (ADT) then performs
graph exploration to classify program points. From the number of risky program
points, MazeRunner computes a metric to quantify the attack surface. As a result,
MazeRunner’s attack-surface measurement for a CFI-protected program depends
on the capability of the assumed attacker as well as the predefined scope of attacks,
which better corresponds to the intuition of how to measure an attack surface. We
next discuss the three inputs in detail and leave the discussion of MazeRunner’s
dependency analysis to later sections.

4.2.1 CFGs

A CFG is a static approximation of a program’s legal control flow. A binary-level
CFG consists of basic blocks of assembly instructions and edges between basic
blocks. We say a CFG is sound if it includes all the control flow that can happen at
runtime during the program’s execution. Because a CFG is a static approximation,
a single program can have multiple sound CFGs, each of its own precision. For
instance, a CFG that allows an indirect call to target every possible code address
is sound, but is extremely imprecise. To accommodate different CFGs, we design
MazeRunner to take a CFG as input so that it is independent from CFG generation.
Our multi-level CFG construction discussed in Section 3.6 is used for our evaluation
of MazeRunner.

4.2.2 Attack models

Our framework is parameterized by an attack model, which is about what damage
attackers can cause and at what time. Next, we discuss attackers’ capabilities of
causing damage in terms of control-flow and memory capabilities.

Control-flow capabilities. MazeRunner assumes that attackers have to follow
the input CFG; that is, the input program is hardened via CFI so that violation of
the CFG is impossible. In other words, all control-flow transfers represented by
control-flow edges in a CFG are possible during runtime. Further restriction on
backward control flow can be added to ensure that returns match calls, as we will
cover when discussing memory capabilities.

Memory capabilities. We split the writable data memory into a stack region

43

and a heap-global region. The stack region contains stack frames allocated during
function calls. The heap-global region contains the heap, which holds dynamically
allocated memory and writable global data. In terms of attackers’ capabilities to
modify memory regions, there are two dimensions: when a memory region can
be modified and what in a memory region can be modified. We represent these
capabilities by a labeling system.

On the when dimension, we introduce two levels of attacker capabilities:

• notime. A region with this label cannot be directly modified by the attacker
at any time. For instance, if the stack region has the notime label, the
attacker cannot directly change the stack. This can be achieved by memory
protection or a full-fledged shadow stack [44], which ensures that data on the
stack cannot be modified.

• memwrite. The attacker can modify the memory region only by memory
writes (including system calls that may write to memory). That is, we assume
the region changes arbitrarily after a memory-write instruction, but stays the
same after other instructions. In real attacks, memory corruptions are done
by memory write.

On the what dimension, we also introduce two levels:

• all. The attacker can modify all locations in the region. In addition, specially
for stack, we assume the function parameters cannot be directly manipulated,
which can be justified when parameters are passed by registers. For the stack
region, it means the top stack frame and callers’ stack frames.

• all-ret (all except return addresses). This label means that return addresses
cannot be modified. For example, all-ret means that the attacker can modify
everything on the stack except the return address. This assumes a defense for
protecting return addresses, e.g., a shadow stack for only return addresses.

The combination of the aforementioned labels enables the specification of a
variety of attack models. Among possible attack models, MazeRunner focuses on
three attack models:

• AM0: (memwrite, all) for stack and heap-global;

44

• AM1: (memwrite, all-ret) for stack and (memwrite, all) for heap-global;

• AM2: (notime, _) for stack and (memwrite, all) for heap-global.

For instance, AM1 allows the attacker to modify the stack via memory writes, except
for the parameters and return addresses. In Section 4.3.4, we will show that the
model (memwrite, all) allows MazeRunner to avoid tracking dependency through
the heap-global region, greatly increasing its scalability but still maintaining the
precision for comparing different CFI designs. Note that since the two labels of
when both allow the attacker to launch attacks via any memory write as well
as library calls that may write to memory, we can safely limit the scope of our
evaluation to application code only. In other words, the attackers following such
attack models can launch attacks without compromising the libraries.

4.2.3 Security-violation policies

As discussed, measuring the attack surface against a predefined scope of attacks is
necessary. We use security-violation policy to constrain the scope, which captures
a critical state in a common attack. We support two genres of policies: general
policies and concrete policies. General policies are defined for every indirect call site;
controlling the targets and parameters of indirect calls is crucial for a control-flow
hijacking attack. So, for a general policy, the target is every indirect call and
the attack condition is about the function pointer or the parameters used in the
call. General policies are designed for achieving a comprehensive attack-surface
evaluation. In contrast, for a concrete policy, the critical state refers to the state
before a dangerous function such as mprotect. That is, the target refers to a
dangerous function and the attack condition describes conditions for arguments
required to defeat security.

Before presenting a list of policies supported by MazeRunner, we discuss notation
and a representation issue for pointer parameters. First, we use arg i for the ith
argument so that the policy is independent from calling conventions. Second, we
introduce a predicate AttackerCtrl(st), meaning that the storage location st’s value
is sourced from an attacker controlled memory region along a control-flow path.
We next present a set of representative security-violation policies for demonstration.
The targets in these policies are often used in data-oriented and control-flow
hijacking attacks.

45

• G1: Target Control. In this general policy, the target is every indirect call
site and the attack condition is when the indirect call operand op can be
controlled by the attacker. Its attack condition is AttackerCtrl(op).

• G2: Parameter Control. This general policy is about the parameters of
indirect calls. A general control-flow hijacking attack against CFI needs to
channel data flows through function parameters. The attack condition is
defined as AttackerCtrl(arg i) for all i.

• C1: wx-mem. In this concrete policy, the target is either mprotect or mmap.
These functions can make a memory region both writable and executable by
setting the third argument arg3 to satisfy arg3 & 0x6 = 0x6.

• C2: execve. The target is execve. When its first parameter is manipulated,
it has the ability of executing any executable in a child process. We define
the attack condition to be AttackerCtrl(arg1).

In addition, we provide a list of candidate policies to show that incorporating
new policies is a straightforward process:

• C3: dlopen. The first parameter of dlopen specifies the name of a shared
library to be loaded. If it can be controlled by the attacker, she can use the
loaded library to search for critical ROP gadgets or dangerous functionalities.
We define the attack condition to be AttackerCtrl(arg1).

• C4: system. Function system has only one parameter, which specifies a
shell command to be executed. If this parameter is controlled, the attacker
can call the "system" library function with an arbitrary shell command. We
define the attack condition to be AttackerCtrl(arg1).

• C5: write. Function write has three parameters with the first one specifying
the output file descriptor, the second one being a pointer pointing to the data
source buffer, and the last one limiting the number of bytes that can be written.
The three parameters all may harm the security if controlled. For example,
when any one of the parameters is controlled, local secret information may
be leaked through an attacker-specified information channel. So, the initial
dependent storage location can be any one of the parameters. Similar
policies can be defined over other write-family functions.

46

Figure 4.4. Attack-aware dependency tracking steps.

• C6: read. Function read is similar with write, which has three parameters.
The first one is a file descriptor for the data source; the second one is buffer
pointer for storing read-in data; and the last one specifies the size of data
that is expected. Such parameters can be utilized by an attacker for leaking
important data as well as injecting unwanted data. Therefore, the initial
dependent storage location can be any one of the parameters. Similar
policies can be defined over other read-family functions.

4.3 Attack-Aware Dependency Tracking (ADT)

The goal of ADT is to track data dependency for the critical state of the specified
security-violation policy and identify safe and risky program points. For that, it
goes through multiple steps to achieve the goals of correctness, generality, and
scalability. Figure 4.4 shows the major steps in ADT. It first converts the input x86
program into an intermediate representation called RTL (RTL Transformation),
and inserts attack instructions into the program according to the attack model
(Attack Insertion). After that, it simplifies the program by converting it into a
stack-free, nondeterministic CFG (STK-Free Transformation). These three steps
are our major optimization techniques to address the scalability challenge. Finally,
attack-aware dependency tracking is performed on the stack-free CFG to explore
risky program points. We next discuss each step in detail.

4.3.1 Conversion into RTL

The first step is to convert the input program into an intermediate representation, in
particular, by translating a CFG of x86 assembly instructions into a CFG based on

47

v ∈ Integers
sz ∈ Integers

regs := EAX | EBX | . . .
flags := CF | ZF | . . .
loc := PC | regs | flags | . . .

bvop := add | and | shl | . . .
cmp := lt | eq | gt | . . .
exp := bitvec(sz , v) | arith(bvop, exp, exp)

| test(cmp, exp, exp) | ite(exp, exp, exp)
| load_loc(loc) | load_mem(exp)

instr := loc = exp | Mem[exp] = exp
| IF exp DO instr

Figure 4.5. The major syntax of RTL [1].

RTL (register transfer list) [1]. The RTL (Register Transfer List) language is a small
RISC-like language, with a small set of orthogonal instructions and operational
semantics formalized in Coq. It was designed for specifying the semantics of
assembly instructions: the semantics of an assembly instruction is specified by
translating it into a sequence of RTL instructions. Morrisett et al. [1] used the RTL
to specify the semantics of x86-32 and MIPS.

Figure 4.5 presents the major syntax of the RTL language. In RTL, values are
bit-vectors of certain sizes (e.g., 1 bit, 32 bits, etc.). RTL locations include registers
and CPU flags, each holding a bitvector of a certain size. RTL expressions are pure
and produce values when evaluated. They include basic bit-vector computations and
comparisons, conditional evaluations (ite, if-then-else), and expressions for loading
from locations and memory. RTL instructions may modify the state and include
assignments to locations, memory writes, and conditional instructions (IF_DO_).

4.3.2 Inserting attack instructions

Since the attacker can modify the program’s state during program execution, we
model the attacker’s changes to the state by inserting attack instructions into the
program. We introduce two attack instructions to accommodate our attack models:
(1) hgATK represents an attack to the heap-global region; it changes the whole
heap and writable global data sections to contain arbitrary values; (2) “sATKα”
represents a stack-manipulation attack where the attacker can change the stack; α

48

specifies what stack elements can be changed, which is one of the what-dimension
labels discussed earlier in Section 4.2.2 (i.e., can be all and all-ret).

Where and how these attack instructions are inserted depend on the attack model:
the “when” dimension of the attack model determines where attack instructions are
inserted in the program; the “what” dimension determines what attack instructions
are inserted. As a simple example, if the attack model is (memwrite, all) for the
heap-global region and (notime, _) for the stack region, then a hgATK instruction
is inserted after every memory-write instruction in the original program and no
“sATKα” instruction is inserted.

4.3.3 Conversion to a stack-free representation

Modeling memory is notoriously difficult. We observe many memory accesses in
a program are to the stack for accessing local variables and parameters (when
parameters are passed on the stack). Therefore, our goal is to convert stack slots,
which hold parameters, local variables, return addresses etc., into variables 4,
and convert stack accesses into possibly nondeterministic variable accesses. The
conversion to a stack-free representation is performed in two steps. First, a point-
to-stack analysis (PSA) is performed to track pointers to the stack. In fact, PSA
is an advanced version of the stack layout analysis (Section 3.3.2) used in the
flexible CFG construction component. Based on the result of PSA, we transform
the input CFG into a stack-free, nondeterministic CFG. In this way, stack accesses
are transformed into variable accesses, simplifying the dependency tracking.

Point-to-stack analysis. PSA takes a CFG as input and performs a lightweight
value-set analysis (VSA [38]). Traditional VSA is an interprocedural algorithm
that tracks all pointers and numeric values, while our PSA tracks only pointers
to the stack and is intraprocedural. In more detail, PSA tracks pointer values in
registers and abstract locations (alocs). One aloc represents some memory storage.
Each stack frame is partitioned into multiple alocs. We use VSA’s heuristic for
creating stack alocs: the stack frame of a function is broken into alocs according
to the constant offsets used in the function. For instance, if a function has a
stack-allocated array and a loop that iterates over the array elements from the
beginning of the array, then the whole array is abstracted into one aloc to simplify

4More precisely, variables in the RTL language are really RTL locations.

49

the analysis of pointer arithmetic.
For each function, the analysis starts with the initial fact stating that ESP

points to the stack with offset 0, which represents the base of the function’s stack
frame. Then the intraprocedural VSA algorithm is run on the function’s body
to compute a set of offsets to the stack base, for registers and alocs and at every
program point. For instance, if the computed set for EAX contains offset 4 at a
program point, it implies that EAX can hold a pointer to the stack and the pointer
has offset 4 to the base of the frame. Note that, due to overapproximation, the
computed value set may be >, meaning that the pointer offsets are arbitrary.

To determine the target of a memory access, value sets in registers are sufficient,
because all memory accesses in RTL are performed through registers with offsets. If
the computed value set for a register at a program point is empty, we can determine
that any memory access through that register at the program point is a non-stack
access. Otherwise, the memory access is to the stack. Since in x86 the stack goes
from high addresses to low addresses, a memory access via a pointer with a negative
offset to the frame base is a local-variable access, while an access via a pointer with
a positive offset is an access to a function parameter.

Function calls and returns add some complication. During a function call,
pointers to the caller’s frame may be passed to the callee and used for memory
accesses in the callee. Furthermore, the callee can return those pointers to the caller
and the caller then uses them to access its stack frame. Our PSA currently does
not perform inter-procedural VSA to track stack pointers that cross the function
boundary. Effectively, those pointers are treated as pointers to the heap-global
region. This approximation is sufficient for MazeRunner’s attack surface calculation
as its attack models assume that the heap-global region can be manipulated
arbitrarily. Treating a stack pointer as if it were a pointer to the heap-global region
gives the attacker more power and thus overapproximates the attack surface.

Transforming to a stack-free CFG. To get a stack-free CFG, we first introduce
new variables to a function that represent the function’s alocs in its stack frame.
MazeRunner’s naming convention is to use name f[o1,o2] for a new variable that is
introduced for the aloc that has offset range [o1, o2] within function f .

For any memory access in the function, we use PSA’s result to determine
whether it is a stack access. If it is a stack memory access, PSA’s result is used

50

to determine what stack alocs are accessed and how to convert the stack access
into variable accesses. If only a single aloc is accessed, then the memory access
is converted to a deterministic access to the corresponding new variable that was
introduced. As an example, suppose the program has a 4-byte memory-write
instruction “Mem[EBP− 4] = $2” in function f and EBP is determined by PSA to
have a single offset -4. Further assume that there is a 4-byte aloc at stack offset
range [-8,-5] and for that aloc we introduce a new variable f[−8,−5]. Then the stack
access “Mem[EBP− 4] = $2” is converted to f[−8,−5] = $2, a variable access.

Although rare, it is possible that PSA might say that a memory access can
possibly access different alocs (on different control-flow paths). For instance, PSA
might say that, before “Mem[EBP− 4] = $2”, EBP can have either offset -4 or
-8. So the memory access can touch either the aloc at [-8,-5] or the one at [-4,-
1]. In this case, we convert the memory write into a nondeterministic operation
that accesses either the variable for aloc [-8,-5] or the variable for aloc [-4,-1]:
(f[−8,−5]|f[−4,−1]) = $2. This overapproximates the behavior of the original program.

4.3.4 Attack-aware dependency tracking

MazeRunner’s dependency tracking decides, at every program point, what storage
locations (registers and stack slots) have dependency on the policy, meaning that
values in them may affect whether the security violation can happen at the target.
Since the input is an RTL-level stack-free CFG, both registers and stack slots are
encoded as RTL locations in the CFG. ADT also takes the attack instructions into
account when determining what is dependent. Since these attack instructions were
inserted according to the attack model, the dependency tracking is attack aware.

Initially, at the target instruction, the storage locations mentioned in the attack
condition are in the dependency set. As an example, suppose the attack condition
is “eax & 0x6 = 0x6”. Then eax is in the initial dependency set. Based on the
initial dependency, the tracking goes backward from the target instruction in the
CFG and propagates dependency. For RTL instructions, the dependency tracking
rules follow data flow and are essentially backward taint tracking. As a simple
example, if the instruction is “eax = ebx” and eax is tainted after the instruction,
then ebx becomes tainted before the instruction, meaning that ebx’s value before
the instruction may affect the final policy outcome.

51

The operational semantic of attack instructions is to modify the memory ac-
cording the specified attack model, which introduces attacker’s influence into the
program. During dependency tracking, attack instructions have the effect of cutting
off the program’s original dependency and adding the influence from the attacker.
Tracking rules for attack instructions are designed to reflect attacker’s influence on
the program. This can be illustrated via an example:

x = eax; sATKall;

// assume x is in the dependency set here

Further assume that x is a variable that represents a stack slot (i.e, introduced
during the conversion to the stack-free CFG). The instruction x = eax stores the
value of eax into x, meaning that x should depend on eax. However, the stack-
attack instruction “sATKall” can modify x right away and as a result the effect of
x = eax is canceled by the stack attack. Therefore, x no longer depends on eax

after the attack. Suppose x is in the dependency set after the two instructions.
When processing sATKall, ADT would determine that the dependency set before
the instruction should not contain x but contains a special mark representing the
attacker’s influence (“ATK”); when processing x = eax, since ATK (not x) is in
the dependency set, eax is not added to the dependency set at the point before
x = eax. This way, the dependency between x and eax is cut off and the attacker’s
influence is reflected.

In general, when processing sATKα with a post dependency set φ, the de-
pendency set beforehand is the result of replacing in φ the stack slots specified
by α with ATK. Another source of ATK is memory updates on the heap-global
region. Since the attack model (memwrite,all) inserts a hgATK instruction after a
memory update, the memory update immediately loses its effect after hgATK. So,
the dependency tracking treats such memory updates as no-ops. Then, since the
heap-global region is controlled by the attacker, memory reads introduce “ATK”.
Together with the fact that the stack is abstracted away, the ADT does not need
to model memory. Not modeling memory is the key to scalability but unavoidably
introduces imprecision. However, we will show that the remaining precision is
sufficient for the goal of comparing different CFI designs.

After ADT is finished, we use the dependency sets to classify program points.
If the dependency set at a program point contains the attacker mark (“ATK”), we

52

classify it as risky; otherwise, it is treated as safe.

Formal rules. A set of formal tracking rules are presented in Table 4.1. Notation
“adt(i, Q1) = Q2” means that if the dependency set after instruction i is Q1, then
the dependency set before i should be Q2. The tracking rule for an assignment to
RTL locations loc = e replaces the destination location (loc) in the dependency
set with the variables in the source expression (Var(e)). This rule also applies to
stack slots introduced by our stack-free conversion. As for the memory updates
Mem[e1] = e2, since the attack model (memwrite, all) inserts an hgATK instruction
after a memory update, the memory update immediately loses its effect after hgATK.
Thus, the rule for Mem[e1] = e2 followed by hgATK treats the two instructions
together as a no-op. The rule for the IF-DO instruction IF e DO i introduces
variables in the condition expression, Var(e), into the dependency set and recursively
applies ADT to the instruction i. The rule for the stack attack instruction replaces
the affected variables in the dependency set with a special mark “atkmark”, which
represents the attacker’s influence. Here, affected variables (affectedVars(α, f)) are
stack slots related to the function f specified by α.

The rules for RTL expressions determine what variables should be involved.
Variables are constant bit-vectors, RTL locations, and stack slots; they are retrieved
from load_loc(loc) and bitvec(sz , v) expressions. As for the arithmetic expression
(arith(bvop, e1, e2)), the Boolean test expression (test(cmp, e1, e2)), and the
if-then-else expression (ite(cond , e1, e2)), their rules recursively apply the variable
retrieval process to their sub-expressions. The case for memory read is more
interesting. Since all memory updates are treated as no-ops and the global-heap
region is controlled by the attacker, any memory read can be arbitrary, which
generates the “ATK” mark.

To deal with possible loops in a CFG, we compute a fixpoint regarding to
dependency sets. Since the amount of storage locations in a CFG is finite, the
space of dependency sets forms a finite lattice; this guarantees termination of the
fixpoint computation.

Optimizations. To further accelerate the ADT, we employed a series of optimiza-
tions. First, if the dependency goes to hard-encoded data, we do not track such
data in the dependency set. As a result, a dependency set may become empty and
the tracking for that branch can terminate early. For example, if the dependency

53

Dependency tracking for instructions:
adt(loc = e, Q) = Q[Var(e)/loc]
adt(Mem[e1] = e2; hgATK, Q) = Q
adt(IF e DO i, Q) = Var(e) ∪ adt(i, Q)
adt(sATKα, Q) = Q[ATK/affectedVars(α, f)]
where ATK is a mark for attacker’s influence,
and f is the function being analyzed

Retrieve variables from RTL expressions:
Var(arith(bvop, e1, e2)) = Var(e1) ∪ Var(e2)
Var(test(cmp, e1, e2)) = Var(e1) ∪ Var(e2)
Var(load_loc(loc)) = {loc}
Var(load_mem(addr)) = ATK
Var(ite(cond , e1, e2)) = Var(cond) ∪ Var(e1) ∪ Var(e2)
Var(bitvec(sz , v)) = constant bit-vector v of size sz

Table 4.1. Attack-aware dependency tracking rules.

set after “eax = 2” is {eax}, then ADT determines that the dependency set before
should be empty (as only constants can affect the value of eax).

Second, if the dependency set contains the attacker mark, the whole set can
be simplified into a singleton set with the mark. This is an optimization for our
design choice of program-point classification. Since the attacker mark can never be
cleared, all predecessor program points will have the mark in their dependency set.
According to our classification principle, having the attacker mark for a program
point means risky. So, all predecessor program points will be risky. In this case, our
dependency tracking can then be simplified to be a backward reachability analysis
on the CFG, which is more efficient.

Third, when contexts switch between different functions, we employ a filter
process to avoid tracking storage locations that are only related to the current
context. This optimization can avoid tracking storage locations in an unrelated
context. For example, when the dependency tracking backwardly follows a return
edge, if eax is not in the dependency set before entering the new context, the
dependency set for the new context will be empty. Our tracking can safely skip
the call instruction and stay within the current context. This optimization is also
tailored for our setup by assuming a calling convention and because we assume
attack models that can control global regions.

54

4.4 Security Metric Design

A precise attack-surface metric should consider the number of risky program points
as well as paths through which attacks might happen. However, the number of
paths from a risky program point to the destination may be infinite; even if it is
not, counting all paths in large programs is not scalable. Therefore, we propose to
limit the length of paths that are used for our metric computation. We call this
metric, k-step attack surface:

Definition 1 (k-step attack surface) A k-path in a CFG is defined to be a
path of k edges. We write Path(k, V, E) to be the set of k-paths in the CFG
(G = (V,E)). Further, a risky basic block is defined to be one that contains at least
one risky program point. We write RB(V,E,A,C) for the set of all risky basic
blocks discovered by our ADT in the CFG under the attack model A, with the policy
C.

If a k-path connects two risky basic blocks, it is defined to be an attack-
facilitating k-path; we define the k-step attack surface for a CFG under an attack
model A against a policy C, written as AS(k, V, E,A,C), as the set of all attack-
facilitating k-paths. It can be formalized as AS(k, V, E,A,C) = {(b1, b2, . . . , bk+1) ∈
Path(k, V, E) | b1, bk+1 ∈ RB(V,E,A,C)}. Finally, our attack-surface metric is
the number of paths in AS(k, V, E,A,C).

Essentially, this metric measures the amount of freedom when going from one
risky basic block to the next risky basic block, if k steps are allowed in the CFG.
Since ADT is conservative, basic blocks that are not risky are free from attacks
towards the given security-violation policy. Thus, attack paths can pass only risky
basic blocks. When k = 0, the metric becomes the number of risky basic blocks,
since a basic block can reach itself in zero steps. When k = 1, the metric estimates
the freedom of chaining control-flow edges at every step during attack. We can
imagine that an attacker is using some greedy strategy to search for attack paths.
Starting from a risky basic block, the attacker can choose only successor basic
blocks that are also risky. Thus, the 1-step attack surface estimates the attack
surface for such an attacker. When k > 1, the attack-facilitating k-paths can be
treated as chains of risky basic blocks.

55

4.5 Limitations and Discussions

This work is not a perfect solution to the challenging but important topic of CFI
policy security evaluation. Thus, MazeRunner does have several limitations, which
are discussed here.

Attack model granularity. A more fine-grained labeling system of attack models
might help a more precise evaluation of CFI defenses. For instance, for the stack
region we can add a top label that allows the attacker to modify only the top frame
on the stack. As another example, we can increase the granularity of memory
separation. For instance, we can further separate the heap region from the global
data region or use different malloc sites to partition the heap memory region.
However, supporting fine-grained attack models may require analyzing shared
libraries in addition to the application code.

Security violation comprehensiveness. We believe considering all possible
attacks is impractical for security evaluation. In this dissertation, we aim to
demonstrate the advantages of MazeRunner’s approach with 4 representative
policies. However, to perform a customized or more thorough security evaluation,
more policies would be needed. For example, to evaluate the attack surface of
sensitive information leakage, one may specify a policy about read and write

functions to capture the critical points of information flow.

Defense modeling and program analysis accuracy. More advanced control-
flow defenses are not modeled in MazeRunner, such as path-sensitive CFI (e.g., [50])
and memory-protection techniques for protecting control flow (e.g., CPI [53]).
We believe that our attack-surface metric is still applicable when considering
those defenses by designing new attack models with more accurate attack-aware
program analysis. For example, though we have shown that the attack-aware
data dependency tracking helps improve the evaluation precision for statically
determined CFI policies, the analysis is path-insensitive so that it is not sufficient
for evaluating path-sensitive defenses. To enable path sensitivity, for instance,
employing symbolic execution or a customized value-set analysis might be the key.

Metric Design. Though our way of synthesizing CFG information with the
risky program points into one metric is demonstrated to be meaningful, there are

56

opportunities to improve the metric design. For example, one possibility is to
give weights to different risky program points to represent their different degrees
of severity. The principle for assigning weights can rely on expert knowledge or
program analysis, which can be another research problem for security evaluation.

Application scope. We have not tested MazeRunner with binaries compiled from
C++ programs due to the limitation of the chosen CFG construction tool [15].
However, the key technique, attack-aware data dependency tracking, is designed
on an intermediate language (RTL), which is independent from the source code.
Therefore, we believe extending MazeRunner to support C++ binaries only requires
changes in the stack-free transformation. In addition, CFG construction for C++
binaries is necessary, which, however, is an orthogonal topic. On the other hand,
MazeRunner has no support for x86-64 binaries, because there was no support of
translating x86-64 instructions into RTL instructions in prior work [1].

4.6 Summary

To push CFI evaluation forward, we propose MazeRunner, a framework for quan-
titatively evaluating the attack surface of a CFI-protected program. In contrast
to traditional metrics, our metric provides an overapproximated estimation and
considers how gadgets can be chained to form an attack path. We propose a novel
attack-aware dependency tracking for a fine-grained attack-surface evaluation, in
which attacker’s influences are considered. Since our attack models are relatively
stronger than real-world attackers and our system is designed to overapproximate at-
tack surface, our metric is conservative but meaningful for measuring the insecurity
of a program.

Compared to the original paper published in TrustCom 2021 [34], this chapter
contains more technical details and the evaluation section is moved to Chapter 6.

57

Chapter 5 |
Risky Paths as Attack Sur-
face

5.1 Overview

In this chapter, we propose another metric that is computed based on a per-path
value tracking analysis (PVTA). For this metric, we define the attack surface as
all risky paths, which is a more fine-grained way than using risky program points
to represent the attack surface. The intuition is that one risky program point
may correspond to multiple risky paths and different risky program points may be
mapped to different numbers of risky paths. Moreover, the attack model assumed
for this metric has less power than what MazeRunner assumes, in the aspect of when
the memory corruption can happen. In terms of the accuracy of the underlying
analysis, compared to the attack-aware dependency tracking analysis discussed in
Section 4.3, PVTA is context-sensitive and partially path-sensitive. In all, the new
metric is pursuing a more precise interpretation of the attack surface than what
MazeRunner does.

5.1.1 Threat Model

For this metric, we target at low-level attacks that are triggered by memory
corruptions in a victim program, such as buffer overflow, format string manipulation,
and use-after-free vulnerabilities. We split such an attack into two phases: memory
manipulation and attack launch. In the first phase, the attacker exploits the
memory corruption vulnerability (may repeatedly execute the vulnerability code)

58

to manipulate the runtime memory into a shape desired by the attacker. Then, in
the second phase, the attacker launches the attack by letting the program execute
without extra interference to achieve a malicious goal, such as controlling an indirect
branch’s target, propagating the arbitrary memory write capability, and controlling
an argument of a sensitive library call. Thus, we define the following threat model
to reflect the aforementioned attack scenario.

Memory-Corruption Phase. We assume that the victim program contains a
memory-corruption vulnerability, which can be exploited by the attacker to gain an
arbitrary write primitive. The arbitrary write primitive allows the attacker to set
up the runtime memory in an arbitrary way, on top of which, all registers are also
deemed as manipulable by the primitive except the stack pointer. Such a primitive
is more powerful than the arbitrary memory write primitive commonly assumed by
prior work [2–10]. For example, BOPC [9] assumes the attacker can perform an
arbitrary memory write at any time but only once to discover chains of basic blocks
that achieve a user-specified functionality. However, we believe our assumption is
still reasonable, because it is consistent with the memory-corruption phase. With
the execution of instructions that transfer data between memory and registers,
it is possible that registers are also configured with attacker-desired values. For
example, when a stack-based buffer overflow happens, the stack slot that stores
the previous stack frame’s base address can be overridden and can be later popped
to the RBP register in an x64 machine after the current function returns. In all,
we use the arbitrary write primitive to summarize the attacker’s influence to the
victim program during the memory-corruption phase.

Attack-Launch Phase. To simulate the second phase, we further constrain that
the attacker can make no influence to the program’s execution after the arbitrary
write primitive. Therefore, the attacker’s goal can only be achieved by finding
a legitimate path that starts from the arbitrary write primitive with the crafted
memory and ends at a target program point where the program state triggers
the intended security violation, e.g., an indirect call instruction with the operand
holding a value sourced from the crafted memory. Without CFI, there exists a
gigantic number of legitimate paths that can achieve the attacker’s goal, since
indirect branches can target any executable code address. In contrast, in this work,
we assume a context-sensitive CFI implemented by a shadow stack or hardware

59

support is enforced to protect the victim program, which reduces a large number of
illegitimate paths. Therefore, during the second phase, the attacker cannot rely on
paths that violate the enforced CFI, which increases the difficulty for the attacker
to accomplish the malicious goal.

5.1.2 System Overview

Figure 5.1. System Overview

We call the system that computes the metric, SpaceExplorer, which has three
components: path discovery, per-path security assessment, and attack-surface
evaluation. Figure 5.1 shows a workflow of this system. The path-discovery
component first generates for the target program a base CFG where targets of
indirect branches are resolved based on relocation information (i.e., the Address-
Taken CFG supported by Section 3.6). Then, it discovers connecting paths that
start from program points where the memory becomes arbitrary due to arbitrary
write exploits and stop at program points where a specified security violation
may happen. In the second component, SpaceExplorer performs a per-path value
tracking analysis (PVTA) to assess if a connecting path is safe or risky. Risky paths
consist of a superset of ground-truth attack paths among the discovered connecting
paths; in other words, PVTA overapproximates attack paths and achieves a 100%
precision in determining safe paths among the discovered connecting paths. Then,
the number of risky paths is used to measure the baseline attack surface of a
program; that is, we assume that the base CFG exposes the largest attack surface.
Note that any sound CFG should be a subset of the base CFG. Therefore, in
the final component, given a target CFG, the system computes the number of
prevented risky paths to measure the remaining attack surface. Next, we explain
the specifications of four inputs and the final output. The technical details of the

60

three components are left to Section 5.2. Section 5.3, and Section 5.4.
The target program is fed into SpaceExplorer as binary code. SpaceExplorer

disassembles the program and constructs a base CFG for it. The base CFG
construction is designed as a parameterized module. For example, the base CFG
can be generated either by analyzing the binary code itself [12,18] or the relocation
information [32,67], depending on the tool embedded. In our implementation, we
use the the base CFG precision provided by our flexible CFG construction work [67]
(discussed in Chapter 3) to disassemble the binary code into a base CFG, which is
represented by a set of basic blocks and edges between basic blocks.

Each basic block holds a sequence of assembly instructions with their addresses
and operational semantics specified in RTL (register transfer list) language [1]
(details are in Section 4.3.1). Each basic block is also attributed with its control-
flow successors. Since the targets of indirect calls and indirect jumps are retrieved
from relocation information and return targets are resolved by constructing call
graphs, the base CFG should cover all legitimate control-flow edges; that is, the
edge set of any CFG valid for CFI is a subset the base CFG’s edges. Hence, a
target CFG is represented by a subset of control-flow edges in the base CFG; and
each edge is a pair of basic blocks of the base CFG.

The arbitrary write primitives are program points specified by the users, either
based on true memory-corruption vulnerabilities or at the users’ discretion. In
our implementation of SpaceExplorer, we allow two methods of providing input
arbitrary write primitives. One way is to provide arbitrary write primitives through
an user interface in terms of the code addresses; the other way is to let SpaceExplorer
randomly select a percentage of basic blocks as arbitrary write primitives for a
general attack-surface evaluation. As discussed in Section 5.1.1, an arbitrary write
primitive marks the end of a successful memory-corruption phase.

The Security-violation policies can be categorized into two genres: general
policies and concrete policies, which is similar to what we have done for MazeRunner.
General policies are defined for a type of assembly instructions; controlling the
operands of some assembly instructions can bring the attacker the convenience in
launching a complicated attack. For example, we can define a general policy for
indirect call instructions and the attacker’s goal is to connect an arbitrary write
primitive to one of the indirect call instructions, while making sure that the value
of the indirect-call operand is controllable by the attacker. In contrast, concrete

61

policies are designed for concrete system calls, such as mprotect and execve; being
able to manipulate their arguments can cause great damage to the security of the
victim program. For example, we can define a concrete policy for mprotect calls,
in which the goal is to set the third argument (arg3) to satisfy arg3 & 0x6 = 0x6.
Such a behavior can make a memory region both writable and executable for the
attacker to inject code.

5.2 Path Discovery

The goal of this component is to discover static paths that connect an arbitrary
write primitive to a security-violation instruction in a base CFG. Each connecting
path is represented by a sequence of basic blocks. The connecting path discovery
problem is similar to a classical path finding problem in a directed graph. However,
our threat model complicates the problem by constraining that the callsites and
return targets should match in a path. To do so, we maintain a stack to record
return addresses to make sure every return instruction only goes back to its most
recent caller during the static path discovery, which simulates context-sensitive
CFI.

Though such a context-sensitive path finding problem is intuitive, an efficient
implementation is not trivial. First, traditional shortest path algorithms, such as
the Dijkstra algorithm, are not suitable for this task, since such algorithms do not
consider the context-sensitivity. On the other hand, due to the notorious path
explosion problem, a basic graph traversal implementation would easily exhaust
runtime memory for large programs. To bypass such an obstacle, we resort to
performing random walks to explore the graph for connecting paths. In detail, our
algorithm starts from each security violation point and backwardly follows control-
flow edges to construct context-sensitive paths that connect the security violation
point to one arbitrary write primitive. At each node that contains multiple outgoing
edges, the algorithm randomly selects one to follow. Moreover, the algorithm avoids
trapping into a loop; in the implementation, we have a parameter to control the
maximum allowed loop iterations.

This method has its own disadvantages: 1) it does not guarantee to find all
possible paths; 2) it may discover repeated paths; and 3) path conditions are not
validated. To overcome such disadvantages, we let this component run as long as

62

possible to increase the completeness of path discovery. However, we cannot let
the system get stuck in component one. So, for a certain amount of attempts of
random walks, we record all the discovered connecting paths into a dataset and
start the rest of components. When the second and third components finish, we
restart the path-discovery component and try to add more data entries to the
dataset. The number of iterations can be decided by the user or by setting up
some stopping criteria. We also store the hash of each path along with the path
in the dataset so that the system can avoid adding repeated paths to the dataset.
We leave the path condition checking to the per-path value tracking component,
which has two reasons. First, random walks are likely to produce repeated paths,
which would incur repeated path condition checking for the same path. Second,
checking path conditions requires tracking program states, which is overlapped with
the per-path value tracking component. Thus, separating path condition checking
out of path discovery can better modularize the two components. Because of our
design choice, we can foresee two improvements of this component. First, we can
implement the system in a pipeline structure so that different components can work
concurrently. Second, to improve the efficiency of the path discovery, we could also
employ reinforcement learning to be more focused on paths that are likely to be
risky.

Since there is no guarantee for discovering all connecting paths in a program,
the paths that our metric relies on may be incomplete. However, due to the
randomness, with enough sampling rounds, the discovered connecting paths should
be representative for the whole sample space. In evaluation, we use the code
coverage to give a basic sense of completeness.

5.3 Per-path Security Assessment

For this component, the input is a path consisting of basic blocks; and each basic
block contains a list of RTL instructions. PVTA (per-path value tracking analysis)
evaluates each RTL instruction with a pre-state and calculates a post-state. Thus,
with an initial state, PVTA can infer the final state of a path. Based on the security-
violation policy and the final state, SpaceExplorer checks if the security-violation
state is achievable at the end of the path. If it is not achievable, SpaceExplorer
determines the path to be safe; if it is achievable, the path is deemed as potentially

63

v ∈ Integers
sz ∈ Integers
ndx ∈ Integers
reg := EAX | EBX | . . .
f lag := CF | ZF | . . .
mloc := S[v] | G[v] | Hndx[v]
loc := PC | reg | flag
st := loc | mloc
val := bv(sz, v) | &mloc | >

Figure 5.2. The storage locations and values considered in a program state.

unsafe; if SpaceExplorer cannot make a clear decision, the path is conservatively
treated as a suspicious path. Potentially unsafe and suspicious paths are classified
as risky paths. At a high level, PVTA is an overapproximated substitution of
symbolic execution.

Program State Modeling. We represent a state with a mapping from storage
locations to values. SpaceExplorer tracks four kinds of storage locations: register-
s/flags, stack memory locations, data-section memory locations, and heap memory
locations. Values have three categories: bitvector, address of a memory location,
and > (top), where > represents an arbitrary value. The representation of storage
locations and values in a program state is formalized in Figure 5.2.

A register/flag is represented by its name. At the binary level, there are three
types of memory accesses: stack accesses through stack pointers, data-section
accesses through concrete memory addresses, and heap accesses through heap
pointers. We assume the three kinds of memory accesses do not overlap. Thus, we
can partition the memory into multiple memory regions, each of which is modeled
as an array. The stack is represented by an array S[−]; and a stack memory location
(i.e., a local variable) is represented by an indexed slot of the stack array. For
example, S[100] represents the stack memory location that is 100 bytes above the
top address of the stack at the beginning of the path being evaluated. We use
another array, G[−], to represent memory locations in the global data sections. For
example, G[1000] is the memory location at address 1000. We call dynamically
allocated memory regions by malloc-family functions as heap regions and represent
them with arrays. Heap memory locations are represented by indexed slots of these
arrays. Since in a path there could be multiple heap regions allocated, we use

64

indices to distinguish different heap regions. Indices are generated during evaluating
the malloc-family functions in a path. malloc and calloc increment the index but
realloc does not. For example, H0[100] is a heap memory location with offset 100
in the heap region allocated by the first malloc or calloc in a path, while H1[20]

is a heap memory location with offset 20 in the heap region allocated by the second
malloc or calloc in the path. PVTA can determine what memory locations are
accessed by RTL instructions based on the program state. Details will be provided
in the discussion of value tracking rules. Note that PVTA’s memory modeling
does not change the representation of an input path. The arrays are how memory
locations are modeled in a program state. Compared to the one-array memory
modeling used in classic symbolic execution, our region-based modeling does not
need to add logic constraint to distinguish stack pointers and heap pointers, or to
concretize these pointers based on heuristics.

A bitvector value represents a numerical value; in implementation, we use an
unsigned integer with a size to represent it. An address of a memory location is
represented by a & mark along with a memory location; this notation is similar
to C’s syntax of taking the address of a variable. Note that a memory location is
similar to a one-byte variable. For example, &S[100] represents the memory address
of the stack location at offset 100 to the top address of the initial stack. > appears
when PVTA cannot decide the actual value. For example, a memory read from a
memory location controlled by the attacker would yield a >.

Since every input path starts with an arbitrary write primitive, according to
our threat model, the initial program state should be that ESP is mapped to the
top address of the current stack, represented by &S[0], with other storage locations
initialized to be >. However, at the beginning of a path, we do not know what
storage locations will occur in a path. Thus, adding concrete mappings for these
storage locations is impossible. Our solution is to treat a non-tracked storage
location as being mapped to >. As a result, the initial program state is simply
that ESP is mapped to &S[0].

Value Tracking Rules. In Table 5.1, we present the evaluation rules of PVTA.
RTL instructions may modify the program state, while expressions evaluate to
values given a program state. We use pvt(Γ, ins) to represent the rule of evaluating
an instruction and Val(Γ, exp) for evaluating an expression, where Γ represents a

65

Value tracking for RTL instructions (pvt(−, −)):
pvt(Γ, loc = e) := Γ[loc → Val(Γ, e)]
pvt(Γ, Mem[eaddr] = e) :=

if Val(Γ, eaddr) == bv(sz, v) then Γ[G[v]→ Val(Γ, e)]
elif Val(Γ, eaddr) == &mloc then Γ[mloc→ Val(Γ, e)]
else ∀ mloc, Γ[mloc→ >]

pvt(Γ, IF e DO i) :=
if Val(Γ, e) == > then

randomly pick one from pvt(Γ, i) and Γ
elif Val(Γ, e) == 1 then pvt(Γ, i)
else Γ

Value of RTL expressions (Val(−,−)):
Val(Γ, arith(bvop, e1, e2)) :=

if Val(Γ, e1) == bv(sz1, v1) and Val(Γ, e2) == bv(sz2, v2) then
BitArith(bvop, bv(sz1, v1), bv(sz2, v2))

elif Val(Γ, e1) == bv(sz1, v1) and Val(Γ, e2) == &arr[v2] then
let bv(sz′, v′) = BitArith(bvop, bv(sz1, v1), bv(32, v2)) in
&arr[v′]

elif Val(Γ, e1) == &arr[v1] and Val(Γ, e2) == bv(sz2, v2) then
let bv(sz′, v′) = BitArith(bvop, bv(32, v1), bv(sz2, v2)) in
&arr[v′]

else >
Val(Γ, test(cmp, e1, e2)) :=

if Val(Γ, e1) == bv(sz1, v1) and Val(Γ, e2) == bv(sz2, v2) then
BitArith(cmp, bv(sz1, v1), bv(sz2, v2))

elif Val(Γ, e1) == &arr[v1] and Val(Γ, e2) == &arr′[v2] then
if arr == arr′ && v1 == v2 then bv(1, 1) else bv(1, 0)

else >
Val(Γ, load_loc(loc)) := Γ[loc]
Val(Γ, load_mem(eaddr)) :=

if Val(Γ, eaddr) == bv(sz, v) then Γ[G[v]]
elif Val(Γ, eaddr) == &mloc then Γ[mloc]
else >

Val(Γ, ite(econd, e1, e2)) :=
if Val(Γ, econd) == > then

randomly pick one from Val(Γ, e1) and Val(Γ, e2)
elif Val(Γ, econd) == bv(1, 1) then Val(Γ, e1)
else Val(Γ, e2)

Val(Γ, bv(sz, v)) := bv(sz, v)

Table 5.1. Rules of the Per-path Value Tracking Analysis

66

program state. The syntax of RTL can be found in Figure 4.5.
The rule of an assignment-to-location instruction, loc = e, updates the program

state with the storage location loc being mapped to a new value produced by e,
i.e., Val(Γ, e). We only consider the program counter (PC), registers, and flags
in a program state. The rule of a memory write instruction, Mem[eaddr] = e,
has four cases: if the memory-address expression is evaluated to a bitvector, i.e.,
Val(Γ, eaddr) == bv(sz, v), the program state is updated with a data-section memory
location, G[v], being mapped to Val(Γ, e); if the memory address expression is
evaluated to an address of a memory storage location, i.e., Val(Γ, eaddr) == &mloc,
in the new program state, a memory location, mloc, is mapped to Val(Γ, e);
otherwise, the address expression is overapproximated to a > and we map all
memory locations to >. Intuitively, this rule first determines what memory location
(i.e., either a stack location S[n], a data-section location G[n], or a heap location
Hi[n]) is accessed by a memory write and then updates the program state accordingly.
The determination is to evaluate the address expression based on the program state.
As for the conditional instruction, IF e DO i, there are also three cases. First, if the
condition expression is evaluated to a >, we randomly decide whether to further
evaluate the sub-instruction i, unless the sub-instruction i is setting the program
counter; instead, PVTA takes the Γ that would make the path condition satisfied.
Second, if the condition expression evaluates to a bitvector of value 1, we further
evaluate instruction i; otherwise, the program state stays unchanged. Note that
in implementation PVTA removes a record from the program state if a storage
location is mapped to >.

Evaluating an arithmetic expression arith(bvop, e1, e2) has four cases. First,
if the two operands both evaluate to bit-vectors, the evaluation of the arithmetic
expression is to compute the result of the bit-vector operation specified by bvop on
the two bit-vectors. In the second case, if e1 evaluates to a bit-vector bv(sz1, v1) and
e2 evaluates to an address of a memory location &arr[v2], where arr represents one
of the three kinds of arrays for modeling memory regions, the result of evaluation is
an address of a new memory location &arr[v′], where the new index v′ is the result
of the bit-vector operation bvop on the bit-vector bv(sz1, v1) and the index of the
memory location v2. The third case is similar to the second case with the only
difference being the order of the bit-vector and the memory-location address. For
all other situations, the evaluation result is over-approximated to a >. Evaluating

67

a comparison expression test(cmp, e1, e2) has three cases. When the two operands
both evaluate to bit-vectors, the evaluation is to perform a comparison operation
cmp on the two bit-vectors. When the two operands both evaluate to addresses
of memory locations, the evaluation result is a bit-vector 1 if and only if the two
memory locations are the same. Otherwise, the result is a >. A location-load
expression load_loc(loc) simply evaluates to the mapped value of loc in the program
state Γ. The evaluation of a memory-load expression load_mem(addr) has three
cases. If the address expression evaluates to a bitvector bv(sz, v), the output
value is the mapped value of G[v] in Γ. If the address expression evaluates to an
address of a memory location &mloc, the output value is the mapped value of
mloc in Γ. Otherwise, the output value may be anything, i.e., >. There are three
cases for the rule of conditional (if-then-else) expression ite(econd, e1, e2). If the
condition expression is evaluated to a >, the output value is randomly selected from
the evaluated values of the two operand expressions. If the condition expression
evaluates to a bitvector of value 1, the first operand is evaluated as the final output
value of the whole expression. Otherwise, the second operand is evaluated as the
output. For a bitvector expression, it simply evaluates to the bitvector, which is
represented by an unsigned integer with a size.

Library Function Modeling. Calls to malloc-family functions have special rules.
The invocation of malloc or calloc function returns a &Hi[0] to the EAX register,
i.e., Γ[EAX→ Hi[0]], and increments the counter i. In contrast, realloc returns
the first argument to EAX, i.e., Γ[EAX→ arg1], where arg1 represents the storage
location of the first argument of the realloc callsite. Function calls to other shared
libraries are modeled as special instructions; we call them lib-call instructions.
The operational semantics of lib-call instructions are based on whether the library
function returns a value or modifies the memory. Given different answers on the
two dimensions, we have four lib-call instructions: value-return memory-modified,
value-return memory-unchanged, void-return memory-modified, and void-return
memory-unchanged. A value-return memory-modified instruction updates the
program state Γ by mapping the storage location that holds the return value and
all memory storage locations (i.e., the three kinds of arrays) to >, thus being
removed from the program state; for example, x86 calling convention assumes EAX
for returning a value. For example, if a library function takes a pointer parameter

68

and modifies the memory through the pointer, such as memset, it is modeled as a
value-return memory-modified instruction, which overapproximates the effect of
memory modification of the library function. A value-return memory-unchanged
instruction only removes the storage location of return value; a void-return memory-
modified instruction only removes memory storage locations; and a void-return
memory-unchanged instruction is simply a no-op. In implementation, we classify
each library function call on demand into one of the lib-call instructions according
to the specification of the target library function.

Path Condition Checking. PVTA evaluates static paths sampled in the path
discovery component, where path conditions are not considered during the random
walks for efficiency. A sampled path is a sequence of connected edges in a CFG.
However, two connected edges may contradict each other due to the path conditions.
For example, the then-branch of a conditional jump with a condition as x < 0 is
contradicting to the then-branch of another conditional jump with a condition as
x > 10 if the variable x is not changed between the two conditional jumps. Even
if there are 2 × 2 static paths that pass the two conditional jumps in the CFG,
there is one infeasible path. Thus, PVTA needs to check path conditions. Path
conditions determine what branches to take for conditional jumps, indirect jumps,
and indirect calls. During runtime, if a condition is satisfied, the program counter
is set with the correct code address. PVTA makes use of this observation to check
path conditions. In detail, at each basic block, PVTA checks if the code address of
the current basic block matches the program counter (PC) tracked in the current Γ.
If they do not match, the path under assessment is not feasible thus safe. Otherwise,
either the two values match or the tracked PC is a > (may happen after an indirect
call), indicating that the path is so far valid.

For example, suppose we have two consecutive conditional jumps as follows.

0 : x = 10
1 : i f x > 0 goto 3
2 : y = 1
3 : i f x < 10 goto 5
4 : y = 2
5 : y = 3

There are four paths from instruction 0 to 5 in the example: [0, 1, 2, 3, 4, 5], [0, 1,

69

2, 3, 5], [0, 1, 3, 4, 5], and [0, 1, 3, 5]. Since at instruction 0, x is assigned with 10,
among the 4 paths, only [0, 1, 3, 4, 5] is valid. We use path [0, 1, 3, 5] to show
how PVTA determines it to be infeasible. At the binary level, “goto i” is to set
the program counter (PC) to be i. Thus, PC is treated as a storage location and
tracked in the program state. To evaluate path [0, 1, 3, 5], the program state is
initialized to be {PC : 0}. The first instruction to be evaluated in the path is at
address 0, which matches PC’s value in the initial program state; thus, instruction
0 is allowed to be evaluated. After evaluating instruction 0, the program state
becomes {PC : 1; x : 10}. Next, PVTA needs to evaluate the second instruction in
the path, which is at address 1. We can see that PC’s value in the current program
state matches the address of the target instruction. Thus, according to the current
program state, the condition of instruction 1 is evaluated to be true and the “goto
3” is evaluated. As a result, the program state becomes {PC : 3; x : 10}. The next
instruction in the path to be evaluated is instruction 3 and the program state tells
that the current PC matches the instruction’s address. As a result, the condition
is evaluated to be false and the program state becomes {PC : 4; x : 10}. Now,
PVTA looks at the final instruction in the path, which is at address 5. However,
PC in the program state has value 4, which does not match the target instruction.
Therefore, PVTA stops evaluating the path and reports that the path is safe.

Suspicious Cases. There are 4 situations where PVTA deems a path suspicious.
First, a signal or sigaction library function is invoked in the path, which jumps
out of the current path and may potentially lead to other security violations.
Second, there is an RTL-unsupported assembly instruction in a path. Third, the
register ESP is no longer tracked in the program state due to being assigned with
a > or made to point to a non-stack memory address in the Γ, which indicates a
possibility of unexpected stack control convention of the original program. The
last case is when a memory access is referring to a constant memory address that
is not a code address or data-section address. Paths in this case could still be
classified to be potentially unsafe according to the threat model. However, we hope
to distinguish paths that stay within the application’s scope from those relying on
“special” memory addresses, because memory not allocated for the application is
less likely to be controlled by the attacker. An example will be provided later.

Optimizations. Moreover, we make sure writing to read-only data sections is not

70

allowed. If it happens during runtime, the path will be terminated, which may
crash a program but not cause the target security violation. Thus, we deem the
path safe. After a path is assessed, the security assessment together with the path
are stored into another dataset, which we call the assessed path dataset. This is
similar to what we do for path discovery. By doing so, one-time assessment can
be used for evaluating multiple CFGs, which is critical for our research goal of
statistically understanding how CFG precision influences the attack surface.

Examples. We next show three simple example paths that evaluate to safe,
potentially unsafe, and suspicious, to demonstrate how PVTA works. All three
paths share the same arbitrary write primitive and the same security violation point.
The pseudo CFG is presented in Figure 5.3. We assume r1 and r2 are registers
that can be set to arbitrary values by the arbitrary write primitive. Thus, all paths
start with an empty initial program state Γ (i.e., both registers are mapped to
a >). Based on the initial Γ, where r1 is mapped to >, the path condition at
instruction 1, r1 != 0, evaluates to > (i.e., either True or False), making both
branches feasible. Therefore, all the three paths in the CFG are so far valid.

After instruction 1, three paths have different behaviors. Path 1 does an
assignment to r2 from r1 at instruction 2. Since r1 is mapped to > in Γ before
instruction 2, r2 is still mapped to > after evaluating instruction 2, which makes
the security violation state r2 == 2 satisfiable. Thus, path 1 is potentially unsafe.
Path 2 and 3 both assign r2 with value 0 at instruction 3, resulting in Γ having a
record, “r2: 0”. Then, they follow different branches of the conditional branch at
instruction 4 to reach the security violation point. Before the conditional branch,
Γ tells “r2: 0”, so that the path condition r2 == 0 evaluates to true. Therefore,
path 3 is invalid and safe. In contrast, path 2 follows the valid branch to reach
instruction 5, where r2 is overwritten by a value loaded from a memory address
stored in r2. According to Γ, r2 holds value 0 before instruction 5. Thus, the
memory address for loading is 0, which may not be valid for a memory read in
some cases; and we treat path 2 as suspicious.

71

Figure 5.3. An example CFG to show how PVTA evaluates paths.

5.4 Attack Surface Evaluation

The attack-surface evaluation is performed on the assessed path dataset and an
input target CFG. The goal of this component is to measure the size of attack
surface of the target CFG and to compute how much attack surface is reduced by
the target CFG compared to the base CFG. Note that the edges of the target CFG
should always be a subset of the base CFG’s edge set.

To measure the size of the attack surface, this component determines for every
assessed path if it exists in the target CFG; if a path does not belong to the target
CFG, the path is illegitimate with respect to the target CFG. Thus, the legitimate
risky paths of a target CFG represent the attack surface of the target CFG; and
the number of legitimate risky paths measures the attack-surface size. Recall
that risky paths are potentially unsafe paths and suspicious paths determined by
PVTA. To distinguish from the MazeRunner’s attack-surface metric, we define

72

what SpaceExplorer evaluates as the attack space of a program’s CFG and the
number of legitimate risky paths as the attack-space size. A formal definition is
given in Definition 2.

Definition 2 (attack space) A connecting path in a CFG is defined to be a path
that connects an arbitrary write primitive to a security-violation point. We write
ConnPath(V,E,A, S) to be the set of connecting paths in the CFG (G = (V,E))
given a set of arbitrary write primitives A and a set of security-violation points S.
We represent the process of our per-path security assessment as a Boolean function
IsRisky that maps a path to true if and only if the path is determined to be risky
(i.e., potentially unsafe or suspicious).

We define the attack space of a CFG given a set of arbitrary write primitives
A against a set of security-violation points S, written as ASpace(V,E,A, S), as
the set of risky connecting paths. It can be formalized as ASpace(V,E,A, S) =

{p ∈ ConnPath(V,E,A, S) | IsRisky(p) }. Finally, our attack-space metric is the
cardinality of ASpace(V,E,A,C).

However, in practice, it is almost impossible to generate a complete set of
connecting paths due to the path explosion problem. We perform a large number of
random-walk sampling attempts as discussed in Section 5.2 to acquire an incomplete
but representative set. With the representative connecting path set available, the
attack-space size can be measured for every target CFG. One straightforward
method is to compute the attack-space reduction rate compared to the base CFG as
a metric for measuring the security enhancement of CFI. However, the attack-space
reduction rate might not be sensitive for comparing different CFI policies, since
the number of paths that do not rely on indirect jumps and calls may take the
majority of the attack space, while CFI can prevent only attack paths that rely on
indirect branches. Therefore, a more sensitive metric for comparing CFI polices
should consider only paths involving indirect branches.

Among the three kinds of indirect branches, we further argue that the paths
to consider should involve at least one indirect call. First, in our random-walk
sampling, we have already assumed a context-sensitive CFI is in place. Thus, all
the sampled paths with return instructions but without any indirect calls or jumps
are legitimate no matter what CFG is enforced. Moreover, since indirect jumps’
targets are resolved in a same way in all CFG construction approaches we consider,

73

different CFI policies share the same set of legitimate paths that involve indirect
jumps but not indirect calls. In all, it is necessary to have at least one indirect call
in a path to be possible for CFI to protect.

Therefore, we propose another metric for comparing the security of different
CFI policies, we call it the CFI Security Score. To compute the metric, we further
determine if a path involves an indirect call and compute a reduction rate of
indirect-call involved risky paths to score the security improvement of a CFI policy.
The formal definition is given in Definition 3.

Definition 3 (CFI Security Score) We write ICallConnPath(V,E,A, S) to be
the set of connecting paths (defined in Definition 2) that contain at least one indirect
call instruction, in a CFG (G = (V,E)), given a set of arbitrary write primitives A
and a set of security-violation points S.

We define the CFI Security Score for a CFG (G = (V,E)) given a set of
arbitrary write primitives A against a set of security-violation points S, written as
CFIScore(V,E,A, S), as the reduction rate of indirect-call involved risky connecting
paths compared to a base CFG (Gbase = (V,Ebase)). It can be formalized as

CFIScore(V,E,A, S) = 1− |{p ∈ ICallConnPath(V,E,A, S) | IsRisky(p)}|
|{p ∈ ICallConnPath(V,Ebase, A, S) | IsRisky(p)}|

.

5.5 Summary

This chapter presents an unpublished work. The idea is to define attack space by
risky paths that are discovered by a per-path value tracking analysis. With all
the discovered risky paths, we propose a metric to represent the size of the attack
space. We leave the evaluation of this work to Chapter 6, where this metric will be
compared with previous metrics.

74

Chapter 6 |
Comprehensive Metric Com-
parison

In this dissertation, we propose two new metrics for measuring the attack surface of a
CFI-protected program. One uses risky program points as the attack-surface entities
(introduced in Chapter 1), while the other one uses attack paths. Compared to the
traditional metrics, our metrics are designed to be more fine-grained. However, the
two metrics have their advantages and disadvantages. Therefore, in this chapter,
we perform a comprehensive experimental comparison between the AICT metric
and our two metrics.

6.1 Comparison Methodology

We use 9 benchmarks from SPEC2006 and 5 security-critical applications to fa-
cilitate this comparison. SPEC2006 has a total of 12 benchmarks written in C.
However, 3 of them do not contain any indirect calls or any target functions in-
cluded in our concrete policies, at any CFG precision level; we therefore remove
them from our experiments. These 9 benchmarks are mostly for the purpose of
demonstrating the functionality and scalability of MazeRunner and SpaceExplorer.
In addition, we selected 5 security-critical programs for security evaluation: thttpd-
2.29, memcached-1.5.4, lighttpd-1.4.48, exim-4.89, and nginx-1.4.0. thttpd is a
lightweight ftp/http server; memcached is a distributed memory object caching
system; lighttpd is a web-server program optimized for high-performance; exim
is a message transfer agent; and nginx is a widely used web server. We compiled
all programs to x86-32 binaries for evaluation. Our implementations do not sup-

75

port x86-64 binaries because there is currently no support of translating x86-64
instructions into RTL instructions.

For each benchmark, we use our flexible CFG construction to generate a set
of CFGs at different precision levels: address-taken, arity-based, and type-based.
Each CFG precision level has its own way of matching indirect calls to target
functions. The address-taken CFG matches every indirect call to all address-taken
functions, which represents CFI designs such as the original CFI [32] and CCFIR [25].
The arity-based one allows an indirect call to target a function if the number of
parameters the function needs matches the number of arguments provided by the
call; this is used by TypeArmor [27] and Forward-Edge-CFI [29]. The type-based
one corresponds to CFGs used in MCFI [13], PICFI [48], and Newton [8]. Its
matching is based on the types of function pointers used in indirect calls and the
types of functions. Note that in our experiment, all the CFGs generated for the
benchmarks were validated with runtime indirect branch targets.

The three types of CFGs are to acquire ground truth for demonstrating the
advantages of our metric compared with traditional graph-based metrics. The ideal
ground truth would be a set of all possible real attack paths for each combination
of the benchmark program, the CFI defense, the attack model, and the security-
violation policy, based on which we could compute the precision and recall. However,
it is impractical to acquire such ideal ground truth. Instead, we use accepted
knowledge in the literature as indirect ground truth for showing that our metric is
more precise than traditional choices. Such knowledge includes:

• K1: a higher precision CFG is likely to reduce more attack surface as
demonstrated by all CFI systems.

• K2: context-sensitivity of CFI protection reduces the number of legitimate
paths so that the attack surface should be narrowed down.

• K3: the attack surface should be influenced by the capability of attackers
and the predefined scope of attacks.

To compare with traditional metrics, we use AICT (average indirect call targets)
as a representative. We believe AICT (which considers only indirect calls) is
sufficient for measuring CFG precision. Traditionally, all indirect branches are
considered for measuring CFG precision. However, all types of CFGs we consider

76

use the same approach for resolving indirect jumps’ targets and return targets
are resolved by call graph construction. We note that AICT can reflect only
K1, because graph-based metrics stay unchanged no matter what capabilities the
attacker possesses or what kinds of attacks are considered. Instead, we will show
that our metrics can reflect K1 to K3. In all, for each metric, we aim to answer
three major questions:

• Is the metric precise enough to reflect the common knowledge (K1 to K3)
about CFI and attacks?

• How is the comprehensiveness of the metric?

• What implications does our evaluation have for applying control-flow defenses
to real-world applications?

The first question is to understand the precision of our metrics. The second one
is similar to computing a recall rate for understanding the chance of generating
false negatives. The last one is to show that the new metrics and their underlying
analyses are useful for security applications.

6.2 AICT vs MazeRunner

To compare MazeRunner with AICT, we performed evaluation for all combinations
of CFG types, attack models, and policies and for all 14 benchmarks. The AICT
information and the full set of MazeRunner’s 1-step attack-surface measurements
are presented in Table 6.1, which are used to compose charts in the following
discussions.

6.2.1 Understanding the metric precision

Policy G1 is designed for understanding the attack surface of control-flow hijacking
attacks. However, in a data-oriented attack, manipulating control flow is not
enough. Passing attacker-desired parameters is also necessary; and G2 is designed
for understanding if data flow can be hijacked or not. Thus, G1 and G2 together can
measure the attack surface of general data-oriented attacks against CFI defenses.
In this section, we use MazeRunner’s measurements to confirm the aforementioned

77

Prog CFG AICT AM0 AM1 AM2
G1 G2 G1 G2 G1 G2

bzip2
Addr 2.0 740.0 740.0 721.1 721.1 721.1 721.1
Arity 1.0 724.0 724.0 705.1 705.1 705.1 705.1
Type 1.0 724.0 724.0 705.1 705.1 705.1 705.1

milc
Addr 2.0 0.0 806.0 0.0 36.0 0.0 27.0
Arity 2.0 0.0 806.0 0.0 36.0 0.0 27.0
Type 2.0 0.0 806.0 0.0 36.0 0.0 27.0

sjeng
Addr 7.0 1069.0 1069.0 1020.0 1020.0 1020.0 1020.0
Arity 7.0 1069.0 1069.0 1020.0 1020.0 1020.0 1020.0
Type 7.0 1069.0 1069.0 1020.0 1020.0 1020.0 1020.0

sphinx3
Addr 6.0 898.1 2095.6 432.6 436.1 432.6 427.8
Arity 5.5 897.0 2093.0 432.0 435.5 432.0 427.3
Type 5.5 897.0 2093.0 432.0 435.5 432.0 427.3

hmmer
Addr 22.0 329.1 2962.0 161.0 1682.3 161.0 1521.3
Arity 22.0 329.1 2962.0 161.0 1682.3 161.0 1521.3
Type 22.0 327.3 2946.0 160.1 1667.2 160.1 1507.1

h264ref
Addr 39.0 2462.2 14894.0 2290.2 14191.5 1319.9 14109.4
Arity 4.5 803.4 4860.0 691.0 4286.9 398.3 4261.7
Type 2.7 748.7 4529.0 638.0 3958.6 367.8 3935.2

gobmk
Addr 1786.0 71791.8 58209.5 69253.4 57708.8 48090.7 48091.2
Arity 866.0 38874.4 31519.8 37208.5 31000.3 23779.2 13427.8
Type 564.5 27871.9 22598.9 26503.5 22079.4 16939.8 9562.0

perlbench
Addr 721.0 60959.3 78468.9 60892.3 78416.9 57650.1 75847.4
Arity 122.6 18154.8 23369.5 18123.0 23343.6 17157.6 22582.2
Type 64.0 13972.9 17986.3 13954.0 17969.0 13211.1 17379.7

gcc
Addr 1216.0 290298.4 439685.5 288169.6 435155.0 280755.4 427562.4
Arity 405.3 120109.7 181918.0 119347.1 180215.6 116280.8 177137.2
Type 193.2 74776.6 113256.5 73506.3 110798.0 71598.1 108925.8

thttpd
Addr 17.0 825.0 824.0 749.0 749.0 749.0 749.0
Arity 8.0 816.0 816.0 741.0 741.0 741.0 741.0
Type 8.0 816.0 816.0 741.0 741.0 741.0 741.0

memcached
Addr 24.0 824.0 831.9 539.2 764.0 539.2 719.1
Arity 1.7 356.2 504.6 281.8 409.9 281.8 307.4
Type 1.5 324.2 500.9 133.0 251.0 133.0 205.6

lighttpd
Addr 54.0 6855.5 6550.8 5728.4 5587.7 5728.4 5362.5
Arity 12.5 3581.6 3422.4 3008.9 2960.6 3008.9 2794.6
Type 8.6 3369.3 3184.1 2727.5 2673.0 2727.5 2507.1

nginx
Addr 755.0 182819.7 248112.5 182167.6 247447.9 182167.6 243316.1
Arity 187.8 50969.8 69173.4 50765.0 68962.9 50765.0 67811.7
Type 42.0 15829.6 21483.0 15389.8 21020.8 15389.8 20609.7

Table 6.1. AICT and 1-step attack-surface measurements for general policies.

accepted knowledge about CFI and attacks, which cannot be reflected by traditional
graph-based metrics.

K1: CFG precision improvement may strengthen security. We use the 1-
step attack-surface measurements for address-taken CFGs as the bases to compute
attack-surface reduction rates for the other two types of CFGs; the larger the

78

bz
ip2 mi

lc
sje
ng

sp
hin
x3

hm
me
r

h2
64
ref

go
bm
k

pe
rlb
en
ch gc

c

th
ttp
d

me
mc
ac
he
d

lig
ht
tp
d
ng
inx

Av
era
ge

0

50

100

A
tt
ac
k-
su
rf
ac
e
re
du

ct
io
n
ra
te

(%
)

Arity/Addr Type/Addr

(a) 1-step attack-surface reduction rates for AM2.

bz
ip2 mi

lc
sje
ng

sp
hin
x3

hm
me
r

h2
64
ref

go
bm
k

pe
rlb
en
ch gc

c

th
ttp
d

me
mc
ac
he
d

lig
ht
tp
d
ng
inx

Av
era
ge

0

50

100

A
IC

T
re
du

ct
io
n
ra
te

(%
) Arity/Addr Type/Addr

(b) AICT reduction rates.

Figure 6.1. Comparison of 1-step attack-surface metric with AICT metric

rate is, the better the CFI’s security strength is. We select attack model AM2
as a representative for brevity; and data used for creating Figure 6.1(a) for each
benchmark is the average rates yielded from G1 and G2’s evaluation. We also do
the same reduction rate calculation with the AICT metric and create Figure 6.1(b).
Our metric shows that fine-grained CFI reduces a significant attack surface for
large programs, including h264ref, gobmk, perlbench, gcc, memcached, lighttpd,
and nginx, where the type-based approach has the smallest attack surface. This
result is consistent with what the AICT metric reflects and conforms with the

79

accepted knowledge K1 that fine-grained CFI is likely to be more secure than
coarse-grained CFI. However, the difference is that the AICT reduction rates are
in general higher than our attack-surface reduction rates, which can be seen by
comparing Figure 6.1(a) and Figure 6.1(b).

K2: context-sensitivity improves security. By design, context sensitivity
prevents ROP attacks by strictly matching function calls and returns, which
reduces a large number of illegitimate paths; in practice, it is implemented through
a shadow stack to prevent the manipulation of return addresses. With MazeRunner,
we can compare the attack-surface measurements yielded from two attack models,
AM0 and AM1, to see how context sensitivity contributes to CFI’s security strength,
because the difference between AM0 and AM1 is whether the return addresses
can be modified by the attacker. To achieve this goal, we compute the reduction
rates of the 1-step attack-surface metric from AM0 to AM1 for all benchmarks and
present them in Figure 6.2. From the figure, we can observe the attack-surface
measurement reduces for most benchmarks for both general policies, with an
average of 24.5%; this confirms common knowledge K2. However, major reductions
are seen in relatively smaller benchmarks. The reason is that large programs
can still have a large number of feasible paths even under context-sensitive CFI,
making the likelihood of a program point being risky still large. In other words,
context-sensitive CFI is less effective in protecting large programs, because the
attacker needs only one path to succeed from a large space of paths. In all, our
1-step attack-surface metric, which focuses more on synthesizing the number of
risky program points into the attack-surface measurement, still shows the security
improvement of context-sensitive CFI, which in contrast cannot be revealed by
graph-based metrics.

K3: attackers and attacks should make difference. Another ground truth
the traditional metrics cannot reveal is that the attack surface can be different with
respect to different attackers and different kinds of attacks. Based on Figure 6.2, we
can see that the decrease of attacker’s memory capability reduces the attack-surface
measurement. In summary, the 1-step attack-surface measurement reduction rate
is 24.5% from AM0 to AM1 and 30.8% from AM0 to AM2. At the same time,
our attack-surface measurements vary between different security-violation policies.
For example, our metric (concrete data can be found in Table 6.1) shows that

80

h264ref has a smaller attack surface for G1 compared with G2 (e.g., 367.8 VS
3935.2 for AM2 in its type-based CFG); by manual inspection, we find that h264ref
seldom uses the stack or heap for transferring function pointers. In conclusion, our
evaluations for different attack models and different policies are consistent with the
knowledge about the influences of attackers and attacks (K3).

bz
ip2 mi

lc
sje
ng

sp
hin
x3

hm
me
r

h2
64
ref

go
bm
k

pe
rlb
en
ch gc

c

th
ttp
d

me
mc
ac
he
d

lig
ht
tp
d
ng
inx

Av
era
ge

0

50

100

A
tt
ac
k-
su
rf
ac
e
re
du

ct
io
n
ra
te

(%
)

AM1/AM0 AM2/AM0

Figure 6.2. Comparison of different attack models for type-based CFGs.

6.2.2 The comprehensiveness of the metric

Without understanding possible false negatives in our static analysis, the precision
discussion is not convincing. However, due to the lack of ideal ground truth as we
mentioned in our evaluation methodology, it is impossible to evaluate the recall rate.
In fact, the same problem exists for traditional metrics; that is, it is challenging
to estimate the recall rate for their static analyses. For example, the soundness
of a CFG is not easy to demonstrate; still, graph-based metrics are accepted.
Nevertheless, we aim to use MazeRunner’s evaluations for concrete policies to
address the soundness of the attack-aware dependency tracking (ADT) analysis.
Target functions in our concrete policies are commonly used in attacks against CFI
defenses. We aim to use such concrete policies to show that our attack-surface
metric is comprehensive, i.e., known attacks and possible bypasses should be covered
by our attack-surface measurement. Among all the attack papers we are aware
of [2–10], nginx is the most commonly used benchmark. Therefore, we focus on

81

nginx for evaluation with concrete policies. We stress that such evaluations do
not prove the soundness of ADT. However, we believe the conservativeness of the
analysis together with this evaluation gives evidence to the soundness.

Case-study: arbitrary binary execution. We found 4 attack papers [5,7,9,10]
that use execve to construct 4 different proof-of-concept (PoC) attacks against
nginx. In terms of the target CFG precision, [5] assumes a DSA-generated CFG; [7]
assumes a fully-precise static CFG; [9] uses an Angr-generated CFG [75–77]; [8, 10]
assumes a type-based CFG. The DSA-generated and Angr-generated CFGs are
based on static analysis. To be conservative, we assume the CFGs used in the 4
papers are more precise than our type-based CFG. Therefore, one way of validating
our metric design is to check that the set of risky program points discovered in
the type-based CFG covers all the critical points of the attacks discussed in the 4
attack papers.

Attacks Critical Funcs
Covered

AM0 AM1 AM2

CFB [7]
ngx_sprintf 3 3 N.A.

ngx_exec_new_binary 3 3 N.A.

Control Jujutsu [5]
ngx_output_chain 3 3 3

ngx_execute_proc 3 3 3

BOPC [9] ngx_execute_proc 3 3 3

TROP [10]

ngx_worker_process_exit 3 3 3

ngx_master_process_cycle 3 3 3

ngx_reap_children 3 3 3

ngx_spawn_process 3 3 3

ngx_execute_proc 3 3 3

Table 6.2. MazeRunner’s coverage of critical application functions used in PoC attacks
against nginx. 3 means the function is covered by an attack model; N.A. means the
related attack is not feasible for the attack model.

The 4 PoC attacks all target at the only direct call site of execve in the
ngx_execute_proc function. For example, BOPC directly uses this function to
form a PoC attack, assuming that the whole memory is corrupted right before the
basic block that contains the call site. In other words, starting from any predecessor

82

basic block can result in triggering the security violation. Our ADT gives the same
conclusion that all predecessor basic blocks of the execve call site are risky. The
coverage results are listed in Table 6.2. For each PoC attack, we list the functions
used in the attack and show if our risky program points can cover all the functions.
In total, there are 8 functions used to construct the 4 PoC attacks. MazeRunner
classifies all the basic blocks in the 8 functions as risky under all supported attack
models. The only exception is that the attacks in Control-Flow Bending (CFB) [7]
are not applicable for AM2, because their attacks cannot defeat a CFI with a
shadow stack protecting the return values and AM2 represents an attacker who
cannot modify return values.

In conclusion, the risky program points discovered in nginx on policy C2 cover
all known PoC attacks. The difference is that MazeRunner classifies more risky basic
blocks than necessary for the 4 attacks. However, together with the metric precision
we have demonstrated, we argue that our overapproximation maintains sufficient
precision for making the new metric meaningful while enabling MazeRunner to
scale to large applications.

Case study: writable-executable memory region. In nginx, there are two
direct call sites of mmap but none for mprotect. Both of the two call sites directly
assign a constant value to the third argument, meaning that the attackers following
AM0/3/4 have no chance to manipulate the parameter to allocate a writable and
executable memory region. Correspondingly, our metric gives 0s as the attack-
surface measurements. In this case, CFG precision does not influence the attack
surface. The same situation applies to the two call sites of mmap in thttpd. In all,
our evaluation demonstrates that the security violation in policy C1 cannot happen
for nginx. Our conclusion is different from [8], which constructs a PoC attack by
controlling one indirect call twice to target the malloc and mprotect functions in
libc. So, we further check our evaluation of G1 and confirm that the indirect call
site is determined by MazeRunner to be controllable.

6.2.3 Implications for applying CFI

Our evaluation has demonstrated the precision and the comprehensiveness of our
metric design. Given that our metric is more precise, we conclude that the graph-
based metric, using AICT as a representative, can roughly measure the control-flow

83

th
ttp
d

me
mc
ac
he
d

lig
ht
tp
d

ng
inx

Av
era
ge

0

20

40

60

80
C
F
I/
D
F
I
ch
ec
k
re
du

ct
io
n
ra
te

(%
)

CFI DFI

Figure 6.3. CFI and DFI check reduction rates for type-based CFGs.

manipulation space. However, it is not precise enough. A more precise evaluation
for the attack surface reduction (i.e., the security benefit of CFI) should consider
different attack models and relate to a specific scope of attacks, which is not
supported by traditional metrics. Based on our evaluation, we conclude that for
large programs and web server applications, where control flow is complex and the
demand for security is high, the most fine-grained CFI is recommended. But for
small programs, picking a coarse-grained CFI does not lose security compared with
fine-grained ones, which can be seen by comparing the attack-surface reduction
rates with the AICT reduction rates for bzip2, sphinx3, hmmer and thttpd in
Figure 6.1.

Furthermore, since an overapproximated metric can be used to prove a security
violation is impossible, we use the evaluation result of policy G1 to identify safe
indirect calls for which there is no need to insert dynamic checks before them,
resulting in better CFI performance. Similarly, the evaluation of policy G2 can
be used to discharge unnecessary Data-flow Integrity (DFI) checks for all indirect
call arguments. Considering that SPEC2006 benchmarks are not ideal for security
evaluations, we present the CFI-check and DFI-check reduction rates only for
security-critical benchmarks, w.r.t. the attack model AM0 and type-based CFGs,
in Figure 6.3. On average, we can save 36.4% CFI checks and 29.8% DFI checks
(the two numbers are 43.8% and 14.5% if all benchmarks are considered). From the
results, we can see that there is no reduction of CFI checks for thttpd, while there

84

are significant reductions of CFI checks for memcached. After some investigations,
we conclude that the reduction rate is highly correlated with the extent of using
stack and heap for transferring function pointers. Also, we note that such reductions
are safe only if the assumed attack model is more powerful than a real attacker in
practice.

6.3 MazeRunner vs SpaceExplorer

In this section, we first demonstrate that SpaceExplorer is able to reflect K1 to K3
as what MazeRunner can do. Then, we compare the differences between SpaceEx-
plorer and MazeRunner through experiments. We added exim for SpaceExplorer’s
experiment. For understanding SpaceExplorer’s precision and code coverage, we
use both SPEC2006 benchmarks and the 5 security-critical programs. However, for
demonstrating security applications of SpaceExplorer, we use the security-critical
programs only.

6.3.1 SpaceExplorer’s precision

K2 is obvious for SpaceExplorer. Though the path finding algorithm of SpaceEx-
plorer directly assumes context-sensitive CFI, if the assumed CFI was not context-
sensitive, it is straightforward that the number of paths would increase significantly.
Thus, risky paths would increase accordingly. Next, we apply SpaceExplorer on
benchmarks and different policies to show K1 and K3.

SpaceExplorer assumes an attack model that requires one arbitrary write primi-
tive to launch attacks. We design SpaceExplorer to take as input a set of arbitrary
write primitives. Ideally, the arbitrary write primitives should come from known
CVEs that may lead to arbitrary write primitives. However, for some benchmarks,
such CVEs are not available. Even if there exist such CVEs for some programs,
the number of the CVEs is limited to only a few, which might not be sufficient for
evaluating the overall attack surface. Thus, in addition to user-specified arbitrary
write primitives, we provide another choice to randomly sample a percentage of
basic blocks as the arbitrary write primitives for an overall evaluation of the attack
surface. We call the percentage, AW-ratio.

In addition to the general policies defined in Section 4.2.3, we further consider

85

a new general policy, where the security violations are memory operations that
could lead to arbitrary memory write/read vulnerability. For example, a memory
write through a register and a memory read from an indexed memory address
are candidates. However, we do not want to make all candidates to be security
violations; otherwise, the number of connecting paths could easily become too large.
Thus, we also sample a user-specified percentage of candidate memory operations
as security violation points. We call this policy G3: AWrite and the percentage
SV-ratio.

In experiment, we set a 0.5% SV-ratio to construct the G3 policy for each
benchmark. We further set a 0.5% AW-ratio for every benchmark to create pseudo
arbitrary write primitives. For sampling paths, we gave each security violation
point 50000 random-walk attempts with 500 basic blocks as the depth for each
attempt. G1’s security violation points are all the indirect calls, while G3’s security
violation points are the randomly selected 0.5% of memory operations that may
lead to arbitrary memory write/read vulnerabilities. Note that the random-walk
sampling is performed backwardly starting from security violation points. The
number of sampled paths for each benchmark is listed in the second columns of
Table 6.3 and Table 6.4, for G1 and G3 policies respectively. Such paths constitute
the data set for yielding the following experimental conclusions.

SpaceExplorer reflects K1 and K3. In Table 6.3 and Table 6.4, we also present
reduction rates of 5 different candidate metrics for each benchmark to support
the proposal of CFI security score. The first grouped columns show the C-Type
CFG’s reduction rates of different metrics compared to the base CFG, i.e., the
Address-Taken CFG. The “AICT” column is for the average indirect call target
reduction; the “Total” column shows the reduction rates of the total connecting
paths (i.e., paths connect an arbitrary write primitive and a security violation);
the “TotalRisky” column lists the reduction rates of the connecting paths deemed
risky by PVTA (i.e., the reduction of attack space as defined in 2); the “ICall”
column shows the reduction rates of indirect-call involved connecting paths; and
the “ICallRisky” column is for the reduction rates of indirect-call involved risky
connecting paths (i.e., the CFI security score as defined in 3). The second grouped
columns show the same categories of reduction rates of the Arity CFG.

For milc, neither the C-Type CFG nor the Arity CFG reduce the AICT. Thus,

86

the two CFGs are identical to the base CFG and have 0.0 reduction rates of all the
four kinds of metrics. For sphinx3, all the sampled paths do not involve indirect
calls, making the “ICall” and “ICallRisky” metric not calculable. Both situations
apply to sjeng: C-Type and Arity CFGs do not reduce AICT and the only sampled
path does not involve indirect call. For other benchmarks, when C-Type’s AICT
reduction is higher than Arity’s AICT reduction, all the four other reductions are
also higher, which corresponds to the K1 knowledge (i.e., smaller AICT leads to
smaller attack surface). The CFI security scores (in the “ICallRisky” column) are
different for G1 and G3 policies, which shows the K3 knowledge (i.e., the attack
goal influences the attack surface).

Another observation from the table is that the reductions of risky connecting
paths (“TotalRisky” column) are consistently smaller than the CFI security scores
(“ICallRisky” column), which supports our motivation of proposing the CFI security
score. Moreover, one may consider using the paths that involve indirect calls to
approximate the attack surface, so to avoid the cost of evaluating paths with PVTA.
However, as we can see from the table, “ICall” and “ICallRisky” metrics may vary
a lot for some benchmarks. Thus, we believe PVTA based security assessment is
necessary.

Prog Paths Ctype Reduction % Arity Reduction %
AICT Total TotalRisky ICall ICallRisky AICT Total TotalRisky ICall ICallRisky

bzip2 24729 46.5 35.9 25.1 67.2 56.0 46.5 35.9 25.1 67.2 56.0
milc 15399 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

hmmer 27040 9.0 1.4 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
h264ref 3965172 93.0 95.9 97.6 99.3 99.6 88.4 95.9 97.6 99.3 99.6
sphinx3 443 64.7 1.1 3.9 nan nan 64.7 1.1 3.9 nan nan
sjeng 1 0.0 0.0 0.0 nan nan 0.0 0.0 0.0 nan nan
gobmk 207397 68.4 75.7 77.9 90.8 89.0 51.5 69.4 71.6 86.4 84.9

perlbench 741476 95.4 72.1 75.1 98.2 98.0 83.7 67.6 70.6 93.1 93.3
gcc 1601217 86.8 61.0 69.5 94.5 95.8 66.9 44.1 50.7 72.8 76.3

nginx 2045689 76.1 70.6 78.0 80.6 82.6 62.3 62.5 69.6 74.2 75.8
exim 255102 61.9 34.8 34.4 61.7 62.0 56.6 33.0 33.0 59.9 60.4

memcached 911582 94.0 80.9 93.6 99.1 99.6 92.7 80.6 93.4 98.8 99.5
lighttpd 296867 84.0 76.6 53.8 98.2 95.9 76.7 74.8 48.4 96.0 86.1
thttpd 4638 45.0 0.0 0.0 -nan -nan 45.0 0.0 0.0 -nan -nan

Table 6.3. ICall Policy with Ctype and Arity CFGs

SpaceExplorer discovers real attack paths. We construct a demo program
that is vulnerable to control-flow hijacking attacks, which is shown in Listing 6.1.
In the program, the main function parses a command-line input and a file input.
The command-line input determines the sorting method to be used and the file
input contains the byte sequence to be sorted, which simulates a chunk of data

87

Prog Paths Ctype Reduction % Arity Reduction %
AICT Total TotalRisky ICall ICallRisky AICT Total TotalRisky ICall ICallRisky

bzip2 50289 46.5 1.2 1.8 54.6 74.0 46.5 1.2 1.8 54.6 74.0
milc 30927 0.0 0.0 0.0 nan nan 0.0 0.0 0.0 nan nan

hmmer 143696 9.0 2.8 1.4 22.4 16.0 0.0 0.0 0.0 0.0 0.0
h264ref 968865 93.0 25.4 24.4 95.2 98.1 88.4 25.3 24.2 94.5 97.0
sphinx3 42261 64.7 3.3 3.5 25.6 24.5 64.7 3.3 3.5 25.6 24.5
sjeng 350811 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gobmk 4902919 68.4 57.5 63.7 87.2 89.9 51.5 46.4 52.0 70.3 73.5

perlbench 5687694 95.4 53.4 57.0 96.9 96.5 83.7 49.0 52.5 90.2 90.2
gcc 6702694 86.8 25.0 36.2 93.6 95.6 66.9 20.2 29.7 78.0 81.0

nginx 3807504 76.1 62.1 67.1 83.0 81.0 62.3 54.4 59.9 75.2 74.8
exim 482264 61.9 18.4 20.2 70.9 63.9 56.6 17.3 19.3 66.8 59.8

memcached 469240 94.0 56.3 52.6 95.5 96.7 92.7 53.5 51.9 93.0 95.5
lighttpd 673365 84.0 43.5 58.3 88.7 92.5 76.7 40.2 54.3 82.1 86.2
thttpd 130969 45.0 2.1 4.5 68.0 89.8 45.0 2.1 4.5 68.0 89.8

Table 6.4. AWrite Policy with Ctype and Arity CFGs

received over the network. However, in the program, there is a buffer-overflow
vulnerability at line 40 that may overwrite the local function pointer sort to point
to a mprotect wrapper function. When the execution reaches line 43, the condition
can never be satisfied, because strlen can only return positive integers. So, the
function pointed to by mp2 can never be executed, even though the function call
seems dangerous. Then, the sort function pointer is invoked. However, due to
the buffer-overflow vulnerability, this pointer may point to a mprotect wrapper
function. According to the C1: wx-mem policy introduced in (Section 4.2.3), to
make mprotect sensitive, the attacker needs to pass an integer that has “110” or
“111” as the last three digits as the third argument. By carefully crafting the input
byte sequence to be of a proper length, the security violation condition can be
satisfied.

1 #include ...
2

3 typedef void (* sortmethod)(int , char*);
4 typedef void (* mprot1)(int);
5 typedef void (* mprot2)(int , void*);
6 typedef void (* mprot3)(void*, int);
7

8 void up(int size , char* arr) {
9 for(int i = 0; i < size - 1; i++) {

10 for (...) { if (...) {...} } // iteratively swapping
11 }
12 }
13 void down(int size , char* arr) {...} {

88

14 for(int i = 0; i < size - 1; i++) {
15 for (...) { if (...) {...} } // iteratively swapping
16 }
17 }
18

19 void mprotect_wrapper1(int prot)
20 { mprotect(up, 4096, prot); }
21 void mprotect_wrapper2(int prot , void* start)
22 { mprotect(start , 4096, prot); }
23 void mprotect_wrapper3(void* start , int prot)
24 { mprotect(start , 4096, prot); }
25

26 mprot1 mp1 = mprotect_wrapper1;
27 mprot2 mp2 = mprotect_wrapper2;
28 mprot3 mp3 = mprotect_wrapper3;
29

30 int main (int argc , char** argv) {
31 sortmethod sort = NULL;
32 char method [10], input [20];
33 ... // some code for initialization
34 strncpy(method , argv[1], 10);
35 if (! strncmp(method , "up", 10)) sort = up;
36 else if (! strncmp(method , "down", 10)) sort = down;
37 else exit (0);
38

39 FILE* fp = fopen("input.bin", "rb");
40 fread(input , sizeof(int), 20, fp);
41 fclose(fp);
42

43 if(strlen(input) < 0) mp2(6, input);
44 sort(strlen(input), input);
45

46 return 0;
47 }

Listing 6.1. Buffer-Overflow Vulnerable Program

After enforcing CFI, the number of attack paths is reduced. In the base CFG,
there is an attack path connecting the memory corruption site (line 40) to every
security violation point (line 20, 22, or 24), because the base CFG allows sort to
point to all three mprotect wrappers ((mprotect_wrapper1, mprotect_wrapper2,

89

and mprotect_wrapper3). However, mprotect_wrapper3 is not guaranteed to
cause security violation, because it uses the second parameter, which can only be a
memory address passed in by the caller sort whose concrete value is not controlled
by the attacker, to determine the third argument of mprotect. In the Arity CFG,
mprotect_wrapper1 is no longer a legitimate target, so only mprotect_wrapper2

can cause security violation. In the C-Type CFG, neither mprotect_wrapper1

nor mprotect_wrapper3 is reachable, but mprotect_wrapper2 is kept and is still
causing security violation. In total, there are 2 attack paths for the base CFG and
1 attack path for both Arity CFG and C-Type CFG.

Other than the attack paths, there are safe paths. For example, without
considering path conditions, mp2 is reachable in a CFG. Thus, depending on what
targets are allowed by the CFG, mp2 may target different functions, resulting in
more paths to mprotect callsites. In all, there are 39 paths that can connect the
memory corruption site at line 40 to a mprotect callsite in the Base CFG. In
detail, 3 paths skip line 43 and reach line 44 to invoke a mprotect wrapper through
function pointer sort. 3 paths reach line 43 to invoke the 3 mprotect wrappers
through function pointer mp2. (4 × 3 = 12) paths first go to function up at line 43,
then return to line 44 to reach to the 3 mprotect wrappers. Similarly, there are
12 paths that pass function down and reach all the mprotect wrappers. Note that
such 24 paths are the result of avoiding multiple iterations of a loop; otherwise,
there would be an infinite number of paths. At last, function pointer mp2 can also
target at all the mprotect wrappers. After returning from those wrappers, at line
44, the paths go to such wrappers again, thus creating another (3 × 3 = 9) paths.

Security Assessment Base Arity Ctype
Groud-Truth-Total 39 24 11
SpaceExplorer-Total 39 24 11
Groud-Truth-Safe 36 22 10
SpaceExplorer-Safe 29 20 8
Groud-Truth-Unsafe 2 1 1
SpaceExplorer-Unsafe 10 4 3

Table 6.5. Ground Truth Security Assessment and SpaceExplorer’s Evaluation

So far, we have the ground-truth security assessment of the paths in the base
CFG of the program, where there are 39 paths with 2 of them are attack paths. We
do the same analysis and we can know the total paths for different CFGs: 24 for

90

Arity and 11 for Ctype. The ground-truth security assessment and SpaceExplorer’s
evaluation output on this program are presented in Table 6.5. SpaceExplorer took
1.658s to finish the evaluation. Comparing the first two rows, we can see that
SpaceExplorer covers all the paths in the program. Comparing the second two
rows, among all the safe paths, SpaceExplorer can identify most safe paths. The
last two rows demonstrate that SpaceExplorer is conservative in determining the
security of a path; thus, it can be used to reduce the number of candidates for
symbolic execution and runtime verification in automatic exploit generation. In
detail, among the 10 unsafe paths of the base CFG, there are 2 invoking mprotect

through sort and another 2 invoking mprotect by mp2. The rest 6 (3 × 2) unsafe
paths pass the 3 wrappers via mp2 and reach the 2 mprotect callsites through sort.

One may question that how about paths that pass function up and down via mp2
and reach the 2 mprotect callsites through sort. There should exist risky paths
among them but not discovered by SpaceExplorer. The reason is that the maximum
allowed loop iterations was set to be 1 during path sampling. The sampled paths
that pass function up and down can at most incur one iteration of the loops in these
two functions. However, the first argument of mp2 is a constant 6, which must
incur 5 iterations of the top-level loops in function up and down. Thus, all sampled
paths that pass function up and down are safe, because the path conditions are not
feasible. However, if we allowed more than 5 iterations of loops, with sufficient
attempts of random-walk sampling, SpaceExplorer would find risky paths that pass
through function up and down, even though the paths are not real attack paths due
to the unsatisfiable path condition at line 43.

Based on SpaceExplorer’s evaluation of the demo program, we summarize that
SpaceExplorer can discover real attack paths with false positives and false negatives.
The major source of false positives is the overapproximation of the validity of path
conditions. Overapproximation results in infeasible risky paths, as demonstrated by
the 2 risky paths invoking mprotect wrappers through mp2 and the 6 paths passing
the callees of mp2. As a future direction, we can use value sets [38] to replace the
> value to reduce overapproximation. As for false negatives, it is obvious that the
incompleteness of path sampling is the major source.

91

6.3.2 SpaceExplorer’s coverage

Due to the design of MazeRunner, it achieves a complete coverage of the whole
program. That is, every program point is given a security assessment despite
significant overapproximation. However, SpaceExplorer randomly samples paths
in the program, which may suffer from limited code coverage. Therefore, we
demonstrate SpaceExplorer’s code coverage of path sampling for all the programs
and both G1 and G3 policies in Table 6.6. We measure the code coverage by checking
if a basic block is involved in at least one sampled path. Since SpaceExplorer aims
at finding connecting paths, the number of arbitrary write points (AW) and the
number of security violation sites (SV) influence the number of paths that can be
discovered. We also present the two numbers in the table for reference. Note that
the AW number is given as 0.5% of all basic blocks in the program, while SV for
G1 is the number of indirect calls and for G3 is 0.5% of the program’s non-constant
memory writes. The median code coverage of G1/G3 is 41.1%/71.2%. G3 has
a much higher code coverage because of the larger amount of security violation
points: the more security violations there are, the easier to find a connecting path.

Prog AW G1: Target Control G3: AWrite
SV Coverage % SV Coverage %

bzip2 15 20 34.6 80 71.2
milc 24 4 2.9 48 55.5

hmmer 69 9 12.5 238 32.9
h264ref 99 369 42.3 538 71.9
sphinx3 37 8 6.6 94 34.6
sjeng 31 1 0.1 88 84.1
gobmk 185 44 43.5 454 81.2

perlbench 319 139 66.7 735 87.9
gcc 1032 474 43.2 2106 65.8

nginx 211 414 78.2 622 83.1
exim 198 89 39.8 250 67.2

memcached 37 75 66.8 100 71.1
lighttpd 64 122 54.9 139 72.2
thttpd 19 1 18.5 33 46.0

Table 6.6. SpaceExplorer’s Code Coverage

92

6.3.3 Security application of SpaceExplorer

In general, automatic exploit generation (AEG) requires symbolic execution to
compute a malicious input to make sure an attack path is feasible. The malicious
input is by tradition called payload. Then, the payload is fed to the program
during runtime to verify the attack path. To discover an attack path, AEG needs
to statically traverse the program to discover candidate paths for the symbolic
execution to run with. Therefore, the key is to quickly locate an attack path to
feed to the symbolic execution. However, the number of paths is in most cases
exponential to the number of basic blocks, which poses a huge challenge for AEG
work to “intelligently” reduce the candidates for trying symbolic execution. In our
case, though SpaceExplorer is not designed to automatically generate or verify a
payload, it can efficiently determine safe paths to reduce the burden of symbolic
execution, which eventually would increase the efficiency of AEG. In Table 6.7, we
present for each security-critical benchmark’s different CFGs, how many safe paths
can be discharged. The medians are presented in the last two rows, based on which
we summarize that SpaceExplorer can reduce on average 70.6% (the average of all
medians) of the symbolic execution tasks for automatic exploit generation.

Prog Policy Base Arity Ctype
Total Safe % Total Safe % Total Safe %

nginx G1 2045689 58.4 766942 66.3 600914 68.9
G3 3807504 67.9 1734845 71.7 1441247 72.1

exim G1 255102 62.6 171027 62.6 166437 62.3
G3 482264 67.1 398862 67.9 393753 67.8

memcached G1 971582 53.8 188036 84.3 185345 84.5
G3 469240 61.6 218172 60.3 205167 58.3

lighttpd G1 296867 89.4 74919 78.4 69440 79.1
G3 673365 78.9 402608 83.8 380639 84.4

thttpd G1 4638 81.6 4638 81.6 4638 81.6
G3 130969 72.7 128223 73.4 128223 73.4

Median G1 - 62.6 - 78.4 - 79.1
G3 - 67.9 - 67.9 - 67.8

Table 6.7. The percentage of safe paths determined by SpaceExplorer

93

6.4 Statistical Relation Between AICT and Attack

Surface

Since AICT is simple to compute, we hope to understand at what situation AICT
is still meaningful for measuring the security improvement of enforcing a CFI policy.
So, we do a statistical analysis of the relation between attack surface and AICT
for the 5 security-critical benchmarks. To achieve this goal, for each benchmark,
we compute 50 uniformly distributed intermediate AICT values between the base
CFG’s AICT and C-Type CFG’s AICT. For each intermediate AICT value, we
randomly generate 10 CFG variations; they vary in the details of indirect-call target
set but share the same AICT measurement. In other words, the CFGs are different
but are deemed equivalent by the AICT metric. Since the base CFG and C-Type
CFG of thttpd are the same, we cannot generate CFGs of different precision
levels. Thus, thttpd is excluded for this experiment. We apply SpaceExplorer and
MazeRunner to the rest of benchmarks with G1 as the policy, because G1 is the
policy implicitly assumed by AICT. In Figure 6.4, we plot the relation between
the metric reduction and AICT reduction. The blue dots are for SpaceExplorer’s
metric; red dots are for MazeRunner’s metric (assuming attack model AM2); and
the gray dots are for AICT itself.

First, the reduction rate of MazeRunner’s metric is always smaller than Space-
Explorer’s metric. The reason is that CFI has less influence under MazeRunner’s
attack model than under SpaceExplorer’s attack model. MazeRunner’s attack
model assumes multiple-time memory corruptions in each path. The attacker can
almost corrupt memory every time before an indirect call to manipulate its target.
In this case, CFI cannot eliminate any attack paths that reach the call, making
a large portion of program points to be risky for the indirect call. In contrast,
SpaceExplorer assumes a one-time memory corruption. To manipulate an indirect
call far from the memory corruption site, the attacker needs to shape the initial
memory state to accommodate the original data flows and path constraints. Thus,
SpaceExplorer’s metric relying on risky paths is more sensitive to the validity of a
path, on which CFI has a huge impact. Therefore, when AICT improves (i.e., the
CFG precision improves), SpaceExplorer’s metric reduces more than MazeRunner’s
metric.

94

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AICT reduction

M
et
ri
c
re
du

ct
io
n

memcached

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AICT reduction

M
et
ri
c
re
du

ct
io
n

lighttpd

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AICT reduction

M
et
ri
c
re
du

ct
io
n

exim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AICT reduction

M
et
ri
c
re
du

ct
io
n

nginx

Figure 6.4. Statistical relations between metrics and AICT with G1; blue dots are for
SpaceExplorer’s metric; red dots are for MazeRunner’s metric; gray dots are for AICT.

Second, we observe that MazeRunner’s metric reduction is almost linear to
AICT reduction, while SpaceExplorer’s metric reduction presents a trend to slow
down when AICT reduction is reaching the limit. We argue that SpaceExplorer
gives a more reasonable curve than MazeRunner. We give an informal explanation.
When AICT is large, removing one target from an indirect call’s target set is
likely to result in more paths reduced than when AICT is small. Further, a larger
amount of path reduction indicates a larger probability of eliminating attack paths.
Therefore, as the AICT reduction approaches the limit, the number of attack paths
that can be incrementally prevented should be fewer. Therefore, the attack surface
reduction is likely to be slower, which is shown by SpaceExplorer’s metric.

Third, AICT is insensitive to the details of CFGs. On the contrary, both

95

SpaceExplorer and MazeRunner are sensitive. However, we find that SpaceExplorer
is more sensitive than MazeRunner. For each AICT reduction rate, we have 10
CFG variations; thus, SpaceExplorer and MazeRunner can produce 10 different
measurements at each AICT reduction rate. According to the Figure 6.4, we
can see that SpaceExplorer’s metric is more sensitive to the details of CFG than
MazeRunner’s metric. On average, SpaceExplorer has a 5.0% fluctuation (i.e., the
largest score minuses the smallest score) at an AICT level, while MazeRunner has
only a 0.1% fluctuation. The reason is mostly due to the difference in the granularity
of the attack-surface entity. When the CFG details change, the valid paths change
accordingly, while reachable program points might not change significantly, because
there would often be alternative paths that connect two points in a program.

Prog Instrs ICall BaseAICT MinAICTRed
memcached 35552 79 22.8 4.5%
lighttpd 61504 126 52.3 9.7%
exim 168602 92 83.2 5.0%
nginx 240652 417 749.6 0.0%

Table 6.8. Minimum Expected AICT Reductions for G1

Due to the observation of metric variations given the same AICT, we claim
that improving AICT does not necessarily lead to security improvement, unless the
AICT improvement is significant enough. Thus, an interesting question would be
how much is enough. To answer this question, for each of the 8 selected benchmarks,
we compute an AICT reduction rate that guarantees an attack-surface reduction
(in terms of SpaceExplorer’s metric) for policy G1. We call such an AICT reduction
the minimum expected AICT reduction and list the related data in Table 6.8, where
the minimum expected AICT reduction is abbreviated as MinAICTRed in the
table. We observe that as the program size and complexity increase, the minimum
expected AICT reduction becomes smaller. Based on our experimental data, we
conclude that AICT improvement should be around 4.8% (the median of the data
points we have) to be trustworthy to support a new CFI policy. However, due to
the lack of a large set of benchmarks, we cannot conclude a statistical relation
between the program size and the minimum expected AICT reduction, which we
leave as a possible future direction.

96

6.5 Summary

This chapter presents experiments that demonstrate the improvement of the pro-
posed metrics over the classic graph-based metric, the average indirect call target
(AICT). We first demonstrate the improved precision and comprehensiveness of
MazeRunner’s metric compared to AICT. Moreover, due to MazeRunner’s overap-
proximation of attack surface, it can be used to discharge CFI/DFI runtime checks
to reduce performance overhead. In the second step, we show that SpaceExplorer
not only can achieve what MazeRunner can do in terms of quantitatively evaluating
the attack surface, but also can help discover real attacks. Since SpaceExplorer
may suffer from incompleteness of path sampling, we compute the code coverage
statistics to evaluate the completeness. We also perform a statistical analysis to
understand the relation between AICT and attack surface. We find that SpaceEx-
plorer’s metric is more informative than MazeRunner’s metric and AICT reduction
should be around 3.2% to be trustworthy for claiming a better CFI policy.

97

Chapter 7 |
Future Work

7.1 Framework Extension

The current framework does not support binaries compiled from C++ programs
nor x64 binaries. The bottleneck is the limitation of our CFG construction tool [15].
Extending the CFG construction tool is non-trivial; C++ code has its own patterns
of indirect branches, such as virtual calls, and x64 has a different instruction set.

7.1.1 Extension to x64

Our current infrastructure cannot be simply migrated to support x64. Our disas-
sembly module is built in Coq with proofs for x86 only. Adding support for x64
would also require rewriting the proofs, which itself is an interesting topic for formal
method research. To avoid such complexity, we propose to use existing binary
reverse engineering tools, such as BAP and Angr, for disassembly. Then, we trans-
late their results into our format to fit in our type inference and meta-information
based CFG construction. In particular, we model the assembly instructions with
our abstract model of x64; we parse their CFGs into our format as base CFGs for
type inference and flexible CFG construction; and we translate their modeling of
instruction semantics into RTL instructions for our attack surface evaluation.

7.1.2 Extension to C++

To deal with C++ programs, the CFG construction requires new methodologies
to deal with C++’s type system. First, function overloading allows one function

98

name to have different implementations. During our type analysis, we need to
use debugging information to distinguish different implementations for the same
function name. Second, we need to consider the “class” type in our type inference
module. Classes introduce another layer of complexity of type inference. Three
access specifiers make the field accesses in classes different from field accesses of
C struct types; some are through direct variable access, while some are through
member functions. Inheritance and virtual functions make type-signature matching
more complicated, because the inheritance determines the actual type signature of
a callsite. To solve this problem, we want to propose a binary-level class hierarchy
analysis relying on compiler-generated meta-information.

7.2 Automatic Exploit Generation

To utilize SpaceExplorer’s efficient determination of safe paths, we aim to improve
the efficiency of the state-of-the-art automatic exploit generation tool based on
SpaceExplorer. First, we plan to employ reinforcement learning in path discovery.
Second, we need to involve lightweight symbolic execution to generate seed input.
Then, we feed the seed input to a runtime verifier to check if the input triggers
security violation. At last, the attack verification is used as feedback to the
reinforcement learning. There are some challenges. We need to carefully balance
the efficiency and accuracy of symbolic execution. The attack verification must
be fast and produce informative feedback. And the last challenge is designing the
reward function for the Reinforcement-Learning agent.

7.3 Typed Binary-level Alias Analysis

To construct binary-level CFGs, there are two major threads of binary-level ap-
proaches: signature matching and alias analysis. The signature matching approach
relies on type information to infer signatures; alias analysis performs expensive
points-to analysis to infer targets of indirect branches. People may have thought
about merging the two approaches’ final results to a CFG and enforce it with CFI.
However, we propose to use type information during alias analysis to improve the
synthesis of the two approaches. Type information helps improve the granularity
of memory modeling and can also compensate for the precision loss caused by flow

99

insensitivity of alias analysis. It also has its own challenges, such as how to assign
type information to binary-level, how to design the memory modeling with type
information and how to enforce the type system in a static analysis. Moreover, with
the capability of discharging CFI checks from MazeRunner, the typed binary-level
alias analysis can lead to a better CFI.

7.4 Automatic Program Generation

In program analysis related research, one common difficulty is to acquire a high-
quality benchmark set with ground truth. Manually selected or created benchmarks
often suffer from limitations such as incompleteness, impracticality, and even bias.
Borrowing the idea of Generative Adversarial Network, we propose to research
on the topic of automatic test program generation. Program analysis is trying
to discover ground truths among a huge amount of interference introduced by
the programming language. With ground truth, can we automatically generate a
program that contains the ground truth but introduce interference that fail the
program analysis tool? In fact, program obfuscation belongs to this direction. We
could consider to use dynamic analysis on some initial benchmarks to collect ground
truth and employ machine/deep learning to generate variations of the original
benchmarks.

100

Chapter 8 |
Conclusion

To evaluate the security strength of CFI policies, our first step is to propose an ap-
proach for high-precision CFG construction, without compiler modification, to gen-
erate the policies of CFI. The approach uses compiler-generated meta-information to
retrieve source-level information for CFG construction. It relies on a type-inference
engine that deduces types of indirect-branch operands from source-level types in
debugging information. Our system is compatible with multiple compilers and
multiple compiler versions, thanks to its compiler-independent design. Also, it is
customized to produce CFGs of different precision levels for the security evaluation.

We propose MazeRunner, a framework for quantitatively evaluating the attack
surface of a CFI-protected program. In contrast to traditional metrics, our metric
provides an overapproximated estimation and considers how gadgets can be chained
to form an attack path. We propose a novel attack-aware dependency tracking for a
fine-grained attack-surface evaluation, in which attacker’s influences are considered.
Moreover, a point-to-stack analysis is employed for simplifying memory modeling
and enabling the partitioning of memory to support different attack models. Since
our attack models are relatively stronger than real-world attackers and our system
is designed to overapproximate, our metric is conservative but meaningful for
measuring the insecurity of a program. Our experiments demonstrated precision
improvement of the new metric than the traditional graph-based metrics. Based
on our metric, we confirm the desire for fine-grained CFI and context-sensitivity
in large and critical applications. Also, our evaluation can discharge unnecessary
43.8% CFI checks and 14.5% DFI checks for parameters on average.

While MazeRunner is able to give an overapproximated estimation of the attack
surface, it cannot construct any attack paths. Thus, we are motivated to improve

101

the attack-surface granularity to paths and to assume a less powerful attack model
for a more precise evaluation of the attack surface, resulting in a new evaluation
framework, SpaceExplorer. We employ a random-walk based path sampling method
to discover candidate paths to address the problem of path explosion. To check if a
path is risky, we propose a novel per-path value tracking analysis to conservatively
determine the insecurity of the path. Given a CFG, we can measure how many
risky paths are reduced compared to a baseline CFG to measure the security
improvement. We design the whole process into a pipeline structure to optimize
the performance. In experiment, we demonstrated that SpaceExplorer achieves
good code coverage and better accuracy in terms of measuring the attack surface.
Moreover, SpaceExplorer can efficiently determine safe paths so that it can help
improve the performance of automatic exploit generation.

In all, by constructing CFGs and demonstrating the feasibility of two quantitative
metrics for measuring the attack surface, we conclude that the attack surface of a
CFI-protected program can be measured by fine-grained and scalable quantitative
metrics.

102

Bibliography

[1] Morrisett, G., G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan
(2012) “RockSalt: Better, Faster, Stronger SFI for the x86,” in ACM Conference
on Programming Language Design and Implementation (PLDI), pp. 395–404.

[2] Göktas, E., E. Athanasopoulos, H. Bos, and G. Portokalidis (2014)
“Out of Control: Overcoming Control-Flow Integrity,” in IEEE Symposium on
Security and Privacy (S&P), pp. 575–589.

[3] Davi, L., A.-R. Sadeghi, D. Lehmann, and F. Monrose (2014) “Stitching
the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity
Protection,” in 23rd Usenix Security Symposium, pp. 401–416.

[4] Carlini, N. and D. Wagner (2014) “ROP is Still Dangerous: Breaking
Modern Defenses,” in Proceedings of the 23rd USENIX Conference on Security
Symposium, SEC’14, USENIX Association, USA, p. 385–399.

[5] Evans, I., F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos (2015) “Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity,” in 22nd ACM Conference
on Computer and Communications Security (CCS), pp. 901–913.

[6] Conti, M., S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi (2015) “Losing control:
On the effectiveness of control-flow integrity under stack attacks,” in 22nd
ACM Conference on Computer and Communications Security (CCS), ACM,
pp. 952–963.

[7] Carlini, N., A. Barresi, M. Payer, D. Wagner, and T. R. Gross (2015)
“Control-Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
24th Usenix Security Symposium, pp. 161–176.

[8] van der Veen, V., D. Andriesse, M. Stamatogiannakis, X. Chen,
H. Bos, and C. Giuffrdia (2017) “The dynamics of innocent flesh on the
bone: Code reuse ten years later,” in 24th ACM Conference on Computer and
Communications Security (CCS), ACM, pp. 1675–1689.

103

[9] Ispoglou, K. K., B. AlBassam, T. Jaeger, and M. Payer (2018) “Block
oriented programming: Automating data-only attacks,” in 25th ACM Confer-
ence on Computer and Communications Security (CCS), ACM, pp. 1868–1882.

[10] Farkhani, R. M., S. Jafari, S. Arshad, W. Robertson, E. Kirda,
and H. Okhravi (2018) “On the Effectiveness of Type-based Control Flow
Integrity,” in Proceedings of the 34th Annual Computer Security Applications
Conference, ACM, pp. 28–39.

[11] van der Veen, V., D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida (2015) “Practical Context-
Sensitive CFI,” in CCS15, CCS ’15, Association for Computing Machinery,
New York, NY, USA, p. 927–940.
URL https://doi.org/10.1145/2810103.2813673

[12] Zhang, M. and R. Sekar (2013) “Control Flow Integrity for COTS Binaries,”
in 22nd Usenix Security Symposium, pp. 337–352.

[13] Niu, B. and G. Tan (2014) “Modular Control-Flow Integrity,” in ACM
Conference on Programming Language Design and Implementation (PLDI),
pp. 577–587.

[14] Burow, N., S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brun-
thaler, and M. Payer (2017) “Control-Flow Integrity: Precision, Security,
and Performance,” ACM Computing Surveys, 50(1), pp. 16:1–16:33.

[15] Zeng, D. and G. Tan (2018) “From Debugging-Information Based Binary-
Level Type Inference to CFG Generation,” in 8th ACM Conference on Data
and Application Security and Privacy (CODASPY), pp. 366–376.

[16] Muntean, P., M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and
C. Eckert (2019) “LLVM-CFI: Analyzing Static Control Flow Integrity
Protections,” in Annual Computer Security Applications Conference (ACSAC),
pp. 584–597.

[17] Lu, K. and H. Hu (2019) “Where Does It Go? Refining Indirect-Call Targets
with Multi-Layer Type Analysis,” in 26th ACM Conference on Computer and
Communications Security (CCS), pp. 1867–1881.

[18] Kim, S. H., C. Sun, D. Zeng, and G. Tan (2021) “Refining Indirect Call
Targets at the Binary Level,” in Network and Distributed System Security
Symposium (NDSS), The Internet Society.

[19] Li, Y., M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu (2020) “Find-
ing Cracks in Shields: On the Security of Control Flow Integrity Mechanisms,”

104

https://doi.org/10.1145/2810103.2813673

in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’20, Association for Computing Machinery, New
York, NY, USA, p. 1821–1835.
URL https://doi.org/10.1145/3372297.3417867

[20] Avgerinos, T., S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley (2014) “Automatic Exploit Generation,” Commun. ACM, 57(2),
p. 74–84.
URL https://doi.org/10.1145/2560217.2560219

[21] Cha, S. K., T. Avgerinos, A. Rebert, and D. Brumley (2012) “Unleashing
Mayhem on Binary Code,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, IEEE Computer Society, USA, p. 380–394.
URL https://doi.org/10.1109/SP.2012.31

[22] Hu, H., Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang (2015) “Auto-
matic Generation of Data-Oriented Exploits,” in 24th Usenix Security Sympo-
sium, pp. 177–192.

[23] Bao, T., R. Wang, Y. Shoshitaishvili, and D. Brumley (2017) “Your
exploit is mine: Automatic shellcode transplant for remote exploits,” in 2017
IEEE Symposium on Security and Privacy (SP), IEEE, pp. 824–839.

[24] Wang, Y., C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou (2018) “Revery: From proof-of-concept to exploitable,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 1914–1927.

[25] Zhang, C., T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou (2013) “Practical Control Flow Integrity and Random-
ization for Binary Executables,” in IEEE Symposium on Security and Privacy
(S&P), pp. 559–573.

[26] Niu, B. and G. Tan (2013) “Monitor Integrity Protection with Space Effi-
ciency and Separate Compilation,” in 20th ACM Conference on Computer and
Communications Security (CCS), CCS ’13, p. 199–210.

[27] van der Veen, V., E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida
(2016) “A Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary
Level,” in IEEE Symposium on Security and Privacy (S&P), pp. 934–953.

[28] Andriesse, D., X. Chen, V. van der Veen, A. Slowinska, and H. Bos
(2016) “An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries,”
in 25th Usenix Security Symposium, pp. 583–600.

105

https://doi.org/10.1145/3372297.3417867
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1109/SP.2012.31

[29] Tice, C., T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlings-
son, L. Lozano, and G. Pike (2014) “Enforcing Forward-Edge Control-Flow
Integrity in GCC & LLVM,” in Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC’14, USENIX Association, USA, p. 941–955.

[30] Pewny, J. and T. Holz (2013) “Control-Flow Restrictor: Compiler-based
CFI for iOS,” in Proceedings of the 29th Annual Computer Security Applications
Conference, ACSAC ’13, Association for Computing Machinery, New York,
NY, USA, p. 309–318.
URL https://doi.org/10.1145/2523649.2523674

[31] Wang, Z. and X. Jiang (2010) “HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity,” in IEEE Symposium on
Security and Privacy (S&P), pp. 380–395.

[32] Abadi, M., M. Budiu, Ú. Erlingsson, and J. Ligatti (2005) “Control-
flow integrity,” in 12th ACM Conference on Computer and Communications
Security (CCS), pp. 340–353.

[33] Ge, X., N. Talele, M. Payer, and T. Jaeger (2016) “Fine-Grained Control-
Flow Integrity for Kernel Software,” in IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 179–194.

[34] Zeng, D., B. Niu, and G. Tan (2021) “MazeRunner: Evaluating the Attack
Surface of Control-Flow Integrity Policies,” in The 20th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom 2021), IEEE.

[35] Caballero, J. and Z. Lin (2016) “Type Inference on Executables,” ACM
Computing Surveys, 48(4), pp. 65:1–65:35.

[36] Lin, Y. and D. Gao (2021) “When Function Signature Recovery Meets
Compiler Optimization,” in 2021 IEEE Symposium on Security and Privacy
(SP), IEEE, pp. 36–52.

[37] Kruegel, C., W. Robertson, F. Valeur, and G. Vigna (2004) “Static
Disassembly of Obfuscated Binaries,” in 13th Usenix Security Symposium, pp.
255–270.

[38] Balakrishnan, G. and T. Reps (2004) “Analyzing Memory Accesses in x86
Executables,” in International Conference on Compiler Construction (CC),
pp. 5–23.

[39] Wartell, R., Y. Zhou, K. W. Hamlen, and M. Kantarcioglu (2014)
“Shingled Graph Disassembly: Finding the Undecidable Path,” in Proceedings

106

https://doi.org/10.1145/2523649.2523674

of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), Tainan, Taiwan, pp. 273–285.

[40] Wartell, R., Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thu-
raisingham (2011) “Differentiating Code from Data in x86 Binaries,” in
Proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD), vol. 3, pp.
522–536.

[41] McCamant, S. and G. Morrisett (2006) “Evaluating SFI for a CISC
Architecture,” in Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, USENIX Association, USA.

[42] Yee, B., D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar (2009) “Native Client: A Sand-
box for Portable, Untrusted x86 Native Code,” in 2009 30th IEEE Symposium
on Security and Privacy, pp. 79–93.

[43] Sehr, D., R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen (2010) “Adapting Software Fault Isolation to Contem-
porary CPU Architectures,” in 19th Usenix Security Symposium, pp. 1–12.

[44] Erlingsson, Ú., M. Abadi, M. Vrable, M. Budiu, and G. Necula (2006)
“XFI: Software Guards for System Address Spaces,” in USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pp. 75–88.

[45] Akritidis, P., C. Cadar, C. Raiciu, M. Costa, and M. Castro (2008)
“Preventing Memory Error Exploits with WIT,” in IEEE Symposium on Secu-
rity and Privacy (S&P), pp. 263–277.

[46] Davi, L., R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nurnberger, and A. reza Sadeghi (2012) “MoCFI: A framework to
mitigate control-flow attacks on smartphones,” in Network and Distributed
System Security Symposium (NDSS), The Internet Society.

[47] Niu, B. and G. Tan (2014) “RockJIT: Securing Just-In-Time Compilation
Using Modular Control-Flow Integrity,” in 21st ACM Conference on Computer
and Communications Security (CCS), pp. 1317–1328.

[48] ——— (2015) “Per-Input Control-Flow Integrity,” in 22nd ACM Conference
on Computer and Communications Security (CCS), pp. 914–926.

[49] Payer, M., A. Barresi, and T. R. Gross (2015) “Fine-Grained Control-Flow
Integrity Through Binary Hardening,” in Proceedings of the 12th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment - Volume 9148, DIMVA 2015, Springer-Verlag, Berlin, Heidelberg, p.

107

144–164.
URL https://doi.org/10.1007/978-3-319-20550-2_8

[50] Ding, R., C. Qian, C. Song, B. Harris, T. Kim, and W. Lee (2017)
“Efficient protection of path-sensitive control security,” in 26th Usenix Security
Symposium, pp. 131–148.

[51] Khandaker, M., A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng
(2019) “Adaptive Call-Site Sensitive Control Flow Integrity,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 95–110.

[52] Khandaker, M. R., W. Liu, A. Naser, Z. Wang, and J. Yang (2019)
“Origin-sensitive Control Flow Integrity,” in 28th Usenix Security Symposium,
USENIX Association, Santa Clara, CA, pp. 195–211.

[53] Kuznetsov, V., L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song (2014) “Code-Pointer Integrity,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 147–163.

[54] Abera, T., N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd,
A. Sadeghi, and G. Tsudik (2016) “C-FLAT: Control-Flow Attestation for
Embedded Systems Software,” in CCS’16, pp. 743–754.

[55] Dessouky, G., S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A. Sadeghi (2017) “LO-FAT: Low-Overhead Control Flow
ATtestation in Hardware,” in DAC’17, pp. 24:1–24:6.

[56] Zeitouni, S., G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A. Sadeghi (2017) “ATRIUM: Runtime attestation resilient under memory
attacks,” in ICCAD’17, pp. 384–391.

[57] Dessouky, G., T. Abera, A. Ibrahim, and A. Sadeghi (2018) “LiteHAX:
lightweight hardware-assisted attestation of program execution,” in ICCAD’18,
ACM, p. 106.

[58] Abera, T., R. Bahmani, F. Brasser, A. Ibrahim, A. Sadeghi, and
M. Schunter (2019) “DIAT: Data Integrity Attestation for Resilient Collab-
oration of Autonomous Systems,” in NDSS’19.

[59] Liu, J., Q. Yu, W. Liu, S. Zhao, D. Feng, and W. Luo (2019) “Log-Based
Control Flow Attestation for Embedded Devices,” in Cyberspace Safety and
Security - 11th International Symposium, CSS’19, Part I, vol. 11982 of Lecture
Notes in Computer Science, Springer, pp. 117–132.

[60] Nunes, I. D. O., S. Jakkamsetti, and G. Tsudik (2020) “Tiny-CFA: A
Minimalistic Approach for Control-Flow Attestation Using Verified Proofs of
Execution,” CoRR, abs/2011.07400.

108

https://doi.org/10.1007/978-3-319-20550-2_8

[61] Toffalini, F., E. Losiouk, A. Biondo, J. Zhou, and M. Conti (2019)
“ScaRR: Scalable Runtime Remote Attestation for Complex Systems,” in
RAID’19, pp. 121–134.

[62] Hu, J., D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li (2019) “A
Probability Prediction Based Mutable Control-Flow Attestation Scheme on
Embedded Platforms,” in TrustCom/BigDataSE’19, pp. 530–537.

[63] Sun, Z., B. Feng, L. Lu, and S. Jha (2020) “OAT: Attesting Operation
Integrity of Embedded Devices,” in SP’20, IEEE, pp. 1433–1449.

[64] Huo, D., Y. Wang, C. Liu, M. Li, Y. Wang, and Z. Xu (2020) “LAPE: A
Lightweight Attestation of Program Execution Scheme for Bare-Metal Systems,”
in 22nd IEEE International Conference on High Performance Computing and
Communications; 18th IEEE International Conference on Smart City; 6th
IEEE International Conference on Data Science and Systems, HPCC/SmartC-
ity/DSS 2020, IEEE, pp. 78–86.

[65] Zhang, Y., X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan, and S. Ma (2021)
“ReCFA: Resilient Control-Flow Attestation,” in Annual Computer Security
Applications Conference.

[66] Xu, X., M. Ghaffarinia, W. Wang, K. W. Hamlen, and Z. Lin (2019)
“CONFIRM: Evaluating Compatibility and Relevance of Control-flow Integrity
Protections for Modern Software,” in 28th USENIX Security Symposium
(USENIX Security 19), USENIX Association, Santa Clara, CA, pp. 1805–1821.
URL https://www.usenix.org/conference/usenixsecurity19/
presentation/xu-xiaoyang

[67] Zeng, D. and G. Tan (2018) “From Debugging-Information Based Binary-
Level Type Inference to CFG Generation,” in 8th ACM Conference on Data
and Application Security and Privacy (CODASPY), pp. 366–376.

[68] Jang, D., Z. Tatlock, and S. Lerner (2014) “SafeDispatch: Securing C++
Virtual Calls from Memory Corruption Attacks,” in Network and Distributed
System Security Symposium (NDSS), The Internet Society.

[69] Pawlowski, A., M. Contag, V. van der Veen, C. Ouwehand, T. Holz,
H. Bos, E. Athanasopoulos, and C. Giuffrida (2017) “MARX: Uncover-
ing class Hierarchies in C++ Programs,” in Network and Distributed System
Security Symposium (NDSS).

[70] Menapace, J., J. Kingdon, and D. MacKenzie (1999) The "stabs" debug
format.

109

https://www.usenix.org/conference/usenixsecurity19/presentation/xu-xiaoyang
https://www.usenix.org/conference/usenixsecurity19/presentation/xu-xiaoyang

[71] DWARF Debugging Information Format Committee (2017) DWARF Debugging
Information Format Version 5.

[72] Niu, B. (2015) Practical Control-Flow Integrity, Ph.D. thesis, Lehigh Univer-
sity, Bethlehem, PA.

[73] Luk, C.-K., R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood (2005) “Pin: building
customized program analysis tools with dynamic instrumentation,” in ACM
Conference on Programming Language Design and Implementation (PLDI),
pp. 190–200.

[74] Schneider, F. (2000) “Enforceable Security Policies,” ACM Transactions on
Information and System Security, 3(1).

[75] Shoshitaishvili, Y., R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna
(2016) “SOK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy (S&P), pp. 138–157.

[76] Stephens, N., J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Cor-
betta, Y. Shoshitaishvili, C. Krügel, and G. Vigna (2016) “Driller:
Augmenting Fuzzing Through Selective Symbolic Execution,” in Network and
Distributed System Security Symposium (NDSS), The Internet Society.

[77] Shoshitaishvili, Y., R. Wang, C. Hauser, C. Krügel, and G. Vigna
(2015) “Firmalice - Automatic Detection of Authentication Bypass Vulner-
abilities in Binary Firmware,” in Network and Distributed System Security
Symposium (NDSS), The Internet Society.

110

Vita
Dongrui Zeng

Education

• PhD Candidate in Computer Science, advised by Prof. Tan, Gang

- Pennsylvania State University, University Park, PA; 1/2016-12/2021

- Lehigh University, Bethlehem, PA; 8/2014-12/2015

• B.S. in Computational Mathematics

- Nanjing University, Nanjing, China; awarded in 7/2014

Professional Experience

• Security Research Engineer Intern

- Palo Alto Networks, Santa Clara, CA; 5/2021-8/2021

Publications During Ph.D. Study

• Zhang, Y.; Liu, X.; Sun, C.; Zeng, D.; Tan, G.; Kan X.; and Ma S. (2021).
ReCFA: Resilient Control-Flow Attestation. In The 2021 Annual Computer
Security Applications Conference (ACSAC).

• Zeng, D.; Niu, B.; and Tan, G. (2021). MazeRunner: Evaluating the Attack
Surface of Control-Flow Integrity Policies. In 20th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom).

• Kim, S. H.; Sun, C.; Zeng, D.; and Tan, G. (2021). Refining Indirect Call
Targets at the Binary Level. In The Network and Distributed System Security
Symposium (NDSS).

• (Liu, S. and Zeng, D.); Huang, Y.; Capobianco, F.; McCamant, S.; Jaeger, T.;
and Tan, G. (2019). Program-mandering: Quantitative Privilege Separation.
In 26th ACM Conference on Computer and Communications Security (CCS).
Co-first author.

• Zeng, D. and Tan, G. (2018). From debugging-information based binary-
level type inference to CFG generation. In 8th ACM Conference on Data
and Application Security and Privacy (CODASPY). Outstanding paper
award.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Control-Flow Hijacking and Defenses
	Attack Surface of Control-Flow Integrity
	Challenges of Evaluating the Attack Surface
	Thesis Statement and Contributions
	Outline

	Related Work
	Flexible CFG Construction
	Overview
	Compiler-generated Meta-information
	Type Inference
	Debugging type information
	Stack layout inference
	Constraint generation
	Constraint solving

	CFG Construction
	Base CFG construction
	Type-based CFG construction

	Implementation and evaluation
	Effectiveness of type inference
	CFG precision and validation

	Multi-level CFG Construction
	Summary

	Risky Program Points as Attack Surface
	Overview
	A Motivating Example

	System Workflow and Input Specification
	CFGs
	Attack models
	Security-violation policies

	Attack-Aware Dependency Tracking (ADT)
	Conversion into RTL
	Inserting attack instructions
	Conversion to a stack-free representation
	Attack-aware dependency tracking

	Security Metric Design
	Limitations and Discussions
	Summary

	Risky Paths as Attack Surface
	Overview
	Threat Model
	System Overview

	Path Discovery
	Per-path Security Assessment
	Attack Surface Evaluation
	Summary

	Comprehensive Metric Comparison
	Comparison Methodology
	AICT vs MazeRunner
	Understanding the metric precision
	The comprehensiveness of the metric
	Implications for applying CFI

	MazeRunner vs SpaceExplorer
	SpaceExplorer's precision
	SpaceExplorer's coverage
	Security application of SpaceExplorer

	Statistical Relation Between AICT and Attack Surface
	Summary

	Future Work
	Framework Extension
	Extension to x64
	Extension to C++

	Automatic Exploit Generation
	Typed Binary-level Alias Analysis
	Automatic Program Generation

	Conclusion
	Bibliography

