
The Pennsylvania State University

The Graduate School

MANUFACTURING SYSTEMS MODELING AND ANALYSIS

A Dissertation in

Industrial Engineering

by

Juxihong Julaiti

© 2021 Juxihong Julaiti

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2021

The dissertation of Juxihong Julaiti was reviewed and approved by the following:

Soundar Kumara

Allen E.&M., Pearce Professor of Industrial and Manufacturing Engineering

Dissertation Co-Adviser, Committee Co-Chair

GuoDong Pang

Professor of Industrial and Manufacturing Engineering

Dissertation Co-Adviser, Committee Co-Chair

Eunhye Song

Assistant Professor of Industrial and Manufacturing Engineering

Vasant Honavar

Professor and Chair of Information Sciences and Technology

BiCheng Chen

CEO/CTO, CPNet

Special Member

Steve Landry

Professor and Head of the Department of Industrial and Manufacturing

Engineering

ii

Abstract

In the United States, an increasing amount of industries are becoming high-mix and
low-volume (HMLV) facilities to provide various products and to stay competitive.
The heterogeneity of products introduces frequent reconfiguration to the production
line and therefore increases the chance of unplanned downtime. Because of the
significant cost of unplanned downtime, any e�ort to reduce it is a welcome endeavor
to U.S. manufacturers. This thesis contains three chapters, the first two address
HMLV reconfiguration problem. The third chapter deals with adaptive controls in
unreliable single server queues, which can represent a typical HMLV environment.

In the first chapter, a parallel machine scheduling problem with stochastic
machine breakdowns is studied to minimize the weighted tardiness. We propose a
reinforcement learning-based framework with a novel sampling method. The results
indicate that the new sampling approach expedites the learning process and the
resulting policy significantly outperforms static dispatching rules.

In a HMLV facility, similar jobs are often scheduled together to decrease ad-
ditional setup times. However, in dry machining processes, utilizing a tool for a
prolonged period of time overheats the tool and increases chances of tool damage
and scrapped parts. Therefore, the optimal schedule should avoid tool overheating.
In the second chapter, we propose a mixed integer programming model to minimize
the makespan in a job-shop scheduling environment with overheating constraints.
Numerical studies are conducted to validate the model.

In queuing systems, the unplanned machine downtime is commonly modeled
using queues with interruptions and it has received considerable attention since the
late 1950s. In the third chapter, we study adaptive service rate control problems for
single server queues with server breakdowns. We focus on a particular dependent
structure where the breakdown rate of the server is a linear function of the service
rate. Since the relation between these two rates might be unknown in practice,
we develop online algorithms to obtain the optimal policy. Numerical studies are
conducted to analyze the optimal policy and validate proposed algorithms.

iii

Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Chapter 1
Real-time Scheduling of Heterogeneous Jobs on Non-stationary

Unreliable Parallel Machines to Minimize Weighted
Tardiness 1

1.1 Introduction . 1
1.2 Literature Review . 5
1.3 Methodology . 9

1.3.1 Reinforcement Learning . 9
1.3.2 Value Functions . 11
1.3.3 Bellman Optimality Equation 13
1.3.4 Value-based Method . 15
1.3.5 Policy-based Method . 22
1.3.6 Actor-Critic Method . 26
1.3.7 DDPG with Separate Sampling 29

1.4 Model . 32
1.4.1 Problem Setting . 32
1.4.2 Markov Decision Process . 36

1.5 Numerical Study . 38
1.5.1 Comparing DDPG and SSDDPG 38
1.5.2 Scheduling using SSDDPG 39

1.6 Conclusions . 44

iv

Chapter 2
A Mixed Integer Programming Approach for Job Shop Schedul-

ing with Sequence-dependent Setup Time and Tool
Overheating Constraints to Minimize Makespan 46

2.1 Introduction . 46
2.2 Related Works . 49

2.2.1 Performance Measures . 50
2.3 Methodology . 51

2.3.1 Notations . 51
2.3.2 Model . 52

2.4 Numerical Study . 56
2.4.1 Case I: Basic JSSP with SDST 57
2.4.2 Case II: Single Tool JSSP with SDST & OC 58
2.4.3 Case III: JSSP with SDST & OC 59

2.5 Conclusions . 60

Chapter 3
Service Rate Control in a Finite Capacity Single-server Queue

with an Unreliable Server and Unknown Breakdown
Rate 62

3.1 Introduction . 62
3.2 Related Work . 64

3.2.1 Queuing Models with Service Interruptions 65
3.2.2 Optimal Control in single-server Queues 68
3.2.3 Learning and Control in Queuing Systems 69
3.2.4 Contributions . 71

3.3 Model . 72
3.4 Stable Admissible Policy . 75
3.5 Optimality . 79
3.6 Numerical Study: Optimal Controls 83

3.6.0.1 Linear Costs . 85
3.6.0.2 Quadratic Costs 90

3.7 Learning . 94
3.7.1 Partially Unknown MDP . 95
3.7.2 Completely Unknown MDP 97

3.8 Numerical Study: Adaptive Control 103
3.8.1 Partially Unknown MDP . 103
3.8.2 Completely Unknown MDP 104

3.9 Conclusions . 107

v

Bibliography 109

vi

List of Figures

1.1 Reinforcement Learning Diagram 10
1.2 Backup Diagram of State Value Function 13
1.3 Backup Diagram of State-Action Value Function 13
1.4 Policy Iteration . 17
1.5 Overall Framework of the Proposed Method 32
1.6 Performances of DDPG and SSDDPG on the Pendulum task 38
1.7 The Frequency of Mean On-time Selection of the Resulting RL Agent 44
1.8 Urgency of Waiting Jobs and the Value of Normalized ◊u 44

2.1 Schedules of Mixed Jobs . 47
2.2 Temperatures, hardness and Machining Time of HSS 48
2.3 CCT Diagram of AISI M42 HSS . 48
2.4 Gantt of the optimal schedule for the problem in Case I 58
2.5 Gantt of the optimal schedule for the problem in Case II 59
2.6 Gantt of the optimal schedule for the problem in Case III 60

3.1 Service Rate and Machine On-Time 73
3.2 The State Transition Diagram . 74
3.3 Optimal Controls of Scenario 1 (Linear Costs) 88
3.4 Optimal Controls of Scenario 2 (Linear Costs) 88
3.5 Optimal Controls of Scenario 3 (Linear Costs) 88
3.6 Optimal Controls of Scenario 4 (Linear Costs) 89
3.7 Optimal Controls of Scenario 5 (Linear Costs) 89
3.8 Optimal Controls of Scenario 6 (Linear Costs) 89
3.9 Optimal Controls of Scenario 7 (Linear Costs) 89
3.10 Optimal Controls of Scenario 8 (Linear Costs) 90
3.11 Optimal Controls of Scenario 1 (Quadratic Costs) 92
3.12 Optimal Controls of Scenario 2 (Quadratic Costs) 92
3.13 Optimal Controls of Scenario 3 (Quadratic Costs) 92
3.14 Optimal Controls of Scenario 4 (Quadratic Costs) 92

vii

3.15 Optimal Controls of Scenario 5 (Quadratic Costs) 93
3.16 Optimal Controls of Scenario 6 (Quadratic Costs) 93
3.17 Optimal Controls of Scenario 7 (Quadratic Costs) 93
3.18 Optimal Controls of Scenario 8 (Quadratic Costs) 93
3.19 Poisson Arrivals with Linear Cost Functions 104
3.20 Poisson Arrivals with Quadratic Cost Functions 104
3.21 Average Cost of DDPG Training . 105
3.22 Policy Obtained from DDPG Method 105
3.23 Average Cost of DDPG Training . 106
3.24 Policy Obtained from DDPG Method 106

viii

List of Tables

1.1 Agent Configurations for Pendulum 39
1.2 System Dynamics . 40
1.3 Agent Configurations for Scheduling 41
1.4 Results of Experiments . 42

2.1 Notations . 53
2.2 Descriptions of Input Jobs . 57
2.3 Setup Times . 58
2.4 Description of Input Jobs . 60

3.1 Parameter Combinations for the System Dynamics 84
3.2 Cost Parameter Settings . 84
3.3 Server Utilization (%) across Scenarios 1 - 8 (Linear Costs) 86
3.4 Rejection Rates (%) across Scenarios 1 - 8 (Linear Costs) 86
3.5 Server Utilization (%) across Scenarios 1 - 8 (Quadratic Costs) . . . 90
3.6 Rejection Rates (%) across Scenarios 1 - 8 (Quadratic Costs) 91
3.7 DDPG Configurations . 105
3.8 System Dynamics Parameters . 106

ix

Acknowledgments

Throughout the time I had at Penn State, I have received a tremendous amount
of support and assistance from my advisors, professors, family members, friends,
colleagues from TE connectivity. Without having you on this journey, I will not be
where I am today. For this, I am forever grateful.

First and foremost, I would like to say thank you to my advisor Professor
Soundar Kumara for accepting me into his group. During my time in the lab, Dr.
Kumara has given me intellectual freedom in my work, supported my attendance
at various conferences, engaged me in new ideas, and demanded a high quality of
work in my endeavors. And because of this, I have had a rewarding graduate school
experience. I would also like to say thank you to my co-advisor Professor Guodong
Pang for his patience and guidance on this fruitful journey. Because of Dr. Pang,
I have had opportunities to explore and learn challenging topics by self-studying,
which is one of the most valuable skills I have gained. By o�ering me opportunities
to be a lecturer to teach undergrads operations research, Dr. Pang gave me one of
the best memories I had at Penn State. Not only have I learned teaching is the
best way of learning, but I also met many excellent students. Additionally, I would
like to thank my committee members Professor Vasant Honavar, Professor Eunhye
Song, and Dr. Bicheng Chen for their interest and guidance in my work.

The work I have done in TE connectivity under the guidance of Dr. Bicheng
Chen greatly benefited the work in this thesis. Even after my internship, Dr.
Bicheng Chen has guided me along the way and inspired me to read many books,
papers, and to meditate. I could not express my appreciation enough to Dr. Bicheng
Chen for what he has done for me.

I would also thank my labmates and friends Dr. Seifu Chonde, Dr. Deepak
Agarwal, Dr. YiShan Song, Professor Dika Handayani, Professor Cheng Bang Chen,
Qian Yu Hu, Rico Polim, Mihir Mehta, Ankur Verma, Yi Zheng for their numerous
assistance, suggestions, and company on this journey.

Last but not least, I would like to thank my wife and great friend Guli for her

x

love, selfless support and sacrifices. Of course, without the love and support of my
father Juret Balaji, my mother Rihangul Kanjiahun, and my brother Jiesur Juret,
the journey would have been impossible.

xi

Chapter1 |
Real-time Scheduling of Hetero-
geneous Jobs on Non-stationary
Unreliable Parallel Machines to
Minimize Weighted Tardiness

1.1 Introduction

The basic definition of unplanned machine downtime is when a manufacturing

machine fails to operate productively due to unforeseen hardware or software com-

ponent failures. It may occur because of di�erent factors, such as tool failures,

machine malfunctions, and operator errors. High-mix and low-volume manufac-

turing facilities (HMLV-fab) process jobs with relatively small order sizes and

heterogeneous specifications [1]. Due to the high variety of products, machines are

often reconfigured to process a new job, such as tool changes, tool path and cutting

parameters adjustments. The resulting frequent interactions between operators

and machines often results in more unplanned downtime [2,3].

1

To stay competitive, minimizing tardiness of orders is critical for manufactur-

ers. However, variations in the availability of machines in HMLV-fab introduces

challenges for achieving such a goal. When an unplanned downtime occurs, the

finishing time of orders is often delayed, and it even halts business operations

temporarily. As a result, a massive disruption is caused in the production, resulting

in the decrease in customer satisfaction.

Though the downtime cost varies across di�erent manufacturing industries,

the cost can be very high as it reduces the production capacity of the plant. In

2014, Aberdeen [4] estimated the cost of unscheduled downtime in all businesses

to be around $163,000 per hour. The number skyrocketed to $260,000 in 2016,

illustrating the burden that organizations continue to face during these dormant

times. Additionally, a survey of 101 executives in the automotive industry [5]

indicates that the U.S. automotive industry’s interruption cost stands at $22,000

per minute, an equivalent of $1.3 million per hour.

Since the interactions can be reduced in the context of HMLV-fab if similar

jobs are scheduled together, there is potential to obtain a schedule such that the

unplanned downtime is minimized. Given that an increasing number of industries

are becoming HMLV-fab in the U.S. [6], any e�ort in reducing unplanned downtime

is a welcome endeavor to U.S. manufacturers. Therefore, it is vital to consider the

heterogeneity of jobs and its impact on machines’ availability during the scheduling

process.

Machines are rarely identical for any given plant, therefore, we assume machines

are nonidentical. Moreover, since the stochasticity of machines can manifest in

many stages of the production, we focus on the following critical ones:

1. When an unplanned downtime occurs to a machine, we state that the machine

is in a down-state, and the amount of time it stays in a down-state is a random

variable as it may be impacted by outside factors such as the availability of

2

maintenance workers.

2. When a part/job is assigned to an available machine, two random variables

are used to model the process. The first one is the amount of time the

machine takes to finish the job, also known as the process time (in the

context of queuing theory, this random variable is often known as the service

requirement), and the second one is the time until the machine breaks, which

is often known as the on-time or availability of the machine. When the process

time is less than or equal to the on-time, then the job can be finished without

the machine breaks down. However, when the process time is greater than

the on-time, the machine is going into a down-state without finished the job.

Therefore, these two variables form a competing process. Moreover, when the

job encounters an unplanned downtime during its production, it will be sent

back to the queue, and when it is assigned to a machine after it has been sent

back to the queue, it will be started from the scratch.

More importantly, in this chapter, the key characteristics of the HMLV-fab are

modeled into the distributions of the process time and on-time. When two similar

jobs are assigned to a machine back-to-back, by the definition of similarity, when the

first job is finished, the second one requires less number of operations to reconfigure

the machine. We therefore assume that there will be a reduced process time for

the second job, and we also assume that the machine has a smaller probability

to go into a down-state when the second job is being processed. Therefore, the

distribution of the process time is parameterized with both the class of the job

and the class of the previous job of the machine it is assigned to. Similarly, the

distribution of the on-time is parameterized by classes of jobs (to capture the

impact of heterogeneity of jobs on the on-time), the machine ID (to capture the

non-identicalness of machines), and the time since the last maintenance (to capture

3

the non-stationarity of machines). The details of the distribution is described in

the third section.

The tardiness of a job measures how late the job is finished compared to its

due date. If the job is finished before its due date, the tardiness is defined as zero.

The total tardiness of a given set of jobs reflects how late jobs are, and it gives

the decision-maker the overall performance of the schedule. The average tardiness,

on the other hand, gives an average measure. However, since the tardiness is zero

if the job is early, averaging the measure is biased. Therefore, we use the total

weighted tardiness in this work, where the weight of a job is associated with the

importance of the job.

Therefore, in this work, a nonidentical parallel machine scheduling problem with

stochastic machine breakdowns is studied to minimize the total weighted tardiness.

And our contributions in this chapter are:

1. Both the impact of heterogeneity of jobs on machines on-time and the de-

generation of machine’s on-time are considered in the model. To the best of

our knowledge this is the first study to model both factors in the scheduling

process. To solve the scheduling problem, we propose a novel Markov Decision

Process (MDP) model such that the state is independent of the number of

jobs and machines. Moreover, the action space can be constructed with any

scheduling dispatching rules. To schedule jobs in real-time, a simulation

environment needs to be constructed such that it represents the interested

manufacturing environment. After training a RL agent within the MDP, the

obtained policy can be used to schedule jobs in real-time.

2. Though the proposed sampling method is tested with the deep deterministic

policy gradient (DDPG) method, it can be used with any actor-critic-based

RL algorithms. During the training process, the actor and critic are trained

4

using di�erent batches of experiences. The sampling method is tested using

the pendulum simulator from OpenAI gym [7], and the result indicates that

a faster learning can be achieved via the proposed sampling method.

1.2 Literature Review

Research in stochastic scheduling can be classified into 1) proactive, 2) reactive

and 3) hybrid approaches [8].

In proactive approaches, an initial schedule is generated by optimizing perfor-

mance measures of interest such as makespan, total weighted tardiness, average

flow time, etc. Subsequently, the schedule is improved based on robustness mea-

surements, such as the average di�erence between the completion times of jobs and

realized ones. Al-Hinai and EiMekkawy [9] propose a two-stage Hybrid Genetic

Algorithm (HGA) to generate a robust and stable schedule. At the first stage,

makespan is minimized as scheduling without uncertainty. At the second stage, the

model takes the result from the first stage as the initial population, and searches

for better schedules in terms of robustness and stability using Genetic Algorithm.

Xiong et al. model the flexible job-shop scheduling problem (FJJSP) with random

machine breakdowns into a multi-objective optimization problem [10]. In their

work, makespan and robustness are considered simultaneously, where the robustness

of the schedule is measured by the expected di�erence between deterministic and

actual makespan. An evolutionary algorithm is developed to solve the model.

The reactive approaches generate an initial schedule based on the initial availabil-

ity of machines without taking any uncertainty into account, and a new deterministic

schedule is generated whenever a machine breakdown is observed or a machine

becomes available. Given the reactive nature, the solution time is one of the key

performance measures of reactive approaches. When domain knowledge is available,

5

such as the expected down time for a given the type of breakdown, jobs can be

assigned to a down machine before it is brought back online [11]. Nevertheless,

this type of approaches give an optimistic estimate of the objective value when the

internal measurement like makespan is considered but may perform badly when

the objective function considers the external measurement like tardiness of jobs.

Hybrid approaches utilize both proactive and reactive approaches. The initial

schedule is generated in a proactive manner, and when an uncertainty is realized, a

new schedule is generated in a proactive manner. A hybrid method that considers

machine breakdowns is proposed by Smith [12]. In his work, a right shift rescheduling

rule is analyzed. When a breakdown impacts tasks, they are moved forward in

time on the schedule. This method reacts instantaneously to the event. However,

the future uncertainties are only anticipated when the first schedule is generated,

and it might degenerate the quality of the schedule in terms of robustness as more

realizations of breakdowns happen. Subramaniam develops a modified A�ected

Operation Rescheduling (mAOR) [13], which considers multiple disruptions such

as absenteeism of workers, process time variations, the arrival of unexpected jobs,

and machine breakdowns. Heuristics are applied to repair the schedule, and the

work shows that this method outperforms right shift rescheduling.

Reinforcement learning (RL) is used to learn a policy under a stochastic environ-

ment to maximize discounted cumulative rewards. In the context of scheduling with

unreliable machines, it provides a scheduling policy that can be used to schedule

jobs. The resulting policy not only considers uncertainties, it can also be reactive

by incorporating the availability of machines into state space design. Therefore, we

classify it as a hybrid approach in the context of stochastic scheduling.

Several studies used RL to solve scheduling problems decades ago. Zhang and

Thomas [14] are the pioneers who used RL to solve job-shop scheduling problem

(JSSP) and applied to NASA space shuttle scheduling. The state space is designed

6

like the current schedule, and the action space contains reassign-pool and move.

The agent performs reassign-pool only when all resource constraints are satisfied,

and the action reassigns another pool to the resource requirements of a job. When

there is at least one constraint violation, the agent moves the job to the next earlier

or the next later time until there is no violation. The reward signal is designed

as the resource dilation factor, which is the ratio of total pool utilization to total

resource utilization. The multi-step temporal di�erence method (TD(⁄)) is used in

the RL framework. The result indicates that their RL method outperforms the state

of the art methods at that time in the domain of space shuttle payload processing

jobs. Nonetheless, the design of the state space restricts the robustness of the

method, since any di�erent numbers of jobs and resources require new learning

processes. Hence, it has a relatively large solution time, and it is not applicable to

the scope of JSSP with machine breakdowns.

Aydin and Oztemel [15] applied RL to select dispatching rule to schedule jobs

in real-time. The state space is constructed by the queue size of each machine

and the corresponding mean slack time of the queue. The action space contains

three dispatching rules: 1) Shortest Processing Time (SPT), 2) Cost over time

(COVERT), and 3) Critical Ratio (CR). With similar designs, Wang and Usher [16],

Park et al. [17] and Tseng et al. [18], use RL to solve dynamic scheduling for a

single machine or multiple machines. Though the state vectors are robust in both

works, studies show that the design of action space using dispatching rules do not

have good quality to meet optimization objectives [19].

In a scheduling problem setting, the traditional stochastic optimization method

takes future uncertainty into account by utilizing the probability distribution

(chance-constrained methods) or the historical data (two-stage methods). However,

it requires a large computational time when the problem size is large; hence, it

cannot generate a new policy in a timely manner. This limits the usage of the

7

traditional optimization in the reactive and hybrid approaches, and it often used

as proactive approaches.

When a random event is realized, hybrid approaches exploit the realization and

generate a new schedule that considers future uncertainty. The reactive nature of

the approach requires the method to have a short computational time. Moreover,

the hybrid approaches are able to utilize the resources better as it has more accurate

data in terms of the availability of resources when a new schedule is generated.

Since urgent, important jobs can be rescheduled to available assets when uncertainty

is realized, hybrid approaches are especially practical when the due date of jobs is

one of the optimization criteria. This improvement has the potential to increase

the on-time rate and reduce the lead time compared to the traditional optimization

methods.

A reinforcement learning (RL) approach naturally falls into the hybrid ap-

proaches category for the following reasons:

1. The resulting scheduling policy generated by an RL model considers future

uncertainty as the policy is generated to maximize the future return, which

is characterized by the total discounted rewards or average rewards.

2. The resulting scheduling policy can be used to generate a new schedule

decision with a very short computational time.

As it is not practical to let the RL agent learn the policy by interacting with

the real-world, a simulation model is a practical option to train the agent. And

probability distributions estimated from the real-world data can be utilized to

build the simulation model. The RL agent can be trained in a model-based

manner or model-free manner. There are various methods for both types, such

as the value iteration, policy iteration, SARSA, Q-learning, stochastic policy

gradients, Actor-Critic, deterministic policy gradients. Moreover, the utilization

8

of nonlinear approximators such as deep neural networks empowered RL methods

to solve problems with infinite/continuous state and action spaces and learn a

well-performing policy.

Therefore, an RL approach is preferred due to:

1. The resulted scheduling policy takes future uncertainty into account events

even when the modeled uncertainty is extremely complex.

2. The resulted scheduling policy parameterized by nonlinear approximators

such as deep neural networks gives the policy a good generalization power

to react to the changes (the realizations of uncertainty) of state space. This

allows better utilization of resources, especially when due data is one of the

optimization criteria.

3. Even the computational time is large when training the RL algorithm, the

obtained scheduling policy can react to the uncertainty instantaneously; hence,

the schedule can adapt to the environment change accordingly.

1.3 Methodology

1.3.1 Reinforcement Learning

Reinforcement learning (RL), supervised, and unsupervised learning are three types

of machine learning technique. In the standard RL framework, the learner or

decision maker is called as the agent, and the agent could observe and interact with

the environment via actions. In the context of control, the agent, environment,

and action are controller, plant, and control signal. When the agent takes action,

it will receive a numerical reward signal. The goal of RL is finding a policy that

maximizes the long-term total reward signal. Similar to natural learning processes,

9

such as a newborn gazelle learns to walk, a master chess player makes a move

from the intuitive judgments [20], the agent discover the desired policy from its

experiences and by exploring the environment via trial-and-error. In most of the

challenging cases, actions would a�ect the next state of environment and reward,

and through that, all subsequent environments and rewards, therefore, the rewards

are delayed. In fact, the trial-and-error search and delayed rewards are two crucial

characteristics of RL.

Figure 1.1: Reinforcement Learning Diagram

As Figure 1.1 shows, at any time point t, the agent would observe environment

via state vector St œ S, where S is the set of possible states. Based on St, the

agent would draw an action at from current policy fi(a|St) = P[A = a|S = St] for

’a. After the agent executes the action at, the environment would transit to St+1

with probability Pa
St,St+1 for all reachable states St+1 œ S from St, and agent would

receive a reward signal Rt+1 œ R and observe the new environment St+1, where R

is the reward set. This process would be continued until the environment reaches

the terminate state or the policy is converged. After each action, the agent would

receive a reward signal Rt, and the maximization of expected cumulative rewards

should describe all goals. In the JSSP context, the agent would receive a large

negative reward if the action makes a job overdue. Also, the agent would receive a

10

negative reward proportional to the total time to finish the set of jobs at the end.

By maximizing the expected cumulative rewards, the number of overdue jobs and

total makespan are minimized. Formally, the expected cumulative reward Gt can

be defined using discount factor “ œ [0, 1]:

Gt = Rt+1 + “Rt+2 + “2Rt+3... =
T ≠t≠1ÿ

k=0
“kRt+k+1 (1.1)

where T is the time point when the agent reaches the terminate state. The discount

factor “ can prevent problematic calculation when the learning task has an infinite

time horizon. Moreover, when “ is set to closer to 1, the future rewards have a

more significant e�ect on Gt, and it would make agent farsighted. Similarly, when

“ is set to closer to 0, the immediate reward plays a more significant role, and the

agent would act towards getting more immediate rewards.

1.3.2 Value Functions

Value functions and Bellman equations are the core of RL. There are two types of

value functions:

1. State-value function for policy fi: vfi(s) = Efi[Gt|St = s]

2. Action-value function for policy fi: qfi(s, a) = Efi[Gt|St = s, At = a]

Both value functions indicate the long-term rewards under a policy fi, given the

current state or the state-action pair.

Using Bellman equation for vfi(s) shows that the state-value function can be

decomposed into two parts: 1) immediate reward Rt+1 and 2) discounted value of

successor state “vfi(St+1):

vfi(s) = Efi[Gt|St = s]

= Efi[Rt+1 + “Rt+2 + “2Rt+3...|St = s]

11

= Efi[Rt+1 + “(Rt+2 + “Rt+3...)|St = s]

= Efi[Rt+1 + “Gt+1|St = s]

= Efi[Rt+1 + “vfi(St+1)|St = s]

Similarly, the Bellman equation for qfi(s, a) shows that action-value function can

also be decomposed into immediate reward Rt+1 and discounted value of successor

state-action pair “qfi(St+1, At+1):

qfi(s, a) = Efi[Gt|St = s, At = a]

= Efi[Rt+1 + “Rt+2 + “2Rt+3...|St = s, At = a]

= Efi[Rt+1 + “qfi(St+1, At+1)|St = s, At = a]

Therefore, given the dynamics of a finite MDP, by applying recursion with

memorization method in dynamic programming, Bellman equations can be used to

calculate state-value for all the states and action-value for all the state-action pairs.

With the value functions, the optimal path can be found easily by merely acting

greedily towards the terminal state.

Using the transition probability of the given MDP, the state value function of

any state s œ S under a policy fi can be expressed as

vfi(s) =
ÿ

aœA
fi(a|s)

ÿ

sÕœS
P (sÕ|s, a)[r + “vfi(sÕ)] (1.2)

where r is a random reward given by the environment when the agent takes action

a in the state s. The expression is shown in Figure 1.2, the backup diagram of

state value function.

Similarly, the state-action value function can be rewritten as

qfi(s, a) =
ÿ

sÕœS
P (sÕ|s, a)[r + “

ÿ

aÕœA
fi(aÕ|sÕ)qfi(sÕ, aÕ)] (1.3)

and the vitalization of state-action value function is shown in 1.3.

12

Figure 1.2: Backup Diagram of State Value Function

Figure 1.3: Backup Diagram of State-Action Value Function

1.3.3 Bellman Optimality Equation

For any given state, or state-action pair, the value functions are determined by the

policy. A policy fi is better than fiÕ if the following holds

vfi(s) Ø vfiÕ(s)’s œ S (1.4)

13

and the optimal value functions of a given state s œ S is therefore defined as

vfiú(s) = max
fi

v(s) (1.5)

the optimal state-action value function for a given state-action pair is defined as

qfiú(s, a) = max
fi

q(s, a) (1.6)

The objective of a RL task is to find the optimal policy fiú, and the Bellman

optimality equations state that

vfiú(s) = max
a

ÿ

sÕœS
P (sÕ|s, a)[r + “vfiú(sÕ)] (1.7)

qfiú(s, a) =
ÿ

sÕœS
P (sÕ|s, a)[r + “ max

aÕ
qfiú(sÕ, aÕ)] (1.8)

and it is evident that

vfiú(s) = max
a

q(s, a) (1.9)

hence, we have

qfiú(s, a) =
ÿ

sÕœS
P (sÕ|s, a)[r + “vfiú(sÕ)] (1.10)

There are three types of methods in RL to find the optimal policy in a given

MDP. The first one is value-based method, in which value functions are calculated

or estimated, and the optimal policy can be found by acting greedily based on the

state-action value function. The second type is policy-based method, instead of

calculate or estimate the value functions, the policy is parameterized and improved.

The third one is actor-critic method, it is a combination of value-based method

and policy-based method.

Furthermore, depending on if the system dynamics of the MDP are utilized or

14

available, algorithms in each type of method can be categorized as model-free or

model-based algorithm. In a model-based method, the Bellman equations will be

solved to obtain the value functions, and in a medel-free method, the value functions

are estimated using the experiences collected from the interactions between the

agent and the MDP. When the size of the MDP is small and the system dynamics

are available, a model-based method is able to provide the optimal policy e�ciently.

However, as the size of the MDP growth or when dynamics of the MDP are

unavailable, the value functions can be estimated by utilizing either the Monte

Carlo Methods or Temporal-Di�erence Learning.

1.3.4 Value-based Method

Commonly seen value-based method includes the policy iteration [21, 22], value

iteration [23, 24], Sarsa [25], and Q-learning [26, 27]. Many advanced algorithms

are based on these algorithms, such as the Expected Sarsa, n-step Sarsa, double

Q-learning, and deep Q-learning with prioritized experience replay.

Policy Iteration

The policy iteration algorithm contains two major steps, the first step is called

policy evaluation, and it calculates the state value functions under a given policy for

all states; the second step is to improve the policy greedily with respect to the value

function of the original policy, and the step is based on the policy improvement

thorem [21,22] and the step is often known as policy improvement. The details of

the algorithm is shown in Algorithm 1 and the process of the algorithm is shown in

Figure 1.4.

As the value function of all states are evaluated and improved, when the

state space is continuous, the algorithm cannot be implemented directly without

15

Algorithm 1: Policy Iteration
Result: fi ¥ fi

ú

Input: ◊ a small positive number determining the accuracy of the estimation

“ œ (0, 1] discount factor

1. Initialization:

V (s) œ R and fi(s) œ A arbitrarily for all s œ S
2. Policy Evaluation:

while True do
� Ω 0

for s œ S do
v Ω V (s)

V (s) Ω
q

r,sÕ p(s
Õ
, r|s, fi(s))[r + “V (s

Õ
)]

� Ω max(�, |v ≠ V (s)|)
end
if � Æ ◊ then

break

end
end
3. Policy Improvement

converge Ω true

for s œ S do
a0 Ω fi(s)

fi(s) Ω argmaxa

q
r,sÕ p(s

Õ
, r|s, a)[r + “V (s

Õ
)]

if fi(s) ”= a0 then
converge Ω false

end
end
if converge then

Return fi

end
else

Go to step 2

end

16

Figure 1.4: Policy Iteration

discretization of the state space or approximating the state value functions. Fur-

thermore, as both of policy evaluation and improvement steps use the transition

probability of the MDP, policy iteration algorithm is a model-based method.

Value Iteration

In the policy iteration, since both policy evaluation and improvement steps are

swapping the state space, the method is computationally expensive. The value

iteration algorithm, which is shown in Algorithm 2, can be viewed as a special case

of the policy iteration where the policy evaluation step is done using the Bellman

optimality equation, namely,

V (s) Ω max
a

ÿ

r,sÕ
p(sÕ, r|s, a)[r + “V (sÕ)]

Value iteration combines a single sweep of policy evaluation and policy improvement

in every step. However, when the action space is continuous, the maximization

step might become computationally expensive. As the system dynamics are used

in the algorithm, value iteration is also a model-based method.

17

Algorithm 2: Value Iteration
Result: fi ¥ fi

ú

Input: ◊ a small positive number determining the accuracy of the estimation

“ œ (0, 1] discount factor

1. Initialization:

V (s) œ R and fi(s) œ A arbitrarily for all s œ S
while True do

� Ω 0

for s œ S do
v Ω V (s)

V (s) Ω maxa

q
r,sÕ p(s

Õ
, r|s, a)[r + “V (s

Õ
)]

� Ω max(�, |v ≠ V (s)|)
end
if � Æ ◊ then

break

end
end
Return fi

Monte Carlo Exploring Starts

When the dynamics of the MDP are not available, value iteration or policy iteration

can no longer be used. Mente Carlo (MC) methods [28,29], however, can be used to

find optimal policy [20] as the they require only sample sequences of states, actions,

and rewards from actual or simulated interaction with the MDP. Since the core of

MC methods is averaging sample returns, the methods can be applied when the

MDP is a episodic task, namely, all episodes eventually terminate no matter what

actions are selected.

Learning from the actual interaction with the MDP might be expensive as

it might cause undesired outcomes, MC methods are often used to learn from

simulated experiences. Though the simulation model is required, the model does

not need the complete probability distributions of all possible transitions. Instead,

the MC methods only require the model to generate sample transitions. In face,

it is feasible to obtain experience sampled according to the desired probability

distributions, and it is infeasible to express the distributions in explicit form [20].

Hence, MC methods are model-free.

18

There are di�erent MC methods, such as first-visit MC control, o�-policy MC

controls, we only introduce the basic one called Monte Carlo Exploring Starts, and

the details are shown in Algorithm 3.

A su�cient exploration is an issue in MC methods, as a actual better action

may never be picked based on the current policy, hence it may never be learned.

The concern is resolved when the number of episodes is large enough as the initial

action is selected randomly [20].

Algorithm 3: Monte Carlo Exploring Starts
Result: fi ¥ fi

ú

Input: N number of episodes

1. Initialization:

fi(s) œ A arbitrarily for all s œ S
Q(s, a) œ R arbitrarily for all s œ S, a œ A
Returns(s, a) Ω empty list, for all s œ S, a œ A
for i = 1, ..., N do

Select initial state S0 œ S and initial action a0 œ A randomly

Generate a trajectory from S0, a0 following fi: S0, a0, R1, ..., ST ≠1, aT ≠1, RT

G Ω 0

for t = T ≠ 1, ..., 0 do
G Ω “G + Rt+1
Append G to Returns(st, at)

Q(st, at) Ω average(Returns(st, at))

fi(st) Ω arg maxa Q(st, a)

end
end
Return fi

Sarsa

The temporal-di�erence (TD) learning is the central and novel idea to reinforcement

learning as it is a combination of the MC methods and value iteration [20]. Like MC

methods, TD methods are model-free. However, TD methods do not require the

MDP to be episodic, hence, TD methods can be applied in more general settings

include an online learning setting. Though TD learning is introduced under Sarsa,

it is also the basic of Q-learning.

19

The core of TD learning is from the Bellman equations,

vfi(s) = Efi[Rt+1 + “vfi(St+1)|St = s] (1.11)

by minimizing the TD error ”t, which is defined as

”t = Rt+1 + “V (St+1) ≠ V (St) (1.12)

the estimation of value function under the policy can be updated,

V (St) Ω V (St) + –”t (1.13)

where – œ (0, 1] is the learning rate. The update is intuitive, when the current

estimated value function of St is optimistic then ”t would be a negative number,

hence, after the update step, the value function of St will be less optimistic. When

the estimation is pessimistic, then a positive ”t will result in a more optimistic

estimation of St. This TD method is call one-step TD (also known as TD(0)) as

the estimation of the value function is updated based on one step of sample, and

there is also n-step TD.

TD(0) bootstraps by updating the estimates based on other estimates, and it

has been proven that when – is su�ciently small, for any fixed policy fi, TD(0)

converges to Vfi in the mean [20].

Sarsa is developed based on the TD(0), instead of working with the state

value functions, Sarsa uses state-action value functions, and the state-action value

function of a state-action pair in a trajectory is updated as following,

Q(St, at) Ω Q(St, at) + –[Rt+1 + “Q(St+1, at+1) ≠ Q(St, at)]

20

and the details are shown in Algorithm 4

Algorithm 4: Sarsa
Result: Q ¥ q

ú

Input: N number of episodes

– learning rate

1. Initialization:

Q(s, a) œ R arbitrarily for all s œ S, a œ A
Q(s, a) = 0 if s is terminal for all a œ A
for i = 1, ..., N do

Select initial state S œ S randomly

Select a using Q(S, •) function (e.g., ‘≠greedy)

while S is not terminal do
Take action a, observe R, S

Õ

Select a
Õ

using Q(S
Õ
, •) function (e.g., ‘≠greedy)

Q(S, a) Ω Q(S, a) + –[R + “Q(S
Õ
, a

Õ
) ≠ Q(S, a)]

S Ω S
Õ

a Ω a
Õ

end
end
Return Q

Q-learning

Q-learning is first introduced in Watkins’s Ph.D. thesis [26], and the convergence

proof was made later with Dayan [27]. The core of Q-learning is also minimizing

the TD error ”t, however, instead of using Bellman equations like TD methods,

Bellman optimality equations 1.8 are used. The Q function is updated as follow,

Q(S, a) Ω Q(S, a) + –[R + “ max
aÕ

Q(S Õ, aÕ) ≠ Q(S, a)]

The action-value function is learned independent of the policy being followed, hence,

the algorithm is o�-policy. Furthermore, this simplifies the analysis of the algorithm

and as long as all the state-action pairs are updated, Q-learning is guaranteed to

find the optimal policy [20]. The details of Q-learning is shown in Algorithm 5.

When the state space is small and discrete, Q-learning can be easily implemented

by creating and updating a lookup table that contains value functions of all state-

21

Algorithm 5: Q-learning
Result: Q ¥ q

ú

Input: N number of episodes

– learning rate

1. Initialization:

Q(s, a) œ R arbitrarily for all s œ S, a œ A
Q(s, a) = 0 if s is terminal for all a œ A
for i = 1, ..., N do

Select initial state S œ S randomly

while S is not terminal do
Select a using Q(S, •) function (e.g., ‘≠greedy)

Take action a, observe R, S
Õ

Q(S, a) Ω Q(S, a) + –[R + “ maxaÕ Q(S
Õ
, a

Õ
) ≠ Q(S, a)]

S Ω S
Õ

end
end
Return Q

action pairs. But when the state space is large or continuous, one needs to

approximate the state-action value function.

The function approximation has made RL more powerful but also potentially

more di�cult to manage and understand [20]. The fundamental of function ap-

proximation in RL is to parameterize the value functions, and the simplest form

of approximation is to use a linear function [30], and commonly used ones are

supervised machine learning models such as neural networks [31], and radial basis

functions [32]. Long-short term memory (LSTM) [33] neural networks are also used

in partially observable MDPs.

1.3.5 Policy-based Method

Instead of consulting a value function to find optimal policies like algorithms in

value-based method do, a policy-based method selects actions without consulting

a value function. The key ideas in the policy-based method are policy gradient

theorem [34] and parameterization of a policy.

The policy fi is parameterized by � and optimized using gradient ascent. The

22

objective function can be rewritten as following,

J(fi�) = max
�

⁄

·=st0 ,at0 ,Rt0 ,...
Pfi�(·)G(·)d· (1.14)

Additionally, the probability of any trajectory · = st0 , at0 , Rt0 , st1 , at1 , ..., RtH
under

a policy fi� can be calculated as

Pfi�(·) = d(s0)
HŸ

q=1
fi�(atq

|stq
)P(stq+1 , Rtq

|stq
, atq

) (1.15)

where d(s0) is the probability of the initial state being s0 œ S.

Since G(·) is a scalar for any given · , the derivative with respect to � can be

therefore written as

Ò�J(fi�) =
⁄

·
G(·)Ò�P�(·)d· =

⁄

·
G(·)

ÿ

s,aœ·

Ò�logfi�(a|s)d· (1.16)

By regrouping the terms, the derivative can be expressed as

Ò�J(fi�) = E[G(·)
ÿ

s,aœ·

Ò�logfi�(a|s)] = 1
N

Nÿ

q

Ë1 ÿ

Rœ·q

R
2 ÿ

s,aœ·q

Ò�logfi�(a|s)
È

(1.17)

where N is number of trajectories used to estimate the gradient.

The equation 1.17 is the result of the policy gradient theorem [34], and it shows

that the derivative of parameterized policy fi� can be obtained using simulated

trajectories under the policy fi� and it has good theoretical convergence properties

[20].

23

REINFORCE

When N = 1, 1.17 results in the following parameter update,

�t+1 = �t + –(
ÿ

Rœ·

R)
ÿ

s,aœ·

Ò�logfi�(a|s) (1.18)

where – is the learning rate. The update from 1.18 is known as REINFORCE

update [35], and it is the key step of the REINFORCE algorithm. The details of

REINFORCE is shown in Algorithm 6.

Algorithm 6: REINFORCE
Result: fi ¥ fi

ú

Input: A di�erentiable policy parameterization fi�
N number of episodes

– learning rate

Randomly initialize �

for i = 1, ..., N do
Generate a trajectory following fi�: S0, a0, R1, ..., ST ≠1, aT ≠1, RT

for t = 0, 1, 2, ..., T ≠ 1 do
G Ω

q
T

k=t+1 “
k≠t≠1

Rk

� Ω � + –“
t
GÒ�lnfi�(at|St)

end
end
Return fi

Though REINFORCE has good theoretical convergence properties, it has high

variances and it produces a slow learning [20] and it is restricted to episodic MDPs.

REINFORCE with Baseline

Define an arbitrary baseline b(s), which can be any function of the state or even a

random variable that does not depend on action a, then, we have

ÿ

a

b(s)Ò�fi�(a|s) = b(s)Ò�
ÿ

a

fi�(a|s) = 0 (1.19)

24

it is evident that the update rule in Algorithm 6 can be rewritten as

� Ω � + –“t(G ≠ b(St))Ò�lnfi�(at|St)

and it results in a variance of REINFORCE called REINFORCE with Baseline.

Since the update rule is not changed, the convergence properties are unchanged.

However, the baseline is able to reduce the variance and speed up the learning [20].

The detailed algorithm in shown in 7, in which the approximated state-value

function is used as the baseline.

Algorithm 7: REINFORCE with Baseline
Result: fi ¥ fi

ú

Input: A di�erentiable policy parameterization fi�
N number of episodes

–
�

, –
Ê

learning rates

Randomly initialize � and Ê

for i = 1, ..., N do
Generate a trajectory following fi�: S0, a0, R1, ..., ST ≠1, aT ≠1, RT

for t = 0, 1, 2, ..., T ≠ 1 do
G Ω

q
T

k=t+1 “
k≠t≠1

Rk

” Ω G ≠ V̂Ê(St)

Ê Ω Ê + –
Ê

”ÒÊV̂Ê(St)

� Ω � + –
�

“
t
”Ò�lnfi�(at|St)

end
end
Return fi

Both algorithms under policy-based method use MC to update the parameters

of the policy, hence, it can only work with episodic MDPs. However, policy-based

method provides a way to work with MDPs in which actions are continuous.

In a continuous action space setting, the parameterized policy is often defined

using the normal probability density function,

fi�(a|s) = 1
Ò

(2fi)2|�s,�|
e≠ 1

2 (a≠µs,�)T �≠1
s,�(a≠µs,�) (1.20)

25

where µs,� œ R|A|, �s,� œ R|A|◊|A| are the mean vector and covariance matrix that

depend on the state and parameter �. For simplicity, �s,� can be assumed to be a

diagonal matrix, thus, instead of asking the policy to provide actions, we ask for

[µs,�, diag(�s,�)], the actions are then drawn from N (µs,�, �s,�).

1.3.6 Actor-Critic Method

Since actor-critic method combines both value-based and policy-base methods,

algorithms under this category can handle MDPs that have no terminal states and

actions are continuous. Though REINFORCE with baseline utilized a state-value

function, it is not considered as a actor-critic method as its state-value function is

used only as a baseline instead of bootstrapping [20]. The most basic Actor-Critic

(AC) algorithm uses a critic v̂�Õ(s) and the details are shown in Algorithm 8.

Algorithm 8: Actor-Critic
Result: fi� ¥ fi

ú

Input: a di�erentiable policy parameterization fi�
a di�erentiable state-value function parameterization v̂�Õ

–A, –C learning rates

N number of episodes

Initialize

policy parameter �

state-value parameters �
Õ

episode count epc = 0

while True do
Initialize first state of episode S

while S is not terminal do
a ≥ fi�(•|S)

Take action a and observe S
Õ
, R

” Ω R + v̂�Õ(S
Õ
) ≠ v̂�Õ(S)

� Ω � + –A”Òlnfi�(a|S)

�
Õ Ω �

Õ
+ –C”Òv̂�Õ(S)

S Ω S
Õ

end
epc Ω epc + 1

if epc=Iter then
break

end
end

26

Deep Deterministic Policy Gradient

Denote a deterministic policy µ�(s) : S æ A with parameter vector �, the

objective function in 1.14 can be rewritten with respect to Q function,

J(µ�) = max
�

⁄

S
flµ�(s)Qµ�(s, µ�(s))ds (1.21)

where flµ�(s) is the stationary probability of visiting state s under policy µ�. And

the deterministic policy gradient (DPG) thorem [36] provides the gradient of the

parameter vectors,

Ò�J(µ�) =
⁄

S
flµ�(s)Ò�µ�(s)ÒaQµ�(s, a)|a=µ�(s)ds

= Es≥flµ� [Ò�µ�(s)ÒaQµ�(s, a)|a=µ�(s)] (1.22)

and this provides a way to update the parameters of the deterministic policy and

the parameter of the deterministic policy can be updated by,

�t+1 = �t + –Ò�µ�(st)ÒaQµ�(st, at) (1.23)

The deep deterministic policy gradient (DDPG) algorithm is model-free, it

combines both DPG and deep Q-network [31] (DQN) method. It utilizes DPG to

update the actor (the deterministic policy). Both experience replay and the target

network from DQN are used in DDPG in order to stabilize the learning process of

the critic. The target Q-network is periodically frozen for certain period of time

before the update in DQN; however, parameters of target networks are updated

via a soft update procedure in DDPG. To ensure the exploration, a Gaussian noise

N is added to the action drawn from the deterministic policy. Algorithm 9 shows

the details of details of DDPG.

27

Algorithm 9: DDPG
Result: µ� ¥ µ

ú

Input: a di�erentiable policy parameterization µ�, a target policy µ�targ := µ�
Input: a di�erentiable state-action value function parameterization Q�Õ , a target

Q-function Q�Õ
targ

:= Q�Õ

Parameters: –A, –C , Iter, fl, freq, “, aLow,aHigh

Initialize policy parameter �, state-value parameters �
Õ
, episode count epc = 0, step

count step = 0, an empty experience bu�er D
while True do

Initialize first state of episode S

d = 0

while S is not terminal do
A = min[max[µ�(S) + ‘, aLow], aHigh], where ‘ ≥ N
Take action A and observe S

Õ
, R

d = 1 if S
Õ

is terminal

Store (S, A, R, S
Õ
, d) in the replay bu�er D

S Ω S
Õ

step Ω step + 1

if step%freq = 0 then
Sample a batch of transitions, B = (s, a, r, s

Õ
, d) from D

Compute targets

y(r, s
Õ
, d) = r + “(1 ≠ d)Q�Õ

targ
(s

Õ
, µ�targ (s

Õ
))

Update Q-function by one step of gradient descent using

�
Õ Ω �

Õ ≠ –CÒ�Õ
1

|B|
ÿ

(s,a,r,sÕ,d)œB

(Q�Õ(s, a) ≠ y(r, s
Õ
, d))

2

Update policy by one step of gradient ascent using

� Ω � + –AÒ�
1

|B|
ÿ

sœB

Q�Õ(s, µ�(s))

Update the target networks with

�targ Ω fl�targ + (1 ≠ fl)�

�
Õ
targ

Ω fl�
Õ
targ

+ (1 ≠ fl)�
Õ

epc Ω epc + 1

if epc=Iter then
break

28

1.3.7 DDPG with Separate Sampling

In Algorithm 9, the critic (the Q-function) is updated by minimizing the one-step

temporal di�erence errors (TD error),

�Õ Ω �Õ ≠ –CÒ�Õ
1

|B|
ÿ

(s,a,r,sÕ,d)œB

(Q�Õ(s, a) ≠ y(r, sÕ, d))2 (1.24)

and the actor (the deterministic policy) is updated by moving parameters towards

actions that increase the Q-value.

� Ω � + –AÒ�
1

|B|
ÿ

sœB

Q�Õ(s, µ�(s)) (1.25)

When estimation of Q�Õ at the samples in B (1.25) is inaccurate, the gradient

will therefore be o�, and it results in an inaccurate actor. For instance, say the

estimated state-action value of a state s and an action a, namely Q�Õ(s, a) has a

large error compared to the true state-action value Q(s, a), and when the actor

adjusts its parameter based on the gradient at Q�Õ(s, a), then, the actor will have

a large error after the update. This results in a fluctuation learning for the actor,

and therefore an overall slower convergence. By simply feeding the actor samples

where the critic has a low error, the learning of actor will be expedited. However,

if experiences are sampled in a way such that the critic has a lower TD error, then

it might overfit the critic and lead to a bad generalization.

Inspired by the prioritized experience replay (PER) [37], a sampling method

is proposed to generate two batches of transitions based on the TD error of critic.

In the first step, experiences B are sampled randomly with a sample size of Btotal.

The absolute TD error is then calculated for experiences in B,

E = |Q�Õ
targ

(s, a) ≠ (r + “(1 ≠ d)Q�Õ
targ

(sÕ, µ�targ
(sÕ)))| œ R|B|

29

where (s, a, r, sÕ, d) œ B. To utilize the TD error in the sampling process, the error

is scaled into value between 0 and 1, and the normalized error is defined as

Ẽ = E ≠ min(E) + 10≠8

max(E) ≠ min(E) + 10≠8 œ [0, 1]|B|

where 10≠8 is used to prevent computational error when max(E) = min(E).

Then, two batches of transition are sampled. In the first batch,BC , transitions

with a large TD error has a higher probability to be sampled, and it will be used

to train the critic, and the sampling probability is defined as

PC(i) = Ẽ
flC

iq
Ẽ

flC

i

where i is the index of samples in B and flC is a parameter to tune the priority of

the sampling process similar to the prioritized experience replay (PER) [37]. When

flC = 1, the sampling probability is purely based on the normalized error,namely

the sample with largest TD error has the highest probability to be sampled, and

when flC = 0, every sample in B has the same probability to be sampled.

In the second batch, BA, transitions with a smaller TD error has a higher

probability to be sampled, and it will be used to train the actor where the sampling

probability for each sample in B is defined as

PA(i) = (1 ≠ Ẽi)
flA

q(1 ≠ Ẽi)flA

Algorithms 10 and 11 show the details of DDPG with Separate Sampling (SSDDPG),

the workflow is also shown in 1.5.

30

Algorithm 10: SSDDPG
Result: µ� ¥ µ

ú

Input: a di�erentiable policy parameterization µ�, a target policy µ�targ := µ�
Input: a di�erentiable state-action value function parameterization Q�Õ , a target

Q-function Q�Õ
targ

:= Q�Õ

Parameters: –A, –C , Iter, fl, freq, “, aLow,aHigh, Btotal, Btrain, flC , flA

Initialize policy parameter �, state-value parameters �
Õ
, episode count epc = 0, step

count step = 0, an empty experience bu�er D
while True do

Initialize first state of episode S

d = 0

while S is not terminal do
A = min[max[µ�(S) + ‘, aLow], aHigh], where ‘ ≥ N
Take action A and observe S

Õ
, R

d = 1 if S
Õ

is terminal

Store (S, A, R, S
Õ
, d) in the replay bu�er D

S Ω S
Õ

step Ω step + 1

if step%freq = 0 then
BC , BA = SeparateSampling(Btotal, Btrain, D)

Compute targets for transitions in BC

y(r, s
Õ
, d) = r + “(1 ≠ d)Q�Õ

targ
(s

Õ
, µ�targ (s

Õ
)), (r, s

Õ
, d) ≥ BC

Update Q-function by one step of gradient descent using

�
Õ Ω �

Õ ≠ –CÒ�Õ
1

Btrain

ÿ

(s,a,r,sÕ,d)œBC

(Q�Õ(s, a) ≠ y(r, s
Õ
, d))

2

Update policy by one step of gradient ascent using

� Ω � + –AÒ�
1

Btrain

ÿ

sœBA

Q�Õ(s, µ�(s))

Update the target networks with

�targ Ω fl�targ + (1 ≠ fl)�

�
Õ
targ

Ω fl�
Õ
targ

+ (1 ≠ fl)�
Õ

end
end
epc Ω epc + 1

if epc=Iter then
break

end
end

31

Figure 1.5: Overall Framework of the Proposed Method

1.4 Model

1.4.1 Problem Setting

The assumptions and notations for the problem are as follow,

1. There are N independent jobs at t = 0, N œ Z+, N < Œ, t œ R+, and jobs

are indexed by j.

2. There are M independent machines, M œ Z+, M < Œ, and machines are

indexed by i. All machine are available at t = 0 and each machine can process

a single job at any given time.

3. Jobs can be assigned to any machine i.

4. Each job j has a class kj œ {0, 1, 2, ..., K}, K œ Z+ from a predefined distri-

bution, and its due date Dj œ R+ and priority Êj œ [0, 1] are random variable

from general distributions that are parameterized by kj

32

Algorithm 11: SeparateSampling
Result: BC , BA

Input: Btotal, Btrain, flC , flA, D
Randomly sample B = (s, a, r, s

Õ
, d) transition from D, where |B| = min(Btotal, |D|)

Compute absolute TD error for transitions in B

E = |Q�Õ
targ

(s, a) ≠ (r + “(1 ≠ d)Q�Õ
targ

(s
Õ
, µ�targ (s

Õ
)))| œ R|B|

Normalize the absolute TD error by

Ẽ =
E ≠ min(E) + 10

≠8

max(E) ≠ min(E) + 10≠8 œ [0, 1]
|B|

Assign sampling probability to each transition in B indexed by i,

PC(i) =
Ẽ

flC

iq
Ẽ

flC

i

Sample BC from B based on the probability PC , where |BC | = min(Btrain, |B|)
Assign sampling probability to each transition in B indexed by i,

PA(i) =
(1 ≠ Ẽi)

flA

q
(1 ≠ Ẽi)

flA

Sample BA from B based on the probability PA, where |BA| = min(Btrain, |B|)

5. The on-time ton
i of machine i is a random variable from a general distribution

G(i, K1(i), K0(i), Ti), where K1(i) and K0(i) are the classes of the current

and previous job of machine i, Ti is the previous maintenance time of machine

i. If the current job is the first job for the machine, K0(i) = K1(i).

6. If job j is assigned to machine i, job j requires pK0(i),j œ R+ time units

to be setup and completed, and pK0(i),j is a random variable from general

distribution parameterized by kj and K0(i).

7. If a breakdown occurs while it is processing a job, the job will be put back

into the queue. And when the job is reassigned to any available machine, the

job will be processed from the beginning.

8. As machine’s o�-time toff
i may be impacted by outside factors, we assume

o�-time of all machines is from the same general distribution.

33

9. The status of machine i is indicated by Ii, for i = 1, 2, 3, ..., M , and Ii =

≠1/0/1 represent i is down/idle/busy.

10. The transportation time from queue to machine is assumed to be negligible.

11. All other resources are assumed to be available during the manufacturing

process.

Jobs are heterogeneous as the due date, process time, and priority of each job

vary based on the class of the job. And since the on-time distributions change

over time and are non-identical across machines, machines are heterogeneous and

non-stationary.

Let Q(t) be the set of jobs in queue at time t and define

T = {t : |Q(t)| > 0} (1.26)

When j œ Q(t) is assigned to an available machine i at t œ T . If pK0(i),j Æ ton
i , j

will be finished after pK0(i),j. Otherwise, j will be sent back to the queue after ton
i

as the machine is going to a down-state.

Therefore, given the current time is t, the next event will be happening at

tÕ = min{M|Ii| + t, M|Ii ≠ 1| + Con
i , M|Ii + 1| + Coff

i for ’i} (1.27)

where M is a large number; Con
i is the time when the job on i is finished if the

machine does not have a breakdown during the producing it, otherwise, it is the

time the machine i is down; Coff
i is the time when the maintenance is finished if

the machine is down. Without loss of generality, both Con
i and Coff

i are set to 0 by

default for i = 1, 2, 3, ..., M . When Q(t) = 0, the next event will be at

tÕ = min{M|Ii ≠ 1| + Con
i , M|Ii + 1| + Coff

i for ’i} (1.28)

34

When Q(t) = 0 and all machines are idle, then the session is completed.

As every decision making is for assigning a job j œ Q(t) to an available machine

i at t œ T , the urgency of a job j œ Q(t) is defined as

U (i)
j = Êj|t + pK0(i),j ≠ Dj|+ (1.29)

The urgency of jobs in the queue for the machine i therefore can be defined as

U (i)(t) = {U (i)
j for j œ Q(t)} œ R|Q(t)| (1.30)

Similarly, the processing time of jobs in the queue is defined as

p(i)(t) = {pK0(i),j for j œ Q(t)} œ R|Q(t)| (1.31)

Let —on
i (t) be the mean of on-time distributions G(i, K1(i), K0(i), Ti) of machine

i at time t, it can be written as

—on
i (t) =

S

WWWWWWWWWU

—on
i,0,0(t ≠ Ti) —on

i,0,1(t ≠ Ti) . . . —on
i,0,k(t ≠ Ti)

—on
i,1,0(t ≠ Ti) —on

i,1,1(t ≠ Ti) . . . —on
i,1,k(t ≠ Ti)

...

—on
i,k,0(t ≠ Ti) —on

i,k,1(t ≠ Ti) . . . —on
i,k,k(t ≠ Ti)

T

XXXXXXXXXV

(1.32)

The element —on
i,K1(i),K0(i)(t ≠ Ti) represents the mean on-time of machine i at t

when the current job class is K1(i) and the previous job class is K0(i).

When a job is assigned to a machine to greedily maximize the mean on-time

of the machine, it might decrease the maximum mean on-time for other machines.

Therefore, the total mean on-time that can be obtained for an assignment should

be considered during the scheduling. Let —onú
i,j (t) be the maximum average on-time

mean at time t if j is assigned to i where j œ Q(t), and it can be obtained from

35

—onú
i,j (t) = max

x
1

M

Mÿ

iÕ=1

ÿ

jÕœQ(t)
—on

i,K1(i),K0(i)(t ≠ Ti)xjÕ,iÕ

subject to xj,i = 1
qM

iÕ=1 xjÕ,iÕ Æ 1 ’jÕ œ Q(t)
q

jÕœQ(t) xjÕ,iÕ Æ 1 ’iÕ

xjÕ,iÕ œ {0, 1} ’iÕ, ’jÕ œ Q(t)

where xjÕ,iÕ is the decision variable, and xjÕ,iÕ = 1 if job jÕ is assigned to iÕ, otherwise,

xjÕ,iÕ = 0.

We denote —onú
i (t) œ R|Q(t)| as maximum average on-time mean of jobs in queue

at time t.

A function F : fi1ÆdÆNRd æ R7 is defined to return basic statistics of the input,

including mean, standard deviation, minimum, 25%, 50%, 75% and maximum,

n œ N. In the case of d = 1, the standard deviation is defined as 0.

For any available machine i at t œ T , the processing time, urgency, and the

maximum mean on-time of jobs in the queue can therefore be characterized by

F(p(i)(t)), F(U (i)(t)), and F(—onú
i (t)) respectively.

1.4.2 Markov Decision Process

The scheduling problem is modeled as a Markov Decision Process (MDP), namely,

a tuple < S, A, P , R, “ >, where

• S œ R7◊3 is the state space, and St = [F(p(i)(t)), F(U (i)(t)), F(—onú
i (t))] œ S.

Note that the state is observed whenever an event happens, see equation (2)

and (3). When there are multiple available machines at a given time t, the

agent randomly selects a machine to assign jobs.

• A œ R3 is the action space, and At = [◊u, ◊p, ◊—]. A job j will be assigned to

36

machine i if i is available at time t:

j = argmaxjÕœQ(t)◊uU (i)
jÕ + ◊p

1
pK0(i),jÕ

+ ◊——onú

i,jÕ (t) (1.33)

• P is a state transition probability matrix,

Pa
ssÕ := P[St+1 = sÕ|St = s, At = a] (1.34)

As the system dynamics in the problem setting is complex, the probability

matrix will not be explored explicitly.

• R œ R≠ is a reward signal. Machine i will receive Rt when it finishes a job j

at time t, where

Rt = ≠Êj|t ≠ Dj|+ (1.35)

The agent receives the maximum reward 0 unless it misses the deadline.

• “ œ [0, 1] is a discount factor, and “ is set to 0.9999 to ensure the decision

making process considers future impacts.

A policy fi is a distribution over actions given states,

fi(a|s) = P [At = a|St = s] (1.36)

For any given trajectory · = st0 , at0 , Rt0 , st1 , at1 , ..., RtH
, the total cumulative

reward of the trajectory is calculated as

G(·) =
Hÿ

q=0
Rtq

(1.37)

37

And for a given policy fi, the expected reward, E[G] is defined as

E[G] =
⁄

·=st0 ,at0 ,Rt0 ,...
Pfi(·)G(·)d· (1.38)

Therefore, the objective function of the defined MDP is

J = max
fi

⁄

·=st0 ,at0 ,Rt0 ,...
Pfi(·)G(·)d· (1.39)

1.5 Numerical Study

1.5.1 Comparing DDPG and SSDDPG

To test the performance of proposed sampling method, a DDPG agent and a

SSDDPG agent are trained to learn Pendulum using OpenAI gym. Note that

since the AC algorithm (Algorithm 1) has the discrete action space, we skip the

AC algorithm in this performance test. Other than the SSDDPG agent uses the

proposed prioritized sampling method, two agents have the same hyperparameters.

The actor and critic in both agents are parameterized by neural networks. Detailed

configurations are shown in Table 1.1. The resulting performances over 50 runs

Figure 1.6: Performances of DDPG and SSDDPG on the Pendulum task

are shown in Figure 1.5. In the first 25 iterations in each run, both agents will

act randomly to collect experiences without training. Once the pure exploration

38

Table 1.1: Agent Configurations for Pendulum

Parameters Value

–A 0.001

–C 0.001

fl 0.995

“ 0.999

freq 1

Iter 100

aLow -2

aHigh 2

Btotal 256

Btrain 128

flA 1

flC 1

Neural network structure (actor) [32,16]

Activation function (actor) ReLU,ReLU,Linear

Neural network structure (critic) [32,16]

Activation function (critic) ReLU,ReLU,Linear

period is over, agents will start to learn based on the transitions they have collected.

The two lines show the average rewards of DDPG agent and SSDDPG agent over

50 runs in the last 75 iterations. As we can see after 10 iterations after agents

start to learn, the performance of SSDDPG agent dominates the performance of

DDPG agent. The result indicates that proposed sampling method does expedite

the learning process of DDPG. Though they both will reach a same performance at

the end, the proposed sampling method o�ers a faster convergence.

1.5.2 Scheduling using SSDDPG

To test the performance of SSDDPG agent in the scheduling task, numerical

experiments are conducted. As the DDPG method is a model-free method, the

agent is not given any model dynamics and the agent will learn a policy simply

based collected observations and the reward signal. The performance of SSDDPG

is compared against three heuristic methods, namely, earliest weighted due date

(EWDD) rule, shortest processing time (SPT) rule and maximum mean on-time

39

(MMOT) rule.

For EWDD rule, a job j is selected at time t if a machine is available, where

j = argmin{Dj

Êj
, ’j œ Q(t)} (1.40)

For SPT rule, a job j is selected at time t if a machine i is available, where

j = argmin{pK0(i),j, ’j œ Q(t)} (1.41)

For MMOT rule, a job j is selected at time t if a machine i is available, where

j = argmax{—onú

i (t), ’j œ Q(t)} (1.42)

System dynamics of the MDP is described in Table 1.2 and the configurations

of RL agent is shown in Table 1.3.

Table 1.2: System Dynamics

Random Variable Distribution parameters
Job type Uniformly distributed integer between 1 and K
Job process time Exponential distribution
Job due date Uniformly distributed between 1 and 24 hours
Job priority Uniformly distributed between 0 and 1
Machine on-time Exponential distribution
Machine o�-time Exponential distribution with a rate of 0.5

Since distribution of the process time of a job is parameterized by the its type

as well as the type of its previous job, a matrix of rates are used to define the rate

of the exponential distribution. Since our assumption is that if similar jobs are

assigned to a machine back-to-back, the second job will have shorter process time,

a symmetric similarity matrix SM œ RK◊K is generated where each element is

uniformly distributed between 0.25 and 1. Each job has a base rate BR uniformly

40

Table 1.3: Agent Configurations for Scheduling

Parameters Value

–A 0.00003

–C 0.00003

fl 0.9

“ 0.99999

freq 1

Iter 200

aLow [-10, -10, -10]

aHigh [10, 10, 10]

Btotal 256

Btrain 128

flA 1

flC 1

Neural network structure (actor) [128, 64, 32]

Activation function (actor) ReLU, ReLU, ReLU, Linear

Neural network structure (critic) [128, 64, 32]

Activation function (critic) ReLU, ReLU, ReLU, Linear

distributed between 1
12 and 1. If a job j2 is assigned after j1 to a the same machine,

the rate of j2 is BRj2 ◊ SM [kj1 , kj2]. If j1 and j2 has a similarity of 1, then the rate

equals to its base rate, otherwise, the rate decreases and therefore result in a longer

process time. In practice, the rate matrix for the process time can be generated

based on the data.

The distribution of the machine on-time is parameterized by the machine ID,

types of the current job and privous job, as well as the time since the last breakdown,

and we modeled the rate based on the function shown in (1.32). The initial on-time

rate (right after a breakdown/when the system starts) for each machine is uniformly

distributed between 1
2 to 1

24 . Similar to the rate matrix of the process time,the

impact of types of jobs on the on-time rate is modeled by multiplying the rate

to one over the similarity matrix SM . Then, the rate increases with a factor of

1.001(t≠T) where t is the current time, and T is the previous breakdown time of the

machine.

Settings and results of the experiments are shown in Table 1.3. The Results

column contains the average performance over 500 simulations under each method

41

and setting. The t-test is used to compare the outcomes of 500 simulations of each

heuristic against proposed method. From the Results column, it can be observed

that proposed method outperforms the heuristics in every setting, and P-value

column indicates the the proposed method is significantly better than the heuristics

as all p-values are less than 0.01.

Table 1.4: Results of Experiments

N M K Methods Results P-value

30 3 10

EWDD 1553.91 3.96 ◊ 10≠6

SPT 1625.45 5.35 ◊ 10≠9

MMOT 1528.11 1.04 ◊ 10≠5

SSDDPG 1315.34ú -

50 5 15

EWDD 2287.34 1.61 ◊ 10≠3

SPT 2290.60 3.27 ◊ 10≠4

MMOT 2282.01 1.49 ◊ 10≠3

SSDDPG 2077.87ú -

100 10 35

EWDD 4227.11 3.36 ◊ 10≠3

SPT 4324.44 9.61 ◊ 10≠4

MMOT 4226.10 6.12 ◊ 10≠3

SSDDPG 4033.19ú -

In short, Table 1.4 indicates a clear domination relationship that would distin-

guishes SSDDPG and other heuristics. Some potential reasons that might explain

SSDDPG outperforms other heuristics are:

• The action space of the approach is composed of weights for heuristics, namely,

◊u,◊p,◊—. It gives the RL agent the flexibility to select among heuristics.

• Since the weights for heuristics are continuous variables, it allows the agent

to create new heuristics by interpolations.

• The weights are selected dynamically based on the current state.

In a practitioner space, skilled subject matter experts are likely to have prior

knowledge on useful heuristics but not likely to know the relative significance

42

between them. The definition of action space used in this approach is useful in

these cases because it can be used to discover the relative and dynamic significance

between the rules.

Additionally, since the state space does not have dependency on the number

of machines and jobs, it makes the approach robust and the data collected across

di�erent plants can be used to train the agent.

One of the assumptions in the paper is that types of jobs next to each other

have an impact on the mean on-time of machines. Specifically, since similar jobs

require less configurations to the machine, when the jobs next to each other have

similar job types, the average on-time of the machine is relatively high when the

new job is processed. Given this assumption, we would expect that an intelligent

agent considers this factor during the scheduling process and it should tend to

pick the next job for the available machine such that the type-pair of the new job

and the previous job has a relatively high mean on-time for the machine. The

Fig. 1.7, obtained from the first experiment setting, shows that the type-pair that

has a higher mean on-time are selected more frequently. Since the mean on-time

matrix (1.32) is generated randomly, and di�erent trajectories may have a di�erent

maximum value, the mean on-time of each trajectory is normalized between 0 to 1

in the Fig. 1.7. The result indicates that the agent does pick new job frequently to

ensure the on-time of the machine is relatively high such that the machine is less

likely to have a breakdown.

From equation (1.33), we can see that the action of the agent is a function of

◊u,◊p, and ◊—. When ◊u is larger than the remaining two, a job that has a large

urgency is likely to be selected. Naturally, an intelligent agent should tend to

have an relatively large ◊u when the urgency of waiting jobs is high. The Fig. 1.8

shows the urgency of waiting jobs and normalized ◊u, where the normalized ◊u is

calculated by

43

Figure 1.7: The Frequency of Mean On-time Selection of the Resulting RL Agent

Figure 1.8: Urgency of Waiting Jobs and the Value of Normalized ◊u

Normalized ◊u = ◊u ≠ min([◊u, ◊p, ◊—])
◊u + ◊p + ◊— ≠ 3min([◊u, ◊p, ◊—])

and the fitted regression line has a significant coe�cient with a p-value less than

0.001. The result indicates that the resulting agent tends to prioritize the urgency

when the due date of waiting jobs is approaching.

1.6 Conclusions

In this chapter, a parallel machine scheduling problem with heterogeneous jobs and

non-stationary unreliable machines is modeled as an MDP, and a SSDDPG agent

44

is used to learn to schedule to minimize the weighted tardiness in the MDP. The

obtained policy and other heuristics are then used in the simulated environment to

compare their performance, and the result indicates that the proposed method is

able to produce a policy that significantly outperforms the heuristics. Since the

SSDDPG is able to learn in such complex MDP, it indicates that given proper

state space and action space formulations, reinforcement learning is able to tackle

complicated scheduling problems in the real world. To schedule jobs in real-time,

a simulation environment needs to be constructed such that it represents the

interested manufacturing environment. After training a RL agent within the MDP,

the obtained policy can be used to schedule jobs in real-time.

A separated sampling method is proposed in this chapter, and the computa-

tional results indicate that it boosts up the learning speed of DDPG agent and

therefore results in a faster convergence. In the context of scheduling, this gives a

shorter iteration cycle which can be valuable in today’s competitive manufacturing

environment.

Since a model free RL approach is used in the work, we do not have assumptions

on the system dynamics of the underlying MDP. However, the system dynamics

might have an impact on the performance of the algorithm, therefore, a sensitivity

analysis can be done to test the performance of the proposed method across various

system dynamics. Additionally, other RL methods can be used to compare the

performances.

45

Chapter2 |
A Mixed Integer Programming
Approach for Job Shop Schedul-
ing with Sequence-dependent
Setup Time and Tool Overheat-
ing Constraints

2.1 Introduction

High-mix and low-volume manufacturing facilities (HMLV-fab) process jobs with

relatively small order sizes and heterogeneous specifications [1]. Due to the high

variety of products, machines are often reconfigured to process a new job, such

as tool changes, tool path and cutting parameters adjustments. In addition, it

is preferred to schedule jobs with similar specifications together. Failing to do

so might cause additional setup times and potentially increase the number of

unplanned machine breakdowns [2]. Figure 2.1 shows two schedules of HMLV jobs.

46

In Schedule 1 (S1), the same type of jobs are scheduled together, and in Schedule 2

(S2), the same jobs are not scheduled together. The resulting total setup time of

S2 is larger than S1, and therefore S1 is preferred in general.

Figure 2.1: Schedules of Mixed Jobs

However, in a dry machining environment where the usage of liquid coolants is

restricted, using the same tool for a prolonged period of time is likely to cause the

tool to be overheated. When the temperature of the tool increases, its hardness

decreases, which might cause a tool breakage leading to scrapped parts. For

example, high-speed steel (HSS) is one of the commonly used machining tools [38],

and Figure 2.2 a) shows that the hardness of HSS decreases as the temperature

increases [39]. When the hardness of the HSS decreases to a value that is close to

the hardness of the work piece, a tool failure might arise. Figure 2.2 b) shows the

tool tip temperature of HSS in a continuous dry machining process [40], and it can

be observed that the hardness of HSS can decrease to 10 HRC (Rockwell C) after 5

minutes. Therefore, it is crucial to avoid tool overheating by scheduling jobs that

require di�erent tools together in a dry machining environment.

Though waiting for the tool to cool down is an alternative solution, the resulting

scheduling can be ine�cient in a dry machining environment. A typical cooling

rate for air blowing ranges from 3K/s (slowly cooled) to 10K/s (fast cooled) [41],

and based on the Continuous Cooling Transformation (CCT) Diagram [42] of AISI

M42 HSS, it takes around 200s to 600s to cool down the tool from 1600oF to

47

(a) Hardness and Temperature of

HSS

(b) Machining Time and Tempera-

ture of HSS in A Dry Machining

Process

Figure 2.2: Temperatures, hardness and Machining Time of HSS

Figure 2.3: CCT Diagram of AISI M42 HSS

800oF . When the number of tools being limited in the tool magazine, it is favored

to switch to a di�erent job and allow the overheated tool to cool down.

While there are researches on tool constraints in scheduling, the focus has been

on tool allocations and replacements. To the best of our knowledge, there is no

research consider overheating constraints in scheduling. Therefore, in this chapter,

a mixed integer programming (MIP) model is proposed for job shop scheduling

(JSSP) with job sequence-dependent setup time (SDST) and overheating constraints

(OC). The rest of the paper is organized as follows. In the following section, related

studies are reviewed. In section 3, the proposed model is described in detail. Results

48

of numerical studies are presented and examined in section 4. In the last section,

conclusions and future work are discussed.

2.2 Related Works

The JSSP have been studied since the 1950s and the minimization of the makespan

in JSSP is a well-known NP-hard problem [43]. One of the standard assumptions

of classic JSSP is that the setup times are included in processing times; however, it

is not a valid assumption when the setup time of a job depends on the previous

one. The more similar two successive jobs are, the less setup time the later one will

require. Such setup times are called SDST.

The JSSP with SDST to minimize the makespan is addressed by many re-

searchers due to the applicability of the problem [44,45] to di�erent contexts. As

it is a combinatorial optimization problem, most of the works are on developing

meta-heuristics, and hybrid methods to tackle the problem. Commonly used meta-

heuristics are the Genetic algorithm [46–49], Tabu search [50,51], and Simulated

annealing [49,52]. The formulation of MIP models is still an active area, and a new

model is proposed recently [53] , and the model has a smaller number of constraints

and variables compared to other formulations [54,55].

Constraints and objectives that are related to tools are often considered in

the context of flexible manufacturing systems. The schedule of operations and

allocation of tools to tool magazine with limited capacity is studied by Stecke [56].

A nonlinear MIP model is formulated, and linearizing methods are suggested to use

the method to solve practical problems. In the later work [57], Stecke considers the

minimization of the number of tool changes. The research finds that the number of

tool changes due to product variety is small compared to changes due to tool wear.

However, there are more ways to extend tool life, and tools with a longer lifespan

49

are built, and products are getting highly mixed. However, such possibilities may

not be valid in many cases.

For the last three decades, various methodologies are developed to solve schedul-

ing that minimizes the number of tool changes [58]. Nonlinear integer programming

models are developed by Bard [59] and Van Hop [60] . Bard solves the model using

a dual-based relaxation heuristic method. Van Hop develops a Genetic algorithm

to solve the model. Mixed integer nonlinear programming models are proposed by

Lee [61] and Özpeynirci [62]. Heuristic methods are used in the work of Khan [63],

Fathi [64], and Gükgör [65]. Solving large problems might require meta-heuristics,

but theoretical models are needed to define the problem.

Both JSSP with SDST and scheduling with tool-related objectives/constraints

are well studied. Nonetheless, the minimization of setup times and the number of

tool changes in a dry machining environment may result in overheated tools. It

decreases the tool life, and it also increases the chance of producing scrapped parts.

Therefore, this work aims to fill the gap in the literature by adding upper bounds

on usage times of tools.

2.2.1 Performance Measures

Commonly used performance measures in JSSP are:

1. Maximum completion time, or makespan: Cmax = max(C1, ..., Ci, ..., Cn),

where Ci is the completion time of job i. Cmax represents the overall time to

complete all n jobs, which is the completion time of the last job minus the

starting time of the first job.

2. Maximum flow time: Fmax = max(F1, ..., Fi, ..., Fn), where Fi = Ci ≠ Si, and

Si is starting time of job i. Minimizing Fmax is able to minimize the worst

case of time each job spends in the system.

50

3. Expected flow time F̄= 1
n

qn
i Fi

4. Maximum lateness: Lmax = max(C1 ≠ D1, ..., Ci ≠ Di, ..., Cn ≠ Dn), where

Dn is the due date of the job i.

5. Total tardiness T = qn
i [Ci ≠ Di]+

6. Total weighted tardiness T = qn
i Êi[Ci ≠ Di]+, where Êi is the weight or

priority of job i.

7. Expected tardiness T̄= 1
n

qn
i [Ci ≠ Di]+

8. Number of tardy jobs nT = qn
i ([Ci ≠ Di]+), where ([Ci ≠ Di]+) = 1 if

[Ci ≠ Di]+ > 0, and ([Ci ≠ Di]+) = 0 otherwise.

2.3 Methodology

In this section, a MIP model is formulated for JSSP with SDST and OC based on

the classic disjunctive model by Manne [66], and notations are listed in the Table

2.1.

2.3.1 Notations

A JSSP consists of a finite set of jobs J and a finite set of machines M . Each

job has a finite set of operations Oj, j œ J , and each operation requires a machine

Mi,j and it takes Pi,j units of time to process, i = 1, 2, 3, ..., nj, j œ J . There are

precedence constraints between operations and the operation order of each job

is fixed, Oi,j can only be processed after OiÕ,j, ’j œ J if iÕ < i. Additionally, we

assume that

• All jobs, machines and other resources are available from the beginning.

51

• An operation can be processed on one machine at a time.

• A machine can process one job at a time.

• Each operation of a job has to be processed once.

• All operations of a job has be completed to finish the job.

• Jobs are independent.

• Preemption is not allowed.

• Each machine is equipped with one of each type of tools.

• Pi,j Ø Dp,k, ’Oi,j œ OTp,k, p = 1, 2, 3, ..., pk, k œ M .

• Pi,j Æ Cp,k, ’Oi,j œ OTp,k, p = 1, 2, 3, ..., pk, k œ M .

Though two successive jobs on a machine have a smaller setup time if they

require the same tool, a smaller setup time does not necessarily imply the successive

jobs share the same tool. Therefore, SDST and types of tool are defined separately

in the model.

2.3.2 Model

The mixed integer programming model is formulated as following,

• Decision variables

1. xi,j œ R+: the starting time of the operation i of job j, ’Oi,j œ Oj, j œ J

2. yi1, j1, i2, j2 œ [0, 1]: yi1, j1, i2, j2 = 1 if operation Oi2,j2 is scheduled right after

Oi1,j1 on the machine k, where k = Mi1,j1 = Mi2,j2 , and yi1, j1, i2, j2 = 0

otherwise, ’Oi1,j1Oi2,j2 œ OMk, Oi1,j1 ”= Oi2,j2 , k œ M

52

n the number of jobs
m the number of machines
J the set of jobs, J = {1, 2, 3, ..., n}, indexed by j
M the set of machines, M={1,2,3,...,m}, indexed by k
nj the number of operations of job j
Oj the set of operations of job j, Oj = {O1,j, O2,j, O3,j, ..., Onj ,j}
Mj the set of machines required by operations of job j,

Mj = {M1,j, M2,j, M3,j, ..., Mnj ,j}
Pj the set of processing time of operations of job j,

Pj = {P1,j, P2,j, P3,j, ..., Pnj ,j}
Tj the set of tool required by operations of job j,

Tj = {T1,j, T2,j, T3,j, ..., Tnj ,j}
OMk the set of operations of machine k,

OMk = {Oi,j œ Oj, ’j œ J |Mi,j = k}, k œ M
pk the number of tools in the tool magazine of machine k
OTp,k the set of operations require tool p on machine k,

OTp,k = {Oi,j œ Oj, ’j œ J |Mi,j = k, Ti,j = p},
k = 1, 2, ..., pk, k œ M

Si1,j1,i2,j2 the setup time of Oi2,j2 if it is scheduled after Oi1,j1 on the
same machine k, where k = Mi1,j1 = Mi2,j2

Cp,k the capacity of tool p of machine k
Dp,k the length of cool down period required by tool p of machine k

after it is overheated
M a big number

Table 2.1: Notations

53

3. gi1, j1, i2, j2 œ [0, 1]: gi1, j1, i2, j2 = 1 if yi1, j1, i2, j2 = 1 and the gap between

ending of Oi1,j1 and beginning time of Oi2,j2 is greater than the length

of required cool down time for tool p, and gi1, j1, i2, j2 = 0 otherwise, where

p = Ti1,j1 = Ti2,j2 , ’Oi1,j1 , Oi2,j2 œ OMk, Oi1,j1 ”= Oi2,j2 , ’k œ M

4. di,j,f œ [0, 1]: di,j,f = 1 if Oi,j is the first operation on machine Mi,j , and

di,j,f = 0 otherwise, ’Oi,j œ Oj, j œ J

5. di,j,l œ [0, 1]: di,j,l = 1 if Oi,j is the last operation on machine Mi,j, and

di,j,l = 0 otherwise, ’Oi,j œ Oj, j œ J

• Constraints

1. Precedence constraints

xi1+1,j1 Ø xi1,j1 + Pi1,j1 +
ÿ

Oi2,j2 œOMMi1,j1
Oi1,j1 ”=Oi2,j2

Si2, j2, i1, j1yi2, j2, i1, j1,’i1 < nj1 , j1 œ J

(2.1)

2. No more than one operation is scheduled on the same machine at the

same time

xi2,j2 Ø xi1,j1 + Pi1,j1 + Si1, j1, i2, j2 ≠ (1 ≠ yi1, j1, i2, j2)M,

’Oi1,j1Oi2,j2 œ OMk, Oi1,j1 ”= Oi2,j2 , k œ M
(2.2)

3. Unless an operation is the first/last one, it has to be scheduled after/be-

fore another operation on a machine

ÿ

Oi2,j2 œOMMi1,j1
Oi1,j1 ”=Oi2,j2

yi2, j2, i1, j1 = 1 ≠ di1,j1,f , ’Oi1,j1 œ Oj1 , j1 œ J

ÿ

Oi2,j2 œOMMi1,j1
Oi1,j1 ”=Oi2,j2

yi1, j1, i2, j2 = 1 ≠ di1,j1,l, ’Oi1,j1 œ Oj1 , j1 œ J
(2.3)

54

4. For each machine, only one operation is the first/last

ÿ

Oi,jœJk

di,j,f = 1, ’k œ M

ÿ

Oi,jœJk

di,j,l = 1, ’k œ M
(2.4)

5. Check if the cool down requirement is satisfied for two successive jobs

that require the same tool

xi2,j2 ≠ xi1,j1 ≠ pi1,j1 ≠ DTi1,j1 ,Mi1,j1
Ø ≠M(1 ≠ gi1, j1, i2, j2),

xi2,j2 ≠ xi1,j1 ≠ pi1,j1 ≠ DTi1,j1 ,Mi1,j1
Æ Mgi1, j1, i2, j2,

’Oi1,j1 , Oi2,j2 œ OMk, Oi1,j1 ”= Oi2,j2 , Ti1,j1 = Ti2,j2 , ’k œ M

(2.5)

6. Overheating constraints

Cp,k Ø Pi1,j1 + Pi2,j2 ≠ (1 ≠ yi1, j1, i2, j2 + gi1, j1, i2, j2)M

’Oi1,j1Oi2,j2 œ OTp,k, Oi1,j1 ”= Oi2,j2 , p = 1, 2, ..., pk, k œ M
(2.6)

Cp,k Ø Pi1,j1 + Pi2,j2 + Pi3,j3 ≠ [2 ≠ yi1, j1, i2, j2 ≠ yi2, j2, i3, j3

+gi1, j1, i2, j2 + gi2, j2, i3, j3]M, ’Oi1,j1Oi2,j2Oi3,j3 œ OTp,k,

Oi1,j1 ”= Oi2,j2 ”= Oi3,j3 , p = 1, 2, ..., pk, k œ M

(2.7)

...

Cp,k Ø Pi1,j1 + ... + Piz ,jz
≠ [z ≠ yi1, j1, i2, j2 ≠ ... ≠ yi(z ≠ 1), j(z ≠ 1), iz, jz

+gi1, j1, i2, j2 + ... + gi(z ≠ 1), j(z ≠ 1), iz, jz
]M, ’Oi1,j1 , ..., Oiz ,jz

œ OTp,k,

Oi1,j1 ”= Oi2,j2 ”= ... ”= Oiz ,jz
, p = 1, 2, ..., pk, k œ M

(2.8)

55

7. Non-negative and binary constraints

xi,j Ø 0, ’Oi,j œ Oj, j œ J

yi1, j1, i2, j2 œ [0, 1], ’Oi1,j1 , Oi2,j2 œ OMk, Oi1,j1 ”= Oi2,j2 , k œ M

gi1, j1, i2, j2 œ [0, 1], ’Oi1,j1 , Oi2,j2 œ OMk, Oi1,j1 ”= Oi2,j2 , k œ M

di,j,f œ [0, 1], Oi,j œ Jk, k œ M

di,j,l œ [0, 1], Oi,j œ Jk, k œ M

(2.9)

• Objective function

min
x

max
x

(xi,j + Pi,j +
ÿ

O
iÕ,jÕ œOMMi,j

Oi,j ”=O
iÕ,jÕ

SiÕ, jÕ, i, jyiÕ, jÕ, i, j) (2.10)

2.4 Numerical Study

To validate the proposed model, three experiments are conducted. The model is

solved using the version 12.8.0.0 of CPLEX optimization solver with Python API.

Settings of experiments are as follows:

I A well-known example from literature [54] is used as inputs (see Section 2.4.1).

By setting Cp,k = +Œ, p = 1, 2, 3, ..., pk, ’k œ M , the overheating constraints

are removed and it simplifies the model to the basic JSSP with SDST. This

case provides the best schedule that minimizes the makespan for the example.

II The inputs from case I is used to run the experiment. By setting pk = 1, ’k œ

M , each machine has only one tool and all operations on the same machine

share the same tool. This condition will idle the machine when its tool is

overheated. The resulting makespan is increased as expected.

III With additional inputs related to tools, the example from case I is used to

56

test the model. Though there are overheating constraints and multiple tools,

the obtained optimal schedule provides the same makespan as case I. This is

because the optimal schedule uses additional setup times to cool down the tool,

and the additional setup times did not increase the makespan in this case.

2.4.1 Case I: Basic JSSP with SDST

Descriptions of input jobs [54] are shown in Table 2.2. There are 4 jobs, each job

has 4 operations, and each operation requires one machine. The required machine

is di�erent across all the operations of each job and there are 4 machines in total.

The setup times are described in Table 2.4.

The optimal makespan of 24 is obtained, which is the same as the optimal result

provided in the literature [54]. The optimal schedule is shown in Figure 2.2 and

jobs are colored by Job ID.

Table 2.2: Descriptions of Input Jobs

Job ID Operation ID Required Machine Processing Time
1 1 4 2
1 2 3 3
1 3 2 2
1 4 1 3
2 1 4 3
2 2 1 2
2 3 2 7
2 4 3 2
3 1 3 4
3 2 2 3
3 3 4 6
3 4 1 4
4 1 1 10
4 2 2 3
4 3 3 4
4 4 4 5

57

Table 2.3: Setup Times

Machine 1
Job ID 1 2 3 4

Job ID Opt ID 4 2 4 1
1 4 0 1 2 0
2 2 1 0 1 0
3 4 1 0 0 1
4 1 1 0 2 0

Machine 2
Job ID 1 2 3 4

Job ID Opt ID 3 3 2 2
1 3 0 0 1 1
2 3 0 0 1 0
3 2 0 2 0 0
4 2 0 2 1 0

Machine 3
Job ID 1 2 3 4

Job ID Opt ID 2 4 1 3
1 2 0 0 2 1
2 4 1 0 1 1
3 1 0 2 0 1
4 3 0 2 0 0

Machine 4
Job ID 1 2 3 4

Job ID Opt ID 1 1 3 4
1 1 0 3 1 3
2 1 2 0 2 2
3 3 1 4 0 3
4 4 1 1 2 0

Figure 2.4: Gantt of the optimal schedule for the problem in Case I

2.4.2 Case II: Single Tool JSSP with SDST & OC

The input jobs and setup times of case II are the same as ones of case I. Additionally,

all operations on the same machine share the same tool, namely, pk = 1, ’k œ M ,

and C1,k = 10, D1,k = 2, ’k œ M . The obtained optimal result is 26, and the

schedule is shown in Figure 2.5 (jobs are colored by Job ID). Since some of the

58

setup times are larger than the required cool down time, machines are not always

idled to allow for the tool to cool down. But, as the Gantt chart shows, there are

periods in which machines are forced to idle to wait for the tool to cool down. For

example, the gap between job 1 (J1) and job 3 (J4) on machine 3, and the gap

between job 1 (J1) and job 2 (J2) on machine 2.

Figure 2.5: Gantt of the optimal schedule for the problem in Case II

2.4.3 Case III: JSSP with SDST & OC

In case III, inputs and setup times are the same as ones in case I, pk = 2 and

C1,k = C2,k = 10, D1,k = D2,k = 2, ’k œ M . The tool requirement of each operation

is shown in Table 2.4. The resulting optimal schedule has a makespan of 24, which

is the same as the result of case I. However, the optimal schedule is di�erent. It

does not overheat the tool and it allows the overheated ones to cool down. The

schedule is shown in Figure 2.6. Note that jobs are colored by the required tool. By

comparing the Gantt chart of case I and case III, we can see the schedule utilizes

the additional setup time to cool down the tool. For instance, on machine 4, the

sequence (J1,J2,J3,J4) of case III requires 8 units of setup times, and the sequence

(J2,J1,J3,J4) of case I requires 6 units of time. The additional setup time is utilized

59

to cool down the tool.

Table 2.4: Description of Input Jobs

Machine ID Tool 1 Tool 2
1 OT1,1 = {O4,3, O1,4} OT2,1 = {O4,1, O2,2}
2 OT1,2 = {O2,3, O3,1} OT2,2 = {O2,4, O3,2}
3 OT1,3 = {O4,2, O1,3} OT2,3 = {O2,1, O3,4}
4 OT1,4 = {O1,1} OT2,4 = {O1,2, O4,4, O3,3}

Figure 2.6: Gantt of the optimal schedule for the problem in Case III

2.5 Conclusions

During a continuous high speed machining, cooling is necessary. Nevertheless, a

liquid coolant may introduce a thermal stress on the tool by intensifying temperature

gradients of the surrounding region of the cut [67]. A significant thermal stress can

bring a thermal shock to the tool and accelerate a crack formation and propagation.

Because tools are costly, avoiding tool damages using dry machining is preferred in

certain scenarios. During a dry machining process, however, scheduling jobs that

require the same tool together becomes alarming as it carries the risk of overheating

tools. As no study considers such an issue, a MIP model is proposed to minimize

60

makespan and avert overheating tools. Three case studies are conducted to validate

the model.

The computational time of solving the MIP model increases exponentially as

the problem size grows, a meta-heuristics should be used to solve large problems.

Regarding the further work, we plan to optimize the process rate which interacts

with the tool capacity. For instance, a lower rotation speed will heat up the tool

temperature slower than a faster rotation speed, therefore it will increase the

tool capacity. Furthermore, when the data of tool capacity is available, chance

constraints can be added to the model to obtain a robust schedule.

61

Chapter3 |
Service Rate Control in a Finite
Capacity Single-server Queue with
an Unreliable Server and Un-
known Breakdown Rate

3.1 Introduction

The unplanned downtime commonly observed in manufacturing systems is due

to reasons such as tool failures, machine malfunctions, and operator errors. The

downtime cost varies across di�erent manufacturing industries. In 2014, Aberdeen [4]

estimated the cost of unplanned downtime across all businesses to be $163,000

an hour, and this number skyrocketed to $260,000 in 2016. A survey of 101

executives in the automotive industry [5] indicates that the downtime cost in

the U.S. automotive industry is $22,000 per minute, which is equivalent to $1.3

millions per hour. Hence, any e�ort in reducing unplanned downtime can create

considerable savings for the business. For example, progressive stamping processes

62

are widely used in the automotive industry and are economically justified only

at higher service rates [68]. However, an increase in the press speed significantly

improves the punch velocity and it creates additional vibrations and introduces

thermal growth, which results in a higher probability of unplanned downtime [69].

In queuing systems, the unplanned machine downtime is commonly modeled using

queues with interruptions and it has received considerable attention since the late

1950s [70–74]. In this chapter, we focus on a particular dependent structure where

the breakdown rate of the server is a linear function of the service rate. Since the

relationship between these two rates might be unknown in practice, we develop

online algorithms to obtain the optimal policy in the long-run.

We apply a self-tuning approach to the control problem when system has

unknown parameters. The self-tuning scheme is introduced in [75]. Mandl [75]

provides several models for controlled Markov processes with unknown parameters.

The self-tuning approach is identified as a procedure that the controlled policy is

continuously modified based on the estimation of unknown parameters to approach

the optimal policy for the problem with true parameters. In this chapter, we

estimate the unknown parameters in the relation between the breakdown and

service rates based on the historical data at each jump time of the Markov process,

and then the control implemented is characterized by an optimality equation with

the current parameter estimate. The optimality equation used is the same as

the equation used in the aforementioned optimal control problem when the true

parameters are known. Since the linear relation between the service and breakdown

rates leads to a nonlinear relation between the mean service times and mean ‘up’

times of the system, the quasi-maximum likelihood estimates are used for the

estimation of unknown parameters. This method has been studied in [76,77] and

references therein.

The next section presents a detailed review of related studies. The model of

63

the service rate control problem is described in the third section. The is a finite

capacity single-server queue with an unreliable server. In the fourth section, the

necessary and su�cient conditions of stationarity are shown for the problem. The

optimality of the obtained policy is proven in Section five. In Section six, two

learning lgorithms are proposed. The first one is to obtain the control policy when

the down rate parameters are unknown, and the second one is to learn a control

policy with mild system dynamics assumptions. Finally, numerical studies are

presented to validate the algorithms in Section seven, and the study is concluded

in Section eight.

3.2 Related Work

In the context of queuing systems, unplanned machine shutdowns are commonly

modeled using queues with interruptions. In general, queuing models with servers

that are not available continuously can be classified into the following four types [78]:

1. Queuing models with vacations: In this type of model, the server takes a

vacation when there is no job in the system. The server resumes services only

when the length of the queue reaches a predefined threshold.

2. Queuing models with service interruptions: In this type of model, the server

can either be in the on-state or the o�-state. When the server is in the on-

state, the system works as the classic queuing system (without interruptions);

however, the server can become unavailable because of a random event and

therefore goes into the o�-state. These events can occur either during a

service, or when the server is idle. After the event is completed, the server

returns to the on-state. When a busy server enters the o�-state, the job that

was being processed is commonly modeled to return to the queue [78].

64

3. Queuing models with customer interrupted services: In a system with customer

interrupted services, customers may leave the system during a service due to

a random event.

4. Queuing models with catastrophic events: In a this type of model, a random

external event may occur that empties the system. After the repair is complete,

the server resumes the service when there is a new arrival.

Because the occurrence of unplanned downtime prevents the machine from

working, and maintenance takes time to bring the machine back online, in this

work, we formulate the problem using queuing models with service interruptions.

3.2.1 Queuing Models with Service Interruptions

Queuing models with service interruptions have been studied since the late 1950s

by pioneers White and Christie [70], Gaver [71], Avi-Itzhak and Naor [72]. Queuing

systems with a single-server and Poisson arrival process are represented as M/M/1,

M/Ek/1, M/PH/1 and M/G/1 if the service times have an exponential distribution,

Erlang distribution, phase type distribution and general distribution, respectively.

Analysis of single-server Queues

White and Christie [70] have shown that a single-server queue with service break-

down is equivalent to a single-server queue with preemptive priority arrivals.

Gaver [71] investigates a single-server compound Poisson queue with server break-

downs and priorities. Five single-server Poisson queues with server breakdowns with

various settings are studied by Avi-Itzhak and Naor [72]. Variations in models are

at conditions of interruptions, and repairs can occur. The performance measures,

such as the expected queue length and waiting time are derived in all three works

above.

65

Kella and Whitt [79], as well as Chen and Whitt [80] analyze heavy-tra�c

stochastic process limits for single-server systems with service interruptions. Their

work investigates the limits for queues in which a sequence of stochastic processes

converges to another stochastic process. Because the converging processes are

obtained by appropriately scaling the time and space of the initial process, the

limits provide a macroscopic view of uncertainty.

Gray et al. [81] consider a general single-server queuing model. Server failures

can occur for many types of reasons. Therefore, the breakdown requires a finite

random number of stages to be repaired. The authors assume that the breakdown

occurs when the server is busy, and it has no impact on the arrival process. The

necessary and su�cient condition for the stationary queue length distribution to

exist is obtained, and the authors derive the expected queue length distribution

using matrix-geometric methods.

Analysis of single-server Queues with batch arrivals

Time-dependent M/M/1 queuing models with fixed batch sizes and server inter-

ruptions are studied in Madan [82,83]. The performances in the steady state are

derived. By characterizing the repairs into two phases, a queue model with batch

arrival and departure is analyzed by Madan in [84].

Altiok [85] investigates a M/G/1 queue with batch arrivals and service interrup-

tions, wherein the distribution of service times is a mixture of generalized Erlangs.

Service failures are generated by a Poisson process, and the corresponding repair

times follow a mixture distribution of generalized Erlangs. The interruptions occur

during service, and all customers are removed from the system once a breakdown

occurs, but new customers can arrive when the server is under repair.

Tadj and Choudhary [86] analyze an M/G/1 queue with a fixed size batch

arrival and service interruptions. Server failures occur when the system is busy and

66

the repair times follow an arbitrary distribution. In addition, the breakdowns have

no e�ect on the arrival process. The stability condition and steady-state system

size are derived.

A single-server queue with set-up time and server breakdown is studied by

Chang and Wang [87]. The server is turned o� when the system is empty, and

failure may happen when a newly arrived customer reactivates the o� server. When

the server is successfully turned on, it requires a set-up time. When the server fails

to be reactivated, it is repaired immediately, and the repair time is exponentially

distributed. This study considers a model with imperfect repairs and a model with

perfect repairs. In the first model, the server might fail to reactivate after a repair,

and in the second model, the server will always be successfully turned back on after

a repair. An explicit expression for the stationary distribution of the queue length

is obtained.

Analysis of single-server Queues with bulk service

Jayaraman [88] studies a single-server queuing system with a Poisson process and

general bulk service. The lengths of the operating and repair periods follow an

exponential and phase-type distribution, respectively. When a server failure occurs,

customers arrive at a lower rate compared to when the server is operational. The

system is not cleared when a failure occurs, and the job that was being severed

returns to the queue, and its service starts over when the repair period ends. The

stability condition and expected length of the queue in the steady state are obtained

using a matrix-geometric algorithmic approach.

67

3.2.2 Optimal Control in single-server Queues

The Markov decision process [22] is a basic method in modern dynamic control

theory [89], and it has been applied in many practical areas such as inventory control,

supply chain management, transportation networks and communication networks to

name a few. Moreover, MPDs in queues play a critical role in the dynamic control

of stochastic systems such as manufacturing systems [90], production lines [91], and

energy-e�cient management [92]. A detailed survey is conducted by Li et al. [89].

In the literature on optimal control in single-server queues, some commonly

studied control targets are

1. Admission rate

2. Rate of the arrival process

3. Type of the arrival process

4. Service rate

5. Type of the service process

6. Threshold of queue length to resume services in systems with server vacations

7. Priority of queues

In this work, we focus on service rate control in single-server queues.

One of the earliest work on service rate control in a single-server queue is to

adjust the service rate based on the queue length of the system [93], in which the

service rate is chosen from a finite set. Another pioneering work controls the service

rate in a closed set in which the holding cost is a convex function [94]. As in many

later works [24,95,96], the objective function involves two cost components. The

first component is the service rate cost, which is a non-decreasing function of the

68

service rate. The second component is the holding cost, which is a non-decreasing

function of the queue length.

In the majority of the work, the arrival is a Poisson process and the service

time follows an exponential distribution. However, a single-server queue with a

non-stationary arrival is studied in which the arrival is Markov-modulated [96].

The objective of this body of literature is to develop control policies to balance

the cost of e�ort and holding cost. Moreover, they all show that the optimal service

rate is non-decreasing as a function of the queue length. There is also a stream of

work which considers switching cost for changing the service rate [97–99] resulting

in hysteric policies.

Another body of work jointly controls the service rate and admission, in which

a new customer can be rejected [100–102]. Most of the work still considers the two

costs associated with service rate and queue length but the uniformization is not

applicable because the transition rates are generally unbounded [102].

Although the optimal control with an unreliable server has been studied [103–

105], the control target is the vacation threshold, namely, the queue length in which

the server resumes services.

3.2.3 Learning and Control in Queuing Systems

Maximizing System Payo� in Multi-Server Queues

A study [106] integrates learning and control in a multi-server queue to maximize

the total system payo� when the type of new customer and its payo� information is

unknown. In the model, each arrival has multiple tasks, and the control target is the

probability of assigning a client’s tasks to servers. The paper proposes an algorithm

to iteratively estimate the payo� using a truncated Upper-Confidence-Bound (UCB)

and solve the objective function based on the estimated payo� vectors. In the

69

estimation part, the the client’s payo� vector is estimated based on the payo�

feedback.

Another related work [107] characterizes the structure of the optimal policy in

the limit in which each server performs many jobs. In their model, the arrivals

have unknown payo� vectors, and the objective is to maximize the total system

payo�. An algorithm is proposed to solve the problem by balancing the exploration

and exploitation.

In both of the above problems, the unknown is in the arrival process, and the

policy obtained based on the estimated parameters does not have an impact on

the future observations. In our model, however, the breakdown of the server is

a�ected by its service rate; hence, the control policy has an impact on the future

observations.

Server Allocation and Routing in Queuing Networks

A recent study [108] propose a model-based reinforcement learning algorithm to

determine the network control policy from observed data from systems without the

information of underlying system dynamics. Because the state space is unbounded,

their policy is determined by the RL algorithm when the state is below a threshold,

and when the state is above the threshold, a simple baseline algorithm is applied.

The gap between the resulting policy and the optimal policy is shown to go to zero

when the threshold goes to infinity.

In the above study, the model-based RL algorithm utilizes the underlying system

mechanics to obtain the optimal control. In this chapter, we apply a model-free RL

method, which learns control policies via interacting with the system, the numerical

results indicate that a near-optimal policy can be obtained in our problem setting.

70

3.2.4 Contributions

In this chapter, we study finite capacity single-server queues when the server is

subject to breakdown, and the rate of breakdown is unknown. We first show

the necessary and su�cient conditions of the stationarity, and then we show the

optimality of the obtained policy. By applying an inference and learning scheme, we

propose algorithms that estimate the parameters and then solve the control problem.

We also apply a model-free reinforcement learning method to determine the control

policy without imposing any assumptions on the system dynamics. Numerical

studies are conducted to validate these algorithms. Our main contributions are

summarized as follows.

1. We show the necessary and su�cient conditions of stationarity for the finite

capacity single-server queues with an unreliable server when the arrival process

is a Poisson process. To the best of our knowledge, there are no studies on

the service rate control in unreliable single-server queues.

2. We propose inference and learning algorithms to solve the service rate control

problems when the breakdown parameters are unknown. This algorithm can

be helpful in practice because the machine behavior can be shifting as it ages,

and our algorithm can adapt to the change and provide an optimal control

policy.

3. We apply a model-free RL algorithm to show that a near-optimal policy

can be obtained from a pure data-driven method. This can be useful in the

current Industrial 4.0 era as data can be collected and stored cost-e�ciently.

71

3.3 Model

In this section, an unreliable single-server queue with a Poisson arrival and expo-

nential service time with a finite capacity is modeled. The arrival process has a

rate ⁄ > 0, and the system has a capacity of N , that is, a job will be rejected if it

arrives when the system has N jobs. The number of jobs in the system is denoted

as x œ [0, N].

The unreliable server has an up state and a down state denoted by k œ {0, 1}.

When the server is in the up state, k = 1, and x > 0, the server processes jobs with

a service rate µ œ [µ, µ̄], where µ and µ̄ are the minimum and maximum service

rates, respectively. Additionally, µ Ø ⁄ and µ̄ < Œ are assumed. Since turning the

server up has a relatively large energy cost in practice, the server is assumed to

operate at the minimum rate µ if x=0.

When the server is in the down state, k = 0, it cannot process any jobs as

µ = 0, but new jobs can join the system when x < N . A unit time maintenance

cost Cm will occur when the server goes to the down state, and the time required

for the server to come return to the up state follows an exponential distribution

with a positive parameter —u. Moreover, we assume that the time that it takes the

server to the down state from the up state follows an exponential distribution with

a parameter —d(µ), and

—d(µ) = auµ + bu, (3.1)

where au and bu are positive constants. This indicates that if the server operates

at a high rate, then it has a high rate of going to the down state. A linear

relationship between the breakdown rate and service rate can be observed in many

manufacturing settings, such as stamping, molding and machining. For instance,

Figure 3.1 shows the service rate and breakdown rate of molding machines in a U.S.

72

factory. From the plot we can see that as the service rate increases, the overall

on-time decreases, which implies that the breakdown rate increases. The fitted

linear regression line is plotted as the blue line, and both of the coe�cient and

intercept are statistically significant with p-values less than 0.001.

Figure 3.1: Service Rate and Machine On-Time

Therefore, the state space is defined as S © [0, N] ◊ {0, 1} and the action space

is defined as A © {0} fi [µ, µ̄].

A control policy fi : S æ A is admissible if it satisfies fi(x, 0) © 0, fi(x, 1) œ [µ, µ̄]

for ’x œ [0, N] and fi(0, 1) © µ. We denote � as the set of admissible control

policies. Hence, under any fi œ �, we have

µ = fi(x, k), ’(x, k) œ S. (3.2)

Let X(t) and K(t) denote the number of jobs in the system and server up-down

state k at time t Ø 0, then {(X(t), K(t)) : t Ø 0} forms a continuous-time Markov

chain (CTMC) under an admissible policy fi œ �. The transition diagram is shown

in Figure 3.1.

73

0,1 1,1

0,0 1,0

...

...

N,1

N,0

⁄

fi(1, 1)

⁄

⁄

fi(2, 1)

⁄

—u(fi(0, 1))—d —u(fi(1, 1))—d —u(fi(N, 1))—d

fi(N, 1)

⁄

⁄

Figure 3.2: The State Transition Diagram

The steady-state distribution for a state is defined as

u(x, k) = lim
tæŒ

Pr{(X(t) = x, K(t) = k)}. (3.3)

The Markov chain is ergodic if the steady-state distribution exists. We say that a

policy fi is stable if the steady-state distribution under fi exists, and we denote the

set of stable admissible policies as �s. We denote ufi as a steady-state distribution

under fi œ �s

The existence of a stable policy for the Markov chain {(X(t), K(t)) : t Ø 0} is

shown in Section 3.3.

In this problem, we consider a convex unit time running cost R(µ) and a convex

unit time holding cost H(x). When the server is down, a constant unit cost Cm > 0

will be considered. In addition, if a new job arrives while the system is at its full

capacity, a rejection cost p > 0 is considered.
In this chapter, we consider the finite capacity ergodic control problem. Hence,

the cost function for the model with a Poisson arrival is defined as

J
fi

:=

Nÿ

x=0

Ë
u

fi
(x, 1)(H(x)+R(fi(x, k)))+u

fi
(x, 0)(H(x)+Cm)

È
+⁄p(u

fi
(N, 1)+u

fi
(N, 0)). (3.4)

74

The optimal cost is defined by

Jú := inf
fiœ�s

Jfi. (3.5)

3.4 Stable Admissible Policy

The su�cient conditions that ensure the existence of stationary distribution of the

CTMC (X(t), K(t)) are (see, e.g. Theorem 4.1 in [109]):

1. All states communicate

Pr{(X(t + s) = n, K(t + s) = k)|(X(s) = nÕ, K(s) = kÕ)} > 0 (3.6)

’n, nÕ œ [0, N], ’k, kÕ œ {0, 1} and t, s Ø 0;

2. The Markov chain is positive recurrent, namely, each state has a finite mean

return time

Since fi(x, 1) œ [µ, µ̄] > 0 ’x œ [0, N] under any admissible control policy, the

CTMC (X(t), K(t)) is irreducible; hence, the condition 1 is satisfied.

Proposition 3.4.1. The CTMC (X(t), K(t)) is positive recurrent under admissible

policy fi if and only if

⁄

fi(x, 1)
—u(fi(x, 1)) + —d

—d
< 1, x = 0, 1, 2, 3, ..., N.

75

Proof. The generator matrix Q of the CTMC under an admissible policy fi œ � is

Q =

S

WWWWWWU

≠(—d+⁄) —d ⁄ 0 ... 0 0
—u(µ0) ≠(—u(µ0)+⁄) 0 ⁄ ... 0 0

0 0 ≠(—d+⁄) —d ... 0 0
0 µ1 —u(µ1) ≠(—u(µ1)+µ1+⁄) ... 0 0

...
0 0 0 0 ... ≠—d —d

0 0 0 0 ... —u(µN) ≠(—u(µN)+µN)

T

XXXXXXV
,

where µi = fi(i, 1), for i = 0, 1, 2, ..., N .

Using the uniformization technique, a given CTMC can be represented as a

Discrete-time Markov Chain (DTMC). The probability of the DTMC corresponding

to the CTMC is defined as

P = I + Q

q
, (3.7)

where q Ø maxi(|Qi,i)|). Since under any admissible policy fi, max µi = µ̄, q is

defined as

q = —u(µ̄) + —d + ⁄ + µ̄, (3.8)

and we have the transition probability matrix for the CTMC as

P =

S

WWWWWWWWWWWWWU

—u(µ̄)+µ̄
q

—d

q
⁄
q 0 ...

—u(µ0)
q

q≠—u(µ0)≠⁄
q 0 ⁄

q ...

0 0 —u(µ̄)+µ̄
q

—d

q ...

0 µ1
q

—u(µ1)
q

q≠—u(µ1)≠µ1≠⁄
q ...

.

T

XXXXXXXXXXXXXV

.

Since P has a tridiagonal block structure, it can be written as

76

P =

S

WWWWWWWWWWWWWWWWWWWWU

L0 F 0 0 0 ... 0 0

B1 L1 F 0 0 ... 0 0

0 B2 L2 F 0 ... 0 0

0 0 B3 L3 F ... 0 0
.

0 0 0 0 0 ... LN≠1 F

0 0 0 0 0 ... BN LN

T

XXXXXXXXXXXXXXXXXXXXV

,

where

F =

S

WU
⁄
q 0

0 ⁄
q

T

XV , L0 =

S

WU
—u(µ̄)+µ̄

q
—d

q

—u(µ0)
q

q≠—u(µ0)≠⁄
q

T

XV ,

Bi =

S

WU
0 0

0 µi

q

T

XV , and Li =

S

WU
—u(µ̄)+µ̄

q
—d

q

—u(µi)
q

q≠—u(µi)≠µi≠⁄
q

T

XV ,

for i = 1, 2, 3, ..., N ≠ 1. And

BN =

S

WU
0 0

0 µN

q

T

XV , and LN =

S

WU
⁄+—u(µ̄)+µ̄

q
—d

q

—u(µN)
q

q≠—u(µN)≠µN

q

T

XV ,

The DTMC therefore can be viewed as a Quasi-Birth-and-Death Process (QBD).

Define

L = F + B1 + L1 =

S

WU
q≠—d

q
—d

q

—u(µ1)
q

q≠—u(µ1)
q

T

XV (3.9)

and ◊ œ R2.

By solving

◊T L = ◊T , eT ◊ = 1, (3.10)

77

we obtain

◊ =

S

WU
—u(µ1)

—u(µ1)+—d

—d

—u(µ1)+—d

T

XV . (3.11)

Theorem 3.2.1 [110] indicates that the QBD is ergodic if and only if ◊T Fe < ◊T Bie

for ◊ satisfies (3.10). Using(3.11), we obtain a condition for the rates such that

the MDP has a stationary distribution,

⁄

µi

—u(µi) + —d

—d
< 1, i = 0, 1, 2, 3, ..., N.

This shows that the embedded DTMC is ergodic, which guarantees the original

CTMC is positive recurrent. Therefore, for any fi, we have

⁄

fi(x, 1)
—u(fi(x, 1)) + —d

—d
< 1, x = 0, 1, 2, 3, ..., N, (3.12)

and the stationary distribution exists, we denote the set of such policy as �sm

Under any policy fi œ �sm. We have shown that the stationary distribution

exists, and the balance equations take the form

(⁄ + —u(µ0))ufi(0, 1) = —dufi(0, 0) + µ1u
fi(1, 1)

(⁄ + —d)ufi(0, 0) = —u(µ0)ufi(0, 1)

(⁄ + —u(µi) + µi)ufi(i, 1) = ⁄ufi(i ≠ 1, 1) + —dufi(i, 0) + µi+1u
fi(i + 1, 1), ’i œ [1, N ≠ 1]

(⁄ + —d)ufi(i, 0) = ⁄ufi(i ≠ 1, 0) + —u(µi)ufi(i, 1), ’i œ [1, N ≠ 1]

(—u(µN) + µN)ufi(N, 1) = ⁄ufi(N ≠ 1, 1) + —dufi(N, 0)

—dufi(N, 0) = ⁄ufi(N ≠ 1, 0) + —u(µN)ufi(N, 1)

78

It is evident that

µiu
fi(i, 1) = ⁄(ufi(i ≠ 1, 0) + ufi(i ≠ 1, 1)) ’i œ [1, N]. (3.13)

By substituting (3.13) into the balance equations, we obtain

⁄ufi(i ≠ 1, 0) =(⁄ + —d)ufi(i, 0) ≠ —u(µi)ufi(i, 1) ’i œ [1, N], (3.14)

⁄ufi(i ≠ 1, 1) = ≠ (⁄ + —d)ufi(i, 0) + (—u(µi) + µi)ufi(i, 1) ’i œ [1, N]. (3.15)

3.5 Optimality

For an admissible stable policy fi œ �sm, the ergodic cost is given by (3.3) and the

optimal ergodic cost is defined in (3.3).

The di�erential value function of each state under an admissible stable policy

fi œ �sm is given by

v(0, 0) =
1

q
[Cm ≠ J

ú
+ —dv(0, 1) + ⁄v(1, 0) + (q ≠ —d ≠ ⁄)v(0, 0)] (3.16)

v(0, 1) =
1

q
[R(µ) ≠ J

ú
+ —u(µ)v(0, 0) + ⁄v(1, 1) + (q ≠ —u(µ) ≠ ⁄)v(0, 1)] (3.17)

v(x, 0) =
1

q
[H(x) + Cm ≠ J

ú
+ —dv(x, 1) + ⁄v(x + 1, 0) + (q ≠ —d ≠ ⁄)v(x, 0)] (3.18)

v(x, 1) = min
µ

1

q
[H(x) + R(µ) ≠ J

ú
+ —u(µ)v(x, 0) + ⁄v(x + 1, 1) + µv(x ≠ 1, 1)

+ (q ≠ —u(µ) ≠ µ ≠ ⁄)v(v, 1)]

(3.19)

v(N, 0) =
1

q
[H(N) + Cm ≠ J

ú
+ ⁄p + —dv(N, 1) + (q ≠ —d)v(N, 0)] (3.20)

v(N, 1) = min
µ

1

q
[R(µ) + H(N) ≠ J

ú
+ ⁄p + —u(µ)v(N, 0) + µv(N ≠ 1, 1)

+ (q ≠ —u(µ) ≠ µ)v(N, 1)]

(3.21)

As in George and Harrison [95], to simplify the optimality equation, we can

79

define the following functions,

W (x) = v(x, 1) ≠ v(x ≠ 1, 1) ’x œ [1, N] (3.22)

Y (x) = v(x, 0) ≠ v(x, 1) ’x œ [0, N] (3.23)

„(w, y) = max
µ

{µw ≠ R(µ) ≠ —u(µ)y} (3.24)

The value functions can then be expressed as

⁄W (1) = ≠—u(µ)Y (0) ≠ H(0) ≠ R(µ) + J (3.25)

⁄W (1) + ⁄Y (1) = (—d + ⁄)Y (0) ≠ H(0) ≠ Cm + J (3.26)

⁄W (x + 1) = „(W (x), Y (x)) ≠ H(x) + J (3.27)

⁄W (x + 1) + ⁄Y (x + 1) = (—d + ⁄)Y (x) ≠ Cm ≠ H(x) + J (3.28)

„(W (N), Y (N)) = H(N) ≠ J + ⁄p (3.29)

—dY (N) = H(N) + Cm ≠ J + ⁄p (3.30)

where x = 1, 2, 3, ..., N ≠ 1, and J is estimated minimum average cost.

We now provide a theorem similar to Proposition 1 in [111], which allows us

to rigorously prove the optimality of a policy derived from a solution of (3.25) to

(3.30).

Theorem 3.5.1. Let J < Œ and (W (1), W (2), .., W (N), Y (0), Y (1), ..., Y (N))

be a solution to (3.25) to (3.30). If Y (x) Ø 0 ’x œ [0, N], and fiú(x, 1) =

arg maxµ{µW (x) ≠ R(µ) ≠ —u(µ)Y (x)} œ [µ, µ̄] ’x œ [1, N], then fiú is optimal and

Jfiú = J = Jú.

Proof. Let fi be a feasible rate control policy of (3.3), and let µx = fi(x, 1) for

x = 1, 2, 3, ..., N .

80

By definition of „(.), one writes

„(W (x), Y (x)) Ø µxW (x) ≠ R(µx) ≠ —u(µx)Y (x) ’x œ [1, N ≠ 1].

Then, by (3.27), it follows that

⁄W (x + 1) + H(x) ≠ J Ø µxW (x) ≠ R(µx) ≠ —u(µx)Y (x) ’x œ [1, N ≠ 1].

Multiplying both sides of the equation above by ufi(x, 1), we obtain

(H(x)+R(µx)≠J)ufi(x, 1) Ø (µxW (x)≠⁄W (x+1)≠—u(µx)Y (x))ufi(x, 1). (3.31)

Multiplying both sides of (3.28) by ufi(x, 0), we have

(Cm +H(x)≠J)ufi(x, 0) = [(—d +⁄)Y (x)≠⁄(W (x+1)+Y (x+1))]ufi(x, 0). (3.32)

By multiplying Y (x) to both sides of (3.14), it follows

⁄ufi(x ≠ 1, 0)Y (x) = [(⁄ + —d)ufi(x, 0) ≠ —u(µx)ufi(x, 1)]Y (x), (3.33)

and adding ⁄µxufi(x, 1)W (x) to both sides of (3.33), we obtain

⁄ufi(x ≠ 1, 0)Y (x) + ⁄(ufi(x ≠ 1, 1) + ufi(x ≠ 1, 0))W (x)

= [(⁄ + —d)ufi(x, 0) ≠ —u(µx)ufi(x, 1)]Y (x) + ⁄µxufi(x, 1)W (x).
(3.34)

By adding (3.31) and (3.32) and applying (3.34), it is evident that for x œ [1, N ≠1]

we have

H(x)(ufi(x, 1) + ufi(x, 0)) + R(µx)ufi(x, 1) + Cmufi(x, 0) ≠ J(ufi(x, 1) + ufi(x, 0))

81

Ø ⁄W (x)(ufi(x ≠ 1, 1) + ufi(x ≠ 1, 0)) + ⁄Y (x)ufi(x ≠ 1, 0) (3.35)

≠⁄[W (x + 1)(ufi(x, 1) + ufi(x, 0)) + Y (x + 1)ufi(x, 0)].

Similarly, we can show that

H(N)(ufi(N, 1) + ufi(N, 0)) + R(µN)ufi(N, 1) + Cmufi(N, 0)

≠J(ufi(N, 1) + ufi(N, 0)) + ⁄p(ufi(N, 1) + ufi(N, 0)) (3.36)

Ø ⁄W (N)(ufi(N ≠ 1, 1) + ufi(N ≠ 1, 0)) + ⁄Y (N)ufi(N ≠ 1, 0).

Summing over x = 1, 2, 3, ..., N ≠1 of (3.35) and adding to (3.36) gives the following:

Nÿ

x=1
[(H(x) + R(µx))ufi(x, 1) + (H(x) + Cm)ufi(x, 0)] ≠ J

Nÿ

x=1
(u(x, 1) + x(x, 0))

Ø [(—d + ⁄)Y (0) ≠ Cm + J]ufi(0, 0) + (J ≠ —u(µ0)Y (0) ≠ R(µ0) + J)ufi(0, 1). (3.37)

Then, by (3.3) and the balance equations, it follows that,

Jfi ≠ J Ø (—d + ⁄)u(0, 0) ≠ —u(µ0)u(0, 1) = 0. (3.38)

Therefore,

Jfi Ø J. (3.39)

As fi œ �sm, all inequalities in the preceding can be replaced with equalities.

Therefore, it follows that

Jfiú = J = Jú. (3.40)

Hence, the optimal policy can be obtained by solving the system (3.25) to (3.30).

82

3.6 Numerical Study: Optimal Controls

In this section, we present the numerical results and optimal service rate controls

for the queueing systems discussed in Sections 3.3.1 and 3.3.2. To ensure that the

numerical study is representative of real-world scenarios, we provide the results

for the optimal controls under di�erent system dynamics and cost settings. We

assume —u(µ) Æ —d for µ Æ µ Æ µ̄ where —u(µ) = auµ + bu and —d, au, bu are

positive constants. This implies that the machine spends more time in the up-

state compared to the down-state on the average, which is a commonly observed

real-world phenomenon.

We first show the optimal controls when the system has linear costs, and then

we show the optimal policies when the system is under the quadratic cost setting.

In the linear costs setting, the holding cost function H(x) satisfies

H(x) = Chx

where x is the number of jobs in the system and Ch is a positive constant. We set

the e�ort cost function R(µ) to

R(µ) = Crµ

where Cr is a positive constant, and µ œ [µ, µ̄] with µ, µ̄ > 0.

In the quadratic costs setting, we set the holding cost function H(x) to

H(x) = Chx2

where x is the number of jobs in the system and Ch is a positive constant. In

83

addition, the e�ort cost function R(µ) satisfies

R(µ) = Crµ
2

where Cr is a positive constant, and µ œ [µ, µ̄] with µ, µ̄ > 0.

In both settings, the maintenance cost is Cm per unit time, and when a new

job arrives when the system is at its full capacity, a rejection cost p will occur.

Table 3.1: Parameter Combinations for the System Dynamics

Scenario ⁄ —d au bu

1 5 1 1
50

1
50

2 10 1 1
50

1
50

3 5 5 1
50

1
50

4 10 5 1
50

1
50

5 5 1 1
25

1
50

6 10 1 1
25

1
50

7 5 5 1
25

1
50

8 10 5 1
25

1
50

Table 3.2: Cost Parameter Settings

Settings 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cr 1 100 1 1 1 100 100 100 1 1 1 100 100 100 1
Ch 1 1 100 1 1 100 1 1 100 100 1 100 100 1 100
Cm 1 1 1 100 1 1 100 1 100 1 100 100 1 100 100
p 1 1 1 1 100 1 1 100 1 100 100 1 100 100 100

In this section, equations (3.25) to (3.30) are solved to obtain the optimal

control. The parameters for the system dynamics are listed in the Table 3.1. In

all the scenarios, we set µ = 1, µ̄ = 20, and N = 100. The parameters of the cost

functions are given in Table 3.2. The cost parameters take values in the set {1, 100}

and are permuted to show the impact of costs on the optimal policy.

There are 120 parameter combinations for the numerical study of the optimal

controls under both linear and quadratic cost settings.

Overall, scenarios 1, 3, 5, and 7 represent a less busy system compared to the

84

scenarios 2, 4, 6, and 10. Moreover, scenarios 1, 2, 5, and 6 represent a more

responsive system in terms of maintenance compared to scenarios 3, 4, 7, and 8.

The first four scenarios represent a system with a more reliable machine compared

to the last four scenarios.

In the first and second scenarios, the fraction of time for up states approximately

ranges from 70.4% to 96.2%. On average, 5 and 10 jobs arrive per unit of time in

these two scenarios, respectively. In the third and fourth scenarios, the fraction of

time for the up states approximately ranges from 92.3% to 99.2%. On average, 5

jobs arrive per unit time in the third scenario and 10 jobs arrive per unit time on

average in the scenario 5 . Because —d is set to 5 in scenarios 4 and 5, the machine

is able to recover much faster from a down state compared to the first two scenarios,

which explains why the fraction of time in the up states is relatively higher in the

third and fourth scenarios.

In the fifth and seventh scenarios, the average interarrival time is one fifth of unit

time. The fraction of time for up states approximately ranges from 54.9% to 94.3%

in the fifth scenario, and it ranges from 85.9% to 98.8% in the seventh scenario.

In scenarios 6 and 8, 10 jobs arrive per unit of time on average. In the scenario

6, when the system always operates on the maximum/minimum service rate, the

fraction of time when the system is in an up state is 54.9%/94.3%. In the scenario

8, when the system always operates at the maximum/minimum service rates, the

fraction of time when the system is in an up state is 85.9%/98.8%. Because of the

value of au is set to a larger number (1
25) compared to the first four scenarios (1

50),

the impact of —d on the fraction of up-state time is larger in the last four scenarios.

3.6.0.1 Linear Costs

For every parameter combination, the optimal controls are obtained by solving

equations (3.25) to (3.30) where the cost functions are set to linear functions. The

85

optimal controls are shown in Figures 3.3 - 3.10, where the x-axis represents the

number of jobs in the system and the y-axis corresponds to the service rate under

the optimal policy.

The rejection rate is the ratio between the number of rejected jobs and the total

number of arrivals. The server utilization and rejection rate from implementing the

optimal policy across all the scenarios are listed in the Table 3.3 and 3.4, which are

obtained via simulating 500,000 events.

Table 3.3: Server Utilization (%) across Scenarios 1 - 8 (Linear Costs)

Setting Cr Ch Cm p S1 S2 S3 S4 S5 S6 S7 S8
1 1 1 1 1 87.54 76.49 97.32 95.12 76.29 59.74 95.14 91.75
2 100 1 1 1 96.22 96.58 99.05 99.16 94.42 94.80 98.76 98.93
3 1 100 1 1 87.23 78.79 97.28 95.19 76.33 60.12 94.98 91.67
4 1 1 100 1 87.85 77.53 97.28 95.61 76.46 58.49 95.04 91.44
5 1 1 1 100 86.65 77.74 97.21 95.31 75.91 60.71 94.95 91.13
6 100 100 1 1 86.97 77.89 97.38 95.63 76.15 58.30 95.08 91.54
7 100 1 100 1 96.32 96.08 99.17 99.12 94.64 94.40 98.80 98.91
8 100 1 1 100 86.96 77.51 97.33 95.52 76.81 60.03 95.09 91.42
9 1 100 100 1 86.98 77.79 97.18 95.51 76.91 59.20 94.99 91.44
10 1 100 1 100 87.60 78.06 97.40 95.26 76.29 59.73 95.03 91.33
11 1 1 100 100 86.82 77.73 97.39 95.26 76.04 59.06 95.13 90.98
12 100 100 100 1 86.90 78.44 97.38 95.53 76.74 57.68 95.23 91.62
13 100 100 1 100 85.72 78.14 97.26 95.55 75.71 58.80 94.86 91.23
14 100 1 100 100 86.79 76.79 97.26 95.65 75.40 59.69 94.99 90.97
15 1 100 100 100 86.86 78.07 97.30 95.57 77.21 59.53 95.07 91.49

Table 3.4: Rejection Rates (%) across Scenarios 1 - 8 (Linear Costs)

Setting Cr Ch Cm p S1 S2 S3 S4 S5 S6 S7 S8
1 1 1 1 1 0.00 0.26 0.00 0.00 0.00 1.32 0.00 0.00
2 100 1 1 1 80.56 90.44 79.99 89.80 80.38 90.51 80.00 90.04
3 1 100 1 1 0.00 0.01 0.00 0.00 0.00 1.62 0.00 0.00
4 1 1 100 1 0.00 0.09 0.00 0.00 0.00 1.99 0.00 0.00
5 1 1 1 100 0.00 0.06 0.00 0.00 0.00 1.88 0.00 0.00
6 100 100 1 1 0.00 0.05 0.00 0.00 0.00 3.29 0.00 0.00
7 100 1 100 1 80.83 90.31 79.93 90.07 80.82 90.50 80.31 89.88
8 100 1 1 100 0.00 0.15 0.00 0.00 0.00 1.47 0.00 0.00
9 1 100 100 1 0.00 0.11 0.00 0.00 0.00 2.03 0.00 0.00
10 1 100 1 100 0.00 0.08 0.00 0.00 0.00 2.17 0.00 0.00
11 1 1 100 100 0.00 0.03 0.00 0.00 0.00 2.05 0.00 0.00
12 100 100 100 1 0.00 0.07 0.00 0.00 0.00 2.63 0.00 0.00
13 100 100 1 100 0.00 0.12 0.00 0.00 0.00 1.87 0.00 0.00
14 100 1 100 100 0.00 0.13 0.00 0.00 0.00 1.68 0.00 0.00
15 1 100 100 100 0.00 0.15 0.00 0.00 0.00 1.92 0.00 0.00

From rejection rates in the Table 3.4, we can see that the system tends to have

a high rejection rate when the running cost is high (see, for example, cost settings

86

2 and 7). This is reasonable because the optimal control tends to run the server at

a lower service rate when the e�ort cost is high (see, for example, controls under

cost settings 2 and 7 in Figures 3.3 - 3.10), and the system is likely to be at a

high congestion level. Therefore, it is more likely to observe rejections. However,

when the holding cost or rejection penalty increases, the rejection rate decreases

even when the e�ort cost is high (see, for example, cost settings 6, 8, 12, 13, and

14). This is justifiable as an increased holding cost could result in optimal control

policies that prevent the system from entering a high congestion level. And when

the rejection penalty is high, the optimal control would decrease the likelihood of

rejections. Hence, rejections are rarely observed.

In addition, scenarios 2, 4, 6 and 8 have relatively higher rejection rates compared

to other scenarios. The arrival rate is set to 10 in scenarios 2, 4, 6 and 8, whereas

in other scenarios, the arrival rate is set to 5. Since the system is much more busy

when it has a higher arrival rate, it makes sense to observe more rejections in these

cases.

For the linear cost setting, the optimal service rate switches at most once in

the control policy, and the service rate remains the same after the switch. In all

the parameter combinations of the cost setting, the service rate remains the same

for x Ø 10.

By comparing the policy under the cost setting 2 to other policies, we can

observe that the optimal policy will only use the smallest service rate when the

e�ort cost Cr is the highest cost. When both Cr and Ch (or p) are high (the cost

setting 6 and 8), the optimal control still uses the highest service rate. However,

when Cr and Cm are high (the cost setting 7), only the smallest service rate is used

in the optimal policy.

The optimal controls under the cost setting 4, in which Cr = Ch = p = 1 and

Cm = 100, switch to the maximum service rate when x = 1 in scenarios 4, 6 and 8.

87

However, the switch is delayed to x = 2 in scenarios 1, 2, 3, 5, and 7. The delay

may be caused by a high downtime penalty as Cm is set to 100 in the cost setting.

Because the arrival rate is relatively high (⁄ = 10) in scenarios 4, 6 and 8, a delay

in the switch might result in a system congestion, therefore, the controls in these

scenarios choose to switch to µ̄ when x = 1.

Figure 3.3: Optimal Controls of Scenario 1 (Linear Costs)

Figure 3.4: Optimal Controls of Scenario 2 (Linear Costs)

Figure 3.5: Optimal Controls of Scenario 3 (Linear Costs)

88

Figure 3.6: Optimal Controls of Scenario 4 (Linear Costs)

Figure 3.7: Optimal Controls of Scenario 5 (Linear Costs)

Figure 3.8: Optimal Controls of Scenario 6 (Linear Costs)

Figure 3.9: Optimal Controls of Scenario 7 (Linear Costs)

89

Figure 3.10: Optimal Controls of Scenario 8 (Linear Costs)

3.6.0.2 Quadratic Costs

Similar to the previous subsection, the optimal controls are obtained by solving

equations (3.25) to (3.30), but the cost functions are set to quadratic functions.

The optimal controls are shown in Figures 3.11 - 3.18. The server utilization and

rejection rate from implementing the optimal policy across all the scenarios are

listed in the Table 3.5 and 3.6, which are obtained via simulating 500,000 events.

Table 3.5: Server Utilization (%) across Scenarios 1 - 8 (Quadratic Costs)

Setting Cr Ch Cm p S1 S2 S3 S4 S5 S6 S7 S8
1 1 1 1 1 87.48 78.95 97.49 95.42 77.63 58.20 95.36 91.85
2 100 1 1 1 88.11 96.33 97.66 99.18 79.13 94.50 95.55 98.78
3 1 100 1 1 87.42 79.00 97.42 95.60 77.04 59.78 94.99 91.22
4 1 1 100 1 87.77 78.20 97.45 95.57 78.04 58.43 95.59 91.74
5 1 1 1 100 88.12 77.43 97.69 95.76 76.68 57.71 95.52 91.49
6 100 100 1 1 88.44 78.37 97.68 95.57 77.19 60.75 95.61 91.65
7 100 1 100 1 88.17 96.52 97.69 99.25 78.64 94.35 95.65 98.78
8 100 1 1 100 88.70 96.63 97.44 98.88 78.27 94.46 95.71 98.76
9 1 100 100 1 87.14 78.10 97.43 95.42 76.50 60.71 95.07 91.50
10 1 100 1 100 86.79 78.62 97.51 95.33 76.01 60.58 95.29 91.33
11 1 1 100 100 87.77 77.67 97.55 95.11 77.51 59.59 95.37 91.82
12 100 100 100 1 87.96 78.34 97.55 95.68 76.97 59.39 95.49 91.81
13 100 100 1 100 87.17 78.58 97.45 95.49 77.70 59.64 95.27 91.68
14 100 1 100 100 88.52 96.14 97.63 99.24 78.09 93.96 95.49 98.76
15 1 100 100 100 87.19 77.80 97.23 95.61 76.46 59.29 94.98 91.09

The rejection rates in Table 3.6 indicate that when the e�ort cost is high, the

system tends to have a high rejection rate (see, for example, cost settings 2, 7, 8,

and 14). This is reasonable because the optimal control tends to run the server at

a lower service rate when the e�ort cost is high (see, for example, controls under

cost settings 2, 7, 8, and 14 in Figures 3.11 - 3.18), and the system is likely to be at

90

Table 3.6: Rejection Rates (%) across Scenarios 1 - 8 (Quadratic Costs)

Setting Cr Ch Cm p S1 S2 S3 S4 S5 S6 S7 S8
1 1 1 1 1 0.0 0.1 0.0 0.0 0.0 1.7 0.0 0.0
2 100 1 1 1 0.0 90.4 0.0 89.6 0.0 90.2 0.0 90.0
3 1 100 1 1 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0
4 1 1 100 1 0.0 0.1 0.0 0.0 0.0 2.2 0.0 0.0
5 1 1 1 100 0.0 0.2 0.0 0.0 0.0 2.0 0.0 0.0
6 100 100 1 1 0.0 0.2 0.0 0.0 0.0 1.2 0.0 0.0
7 100 1 100 1 0.0 90.2 0.0 89.9 0.0 90.4 0.0 90.0
8 100 1 1 100 0.0 90.2 0.0 82.4 0.0 90.5 0.0 89.9
9 1 100 100 1 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0
10 1 100 1 100 0.0 0.1 0.0 0.0 0.0 1.5 0.0 0.0
11 1 1 100 100 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0
12 100 100 100 1 0.0 0.1 0.0 0.0 0.0 2.8 0.0 0.0
13 100 100 1 100 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0
14 100 1 100 100 0.0 90.0 0.0 88.5 0.0 90.8 0.0 90.0
15 1 100 100 100 0.0 0.1 0.0 0.0 0.0 1.9 0.0 0.0

a high congestion level. Therefore, it is more likely to observe rejections. When the

holding cost increases, the rejection rate decreases even when the e�ort cost is high

(see, for example, cost settings 6, 12, and 13). This is justifiable as an increased

holding cost could result in optimal control policies that prevent the system from

entering a high congestion level.

However, increasing the rejection cost when the e�ort cost is high does not have

a significant impact on the rejection rate (see, for instance, cost settings 8 and 14).

From the optimal controls under cost settings 2 and 8 in Figures 3.11 - 3.18, we

can see that an increased rejection penalty does not change the policy significantly

when the e�ort cost is high. Therefore, the system has a high likelihood of entering

a high congestion level. Hence, the rejection rate remains high. This is di�erent

from the linear case, it is likely due to the high running cost in the quadratic case

has much larger impact on the optimal control.

Scenarios 2, 4, 6 and 8 have higher rejection rates compared to other scenarios

similar to the linear case. However, when the arrival rate is relatively low, the

rejection rate is near 0, which is di�erent from the linear case.

From the optimal policies in Figures 3.11 - 3.18, we can see that policies under

cost settings 2, 7, 8 and 14 are not monotonic. In the all 4 cases, the running cost

91

Figure 3.11: Optimal Controls of Scenario 1 (Quadratic Costs)

Figure 3.12: Optimal Controls of Scenario 2 (Quadratic Costs)

Figure 3.13: Optimal Controls of Scenario 3 (Quadratic Costs)

Figure 3.14: Optimal Controls of Scenario 4 (Quadratic Costs)

92

Figure 3.15: Optimal Controls of Scenario 5 (Quadratic Costs)

Figure 3.16: Optimal Controls of Scenario 6 (Quadratic Costs)

Figure 3.17: Optimal Controls of Scenario 7 (Quadratic Costs)

Figure 3.18: Optimal Controls of Scenario 8 (Quadratic Costs)

93

is set to the highest value. In other cases in which the running cost is high, if the

holding cost is also high, the optimal control is still monotonic. The non-monotone

policies can be further classified into two groups. In scenarios 1, 3, 5, and 7, the

service rate decreases only when the number of jobs approaches the system capacity.

However, in the remaining scenarios, the service rate decreases when x = 20, which

is far away from the system capacity. Given that the arrival rate is relatively high

(⁄ = 10) in scenarios 2,4, 6 and 8, the optimal controls are likely to avoid a further

congestion by operating at a lower service rate, thereby reducing the likelihood of

machine breakdowns. In scenarios 1, 3, 5, and 7, the optimal controls indicate that

it is better to reduce the chance of machine breakdown by operating at a lower

service rate when the system is at a high congestion level.

3.7 Learning

In practice, it might be costly to fully observe the system dynamics, and the

dynamics may change. In such cases, errors in the estimation of system dynamics

might result in a suboptimal control policy, which may incur additional costs over

time. Because it requires knowledge of the system dynamics to obtain an optimal

control, unknown parameters must be learnt.

Online learning algorithms are commonly used in this class of problems. The

quality of an online learning algorithm is typically measured in terms of its regret,

where the regret is the di�erence between the aggregate performance of the algorithm

compared to the best decision made in hindsight. An algorithm is deemed to have

a good performance if its regret approaches zero at a fast rate.

Recall that the breakdown rate is assumed to be a linear function of the service

rate satisfying —u(µ) = auµ + bu for µ œ [µ, µ̄] where au, bu are positive constants.

In the first subsection, we propose online algorithms for obtaining the optimal

94

policy when au and bu are unknown by solving a set of quasi-likelihood equations.

The second subsection describes an online reinforcement learning algorithm that

can obtain a good control policy when the system dynamics are entirely unknown.

3.7.1 Partially Unknown MDP

In this subsection, we assume that au and bu are unknown positive constants. We

use T (µ) to denote the sojourn time when the system is in the up state and the

server operates with a service rate of µ œ [µ, µ̄]. Assuming that the CTMC is

governed by a control policy fi œ �s, the probability density function of the sojourn

time T (fi(x, 1)) is defined as

ffi(T (fi(x, 1))) = (⁄ + fi(x, 1) + —u(fi(x, 1)))e≠(⁄+fi(x,1)+—u(fi(x,1)))T (fi(x,1)),

where x = 1, 2, 3, ..., N ≠ 1. Since —u(µ) = auµ + bu, it’s evident that

ffi(T (fi(x, 1))) = (⁄ + fi(x, 1) + aufi(x, 1) + bu)e≠(⁄+fi(x,1)+aufi(x,1)+bu)T (fi(x,1)).

Since au and bu are unknown, we can use the maximum log-likelihood estimation

to estimate the unknown parameters based on the observed service rate µi and

its sojourn time T (µi) for i = 1, 2, 3, ..., n, where n is the number of observations.

Namely,

max
âu,b̂u

L(âu, b̂u; T (µ1), T (µ2), ..., T (µn)) =

nÿ

i

ln((⁄+µi + âuµi + b̂u)e
≠(⁄+µi+âuµi+b̂u)T (µi)),

which can be rewritten as

max
âu,b̂u

nÿ

i

ln(⁄ + µi + âuµi + b̂u) ≠
nÿ

i

(⁄ + µi + âuµi + b̂u)T (µi). (3.41)

95

The first derivatives of the function with respect to âu, b̂u are

ˆL

ˆâu
=

nÿ

i

µi

⁄ + µi + âuµi + b̂u

≠
nÿ

i

µiT (µi),

ˆL

ˆb̂u

=
nÿ

i

1
⁄ + µi + âuµi + b̂u

≠
nÿ

i

T (µi).

And the best estimate âú
u, b̂ú

u should take the form

Y
___]

___[

qn
i

µi

⁄+µi+âú
uµi+b̂ú

u

≠ qn
i µiT (µi) = 0

qn
i

1
⁄+µi+âú

uµi+b̂ú
u

≠ qn
i T (µi) = 0

(3.42)

Since the (3.42) is clearly non-convex, the solution of (3.42) may not be unique.

Therefore, we choose the root with the lowest mean-least square error, see, for

example [76, Chapter 13.3]. We define the error terms {Ái}iœN by

Ái := T (µi) ≠ 1
(⁄ + µi + auµi + bu) .

As the second equation of (3.42) show, the average of Ái is 0 for the true values

of au and bu. Therefore, {Ái}iœN forms a martingale with respect to its natural

filtration. Hence, when we are solving equations (3.42), we select the solution that

has the lowest 1
N

qN
i Á2

i .

The procedure is as follow:

1. Define stopping criterion

2. Initialize âu and b̂u with random positive numbers such that the ergodic

condition 3.12 is satisfied.

3. If the stopping criterion is not met, solve the di�erential value functions (3.16)

- (3.21) to obtain a control policy fi where the au and bu in —d are substituted

96

by âu and b̂u; otherwise, stop.

4. Operate the server using fi and collect service rate fi(x, 1) œ [µ, µ̄] and its

sojourn time T (fi(x, 1)) when x > 0 and K = 1.

5. Update âu and b̂u by solving 3.42 and return to step 3.

Algorithm 12 shows the detail of the procedure.

3.7.2 Completely Unknown MDP

System dynamics of queuing systems can change for various reasons. For instance,

as a machine ages, a higher speed might cause a more frequent breakdown; the

arrival distribution changes completely when an unforeseen pandemic like COVID-19

occurs. Model-free reinforcement learning can adapt to such changes and provide a

good quality control policy, although the optimality of the policy is not guaranteed.

The control variable is a continuous variable from a compact set, namely

µ œ [µ, µ̄], and the problem is a continuous task, namely, no terminal state. A

slightly modified (to accommodate the fact that the control problem minimizes the

average cost and is a continuous control task) deep deterministic policy gradient

method can be applied. Essentially, a parameterized policy is updated to minimize

the cost J (3.3).

The DDPG algorithm combines both the DPG [36] and deep Q-network [31]

(DQN) methods. It utilizes the DPG to update the actor (policy). Both experience

replay and the target network from DQN are used in DDPG to stabilize the learning

process of the critic (evaluator of the policy). The target Q-network is periodically

frozen for a certain period before the update in the DQN; however, the parameters of

the target networks are updated via a soft update procedure in DDPG. A Gaussian

noise N is added when the action is drawn from the deterministic policy to ensure

exploration.

97

Algorithm 12: Optimal Control with Estimated Parameters
Result: fi ¥ fiú

Input: ⁄, µ, µ̄, Cr, Ch, Cm, —d, N
Parameters: Iter1, Iter2
Initialize âu > 0, b̂u > 0 randomly
Initialize c1 = 0, c2 = 0, S = (0, 1), µhistory = [], thistory = [], n = 0
while c1 Æ Iter1 do

Update the estimation âu, b̂u in —u, solve the following system via the value iteration to obtain fi

v(0, 0) = 1
q

[Cm ≠ Jú + —dv(0, 1) + ⁄v(1, 0) + (q ≠ —d ≠ ⁄)v(0, 0)]

v(0, 1) = 1
q

[R(µ) ≠ Jú + —u(µ)v(0, 0) + ⁄v(1, 1) + (q ≠ —u(µ) ≠ ⁄)v(0, 1)]

v(x, 0) = 1
q

[H(x) + Cm ≠ Jú + —dv(x, 1) + ⁄v(x + 1, 0) + (q ≠ —d ≠ ⁄)v(x, 0)]

v(x, 1) = min
µ

1
q

[H(x) + R(µ) ≠ Jú + —u(µ)v(x, 0) + ⁄v(x + 1, 1) + µv(x ≠ 1, 1)

+ (q ≠ —u(µ) ≠ µ ≠ ⁄)v(v, 1)]

v(N, 0) = 1
q

[H(N) + Cm ≠ Jú + ⁄p + —dv(N, 1) + (q ≠ —d)v(N, 0)]

v(N, 1) = min
µ

1
q

[R(µ) + H(N) ≠ Jú + ⁄p + —u(µ)v(N, 0) + µv(N ≠ 1, 1)

+ (q ≠ —u(µ) ≠ µ)v(N, 1)]

x = 1, 2, 3, ...N ≠ 1
c1 Ω c1 + 1
if c1 > Iter1 then

break
c2 = 0
while c2 Æ Iter2 do

if S[1] = 1 then
µ = fi(S)
Take action µ and observe SÕ,sojourn time t
µhistory .append(µ)
thistory .append(t)
n Ω n + 1

else
observe SÕ

S Ω SÕ

c2 Ω c2 + 1
Solve the following equations to find âú

u and b̂ú
uq

n

i

µhistory [i]
⁄+µhistory [i]+â

ú
uµhistory [i]+b̂

ú
u

≠
q

n

i
µhistory [i]thistory [i] = 0

q
n

i

1
⁄+µhistory [i]+â

ú
uµhistory [i]+b̂

ú
u

≠
q

n

i
thistory [i] = 0

âu Ω âú
u

b̂u Ω b̂ú
u

return fi

In this section, the same MDP defined in Section 3.3 is used. Namely, the state

space is defined as S © [0, N] ◊ {0, 1} and the action space is defined as A © [µ, µ̄].

The modified DDPG learns and improves the policy following this procedure:

98

1. Initialize a di�erentiable policy parameterization µ� and a target policy

µ�targ
:= µ�. Policy µ� outputs the action, and the target policy is used to

estimate the long-term reward of the policy (see steps 9 and 10).

2. Initialize a di�erentiable state-action value function parameterization Q�Õ ,

and a target state-action value function Q�Õ
targ

. For the state-action value

functions, Q�Õ is used to derive the gradient �. Since Q�Õ takes the output

of µ� as an input, the cost can be reduced by improving Q�Õ with respect to

� using gradient-based methods. The target value function Q�Õ
targ

is used to

estimate the long-term reward of the policy (see step 9 and 10).

3. Define stopping criterion, soft-update parameter fl œ [0, 1], learning rate of

actor –A œ (0, 1], critic –C œ (0, 1], and average reward estimator –, and

initialize an empty memory bu�er D, average reward estimator Ĵ = 0, an

exploration rate ‡ > 0 and an exploration rate decay factor “œ (0, 1).

4. Observe the current state S and generate an action A (service rate) from the

policy, namely,

A = min{µ̄, max{µ�(s) + ‘, µ}}

where ‘ is a Gaussian noise from N (0, ‡) to ensure the exploration. Since no

explicit restriction is defined on the image of the parameterized policy µ�,

we adjust the output policy to ensure A œ [µ, µ̄].

5. Take the action A and observe next on-state S Õ, and the reward R (in this

context, the reward is negative of the sum of holding cost, running cost and

maintenance cost). Since the agent needs to provide an action only when

the machine is in an up-state, if the machine is in a down-state, then the

simulation will continue to run and accumulate the costs until the machine is

in the up state.

99

6. Store the transitions (S, A, R, S Õ) in memory bu�er D.

7. If the updating criterion is satisfied, go to the next step; else, return to step

4.

8. Sample a batch of transitions B = (s, a, r, sÕ) from memory D.

9. Estimate the long-term rewards of sampled transitions using the target policy

and target value function,

y(r, sÕ) = r ≠ Ĵ + Q�Õ
targ

(sÕ, µ�targ
(sÕ)) ’(s, a, r, sÕ) œ B

10. Update the estimated average reward

Ĵ = Ĵ + –
1

|B|(
ÿ

(s,a,r,sÕ)œB

y(r, sÕ) ≠ Q�Õ
targ

(sÕ, µ�targ
(sÕ)))

11. Update Q-function by one step of gradient descent

�Õ Ω �Õ ≠ –CÒ�Õ
1

|B|
ÿ

(s,a,r,sÕ)œB

(Q�Õ(s, a) ≠ y(r, sÕ))2

12. Update policy by one step of gradient ascent using

� Ω � + –AÒ�
1

|B|
ÿ

sœB

Q�Õ(s, µ�(s))

13. Update the target networks with

�targ Ω fl�targ + (1 ≠ fl)�

�Õ
targ Ω fl�Õ

targ + (1 ≠ fl)�Õ

100

14. Decrease the exploration rate

‡ Ω “‡

15. Stop if stopping criterion is satisfied, else go to step 4

Note that the method only requires the ergodicity from the MDP, and it views

the underlying queuing system as a black box that returns the next state and cost

for an input action. The modified DDPG is described in the Algorithm 13.

101

Algorithm 13: Modified DDPG for Continuous Control Tasks with Aver-
age Reward

Result: µ� ¥ µ
ú

Input: a di�erentiable policy parameterization µ�, a target policy µ�targ := µ�
Input: a di�erentiable state-action value function parameterization Q�Õ , a target

Q-function Q�Õ
targ

:= Q�Õ

Parameters: –A, –C , –, Iter, fl, freq, “, aLow,aHigh, ‡, “

Initialize policy parameter �, state-value parameters �
Õ
, episode count epoch = 0, step

count step = 0, an empty experience bu�er D, Ĵ = 0

while True do
Initialize first state of episode S

A = min[max[µ�(S) + ‘, aLow], aHigh], where ‘ ≥ N
Take action A and observe S

Õ
, R

Store (S, A, R, S
Õ
) in the replay bu�er D

S Ω S
Õ

step Ω step + 1

if step%freq = 0 then
Sample a batch of transitions, B = (s, a, r, s

Õ
) from D

Compute targets

y(r, s
Õ
) = r ≠ Ĵ + Q�Õ

targ
(s

Õ
, µ�targ (s

Õ
))

Update estimated average cost

Ĵ = Ĵ + –
1

|B| (
ÿ

(s,a,r,sÕ)œB

y(r, s
Õ
) ≠ Q�Õ

targ
(s

Õ
, µ�targ (s

Õ
)))

Update Q-function by one step of gradient descent using

�
Õ Ω �

Õ ≠ –CÒ�Õ
1

|B|
ÿ

(s,a,r,sÕ)œB

(Q�Õ(s, a) ≠ y(r, s
Õ
))

2

Update policy by one step of gradient ascent using

� Ω � + –AÒ�
1

|B|
ÿ

sœB

Q�Õ(s, µ�(s))

Update the target networks with

�targ Ω fl�targ + (1 ≠ fl)�

�
Õ
targ

Ω fl�
Õ
targ

+ (1 ≠ fl)�
Õ

Decrease the exploration rate

‡ Ω “‡

epoch Ω epoch + 1

if epoch=Iter then
break

return µ�

102

3.8 Numerical Study: Adaptive Control

In this section, we present the numerical examples of the adaptive control problems.

3.8.1 Partially Unknown MDP

We first show the results of the proposed learning algorithms when au and bu are

unknown positive constants. These parameters are used in the breakdown rate

—u(µ) = auµ + bu for µ œ [µ, µ̄].

Recall that X(t) and K(t) are the number of jobs in the system and the status

of the server at time t Ø 0. Let mT denote the number of transitions for the process

before time t. Let ·0 = 0, and denote ·i, 1 Æ i Æ mt, as the i-th jump time of the

process. Let gfi(x, k) be the unit cost under an admissible stable policy fi.

gfi(x, k) = R(fi(x, k)) + H(x) + Cm(1 ≠ k). (3.43)

We define the cumulative cost function F as follows:

F (t) :=
mtÿ

i=1

⁄ ·i

·i≠1
gfii≠1(X(s), K(s))ds +

⁄ t

·mt

gfimt (X(s), K(s))ds

+ p
mtÿ

i=1
(A(·i) ≠ A(·i≠1))

⁄ ·i

·i≠1
(X(s) = N)ds

+ p(A(t) ≠ A(·mt
))

⁄ t

·mt

(X(s) = N)ds

for t Ø 0, where the fii denotes the policy used in the i-th jump above and A(t) is

the number of arrivals up to time t.

We use the regret to measure the performance of the proposed algorithms

R(n) := 1
tn
E[F (tn)] ≠ Jú

103

for a positive integer n Æ L, where L denotes the number of timestamps in the

simulation.

We set L=1000, and tL is chosen to be su�ciently large such that the average

regret is near zero as n approaches L. We conduct experiments for both cost

function types under the first system dynamic scenario shown in Tables 3.1. We

also use the cost parameter setting 1, namely, Cr = Ch = Cm = p = 1.

In Figures 3.19 - 3.20, the x-axis represents the timestamps in the simulations

with the di�erence between the timestamps equal to tL

L , and the y-axis corresponds to

the average regret R(n) at each timestamp tn. In each experiment, the expectation

is approximated by the average over the values of 300 trajectories. As shown in

the figures, the average regret asymptotically converges to 0, which validates the

proposed algorithms.

0 200 400 600 800 1000

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
eg
re
t

Scenario 1

Cost Parameter Setting 1

Figure 3.19: Poisson Arrivals with Lin-
ear Cost Functions

0 200 400 600 800 1000

n

0

10

20

30

40

R
eg
re
t

Scenario 1

Cost Parameter Setting 1

Figure 3.20: Poisson Arrivals with
Quadratic Cost Functions

3.8.2 Completely Unknown MDP

In this section, we use the DDPG algorithm to learn the control policy for the

problem under two types of cost functions. The configurations of the algorithm are

shown in Table 3.7.

104

Parameters Value

–A 0.01

–C 0.01

– 0.01

‡ 3.5

“ 0.99

fl 0.99

freq 10

Iter 20000

aLow 1.5

aHigh 5

Neural network structure (actor) [16,8]

Activation function (actor) ReLU,ReLU,Linear

Neural network structure (critic) [16,8]

Activation function (critic) ReLU,ReLU,Linear

Table 3.7: DDPG Configurations

Linear Cost

The system dynamics used in this experiment are list in Table 3.8. Figure 3.21

shows the average cost obtained from the training process, and Figure 3.22 compares

the policy obtained by the DDPG algorithm to the theoretical optimal policy.

Figure 3.21: Average Cost of DDPG
Training

Figure 3.22: Policy Obtained from
DDPG Method

50,000 runs of simulations using the policy obtained by the DDPG result in

an average cost of 11.1, although it is higher than the theoretical optimal cost

(10.9), it is much lower than the average cost of constant policies (21.87 &31.82)

105

Table 3.8: System Dynamics Parameters

Parameters Linear Cost Quadratic Cost
⁄ 5 5
µ 1 1
µ̄ 20 20
—d 5 5
au

1
25

1
25

bu
1
50

1
50

N 20 20
Cr 1 1
Ch 1 1
Cm 100 100
p 1 1

and uniformly random policy (17.31).

Quadratic Cost

The system dynamics used in this experiment are shown in Table 3.8. Figure

3.23 shows the average cost obtained during the training process, and Figure 3.24

compare the policy obtained by the DDPG algorithm to the theoretical optimal

policy.

Figure 3.23: Average Cost of DDPG
Training

Figure 3.24: Policy Obtained from
DDPG Method

50,000 runs of simulations using the policy obtained by the DDPG result in an

106

average cost of 51.8, it is slightly higher than the theoretical optimal cost (49.7),

it is much lower than the average cost of constant policies (172.51&360.07) and

uniformly random policy (121.29).

3.9 Conclusions

In this chapter, we investigate a service rate control problem for a finite capacity

single-server queue with an unreliable server. The goal is to minimize a combination

of e�ort cost, holding cost, maintenance cost and rejection cost incurred per

unit time, and we study the problem under an average cost optimality criterion.

We show the conditions under which the stable admissible policy exists. We

further prove the optimality of a policy derived from the solution of the Bellman

equations. Additionally, an algorithm is proposed to learn the optimal policy

based on the estimated downrate parameters when they are unknown. Numerical

studies are conducted to validate algorithms in both linear and quadratic cost

cases. Furthermore, a model-free RL algorithm, DDPG, is used to learn when all

parameters of the queue system are unknown in the case of Poisson arrival, and

the results shows that the obtained control policy is similar to the optimal policy.

As the algorithm is based on the policy gradient theorem, in a general case, the

policy obtained from DDPG is a local optimum.

The learning algorithm for the partially unknown MDP utilizes the underlying

system dynamics to estimate the unknown parameters, therefore, it is a model-

based method. The DDPG method used in the case of completely unknown MDP,

however, is a model-free method, namely, it finds control policies solely from

interacting with the environment. From the results, we can see that the model-free

method cannot obtain the exact optimal control policy under the configurations.

Although the result favors the model-based method, when the underlying MDP

107

has a high-dimensional state space and action space, the computational cost of

the model-based method will be high and a near-optimal control policy from a

model-free method will be more practical in general.

This work can be extended in several ways. In this chapter, we assume that

the server runs at the lowest speed even when the system is empty, and this is a

valid assumption for a twenty-four hours operating floor. However, by adding an

additional layer of control, for instance, the policy can switch the machine o� and

on via a N-policy [103,112], the problem can be applied to more general settings.

In addition, the arrival process is assumed to be stationary and it can be extended

to a non-homogeneous Poisson or Markov modulated Poisson arrival process [96].

108

Bibliography

[1] Herrmann, J. W. (2006) Handbook of production scheduling,
arXiv:1011.1669v3.

[2] Dequeant, K., P. Vialletelle, P. Lemaire, and M. L. Espinouse
(2017) “A literature review on variability in semiconductor manufacturing:
The next forward leap to Industry 4.0,” in Proceedings - Winter Simulation
Conference.

[3] Abu-Samah, A., M. K. Shahzad, E. Zamaï, and S. Hubac (2014)
“Methodology for Integrated Failure-Cause Diagnosis with Bayesian Approach
: Application to Semiconductor Manufacturing Equipment,” European Con-
ference of the Prognostics and Health Management Society, (i), pp. 1–11.

[4] Aberdeen, “The Rising Cost of Downtime,”
https://www.aberdeen.com/techpro-essentials/stat-of-the-
week-the-rising-cost-of-downtime.

[5] Advanced Technology Services, I., “Down-
time Costs Auto Industry $22K/Minute - Survey,”
https://news.thomasnet.com/companystory/downtime-costs-
auto-industry-22k-minute-survey-481017.

[6] Frazee, T. and C. Standridge (2016) “Conwip versus POLCA: A compar-
ative analysis in a high-mix, low-volume (HMLV) manufacturing environment
with batch processing,” Journal of Industrial Engineering and Management,
9(2), pp. 432–449.

[7] Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba (2016) “Openai gym,” arXiv preprint
arXiv:1606.01540.

[8] Chaari, T., S. Chaabane, N. Aissani, and D. Trentesaux (2014)
“Scheduling under uncertainty: Survey and research directions,” in 2014
International Conference on Advanced Logistics and Transport, ICALT 2014,
pp. 229–234.

109

[9] Al-Hinai, N. and T. Y. Elmekkawy (2011) “Robust and stable flexible
job shop scheduling with random machine breakdowns using a hybrid genetic
algorithm,” International Journal of Production Economics, 132(2), pp. 279–
281.

[10] Xiong, J., L.-n. Xing, and Y.-w. Chen (2013) “Robust scheduling for
multi-objective flexible job-shop problems with flexible workdays,” Interna-
tional Journal of Production Economics, 141, pp. 112—-126.
URL http://dx.doi.org/10.1016/j.ijpe.2012.04.015

[11] Sun, T. C., K. K. Lai, K. Lam, and K. P. So (1994) “A study of heuristics
for bidirectional multi-hoist production scheduling systems,” International
Journal of Production Economics, 33(1-3), pp. 207–214.

[12] Smith, S. (1995) “Reactive scheduling systems,” Intelligent scheduling sys-
tems, p. 38.

[13] Subramaniam, V., A. S. Raheja, and K. Rama Bhupal Reddy (2005)
“Reactive repair tool for job shop schedules,” International Journal of Pro-
duction Research, 43(1), pp. 1–23.

[14] Zhang, W. and T. Dietterich (1995) “A reinforcement learning approach
to job-shop scheduling,” International Joint Conference on Artificial . . . , pp.
1114–1120.

[15] Aydin, M. E. and E. Öztemel (2000) “Dynamic job-shop scheduling using
reinforcement learning agents,” Robotics and Autonomous Systems, 33(2),
pp. 169–178.

[16] Wang, Y. C. and J. M. Usher (2005) “Application of reinforcement
learning for agent-based production scheduling,” Engineering Applications of
Artificial Intelligence, 18(1), pp. 73–82.

[17] Park, I.-B., J. Huh, J. Kim, and J. Park (2019) “A reinforcement learning
approach to robust scheduling of semiconductor manufacturing facilities,”
IEEE Transactions on Automation Science and Engineering, 17(3), pp. 1420–
1431.

[18] Liu, C.-L., C.-C. Chang, and C.-J. Tseng (2020) “Actor-critic deep
reinforcement learning for solving job shop scheduling problems,” IEEE
Access, 8, pp. 71752–71762.

[19] Shahrabi, J., M. A. Adibi, and M. Mahootchi (2017) “A reinforcement
learning approach to parameter estimation in dynamic job shop scheduling,”
Computers & Industrial Engineering, 110, pp. 75–82.
URL http://linkinghub.elsevier.com/retrieve/pii/S0360835217302309

110

[20] Sutton, R. S. and A. G. Barto (2018) Reinforcement learning: An
introduction.

[21] Bellman, R. (1957) “A Markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684.

[22] Howard, R. A. (1960) “Dynamic programming and markov processes.” .

[23] Puterman, M. L. and M. C. Shin (1978) “Modified policy iteration
algorithms for discounted Markov decision problems,” Management Science,
24(11), pp. 1127–1137.

[24] Bertsekas, D. P., D. P. Bertsekas, D. P. Bertsekas, and D. P.
Bertsekas (1995) Dynamic programming and optimal control, vol. 1, Athena
scientific Belmont, MA.

[25] Rummery, G. A. and M. Niranjan (1994) On-line Q-learning using connec-
tionist systems, vol. 37, University of Cambridge, Department of Engineering
Cambridge, UK.

[26] Watkins, C. J. C. H. (1989) “Learning from delayed rewards,” .

[27] Watkins, C. J. and P. Dayan (1992) “Q-learning,” Machine learning,
8(3-4), pp. 279–292.

[28] Rubinstein, R. (1981) “Simulation and the Monte Carlo Method, Wiley,”
New York.

[29] Kalos, M. and P. Whitlock (1986), “Monte Carlo Methods: Basics, vol.
1,” .

[30] Barto, A. G., R. S. Sutton, and C. Watkins (1989) Learning and
sequential decision making, University of Massachusetts Amherst, MA.

[31] Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Os-
trovski, et al. (2015) “Human-level control through deep reinforcement
learning,” Nature, 518(7540), pp. 529–533.

[32] Broomhead, D. and D. Lowe (1988) “Multivariable functional interpola-
tion and adaptive networks, complex systems, vol. 2,” .

[33] Narasimhan, K., T. Kulkarni, and R. Barzilay (2015) “Language
understanding for text-based games using deep reinforcement learning,” arXiv
preprint arXiv:1506.08941.

111

[34] Sutton, R. S., D. A. McAllester, S. P. Singh, and Y. Mansour
(2000) “Policy gradient methods for reinforcement learning with function
approximation,” in Advances in neural information processing systems, pp.
1057–1063.

[35] Williams, R. J. (1992) “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, 8(3-4), pp. 229–256.

[36] Silver, D., G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller (2014) “Deterministic policy gradient algorithms,” .

[37] Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2015) “Prioritized
experience replay,” arXiv preprint arXiv:1511.05952.

[38] Ishfaq, K., N. Mufti, J. Ahmad, M. Sajid, and M. Jahanzaib (2018)
“Analysis of the E�ect of Wire Electric Dischage Machining Process Parameters
for the Formation of High Speed Steel Form Tool,” Advances in Science and
Technology Research Journal.

[39] Mikell P. Groover (2014) “Fundamentals of Modern Manufacturing:
Materials, Processes, and Systems,” Igarss 2014, arXiv:1011.1669v3.

[40] Srikant, R., D. N. Rao, C. S. Rao, and M. S. Subrahmanyam (2008)
“Mathematical Modeling of the Influence of Emulsifier Content on Performance
of Cutting Fluids,” Journal of the Brazilian Society of Mechanical Sciences
and Engineering.

[41] Seibt, M., M. Apel, A. Doller, H. Ewe, E. Spiecker, W. Schroter,
and A. Zozime (1998) “Modeling and Experimental Verification of Gettering
Mechanisms,” in Semi-Conductor Conference, volume 1, p. 1064.

[42] Luo, Y., H. Guo, X. Sun, M. Mao, and J. Guo (2017) “E�ects of
Austenitizing Conditions on the Microstructure of AISI M42 High-Speed
Steel,” Metals.

[43] Garey, M. R., D. S. Johnson, and R. Sethi (1976) “The Complexity
of Flowshop and Jobshop Scheduling,” Mathematics of Operations Research,
1(2), pp. 117–129.
URL http://pubsonline.informs.org/doi/abs/10.1287/moor.1.2.117

[44] Allahverdi, A., C. T. Ng, T. C. Cheng, and M. Y. Kovalyov (2008)
“A survey of scheduling problems with setup times or costs,” European Journal
of Operational Research.

[45] Sharma, P. and A. Jain (2016), “A review on job shop scheduling with
setup times,” .

112

[46] Vela, C. R., R. Varela, and M. A. González (2010) “Local search
and genetic algorithm for the job shop scheduling problem with sequence
dependent setup times,” Journal of Heuristics.

[47] Naderi, B., M. Zandieh, and S. M. Fatemi Ghomi (2009) “Scheduling job
shop problems with sequence-dependent setup times,” International Journal
of Production Research.

[48] Cheung, W. and H. Zhou (2001) “Using Genetic Algorithms and Heuristics
for Job Shop Scheduling with Sequence-Dependent Setup Times,” Annals of
Operations Research.

[49] Naderi, B., M. Zandieh, and S. M. Fatemi Ghomi (2009) “Schedul-
ing sequence-dependent setup time job shops with preventive maintenance,”
International Journal of Advanced Manufacturing Technology.

[50] Shen, L. (2014) “A tabu search algorithm for the job shop problem with
sequence dependent setup times,” Computers and Industrial Engineering.

[51] Shen, L., S. Dauzère-Pérès, and J. S. Neufeld (2018) “Solving the
flexible job shop scheduling problem with sequence-dependent setup times,”
European Journal of Operational Research.

[52] Naderi, B., S. M. Ghomi, and M. Aminnayeri (2010) “A high performing
metaheuristic for job shop scheduling with sequence-dependent setup times,”
Applied Soft Computing Journal.

[53] Driss, E., R. Mallouli, and W. Hachicha (2018) “Mixed integer pro-
gramming for job shop scheduling problem with separable sequence-dependent
setup times,” American Journal of Mathematical and Computational Sciences,
3(1), pp. 31–36.

[54] Moghaddas, R. and M. Houshmand (2008) “Job-shop scheduling problem
with sequence dependent setup times,” Proceedings of the International
MultiConference of Engineers and Computer Scientists (IMECS), Vol.II,
19-21 March, 2008, Hong Kong.

[55] Low, C., T. H. Wu, and C. M. Hsu (2005) “Mathematical modelling of
multi-objective job shop scheduling with dependent setups and re-entrant
operations,” International Journal of Advanced Manufacturing Technology.

[56] Stecke, K. E. (1983) “Formulation and solution of nonlinear integer pro-
duction planning problems for flexible manufacturing systems,” Management
Science, 29(3), pp. 273–288.

113

[57] ——— (1985) “Design, planning, scheduling, and control problems of flexible
manufacturing systems,” Annals of Operations Research.

[58] Calmels, D. (2018) “The job sequencing and tool switching problem: state-
of-the-art literature review, classification, and trends,” International Journal
of Production Research.

[59] Bard, J. F. (1988) “A heuristic for minimizing the number of tool switches
on a flexible machine,” IIE Transactions (Institute of Industrial Engineers).

[60] Van Hop, N. and N. N. Nagarur (2004) “The scheduling problem of
PCBs for multiple non-identical parallel machines,” European Journal of
Operational Research.

[61] Lee, G., H. Sarmadi, and S. Gholami (2012) “Modeling of Tool Switching
Problem in a Flexible Manufacturing Cell: with two or More Machines,”
in International Conference on Mechanical and Electrical Technology, 3rd,
(ICMET-London 2011), Volumes 1–3.

[62] Özpeynirci, S., B. Gökgür, and B. Hnich (2016) “Parallel machine
scheduling with tool loading,” Applied Mathematical Modelling.

[63] Khan, B. K., B. Gupta, D. S. Gupta, and K. Kumar (2000) “A
generalized procedure for minimizing tool changeovers of two parallel and
identical CNC machining centres,” Production Planning & Control, 11(1),
pp. 62–72.

[64] Fathi, Y. and K. Barnette (2002) “Heuristic procedures for the parallel
machine problem with tool switches,” International Journal of Production
Research, 40(1), pp. 151–164.

[65] Gökgür, B., B. Hnich, and S. Özpeynirci (2018) “Parallel machine
scheduling with tool loading: a constraint programming approach,” Interna-
tional Journal of Production Research, 56(16), pp. 5541–5557.

[66] Manne, A. S. (1960) “On the Job-Shop Scheduling Problem,” Operations
Research.

[67] Sreejith, P. and B. Ngoi (2000) “Dry machining: machining of the future,”
Journal of materials processing technology, 101(1-3), pp. 287–291.

[68] Groover, M. P. (2020) Fundamentals of modern manufacturing: materials,
processes, and systems, John Wiley & Sons.

[69] Chong, W. (2004) “Analysis of the Failures of High-Precision Progressive
Dies [J],” Die & Mould Industry, 10.

114

[70] White, H. and L. S. Christie (1958) “Queuing with Preemptive Priorities
or with Breakdown,” Operations Research, 6(1), pp. 79–95.

[71] Gaver, D. P. (1962) “A Waiting Line with Interrupted Service, including
Priorities,” Journal of the Royal Statistical Society. Series B (Methodological),
24(1), pp. 73–90.
URL http://www.jstor.org/stable/2983746%5Cnhttp://about.jstor.org/terms

[72] Avi-Itzhak, B. and P. Naor (1963) “Some Queuing Problems with the
Service Station Subject to Breakdown,” Operations Research, 11(3), pp. 303–
320.
URL http://dl.acm.org/citation.cfm?id=2772421.2772422

[73] Yadin, M. and P. Naor (1963) “Queueing systems with a removable service
station,” Journal of the Operational Research Society, 14(4), pp. 393–405.

[74] Heyman, D. P. (1968) “Optimal operating policies for M/G/1 queuing
systems,” Operations Research, 16(2), pp. 362–382.

[75] Mandl, P. (1985) “On self-optimizing control of Markov processes,” in
Mathematical control theory, vol. 14 of Banach Center Publ., PWN, Warsaw,
pp. 345–360.

[76] Heyde, C. C. (1997) Quasi-likelihood and its application, Springer Series
in Statistics, Springer-Verlag, New York, a general approach to optimal
parameter estimation.
URL https://doi.org/10.1007/b98823

[77] den Boer, A. V. and B. Zwart (2014) “Mean square convergence rates
for maximum quasi-likelihood estimators,” Stoch. Syst., 4(2), pp. 375–403.
URL https://doi.org/10.1214/12-SSY086

[78] Krishnamoorthy, A., P. K. Pramod, and S. R. Chakravarthy (2014)
“Queues with interruptions: A survey,” TOP, 22(1), pp. 290–320.

[79] Kella, O. and W. Whitt (1990) “Di�usion Approximations for Queues
with Server Vacations,” Advances in Applied Probability, 22(3), pp. 706–729.
URL http://www.jstor.org/stable/info/1427465

[80] Chen, H. and W. Whitt (1993) “Di�usion approximations for open queue-
ing networks with service interruptions,” Queueing Systems, 13(4), pp. 335–
359.

[81] Gray, W. J., P. P. Wang, and M. Scott (2004) “A Queueing Model with
Multiple Types of Server Breakdowns,” Quality Technology & Quantitative
Management, 1(2), pp. 245–255.

115

[82] Madan, K. C. (1973) “A priority queueing system with service interruptions,”
Statistica Neerlandica, 27(3), pp. 115–123.

[83] ——— (1989) “A single channel queue with bulk service subject to interrup-
tions,” Microelectronics Reliability, 29(5), pp. 813–818.

[84] ——— (1992) “A bulk queueing system with random failures and two phase
repairs,” Microelectronics Reliability, 32(5), pp. 669–677.

[85] Altiok, T. (1989) “Queueing modeling of a single processor with failures,”
Performance Evaluation, 9(2), pp. 93–102.

[86] Tadj, L. and G. Choudhury (2009) “A quorum queueing system with an
unreliable server,” Applied Mathematics Letters, 22(11), pp. 1710–1714.

[87] Chang, J. and J. Wang (2017), “Unreliable M/M/1/1 retrial queues with
set-up time,” .

[88] Jayaraman, D., R. Nadarajan, and M. R. Sitrarasu (1994) “A general
bulk service queue with arrival rate dependent on server breakdowns,” Applied
Mathematical Modelling, 18(3), pp. 156–160.

[89] Li, Q.-L., J.-Y. Ma, R.-N. Fan, and L. Xia (2019) “An overview for
Markov decision processes in queues and networks,” in International Con-
ference of Celebrating Professor Jinhua Cao’s 80th Birthday, Springer, pp.
44–71.

[90] Jo, K. and O. Maimon (1991) “Optimal dynamic load distribution in a class
of flow-type flexible manufacturing systems,” European journal of operational
research, 55(1), pp. 71–81.

[91] Wu, C.-H., J. T. Lin, and W.-C. Chien (2010) “Dynamic production
control in a serial line with process queue time constraint,” International
Journal of Production Research, 48(13), pp. 3823–3843.

[92] Okamura, H., S. Miyata, and T. Dohi (2015) “A markov decision process
approach to dynamic power management in a cluster system,” IEEE Access,
3, pp. 3039–3047.

[93] Crabill, T. B. (1972) “Optimal control of a service facility with variable
exponential service times and constant arrival rate,” Management Science,
18(9), pp. 560–566.

[94] Lippman, S. A. (1975) “On dynamic programming with unbounded rewards,”
Management Science, 21(11), pp. 1225–1233.

116

[95] George, J. M. and J. M. Harrison (2001) “Dynamic control of a queue
with adjustable service rate,” Operations research, 49(5), pp. 720–731.

[96] Kumar, R., M. E. Lewis, and H. Topaloglu (2013) “Dynamic service
rate control for a single-server queue with Markov-modulated arrivals,” Naval
Research Logistics (NRL), 60(8), pp. 661–677.

[97] Lu, F. and R. F. Serfozo (1984) “M/M/1 queueing decision processes
with monotone hysteretic optimal policies,” Operations Research, 32(5), pp.
1116–1132.

[98] Hipp, S. K. and U. D. Holzbaur (1988) “Decision processes with monotone
hysteretic policies,” Operations Research, 36(4), pp. 585–588.

[99] Carrizosa, E., E. Conde, and M. Munoz-Marquez (1998) “Admission
policies in loss queueing models with heterogeneous arrivals,” Management
Science, 44(3), pp. 311–320.

[100] Ghosh, A. P. and A. P. Weerasinghe (2007) “Optimal bu�er size for a
stochastic processing network in heavy tra�c,” Queueing Systems, 55(3), pp.
147–159.

[101] ——— (2010) “Optimal bu�er size and dynamic rate control for a queueing
system with impatient customers in heavy tra�c,” Stochastic processes and
their applications, 120(11), pp. 2103–2141.

[102] Dimitrakopoulos, Y. and A. Burnetas (2017) “The value of service rate
flexibility in an M/M/1 queue with admission control,” IISE Transactions,
49(6), pp. 603–621.

[103] Wang, K.-H. (2003) “Optimal control of a removable and non-reliable server
in an M/M/1 queueing system with exponential startup time,” Mathematical
methods of operations research, 58(1), pp. 29–39.

[104] Ke, J.-C. (2004) “Bi-level control for batch arrival queues with an early
startup and un-reliable server,” Applied Mathematical Modelling, 28(5), pp.
469–485.

[105] ——— (2006) “An M/G/1 queue under hysteretic vacation policy with an
early startup and un-reliable server,” Mathematical Methods of Operations
Research, 63(2), p. 357.

[106] Hsu, W.-K., J. Xu, X. Lin, and M. R. Bell (2018) “Integrating Online
Learning and Adaptive Control in Queueing Systems with Uncertain Payo�s,”
in 2018 Information Theory and Applications Workshop (ITA), IEEE, pp.
1–9.

117

[107] Johari, R., V. Kamble, and Y. Kanoria (2016) “Matching while learning,”
arXiv preprint arXiv:1603.04549.

[108] Liu, B., Q. Xie, and E. Modiano (2019) “Reinforcement Learning for
Optimal Control of Queueing Systems,” in 2019 57th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), IEEE, pp.
663–670.

[109] Ross, S. M. (2014) Introduction to probability models, Academic press.

[110] He, Q.-M. (2014) Fundamentals of matrix-analytic methods, vol. 365,
Springer.

[111] Ata, B. (2005) “Dynamic power control in a wireless static channel subject
to a quality-of-service constraint,” Operations Research, 53(5), pp. 842–851.

[112] Badian-Pessot, P., M. E. Lewis, and D. G. Down (2019) “Optimal
control policies for an M/M/1 queue with a removable server and dynamic
service rates,” Probability in the Engineering and Informational Sciences, pp.
1–21.

118

Juxihong Julaiti LinkedIn Profile
juxihongjulaiti1225@gmail.com Website
814-321-1711 Languages: Python, Java

Education
The Pennsylvania State University (PSU) Aug/2015 - Dec/2021
Dual Title Ph.D. in Industrial Engineering and Operations Research GPA: 3.78/4.0

The Pennsylvania State University Jan/2015 - Dec/2016
M.S. in Industrial Engineering GPA: 3.78/4.0

Capital University of Economics and Business (CUEB) Aug/2010-Jul/2014
B.E. in Industrial Engineering GPA: 3.74/4.0

Experience
Data Scientist, TE Connectivity June/2020 - Present

• Developed a simulation-based safety stock optimization model that saves $1M inventory cost.

• Developed a control panel for the safety stock optimization model to help users understand the tool and
conduct what-if analysis.

• Optimized a recommendation model and saved 1,800 hours of computational time per year.

• Developed a supervised model to predict stamping machine failures with an AUC score of 90%.

• Developed both front-end and back-end of an anomaly detection model for a plating process and saved cost
of poor quality by 23%.

• Developed mathematical models to optimize an existing anomaly detection solution and improved the
model performance by 10%.

Instructor, PSU IE405: Deterministic models in operations research Jan/2020 - May/2020
Data Scientist, CPNET May/2019 - Aug/2019

• Developed an agnostic simulation package for manufacturing processes using an LSTM model.

• Developed a control optimization algorithm and improved KPI of a chemical factory by 20%.

• Developed an algorithm to optimize hyper-parameters tuning for reinforcement learning methods and saved
computational cost by 80%.

ACI Software Specialist , Institute for Computational and Data Sciences, PSU Jan/2018 - Dec/2018

• Built Singularity container images for scientific projects.

• Optimized and automated clients’ code using GNU parallel and CronJobs.

• Developed a classification model to predict the topic of unlabeled tickets with an accuracy of 80%.

Data Scientist Co-op, TE Connectivity May/2017 - Dec/2017

• Developed a mathematical model of sequence-dependent parallel-machine scheduling problems.

• Developed reinforcement learning models (DDQN) to solve the scheduling problem.

• Designed the architecture and data pipelines for deploying the solution on AWS.

• Developed a GUI that calls corresponding modules deployed on AWS.

Teaching Assistant, PSU

• Advanced Engineering Analytics, Department of Industrial Engineering Aug/2019 - Dec/2019

• Seminar of Science BS/MBA Program, Smeal College of Business Jan/2018 - May/2018

https://www.linkedin.com/in/juxihongjulaiti
mailto:juxihongjulaiti1225@gmail.com
https://juxihong.wixsite.com/main

