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Abstract
A problem that frequently arises in noise control engineering is the need for lightweight
structures that are also quiet. In many practical instances of transportation and aerospace
design, stiff, lightweight panels are used to reduce overall weight. However, these stiff,
lightweight panels are also highly receptive to vibration and can become efficient radiators
of sound. Although traditional methods of passive damping can effectively combat
this behavior, they usually lead to an increase in overall weight. By modifying the
plate thickness according to a specific power law profile, so-called ‘acoustic black holes’
(ABHs) offer a compelling solution to the need for both broadband vibration reduction
and reduced weight. ABH vibration absorbers have been shown to be effective at
reducing structural vibration, often with a net reduction in overall weight. However, a
comprehensive understanding of what constitutes optimal ABH design in finite structures
has been historically lacking. This dissertation systematically investigates the many
considerations of ABH design for vibration reduction. An optimization framework is
developed that combines the modelling of structural dynamics with multi-objective
evolutionary optimization, and this framework is used to determine the optimal designs
for various ABH applications. By analyzing trends in the optimization results, the
tradeoffs inherent in ABH design are illuminated in a more holistic manner than has
been undertaken to date.
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Chapter 1 |
Introduction

1.1 Historical background
Many applications of noise control engineering involve reducing the bending vibrations
of beam- or plate-like structures. In addition to structural fatigue from the vibration
itself, bending waves are the primary source of radiated sound and can result in high
levels of noise [4]. A common means of achieving broadband damping of bending waves
is to apply a layer of absorbing material (usually a viscoelastic polymer) to the entire
surface of the structure [5]. However, this solution also means contributing additional
weight to the structure, which can be disadvantageous in industries such as transport
and aerospace. In this sense, so-called ‘acoustic black holes’ (ABHs) offer a compelling
solution to the need for both broadband vibration reduction and reduced weight.

Mironov was the first to describe the theoretical possibility of zero reflection of
bending waves from the tip of a wedge whose thickness, h, decreases to zero according to
the relation h(x) = εxm for constants ε > 0 and m ≥ 2 [6]. A diagram of such a wedge
is shown in Figure 1.1. For thin beams, the Euler-Bernoulli beam model is valid and the

xi0

h1
h(x) = εxm

x

Figure 1.1. Diagram of the ideal ABH wedge shape at the end of a uniform beam or plate.
Note that Mironov’s original analysis was only concerned with the region [0, xi], agnostic to the
rest of the structure.
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wavenumber, k, phase speed, cp, and group speed, cg are∗

k4 = ω2ρA

D
, (1.1)

cp = ω

k
=
(
ω2D

ρA

) 1
4

, (1.2)

and
cg = ∂ω

∂k
= 1

2ω
∂

∂k

(
ω2
)

= 2
ω

k3D

ρA
= 2ω

k
= 2cp, (1.3)

respectively, where ω is the radial frequency of interest, ρ is the density of the beam
material, A is the cross-sectional area, and D is the bending stiffness, otherwise known
as flexural rigidity. Using the above definition of group speed, the total transit time, τ ,
of a wave packet travelling from a point xi > 0 to the origin is then

τ =
∫ 0

xi
− 1
cg(x) dx = 1

2ω

∫ xi

0
k(x) dx. (1.4)

In the case that the thickness of the wedge goes as h(x) = εxm, k(x) is proportional to
(εxm)−

1
2 . From this, it is clear that the integral diverges for m ≥ 2. This means that the

transit time becomes infinite and the wave never reaches the tip of the wedge. Because it
never reaches the tip, it can never reflect back, and therefore perfect absorption occurs.

Of course, limitations on real-world production techniques mean that such an ideal
wedge is not possible, and there will always be a nonzero truncation at the tip of the
wedge. In this case, the ABH effect is broken and can result in reflection of upwards of
70% of the incident energy [7]. However, Krylov theoretically [8] and experimentally [9]
demonstrated that the shortcomings of real wedges can be drastically improved by adding
thin layers of absorbing material near the tip. In such a case, the ABH vibration absorber
works by reducing the bending wavelength and increasing the transverse amplitude,
thereby focusing strain in a small region where damping material can more effectively
absorb and dissipate energy. This is the principle behind the ‘acoustic black hole effect’
on which ABH vibration absorbers are based. The targeted application of damping
material, combined with the removal of material to generate the ABH shape, means that
ABH vibration absorbers can produce effective broadband vibration reduction with a net
reduction in overall weight.

∗Mironov’s original analysis used thin plate theory in one dimension instead of thin beam theory.
However, the two wavenumbers differ only by a constant factor and so the end result is effectively the
same.
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Bowyer and Krylov confirmed experimentally that two-dimensional circular inden-
tations whose thickness decreases according to the relation in Figure 1.1 can produce
effective reduction in bending vibration [10] and sound radiation [11] in rectangular
plates. Since then, much work has been done investigating the physical behavior and
potential applications for such one- and two-dimensional ABH vibration absorbers. ABH
literature includes investigations into the modal behavior of ABHs [12, 13], the wave
energy localization properties of ABHs [14–16], how manufacturing imperfections and
nonlinear behavior can impact ABH performance [17–20], as well as several unique
analysis techniques applied to ABH behavior [21, 22]. Although research into ABHs has
grown dramatically over the past two decades, research into the optimal design of ABH
vibration absorbers has been lacking. As such, a comprehensive understanding of what
constitutes optimal ABH design has not been demonstrated in the literature, especially
for ABHs embedded within finite structures. The work in this dissertation seeks to fill
this gap in understanding. By performing a series of ABH optimization studies and
analyzing trends in the results, the tradeoffs inherent in ABH design can be illuminated
in a more holistic manner than has been undertaken to date.

1.2 Review of ABH literature related to optimal design
As mentioned in Section 1.1, there has been a relative lack of research devoted to optimal
ABH design. Moreover, some of the conclusions from what research does exist seem
to contradict one another. This section will survey the ABH literature as it relates
to ABH optimization through the year 2020. (Note that the work of this dissertation
commenced in January of 2017.) Although they do not involve any formal or rigorous
optimization, a number of publications are also included that could be broadly classified
as ‘parametric studies’ insofar as they evaluate multiple ABH designs. By surveying the
relevant ABH literature, the reader will be given context for the work presented in the
following chapters of this dissertation.

1.2.1 Review of parametric studies

The first formal parametric study related to ABH design was published by Georgiev et
al. in 2011 [3]. The goal was to identify the optimal amount of damping to apply to a
one-dimensional ABH wedge at the end of a beam, in order to minimize reflection from
the wedge. For a single ABH profile, the authors varied the thickness, length, loss factor,
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and Young’s modulus of the damping layer, and then used an impedance matrix method
to calculate the reflection coefficient at the end of the wedge. They concluded that
the thickest damping layer did not produce the smallest reflection coefficient, and that
the entire wedge did not need to be covered by damping material to produce minimum
reflection. Unfortunately, they only considered a single ABH taper profile, and thus
could not draw conclusions regarding relationships between the taper profile and the
optimal amount of damping material. Moreover, their process was to first vary the
thickness of the damping layer, then choose the thickness that gave minimal reflection,
and use that same thickness for the rest of the parametric study. This means that other
combinations of thickness and length – combinations which may be more effective – were
not considered.

Unruh, Blech, and Monner published a parametric study of their own in 2015, in
which they explicitly modeled the vibration reduction of a two-dimensional ABH in a
rectangular plate [23]. Using the finite element method, they calculated the surface-
averaged velocity response and radiated sound power from the plate due to a harmonic
point force at one corner. They performed two parametric studies: for the first, they
considered a single ABH and varied its radius and position on the plate; for the second,
they considered two ABHs at fixed positions, and varied each one’s radius. The other
taper parameters and the amount of damping material applied to each ABH was the
same for all cases.

The authors concluded that the radius of the ABH had a more significant effect on
the plate’s response and radiated sound than did the placement of the ABH on the
plate. Moreover, they found that the benefits from the addition of a second ABH were
significantly less than from the addition of the first ABH, suggesting that there might
be diminishing returns from the addition of further ABHs. However, the only positions
considered in the study were along the diagonal of the plate, in line with the drive point.
As later studies would find [24], the optimal placement of the ABH with respect to a
single drive point may be elsewhere, and may have a more significant effect than the
radius of the ABH. Furthermore, the modeled damping layer was drastically thinner than
Georgiev et al. found to be most effective. If the placement of the ABH had little effect
on their results, it is conceivable that energy was not being effectively absorbed, which
might have skewed their results. In short, it is difficult to draw conclusions from this
study about the effects of ABH radius and position on performance.

In their 2015 paper studying the use of the normalized wavenumber variation (NWV)
for ABH design [25], Feurtado and Conlon performed what amounts to a parametric
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study, investigating how the NWV and reflection coefficient change for a one-dimensional
ABH wedge with various lengths. Using a finite element model of a beam with an
ABH wedge, they varied the length of the wedge, with and without damping and with
and without an anechoic termination, and determined that the reflection coefficient
tracks with NWV. Additionally, they found that reflection is minimized for NWV less
than 0.3—a fact that would be used in future optimization studies [26]. Unfortunately,
the authors only varied the wedge length, meaning that conclusions cannot be drawn
regarding the optimal NWV as relates to other taper parameters like power-law exponent
or minimum thickness.

Additionally, in support of the experimental investigation of their 2016 publication [27],
Feurtado and Conlon performed a parametric study of the effect of damping thickness
and percent coverage on the modal loss factor of a two-dimensional ABH unit cell
finite element model in order to identify the optimal damping for experiments into the
dynamic behavior of a plate with a 4-by-5 grid of such ABHs. Like authors before them,
they confirmed that the optimal damping layer is neither the thickest nor the widest.
In particular, Feurtado and Conlon concluded that the thickness of the free damping
layer corresponds to six times the minimum thickness—in agreement with the damping
theory of Ross, Kerwin, and Ungar [28]. Unfortunately, because the nature of the main
investigation prescribed a given ABH geometry, there was no consideration of how the
optimal damping might change by changing the ABH design parameters.

In consideration of the potential applications for ABH vibration absorbers in the
aerospace industry, Dorn, Blech, and Langer published a parametric study in 2017 of
a two-dimensional ABH in a curved honeycomb panel with fiberglass face sheets [29].
The thickness of the honeycomb core itself was tapered according to a power-law profile,
while the two face sheets were held at a uniform thickness. The diameter and position of
the ABH were varied within the curved panel, each having three possible values, for a
total of nine combinations. For each case, 25% of the ABH area included an additional
damping layer. Harmonic point forces were applied to each of the four corners of the
panel, and a spatially-averaged square velocity response was calculated and compared to
a reference panel without an ABH.

The authors concluded that the presence of the ABH in the panel improved the
velocity response very weakly when compared to a uniform panel with the equivalent
damping material distributed at the corners. As the authors implied, this could very
well be due to the low frequency range considered, which was only up to 1 kHz. It may
be that the ‘cut-on’ frequency of the ABH is above this frequency and that the ABH
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is not providing any benefit. Although the ABH did not seem to improve performance
significantly, the authors did find that what improvement it made was more strongly
dependent on the position of the ABH than on the size, which is in opposition to the
conclusions of Unruh, Blech, and Monner [23].

Wang et al. performed an investigation in 2019 of a one-dimensional ABH at the
edge of a circular disk [30]. The authors proposed the use of an ABH as a means to
dramatically reduce the reverberant field produced when performing acoustic emission
testing—a common problem in the study of frictional mechanisms [31]. To demonstrate
the efficacy of this technique, the authors performed a parametric study of the ABH
taper length relative to the plate size for three different sensor locations, using transient
analysis of a finite element model and then verifying their results experimentally. In
order to reduce the complexity of the parametric study, the authors used orthogonal
array testing (OAT) to capture the results of all 27 possible combinations in only nine
test cases.

It is worth noting, however, that OAT assumes any effect is the result of the interaction
between parameters, which is to say that it is assumed no significant effect is produced
by the change of a single parameter alone. This, of course, is not true of ABH design,
as evidenced by the literature already discussed. Wang et al. nevertheless concluded
that the most critical parameter for the proposed technique is the ratio of taper length
to plate diameter, which should be relatively large. The authors therefore confirmed
what had been established by past research—i.e., that a longer taper is more effective for
vibration reduction.

Also in 2019, Hook, Cheer, and Daley presented a parametric study of a one-
dimensional ABH wedge at the end of a long beam [32]. Using a finite element model
of the beam and ABH, the authors estimated the reflection coefficient from the end of
the wedge by analyzing the dynamic response of the model at two different locations
along the beam and assuming only forward- and backwards-propagating waves. By
varying the length, minimum thickness, and power-law exponent of the taper profile, the
authors identified frequency regions in which the reflection coefficient is minimized, as
well as indicating that the variation in wedge length affected reflection significantly more
than did variation in minimum thickness. Moreover, the authors found that regions of
minimum reflection were especially distinct for different values of power-law exponent.

Bearing this behavior in mind, the authors performed modal analysis of just the ABH
wedge for various power-law exponent values, and found that the bands of minimum
reflection directly corresponded to the modal frequencies of the wedge. This finding
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corroborates the trend of higher structural losses associated with ABH modes [12,33].
Moreover, although the authors spend much of their discussion considering the optimal
combination of parameters to minimize reflection in the broadband, the real strength of
this study lies in the trends identified, which can help to shed light on the tradeoff between
optimal performance in the broadband and optimal performance in the narrowband.

In their 2019 work, Ouisse et al. sought the optimal damping configuration for a given
beam with an ABH termination, using a process that is more formally a parametric
study [34]. Given the base structure of an aluminum beam with an attached quadratic
ABH wedge, the authors modelled the effects of varying the length and thickness of
an attached shape memory polymer (SMP). What was unique about this paper is that
before varying the length and thickness of the SMP layer, the authors first modelled
the effect of controlling the temperature within the SMP. The reason for this is that
the SMP material properties are highly temperature-dependent. The loss factor of the
material can be tuned by adjusting the temperature, although the Young’s modulus will
also be affected. The authors chose a nominal damping design, and then modelled the
reflection coefficient for the ABH beam with SMP damping at five temperatures ranging
from 30◦C to 70◦C.

Deciding that the SMP material performed best near 70◦C, the authors then performed
a parametric study on how the length and thickness of the SMP material would affect the
average reflection coefficient of the composite ABH beam. They calculated the average
reflection coefficient for two frequency ranges (0–200 Hz and 0—1000 Hz) in order to
compare the ‘optimal’ configurations for each range. The authors found that the two
measures produced conflicting results, with the two configurations differing by at least
20%. Nevertheless, the authors were successful in showing that the control of material
properties afforded by the use of an SMP damping layer shows great potential for the
design of effective ABH vibration absorbers.

1.2.2 Review of optimization studies

The first formal optimization study regarding ABH design for vibration reduction was
published by Rothe et al. in 2016 [35]. In this optimization study, the authors sought
the optimal position of a two-dimensional ABH in a rectangular plate with respect to
the surface-averaged velocity response due to a harmonic point force at the corner. The
authors found that a single ABH at the optimal position could reduce the response by
51.9% relative to a uniform plate, while the same design at a suboptimal position could
worsen the response by 36.4%.
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It is worth noting that although the ABH design, damping, and drive point location
in this study were similar to those investigated by Unruh, Blech, and Monner [23], the
optimal position identified in this study is one very different from any of the positions
considered in that parametric study. In particular, the optimal position was away from
the diagonal. This is an example of where a formal optimization study can provide a fuller
picture than a parametric study, which is inherently limited in scope. Unfortunately,
no attempt was made to explain the ABH’s performance as a function of position.
Furthermore, this optimization study only considered a single ABH geometry, meaning
that no information can be gleaned regarding interactions between the shape parameters
and the optimal position of the ABH.

Another formal optimization study was published in 2016 by Ih et al., in which
the authors sought the optimal combination of the taper profile and damping for a
one-dimensional ABH at the edge of a plate [24]. Using the finite element method, the
authors calculated the spatially-averaged square velocity response due to a harmonic
point force at the other end of the plate. For the first part of the optimization, the
power-law exponent of the ABH taper and the length of the minimum-thickness portion
were allowed to vary with no added damping layer. 55 random combinations of the two
variables were evaluated, and then kriging (i.e., Gaussian process regression) was used to
interpolate the rest of the search space. In this way, the authors visually identified regions
of optimality within the variable bounds and concluded that an optimal combination
produces a normalized wavenumber variation (NWV) between 0.45 and 0.55. Note that
this is in opposition to the findings of Feurtado and Conlon, who concluded that optimal
performance is obtained for an ABH with NWV less than 0.3 [25].

In the second part of the optimization, Ih et al. chose the best performing of the 55
random ABH designs, and added a free damping layer to the bottom. The thickness
and length of this damping layer were allowed to vary, while maintaining a bending
stiffness less than that of the plate. Again, a finite number of random thickness/length
combinations were evaluated and kriging was used to interpolate the remaining search
space. Ultimately, the authors concluded that damping dimensions that produced
between 10 and 20 grams per meter width were optimal. They selected one of the
randomly-generated combinations to be used as the ‘optimal’ ABH vibration absorber
design, and found that this ABH minimized the objective function by 1.4 dB compared
to a heavily damped uniform plate.

Of course, there are limitations to the conclusions that can be drawn from this
optimization study. For one, although the authors generated a model of the search space

8



through kriging, they chose not to use this model for any quantitative evaluation. Instead,
they considered only the finite number of designs used to generate the model, despite the
fact that their model predicts designs that perform better. Furthermore, their process
first addressed the ABH geometry, and then separately addressed the damping, meaning
that any interaction between the two was not considered.

One of the most rigorous and comprehensive ABH optimization studies came from
Shepherd, Feurtado, and Conlon in 2016 [26]. In this study, the authors applied formal
multi-objective optimization using a multi-objective evolutionary algorithm (MOEA) to
identify the tradeoff between minimizing reflection from a one-dimensional ABH and
satisfying the theoretical condition on NWV. Building off of the findings of Feurtado and
Conlon [25], Shepherd, Feurtado, and Conlon set as their two objectives 1) the frequency
at which the reflection coefficient is less than 0.4, and 2) the frequency at which the NWV
is less than 0.4. The entire geometry of the ABH taper was allowed to vary, including
the minimum and maximum thicknesses.

By running the MOEA for 30,000 evaluations, a set of optimal geometries was found
that illustrates the tradeoff between the two objectives. The authors confirmed that the
longest possible taper is optimal and that the smallest possible maximum and minimum
thicknesses is optimal. This means that the tradeoff between the two objectives is almost
entirely dependent upon the power-law exponent, a parameter that was not considered in
previous investigations [25]. Additionally, the authors found that significant reduction in
reflection can occur despite violating the condition on NWV, and that these reductions
can be realized at frequencies lower than previous analytical predictions [12]. This
optimization study pointed the way towards future studies into the tradeoffs inherent in
ABH design for vibration reduction, and demonstrated that MOEAs are a powerful tool
for this kind of analysis.

Although only a single ABH profile was considered, in 2019 Ma and Cheng performed
a thorough topology optimization of the damping attached to a two-dimensional ABH
feature [36]. Utilizing their earlier work on a Rayleigh-Ritz solver with Daubechies
wavelet basis functions to calculate the plate dynamics, and the Rayleigh integral to
calculate radiated sound power, the authors used the method of solid isotropic material
with penalization (SIMP) together with the optimality criteria method. In short, the
plate geometry was discretized into 900 square elements and each element was allowed
to have applied damping or no applied damping, with a constraint on the total volume
of damping material. The optimization process was first carried out for individual
frequencies ranging from 100 to 4000 Hz.
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The authors found that, compared to a reference damping configuration of a circular
patch at the center of the ABH, the optimized damping distribution could reduce the
radiated sound power by up to 4 dB at a given frequency. They did note that the mean
square velocity was increased at certain frequencies compared to the reference damping
configuration. As a result, they performed a similar optimization, using the mean square
velocity as the objective, rather than radiated sound power, and found that the latter
objective precipitated a distribution that had significantly more damping at the center
of the ABH for all but the highest frequencies. This is to be expected, since the bending
wavespeed in the ABH will be significantly less than that in the base plate, making the
ABH a naturally poor radiator for all but the first mode or ‘piston’ mode. As such,
there is not much need to add damping material to the center of the ABH in order to
reduce noise, since it radiates poorly anyway. However, the velocity in the ABH will be
significantly greater than that in the base plate, making it the most effective region to
introduce damping if one wishes to minimize velocity. Ultimately, the most important
result of these optimization studies was to underpin the effect that careful design of
added damping material can have on ABH performance, and that the optimal design
varies with frequency.

In 2020, Ma and Cheng explored ABH profiles of a more general polynomial shape [37].
The profile was defined using Lagrange interpolation of five points to define a 4th-order
polynomial. Four of the x-coordinates were fixed (including the origin and the length
of the taper) and two of the y-coordinates were fixed (the minimum and maximum
thicknesses); the remaining four values were used as design variables, including the
thickness at the origin. This 4th-order polynomial was then rotated radially to form a
circular ABH embedded in a plate. The objective function chosen was the reciprocal of
the sum of the first 100 modal loss factors. Interestingly, an additonal constraint placed
on the problem was that the total accumulated phase from the origin to the length of
the taper is greater than that of some reference ABH profile. The authors claim that
this constraint ensures the optimized taper preserves the features of an ABH, although
this argument is questionable.

The authors used the Nondominated Sorting Genetic Algorithm II (NSGA-II), a
multi-objective evolutionary alrogithm (MOEA), to perform the optimization, along
with the aforementioned Rayleigh-Ritz solver to calculate the modal loss factors. The
optimization was run for a total of 153 generations to produce the optimal profile.
Counterintuitively, the final optimal design in the 153rd generation was found to be
almost identical to that of the first generation, despite performing the optimization twice
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with randomized starting generations. Nearly identical results were produced even when
varying the material properties of the ABH. This may be an indication of either an error
in the solver, which could be exploited by NSGA-II, or of a defect in the formulation
of the problem or its parameters. Assuming the optimal design to be valid, it is an
interesting annular shape with a sharp spike in the center, somewhat similar to the
ring-shaped ABH designs proposed in 2019 by Deng et al. [38]. In both [37] and [38], the
advantage of an annular ABH seems to be that the minimum thickness region is spread
out into a ring, rather than only existing at the center.

1.3 Theory

1.3.1 Analytical ABH theory

The dynamic Euler-Bernoulli (thin) beam equation can be written as†

ρA
∂2u

∂t2
+ ∂2

∂x2

(
D
∂2u

∂x2

)
= f(x, t), (1.5)

where ρ is the density of the beam material, A(x) is the cross-sectional area of the
beam, and D(x) is the bending stiffness, equal to EI(x), where E is the material
Young’s modulus and I(x) is the second moment of area of the beam’s cross-section.
Assuming the beam’s midplane displacement, u(x, t), is time-harmonic and has the form
u(x, t) = U(x)eiωt, then the steady-state equation of motion becomes

−ω2ρAU + d2

dx2

(
D

d2U

dx2

)
= 0, (1.6)

where it has also been assumed that there is no external applied force—that is, free
vibration conditions. The WKB approximation is now used in a fashion similar to that
used in [39]. This approximation is valid in the case that variations in geometric or
material parameters are small on the scale of a wavelength. In the ABH literature, a
more explicit formulation of this condition is given as [6, 40]

∣∣∣∣∣ 1
k2

dk
dx

∣∣∣∣∣� 1, ∀x, (1.7)

†As mentioned in Section 1.1, historically ABH theory was developed using thin plate theory. However,
the results from using thin beam theory are functionally equivalent.
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where k(x) is the local wavenumber given by Equation (1.1). Assuming that the WKB
approximation is valid, the procedure starts by defining a small parameter, δ = ω−

1
2 , so

that the highest-order derivative in Equation (1.6) is considered a perturbation in the
ordinary differential equation. It should be noted that the assumption that δ is small
also means that the approximation is really only valid for high frequencies. However,
Euler-Bernoulli beam theory is only valid for low frequencies, where the wavelength is
much larger than the beam’s thickness and inertial effects are negligible. This dichotomy
means that the ABH theory of Mironov exists in some mid-range frequency—a fact that
is not always made clear. With the parameter δ defined, Equation (1.6) becomes

−ρAU + δ4 d2

dx2

(
D

d2U

dx2

)
= 0. (1.8)

The WKB approximation now seeks a series solution of the form

U(x) = eiφ(x), (1.9)

φ(x) = 1
δ

∞∑
n=0

δnSn(x), (1.10)

where the Sn(x) are (generally complex) functions that are determined recursively. By
plugging this solution into Equation (1.8), it becomes

ρA = δ4
(
D
[
iφ(4) − 4φ′′′φ′ − 3 (φ′′)2 − 6iφ′′ (φ′)2 + (φ′)4]

+ 2D′
[
iφ′′′ − 3φ′′φ′ − i (φ′)3]

+ D′′
[
iφ′′ − (φ′)2])

. (1.11)

Expanding this equation and collecting terms with the same powers of δ, this becomes

ρA = D (S ′0)4 + δ
[
4D (S ′0)3

S ′1 − 6iDS ′′0 (S ′0)2 − 2iD′ (S ′0)3]+O(δ2), (1.12)

where ‘big O’ notation has been used to denote the remaining powers of δ. The above
equation must hold for all values of δ, which produces a system of equations. The
zeroth-order WKB approximation is found by solving for the zeroth-order δ terms—that
is, by solving

(S ′0)4 = ρA

D
= k4

ω2 , (1.13)
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where the definition of the local wavenumber, k(x), has been used. The solution to this
equation gives

S0,p(x) = ip√
ω

∫ x

a
k(y) dy, p = 0, 1, 2, 3 (1.14)

for some reference point, a. Note that there are actually four possible solutions, de-
pending on the choice of p, since S0(x) is generally complex. This zeroth-order WKB
approximation is thus a linear combination of them:

U0(x) = C0e
∫ x
a
k(y) dy + C1e

i
∫ x
a
k(y) dy + C2e

−
∫ x
a
k(y) dy + C3e

−i
∫ x
a
k(y) dy. (1.15)

This clearly shows that the phase of the wave varies over space, according to the
accumulated local phase. However, it does not include any variation in wave amplitude,
which is expected if conservation of energy is to hold. Extending the solution to the
first-order WKB approximation, one must now solve for the first-order δ terms

S ′1,p = i
2
D′

D
+ 3i

2
S ′′0,p
S ′0,p

= i
2
D′

D
+ 3i

2
k′

k
. (1.16)

Note that the above differential equation is actually independent of the choice of power,
p. As such, there is only one solution, which will be denoted S1(x). To solve for S1(x),
one must know how the bending stiffness, D(x), and the wavenumber, k(x), vary with
x. For a rectangular beam with constant width of b and a varying thickness, h(x), the
relations are

D(x) = E
h3(x)b

12 , (1.17)

D′ = E
h2b

4 h′ = 3Dh
′

h
, (1.18)

k(x) =
(

12ω2ρ

Eh2(x)

) 1
4

=
(

12ω2ρ

E

) 1
4

h−
1
2 (x), (1.19)

and

k′ = −1
2

(
12ω2ρ

E

) 1
4

h−
3
2h′ = −1

2k
h′

h
. (1.20)

Plugging these into Equation (1.16) gives

S ′1 = 3i
2
h′

h
− 3i

4
h′

h
= 3i

4
h′

h
. (1.21)
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Therefore,
S1(x) = 3i

4 ln (h(x)) + c. (1.22)

Combining this with the zeroth-order WKB approximation, the first-order WKB approx-
imation is thus

U1(x) = C0

h(x) 3
4
e
∫ x
a
k(y) dy + C1

h(x) 3
4
ei
∫ x
a
k(y) dy

+ C2

h(x) 3
4
e−
∫ x
a
k(y) dy + C3

h(x) 3
4
e−i

∫ x
a
k(y) dy. (1.23)

This shows that the displacement amplitude also increases with decreasing thickness, as
expected. This increase in local amplitude and decrease in local bending wavelength is
the key to the ABH effect and the efficacy of imperfect ABH vibration absorbers.

1.3.2 Reflection from an ABH termination

Reconsider now the zeroth-order WKB approximation of Equation (1.15). For a beam
that is free at x = 0 and extends to infinity in the positive x-direction, it is clear that
C0 = 0, since for it to be otherwise would imply that limx→∞ U0(x) =∞. For all x > a,
it is clear that the C1 term represents an incoming (left-going) wave. As such, it is
advantageous to normalize everything by C1 to get

U0(x)
C1

= eiψ(x) +Rne
−ψ(x) +Re−iψ(x), (1.24)

where ψ(x) =
∫ x
a k(y)dy simply for ease of notation. R is the reflection amplitude

coefficient and Rn is the amplitude of the nearfield component of the reflected wave,
which disappears as x goes to infinity.

Two additional equations are required to solve for these two remaining coefficients.
These two equations come from the boundary conditions at the free end, which are
U ′′0 (0) = U ′′′0 (0) = 0. After normalizing by C1, the derivatives of U0(x) are

U ′′0 (x)
C1

= ieiψ(x)
(
k′(x) + ik2(x)

)
−Rne

−ψ(x)
(
k′(x)− k2(x)

)
−iRe−iψ(x)

(
k′(x)− ik2(x)

)
(1.25)
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and

U ′′′0 (x)
C1

= ieiψ(x)
(
k′′(x) + 3ik′(x)k(x)− k3(x)

)
−Rne

−ψ(x)
(
k′′(x)− 3k′(x)k(x) + k3(x)

)
−iRe−iψ(x)

(
k′′(x)− 3ik′(x)k(x)− k3(x)

)
. (1.26)

While it is possible to determine R from these equations, additional approximations can
be made to simplify the solution. Firstly, if it is assumed that Equation (1.7) holds, then
|k′| � |k2|. This means that Equation (1.25) can be rewritten as

U ′′0 (x)
C1

≈ −eiψ(x)k2(x) +Rne
−ψ(x)k2(x)−Re−iψ(x)k2(x). (1.27)

Secondly, Equation (1.7) also implies that |k′k| � |k3|, so that Equation (1.26) can be
rewritten as

U ′′′0 (x)
C1

≈ ieiψ(x)
(
k′′(x)− k3(x)

)
−Rne

−ψ(x)
(
k′′(x) + k3(x)

)
−iRe−iψ(x)

(
k′′(x)− k3(x)

)
. (1.28)

Setting Equations (1.27) and (1.28) equal to zero at x = 0, one can rearrange and
substitute to solve for R to get

R = (−1 + i)k′′(0) + (−1− i)k3(0)
(1 + i)k′′(0) + (1− i)k3(0) e2iψ(0). (1.29)

This expression can be simplified further by assuming that |k′′| � |k3|, along the same
lines as Equation (1.7). In such a case, the expression for R simplifies to

R ≈ (−1− i)k3(0)
(1− i)k3(0) e2iψ(0) = −ie2iψ(0), (1.30)

where the magnitude and phase, |R| and ∠R, are

|R| = e−2Im{ψ(0)} (1.31)

and
∠R = 3π

2 + 2Re{ψ(0)}. (1.32)
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At this point, it is worthwhile to point out two things. First, these results are
consistent with, and form a complementary view of, the acoustic black hole phenomenon
described in Section 1.1 and Equation (1.4). Namely, as ψ(0) approaches infinity, the
phase of R approaches infinity and theoretically perfect absorption occurs as the wave
becomes ‘trapped’ in the termination. Second, for finite ψ(0), the magnitude of R
depends on the damping in the beam, which has thus far not been explicitly considered.
Consider the following alteration of Equation (1.1)

k̃4 = ω2ρA

D̃
= ω2ρA

D(1 + iη) , (1.33)

where the tilde denotes a complex quantity, and η is some material loss factor‡. In most
practical cases, η � 1, so that the following approximations can be made:

(1 + iη)−
1
p = r−

1
p e−i θ

p , (1.34)

r =
√

1 + η2 ≈ 1, (1.35)
θ

p
= 1
p

atan(η) ≈ 1
p

asin(η) ≈ η

p
, (1.36)

and

(1 + iη)−
1
p = r−

1
p cos

(
θ

p

)
− ir−

1
p sin

(
θ

p

)
≈ cos

(
η

p

)
− i sin

(
η

p

)
≈ 1− iη

p
, (1.37)

where small argument approximations for tangent, sine, and cosine have been used.
Applying these approximations to Equation (1.33) gives

k̃ ≈ 4

√
ω2ρA

D

(
1− iη4

)
= k

(
1− iη4

)
. (1.38)

Thus,
−2Im{ψ(x)} ≈ η

2

∫ x

a
k(y) dy. (1.39)

In much of the literature, the reference point, x = a, is chosen to be the point at which
the ABH profile reaches some maximum thickness, x = x1, such that h(x1) = h1. With

‡The plus sign before iη is a result of the eiωt time convention used. In the case of an e−iωt time
convention, the sign is flipped.
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this convention, the reflection magnitude becomes

|R| = e
η
2

∫ 0
x1
k(y) dy = e−

η
2

∫ x1
0 k(y) dy = e−ηωτ , (1.40)

where Equation (1.4) has been used to write the reflection magnitude in a more compact
and intuitive form. Under this convention, the above result is equivalent to that found
in, e.g., references [6] and [39].

1.3.3 Multi-objective evolutionary optimization and the Borg algo-
rithm

In the process of optimization, the goal is to find an optimal solution to a given problem
within a feasible range of independent variables and perhaps within some constraints on
the variables or solution. Provided an analytic objective function, f(x), is available to
relate the independent variables to the fitness of the solution, a common method is to
use the mathematical properties of the gradient, ∇f , to find a solution that minimizes
the function. In particular, the direction of −∇f gives the direction of greatest decrease,
while the norm of ∇f (which in practice is often approximated by finite differences) gives
a measure of how quickly the function decreases in that direction. However, many real-
world optimization problems arise where this procedure is either impractical or impossible.
For example, gradient-based methods may break down for functions whose gradient is not
continuous everywhere, and in combinatorial optimization the gradient is generally not
well-defined [41]. It is common for multiple optimal solutions to exist, and gradient-based
methods may converge to one solution while failing to locate others. Even in the case
where a global optimum exists, gradient-based methods may converge to a non-optimal
local minimum. This is where stochastic, heuristic-based optimization algorithms are
more robust, as they make no assumptions about the properties of the objective space.
In this sense, they act as so-called ‘black box’ optimizers. A particularly useful class of
these algorithms, inspired by the processes of natural selection, is evolutionary algorithms
(EAs) [41, 42]. By using numerical analogs to mutation, recombination, and selection,
an EA takes an initial ‘population’ of solutions and produces ‘offspring’ that are more
‘fit’ than previous generations in terms of the objective function. In the limit that the
number of generations goes to infinity, the EA should produce offspring that perform
optimally with respect to the objectives.

EAs are more robust than gradient-based optimization algorithms insofar as they do
not require the objective function to be smooth and can perform well on ‘noisy’ objective
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Figure 1.2. Example Pareto front (solid curve) for a two-objective optimization problem [1].
The two objectives are f1 and f2. The dashed curve represents the boundary of the realizable
objective space, F.

spaces—a situation in which gradient-based algorithms can perform particularly poorly.
Although the stochastic nature of EAs make it difficult to analyze their convergence
properties, there are a number of test functions on which they reliably outperform
gradient-based methods [43]. Moreover, the population-based architecture of EAs means
that they are inherently adept at identifying sets of optimal solutions when the design
space is multimodal or there does not exist a unique global optimum. The EA selected
for this dissertation is a powerful multi-objective evolutionary algorithm (MOEA) named
‘Borg’ and developed by Hadka and Reed [44]. Borg is part of a class of MOEAs that
find a set of optimal solutions by approximating the so-called ‘Pareto front’. An example
Pareto front for two objectives is shown in Figure 1.2.

First formalized by Vilfredo Pareto in 1906, Pareto optimality captures the inherent
trade-offs that can exist when multiple objectives compete [45]. Given a set of M design
variables, x = [x1, x2, . . . , xM ]T, one can conceptualize all possible combinations of N
objectives, J = [J1(x), J2(x), . . . , JN (x)]T , as an N -dimensional space. One design, xA,
is said to ‘Pareto dominate’ another, xB, when Ji(xA) ≤ Ji(xB) for i = 1, 2, 3, . . . , N and
there is at least one objective, Jj(x), such that Jj(xA) < Jj(xB). In the case that neither
design Pareto dominates the other, the two are said to be ‘non-dominated’ [1]. The Pareto
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optimal set, then, is the set of all non-dominated designs within the M -dimensional
design space. Borg and other Pareto-based MOEAs employ evolution-inspired heuristics
to approximate the Pareto optimal set over a sufficiently large number of iterations.

Among other things, Borg is set apart by three features: its discretization of the
objective space, its use of automatic restarts, and its auto-adaptive use of multiple
recombination methods. Borg implements a version of the ε-dominance archive first
proposed by Rudolph [46] and improved upon by Laumanns et al. [47]. Conceptually,
the objective space is divided into discrete N -dimensional hypercubes or ‘boxes’ of
side lengths ε1, ε2, . . . , εN , and it is these ε-boxes, rather than the continuous objective
function values, that are used to determine Pareto dominance. It can be shown that the
ε-dominance scheme guarantees both convergence to the Pareto optimal set and a diverse
set of designs [47]. By breaking up the objective space into discrete units, ε-dominance
also provides an intuitive user-defined control of the resolution. This can be important
in practical applications where improvements smaller than a certain increment may not
be considered significantly better.

The ε-box implementation also facilitates a natural measure of search progress. Each
time one design dominates another, the dominating design is archived. The archive size
is used in Borg to determine the population size of candidate designs as well as the
tournament size of competing designs. Similar to gradient-based methods, MOEAs can
sometimes waste effort converging to local optima when the algorithm consistently finds
small improvements near a local optimum, causing search to stagnate. Borg counteracts
search stagnation by using ε as the minimum threshold for improvement and requiring
the algorithm to periodically produce at least one solution whose improvement exceeds
this threshold. If, after a number of iterations, the new archive does not include at least
one solution that is outside the ε-boxes of the previous archive, then the search has
stagnated and is restarted. During restart, the population and tournament sizes are
adapted, the population is emptied and repopulated with the archive, and the remaining
slots in the population are filled by random mutations of the archive designs.

Like other MOEAs, Borg searches the design space using recombination, the process
of selecting traits from current designs and applying random mutation and crossover
to produce new designs. Because it is difficult to know a priori which recombination
operator will be most effective for a given problem, Borg uses several methods that are
adaptively selected based on their ability to produce optimal solutions, an idea introduced
by Vrugt and Robinson [48] and improved upon by Hadka and Reed [44]. The idea is to
generate a feedback loop in which recombination operators that take a parent population
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and produce more successful offspring designs are rewarded by increasing the number of
offspring produced by those operators in future recombinations. As a result, Borg is not
a single algorithm, but instead an algorithm template, whose operators are adaptively
selected based on the problem. This also means that Borg can adapt its algorithm to
better evaluate different regions of the design space for the same problem. The particular
recombination operators that Borg chooses from are simulated binary crossover [49],
differential evolution [50], parent-centric crossover [51], unimodal normal distributed
crossover [52], simplex crossover [53], uniform mutation, and polynomial mutation [49].

Borg has been shown to be a robust MOEA that performs better than other MOEAs on
a number of standard test functions [44], and has been successfully applied to optimization
problems in several fields [54–58].

1.3.4 Optimization framework

A flowchart outlining the steps to formulate an optimization problem and develop an
appropriate optimization framework is shown in Figure 1.3. The generalized process
for a given optimization study is as follows: First, objectives are designed that distill
physical behavior of interest or correspond to practical outcomes of the particular ABH
implementation. Examples include overall mass, spatially-averaged square velocity
response, and total dissipated power. Then, design variables and constraints relevant to
those objectives are identified. The design variables are next related to the objectives
through an objective function, which in some cases will not be an analytic expression
but will instead involve the modelling of physical behavior using techniques such as the
transfer matrix method (TMM) and the finite element method (FEM). To this end, the
design variables are passed to a meshing algorithm that creates a mesh for the particular
ABH implementation. This mesh is analyzed using the appropriate solution method
(TMM or FEM), and the results are passed to a post-processor. The post-processor
finally extracts the results and performs whatever necessary operations to calculate the
objectives. This process of taking in the design variables and outputting the objectives
as real scalars constitutes the objective function. As far as Borg is concerned, the
objective function is a black box. This objective function is linked with Borg, which
adaptively explores the solution space based on the output of the objective function,
until a prescribed number of function evaluations has occurred or another termination
condition is met. Borg then prints out the set of optimal solutions that approximate
the Pareto front, thus concluding the optimization process. Because the Pareto front
inherently captures the tradeoffs between objectives, analysis of trends in the solution

20



Figure 1.3. Flowchart representation of the process for formulating an optimization problem.
Note that this process is not prescriptive and is only a formalization of the author’s own process.
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set can illuminate how considerations for ABH design interact to produce tradeoffs in
performance.

1.4 Outline of the dissertation
The objectives of this dissertation are threefold. Firstly, an optimization framework
must be established for use in the structural optimization studies related to ABH design.
This includes developing the methods and computer code necessary to perform the
optimization, but also requires the selection of an appropriate optimizer. Secondly, the
optimization framework will be used to perform several structural optimization studies
related to practical ABH implementations. Of particular interest will be the evaluation
of ABH vibration absorbers as part of a larger, finite structure. In contrast to evaluating
the ABH alone, the dynamic response of the composite structure will be considered in
evaluating the performance of the ABH vibration absorber. Some factors that will be
considered include the thickness profile of the ABH, the particular way a given thickness
profile is implemented, and the damping configuration included with the ABH vibration
absorber. General design guidance will then be sought from the results of these structural
optimization studies. Finally, throughout the work of this dissertation it has become
clear that the optimal ABH design can be highly dependent on factors such as frequency
range and the scale of the problem. Therefore, an additional objective of this dissertation
is to develop a framework for ABH design that is independent of these factors, to the
greatest extent possible.

With these objectives in mind, the structure of the dissertation is as follows:

• In Chapter 2 the Borg algorithm is tested against a standard MATLAB function
for constrained minimization, fmincon. Both algorithms are tested on an example
problem of optimizing the shape of a beam under harmonic excitation, from which
parallels and comparisons are drawn.

• In Chapter 3 the Borg algorithm is applied to the problem of optimizing the shape
of an ABH termination at the end of a cantilever beam. To model the dynamics of
the system, a novel formulation of the transfer matrix method (TMM) is developed.

• In Chapter 4 the optimal design of three ‘styles’ of one-dimensional ABH are
compared. For each style, the objective is to find the design that simultaneously
minimizes vibration response and overall mass. Because these two objectives are at
odds, a Pareto optimal set is found.

22



• In Chapter 5 the problem of optimizing a circular two-dimensional ABH in a
plate is addressed. Vibration reduction performance is evaluated through a new
energy-based measure. Along with deriving this new performance measure, a set of
non-dimensional design variables is derived for use in the optimization. To model
the dynamics of the system, a solver is developed using the finite element method
(FEM) together with the deal.II library [59].

• In Chapter 6 the major findings of the dissertation are summarized and suggestions
are made for possible future work.
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Chapter 2 |
A comparison of optimization al-
gorithms: Gradient-based versus
evolutionary∗

2.1 Introduction
In order to accomplish the goals of this dissertation, as they relate to acoustic black
hole (ABH) optimization, it is of utmost importance to select a quality optimization
algorithm. While there are many algorithms available, they can all be broadly described
as one of two classifications: deterministic, gradient-based algorithms and stochastic,
heuristic-based algorithms. Evolutionary algorithms (EAs) and the Borg algorithm in
particular (detailed in Chapter 1) fall into the latter category. Additionally, the process of
ABH optimization will require a robust structural optimization framework for evaluating
ABH designs based on some objective(s).

The objectives of the work presented in this chapter are thus twofold. The first is
to build a simple optimization framework, including the implementation of a structural-
acoustic objective function, the evaluation of design variables, and the incorporation
of an optimization algorithm. The second is to demonstrate the suitability of Borg
for structural acoustic optimization by evaluating its performance on a test problem
from the literature. To this end, Borg’s performance is compared against that of a
standard gradient-based algorithm to establish the advantages (and disadvantages) of a
heuristic-based algorithm like Borg.

∗A portion of the work presented in this chapter was also presented at the 179th Meeting of the
Acoustical Society of America [60].
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Figure 2.1. Graphical depiction of the current optimization problem. The beam geometry is
represented by 100 beam segments, where each segment has constant thickness. The left-hand
boundary condition is an imposed shear, while the right-hand boundary condition is zero
displacement and zero rotation, i.e., fixed. The microphone region, (xa, xb), has constant
thickness hmic throughout.

2.2 Problem description
The chosen test problem is taken with minimal modification from Berggren et al. [2],
which was presented at the 10th World Congress on Structural and Multidisciplinary
Optimization. Nominally, the problem is to minimize the coupling of vibration between
a speakerphone’s speaker and its microphone through the speakerphone’s casing. For
modeling purposes, the system is reduced to one dimension, with the casing modeled as a
thin beam fixed at one end and the speaker modeled as a time-harmonic shear force acting
on the other end. The design variable is the thickness distribution of the beam, h(x), and
the objective is to minimize the time-harmonic displacement amplitude†, U(x) = |ũ(x, t)|,
within the region representing the microphone, 0 < xa ≤ x ≤ xb < Lx, where Lx is the
length of the beam. To reduce the dimension of the design space, the beam is subdivided
into 100 constant-thickness segments so that h(x) is piecewise constant and can be
represented by the vector h =

[
h1 h2 · · · h100

]T
. Additionally, the microphone region

is enforced to have a constant thickness, hmic, so that in practice the number of design
variables, Nvars, is some number less than 100 and h(x) can instead be represented by the
vector h =

[
h1 h2 · · · hj hmic · · · hmic hj+1 · · · hNvars

]T
. A graphical depiction

of the beam is shown in Figure 2.1.
Furthermore, the design space is restricted by constraints on the beam’s overall mass

and its static compliance under a uniform load with both ends pinned. If m is the mass of
†Note that a tilde above a variable indicates that it is (in general) a complex quantity.
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a given design and C is its static compliance, then the constraints take the form m ≤ γm

and C ≤ γC , respectively. With the objective and constraints so described, the problem
can be formulated as follows:

min
h∈H

J(h) =
∑
ω∈W

Jω(ω,h) =
∑
ω∈W

∫ xb

xa

∣∣∣∣U(x, ω,h)
∣∣∣∣2 dx

subject to

H =
{
h ∈ RNvars : 0 < h− ≤ hi ≤ h+, hmic const.

}
−ω2ρLyh(x)U + ∂2

∂x2

(
E
Lyh

3(x)
12 U,xx

)
= f(x, ω) , ∀x ∈ (0, Lx)

f(x) = 0
U,xx(0) = 0

h3(0)U,xxx(0) = F ′

U(Lx) = U,x(Lx) = 0


∀ω ∈ W

f(x) = 1
U(0) = U,xx(0) = 0

U(Lx) = U,xx(Lx) = 0

 for ω = 0

∫ Lx

0
ρLyh(x) dx ≤ γm

1
Lx

∫ Lx

0

∣∣∣∣U(x, 0,h)
∣∣∣∣ dx ≤ γC

In words, the above states that the goal of the problem is to find the vector of design
variables, h, that minimizes the objective function, J(h). h is restricted to be in the
set of valid designs, H, such that the microphone region has a constant thickness and
the remaining portions of the beam have a thickness between some lower and upper
limits. J(h) is itself a summation of the squared displacement magnitude, |U(x)|2, in
the microphone region, (xa, xb), across a set of frequencies, W. Note the bin width is
the same for all of the discrete frequencies and so it is not necessary to include it in the
definition of J(h). The dynamic displacement along the beam, U(x), is determined by
the time-harmonic solution of the dynamic Euler-Bernoulli beam equation, the solution
of which depends on the particular evaluation frequency, ω, the thickness profile of the
beam, h(x), the beam’s width, Ly, and the beam’s material properties, namely its density,
ρ, and its Young’s modulus, E. Depending on the value of ω, there are different boundary
conditions on the zeroth, first, second, and third derivatives of the displacement, U(x),
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U,x(x), U,xx(x), and U,xxx(x), respectively. In this sense, the dynamic equation acts as a
PDE constraint on the optimization problem, with its boundary conditions depending
on whether the evaluation frequency is in the set W or is equal to zero—i.e., static beam
deflection. The latter case applies only when evaluating the final two constraints, which
as mentioned above are constraints on the beam’s total mass and its static compliance
under a uniform load.

2.3 Theory

2.3.1 Transfer matrix method

Berggren et al. solve the dynamic Euler-Bernoulli beam equation using the finite element
method (FEM) with cubic Hermite polynomials, as is standard for beam problems
[61]. The use of cubic Hermite polynomials means the solution is continuous in both
displacement and in rotation. Rather than use the FEM to solve the dynamic beam
equation, the solution function here uses the transfer matrix method (TMM), which is
described in detail in the next section. The advantage of the TMM is that the resulting
solution is based on harmonic functions rather than polynomials, and is continuous in
displacement, rotation, torque, and shear. In this sense, it is a ‘strong’ solution to the
dynamic beam equation, as opposed to the ‘weak’ solution employed by the FEM.

To further explain the TMM, note that the dynamic equation for an Euler-Bernoulli
beam can be written as

ρA
∂2ũ

∂t2
+ ∂2

∂x2

(
EI

∂2ũ

∂x2

)
= f(x, t), (2.1)

where f(x, t) is the external force per unit length, ρ is the density of the beam material, E
is its Young’s modulus, A is the beam’s cross-sectional area, and I is the second moment
of inertia about the beam’s neutral axis. In the case that E and I are independent of
position, f(x, t) = 0, and assuming a steady-state, time-harmonic solution of the form
ũ(x, t) = U(x)eiωt, one form of the solution to Equation (2.1) is

U(x) = U0c1(x) + θ0

k
c2(x)− M0

EIk2 c3(x)− Q0

EIk3 c4(x) (2.2)
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with c1(x), c2(x), c3(x), and c4(x) defined as

c1(x) = 1
2
(

cosh(kx) + cos(kx)
)
, (2.3)

c2(x) = 1
2
(

sinh(kx) + sin(kx)
)
, (2.4)

c3(x) = 1
2
(

cosh(kx)− cos(kx)
)
, (2.5)

and
c4(x) = 1

2
(

sinh(kx)− sin(kx)
)
, (2.6)

respectively. U0 is the vertical displacement of the beam’s neutral axis at x = 0, θ0 is its
rotation at x = 0, M0 is the torque about the neutral axis at x = 0, Q0 is the shear force
at x = 0, and k = 4

√
ω2ρA
EI

is the wavenumber. For a beam of length L, it is possible to
relate the state variables at x = 0, u1 =

[
U0 θ0 M0 Q0

]T
, to the state variables at

x = L, u2 =
[
UL θL ML QL

]T
, through the relation u2 = Zu1, where

Z =


c1(L) c2(L)

k
− c3(L)
EIk2 − c4(L)

EIk3

kc4(L) c1(L) − c2(L)
EIk

− c3(L)
EIk2

−EIk2c3(L) −EIkc4(L) c1(L) c2(L)
k

−EIk3c2(L) −EIk2c3(L) kc4(L) c1(L)

 . (2.7)

This transfer matrix method can also be used to relate the state variables at any
intermediate point along the beam, so long as each segment is uniform and homogeneous.
In this way, the dynamics of complex beam geometries can be analyzed by partitioning
them into segments that are approximately uniform and homogeneous. For such a beam
partitioned into N segments and N + 1 nodes, the two ends of the beam can be related
by

uN+1 =
 N∏
i=1
Zi

u1 = Tu1. (2.8)

The Π notation is used in Equation (2.8) and subsequently to denote sequential left
multiplication of matrices. Given a set of known boundary conditions, the remaining
unknown state variables in u1 and uN+1 can be solved by explicitly calculating T
and carrying out the appropriate algebra. For example, if u1 =

[
U1 θ1 0 F

]T
and

uN+1 =
[
0 0 MN+1 QN+1

]T
(i.e., a cantilever beam), then the following system of
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equations results:

A11U1 + A12θ1 = −A14F, (2.9)

A21U1 + A22θ1 = −A24F. (2.10)

Because T and F are known, U1 and θ1 can be solved for and u1 is therefore completely
known. State variables at intermediate points can then be determined from u1 using
sequential application of transfer matrices as ui+1 = Ziui.

If the beam is excited by a harmonic point force somewhere on the interior of the
beam, then the transfer matrix formulation of Equation (2.8) is modified as follows:
suppose a point force with magnitude Q is applied at node 1 < j < N + 1. This would
correspond to f(x, t) = Qeiωtδ(x−xj) in Equation (2.1). The state variables at this node
would then be calculated as uj = Zj−1uj−1 + d, where d =

[
0 0 0 Q

]T
is an external

perturbation of the state variables in u. The two ends of the beam are now related by

uN+1 =
 N∏
i=1
Zi

u1 +
 N∏
i=j
Zi

d = Tu1 + V d (2.11)

and the unknown state variables can be solved for just as before. Note that damping can
be easily incorporated by using a complex E in the definition of Z, thus resulting in a
complex definition of u.

The situation is complicated somewhat for the case of static deflection. In such a case,
k = 0 and so Equation (2.2) cannot be used as the general solution to Equation (2.1).
Consider instead the static equation for an Euler-Bernoulli beam:

∂2

∂x2

(
EI

∂2u

∂x2

)
= f(x). (2.12)

If it is still assumed that E and I are independent of position, then the solution for
f(x) = F = const. is

u(x) = U0 + θ0x−
M0

2EI x
2 − Q0

6EI x
3 + F

24EI x
4. (2.13)
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One can still use the relation ui+1 = Ziui + di, except now

Zi =


1 Li − L2

i

2EI −
L3
i

6EI

0 1 − Li
EI

− L2
i

2EI

0 0 1 Li

0 0 0 1

 (2.14)

and di =
[
F

L4
i

24EI F
L3
i

6EI −F
L2
i

2 −FLi
]T
. In this form, the transfer matrix method can

be used just as before.

2.3.2 Smoothing filters

Before describing the details of the optimization procedure, it is worth noting that
Berggren et al. found it advantageous to use a spatial smoothing filter for two of the three
sets of frequencies [2]. The smoothing filter is applied to the raw thickness profile such
that the thickness profile, h(x), is changed to

(
h ∗K

)
(x). This has the effect of taking

potentially noisy thickness profiles with many sharp jumps and generating smoother
profiles that vary more gradually over space. The filter function, as given by Bendsøe
and Sigmund, is [62]

(
h ∗K

)
(x) = 1

〈K〉

∫ Lx

0
h(y)K(x− y) dy, (2.15)

where
〈K〉 =

∫
R
K(y) dy (2.16)

and

K(x) =

1− |x|
r

if |x| ≤ r

0 otherwise.
(2.17)

In other words,
(
h ∗K

)
(x) is the convolution of h(x) with a triangular window of width

2r. The discrete analog to the above convolution is

(
h ∗K

)
[n] = 1

〈K〉

N−1∑
m=0

h[m]K[n−m] ∆x, (2.18)

where
〈K〉 =

∑
m∈Z

K[m] ∆x (2.19)
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and

K[n] =

1− |n|
d

if |n| ≤ d

0 otherwise.
(2.20)

Note that x = n∆x. This discrete filter is implemented by Berggren et al. for the
low-frequency and high-frequency cases, but not for the broadband case. As such, the
same approach is taken here.

2.4 Procedure
The gradient-based optimization algorithm chosen to compare against Borg is MATLAB’s
fmincon. The fmincon function is actually a collection of algorithms that are used
to minimize nonlinear scalar objective functions with multiple (possibly) nonlinear
constraints. It is a default choice in MATLAB’s Optimization Toolbox because it is
generally effective for smooth objective functions with smooth constraints. Further
details can be found in MATLAB’s documentation. Both optimization algorithms call
the same design evaluation function. A flowchart representation of this function is given
in Figure 2.2. In short, given a vector of design variables, the overall mass and compliance
of the design are first calculated. If either of these values violates the constraints, then
the function returns these values along with a nominal objective value of 100. If the
constraints are satisfied, then the function continues with the solution of the dynamic
response of the design and ultimately returns the corresponding objective value. The
constraints are thus enforced using a fixed penalty method.

The optimization procedure was carried out using the parameters given in Table 2.1.
As in [2], three different optimizations were carried out, one for each of three sets of
frequencies. The first case is broadband optimization, ω ∈ WBB. Berggren et al. selected
a frequency range from 300 Hz to 3400 Hz, with 50 equally-spaced frequencies within this
range comprising the set WBB. The authors also conducted six additional narrowband
test cases. However, [2] only presents results for two of these: 300 Hz to 800 Hz and
2300 Hz to 2800 Hz. From each of these frequency ranges, the authors again chose 50
equally-spaced evaluation frequencies to constitute the low-frequency set, WLF, and the
high-frequency set, WHF.

For all three frequency sets, both Borg and fmincon were run for 500,000 objective
function evaluations. In the case of fmincon, the gradient is estimated at each iteration
using finite differences unless the user supplies a gradient function. As such, the actual
number of function evaluations may be many times more than the number of iterations.

31



Figure 2.2. Flowchart representation of the design evaluation function called by both opti-
mization algorithms.
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Table 2.1. Parameters used in the optimization problem.
Material Parameters

Young’s modulus, E 360 MPa
Density, ρ 1100 kg

m3

Geometric Parameters
Beam length, Lx 28 cm
Beam width, Ly 7 cm

Thickness limits, (h−, h+) (2, 15) mm
Microphone thickness, hmic 6 mm
Microphone region, (xa, xb) (14, 17.92) cm

Runtime Parameters
Broadband frequencies, WBB 2π ×

{
300, 300 + 3100

49 , . . . , 3400
}
Hz

Low frequencies, WLF 2π ×
{

300, 300 + 500
49 , . . . , 800

}
Hz

High frequencies, WHF 2π ×
{

2300, 2300 + 500
49 , . . . , 2800

}
Hz

Low-frequency filter radius, rLF 4× 2.8 mm
High-frequency filter radius, rHF 5× 2.8 mm

Mass constraint, γm 1.0×mref
Compliance constraint, γC 1.6× Cref

Scaled driving force magnitude, F ′ 12
LyE

Note: The reference mass and compliance, mref and Cref , are those
for a beam with a uniform thickness of 5 mm.

However, fmincon converged in fewer than 500,000 function evaluations for the present
problem‡, and so it was restarted several times with random starting designs until a total
of 500,000 function evaluations was reached. The ‘optimal’ design shown below is thus
the best of the set of designs converged upon by fmincon.

2.5 Results and discussion
This section presents the results of both Borg and fmincon for each of the three frequency
sets: broadband frequencies (ω ∈ WBB), low frequencies (ω ∈ WLF), and high frequencies
(ω ∈ WHF). Finally, a general summary of the results, comparing Borg and fmincon, is
also presented. Along with the results from Borg and fmincon, figures taken directly
from the paper of Berggren et al. [2] are presented, both for reference and to compare

‡Note that in the high-frequency case, fmincon’s default tolerances were too low to produce conver-
gence in 500,000 function evaluations or fewer, and so the minimum step size was increased from 10−10

to 10−8.
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(a)

Figure 2.3. Optimization results for the broadband case, ω ∈ WBB, using fmincon. The top
plot (a) shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and
a reference beam with a uniform thickness of 5 mm (blue). The evaluation frequencies are
shown as red hatch marks. The bottom left plot (b) shows the optimal thickness distribution
(blue) compared to the reference beam (red). The bottom right plot (c) shows the displacement
amplitude, |U |, along the beam at ω = 2π × 300 Hz for the optimal beam design (green) and
the reference beam (blue). The bounds of the microphone region are indicated by two red
vertical lines.

against the results of this current work.

2.5.1 ω ∈ WBB

Figures 2.3 and 2.4 show the results of the structural optimization using fmincon and
Borg, respectively, for the case of broadband frequencies, ω ∈ WBB. The corresponding
plot from [2] is reproduced in Figure 2.5 for reference. To facilitate direct comparison,
the optimization results are formatted in the same way as in [2] for each of the three
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Figure 2.4. Optimization results for the broadband case, ω ∈ WBB, using Borg. The top
plot (a) shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and
a reference beam with a uniform thickness of 5 mm (blue). The evaluation frequencies are
shown as red hatch marks. The bottom left plot (b) shows the optimal thickness distribution
(blue) compared to the reference beam (red). The bottom right plot (c) shows the displacement
amplitude, |U |, along the beam at ω = 2π × 300 Hz for the optimal beam design (green) and
the reference beam (blue). The bounds of the microphone region are indicated by two red
vertical lines.

frequency sets. Taking Figure 2.3 as an example, the top section shows the full response
spectrum for the optimal design (shown in green) as compared to a reference beam with
a uniform thickness of 5 mm (shown in blue); the evaluation frequency set, W , is shown
as red hatch marks. The spectrum values represent the integral of the displacement
amplitude across the microphone region. That is, the spectrum is calculated by evaluating
the expression for Jω(ω,h) defined in Section 2.2. Adding together the spectrum values
at the red hatch marks would give ∑ Jω = J(h). Note that although the peak heights
may appear to differ between, e.g., Figures 2.3 and 2.5, the problem does not include
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Figure 2.5. Figure 3 from [2], corresponding to Figures 2.3 and 2.4. Note that Berggren et al.
use the variables D and A in place of h and U , respectively.

damping and so the displacement at resonance should theoretically be infinite. Therefore,
the peak heights in the figures reproduced from [2] are artificially low, possibly due to
undersampling. Looking again at Figure 2.3, a representation of the beam’s thickness
profile is shown in the lower left corner, with the optimal design shown in blue and
the reference beam shown in red. The lower right corner shows the optimal design’s
displacement amplitude across the beam (shown in green) as compared to the reference
beam (shown in blue) for the first frequency of the set. The microphone region, (xa, xb),
is indicated between two red vertical lines. As will be discussed below, altering the
thickness profile acts to shift peaks in the response spectrum. As such, the two response
plots in the lower right corner may have differing numbers of nodes and antinodes, in
addition to different amplitude, because for the same evaluation frequency the effective
wavenumber is different.

Comparing Figures 2.3 and 2.4, it is not immediately clear that the results from Borg
and from fmincon share any similarities. It is worth pointing out that the optimal design
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from Borg is much less ‘smooth’ than the fmincon design, insofar as it has more jumps in
thickness from segment to segment. This is indicative of the nonlinear, stochastic search
strategy of Borg as opposed to the linear gradient-based search strategy of fmincon.
While the two designs differ noticeably, their mass distribution is similar, particularly at
the excited end of the beam, which is substantially thicker than the rest of the beam.
This is likely a mechanism to increase the input impedance by increasing mass at the
drive point. Because the force is independent of the end thickness, the input power is
inversely proportional to the impedance and so increasing the impedance has the effect of
reducing the power transferred to the rest of the beam. The same strategy of increased
mass at the excitation end is also seen in the results of Berggren et al. in Figure 2.5. The
authors’ results are more similar to the results of fmincon, with the notable exception
that the results of Berggren et al. shows a thickening of the beam near the clamped end,
while the fmincon favored distributing the mass to other locations.

2.5.2 ω ∈ WLF

The results paint a clearer picture in the narrowband cases. The respective plots for
the low-frequency case, ω ∈ WLF, are shown in Figures 2.6, 2.7, and 2.8. Similar to
the broadband case, the forced end of the beam is significantly thicker than the rest
of the beam for all three optimal designs—that from Borg, that from fmincon, and
that from Berggren et al. All three also have distinct ‘lobes’ of increased thickness at
regular intervals along the beam, although these lobes are not all in the same location
nor the same size. In this sense, the results from fmincon and Berggren et al. are similar
to one another. However, both the optimal design from Borg and the optimal design
from Berggren et al. show a thickening around the microphone region, which may work
in a similar way to the thickening of the excited end—namely, to reduce the response
amplitude in that region given a certain input energy.

2.5.3 ω ∈ WHF

Finally, the optimization results for the high-frequency case, ω ∈ WHF, are shown in
Figures 2.9 and 2.10 for fmincon and Borg, respectively, with the corresponding plot
from [2] reproduced in Figure 2.11. This case is unique from the other two frequency
ranges insofar as thickening of the excited end is not necessarily optimal, or is not as
important. Rather, all three optimal designs show a distinct periodic structure, and
there is effectively band gap behavior in the range ω ∈ WHF for the optimal designs from
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Figure 2.6. Optimization results for the low-frequency case, ω ∈ WLF, using fmincon. The
top plot (a) shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green)
and a reference beam with a uniform thickness of 5 mm (blue). The evaluation frequencies are
shown as red hatch marks. The bottom left plot (b) shows the optimal thickness distribution
(blue) compared to the reference beam (red). The bottom right plot (c) shows the displacement
amplitude, |U |, along the beam at ω = 2π × 300 Hz for the optimal beam design (green) and
the reference beam (blue). The bounds of the microphone region are indicated by two red
vertical lines.

Borg and fmincon. The mechanism of this behavior can be understood by looking at the
dynamic displacement at several frequencies of interest. First, note that for the reference
beam there is a resonance within the region of WHF, but that this resonance is absent
for the optimized shapes. Figure 2.12 gives the dynamic response near this frequency,
which shows that the vibration energy is concentrated away from the microphone region.
Instead, there is greatly increased displacement concentrated near the first ‘lobe’ of the
periodic structure. This behavior is akin to the antiresonance behavior of a discrete
mass-spring system, wherein a natural mode shape has one degree of freedom unmoving.

38



(a)

(c)(b)

Figure 2.7. Optimization results for the low-frequency case, ω ∈ WLF, using Borg. The top
plot (a) shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and
a reference beam with a uniform thickness of 5 mm (blue). The evaluation frequencies are
shown as red hatch marks. The bottom left plot (b) shows the optimal thickness distribution
(blue) compared to the reference beam (red). The bottom right plot (c) shows the displacement
amplitude, |U |, along the beam at ω = 2π × 300 Hz for the optimal beam design (green) and
the reference beam (blue). The bounds of the microphone region are indicated by two red
vertical lines.

As a result, one would expect two new resonance peaks flanking the one original resonance
frequency. Indeed, inspection of the spectra in Figure 2.10 shows this very splitting effect,
with two new peaks surrounding the one peak in the reference spectrum. If the dynamic
displacement is analyzed at these two new frequencies, as in Figure 2.13, it is clear that
they correspond to the cases where vibration energy is moved away from the first lobe
and focused at the other end of the beam. Effectively, the search strategies of both Borg
and fmincon have resulted in the design of a vibroacoustic metamaterial, with a periodic
structure tuned to push the dynamic response of the beam towards the lobed region of
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Figure 2.8. Figure 5 from [2], corresponding to Figures 2.6 and 2.7. Note that Berggren et al.
use the variables D and A in place of h and U , respectively.

the beam for the analysis frequencies in WHF. Even the results of Berggren et al. show
this periodic metamaterial design, although the period is significantly shorter and the
lobes smaller in the results from Berggren et al.

2.5.4 Comparing fmincon and Borg

A summary of the optimization results for all three frequency sets is given in Table 2.2.
Included in the table are the objective function value, J , the total mass normalized by
the mass constraint, m/γm, and the static compliance normalized by the corresponding
compliance constraint, C/γC . That is, the closer the value is to 1.00, the closer the
design is to the limit of the respective constraint. It is clear from this summary that Borg
produces an overall better design compared to that of fmincon. While the difference is
not large in the broadband case, it is particularly stark in the high-frequency case, in
which the best Borg design performs nearly 1000 times better than the best design of
fmincon. It should be pointed out that all of the Borg designs lie at the very edge of the
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Figure 2.9. Optimization results for the high-frequency case, ω ∈ WHF, using fmincon. The
top plot (a) shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green)
and a reference beam with a uniform thickness of 5 mm (blue). The evaluation frequencies are
shown as red hatch marks. The bottom left plot (b) shows the optimal thickness distribution
(blue) compared to the reference beam (red). The bottom right plot (c) shows the displacement
amplitude, |U |, along the beam at ω = 2π × 2300 Hz for the optimal beam design (green) and
the reference beam (blue). The bounds of the microphone region are indicated by two red
vertical lines.

constrained design space, while the designs of fmincon are close but not always at the
very edge.

It is not only the best designs that show this trend. Table 2.3 gives some statistical
measures of the performance of each algorithm on these particular problems. Among
these measures are the objective value and the number of function evaluations (NFEs) at
each restart. That is, every time fmincon or Borg restarts, the objective function and
NFEs are recorded; the measures are then calculated from these two sets. Because of the
fundamentally different natures of the two algorithms, it is difficult to compare them
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Figure 2.10. Optimization results for the high-frequency case, ω ∈ WHF, using Borg. The
top plot (a) shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green)
and a reference beam with a uniform thickness of 5 mm (blue). The evaluation frequencies are
shown as red hatch marks. The bottom left plot (b) shows the optimal thickness distribution
(blue) compared to the reference beam (red). The bottom right plot (c) shows the displacement
amplitude, |U |, along the beam at ω = 2π × 2300 Hz for the optimal beam design (green) and
the reference beam (blue). The bounds of the microphone region are indicated by two red
vertical lines.

one-to-one. Because Borg will restart more frequently after the first restart, the objective
value, J , and the NFEs are given at the first restart. In contrast, the J and NFEs
reported for fmincon are the averages for those two sets of recorded values. In this sense,
Table 2.3 shows an approximation of the expected performance of a single run of each
algorithm with no restarting. Under this interpretation, two things become apparent: 1)
fmincon takes significantly fewer function evaluations to converge; and 2) Borg is more
robust against the multimodal search space, reaching significantly better-performing
designs before restarting. Indeed, Borg may take orders of magnitude more function
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Figure 2.11. Figure 6 from [2], corresponding to Figures 2.9 and 2.10. Note that Berggren et
al. use the variables D and A in place of h and U , respectively.

Figure 2.12. Optimal thickness distribution (blue) and displacement amplitude at ω =
2π× 2557.32 Hz (red) for the high-frequency case, ω ∈ WHF, using Borg. Clearly, at 2557.32 Hz
the vibration energy is concentrated at the left end away from the microphone region, (xa, xb).
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Figure 2.13. Optimal thickness distribution (blue) and displacement amplitude (red) for the
high-frequency case, ω ∈ WHF, using Borg. Analysis frequencies are ω = 2π × 2191.23 Hz (left)
and ω = 2π × 2902.02 Hz (right). Whereas at 2557.32 Hz the vibration energy is concentrated
at the drive point, here there is very little movement at the left end.

Table 2.2. Summary of optimization results for the three frequency sets. Most optimal
objective value, J , along with the mass, m, and compliance, C, of the corresponding design,
normalized by their respective constraints.

fmincon Borg

WBB

J 4.06× 10−4 2.69× 10−4

m/γm 1.00 1.00
C/γC 1.00 1.00

WLF

J 4.82× 10−2 7.42× 10−3

m/γm 0.994 1.00
C/γC 0.839 1.00

WHF

J 5.42× 10−4 9.18× 10−7

m/γm 0.987 1.00
C/γC 0.999 1.00

Table 2.3. Performance comparison of the two algorithms. Because Borg will restart more
frequently after the first restart, the objective value, J , and the number of function evaluations
(NFEs) are given at the first restart. In contrast, the J and NFEs reported for fmincon are
the averages for all restarts.

fmincon (average) Borg (1st restart)

WBB
J 5.44× 10−3 5.12× 10−4

NFEs 415 100,982

WLF
J 7.73× 100 1.75× 10−2

NFEs 390 4,502

WHF
J 1.30× 10−2 2.01× 10−4

NFEs 350 1,801
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evaluations to converge, while fmincon may converge to designs that perform orders of
magnitude worse.

In all three cases, WBB, WLF, and WHF, the primary outcome of the optimization
was to shift peaks in the beam’s response to be outside the frequency range of interest
and/or in between the analysis frequencies. By shifting the peaks away from the analysis
frequencies, the peaks effectively ‘disappear’ from the point of view of the objective
function. This phenomenon can be partially alleviated by integrating across the frequency
range rather than evaluating it at discrete points. However, any analysis that involves a
finite frequency range will be susceptible to this phenomenon to some degree because the
peaks at the edge of the range can be shifted to be just outside of it.

2.6 Conclusions
As mentioned in the introduction, the two goals of this chapter were to to build an
effective optimization framework and to use that framework in the context of an example
structural optimization problem and thereby compare the performance of Borg against
that of a standard gradient-based algorithm. The selected test problem was taken from
Berggren et al. [2] and involved tailoring the thickness profile of a cantilever beam to
isolate a portion of it from vibration. As the results of both optimization algorithms
show, the framework was successful in determining designs that achieve isolation that is
orders of magnitude better than a reference uniform beam. Moreover, designs from both
algorithms share commonalities with the results from Berggren et al., adding further
credibility to the optimization framework.

In terms of comparing the two optimization algorithms, the results of this struc-
tural optimization study illustrate several important things. First, fmincon converges
significantly faster than Borg. On average, fmincon converges in about 400 function
evaluations, while Borg may take upwards of 100,000 function evaluations before it
restarts. In this sense, fmincon is the preferred algorithm, especially when function
evaluations are expensive. Second, the objective space is multimodal, as indicated by
the multiple designs converged upon by fmincon. In this sense, Borg is the preferred
algorithm with its global search strategy, including the use of automatic restarts. This is
as opposed to a gradient-based algorithm like fmincon, which converges only to local
minima by the nature of its design. Indeed, fmincon is expected to converge upon
designs that perform on average orders of magnitude worse than those of Borg. Even
after multiple runs with random seeding, the best design of Borg outperforms the best
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design of fmincon.
Moreover, Borg naturally extends to multi-objective problems in a way that fmincon

does not. For example, although inequality constraints were used in this test case, it
may be advantageous to instead incorporate constraints like mass and compliance as
additional objectives. One can then imagine a set of optimal designs that trade off one
objective for another—for example, reducing the beam’s compliance but increasing its
vibration response. It should be noted that there do exist multi-objective variants of
common gradient-based methods, such as Newton’s method [63] and steepest descent [64].
However, as mentioned in the introduction, gradient-based methods are not robust
against noisy and/or discontinuous objective spaces, which frequency-dependent objectives
often lead to. This is one way in which Borg is unequivocally better suited than
gradient-based algorithms like fmincon. This distinct advantage, along with the superior
robustness demonstrated by the results of this chapter, mean that Borg was selected as
the optimization algorithm for all subsequent work in this dissertation.
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Chapter 3 |
Optimization of an ABH at the
end of a cantilever beam∗

3.1 Introduction
As established in Chapter 1, structures whose thickness decreases according to a power
law exhibit the ‘acoustic black hole’ (ABH) effect, which can be used to effectively reduce
vibration. Such ABH vibration absorbers work by reducing the wavelength within the
ABH region while simultaneously increasing displacement, thus focusing strain energy and
more effectively dissipating energy. However, because the early ABH theory was based on
the assumption that the thickness eventually tapers to zero, the only prescription on the
power law exponent was that it be greater than or equal to two [6]. Similarly, limits on
the length of the ABH region were only necessary to ensure a gradual change in thickness
and thus minimize back scattering (see Equation (1.7)). Once a nonzero truncation
thickness is introduced, the parameters of the power law will have a much greater effect
on the ABH’s performance. While it is possible to derive analytical expressions for
reflection in the ABH taper, predicting the performance of an ABH vibration absorber
as part of a larger structure can become more complicated. This is where a rigorous
optimization framework can help elucidate.

An optimization framework was established in Chapter 2 using beam displacement
at discrete frequencies as a metric with the Borg evolutionary algorithm. In particular,
the transfer matrix method (TMM) was used to analyze the dynamics of a beam with a
complex thickness distribution and an objective function was developed that condensed
the dynamic response of this beam to a format usable by Borg. This chapter applies

∗A portion of the work presented in this chapter was also published in the Journal of the Acoustical
Society of America [65].
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Figure 3.1. Graphical illustration of the optimization problem. The beam has overall length
Lx and the base beam has thickness h1, while the ABH taper is determined by its length, LABH,
its minimum thickness, h0, and its taper power, m. The composite structure is driven at a
point, xf , with a point force of magnitude F . The boundary at x = 0 is modelled as free and
the boundary at x = Lx is modelled as fixed.

a similar framework to the problem of a one-dimensional ABH vibration absorber at
the end of a beam. Notable differences are an improved TMM described in Section 3.3
and a carefully formulated quadrature to better capture the broadband dynamics in the
objective function.

3.2 Problem description
The problem considered is that of a one-dimensional acoustic black hole (ABH) vibration
absorber at the end of a cantilever beam. The taper profile of the ABH is of the form
h(x) = εxm+h0, where the coefficient ε can be uniquely determined by the ABH’s length,
LABH, its minimum thickness, h0, its maximum thickness, h1, and its taper power, m, by
the relation

ε = h1 − h0

(LABH)m . (3.1)

The length and thickness of the beam will be held fixed, so the only design variables left
are the ABH length, minimum thickness, and taper power, which can be represented as
a three-element vector, h =

[
LABH h0 m

]T
. A graphical depiction of the problem and

design variables is shown in Figure 3.1. When the beam is driven by a harmonic force at
the point xf , the goal is to minimize the overall beam response in some frequency band,
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[ωa, ωb]. Formally, the problem can be written as:

min
h∈H

J(h) = C
∫ ωb

ωa

〈
U̇2(ω,h)

〉
dω = C

Lx

∫ ωb

ωa

∫ Lx

0

∣∣∣∣iωU(x, ω,h)
∣∣∣∣2 dxdω

subject to

H =
{
h ∈ R3 : 0 ≤ L− ≤ LABH ≤ L+, 0 ≤ h− ≤ h0 ≤ h+, 0 ≤ m− ≤ m ≤ m+

}
−ω2ρLyh(x)U + ∂2

∂x2

(
E
Lyh

3(x)
12 U,xx

)
= f(x, ω) , ∀x ∈ (0, Lx)

f(x) = Fδ(x− xf )
U,xx(0) = U,xxx(0) = 0
U(Lx) = U,x(Lx) = 0

∀ω ∈ [ωa, ωb]

where
C
∫ ωb

ωa

〈
U̇2(ω,0)

〉
dω = 1

and

h(x) =

εx
m + h0 for 0 ≤ x ≤ LABH

h1 for LABH < x ≤ Lx.

In words, the above states that the goal of the problem is to find the vector of design
variables, h, that minimizes the objective function, J(h). The design variables, h,
are restricted to be in the set H of valid designs, which is defined by the minimum
and maximum allowable value of each design variable. The objective function, J(h) is
calculated by integrating the spatially-averaged squared velocity response, 〈U̇2〉, within
the frequency range [ωa, ωb]. A normalization factor, C, is applied to the objective
function so that J(0) = 1, where h = 0 denotes a reference beam of uniform thickness
h1. The velocity response, U̇ , is calculated from the dynamic displacement response,
U , by multiplication of iω. This is because it is assumed that the displacement is time-
harmonic—that is, u(x, t) = U(x)eiωt. Therefore, the time derivative of the displacement
will be u̇(x, t) = iωU(x)eiωt. The displacement is calculated by solving the dynamic
Euler-Bernoulli beam equation, which acts as a PDE constraint on the optimization.
Because the solution to the equation will depend on the value of ω, and the thickness
profile, h(x), U is also dependent on frequency and the design variables contained in
h. When solving the beam equation, the external force is a harmonic point force with
magnitude F applied at x = xf . The boundary conditions are modelled as free at x = 0
and fixed at x = Lx. That is, the displacement at the minimum thickness tip of the
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ABH is unconstrained. This means that the displacement could approach infinity if the
beam is excited at resonance. As such, the thinnest 25% of the ABH was modelled as
having a viscoelastic damping layer attached to one side. This added damping layer was
incorporated into the model as a complex bending stiffness, as will be described in the
next section. A small amount of material damping (see Table 3.1 on page 61) was also
modelled in the bulk beam material for the case that LABH = 0.

3.3 Theory

3.3.1 Damping model

The damping model used is that of Oberst [5], which is applicable to thin beams and plates
with attached, unconstrained, extensional damping layers of homogeneous viscoelastic
material, when the damping material has a much greater loss factor (which is the case
in any practical application). The model of Ross, Ungar, and Kerwin [28] appears to
be more popular in the ABH literature. However, the primary concern of [28] is the
modelling of constrained layer damping, and the authors note that the model of Oberst
is more exact for the case of extensional damping.

Recall that the bending stiffness of an Euler-Bernoulli beam is D = EI, where E is
the Young’s modulus of elasticity of the material and I is the second moment of area
of the beam’s cross section. If the bending stiffness of the base beam is D̃ = D(1 + iη)
and the bending stiffness of the damping material is D̃d = Dd(1 + iηd), then the effective
complex bending stiffness, D̃eff = Deff(1 + iηeff), can be found analytically by integrating
the combined strains and comparing the resultant torques to the Euler-Bernoulli beam
model.

Assumptions of the Euler-Bernoulli beam model include: 1) deflections are much
smaller than the beam thickness; 2) lines orthogonal to the neutral axis remain orthogonal;
and 3) the neutral axis does not change length. Assumption 1 means deflection angles
can be approximated as θ ≈ du

dx . Assumptions 2 and 3 mean that an infinitesimal segment
of length dx, after deformation, forms part of an annulus. If r is defined as the distance
from the center of the annulus to the neutral axis, then after deformation the infinitesimal
length of the neutral axis—which remains unchanged according to assumption 3—is
related to an infinitesimal angle as dx = rdθ. Away from the neutral axis, the new length
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Figure 3.2. Graphic of a two-layer beam. The neutral axis is denoted by a dashed line.

is dx′ = (r − z)dθ, according to assumption 2. Therefore, the strain in the x-direction is

εx(z) = ∆l
l

= dx′ − dx
dx = −z dθ

dx = −zd2u

dx2 . (3.2)

The stress in the x-direction is given simply by σx = Eεx.
In the case of two layers, it is not yet explicit where the neutral axis lies. However,

the distance from the neutral axis to the interface between the two materials can be
denoted δ, as shown in Figure 3.2. If the beam is in static deflection, then at any point
along the beam the net stress is zero. That is,

∫
A
σx dA =

∫ δ+hd

δ−h

∫ Ly

0
σx dydz

= −ELy
∫ δ

δ−h
z

d2u

dx2 dz − EdLy
∫ δ+hd

δ
z

d2u

dx2 dz = 0, (3.3)

where Ly is the width of the composite beam, h is the thickness of the base beam, hd is
the thickness of the damping layer, E is the Young’s modulus of the base beam, and Ed
is the Young’s modulus of the damping layer. Evaluating the integral and rearranging
gives the following expression for the z-coordinate of the neutral axis:

δ = 1
2 ·

Eh2 − Edh2
d

Eh+ Edhd
. (3.4)

Clearly, in the case of no damping layer the neutral axis is at the center of the base
beam. In the case that Ed � E and h and hd are comparable—as is often the case in
practice—the neutral axis will not be far from that point.

To find the effective complex bending stiffness, it is sufficient to compare the torque
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in the composite beam with that for a completely homogeneous beam. At any point x
along the beam, the net torque about the neutral axis is†

M̃(x) =
∫
A
zσ̃x dA. (3.5)

Note the tilde over the characters, indicating complex quantities. This is because we
now consider the dynamic quantities, whereas before the forces were static, and so the
quantities were entirely real. In practice, this means that the entirely real Young’s
modulus, E, becomes a complex value, Ẽ = E(1 + iη), where η models the viscous losses
in the material.

In the case of a homogeneous beam, the dynamic torque reduces to M̃(x) = −D̃ d2u
dx2 .

For the current case of two materials of comparable thickness, the full integral is

∫ δ+hd

δ−h

∫ Ly

0
zσ̃x dydz = −ẼLy

∫ δ

δ−h
z2 d2u

dx2 dz − ẼdLy
∫ δ+hd

δ
z2 d2u

dx2 dz. (3.6)

Comparing this to the torque for a simple homogeneous beam, it is clear that the effective
bending stiffness is

D̃eff = ẼLy

∫ δ

δ−h
z2 dz + ẼdLy

∫ δ+hd

δ
z2 dz

= Ly(Ẽh+ Ẽdhd)δ2 − Ly(Eh2 − Edh2
d)δ + Ly

3 (Eh3 + Edh
3
d). (3.7)

Substituting the z-coordinate of the neutral axis found from Equation (3.4), and using
the fact that Ẽ = E(1 + iη) and Ẽd = Ed(1 + iηd), the full expression becomes

D̃eff = Ly
12

(
E2h4 [(1− η2) p+ 2ηq]

p2 + q2 + s [(1− ηηd) p+ (η + ηd) q]
p2 + q2 + E2

dh
4
d [(1− η2

d) p+ 2ηdq]
p2 + q2

)

+ iLy
12

(
E2h4 [2ηp− (1− η2) q]

p2 + q2 + s [(η + ηd) p− (1− ηηd) q]
p2 + q2 + E2

dh
4
d [2ηdp− (1− η2

d) q]
p2 + q2

)
,

(3.8)

where

p = Eh+ Edhd, (3.9)

q = ηEh+ ηdEdhd, (3.10)

†Many include a negative sign in front of the integral so that a positive torque induces a positive
curvature. The opposite convention is used here, so that a positive torque induces positive power flow in
the positive x-direction.
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and
s = 2EEd

(
2h3hd + 3h2h2

d + 2hh3
d

)
. (3.11)

After significant rearranging, the effective bending stiffness can be put in the form
D̃eff = Deff(1 + iηeff) with

Deff = D · 1 + 2a(2ξ + 3ξ2 + 2ξ3) + a2ξ4

1 + aξ
(3.12)

and
ηeff = ηd ·

(aξ)(3 + 6ξ + 4ξ2 + 2aξ3 + a2ξ4)
(1 + aξ)(1 + 2a(2ξ + 3ξ2 + 2ξ3) + a2ξ4) , (3.13)

where a = Ed
E
, ξ = hd

h
, and D is the real bending stiffness of the base beam, D =

Re
{
D̃
}

= E Lyh3

12 . Note that the effective bending stiffness, Deff , will generally be larger
than D, meaning the composite structure will be stiffer than the base beam alone.
Furthermore, to properly model the added damping layer, one should account for the
added mass by using an effective density, ρeff = ρ+ ρdξ, where ρd is the density of the
damping material.

3.3.2 Block Riccati transfer matrix method

For evaluation of the beam’s dynamic response, the transfer matrix method (TMM)
detailed in Chapter 2 is used again. Recall that a complex beam geometry can be divided
into N segments that are each approximated as having uniform thickness. The dynamic
response at the two ends of segment i can be related by a (generally complex) transfer
matrix, Zi, such that ui+1 = Ziui. Here, ui is a vector of state variables (displacement,
rotation, torque, and shear) at node i and similarly for ui+1. Once the state variables
at the beam’s boundaries are completely determined, all state variables at intermediate
points can be calculated. In the case of an external force at node i, the transfer relation
changes to

ui+1 = Ziui + di, (3.14)

where di is a vector of external perturbations in the state variables.
For the accurate representation of smooth geometries, it is necessary to have many

small segments, especially at higher frequencies. Unfortunately, many segments means
numerical error can propagate and cause numerical instabilities in the standard TMM. An
example of such instability is shown in Figure 3.3, which shows the drive-point mobility at
two locations along a simply-supported beam. In this particular test case, the instability
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Figure 3.3. Illustration of the instabilities that arise from the basic transfer matrix method.
Pictured are drive-point mobilities for a simply-supported beam of length L.

occurs above 4,500 Hz, though the particular point of instability will of course vary from
case to case. This phenomenon has been reported as far back as 1965 in the context of
compression waves through layered elastic media [66]. In addition to elastic waves, the
TMM is often employed in the solution of problems involving electron-transport [67],
optics [68], and quantum physics [69]. As such, there have been multiple approaches to
controlling or eliminating the instability inherent in the TMM, including the scattering
matrix method [70], the enhanced transmittance method [71], and the global matrix
method [72].

The approach used here will be a modified formulation of the TMM developed
by Horner and Pilkey, called the Riccati transfer matrix method (RTMM) [73]. The
advantage of the RTMM is that, like the generalized Riccati transformation, it converts
a numerically unstable two-point boundary value problem into a stable initial value
problem [74]. Moreover, the RTMM requires no numerical integration to solve the
transformed system and the matrix components can be determined analytically.

A Riccati equation, in the general sense, is a first-order differential equation of the
form

dy
dx = a(x) + b(x)y + c(x)y2. (3.15)

This form of equation is named after Jacopo F. Riccati, who studied several particular
equations of this form in the early 18th century [75]. Solutions to the Riccati equation
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are now well understood, and so it is particularly useful that any second-order differential
equation of the form

y′′ = α(x)y′ + β(x)y (3.16)

can be transformed into an equivalent Riccati equation. In particular, using the ‘Riccati
transformation’ y = R(x)y′ allows the substitution

y′′ = αy′ + βy

=⇒ Ry′′ = αRy′ + βRy

=⇒ y′ −R′y′ = αRy′ + βR2y′

=⇒ R′ = 1− αR− βR2. (3.17)

Thus, a second-order equation in y(x) has been transformed into a Riccati equation in
R(x), with a(x) = 1, b(x) = −α(x), and c(x) = −β(x). In many physical systems, this
reduces a second-order boundary value problem to a first-order initial value problem.
Rybicki and Usher [74] used this Riccati transformation as inspiration for the name of
their own transformation, termed the “generalized Riccati transformation.”

Any system of 1st-order ordinary differential equations can be written in the form

d
dx

φ1(x)
φ2(x)

 =
Γ11(x) Γ12(x)
Γ21(x) Γ22(x)

φ1(x)
φ2(x)

+
g1(x)
g2(x)

 , (3.18)

with boundary conditions
φ1(a) = c1 (3.19)

and
φ2(b) = c2, (3.20)

where φ1, g1, and c1 are n1 × 1 vectors; and φ2, g2, and c2 are n2 × 1 vectors. The
generalized Riccati transformation defines two new variables, R12 and ψ1, such that
φ1(x) = R12(x)φ2(x) +ψ1(x). The similarities to the Riccati transformation are clear,
especially when Equation (3.16) is written in the equivalent form

d
dx

y
y′

 =
 0 1
β(x) α(x)

y
y′

 . (3.21)
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From the generalized Riccati transformation, one can derive the following relations:

φ′1 = R′12φ2 +R12φ
′
2 +ψ′1 (3.22)

and
φ′2 = Γ21φ1 + Γ22φ2 + g2 = (Γ22 + Γ21R12)φ2 + Γ21ψ1 + g2. (3.23)

These relations can be used to write a differential equation in terms of ψ1:

ψ′1 = (Γ11 −R12Γ21)ψ1

− (R′12 − Γ12 +R12Γ22 − Γ11R12 +R12Γ21R12)φ2

+ (g1 −R12g2) , (3.24)

with
ψ1(a) = c1 −R12(a)φ2(a). (3.25)

The dependence on φ2 can be eliminated from Equations (3.24) and (3.25) if

R′12 = Γ12 − (R12Γ22 − Γ11R12)−R12Γ21R12 (3.26)

and
R12(a) = 0. (3.27)

It should be evident Equation (3.26) is a Riccati equation, albeit in matrix form. In the
case that R12 satisfies the above Riccati equation, Equations (3.24) and (3.25) simplify
to

ψ′1 = (Γ11 −R12Γ21)ψ1 + (g1 −R12g2) , (3.28)

with
ψ1(a) = c1. (3.29)

In summary, the procedure to solve the original system, Equations (3.18)–(3.20), is

1. Solve Equations (3.26) and (3.27) for R12(x)

2. Solve Equations (3.28) and (3.29) for ψ1(x)

3. Solve Equations (3.23) and (3.20) for φ2(x)

4. Use the generalized Riccati transformation, φ1(x) = R12(x)φ2(x) +ψ1(x), to solve
for φ1(x)
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With this in mind, we move on to the derivation of the Riccati transfer matrix method.
Firstly, Equation (3.14) is modified to be of the form

v
w


i+1

=
Zvv Zvw

Zwv Zww


i

v
w


i

+
dv
dw


i

, (3.30)

where vi is a 2 × 1 subvector containing the state variables that are homogeneous at
x = 0; that is, v1 =

[
0 0

]T
. wi is a 2 × 1 subvector containing the complementary

nonhomogeneous state variables. For the cantilever beam free at x = 0, the homogeneous
state variables are shear, Q, and torque, M . The complimentary state variables are
then displacement, U , and rotation, θ, respectively. In such a case, the subvector
vi =

[
Qi Mi

]T
and the subvector wi =

[
Ui θi

]T
. The subvectors dv and dw then

represent external perturbations in the respective state variables, and the elements of Zi

are rearranged accordingly.
The generalized Riccati transformation that relates vi to wi, as seen earlier, is

vi = Riwi + pi, (3.31)

where Ri is an as-of-yet undetermined 2× 2 matrix and pi is an as-of-yet undetermined
2 × 1 vector. However, because v1 =

[
0 0

]T
, it is clear that R1 = 0 and p1 = 0. A

recurrence relation for Ri+1 and pi+1 is then sufficient to solve for all Ri and pi. Using
Equation (3.31) with Equation (3.30), the following relations can be derived:

vi+1 =
(
Zvv
i Ri +Zvw

i

)
wi +

(
Zvv
i pi + dvi

)
(3.32)

and
wi+1 =

(
Zwv
i Ri +Zww

i

)
wi +

(
Zwv
i pi + dwi

)
(3.33)

Using Equation (3.33) to solve for wi and substituting that into Equation (3.32) gives

vi+1 =
(
Zvv
i Ri +Zvw

i

)(
Zwv
i Ri +Zww

i

)−1
wi+1

+
(
Zvv
i pi + dvi

)
−
(
Zvv
i Ri +Zvw

i

)(
Zwv
i Ri +Zww

i

)−1 (
Zwv
i pi + dwi

)
. (3.34)

This can be written as vi+1 = Ri+1wi+1 + pi+1, where

Ri+1 =
(
Zvv
i Ri +Zvw

i

)(
Zwv
i Ri +Zww

i

)−1
(3.35)
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and
pi+1 =

(
Zvv
i pi + dvi

)
−Ri+1

(
Zwv
i pi + dwi

)
. (3.36)

These are exactly the recurrence relations being sought. The RTMM also requires a
backwards solve, which can be accomplished using either Equation (3.32) or (3.33).
Horner and Pilkey use the latter, which gives the form

wi = T iwi+1 + qi, (3.37)

T i =
(
Zwv
i Ri +Zww

i

)−1
, (3.38)

and
qi = −T i

(
Zwv
i pi + dwi

)
. (3.39)

Thus, like with the system of equations (3.18), the RTMM solves the problem in sequential
steps:

1. Set R1 = 0 and p1 = 0

2. Use Equations (3.35), (3.36), (3.38), and (3.39) sequentially from node i = 1 to
node i = N

3. Use the generalized Riccati transformation, vi = Riwi + pi, along with the right-
hand boundary conditions to solve for the unknown elements in vN+1 and wN+1

4. Use Equation (3.37) sequentially from node i = N to node i = 1 to solve for the
remaining wi and the generalized Riccati transformation to solve for vi

Note, however, that because Zi is frequency dependent, vi and wi would normally
need to be recalculated for each frequency of interest. For additional speed-up, a block
matrix approach can be used to handle the calculation of multiple frequencies at once.
For K analysis frequencies, 2 × 1 vectors are converted to 2K × 1 vectors and 2 × 2
matrices are converted to 2K × 2K block-diagonal matrices. For example, vi becomes


vi(ω1)
vi(ω2)

...
vi(ωK)

 ,
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while Ri becomes 
Ri(ω1) 0 · · · 0

0 Ri(ω2) · · · 0
... ... . . . ...
0 0 · · · Ri(ωK)

 .

A distinct advantage of this block formulation is that analysis can be carried out in
almost exactly the same way as the single frequency case. In particular, addition and
multiplication operations remain unchanged and the inverse of a matrix like Ri becomes


Ri(ω1) 0 · · · 0

0 Ri(ω2) · · · 0
... ... . . . ...
0 0 · · · Ri(ωK)



−1

=


R−1
i (ω1) 0 · · · 0

0 R−1
i (ω2) · · · 0

... ... . . . ...
0 0 · · · R−1

i (ωK)

 .

Moreover, such matrices can be efficiently stored using sparse data formats, which also
facilitates efficient addition, multiplication, and inversion operations. At the time of
writing, the author’s work is the first known proposition of this sparse data formulation
of the RTMM.

3.4 Procedure
Table 3.1 shows the material and geometric parameters used in the optimization. A
routine was written to calculate J(h) given the design variables LABH, h0, and m. A
flowchart representation of the routine is shown in Figure 3.4. Given the design input
vector, h =

[
LABH h0 m

]T
, the geometry is first recursively divided into a minimum

of 50 segments per wavelength, which was shown to produce a relative error less than 1%
without significantly increasing calculation time. Figure 3.5 shows a convergence study
carried out in preparation for the optimization. The ‘true’ value for the convergence
study was taken to be the spatially-averaged squared velocity response of a representative
ABH cantilever beam, calculated using 100 segments per wavelength. The error was
calculated as the L2 norm of the relative difference between the response with fewer
segments and the ‘true’ response. 50 segments per wavelength was chosen as a reasonable
compromise between accuracy and runtime.

Once the geometry is segmented, the displacement response, U(x, ω), due to the
point force, f(x, ω) = Fδ(x − xf), is calculated using the block RTMM described in
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Figure 3.4. Flowchart representation of the design evaluation function used in the optimization.
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Table 3.1. Parameters used in the optimization problem.
Material Parameters

Beam Young’s modulus, E 70 GPa
Beam density, ρ 2700 kg

m3

Beam loss factor, η 0.0001
Damping Young’s modulus, Ed 9 MPa

Damping density, ρd 1812 kg
m3

Damping loss factor, ηd 0.2
Geometric Parameters
Beam length, Lx 30 cm
Beam width, Ly 6.35 mm

Beam thickness, h1 6.35 mm
Damping thickness, hd 3.81 mm

ABH length limits, [L−, L+] [0, 22.26] cm
Minimum thickness limits, [h−, h+] [0.635, 6.35] mm

Taper power limits, [m−,m+] [2, 12]
Runtime Parameters

Frequency range, [ωa, ωb] 2π × [50, 2000] Hz
Driving force magnitude, F 1 N

Drive point, xf 22.26 cm

Section 3.3.2, with the appropriate free-fixed boundary conditions. Finally, the squared
velocity response, U̇2, is calculated and integrated across x and ω using the trapezoidal
rule, and multiplied by the appropriate factors to obtain J(h). Analysis frequencies
were chosen to range from 50 Hz to 2,000 Hz with eleven points per 3 dB bandwidth,
assuming a structural Q of 104. That is, given any frequency, ω, that lies between ωi
and ωi+1, the span ωi+1 − ωi is less than or equal to 11ω × 10−4. This structural Q of
104 comes from the modal Q of the reference beam with uniform thickness h1 having loss
factor η = 0.0001.

3.5 Results and discussion
The routine described in Section 3.4 was used with the Borg multi-objective evolutionary
algorithm for 2,000 function evaluations to determine the optimal design. Figure 3.6
shows the progress of the Borg algorithm across these 2,000 function evaluations in terms
of the three design variables and the objective value. From this, it is clear that Borg
quickly determines that the optimal length, LABH, is the greatest length allowed and that
the optimal minimum thickness, h0, is the smallest thickness allowed. The remainder of
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Figure 3.5. Convergence study used to determine the number of segments per wavelength
to use with the transfer matrix method. The relative error between the ‘true’ response of an
example geometry and the response using the given number of segments per wavelength is
shown as a sold line. The corresponding runtime of the solver in seconds is given as a dashed
line.

Table 3.2. Optimal design variables for the problem described in Section 3.2, and the resultant
objective function value.

LABH h0 m J(h)
Reference beam 0 cm 0 mm 0 1.000
Optimal design 22.26 cm 0.635 mm 3.06 0.2987

Classically optimal design 22.26 cm 0.635 mm 10 0.4866

the search is focused on dialing in the optimal taper power at around 3 or 4. Table 3.2
shows the final, optimal design variables, as well as the value of J(h) for the optimal
design compared to the reference beam of uniform thickness. A graphical depiction of
the optimal ABH profile is shown in Figure 3.7.

From the results in Table 3.2, it is clear that the inclusion of an ABH reduces the
objective function by up to a factor of 3.35 within the frequency band considered. As
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Figure 3.6. Evolution of the Borg algorithm’s archive during the optimization, in terms of
the design variables and objective value, J(h), after each function evaluation.

Figure 3.7. Reference beam of uniform thickness (top) and optimal ABH thickness profile
(bottom) with added damping layer (black). The left-hand edge of each beam is modelled as
free and the right-hand edge is modelled as fixed in the calculation of U . Dimensions are not
to scale.
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Figure 3.8. Spatially-averaged squared velocity, 〈U̇2〉, of a reference beam with uniform
thickness (dashed) and of the optimal ABH thickness profile found by Borg (solid). Note that
the scale of the x-axis is logarithmic.

demonstrated by previous authors, a longer taper and smaller minimum thickness is
optimal for vibration reduction [7,8]. However, a larger taper power, m, was not found to
be optimal, which is contrary to others’ findings. This may be due to the inherently local
nature of the optimization formulation. That is, because the frequency range [ωa, ωb]
is fixed, independent of the modal characteristics of each design, some designs will be
penalized for having structural modes that fall within the fixed frequency range. This
behavior might not be captured when considering only reflection from the ABH as in,
e.g., references [7] and [3].

Looking at Figure 3.8—which shows the optimal design’s spatially-averaged squared
velocity response, 〈U̇2〉, as a function of frequency—there is clearly a greater number
of resonances compared to the reference beam. Note, however, that while the beam
with an ABH vibration absorber shows an increased number of resonances, the average
value of 〈U̇2〉 is still more than three times lower for the ABH design—a fact that may
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Figure 3.9. Spatially-averaged squared velocity, 〈U̇2〉, of a reference beam with uniform
thickness (dashed) and of the ‘classically optimal’ ABH thickness profile that produces minimal
reflection (solid). Note that the scale of the x-axis is logarithmic.

not be obvious with the logarithmic scale in Figure 3.8. Indeed, previous authors have
demonstrated that for increasing taper power, ABH modes move closer together in
frequency [33]. Considering that this increased modal density is correlated with increased
taper power, there appears to be a point of diminishing returns for m greater than about
3, at which a higher taper power is suboptimal because it results in a greater number
of structural modes within the frequency range [ωa, ωb]. Compare, for example, the
‘classically optimal’ design given in Table 3.2 and whose spectrum is shown in Figure 3.9.
This design is optimal insofar as it minimizes the average reflection coefficient magnitude
in the frequency range [ωa, ωb]. The term ‘classical’ is used here because early ABH
theory (including the seminal work of Mironov) viewed the primary benefit of an ABH
taper as reducing reflection of bending waves. While it was understood that increased
amplitude occurred within the ABH taper, this side effect was not considered in the
performance evaluation of ABH design until later, although this increased amplitude can
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Figure 3.10. Average reflection coefficient magnitudes, |R|avg, for taper designs having length
LABH = 22.26 cm and minimum thickness h0 = 0.635 mm, but with varying taper power, m.
The reflection coefficient was calculated in the same manner as [3]. Note that although the
average values are close to one, the reflection coefficient magnitudes were shown to reach as low
as 0.6 at particular frequencies.

itself be considered undesirable behavior.
The classically optimal design in Table 3.2 was determined through a parametric

study in the taper power, m. Using the impedance matrix method of Georgiev et al. [3],
the reflection coefficient was calculated across the frequency range [ωa, ωb] for each of 19
different taper designs. The results of this parametric study are shown in Figure 3.10.
Each design had the same taper length and minimum thickness as the optimal design
found by Borg, but their taper powers varied in increments of 0.5. A taper power of
ten was found to produce the smallest average reflection coefficient magnitude, at about
0.9205. For reference, the optimal design found by Borg produces an average reflection
coefficient magnitude of approximately 0.9247. Note that although the average values
are rather large, the reflection coefficient magnitudes were shown to reach as low as 0.6
at particular frequencies.
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Figure 3.11. Length of the ABH taper in which Equation (1.7) holds, relative to the total
taper length, for the optimal design and the classically optimal design. Equation (1.7) is here
considered satisfied when

∣∣∣ 1
k2

dk
dx

∣∣∣ ≤ 0.3.

When discussing classical ABH theory, it is important to consider its applicability
to the current problem. Consider, for example, the condition of Equation (1.7) from
Chapter 1. A benefit of using the particular taper profile h(x) = εxm + h0 is that even
for arbitrarily low frequencies or arbitrarily large variations in thickness, there exists a
portion of the taper in which Equation (1.7) is satisfied. Even so, it is important to point
out that neither the optimal design that minimizes the spatially-averaged squared velocity
nor the classically optimal design that minimizes reflection satisfies Equation (1.7) for
the entire taper at all frequencies. Figure 3.11 shows as a function of frequency the
proportion of the ABH taper in which

∣∣∣ 1
k2

dk
dx

∣∣∣ ≤ 0.3. Clearly, there is no frequency for
which 100% of the classically optimal taper satisfies Equation (1.7). It may be unfair,
then, to call it the classically optimal design, since it does not satisfy completely the
assumptions of Mironov’s original analysis. As mentioned above, however, there always
exists a portion of the taper in which the assumptions are satisfied. Notably, the last
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25% of both designs (corresponding to the damped portion) satisfy Equation (1.7) at all
frequencies.

Furthermore, as described on page 65, the term ‘classical’ ABH theory as used in
this dissertation applies beyond the original analysis of Mironov. The assumption in
Equation (1.7), which stems from the validity conditions of the WKB approximation, is
not required by the impedance matrix method used by Georgiev et al. [3] and subsequently
used here to determine the classically optimal design. Rather, the classical viewpoint of an
ABH is that of an isolated feature which admits some incident bending wave and greatly
reduces the returned reflected wave. This classically optimal design is therefore optimal
insofar as it minimizes the average reflection coefficient magnitude. Yet, as illustrated by
the objective values in Table 3.2, the classically optimal design performs worse than that
found by Borg when the composite structure (beam with ABH termination) is considered.

This is an important distinction for practical applications. At the time this optimiza-
tion study was carried out, it was the first to minimize the velocity response of a finite
structure with a one-dimensional ABH termination by varying all the ABH parameters.
Previous authors had treated the reflection coefficient from the ABH taper as a surrogate
measure for the performance of an ABH termination [3,7,8]. Although the two measures
(velocity response and reflection) are expected to produce the same optimal designs
as the analysis frequency bandwidth increases, for finite bandwidths—and especially
for lower frequencies—the two measures produce significantly different results. This
fact was alluded to by Conlon, Fahnline, and Semperlotti, in which the authors found
that when the dimension of the ABH is much smaller than the bending wavelength
in the base structure, the modal characteristics of the ABH become the determining
factors for its performance as a vibration absorber [12]. For reference, below about
1,200 Hz the ratio of LABH to bending wavelength is less than one. At 50 Hz the ratio
is approximately 0.2, which is significantly less than one. Using these ABH modes to
modulate the modal characteristics of the composite structure then becomes the optimal
strategy, as illustrated by the spectra in Figures 3.8 and 3.9.

Finally, because another benefit of ABH vibration absorbers is a reduction in overall
mass, an auxiliary measure, JM(h), can be defined to compare the masses of different
designs. Similarly, a measure of the overage kinetic energy of the structure, JKE(h), can
be defined that is dependent on both the mass and the velocity response of the structure.
These two measures are defined as

JM(h) = CM

∫ Lx

0
µ(x) dx (3.40)
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Table 3.3. Objective function values for the objective used in the optimization, J(h), and two
auxiliary objectives, JM(h) and JKE(h), measuring overall mass and average kinetic energy,
respectively.

J(h) JM(h) JKE(h)
Reference beam 1.000 1.000 1.000
Optimal design 0.2987 0.5714 0.3982

Classically optimal design 0.4866 0.4676 1.419

and
JKE(h) = CKE

Lx

∫ ωb

ωa

∫ Lx

0
µ(x)

∣∣∣∣iωU(x, ω,h)
∣∣∣∣2 dxdω, (3.41)

where µ(x) = Ly
(
ρh(x) + ρdhd(x)

)
is the linear density of the beam and CM and CKE are

normalization constants so that both measures are unity for the reference beam. Note
that hd(x) equals hd for the thinnest 25% of each ABH and zero otherwise. The numeric
values of these measures are given in Table 3.3 for the reference beam, the optimal design
found by Borg, and the classically optimal design. Comparing the three measures, it is
clear that both the optimal design and the classically optimal design reduce the overall
mass and the average velocity response when compared to the reference beam. However,
the classically optimal design has a higher average kinetic energy than even the reference
beam, due to a greater number of resonances in the analysis frequency band and a greater
mobility. These results further underpin the fact that the classically optimal design is in
fact suboptimal in the current application.

3.6 Conclusions
The work presented in this chapter sought to expand upon the work in Chapter 2. The
optimization framework developed in Chapter 2 was further improved by deriving and
implementing a novel version of the transfer matrix method (TMM) that is both faster
and more stable than the standard TMM. This improved optimization framework was
then applied to the shape optimization of an acoustic black hole (ABH) vibration absorber
at the end of a cantilever beam. At the time this optimization study was carried out, it
was the first to minimize the velocity response of a finite structure with a one-dimensional
ABH termination by varying all the ABH parameters.

As the results of the shape optimization study corroborate, acoustic black hole (ABH)
vibration absorbers are highly effective at reducing bending vibrations. However, the
inclusion of an ABH vibration absorber also significantly alters the dynamics of the
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composite structure. This may be detrimental if trying to control a discrete set of
resonances without affecting other frequency regions, but is not necessarily detrimental
for broadband vibration reduction, since the overall structural losses also increase with
the inclusion of an ABH vibration absorber and the average response therefore decreases.

The results of this study also illustrate an important practical distinction for the
design of ABH vibration absorbers. Previous authors have treated the reflection coefficient
from an ABH taper as a surrogate measure for its performance, while this study explicitly
used the dynamic response of a finite structure. As shown by comparing the optimal
design of this study against the design that theoretically minimizes reflection, the two
design approaches produce significantly different results. This is a significant finding and
one of the key contributions from the work in this chapter. In engineering ABH features
for real-world design goals, it may often be more important to consider the way that
the ABH modulates the modal characteristics of the composite structure, rather than
only considering the reflection characteristics of the ABH taper itself. This is of special
importance when considering finite bandwidths and lower frequencies.
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Chapter 4 |
Optimization and comparison of
three styles of ABH∗

4.1 Introduction
In much of the literature, the thickness of a beam or plate with an embedded acoustic
black hole (ABH) is tapered according to the power law relation h(x) = εxm + h0, with
m ≥ 2 and ε defined by Equation (3.1). In general, as the thickness of a beam or plate
decreases, the flexural wave speed also decreases. In the case that the minimum thickness,
h0, goes to zero in the above power law, the wave’s transit time to or from the point of
zero thickness goes to infinity and there is theoretically no reflection – thus resulting in
perfect absorption. However, as mentioned in Chapter 3, because the ABH effect depends
explicitly only on the thickness profile of the beam, there remains an ambiguity as to the
precise topology that such an ABH vibration absorber may take. Accordingly, there is
a variety of designs that can be found in experimental and numerical work throughout
the literature. The current study considers three common ‘styles’ of one-dimensional
ABHs to investigate the effect that the choice of style has on performance. These three
styles are termed here ‘standard symmetric’, ‘standard nonsymmetric’, and ‘double-leaf’,
and are depicted graphically in Figure 4.1 to illustrate their differences. Example mode
shapes of nominal designs for each of the three styles are also shown in Figure 4.2 and
their modal densities are shown in Figure 4.3. Note that the standard symmetric and
standard nonsymmetric styles have similar modal characteristics, while the double-leaf
style has a notably higher modal density, as well as strong axial modes that the other
two styles do not have.

∗A portion of the work presented in this chapter was also published in the Journal of Sound and
Vibration [76].
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Figure 4.1. Three styles of one-dimensional acoustic black hole vibration absorbers (not to
scale). The three styles are (a) Standard symmetric; (b) Standard nonsymmetric; and (c)
Double-leaf. Added damping is indicated in black. Note that the colors used for each style in
this figure will be used throughout the chapter to indicate each color’s respective style.

Throughout much of the early development of ABH theory, the standard symmetric
style was the style explicitly or implicitly used, since the midplane remains parallel
along the entire length of the ABH. Often authors illustrate the ABH graphically as the
standard nonsymmetric style, which may be considered approximately the same as the
standard symmetric style for lower frequencies. Krylov [7] was the first to consider the
two styles as explicitly distinct from one another, although his analysis was restricted to
differences in the contribution of the damping layers. In particular, Krylov modeled the
contribution of damping in the standard symmetric ABH as twice that in the standard
nonsymmetric ABH, assuming the same thickness and material properties. The remaining
dynamics of the system were considered identical.

Inspired by the work of Bowyer and Krylov [77], Zhou et al. [78] compared the static
and dynamic behavior of the standard symmetric and the double-leaf (the authors use the
term ‘double-layered’) ABH styles using the finite element method (FEM). Results of their
analysis showed that the double-leaf ABH had a consistently higher modal loss factor and
more localized energy within the ABH portion of the beam than a comparably-designed
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Figure 4.2. Example mode shapes for nominal ABH designs (not to scale). Modal frequencies
are (a1) 405.8 Hz and (a2) 551.5 Hz for the standard symmetric style; (b1) 405.6 Hz and (b2)
551.7 Hz for the standard nonsymmetric style; and (c1) 43.5 Hz, (c2) 232.4 Hz, and (c3) 373.9
Hz for the double-leaf style.

standard symmetric ABH. As the authors note, the two halves of the double-leaf ABH
act in parallel as two nonsymmetric ABHs, each with half the thickness of the symmetric
ABH. A thinner taper and thicker relative damping are both understood to enhance the
ABH effect, and so this ‘splitting’ effect of the double-leaf ABH can account for much of
its improved performance over the standard symmetric ABH.

In addition to the above work, there is a plethora of studies in the literature concerned
specifically with one-dimensional ABHs in beams. The bulk of these studies have focused
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Figure 4.3. Modal densities for the nominal designs shown in Figure 4.2. (•) Standard
symmetric. (�) Standard nonsymmetric. (H) Double-leaf, axially symmetric modes. (N)
Double-leaf, axially anti-symmetric modes.

on examining the dynamics of various ABH designs to gain some insight into how
ABH design effects performance [13, 79–81], with a subset corroborating their theoretical
analyses through experiment [33,82–84]. Some have investigated nonlinear effects in ABHs
to improve their performance [85, 86], while others have looked at attaching piezoelectric
patches to ABH features and tailoring them to improve energy harvesting [87–89] and
vibration reduction [90,91]. A number of authors have proposed numerical methods aimed
at modeling ABHs in beams [65,92–94], and a few authors have modeled how ABHs in
beams might affect radiated sound [94,95]. The ‘double-leaf’ style of ABH seems to be
particularly popular as a candidate for one-dimensional metamaterial beams [96–99]. With
the rise of additive manufacturing, a number of authors have investigated the additional
capabilities and complexities that come from 3D printed beams with ABHs [100–102].
One group has even proposed and studied a spiral ABH termination [103–105]. There
are some previous studies in the literature that have addressed the optimization of a
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one-dimensional ABH feature [24, 26, 65, 106]. The current work builds upon previous
findings by applying a rigorous multi-objective optimization scheme to each of the three
above styles—‘standard symmetric’, ‘standard nonsymmetric’, and ‘double-leaf’. At the
time of writing, a direct comparison of these three styles has not been carried out except
for the author’s work, and certainly not in the context of optimal ABH design.

4.2 Problem description
For each style, we consider the problem of a one-dimensional ABH vibration absorber
embedded in a thin beam of length Lx, having pinned boundary conditions at each
end. The beam is excited at a location, xf , by a harmonic force acting normal to the
midplane and distributed across the beam’s width. The ABH shape parameters, LABH,
h0, and m, which determine the beam’s profile, h(x), may vary between some lower
and upper bounds. Additionally, the location of the center of the ABH, xABH, may
vary along the latter half of the beam, opposite the force location. The percentage of
the ABH taper, Pd, that includes an additional free damping layer of thickness hd and
density ρd, may also vary. Each possible design can be uniquely defined by the vector
h =

[
LABH h0 m xABH Pd

]T
. The two objective functions used for this optimization

are
J1(h) = C1

[
ρdhdPdLABH +

∫ Lx

0
ρh(x) dx

]
(4.1)

and
J2(h) = C2

Lx

∫ ωb

ωa

∫ Lx

0

∣∣∣u̇z(x, ω)
∣∣∣2 dxdω = C2

∫ ωb

ωa

〈
u̇2
z

〉
dω, (4.2)

where u̇z is the complex velocity of the midplane in the vertical direction,
〈
u̇2
z

〉
is the

spatially-averaged square velocity, and C1 and C2 are chosen so that J1 = J2 = 1 for
a uniform beam without added damping—i.e., when h = 0. J1 is proportional to the
mass of the entire system, with the first term in the sum representing the mass of
the damping layer and the second representing the mass of the beam with ABH. J2 is
proportional to the squared velocity response in (ωa, ωb), averaged over the length of the
beam. If it is assumed that the (complex) displacement of the beam’s midplane has the
form uz(x, t) = uz(x)eiωt, then the velocity is u̇z(x, t) = iωuz(x, t) with its magnitude
depending on ω. The objectives having been defined, the optimization problem may be
formulated as

min
h∈H

J(h) =
[
J1(h) J2(h)

]T
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subject to

H =
{
h ∈ R5 : L− ≤ LABH ≤ L+, h− ≤ h0 ≤ h+,

m− ≤ m ≤ m+, x− ≤ xABH ≤ x+, P− ≤ Pd ≤ P+
}

−ω2ρu− div
(
σ(u)

)
= f , ∀x ∈ Ω

f =
[
0 0 Fδ(x− xf )δ

(
z − 1

2h(xf )
)]T

u
(
0, y, 1

2h(0)
)

= u
(
Lx, y,

1
2h(Lx)

)
= 0

uy = 0

∀ω ∈ [ωa, ωb]

In words, the above states that the goal is to simultaneously minimize J1 and J2, where
the possible designs, h, are restricted to exist in the set H, which effectively defines
the bounds of the search space. The dynamic response of the structure obeys steady-
state linear elastodynamics for all points in the domain of the beam, Ω. It should be
noted that beam is modelled with complex material parameters (see Table 4.1), and
so the displacement, u, will generally be complex. The constraint on uy means the
elastodynamic problem considered follows plane strain assumptions, while the constraints
on u at x = 0 and x = Lx indicate pinned boundary conditions. The definition of f
indicates a distributed force at x =

[
xf y 1

2h(xf )
]T
, ∀y ∈ Ω, which is the intersection

of the beam’s midplane and the plane defined by x = xf , thus defining a line segment.

4.3 Procedure
An automatic meshing function was developed to take as input the design variables
detailed in Section 4.2 and produce a geometric mesh and force and boundary conditions
suitable for analysis using the finite element method (FEM). Again, FEM is more
appropriate for this study than the transfer matrix method (TMM) because TMM does
not incorporate modelling of the second dimension. The Euler-Bernoulli dynamic beam
equation, as a one-dimensional equation, assumes that the thickness at a given point is
distributed symmetrically along the midplane. However, most graphical depictions of
ABH tapers show a nonsymmetric geometry as in Figure 4.1(b). This is also a common
way in which physical ABHs are manufactured for experimental studies. In order to
properly model this variation along the second dimension, an alternative method to
TMM must be used. FEM is a standard method used in dynamic mechanical analysis
and so it has been used here.

The meshing function meshes the beam using linear hexahedral elements, with two
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Figure 4.4. Example of how a given design might be divided for the purposes of meshing.
The leftmost region will be the same for all designs, as its purpose is to guarantee nodes exist
at x = 0 for the constraints and nodes exist at x = xf for the applied forces.

elements across the beam’s width, two elements through the beam’s thickness, and at
least twelve elements per wavelength along the beam’s length, as determined by the
frequency range of interest. Twelve elements per wavelength was chosen based on previous
analysis of a one-dimensional ABH [25] and a mesh convergence study (see Appendix A),
which indicated that when a one-dimensional ABH is meshed with twelve elements per
wavelength, comparable results are achieved using either linear elements or quadratic
elements. The ability to use linear elements, therefore, greatly reduces computation time.

In order to ensure at least twelve elements per wavelength, the beam is meshed
piecewise in the following way. First, the beam is divided into three or four regions,
depending on the value of xABH. One of these regions is the ABH taper, while the
remaining regions are the uniform base beam with thickness h1. The leftmost region is
always the same and is necessary to ensure nodes exist at xf . An approximate example of
how the beam might be divided is shown graphically in Figure 4.4. For a portion of the
uniform beam with length Lu, the number of segments needed can be simply calculated
in advance by noting that the bending wavelength is

λ = 2π
(

Eh2
1

12ω2ρ(1− ν2)

) 1
4

. (4.3)

The number of segments required is thus N = d12Luλ−1e, and the length of each segment
is Lu/N . In the case of the ABH taper, the calculation is not as simple. However, the
same general approach still applies, except that instead of dealing with an entire length
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at once, one considers a summation of differential lengths

dx
λ(x) . (4.4)

To get the number of segments needed to adequately mesh a portion of the ABH from
x = a to x = b, the calculation is

N =
⌈
12
∫ b

a

dx
λ(x)

⌉
=
 12

2π

∫ b

a

(
12ω2ρ(1− ν2)

Eh2(x)

) 1
4

dx
 . (4.5)

In order to mesh the ABH taper with sufficient resolution, but without unnecessary
refinement, the taper region is meshed recursively. For a given portion of the taper, N is
calculated by Equation (4.5). If that number is greater than one, then the segment is
split into two equal segments and the process is repeated for each of those segments. A
flowchart of the process is shown in Figure 4.5.

The added damping was modeled explicitly in the analysis, rather than incorporated
as an additional loss factor as was done in Chapter 3. This explicit approach was chosen
for several reasons. First, any increase in bending stiffness, though expected to be small,
is accounted for and can be non-negligible in the minimum thickness region of the ABH
taper. Second, the effect of mass loading is accounted for. This is particularly significant,
as the density of the damping material is, in this case and in many practical applications,
on the same order as that of the beam. Again, in the minimum thickness region of the
taper, the effect of mass loading can be significant, even for thin damping layers. It
should be noted that several authors [3,33,65,85,86,94,107,108] have followed the work of
Kyrlov [7] in using an analytical model for constrained layer damping developed by Ross,
Kerwin, and Ungar [28], which accounts for changes in effective bending stiffness and
surface mass density. However, by explicitly modeling the free damping layer, separately
from the beam, these two effects of increased bending stiffness and mass loading are
included in a more holistic and theoretically more accurate way.

Table 4.1 gives the range of design variables considered for the optimization problem
described, as well as material parameters of the beam and damping layer. ωa was chosen
to be the critical frequency of the unmodified beam, while ωb was found to have minimal
response when a random sample of design variables was evaluated. The drive location, xf ,
was chosen so as to excite all relevant modes within the frequency range of interest. For
each ABH style, J1 and J2 were evaluated 6,000 times using the Borg MOEA to determine
the set of designs that approximate the Pareto optimal set. This number of function
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Figure 4.5. Flowchart representation of the recursive function used to mesh the ABH region.
N is calculated according to Equation (4.5).

79



Table 4.1. Variable and parameter bounds of the design problem and geometric and material
properties of the system. *For the standard nonsymmetric style, hd = 3 mm.

Material Parameters
Beam Young’s modulus, E 70 GPa

Beam density, ρ 2,700 kg/m3

Beam Poisson’s ratio, ν 0.35
Beam loss factor, η 1× 10−4

Damping Young’s modulus, Ed 9 MPa
Damping density, ρd 1,812 kg/m3

Damping Poisson’s ratio, νd 0.45
Damping loss factor, ηd 0.2

Geometric Parameters
Beam length, Lx 61 cm

Beam thickness, h1 6.35 mm
Damping length, Ld PdLABH

Damping thickness, hd 1.50 mm*
ABH length limits, [L−, L+] [1, 15] cm

Minimum thickness limits, [h−, h+] [0.635, 6.35] mm
Taper power limits, [m−,m+] [2, 8]
ABH position limits, [x−, x+] [30.5, 61] cm

Percent damping limits, [P−, P+] [0, 1]
Runtime Parameters

Frequency range, [ωa, ωb] 2π × [2000, 7000] Hz
Driving force magnitude, F 1 N

Drive point, xf 2.17857 cm

evaluations was chosen because the Pareto set appeared not to change significantly at
this point in all three cases.

The above automatic meshing function was used with the commercial FEM solver
NASTRAN to solve for the complex velocity of the midplane at a given frequency. Given
a design vector, h, the beam geometry is meshed by calculating the positions of nodes
and the elements to which these nodes are assigned. Because the number of elements
across the width and through the thickness remains unchanged, it is only a matter of
determining the number of elements along the length, as described earlier and shown
in Figure 4.5. The nodes and elements so defined, they, along with the constraints,
forces, and analysis frequencies, are written in the appropriate format to be read by
NASTRAN as .dat files. NASTRAN is then called with these .dat files as input, and
upon completion it writes the output as a .pch file. In order to speed up analysis,
NASTRAN is run using its distributed memory parallelization (DMP) feature, which
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allows each processor to calculate the response at a frequency unique to that processor.
Once complete, the .pch output file is next read to extract the response of the midplane
in the vertical direction, uz, from which the spatially-averaged square velocity, 〈u̇2

z〉,
is derived for each analysis frequency. J1 is then calculated analytically according to
Equation (4.1), while J2 is calculated from Equation (4.2) using the trapezoidal rule for
integration. A flowchart of the whole process is given in Figure 4.6. The function used to
calculate J1 and J2 from the input design variables was linked to the Borg multiobjective
evolutionary algorithm (MOEA) to find an optimal solution set for the optimization
problem described in Section 4.2.

The analysis frequencies between ωa and ωb are determined through recursive piecewise
linear interpolation of

〈
u̇2
z

〉
, such that the relative error at the midpoints of the line

segments is less than or equal to 10−2. It is precisely the same philosophy as the meshing
function shown in Figure 4.5, where now (a, b) defines a frequency domain, and instead
of calculating N , the relative error between a linear interpolation and the actual value is
calculated. In the case this error is greater than 10−2, the frequency domain is recursively
divided. In fact, this recursive division is done in parallel by first dividing the domain
[ωa, ωb] according to the number of available processors, so as to make use of NASTRAN’s
DMP capabilities described above.

4.4 Results and discussion
When the objective function values of the Pareto optimal set are plotted to form the
Pareto fronts shown in Figure 4.7, they illustrate the inherent trade-off between the two
objectives. The Pareto fronts of the three styles show a similar trade-off, indicating that
the mechanism responsible for the trade-off between objectives is similar, if not the same.
It is also worth noting that there exists a threshold above which there is no trade-off
and the presence of a thoughtfully designed ABH vibration absorber is advantageous to
both objectives. For reference, Table 4.2 details the designs at either end of the Pareto
fronts, while Figure 4.8 shows graphical depictions of the designs that minimize J2 (‘Min
Response’ in Table 4.2).

Looking closely at Table 4.2, a few things become evident. First, the optimal set
of values for LABH, h0, and m favor a longer ABH with a smaller minimum thickness
and more extreme taper power for all three styles. This trend has been observed by
previous authors in the context of minimizing reflection from a taper at the end of a
beam or plate with free boundary conditions [3, 7, 8, 32, 109]. However, recall that the
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Figure 4.6. Flowchart representation of the design evaluation function used by Borg in the
optimization process.
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Figure 4.7. Approximate Pareto fronts for two objectives and three styles. (a) Standard
symmetric. (b) Standard nonsymmetric. (c) Double-leaf. The objective values are also shown
for an unmodified beam (x) and for an unmodified beam with the maximum damping allowed
within the variable bounds (+).
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Table 4.2. Designs from the three Pareto fronts in Figure 4.7 that minimize J1 (‘Min Mass’)
or minimize J2 (‘Min Response’) for each of the three styles.

Min Mass Min Response
LABH = 15 cm LABH = 14.2 cm
h0 = 0.635 mm h0 = 0.636 mm

Standard Symmetric m = 7.99 m = 7.82
xABH = 35.2 cm xABH = 33.1 cm
Ld = 0 cm Ld = 12.1 cm

LABH = 15 cm LABH = 15 cm
h0 = 0.635 mm h0 = 0.686 mm

Standard Nonsymmetric m = 8 m = 7.98
xABH = 34.1 cm xABH = 34.7 cm
Ld = 0 cm Ld = 10.3 cm

LABH = 15 cm LABH = 15 cm
h0 = 0.635 mm h0 = 0.635 mm

Double-Leaf m = 8 m = 8
xABH = 34.7 cm xABH = 34.7 cm
Ld = 0 cm Ld = 14.9 cm

Figure 4.8. Graphical depiction (not to scale) of the design of each style that minimizes J2
(‘Min Response’ in Table 4.2). (a) Standard symmetric; (b) Standard nonsymmetric; and (c)
Double-leaf. Also depicted is (d) An unmodified beam with the maximum damping allowed
within the variable bounds (represented by a + symbol in Figure 4.7).

results of Chapter 3 indicated that optimal ABH designs in the two contexts do not
always coincide. Often, when an ABH is embedded in a finite, rather than semi-infinite,
structure, the performance of the ABH vibration absorber is dependent upon its discrete
modal behavior [12,110–112]. This apparent contradiction can be resolved by considering
the scale of the ABH and the frequency bandwidth. At 2,000 Hz, the bending wavelength
in the beam is approximately 18 cm, which is comparable to the size of the ABH. The
ABH therefore begins to act more like a broadband absorber within the structure. It is
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Figure 4.9. Trends for each design variable along the three Pareto fronts in Figure 4.7, from
the design that minimizes J1 (‘min mass’) to the design that minimizes J2 (‘min response’).

worth noting that the three designs do not satisfy the condition of Equation (1.7) from
Chapter 1 at all points for all frequencies. However, as mentioned in Chapter 3, a benefit
of using the particular taper profile h(x) = εxm + h0 is that there always exists a portion
of the taper in which Equation (1.7) is satisfied. Moreover, the results of Chapter 3
demonstrated that designs that do not totally satisfy Equation (1.7) can still outperform
designs that do.

The second thing evident from Table 4.2 is that the trade-off captured by the Pareto
front is dominated by the effect of the damping layer, as seen in the variable trends of
Figure 4.9. For the range of design variables considered, the trade-off between objectives
is a function only of the length of damping, Ld = PdLABH, for any given style of ABH.
It is therefore worthwhile to consider the effect of damping in further detail. Previous
authors [3, 27,113] have noted that only a minimal increase in performance is achieved
by applying damping to more than the thinnest 40% of the taper area. Figure 4.10
shows the dependence of J2 on the amount of damping for the set of optimal designs.
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Figure 4.10. Dependence of J2 on damping along the Pareto front. The dashed lines represent
the length of damping, Ld, required to achieve 99% of the possible reduction in J2 for each
ABH style.

Also plotted is the amount of damping at which 99% of the maximum reduction in J2 is
achieved. In line with [3, 27,113], it is clear that only a fraction of the taper area needs
to be damped to achieve the majority of the benefits of an ABH vibration absorber. For
the standard nonsymmetric style with double-thickness damping, less than 7% of the
taper requires added damping to achieve 99% of the vibration response reduction.

Third, not only do the three Pareto fronts share a similar shape, but the variable
trends are even more closely matched. This indicates that the differences between the
three Pareto fronts are a result of the choice of ABH style alone and that this choice has
a significant effect on performance of the ABH vibration absorber. Vibration response
spectra are shown in Figure 4.11 for the three ABH styles considered. For each style,
the response spectrum shown is that of the design that minimizes J2 (‘Min Response’ in
Table 4.2). Because the design variables for each design are nearly the same, comparing
the spectra can help clarify the effect due to the choice of ABH style. Comparing the
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spectra of the standard symmetric and standard nonsymmetric styles, the spectra look
very similar except that the nonsymmetric response is more heavily damped. This is
in line with the analysis of Krylov [7], which found that for Ed � E and reasonable
damping layer thicknesses, the energy absorption from two layers of equal thickness will
be less than the absorption from a single layer with twice the thickness. Conversely, the
response spectrum of the double-leaf style shows a higher modal density, in line with the
observation of Zhou et al. [78] that the two halves act in parallel as two tapers of half
thickness each. This also explains why the double-leaf spectrum is more heavily damped
than the standard symmetric spectrum.

4.5 Additional comparison
While the results of the optimization clearly indicate that the choice of ABH style has
a significant effect on performance of the vibration absorber, it is worthwhile to also
consider the effects that the choice of style has on other practical aspects. As such, several
additional analyses were carried out in order to highlight further differences between
the styles and to more holistically characterize the decision space for which style is best
suited to a particular application.

4.5.1 Static compliance

The design for each style that minimizes J2 (‘Min Response’ in Table 4.2) was subjected
to two types of static forces. In the first case, a 1 N compressive force was applied
in in the axial direction at either end of each design. Note that the pinned boundary
conditions were removed for this case, or else there would be no motion. In the second
case, a 1 Nm torque was applied at each end so as to induce a negative curvature in the
beam. That is, a positive torque was applied at x = 0 and a negative torque was applied
at x = Lx. In both cases, the total absolute elemental strain (TAES) of the midplane was
calculated as a measure of the resultant deformation. If the length of the nth segment of
the midplane is `n when no force is applied, and the length of this segment changes to `′n
as a result of the force, then the strain is calculated as

s =
∑ |`′n − `n|

Lx
. (4.6)

The results of these calculations are given in Table 4.3, including the corresponding strain
values for an unmodified beam as reference. These values can be better understood
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Figure 4.11. Spatially-averaged square velocity spectra for the design of each style that
minimizes J2 (‘Min Response’ in Table 4.2). (a) Standard symmetric. (b) Standard nonsymmet-
ric. (c) Double-leaf. Also shown is the spectrum for an unmodified beam with the maximum
damping allowed within the variable bounds (dashed).
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Table 4.3. Total absolute elemental strain values calculated by Equation (4.6) as a result of
an axial compression force and a torque applied at the ends of the beam. Note that these are
different from normal strain and shear strain. The designs are those that minimize J2 (‘Min
Response’ in Table 4.2), as well as an unmodified beam for reference.

s (compression) s (torque)
Standard Symmetric 3.4× 10−5 8.0× 10−2

Standard Nonsymmetric 9.4× 10−2 2.2× 10−5

Double-Leaf 3.2× 10−5 2.3× 10−5

Unmodified 8.3× 10−6 4.3× 10−7

by looking at the deformations shown in Figure 4.12. In the case of compression, the
standard symmetric style shows minimal deformation. Because the force is precisely
axially symmetric, the only functional difference between the standard symmetric beam
and the unmodified beam is that there is less material in the ABH region, thereby
making it slightly more compliant. If the compression force were not perfectly parallel
to the beam midplane, it is expected that deformations such as those of the standard
nonsymmetric and double-leaf beams would occur. In each case, the power law taper
of the ABH transforms the axial force and generates rotation at the edge of the ABH.
Because the thickness of the beam is significantly decreased within the ABH, the bending
stiffness is greatly decreased and double damage is done as the beam buckles. However,
this effect is largely mitigated in the double-leaf design by its symmetry towards the top
and bottom of the beam, which greatly increases its compression stiffness. Despite the
buckling at the ABH, the TAES due to the compression force is comparable to that of
the standard symmetric design.

In the case of an applied torque, the roles are reversed somewhat. Whereas the TAES
in the case of compression is on the order of 10−5 for the standard symmetric design and
on the order of 10−2 for the standard nonsymmetric design, the TAES due to an applied
torque is on the order of 10−2 for the standard symmetric design and on the order of
10−5 for the standard nonsymmetric design. This again has to do with the distribution
of the stresses, which are concentrated in the minimum thickness region of the standard
symmetric ABH, while being more distributed in the standard nonsymmetric design,
in which the minimum thickness region is located at the bottom of the beam. The
double-leaf design does an even better job by having minimum thickness regions at both
the top and bottom of the beam, increasing the overall bending stiffness. It is interesting
to note that the double-leaf design appears to buckle slightly at the center of the ABH.
However, this does not appear to affect its performance, according to Table 4.6.
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Figure 4.12. Deformation (not to scale) corresponding to the values in Table 4.3. Shown is
deformation due to axial compression for (a1) Standard symmetric, (b1) Standard nonsymmetric,
and (c1) Double-leaf designs, as well as deformation due to torque for (a2) Standard symmetric,
(b2) Standard nonsymmetric, and (c2) Double-leaf designs. Skeletons of the undeformed
geometries are also shown in light grey.
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4.5.2 Radiated sound power

As another comparative measure, an approximation of the radiated sound power per
unit width was calculated from the velocity data represented in Figure 4.11. An FFT
implementation of the Rayleigh integral was used to calculate the far-field pressure as a
function of angle, assuming that each beam design is baffled [114]. In order to increase
resolution for later integration in k-space, the velocity response of the midplane was
padded with zeros beyond the end of the beam. The pressure values at each angle
was used to calculate the far-field intensity, assuming p(r) = ρcu̇r(r), and the intensity
as a function of angle was integrated over a hemispherical surface by dividing it into
quadrilateral patches and taking the mean of the four vertices as the value for a given
patch. The sound power was calculated in this way as a function of frequency, and this
sound power spectrum was integrated according to one-third octave bins to get the total
radiated sound power in each bin. The results are shown in Figure 4.13.

In almost all one-third octaves, the designs with an ABH radiate less sound power
than an unmodified beam. This is to be expected, since the wavespeed throughout the
length of the modified beam is supersonic for the entire frequency range. Conversely,
the wavespeed at the minimum thickness portion of the ABH is subsonic for the entire
frequency range. This effectively decouples the structure from the surrounding fluid and
reduces far-field radiation. An exception appears to exist in the case of the standard
symmetric design, which radiates greater sound power in the 2000 Hz one-third octave
band and comparable sound power in the 3150 Hz one-third octave band. This can be
explained by looking at the spectra in Figure 4.11. The upper bound of the 2000 Hz
one-third octave is about 2250 Hz, which is below the modal frequency of the unmodified
beam at about 2500 Hz. Conversely, there are multiple peaks in the standard symmetric
spectrum, which also has a generally greater spatially-averaged square velocity in this
part of the frequency range than at other frequencies. Even accounting for this exception,
the standard nonsymmetric and double-leaf styles radiate notably less sound power than
standard symmetric style—sometimes close to 10 dB less. With respect to each other,
however, the standard nonsymmetric style and the double-leaf style perform comparably,
with one style radiating less sound in one one-third octave band and the other style
radiating less in another.
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Figure 4.13. Radiated sound power spectrum in one-third octaves for each of the designs that
minimize J2 (‘Min Response’ in Table 4.2). Also shown is the one-third octave radiated sound
power for an unmodified beam with the maximum damping allowed within the variable bounds.

4.5.3 Heterogeneous ABH parameters

Finally, a parametric study was also performed on the standard nonsymmetric ABH
to illustrate the effect of a one-dimensional ABH with two different power-law tapers.
The design that minimizes J2 (‘Min Response’ in Table 4.2) was selected, and the taper
power, m, of each half of the ABH was independently varied from 2 to 8 in steps of
0.5. The other design variables remained unchanged. J2 was calculated for each unique
design, the results of which are shown in Figure 4.14. As might be expected, the change
in J2 is approximately symmetric, with J2 minimized for both taper powers equal to
that of the original design. However, there appears to be a slight asymmetry, with the
left taper having a greater effect on J2. This is likely due to the position of the ABH
along the beam being just right of center, which means that the overall structure itself is
asymmetric.
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Figure 4.14. Approximate contour plot of J2 as a function of the two taper powers for each
half of the standard nonsymmetric ABH style. m1 is the taper power of the left half of the
ABH. m2 is the taper power of the right half of the ABH. The remaining design variables are
those under ‘Min Response’ in Table 4.2.

4.6 Conclusions
A formal optimization was carried out for three styles of one-dimensional ABH vibration
absorbers, each embedded in a beam that is subject to a harmonic force. A multi-
objective evolutionary optimization scheme was used to identify the set of ABH designs
that optimally minimize the beam’s vibration response and its overall mass. The three
styles show a similar trade-off between the two objectives, which for any given style is
a function only of the amount of added damping. This indicates that the differences
in trade-off are a result of the choice of ABH style alone and that this choice has a
significant effect on performance of the ABH vibration absorber. Moreover, while the
double-leaf style has preferable stiffness properties for static forces, the results of this
work show that the standard nonsymmetric style is superior to either of the other styles
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in terms of vibration and sound reduction. This fact is significant, given that this work
is the first and only to directly compare the three ABH styles.

It should be noted that this study used a frequency-independent proportional loss
factor in modeling both the beam and damping materials, as is common in the structural
dynamics literature. In practice, both loss factor and Young’s modulus can vary substan-
tially with frequency—especially in visoelastic polymers such as those often employed
for vibration damping. Had the loss factor and Young’s modulus been modeled as such,
the results detailed in Section 4.4 would likely have differed somewhat. In particular, a
frequency-dependent loss factor could make it advantageous to shift structural modes
towards regions where damping is relatively high, thereby potentially altering the set of
optimal designs and the shape of the Pareto fronts. However, the authors expect that
the high-level results of this study would remain functionally the same. That is, for the
design space considered the amount of added damping dominates the trade-off between
the two objectives and any differences in trade-off are related to the choice of ABH style
alone.

Indeed, the results of this study indicate that careful design of the damping layer can
be important to ABH performance. A few authors have looked specifically at the design of
damping layers in ABH vibration absorbers since this work was reported [34,36,115,116],
although as in this study they all use a frequency-independent loss factor and Young’s
modulus. It is also worth noting that the results in Section 4.4 indicate there exists a
threshold above which there is no trade-off and the presence of a thoughtfully designed
ABH vibration absorber is advantageous to both objectives. That is to say, the inclusion
of a thoughtfully designed ABH in the beam reduces the beam’s vibration response, even
with minimal damping material. Furthermore, among the three styles, the vibration
responses of the ‘standard symmetric’ and ‘standard nonsymmetric’ ABHs are very similar
except that the nonsymmetric response is more heavily damped, while the response
of the ‘double-leaf’ ABH shows a higher modal density. In practical applications, it
may be important to consider other elements of design when implementing an ABH
vibration absorber. Additional analysis was therefore conducted to characterize the
optimal ABH designs in ways independent of their vibration reduction properties. It was
demonstrated that an ABH design that is optimized for vibration reduction may perform
poorly compared to other designs and other styles under these additional considerations.
This further underpins the significance of directly comparing these three styles.
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Chapter 5 |
A generalized measure of ABH
performance∗

5.1 Introduction
The formulation of structural optimization problems requires a great deal of effort and
forethought. This was covered in some detail in Chapter 1, but it bears repeating.
The aim when developing some measure of optimality is to distill the relevant physics
into a representation that is simple to manipulate, but also accurately represents the
desired behavior. Although the spatially-averaged square velocity response has been used
extensively in this dissertation as a measure of performance, there are many options,
including point mobility and modal quantities. Choosing or designing an appropriate
performance measure is a non-trivial task.

Furthermore, as demonstrated in each of the previous chapters, the optimal shape of
the structure will depend not only on the measure of performance but perhaps just as
much on the scale of the problem, i.e., the size of the structure and its corresponding
dynamic response. In Chapter 2 use of discrete frequencies led to an optimal strategy that
shifted peaks to between the analysis frequencies. Chapter 3 showed that the classical
ABH approach of minimizing reflection can be suboptimal when considering a finite
structure within a desired frequency band. Indeed, the ‘classically optimal’ design was
shown to be suboptimal precisely because it introduced additional peaks within the
analysis frequency band. This was not the case in Chapter 4, in part because great
care was taken to tailor the frequency range such that designs would not be penalized
for peaks that straddle the frequency window. It is impractical to put such effort into

∗A portion of the work presented in this chapter has also been submitted for publication in JASA
Express Letters.

95



choosing the frequency range each time an ABH vibration absorber consists of a different
scale or different material properties.

As such, it is advantageous to be able to approach the problem of ABH design in
a manner that is independent of the structure’s size and material. There should be a
criterion by which one can directly compare the performance of a 1 m ABH made out
of steel to that of a 10 cm ABH manufactured out of aluminum. Additionally, it was
demonstrated in Chapter 4 that the application of damping has a significant control
over the performance of an ABH vibration absorber. It begs the question, then, whether
one can design a measure of performance that incorporates the damping directly. In
particular, is there a way to quantify the energy coupling between the ABH taper and
the added damping?

The primary goal of the current chapter is to develop a generally applicable measure
of ABH performance in finite structures and apply it to a test problem. To that end, a
dissipated power ratio is derived that is directly related to the coupling between ABH and
damping but is largely independent of scale. Rather than setting out to solve a particular
design problem, this work aims to establish a foundation upon which future studies
can be based and/or from which ABH vibration absorber performance can be given a
universal language. As a test case, the one-dimensional ABH optimization covered in
Chapters 3 and 4 is expanded to a two-dimensional ABH vibration absorber in a square
plate. Most practical applications of ABH vibration absorbers involve two-dimensional
ABHs, so this optimization problem is an important extension of the previous work. The
objective of the optimization is to simultaneously maximize the new power-based ABH
performance measure and to minimize the size of the ABH feature. To facilitate the
structural analysis of each ABH design in three space dimensions, without a great loss of
accuracy or great increase in analysis time, an auxiliary goal of the work is to derive and
build an improved finite element solver. As such, the development of this solver is also
documented in this chapter.

5.2 Problem description
The test problem under consideration is the shape optimization of a two-dimensional
acoustic black hole (ABH) vibration absorber. The ABH is embedded in a square plate of
side length a, and it has an attached free damping layer that covers the entire bottom of
the ABH. A graphical representation of the geometry is shown in Figure 5.1. The results
of Chapter 4 showed that of the three styles considered—standard symmetric, standard
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Figure 5.1. Graphical representation of the optimization problem under consideration. De-
picted are (a) Top; (b) Bottom; and (c) Cross-sectional views of the geometry. The geometry
is a square plate of side length a and thickness h1, with an embedded two-dimensional ABH
feature and an attached free damping layer. The damping layer covers the same area of the
ABH, which is a circle with radius RABH. The taper profile of the ABH is controlled by the
minimum thickness, h0, and the power law exponent, m. Not pictured is the parameter γ,
which alters the gradient of the ABH.

nonsymmetric, and double-leaf—the standard nonsymmetric style was preferable to
the other two styles in many ways. As such, it is the only style considered here. The
ABH thickness profile is independent of angle, but its thickness varies with radius, r, as
h(r) = ε(r + β)m + γ. As derived in Appendix B, ε and β can be calculated as

β = RABH(h0 − γ) 1
m

(h1 − γ) 1
m − (h0 − γ) 1

m

(5.1)

and
ε = h1 − γ

(RABH + β)m , (5.2)
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where RABH is the radius of the circular ABH, h1 is the thickness of the host plate, h0

is the thickness at the center of the ABH, and γ is a fourth parameter that roughly
controls the gradient at the center of the ABH. There are therefore four variables that
uniquely define the shape of the ABH. A vector, h, of nondimensional design variables
can be defined such that h =

[
2RABH

a

√
h1
h0

m γ
h0

]T
=
[
v1 v2 v3 v4

]T
. This set of

nondimensional variables still uniquely defines the ABH geometry, but has the added
benefit that it is independent of the scale of the problem. In this way, the nondimensional
variables describe a continuum of ABH designs, differentiated only by the dimensions
of the host structure. The first variable, v1, is the ratio of the ABH radius to one half
the edge length of the plate. The second variable, v2, is equivalent to the ratio of the
bending wavenumber at the minimum thickness to the wavenumber at the maximum
thickness, assuming the plate material is homogeneous. The third variable, v3, is the
taper power, m, while the fourth variable, v4, is such that when v4 = 1, the gradient at
the center of the ABH is zero.

Given the nondimensionalized design variables, we now define two dimensionless
objectives related to the performance of the ABH vibration absorber. Namely,

J1(h) = 4R
2
ABH
a2 = v2

1 (5.3)

and

J2(h) =
(

1
(ka)b − (ka)a

∫ (ka)b

(ka)a
Π(ka) d(ka)

)−1

, (5.4)

where
Π(ka) = − 2

ωIm{uz(xf , ka)}

∫
Ωd

〈
Ḋ(x, ka)

〉
dΩd (5.5)

is called here the ‘power dissipation ratio’, and is the ratio of power dissipated in the
damping layer (defined by the domain Ωd) to the power input to the system at the drive
point, xf .

〈
Ḋ
〉
is the rate of dissipated energy averaged over one period and uz is the

(complex) displacement in the z-direction. The details of how Equation (5.5) is derived
will be given in Section 5.3. Note that the ka used here and throughout the paper refers
to the bending wavenumber in the host structure. To be properly scale-independent, J2

should also be normalized by the volume of Ωd. However, because the dimension of this
volume is captured by J1, this normalization is omitted. J1 is simply the square of v1,
which is related to the volume of Ωd, while J2 measures directly the effectiveness of the
vibration absorber to dissipate energy. Note the reciprocal in the definition of J2, so that
maximum power is dissipated when J2 is minimized.
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With the two objectives so defined, the problem can be written formally as

min
h∈H

J = [J1, J2]T

subject to

H =
{
h ∈ R4 : v−1 ≤ v1 ≤ v+

1 , v
−
2 ≤ v2 ≤ v+

2 , v
−
3 ≤ v3 ≤ v+

3 , v
−
4 ≤ v4 ≤ v+

4

}
−(ka)4u− 3a4

h2
1

λ+ 2µ
µ(λ+ µ)div

(
σ(u)

)
= f , ∀x ∈ Ω

u(±0.5, y, z) = u(x,±0.5, z) = 0
f = 3a4

h2
1

λ+2µ
µ(λ+µ)

[
0 0 δ(x− xf )

]T
∀ka ∈ [(ka)a, (ka)b

]

In words, the above says that the goal of the optimization is to simultaneously minimize
J1(h) and J2(h), where h is restricted to exist in the set of valid designs, H. H is defined
by the permissible lower and upper bounds of each design variable. The dynamics of the
problem must obey time-harmonic linear elastodynamics, written here in terms of ka,
the Lamé parameters, λ and µ, and the (complex) stress, σ. The edges of the plate will
be fixed, and the plate is driven in the z-direction by a point force at some appropriate
location, xf .

5.3 Theory

5.3.1 Elastodynamic theory

While it will not be derived here, the equation of motion for linear elastodynamics is
given as

ρü− div(σ) = f (5.6)

or, equivalently,
ρüi −

∑
j

σij,j = fi, (5.7)

where u is the three-dimensional vector of displacement components, ü is its second
derivative with respect to time, σ is the second-order stress tensor, div(·) is the divergence
operator, and f is the three-dimensional vector of external forces per unit volume. The ‘,’
notation in Equation (5.7) is that commonly encountered in continuum mechanics, e.g.,

u1,1 = ∂ux
∂x

,
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σ13,2 = ∂σxz
∂y

,

and
f2,13 = ∂2fy

∂z∂x
.

The stress tensor is defined as the double contraction of the fourth-order elasticity
tensor, C, and the second-order strain tensor, ε,

σ = C : ε (5.8)

or
σij =

∑
k

∑
l

Cijklεkl. (5.9)

The strain tensor itself is defined as the symmetric gradient of the displacement,

ε = 1
2
(
grad(u) + grad(u)T

)
(5.10)

or
εij = 1

2
(
ui,j + uj,i

)
, (5.11)

where grad(·) is the gradient operator. In the case of an isotropic material, Cijkl =
λδijδkl + µ

(
δikδjl + δilδjk

)
, where λ and µ are the first and second Lamé parameters,

respectively. Under such conditions, the stress tensor can be written as

σ = λdiv(u)I + µ
(
grad(u) + grad(u)T

)
, (5.12)

where I is the second-order identity tensor, functionally equivalent to the identity matrix.
Because the stress and strain tensors are defined in terms of u, they will be denoted
hereafter as operations on u; that is, σ(u) and ε(u), respectively.

For the steady-state solution of Equation (5.6), a complex time-harmonic solution is
assumed such that

u→ (v + iw) eiωt, (5.13)

f → (f + i0) eiωt, (5.14)

λ→ λ(1 + iη), (5.15)

µ→ µ(1 + iη), (5.16)
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where η is the material loss factor. The following boundary conditions will also be
imposed:

u = 0, ∀x ∈ Γ1, and (5.17)

σ(u)n = 0, ∀x ∈ Γ2, (5.18)

for the outward unit normal vector n. Γ1 is the boundary surface of the domain on
which displacement is zero, while Γ2 is the boundary surface on which surface pressures
(tractions) are zero. The union of Γ1 and Γ2 forms the entire boundary of the domain,
Ω. More formally, ∂Ω = Γ1 ∪ Γ2 ≡ Γ. These boundary conditions, together with the
complex time-harmonic assumption, give the following system of equations:

−ω2ρv − div
(
σ(v)− ησ(w)

)
= f ∀x ∈ Ω, (5.19)

−ω2ρw − div
(
ησ(v) + σ(w)

)
= 0 ∀x ∈ Ω, (5.20)

v = 0 ∀x ∈ Γ1, (5.21)

w = 0 ∀x ∈ Γ1, (5.22)(
σ(v)− ησ(w)

)
n = 0 ∀x ∈ Γ2, (5.23)(

ησ(v) + σ(w)
)
n = 0 ∀x ∈ Γ2. (5.24)

This system of equations is the strong form, from which the weak and Galerkin forms
will be derived for use in the finite element method.

5.3.2 FEM formulation and preconditioning

By expanding the formalism of linear algebra to include matrices with operator elements,
Equations (5.19) and (5.20) can be written as

−ω2ρ 0
0 −ω2ρ

+
 −div

(
σ(·)

)
div

(
ησ(·)

)
−div

(
ησ(·)

)
−div

(
σ(·)

)v
w

 =
f
0

 . (5.25)

This makes derivation of the weak form straightforward, so that it can be written as

∫
Ω

φi
ψi

T −ω2ρ 0
0 −ω2ρ

 v
w

 dΩ
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+
∫

Ω

φi
ψi

T  −div
(
σ(·)

)
div

(
ησ(·)

)
−div

(
ησ(·)

)
−div

(
σ(·)

) v
w

 dΩ =
∫

Ω

φi
ψi

T f
0

 dΩ, (5.26)

where φi(x) is a test function for the possible values of v(x) and ψi(x) is the correspond-
ing test function for w(x). The reason for the index of i in φi and ψi will be explained
below when deriving the Galerkin form. For now, expanding Equation 5.26 gives the
equivalent equation

∫
Ω
φi ·

(
− ω2ρv

)
dΩ +

∫
Ω
ψi ·

(
− ω2ρw

)
dΩ

−
∫

Ω
φi · div

(
σ(v)

)
dΩ +

∫
Ω
φi · div

(
ησ(w)

)
dΩ

−
∫

Ω
ψi · div

(
ησ(v)

)
dΩ−

∫
Ω
ψi · div

(
σ(w)

)
dΩ =

∫
Ω
φi · f dΩ. (5.27)

Without derivation, the following identity is given for some first-order tensor† field b(x)
and second-order tensor field A(x):

div(Ab) = b · div
(
AT

)
+ tr

(
Agrad(b)

)
, (5.28)

where tr(A) = ∑
iAii. Rearranging and integration produces the relevant Green’s identity

b · div(A) = div
(
ATb

)
− tr

(
ATgrad(b)

)
=⇒ b · div(A) = div

(
ATb

)
− tr

(
grad(b)TA

)
=⇒ b · div(A) = div

(
ATb

)
− grad(b) : A

=⇒
∫

Ω
b · div(A) dΩ =

∫
Ω

div
(
ATb

)
dΩ−

∫
Ω

grad(b) : A dΩ

=⇒
∫

Ω
b · div(A) dΩ =

∫
Γ
ATb · n dΓ−

∫
Ω

grad(b) : A dΩ

=⇒
∫

Ω
b · div(A) dΩ =

∫
Γ
b ·An dΓ−

∫
Ω

grad(b) : A dΩ, (5.29)

where B : A = ∑
i

∑
j BijAij is the double contraction of two second-order tensors. The

weak form can then be written

−ω2
∫

Ω
ρ(φi · v) dΩ− ω2

∫
Ω
ρ(ψi ·w) dΩ

+
∫

Ω
grad(φi) : σ(v) dΩ−

∫
Ω
η
(
grad(φi) : σ(w)

)
dΩ

†For the purposes of this chapter, a first-order tensor is a vector.
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+
∫

Ω
η
(
grad(ψi) : σ(v)

)
dΩ +

∫
Ω

grad(ψi) : σ(w) dΩ

=∫
Ω
φi · f dΩ +

∫
Γ
φi · σ(v)n dΓ−

∫
Γ
η
(
φi · σ(w)n

)
dΓ

+
∫

Γ
η
(
ψi · σ(v)n

)
dΓ +

∫
Γ
ψi · σ(w)n dΓ. (5.30)

Finally, recall the fact that φi = ψi = 0, ∀x ∈ Γ1 and
(
σ(v) − ησ(w)

)
n =

(
ησ(v) +

σ(w)
)
n = 0, ∀x ∈ Γ2. This leads to the final weak form

−ω2
∫

Ω
ρ(φi · v) dΩ− ω2

∫
Ω
ρ(ψi ·w) dΩ

+
∫

Ω
grad(φi) : σ(v) dΩ−

∫
Ω
η
(
grad(φi) : σ(w)

)
dΩ

+
∫

Ω
η
(
grad(ψi) : σ(v)

)
dΩ +

∫
Ω

grad(ψi) : σ(w) dΩ =
∫

Ω
φi · f dΩ. (5.31)

In addition, however, note that Equation (5.12) implies

grad(φi) : σ(v) = grad(φi) :
(
λdiv(v)I

)
+ grad(φi) :

(
2µε(v)

)
= λdiv(φi)div(v) + 2µ

(
ε(φi) : ε(v)

)
(5.32)

and similarly for the other terms. This form is most convenient, because deal.II has
optimized built-in functions for the divergence, gradient, symmetric gradient, and the
double contraction of two such symmetric gradients.

For the finite element method (FEM), it is necessary to have a system of equations
of the form Gd = b. The usual assumption is that v = ∑

djφj and w = ∑
djψj. This

is the reason that the test functions were denoted with the index i from the start: they
are actually the finite basis functions that will be used to interpolate the solution. In
actuality, test functions are usually assumed to be of the form φ = ∑

φi and ψ = ∑
ψi,

which is known as the Galerkin method. The derivation of the weak form is somewhat
easier, however, if it is considered for a single basis function from the outset.

Next, a mass matrix, M , stiffness matrix, K, damping matrix, C, and body force
vector, b, can be defined as follows:

Mij =
∫

Ω
ρ
(
φi · φj +ψi ·ψj

)
dΩ, (5.33)

Kij =
∫

Ω
λ
(

div(φi)div(φj) + div(ψi)div(ψj)
)
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+ 2µ
(
ε(φi) : ε(φj) + ε(ψi) : ε(ψj)

)
dΩ, (5.34)

and

Cij =
∫

Ω
η
[
λ
(

div(ψi)div(φj)− div(φi)div(ψj)
)

+ 2µ
(
ε(ψi) : ε(φj)− ε(φi) : ε(ψj)

)]
dΩ (5.35)

bi =
∫

Ω
φi · f dΩ (5.36)

Such that
Gd =

(
− ω2M +K +C

)
d = b. (5.37)

This is certainly the most natural way to think of the problem in the dynamical sense.
However, note that for ndof degrees of freedom,M ,K,C ∈ Rndof×ndof and their sum is (in
general) neither symmetric nor definite. It is therefore useful to choose φi and ψi in such
a way that the solution is separable into real and imaginary parts. One particularly useful
way is to choose φi = 0 for i ∈ [1, 1

2ndof], ψi = 0 for i ∈ [1
2ndof+1, ndof], and φi = ψ(i+ 1

2ndof)

for i ∈ [1, 1
2ndof]. This allows the definition of blocks Q,U ,V ∈ R 1

2ndof× 1
2ndof

Qij =
∫

Ω
−ω2ρ

(
φi · φj

)
+ λdiv(φi)div(φj) + 2µ

(
ε(φi) : ε(φj)

)
dΩ, (5.38)

Uij =
∫

Ω
−η
[
λdiv(φi)div(ψj) + 2µ

(
ε(φi) : ε(ψj)

)]
dΩ, (5.39)

and

Vij =
∫

Ω
−ω2ρ

(
ψi ·ψj

)
+ λdiv(ψi)div(ψj) + 2µ

(
ε(ψi) : ε(ψj)

)
dΩ, (5.40)

such that

Gd =
 Q U

−UT V

 α
γ

 =
β
0

 = b. (5.41)

This block form of the system produces the same solution as the original system in
Equation (5.37), but has some additional properties that are beneficial. In particular,
given the relationship between φi and ψi, it is easy to show that Q = V and UT = U .
Moreover, U is positive definite, although Q is (in general) not. For this reason, it is
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advantageous to solve the modified system

G′d =
U −V
V U

α
γ

 =
0
β

 = b′. (5.42)

Again, Equation (5.42) produces exactly the same solution for α and γ as Equation
(5.41). As a matter of fact, this modified system can be derived directly by multiplying
Equation (5.6) by i and carrying out the previous derivation. The matrix V captures the
undamped dynamic mass and stiffness portion of the weak form, and is symmetric but
not generally definite, while U captures the hysteretic material damping part of the weak
form and is symmetric positive-definite (SPD). Having an SPD matrix on the diagonal
permits some advantageous tactics in terms of solving the block system. In particular, it
can be shown thatU −V

V U

 =
 I 0
V U−1 I

U 0
0 S

I −U−1V

0 I

 , (5.43)

where S = U + V U−1V is the Schur complement. The inverse of Equation (5.43) is
then easily written as

U −V
V U

−1

=
I U−1V

0 I

U−1 0
0 S−1

 I 0
−V U−1 I

 . (5.44)

Note that S is generally dense, even if U and V are sparse. Practically speaking,
this means that the inverse of S is expensive to calculate. Moreover, the inverse is
nonlinearly dependent upon frequency, which means it must be recalculated for each
analysis frequency. However, U is frequency-independent and SPD. Bearing this in mind,
the following precondition matrix was chosen to speed up solution of Equation (5.42):

P−1 =
I U−1V

0 I

U−1 0
0 U−1

 =
U−1 U−1V U−1

0 U−1

 . (5.45)

With this definition of P−1, the preconditioned system is

G′P−1Pd = G′P−1y =
U −V
V U

U−1 U−1V U−1

0 U−1

yα
yγ
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=
 I 0
V U−1 I +

(
V U−1

)2

yα
yγ

 . (5.46)

In practice, the particular values in y are not of interest. Rather, the preconditioned
system is solved for y as an intermediate step, and then d is determined from y using
d = P−1y. The performance of this preconditioner will depend on the spectral radius of
V U−1, often denoted ρ

(
V U−1

)
. The smaller ρ

(
V U−1

)
is, the closer the preconditioned

system is to the identity matrix and the more effective the preconditioner is. The spectral

radius is estimated to be on the order of 1
η

∣∣∣∣∣
(
ω
ω0

)2
− 1

∣∣∣∣∣, where ω0 is the first modal

frequency of the system in the absence of damping. This comes from the estimate that
C ≈ iηK in many practical cases. Thus, the preconditioner works best for low frequencies
and large values of η.

The significance of U being frequency-independent is that its inverse needs to be
calculated only once, immediately after the matrices are assembled. The inverse can then
be saved and used for all future calculations. The significance of it being SPD is that if
the inverse is expensive to calculate directly, there are efficient methods to solve for it
iteratively for each instance of vector multiplication with U−1. The prototypical solver is
the conjugate gradient (CG) method, which is remarkably fast but only operates on SPD
matrices. This preconditioner therefore allows the user some amount of control to choose
a direct inner method or an iterative inner method depending on the complexity of U .

5.3.3 Dissipated power formulation

As a preliminary to the following power formulation, it is important to know when using
the complex notation eiωt carries comparable physical meaning to using cos(ωt) and when
it doesn’t. For example, it is common to represent a harmonic force and velocity as

f(t) = F cos(ωt) (5.47)

and
v(t) = V cos(ωt+ θ), (5.48)

where θ is the phase difference between the force and the resultant velocity. Alternatively,
these quantities can be expressed in complex notation as

f̃(t) = F̃ eiωt (5.49)
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and
ṽ(t) = Ṽ eiωt, (5.50)

where the tilde is used to represent a complex quantity, and in most cases F̃ = F and
Ṽ = V eiθ. The complex representation is convenient in many applications, but it is
important to keep in mind that only the real part represents a physical, measurable
quantity. Indeed, using the definitions above, it is clear that

f(t) = Re
{
f̃(t)

}
= 1

2

(
f̃ + f̃ ∗

)
(5.51)

and
v(t) = Re

{
ṽ(t)

}
= 1

2
(
ṽ + ṽ∗

)
. (5.52)

So for a real instantaneous power, q(t) = f(t)v(t), it is fine to write the following equivalent
form using complex notation: q(t) = 1

4

(
f̃ + f̃ ∗

)(
ṽ + ṽ∗

)
. It is then straightforward to

show that the average (real) power over one period can be expressed as

〈q(t)〉 = ω

2π

∫ 2π
ω

0
q(t) dt = 1

2
∣∣∣F̃ ∣∣∣∣∣∣Ṽ ∣∣∣ cos(θ). (5.53)

While mathematically valid, an instantaneous complex power, q̃(t) = f̃(t)ṽ(t), does not
carry the same physical meaning. In particular,

〈q̃(t)〉 = ω

2π

∫ 2π
ω

0
q̃(t) dt = ω

2π

∫ 2π
ω

0
F̃ Ṽ ei2ωt dt = 0. (5.54)

Therefore, for the following power formulation, only real power will be considered.
The (real) power flow in a continuum will now be derived, following the logic of [117].

As already mentioned, it is common for a harmonic displacement to be represented
as a complex exponential, which means that the representation of stress and strain
will be similarly affected. In particular, if u → ũ = Ũeiωt then ε → ε̃ = Ẽeiωt and
σ → σ̃ = Σ̃eiωt. In such a case, it is also common to represent the hysteretic material
damping as a modification of the stiffness tensor. Namely, C→ C̃ = C(1 + iη), where
η is the material loss factor. However, as demonstrated by Equation (5.54), it is only
physically valid to deal with real quantities when calculating power. For that reason,
note that

σij = Re{σ̃ij} =
3∑

k=1

3∑
l=1

CijklRe{ε̃kl} − ηCijklIm{ε̃kl}
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=
3∑

k=1

3∑
l=1

Cijklεkl + η

ω
Cijklε̇kl

= σeij + σdij. (5.55)

The first term, σeij, represents the elastic stress from storage of energy, while the second
term, σdij, represents the dissipative stress from viscous losses.

To derive the power in a viscoelastic continuum, note that the kinetic energy density
(i.e., kinetic energy per unit volume) at time t can be expressed as

T =
∫ t

0

∂

∂t

(1
2ρu̇ · u̇

)
dτ =

∫ t

0
ρu̇ · ü dτ. (5.56)

As a reminder, u = Re{ũ} for the current analysis. Similarly to kinetic energy density,
the potential energy density and the dissipated energy density can be expressed as

V =
∫ t

0
σe : ε̇ dτ =

∫ t

0

∑
i,j,k,l

Cijklεklε̇ij dτ (5.57)

and
D =

∫ t

0
σd : ε̇ dτ =

∫ t

0

∑
i,j,k,l

η

ω
Cijklε̇klε̇ij dτ, (5.58)

respectively. The colon notation used in Equations (5.57) and (5.58) represents a double
contraction of two second-order tensors, i.e., A : B = ∑

i

∑
j AijBij. When expressed as

above, it is clear from inspection that the time rates of change of these energies are

Ṫ = ρu̇ · ü, (5.59)

V̇ = σe : ε̇, (5.60)

and
Ḋ = σd : ε̇. (5.61)

The power input to the system (per unit volume) is ΠI = f · u̇, while the power absorbed
by the system (per unit volume) is the combined total of the three above rates of energy
change, ΠA = Ṫ + V̇ + Ḋ. In the case of a unit point force in the z-direction at xf , the
time-averaged input power can be calculated directly from the complex displacement
amplitude as

〈ΠI〉 = ω

2π

∫ 2π
ω

0
f · u̇ dt = −1

2ωIm
{
Ũz(xf )

}
. (5.62)

Without going through the full derivation, note that the time-averaged rate of change of
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Table 5.1. Table of parameters used in the optimization.
Material Parameters

Plate Young’s modulus, E 70 GPa
Plate density, ρ 2,700 kg·m−3

Plate Poisson’s ratio, ν 0.33
Plate loss factor, η 0.004

Damping Young’s modulus, Ed 0.7 GPa
Damping density, ρd 1,800 kg·m−3

Damping Poisson’s ratio, νd 0.33
Damping loss factor, ηd 0.4

Geometric Parameters
Plate width, a 1 m

Plate thickness, h1 1 cm
Damping thickness, hd 1 cm

Runtime Parameters
Variable 1 bounds, [v−1 , v+

1 ] [0.001, 1]
Variable 2 bounds, [v−2 , v+

2 ] [1,
√

10]
Variable 3 bounds, [v−3 , v+

3 ] [2, 8]
Variable 4 bounds, [v−4 , v+

4 ] [−106, 1]
Dimensionless frequency range, [(ka)a, (ka)b] [0.1, 10]

kinetic energy density and strain energy density are zero when averaged over one period
(it is sufficient to consider the relative phases of u, u̇, and ü). This means that the
time-averaged absorbed power per unit volume is

〈ΠA〉 =
〈
Ḋ
〉

= ω

2π

∫ 2π
ω

0
Ḋ dt = 1

2ηωΣ0 : E0 =
∑
i,j,k,l

1
2ηωCijklE

0
klE

0
ij, (5.63)

where E0
ij is the amplitude of the (i, j) component of the harmonic strain tensor, ε̃. That

is, E0
ij =

∣∣∣Ẽij∣∣∣. Integrating 〈Ḋ〉 over some domain of interest then gives the average
power dissipated within that domain. This is the source of Equation (5.5) used in the
definition of J2.

5.4 Procedure
The specific parameters used in the optimization are given in Table 5.1. Note that although
the problem is formulated in dimensionless quantities, in practice it was calculated in
the frequency domain according to the solution strategy outlined in the previous section.
For each analysis frequency, the system in Equation (5.42) was solved using the GMRES

109



algorithm together with the preconditioner given by Equation (5.45). The GMRES
algorithm was chosen because both the original block system and the preconditioned
system are not symmetric and generally not definite.

The remainder of this section outlines the development and some key features of a
bespoke FEM solver written in C++ using the deal.II library [59]. Moving from two to
three spatial dimensions increases the problem complexity exponentially. This means
exponentially increased computational effort and, potentially, exponentially increased
solution time. Because of this, it is worth considering the tools used to solve the physical
dynamics of the problem, so as to avoid slowing the optimization process to the point
that the time required to reach an optimum becomes intractable.

The commercial software NASTRAN was previously used in Chapter 4 as the finite
element method (FEM) solver in the case of two spatial dimensions, and could also be
used for the full three-dimensional problem. However, NASTRAN—as well as other
commercial FEM software—requires an external interface, separate from the compiled
code. Oftentimes, the external interface is graphical to aid the user in formulation of the
FEM problem. However, for multiple repeated calculations with many different designs,
use of a graphical interface is impractical. NASTRAN does allow one to submit data
files that can be used for batch processing, but if the geometry changes dynamically then
it is still up to the user to update the data files. Combined with the fact that Borg has
up to this point been used through MATLAB, the result is a substantial amount of input
and output communication. Having a single executable therefore suggests the potential
to significantly speed up solution, as well as simplify use.

5.4.1 Overview of deal.II

To write FEM code requires a handful of key mathematical structures, as well as the
numerical tools to represent and operate upon these structures. Although a comprehensive
overview of the finite element method is outside the scope of this dissertation, a list of
these structures might include

1. A partitioning of the domain into a mesh of cells

2. A means of enumerating cells & nodes

3. Definition of basis functions on a reference cell (the ‘element’)

4. A mapping between the mesh and the reference cell
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5. A means of evaluating integrals

6. A means of evaluating function values, gradients, etc.

7. Linear algebra objects (vectors & matrices)

8. A linear solver

Although each of these structures can be implemented in code rather straightforwardly, to
write an FEM program that is both accurate and efficient is a non-trivial task, and even
expertly coded programs can quickly become very large and complex. It is expedient,
then, to use the work of others as building blocks. To that end, the deal.II library was
selected to aid in the development of an FEM program for the current work.

deal.II‡ is a C++ program library targeted at the computational solution of partial
differential equations using adaptive finite elements [59]. Note that Borg itself is written in
C, and so can be integrated directly with deal.II code. deal.II uses modern programming
techniques to offer data structures and algorithms that behave as close to the base
mathematical structures as possible. The primary aim of deal.II is to enable rapid
development of finite element codes using adaptive meshes, among other tools. It aims
to be a program library that takes care of the details of grid handling and refinement,
handling of degrees of freedom, input of meshes and output of results, etc. Likewise,
support for several space dimensions at once is at the core of the code base, such that
programs can be written independent of the space dimension. In reference to the list
above, deal.II provides the following classes:

1. Triangulation<dim> tria;

2. DoFHandler<dim> dof_handler(tria);

3. FiniteElement<dim> fe(fe_data);

4. MappingFE<dim> map(fe);

5. Quadrature<dim> quad(points, weights);

6. FEValues<dim> fe_values(map, fe, quad);

7. Vector<number> and SparseMatrix<number> and many others
‡The name ‘deal.II’ stems from its origin as a successor to the Differential Equations Analysis Library

of the same authors. Obviously, it has since grown into something else entirely.
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8. SparseDirectUMFPACK and many others

Note that all of the classes listed above are internal to deal.II. Their details can be
found in the online documentation [118]. While the standalone capabilities of deal.II are
sufficient for many applications, the library is also designed to interface with many high-
performance computing (HPC) libraries, including (Sca)LAPACK [119,120], ARPACK
[121], PETSc [122], Trilinos [123], and p4est [124]. The latter two in particular were used
in the current work for solution of linear equations and to aid in parallelization.

5.4.2 Parallelization

To further improve the finite element solver, the code was parallelized in several ways.
Firstly, deal.II wrapper classes were used to utilize vectors and matrices from the Trilinos
software library [123]. These vector and matrix classes are designed to be distributed
across multiple processors using MPI. As such, large data structures can be split,
vectors and matrices can be assembled in parallel, and vector-vector and matrix-vector
operations can also be performed in parallel. Secondly, the domain mesh was distributed
across processors using the p4est library [124]. This level of parallelization allows large
meshes to be split, but also allows cell-level calculations to be performed in parallel.
Third, the matrix U−1 in Equation (5.43) was calculated using the parallel direct solver,
SuperLU_DIST [125]. Although U−1 could be solved for iteratively at each application,
it was decided to solve for it once at the beginning because the problem size is small
enough that a direct solution is not unreasonably time-consuming.

Finally, for the outer computations and for exchanging data with the Borg algorithm, a
manager/worker scheme was built using MPI. That is, the single manager node exchanges
design variables and objective values with the Borg algorithm, as well as instructing
the worker nodes on which calculations to carry out. A flowchart representation of
the relationships is given in Figure 5.2. The full frequency range was subdivided
according to the expected number of modes, using the formula of Xie et al. [126],
so that there was theoretically only one mode within each subdivision. A subset of
all processors was assigned to each subdivision, so that multiple frequencies could
be evaluated simultaneously. It should be noted that the efficiency of this layer of
parallelization will depend on the problem size. In particular, there is a trade-off between
the number of simultaneous frequency calculations and the amount of data handled by
each processor. Although this outer level of parallelization was designed for the particular
optimization problem at hand, the architecture could be modified for other use cases
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Figure 5.2. Flowchart representation of the multi-level parallelization framework used. The
manager process interfaces with Borg to interpret the design variables and to calculate the
objectives. Note that workers 1–4 share the same analysis frequencies but each own a different
portion of the degrees of freedom. The same is true for workers 5–8. In this way, the construction
of matrices and vectors is also parallelized.
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Figure 5.3. An example of drive point mobility demonstrating artificial stiffness due to locking
phenomena. The solid curve represents the mobility as calculated by NASTRAN with shear
and volumetric locking control. The dashed line represents the result when no measures are
taken to relieve locking. Clearly, the dashed line shows peaks that are shifted up in frequency,
indicating increased stiffness.

that might benefit from parallelization.

5.4.3 Control of shear locking

In finite element analysis of thin-walled structures, so-called ‘locking’ phenomena are
a well-known issue for solid elements, such as are used here [127]. At a high-level
understanding, locking phenomena occur because the linear or quadratic basis functions
cannot adequately represent the full stress field within a given element, and so the element
becomes artificially stiff. An example of drive point mobility that demonstrates this
element stiffening is shown in Figure 5.3 A simple fix is to use reduced integration, in
which fewer integration points are used when evaluating the integrals that include stress
and strain. For linear elements, the stress and strain are only evaluated at the center of

114



the element. However, this often results in zero-energy modes or so-called ‘hourglassing’,
in which the strain at the center is zero but the deformation at the nodes is nonzero [127].
Physically, this means that the element has zero stiffness and so the solution results in
a structure that is artificially compliant. It should be noted that there are methods to
control hourglassing so that reduced integration can be and is used in practice.

A more rigorous and robust method is to define an auxiliary variable, p = −1
3tr(σ) =

−(λ + 2µ
3 )div(u). In using this definition, p is precisely the hydrostatic pressure for a

compressible elastic material, where the minus sign is because a positive pressure is usually
interpreted as enacting compression, which is a negative strain. With this auxiliary
pressure variable, the elastodynamic problem becomes a system of equations in both u
and p and the finite element method is said to be ‘mixed’. At first, this 33% increase in
the number of degrees of freedom may seem like a reasonable trade-off for eliminating
all locking phenomena. However, the smallest numerically stable element type requires
the basis functions to be quadratic in displacement and linear in pressure [128, 129].
Compared to a linear displacement element, this means a 270% increase in the number
of degrees of freedom in three dimensions. As such, an alternative means of relieving
locking is necessary.

Rather than using reduced integration or mixed methods, the approach used here is
sometimes called a selective substitution method. This form of selective substitution is
most likely the method used in NASTRAN to alleviate shear locking [130]. The method
consists of modifying the off-diagonal terms of the strain tensor at the quadrature points
and replacing them with a Jacobian-weighted average. To illustrate, consider first the
two-dimensional problem, with a reference cell and Gaussian quadrature points shown
in Figure 5.4. The points within some physical cell in the mesh are usually mapped to
and from the reference cell using some mapping, M : (ξ, η) 7→ (x, y). This allows the
formulation of integrals in terms of a single reference cell, rather than modifying the
process for each particular cell. The Jacobian of the mapping from the reference cell to
the physical cell is j(ξ, η) = det

(
J(ξ, η)

)
, where J(ξ, η) is the Jacobian matrix of the

linear map M , and is related to the change in size between the physical cell and the
reference cell.

The selective substitution method replaces the off-diagonal term in the strain, εxy,
with a Jacobian-weighted average,

εxy →
∑
q εxy(ξq, ηq)j(ξq, ηq)∑

q j(ξq, ηq)
, (5.64)
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Figure 5.4. A 2D reference cell. The points represent the quadrature points for 2×2 Gaussian
quadrature. ξ and η (not to be confused with loss factor) are the coordinates in the reference
domain.

for each quadrature point on the reference cell, (ξq, ηq). Looking again at Figure 5.4,
quadrature points 1–4 are all substituted for this averaged value, so that εxy(ξ1, η1) =
εxy(ξ2, η2) = εxy(ξ3, η3) = εxy(ξ4, η4). In the case of three dimensions, the situation is
more complicated. Referring to Figure 5.5, note that the quadrature points form six
planes instead of just one. Additionally, there are three off-diagonal components instead
of only one in the two-dimensional case. As such, the substituted value will depend not
only on which off-diagonal component is being calculated, but will also depend on which
plane the quadrature point lies in. The full list of substitutions is

εxy(ξq) =

∑
q=1,2,3,4

εxy(ξq)j(ξq)∑
q=1,2,3,4

j(ξq)
, for q = 1, 2, 3, 4; (5.65)

εxy(ξq) =

∑
q=5,6,7,8

εxy(ξq)j(ξq)∑
q=5,6,7,8

j(ξq)
, for q = 5, 6, 7, 8; (5.66)
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Figure 5.5. A 3D reference cell. The points represent the quadrature points for 2 × 2 × 2
Gaussian quadrature. ξ, η, and ζ are the coordinates in the reference domain. Although the
axes are shown off to the corner for ease of readability, the origin is usually taken to be the
center of the cell.

εxz(ξq) =

∑
q=1,2,5,6

εxy(ξq)j(ξq)∑
q=1,2,5,6

j(ξq)
, for q = 1, 2, 5, 6; (5.67)

εxz(ξq) =

∑
q=3,4,7,8

εxy(ξq)j(ξq)∑
q=3,4,7,8

j(ξq)
, for q = 3, 4, 7, 8; (5.68)

εyz(ξq) =

∑
q=1,3,5,7

εxy(ξq)j(ξq)∑
q=1,3,5,7

j(ξq)
, for q = 1, 3, 5, 7; (5.69)

and

εyz(ξq) =

∑
q=2,4,6,8

εxy(ξq)j(ξq)∑
q=2,4,6,8

j(ξq)
, for q = 2, 4, 6, 8. (5.70)

Comparing to Figure 5.5, it is clear that for shear in the x-y direction, the quadrature
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Figure 5.6. Same mobility as in Figure 5.3, but now the dashed line includes selective
substitution to relieve shear locking.

points 1–4 lie in the same plane, while the points 5–8 form in their own plane. The case
is similar for shear in the x-z and y-z directions.

Figure 5.6 shows the same mobility calculation as Figure 5.3 but after applying selective
substitution to the shear stresses and strains. Clearly the main locking phenomenon is
alleviated and the results very nearly match those of a commercial finite element solver.
Note that a possible extension would be to relieve any volumetric locking using, e.g.,
the B-bar method from [61]. This might be important in the case of materials that are
nearly incompressible. However, Figure 5.6 demonstrates that shear locking accounts for
the majority of the artificial stiffness for the materials considered in this chapter. As
such, no steps were taken to avoid what little volumetric locking may be present.
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Figure 5.7. Approximate Pareto front for the current problem. Also indicated is the ‘knee’ of
the front, at which the trade-off between the two objectives is approximately equal. Although
the set of designs found by Borg does not include any with J1 greater than 0.4, the scale of the
abscissa is such that the figure shows all possible values for J1. Conversely, the values for J2
are potentially infinite, and so it has been limited.

5.5 Results and discussion
The optimization was run for a total of 3,000 function evaluations using the Borg
algorithm, to produce the approximate Pareto front displayed in Figure 5.7. Note that
the abscissa of Figure 5.7 has been scaled to show the full range of possible values for
the first objective, J1. Although the approximate Pareto front is not entirely complete,
it shows a clear trend in trade-off between the two objectives. Also marked in Figure 5.7
is the approximate location of the ‘knee’ in the front, the point at which the trade-off in
the two objectives is equal. This acts as an interesting reference point when looking at
the variable trends shown in Figure 5.8.

As expected, there is a clear relationship between the first variable, v1, and the shape
of the Pareto front because J1 = v2

1. Looking at the other variables, however, there does
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Figure 5.8. Variable trends for the Pareto front in Figure 5.7. The demarcation ‘max
dissipation’ indicates the end at which J2 is minimized, while the ‘min damping’ indicates the
end at which J1 is minimized. The location of the knee is also shown as a circular marker.

not appear to be an obvious trend, with the exception that there appears to be two
regions separated by the knee. As the size of the ABH decreases from the knee point,
the precise values of v2, v3, and v4 fluctuate significantly. On the other hand, as the size
of the ABH increases, these variables hold relatively stable, with a clear preference for
v2 =

√
10 and v4 = 1. Although not quite as stable, the value of v3 is also restricted to

between 6 and 8 in this region. This would suggest that there exists a threshold beyond
which (for the current damping design) the performance of the ABH vibration absorber
is less sensitive to certain variations in the ABH taper profile.

To gain insight into the ka dependence of the dissipated power measure, the ratio of
dissipated power to input power was calculated for the design that minimized J2. This
spectrum is shown in Figure 5.9. By way of comparison, the ratio of dissipated power to
input power was also calculated for a uniform plate with the equivalent damping. That
is, the damping layer size, shape, and position are equivalent to that of the design that
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Figure 5.9. Ratio of power dissipated by the damping to power input to the system, as a
function of ka. The spectrum for the ABH design that optimizes J2 is shown as a solid line.
The spectrum for a uniform plate with the equivalent added damping layer is shown as a dashed
line. Note that the first modal frequency of the unmodified plate occurs at around ka = 6.

minimizes J2; however, the thickness of the plate is uniformly equal to h1 across its entire
span.

In both cases, there is relatively little energy dissipated by the damping layer below
a ka of 5. For reference, this corresponds to a frequency of about 50 Hz for the present
geometric and material parameters. The ratio of power dissipated increases dramatically
in both cases around ka = 6, which corresponds to the first modal frequency of the plate.
The key difference between the ABH design and the uniform plate is that above ka = 6
the ABH plate continues to couple well with the damping layer and provide consistent
effective power dissipation. Conversely, the uniform plate sometimes does not couple well
to the damping layer.

For comparison, the value of J2 for the ABH plate represented in Figure 5.9 is 2.13,
while the value of J2 for the uniform plate with equivalent damping is 3.25. Considering
these values and looking back to the Pareto front in Figure 5.7, it is clear that even the
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uniform plate performs significantly better than many designs in the Pareto optimal set.
However, the important point to consider is that for the same damping configuration,
the plate with an ABH vibration absorber is around 50% more effective on average at
dissipating energy through the damping layer.

5.6 Conclusions
In this chapter, a novel dissipated power ratio was proposed and derived as a measure of
ABH vibration absorber performance. The ratio is that of the power dissipated in an
attached damping layer to the power input to the system by some excitation, averaged
over a range of ka and normalized by the quantity of added damping. This measure
is significant in that it is largely independent of scale. Because it is evaluated as a
function of ka, structures of different sizes can be directly compared. In the case of
ABH structures, this comparison is also facilitated by a set of nondimensional design
variables, h =

[
2RABH

a

√
h1
h0

m γ
h0

]T
=
[
v1 v2 v3 v4

]T
. Note that to be truly scale-

independent, it would be necessary to account for the effective loss factor of the composite
structure in some way, possibly using an analytical model such as that of Oberst [5] or
Ross, Kerwin, and Ungar [28]. Normalization by the input power also means that results
of two tests can be compared even when the excitation characteristics are somewhat
different.

It is important to mention that very recently Huang et al. used a nearly identical
power dissipation measure for the simultaneous shape optimization of a two-dimensional
ABH and topological optimization of its viscoelastic damping [131]. However, the current
measure is distinct in two ways. Firstly, the current power dissipation ratio is a steady-
state quantity, using the power flow averaged over one cycle, whereas Huang et al.
integrate the dissipated power in the time domain over a period of time comparable to
the transit time across the plate. Secondly, the current measure is normalized by the
input power, whereas Huang et al. only considered the absolute dissipated energy. This
normalization ensures that the measure is independent of the excitation magnitude.

To test the application of the novel power dissipation ratio, a shape optimization
was carried out on an ABH vibration absorber. The considered geometry was an ABH
embedded in a square plate with an attached free damping layer that covers the entire
bottom of the ABH. Using the above nondimensional parameters, the objective was to
simultaneously maximize the power dissipation ratio and minimize the volume of applied
damping (as such, the power dissipation ratio was not spatially normalized in this case).
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The resulting Pareto optimal set showed a clear trade-off between the two objectives
that was strongly dependent on the size of the ABH. Also of note was the fact that
for the particular damping configuration, designs smaller than a certain size appear to
be less sensitive to ABH design. The ABH feature is superior to a uniform plate with
the equivalent damping configuration as it allows the damping to dissipate a greater
proportion of the input power over a broader range of frequencies.

Although the current study was meant to be a proof of concept, it behooves one to
expand the study to additional damping configurations, as well as to different geometric
configurations. Plates with differing aspect ratios and damping with different material
properties would be of particular interest, as the current power dissipation ratio has no
way to account for these variations.

Finally, in addition to the novel dissipated power ratio, a novel finite element method
(FEM) solver was developed to analyze the dynamics of the optimization problem. Using
a modified block structure, a preconditioner was derived that performs especially well at
low frequencies and for structures with large amounts of hysteretic material damping.
This particular preconditioner-accelerated solution strategy has not been found in the
literature, and may have applications to many elastodynamic problems.
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Chapter 6 |
Conclusions

6.1 Summary of findings
This dissertation has investigated the structural optimization of acoustic black hole (ABH)
vibration absorbers using a rigorous and robust optimization framework and the Borg
multi-objective evolutionary algorithm (MOEA). Such a thorough and systematic series of
optimization studies has not been carried out before in the literature. Moreover, at each
step of the way the physics modelling techniques have been scrupulously documented,
so that they may be easily and accurately applied by others to their own needs or
to replicating the findings of this dissertation. Errors in the physical modelling can
significantly alter results in structural optimization, so expounding upon the methods
so rigorously is not insignificant. Altogether, the work reported in this dissertation has
determined several important things:

• In Chapter 2, an optimization framework was established for solving vibroacoustic
problems using the multi-objective optimization algorithm (MOEA) called Borg. It
was shown that Borg, as an EA, is robust when compared to a standard gradient-
based algorithm, fmincon, applied to the same structural optimization problem.
In particular, the problem was to determine the thickness profile of a cantilever
beam that minimizes transmission of vibration energy to a specific region. The
problem was taken directly from a conference paper presented at the 10th World
Congress on Structural and Multidisiplinary Optimization [2] so as to compare
results. Borg reliably converged upon more optimal designs within the same overall
number of function evaluations, although on average it took the gradient-based
fmincon many fewer function evaluations to converge upon a single locally optimal
design. Borg’s ability to better traverse the search space indicated that EAs are
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preferable to gradient-based algorithms for the kinds of vibroacoustic optimization
problems considered in this dissertation. This is in no small part due to the fact that
acoustic optimization problems—and especially those that include frequency-based
objective functions—tend to have search spaces that are noisy, highly nonlinear,
and therefore difficult for an optimization algorithm to search effectively. The
fact that an EA like Borg might take longer to converge upon a solution∗ is offset
by the fact that the design variables of interest—namely, the ABH shape and
position—can be boiled down into only a handful of key parameters. Furthermore,
Borg naturally extends to the optimization of multiple objectives in a way that
most standard gradient-based algorithms do not. An EA like Borg was therefore
determined to be the preferred optimization algorithm to use for the optimization
problems considered in this dissertation.

• Chapter 3 studied the optimization of an ABH termination at the free end of
a cantilever beam. The single objective was to minimize the spatially-averaged
squared vibration response across the entire beam. A significant amount of damping
was included in the model, but was itself not a design variable. Unlike the bench-
mark problem used in Chapter 2, the response was evaluated across a continuous
frequency band, rather than at discrete frequencies. The results in Chapter 2, which
used discrete analysis frequencies, showed that in at least one case the frequency
resolution was much too coarse to effectively evaluate the effect of the beam’s
thickness profile on its dynamic response. With this in mind, the beam’s response
was instead integrated using a logarithmically-spaced set of analysis frequencies
with sufficient resolution to capture peaks in the dynamic response. To speed
up analysis and improve analysis quality, a novel, sparse-data formulation of the
transfer matrix method (TMM) was developed based on the numerically stable
Riccati TMM. The results of the optimization mostly aligned with previous analysis
based on reflection coefficients [7, 26]. However, whereas analytical results predict
a higher taper power to be optimal, the results in this study found a relatively
low taper power to be preferable. The reason for this once again comes down to
the problem formulation. While not totally unique, an ABH feature is especially
adept at increasing the modal density of a structure. For this reason, the inclusion
of an ABH might increase the overall response within a certain frequency range

∗As mentioned in Chapter 1, Borg is designed such that it never actually converges. However, in
most practical applications there will be a point at which Borg will continue to restart without any
significant improvement in the solution.
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by increasing the number of resonances, even if the average response at resonance
is significantly less than that for the unmodified structure. The optimization was
performed again using a frequency range of the same bandwidth but higher in fre-
quency and these additional results confirmed that the increased modal density in a
finite structure with an ABH leads to an inherent trade-off in design criteria. While
this effect had been mentioned previously in experimental investigations [10,33],
analytical analysis prior to this study had largely considered the base structure to
be effectively infinite. As a result, at the time the study in Chapter 3 had been
carried out, it was the first known rigorous demonstration that a more extreme
taper profile can lead to sub-optimal ABH design.

• Chapter 4 sought to clarify and codify the effects that variation in ABH taper
implementation can have on vibration reduction performance. In particular, three
styles from the literature—denoted ‘standard symmetric’, ‘standard non-symmetric’,
and ‘double-leaf’—were studied using identical optimization frameworks applied
to the same optimization problem. That problem was to minimize the spatially-
averaged squared velocity response of a beam fixed at either end, and jointly
minimize the overall mass of the beam. That is, the problem was a multi-objective
optimization problem. A plane strain finite element method was used instead of the
TMM because a one-dimensional model does not properly account for the variation
in taper implementation. Heeding the findings of Chapter 3, the frequency range in
Chapter 4 was chosen carefully by sampling the search space uniformly at random
and identifying a region in which the bounds were not likely to straddle a mode.
In other words, a slight change in design variables would not significantly change
the objective function value. Also, in addition to the taper profile parameters used
in Chapter 3, the position of the ABH feature along the beam and the amount of
applied damping material were included as design variables. The results showed
that the choice of ABH style does have a significant effect on vibration reduction
performance. In particular, the standard non-symmetric style performs more
effectively than the other two styles. However, it should be noted that the double-
leaf style performed comparably to the standard symmetric style and has additional
benefits related to stability under static load. Perhaps most interesting, the trade-off
between the two objectives—velocity response and overall mass—was shown to be
dominated by the amount of added damping. That is, when a significant quantity of
added damping material is applied, the performance of an ABH vibration absorber
is largely determined by the properties of the damping material. This is significant
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because it demonstrates a) there is flexibility in the design of an ABH feature when
damping is added, and b) the design of the damping is especially important when
applied to an ABH feature. The first point emphasizes that if an ABH taper profile
needs to be made sub-optimal to accommodate for other design considerations,
the performance of the vibration absorber will not suffer significantly. The second
point emphasizes that consideration of the damping application—as well as the
style of ABH—should be taken seriously when implementing an ABH vibration
absorber. Following the study presented in Chapter 4, other authors have explored
the topological optimization of damping layers added to ABH features [34, 36].
They found that for low frequencies below the critical frequency of the base plate,
the historical strategy of focusing damping at the thinnest portion of the ABH—as
is done in this dissertation—is in fact optimal for vibration reduction. However,
for frequencies above the plate’s critical frequency, it was found that for the same
quantity of damping material, it is preferable to distribute it evenly across the ABH.
Unfortunately, the authors did not provide a comparison of vibration reduction
for the distributed damping versus damping concentrated in the thinnest portion.
However, their analysis showed that a further reduction in radiated sound power
of almost 4 dB could be achieved by distributing the damping material instead of
concentrating it. The key takeaway from this and the results of Chapter 4 is that
damping design should be a key factor in optimal ABH design and implementation,
just as Chapter 4 showed that the choice of ABH taper style should be a key factor
in implementation.

• In Chapter 5 a novel performance measure was proposed and tested. The measure,
termed the ‘power dissipation ratio’ is the frequency- and spatially-averaged ratio
of the power dissipated by an ABH vibration absorber to the power input to the
system. Its definition was designed ab initio to be independent of the scale of
the ABH vibration absorber and host structure, so that one- and two-dimensional
ABH structures of differing sizes and materials can be directly compared so long
as their dimensions are congruent. After deriving the power dissipation ratio, the
measure was used in a test problem. The problem consisted of optimizing the
shape of a two-dimensional ABH vibration absorber in a thin plate with fixed
boundary conditions. The goal of the optimization was to simultaneously maximize
the power dissipation ratio and minimize the side of the ABH. (As such, the
power dissipation ratio was not spatially-normalized.) In order to facilitate the
optimization, a novel preconditioner-accelerated solution scheme was derived for the
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finite element method (FEM) using hexahedral displacement elements to solve the
time-harmonic linear elastodynamic equations. The preconditioner relies on a block
formulation of the problem and exploits the inherent structure of the system when
hysteretic material damping is included. Analysis shows that the preconditioner is
especially effective for large damping and relatively low frequencies. It therefore
has potential for use in many different applications. Using this preconditioner-
accelerated solution scheme, the optimization was carried out for 3,000 function
evaluations to produce an approximate Pareto front. This Pareto front showed a
strong trade-off between the ABH size and the power dissipation ratio. It may also
be possible that performance is somewhat less sensitive to the particular design
of the ABH in the case of the damping configuration used. The ABH design
that maximized the power dissipation ratio was compared against a uniform plate
with the same damping configuration. The results showed that the ABH is more
than 50% more effective at dissipating power compared to the uniform plate. By
considering the power dissipation ratio as a function of frequency, the ABH is
able to couple with the damping layer more effectively across a broader range of
frequencies. The results of this test problem show that the power dissipation ratio
is useful as a measure in the design of ABH vibration absorbers.

6.2 Suggestions for future work
As with all research, there are many ways in which the research presented in this
dissertation could be built upon or its ideas furthered. Some suggestions include

• Only flat beams and plates were considered in this dissertation. However, it might
be interesting to perform similar optimization studies on curved panels, which
have practical uses in marine and aerospace applications. It would be especially
enlightening to consider base structures of varying radii of curvature and the effect
this has on optimal ABH design.

• A formal comparison like that in Chapter 4 could be done for two-dimensional
ABHs using the same three styles.

• Non-circular perimeters could be considered for two-dimensional ABH geometries,
such as ellipses or even a generalized periodic function of angle. Similarly, ABH
taper parameters could vary as a function of angle.
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• Similarly, only a power-law ABH profile of the form h(x) = ε (x+ β)m + γ has
been considered in this dissertation. Another profile that exhibits the ABH effect
is of the form h(x) = εsinm (αx+ β) + γ. This optional taper profile could
be considered in future research. Other taper profiles that do not produce zero
reflection but which may be useful for vibration reduction are given in [39].

• Damping layers with non-uniform thickness could be included in the optimization
problem. The thickness could vary proportionally to the thickness of the beam or
plate, or with some power-law relation.

• Despite deriving a useful set of nondimensional design variables in Chapter 5, it
is still necessary to have four parameters in order to uniquely describe a given
ABH profile. It would be advantageous to instead have a single design parameter
that can uniquely describe or otherwise significantly categorize all possible ABH
profiles. One potential route might be to use the total accumulated phase from the
minimum thickness point to the maximum thickness point, although this quantity
by itself can describe multiple possible ABH designs.

• Multiple ABH features could be optimized simultaneously in a given structure. This
could be a grid of two-dimensional ABHs in a plate, in which case the grid structure
might be a design variable, or the ABHs could be allowed to move independently,
in which case their positions would be design variables.

• In this dissertation, the ABH effect has been produced by varying the thickness of
the base structure. It is also theoretically possible to produce this effect by varying
the material properties. This may be preferable in some circumstances and the
optimization studies in this dissertation could be easily modified to investigate how
this different approach may produce similar or different results.

• A point excitation has been used throughout with the intent of exciting all relevant
modes of the structure. However, some authors have used a more realistic excitation
model, such as a diffuse field model [132] or a spatially correlated model like
turbulent boundary flow [133]. Utilizing such excitation models in the optimization
problem formulation might produce different and interesting results.

• Finally, no fluid loading effects were considered in this dissertation. While these
are usually negligible for in-air applications, fluid loading becomes significant in
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under-water applications. The inclusion of these effects in the optimization process
might prove especially enlightening.
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Appendix A|
Mesh convergence study

A.1 Introduction
As with many numerical methods, a fundamental aspect of the finite element method
(FEM) is defining the problem domain in terms of a number of discrete, connected,
elements. In a practical sense, this means dividing some geometry into a number of basic
shapes, thus defining the ‘mesh’ or ‘grid’ from which the FEM formulation will define
variables and constraints. Ultimately, it is not only the FEM formulation, but also the
mesh that determines the numerical data structures that are ultimately used to solve the
problem. It is not surprising, then, that in many real-world problems of interest, creating
a quality mesh is a problem as complex as the original physical problem [134].

One aspect in the problem of mesh generation is the minimum spatial resolution
required to obtain a useful result. If one makes the elements too large, then it is likely
that the FEM solution will not have the desired accuracy or will not capture relevant
physical characteristics and thereby produce unphysical results. On the other hand, the
smaller the size of the elements, the more degrees of freedom (DoFs) and so the longer
the calculations will take. At the extreme limit, it may be that there are so many DoFs
that the computing resources become exhausted and a numerical solution cannot be
obtained at all.

A number of different measures can be derived for the acceptable resolution of a mesh.
In the field of acoustics, a popular rule of thumb is that there should be somewhere
between six and twelve elements per wavelength [135]. How this rule of thumb came to be
is not entirely clear, but Marburg posits that the idea of using a fixed number of elements
per wavelength stems from the sampling theorem of Shannon and Nyquist [136]. The
theory, which states that the maximum detectable frequency is that which corresponds
to two points per period (in time) or per wavelength (in space), is ubiquitous in acoustics
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and other fields involving signal processing. In fact, an earlier paper by Margburg
indicated that the eigenvalue distribution of a one-dimensional FEM mesh can easily be
related to the Nyquist frequency [137]. Namely, for both linear and quadratic elements,
the largest eigenfrequency is slightly larger than the frequency which corresponds to two
points per wavelength. It is not inconceivable, then, that engineers would build a rule of
thumb off of this strict lower limit. The additional factor of three to six may have come
from a desire for increased accuracy near this limit.

In 2017, Langer et al. performed an extensive study into the effect of element size on the
accuracy of the FEM in thin-walled domains [138]. This class of problem includes beams,
plates, and shells, and is of great importance in acoustics. The authors analyzed different
element types as well as the number and quality of elements. Their recommendation was
that the domain be divided into 20 elements per wavelength for quadratic elements, with a
maximum aspect ratio of 1:10, and up to 500 elements per wavelength for linear elements,
with a maximum aspect ratio of 1:4. Considering that most software implementations use
8-node linear hexahedral elements and 20-node quadratic elements, this recommendation
equates to a tenfold increase in the number of DoFs when using linear elements versus
quadratic elements.

It is important to point out a few subtleties from the results of Langer et al. Firstly,
the test geometry from which the authors derived their recommendations was a simple
beam. The mesh was thus a regular (structured) orthogonal three-dimensional grid—that
is, all elements were the same shape and size, and element edges were either perpendicular
or parallel at intersection points. The authors did include a test case on a more complex
geometry with an irregular (unstructured) grid, but their analysis was limited to the
number of DoFs and not directly related to the number of elements per wavelength.

Secondly, the linear elements used in the study used full integration. That is, there
were no measures taken to relieve volumetric or shear locking phenomena, which are
especially relevant in elements with moderate aspect ratios, as in the case of thin-walled
domains. These locking phenomena will result in elements that are artificially stiff, which
is precisely what was observed by the authors: the eigenfrequencies predicted with linear
elements were significantly higher than the true eigenfrequencies.

The purpose of the work described in this appendix is, in small part, to evaluate the
disparate recommendations regarding the number of elements per wavelength. More
so, however, its purpose is to establish a bespoke rule of thumb by performing a mesh
convergence study on an acoustic black hole (ABH) test case. Additionally, the relative
accuracy of linear elements will be compared to that of quadratic elements. The use of
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Table A.1. Material parameters and dimensions of the test case. Uniform 1 is the uniform
portion to the left of the ABH taper, and Uniform 2 is the uniform portion to the right of it.
For the ABH taper profile, ε = 3.93 m−1 and h0 = 0.508 mm.

Uniform 1 Taper Damping 1 Uniform 2 Damping 2
Young’s modulus, E (GPa) 70 70 0.1 70 0.1

Density, ρ (kg·m−3) 2700 2700 1000 2700 1000
Loss factor, η 0 0 0.9 0 1.8

Thickness, h (mm) 6.8 εx2 + h0 2 0.508 2
Length, L (cm) 20.5 4 4 34.3 34.3

Figure A.1. Graphical depiction (not to scale) of the test geometry whose material parameters
and dimensions are given in Table A.1. Green denotes the beam material, yellow denotes the
Damping 1 material, and orange denotes the Damping 2 material.

linear elements is preferable from a computational standpoint, since the resultant linear
systems are as small as possible for a given number of elements.

A.2 Test case description
The material parameters and dimensions of the test case are given in Table A.1 and a
graphical depiction is shown in Figure A.1. The lengths of the two uniform segments
were chosen so as to ensure no pollution of the received signal at the measurement points.
That is, the lengths of Uniform 1 and Uniform 2 are such that any reflections from the
end of Uniform 2 or between the start of the taper and the start of Uniform 1 will not
reach the measurement points until the incident wave has fully passed the measurement
points. The remainder of the dimensions, as well as the material parameters, were taken
from a similar study by Feurtado and Conlon [25].

The geometry was first meshed with the particular number of elements per wavelength,
using either linear or quadratic hexahedral elements. The wavelength used in the taper
was that used for the anechoic termination, Uniform 2. Next, if any of the elements had
aspect ratios greater than 1:5, those elements were split into two elements, unless doing
so would make the aspect ratio of another element greater than 1:5. Finally, if at any
point there was a transition from fewer elements through the thickness to more—or vice
versa—then transition regions were meshed using pyramidal elements. An example mesh,
showing these transition regions, is given in Figure A.2.
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Figure A.2. Example mesh, showing the transition regions using pyramidal elements. This
happens to be the mesh used for twelve elements per wavelength with linear elements.

The excitation was an enforced displacement at the far left end of the beam. The
excitation profile was a 10 kHz pulse, shaped with a cosine filter to be 0.5 ms in duration,
with a peak amplitude of 5 µm. This excitation signal is shown in Figure A.3. For
analysis of the beam displacement response, time-domain FEM calculations were carried
out using NASTRAN with a time step of 0.6µs. The vertical displacement of the top
surface of the beam was recorded at two measurement points: the beginning of the ABH
taper and the end of the ABH taper. An example of the raw time series at the two points
is given in Figure A.3.

From the recorded time series, cross-correlation functions were computed between the
excitation point and the measurement points. In each case, the lag corresponding to the
maximum in the cross-correlation was taken as the travel time between the excitation
and the response. Each response signal was then filtered using the same cosine filter
used for the excitation profile. An envelope was calculated for the excitation and the two
filtered measurements using the Hilbert transform, and the peak value of these envelopes
were used as measures of the pulses’ amplitudes. An example of the filtered signals and
envelopes is given in Figure A.4. The ratio of the taper end amplitude to the taper start
amplitude was calculated for all combinations of mesh resolution and element type in
order to determine convergence.
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Figure A.3. Excitation displacement pulse (black), along with an example of the response at
the start of the ABH taper (blue) and at the end of the taper (yellow).

A.3 Results
Figure A.5 shows the ratio of the taper end amplitude to the taper start amplitude,
using linear and quadratic elements at mesh resolutions ranging from six to 21 elements
per wavelength. As is to be expected, the calculated ratio starts at some value and
then shifts as the mesh resolution increases, until the change is minimal and the models
converge upon a value. In Figure A.5, the curve appears to flatten out at around twelve

135



Figure A.4. Same time series as shown in Figure A.3, except that the signals have been
filtered with a cosine filter of 0.5 ms width. Also shown are the envelopes calculated using the
Hilbert transform (dotted lines).

or fifteen elements per wavelength. That is, there appears not to be much additional
accuracy gained from using much more than twelve elements per wavelength. It should
be pointed out that, although results for both linear and quadratic elements show similar
ratios at similar mesh resolutions, the ratio values obtained using quadratic elements are
more steady. That is, there is less variation between using six elements per wavelength
or using 21 elements per wavelength in the case of quadratic elements.
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Figure A.5. Ratio of taper end amplitude to taper start amplitude for various combinations
of mesh resolution and element type. Note that the theoretical ratio in the absence of any loss
mechanisms would be approximately 7, according to WKB theory.

Figure A.6 shows the relative error compared to the results using 21 quadratic elements
per wavelength. Figure A.6 appears to show a reduction in error of approximately tenfold
for every six additional elements per wavelength. That is, the error for six elements
per wavelength is approximately ten times greater than that for twelve elements per
wavelength. It is interesting that this trend is present for both linear and quadratic
elements, although it should be noted that the trend for quadratic elements may be
slightly better, but the maximum number of elements per wavelength is not sufficient to
show this difference.

A.4 Conclusions
A fundamental aspect of the finite element method (FEM) is defining the problem domain
in terms of elements. However, it is often up to the practitioner to decide the minimum
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Figure A.6. Relative L2 error in the amplitude ratios shown in Figure A.5, using the results
of 21 quadratic elements per wavelength as ‘true’. Note the logarithmic ordinate scale. Because
the error between 21 quadratic elements per wavelength and itself is zero, it is not shown.

spatial resolution that will produce a useful result. In the field of acoustics, a popular
rule of thumb is that there should be somewhere between six and twelve elements per
wavelength. The work of Langer et al. has indicated that it may be necessary to use as
many as 500 elements per wavelength to obtain accurate results.

A convergence study was carried out to establish a reasonable mesh resolution in
the context of acoustic black hole (ABH) tapers. Results from using both linear and
quadratic elements indicate that beyond a certain resolution, linear elements are able
to obtain accuracy comparable to that of quadratic elements. An important point to
highlight is that the linear elements used by NASTRAN incorporate a reduced integration,
which alleviates shear and volumetric locking. This is a major difference from the work
of Langer et al., and may be the key to why the linear elements performed relatively
well against the quadratic elements. The use of linear elements is preferable from a
computational standpoint, since the resultant linear systems are as small as possible for
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a given number of elements.
Based off of the above convergence results and error analysis, twelve elements per

wavelength appears to be a reasonable choice to achieve a balance between a high accuracy
and a low number of degrees of freedom. It is interesting that this number corresponds
to the upper edge of the popular rule of thumb. At this resolution, there was about
a 1% relative error and it is predicted that to reduce the error further would require
approximately 50% more degrees of freedom. Therefore, twelve elements per wavelength
has been used as the desired mesh resolution when using the FEM in this dissertation.
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Appendix B|
FEM meshing calculations

Two profiles that theoretically produce the ABH effect are

h(r) = ε(r + β)m + γ (B.1a)

h(r) = εsinm(αr + β) + γ (B.1b)

In theory, zero reflection is achieved when β = γ = 0. In the following analysis, however,
it is assumed that β ≥ 0 and −∞ < γ ≤ h0. In profile (B.1a), given a desired minimum
thickness, h0, maximum thickness, h1, length, R, taper power, m, and a prescribed γ,
the parameters can be calculated as

β = R(h0 − γ) 1
m

(h1 − γ) 1
m − (h0 − γ) 1

m

(B.2a)

ε = h1 − γ
(R + β)m (B.2b)

In this way, γ determines the slope of the profile at the minimum thickness. In particular,
limγ→h0 h

′(0) = 0 and limγ→−∞ h
′(0) = h1−h0

R
.

For profile (B.1b), we define a new variable, z, such that αR + β = 2atan(z).∗ In
such a case, the parameters are

ε = h1 − γ
2m

(1 + z2)m
zm

(B.3a)

∗The reason for this is that such a definition facilitates calculation of the extrema of h′(r). In

particular, the maximum occurs when αr + β = 2atan
(√

m−2
√
m+1

m−1

)
and the minimum occurs when

αr + β = π
2 . Thus, z is allowed to vary from

√
m−2

√
m+1

m−1 to 1.
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β = asin
(h0 − γ

ε

) 1
m

 (B.3b)

α = 2atan(z)− β
R

(B.3c)

The slopes at either end of the taper are determined by the unique combination of γ and
z, though in general γ has a greater effect on the slope at the minimum thickness and z
has a greater effect on the slope at the maximum thickness.

Now, suppose one wishes to have a certain number of elements per wavelength to
describe the taper in the radial direction. The length of the taper, in terms of wavelengths,
can be calculated by integrating the wavenumber, k, along the profile. In particular, the
number of wavelengths, Nr, is calculated as

Nr =
∫ R

0

k(r)
2π dr (B.4)

The wavenumber for bending waves in a thin isotropic plate is given as

k(r) =

12ω2ρ (1− ν2)
E
(
h(r)

)2


1
4

(B.5)

The integrand in Equation (B.4) is thus

k

2π = 1
2π

(
12ω2ρ (1− ν2)

E

) 1
4

h−
1
2 (r) = Ch−

1
2 (r) (B.6)

For n elements per wavelength along the taper, the number of elements is† Mr = nNr.
Furthermore, for Mr elements spanning the length of the taper, Equation (B.4) can be
written equivalently

Nr =
Mr∑
i=1

∫ ri

ri−1

k

2π dr =
Mr∑
i=1

∫ ri

ri−1
Ch−

1
2 (r) dr (B.7)

where the ri are the positions of the nodes, with r0 = 0 and rMr = R. Given the
†If one wishes to impose that Mr is an integer, then in practice the number of elements is Mr =

ceil(nNr).
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relationship between Mr and Nr, it is particularly convenient to assume
∫ ri

ri−1
Ch−

1
2 (r) dr = Nr

Mr

(B.8)

for all i. In such a case, given that r0 = 0, the other node positions may be calculated a
priori as ∫ ri

0
h−

1
2 (r) dr = iNr

CMr

(B.9)

In the angular direction, we might assume that the shape of the ABH can be
generalized as an ellipse. In such a case, the outer radius, R, is related to the angle by

R(θ) = ab√
a2sin2(θ) + b2cos2(θ)

(B.10)

where the width of the ellipse is 2a and its height is 2b.
The differential length of such an ellipse can be calculated as

ds =

√√√√R2(θ) +
(

dR
dθ

)2

dθ

= R(θ)

√√√√√1 +

(
b2 − a2

)2

4(ab)4 R4(θ)sin2(2θ) dθ

= s′(θ) dθ (B.11)

Similar to Equation (B.4), the arc length of one quarter of the ellipse, in terms of
wavelengths, can be calculated as

Nθ =
∫ k

2π ds =
∫ π

2

0
Ch
− 1

2
1 s′(θ) dθ (B.12)

Notice that the thickness along the outer radius is h(θ) = h1, independent of angle. If
Mθ = nNθ is the number of elements in the angular direction, then an expression similar
to Equation (B.9) can be derived for the node positions along the outer radius

∫ θi

0
s′(θ) dθ = iNθh

1
2
1

CMθ

(B.13)

where θ0 = 0 and θMθ
= π

2 .
Now that we have expressions that can be used to calculate ri and θi, we take the
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analysis one step further. In the limit that Mr and Mθ go to infinity, Equations B.9 and
B.13 define continuous mappings to the domain [0, 1]. In particular, we define ξ = i

Mθ

and η = i
Mr

to give the mappings θ 7→ ξ and r 7→ η

∫ θ

0
s′(t) dt = ξ

∫ π
2

0
s′(t) dt (B.14)∫ r

0
h−

1
2 (t) dt = η

∫ R

0
h−

1
2 (t) dt (B.15)

in which we have used the definitions for Nr and Nθ in Equations B.4 and B.12, re-
spectively, to eliminate the factors C and h

1
2
1 . To determine the interior nodes, we use

transfinite interpolation (TFI)

θ(ξ, η) = (1− η)θb(ξ) + ηθt(ξ) + (1− ξ)θl(η) + ξθr(η)

−
[
ξηθt(1) + ξ(1− η)θb(1) + η(1− ξ)θt(0) + (1− ξ)(1− η)θb(0)

]
(B.16)

r(ξ, η) = (1− η)rb(ξ) + ηrt(ξ) + (1− ξ)rl(η) + ξrr(η)

−
[
ξηrt(1) + ξ(1− η)rb(1) + η(1− ξ)rt(0) + (1− ξ)(1− η)rb(0)

]
(B.17)

with

θb(ξ) = θ(ξ), rb(ξ) = 0 (B.18)

θt(ξ) = θ(ξ), rt(ξ) = R
(
θ(ξ)

)
(B.19)

θl(η) = 0, rl(η) = ra(η) (B.20)

θr(η) = π

2 , rr(η) = rb(η) (B.21)

where θ(ξ) is the inverse mapping of Equation (B.14), rb(η) is the inverse mapping of
Equation (B.15) for the y-axis thickness profile hb(r), and ra(η) is the inverse mapping
of Equation (B.15) for the x-axis thickness profile ha(r). Note that these mappings also
allow us to define the interior thickness profile through TFI. Namely,

h(ξ, η) = (1− η)hb(ξ) + ηht(ξ) + (1− ξ)hl(η) + ξhr(η)

−
[
ξηht(1) + ξ(1− η)hb(1) + η(1− ξ)ht(0) + (1− ξ)(1− η)hb(0)

]
(B.22)
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with

hb(ξ) = h0 (B.23)

ht(ξ) = h1 (B.24)

hl(η) = ha
(
ra(η)

)
(B.25)

hr(η) = hb
(
rb(η)

)
(B.26)

In this way, one can define a mapping from the unit cube [0, 1]3 to the desired profile
and vice versa, namely (ξ, η, ζ) 7→ (θ, r, h). Unsurprisingly, ζ is defined as ζ = i

Mh
and

leads to

θ(ξ, η, ζ) = θ(ξ, η) (B.27)

r(ξ, η, ζ) = r(ξ, η) (B.28)

h(ξ, η, ζ) = ζh(ξ, η) (B.29)

where θ(ξ, η), r(ξ, η), and h(ξ, η) are defined in Equations B.16, B.17, and B.22, respec-
tively.

For the transition region from the ABH mesh to the plate mesh, the TFI given by
Equations B.16 and B.17 are still used, but now using the parametric curves

θb(ξ) = θ(ξ) (B.30)

rb(ξ) = R
(
θ(ξ)

)
(B.31)

θt(ξ) =


arctan

(
bout+aout
aout

ξ
)

for 0 ≤ ξ ≤ bout
bout+aout

arctan
(

bout
(bout+aout)(1−ξ)

)
for bout

bout+aout
< ξ ≤ 1

(B.32)

rt(ξ) =

c
√
a2

out + (bout + aout)2ξ2 for 0 ≤ ξ ≤ bout
bout+aout

c
√

(bout + aout)2(1− ξ)2 + b2
out for bout

bout+aout
< ξ ≤ 1

(B.33)

θl(η) = 0 (B.34)

rl(η) = aout
(
(c− 1)η + 1

)
(B.35)

θr(η) = π

2 (B.36)

rr(η) = bout
(
(c− 1)η + 1

)
(B.37)

where it is assumed that the outer perimeter of the transition region is a 2caout by 2cbout
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rectangle, with c > 1.
To avoid singular elements, there needs to be a rectangular inner part of the mesh.

The transition region to this inner rectangular part of the mesh can be defined similarly
to the outer transition region using the parametric curves

θb(ξ) =


arctan

(
bin+ain
ain

ξ
)

for 0 ≤ ξ ≤ bin
bin+ain

arctan
(

bin
(bin+ain)(1−ξ)

)
for bin

bin+ain
< ξ ≤ 1

(B.38)

rb(ξ) =


1
c

√
a2

in + (bin + ain)2ξ2 for 0 ≤ ξ ≤ bin
bin+ain

1
c

√
(bin + ain)2(1− ξ)2 + b2

in for bin
bin+ain

< ξ ≤ 1
(B.39)

θt(ξ) = θ(ξ) (B.40)

rt(ξ) = r
(
ξ, 1

Mr

)
(B.41)

θl(η) = 0 (B.42)

rl(η) = ain

c

(
(c− 1)η + 1

)
(B.43)

θr(η) = π

2 (B.44)

rr(η) = bin

c

(
(c− 1)η + 1

)
(B.45)

where ain = r
(
0, 1

Mr

)
= ra

(
1
Mr

)
and bin = r

(
π
2 ,

1
Mr

)
= rb

(
1
Mr

)
. As above, c > 1.
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