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Abstract

This thesis provides system level modeling for power, reliability, and device degradation.
In the system level power modeling, we use transaction level modeling. Transaction level
modeling (TLM) represents the communications of IP cores as transactions and provides
higher simulation speed than lower level of abstraction. We construct a hierarchical
power modeling tree and augment the transaction level models with power estimation
functions. We demonstrate the power estimation methodology on PCI Express trans-
action level models, and create various scenarios and validate the methodology on IBM
CoreConnect platform. We also present experimental results to validate the accuracy
and speed of our approach.

In the system level reliability modeling, we propose a transaction-based error suscep-
tibility model for a bus-based System-on-Chip system. This reliability model provides
a detailed analysis of different kinds of errors and the susceptibility of such systems to
such errors on various components that comprise the bus. We inject single and multi-bit
error during the execution of various transactions and examine the effect of the errors.
Experimental results demonstrate error susceptibility of signals are similar across the
benchmarks. Such transaction-based analysis helps us to develop an effective prediction
methodology to predict the effect of a single and multi-bit error on any application run-
ning on a bus-based architecture. We demonstrate that our transaction-based prediction
scheme works with an average accuracy of 91% over all the benchmarks when compared
with the actual simulation results.

In the system level modeling for device degradation, we explore how Negative Bias
Temperature Instability (NBTI) and Hot Carrier Effects (HCE) cause device degradation
in the system. We discuss the tool we developed: a HCE and NBTI Incorporated Tool for
ASICs (HANITA), for the complete analysis of circuit degradation. The tool analyzes
the degradation impact on bus systems and the vulnerability of buses to such circuit
degradation. We propose a hardware-based mechanism to detect the timing degradation
and we further propose a PROactive BUS (PROBUS) architecture that dynamically
adapts to retain the system functionality even after the system timing degrades.
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Chapter 1
Introduction

As CMOS technology advances, the feature size of transistors shrinks and more transis-

tors are integrated into a single chip. With more transistors on a chip, the design com-

plexity increases exponentially. In the meanwhile, designers apply advanced techniques

such as dual supply voltage, dual threshold voltage, and voltage island to reduce power

consumption or provide higher performance. These design techniques further elevate the

design complexity. Figure 1.1 shows the famous design productivity gap published by

the Semiconductor Industry Association. With the aid of Electronic Design Automation

tools, designers’ productivity increases at a rate of 28%. However, because the system

complexity increases at a rate of 58%, the gap between designer’s productivity and de-

sign complexity is actually growing. Current design methodologies are limited in that

they are unable to significantly boost the designer’s productivity. In order to bridge the

gap between the designer’s productivity and the system’s complexity, we must raise the

level of abstraction from register-transfer level to system level.

Compared to system level design, modeling and simulation at the lower levels, such as
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Figure 1.1. Design Productivity Gap [1]

the register-transfer level or gate level, are more complex and time-consuming. Simula-

tion is also too slow for extensive system-wide exploration because of too much hardware

detail at these levels. Power optimizations at the system level are more effective than

lower level ones. Register-transfer level optimizations typically reduce power by only

about 20% [7] Achieving maximum power reduction is difficult at the lower levels be-

cause of too many unnecessary hardware details. As a result, simulations are unable

to find global optimizations for power reductions. In contrast, the system level design

environment can achieve 10 to 20 times the power reduction by modifying the system

architectures, such as memory and processors, as well as software algorithms [7]

The growing complexity of chip designs has increased design time and has made any

iterative changes in the design costly. The high manufacturing cost further makes design

error almost unacceptable. To achieve first-time right designs and meet time-to-market

goals, it is imperative to address design issues at the system level and make informed

design decisions early in the design process. Therefore, system level design has come to

play a critical role in developing complex hardware and system-on-chip (SoC) systems,

and the purpose of this thesis is to analyze, model, and overcome power, reliability, and
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device degradation problems at the system level.

Power consumption is a growing concern as IC fabrication technology approaches the

sub-100nm era. Several factors are responsible for this effect. The leakage current of a

transistor, which is the main contributor of static power, increases exponentially as the

channel length and gate oxide thickness reduce. Although dynamic power per transistor

reduces when the transistor’s size is reduced, the total chip power still grows because of

increasing design sizes and transistor density. Moreover, dynamic power does not reduce

at the expected rate because supply voltage does not scale proportionally to transistor

size.

Many problems arise as IC chips consume more power. For example, Figure 1.2

shows the trend of cooling cost vs. thermal dissipation in a microprocessor. The cost

to remove heat is directly proportional to thermal dissipation and costs about $3 per

watt when power consumption is over 60 watts [2]. This power dissipation also increases

packaging costs and decreases system reliability [8]. Therefore, power has emerged as an

first-class design constraint.

Figure 1.2. The relation between cooling cost and thermal dissipation [2]
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Like power, system reliability is becoming an aggravating problem because of tech-

nology scaling. Technology scaling leads to smaller transistor size, less supply voltage,

decreased noise margin, increased interconnect density, and faster clock rates [9] [10].

Circuits are exposed to more capacitive and inductive cross-talk, power supply noise,

leakage noise, process variations, and other noise sources. For these reasons, both tran-

sient faults and permanent failures are all significantly accumulated. Studies have re-

ported that the microprocessor failure rate at 65nm is 3.16 times higher than that at

180nm [8].

Currently, device degradation is not a major contributor to system unreliability.

However, degradation problems caused by Negative Bias Temperature Instability (NBTI)

and Hot Carrier Effect (HCE) will be more problematic and they will be the dominant

causes for system degradation in the near future [11]. The NBTI phenomenon is observed

in PMOS transistors when they experience stress under negative gate voltage at an

elevated temperature (e.g.,Vgs = −Vdd). Consequently, this effect can increase the PMOS

transistor’s threshold voltage and reduce the absolute Ion current of PMOS devices, thus

lowering the circuit speed. This threshold voltage increase leads to a reduced temporal

performance and causes reliability issues and potential device failure. Similar to NBTI,

Hot Carrier Effects (HCE), which cause electrons to be trapped in the oxide, are the

main cause of NMOS transistor degradation.

The thesis will refer to System-on-chip (SoC) as a system. It proposes to estimate,

model, and overcome power, reliability, and device degradation problems in the system-

on-chip (SoC) at the system level, focusing on a bus-based system. In the following

section, we will present our contribution about how to address and solve these problems
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at the system level.

1.1 Thesis Contribution

Chapter 2 presents a power estimation methodology for transaction level models (TLMs)

for SoC and implements this methodology in PCI Express TLMs. Transaction level [3][12]

is a high level of abstraction above register-transfer level. This level models commu-

nication between components as channels, and transactions as function calls that ex-

change high level data structure through channels These functions such as bus read()

and bus write() also provide synchronization between components. Transaction level

in this thesis is at a level of abstraction equivalent to Programmer’s view with timing

(PV+T) level as described in [13]. This is the highest level of abstraction which can

include some amount of micro-architectural detail.

Most related works for transaction level modeling focus on performance modeling,

and few are done for power modeling. In this thesis, we propose a power model-

ing methodology for transaction level models, and demonstrates this power estimation

methodology in PCI Express IP cores. We construct transaction level models and a hier-

archical power modeling tree for PCI Express, and augment the transaction level models

with power estimation functions. To perform power estimation and architecture explo-

ration, we create various scenarios for both PCI Express and IBM CoreConnect SystemC

TLMs. The methodology is also validated on IBM CoreConnect TLM platform.

Chapter 3 proposes a transaction-based error susceptibility for bus-based SoC relia-

bility modeling and presents a prediction model for the system error susceptibility. This
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chapter explores the fatal and deadlock error susceptibility of control and address signals

in a bus-based SoC at the transaction level. We provide a detailed analysis of the types

and consequences of different errors that may occur due to single-bit errors on a bus-

based system during different transactions. These errors are characterized by a generic

and effective transaction-based error characterization scheme for bus architectures in

SoCs. Such a scheme is generic and effective, and can be extended to other systems

to quickly estimate system error susceptibility. The critical measure of each signal pro-

vides an opportunity to prioritize the employment of any error correction schemes on

the system, which is quite critical with the shrinking power and area budgets. We also

propose a system level error prediction model to predict the probability of any single-bit

or multi-bit error effect of with an accuracy of 92% on an average.

Chapter 4 focuses on device degradation of SoC bus architecture and proposes tech-

niques to neutralize the negative impacts of degradation and improve system reliabil-

ity. We look into the device degradation due to two different physical phenomena,

namely Negative Bias Temperature Instability (NBTI) and Hot Carrier Effects (HCE),

and present a HCE And NBTI Incorporated Tool for ASICs (HANITA) for complete

analysis of the degradation of circuits over a period of time. We demonstrate a compre-

hensive insight into the impact of such degradation in typical shared bus-based systems

based on commercial bus architectures. The degradation itself is studied on the individ-

ual components of the on-chip buses, and the tool automate the degradation analysis of

each device. These device degradation are back-annotated to compute the overall system

degradation over a period of time. As a result, the tool is able to analyze the degradation

impact on the whole bus systems and the vulnerability of buses to such circuit degra-
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dation. In addition, we propose a hardware-based dynamic scheme to detect the timing

degradation. A PROactive BUS (PROBUS) architecture is presented that dynamically

adapts to retain the system functionality even after the system timing degrades.

Chapter 5 summaries each work and provides recommendation for future work.



Chapter 2
Transaction Level Power Modeling

As billions of transistors are integrated into a single chip, the design complexity in-

creases exponentially. The demands for higher speed, lower power, and lower cost chip

design aggravate the design complexity. In the meanwhile, the increasingly competitive

market and high manufacturing cost demands shorter time-to-market and correct de-

signs in the first time. All of these demand a new system design approach that raises

the level of abstraction and provides early modeling and verification. Transaction Level

Modeling (TLM) [12] is a high level approach to model digital systems, where details of

inter-module communication are separated from details of communication architecture

implementation. This level of abstraction is increasingly used for System-on-Chip (SoC)

architecture analysis and early embedded software development. In this chapter, we

first introduce transaction level modeling and PCI Express. Next, We propose power

estimation methodology for TLM, implement this methodology on PCI Express, and

demonstrate its effectiveness.



9

2.1 Transaction Level Modeling

With the advent of advanced CMOS process technology and shrinking transistor feature

sizes, more and more transistors are integrated into a single chip to provide more func-

tions. In the same way, the design complexity increases exponentially. New methods are

required to improve designers’ ability to handle the design complexity and also meet the

time-to-market goal. Of most well-known methodology, two methods are most popular:

design reuse and raising the level of abstraction. Design reuse has been widely used

for SoC design [14]. For example, IP reuse [15, 16] that SoC designers adopt IP cores

that are already designed and verified to reduce the developing time for the new de-

sign. Several on-chip communication protocol such as IBM CoreConnect [17] and ARM

AMBA [18] are created to provide an uniform interface between IP cores. This method,

however, does not work well when new and special design are needed. The simulation

of the whole system can still be very time consuming given complicated system designs;

therefore, architecture exploration and system level optimization are still difficult to

achieve.

Another methodology to improve designer’s ability to handle complicated systems is

to raise the level of abstraction. For example, the abstraction level has been raised from

transistor level to gate level in the past decades to register-transfer level that is widely

used in the latest ASIC and SoC design methodology. Compared to transistor and gate

level, modeling at register-transfer level provides faster simulation speed. This level,

however, is still not adequate to provide fast speed for modern complicated systems and

again, the trend is to raise the level of abstraction to a higher level: transaction level



10

model.

2.1.1 Definition of Transaction Level Modeling

Grötker et al. [12] defines TLM as ”a high level approach to modeling digital systems

where details of communication among modules are separated from the details of the

implementation of the functional units or the communication architecture.” Communi-

cation methods, such as bus or FIFO, are modeled as channels that provide functional

interfaces to the connecting modules. Transactions occur when modules make blocking

or nonblocking function calls to the interface. The blocking functions mean the next

function cannot start until the previous function is finished. In contrast, nonblocking

functions can be issued simultaneously, and the return statuses of the nonblocking func-

tions are examined by the calling modules. These functions provide a synchronization

mechanism between modules at the transaction level and ignore the details of handshak-

ing or protocol implementations. A correct amount of time is associated with each atomic

function call and added up to the total simulation time, which is faster than timing at

every clock. In summary, transaction level modeling focuses more on the functionality of

the data transfer–what data are transfered and the destination of data transfer– rather

than the actual hardware implementation, such as how the transfer protocol is imple-

mented. This makes transaction level modeling efficient and faster than the lower level

simulation and a promising solution for modern, complex SoC design.

Even though transaction level modeling (TLM) is widely discussed among industries

and the academic community as an approach that can handle the complexity of SoC,

no universal terminology is accepted by SoC designers. In addition, there is still dis-
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agreement on the number of abstraction defined in this level. The term, ’transaction

level’, actually represents a continuum of abstraction levels, not any specific level. These

levels vary in the degree of functional or temporal details. Gajski and Cai [3] catego-

rized TLMs into several models based on the timing accuracy of the computation and

communication in their SpecC [19]. Both computation and communication can be either

un-timed (no timing information is provided), approximate-timed (approximate timing

information is provided), or cycle-timed (accurate cycle information is provided). Fig-

ure 2.1 shows various TLM models defined in [3]. Shown by A in Figure 2.1, the highest

Figure 2.1. System modeling graph for TLM [3]

level is the specification model that contains no timing information on either computa-

tion or communication. The component-assembly model, shown by B, is the specification

model associated with approximate timing information on computation. The component-

assembly model becomes the bus-arbitration model, shown by C, if its communication is

also associated with approximate timing information. When communication is modeled

as cycle-accurate and computation is modeled as cycle-approximate, a bus-functional
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model is built, shown by D. On the other side, if a model has cycle-accurate computa-

tion and cycle-approximate communication, it is a cycle-accurate computation model,

shown by E. If both computation and computation is cycle-accurate, it is a implemen-

tation model or register-transfer model, shown by F. These definitions provide a clearer

guideline and consistency on modeling timing information for TLMs.

Another more widely accepted definition of transaction level modeling is proposed

by Open SystemC Initiative [4, 13]. The levels of abstraction above register-transfer

level (RTL) include Algorithmic (ALG), Communicating Process (CP), Communicating

Process with Time (CP+T), Programmer’s View (PV), Programmers View with Time

(PV+T), and Cycle Accurate (CA) level. Except Algorithmic level and register-transfer

level, other levels of abstractions are considered a part of transaction level models.

In Communicating Process (CP) level, the system is composed of parallel processes

that exchange high level data and parameters via point-to-point links. Generally, this

level is architecture and implementation independent. However, partitioning system

functions into parallel tasks do require some architectural concerns. The level can be as-

sociated with timing information to become Communicating Process + Timing (CP+T)

level.

Unlike CP level that is architecture and implementation independent, Programmer’

s View (PV) level contains some micro-architecture details and is more architecture spe-

cific, especially for communication. In CP level, the mechanism used for communication

is point-to-point links between processes. PV level requires more elaborated communi-

cation architecture such as on-chip bus or network on chip, and arbitration mechanism

such as arbitrators or routers is required. Another important characteristic for PV level
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is that PV level is register-accurate. This characteristic provides an accurate program-

mer’s representation of hardware system used in the driver software. Similar to CP level,

PV level can be associated with timing information and become Programmer’s View +

Timing (PV+T).

The Cycle Accurate (CA) level contains micro-architectural details and timing is

accurate to each individual clock edge. The arbitration of the communication is fully

compliant to the communication protocol. However, this level usually does not model

complete internal registers.

Figure 2.2 shows the level of abstraction for transaction level models and potential

flow between these levels. TLMs in this work are at a level of abstraction equivalent to

the Programmer’s View with Timing (PV+T) level as described in [4].

Figure 2.2. TLM abstraction levels and flow [4]

This is the highest level of abstraction which can include some amount of micro-
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architectural detail.

2.1.2 Advantages of Transaction Level Modeling

Transaction level modeling has the following desirable properties that are necessary for

a complicated system design:

• Fast simulation speed: By ignoring unnecessary hardware details, and not mod-

eling at cycle-by-cycle basis for computation within IP cores, models at the trans-

action level run faster. For example, for burst-read or burst-write transactions,

TLMs only consider the total required time to transfer the data. They do not

have to calculate the time for each part of the data transfer, which enhances the

simulation speed. From the results of [20], TLM for ARM AMBA bus is two to

three orders faster than its RTL implementation.

• Easy to develop, use, and apply: Compared to lower level models such RTL,

developing transaction level models is easier because unnecessary hardware details

are ignored. For example, communication between modules is through functions

calls such as bus read() and bus write() and does not require accurate pin infor-

mation and implementation details of communication protocol. In addition, the

simple function interfaces make TLM easy to use. Rather than involving compli-

cated interfaces for each pin connection and handshaking protocol, the blocking

or nonblocking TLM functions provide sufficient synchronization that is necessary

for communication between modules. Furthermore, because of the simple interface

the designer can easily explore different architecture or configuration by replacing
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a module with another. Therefore, it is easy to apply to other modules.

• Early construction and verification: TLMs can be constructed early in the

system design process. Because TLMs do not requre hardware details, the designer

can create modules and validate the designs at an earlier phase and enable early

software and firmware development. In addition, designers can explore different

possibilities of system configurations and optimize the system early in the design

stage.

• Extended modeling ability: With the advent of SystemC language, TLM is

able to model both the hardware and software components of a system in the same

environment. This method simplifies the design flow.

2.2 Transaction Level Power Modeling

Transaction level modeling technique is gaining more popularity with emerging standard

architecture modeling languages like SystemC [21] [22]. IP core providers are beginning

to provide such models for the purpose of embedded software development and early

architecture analysis. These models are typically at a level where they do not capture

all power-related aspects of the cores in order to optimize the simulation performance.

To enable power estimation for a system composed of such transaction level models,

we incorporate power estimation techniques into a SystemC functional model designed

to run embedded software. In this work, we propose a power estimation methodology for

IP cores. We demonstrate the power estimation methodology in PCI Express IP cores.

PCI Express is emerging as a standard for a unified I/O architecture in terms of
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providing I/O connectivity for embedded, desktop and server applications. In commercial

SoC designs, a major portion of overall power consumption can be consumed in the

multiple PCI Express cores required to support various devices such as graphical chip

and memory. Consequently, power estimation and optimization for the PCI Express core

implementation is critical. This chapter first introduces the PCI Express architecture.

Next, we introduce how we implement TLM for PCI Express. We explain the power

estimation methodology and augment the PCI Express TLM with the methodology.

Finally, we demonstrate the simulation result for that power modeling methodology that

we developed for IBM CoreConnect architecture.

2.3 PCI Express Architecture

PCI Express architecture [5][23] is the latest PCI architecture which is a low cost, high

bandwidth, and highly scalable modern I/O standard communication technique. PCI Ex-

press architecture supports 2.5Gbps per lane per direction transfer rate and can achieve

higher bandwidth by combining different numbers of lanes [23]. PCI Express is backward

compatible to previous version of PCI architecture including PCI 1.0 and PCI 2.0 and

PCI-X. This backward compatibility can help designers reuse previous design and reduce

design cost.

PCI Express utilizes point-to-point links and switched protocol between IP cores

instead of bus architecture. Previous PCI architectures increase the pin number and

use sideband signals to provide higher performance and power management. These tech-

niques are less favorable in modern architecture due to the increased capacity load caused
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by the increased pin connection. Current pin count for PCI architecture is more than

100, which will induce significant capacity load if multiple PCI devices are used. Instead,

PCI Express uses the point-to-point and in-band connection, and each component con-

nects another component through a direct link. By using the point-to-point connection

technique, each direction only requires two low-voltage differential pairs (one transmit,

and one receive pair). A PCI Express lane is comprised of these two unidirectional

differential pairs, each operating at 2.5Gbps to achieve a basic overall throughput of

5Gbps.

The point-to-point connection technique also provides the technique to combine sev-

eral lanes into a higher speed lane. In PCI Express, x1, x2, x4, x8, x16, x32 can be used.

Therefore, it provides a maximum speed of 2.5Gbps x 32 = 80Gbps in each direction.

Figure 2.3. Packet format

PCI Express uses packet-based transmission. Within the PCI Express protocol, the

data that need to be transferred are divided into smaller chunks and are concatenated

with routing and error checking information to form a packet, as shown in Figure 2.3.

Each side of the PCI Express link has an ingress port and an egress port. The ingress

port processes incoming packets and the egress port processes outgoing packets.



18

Figure 2.4. Layer Diagram of PCI Express

Figure 2.4 shows the layer diagram of PCI Express. There are three layers in both

the egress port and the ingress port: the Transaction Layer, the Data Link Layer and

Physical Layer. When a device starts to send data, it will send them to the Transaction

Layer first. At this layer, the data will be attached with the header and CRC information

to form a transaction layer packet (TLP). The Transaction Layer also provides a Virtual

Channel mechanism and Virtual Channel arbitration. Then, this TLP is sent to the Data

Link Layer. The Data Link Layer provides flow control and error checking mechanisms.

In the Data Link Layer, a sequence number and CRC information will be attached to

the TLP and transferred to the Physical Layer. After this, the Physical Layer converts

the logic values into differential signals and transmits them across the PCI Express link.

Inversely, the Physical Layer in the ingress port received the packet first. In the Physical

Layer, the Physical Layer header is removed, and the data link layer packet is transferred

to the Data link Layer. Similarly, in the Data Link layer, the Data Link Layer header

is removed, and the transaction layer packet is transferred to the Transaction Layer. In
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the Transaction Layer, the Transaction Layer header is removed, and the data inside the

packet can be used by the IP cores.

Figure 2.5. An example of PCI Express topology

An example of the PCI Express topology is shown in Figure 2.5. The topology of

PCI Express is a tree structure, involving three kinds of components: Root Complex,

Switch and Endpoint. If traffic is from a Root Complex to an Endpoint, then it is

downstream traffic. Otherwise, it is upstream traffic. A Root Complex acts as a bridge

between PCI Express architecture and other buses such as IBM CoreConnect Processor

Local Bus (PLB) [17] or ARM AMBA AHB [18] bus. When a request is received from

the PLB or AHB bus, it is converted to PCI Express packets and is transferred to its

destination, and vice versa. An Endpoint connects to a device core, such as memory

or external device, and allows only upstream traffic. A Switch can accept downstream

and upstream traffic. Depending on the routing information in a packet, a Switch may

transfer the packet to a Root Complex, another Switch or an Endpoint.
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A Traffic Class (TC) in a PCI Express defines the priority of each packet. It is

assigned by a device’s application or device driver. Packets with different TCs move

through the connection with different priority, resulting in varying performances. These

packets are routed through the connection by utilizing Virtual Channel (VC) buffers

implemented in Switches, Endpoints and Root Complexes.

Figure 2.6. VC and port arbitration mechanism. This figure is adopted from [5]

Figure 2.6 depicts the relations between Traffic Class and Virtual Channel mapping

(TC/VC mapping), virtual channel arbitration and port arbitration mechanisms in PCI

Express architecture. Each Traffic Class is individually mapped to a Virtual Channel (A

VC can have several TCs mapped to it, but a TC cannot be mapped to multiple VCs).

The TC in each packet is used by transmitting and receiving ports to determine into

which VC buffer to drop the packet. Switches are configured to arbitrate and prioritize

between packets from different VCs before forwarding. This arbitration is referred to as

VC arbitration. In addition, packets arriving at different ingress ports are forwarded to

their own VC buffers at egress ports. These transactions are prioritized based on the

ingress port number while being merged into a common VC output buffer for delivery
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across the egress link. This arbitration is referred to as Port arbitration [5]. As a result,

packets with different TC numbers may observe different performances when routed

through PCI Express connection.

PCI Express is a low cost, high bandwidth and high flexibility solution. It is becoming

a promising communication solution for system-on-chip. Therefore, we decide to choose

PCI Express to demonstrate our power estimation methodology. In the next section, we

explain how we construct PCI Express transaction level models.

2.4 Transaction Level Models for PCI Express

This section offers a detailed explanation about how we build PCI Express TLM model

and how to interface PCI Express to PLB. Our PCI Express TLM is implemented in

SystemC 2.0.1 [21] [22].

SystemC is a language that extends from C++ language and has become increas-

ingly popular as a design and verification language. It supports designs that span from

concepts to implementation in hardware and software. Using SystemC, we can eliminate

the need for multiple models, and complete designs in a single modeling platform. In

additition, SysteC provides the ability to model hardware at higher levels of abstraction

and enables early access to a functional virtual prototype of the hardware before the

details of RTL implementations are completed.

Because our PCI Express inherits the PLB interfaces from IBM PowerPC 405 Eval-

uation Kits with CoreConnect SystemC TLMs (IBM PEK), IBM PEK will be explained

before PCI Express TLM models.
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2.4.1 IBM PowerPC 405 Evaluation Kit

IBM PowerPC 405 Evaluation Kit with CoreConnect System TLMs (IBM PEK) [6] is

an industrial tool that enables designers to evaluate, build, and verify system-on-chip

designs. This tool can quickly evaluate the trade-offs on performance, power, timing,

and chip die size. Furthermore, it helps designers to make informed decisions and avoid

mistakes. As shown in the tool’s name, this tool contains IBM CoreConnect SystemC

transaction level models.

Figure 2.7. CoreConnect TL simulation platform with PCI Express TLM

Figure 2.7 shows the organization of a SystemC TLMs for a CoreConnect system with

PCI Express TLMs. The right side of the figure illustrates the SystemC CoreConnect

TLMs in IBM PEK, which include models for the processor local bus (PLB), on-chip

peripheral bus (OPB), a bus bridge, and a device control register (DCR) bus. The

left side shows the TLMs for PCI Express which we will explain in detail in the next

section. This tool also implements many IP cores such as DDR Memory Controller and
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UART. By using various IP cores and various connections between IP cores, designers

can explore and evaluate the performance and power of the designs.

These SystemC TLMs provide PLB interface that our PCI Express TLM can connect

to. Our PCI Express utilizes the PLB master and slave interface from IBM PEK.

2.4.2 PCI Express Transaction Level Models

Root(sc_module_name name, int type, int Width_of_VC, int Depth_of_VC
int PCIE_start_address, int PCIE_end_address,
int PLB_start_address, int PLB_end_address);

Switch(sc_module_name name, int type, int Width_of_VC, int Depth_of_VC,
int PCIE_start_address, int PCIE_end_address);

End(sc_module_name name, int type, int Width_of_VC, int Depth_of_VC,
int PCIE_start_address, int PCIE_end_address);

Figure 2.8. Constructor declaration for the Root Complex, Switch, and Endpoint modules in
SystemC

Figure 2.9. TLM for a duofifo module

As defined in PCI Express Specification [23], PCI Express has three kinds of com-

ponents: Root Complex, Switch, and Endpoint. Connections between components are

made through a bi-directional point-to-point link, which is emulated by a dual FIFO

mechanism in our simulation platform. Figure 2.9 shows the TLM for a duofifo module.

The dual FIFO is composed of two FIFOs, channel 0 and 1, each of which handles one

direction of the transmission. Each channel has two PCI Express slave interfaces, read

and write interfaces, that can connect to PCI Express master ports. These FIFOs were

implemented by the sc fifo channel [12] in SystemC.
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Figure 2.8 is the SystemC module declaration for the Root Complex, Switch, and

Endpoint. These modules have the following parameters:

• Module Name: Each module has a unique model name, and cannot be duplicated.

• Type: The type of each component can be either 0 or 1. The function of the type

is used to identify the channel that the module can use to communicate with other

modules. Modules of the same type cannot connect to each other directly. Root

Complex is always Type 0.

• The dimensions of the Virtual Channels: The Width of VC parameter specifies

the number of virtual channels in the VC buffer, while the Depth of VC parameter

specifies the depth of a virtual buffer in the VC buffer.

• Address Space: Since a Root Complex is equipped with interfaces to CoreConnect

PLB bus, it requires two address spaces, PLB and PCI Express. The two address

spaces are determined by PCIE start address, PCIE end address, PLB start address,

and PLB end address variables. Unlike the Root Complex, the Switch and End-

point only require PCI Express address space. The address spaces of each compo-

nents cannot overlap.

Figure 2.10 shows the TLM for a Root Complex. The Root Complex connects PCI

Express architecture to CoreConnect Processor Local Bus (PLB). In this figure, the

Root Complex uses a PLB master port and a PLB slave interface to connect to a PLB

bus. For the connection with other PCI Express components, the Root Complex uses

a read and a write master port to connect to a duofifo module. A protocol conversion



25

Figure 2.10. TLM for a PCI Express Root Complex that connects to a PLB bus

mechanism inside the Root Complex can convert a packet from the PLB format to the

PCI Express format and vice versa. Port arbitration and Virtual Channel arbitration

functions can provide correct path information for each packet, and move packets to

correct destinations.

Figure 2.11. Concurrent Process Diagram for the Root Complex TLM



26

Figure 2.11 shows the concurrent process diagram. The concurrent processes can

handle packets simultaneously. The From PLB process retrieves data from the PLB

input buffer, converts the data into PCI Express packets, and transfers the packets into

a PCI Express input buffer. The Route PLB process retrieves packets from PCI Express

input buffer, and transfers the packets to output buffers according to the address inside

the packet. The Write action process retrieves the packets from the output buffer and

transfers the packets to the connecting module.

class Root : public PLB_SLAVE_IF, public IbmTlm::Module
{
public:

sc_in_clk plb_clk;
sc_in_clk pcie_clk;
PLB_MASTER_PORT plb_port;
sc_port<write_if,3>out;
sc_port<read_if,3>in;

SC_HAS_PROCESS(Root);
Root(sc_module_name name, int type, int Width_of_VC, int Depth_of_VCi,
int PLB_start_address, int PLB_end_address,
int PCIE_start_address, int PCIE_end_address)
{
SC_THREAD(from_plb);
SC_THREAD(to_plb);
SC_THREAD(route_plb);

SC_THREAD(write_action0);
SC_THREAD(read_action0);
SC_THREAD(route_action0);

SC_THREAD(write_action1);
SC_THREAD(read_action1);
SC_THREAD(route_action1);

}
public:

//Interface for PLB Bus
void acknowledge_address(PLB_REQUEST* req);
int read(PLB_REQUEST* req);
int write(PLB_REQUEST* req);

};

Figure 2.12. Class definition for the Root Complex module

Figure 2.12 is the class definition for the Root Complex written in SystemC. As shown

in the concurrent process diagram, the Root Complex has nine concurrent processes.
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The PLB port has three processes: from PLB, to PLB, and route PLB process. The

from PLB process accepts requests from the PLB bus, converts PLB requests into PCI

Express requests, then puts the packets into input VC buffers. The Route PLB process

retrieves packets from input VC buffers, and distributes the packets to correct output VC

buffers according to the packet destination. The to PLB process retrieves PCI Express

packets from output VC buffers, converts PCI Express packets into PLB requests, and

sends packets through the PLB bus. For PCI Express ports, both ports have read action,

write action, and route action processes. The read action process accepts packets from

PCI Express fabric and puts packets into input VC buffers, and the write action retrieves

packets from output VC buffers and transfers the packets through PCI Express fabric.

The route action process will read packets from input VC buffers, and put the packets

into correct output buffers according to the destination address of the packets. The

Root Complex is equipped with PLB master port (PLB MASTER PORT) and PLB

slave interface (PLB SLAVE IF) in order to access the PLB bus.

Figure 2.13. TLM for Switch and Endpoint modules
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The Switch and Endpoint TLMs are simpler than the Root Complex because they

only have to connect to PCI Express architecture. The left part of Figure 2.13 shows

an example of a Switch TLM that can connect to four other PCI Express components.

Similar to the PCI Express ports in the Root Complex TLM, each PCI Express port in

the Switch TLM connects to other components through a dualfifo module. Port and VC

arbitration in the Switch TLM are similar to those in the Root Complex. The right part

of Figure 2.13 is a TLM for a Endpoint module. It only has one PCI Express connection

with one read port and one write port. There is no routing mechanism required in

Endpoint TLM.

Figure 2.14. Concurrent Process Diagram for Switch TLM

Figure 2.14 is the process diagram for a Switch TLM. This Switch has four ports, each

of which has three concurrent processes:Read action, Write action, and Route action.

This figure shows the path of the Route action process in the port 0. The Route action

process in other ports have a similar function. The function of each process is similar to

Root Complex’s PCI Express processes.

The corresponding class definition for Switch and Endpoint TLMs are shown in
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class Switch : public IbmTlm::Module
{
public:

sc_port<write_if,3>out;
sc_port<read_if,3>in;
sc_in_clk pcie_clk;

SC_HAS_PROCESS(Switch);
Switch(sc_module_name name, int type, int Width_of_VC, int Depth_of_VC,
int PCIE_start_address, int PCIE_end_address)
{
SC_THREAD(write_action0);
SC_THREAD(read_action0);
SC_THREAD(route_action0);

SC_THREAD(write_action1);
SC_THREAD(read_action1);
SC_THREAD(route_action1);

SC_THREAD(write_action2);
SC_THREAD(read_action2);
SC_THREAD(route_action2);

SC_THREAD(write_action3);
SC_THREAD(read_action3);
SC_THREAD(route_action3);

}
private:

vc input_buf[4];
vc output_buf[4];

};
class Endnode : public public IbmTlm::Module
{
public:

sc_port<read_if> in;
sc_port<write_if> out;
sc_in_clk pcie_clk;
SC_HAS_PROCESS(Endnode);
Endnode(sc_module_name name): sc_module(name,)
{
SC_THREAD(read_action);
SC_THREAD(write_action);
SC_THREAD(data_process);

}
private:

vc buffer;
};

Figure 2.15. Class definition for Switch and Endpoint

Figure 2.15. The process diagram of a Endpoint TLM is not shown here because it is

only a simplified version of Switch TLM.

Each PCI Express input or output port has a maximum of eight Virtual Channels,
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and can be changed easily during TLM initialization. We use the C++ Vector type to

store packets. The maximum number of packets that each Virtual Channel can store

can be changed to explore the performance and power trade-offs of the system.

The buffer in the VC channel is a critical section that we cannot read or write at

the same time. We use sc mutex[12] to provide mutual exclusion mechanisms. Both the

output VC buffer and the input VC buffer need to be protected. When a packet enters

the Transaction Layer, the first step is to check the TC/VC mapping and find out the

VC buffer that needs to store the packet. If no other process is using this buffer, then

we can allocate the packet into the buffer. The VC arbitration mechanism will select a

channel and transfer the packet to the receiver.

High level models of the Transaction and Data Link Layers are implemented in our

transaction level model but the Physical Layer is not modeled. This is because the

Physical Layer handles low level signal switching and it is usually not implemented in

the high level TLM.

2.5 Power Estimation Methodology for Transaction Level

Models

This section explains the TLM power estimation methodology and demonstrates this

methodology in the PCI Express TLM. The power estimation methodology we proposed

for transaction level modeling of SoC includes the following four steps:

1. Identify the transactions from the data book or specification of IP cores that is

significant in the power modeling. The transactions are the operations that IP
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cores use to communicate with other components, such as read, write, and inter-

rupt request operations.

2. Identify the parameters from the data book or specification. Parameters are usually

the factors that will significantly affect the performance and power consumption of

an IP core. Examples of parameters are execution frequency, buffer size, and the

number of virtual channels.

3. Characterize the power consumption of each transaction and build hierarchical

transaction level power (HTLP) trees for each transaction. The purpose of a HTLP

tree is to illustrate how to calculate the total power consumption for a transaction.

Each transaction is composed of many lower level procedures, and the power con-

sumption of a transaction is the summation of those lower level procedures. Based

on the specification of IP cores, we can construct HTTP trees for each transac-

tion. The power consumption in the higher level in the diagram is based on the

summation of the power consumption at the lower level.

4. Create TLMs for the IP core and parameterize the TLM. Creating parameterized

designs for TLM can provide performance exploration. The parameters can be

useful for power estimation.

5. Augment the TLM to extract the parameters for macro-model during the trans-

action level simulations and make calls to the appropriate power macro-models,

thus deriving energy measures for each of the cores for that particular simulation.

This can be done dynamically at run-time to derive information during simulation

(trade-off between simulation accuracy and speed should be taken into account)
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In the following section, we explain how to apply this methodology on our PCI

Express TLM.

2.5.1 Identify Transactions and Parameters

We first identify the operations that need to be modeled as transactions. PCI Express

provides four types of primary operations:

1. Memory requests, which include memory read, memory write, and memory read

lock requests. These requests read data from memory devices and write data to

memory devices.

2. I/O requests, which include IO Read and IO Write. These requests read from IO

devices and write to IO devices.

3. Configuration requests, which include Configuration Read and Configuration Write.

The configuration request can configure the address space and operation mode of

different modules.

4. Message requests are message operations which provide methods for communicat-

ing within different modules.

2.5.2 Parameters for PCI Express TLM

We define these primary instructions according to the PCI Express specification. To

model the power consumption for the above requests, we model the following parameters

that are correlated to these requests, and build a table that contains the parameters with

their corresponding power consumption.
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• Width and depth of the Virtual Channel buffer. These two parameters determine

the size of the VC buffer used in the PCI Express TLM. We construct a table

to record the power consumption of the VC buffer with various width and depth

dimensions.

• Power consumption is required to insert a packet into a VC buffer or retrieve a

packet from a VC buffer. These can be used to calculate power consumption for

the VC buffer control logic.

• VC buffer arbitration

• TC/VC Mapping

• Port arbitration.

• Leakage Power. This is the static power consumption that a PCI Express IP core

will consume even it doesn’t have any activity.

Several parameters are related to the Root Complex only. These parameters include

the following power parameter :

• Power consumption for the PLB request buffer. This buffer is used to store the

PLB request.

• Power consumption for protocol conversion logic.

• Power consumption for PLB master port and PLB slave interface.
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Figure 2.16. Hierarchical transaction level power tree for memory read transaction

2.5.3 Characterize Power Consumption of Each Transaction and Build

HTLP Trees

Figure 2.16 shows a hierarchical power tree for the memory read transaction. The power

for the memory read transaction has two components: power for read request from

source to destination and power for read completion from destination to source. Each

component can be divided into smaller components. After we characterize the power

consumption for each transaction, we construct a power table to store all the power

information. A transaction is associated with many parameters, and we use these pa-

rameters to decide the power consumption of a transaction under various circumstances.

The TLM model can consult the table and determine the power consumption during

execution.
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2.5.4 Augment TLM with Power Estimation Functions

As the packet passes through a PCI Express component, the power consumption is

obtained through table look-up. This power information can be used to calculate the

average power for the transaction after the packet reaches the destination

void vc::read_vc(tl_packet& c, int queue) {
queue=vc_arbitrate();
pwr_vc_arb(c); ...................(1)
mutex.lock();

if(num_elem[queue] ==0)
{
mutex.unlock();
wait(wr_ev[queue]);
mutex.lock();

}
c = channel[queue][first[queue]];
--num_elem[queue];
first[queue] = (first[queue]+1) % DEEP_VC;
pwr_vc_dequeue(c, queue);.............(2)
rd_ev[queue].notify();
mutex.unlock();

}

Figure 2.17. VC Read function

void vc::write_vc(tl_packet c, int queue) {
mutex.lock();
queue=tc_vc_map(c);......................(3)
pwr_vc_map(c);,

if(num_elem[queue]==DEEP_VC)
{

mutex.unlock();
wait(rd_ev[queue]);
mutex.lock();

}
channel[queue][(first[queue]+num_elem[queue])
% NUM_VC] =c;
++num_elem[queue];
pwr_vc_enqueue(c, queue);................(4)
wr_ev[queue].notify();
mutex.unlock();

}

Figure 2.18. VC Write function

Figure 2.17 and 2.18 are the pseudo codes that show how the TLM of PCI Express

is augmented with power estimation functions. We inserted timing information and

power estimation functions into the TLM of PCI Express to provide power analysis.



36

Figure 2.17 is the read function for a Virtual Channel buffer. A power estimation function

(pwr vc arb) for the VC arbitration is added after VC arbitration is complete. Also, a

function (pwr vc dequeue) that estimates the power for reading a packet from the VC

is added to the TLM. Both functions look up the power estimation reference table to

obtain the power consumption.

Figure 2.18 is the write function for Virtual Channel. We also add power estimation

functions into the TLM of VC write function. Instead of VC arbitration and de-queue

function, we added the power consumption for VC mapping function(tc vc map) and

enqueue function( pwr vc enqueue)

We have demonstrated the TLM for PCI Express and how to improve the TLM

of PCI Express with power estimation functions. The simulation speed for TLM is

very fast, but the accuracy can be improved if the TLMs capture more details of the

hardware activity. By doing this, we can get the power estimation during transaction

level simulation. These TLMs will be useful when we are doing system level power

analysis.

2.5.5 Simulation Execution

After completing the previous methodology in PCI Express TLMs, we can instantiate

TL modules and execute transaction level simulation using various scenarios or appli-

cations. Examples of scenarios are PCI Express to PCI Express traffic, PCI Express

to CoreConnect PLB traffic, and CoreConnect PLB traffic to PCI Express traffic. One

way to generate these scenarios is to use a random number packet generator. In ad-

dition, we can obtain traffic from real applications. One example is to use simulators
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Figure 2.19. A Example of System Instantiation

such as MPARM [24] that runs real applications and generates real traffic for different

applications.

2.6 System Instantiation and Simulation for PCI Express

TLM

In this section, we demonstrate how to integrate an on-chip bus and PCI Express TLMs

and simulate the system. Since our PCI Express TLMs provides interfaces to IBM PLB,

we demonstrate how to instantiate PCI Express and PLB TLMs, integrate the TLMs

and execute simulations. Note that PCI Express TLMs can connect to other buses if the

interfaces to these bus are provided and integrate in the PCI Express TLMs. Figure 2.19

shows the diagram of the example, and Figure 2.20 is the corresponding SystemC codes

for Figure 2.19. We use the following steps to instantiate the system:

1. Instantiate a PLB bus in the sc main() function. The sc main() function is the

main function of a SystemC program. We instantiate an on-chip bus to which PCI
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int sc_main(int, char **) {
sc_clock plb_clock("plb_clock");
sc_clock pcie_clock("pcie_clock");
PLB_BUS* bus = create_bus(); // Create a PLB bus and instantiate PLB Arbiter
plb_cpu* cpu = new plb_cpu("plb_cpu",
0, // master ID
CC_128, // data bus width
CC_64); // address bus width

// register our task with the plb_cpu
std::pair<plb_cpu::thread_fn, void*> tmp(&plb_cpu_task1, NULL);

plb_memory* memory = new plb_memory("plb_memory",
PLB_ADDRESS_BUS(0x00000), // memory address low
PLB_ADDRESS_BUS(0x1ffff), // memory address high
CC_128, // data bus width
CC_64"); //address bus width

ROOTComplex* root = new ROOTComplex("root", TYPE0, //TYPE 0
8, 8, //Width and Depth of Virtual Channel
0x20000, 0x3ffff, //PLB memory address low and high
0x100000, 0x12ffff); //PCI Express memory address low and high

bus->clock(plb_clock);
bus->slave_port(*root);
cpu->clock(plb_clock);
cpu->bus(*bus);
memory->clock(plb_clock);
root->plbclock(plb_clock);
root->pcieclock(pcie_clock);

dualfifo *r0_s0;
r0_s0 = new dualfifo("r0_s0"); r0_s0->clock(pcie_clock);

dualfifo *s0_e0;
s0_e0 = new dualfifo("s0_e0"); s0_e0->clock(pcie_clock);

dualfifo *s0_e1;
s0_e1 = new dualfifo("s0_e1"); s0_e1->clock(pcie_clock);

Switch *switch0;
switch0 = new Switch("Switch0", TYPE1, 4, 4, 0x100000, 0x11ffff);
switch0->clock(pcie_clock);
switch0->out(*r0_s0); switch0->in(*r0_s0);
switch0->out(*s0_e0); switch0->in(*s0_e0);
switch0->out(*s0_e1); switch0->in(*s0_e1);

Endnode *end0;
end0 = new Endnode("End0", TYPE0, 2, 2, 0x100000, 0x10ffff);
end0->clock(pcie_clock); end0->out(*s0_e0); end0->in(*s0_e0);

Endnode *end1;
end1 = new Endnode("End1", TYPE0, 2 , 2, 0x110000, 0x11ffff);
end1->clock(pcie_clock); end1->out(*s0_e1); end1->in(*s0_e1);

sc_start(10000,SC_NS);
}

Figure 2.20. Example of System Instantiation

Express modules connect in the sc main() function. In this example, we called a

create bus() function to instantiate a PLB bus and an PLB arbiter. A plb master

device (plb cpu) and plb slave devie (plb memory) are also instantiated to simulate

the functions of the PLB bus. More information about the PLB bus, arbiter and
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void plb_cpu_task1(plb_master_generic* caller, void* user_data)
{
std::vector<uint8_t> data;
while (true) //loop forever
{

for (int i = 0; i < 256; i++) //write 256 bytes of data to memory
{
data.push_back(i);

}
memory_write(caller, 0x20000, CC_QUADWORD, 16, data);
// read 256 bytes of data
data = memory_read(caller, 0x20000, CC_QUADWORD, 16);

}
}

Figure 2.21. Example of request generations in the plb cpu task1() function in the blocking
master. Modified from [6]

other components can be found from [6].

2. Instantiate PCI Express modules, and dual FIFO modules in the sc main() func-

tion. In Figure 2.19, we have one Root Complex, one Switch and two Endpoint

modules. The Root Complex connects to the PLB bus directly, and provides proto-

col conversion mechanisms that convert PLB bus requests to and from PCI Express

requests. The duofifo modules between different components serve as communi-

cation channels. Changing the topology of the system can achieve architecture

exploration.

3. Define the address space and parameters. We provide the address space for the

PLB slave memory and each PCI Express module, and specify the width and depth

of the Virtual Channels used in each PCI Express module. In Figure 2.20, we assign

different widths and depths of the Virtual Channels for the Root Complex, Switch

and Endpoint modules. We also assign the address space for the PLB and PCI

Express modules.

4. Generate requests to simulate the operations. We can generate requests in the
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following different places:

(a) The plb cpu task1() function that hook to the PLB bus. master module. In

this function, we can issue blocking and nonblocking read and write operations

to the PCI Express or PLB subsystem.

(b) The data process() function in the Endpoint modules can issue PCI Express

operations. These operations includes Memory read, Memory write, IO read,

IO write, Configuration read, and Configuration Write. The destination of

these operations can be in the on-chip bus or other PCI Express modules.

With these three functions, we can generate traffic from the on-chip bus to

the PCI Express subsystem and from PCI Express subsystem to the PLB bus.

We can use these functions in different modules to simulate different traffic scenar-

ios such as from the PLB bus to PCI Express or from the PCI Express bus to the

PLB bus. Figure 2.21 shows the plb cpu task1 function used by the plb cpu bus

master modules. In this example, the function generates ten blocking read and ten

write operations. If necessary, the destination address of these operations can be

changed to simulate other scenarios.

5. We can specify the simulation time in the sc main() function. The sc start()

function to indicate how long the simulation runs. sc start(10000, SC NS) means

the simulation will run 10000ns. sc start(−1) stands for executing infinitely until

the program finishes.

In this section, we illustrated the TLMs and process diagrams for the Root Complex,

Switch and Endpoint TLMs. We demonstrated how to instantiate PCI Express and PLB
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TLMs modules. We also explained how to generate the traffic and simulate the system.

The following section will discuss how we validate the power estimation methodology we

proposed is section 2.5.

2.7 Validation of Power Estimation Methodology

Case TLM power
(mW)

Scenario 1 (PCI Express to PCI Express traffic 1) 24.37

Scenario 2 (PCI Express to PCI Express traffic 2) 27.92

Scenario 3 (PLB to PCI Express traffic 1) 52.21

Scenario 4 (PLB to PCI Express traffic 2) 58.73

Scenario 5 (PCI Express to PLB traffic 1) 63.48

Scenario 6 (PCI Express to PLB traffic 2) 66.24

Table 2.1. Simulation results for PCI Express

Figure 2.22. CoreConnect TL simulation platform

We have presented a TLM Power estimation methodology and demonstrated how to
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implement this methodology in PCI Express architecture. We also generated different

scenarios in our simulation and obtained these power estimations. We show the simula-

tion results in Table 2.1. The validation is done by comparing the power estimation for

gate level and transaction level power estimation. The validation of the methodology was

performed at IBM [25] for IBM CoreConnect bus architecture (instead of PCI Express)

due to the need for gate level power estimates. Figure 2.22 depicts the IBM CoreConnect

transaction level platform. Elements of the CoreConnect architecture include the pro-

cessor local bus (PLB), on-chip peripheral bus (OPB), a bus bridge, and a device control

register (DCR) bus. High-performance peripherals connect to the high-bandwidth, low-

latency PLB. Slower peripheral cores connect to the OPB, which reduces traffic on the

PLB, resulting in greater overall system performance [17].

Case GLM power
(mW)

GLM run-
time (min)

TLM power
(mW)

TLM run-
time (min)

Error

Scenario 1 57.87 22.3 56.145 0.005 -3.01%

Scenario 2 58.74 25.4 56.1194 0.01 -4.46%

Scenario 3 59.595 26.8 57.071 0.02 -2.6%

Scenario 4 22.744 35 21.975 0.02 -3.38%

Scenario 5 57 45 63.35 1.0 11.19%

Table 2.2. Comparison of Gate level and Transaction level simulation results for IBM Core-
Connect Bus

We have completed the validation of IBM CoreConnect TLMs on the IBM 440

platform-based design platform [25]. To generate power consumption information for

each transaction, we ran IBM Test Operating System on the IBM 440 platform-based

design system. The system can produce a sequence of transaction and ran each sequence

accordingly. We dumped the VCD file and feed the VCD file into a gate level power

estimation tool to obtain power consumption for gate level simulation. We measured the
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power consumption for each transaction including burst read, burst write, single read,

single write. We integrated the gate level power information into a industrial strength

CoreConnect TLM. Then we compare the gate level and transaction level power estima-

tion. The result is shown in Table 2.2. The result shows that the power estimation for

gate level and transaction level simulations are very close. However, the simulation time

for transaction level simulations are much less than that for gate level simulation. The

result shows our power estimation methodology can achieve desirable result.

2.8 Conclusion

This chapter presents a power estimation methodology for transaction level models writ-

ten in SystemC. A related work for IBM CoreConnect SystemC TLMs is published in [26].

We demonstrate the methodology in PCI Express architecture. The main constituents of

this include a power characterization approach, a hierarchical representation of transac-

tion level data, and a mapping mechanism to augment TL simulation models with power

information. The experimental results for IBM CoreConnect demonstrate the validity

of the approach, providing a starting point for further exploration of transaction level

power estimation.



Chapter 3
Transaction-based Reliability

Modeling for Bus-based SoC

System-on-chip (SoC) architecture has traditionally relied upon bus-based interconnect

for their communication needs. However, increasing bus frequencies and the load on the

bus calls for added focus on reliability issues in such bus-based systems. We provide

a detailed analysis of different kinds of errors and the susceptibility of such systems to

such errors on various components that comprise the bus.

We first investigated the effect of single-bit errors on the bus system during the

course of different transactions. The work demonstrates the fact that the vulnerability

of signals is quite similar across benchmarks and only a few signals in a bus system are

critical and need to be guarded. Such transaction-based analysis helps us to develop

an effective prediction methodology to predict the effect of a single bit error on any

application running on a bus-based architecture. As the possibility of multiple-bit errors

on such systems increases, we also examined the effects of multiple-bit errors.
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When compared with the actual simulation results, our results demonstrated that

our transaction-based prediction scheme works with an average accuracy of 92% over

all the benchmarks for single-bit errors. By expanding our transaction-based prediction

scheme to multiple-bit errors, we also achieved 90% accuracy over all benchmarks, which

means our prediction scheme can also be applied to multi-bit errors.

3.1 Introduction and Motivation

A bus-based interconnect has been traditionally used as a communication channel in

system-on-chip architectures. However, growing demands for on-chip integration have

lead to significant increases in the number of components connected to the bus, rais-

ing concerns over the architecture of such bus systems. Consequently, bus architectures

have evolved over time from single shared bus models to multi-layer complex topologies

for supporting the growing demands of bandwidth, concurrency, and constrained power

budgets. The frequency of operation has also been on a rise, from a traditional under

100Mhz to as high as 200Mhz. Commercial buses standards like ARM AMBA [18], PCI

Express [23], and IBM CoreConnect [17] have experienced nearly triple frequency in-

creases over their original designs. Further complexity in such systems is due to different

power and performance enhancing features, such as operating different buses connected

by bridges at different frequencies, voltages, etc [27]. Consequently, the probability of

errors occurring in such system buses increases significantly, which is further aggravated

due to technology scaling. These errors may occur due to a wide range of causes, includ-

ing capacitive coupling, soft errors, crosstalk, and di/dt noise, as discussed in [28, 29].
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Most of these errors lead to transient errors. These errors may affect the system in many

different ways, ranging from creating undetected data corruption to system crashes,

which make the systems unreliable.

Making the systems more reliable is critical since it is expensive when when the

systems fail and critical data are lost. Traditional work to model the system reliability

is done at a lower level such as the register-transfer level or gate level. Doing modeling

at the lower level is almost impossible as well as time-consuming as the complexity of

modern systems increases. In addition, modeling at the lower level can not be done at

the early design cycle since these models are not ready yet.

In this work, we model the reliability of the system at a higher level, the transaction

level model, to provide rapid and early error susceptibility estimation. We introduced

a novel transaction-based reliability model for errors. We provide a detailed analysis

of the types and causes of different errors that may occur due to erroneous bit flips on

a bus-based system. These errors occur during different transactions and the effects

of errors on the bus-based system was characterized into four categories: fatal error,

deadlock error, silent data corruption, and no effect. We also proposed a system level

error susceptibility model for bus-based SoC architecture.

In our modeling, single-bit errors as well as multi-bit errors are characterized. This

is because is the possibility of multi-bit errors increase significantly as the advances of

technology scaling and exponential increases of system complexity happen. For example,

interconnect crosstalk caused by signal swings among different wires may cause multiple

unexpected bit flips on the interconnect. Soft error occurring on the bus arbiter can cause

multiple bus flips as well. Additionally, technology scaling and higher system density
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cause a shrinking distance between wires and transistors and an system error can easily

cause multiple bit flips on wires and transistors. Therefore, it is imperative to explore

the effects of multi-bit errors on the system.

We completed our experiments on a cycle-accurate simulator for the ARM AMBA

AHB bus. We characterized the susceptibility of AMBA bus on errors in various signals

over different transactions. Such susceptibility analysis provides an effective way to

characterize the error susceptibility of a bus architecture based on the transactions in

the application. The proposed prediction scheme provides results with 92% accuracy for

single-bit errors and 90% accuracy for multi-bit errors as compared to the simulation

results on an average for all the applications.

3.2 Related Work

On-chip communication architecture could be primarily classified into either packet-

based communication or bus-based communication as shown in Figure 3.1. Packet-based

communication is employed in different bus protocols like PCI Express and Xpipes [30].

Bus-based communication is adopted in commercial bus standards like AMBA AHB [18],

CoreConnect and Wishbone [31]. Most packet-based communication systems have the

reliability models adopted from the traditional packet-based error detection and fault

tolerance schemes. PCI Express has all the packets containing CRC bits appended to

them at the link layer to ensure a highly reliable data transfer. Similar approaches may

not be completely applicable or suitable to the bus-based bus protocols. Various schemes

for error detection and correction in bus-based systems are described in [32, 33, 34, 35].
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However, with the increasingly stringent power and area budget, all such schemes are

under reconsideration. Bertozzi et al. [36] provides a detailed comparison of the power

and area implications of various error protection schemes. In this work, we particularly

focused on the reliability issues in the bus-based protocols. We demonstrated the signifi-

cance of different control signals of the bus-based on the effect of an error in any of those

signals. It is, however, quite important to note that the signals in the system are not

equally critical for the functionality of the system. Weaver et al. [37] presents a vulner-

ability analysis of various components in contemporary microarchitectures. We exploit

such an observation for bus architecture under consideration to provide an effective crit-

icality factor for each of the signals of the bus system. We provided a transaction-based

error characterization model for bus systems.

We provided error susceptibility analysis for the bus system at the transaction level

model. Transaction level model is a high level modeling technique that models the

communication between components as transactions [3]. Transactions are modeled as

cycle-accurate or at least cycle approximate, while the computation for each component

is modeled as untimed. This modeling technique can provide fast simulation speed

with compact models since many details of hardware information are ignored at this

level. The transaction-based models for systems are getting significant attraction since

the system is becoming increasingly complicated. The modeling technique can serve as

a verification platform in an early design stage when detail hardware models are not

ready. Such transaction-based models have been previously analyzed with respect to

power consumption in [25].
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Figure 3.1. Packet-based vs bus-based protocols

3.3 Bus Architectures

Figure 3.2 shows a typical single shared bus architecture. This is the architecture of most

bus-based systems. The main components in these systems are essentially as follows:

• Master and Slaves: The core components that are connected to the bus. Typically,

the masters are processing cores, DMA controllers etc, and the slaves are memories,

bridges and peripheral devices.

• Interconnect Structure: The logic that deals with the transfer of the data. Most of

the bus control follows state machine based logic. This primarily comprises of the

arbiter, decoding logic and the various control signals to control the bus protocol.

In our analysis, we dealt with errors on the interconnect structure which in turn

included the errors occurring in the master and the slave ports connected to interconnect.

These are the typical components of any bus-based architecture. We have provided a

comprehensive error analysis for the AMBA bus architecture. Moreover, our model and

characterization can be extended to any bus architecture.
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Figure 3.2. AMBA Bus Architecture

3.4 Error Characterization Model

This section explores the effects of single-bit errors and developes a generic characteriza-

tion model for single-bit errors. The characterization model for multi-bit errors is similar

and is postponed to later sections. Developing a generic characterization model needs

to focus on the following issues:

• Determine an effective error injection model that simulates a single-bit error sce-

nario in the best manner.

• Find the most common effects of single-bit errors in the bus system.

• Find the cause for such effects and quantify their dependency on various compo-

nents of the bus system.

• Provide an effective scheme to predict the effect of any single-bit error on the whole

system while executing any application.

We demonstrate achieving the aforementioned goals in the context of an AMBA bus.

A cycle-accurate virtual platform simulator written in SystemC for the AMBA bus-based
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SoC architecture is used for simulations of our model. Details about the platform may

be obtained from [24]. Table 3.1 shows the various signals in an AMBA bus, which we

consider for analysis in our model. Our model has considered almost all the signals in the

AMBA AHB 2.0 bus system. Signals that are not considered are either not implemented

in the virtual platform or are used to support different operations, which are beyond the

scope of this study.

Signal name Function

HBURST[2:0] This signal indicates if the transfer is a
form of a burst.

HWRITE When HIGH, this signal indicates a
write transfer and when LOW, a read
transfer is executed.

HTRANS[1:0] This signal indicates the type of current
transfer, which can be non-sequential,
sequential, idle or busy.

HSIZE[2:0] Indicates the size of transfer; typi-
cally byte(8-bit), halfword(16-bit) or
word(32-bit)

HREADY When HIGH, the signal indicates a
transfer completed on the bus. The sig-
nals can be set on low if we need to ex-
tend a transfer.

HRESP[1:0] Response from the slave. Four differ-
ent responses are provided, OKAY, ER-
ROR, RETRY and SPLIT.

HBUSREQ This signal is from a bus master to the
bus arbiter which indicates that the bus
master requires the bus.

HMASTER[3:0] Arbiter indicating the bus master that
is currently performing a transfer.

HGRANT Ownership of the address and control
signals changes at the end of a trans-
fer when HREADY is HIGH, so a mas-
ter gets access to the bus when both
HREADY and HGRANT signals are
HIGH.

HSEL This signal indicates that the current
transfer is intended for the selected
slave.

HADDR[31:0] This is the 32-bit system address bus
that indicates the address to read or to
write.

Table 3.1. The definition of signals and its func-
tion
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3.4.1 Single-bit Error Injection

We inject a single-bit error by corrupting the various signals of interconnect during

the operating phase of the bus’s finite state machine. The single-bit error is injected

just once by modifying the state of one of the interconnect signals. Such an error is

injected randomly at any time. However, to obtain the effect of the error on a particular

transaction we ensure that the error is injected during the required transaction in the

bus. This precisely simulates the single-bit error in our simulation. In this chapter,

we only consider two types of transactions in the bus, namely the BUS-READ and

the BUS-WRITE operations. The characterization model can be further extended to

other transactions such as BURST-READ and SPLIT-READ, and similarly for the write

transactions.

3.4.2 Consequences of Both Single- and Multi-bit Errors

Based on the various errors observed due to single-bit and multi-bit faults, we have

categorized the effects of the errors into four main classes. The errors are classified

based on their effects on the system. The four main implications of the errors in the

system are as follows:

• Fatal Error (FE): An error that leads to system crashes. The fatal error means

the system detects a fatal situation that causes the system to stop executing. Fatal

errors include the following:

1. The address cannot be mapped to any existing slave. One reason for this is

the address signals are changed to incorrect status.
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2. The core is trying to write an instruction that is read-only. One reason for

this error is an incorrect HWRITE signal.

3. The core accepted a signal that should not have happened. For example,

consider a scenario when the core expects to stop but receives a spurious

grant signal from the arbiter due to an erroneous bit flip.

4. An incorrect or bad address occurred that should not have during the transfer

operations. For example, during a burst transfer, the next requested address

is not a correct offset address of previous address. It is, however, important to

note that this error can easily be overcome if the correct address information

is retained, in which case system crashes may be prevented.

• Deadlock(DL): An error that leads the system into a no progress state. Examples

of this error are infinite loops due to modifications in loop invariants, or incorrect

arbitration so that no master can obtain the grant and continue its work. Two

types of deadlock situations were found in our simulations.

1. Program counter corruption: this case arises when the program counter jumps

to an unknown location, there is an invalid instruction, and the processor

keeps retrying. If the Program counter is affected and the program behav-

ior is changed, and the stop simulation() function which contains a software

interrupt to terminate the program is either not executed or executed incor-

rectly, then the system enters an infinite loop.

2. Undefined state: this case arises when the state machine of the bus which

defines the bus protocol enters an undefined state, each of the processors wait
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for the response from the bus in order to obtain access. However, at this time

no one can process.

• Silent Data Corruption (SDC): An error that remains unnoticed until the

end of the simulation but provides incorrect results. SDC primarily occurs due to

accumulation of error over many cycles without the system getting in deadlocks or

crashing. One of the prime reasons for SDC is the incorrect HADDR signals that

generate read-or-write transactions on incorrect addresses. This causes incorrect

data processing that leads to incorrect results.

• No Effect: An error that does not affect the system in any way.

3.4.3 Single-bit Transaction-based Error Characterization

The error simulations are executed for multiple benchmarks and the criticality of each

signal is assessed based on the effects of a single-bit error on any signal over read-and-

write transactions.

We define values Pf |T=r, Pd|T=r, Pf |T=w and Pd|T=w for each signal, where:

• Pf |T=r stands for the percentage of times the error in a signal leads to fatal error

during a read transaction.

• Pf |T=w stands for the percentage of times the error in a signal leads to fatal error

during a write transaction.

• Pd|T=r stands for the percentage of times the error in a signal leads to a deadlock

during a read transaction.
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• Pd|T=w stands for the percentage of times the error in a signal leads to a deadlock

during a write transaction.

The behavior of the error was uniform in the cases of the fatal errors and deadlocks

for all the benchmarks; however, the silent data corruption was completely dependent on

the nature of the benchmarks and hence characterizing it was not possible. The reason

for such an abrupt behavior with respect to silent data corruption could be attributed

to the fact that SDC are highly dependent on the nature of the application. This

error characterization step helps us in finding the criticality of different signals and our

observations are discussed in the single-error results section 3.4.5.

3.4.4 Single-bit System Level Error Prediction

The signal level susceptibility analysis is extended to system level by using the error-

effect percentages of the signals described in the previous section. The errors are injected

in the signals based on a probability dependent on the width of the signal. The effect

of the errors are recorded and compared with the estimated values. The effect of any

single-bit error on any signal is estimated using the following equation:

Psf = Write% ×
∑

allsignals

pi × Pf |T=w (3.1)

+Read% ×
∑

allsignals

pi × Pf |T=r

where Psf is the probability of any error leading to a fatal error in the system, pi is the

probability of an error hitting the signal and Pf |T=r and Pf |T=w are as defined earlier.
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The value pi is computed as the ratio of the signal width over the total number of bits

in all the signals considered in our analysis. This reflects the fact that the probability of

an error occurring in any signal is directly proportional to the number of bits of a signal.

Such analysis provides a near accurate estimate of the effect of any single-bit error on

the execution of any application on the bus system. Similar equations for the different

effects of errors may be written and their probabilities may be estimated for different

applications. These probability numbers characterize the effect of errors completely in

any bus-based system. Note that the accuracy of the prediction may further be improved

by increasing the granularity of our analysis. We may consider more system parameters

while characterizing each of the signals,such as the number of memory accesses, in order

to increase the prediction accuracy of the model. In these cases, all the parameters

should be incorporated into the prediction equation.

3.4.5 Single-bit Error Experimental Setup

We modify a cycle-accurate virtual platform, which models SoC architectures having

ARM cores and has a capability of simulating different interconnect architectures. We

analyze AMBA AHB interconnect in our work. A boot-time error file is enabled in the

system during which various types of errors may be injected at different intervals on

different components of the bus system. Another set of scripts is written to perform

the profiling operation and determine the effects of various errors and finally observing

the criticality of each of the errors. We perform the susceptibility analysis for different

signals of the AMBA bus system.

We model the error susceptibility of the SoC by first identifying the error suscep-
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tibility of each signal. The error susceptibility of each signal is found by executing a

benchmark numerous times while injecting only one error on a signal in each execution.

The results of the benchmarks are analyzed and we determine the number of execu-

tions resulting in fatal errors and deadlock situations. A deadlock is flagged when an

application is not completed by a particular time. After getting the results from these

executions of the benchmark, we can calculate the error susceptibility of each signal by

dividing the error states over the number of executions. We do the same for each of

the benchmarks and then get the average error susceptibility for each signal of all the

benchmarks.

We instantiated four ARM cores in the virtual simulation platform and four private

memories attached to the bus. Private memories are slaves that could be used as caches

by the processor cores. The shared and semaphore memory spaces were instantiated

as well. Table 3.2 shows information about the different applications we used for error

characterization when executed on the SoC platform with the aforementioned specifica-

tions. Except for the first three benchmarks, which were included in the simulator and

modified by us, the rest of the benchmarks were picked from the SPLASH suite.

App C BB(%) BT(%) R W

Qsort 16576 47.4 23.53 56 743

Matrix 133503 36.59 18.29 240 23444

PIL Filter 220288 41.59 19.10 2640 7151

FFT 418920 61.21 29.97 1669 28053

DES 205307 54.01 20.61 33417 9370

LU 2051411 68.05 27.71 260717 302519

C:The number of the executing cycles. BB: The percent of time

that the bus is busy. BT: The percent of time that the bus is

transferring data. R: The number of read transaction W: The

number of write transaction

Table 3.2. The six benchmarks used in our simulation
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3.4.6 Single-bit Error Injection Results

Signal Qsort MATRIX PILFILTER FFT DES LU

HBURST 0.1 0.1 0.1 0.3 0.4 0.0

HWRITE 1.4 0 0.5 1.1 0.9 1.1

HTRANS 1.2 0 0.3 0.7 0.55 0.7

HSIZE 18.6 18.4 18.2 23.1 23.4 21.5

HREADY 0.5 0.1 0.9 2 2.2 1.8

HRESP 0 0 0 0.1 0.1 0

HBUSREQ 0 0 0 0 0 0

HMASTER 0.3 0 0 0 0.2 0.1

HGRANT 1.8 0.1 0.1 0.7 1.6 1.6

HSEL 22.3 24.9 19.1 29 26.9 28.3

HADDR 7.4 5.2 10.3 8 8.1 9.4

Table 3.3. Single-bit fatal error rate for each signal in
benchmarks during a bus-read transaction (Pf |T=r)

To analyze the susceptibility of errors on different signals we first conducted ex-

periments to investigate the effect of error on each signal for different benchmarks for

different transaction types. Table 3.3 shows the value Pf |T=r for different applications

obtained over 10,000 runs. Clearly we can observe that, in general, the effect of the error

on different signals remains similar across different benchmarks, mainly due to the fact

that the error is characteristic of the protocol more than the nature of the benchmark.

Similar characteristics are observed for the values Pd|T=r, Pf |T=w and Pd|T=w, values for

all the applications.

To obtain the criticality measure for each signal we obtain the average probabil-

ity values for all the signals over different benchmarks for read-and-write transactions.

Table 3.4 shows the average error rate of Pf |T=r, Pd|T=r, Pf |T=w and Pd|T=w for all

the signals. We may observe that signals like HBUSREQ are very sensitive with re-

spect to the system getting into deadlocks; on the other hand, the probability of an

error in HBURST leading to malfunctioning of the system is really low. The reason

for higher deadlocks due to erroneous HBUSREQ, HRESP and HREADY signals could
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be attributed to the fact that all of them are quite important in establishing the right

communication protocol, and consequently an error in them makes all the resources in

the system in a busy wait state. HADDR is another signal that leads to system crashes

with a high probability, mainly due to the system address going out of known or eligible

ranges. The advantage of such an analysis is the fact that it provides a good opportunity

for the reliability engineer to prioritize his/her focus on guarding the signals.

Signal Pd|T=r Pf |T=r Pd|T=w Pf |T=w

HBURST 2.57 0.17 0.51 0.33

HWRITE 11.80 0.83 0.77 0.37

HTRANS 8.29 0.58 0.70 0.29

HSIZE 0.00 20.53 0.14 23.70

HREADY 13.20 1.25 12.14 2.07

HRESP 30.01 0.03 24.49 0.00

HBUSREQ 32.62 0.00 14.25 0.00

HMASTER 0.00 0.01 0.99 0.63

HGRANT 5.53 1.07 1.56 0.50

HSEL 5.59 25.08 8.21 35.63

HADDR 4.36 8.06 0.53 9.81

Table 3.4. Average error rate for each signal

The criticality, however, is also dependent on the bit-width of each of the signals,

which reflects a higher vulnerability of the signal with respect to others. For example,

HADDR is more prone to errors as compared any of the other signals due to higher bit-

width. To analyze the criticality of the signals while taking into account the bit-widths,

we executed the benchmark circuits 20,000 times, with a single-bit error injected during

each run.

The error injection was done probabilistically on all the signals, with the probability

of error on any signal proportional to its width. The results were recorded and compared.

Figure 3.3 and 3.4 show the percentage of fatal errors and deadlocks due to errors in

different signals on different benchmarks. As expected, the probability of deadlock and
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fatal errors due to the signal HADDR are the maximum due to its higher vulnerability

toward getting struck by an error.

Figure 3.3. Effects of error on different signals for the PIL-Filter benchmark

Figure 3.4. Effects of error on different signals for the Qsort benchmark

Using the probability values and the number of transactions in different benchmarks,

we predict the probability of the effect of any single-bit error in the system. Such

prediction is then validated with actual simulations. Figures 3.5 and 3.6 demonstrate

the comparison of the predicted values and the simulated values. Our prediction scheme

predicts the probability of the deadlocks with an accuracy of 94% and fatal errors with
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Figure 3.5. Comparing experimental values with predicted values for deadlock errors

an accuracy of 90%, respectively. It is important to note that the prediction accuracy

is quite important considering the run-time of the simulations. The prediction is simply

using the signal probability values from Table 3.4 and the number of transactions from

Table 3.2. Table 3.5 shows the average run-time of the 20,000 simulations that we

performed to obtain the system level effect of any single-bit error. Clearly the prediction

scheme provides a much better methodology to obtain an estimate on the effect of any

error in the whole system.

Figure 3.6. Comparing experimental values with predicted values for fatal errors
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Benchmark Time
(in
hours)

Qsort 5.44

MATRIX 15.93

PILFILTER 20.76

FFT 54.73

DES 56.16

LU 481.1

Table 3.5. Run time for obtaining system level
effects of any single-bit error

3.5 Multi-bit Error Characterization Model

Previous sections dealt with single-bit errors on the SoC bus. Cases arise when a multi-

bit error affects the system. For example, interconnect crosstalk caused by signal swings

among different wires may cause multiple unexpected bit-flips on the interconnect. Soft

error occurring on the bus arbiter can cause multiple bit-flips as well. To make it worse,

the possibility of multi-bit errors is increasing due to technology scaling and higher

system density because they cause shrinking distance between wires and transistors,

and an error happening on the system can easily cause multiple bit-flips on wires and

transistors. Therefore, it is critical to explore the effects of multi-bit errors on the system.

3.5.1 Multi-bit Error Injection

This section focuses on the impacts of multi-bit errors. Not all signals in the system

have bit-widths greater than one. Signals, such as HBUSREQ and HGRANT, has only

one bit-width. Only signals with multiple bit-widths will be affected by multi-bit errors.

In the AMBA AHB, those signals with multiple bits are HBURST (2 bits), HTRANS (2

bits), HSIZE (3 bits), HRESP (2 bits), HMASTER (4 bits), and HADDR (32 bits). In

addition, since the main causes of incorrect bit flip are soft error and crosstalk, and both
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will cause errors that happen next to each other, we assume these errors are adjacent.

3.5.2 System Level Prediction for Multi-bit Error

We demonstrate how we extend system level prediction for single-bit errors to multi-

bit errors. Similar to single-bit errors, the error simulations are executed for multiple

benchmarks and the criticality of each signal is assessed based on the effects of a multi-

bit error on any signal over different types of transactions. We define values Pf |T=r(x),

Pd|T=r(x), Pf |T=w(x) and Pd|T=w(x) for each signal, where:

• Pf |T=r(x) stands for the percentage of times the error in a signal leads to fatal

error during a read transaction when an x-bit error happens to the signal.

• Pf |T=w(x) stands for the percentage of times the error in a signal leads to fatal

error during a write transaction when an x-bit error happens to the signal.

• Pd|T=r(x) stands for the percentage of times the error in a signal leads to a deadlock

during a read transaction when an x-bit error happens to the signal.

• Pd|T=w(x) stands for the percentage of times the error in a signal leads to a deadlock

during a write transaction when an x-bit error happens to the signal.

and

• P (x) stands for the percentage of an x-bit error when errors happen to the signal.

The signal level susceptibility analysis is extended to system level by using the error-

effect percentages of the signals described in the previous section. The errors are injected

in the signals based on a probability dependent on the width of the signal. The effect
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of the errors are recorded and compared with the estimated values. The effect of any

multi-bit error on any signal is estimated using the following equation:

Psf = Write% ×
∑

allsignals

(pi ×

max
∑

x=1

Pf |T=w(x) × P (x)) (3.2)

+Read% ×
∑

allsignals

(pi ×

max
∑

x=1

Pf |T=r(x) × P (x))

where pi is the width of the signal. This equation modifies the previous equations for

single-bit errors and adds two variables: one stands for the number of erroneous bit-flips

that an error causes, and another stands for the percentage that the error occurs.

After we add the two variables, the total system error rate will be the summation

of the number of erroneous bit-flips of the error, times the percentage that the error

occurs, times the error rate that the error causes. Therefore, the equation can predict

the system error rate for multi-bit errors.

Figure 3.7. The trend of average deadlock error rate
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Figure 3.8. The trend of average fatal error rate

3.5.3 Multi-bit Error Injection Result

Figure 3.7 shows the result of deadlock error rate when a multi-bit error occurs during

benchmark execution. Similar to the simulation for the single-bit error injection, we ex-

ecute each benchmark 20,000 times, with a multi-bit error occurring in each execution.

As we can see in Fig 3.7, error rates remain quite constant when the number of bit-flips

increases. This result is important because it shows that a single-bit error contributes

to the majority of the deadlock error. Additional bit errors do not escalate the dead-

lock much further. One exception is the HRESP signal; it increases about 10% during

read operations. This is because the operations of the bus protocol is very sensitive

to the HRESP signal. Additional errors on this signal will increase the deadlock rate

significantly.

In contrast, Figure 3.8 shows fatal error rate for signals with multi-bit width. As can

be seen here, the fatal error rate for the HSIZE and HADDR signal increases significantly.

Our explanation for this is the HSIZE signal determines the transfer width, and if the

transfer width changes, fatal errors occur. More bit-flips occurring on the transfer will
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result in higher possibility to modify data that is required for transfers. Similar to the

HSIZE signal, the HADDR signal is also very sensitive to multi-bit errors during transfer

for the same reason.

Figure 3.9. Comparing experimental values with predicted value for deadlock errors when a
multi-bit occurs

Figure 3.10. Comparing experimental values with predicted value for fatal errors when a multi-
bit occurs

Figure 3.9 and Figure 3.10 are comparisons between prediction values using the

system error prediction and values from experiments. In the prediction equations, we

assume the possibility of single-bit errors as 5 times higher than two-bit errors, and the
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possibility of two-bit errors as 5 times higher than three-bit errors and so on. From both

figures, we found deadlock prediction value can achieve 89% accuracy and 91% accuracy

for fatal error, and ranges from 81% accuracy to 115% accuracy for deadlock error, and

84% to 105% accuracy for fatal error.

3.6 Conclusion

In this work, we first characterized the effects of single-bit errors for bus-based systems

and discovered fatal and deadlock errors are more close to protocol itself, not benchmark,

which means fatal or deadlock error rates due to errors on the bus. We extended the

single-bit work to multi-bit injection. Our work has demonstrated a novel, generic and

effective transaction based error characterization scheme for bus architectures in SoCs.

Such a model is quite generic and can be extended to other systems or bus protocol.

The criticality measure of each of the signals provides an opportunity to prioritize the

employment of any error correction schemes on the system, which is quite critical with

the shrinking power and area budgets. From the simulations result, deadlock error rate

remains quite constant even the width of bit-flips increases. However, fatal error rate

for the HSIZE and HADDR signal increases significantly. The error effect prediction

scheme provides the probability of the effect of any single-bit error on the system with

an accuracy of 92% on an average for single-bit errors, and 90% for multi-bit errors.



Chapter 4
System Level Modeling for Device

Degradation

Reliability of on-chip interconnect structures in system-on-chip (SoC) architectures has

become very critical with increased integration. Scaling of feature sizes further aggravate

the need for such guarding, particularly due to new emerging causes of both permanent

device failures and degradation. Apart from permanent failures, systems may experi-

ence timing failures due to slow degradation of devices caused by physical phenomenon

such as Negative Bias Temperature Instability (NBTI) and Hot Carrier Effects (HCE).

Consequently, system buses, that form the backbone of the communication network in

SoC systems, need to be designed to be aware of such permanent failures and timing

degradation.

In this chapter, we present a HCE And NBTI Incorporated Tool for ASICs (HANITA)

for complete analysis of degradation of circuits over a period of time due to NBTI

and HCE. The tool is used to analyze the degradation impact on bus systems and the
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vulnerability of buses to such circuit degradation. A hardware based dynamic schemes

are proposed to detect timing degradation. A PROactive BUS (PROBUS) architecture

is proposed that dynamically adapts to continue the system functionality even after the

system timing degrades.

4.1 Introduction

System-on-chip (SoC) architectures are being extensively employed in many real-time

systems. Scaling and increased integration in such systems is therefore quite aggres-

sive, due to both performance and economic demands. Such an increased integration of

IP components requires support for heavy on-chip communication. Consequently, the

criticality of the on-chip communication system in SoC architectures necessitates an in-

creased focus on its reliability. Particularly, in the regime of sub-100nm technologies the

reliability of such communication systems becomes quite significant due to the growing

concerns of not only transient faults, but permanent failures as well. Apart from the

permanent failures, aging of circuits due to various physical phenomena is also increas-

ing. Such phenomena may also shorten the lifetime of operation of circuits in the form

of timing violations.

Many contemporary SoC architectures use shared bus or Network On Chip (NOC)

based architectures for their communication needs. In this chapter, we look into the

degradation of on-chip bus architectures in such SoC based systems, due to two different

physical phenomena, namely Negative Bias Temperature Instability (NBTI) and Hot

Carrier Effects (HCE). A comprehensive insight into the impact of such degradation in
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typical shared bus-based systems based on commercial bus architectures is demonstrated.

The degradation itself is studied on the individual components of the on-chip buses. Such

an analysis is automated using a tool that takes the circuit information and computes the

individual device degradation. These device degradations are back-annotated to compute

the overall system degradation over a period of time. Prominent device degradation

phenomenon (NBTI for PMOS and HCE for NMOS transistors), are modeled separately

using empirically established existing models. The analysis we provided is also effective

for upcoming communication architectures like NOCs due to the presence of similar

circuit components in such systems.

NBTI has emerged as one of the dominant causes of system degradation for sub-

micron technologies. The phenomenon is observed in PMOS transistors when stressed

under negative gate voltage at an elevated temperature (e.g.,Vgs = −Vdd). Consequently,

this effect can increase PMOS transistor threshold voltage and reduce absolute Ion cur-

rent of PMOS devices, thus lowering the speed of a circuit. This threshold voltage

increase leads to a reduced temporal performance and causes reliability issues and po-

tential device failure as well. However, removal of the bias or adding positive bias helps

decrease some interface traps, leading to a fractional recovery of the threshold voltage.

On the other hand, degradation for NMOS transistors have primarily been dominated by

the Hot Carrier Effects (HCE) causing electrons to get trapped in the oxide. Although

there have been considerable work in analyzing the degradation impact on devices under

continuous current flow conditions, it is necessary to analyze their impact on normal cir-

cuit operations. This analysis requires the precise device characterization in the circuit

operations including the location and switching of the devices.
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Although there have been efforts in isolation to solve such problems, this is the first

effort to provide a well defined methodology to analyze such a degradation using au-

tomated tool flow, namely, HCE And NBTI Incorporated Tool for ASICs (HANITA).

We demonstrate how combined analysis of such phenomenon significantly varies as com-

pared to isolated circuit analysis. An important issue in countering such problems is the

dynamic detection of the degradation during real time operation. We provide dynamic

hardware based approaches to detect such timing violations and compare their effective-

ness. Finally, based on the borrowed concept of immunity in the human body we propose

a modified bus architecture, called PROactive BUS (PROBUS), that dynamically adapts

to timing degradations and maintains functional correctness.

The contributions of this work are (a) Providing circuit analysis tools to model the

run-time degradation of circuits due to NBTI and HCE; (b) Proposing techniques to

detect timing degradation in buses with minimal hardware overheads; (c) Proposing

PROactive BUS architecture that dynamically configures itself to an error resilient sys-

tem.

The rest of this chapter is organized as follows. Related work and motivation is

presented in Section 4.2. Section 4.3 explains the tool flow for the NBTI and HCE

analysis for given designs. The impact of degradation in on-chip bus systems is presented

in Section 4.4. We propose our solution to detection and the concept of PROBUS in

Section 4.5. The experimental setup for our solutions are presented in Section 4.6 followed

by our conclusion in Section 4.7.
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4.2 Related Work and Motivation

The growing importance of SoC based systems in real time systems are depicted by their

increased use in real-time systems like wireless LANs etc [38]. Such commercial products

highly champion smaller feature sizes aggressively in SoC systems due to associated

performance and economic benefits. However, scaling also entails aggravation of different

physical phenomena leading to device failures as demonstrated by Jayanth et. al [8].

Other than permanent failures, slow degradation of devices due to phenomenon like

Negative Bias Temperature Instability (NBTI) and Hot Carrier Effects (HCE) may lead

to timing failures in systems [39]. Detailed analytical modeling for impact of NBTI on

devices validated empirically has been described [11]. Corresponding device degradation

models for HCE are presented in [40]. In [41], an analytical model is proposed to estimate

the temporal performance degradation of digital circuits, and a sizing algorithm is also

proposed to improve performance degradation. Since most of these aging phenomena

are significantly affected by the static and switching probabilities of the circuits, there

have been solutions to prolong the age by balancing circuit switching for uniform aging

all throughout the devices [42]. There have been methodologies analyzing optimization

due to NBTI and HCE in isolation, however, as presented by us, the actual circuit

degradation needs the conglomeration of the two phenomenon during analysis.

Bus reliability has been studied from the perspective of transient errors [36, 43].

However, to the best of the author’s knowledge, this work is the first aging analysis

performed for bus systems. Architectural solutions to counter device degradation based

timing errors and dynamic variations are presented by Kypros et.al [44]. The age de-
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tection scheme we present uses the razor latches presented by Ernst et. al [45]. We use

this mechanism to provide dynamically changing BUS architecture which proves to be

resilient to timing errors with minimal penalty.

4.3 HANITA: HCE And NBTI Incorporated Tool for ASICs

HANITA is a completely automated ASIC design flow analysis methodology using Syn-

opsis design tools for studying the timing impact of degradation due to HCE and NBTI.

The importance of the tool is that it tightly conglomerates the analysis of aging of indi-

vidual transistors and the overall timing impact of device aging on the hardware design

component. Given a RTL description of circuits as input to our tool flow (shown in

Figure 4.1), the average switching activity of the gates in the circuit is used to analyze

the degradation of the individual devices. Such degradation information of the gates is

used to compute the critical path timing of the design in a degraded state. We use Syn-

opsis Design Compiler to obtain synthesized gate level netlist and corresponding EDIF

netlist. The EDIF netlist is fed to the ACE tool that calculates static and transition

probabilities at all internal nodes (gate inputs in this case) for a given set of input static

probabilities. The obtained static and transition probabilities are used to compute the

Vth degradation for each standard cells using the underlying device degradation models

for HCE and NBTI. This work is done using empirically validated analytical models

explained subsequently. Based on the Vth change, rise and fall delay degradation (per-

centage delay increase) values for the individual transistors are calculated using a delay

model proposed by Kuroda et. al [46]. The obtained rise and fall transition delay scaling
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values are updated in the TSMC timing libraries which is used by Synopsis PrimeTime

analyzer for timing analysis. Figure 4.2 explains the fall and rise delay scaling calculation

for an OR gate due to both NBTI and HCE. Stack effect is taken into consideration for

NBTI and HCE degradation calculation for a circuit. Rise delay scaling for the NOR

gate (shown in Figure 4.2) due to NBTI degradation factors the stack effect. The timing

degradation calculation due to NBTI is based on static probabilities (similar to the work

by Kumar et. al [47]) while the HCE involves both static and transitional probabilities.

Figure 4.1. CAD flow for NBTI degradation analysis

Figure 4.2. Rise and fall delay scaling calculation for an OR library gate

The effect of NBTI on threshold voltage of PMOS transistor is computed using the

model presented by Rakesh et. al [11]. Equation 4.1 is used to compute the degradation
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of a device under given process parameters, temperature and the duty cycle of the device.

∆Vth = Kv · β
0.25 · T 0.25 ·

[

1 − (1 −
√

η(1 − β)/n)2n

1 − (1 −
√

η(1 − β)/n)2

]0.5

+ δv (4.1)

The HCE model is based upon the model presented in [48]. The model estimates the

degradation of the device threshold voltage over a period of time due to interface trap

generation. NMOS transistors are observed for such degradation due a more pronounced

effect of the HCE phenomena on NMOS transistors. Equation 4.2 demonstrates the

threshold degradation of the NMOS device due to HCE-based degradation.

∆Vth ∝ Psw × tn (4.2)

,where Psw is the average switching activity of the gate and the value ’n’ governing the

growth of the threshold polynomial dependence on time is used as 0.45 as used in [48].

The dependence on switching activity is attributed to the average current flow through

the device while the polynomial time dependence is obtained as a result of solving a first

order differential equation defining dependence of threshold growth on the rate of trap

generation.

65nm technology
VDD (V) 1.0
Tox (nm) 1.0

Vth (PMOS) (V) 0.20
Vth (NMOS) (V) 0.22

T (k) 353
wire delay per mm (ps) 209

Table 4.1. Technology parameters used for NBTI and HCE analysis
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Figure 4.3. AMBA Bus Architecture

4.4 Degradation Analysis of On-chip Bus System

A typical shared bus system has four main components governing the delay of the bus

system, namely, arbiter to decide the bus master, decoder unit for address decoding,

multiplexers for acting as control switches and large number of link buffers. The critical

path delay of such designs which govern the bus frequency, is completely dependent on

the bus architecture. Figure 4.3 depicts the architecture of one such commercial bus

standard, AMBA AHB [18], which we use to analyze the impact of aging. As depicted

in the figure, the basic AMBA AHB bus model has a master-slave-based communication

with the masters as the processors cores and the memories and other peripheral devices

being the slaves is depicted in Figure 4.3. The bus request cycle from a master to the

slave in such an architecture comprises the critical path, as compared to the return path

through the address decoding unit. The reason for such an observation is attributed to

the fact that the address decoding is performed during the request cycle itself.

Consequently we determine the degradation of the arbiter, the multiplexer and the
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link buffers in this work to analyze the frequency violations created by aging. A HDL

description of arbiter driving a multiplexer was used for analyzing the degradation. To

estimate the degradation of the link buffers we first estimated the number of repeaters

and their respective sizes needed for optimal performance of the link using buffer model

presented in [49]. These buffers were appropriately modeled in HDL and provided as

an input to our degradation analysis tool. The technology parameters for the devices

and interconnect are employed from ITRS report [10] for 65nm technology as shown in

Table 4.1. The tests were performed using a 65nm delay scaled TSMC library with a

scaling model similar to Jayanth et. al [8].

The degradation of a 4-input arbiter driving a multiplexer, the degradation of the

link, and the total critical path is demonstrated in Figure 4.4 when operating at a

frequency of 500MHz. The inputs were driven by appropriately-sized buffers to simulate

the impact of cores and the static probabilities of the requests from each masters is set

at 0.5. As shown in the figure, the speed of a 4-master arbiter tends to fall by 10% over

a period of 1 to 5 years for a continuous usage of the bus. Such a degradation in critical

path may lead to slack violations leading to either system failures or even deadlocks due

to inconsistent and false transactions as demonstrated in [43]. It is important to note

that these numbers project the degradation under continuous operation of the system

bus which is quite a realistic scenario considering the employment of SoC based designs

in real time systems, like wireless LANs, cell phones, etc. Such an observation highly

motivates techniques to either prolong the age of the buses or increase the resilience of

the buses to such timing violations.

Another important observation is presented in Figure 4.5. The figure demonstrates



78

Figure 4.4. Degradation of arbiter over a period of time

the impact of NBTI and HCE individually on a 4x1 arbiter compared to the total delay

impact when both of them are analyzed in conjunction with our tool. An important

observation is the fact that the degradation of circuits is primarily dominated by NBTI

degradation as compared to HCE for 65nm technology nodes. However, since NBTI af-

fects the pull-up circuit and HCE affects the pull-down circuit, the critical path obtained

from combined analysis will be different from separate analysis. This is evident from the

different delay degradation values for the combined and individual analysis as seen from

Figure 4.5. Hence, it is necessary to analyze them together to obtain delay degradation

due to aging in all parts of the circuit.

We analyzed the impact of increasing the number of cores on the circuit path delay

degradation. Figure 4.6 demonstrates the degradation of a single shared bus connecting

4 and 8 cores connected to same number of slaves. It is evident from Figure 4.6 that

circuit degradation increases with the complexity of circuit due to the increased current

flow.
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Figure 4.5. NBTI/HCE degradation in isolation and the total degradation

Figure 4.6. Total degradation due to NBTI/HCE for 4x1 and 8x1 arbiter bus systems

4.5 Countering Aging in Bus System

Solving the problems of degradation needs focus on the dynamic detection or a trigger

mechanisms to flag the system degradation followed by a solution or response to such a

trigger. We demonstrate a hardware based approach to detect timing failures. Followed

by that we describe our schemes to prolong the lifetimes by continual working or recovery

schemes.
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4.5.1 Detecting Degradation

Software-based timing tests for buses has been explored extensively in [50]. Impact of

degradation during runtime may be detected by inserting simple read-and-write transfers

in a standalone system. Testing of such systems, however, is particularly complicated due

to the operation of the components at different frequencies. However, simple transaction-

based timing errors may be completely detected by performing consecutive write-and-

read operations to some particular memory addresses and checking for the consistency

of the write-and-read values. Such testing may be provided periodically to test timing

violations in the system. A testing like this, however, may not be able to capture and

flag the errors at run-time dynamically and may lead to the system ending up in fatal

crashes due to false transactions or even deadlocks. This motivates us to look for dynamic

hardware triggers which may flag timing violations.

We propose to capture the timing degradations in a critical path as soon as there

is a setup or hold violation by using a Razor Flip Flop (RFF). Razor Flip Flop based

low-power pipeline design techniques, which may dynamically detect and correct circuit

timing errors is presented in [45]. A similar technique may be employed in bus systems;

however, instead of using all flip flops as RFFs we utilize the knowledge of the critical

path in the bus. Such observation enables us to capture the timing degradation of the

critical path of the bus with minimal power and area overheads incurred due to RFFs.

The requirements for RFFs completely depend upon the critical path of the bus

system. In this work we demonstrate how we may selectively place RFFs in a AMBA

bus system to capture timing violations caused by degradation. A similar analysis may
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(a) (b)

Figure 4.7. (a) AMBA AHB bus with Razor Flip Flop. (b) Razor flip-flop.

be performed in other bus systems due to the similarities in the underlying hardware

of most bus architectures. As described in the previous section, the critical path in an

AMBA bus system is the combinational logic path involving the arbiter, the multiplexer

and the data and address link delays. This motivates us to only have RFFs at the

slave end to capture the timing degradation due to NBTI or HCE in AMBA based bus

systems. Such a selection of placement of RFFs may, however, vary across bus systems

depending upon the design implementation of the critical paths.

A similar solution is effective for other commercial bus systems including the IBM

CoreConnect and ST-buses. The number of RFFs, however, is dependent on the con-

figuration of the system. The first timing failure of the system due to critical path

degradation may be completely captured by having an RFF at the slave end of either

the data bus or address bus. A 32-bit address and data bus system would therefore

require 32 ∗ NSLAVES RFFs, where NSLAVES is the number of slaves in the system

as demonstrated in Figure 4.7. The power overhead of such a change in the hardware is

primarily due to the additional delay buffers included to provide a delayed clock to the
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slave latch in the RFF. Therefore, the number of such delay buffers per razor flip-flop

depend upon the clock frequency. We estimated an average requirement of 300 addi-

tional buffers for a bus operating at 500MHz with 4 slaves. The percentage contribution

of this to the total power consumption of a 4 core, 4 slave ARM based SoC connected by

AMBA interconnect was determined to be 1.9% on average. Note that we may be able

to catch transient and non-deterministic errors in non-critical paths in the bus system by

having RFFs for every latch in the system. The area overhead may grow tremendously

in such a case. However, a transient error in the critical path may disguise as an aging

signal. Such a response is handled by having an error counter and resetting it at regular

intervals to distinguish between the more severe aging related timing errors from the

single event upsets.

4.5.2 PROBUS - Proactive BUS

The concept of PROBUS is based on adaptation of the bus to aging alerts produced by

the aging detection trigger mechanism. Architecture depicting the PROBUS is demon-

strated in Figure 4.8. PROBUS works on the concept of dynamically changing the

protocol of bus transfer to adapt to the degradation of the underlying circuits due to

NBTI/HCE effects. To understand the concept of PROBUS, a detailed understanding

of commercial bus architectures is quite necessary.

Most commercial bus architectures like AMBA, CoreConnect and Wishbone are

burst-based architectures. Architecture of a burst-based system is shown in Figure 4.8.

The burst bit as demonstrated in the figure controls the input to the data and address

bus multiplexer switches, using another multiplexer logic. The burst-based logic is typ-
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Figure 4.8. Original and PROBUS architectures

ically embedded in most arbiters of such bus systems. Consequently, in a burst-based

communication the arbitration delay degradation will be logically masked due to the bus

grant provided to the master in all the burst cycles except for the first. Therefore, the

errors occurring in the degraded buses will primarily be during the transfer cycles due

to false transfers caused by delayed arbitration. In fact, the delayed arbitrations would

cause the transfers to or from the previous bus master or some corrupted master due to

setup or hold violations.

The proposed PROBUS architecture is demonstrated in Figure 4.8. As shown in

the figure, an additional multiplexer is used to govern the bus grant. These inputs to

the multiplexer as demonstrated in the figure are the original inputs and a special grant
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signal to the component is called Dummy master. Dummy master is typically used in

most contemporary commercial bus systems for modeling a state emulating hardware.

Dummy master does not send any request to the bus and, when granted by the arbiter,

it signals an IDLE transfer. In cases of SPLIT transfers or no bus requests when all

the masters are unable to access the bus, the arbiter signals a grant to Dummy Master.

Since the degraded bus may not be able to provide the grant immediately during bus

burst switching, the grant to Dummy Master acts as a shield in the first transfer cycle

to prevent incorrect transactions. Therefore, to avoid the timing error explained earlier

during the bus handover cycles, we propose to modify the arbiter to interleave each such

hand-overs by a Dummy Master. A run-time decision is taken to pro-actively switch

to the Dummy master during the interleaving cycles of the bus. This decision is based

on the error signal flagged by a Razor latch on detecting a timing failure that might

be caused by degradation failure. Such a concept of PROBUS may be easily adopted

in commercial bus system architectures. Note that dummy grants during every transfer

cycle may suffer from significant unwanted latency penalties, particularly in low burst

systems, due to the introduction of idle cycles more frequently. Therefore, the PROBUS

architecture is most useful when a system degrades significantly. If the system does not

degrade significantly, it is better to use the frequency adjustment scheme first as will be

described in Section 4.6. This observation is experimentally demonstrated in Section 4.6.

PROBUS architecture also provides an opportunity to increase the operating fre-

quency of the bus system. This may be justified by the fact that the PROBUS system

architecture splits the critical path in the original system to arbiter and the link delays

separately. Note that such an increase in frequencies may be completely dependent on



85

the bus system design. However, implementation of the frequency change may once

again be triggered by the error flag of the RFFs.

We modeled the AMBA bus system as a PROBUS using a SystemC model of AMBA

bus core. AHB is a multi-master bus, and only one master is allowed to perform a

transfer operation at one time. When a master is ready to transfer data, the master

asserts the HBUSREQ signal. Each master has its own HBUSREQ signal, and hence

several masters may assert that signals at the same time. The arbiter samples all the

HBUSREQ signals at the next rising edge and decides which master has the right to

access the bus by asserting the HGRANT signal of that master. Along with the regular

masters, which are the system cores, the AHB system also has a dummy master [18]

for reasons explained earlier. The aging-based timing failure resiliency of a PROBUS

AMBA structure is demonstrated in Figure 4.9. The modified arbiter decides the next

master Mnext to be granted bus control at the end of the original bus handover cycle.

However, instead of signaling a grant to Mnext, the arbiter signals a grant to the dummy

master, stores Mnext, and in the next cycle the arbiter, signals the grant to Mnext. Note

that the only overhead of the PROBUS system is obviously the addition of the Razor

latches as explained earlier in the section and an additional 2:1 multiplexer for each of

the arbiters in the system. In multi-arbiter based bus systems like crossbar based models

such a multiplexer is introduced for each arbiter, which however has a negligible area or

delay impact.
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Figure 4.9. Correct transfer after one dummy cycle is added. The HMASTER signal switch
from 01 to 00 , and from 00 to 02.

4.5.3 Frequency Adjustment Scheme

We propose to use a frequency adjustment scheme to prevent timing failures of the system

due to device degradation. The bus system may be slowed down to ensure that the

required timing is met even after degradation. The frequency reduction is triggered only

when the system detects the degradation is sufficient enough to cause timing failures. In

our case, we may use the trigger from the RFF latches for triggering the frequency scaling.

However, such a frequency adjustment scheme entails an overhead in the form of slowing

down the system and hence increases the execution time of the applications implemented

on it. The impact of the frequency scaling scheme on the runtime of applications is

demonstrated in Section 4.6. Hardware costs associated with such frequency adjustment

scheme are presented in [51], where similar Dynamic Frequency Scaling (DFS) is achieved

by using frequency dividers or PLLs (Phase Loop Lock).
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4.6 Experimental Setup and Results

We experimented the proposed schemes in a cycle-accurate SoC simulator [24] which has

ARM cores that communicate using an AMBA based interconnect with slave memories.

The AMBA bus architecture is modified to model the PROBUS architecture as explained

in Section 4.5. Six parallel applications are implemented in the bus system to demon-

strate the average execution time penalty of the PROBUS and the Frequency Adjustment

Scheme (FAS). Note that we consider the execution time as a metric of evaluation in

such systems because different components are operated at different frequencies.

Figure 4.10 demonstrates the average increase in the execution time of the applica-

tions normalized to the original execution times for the FAS and PROBUS scheme when

operated at normal and upgraded frequencies. The frequency used for the FAS scheme is

75% of the original frequency which is one of the rated frequencies of AMBA bus. Based

on our degradation studies, 75% frequency is sufficiently large for preventing timing fail-

ures due to NBTI and HCE in the bus system. The figure also depicts the results of

PROBUS at two different frequencies, the original and the increased frequency, which is

1.3 times the original. This new frequency is estimated based upon the new critical path

delay of the PROBUS which changes as explained in Section 4.5. The execution times in

the figure are normalized to a bus originally operated at 250MHz. Average performance

penalty of 26% is observed across the benchmarks for PROBUS and 36% for FAS imple-

mentations at 75% of original frequency . The execution time overhead of the PROBUS

scheme prevents the usage of such a bus system from the beginning. Another important

observation is the fact that a PROBUS operating at a higher frequency provides a faster
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execution of the same applications. However, such a design may fail much faster under

degradation due to stringent timing constraints and lower slacks. Moreover, there is no

rescue from such timing failures if they occur. The average lifetime of a faster PROBUS

system was estimated to be 1.12 times lower than the original bus structure under similar

pipeline slack assumptions.

We also performed a study of the energy consumption of the different solutions,

and the results are shown in Figure 4.11. It is evident from Figure 4.11 that both the

PROBUS and FAS scheme have minimal energy penalty on average.

Figure 4.10. Normalized performance impact

Figure 4.11. Normalized energy impact

4.7 Conclusion

This work presents a comprehensive study of device degradation impact of NBTI and

HCE on SoC bus systems. We demonstrate an average increase in the critical path delay
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of the bus system by 10% over a period of 5 years, which may lead to timing failures

of the bus system. In addition, we present a PROactve BUS design which dynamically

detects such degradation of the system and transforms to an architecture resilient to such

errors at a minimal penalty on performance. We demonstrate that such a scheme may

prove to be more effective as compared to a simple lowering frequency-based approach.



Chapter 5
Conclusion and Future Work

This chapter summarizes previous chapters, reviews the limitations, and makes recom-

mendations for future research. The chapter concludes with future challenges for system

level design.

5.1 Transaction Level Power Modeling

5.1.1 Chapter Summary

As the transistors on a chip increase exponentially, and power consumption becomes a

firs-class design constraint. Power optimization at lower levels, such as register-transfer

or gate level achieves only 20% reductions because the simulation is slow and cannot

do system wide exploration and reduction. However, power optimization at the system

level can achieve 10 to 20 times the reduction. Therefore, it is important to do power

reduction at the system level.

In Chapter 2, the author first presented a power estimation methodology in the
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transaction level models written in SystemC. We demonstrated the methodology in PCI

Express architecture and integrated the PCI Express simulation platform with the IBM

CoreConnect transaction level models. The IBM CoreConnect platform provides plenti-

ful industrial-strength transaction level models for IP cores. With the ability to commu-

nicate between PCI Express and IBM CoreConnect platform, we can investigate various

application scenarios and explore a greater design space. The main constituents of this

work include transaction level models for PCI Express, a hierarchical representation of

transaction level data, a power model mapping mechanism to augment transaction level

models with power information, and a simulation platform to explore performance and

power trade-offs. The experimental results from CoreConnect TLMs demonstrated the

validity of this approach, providing a starting point for further exploration of transaction

level power estimation. This power estimation methodology for transaction level models

provides rapid power estimation and assists designers in making informed decisions at

the early design stage.

5.1.2 Limitations and Future Work

Our power estimation methodology deals with power modeling at the transaction level.

Contrary to traditional power modeling at the gate or register-transfer level, which is

more accurate but more time consuming, our methodology provides fast but not so ac-

curate power estimation. Cases arise when users prefer more accurate power modeling.

Therefore, it becomes necessary to provide a more accurate modeling in our power esti-

mation methodology. Future work should focus on developing a mixed model allowing

an easy switch from the higher level model to the lower level model when accuracy is
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desired. By integrating a lower level power modeling and providing switch mechanisms

in our models, the users can decide the models they would like to use and the accuracy

they would like to achieve.

5.2 Transaction-based Reliability Modeling for Bus-based

SoC

5.2.1 Chapter Summary

Like Chapter 2, which proposed a power estimation methodology at the transaction level,

Chapter 3 discussed the error susceptibility for bus-based SoC at the transaction level.

We completed this work on a cycle-accurate multi-processor system-on-chip simulator

for an AMBA AHB bus. This chapter illustrated a novel and effective transaction-based

error characterization scheme for bus architectures in SoCs. The scheme characterized

the error susceptibility of control and address signals. The measure of error susceptibility

for each signal provides the opportunity to prioritize the employment of error correction

schemes on the system, which is advantageous because of shrinking power and area

budgets. In addition, the error prediction model we proposed calculates the probability

of any single-bit error on the system with an accuracy of 92% on average, for multi-bit

errors, we found the accuracy to be 90%.

5.2.2 Limitations and Future Work

Since there are no comparable simulation platforms for other industry on-chip buses such

as IBM CoreConnect and ST-Bus, we could compare the work to other systems. Future
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research can extend this work to show the error susceptibility of other bus systems.

We can improve the accuracy of power modeling by utilizing a finer-grained model.

Currently, only error susceptibility for ”read” and ”write” transactions are identified. In

the future, we can improve this by characterizing the error susceptibility at a lower level,

such as ”single read,” ”burst read” and ”split read.”

Our results showed the error susceptibility of each signal in the bus system. With

this knowledge, a selective error detection and correction can be constructed to provide

maximum reliability improvement with limited power and area resources.

5.3 System Level Modeling for Device Degradation

5.3.1 Chapter Summary

Chapter 4 addressed the degradation due to NBTI and HCE on the system level, which

is the first work of this kind. Through this research, we created circuit analysis tools

to model the run-time degradation of circuits due to NBTI and HCE. We analyzed

the precise degradation of circuits and observed timing deterioration due to aging. We

demonstrated how NBTI and HCE affected the system and how device degradation may

lead to increased critical path delays of the buses in a AMBA SoC environment. We

also proposed techniques to detect timing degradation in buses with minimal hardware

overheads. In order to counter the degradation problem, we proposed a PROactive BUS

architecture that dynamically configures itself to an error resilient system.
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5.3.2 Limitations and Future Work

Degradation analyses for other industry on-chip buses, such as IBM CoreConnect or

ST-Bus, are not completed due to the lack of register-transfer or gate level codes for

these buses. Future work can focus on the degradation analysis for these buses if the

resources are available.

Another future work is the reliability issue on the High-K gate dielectric and metal-

gate technology. High-K dielectrics and metal-gates are a new process technology [52].

In this technology, traditional gate polysilicon and silicon dioxide materials are replaced

with high-K dielectric and metal-gate materials, one example of which is Hafnium-based

high-K material in the gate dielectrics. Intel claims they are going to produce their

45nm microprocessor using Hafnium-based High-K dielectric and metal-gate technology

in mid-2007 [53].

This technology improves transistor-switching speed by 20 percent, and 30 percent

reduction in transistor-switching power. In addition, this technology provides greater

than 5 times reduction in source-drain leakage power and 10 times reduction in transistor

gate oxide leakage [52]. However,the reliability is still an issue in this technology. For

instance, the threshold voltage changes caused by the NBTI effect are more significant

than the traditional NBTI in SiO2 [54]. Future work can focus on building a tool to

analyze the NBTI effect at the system level for this technology and providing techniques

to dynamically switch off transistors to recover the NBTI effects.
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5.4 Future Challenges

Systems are becoming more complicated and manufacturing cost is increasing. At the

same time, the time-to-market pressure is growing. These factors make mistakes in

design so expensive that they are almost unacceptable. Therefore, engineers must design

correctly the first time and avoid any errors. However, the gap between specification and

implementation is growing, making it more difficult to make accurate predictions early

in the design. In addition, design at a lower level such as register-transfer level and

gate level is time-consuming and cannot achieve optimal results. Therefore, system level

design is becoming more important as a way to bridge this gap and avoid costly errors.

The purpose of this thesis is to address power, reliability and degradation problems

at the system level. However, there are still other problems that need to be addressed.

One example is process variation that changes the operational characteristics of cir-

cuits. Although researchers have proposed various design techniques to address process

variations at lower levels such as circuit and logic levels, it will become imperative to

address this problem earlier in the design stage as process variations increase. As tech-

nology advances, future research will have to address new and more complicated design

challenges.
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Department of Computer Science and Engineering Jan. 2004-May 2004

Created a transaction-based error characterization model for bus-based System-on-Chip
Proposed a power estimation methodology for PCI Express transaction level models

Teaching Positions

Teaching Assistant, the Pennsylvania State University Aug. 2006-Dec. 2006
Department of Computer Science and Engineering

Instructor for Digital Design Laboratory course
Teaching Assistant, the Pennsylvania State University Aug. 2003-Dec. 2003
Department of Computer Science and Engineering

Teaching Assistant for Operating Systems course

Industrial Experience

Co-Op, IBM Electronic Design Automation Laboratory May 2004-Nov. 2004
Hudson Valley Research Park, New York

Implemented a Power Estimation Methodology for IBM CoreConnect SystemC TLMs

Certificates

Certificate of System-on-Chip Design May 2006
Issued by the Department of Computer Science and Engineering, PSU

Certificate of Teacher of Computer Science July 1999
For Middle School Education
Issued by Ministry of Education, Taiwan




