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Abstract
Recent advancements in sensing and communication technology provide unprecedented
opportunities to synchronize the additive manufacturing (AM) machine world and
facilities to the cyber computational space. The new paradigm of AM cyber-physical
system is a convergence of interconnectivity and intelligence to form adaptable and
resilient processes in the factory of future.

The potential for AM cyber-physical systems to improve productivity leads to the
new wave of technological changes and triggers paradigm shifts to service optimization
and quality management. Sensing technology leads to a data-rich environment and
provides a unique opportunity for different learning algorithms to accelerate the
development of the AM cyber-physical systems. However, realizing the full potentials
of data and transforming them into useful information and knowledge depends to a
great extent on the development of novel analytical methods and tools. Specifically,
the transition from the conventional manufacturing systems to the novel AM cyber-
physical systems brings the following challenges:

1. The emergence of sharing economy enabled by sensing data provides opportuni-
ties in acquiring, providing, and sharing access to goods and services. Novel
analytical approaches are urgently needed for optimal service management.

2. Advanced sensing brings a large amount of data with nonlinear and non-
homogeneous patterns, which calls for effective analytical methods to exploit
acquired knowledge and extract sensitive features for process monitoring and
control.

3. The presence of extraneous noises and complex interactions in modern systems
prevent the extraction of hidden patterns and reveal of root cause in causal
inferences from a large amount of data.

The goal of this dissertation is to improve the service quality of AM cyber-
physical systems. The service management in AM cyber-physical systems includes
not only the service optimization between resources (i.e., between service providers and
seekers), but also the quality of the service that each provider can offer. Therefore,
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this dissertation is aimed at developing new machine learning methodologies to
enhance understanding of design-quality interactions, facilitate causality discovery, to
eventually improve service management in AM cyber-physical systems. My research
accomplishments include:

1. Chapter 2 developed a bipartite matching framework to model and optimize
resource allocation among customers and service providers through a stable
matching algorithm in AM cyber-physical systems. The framework is imple-
mented in the customer-manufacturing allocation in cyber-physical platforms.
Experimental results show that the proposed framework shows strong potentials
to optimize resource allocation in the AM sharing economy.

2. Chapter 3 focused on conducting a design of experiment to investigate how
design parameters (e.g., build orientation, thin-wall width, thin-wall height,
and hatching spacing) interact with edge roughness in thin-wall builds. This
work sheds insights on the optimization of engineering design to improve the
quality of AM builds.

3. Chapter 4 targeted leveraging data to characterize and detect irregular and
nonlinear patterns of signals, 2D images, and 3D voxels. We proposed het-
erogeneous recurrence analysis and generalized recurrence network analysis to
not only capture recurrence dynamics in complex systems but also take the
computational complexity into account. A tailored design of experiment study
was developed to reveal the relationship between network quantifiers and design
parameters (i.e., orientation, width, height, hatching pattern). The designed
methodology is implemented to characterize the AM in-process layerwise data.
This work enables the on-the-fly assessment of AM builds and real-time defect
mitigation.

4. Chapter 5 focused on developing a knowledge-driven Bayesian network for man-
ufacturing complex systems to identify the root cause of quality outcomes and
offer a comprehensive solution. This research is aimed at aggregating machine
parameters, material information, design parameters, process parameters into a
Bayesian network. With the network representation, the causal relationships
among variables can be identified and then be used to facilitate prediction,
diagnosis, and support decision-making in manufacturing production.
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Chapter 1 |
Introduction

1.1 Motivation
Although the prior manufacturing paradigm enabled shifting from manual to mass
production, the introduction of additive manufacturing (AM) provides a unique
opportunity to further shifting from mass production to mass customization. AM
is a process to construct customized builds layer-by-layer directly from a digital
design. This expanding technology enables the creation of complex and freeform
geometries and reduces tooling and intermediate steps that are difficult to realize using
conventional manufacturing techniques [1]. Recent advances in sensing technologies
and information systems open an exciting possibility to further boost the development
of AM [2]. The combination of digital information with AM machines creates an
AM cyber-physical system, where sensing data is analyzed in the cyber world and
the production is then taken place in the physical world. In addition, advanced
functional materials along with innovative design techniques remarkably extend the
degrees of freedom in AM design and manufacturing. The design and manufacturing
flexibility offered by AM is valuable in a variety of strategic applications ranging
from aerospace to biomedical with a predicted market size of $50 billion by 2031
(See Figure 1.1) [3–6]. For instance, using AM to make builds for the Cessna Denali
aircraft engine mitigated the number of components from 855 to 12 and improved
the fuel efficiency of the engine, along with the power by over 10% [4,5].

The market is expanding, however, the lack of service management and inefficiency
in quality assurance are among key obstacles preventing AM from further proliferation
in the manufacturing market.
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Figure 1.1. Examples of AM printed parts in variety of domains such as aerospace and
biomedical. Resources: 3dhubs.com (up left), redusers.com (up right), cgtrader.com (down
left), todaysmedicaldevelopments.com (down right).

• Service management: AM brings the opportunities of mass customization,
however, the current production speed of AM is not remarkable. In the AM
cyber-physical system, due to the mass customization, there are no large
inventories for the build. Consequently, current AM systems may not be able
to scale up production in case of sudden increases in demand. To realize the
capability of AM, new frameworks are required to leverage the spare time
of available AM machines to improve productivity in the AM cyber-physical
systems.

• Quality assurance and causal discovery: The significant challenge of metal
AM is the occurrence of various defects such as cracks [7], delamination, distor-
tion [8], lack of fusion [9], porosity [10], foreign inclusions [11] that deteriorate
the build strength, hardness, and fatigue life [12,13]. This inconsistency orig-
inated from complex physical and metallurgical processes, including heating,
melting, Marangoni convection, evaporation, solidification. In fact, more than
50 different process input variables (e.g., design and job preparation, feedstock
material, equipment, and process condition) affect the characteristics of finished
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builds [12].

Figure 1.2. An illustration of a cyber-physical AM system.

Recent advancement in the internet of things (IoT) technology provides the
opportunity of producing personalized products at low cost. Besides, over the past
few years, the sharing economy has been changing the way that people share and
conduct transactions in cyberspaces. New cyber-physical-based platforms enable
owners to “share” their assets and services to non-owners [14]. As illustrated in
Figure 1.2, the physical world is integrated, monitored, and controlled by the cyber
system. Today, sharing economy firms are disrupting traditional industries across the
world [15]. For example, the valuation of Airbnb is $35 billion, while Hilton is at $25
billion. However, the concept of sharing is still relatively new to the field of AM. As
the price of 3D printers decreases, the medium-and-small-sized manufacturers are
able to own machines and “share” their idle machines with others who do not own 3D
printers, further compete with traditional enterprises. Such decentralization in the
market results in the emergence of cyber-physical-based AM platforms, which help
customers who do not have resources to print their designs at manufacturers who
provide service and shorten the AM supply chain. Few, if any, previous works have
been done to study characteristics and needs in such a market. There is an urgent
need to study the sharing economy in AM. As the sharing economy generates its
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value by matching the customers and manufacturers, the creation of an appropriate
framework to efficiently solve the resource allocation is one of the critical problems in
market design. Our focus is to design a matching framework to model the resource
allocation between customers and manufacturers.

It is not sufficient to only understand the interaction, we also need to separately
understand the physical components and the computational components [15]. To
optimize complex AM processes, different performance indicators such as mechanical
properties, surface texture, part density total build time have been introduced as
optimization criteria [16–19]. These key performance indicators (KPIs) are conducive
to quantify operational efficiency and outputs in AM processes. The common practice
is to utilize physical testing to calculate KPIs. However, experimentation costs of
raw materials, time, and human resources are prohibitively expensive in AM. On the
other hand, the development of reliable process models enables accurate prediction of
the performance of the manufacturing process with the least experimentation effort
and waste of resources [20]. The recent breakthrough in sensing provides a unique
opportunity for more efficient quality management in AM. Various sensors such
as X-ray computed tomography (XCT), optical imaging, and acoustic emission are
integrated with AM machines to characterize the quality and improve understanding of
complex AM processes [19,21]. Although the sensing techniques have shown promising
capability in efficient quality management, their performance relies on appropriate
data-driven models that work with high-dimensional and noisy manufacturing data.

In summary, to move AM from the prototype-demonstrator role into the industrial-
scale production realm, there is a dire need to tackle the quality assurance problem
also to develop a new matching and pricing framework. As shown in Figure 1.3,
product design, manufacturing, quality management, and service optimization are the
most important key factors that impacting the future status of AM in manufacturing
markets. As a result, this dissertation focuses on addressing the following critical
challenges in AM service optimization and quality management are as follows:

1. The emergence of sharing economy enabled by sensing data provides opportuni-
ties in acquiring, providing, and sharing access to goods and services. Novel
analytical approaches are urgently needed for optimal service management.

2. Advanced sensing brings a large amount of data with nonlinear and non-
homogeneous patterns, which calls for effective analytical methods to exploit

4



Figure 1.3. Important factors influencing the prospects of AM.

acquired knowledge and extract sensitive features for process monitoring and
control.

3. The presence of extraneous noises and complex interactions in modern AM
processes prevent the extraction of hidden patterns and reveal of root cause in
causal inferences from a large amount of data.

1.2 Research Background

1.2.1 Sharing Economy and Additive Manufacturing

Sharing economy can be viewed as a set of peer-to-peer (P2P) driven activities that
share access to goods and services through cyber-physical systems or platforms [22,23].
As such, physical assets can be shared as services. In the market of AM, a similar
concept can be obtained through manufacturing networks. In the distributed AM
network, manufacturers can cut down their delivery time and shipping costs when
shipping their products to customers that are based in their region. At the same
time, AM is shifting business models towards mass customization and responsible
production paradigms [24]. According to the literature, AM has experienced a
double-digit growth for 20 of the past 30 years, taking it from a promising set of
uncommercialized technologies in the early 1980s to a market that was worth over $4
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billion in 2014 [25]. The AM market is expected to grow to more than $335 billion
by 2025 [26].

As mentioned, cyber-physical AM platforms connect manufacturers and customers
and create a new shape of two-sided market. Therefore, new models need to be
proposed to handle the resource allocation of the supply chain in the new form. The
decentralized market introduced the shortened supply chain. And the creation of a
new matching framework between manufacturers and customers will efficiently solve
the resource allocation is one of the critical problems in the market design.

1.2.2 Design in Additive Manufacturing

Rather than removing materials or introducing another manufacturing technique,
AM produces physical objects by adding materials layer by layer directly through
CAD models and create complex structures that cannot be easily produced using
conventional subtractive manufacturing processes. Although AM techniques increase
productivity while enabling a reduction in the cost, however, the physical phenomena
that occurs during AM processes have a strong impact on the quality of the final
builds. Therefore, it is essential to consider the effect of design on the quality of AM
products.

The term “design for AM” has been discussed used in the literature [27–31].
By considering constraints of production and the manufacturing goal at the same
time, design of AM is defined as the practice of designing and optimizing a product
together with its production system to reduce development time and cost and increase
performance, quality, and profitability [32]. Usually, the design for AM contains
three levels. In the first level, the design of AM is usually process-specific, feature-
specific, and activity-specific [33]. In the second level, the design of AM is aimed
at understanding and quantifying the effect of the design process on manufacturing
[34]. In the third level, the design of AM explores the relationship between design
and manufacturing and its impact on the designer, the design process, and design
practice [35].

The development of AM design, including the knowledge, methodologies, and
standards, all challenge the advancement of AM. Insufficient understanding of AM
processes still limits the widespread of AM to the industry, thereby preventing the
mass production of AM builds. Therefore, there is a dire need to understand the
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relationship between the design of AM and the quality of AM output.

1.2.3 Causal Analysis and Additive Manufacturing

To encode the domain manufacturing knowledge, traditional machine learning rep-
resentations, such as ontologies [36, 37], first-order logic rules [38], or probabilistic
reasoning systems [39], have been utilized to achieve plausible interpretation (e.g.,
causal reasoning). Modeling efforts to capture the stochastic dynamics underly-
ing AM mechanisms have been made. However, linear models, such as ARIMA,
ARMAX [40], or multi-dimension time series models [41, 42] show limitations in
capturing nonstationary and stochastic features. Multi-variate models introduce
the curse of computational dimensionality [43,44]. Black-box models, such as deep
learning models, parametric maps, or manifold learnings, are notoriously difficult to
interpret [45].

A Bayesian network (BN) contains a graphical structure that represents causal
relationships among a large number of variables and allows for probabilistic causal
inferences using the observed variables. The graph structure is widely utilized in
expert system development and represent the causal relationship [46–52]. It moves
one step forward to support the inference of causality from observational data and
improve interpretability at the same time. The conditional probabilities are used to
represent complex relationships by the BNs [53]. BNs can be utilized for a wide range
of tasks including diagnostics, prediction, anomaly detection, decision making under
uncertainty, and reasoning. Traditionally, causal networks are generated by expert’s
knowledge. For example, one can specify the causal relationship between nodes
through their experiences and knowledge. Recently, multiple automated learning
algorithms have been proposed to obtain the BN structure from data [54–61]. However,
automated learning methodologies are based on probabilistic information and can
also be affected by the property of collected data. In the domain of AM, ontology has
been widely studied to provide formal and structured guidelines for designers [37, 62].
Combing the domain ontology and the novel automated BN learning algorithms
will enable the detection of critical information and performing effective quality
monitoring and control for AM.
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Figure 1.4. Roadmap of the dissertation. The objective of the research to build AM parts
with good quality with the correct service provider in the AM cyber-physical systems.

1.3 Objectives
My research goal is to develop new machine learning methodologies for quality
management and service optimization of large-scale complex systems. Specifically, my
research objective is to develop data-driven models and create enabling methodologies
for process monitoring, system diagnostics and prognostics, root cause analysis, and
service optimization, with disparate applications in advanced manufacturing. My
research will enable and assist in:

1. handling of massive and complex data generated from advanced sensing systems
in manufacturing settings

2. designing novel models for interpretation of uncertain relations and extraction
of pertinent information about system dynamics
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3. exploitation of acquired knowledge for data-driven decision-making and service
optimization

1.4 Organization
This dissertation is organized from multiple journals and conference manuscripts. We
organize this dissertation in a top-down manner. First, we discuss the emergence
of sharing economy and service optimization in the new cyber-physical AM system.
Then, we explore the quality management for the individual in the system. The
remainder of the dissertation is organized as follows:

Figure 1.5. The overall top-down structure of proposed research methodologies in this
dissertation.

In Chapter 2, we develop a bipartite matching framework to model and optimize
resource allocation among customers and service providers through a stable matching
algorithm in cyber-physical systems. The framework is implemented in customer-
manufacturing allocation in cyber-physical platforms. The proposed sharing economy
framework shows strong potential to realize a smart and decentralized AM sharing
economy.

In Chapter 3, we present a design of AM experiments to investigate how design
parameters (e.g., build orientation, thin-wall width, thin-wall height, and hatching
spacing) interact with quality characteristics (i.e., edge roughness) in thin-wall builds.
This research sheds insights on the optimization of engineering design to improve the
quality of AM builds.

In Chapter 4, we utilize a generalized recurrence network analysis to not only
capture recurrence dynamics in complex systems but also take the computational
complexity into account. Here, as an extension of Chapter 2, we present another
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design of AM experiments to investigate how design parameters (e.g., build orientation,
thin-wall width, thin-wall height, and hatching spacing) interact with different quality
characteristics in thin-wall builds. The proposed design-quality analysis shows great
potential to optimize engineering design and enhance the quality of PBF-AM builds.

In Chapter 5, we develop an ontology-based Bayesian network (BN) model to
represent causal relationships between AM parameters (i.e., design parameters and
process parameters) and QA/QC requirements (e.g., structure properties and mechan-
ical properties). With the network representation, the causal relationships among
variables can be identified and then be used to facilitate prediction, diagnosis, and
support decision making in manufacturing production.

In the end, Chapter 6 concludes the dissertation and summarizes the contributions.
Future research directions are also discussed in this chapter.
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Chapter 2 |
Stable Matching of Customers
and Providers for the Sharing
Economy of Additive Manufac-
turing

Recently, sharing economy becomes a new way for people to “share” assets and
services with others that disrupts traditional business models across the world. In
particular, rapid growth of additive manufacturing (AM) enables individuals and
small manufacturers to own machines and share under-utilized resources with others.
Such a decentralized market calls upon the development of new analytical methods
and tools to help customers and manufacturers find each other and further shorten
the AM supply chain. This paper presents a bipartite matching framework to
model the resource allocation among customers and manufacturers and leverage
the stable matching algorithm to optimize matches between customers and AM
providers. We perform a comparison study with Mix Integer Linear Programming
(MILP) optimization as well as the first-come-first-serve (FCFS) allocation strategy
for different scenarios of demand-supply configurations (i.e., from 50% to 500%)
and system complexities (i.e., uniform parts and manufacturers, heterogeneous parts
and uniform manufacturers, heterogeneous parts and manufacturers). Experimental
results show that the proposed framework shows strong potentials to optimize resource
allocation in the AM sharing economy.
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2.1 Introduction
Assets (e.g., cars and houses) often require significant investments but may be
underused. When the usage is low and as time passes, asset values are depreciated.
Sharing economy turns underutilized assets owned by individuals into productive
resources, which is a new way to supply goods and services, and enable individuals
and small companies to compete with traditional large industries [63]. The emergence
of sharing economy introduces new players in many fields, where some of them
(e.g., Uber and Airbnb) have topped traditional companies and gained competitive
advantage [64]. The size of sharing economy will increase to 335 billion by 2025
compared to the market size of 15 billion in 2015 [26]. Sharing economy not only
provides highly compatible services, but also leads to significant social impacts such as
reduction of ecological footprint [65], attitude change towards product ownership [66],
and value re-distribution in the supply chain [67].

Internet of ThingsPhysical World Cyber World

Data

Actions/Insights

Figure 2.1. An illustration of cyber-physical interaction in the sharing economy. The
organization is reflected in the cyber space through data, and analytics run in the cyber
space feed the actions back to the physical world.

Sharing economy involves short-term transactions to share idle assets and services
through an online cyber-physical platform. As shown in Figure 2.1, the physical world
is reflected in the cyberspace through data-driven information processing, modeling,
and simulation. For example, Uber collects data pertinent to the locations of passen-
gers and available cars in the mobile application; and then runs scheduling algorithms
to match a customer with the driver to provide rides. Similarly, Airbnb provides
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rooms as well as attribute information (e.g., price, reviews) of real estate properties
to match with a customer. Cyber-physical integration provides the marketplace for
peer-to-peer asset sharing and “on-demand” services for customers. However, the
idea of “sharing economy” is relatively new to the field of Additive Manufacturing
(AM).

AM prints parts directly from computer-aided designs (CAD) layer by layer
without the need for expensive part-specific tooling. The AM market is projected to
reach $35.6 billion by 2024, a significant increase from the market size of $11.8 billion
in 2019 [68]. The growth of AM customers and manufacturers brings increasing
complexity in the market. As the entry cost (e.g., asset and production costs)
decreases, individuals and small manufacturers are now able to enter the market
and compete with traditional large companies [69]. Conventionally, manufacturing
companies acquire raw materials from suppliers, then processed and assembled parts,
and finally shipped the products to end customers through distribution centers,
warehouses, and retailers. On the contrary, AM bypasses the traditional supply
chain. As shown in Figure 2.2, AM enables customers to submit their digital designs
through the internet, and then providers manufacture and ship the product directly
to customers.

Cyber-physical Manufacturing and Two-sided Market

Conventional Manufacturing Supply Chain 

Digital 
Design

End 
CustomerPrototype Manufacture Distribution Warehouse Retail

Machines and Raw Materials

Customers and Digital Designs Online
Market Place

Figure 2.2. The illustration of traditional manufacturing supply chains and two-sided
market.

13



As a result, the market becomes more and more decentralized. There is an
urgent need to study the characteristics of the decentralized market and design a
new framework to match customers with manufacturers. This paper presents a
bipartite matching framework to model the resource allocation between customers
and manufacturers and leverage the stable matching algorithm to optimizes matches
between customers and AM providers. We perform a comparative study with Mix
Integer Linear Programming (MILP) optimization as well as the first-come-first-serve
(FCFS) allocation strategy for different demand-supply configurations, i.e., from 50%
to 500%, which represent different scenarios. Experimental results show that the
proposed framework effectively improves the performance of resource allocation in
terms of the following metrics: namely customer’s waiting time, manufacturer’s lead
time, customer’s satisfaction, manufacturer’s satisfaction, and matching regret. In
comparison with the commonly used FCFS priority rule, experimental results show
the stable matching algorithm decreases the matching regret by 35.52% when the
demand is greater than supply; 36.75% when the demand equals supply; and 19.34%
when the demand is less than supply.

The rest of this paper is organized as follows: Section 2.2 introduces an overview
of the sharing economy and the cyber-physical AM. Section 2.3 shows the novel
framework for AM sharing economy. Section 2.4 presents the experimental design and
performance evaluation. Experimental results are provided in section 2.6. Finally,
section 2.7 concludes this research as well as the challenges and opportunities of AM.

2.2 Research Background
The terms of “sharing economy”, peer-to-peer market, or collaborative consumption,
have become popular words in public media since Bostman and Rogers published their
book in 2010 [70]. The sharing economy refers to the peer-to-peer sharing and access
to underutilized goods and services, which prioritizes utilization and accessibility over
ownership [65]. It allows individuals and small companies to compete with traditional
large providers of goods or services. New business opportunities emerge by rethinking
the design of business models, day-to-day decision making, and the challenges on the
gain of profits [64].

The emergence of sharing economy can be traced back to ancient times when
sharing was among family and friends [67]. The practice of sharing economy is
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sprinted from non-profit organizations such as Freecycle and couchsurfing, and further
shifted into a bigger profitable business model by taking a small fraction of sharing
fees such as Airbnb and Uber. Many peer-to-peer rental firms were founded after
the global financial crisis between 2008 and 2010 [71], when people were seeking
opportunities to purchase services they need instead of owning the assets. Then, the
concept of sharing economy gained widespread attentions between 2011 and 2012
with the successes of two startup companies, Uber and Airbnb, in Silicon Valley.

Internet and mobile computing are two main driving forces of the sharing economy,
which lead to a new generation of cyber-physical platforms. The physical world is
reflected in the cyberspace through data-driven information processing, modeling, and
simulation. Analytics in the cyberspace exploits the knowledge and useful information
acquired from data to feed optimal actions (or control schemes) back to the physical
world [23]. For example, the Uber app shows cars around a rider and provides a
price based on the trip-related information. Algorithms in the cyberspace consider
real-time factors such as traffic, driver’s rating, and the distance to optimize the
match between driver and rider. The automated systems establish ride-share matches
with little effort from participants, enables people to share rides and increase the
efficiency of urban transportation by connecting riders with drivers in real time [72].
Indeed, matching the supply and demand in a efficient and effective manner is critical
to optimize the resource allocation in sharing economy platforms.

Current matching practices are summarized into two categories, namely optimization-
based procedures and list-based solutions [73]. Conventional optimization-based
procedures often consider the preference from one side. However, customers and
providers have different objectives that often conflict with each other. As such, there
is an urgent need to optimize resource allocation by taking the preference of both
customers and service providers into account. It is insufficient for a decentralized
market if only the objective of one group is considered and satisfied, either providers
or customers. On the other hand, list-based solutions allow customers to self-select
options in the list of options as displayed in the website or mobile applications.
Here, customers need to scroll through the list to make their final selection. The
transaction is completed only when a customer and a service provider reach an
agreement, where the customer is willing to pay the price and the provider has the
availability of assets or services which the customer is seeking. The FCFS is the most
common approach in this structure where a customer who arrives the earliest will get
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treated or served before customers who enter later. Despite its simplicity, the FCFS
approach is insufficient and limited in the ability to provide the optimal solution
for customers and providers. To address the limitations of traditional practices, we
propose a stable matching framework to optimize the customer-manufacturer pairing
in a cyber-physical AM platform, and the proposed framework is benchmarked with
both optimization-based procedures and as well as the FCFS priority rule.

The concept of stable matching is first introduced by Gale and Shapley in 1962 [74].
Abraham et al. [75] introduced two algorithms for a generalization of the student-
project problem where students are assigned to projects based on their preferences.
Results show that the matching produced by their algorithm is simultaneously best-
possible for all students. Knuth proposed the three-dimensional extension of stable
matching theory [76], where there are three sets of agents in the system. Gu et
al. [77] proposed the use of matching theory for resource management in wireless
networks, including one-to-one matching for device-to-device (D2D) communication,
and a three-layer cache model (many-to-one) matching for online content caching.
However, peer effects (i.e., device-to-device communication) are abundant in the
wireless environment. In the AM cyber-physical platforms, each customer is treated
as an individual and they rarely share information in real time as wireless devices.

The application of matching algorithms for subtractive manufacturing is mainly
focused on service composition or capacity sharing. For example, Li et. al [78]
optimized the service composition between two different sets of service candidates
in cloud manufacturing. They compared service candidates in pairs to generate a
multiple service composition solution. Here, the composition is based on a fixed set of
services and their corresponding capacities. Similarly, resources can be only exchanged
and shared among a limited number of manufacturers in [79]. In addition, Argoneto
and Renna [80,81] analyzed a model of capacity sharing for a set of geographically
distributed and independent firms, they also discussed the implementation to realize
such sharing framework [82]. Note that the work assignment among over-loaded
and under-loaded machines is within a single manufacturer. As a result, service
composition is a collaborative environment where a number of partner services are
collectively used to achieve a business objective. However, the market of sharing
economy is often characterized by a high degree of heterogeneity, where customers
and providers may be interested in specific products or services [69]. The sharing
economy market not only allows individuals and small manufacturers to compete with
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Table 2.1. Summary of Notation
Notation Definition
X binary allocation matrix
I The number of manufacturers
M The set of manufacturers
J The number of orders
O The set of orders
Qi The capacity of manufacturer i
ri Rating to the service provided by manufacture i
Ci The set of previous customers of manufacturer i

PLO(i, j) The preference of order i over manufacturer j
PLM(j, i) The preference of manufacturer j over order i

P Market selling part of the part
C Cost of the part
� Strictly prefer
� Prefer
w Order waiting time, a quantifier for evaluating the model performance.

LTj
Order lead time at manufacturer j,

a quantifier for evaluating the model performance.
satisc Customer’s satisfaction, a quantifier for evaluating the model performance.
satism Manufacturer’s satisfaction, a quantifier for evaluating the model performance.
R Matching regret, a quantifier for evaluating the model performance.

traditional large providers of goods or services but also provides an online marketplace
for buyers and sellers to find each other. The value is generated by matching assets
with customers who are willing to pay for the services [63]. The resource allocation
for service composition in traditional manufacturing is different from the matching in
AM sharing economy. Sharing economy shows strong potentials to revolutionize the
AM market. Optimal match between customers and AM providers offers a higher
degree of satisfaction among both sides, thereby leading to the development of AM
market. There is an urgent need to investigate the stable matching framework for
cyber-physical AM.

2.3 The Supply Chain Matching Problem for AM Mar-
ket
In this section, we present a framework to model the resource allocation between
customers and manufacturers and leverage the stable matching algorithm to optimize
matches between customers and AM providers. We also benchmark the stable
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matching with Mixed Integer Linear Programming (MILP) and FCFS priority rule.
Our model considers factors such as part’s geometrical property (i.e., width, length,
and height), manufacturer’s capacity, cost of the raw material and so on. Moreover, we
investigate the proposed framework for different system complexities and benchmark
with other algorithms. Table 2.1 summarizes the math notations used in this paper.

2.3.1 System Model and Problem Formulation

The model is aimed at matching customer orders with the manufacturers in a two-sided
market. We assume that there are I manufacturersM = {m1,m2, . . . ,mi, . . . ,mI}
each with the capacity of Qi, and J orders O = {o1, o2, . . . , oj, . . . , oJ}. Suppose
orders are shipped right after they are manufactured. The shipping time is only
proportional to the distance between the customer and the manufacturer. Both the
processing time and shipping time are considered in the experiments. To formulate
such an allocation problem, we first define two matrices, namely, the satisfaction
matrix and the allocation matrix.

Definition 1 The satisfaction matrix consists of element Sij that describes the satis-
factory level of a customer when order j is matched with manufacturer i, which is
a composite index of building time Tb, transportation time Tt, service rating SRi of
manufacturer mi, and market selling price Pj:

Sij = SRi

Pj
∗ 1

(Tbj + Ttj)
∀ i = 1, ..., I, j = 1, ...J (2.1)

SRi =
lLi∑
l=l1

ril ∀ i = 1, ..., I (2.2)

where ril is the rating that customer l gives to the service provided by manufacturer
i, and Li = l1, l2, . . . lLi is the set of previous customers of manufacturer i.

Definition 2 The allocation matrix X consists of the binary element xij ∈ 0, 1, where
∀ i = 1, ..., I, j = 1, ..., J , describes the allocation of the order oj to manufacturer mi.

Because the allocation matrix X is with binary values, we formulate the matching
between orders and manufacturers as a MILP allocation problem. The objective
function is to maximize the satisfaction of customers in a decentralized market. The
MILP formulation is as follows:
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max
X

∑
S ◦ X (2.3)

∑
i∈I

xij = 1 ∀ oj ∈ O (2.4)

∑
j∈J

xij < Qi ∀ mi ∈M (2.5)

xij ∈ 0, 1 ∀ mi ∈M, oj ∈ O (2.6)

where ◦ in equation (2.3) is the Hadamard product. Equation (2.4) guarantees that
each order is only assigned to one manufacturer. Equation (2.5) poses a constraint on
capacity of each manufacturer. Equation (2.6) defines the X as a binary matrix. The
formulated MILP problem is solved by MATLAB, and it is utilized as the benchmark
to the proposed matching framework.

2.3.2 Stable Matching

As the market size increases, the computational complexity of MILP problem increases
exponentially. Therefore, we propose a bipartite matching framework to achieve an
efficient solution for recourse allocation in the cyber-physical AM platform. The
classical stable marriage considers a set of man and another set of women (both sets
are with size n), and each person has his or her preference list over all other people
in the opposite set. The goal is to match each man with one woman in a stable
manner. When the matching is stable, no blocking pair exists. Note that a block pair
is defined as a pair of man and woman have a better partner from other pairs based
on their preference lists. This is one-to-one matching because we are only matching
one man with one woman, and the stable condition could be reached through the
Gale-Shapley Algorithm. During the matching process, one accepts the match if the
new match has a better ranking in his or her preference list, and rejects otherwise.
No one knows others’ preferences during the process, and the algorithm terminates
when no more matching request is needed.

For one-to-one matching problems, each entity of one set can be only matched to
at most one entity from the other set. The other two types are many-to-one matching
and many-to-many matching problems. For many-to-one matching problems, the
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entities from one set can be matched to entities from the other set without any quota
limitation. However, entities from the other set could only be matched to at most
one entity from the set. Examples such as the hospital resident allocation while one
resident can only go for one hospital, and one hospital could handle a limited number
of residents. For many-to-many matching problems, entities from both sets are able
to match to as many as entities from the other set up to their capacities. Examples
include the kidney exchange problem and the partnership formation problem.

Definition 3 (Stable Pair) A pair (mi, oj) is defined as a stable pair when for all
other possible pairs (mi, oj′) and (mi′ , oj) (where oj′ ∈ O\oj and mi′ ∈ M\mi), at
least one of the following is true:

1. mi �oj
mi′

2. oj �mi
oj′

Note that mi �oj
mi′ indicates the statement “order oj prefers manufacturer

mi over manufacturer mi′". The operator �oj
denotes the preference list of oj to

mi ∈M.

Definition 4 (Stable Matching) A joint matching 〈M,O〉 returns stable matching
if all pairs in the set {(mi, oj)|mi ∈M, oj ∈ O} are stable pairs.

As discussed in Section 4.1, the key of stable matching algorithm is to generate
the preference list. In the two-sided AM market, the customer prefers high-quality
products at a lower price, as well as less waiting time, while the manufacturer prefers
more profits. Therefore, each set has its property. We propose the preference list of
orders (i.e., customers) and the preference list of manufacturers as follows.

Definition 5 For a order oj, ∀oj ∈ O, the preference list over the manufacturer mi,
∀mi ∈M, is formulated as

PLo(i, j) = SRi

Pj
∗ 1

(Tbj + Ttj)
∀ i = 1, ..., I, j = 1, ...J (2.7)

Note that the PLorder is a I×J matrix. The larger the number is in the preference
matrix, the order is more preferred to be built at the corresponding manufacturer.

Definition 6 For a manufacturer mi, ∀ mi ∈M, the preference list over the order
oj, ∀ oj ∈ O, is formulated as
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PLM(j, i) = Pji − Cji ∀ i = 1..., I, j = 1, ...J (2.8)

With the input of preference lists, the capacity, and the time matrix, we develop
the stable marriage algorithm to identify many-to-one matching between orders and
manufacturers, as shown in Algorithm 2.

The proposed algorithm begins with the initialization of preference lists and
auxiliary matrices MOrderSingle and MProposed. It is worth mentioning that the
MOrderSingle is a J×1 binary matrix checking if the order is matched to a manufacturer
or not, and the MProposed is a I × J binary matrix indicating the proposal status
of the orders. After initialization, the matching algorithm first pairs orders and
manufacturers by prioritizing the capacity of manufacturers. Then, the next order
will be matched to the first available manufacturer according to its preference list. In
other words, the model begins with order-oriented matching. After all manufacturers
reached their capacity, the model shifts to manufacturer-oriented stable matching.
In addition, the algorithm swaps between a matched order k with an unmatched
order i if i is more preferred than k by manufacturer j (see line 15-21). Finally, the
algorithm terminates when all stable pairs are identified.
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Algorithm 1 The Proposed Stable Marriage Algorithm for Order-Manufacturer
Matching
Input:
Capacity ← the capacity of each manufacturer
ProcessT ime ← the process time of each order
ShippingT ime ← the shipping time of each order
Initialization:
PLmfg : the preference list of manufacturers to orders
PLorder : the preference list of orders to manufacturers
MOrderSingle : a binary matrix, indicating whether an order is matched or not
MProposed : a binary matrix, indicating whether an order has proposed to a
manufacturer or not
X : the binary allocation matrix

1: WhileMOrderSingle 6= φ
2: If all manufacturers have reached to their maximum capacities
3: match the first available mfg j to its favorite unmatched order i according

to PLmfg(j, :)
4: MProposed(i, j) = 1
5: MOrderSingle(i) = 0
6: X (i, j) = 1
7: Else
8: select a random order i, find the best unproposed manufacturer j according

to PLorder(i, :)
9: MProposed(i, j) = 1
10: If manufacturer j has not reached to its capacity
11: \\match i and j
12: MOrderSingle(i) = 0
13: X (i, j) = 1
14: Else \\if j has already reached to its capacity
15: If order i is more preferred than a matched order k according to PLmfg(j, :)
16: \\match i and j and unmatch k and j
17: MOrderSingle(i) = 0
18: X (i, j) = 1
19: MOrderSingle(k) = 1
20: X (k, j) = 0
21: End
22: End
23: End
24: End While
Output: X
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2.4 Experimental Design and Performance Evaluation
Figure 2.3 shows the design of simulation experiments to evaluate and validate the
proposed matching framework. The system complexity consists of three scenarios,
namely (1) uniform parts and manufacturers; (2) heterogeneous parts and uniform
manufactures; (3) and heterogeneous parts and manufacturers. In the first scenario,
parts with the same design and manufacturers with same capacities are generated.
We vary the distance between manufacturers and customers as well as the number of
orders with respect to the demand-supply configuration. Then, we add variation to
the design of parts. Therefore, the building time and the cost will be different among
parts. Finally, we add variations to manufacturers. For example, we set the cost of
restocking and the rating of manufacturers different. As shown in Figure 2.3, the
factor of demand-supply configuration also varies from 50% to 500%.

Demand vs. Supply

Stable Marriage Algorithm
MILP (max customer's satisfaction)

First come first serve

50%

…

500%

System Complexity

Uniform parts and mfgers

Heterogeneous parts and mfgers
Heterogeneous parts and uniform mfgers

MILP (max mfger’s satisfaction)
MILP (min overall ranking)

100%

Benchmark Algorithms

Customers’ Satisfaction
Manufacturers' Satisfaction

Matching Regret
Order Waiting Time

Order Completion Time

Figure 2.3. The cause-and-effect diagram for experimental design.

Further, we benchmark the stable-marriage algorithm with the FCFS model
as well as three MILP models, i.e., MILPcustomer, MILPmfg, and MILPordinal,
respectively. The first model, MILPcustomer, maximizes the satisfaction of customers.
The second model, MILPmfg, maximized the satisfaction of manufacturers. The
third model, namely the MILPordinal, aims at minimizing the overall manufacturer
rankings, which introduces the ranked preference list from stable matching to the
objective function and solves the problem using the centralized optimization model.
The objective functions of three benchmark models are summarized in Table 2.3.
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Table 2.2. Summary of Benchmark Models
Model Objective Function Description

MILPcustomer max PLO ◦ X maximize the satisfaction of customers
MILPmfg max PLM ◦ X maximize the satisfaction of manufacturers

MILPordinal min ordinal(PLO) ◦ X minimizing the overall manufacturer rankings

2.4.1 Performance Evaluation of matching models

Five quantifiers are used to evaluate allocation results and compare the performance
of different matching models.

• Customer waiting time (w)

The customer waiting time is the time from an order is submitted until it is
being received by the customer.

• Manufacturer lead time (LT )

The manufacturer’s lead time is the time that a manufacturer needs in total to
finish all assigned orders.

• Customer’s satisfaction (satisc)

The customer’s satisfaction is calculated by equation. 2.7, which is the rating
over price and time. This indicates that the customers want to pay less but
get a high quality product, as well as less waiting time. Note that in the next
section, we output the normalized customer’s satisfaction for easier comparison.

• Manufacturer’s satisfaction (satism)

The manufacturer’s satisfaction is calculated by

satism = Pji − Cji
LTj

∀ i = 1..., I, j = 1, ...J (2.9)

where LTj is the total manufacturer lead time of all orders assigned to man-
ufacturer j. Similar as the previous quantifier, we output the normalized
manufacturer’s satisfaction for a better visualization.

• Matching regret (R)
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The matching regret is calculated as:

R =
∑
i∈I

∑
j∈J

PLO(i, j) + PLM(j, i) (2.10)

which quantifies the regret that each order obtains when it is not assigned to its
most preferred manufacturer, as well as when each manufacturer is not matched
to its most preferred order. Smaller regret indicates a better matching result.
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Figure 2.4. Penn State DIGI-Net. Green pins show the location of Penn State campuses
across Pennsylvania, and the size of red dots are associated with the number of students
studying on the campus.

As a large research institution, Penn State has invested in many different types of
digital fabrication resources, which are spread among a number of different academic
colleges and departments. The Digital Inquiry and Group Innovation Network, also
known as DIGI-Net, seeks to enhance design processes for the Penn State community.
The goal of DIGI-Net is to democratize digital fabrication and make it easier for
people to access, learn about, and use Penn State’s resources [83]. Our simulation
aims at providing a better matching model for the Penn State DIGI-Net. In the case
study, the digital fabrication network of AM manufacturers (e.g., small, medium, and
large providers) are assumed to spread over a geographic region. The digital AM
network democratizes the low-volume-high-mix manufacturing with an aim to make
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it easier for manufacturers and customers to find each other. The simulation studies
are conducted on a 3.30 GHz Intel Xeon CPU with 16 GB RAM, 64-bit operating
system.

2.5 Experimental Results

2.5.1 Case I: Uniform parts and manufacturers

In the first case study, we assume uniform parts and manufacturers. Parts have the
same design, and manufacturers have the same capacity. However, the manufacturers
are geographically distributed in the spatial region, and therefore the distances to
customers vary. Also, the number of orders (or parts) varies with respect to the
demand-supply ratio.
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Figure 2.5. (a) The average waiting time of orders and (b) the average order lead
time of manufacturers for different matching models when there are uniform parts and
manufacturers.

As shown in Figure 2.5 (a), the waiting time of orders increases as the number of
order increases. Among five matching models, the stable marriage, the MILPmfg,
and the MILPcustomer (overlapping with MILPmfg) have a shorter waiting time, and
the MILPordinal has the longest waiting time compared to other methods. There is
almost no waiting time for stable matching, MILPmfg, and MILPcustomer when the
demand-supply ratio is low. However, MILPordinal (i.e., the green line) has a longer
waiting time, customers need to stay in the queue and wait to be matched. This is
because of the proposed algorithm allocates the orders evenly - it not only considers
the preference of customers, but also the desire of manufacturers. MILPmfg and
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MILPcustomer assign the order based on one-side satisfaction value. It is also worth
mentioning that the MILPordinal does not give a good matching result regarding the
order waiting time. The minimization of the overall ordinal ranking causes queue
in manufacturers no matter how the demand-supply configuration changes. This
indicates that the MILPordinal does not work well in this case. The FCFS priority
rule gives the matching result slightly worse than stable matching, MILPcustomer,
and MILmfg because it does not generate optimal matches.

Figure 2.5 (b) evaluates the average order lead time of manufactures. Note that
the manufacturer lead times of the stable matching, MILPcustomer, MIMPmfg, and
FCFS are same with each other when the demand-supply configuration is less than or
equal to 100%. This is because that there are uniform parts and manufacturers. Again,
the stable matching provides the lowest completion time and the MILPordinal gives
the worst. Among three other models, manufacturers need more time to complete
work requests under the FCFS model.

We further output the customer’s satisfaction, the manufacturer’s satisfaction,
and the matching regret. Note that we normalize satisc and satism for a better
illustration. According to Figure 2.6 (a), MILPcustomer yields the best result
regarding the customer’s satisfaction, and stable matching performs slightly worse
than it. This is because that MILPcustomer only focuses on one-side (i.e., customer),
and stable matching focuses on both sides.

As shown in Figure 2.6 (b), the performance of stable matching starts to outperform
other algorithms as the number of customer increases (i.e., the demand-supply
configuration increases). Comparing MILPmfg and MILPordinal, it is observed
that the MILPmfg produces less customer satisfaction but higher manufacturers
satisfaction. The criteria that customers and manufacturers target are different as
the preference list indicates, thus there exists a trade-off between the satisfaction
of the customer and the satisfaction of the manufacturer. The MILPcustomer and
MILPordinal, since they only consider the preference of customers, present a better
output of satisc. Similarly, the MILPmfg brings a better satisfactory level for the
manufacturer but opposite for the customer. The stable matching, which considering
both sides of the market, gives a “balanced" matching result in between. The
MILPordinal performs the worst no matter how the configuration of demand and
supply changes.

Figure 2.6 (c) shows the matching regret calculated from different matching
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Figure 2.6. (a) Normalized customer’s satisfaction, (b) normalized manufacturer’s sat-
isfaction, and (c) matching regret for different matching models when there are uniform
parts and manufacturers.

models. MILPordinal outperforms other models due to the fact that the objective of
the matching algorithm is to minimize the overall ordinal ranking. It may also be
noted that as the demand-supply increases, the result of all models gives very close
results. For example, in Figure 2.6 (a) and (c), models result in very similar satisc
and satism. This is because when there exists a long queue, the system begins to
be “saturated". However, the stable matching will help manufacturers to gain more
benefits. Overall, the stable matching algorithm performances the best. It is better
to use the actual satisfaction instead of the ranking in the objective.
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2.5.2 Case II: Heterogeneous parts and uniform manufactures

We then add some variations to the parts but keep all manufactures the same capacity.
The added variation to the part includes different distribution for layer thickness
and the dimension of the part. Then the building time (Tb) and the cost (C) will be
different among parts.
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Figure 2.7. (a) The average waiting time of orders and (b) the average order lead time
of manufacturers for different matching models when there are heterogeneous parts and
uniform manufacturers.

As shown in Figure 2.7 (a), the stable matching, MILPmfg, and MILPcustomer
return very close waiting times when the demand-supply configuration is relatively
low, but the MILPcustomer brings more waiting time as the configuration keeps
increasing. When there exists a queue in the system, the MILPmfg will first select
the part with more benefit. Since we have uniform manufacturers, which means that
the price of raw material is the same. The bigger the volume that a part has, the
more the manufacturer is willing to take the order. Therefore, the MILPmfg will first
select the order with longer processing time, so the waiting time will be less for the
rest of those in the queue. This is the reason why the average waiting time of part is
lower when using the MILPmfg than MILPcustomer when the demand-supply ratio
gets larger. Figure 2.7 (b) illustrates the average order lead time of manufacturers.
When the scale of the system is small, the is not much difference between stable
matching, MILPcustomer, MILPmfg, and FCFS. However, as more customer enters,
stable matching gives relatively shorter lead time.

As shown in Figure 2.8 (a), MILPcustomer still results in a better satisc compared
to other methods. The variation of parts explains outliers and lower value of satisc
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Figure 2.8. (a) Normalized customer’s satisfaction, (b) normalized manufacturer’s satis-
faction, and (c) matching regret for different matching models when there are heterogeneous
parts and uniform manufacturers.

compared to Figure 2.6 (a). If we only looking at MILPcustomer and MILPmfg, it
is not hard to find that the MILPcustomer outperforms MILPmfg in Figure 2.8 (a),
but MILPmfg outperforms MILPcustomer in 2.8 (b). In Figure 2.8 (b), MILPmfg
yields better satisfaction for manufacturers when the demand-supply configuration is
less than 100%. However, always selecting the part with more profit might lead to
the shrinkage of total profit as the total number of orders produced is decreased at
a single manufacturer. The more customer in the system, the stable matching will
outperform other models. The matching regret is shown in Figure 2.8 (c). Here, the
MILPordinal demonstrates a smaller matching regret than other algorithms. The
result is as expected since the MILPtwosides takes the ordinal preference into account
and aims at minimizing regret.
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2.5.3 Case III: Heterogeneous parts and manufacturers
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Figure 2.9. (a) The average waiting time of orders and (b) the average order lead time
of manufacturers for different matching models when there are heterogeneous parts and
manufacturers.

In the last case study, variations are added to both parts and manufacturers.
Here, we vary the part geometry based on a normal distribution with the mean
of the part geometry in Section 2.5.1. For the manufacturers, we vary the cost of
raw materials, the number of previous customers, and the average rating, and the
capacity. As mentioned before, the new form of AM markets allows the individuals
and small manufacturers to enter and compete with larger enterprises. These bigger
manufacturers might have discounts when purchasing a great number of metal powders
because they have the capability to handle more orders as well as return customers.
They might also produce products with better quality (this will result in a higher
customer’s rating) since they are more “professional" in the sense that they have more
experience in manufacturing. Therefore, the order waiting time and the order lead
time in Figure 2.9 are smaller than values in Figure 2.5.

As shown in Figure 2.10 (a), there are more outliers compared to Figure 2.6 (a)
and Figure 2.8 (a). The trade-off between manufacturer’s preference and customer’s
preference can still be seen by comparing yellow boxes and blue boxes in Figure 2.8
(b). Furthermore, in Figure 2.10 (c), the average of matching regret indicates that
the average ranking that the matching model can achieve. For example, when the
demand-supply configuration is 50%, the average matching regret of stable matching
(i.e., in red) and MILPordinal (i.e., in green) are around 5 and 4.5, respectively.
This means that when utilizing stable matching, the orders are mostly matched to
the ranked 5 manufacturers and vice versa. The MILPordinal can achieve a better
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Figure 2.10. (a) Normalized customer’s satisfaction, (b) normalized manufacturer’s satis-
faction, and (c) matching regret for different matching models when there are heterogeneous
parts and manufacturers.

allocation result with respect to R. When the demand-supply configuration increases,
the matching regrets of four matching models start converging to 10. Matching regret
will not be a good criterion to consider if the number of customers is way more than
capacity of system.

In addition, we summarized the improvement of the proposed stable matching
algorithm in comparison with other proposed algorithms (i.e., MILPcustomer, MILP-
manufacturer, MILPordinal, and FCFS) in Table 2.3. Results (mean± std) are based
on 100 replications. As shown in Table 2.3, we compared the performance of different
algorithms for case I, II, and III and eight demand-supply configurations. When
demand is less than supply, stable matching decreases LT but does not improve w.
However, the proposed stable matching algorithm starts to reduce customers waiting
time and manufacturer lead time simultaneously when the demand increases. For
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example, when the demand-supply configuration is 50%, stable matching algorithm
improves LT by 31.39% from MILPcustomer, but MILPcustomer provides a 17.06%
better w than stable matching. However, when the demand-supply configuration
reaches to 150%, stable matching algorithm outperforms MILPcustomer regarding
both w and LT . In most of the cases, stable matching algorithm yields better satiss
and satism because of balanced considerations of preferences of both manufacturers
and customers. Overall, the stable matching algorithm yields better matching pairs
when the demand-supply ratio is high.
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Table 2.3. Performance comparison of stable marriage and other algorithms.
Case Algorithm Quantifier Demand-supply Configuration

50% 80% 100% 120% 150% 200% 400% 500%

Case I

stable matching
vs.

MILPcustomer

w −30.01± 2.13% −56.23± 4.25% −74.46± 3.65% −24.88± 0.26% −11.35± 0.08% −6.86± 0.03% −3.31± 0.01% −2.65± 0.01%
LT 0.00± 0.00% 0.00± 0.00% 0.00± 0.00% 25.98± 0.35% 25.46± 0.50% 30.03± 0.39% 26.99± 0.31% 26.05± 0.32%
satisc −1.81± 0.25% −7.94± 0.35% 0.07± 0.06% 0.26± 0.33% −0.64± 0.41% −0.60± 0.34% −0.72± 0.43% −0.81± 0.40%
satism −10.39± 0.14% −3.66± 0.15% −5.24± 0.32% −2.64± 1.62% −4.71± 1.43% −5.43± 0.82% −6.35± 0.80% −6.06± 0.63%
R 0.00± 0.00% 0.00± 0.00% 0.00± 0.00% 36.00± 1.33% 35.38± 1.74% 44.10± 1.82% 37.80± 1.22% 36.04± 1.20%

stable matching
vs.

MILPmfg

w −30.01± 2.13% −56.23± 4.25% −74.46± 3.65% −24.88± 0.26% −11.35± 0.08% −6.86± 0.03% −3.31± 0.01% −2.65± 0.01%
LT 0.00± 0.00% 0.00± 0.00% 0.00± 0.00% 27.19± 0.41% 26.02± 0.48% 30.45± 0.37% 27.26± 0.32% 25.69± 0.31%
satisc 47.35± 0.12% 10.41± 0.17% 0.60± 0.16% 0.87± 0.27% 0.01± 0.39% 1.04± 0.33% 0.93± 0.33% 1.40± 0.37%
satism 43.17± 0.58% 25.93± 0.41% 6.38± 0.54% 4.78± 0.62% 2.37± 1.21% 1.87± 0.69% −0.28± 0.55% 0.29± 0.55%
R −0.01± 0.00% −0.02± 0.00% 0.00± 0.00% 38.50± 1.78% 36.38± 1.74% 44.90± 1.73% 38.35± 1.28% 35.36± 1.12%

stable matching
vs.

MILPordinal

w 51.69± 0.45% 41.31± 0.43% 36.54± 0.35% 18.29± 0.11% 11.59± 0.05% 6.71± 0.03% 2.61± 0.01% 2.08± 0.01%
LT 33.81± 0.84% 47.42± 0.60% 54.35±%0.39 50.27± 0.39% 42.70± 0.51% 42.25± 0.53% 32.32± 0.41% 29.50± 0.30%
satisc −15.35± 3.63% −25.34± 6.15% −32.40± 2.28% −22.32± 2.27% −15.64± 1.10% −10.51± 1.07% −4.37± 0.73% −2.26± 0.45%
satism 3.17± 0.28% 2.15± 0.85% −17.89± 0.47% −14.88± 0.89% −13.95± 0.74% −12.70± 0.92% −7.35± 0.77% −6.33± 0.59%
R 53.80± 4.10% 94.40± 8.73% 123.20± 10.00% 104.50± 7.74% 77.25± 5.03% 75.90± 4.95% 49.10± 2.13% 42.72± 1.31%

stable matching
vs.

FCFS

w 83.61± 0.02% 83.41± 0.01% 82.81± 0.01% 64.36± 0.01% 48.66± 0.01% 33.97± 0.01% 14.92± 0.01% 11.59± 0.01%
LT −0.50± 0.12% 0.00± 0.00% 0.00± 0.00% 26.41± 0.30% 26.21± 0.42% 30.90± 0.34% 26.23± 0.25% 25.85± 0.26%
satisc 49.81± 0.50% 12.53± 0.69% 0.15± 0.13% 0.79± 0.31% 1.02± 0.42% 0.11± 0.44% 0.54± 0.36% 1.54± 0.36%
satism 58.35± 7.61% 31.62± 2.18% 6.64± 0.52% 4.35± 0.97% 3.10± 1.16% 0.17± 0.79% −1.10± 0.57% 0.47± 0.56%
R −0.40± 0.08% −0.02± 0.01% 0.00± 0.00% 36.67± 1.12% 36.63± 1.62% 45.80± 1.70% 36.20± 0.93% 35.52± 0.96%

Case II

stable matching
vs.

MILPcustomer

w −15.77± 0.65% −28.32± 1.66% −38.18± 1.58% −0.26± 3.24% 16.92± 0.83% 14.11± 0.35% 8.63± 0.09% 6.14± 0.05%
LT 13.06± 0.84% 11.45± 0.55% 6.00± 0.42% 32.03± 0.80% 36.35± 0.69% 33.51± 0.48% 29.41± 0.39% 27.97± 0.43%
satisc 0.00± 0.00% 5.12± 0.68% −1.08± 0.35% 2.39± 0.57% 2.20± 0.64% 2.03± 0.44% 1.57± 0.31% −0.03± 0.40%
satism −4.48± 0.98% −11.19± 0.47% −6.19± 2.28% 10.21± 1.44% 9.68± 0.94% −1.07± 0.95% 0.67± 0.27% 0.15± 0.22%
R 16.34± 1.64% 13.72± 0.92% 6.91± 0.61% 49.78± 4.24% 59.87± 4.62% 52.16± 2.99% 42.82± 1.75% 40.07± 1.95%

stable matching
vs.

MILPmfg

w −15.77± 0.65% −28.32± 1.66% −38.18± 1.58% −13.66± 5.40% −4.62± 1.75% −5.04± 0.67% −2.26± 0.13% −2.44± 0.07%
LT −31.02± 4.24% −12.25± 1.94% −10.48± 1.47% 13.59± 0.99% 27.29± 0.65% 29.85± 0.50% 27.52± 0.32% 26.08± 0.26%
satisc 47.34± 0.09% 18.57± 0.31% 3.11± 0.31% 4.84± 0.53% 5.97± 0.45% 5.42± 0.35% 3.07± 0.34% 1.63± 0.39%
satism 91.08± 6.17% 38.29± 0.93% 24.52± 1.29% 22.63± 1.54% 21.07± 1.51% 15.14± 0.94% 6.52± 0.33% 4.52± 0.25%
R −21.77± 1.56% −9.57± 1.22% −8.41± 1.00% 17.29± 1.93% 39.35± 2.77% 43.99± 2.11% 38.86± 1.34% 35.95± 0.95%

stable matching
vs.

MILPordinal

w 56.57± 0.52% 47.75± 0.30% 43.15± 0.32% 32.55± 0.45% 22.82± 0.24% 13.56± 0.15% 4.87± 0.05% 3.39± 0.04%
LT 5.79± 4.01% 23.50± 1.85% 28.22± 1.55% 37.31± 0.93% 41.20± 0.60% 38.75± 0.47% 30.34± 0.39% 28.49± 0.38%
satisc −32.44± 13.65% −13.41± 4.50% −30.21± 4.23% −21.05± 2.78% −12.89± 1.73% −5.62± 0.86% −1.65± 0.39% −0.55± 0.48%
satism 42.35± 3.34% 15.58± 1.73% 3.39± 1.58% 2.61± 1.78% 5.75± 1.56% 6.88± 1.14% 3.05± 0.16% 2.25± 0.23%
R 11.09± 5.94% 35.26± 7.33% 43.73± 6.99% 63.52± 7.29% 73.08± 5.40% 65.28± 3.38% 44.77± 1.93% 40.94± 1.72%

stable matching
vs.

FCFS

w 76.71± 0.38% 77.46± 0.12% 76.58± 0.09% 63.00± 0.19% 48.40± 0.16% 32.92± 0.15% 14.56± 0.07% 10.97± 0.04%
LT −27.23± 3.89% −12.58± 1.60% −12.10± 1.30% 14.33± 0.73% 29.25± 0.75% 31.43± 0.61% 28.39± 0.36% 26.41± 0.33%
satisc 51.82± 0.46% 23.60± 0.56% 2.90± 0.36% 3.73± 0.42% 4.42± 0.48% 5.04± 0.50% 3.58± 0.29% 2.29± 0.45%
satism 117.33± 14.81% 47.33± 2.20% 26.07± 1.51% 22.41± 1.80% 20.52± 1.48% 14.66± 1.02% 6.58± 0.31% 4.81± 0.23%
R −19.47± 1.69% −10.02± 1.11% −9.85± 0.89% 17.93± 1.50% 43.57± 3.44% 47.87± 3.29% 40.68± 1.56% 36.75± 1.24%

Case III

Stable Matching
vs.

MILPcustomer

w −17.06± 1.56% −31.91± 0.70% −56.74± 1.43% −5.44± 2.85% 16.20± 2.82% 10.41± 0.42% 7.61± 0.08% 7.71± 0.06%
LT 31.39± 1.30% 25.14± 0.90% 27.10± 1.22% 36.26± 0.79% 19.61± 0.56% 29.35± 1.50% 28.76± 0.35% 26.75± 0.34%
satisc −7.26± 0.29% −1.23± 0.85% 1.50± 0.33% 4.68± 0.24% 2.88± 0.52% 2.38± 0.37% 2.42± 0.25% 3.20± 0.22%
satism −5.98± 0.91% −4.36± 0.26% 1.00± 1.69% 0.43± 0.57% 2.46± 0.27% 7.09± 0.52% 6.06± 0.41% 8.80± 0.29%
R 49.98± 5.62% 36.80± 4.63% 39.24± 4.31% 48.85± 3.03% 8.79± 2.55% 18.59± 2.89% 22.91± 1.35% 16.76± 1.40%

Stable Matching
vs.

MILPmfg

w −17.06± 1.56% −31.91± 0.70% −56.74± 1.43% −21.70± 2.85% −8.13± 5.36% −4.02± 1.19% −3.82± 0.14% −3.97± 0.08%
LT 12.23± 1.03% 15.11± 1.92% 5.26± 2.53% −2.62± 2.53% 14.22± 2.16% 29.98± 1.98% 28.13± 0.36% 28.62± 0.31%
satisc 42.30± 0.03% 28.88± 0.28% 16.55± 0.10% 12.83± 0.20% 11.29± 0.26% 7.44± 0.28% 6.22± 0.21% 4.55± 0.24%
satism 85.34± 8.36% 79.98± 5.12% 37.42± 3.13% 29.49± 1.73% 26.27± 1.09% 14.55± 0.90% 12.20± 0.43% 13.37± 0.30%
R −61.40± 0.21% −53.54± 0.40% −16.91± 0.77% −7.71± 1.82% 2.48± 1.51% 19.45± 2.54% 21.44± 1.43% 20.14± 1.30%

Stable Matching
vs.

MILPordinal

w 50.59± 0.48% 47.67± 0.34% 44.43± 0.37% 32.05± 0.19% 17.63± 0.21% 5.19± 0.16% 3.88± 0.05% 3.41± 0.03%
LT −9.88± 4.56% 3.40± 4.87% −0.41± 3.50% −3.83± 3.45% 15.67± 3.02% 31.68± 2.06% 29.07± 0.39% 25.51± 0.40%
satisc −8.13± 7.92% −13.20± 4.41% −18.90± 2.50% −13.16± 1.51% −5.64± 1.31% −0.79± 0.80% 0.53± 0.28% −1.31± 0.34%
satism 24.30± 2.56% 14.10± 2.00% −3.04± 2.35% 1.25± 1.00% 6.74± 0.92% 4.45± 0.76% 4.35± 0.29% 5.13± 0.29%
R −21.73± 4.48% −19.52± 3.91% 33.29± 3.98% 39.15± 10.89% 39.12± 12.46% 45.25± 7.41% 41.48± 4.33% 33.84± 3.26%

Stable Matching
vs.

FCFS

w 78.42± 0.36% 77.87± 0.11% 77.45±%0.07 63.69± 0.08% 44.36± 0.12% 18.50± 0.10% 13.96± 0.05% 13.94± 0.04%
LT −48.07± 8.78% −21.42± 5.95% −7.63± 6.55% −4.34± 3.37% 15.40± 2.78% 30.57± 2.03% 28.03± 0.35% 26.56± 0.42%
satisc 29.19± 0.40% 16.36± 0.80% 12.67± 0.38% 12.69± 0.31% 20.65± 0.28% 7.30± 0.32% 6.11± 0.24% 8.18± 0.23%
satism 64.21± 10.63% 47.17± 3.12% 28.50± 2.46% 29.87± 1.74% 25.55± 0.87% 14.88± 1.05% 11.83± 0.43% 12.48± 0.27%
R −52.37± 2.05% −49.14± 1.34% −16.57± 1.52% −8.16± 1.92% 3.32± 2.02% 20.84± 2.78% 20.68± 0.09% 19.34± 1.23%
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2.6 Discussion
Sharing economy enables individuals and small manufacturers to share their assets
and services to non-owners. AM directly delivers printed products to customers and
shortens the traditional supply chain, which typically includes suppliers, manufac-
turers, distributors, retailers, and customers. Cyber-physical AM platforms connect
manufacturers and customers and create a new shape of two-sided market. In this
paper, we consider a problem of matching manufacturers to customers for AM sharing
economy.

2.6.1 Privacy in sharing economy

Privacy is one of the major concerns for participating in sharing economy which
requires agents on both sides of the transaction to share private information. The
cyber-physical platform supports the exchange of sensitive data such as addresses
and credit card information from the customer’s side, as well as machine information
and manufacturing capability from companies. In the context of sharing economy,
information, data, and other resources (i.e., space or object) are shared through
the cyber-physical platform. As shown in Figure 2.11, service providers share their
data with the platform, and retrieve data from customers for production and profit.
Similarly, customers send data to the platform to gain access to service, then pay
through the platform.

Providers

Cyber-physical Platforms

Customers

Providers’ data
Customers’ data
Customers’ payment

Service and products

Customers’ data
Providers’ data
Providers’ revenue

Figure 2.11. The data exchange between providers, customers, and the cyber-physical
platform in the sharing economy.
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The privacy challenges for providers, customers, and platforms are described as
follows:

• Providers privacy: Providers often need to share information about who
they are and what services they can deliver, which are advertised on the
platform to attract customers. The privacy concerns arise when service providers
interact with competitors and customers through the platform. In such cases,
the providers are concerned about what information should be available to
the platform, what information should be disclosed to customers, and what
information should be open to the public to increase the participation in the
economy.

• Customers privacy: Trust from customers to the platform is imperative
because customers disclose sensitive information (e.g., credit card information,
address) to receive service from providers. The information is then used to
construct profiles and improve matching algorithm. Concerns of customers
about privacy not only consist of the use of their personal information, but also
include their social status and relations. These privacy concerns in different
categories need further discussion.

• Platform privacy: The privacy-related concerns vary among organizations
based on the scope of platforms (i.e., profit-oriented or community-oriented).
In cyber-physical AM, the platform stores information from manufacturing
resources (e.g., production capability), services (e.g., logistic capability), and
customers (e.g., demand). The use of private data can improve the matching
algorithm and benefit the manufacturer’s economic survival. However, the
leakage of private data might trigger a loss of trust from both providers and
customers to the platforms. Therefore, platforms need to balance the trade-off
between exploit of user data and their own benefits.

2.6.2 Opportunities

The opportunities of the AM sharing economy are as follows: (1) Regulation: The
sharing economy has raised several regulation issues and attracted much attention from
government regulators and traditional businesses. By gaining regulatory advantages,
companies in the peer-to-peer market skirt many requirements and further earn

36



profit. For example, most cities tax the taxi companies, cap the number of taxis, and
regulate the price the taxi charges customers. Also, taxi companies are subject to
specific licensing requirements for health and safety issues. Uber, however, allows
anyone with a driver’s license and a car to provide taxi services with a very limited
background checking. The company also has a different pricing model which is
sensitive to real-time demand. (2) Collaborative manufacturing: Traditionally,
big companies may get large batch orders with thousands of parts. Instead of a
single plant for order fulfillment, splitting the order into small batches and further
leverage various providers will dramatically reduce the lead time. However, little has
been done to study collaborative manufacturing and order splitting in the context
of sharing economy. There is an urgent need to (i) develop a matching framework
with collaborative manufacturing; (ii) introduce an integrated supply chain support
that utilizes the data from different collaborative centers to improve the efficiency
of the system; and (iii) design a distributed environment for fast computing. (3)
Order timelines: Not only a manufacturer can get a large order, but also some
time-sensitive orders. As some customers have time requirements in production and
are willing to pay more, if delivering the order on time, there are also customers not in
a rush and would like to keep the services as cheap as possible. A resource allocation
paradigm with the time-precedence structure will help assign the priority of orders
and satisfy both customers and manufacturers. (4) Privacy: Privacy is one of the
major concerns for participating in sharing economy which requires agents on both
sides of the transaction to share private information. The cyber-physical platform
supports the exchange of sensitive data such as addresses and credit card information
from the customer’s side, as well as machine information and manufacturing capability
from companies. Develop a framework to enable a privacy preserving environment
is critical to the development of AM sharing economy. (5) Blockchain-enabled
sharing economy: Blockchain is a novel technology to secure data transport with
cryptography. Blockchain is first introduced to build e-cash systems [84], and further
applied in other domains when there is a lack of trust between distributed parties.
In the sharing economy, many distributed agents communicate with each other
across the cyber-physical platforms through the internet. As aforementioned, data
security and information privacy are rising problems for the design, development, and
deployment of cyber-physical platforms. Therefore, it is worth investigating further
the blockchain technology for a new and effective way to share data under secure
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control in a decentralized system.
For future research, one should consider the stable matching framework in a

dynamic system. The dynamic optimization can be tackled by discretizing time epochs,
then formulating a classic stable matching problem and solving them independently
over time [85]. Also, this paper assumes preference lists calculated from two sets of
agents are based on true information. In reality, the agent may provide counterfeit
information to get a better matching pair. It is worth further investigating robust
matching under uncertainty.

The future work or possible applications of the proposed framework may focus
on the following aspects: (1) Dynamic matching framework: The proposed
stable matching framework can be further extended to a dynamic model. The
dynamic optimization can be tackled by discretizing time epochs, then formulating a
classic stable matching problem and solving them independently over time [85]. (2)
Matching with uncertainty: This paper assumes preference lists calculated from
two sets of agents are based on true information. In reality, the agent may provide
counterfeit information to get a better match between customers and providers.
It is worth further investigating robust matching under uncertainty. (3) Privacy
preserving stable matching: Privacy is one of the major concerns for participating
in sharing economy which requires agents on both sides of the transaction to share
private information [86]. The cyber-physical platform supports the exchange of
sensitive data such as addresses and credit card information from the customer’s side,
as well as machine information and manufacturing capability from companies. Future
work may consider a privacy preserving framework for stable matching.

2.7 Conclusions
Over the past few years, the sharing economy has changed the way people conduct
business in daily lives. New cyber-physical platforms enable owners to “share" their
assets and services to non-owners. Today, sharing economy disrupts traditional
industries across the world. However, the concept of sharing economy is still relatively
new in the field of AM. As the price of 3D printers decreases, small manufacturers
enter the market and “share" their idle machines with potential customers, further
compete with traditional large companies. Such decentralization in the market results
in the emergence of cyber-physical AM platforms, which shorten the AM supply chain
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and help customers find service providers to print their designs through the internet.
Nonetheless, little has been done to study market characteristics and needs in the
AM sharing economy.

In this paper, we investigate a bipartite matching framework to solve supply chain
matching problem in the AM sharing economy. The proposed algorithms are evaluated
and validated with different experimental scenarios. We compared the proposed
stable matching with MILP optimization as well as the FCFS allocation strategy
for different scenarios of demand-supply configurations (i.e., from 50% to 500%)
and system complexities (i.e., uniform parts and manufacturers, heterogeneous parts
and uniform manufacturers, heterogeneous parts and manufacturers). Experimental
results show that the proposed framework effectively improves the performance of
resource allocation in the AM sharing economy, especially when the demand-supply
ratio is relatively high and the system is complex. The proposed sharing economy
framework shows strong potential to realize a smart and decentralized AM sharing
economy.

For future research, one should consider the stable matching framework in a
dynamic system. The dynamic optimization can be tackled by discretizing time
epochs, then formulating a classic stable matching problem and solving them inde-
pendently over time. In addition, information privacy is a rising concern for the
design, development, and deployment of AM sharing economy. The cyber-physical
platform supports the exchange of sensitive data such as engineering designs from the
customer’s side, as well as machine capability and production costs from companies.
Privacy-preserving analytics is urgently needed for the development of AM sharing
economy and smart manufacturing.
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Chapter 3 |
From Design Complexity to Build
Quality in Additive Manufactur-
ing - A Sensor-based Perspec-
tive

Additive manufacturing (AM) provides a greater level of flexibility to build parts with
complex structures than traditional subtractive manufacturing. It not only offers
customizability while maintaining potential profitability but also provides freedom in
design complexity. In Chapter 2, we introduced a bi-pipette matching framework for
the AM cyber-physical systems regarding the growing demand in the AM sharing
economy market. However, quality consistency is still one of the main challenges,
especially in producing metal parts, for each manufacturer in the AM cyber-physical
system. The more complex the engineering design is, the greater challenge is posed
on the AM machine. From this chapter, we focus on the design-quality interactions
in the metal AM processes.

Nowadays, advanced imaging is increasingly invested to increase the information
visibility to cope with the complexity in AM processes. To understand the process
better, there is an urgent need to leverage the available imaging data to investigate
the interrelationships between design complexity and quality characteristics of AM
builds. This chapter presents a design of experiments on the laser powder bed fusion
(LPBF) machine to investigate how design parameters (i.e., recoating orientation,
contour spacing, width, height) influence edge roughness in thin wall structures of
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the final builds. First, we perform the post-build inspection of final builds and collect
large amounts of X-ray computed tomography (XCT) images. Second, we integrate
the computer-aided designs (CAD) with XCT images for image registration and then
characterize the edge roughness of each layer in a thin wall of the AM build. Finally,
we perform an analysis of variance with respect to design parameters and develop
a regression model to predict how build design impacts the edge roughness in each
layer of the thin wall structures. Experimental results show that edge roughness
are sensitive to recoating orientations, width and contour spacing. This research
sheds insights on the optimization of engineering design to improve the quality of
AM builds.

3.1 Introduction
Additive manufacturing (AM) provides a greater level of flexibility to build parts
with complex structures than the traditional subtractive manufacturing [87]. This
revolutionary technology also results in the shorter lead time, lower life-cycle cost, and
the ability to produce parts directly from computer-aided designs (CAD) without the
need for expensive part-specific tooling [88]. However, AM nowadays is still limited in
the ability to achieve the high-level of quality and repeatability, thereby hampering
the widespread application of the technology in the manufacturing industry. In the
AM process, there are a number of factors impacting the quality of final builds such
as powder materials, chamber environment, machine and process settings, and design
complexity [89]. Our prior studies focused on the effects of machine and process
settings (e.g., laser power, scanning velocity, and hatch spacing) on the quality of final
builds [12,90]. Deep learning models are also proposed to study the variant geometry
in layerwise imaging profiles for additive manufacturing quality control [91,92]. In
addition, we characterized the multifractal patterns of in-situ layerwise images for
the estimation of defect states in each layer [93,94], and then developed a Markov
decision process model to sequentially optimize the quality in complex systems [95,96].
As a further step, we focus on the interrelationships between design complexity and
quality characteristics of AM builds in the present paper.

It is well known that design complexity poses significant challenges on traditional
subtractive manufacturing. AM provides more design freedom, and complex structures
can now be fabricated layer by layer with the new AM technology. However, a
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Figure 3.1. Front and top view of CAD model and recoating orientations.

higher level of design complexity can greatly degrade the quality of final AM builds.
Advanced imaging is increasingly utilized to increase the visibility of post-build quality
information in the face of increasing design complexity. Realizing the full potential of
readily available imaging data calls upon the investigation of the interrelationships
between design complexity and quality characteristics of AM builds. Therefore, this
paper presents our experimental studies on the laser powder bed fusion (LPBF)
machine to investigate how design parameters (i.e., recoating orientation, contour
spacing, width and height) influence edge roughness in thin wall structures of the
final builds.

As shown in Fig. 3.1, our experiments feature a thin-wall structure with different
recoating orientations, widths, heights, and contour spacing (see Section 3.2. A).
Thin wall structures are widely used in heat exchanger designs. A total of three
thin-wall parts (also called Fin parts) were built, each differing in the manner of
rotation upon the build plate, i.e., their planar inclination in the X-Y plane with
respect to the recoater blade travel within the machine . After fabrication, we
performed post-build inspection with X-ray computed tomography (XCT). Next,
XCT images were registered layer-by-layer with the original CAD files to extract the
quality features of edge roughness in each thin wall. Here, the edge roughness refers
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to the geometric deviation of build in registered XCT scan and CAD file. However,
the average of absolute values of the profile height deviations from the mean line is
generally used for edge characterization. These features were tracked across layers to
detect impending collapse of thin-wall failures. Finally, we performed an analysis of
variance with respect to design parameters and further developed a regression model
to predict how design complexity impacts the edge roughness in each layer of the
thin wall structures.

3.2 Research Methodology
This section introduces the detailed research methodology. As shown in Fig. 3.2, the
present investigation focuses on metal printing with the EOS M280 laser powder
bed fusion (LPBF) machine. The data utilized in this study consist of the CAD
design files (i.e., the expected quality) and the XCT images of each layer in the
thin wall (i.e., the delivered quality). We leverage the layerwise CAD to perform
a shape-to-image registration for the XCT images, which provides the measure of
edge roughness for each layer of each thin wall. Finally, we analyze the impacts of
experimental factors on the edge quality and then develop a regression model to
predict how design complexity impacts the edge roughness in each layer of the thin
wall structures.

3.2.1 Experimental Setup and Factors

In this experiment, raw materials are Spherical ASTM B348 Grade 23 Ti-6Al-4V
powder, available from the LPW technology, with a size distribution of 14 µm - 45 µm.
Each fin part comprises a 15 mm× 15 mm× 55 mm platform upon which are built a
total of 25 fin walls. The experimental factors such as orientation, width, height and
contour spacing are detailed as follows:

1. Orientation: Fin parts were built vertically upwards with layer thickness of
60 µm in 3 orientations with respect to the recoater blade travel direction. The
arrow shows the recoating direction.

2. Width: The width of fin walls varies from 0.06 mm to 0.3 mm with the step
size of 0.01 mm, and the distance between two fins is 0.3mm.
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Figure 3.2. Flow diagram of the proposed research methodology.

3. Height: The designed height of fin walls differs from 0.6 mm to 3.0 mm with
the step size of 0.1 mm. Note that the height is proportional to the width in
each thin wall with an aspect ratio of 0.1.

4. Contour: Thin-walls 1-24 includes one outer contour on the blue line, one
inner contour with hatches at the same angle inside. Thin-wall 25 does not
have the inner contour as others. The designed contour spacing of fin walls,
which employ the standard EOS processing path, are significantly different as
the width increases. Note that there is a 67-degree rotation for the hatching
paths on each layer by the default setting of the EOS 280 machine. Fig. 3.3
shows 4 contour spacing.

3.2.2 Image Registration and Edge Characterization

This experiment uses post-build X-ray CT images to quantify the geometric variations
of each fin. Although metrology methods such as 3D scanning or coordinate measuring
machines are widely used to measure the geometric dimensionality, they are limited in
the resolution to comprehensively measure the 3D geometry of Fin builds. High-end
X-Ray CT, albeit expensive, offers an advantage to examine the internal structure of
the builds, as well as quantify the 3D geometric variations of the build.
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Figure 3.3. contour spacing of the fin walls.

For each fin part, we have a CAD file and the corresponding post-build XCT data.
Note that we slice the 3-dimensional CAD model and XCT volumetric scans into 300
layers (i.e., with a thickness of 10 µm per layer). To transform the two sources of
data (i.e., CAD model and XCT scan) into a single coordinate system, we leverage
the layerwise CAD file and XCT scan to perform a shape-to-image intensity-based
registration and to extract the region of interests. Intensity-based methods consider
correlation metrics to compare the intensity patterns in the target image (i.e., XCT)
and the source image (i.e., CAD). The registration process aims to transform (i.e.,
affine transformation) the target image into the source image. After registration, we
removed noise (i.e., connected objects that are less than 20 pixels) and extract fin
walls for each layer.

As illustrated in Fig. 3.4 (a), by defining the edge from the CAD file as the
referencing horizontal axis, we first measure the distance between the edge of the
registered XCT scan and the CAD file, then concatenate the upper and lower edge
signals to generate the edge roughness signal (see top right of Fig. 3.4 (b)). Fig. 3.4
(b) shows the signal is approximately represented by a normal distribution for the
fin 2 of layer 11. It is worth mentioning that the characteristics of edge roughness
of Fin wall 2 are different under the changing recoating directions (see bottom right
of Fig. 3.4). After approximating the edge signals with a normal distribution, we
obtained standard deviation (STD) of each edge in each layer of a thin wall for further
analysis.
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Figure 3.4. (a) Image registration and edge extraction of fin walls; (b) Normality assump-
tion and verification through layer of fin 2. (unit: µm)

3.2.3 Analysis of Variance

Here, we perform the two way analysis of variance (ANOVA) to study the effects
of experimental factors, i.e., orientations and fin wall characteristics, on the part
quality. Note that the parameters of height, width, and contour spacing are affiliated
with the fin wall number in our design of experiments. Therefore, we rearrange four
parameters into two factors (i.e., orientation and fin wall characteristics).

Fin 1 Fin 2 … Fin 20 Fin 21

0° !", !2,…, 
!299, !300

!1, !2,…, 
!289, !290

… !1, !2,…, 
!109, !110

!1, !2,…, 
!99, !100

60° !1, !2,…, 
!299, !300

!1, !2,…, 
!289, !290

… !1, !2,…, 
!109, !110

!1, !2,…, 
!99, !100

90° !1, !2,…, 
!299, !300

!1, !2,…, 
!289, !290

… !1, !2,…, 
!109, !110

!1, !2,…, 
!99, !100

F

O

Figure 3.5. Experimental data structure for the ANOVA analysis: F and O represent two
factors, namely fin number and orientation.

As shown in Fig. 3.5, there are 3 levels of orientation with respect to the recoater
blade travel direction and 21 levels of thin wall. It is worth mentioning that the last
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four fin walls were collapsed in the fabrication process, likely due to interference with
the recoater blade during recoat operations, and therefore they are not available for
ANOVA. Here, fin 1 to fin 21 are taken into account for this ANOVA analysis. The
model is expressed as:

σij = β0 + β1 ×Oi + β2 × Fj + β3 ×Oi × Fj + εij (3.1)

where O and F represent orientation and fin number, respectively. Also, εij in Eq.
(3.1) denotes the error term in ANOVA model.

3.2.4 Predictive Modeling

In addition, we develop a regression model to quantify the relationship between edge
roughness and the orientation, width, height, and contour spacing of each fin wall:

σ = β0 + β1 ×O + β2 ×W + β3 ×H + β4 ×Ha+ β5 ×O ×W+

β6 ×O ×H + β7 ×O ×Ha+ β8 ×W ×H + β9 ×W ×Ha+

β10 ×H ×Ha+ ε

(3.2)

where Ha denotes the contour spacing and is a categorical variable with four levels,
O stands for the orientation which is also a categorical variable with three levels, and
H and W represents the height and width of the corresponding fin wall, respectively.
The R-square (R2) is utilized to statistically measure the performance of the model,
and is defined as R2 = 1 − Sum of Squareresidual

Sum of Squaretotal
= 1 − Σi(σi−σ̂i)2

Σi(σi−σ)2 . Where σi is the edge
roughness, σ̂i is the predicted value of the variance, and σ is the overall average of
the data.

3.3 Experimental Results

3.3.1 Statistical Analysis

3.3.1.1 Analysis of variance to test the hypothesis whether orientations
and fin wall characteristics impact the edge roughness

In Table. 3.1, the p-values for orientation, fin wall, and interaction are approximately
0, which shows all three factors have significant impacts on the edge roughness. In
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this ANOVA table, the Sum Sq., d.f., mean Sq., F and Prob>F denote sum of
squared errors, degrees of freedom, mean of squared errors, the F statistics, and the
p-value, respectively. It may be noted that the F test statistically shows whether
a specific factor is associated with higher variations than random phenomena. At
certain d.f. levels of the denominator and the numerator, the higher the F statistics,
the smaller the p-value will be. If the p-value is less than 0.05, there are significant
effects from a factor.

Table 3.1. ANOVA analysis of variance in two-way layout experiment.
Source Sum Sq. d.f. Mean Sq. F Prob>F
fin 200.472 20 10.024 20.412 0

orientation 631.408 2 315.704 642.890 0
fin * orientation 307.300 40 7.683 15.644 0

Error 6156.050 12536 0.491
Total 7371.040 12598

3.3.1.2 The impact of orientation on edge characteristics

As shown in Fig. 3.6 (a), the average variation of fin wall edges is not constant for
different recoating directions. Note that building the fin part at 0 orientation with
respect to recoating direction leads to the smallest edge roughness, while the biggest
edge roughness occurs at 60.

3.3.1.3 The impact of fin width on edge characteristics

As illustrated in Fig. 3.6 (b), the mean of edge roughness first increases and then
decreases as the fin wall gets wider. The variations of edge roughness is bigger when
the fin width is smaller. Fig. 3.6 (b) shows that as the width of fin walls increases,
the AM machine can print the thin-wall structure with smaller variations of edge
roughness. When the dwidth is as small as 0.10 mm to 0.19 mm, there are more
outliers indicating significant variations in surface roughness can occur when building
thin wall structures of thin-wall structures.

3.3.2 Predictive Modeling

Next, we develop a regression model to quantify the relationship between edge
roughness and design parameters. As shown in Table. 3.2, contour spacing, width,
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Figure 3.6. (a) Mean and STD of edge roughness under three orientations; (b) Mean and
STD of edge roughness when fin width increases.

and two-way interactions of width × orientation, hatching × orientation, and hatching
× width are significant at the confidence level of 95%. For further investigation,
contour spacing can be adjusted to generate fins with reduced edge roughness, even
for thin fins. Besides, the p-value of width is 1.119e-74 which shows that it is an
important factor in edge roughness. Also, two-way interaction terms of hatching ×
orientation and width × orientation are significant which shows that the combination
of different design parameters impacts the quality in AM as well. Here, note that
we set the 0 orientation as the baseline, and the NA indicates that the variable is
correlated with one of the other variables.

The coefficient of determination is utilized to illustrate the percentage of variation
in response variable that is explained by the model. The regression model yields the
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Table 3.2. Results of Regression Analysis.
Effect Estimate Error t value P-value

Intercept 1.029 0.0434 23.7 1.223e-120
hatching 15.447 0.7447 20.7 2.480e-93
width -13.757 0.7452 -18.5 1.119e-74

orientation 60 -0.331 0.0392 -8.4 3.537e-17
orientation 90 -0.246 0.0397 -6.2 5.499e-10

height 0.165 0.0299 5.5 3.583e-8
width * orientation 60 6.350 0.6847 9.3 2.205e-20
width * orientation 90 6.053 0.6946 8.7 3.465e-18
height * orientation 60 -0.034 0.0036 -9.6 1.496e-21
height * orientation 90 -0.078 0.0037 -21.3 1.839e-98

width * height 2.136 0.5119 4.2 3.041e-5
hatching * height -2.660 0.5168 -5.1 2.699e-7

hatching * orientation 60 -4.764 0.6904 -6.9 5.553e-12
hatching * orientation 90 -4.407 0.7013 -6.3 3.452e-10

hatching * width -6.564 0.2591 -25.3 1.036e-136

R-squared statistic of 81.36% and adjusted R-squared statistic of 81.33%, showing
that variations in response variable are highly dependent on design parameters.
Furthermore, we utilize the normal Q-Q plot as descriptive graphical tools for the

Figure 3.7. Normal Q-Q plot of the regression model.

model diagnosis and checking the normality assumption of residuals. Note that
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Fig. 3.7 shows the normal Q-Q plot approximately follows a straight line.

3.4 Limitations and Future Works
AM enables the fabrication of complex structures. Together with the freedom of
fabrication, new challenges are introduced for designing for additive manufacturing,
including representing and optimizing intricate geometries and functionally graded
structures, incorporating design for AM knowledge into the design process, and
making design for AM tools and knowledge more accessible to a broad range of expert
and novice designers [97]. In this chapter, we focus on investigating the relationship
between part quality and AM parameters utilizing the data from a thin-wall part.
Specifically, we perform a design of experiment to study the relationship between
edge roughness and design parameters. We characterize and the edge roughness from
the XCT slices and build a predictive model to quantify the relationship between
edge roughness and design parameters. In the proposed regression analysis, only one
variable, edge roughness, is considered as the response variable. However, multiple
responses are often generated and correlated in many real-world settings. For example,
not only the edge roughness is possibly correlated with the design parameters. Other
features, the number of pores may also be related to design parameters. In the next
chapter, we propose a recurrence network analysis to analyze the AM image data with
the network theory, and characterize the part quality with the network quantifiers.
We integrate multiple responses into Hotelling’s T 2 statistics. Note that Hotelling’s T 2

distribution is a multivariate probability distribution related to the F-distribution. In
comparison with the univariate hypothesis tests that are associated with t-distribution,
Hotelling’s T 2 distribution arises in multivariate statistics in undertaking tests of the
differences between multiple means from different populations. In addition, a detailed
discussion of the resolution and sensitivity regarding the feature extraction from the
data is discussed in Chapter 6.

3.5 Conclusions
AM provides the design freedom with complex geometrical structures, which cannot
be realized otherwise using conventional manufacturing methods. However, a higher
level of design complexity can significantly deteriorate the quality of AM builds. To
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tackle this challenge, post-build high resolution XCT scans which provides a rich data
environment is recently taken into account. There is a dire need to take advantage of
this data to decipher the relationship between design parameters and quality of AM
builds. In this study, a design of experiments is performed to characterize the impact
of design parameters on edge roughness of thin wall structures. First, XCT images of
builds are registered to CAD models to characterize and quantify the edge roughness
in thin wall structures. Then, we performed the experimental design to study the
impact of design parameters on the edge quality of fins. Next, a predictive model is
developed to quantify the behavior of edge roughness as a function of these parameters.
The regression result shows that the hatching, width, and orientation have significant
impacts on the edge roughness at the confidence level of 95%. Further, the adjusted
R-squared demonstrates that 92.54% of the edge roughness can be explained by the
regression model. This study sheds insights to optimize the engineering design for
quality improvement in AM.
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Chapter 4 |
Recurrence Network Analysis of
Design-quality Interactions in Ad-
ditive Manufacturing

Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of
flexibility in the design-driven build of metal products. However, the more complex
the design, the more difficult it becomes to control the quality of AM builds. The
quality challenge persistently hampers the widespread application of AM technology.
Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical
images) has been increasingly explored to enhance the visibility of information and
improve AM quality control. Realizing the full potential of imaging data depends on
the advent of information processing methodologies for the analysis of design-quality
interactions. In the previous chapter, we investigate the relationship between design
parameters and a single response edge roughness. However, there are often multiple
responses in real-world settings. Different models need to develop to handle the
multi-response prediction.

This chapter presents a design of AM experiment to investigate how design
parameters (e.g., build orientation, thin-wall width, thin-wall height, and hatching
distance) interact with multiple quality characteristics in thin-wall builds. Here,
the build orientation refers to the position of thin-walls in relation to the recoating
direction on the plate. First, we develop a novel generalized recurrence network
(GRN) to represent the AM spatial image data. Then, GRN quantifiers, namely
degree, betweenness, pagerank, closeness, and eigenvector centralities, are extracted
to characterize the quality of layerwise builds. Further, we establish a regression

53



model to predict how the design complexity impacts GRN behaviors in each layer of
thin-wall builds. Experimental results show that network features are sensitive to
build orientations, width, height, and hatching distance under the significant level
α = 0.05. Thin-walls with the width bigger than 0.1 mm printed under orientation
0◦ are found to yield better quality compared to 60◦ and 90◦. Also, thin-walls build
with orientation 60◦ are more sensitive to the changes in hatching distance compare
to the other two orientations. As a result, the orientation 60◦ should be avoided
while printing thin-wall structures. The proposed design-quality analysis shows great
potential to optimize engineering design and enhance the quality of PBF-AM builds.

4.1 Introduction
Powder bed fusion (PBF) additive manufacturing (AM) provides an unprecedented
opportunity to produce metal builds with complex geometries layer by layer directly
from digital designs. In contrast with conventional subtractive manufacturing, AM
technology offers a higher degree of design freedom and avoids extra tooling costs [98].
Therefore, design constraints in conventional subtractive manufacturing (i.e., design
for manufacturing) are lessened by this new technology. In other words, PBF-AM
enables a new paradigm of “manufacturing for design" to fabricate the complex
design in a layer-by-layer fashion [99]. Consequently, the rapid development of digital
manufacturing and material science in recent years fuels the widespread applications
of AM in many industries such as aerospace [100] and healthcare [101].

However, a higher level of design complexity tends to degrade the quality of
final PBF-AM builds and lower the repeatability of the process [102]. Advanced
imaging (e.g., X-ray computed tomography scans and high-resolution optical images)
is increasingly utilized to cope with design complexity and enhance the information
visibility for quality assessment [103]. However, advanced AM imaging technologies
bring complex-structured and high-dimensional spatial data (i.e., a large number of
pixels that are spatially correlated in each layerwise image of an AM build). There is
a dire need to develop new analytical methodologies that realize the full potential of
imaging data for the analysis of design-quality interactions.

Recurrence plot (RP) and recurrence quantification analysis (RQA) are widely
used to graphically represent recurrence dynamics and quantify recurrence patterns of
nonlinear time series analysis in complex manufacturing systems. However, traditional
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RP and RQA tend to be limited in the ability to handle high-dimensional spatial
data. To delineate recurrence dynamics in the spatial data, prior efforts have been
made to extend the recurrence plot to a four-dimensional hyperspace [104]. However,
this conventional method can only visualize the recurrence patterns in the reduced-
dimension space and is rather limited in the ability to provide a complete picture
of recurrence patterns in AM spatial imaging data. New analytical methodologies
are needed to 1) characterize recurrence behaviors and patterns in AM spatial data;
2) measure and quantify the recurrence features; and 3) analyze the relationship
between the extracted features and the quality of AM builds.

This study presents our experimental studies on PBF-AM, as well as the analysis
of imaging data to investigate the relationship between design parameters and quality
characteristics through a recurrence network approach. The proposed methodology,
namely the generalized recurrence network (GRN) approach enables 1) effective
visualization of complex spatial patterns in AM images that overcomes the “curse of
dimensionality” problem in the traditional RP methodologies; 2) the use of network
theory to characterize and quantify recurrence properties, thereby reducing high-
dimensional image profiles into a lower-dimensionality set of quantifiers; and 3)
the design of experiments to select important features, and predict how the design
complexity impacts network characteristics in each layer of thin-wall builds.

Figure 4.1. (a) XCT scan of the thin-wall build in orientation 0◦; (b) a slice of XCT scan
from the 103th layer of 0◦ build with quality issues such as collapsed walls, lack of fusion,
edge inconsistency, and porosity.

The proposed methodology is evaluated and validated with simulation and real-
world case studies of thin-wall structures fabricated by the PBF-AM. The simulation
study is aimed at evaluating the effectiveness of GRN to characterize layerwise imaging
data as well as testing the significance of quantifiers with defect variations. In the real-
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world case study, we conduct a series of experiments to fabricate thin-wall structures
by varying the levels of design parameters such as build orientation (i.e., the planar
inclination of thin-walls in the X–Y plane with respect to the recoater blade), thin-wall
width, thin-wall height, and hatching distance (see Section 4). Thin-wall structures
are commonly utilized in heat exchangers to increase the efficiency of thermal transfer
and reduce the material consumption. However, fabricating thin-wall structures is a
challenging task for PBF-AM. Therefore, a better understanding the design-quality
interaction is urgently needed. As illustrated in Figure 4.1, thin-walls may collapse,
contain pores and lack-of-fusion defects, or have structural inconsistency. A total of
three thin-wall builds were made using the PBF-AM. A post-build inspection on the
parts was conducted with X-ray computed tomography (XCT). Then, we registered
the XCT images layer-by-layer with the sliced computer-aided design (CAD) files
to delineate the region of interest (ROI) and then measure quality-related features.
These network features characterize the defect patterns (i.e., inversely proportional to
the quality level) in each layer, which are then used to track the variation of quality
across layers so as to detect impending failures in the layers of a thin-wall. Lastly, we
performed an analysis of variance (ANOVA) analysis to select important features then
constructed a regression model to predict how design complexity impacts network
characteristics in each layer of thin-wall structures. Experimental results show that
the build quality is sensitive to build orientation, thin-wall width, thin-wall height,
and hatching distance.

The rest of the paper is organized as follows: Section 4.2 reviews the related
literature on AM design studies and provides the research background in recurrence
analysis. Section 4.3 presents the experimental setup and GRN analysis of spatial
data. The experimental results are provided in Section 4.4. Section 5.6 concludes
this study.

4.2 Research Background

4.2.1 Quality Control and Design Parameters in PBF-AM

The quality of an AM build is impacted by feedstock materials, machine environment,
process settings, and design complexity. Our prior studies concentrated on the impact
of process and machine settings (e.g., scanning velocity, laser power, and hatch
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spacing) on the builds quality [12,90,105]. Deep learning models are also proposed to
study the variant geometry in layerwise imaging profiles for additive manufacturing
quality control [106,107]. Furthermore, we developed a Markov decision process model
to sequentially optimize the quality of AM builds [95,108]. This paper specifically
focuses on the interactions between design parameters and quality characteristics.
Several prior works have been done to study the builds of thin-wall structures when
the design parameters are varied. Thomas [109] reported that walls thinner than 0.4
mm are difficult to build based on experimental studies on an MCP Realizer 250
SLM machine. Dunbar et al. [110] tried different process settings (i.e., laser power,
velocity, and scan type) to test the limits of thin, metallic components using PBF-AM.
They found that thin-walls fabricated with the orientation of 90◦ are consistently
thicker than the thin-wall built with the orientation 45◦. Kranz et al. [111] conducted
experiments on the EOS 270xt, and showed that it is possible to manufacture thin-wall
structures made of TiAl6V4 in all the examined orientations (i.e.,0◦, 45◦, 90◦, 135◦,
and 180◦) at a minimum thickness from 0.4 mm. Thin-walls of 0.3 mm were only
successfully printed under orientation 30◦; however, the highest deviation is also
observed at the orientation of 30◦.

Gaikwad et al. [112, 113] extracted statistical features (i.e., thickness, density,
edge smoothness, and discontinuity) from imaging data to quantify the build quality,
and further leveraged deep learning for real-time flaw detection. Our prior work has
also studied the interaction between design complexity and edge roughness [114].
Note that the edge roughness is defined as the geometric deviation of thin-wall
boundaries between the sliced CAD file and the registered XCT scan. However, the
calculated edge roughness is treated as one-dimensional time series data and does not
have a high-dimensional structure with geometric information. Few, if any, previous
works have leveraged GRN analysis of imaging data to study interactions between
design parameters and the quality of PBF final builds. AM imaging provides spatial
data which includes both geographical coordinates and pixel intensity characteristics.
Therefore, new analytical methodologies are urgently needed to handle AM spatial
data and extract useful information to analyze the design-quality interactions.
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4.2.2 Recurrence Analysis and Network Theory

Recurrence is a fundamental property that commonly exists in complex systems.
For example, RQA provides an effective tool to analyze acoustic emission signals
and extract features to estimate surface roughness of metal cutting [115]. Poincare
recurrence theorem shows that the trajectory of a dynamical system will eventually
reappear in the ε-neighborhood of former states [116]. Eckmann et al. [117] introduced
a graphical tool, namely RP, to visualize recurrence patterns of dynamical systems in
1987. RP characterizes the proximity of two states using the Heaviside function Θ,
then obtains the topological relationships in the state spaces as a two-dimensional
recurrence plot:

Rp,q = Θ(ε− ‖sp − sq‖) sp, sq ∈ Rm (4.1)

where Rp,q is the recurrence matrix R, sp and sq are two states, and ε is a threshold.
Mutual information and the false nearest neighbor are commonly used to select optimal
delay and determine the embedding dimension for state-space reconstruction from time
series. Mutual information quantifies both linear and nonlinear interdependence in the
time series, and the optimal dimension is determined by varying the dimensionality
and comparing the behavior of false nearest neighbors [118]. Zbilut and Webber
[119] proposed RQA to extract statistical features from small-structures in the
RP to understand the dynamical properties of complex systems. Yang and Chen
[120] considered different types of recurrences in the state space and extended the
conventional RQA to heterogeneous recurrence quantification analysis (HRQA). The
HRQA has been widely applied in the manufacturing domain [121,122] as well as the
healthcare area [123,124].

However, RP is limited in the ability to handle high-dimensional and geometric
spatial data. Marwan et al. [104] extended the one-dimensional RP framework to
high-dimensional spatial data:

R(xp,xq) = Θ(ε− ‖s(xp)− s(xq)‖) s(xp), s(xq) ∈ Rm (4.2)

where s(xp) and s(xq) are the states (i.e., pixel intensity), xp and xq denotes the spatial
locations. If the intensity differences between two pixels is less than threshold ε, there
exists a recurrence. However, only limited information about the recurrence behaviour
can be visualized. Let’s denote the spatial reference (i.e., location information) as x =
(x1, x2, ..., xd) with d dimensions, and the attribute set as a = (a1, a2, ..., am) with m
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dimensions. A pixel p in a two-dimensional image contains the location xp = (x(p)
1 , x

(p)
2 )

and attribute ap = (a(p)
R , a

(p)
G , a

(p)
B ). Then, a two-dimensional image will generate a

four-dimensional RP R(xp,xq) = R
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(p)
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(p)
2 ,x
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2
. However, only three out of four

dimensions can be selected for the visualization in the three-dimensional coordinate
system. It will be even more challenging to visualize three-dimensional imaging data
which generates an RP of six dimensions R(xp,xq) = R
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Further, Yang et al. [118, 125] introduced a recurrence network for nonlinear time
series analysis. Network nodes represent the states and edges denote the recurrence
relationship.

Ap,q = Θ(ε− ‖s(xp)− s(xq)‖)−∆p,q s(xp), s(xq) ∈ Rm (4.3)

where ε denotes the recurrence threshold, Ap,q is the adjacency matrix, ∆p,q is the
Kronecker delta, which prevents the self-loop in the recurrence network. However, the
proposed recurrence network is designed for time series data, and cannot be utilized
for spatial data directly. In this work, we leverage network theory to investigate
the recurrence behavior of spatial data, further characterize and quantify spatial
characteristics through network statistics.

4.3 Research Methodology
This paper presents the analysis of design-quality interactions in the PBF-AM process.
As shown in Figure 5.4 (a), a total of three builds were fabricated, each differing
in build direction (i.e., their planar inclination in the X–Y plane with respect to
the recoater blade). We performed a post-build inspection through XCT. As shown
in Figure 5.4 (b), a shape-to-image registration is conducted between XCT images
and layerwise CAD images. Next, we leveraged a GRN analysis to characterize and
quantify the layerwise imaging data. Finally, we performed an ANOVA analysis to
select important features and established a regression model to predict how the design
complexity impacts the network behaviors in each layer of thin-wall builds.

4.3.1 Experimental Setup

In this experiment, thin-wall parts were built from Spherical ASTM B348 Grade 23
Ti-6Al-4V powder with a size distribution of 14-45 µm on an EOS M280 PBF machine.
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Figure 4.2. The flow chart of research methodology.

The laser power and velocity settings are 340 W and 1250 mm/s, respectively. As
shown in Figure 5.5, thin-wall parts are built vertically with a layer thickness of 60
µm in three orientations (i.e., 0◦, 60◦, and 90◦) with respect to the travel direction
of recoater blade (i.e., indicated by the arrow on each part). Each thin-wall build
consists of 25 thin-walls built on a platform of size 15 mm × 15 mm × 55 mm. The
width of thin-walls increases from 0.06 mm, with a step size of 0.01 mm, to 0.3 mm.
Also, two thin-walls are separated with a constant distance of 0.3 mm. It is worth
mentioning that the height/width ratio of each thin-wall is 10. In other words, if
the width of a thin-wall is 0.3 mm, then the height is set to be 3.0 mm. Figure 5.5
(d) shows the hatching pattern for thin-wall 1-24 that includes one outer contour
on the blue line, one inner contour with hatches at the same angle inside. However,
thin-wall 25 does not have the inner contour as others. Note that there is a 67-degree
rotation for the hatching paths on each layer by the default setting of the EOS 280
machine. Table 5.1 shows the variation of hatching distances within the contour from
thin-wall 1 to thin-wall 25. The distance between hatches is 0.244 mm for thin wall 1,
and decreases from thin-wall 1 to 24 (0.011 mm). Post build XCT data are obtained
on General Electric V|tome|X system with a voxel size of 15 µm3.
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Figure 4.3. (a) The orientation of thin-wall parts, (b) the top view of the CAD model, (c)
the side view of the CAD model, and (d) the hatching patterns of the thin-walls. The blue
and green solid lines represent outer and inner rectangle paths, respectively.

4.3.2 Image Registration

Image registration helps delineate the correspondence of ROIs between two images
(i.e., a moving image and a fixed image) using a common coordinate system. Note that
this paper focuses on the analysis of design-quality interactions and does not preclude
others to use a different registration approach. We used a standard registration process
with four components, namely similarity metric, optimizer, moving transformation,
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Table 4.1. The variations of hatching distances within contour from thin-wall 1 to thin-wall
25.
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
1 0.244 6 0.190 11 0.142 16 0.092 21 0.045
2 0.234 7 0.183 12 0.136 17 0.082 22 0.033
3 0.220 8 0.167 13 0.125 18 0.076 23 0.022
4 0.208 9 0.159 14 0.114 19 0.059 24 0.011
5 0.198 10 0.154 15 0.102 20 0.049 25 N/A

and interpolator. The similarity metric is aimed at evaluating the accuracy of image
registration, which takes two images (i.e., the moving image and the fixed image) and
returns a scalar value that measures the similarity between two images. Figure 4.4
illustrates this iterative process and flow chart of image registration.

Figure 4.4. The flow chart of image registration.

The mean square differences (D) is used to define the similarity metric between a
fixed image F and a transformed image M ′ as:

D(F,M ′) = 1
N

N∑
p=1
‖F (p)−M ′(p)‖2 ∀ p ∈ F ∩M ′ (4.4)

where N represents the number of pixels in each image, F (p) shows the intensity
of pixel p in the fixed image, M ′(p) denotes intensity of pixel p in the transformed
image.

M ′ = T (M) (4.5)
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whereM is the moving image, and T is the transformation function. The optimization
problem is formulated as:

argmin
T

D(F,M ′) (4.6)

The gradient descent method is utilized to iteratively update T and search for
the minimum value of D:

Tr+1 = Tr + ar(−gr) (4.7)

where ar > 0 is the step size at iteration r, gr is the gradient vector of D. Then,
we isolate the region of interest (ROI) (i.e., each thin-wall) from the powder area in
registered images. The extracted ROIs are used for the GRN analysis in the next
session.

4.3.3 Recurrence Network Analysis of Spatial Data

Spatial data contains both spatial locations and intensity values of pixels. The
traditional recurrence analysis is limited in the ability to analyze high-dimensional
spatial data. Here, we propose a GRN analysis method, which accounts for both
spatial closeness and pixel similarity. As discussed in Section 2, let’s denote spatial
reference as x = (x1, x2, ..., xd), and attribute information as a = (a1, a2, ..., am),
where d and m are the dimensions, respectively. For the pixel p in a two-dimensional
image, xp = (x(p)

1 , x
(p)
2 ) and ap = (a(p)

R , a
(p)
G , a

(p)
B ). For a 3D voxel q, xq = (x(q)

1 , x
(q)
2 , x

(q)
3 )

and aq = (a(q)
R , a

(q)
G , a

(q)
B ). The edge weight of a recurrence network is formulated as:

wp,q = Ip,q ×Dp,q (4.8)

where the intensity similarity Ip,q (i.e., the closeness between two pixels) is

Ip,q = 1− ‖s(xp)− s(xq)‖
max{‖s(x.)‖} −min{‖s(x.)‖}

xp,xq ∈ Nd, sp, sq ∈ Rm (4.9)

Spatial closeness Dp,q (i.e., the spatial correlation between two pixels) is

Dp,q = φ(‖xp − xq‖)
φ(‖0‖) xp,xq ∈ Nd (4.10)

where φ(·) denotes the Gaussian function. As shown in Figure 4.5, if two pixels are
far away from each other, the spatial correlation between them is low. In other words,
φ(‖xp − xq‖) < φ(‖xp − xq′‖) while Dp,q > Dp,q′ .
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Figure 4.5. The relationship of φ(‖xp − xq‖) and spatial distance. If two pixels are far
away from each other, the spatial correlation between them is tend to be low. In other
words, φ(‖xp − xq‖) < φ(‖xp − xq′‖) while Dp,q > Dp,q′ .

The adjacency matrix Ap,q is derived as a binary matrix where Ap,q = 1 if there
is a link from node p to node q, and otherwise if they are not connected:

A(xp,xq) = Θ(ε− wp,q)−∆p,q (4.11)

where ε denotes the threshold, Θ is the Heaviside Function, and ∆p,q is the Kronecker
delta which prevents the self-loop in the recurrence network. The threshold ε is often
chosen based on the significance level α. Note that the 0.05 significance level is the
most commonly used α value in statistics. In this study, we set α = 0.05.

4.3.4 Network Characterization and Quantification

Network statistics are established measurements for the characterization of the
topology, and provide useful information for statistical inference as well as predictive
modeling [126]. Table 4.2 summarizes the network statistics and their corresponding
mathematical equations used in this study.

In the proposed GRN framework, degree kp represents the recurrence frequency
relative to the pixel p. The connection between nodes indicates the both the image
and spatial similarity. In other words, the distribution of kp shows the recurrence
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Table 4.2. Network measures and the corresponding mathematical expressions.
Quantifiers Expression Description

Degree kp = ΣN
q=1Ap,q

Number of edges connected to node p.
N denotes the number of node in the
network.

Betweenness Centrality BCp = ∑
p 6=q 6=r

σqrp
σqr

σqr is the total number of paths from
node q to node r, σqrp is the number of
those paths which pass through node p.

Pagerank Centrality PRp = (1− α) 1
N

+ α
∑
q Aq,p

PRq

Lq

α ∈ (0, 1), Lq is the number of
neighbours of node q .

Closeness Centrality Cp = 1
Σp6=qdp,q

dp,q is the distance between node p and
node q.

Eigenvector Centrality Vp = 1
λ
Σq∈M(q)Vq

M(q) denotes the set of neighbors of p,
λ is a constant.

distribution of spatial data. The centrality measurements reveal recurrence patterns
between a node and its neighbors. For example, the betweenness centrality quantifies
the number of shortest paths that pass through one node, which indicates how many
times a node appears in different patterns. The bigger the betweenness centrality, the
more frequent the corresponding recurrence pattern shows in the system. Eigenvector
centrality is a measure of the influence of a node in a network, and pagerank centrality
is its variant. The bigger the eigenvector centrality, the more a node impacts other
nodes in a network. The closeness centrality is calculated as the reciprocal of the
sum of the shortest paths between the node and all other nodes in the network. The
node with larger closeness centrality is closer to other nodes, and indicates a stronger
recurrence pattern.

4.3.5 Hypothesis Testing

We tested the statistical significance of extracted network features using the Mann-
Whitney U test [127]. Let X and Y denote two histograms, and contain m and n
observations, respectively. The hypothesis of the Mann-Whitney U test is

H0 : Two histograms X and Y follow the same distribution

H1 : Two histograms X and Y follow different distributions
(4.12)

Mann-Whitney U test begins by arranging the m + n observations in a single
sequence from the smallest to the largest. Then, a rank is assigned to each element
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corresponding to the position. That is, each of the observation is assigned a rank from
1 to m+n in the ordering. If H0 is true, the observations X1, ..., Xm (or Y1, ...Yn) tend
to be dispersed throughout the ordering of all m+ n observations. Otherwise, the
observations are concentrated among the smaller values or among the larger values if
H1 is true. Let S denote the sum of the ranks assigned to m observations from X.
Given H0 is true,

E(S) = m(m+ n+ 1)
2 (4.13)

and
V ar(S) = mn(m+ n+ 1)

12 . (4.14)

Note that when the H0 is true and sample size m and n are large, the distribution
of S is approximately normal. The null hypothesis H0 is rejected if |S−(1/2)m(m+n+
1)| ≥ c, where c = [V ar(S)]1/2Φ−1(1−α/2). The p-value is computed as 2[1−Φ(z0)],
where z0 = |S − E(S)|/

√
V ar(S). If the p-value is less than the significant level (i.e.,

α = 0.05), H0 will be rejected and the distributions of X and Y are declared to be
different at the significant level of 0.05.

4.3.6 ANOVA and Predictive Modeling

Further, we perform an ANOVA to study the effects of experimental factors (i.e.,
orientations and other design parameters) on the build quality. Here, the parameters
of hatching distance, thin-wall width, and height are associated with the thin-wall
number. In total, there are three levels for orientation O and 21 levels for thin-wall
characteristics C. The last four thin-walls collapsed during the fabrication process
(see Figure 4.1). Therefore, we only take the other 21 thin-walls into account in the
ANOVA. We reorganize our design parameters into two groups, i.e., orientation and
thin-wall characteristics, with 3 levels and 21 levels, respectively.

Two-way ANOVA is commonly performed when there are two factors (i.e., factor
M with m levels and factor N with n levels) in an experiment. Figure 4.6 shows the
data structure for ANOVA, which is expressed as:

Xij = µ+Oi + Cj +OCij + εij (4.15)

where i = 1, ..., 3, j = 1, ...21, and εij represents the error term in the model. In
addition, we develop a regression model to predict the effects of design parameters
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Figure 4.6. Experimental data structure for the ANOVA analysis: C and O represent two
factors, namely thin-wall characteristics and orientation.

on network characteristics.

y = β0 + β1 ×O1 + β2 ×O2 + β3 ×W + β4 ×H + β5 ×G+

β6 ×O1 ×W + β7 ×O2 ×W + β8 ∗O1 ×H+

β9 ×O2 ×H + β10 ×O1 ×G+ β11 ×O2 ×G+

β12 ×W ×H + β13 ×W ×G+ β14 ×H ×G+ ε

(4.16)

where the categorical variable O is coded with O1 and O2, and stands for the
orientation (see Table 4.3). W denotes the width, H represents the height of a
thin-wall, and G indicates the hatching distance. Note that in Equation 4.16, the
explanatory variables are the design parameters and the response variable y is
the Hotelling’s T 2 statistic that is computed for the ith observation as T 2(i) =
(x(i) − x)TS−1(x(i) − x), where x(i) is the vector of network features, x is the mean
vector and S is the covariance matrix.

4.4 Experimental Results
The proposed methodology is evaluated and validated with both simulation and
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Table 4.3. Coding for the Categorical Variable Orientation
O1 O2

orientation 0◦ 0 0
orientation 60◦ 1 0
orientation 90◦ 0 1

real-world case studies. First, we derive the visualization results of GRN and extract
corresponding network from simulated images with different types of defects (i.e., edge
variations and surface characteristics). Then, we perform pair-wise hypothesis tests
on the extracted quantifiers. The simulation study is aimed at testing the significance
of quantifiers with defect variations. Next, in the real-world case study, we leverage
the proposed GRN to characterize the quality of PBF-AM builds and study the
relationships between the design parameters (i.e., build orientation, hatching distance,
thin-wall height, and width) and quality characteristics of thin-wall structures. Finally,
we develop a regression model to predict how the design complexity impacts the GRN
behaviors in each layer of thin-wall builds.

4.4.1 Simulation Study

As shown in Table 4.4, two types of defect patterns (i.e., edge variation and inner
surface variation) are simulated to evaluate the visualization and the performance of
the proposed GRN methodology. The size and location of porosity defects are varied
to simulate three different levels of inner surface variations.

Figure 4.7. Proportional heatmap of the XCT scan from thin-wall 13, layer 100 in the
thin-wall part built under orientation 60◦, and proportional heatmap of the simulated
baseline thin-wall. Note that the blue color represents nodes with smaller pixel values, and
the yellow color is corresponding to bigger values in the gray scale.

Figure 4.7 shows the heatmap of the real XCT scan (top) and the simulated
XCT scan (bottom). Note that the real-world XCT scan is taken from the layer 100
of thin-wall 13 in the part built under orientation 60◦. It may be noted that the
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Figure 4.8. (a) Network visualization of the simulated baseline thin-wall in Figure 4.7.
(b)-(f) Distributions of k, BC, PR, C, and V .

Table 4.4. Defect variation in the simulation study.
Category Case Description

Baseline A thin-wall without any flaws

Edge
Variation

Case I Edge roughness with the frequency of 100 Hz
Case II Edge roughness with the frequency of 200 Hz
Case III Edge roughness with the frequency of 400 Hz

Number of Pores
Variation

Case IV Three pores each with a diameter of 4 pixels
Case V Six pores each with a diameter of 4 pixels
Case VI Nine pores each with a diameter of 4 pixels

Size of Pores
Variation

Case VII Six pores each with a diameter of 2 pixels
Case VIII Six pores each with a diameter of 4 pixels
Case IX Six pores each with a diameter of 6 pixels

thin-wall has both edge variation and inner surface issues (i.e., porosity). Therefore,
we add variations to edges and surfaces in the baseline to generate different types of
defects, see Table 4.4. In addition, it can be seen that the real XCT scan (see Figure
4.7 (a)) shows a transition of pixel values on the edge, i.e., from the yellow region to
the blue region. We have also added this transition to the simulated XCT.

Figure 4.8 shows the network visualization and the distribution of network quan-
tifiers (i.e., degree k, betweenness centrality BC, pagerank centrality PR, closeness
centrality C, and eigenvector centrality V ) for the baseline case (Simulated XCT
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in Figure 4.7). Note that nodes in the network are clustered into two groups. In
the network, yellow nodes (i.e., laser-fused area) are clustered into one group and
blue nodes (i.e., powder area) are clustered into another group, and two groups are
connected. Peaks shown in Figure 4.8 (b) are corresponding to the degree distribution
in two clusters. For example, the smaller peak is related to the cluster of laser-fused
surface (i.e., yellow nodes) with less number of nodes in the network, and the bigger
peak is relevant to the powder area cluster (i.e., blue nodes). The baseline distribu-
tions of network features (Figure 4.8 (b)-(f)) will be benchmarked with the following
simulation scenarios.

Figure 4.9. Simulated thin-walls with edge variation of different frequencies. Case I: 100
Hz, case II: 200 Hz, case III: 400 Hz.

First, we explore the relationship between edge variation and network characteris-
tics, as shown in Figure 4.9. In case I, we utilize a sine wave with an amplitude of
15 and a frequency of 100 Hz to generate the edge variation. Then, we increase the
frequency to 200 and 400 Hz for case II and case III, respectively.

Figure 4.10. Network visualization results of the GRNs in Figure 4.9. (a) case I, (b) case
II, and (c) case III.

As shown in Figure 4.10, nodes in background and surface are clustered into three
different groups in all networks. The blue cluster represents the powder area, the
yellow nodes correspond to the laser-fused layerwise surface, and the green nodes
are related to the transitions on the edges, which appear as a “bridge" linking the
blue cluster and the yellow cluster. Figure 4.10 (b) and (c) show more variations on
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Figure 4.11. The distribution of k, BC, PR, C, and V in GRNs for 3 cases in Figure 4.9.
(a) case I, (b) case II, and (c) case III.

the edge (i.e., the frequencies are higher) compared to Figure 4.10 (a). Therefore,
the green cluster becomes more dispersed as the variation increases. Distributions
of network quantifiers for the case I-III are shown in Figure 4.11. Each degree
distribution contains two peaks corresponding to the blue and yellow clusters. In
comparison with the baseline case which also has two peaks (see Figure 4.8 (b)), the
number of nodes with lower degrees (i.e., 1-500) increases and the number of nodes
with the degree around 2000-3000 decreases significantly. The peak between 0-500
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is from the edge cluster and is not as high as the others because the edge contains
a smaller number of nodes. Also, the number of nodes with a degree around 4500
significantly increases as the edge variation increases. In addition, the increment
of edge variation is positively correlated with the number of nodes with closeness
centrality of 5.25e-5, and is negatively related to the number of nodes with closeness
centrality of 6.25e-5. In summary, the distributions of network quantifiers vary
between cases I-III and the baseline.

We perform the Mann-Whitney U test for pairwise comparison between histograms
among different simulation cases. The statistically significant results are marked bold
in Table 4.5. Note that, case I and case II, and case I and case III are significantly
different for five quantifiers, but the GRN quantifiers of case II and case III only
differ in degree and eigenvector centrality according to the p-values in Table 4.5.

Table 4.5. Two-Sample Mann-Whitney U Testing of Quantifier Distributions among
Simulation Cases I-III.

Case I vs. Case II Case I vs. Case III Case II vs. Case III
k 1.124e-5 5.368e-22 2.495e-24
BC 2.447e-17 5.501e-28 0.395
PR 3.488e-08 1.809e-09 0.777
C 0 0 0.2923
V 8.445e-17 2.252e-140 0

Figure 4.12. Simulated thin-walls with pores of same size (diameter 4 pixels) but different
number of pores. Case IV: 3 pores, case V: 6 pores, case VI: 9 pores.

Next, we add porosity defects to the simulated thin-wall (i.e., the baseline case).
Each pore has the diameter of 4. Three pores are firstly included to the laser-fused
surface area (case IV). Then, we increase the number of pores to six in case V, and
nine pores in case VI as shown in Figure 4.12. Similarly, three clusters corresponding
to the edge, laser-fused area, and the powder area can be seen among all the networks
in Figure 4.13. However, the edge cluster (in green) does not contain as many nodes
as in Figure 4.10. This is because (1) there is no edge variations in these cases, and
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Figure 4.13. Network visualization results of the GRNs in Figure 4.12. (a) case IV, (b)
case V, and (c) case VI.

Table 4.6. Two-Sample Mann-Whitney U Testing of Quantifier Distributions among
Simulation Cases IV-VI.

Case IV vs. Case V Case IV vs. Case VI Case V vs. Case VI
K 2.664e-04 0.497 3.941e-5
BC 0.022 0.442 0.303
PR 0.839 0.895 0.895
C 0.282 3.105e-5 5.03e-9
V 2.738e-18 1.984e-20 0.0246

(2) the number of transitional pixels on the edge is limited. Note that the number
of nodes in the circled cluster increases as the number of pores increases in (a) and
(b). It is challenging to visually find individual groups representing different pores
among networks. Here, we keep all parameters the same for further quantification
analysis in our simulation study. In Figure 4.14, the first row (i.e., in red) show
the distribution of k and the peak around 5000 drops while more pores are added
to the laser-fused area. Similarly, the peak of PR at the x-axis with the value of
10e-5 decreases when the number of pores increases. However, as shown in Table 4.6,
the hypothesis test does not indicate there exist significant variations in pagerank
centrality among pairwise comparisons. The variation is not enough to suggest any
differences at the significance level of 0.05. Also, it can be seen from the results that
the eigenvector centrality is sensitive to the number of pores in the fin part since the
p-values are less than 0.05.

Finally, three more cases are designed with the pore diameters selected as 2, 4, and
6 respectively as shown in Figure 4.15. Figure 4.16 shows that the cluster associated
with porosity defect is more noticeable when the size of the pore becomes bigger (see
red circles). The number of nodes in the cluster increases as the size of pore increases.
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Figure 4.14. The distribution of k, BC, PR, C, and V in GRNs for 3 cases in Figure
4.13. (a) case IV, (b) case V, and (c) case VI.

Figure 4.17 shows the distributions of their quantifiers, and Table 4.7 presents the
result of pair-wise hypothesis tests. Degree k, betweenness centrality (BC), closeness
centrality (C), and eigenvector (V ) centrality track the changes in the size of porosity.
Note that pagerank centrality (PR) does not vary significantly in both Table 4.6 and
Table 4.7, and is not sensitive to the porosity defect on the surface of thin-wall.

The proposed GRN method provides a complete picture of spatial patterns
and recurrence behaviors through the network visualization and hypothesis testing.
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Figure 4.15. Simulated thin-walls with different pore sizes but same number of pores.
Case VII: diameter 2 pixels, case VIII: diameter 4 pixels, case VI: diameter 6 pixels.

Figure 4.16. Network visualization results of the GRNs in Figure 4.15. (a) case VII, (b)
case VIII, and (c) case IX.

Network structures have different patterns with respect to simulated thin-wall images
in cases I-IX. From the simulation study, we select the set of five quantifiers (i.e.,
degree k, betweenness centrality BC, pagerank centrality PR, closeness centrality C,
and eigenvector centrality V ) that are sensitive to both powder area and laser-fused
area in various cases. Note that distributions of quantifiers show different shapes
regarding different quality issues. For example, when edge variation increases, there
is an increase in the peak among distributions in Figure 4.11. Also, the p-values
two sample Mann-Whitney U test indicates the differences between distributions
of quantifiers. In the real-world case study, we extract features (i.e., maximum,
minimum, quartiles, standard deviation, skewness, kurtosis, and entropy) from these
selected quantifiers for further analysis.

4.4.2 Real-world Case Study

We extracted 9 features from each distribution of network quantifiers, i.e., the
maximum value, the minimum value, the standard deviation, quartiles (Q1, Q2,
Q3), skewness, kurtosis, and entropy. In total, 45 features from 5 quantifiers of
each network are extracted where one thin-wall of one layer generates a recurrence
network. Figure 4.18 shows distributions of Q1s of degree (k), betweenness centrality
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Figure 4.17. The distribution of k, BC, PR, C, and V in GRNs for 3 cases in Figure
4.16. (a) case VII, (b) case VIII, and (c) case IX.

(BC), and pagerank centrality (PR), respectively. Note that the distributions are
approximately normal. As shown in Figure 4.18 (a), the Q1 of degree does not vary
significantly between parts built under three orientations. However, they are vastly
different for the betweenness centrality (Figure 4.18 (b)) and the pagerank centrality
(Figure 4.18 (c)).

We perform two-way ANOVA on total of 45 features, and then calculate the
Hotelling’s T 2 statistic for each thin-wall based on the first seven components (i.e.,
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Table 4.7. Two-Sample Mann-Whitney U Testing of Quantifier Distributions among
Simulation Cases VII-IX.

Case VII vs. Case VIII Case VII vs. Case IX Case VIII vs. Case IX
k 0.035 4.739e-4 1.394e-8
BC 0.474 0.004 0.083
PR 0.965 0.340 0.340
C 1.804e-8 1.787e-4 0.089
V 1.234e-6 4.078e-47 1.998e-27

Figure 4.18. The distribution of (a) Q1 (k); (b) Q1 (BC); (c) Q1 (PR) of thin-wall 8
over all layers.

according to the Kaiser rule) to quantify the relationship between design complexity
and the network features.

Table 4.8. Example of two-way ANOVA for assessing the significance of C and O on
max(k).

Source Sum Sq. d.f. Mean Sq. F Prob > F
C 2.686e9 20 1.343e8 676.184 0
O 2.621e7 2 1.311e7 65.985 3.112e-29

C * O 3.010e7 40 7.525e5 3.788 9.058e-15
Error 2.491e9 12537 1.987e5
Total 5.235e9 12599

We conduct the square root transformation for the response variable to improve
the variance stabilization and reduce the heteroscedasticity. Significant variables are
summarized in Table 4.9. Orientation O, height H, width W , and hatching distance
G are important one-way factors with p-values less than 0.05. It is worth mentioning
that the p-value of β4 is larger than the p-values of other coefficients, this indicates
that the parameter height H does not impact the quality of thin-wall builds as much
as others. We also observed that most of two-way interactions (e.g., orientation ×
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width, orientation × hatching distance) are significant, thereby impacting the quality
significantly. However, two-way interactions orientation 60◦ × height (O1×H), width
× height (W ×H), and height × hatching distance (H ×G) do not have impact on
the quality because p-values of β8, β12, and β14 are greater than 0.05.

Table 4.9. Results of Regression Analysis.
Effect Variable Estimate Error t value p-value
β0 - 2.242 0.331 6.782 1.323e-11
β1 O1 2.449 0.294 8.302 1.307e-16
β2 O2 1.444 0.295 4.891 1.034e-6
β3 W 34.885 5.419 6.438 1.327e-10
β4 H -0.962 0.310 -3.108 1.985e-3
β5 G -104.504 5.173 -20.201 2.699e-87
β6 O1 ×W -45.105 5.158 -8.745 3.001e-18
β7 O2 ×W -24.270 5.160 -4.704 2.621e-6
β9 O2 ×H -0.318 0.039 -8.260 1.853e-16
β10 O1 ×G 50.139 5.241 9.567 1.683e-21
β11 O2 ×G 27.216 5.242 5.192 2.165e-7
β13 W ×G 269.259 3.623 74.311 0

The regression model yields the R-squared statistic of 87.12% and the adjusted
R-squared statistic of 87.08%, which demonstrates that the variations in response
variable (i.e., the Hotelling’s T 2 statistic) are highly correlated with the design
parameters. Note that the R-squared statistic is defined asR2 = 1−Sum of Squareresidual

Sum of Squaretotal
=

1− Σi(T (i)− ˆT (i))
Σi(T (i)−T ) , where T (i) is the Hotelling’s T 2 statistic, T̂ (i) is the predicted value,

and T is the overall average. The normal Q-Q plot (Figure 4.19) illustrates that the
normality assumption is valid because the plot approximately follows a straight line.

In our experiment, quality is inversely proportional to the amount of defects
(e.g., lack of fusion, inconsistency, porosity, and edge variation). However, summary
statistics tend to be limited in the ability to characterize and quantify complex
defect patterns in layerwise images. Therefore, we propose the generalized recurrence
network method to effectively represent the spatial imaging data, then leverage
network visualization and quantifiers to capture various forms of defect patterns.
Experimental results from hypothesis testing showed these network quantifiers are
effective and sensitive to different defect patterns. These network quantifiers are then
used to interpret and describe the level of quality for each layer of the build, which are
further utilized to establish predicative models to investigate how design parameters
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Figure 4.19. Normal Q-Q plot of the regression model.

(e.g., build orientation, thin-wall width, thin-wall height, and hatching distance)
impact the quality characteristics in thin-wall builds. In addition, xperimental results
show that four thin-walls (width ≤ 0.1 mm) collapsed regardless of what orientation
is utilized in the fabrication process. Therefore, only thin-walls with the width greater
than 0.1 mm can be printed by the PBF machine are utilized in this study. Thin-walls
with the width greater than 0.1 mm printed under orientation 0◦ generate results
with better quality. The result also shows that the quality decreases when the layer
number goes up, which may cause by the defect propagation when printing the build
layer by layer or by the different thermal conditions between the bottom and the top
of each thin wall. We also found that the layer quality varies less in thin-wall builds
with orientation 0◦ in comparison with orientation 60◦ and orientation 90◦. Also,
the thin-wall build with orientation 60◦ is more sensitive to the changes in hatching
distance compare to the other two orientations. Therefore, the orientation 60◦ should
be avoided while printing thin-wall structures. Although in our experiment, thin-walls
1-24 and the thin-wall 25 have built with two different hatching patterns, hatching
distance within the thin-wall decreases from thin-wall 1 to thin-wall 25. Also, the
collapse occurs in both types of hatching patterns. Hatching patterns of the thin-wall
are not controllable factors in this study because of the automatic settings by the
EOS M280 PBF machine.

79



4.5 Limitations and Future Works
In this chapter, we propose a generalized recurrence network methodology to visualize
the complex spatial patterns in AM images. Similar to Chapter 3, we perform a
design of experiment to investigate the relationship between design parameters and
network quantifiers in thin-wall builds. While there is only one response variable
in Chapter 2, we integrated multiple quantifiers into Hotelling’s T 2 statistics in our
analysis with the proposed generalized recurrence network. The limitation and the
future works are discussed as follows:

• When embedding each AM image into a network, each pixel is treated as a node
in the recurrence network. As such, each node contains the location information
of the corresponding pixel. Therefore, we can locate the exact coordinate of
the pixel in the image from the node in the network. Results in this work show
that the embedded networks tend to have clusters. For example, the pores can
be clustered by the network representation. Future works can investigate the
relationship between the pixel location in an image and the node position in
the network visualization.

• The generalized recurrence network analysis is developed based on the traditional
homogeneous recurrence analysis. As shown in Equation 4.11, all weights wp,q are
treated homogeneously by ε. However, heterogeneous recurrence patterns might
exist in complex systems. Previously, we have investigated the heterogeneous
recurrence behaviors in medical heart signals [124], where signals are often
one-dimensional time series data. In AM, most of the data are high-dimensional
image data. New methodologies need to be developed to take the heterogeneous
recurrence patterns in AM images into account. Also, sparsity can be considered
when embedding the images into a network to cope with the computational
complexity.

• In this work, each pixel in the XCT scan is corresponding to 14.43 microns.
Image resolution may have a significant impact on the accuracy of feature
extraction and the performance of model prediction. For detailed discussion
regarding the image resolution and feature extraction, please refer to Chapter 6.
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4.6 Discussions and Conclusions
PBF-AM provides the design freedom that cannot be realized by traditional man-
ufacturing techniques such as cutting, milling and casting. PBF-AM provides the
design freedom that cannot be realized by traditional manufacturing techniques such
as cutting, milling and casting. Engineers may come up with different designs. These
designs may have different levels of complexity. A higher level of design complexity
tends to degrade the quality of final PBF-AM builds and lower the repeatability of
the process. Realizing high quality and repeatability call upon the development of
sensor-based monitoring and control of PBF processes. Advanced imaging leads to a
rich data environment for AM quality control. However, the structure of spatial data
is often high-dimensional with complex geometric patterns. Therefore, there is an
urgent need to extract quality characteristics from spatial imaging data and further
explore the design-quality relationship for engineering designs.

Machine learning methods are commonly used in the AM community to process
image profiles and build predictive models that require minimal feature engineer-
ing [128]. For example, contemporary machine algorithms can help to optimize
process parameters, and conduct examination of powder spreading and in-process
defect monitoring. Recently, there have been increasing interests in using deep learn-
ing models for prediction in AM. For example, Zhang et al. [129] investigated the
relationship between the mechanisms underlying the layer-by-layer printing process
and the resulting product quality through an LSTM network, Mozaffar et al. [130]
proposed a recurrent neural network for predicting the high-dimensional thermal
history in the AM process. Francis et al. [131] developed a novel Deep Learning
approach that accurately predicts distortion within LBAM tolerance limits by consid-
ering the local heat transfer. Although deep learning yielded a high predictive power
in many studies, they need large amounts of data to study patterns hidden in the AM
signals. Also, drawbacks of these deep learning models include high computational
cost and black-box approaches lacking physical interpretations.

In this paper, we propose a generalized recurrence network method to visualize the
complex spatial patterns in additive manufacturing images, and introduce network
quantifiers to characterize recurrence properties across layers. The proposed GRN
method can not only extend to high-dimensional data, but also effectively capture
the complex defect patterns in spatial imaging data. We leverage high-resolution
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post-build XCT scan data to analyze the relationship between design parameters and
PBF-AM builds through a GRN framework. First, we generate layerwise images from
3D XCT data and register these images to the CAD model layer by layer. Then, the
proposed GRN is utilized to extract the quality-related quantifiers from registered
images. Next, we perform a design of experiment to investigate the relationship
between design parameters and network quantifiers in thin-wall builds. Finally, a
regression model is developed to predict the behavior of network features from the
design parameters. Experimental results demonstrate that thin-wall build quality is
sensitive to build orientation, thin-wall height, thin-wall width, and hatching distance.
Thin-walls with the width bigger than 0.1 mm printed under orientation 0◦ are
found to yield better quality compared to 60◦ and 90◦, and the thin-wall build with
orientation 60◦ is more sensitive to the changes in hatching distance compare to the
other two orientations.

Network models are flexible and generally applicable to different data forms (e.g.,
time series [132,133], two-dimensional image data [125,134,135], three-dimensional
voxel data [136]). AM provides a higher level of flexibility for the low-volume and
high-mix production, even for a one-of-a-kind design. AM fabricates the build directly
from a complex CAD design through layer-upon-layer deposition of materials. Each
image contains not only metal powders but also many AM parts in the build plate.
As such, there is a need to delineate the image for a specific part. In this paper, we
register the ROI to the part geometry in each layer, i.e., a rectangle region in each
layer of the thin-wall build. However, ROI registration is generalizable to different
part geometries, even complex designs with layerwise variations as long as the CAD
design files are readily available, as shown in Figure 4. The presented study sheds
insights into the optimization of engineering design for quality improvements of
PBF-AM builds. Future works may focus on the optimization of design parameters,
hatching patterns and process settings to improve the quality of thin walls.
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Chapter 5 |
Ontology-driven Learning of Bayesian
Network for Causal Inference and
Quality Assurance in Additive Man-
ufacturing

Additive manufacturing (AM) enables the creation of complex geometries that are
difficult to realize using conventional manufacturing techniques. Advanced sensing
is increasingly being used to improve AM processes, and installing different sensors
onto AM systems has yielded more data-rich environments. In the previous chap-
ters, we considered the inter-relationships between design parameters and quality
characteristics in the thin-wall part. For example, we have found that the edge
roughness is highly correlated with the hatch spacing, width, and orientation at
the confidence level of 95%. The correlation between variables, however, does not
necessary indicate that the change in one variable is the cause of the change in the
values in other variables. Instead of exploring the correlations between variables and
responses, transforming data into useful information and knowledge (i.e., causality
detection and process-structure-property (PSP) relationship identification) is impor-
tant for achieving the necessary quality assurance and quality control (QA/QC) in
AM. Causality modeling and PSP relationship establishment in AM are still in early
stages of development.

In this chapter, we develop an ontology-based Bayesian network (BN) model
to represent causal relationships between AM parameters (i.e., design parameters
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and process parameters) and QA/QC requirements (e.g., structure properties and
mechanical properties). Specifically, a different set of parameters, namely edge
roughness, thickness, vertical deviation, discontinuity, number of pores, and density
was extracted from the thin-wall part analyzed in Chapter 2. By integrating the AM
ontology, we perform a hybrid structure learning to reveal the causal relationships
among AM parameters. Then, we perform predictive inference and diagnostic inference
to navigate on the constructed BN. Experimental results demonstrate that the
proposed ontology-based BN modeling methodology is capable of identifying the
causal relationship between variables and can further facilitate AM process monitoring
and control. The proposed model enables engineering interpretations and can further
advance AM process monitoring and control.

5.1 Introduction
Advanced sensing is increasingly integrated into additive manufacturing (AM) to
enhance process understanding and improve process control, thereby leading to data-
rich environments. A four-level framework for AM data management and quality
improvement is shown in Figure 5.1 [137]. Sensors capture data related to AM
processes and an integrated database stores heterogeneous data from multiple sensors.
Predictive models and knowledge are extracted from the collected data to further
support the process monitoring and quality control. Realizing the full potential
of sensing data will lead to an unprecedented opportunity to understand the AM
process and offer a new sensor-based solution for quality assurance and quality control
(QA/QC). Current practices for QA/QC focus on correlation analysis, which utilizes
features (i.e., design parameters, process parameters) to predict the quality of AM
builds [94,114]. A comprehensive review related to QA/QC management of AM is
discussed in [138]. However, correlation does not imply causation. New challenges
lie in integrating all the information into actionable AM knowledge that captures
explicit causal relations, for example, how to select the right parameters to fabricate
AM parts that meet QA/QC requirements.

A Bayesian network (BN) contains a graphical structure that represents causal
relationships among a large number of variables and allows for probabilistic causal
inferences using the observed variables. It moves one step forward to support the
inference of causality from observational data and improve interpretability at the same
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time. Bayesian inferencing is widely used in early expert system development. The
conditional probabilities are used to represent complex relationships by the BNs [53].
BNs are widely used to create “expert systems" that capture and model expert
knowledge about a complicated domain [139]. However, causal relationships between
variables are usually complicated in the AM domain, which can be nonlinear and
non-stationary. Despite numerous computational models are developed to represent
AM sub-processes. Identifying causal interconnections between variables becomes
a challenging task. While there have been some notable contributions to the BN
structure from automatically-generated observational data [55, 139, 140], little has
been done to integrate BN learning with AM domain knowledge.

Figure 5.1. A four-level framework for AM data management and QA/QC.

In this paper, we develop an ontology-based Bayesian network (BN) modeling
framework for extracting causal relationships among AM parameters, as a key function
for the Learning layer in Figure 5.1. BN modeling contains two steps: namely
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structure learning and parameter learning. The structure of BN represents the
qualitative relationships between variables, and parameter values help quantify the
interconnections from probability distributions. In this research, we leverage an AM
ontology to provide necessary and prior domain knowledge for modeling the causal
connections in BN learning. Specifically, we integrate the domain knowledge from our
specialized process-based AM ontology with parameter-based data processing and
structure learning to create a causal network. Early experimental results demonstrate
that our ontology-based BN modeling methodology is capable of demonstrating
important causal relationships on which process control can be predicated.

The rest of the chapter is organized as follows: Section 5.2 reviews related literature
on BN and ontology. Section 5.3 presents the experimental setup, quantifier extraction,
and the proposed ontology-based BN modeling methodology. Experimental results
are provided in Section 5.4. Section 5.6 summarizes this study.

5.2 Research Background

5.2.1 Bayesian Network

Bayesian networks, also called Bayesian belief networks or causal probabilistic net-
works, emerged from artificial intelligence and has been applied to a wide range of
problems, ranging from text analysis [141] to medical diagnosis [142]. A Bayesian
network is a directed acyclic graph (DAG) G, in which nodes V = {X1, X2..., Xn}
denote the set of random variables of interests and edges E represent the independence
relationships among the n variables in V. Note that acyclic means that there are no
loops or cycles in the system.

In an acyclic graph, the first nodes with no incoming arcs are called the root
nodes, and the last nodes without outgoing arcs are named as leaf nodes. In addition,
the acyclic nature of the graph defines the topological ordering between nodes based
on the direction of arcs. It is defined as follows: if a node Xi precedes Xj, there can
be no arc from Xj to Xi. In Figure 5.2, X2 precedes X1. No arcs can be from X1 to
X2 according to the ordering property. If there is a path from Xi to Xj, Xi precedes
Xj in the sequence of the ordered nodes, then Xi is defined as an ancestor of Xj , and
Xj is defined as the descendant of Xi. In addition, we can define neighbourhood and
spouses from the direction of arcs or sequence of ordered nodes. For instance, the
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Figure 5.2. An example of parents, children, ancestors, descendants, spouse, and neigh-
borhood of node X1 in a directed graph.

neighbourhood is defined as the union of its parents (i.e., X2 and X3) and its children
(i.e., X4 and X5) for node X1. X6, X7, X2 and X3 are ancestors of node X1, and X2,
X4, X8 and X9 are descendants of node X1 Note that parents are ancestors, however,
ancestor might not be the parent. In addition, X5 is the spouse of X1.

The relationships between nodes in BN can be interpreted as causal relationship
because that BNs are based on DAGs. However, it is important to differentiate the
probabilistic and causal interpretations in BNs. Three assumptions need to be made
before interpreting an edge in a BN as the causal effect.

• Given its direct causes, each variable Xi is conditionally independent of its
non-effects both directly and indirectly.

• There must exist a DAG which is faithful to the probability distribution P of
X, so that the only dependencies in P are those arising from d-separation in
the DAG.

• There must be no latent variables (unobserved variables influencing the variables
in the network) acting as confounding factors. Such variables may induce
spurious correlations between the observed variables, thus introducing bias in
the causal network.

As shown in Figure 5.3, a BN must satisfy the Markov condition where every vari-
able Xi ∈ V is independent of any subset of its non-descendant variables conditioned
on the set of its parents πi. Note that the directed edge from Pai to Xi indicates a
direct causal influence that πi has on Xi.
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Figure 5.3. An example of the Markov condition: given the parents X1 and X2, X3 is
conditionally independent of its non-descendant X4.

In addition to a DAG, BNs are defined by the global probability distribution of
X with the set of parameter Θ,

P (X,Θ) =
N∏
i=1

P (Xi|ΠXi
,ΘXi

) (5.1)

where the global distribution of X (with parameters Θ) decomposes in one local
distribution for each Xi (with parameters ΘXi

) conditional on its parents πXi
.

5.2.2 Bayesian Network in Additive Manufacturing

BN gives a structural means to learn and represent causality which helps in capturing
causal relationships in a given domain. Ontology, on the other hand, helps to
build the conceptual relationships between various entities in a domain of study.
At the lowest level of abstraction, it helps to understand measurable (direct or
indirect) variables in a system. In principle, both BN and ontology result in the
information, navigation, and analysis of networks. However, little has been done to
integrate ontology networks with automated Bayesian learning for AM QA/QC. Li
and Shi [143] proposed a causal modeling approach to improve the existing causal
discovery algorithm by integrating manufacturing domain knowledge (i.e., rolling
processes) with the BN learning. Specifically, they combined domain knowledge with
variable selection and variable discretization to reduce the search space. Mokhtarian
et al. [144] constructed the structure of a BN based on physical relationships between
variables. An analytical hierarchy process is utilized to collect preferences from
experts. Wang et al. [145] proposed a knowledge management system using BN
to model AM knowledge in the presence of uncertainty and fill the knowledge gap
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between designers and AM technologies. Similarly, the BN structure is generated
solely from the domain knowledge. Hertlein et al. [146] proposed a BN model with
four process parameters and five quality characteristics for AM, which is a conditional
linear Gaussian BN where nodes can be both discrete and continuous. However,
parametric assumptions for mixed data (i.e., continuous and discrete) tend to have
practical limitations, as they impose constraints on arcs. For example, a continuous
node cannot be the parent of a discrete node. Jing and Ma [147] proposed a fuzzy
Bayesian Network to study the AM’s adaptiveness. Bacha et al. [148] and Verma
et al. [149] utilized the BN for fault diagnosis, but network structures are assumed
to be known in the prior knowledge. In addition, Tran et al. [150,151] investigated
the inference of sparse networks from noisy and nonstationary processes, studied the
latent connectivity in the sparse network, and further leverage the dynamic network
for change detection. In the present paper, we instead focus on the integration of
manufacturing ontology networks with BN learning and modeling for AM QA/QC.

While BNs are graphical structures for representing the probabilistic relationships
among variables and doing probabilistic inference with those variables, ontology de-
scribes domain concepts and their semantic relationships that can represent causality.
Our previous work developed ontology models to support AM process model develop-
ment and reuse [62,152]. The AM process ontology captures a network of variables
that can be visualized in a graph, and allows users to navigate complex relationships
and understand the connections between different process parameters, microstruc-
tural characteristics, and mechanical properties of AM parts. Ontology shows strong
potential to support the construction of Bayesian networks [153]. However, most of
the existing works focus on utilizing ontology to select variables, identify relationships,
and assign conditional probability distributions. Little has been reported on how
to integrate ontological representation with automated BN learning algorithms. At
the same time, automated BN structure and parameter learning from data are often
insufficient in practice due to the limited availability of data. In this study, we utilize
AM ontology to extract the causal connections among variables.

5.3 Methodology
This paper presents an ontology-driven Bayesian network modeling for AM design-
process-structure-property causal analysis on which future process control analytical
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methods can be developed. As shown in Figure 5.4, the modeling procedure has
four steps. First, we obtain pre-processing computer-aided design (CAD) slices and
post-processing X-ray computed tomography (XCT) data. Then, we register the
data and extract important features from them. Next, by integrating AM ontology,
we perform hybrid structure learning to study the causal relationships between the
features. Note that the BN modeling is performed in an inherently Bayesian fashion.
Finally, we perform predictive inference and diagnostic inference to navigate on the
constructed BN.

Figure 5.4. The flow chart of the proposed research methodology.

5.3.1 Offline Quantification of Build Quality using Layer-wise XCT
scan images

In this experiment, thin-wall parts were built with the powder bed fusion (PBF)
technology from Spherical ASTM B348 Grade 23 Ti-6Al-4V powder with a size
distribution of 14-45 µm on an EOS M280 machine. PBF refers to a family of AM
processes in which thermal energy selectively fuses regions of a powder bed [1]. During
the PBF fabrication, a layer of metal powder is first spread across a build plate, then
a certain area is selectively melted (fused) with an energy source, such as an electron
beam. This procedure continues until the top layer of the build is fused.

As shown in Figure 5.5, thin-wall builds are fabricated in three orientations (i.e.,
0◦, 60◦, and 90◦) with respect to the travel direction of the recoater blade (i.e.,
indicated by the arrow on each part). Standard EOS M280 processing parameters for
60-µm layers were used in the experiments. Each build consists of 25 thin-walls with
a height/width ratio of 10. The width of thin-walls increases from 0.06 mm, with a
step size of 0.01 mm, to 0.3 mm. Information related to contour space is summarized
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Figure 5.5. Thin-wall parts fabricated with three orientations with respect to the travel
direction of recoater blade (i.e., indicated by the arrow on each part).

in Table 5.1. Note that contour space is defined as the width between inner contours
in each thin-wall, and there is a 67-degree rotation for the hatching paths on each
layer by the default setting of the EOS 280 machine.

Table 5.1. The variations in contour spaces within contour from thin-wall 1 to thin-wall
25.
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
Thin-wall
Number

Wh

mm
1 0.244 6 0.190 11 0.142 16 0.092 21 0.045
2 0.234 7 0.183 12 0.136 17 0.082 22 0.033
3 0.220 8 0.167 13 0.125 18 0.076 23 0.022
4 0.208 9 0.159 14 0.114 19 0.059 24 0.011
5 0.198 10 0.154 15 0.102 20 0.049 25 N/A

Post build XCT data are obtained on a General Electric V|tome|X system with a
voxel size of 14 µm3. XCT slices are obtained through the volume graphics viewer
myVGL. Several defects can be seen from XCT slices after image registration. For
the detailed information related to registration, please refer to our previous work
in [154] as well as Chapter 2. As shown in Figure 5.6 (a), we can detect discontinuity,
edge variation, and porosity from the top view. In addition, we can observe vertical
deviation as well as separation on the top of each thin-wall. Note that larger defects
run down the center of thin-walls according to Figure 5.6 (b). The following features
are extracted from the XCT scan to quantify the quality of fabricated parts.

• Edge roughness: this feature measures how much the printed edge deviates
from the CAD design. For example, the edge roughness of the upper edge in

91



Figure 5.6. (a) Top view of the XCT slice in the thin-wall 5 at layer 70 of 0◦ build, with
quality issues such as edge roughness, discontinuity, and porosity; (b) side view of the XCT
slice in the thin-wall 5 at layer 70 of 0◦ build, with quality issues such as separation and
vertical deviation.

Figure 5.7. Feature extraction from thin-walls from XCT slices.

Figure. 5.7 is calculated as:

σe =
√∑N

i=1(xui − ui)2

N
(5.2)

where xui is the ith pixel in the upper printed edge, ui is the ith pixel in the
upper CAD edge, and N is the total length of the thin-wall.

• Thickness: the thickness t̄ of each thin-wall is calculated as:

t̄ = ΣN
i=1||xui − xli||

N
(5.3)
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where xli is the ith pixel in the lower printed edge.

• Vertical deviation: this feature quantifies how far the center of each thin-wall
deviates from the designed center.

v̄ = ΣN
i=1(xmi −mi)

N
(5.4)

where mi is the middle point of xui and xli.

• Discontinuity: discontinuity is calculated as the length between two pixels on
the centerline of the border.

d = ||xmk − xmk ′|| (5.5)

where xmk and xmk
′ are the kth and k′th pixel in mi, respectively.

• Number of pores: this feature counts the number of pores in each layer of
the thin-wall. The number of 8-connected binarized XCT pixels over a layer
translates to the pore count [12].

• Density: this feature is represented by

ρ =
ΣN
i=1ΣM

j=1I(i, j)
NM

(5.6)

where I(i, j) is the intensity value of the binarized XCT pixel.

5.3.2 Learning a Bayesian Network from Data

As shown in Figure 5.4, BN modeling can be performed with two steps in an inherently
Bayesian fashion:

P (G,Θ|D)︸ ︷︷ ︸
learning

= P (G|D)︸ ︷︷ ︸
structurelearning

· P (Θ|G,D)︸ ︷︷ ︸
parameterlearning

(5.7)

where G denotes the structure of the DAG, and Θ represents parameters of the BN
given the G obtained from structure learning. D is the observational data.

Discrete, Gaussian, and conditional linear Gaussian are three most common
probability distributions of data for BNs. In real world settings, even if the marginal
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distributions are normal, not all dependence relationships are linear. Computing
partial correlations brings singularities both for large datasets as well as small datasets.
In addition, parametric assumptions for mixed data have strong limitations, as they
impose constraints on which arcs may be present in the graph. For example, a
continuous node cannot be the parent of a discrete node. Therefore, discretization is
a common data prepossessing technique for BN learning. Also, after discretization,
dependencies are no longer required to be linear.

Further, Using Bayes theorem once more, we can formulate it as:

P (G|D) ∝ P (G)P (D|G) (5.8)

and following Equation 5.7 we can decompose the marginal likelihood P (D|G into
one component for each local distribution

P (D|G) =
∫
P (D|G,Θ)P (Θ|G)dΘ =

N∏
i=1

P (Xi|ΠXi
,ΘXi

)P (ΘXi
|ΠXi

)dΘXi
(5.9)

Closed-form expressions for Equation 5.9 are available for both discrete BNs and
Gaussian BNs. In addition, in Discrete BN, P (D|G) is called Bayesian Dirichlet (BD)
score [155], and it is constructed using a conjugate Dirichlet prior with imaginary
sample size α. Note that α is defined as the the size of an imaginary sample supporting
the prior distribution, giving the weight given to the prior compared to the data [156].

BD(G,D;α) =
N∏
i=1

BD(Xi|ΠXi
;αi) =

N∏
i=1

qi∏
j=1

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk
αijk

]
(5.10)

5.3.2.1 Structure Learning

Three types of algorithms are commonly utilized to learn the structure of BNs from
the observational data: namely constraint-based algorithms, score-based algorithms,
and hybrid algorithms. While constraint-based algorithms (e.g., PC [55]) are based on
causal graphical models by Verma and Pearl [149], score-based algorithms (e.g., Greedy
Equivalent Search [157]) are general-purpose optimisation techniques for structure
learning. Specifically, constraint-based methods leverage conditional independence
tests to construct the oriented graph, and score-based algorithms maximize the
goodness-of-fit scores of the DAG structure. Hybrid algorithms (e.g., Max-Min Hill-
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Climbing [140]) first construct the skeleton of a DAG, and then utilize score-based
functions to determine the orientation of edges, which combine the advantages from
two approaches. In this paper, we integrate the hybrid learning algorithm (i.e.,
H2PC [61]) with the ontology graph to identify the causal relations between variables
in AM. Specifically, the domain knowledge of AM ontology is incorporated into the
following steps: (1) discretization of continuous data, and (2) adding constraints
between variables from the ontology graph.

Algorithm 2 The Proposed Ontology-based Structure Learning for Bayesian Network
Input: a variable set V, an empty DAG G
1: discretize each continuous variable Xi ∈ V
2: Go ← ontology graph
3: PC ← HPC(V,Go) // identify the parents and children set of each variable

through HPC algorithm
4: For each pair of (Xi, Xj) ∈ PC:
5: G ← HC(PC,G,Go) // begins with an empty graph, add, delete, remove edge

that leads to the largest increase in score from greedy hill-climbing search
Output: DAG G

The H2PC algorithm learns the BN in two steps. First, it constructs the structure
or the skeleton of BN through the constraint-based algorithm. Then, it performs a
Bayesian scoring greedy search to add, delete, and change the direction of the edges.
In the proposed Algorithm 1, we integrate the ontology information (i.e., G0) into
several steps of HPC and H2PC algorithms. In the first step, the HPC algorithm
combines the advantages of incremental and divide-and-conquer methods, targets
for the parent-children discovery and contains three sub-algorithms, namely Data-
Efficient Parents and Children Superset (DE-PCS), Data-Efficient Spouses Superset
(DE-SPS), and Incremental Association Parents and Children with false discovery
rate control (FDR-IAPC), respectively. Specifically, DE-PCS and DE-SPS search for
supersets of parent, children, and spouses of nodes. In the second step, the H2PC
performs a greedy hill-climbing search in the space of BN. The search starts with an
empty graph and further adds, deletes, or reverses the edge direction that increase
the score. Note that the search only adds the edges that are obtained in the previous
step, which is the key difference between the greedy hill-climbing search in the H2PC
algorithm and the direct utilization of greedy search to learn a BN structure. As
shown in Algorithm 2, we first search the parent-children sets PC for every node
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Figure 5.8. The visualization of an AM ontology graph.

in the network through HPC. Then, for all pairs of (Xi, Xj) ∈ V, add Xi in PCXj

and add Xj in PCXi
if Xi ∈ HPC(Xj) and Xj ∈ HPC(Xi). Next, starting from an

empty graph, we only perform the operator add edge Xi → Xj if Xj ∈ PCXi
.

5.4 Experimental Results
In this section, we evaluate and validate the proposed ontology-based BN modeling
methodology with real-world data and then benchmark the performance of obtained
BN models with and without AM ontology. As shown in Figure 5.8, data obtained
from AM processes can be classified into five categories, namely process parameter,
design parameter, process signature, structured properties, and mechanical properties.
In the ontology graph, process and parameter can cause variations in structural
properties and mechanical properties, process parameter can also lead to changes
in process signature. However, BN obtained structural properties and mechanical
properties cannot cause either process parameters or process signature. Note that
there are important temporal relationships between variables. For example, the
shapes of melt pools can be different due to variations in the recoating orientation.
Low laser power can cause porosity in the part, and further impact the mechanical
properties (e.g., tensile strength) of the final product. Causal connections show that

96



process related parameters influence the mechanical and structural properties.
As mentioned in Section 5.3.1, we extract a total of 12 variables from different

parameter groups (see Table 5.2). We discretize features based on domain knowledge
as described below. Note that each level of the feature should contain a similar
number of observations to avoid bias.

Table 5.2. Process Variables and Quality Variables
Variable Code Node Type

Input
variable

1 Contour Space Process Parameter
2 Scan Path Process Parameter
3 Orientation Design Parameter
4 Width Design Parameter
5 Height Design Parameter

QA/QC
output

6 Edge Roughness Structure Proprieties
7 Thickness Structure Proprieties
8 Vertical deviation Structure Proprieties
9 Discontinuity Structure Proprieties
10 Number of Pores Structure Proprieties
11 Fin Separation Structure Proprieties
12 Density Mechanical Proprieties

• Contour space: is the measured width between the hatches of the inner
rectangle for each thin-wall. We discretize the contour space into three groups
based on the melt pool diameter (i.e. 110 µm) and laser diameter (i.e. 80 µm).

• Scan path: there is a 67-degree rotation for the hatching paths on each layer
by the default setting of the EOS 280 machine. Therefore, the scan path is
batched into three groups.

• Orientation: orientation has three levels because three parts are built under
three directions (i.e., 0◦, 60◦, 90◦).

• Width: width is divided into four balanced groups.

• Height: height is grouped into four levels according to the height/width ratio
of each layer. For example, if the height/width ratio of a layer is 10, and the
width of the thin-wall is 0.3 mm, then the height is 3.0 mm.
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• Edge roughness: edge roughness has three levels according to warning limits
of the distribution.

• Thickness: thickness is partitioned into three groups, i.e., within 10% tolerance,
above 10% tolerance, and below 10% tolerance.

• Vertical deviation: binary variable which indicates the direction of deviation,
i.e., deviates towards left or right.

• Discontinuity: discontinuity is divided into three groups where each group
consists of a similar number of data.

• Number of pores: this feature counts the number of pore with a diameter
greater than 100 µm [158].

• Separation: binary variable where X11 = L1 stands for there is a separation
of the top of the fin, and X11 = L2 denotes there is no separation.

• Density: in our experiment, we set X12 = L1 when the density of the thin-wall
is greater than or equal to 95%, and X12 = L2 when is less than 95% [159].

Figure 5.9. (a) The constructed BN with knowledge from AM ontology; (b) the constructed
BN without knowledge from AM ontology. Dashed arrows in pink shows edges that are not
learned, solid yellow arrows indicate the edges that are not supposed to be learned, solid
green arrows denote edges learned in the wrong direction.

Figure. 5.9 compares two BN structures learned with and without AM ontology.
Note that the dashed arrows in pink show edges that are not learned, solid yellow
arrows indicate the edges that are not supposed to be learned, solid green arrows
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denote edges learned in the wrong direction. In Figure. 5.9 (b), the contour space is
linked to width, showing that there is a causal relationship between the two nodes.
However, design parameters cannot be causal factors of process parameters according
to the ontology knowledge, and vice versa. In addition, the structure indicates that
thickness is the causal factor of width, structure properties if not the causal factor of
design parameters based on the temporal relationships between nodes in the ontology
graph. In addition, some of the edges (i.e., two arcs in pink) cannot be learned
without domain knowledge.

Figure 5.10. The conditional distribution plot of number of pores at different levels given
orientation at different levels.

Once the BN is learnt, the causal relationships among variables can be identified
qualitatively through the learned structure, and quantitatively through predictive
inference and diagnostic inference. Figure 5.10 shows the conditional distribution
plot of number of pores at different levels given orientation at different levels (i.e.,
P (number of pores|orientation)). Orientation orientation (node 1) has three levels
and number of pores (node 10) has three levels in our experiment. For example,
when we target at number of pores at level 1, the orientation of 90◦ is more likely to
generate the desirable result in comparison with the orientation of 60◦ and 30◦.

As shown in Figure. 5.9 (a), P (σe|orientation, width) can be obtained by con-
ditional distribution plots in Figure 5.11. Note that orientation (node 1) has three
levels, width (node 4) has four levels, and the edge roughness (i.e., σe) has three
levels. Based on the results of predictive inference, it is more likely to have a higher
probability of severe edge roughness (i.e., σe = L3 when thin-walls have a width of
L2 (i.e., (0.16mm, 0.21mm]) and orientation L1 (i.e., 0◦).
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Figure 5.11. (a) Conditional distribution plots of σe = L1 given orientation and width at
different levels, (b) conditional distribution plots of σe = L2 given orientation and width
at different levels, and (c) conditional distribution plots of σe = L3 given orientation and
width at different levels.

Figure 5.12. (a) Conditional distribution plots of orientation at different levels given
discontinuity = D1, (b) conditional distribution plots of width at different levels given
discontinuity = D1, and (c) conditional distribution plots of height at different levels given
discontinuity = D1 and density = S2.

The example of diagnostic inference is shown in Figure 5.12. Figure. 5.9 (a)
shows that contour space, width, orientation, and height are causal factors of the
discontinuity. Therefore, we can determine which state of these causal factors has the
least probability to cause the discontinuity issue in the thin-wall builds. For example,
when discontinuity is D1 (i.e., no discontinuity), we should build the part under
orientation O1 with width in the range of W2 according to Figure 5.12 (a) and (b),
respectively. In addition, height is the causal factor of both density and discontinuity,
so we can perform the diagnostic inference for P (height|discontinuity, density). In
Figure 5.12 (c), when the height of the thin-wall is at H3 (i.e., height/width ratio is
in (5, 7.5]), the part has better quality because the discontinuity is at D1 (i.e., no
discontinuity) and density is at S2 (i.e., density is greater than 95%).

Finally, we perform the prediction through the learned BN model.Note that we
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Output Edge
Roughness Thickness Vertical

Deviation Discontinuity

Accuracy 78.70% ±
0.012

87.77% ±
0.011

58.01% ±
0.008

96.79% ±
0.005

Output
Number

of
Pores

Fin
Separation Density

Accuracy 59.80%
±0.013

76.93%
±0.021

1.00%
±0.000

Table 5.3. Prediction results for QA/QC output from the learned BN.

separate 80% of our data for training and 20% for testing in our analysis. For the
construction of BN, we performed the model averaging for the structure learning.
Note that structures were slightly different among each of the 50 runs. Therefore, we
kept arcs that are learned for more than 80% of the time. As shown in Table 5.3,
the prediction accuracy varies from 47.71% to 100%. In this study, we discretize our
continuous data into different levels based on either physical information or statistical
property. Although the less group we discretize, the more accuracy we will reach
by the proposed model. The goal to construct a ontology-based BN is to integrate
the knowledge and discover the causal relationships between variables in a specific
domain. This is the reason why that the accuracy varies significantly in different
variables.

5.5 Limitations and Future Directions
In this chapter, we propose a hybrid structure learning to reveal the causal relation-
ships among AM parameters. Specifically, we integrated the knowledge graph into
the automated learning of the BN structure. Experimental results show that the
proposed ontology-driven BN modeling methodology is capable of identifying the
causal relationships between the AM parameters and extracted features.

The proposed ontology-driven model has the following limitations:

• The limitation in the dataset: the experimental design is based on the thin-wall
part analyzed throughout the whole dissertation. For the generalization of
the proposed methodology, more parts need to be normalized and analyzed to
generate a bigger BN network. Also, the thin-wall part is fabricated with Ti-
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6Al-4V by BPF technology. Future works can consider extra nodes representing
material and fabrication technology. Different materials and processes can be
set as levels of the node. In addition, sparse learning needs to be considered
when dealing with BN in large size.

• The validation of the proposed model: In our experiment, we split our data
into a training dataset (i.e., contains 80% data) for model development and a
testing dataset (i.e., contains 20% data) for model validation. Future works can
validate the proposed model with real-world experiments. Regarding the high
costs in metal AM experiments, synthetic data can also contribute to the BN
construction and validation.

5.6 Conclusions
With the rapid development of sensing capabilities, a variety of sensors are being
installed on different AM systems to collect data, increase performing visibility, as
well as to improve the QA/QC of AM builds. The challenge now lies in integrating
all the data and information into useful AM knowledge, and making this process
more repeatable and reliable.

In this paper, we propose an ontology-based BN model for the representation of
causal relationships between AM parameters (i.e., design parameters and process
parameters) and QA/QC requirements (e.g., structure properties and mechanical
properties). We leverage the real-world data from thin-walls to demonstrate the
prediction inference and diagnostic inference from the constructed BN model. The
proposed methodology facilitates both forward prediction and backward diagnosis.
We illustrated two quantitative results for predicting the quality as well as root cause
diagnosis with two examples, respectively. In addition, we compared experimental
results between BN learning methods with and without AM ontology. The proposed
methodology enables engineering interpretations of causality interrelations in AM
and can further facilitate AM process monitoring and control. Although BN learned
is aimed at the PBF AM process in this work, the proposed ontology-based BN
modeling methodology can be further extended and generalized to other AM processes.
However, because there are variations in process parameters and materials in different
AM processes, it is necessary to incorporate newly added domain knowledge (i.e.,
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ontology networks) and introduce more nodes (e.g., material, design variables, process
parameters, sensors) in the model generalization. The proposed algorithm may also
need slight modifications for different data types, but the structure and parameter
learning process is generally applicable. Future work will continue to investigate the
dynamics between empirical observations and their physical counterparts, with the
goal of a methodology that does not “ground” one with the other but instead supports
reciprocated learning in the identification of key variables and causal relationships.
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Chapter 6 |
Conclusions and Future Works

Recent development in sensing technology provides unprecedented opportunities to
synchronize physical world to the cyberspace. Cyber-physical systems are systems
of collaborating computational entities which are in intensive connection with the
surrounding physical world and its on-going processes, providing and using, at the
same time, data-accessing and data-processing services available on the Internet [15].
In additive manufacturing (AM) cyber-physical systems, the physical world (i.e.,
AM machines) is reflected in cyberspace through data-driven information processing,
modeling, and simulation. AM is a set of fabrication processes that produce parts
layer-by-layer from 3D computer-aided design (CAD) models. AM enables the
creation of complex, freeform geometries that are difficult, if not impossible, to
realize using conventional subtractive and formative manufacturing processes. The
novel AM technology not only enables the creation of builds with complex features,
innovative shapes, and lightweight structures, but also enables opportunities for
individuals in acquiring, providing, and sharing access to goods and services. AM
can provide manufacturers a competitive advantage by offering the flexibility of on-
demand manufacturing and mass customization. However, the decentralization among
manufacturers introduces new challenges in the service optimization of on-demand
services and AM supply chain. Also, the ability to produce complex shapes in low
volumes, combined with rapid advancements in AM technology, is challenging our
current paradigms for process quality management.
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Figure 6.1. Summary of the dissertation.

6.1 Research Summary
Figure 6.1 shows the summary of my research. My research goal is to develop new
machine learning methodologies to improve operations management in AM cyber-
physical systems, including enhancing understanding of design-quality interactions,
facilitate causality discovery. Contributions of this dissertation are summarized as
follows:

• In Chapter 2, we designed a bipartite matching framework to model and
optimize resource allocation among customers and service providers through a
stable matching algorithm in cyber-physical systems. Recently, sharing economy
paves a new way for people to “share” assets and services with others that
disrupts traditional business models across the world. In the cyber-physical
AM systems, the rapid development of AM technology enables individuals
and small manufacturers to own machines and share under-utilized resources
with others. Such a decentralized market calls upon the development of new
analytical methods and tools to help customers and manufacturers find each
other and further shorten the AM supply chain. The proposed framework was
implemented in customer-manufacturing allocation in cyber-physical platforms.
The proposed sharing economy framework showed strong potential to realize a
smart and decentralized AM sharing economy.

• In Chapter 3, we designed an experiment to investigate how design parameters
(e.g., build orientation, thin-wall width, thin-wall height, and hatch spacing)
interact with edge roughness in thin-wall builds. Specifically, we performed the
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experimental design to study the impact of design parameters on the edge quality
of thin-walls. This research shed insights on the optimization of engineering
design to improve the quality of AM builds.

• In Chapter 4, the second design of experiments was proposed to investigate how
design parameters (e.g., build orientation, thin-wall width, thin-wall height,
and hatch spacing) interact with different quality characteristics in thin-wall
builds. A generalized recurrence network analysis was proposed to not only
capture recurrence dynamics in complex systems but also take the computational
complexity into account. Here, we studied the relationship between network
quantifiers and design parameters. The proposed design-quality analysis showed
great potential to optimize engineering design and enhance the quality of AM
builds.

• In Chapter 5, we developed an ontology-based Bayesian network (BN) model to
represent causal relationships between AM parameters (i.e., design parameters
and process parameters) and QA/QC requirements (e.g., structure properties
and mechanical properties). Here, we integrated the information from the first
principal (i.e., ontology) to the automated BN learning model to obtain an
AM causality network. Note that the ontology introduces constraints for the
learning algorithm, and therefore the learning outcome showed a better causal
learning result. With the network representation, causal relationships among
variables can be identified and then be used to facilitate prediction, diagnosis,
and support decision making in manufacturing production.

6.2 Discussions
The service management and improvement in AM cyber-physical systems are studied
with the top-down approach in this dissertation. We discussed the bigger picture - the
overall service allocation optimization of the system in Chapter 2, and then narrow
it down to investigate the quality management of each agent in the cyber-physical
system from Chapter 3. In real-world experiments, data resolution plays an important
role in image processing. Higher resolution means that there exist more pixels in each
image, resulting in more pixel information and creating a high-quality image.

In Chapters 3, 4, and 5, we utilized data from three thin-wall parts for correlation
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and causal analysis. First, we obtain the XCT slices from the XCT scan of each
part, then register each slice with the corresponding CAD file. Note that for the
image registration, we obtain one transformation matrix for each part. Therefore,
there is no deviation in the z-direction from image registration. For example, the
vertical deviation calculated in this chapter (see Equation. 5.4) only collects the
deviation from each thin wall. Otherwise, the deviation in the z-direction will impact
the vertical deviation if we calculate the optimal transfer matrix for each layer.

Figure 6.2. An XCT slice when image resolution is different. a) each pixel represents
14.43 microns, b) each pixel represents 28.86 microns, and c) each pixel represents 43.29
microns.

In our analysis, different features (i.e., edge roughness, thickness) are extracted
from the XCT slices. This is because XCT scans have higher resolution compared
to optical images. However, the resolution of XCT slices (size of the slice) can also
impact the feature extraction significantly. For example, Figure 6.2 shows an example
XCT slice from high resolution to low resolutions.

Figure 6.3. Contoured XCT slice when image resolution is different. a) each pixel represents
14.43 microns, b) each pixel represents 28.86 microns, and c) each pixel represents 43.29
microns.
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As shown in Figure 6.3, different resolutions might impact the edge roughness
significantly. For example, when the resolution is higher, we can extract more variation
within each edge. When the resolution is low, the edge of each thin-wall tends to be
a line. Also, the binarized edges in the low-resolution image are thicker than edges
from high-resolution images. Note that the region of interest (ROI) of each XCT slice
is 762-by-762, which indicates that each pixel is around 14.43 microns. For different
analyses proposed in this dissertation, the resolution of the AM images will have more
impact on the generalized recurrence analysis methodology more compared to the
other analysis because we directly embed the images to the network and each pixel is
related to a node in the graph. The more the resolution, the more the pixels we need
to embed into the network, thereby leading to higher computational complexity. For
the BN analysis, we discretize each variable into different levels based on its physical
or statistical properties. Therefore, the impact of image resolution on the proposed
model should be less than the impact on GRN analysis. Future works can explore the
trade-off between resolution of AM images and model performance. Low-resolution
images cannot provide enough detailed information, but process a low computation
complexity. Increase the image resolution will most likely increase the model accuracy,
however, will slow down the speed of the algorithm. Also, it is also possible that high
resolution will have a negative impact on the model prediction as small variation will
introduce noise to the system. Therefore, the optimization between data resolution
and the performance of the model is an interesting area to explore for the next step.
In addition, sparse methods can be incorporated into the model to help reduce the
computational complexity in learning procedures.

6.3 Future Directions
My future research plans include:

• Dynamic Bayesian Learning of Causal Relationships with Domain Structures
in Complex Systems:
The increasing capability for bidirectional inferences and the development of
probabilistic models lead to the rapid emergence of Bayesian networks as the
method of choice for reasoning and causality discovery. Bayesian networks have
been widely used to discover the causal structures in raw statistical datasets
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in various domains. However, this learning process for the causal structure
often requires a significant amount of data, and such a large dataset is often
not available in practice due to cost constraints. This research study is aimed
at transferring the historical structure learned from similar processes to help to
build the Bayesian network of the new process with limited data. Specifically,
this research will extend the Bayesian network developed in Chapter 4 and
further 1) construct the informative prior structure using historical information;
and 2) integrate the heterogeneous data into the structure through dynamic
Bayesian networks. The proposed research will lead to the knowledge transfer
between network structures and boost the performance of the graph learning
process.

• Statistical Learning in Non-stationary Environments with Cybersecurity Appli-
cations:
Beyond classification, nonstationarity is an important part of many other prac-
tical engineering problems. For example, nonstationarity in the system can be
unexpected changes in the system due to the cybersecurity attacks, aging effects
that sensors or actuators bring to the human-computer interactive environ-
ments, the long-term behavior changes among customers over years, or genetic
mutations in genomics emerging. Currently, most of the existing statistical
learning techniques rely on the stationarity assumption of environments. For
example, we need to assume that the dataset follows the stationary assump-
tion before running ARIMA or ARMA models for the time series analysis.
In addition, many problems in this domain are sensitive, as they often deal
with living organs, and many factors need to be taken into account during
the decision making process. Therefore, conventional learning algorithms in
a batch off-line setting fail whenever dynamic changes of the process appear
due to non-stationary environments and external influences. The objective of
this work is to develop new statistical learning methods (e.g., classification and
reinforcement learning) for non-stationary environments and enable risk-based
decision making by incorporating various sources of uncertainty. Specifically, my
objective is to 1) develop a Bayesian learning of drifts and risk-based classifica-
tion to capture drifts in class conditional distributions for any arbitrary types of
data (e.g., discrete, continuous, and combinatorial); 2) introduce dimensionality
reduction Bayesian optimization frameworks that map the original space to a
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lower-dimensional space; and 3) design online Bayesian learning frameworks
capable of learning and decision making through online/real-time data.

• Distributed Learning in Privacy-preserving Dynamic Matching Mechanism for
Cyber-physical Systems:
With the rapid advances of cyber-physical systems, sharing economy becomes a
new way for people to “share” assets and services with others. By utilizing the
Internet of Things (IoT), we now can facilitate the sharing of our existing devices
through embedded sensors and network connectivity to collect and exchange
data. Information privacy is a rising concern for the design, development, and
deployment of sharing economy. The cyber-physical platform supports the
exchange of sensitive data such as personal information from the customer’s
side, as well as operation information from service providers. Therefore, privacy-
preserving analytics is urgently needed for the development of sharing economy
platforms. My research objective is to develop new privacy-preserving matching
frameworks for cyber-physical platforms in a distributed manner. Specifically,
I plan to 1) develop novel sharing economy paradigms and privacy-preserved
dynamic matching models for cyber-physical systems; and 2) design new service
optimization models with distributed learning for large-scale IoT. This proposed
research will facilitate: 1) the design of state-of-the-art privacy-preserving
matching framework for sharing economy; and 2) handling of massive, complex
data from IoT sensing systems in a distributed manner.
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