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Abstract

This dissertation focuses on using the Analog Ensemble and Machine Learning techniques to
quantify power production uncertainty from photovoltaic solar and to improve prediction quality.
Analog Ensemble is a technique to generate ensemble predictions using fewer computational
resources than traditional ensemble prediction models. Its lower computational footprint allows
a high resolution analysis over a large domain. This research extends and deepens scienti�c
understand of the Analog Ensemble through the following subject areas:

1. Scalability : An e�cient and scalable implementation of the Analog Ensemble is pro-
posed and analyzed. It is used to quantify year-round hourly power production uncertainty
throughout the Continental U.S. and to study the optimal con�guration of solar panels.

2. Spatio-Temporal Weather Analogs : The weather similarity metric is renovated with
a spatio-temporal neural network to incorporate crucial information when �nding better
weather analogs.

3. Model Interpretability : The neural network trained for weather analogs is \pried open"
to show the learned information by the network and to better reason why a neural network
outperforms the traditional weather similarity metric.

Although the proposed method is applied and studied in the �eld of solar energy and weather
forecasting, the knowledge is domain-independent with implications for other physical science
subjects, where

1. operational forecasts and the observational archive are available;

2. quanti�able and justi�able measures of uncertainty are desired;

3. and e�ective management of computational resources is critical.
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Chapter 1
Introduction

This chapter provides a context for the research conducted in this dissertation. It starts with

the impact of the COVID-19 pandemic during which an opportunity for achieving higher

shares of renewable energy was observed. It then reveals the necessity and challenges asso-

ciated with variable renewable energy. A brief overview of current forecasting technologies

is provided followed by the research objectives of this dissertation.

1.1 Impact of COVID-19 on Energy Generation and De-

mand

The year 2020 took an unusual direction for the global economy. Due to the impact of the

COVID-19 pandemic, economic development and human activities contracted signi�cantly during

this period compared to the previous years [IEA, 2021a]. In 2020, the majority of the world

experienced a negative Gross Domestic Product (GDP), including -8% in India, -6% in the

European Union, -3.5% in the United States, and -5% in Japan. This decline has largely been

attributed to the worldwide lockdown policies to cope with the spreading of the disease. For

example, cities around the world have seen a deep decrease in tra�c volumes, including -84.78%

in Milan, Italy, -75.65% in Manchester, UK, and -73.40% in Boston, USA. The aviation industry

has since undergone the most severe contraction because of policy restrictions that considerably

curbed the ability to travel.

Global energy demand and the carbon dioxide emission, as a result of the reduced human

activity, also fell by 4% and about 6% respectively. The decrease in energy demand is by far the

largest since World War II and the largest ever absolute decline. As the consequence of various

lockdown policies and restrictions on mobility, oil was by far the hardest-hit energy source.

During April 2020, when the restriction was at its most severe, global oil demand was more than

20% below the pre-COVID-19 level, accompanied by signi�cant decreases in the gas price, e.g.,
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in the USA. Coal demand also dropped by 220 million tonnes of coal equivalent, which amounts

to about 4% compared to the pre-COVID-19 level.

Renewables, however, showed promise amid the COVID-19 era. While demand for other

energy sources was declining, demand for renewables grew by 3% in 2020 and renewables account

for almost 90% of the increase in total power capacity worldwide in 2020. This increase in

renewables has been consistent across all key sectors, including power, heating, industry, and

transportation. Also, it was mostly driven by an almost 7% growth in electricity generation from

renewable sources.

The COVID-19 pandemic might have sped up the development of renewable energy pro-

duction and integration, but the trend and the progress are well expected. There are several

reasons:

1. Continuous installation: New additions of global renewable power capacity increased to

almost 200 gigawatts in 2020 [Deutch, 2020], mostly driven by China and the USA. Three

of the most important components are wind, hydropower, and solar Photovoltaic (PV)

energy. Wind and solar expansions reached 30% of the total expansion in overall power

capacity in the USA and China as investors and developers took advantage of preferable

incentives.

2. Priority access to the grid: The price of renewables has seen a steady drop in the past

decade, for example, an 82% drop in the cost of solar energy [IRENA, 2020]. Renewable

energy is also the cheapest form of energy in two-thirds of the world. Therefore, the

development and operation of the electricity grid have given priority to the less expensive

forms of energy, favoring cheaper and cleaner sources.

3. Shift in energy demand patterns: Due to the COVID-19 pandemic, a work-from-home

paradigm has been widely adopted for people with remote working capabilities. This major

change in the everyday lifestyle has a signi�cant impact on power intensity routines over

peak times. Not only has the overall power demand decreased, but there has also been a

atter peak time curve. These indicate less non-renewable backup and storage.

Although a great opportunity to pursue a cleaner energy pro�le has been observed during

the COVID-19 pandemic, the positive footprint on energy supply and demand can still be o�set

during the post-pandemic economic rebound and development. Global energy-related carbon

dioxide emissions are heading for their second-largest annual increase ever, as reported by In-

ternational Energy Agency (IEA) [IEA, 2021b]. Coal demand is expected to increase 4.5% in

2021 and natural gas is also set to grow by 3.2% in 2021. Although the demand for transport

oil is currently estimated to be around 3% below the 2019 level, it would have pushed up carbon

dioxide emissions by 1.5% given a full recovery to the pre-pandemic scenario.

Although feasibility and resilience of renewable energy amid a global crisis has been observed,

the future of energy demand and supply is still too elusive to tell for certain. Although it is still

unclear whether a rebound in human activities would push carbon dioxide emissions to a new
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record high, the increasing dependence on renewable energy sources needs to be underpinned for

a sustainable society and safe economy.

1.2 Net Zero by 2050

The term \net zero" means any greenhouse gas emissions released are o�set by an equal amount

that is taken out from the atmosphere by processes like photosynthesis and carbon sequestration.

It is important because it symbolizes the state where anthropogenic global warming stops. The

Paris Climate Agreement set forth this goal as a parallel to the e�ort of curbing the global tem-

perature increase under 1.5°C. It has been clear [Tollefson, 2018, Masson-Delmotte et al., 2018]

that carbon dioxide emissions need to reach net-zero around mid-century and total greenhouse

gas emissions must reach net zero in the early second half of the century to make this target

possible.

With almost a quarter into the century and the recent impact from the COVID-19 pandemic,

now is a decisive moment to close the gap between the rhetoric and the action in �ghting for net

zero by 2050. IEA [2021b] lays out a road map and outlook for the path concerning multiple

sectors that includes industry, transportation, and energy. In this report, more than 400 mile-

stones have been established for what needs to be accomplished to transform the current global

economy from a fossil fuel domination to renewable energy dependence.

Renewable energy sources play a critical role in the �ght for net zero. The steadily decreasing

price of renewable energy technologies is one of the main contributors for the electricity sector

to achieve net zero, hopefully, the earliest compared to other sectors. Other factors include

widespread policy support and the maturity of an array of renewable energy technologies. For

example, scaling up renewable energy is the key, including 630 gigawatts of solar PV and 390

gigawatts of wind by 2030. Along with this transition, hydropower and nuclear provide the

essential foundation, but ultimately, it is expected that 70% of the renewable energy production

will come from wind and solar by 2050.

According to IEA [2021b], no additional investment should be made for new unabated coal

plants, plants that are not equipped with carbon dioxide capture capabilities. Instead, preferences

for power generation should be directed towards renewable energy sources, like wind and solar.

The rising share of renewables in the electricity generation portfolio has important implications

for the design of electricity markets. When the shares of solar, wind and other variable renewables

reach a high level of power production, exceeding the electricity demand, they would result in a

wholesale price of electricity that is close to zero or even negative, where power suppliers have

to pay wholesale customers to buy electric energy. By 2050, as forecasted by IEA, if electricity

market design remains at the current level, 7% of wind and solar output would be beyond the

limit of what can be integrated, and therefore the additional power generation has to be curtailed.

If the shares of renewables are raised as expected, the curtailed ratio would be even higher. It

is, therefore, highly desirable to innovate the design of electricity markets so that there are more

exible and capable in coping with the variable nature of renewable energy sources like wind and
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Figure 1.1: The \duck" chart from California Independent System Operator on a typical spring
day, March 31, from multiple years. It shows the potential issue of solar PV power overgeneration
when it takes up more shares in the electricity supply. The �gure is referenced from CAISO [2013].

solar, probably with the help from battery storage systems and dispatchable energy like biomass

and hydroelectricity.

The net zero by 2050 goal presents a formidable task. The report summarizes this challenge

nicely, \the global energy demand needs to be around 8% smaller than today's level but with

the capability to support an economy more than twice as big and a population with two billion

more people." Increasing shares of renewable energy are among the most important solutions,

together with technological innovations, increasing energy e�ciency, and behavioral changes.

1.3 Challenges of Variable Renewable Energy Integration

Renewable energy sources, like wind and solar, have been showing promise in meeting the envi-

ronmental goals and the ever-growing power demand from the population and economy. It is a

critical component of the solution for reaching net zero by 2050. Although di�erent regions will

see a di�erent rate of growth, it is unequivocal that shares of renewable energy, predominated

by wind and solar PV, will increase signi�cantly around the world. However, variable renewable

energy, as distinct from conventional energy like oil and natural gas, also brings challenges during

the integration into the current power grid, especially at scale.

Figure 1.1 examines the change in net load (normal load minus generation from renewable

sources like solar PV) across the years and the associated impact on an operational power grid,

as a starter. Figure 1.1 is dubbed the \duck chart" for its resemblance and it is published by

the California Independent System Operator (CAISO). Each line represents an hourly net load

time series on a typical spring day from multiple years. Operational measurements are shown

for 2012 and 2013, and model simulations are shown for the remaining years. This chart only

represents the part of the California grid operated by the CAISO which amounts to around 80%
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Table 1.1: Characteristics of PV Electricity Generation and Associated Integration Challenges.
Table referenced from Denholm et al. [2016].

Solar Characteristic
Potential Economic Challenge to Integration

Energy Value &
Curtailment

Capacity Value

Non-
synchronous
generation

PV does not
currently help
maintain system
frequency.

Part-load operation of
thermal plants for
provision of frequency
response leads to
curtailment.

Capacity needed for
provision of
frequency reserves.

Variability
PV output can
vary as underlying
resource uctuates.

Supply/demand mismatch
coupled with generator
inexibility leads to
curtailment.

PV may not be able to
replace conventional
capacity during
periods of peak
demand.

Uncertainty
PV output cannot
be predicted with
perfect accuracy.

Part-load operation
of thermal plants for
operating reserves
leads to curtailment.

Capacity needed for
provision of
operating reserves.

of the total state demand.

Figure 1.1 shows the potential risk of over-generation. Shares of solar PV energy have been

increasing since 2012, hence lowering the \belly" of the duck. The steep dive of the net load

means that conventional energy generation needs to be reduced, making room for solar PV.

However, most electricity generation plants have a �xed ramp range (minimum and maximum

output). The ramp range is limited by its minimum stable operating point, below which the plant

cannot run. Conventional generation might be able to turn o� completely, but another problem

soon comes with the drastic ramp of net load after peak solar PV hours. When approaching

dusk, operators must be able to quickly recover about 13,000 megawatts of generation. When

power plants are turned o� completely, several hours are needed for them to be ready for power

generation at the desired frequency. Even if thermal plants are operating at the minimum output,

they might not have a su�cient ramp rate to realize such a rapid change in the output during a

short amount of time.

The duck chart shows a typical engineering problem in our current operational power grid,

as well as a technological challenge in power generation and scheduling. Denholm et al. [2016]

identify three characteristics of PV electricity generation with the associated challenges for an

economic PV grid integration: variability , non-synchronous generation, and uncertainty.

Table 1.1 summarizes the characteristics of solar PV energy generation and identi�es the

associated challenges with grid integration. The �rst characteristic of PV electricity generation

is the non-synchronous generation. Historically, hydro and fossil fuels have been critical to grid
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stability because of their inertia provided by rotating machines that convert kinetic energy to

electricity almost instantly. PV power generation, on the other hand, does not contribute to

the system inertia. Instead, it uses converters and is con�gured as \grid-following" units that

synchronize to conventional generators.

The duck chart has illustrated the second characteristic, the variable nature of PV power,

and its associated challenge. The problem is more severe when scaling up PV energy production

due to the increasing slope of the ramp. Weather forecasts can be useful to a certain extent, for

example, in anticipating the magnitude of the ramp in a day-ahead market. However, e�cient

power storage solutions and careful power plant design are needed to ensure grid reliability and

exibility.

Last, the uncertainty of PV power generation is another enemy of grid stability. It poses

a great challenge to keeping the balance between power supply and demand. When there is

an unexpected over-generation of PV, a common solution is a curtailment which decreases the

capacity value of PV and reduces economic competitiveness. When there is an unexpected

under-generation of PV, dispatchable energy, like biomass and hydroelectric, is needed to �ll in

the gaps.

PV power generation uncertainty has a close tie with atmosphere, geography, and power plant

con�guration (PV only or solar/wind hybrid) [Shaner et al., 2018]. My dissertation focuses on

quantifying and reducing power generation uncertainty through the lens of weather forecasting,

Machine Learning (ML), power system simulation, and geospatial analysis.

1.4 Current Forecast Technologies

Forecasting of the variable power generation from renewable energy like wind and solar PV is,

at its core, a coupled modeling problem involving weather forecasting and power performance

simulation. Uncertainty can stem from both components. For solar PV, for example, imperfect

predictions of the solar irradiance reaching the surface limit the predictability of power genera-

tion. Similarly, materials of the solar cell, the con�guration of panels, and the status of facility

maintenance can also a�ect the �nal power generation. This section briey describes some com-

monly used approaches to renewable energy production forecasts, speci�cally for solar PV.

1.4.1 Numerical Weather Prediction

Numerical Weather Prediction (NWP) models seek to solve a set of partial di�erential equations

that govern the conservation of mass, momentum, and energy in the atmosphere. These governing

Navier-Stokes equations serve as the foundation of NWP models [Holton, 1973, Haupt et al.,

2017]. Because they are hard to solve analytically, running NWP model simulations typically

requires a large computational budget to compute numeric approximations to the equations.

NWP models are typically run at �xed horizontal and vertical resolutions. For example,

Global Forecast System (GFS) is a global model with a horizontal resolution of 28 km, although
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more recent versions of GFS can have di�erent resolutions. Higher resolution models can use

GFS realization as their boundary conditions to initialize simulations on a nested grid. Two

temporal concepts are important for NWP models, the cycle time and the lead time. The cycle

time is when the model is initialized and the lead time is the time o�set of a speci�c forecast

at a future timestamp from its initialization time. For example, GFS typically has four cycles

per day at 00, 06, 12, and 18 UTC. For each cycle, GFS has a lead time of 384 hours into

the future, an equivalent of 16 days. The lead time can be con�gured di�erently based on the

model version and, because simulations are computationally expensive, horizontal resolutions

might be compromised, or reduced, for further future lead times. For example, GFS decreases

the resolution to about 70 km after a week.

Weather predictions are usually subject to errors. Lorenz [1963] states that the atmosphere is

a chaotic system that never exactly repeats itself. Any small perturbation in the initial condition

will ultimately result in two drastically di�erent atmospheric states. Uncertainty rises when the

future state of the atmosphere cannot be exactly anticipated.

In any given weather forecast, the major factors that limit the predictability of a future atmo-

spheric state areobservational errors in the initial conditions and model physics approximation.

Observational errors in ground-based measurements and satellite-derived datasets are inevitable

due to imperfect equipment and signal distortion during the transmission. Another consideration

of the observational error is the e�cacy of representation over regions close to the point where

observations are made. For example, ground-based measurements are usually sparse and it is not

uncommon to have a sparsely distributed in situ observation dataset over a geographically com-

plex region. Generally speaking, these types of errors can be partially attributed to introducing

uncertainty in the initial conditions of NWP models.

Model physics approximation is another bottleneck that reduces forecast uncertainty. Because

NWP models are run at a �xed resolution, parameterization schemes are needed to approximate

physical behaviors and interactions at the sub-grid resolution. Sample parameterizations include

but are not limited to atmospheric radiation, land-surface interactions, turbulent mixing, con-

vection, cloud microphysics, aerosol interactions, and boundary issues. For example, GFS uses

a Monte-Carlo Independent Column Approximation method during radiation transfer compu-

tations to address the unresolved sub-grid cloud variability [Iacono et al., 2000, Clough et al.,

2005].

Both sources of uncertainty can cause the prediction error to increase over lead times. These

two sources of uncertainty are inter-dependent because boundary conditions themselves are de-

rived from the integration of the underlying numerical model. Quantifying and reducing forecast

uncertainty is a challenging task in the NWP community.

An e�ective approach to uncertainty quanti�cation is via forecast ensembles, as opposed to

deterministic forecasts. Deterministic forecasts provide a single realization of the future atmo-

spheric state; ensemble forecasts, however, initiate model simulations with slightly perturbed

conditions, and therefore, the predictions are slightly di�erent from each other, called ensemble

members. The deviation among the ensemble members provides a quanti�able target of the
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forecast uncertainty: the more members deviate, the larger the uncertainty is.

There are generally two ways of generating forecast ensembles,multi-initialization and multi-

model. Multi-initialization , as previously mentioned, slightly perturbs the initial condition of an

NWP model. Multi-model follows a similar path but uses a set of models, rather than only one. It

is assumed that NWP models have di�erent skills in approximating di�erent processes. It is also

common to combine these two techniques when generating forecast ensembles, e.g., the Coupled

Model Intercomparison Project (CMIP). A third way of generating ensembles has recently been

proposed [Delle Monache et al., 2013] relying on weather analogs and associated observations

called the Analog Ensemble (AnEn). It transforms an operational deterministic NWP model to

forecast ensembles when historical observations are available. The AnEn will be the focus of the

research included in my dissertation. It will be introduced in detail in Chapter 2.

1.4.2 Machine Learning

ML represents a wide group of modeling techniques that can learn from existing data and then

apply the learned features to future behavior forecasting. ML is data-driven and inductive mean-

ing that it is trained with a large amount of data. When data volume is large, domain-speci�c

knowledge is less important during the modeling process because ML provides a powerful mod-

eling framework where the weights, speci�c to the forecasted phenomenon, can be dynamically

determined based on the training data. This modeling practice is signi�cantly di�erent from dy-

namical models, where equations are speci�cally designed and written out, and parameterization

schemes need to be studied and compared to �nd the most applicable one.

However, to some extent, ML can be called data-thirsty, especially in the case of Deep Learning

(DL) because of the model complexity and a large number of model parameters. Over�tting is

a common yet challenging problem haunting the ML community. Over�tting means that the

model does not learn a generalizable relationship between the predictors and the predictand, but

instead, it simply \memorizes" the training dataset. Over�tting can be typically diagnosed when

the model has a low error on the training data but a much higher error on the testing data.

Usually, collecting more training data would help in this situation, but the problem can be much

more subtle depending on individual applications.

ML can be used to quantify the forecast uncertainty. Random Forecast is one example from

the ensemble ML techniques. Similar to the multi-model idea, a random forecast consists of

a set of independent decision trees. During prediction, each tree generates a slightly di�erent

prediction, together forming a forecast ensemble. Another example is called end-to-end modeling

with ML. For example, a Neural Network (NNet) can be trained to associate NWP variables and

the prediction uncertainty: given a set of forecasts from the NWP simulation, what would the

forecast uncertainty be for a particular variable? The end-to-end modeling can be considered as

a post-processing or bias correction technique for NWP models to further reduce the prediction

error.

ML is di�erent from dynamical models where equations are explicitly written, but ML only
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de�nes the architecture, being tree-like or NNet like, where model weights are learned from data.

This higher level of abstraction of modeling practices bene�ts from the fact that a relatively

simple multi-layer NNet can approximate any functions, based on the Universal Approximation

Theorem [Sch•afer and Zimmermann, 2006]. However, a great advantage comes with a great

sacri�ce. ML has been, for decades, treated as a \black box" because the learned weights are

deprived of any interpretation following conventional techniques. Although ML is usually able

to produce more accurate predictions, researchers are not able to pinpoint physical relationships

learned by the ML models. The limitation in interpretability has also led to heated debates on

reliability and ethical issues.

The conception of ML being \a black box" has started to shift recently with emerging methods

in interpretable Arti�cial Intelligence (AI). For example, gradient-based methods can be used to

examine the attribute of input features to a speci�c prediction output. These methods treat

gradients calculated from backward propagation as a proxy for feature importance. They help

answer questions like how important an input feature is and where the model �nds most important

to a certain prediction in the input image. Aside from gradient-based approaches, other methods

\learn" an explanation metric per sample for a model Ribeiro et al. [2016], Zintgraf et al. [2017],

Kindermans et al. [2017]. These approaches are typically intrusive because they need to change

the internal architecture to learn an additional metric. As a result, the model needs to be re-

trained due to the change in the architecture. Instead, gradient-based methods generally require

only \black-box" access to the trained model.

1.5 Research Goals

The objective of this dissertation is to enrich the understanding of the variable energy generation

from solar PV by using NWP, ML, geospatial analysis, and High-Performance Computing (HPC)

technologies. The two main keywords of the dissertation research arescalability and uncertainty

reduction related to solar PV power generation. Because the main source of power generation un-

certainty lies within meteorological and engineering factors, I focus on how to reduce uncertainty

by improving weather forecasts and running ensemble power simulations with various engineering

con�gurations.

Speci�cally, I ask the following questions:

ˆ How can an e�cient and scalable ensemble-based algorithm be designed and applied to

assessing the power generation of solar PV over the Continental United States (CONUS)?

ˆ How do factors like sizes and materials of solar PV panels a�ect the power generation

uncertainty when scaled up?

ˆ How can spatial and temporal information be encoded internally into the similarity metric

for weather analog de�nition?
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ˆ How can ML models be applied to weather analog identi�cation to improve the prediction

accuracy for solar irradiance?

ˆ Do trained ML models learn useful and generalizable features that would help to �nd better

weather analogs?

ˆ What are the di�erences between weather analogs identi�ed by the AnEn and a ML driven

similarity metric?

The results and knowledge generated from this dissertation not only contribute to the solar

PV community but also can be helpful as a domain-independent ensemble forecast technique with

ML capability for the broader scienti�c community. As such, the ML driven similarity metric

studied in this dissertation has already been applied to wind speed forecasts.

1.6 Dissertation Organization

ˆ Chapter 1 provides an introduction to the dissertation subject area.

ˆ Chapter 2 provides an in-depth discussion of the AnEn technique and an e�cient and

scalable implementation.

ˆ Chapter 3 explores the relationship between solar PV power generation and panel con�gura-

tions across CONUS. It shows results on how to optimize power generation with geographic

locations and sizes and materials of solar panels.

ˆ Chapter 4 proposes a weather similarity metric driven by a Long Short-Term Memory

(LSTM) model which encodes temporal information. This is the �rst attempt to integrate

a ML component into the weather analog identi�cation process.

ˆ Chapter 5 improves the ML driven weather similarity metric by adding spatial information.

This addition completes the work on proposing a spatio-temporal weather similarity metric

for weather analog identi�cation.

ˆ Chapter 6 imparts a discussion highlighting summary points and conclusions of the research,

along with potential topics for future work.



Chapter 2
Analog Ensemble and a Scalable

Implementation

This chapter provides an in-depth explanation and discussion of the Analog Ensemble tech-

nique, its variants, and several postprocessing techniques. It focuses on introducing the

methodology and the computational characteristics of the Analog Ensemble.

2.1 Methodology Overview of Analog Ensemble

Probabilistic forecasts, in the form of ensemble predictions, can be generated with NWP models,

such as the Global Ensemble Forecast System (GEFS) and European Center for Medium Weather

Forecasting (ECMWF). Instead of providing a single prediction for the event of interest, an

ensemble is generated to provide a range of possible future states of the atmosphere. This

ensemble can be summarized using the mean of the members which converts it back to the

deterministic form [Whitaker and Loughe, 1998, Hopson, 2014]. The mean of the ensemble is

typically more accurate than each of the members individually [Wilks, 2011]. More importantly,

the characteristics of the ensemble provide a representation of the forecast uncertainty, usually

by calculating the standard deviation of ensemble members. Likewise, a probability distribution

can be calculated from the ensemble to make forecasters or users better informed of the risks

associated with a particular forecast.

The AnEn is a technique for generating forecast ensembles. Di�erent from the dynamical

NWP model ensembles or the statistically generated ensembles, e.g., regressions or ML tech-

niques, the AnEn utilizes a hybrid approach to ensemble generation [Clemente-Harding, 2019].

It relies on a deterministic dynamical model for capturing the ow-dependent uncertainty and a

statistical measure of weather similarity. This technique was �rst proposed by researchers at the

National Center for Atmospheric Research (NCAR) [Monache et al., 2011, Delle Monache et al.,
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2013]. Since then, it has gained signi�cant weight and popularity as an analog-based ensemble

forecasting technique.

The following materials will delve into the details of the AnEn, including how it works, its

advantages and disadvantages, applications of the AnEn to solar energy forecasting, and its

computational characteristics.

AnEn generates forecast ensembles from a single run of a deterministic NWP model and the

associated observations. For a particular target forecast, the AnEn searches in the historical

repository of forecasts and identi�es the most similar past forecasts using the following multi-

variate Euclidean distance function [Delle Monache et al., 2013]:

kFt ; A t 0k =
N vX

i =1
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� f i
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u
u
t

~tX

j = � ~t

(Fi;t + j � A i;t 0+ j )2 (2.1)

where Ft is the NWP model prediction valid at the model initialization time stamp t at a

speci�c location and Forecast Lead Time (FLT); A t 0 is the historical repository of NWP deter-

ministic forecasts from the search space at the same location and FLT, but with a di�erent model

initialization time t0 from within the historical repository of deterministic multi-variate predic-

tions; Nv is the number of physical variables used during forecast similarity calculation;! i is the

weight for each physical variable which suggests the relevant importance of the physical variable

with respect to the others; � f i is the standard deviation for the physical variable i calculated

from the historical forecasts at the same location and FLT;~t equals to half of the time window

size of the FLTs to be compared so that weather analogs are identi�ed within a very small time

window, usually equivalent to the length of three FLTs; Fi;t + j is the value of the current forecast

for the physical variable i at the valid time t + j ; A i;t 0+ j is the value of the historical forecast for

the physical variable i at the valid time t0+ j .

The metric describes the quality of the similarity: the lower the distance, the higher the

similarity. The similarity metric needs to be calculated between the target forecast and each

of the historical forecasts in the search repository and this process is repeated for all forecast

locations, forecast times, and FLTs. Therefore, it is the most computationally expensive part in

the AnEn workow.

Figure 2.1 provides a pictorial representation of the AnEn workow to generate a four-member

forecast ensemble [Hu and Cervone, 2019]. The top arrow represents an operational run of

a deterministic NWP model with the grey shaded area representing the history. The bottom

arrow represents the historical observations of the variable of prediction, associated with the

NWP model. For example, the bottom arrow would represent surface temperature records if the

predictand is temperature. Because it is the historical archive of observations, it only overlaps

with the grey shaded area from the �rst arrow.

Generating a four-member ensemble with the AnEn consists of four steps:

1. A multi-variate target forecast is retrieved from the deterministic model.
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Figure 2.1: The AnEn schema for generating a four-member ensemble forecast. Figure referenced
from Hu and Cervone [2019].

2. The similarity measure is calculated between the target forecast and each of the historical

forecasts based on the Equation (2.1). Four candidate forecasts with the highest similarity

(the lowest distances) are identi�ed as weather analogs to the target forecasts.

3. Observations associated with the four candidate forecasts are retrieved.

4. The historical observations become forecast ensemble members in the �nal output of the

AnEn.

There are several parameters of the AnEn that need to be determined a priori. The number

of ensemble members, or the number of analogs, determines the size of the output ensemble.

This parameter typically depends on the length of the search history and it has a direct impact

on the ensemble quality and prediction accuracy. In the literature [Delle Monache et al., 2013,

2018, Alessandrini et al., 2015a,b, Hu and Cervone, 2019, Fanfarillo et al., 2020], the number of

ensemble members is typically between 10 and 30, and usually a two year period is searched. A

too small ensemble size (1� 5) typically does not bene�t from the ensemble nature of predictions

because the ensemble does not capture the desired variability of the predicted variable; a too

large ensemble size (> 50) would inevitably force the technique to include less similar weather

analogs which is also not desired. A conceptual demonstration of its impact is that, if the number

of analogs is set to the size of the search repository, e.g., 500 historical forecasts are available

to search and the number of analogs is set to 500, all forecasts will be forcefully deemed as

weather analogs and the entire observation history is used in prediction. This practice is usually

discouraged because of its reliance on climatology to generate weather forecasts.

The second parameter is the set of predictor weights, speci�cally! i in Equation (2.1).

Weather variables have di�erent levels of attribution to an e�ective similarity based on the
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individual case. For example, to predict surface temperature, surface temperature itself is the

most important predictor, thus normally receiving the highest weight; wind speed and wind di-

rection, in this case, have much less impact on �nding weather analogs, thus receiving relatively

low weights [Junk et al., 2015b, Clemente-Harding, 2019].

The last parameter is the half size of the time window, namely~t in Equation (2.1). This pa-

rameter determines, when comparing a particular pair of the target and the historical forecasts,

how far back and how far into the future should be considered by the similarity metric. Conven-

tionally, it has been set to one indicating one hour before and one hour after are considered.

2.2 Strength and Limitation of Analog Ensemble

This section summarizes the strength and limitation of the AnEn. To start, the AnEn has the

following strengths:

Localized search : Analogs are searched independently for each forecast time and location.

This searching process is highly localized both in space and time and it drastically di�ers from the

conventional synoptic scale weather analog technique [van den Dool, 1989, Hamill and Whitaker,

2006]. Delle Monache et al. [2013] pointed out in their original paper that the assumption is

when the space and period of the day from which analogs are selected is reduced, the highly

localized search reduces the degrees of freedom of �nding matching forecasts and resulting in a

more tractable solution.

Similarity dependent correction : Ensembles generated from AnEn are e�ectively sampled

from the observation repository, not with a time series, but in the similarity space. Observations

can be selected as long as they are associated with the most similar forecasts. Therefore, the

selected observations might not necessarily be close in time with the target. The dependence

on similarity is di�erent from time series-dependent technique, e.g. persistence, forecasts are

corrected based on near-time historical forecasts. It makes the AnEn exible and versatile at

predicting variables with a large variation, e.g. wind speed [Alessandrini et al., 2015a, 2019].

E�cient ensemble generation : The e�ciency and scalability of the AnEn has also been

pointed out [Cervone et al., 2017, Hu et al., 2020a]. That the AnEn considers weather analogs

independently at each forecast location and time brings the tremendous bene�t in parallel com-

puting and distributed computing. Calculations can easily be scheduled to run at the same time

with little computational overhead. It has been shown [Cervone et al., 2017, Hu et al., 2020a]

that the AnEn can achieve about 95% e�ciency when parallelized.

Easy coupling with high-resolution models and datasets : The AnEn has been suc-

cessfully applied to gridded dataset [Sperati et al., 2017] to generate high-resolution ensemble

forecasts for wind. The AnEn has also been applied to downscale weather models in space and

time in an urban setting [Calovi et al., 2018].

Similar to many other forecasting techniques, the AnEn is also associated with its limitations

and challenges. It is of paramount importance to understand these perspectives to ensure a

proper practice of the technique and to avoid potential pitfalls.
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Observational archive : Although the major advantage of the AnEn comes from utilizing the

internal relationship between forecasts and observations, it can be hard to obtain such high quality

observational data in the �rst place. Some common issues are missing data points, resolution

mismatch, noncontinuous data records, and degraded measure equipment. These issues can

generally be solved during data cleaning but the added uncertainty to the observational dataset

should be considered while analyzing the performance of AnEn.

Frozen model : On the forecast side, NWP models are always subject to changes. For

example, the core of North American Mesoscale Model (NAM) changed from the original Eta

to Weather Research and Forecasting (WRF) in 2006 [Rogers et al., 2009b]. This change in the

model breaches the assumption of AnEn that similar forecasts have similar forecast errors. Major

changes, like the one in NAM can be easily spotted as they would be well documented. However,

in operational forecasts, models are constantly tweaked to improve the prediction. These smaller

changes also have a potential impact on the performance of AnEn, although to a much less extent.

Spatial and Temporal Consistency : The computational e�ciency of AnEn bene�ts

largely from the independent calculation both in forecast location and time. However, the in-

dependence also causes spatial and temporal discontinuities [Sperati et al., 2017]. For example,

consider a 24-hour AnEn forecasts with 21 members. Because ensembles are generated indepen-

dently for each of the 24 FLTs, the 21 members might come from vastly di�erent days and they

do not ensure a temporal continuance. In other words, the �rst member at an hour does not

correlate to the �rst member in the next hour. This temporal discontinuity brings challenges

when researchers and forecasters are trying to analyze ensembles on a member-by-member basis.

An e�ective method to address this problem is the Schaake Shu�e (SS) [Sperati et al., 2017,

Alessandrini and McCandless, 2020]. More information on SS is provided in Section 2.3.4.

2.3 Variants and Postprocessing of Analog Ensemble

Since the origin of the AnEn in 2013 [Delle Monache et al., 2013], it has been almost a decade

of research and development on the technique. Signi�cant improvement has been achieved in

both the application and the scienti�c understanding. Although the core idea, using similar

historical forecasts and the associated observations to generate forecast ensembles, stays largely

unchanged, the AnEn has been extended to many other aspects, and postprocessing techniques

have been proposed to further address some of the challenges and limitations in the AnEn. This

section provides a high level overview of such variants and postprocessing techniques that aim

to improve the AnEn prediction.

2.3.1 Independent Search

To distinguish from later variants of the AnEn, the original version of the AnEn is termed

Independent Search (IS). The AnEn IS refers to the analog generation process whereby similar

forecasts are sought at the current grid. This is, currently, the most popular way of generating
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AnEn.

2.3.2 Operational Search Mode

A variant of the AnEn is called the operational mode [Hu et al., 2019, 2020a]. The operational

AnEn aims to emulate how an operational NWP model is run and to demonstrate how AnEn

can be exible and self-adjustable as the NWP model simulation progresses.

Typically, the search period of the AnEn is �xed. However, in the case of operational weather

forecasts, the NWP model is constantly being initialized and generates new forecasts every day.

In the operational AnEn, the search period is not �xed but grows together with the progressing

simulation of the NWP model. As the target forecasts become history, they are immediately

added to the search repository to bene�t any later search operations.

The search period in the operational AnEn can also be speci�ed as a length; for example, a

�xed length of one year. In this case, any target forecast will only be compared to its historical

forecasts from the immediate previous year, without searching too far back into the history. This

tweak of the technique can, to an extent, prevent searching forecasts from previous versions of

the NWP model. However, if the model changes too frequently, the AnEn will still su�er from

unstable forecast errors across multiple versions within similar forecasts.

2.3.3 Search Space Extension

A second variant of the AnEn is the Search Space Extension (SSE) [Clemente-Harding, 2019].

This is probably the �rst attempt to incorporate spatial information during the identi�cation of

weather analogs.

The similarity metric in the AnEn SSE remains the same, as de�ned in Equation (2.1).

However, the historical forecasts, to be compared with the target forecast, might not necessarily

come from the same location as the target forecast. Figure 2.2 gives an example of how forecasts

are retrieved from nearby locations to compare with target forecasts. For a particular target

forecast from a forecast location (red), the AnEn not only compares historical forecasts at the

forecast location (red), but also compares forecasts from nearby forecast locations, e.g., with

a three-by-three mask. Therefore, in total, historical forecasts from nine locations have been

individually compared to the target forecast to determine weather similarity. This practice

e�ectively enlarges the search space by eight times. Ultimately, weather analogs are still selected

based on the ranked similarity from high to low and the most similar weather forecasts. Therefore,

analog forecasts (blue) might not necessarily come from all locations that have been searched.

The AnEn SSE has been shown e�ective [Clemente-Harding, 2019] when the search repos-

itory is limited, usually shorter than one year, because it can conveniently increase the search

repository by considering nearby grid. Another advantage of this variant is that it requires little

modi�cation to the AnEn IS algorithm, making it straightforward to implement. The computa-

tional requirement is linearly scaled compared to the AnEn IS which is to be expected due to the



17

Figure 2.2: A map shows the search stations in the AnEn SSE variant. Note that target stations
(red) are surrounded by several search stations (blue), instead of just using data at hoc from the
target station. Figure referenced from Clemente-Harding [2019].

enlarged search space and the increased number of historical forecasts with which to calculate

similarity.

However, a limitation of the AnEn SSE is that it still relies on a grid-by-grid comparison

which con�nes its ability to detect synoptic scale spatial patterns and teleconnections.

2.3.4 Schaake Shu�e

Section 2.2 points out that, due to the independent generation of analogs at each forecast location

and forecast time, the AnEn does not guarantee spatial and temporal continuity within members.

For example, if a prediction map is generated using the �rst member of forecast ensembles, the

map would contain a signi�cant amount of noise, demonstrating unrealistic spatial patterns

[Sperati et al., 2017]. The same problem can be observed when plotting a prediction time series

using only one member across lead times, the prediction would uctuate severely, demonstrating

little to no temporal continuity.

The SS was �rst proposed as a shu�ing method to reconstruct spatial and temporal cor-

relation in precipitation and temperature prediction [Clark et al., 2004]. Several works have

successfully applied the technique to reconstruct spatial and temporal correlation in AnEn pre-

dictions. The process is described below:

1. ChooseN random dates from the training dataset
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2. Take the observations at a certain lead time from the selected dates

3. Sort the observations in increasing order

4. Establish links among the observation positions before and after the sorting

5. Take the AnEn members of a date in the test dataset at the same lead time

6. Sort the ensemble members in increasing order

7. Reorder the members using links established earlier based on observations

8. Repeat step two to seven for subsequent lead times

Detailed descriptions of applying the SS technique to the AnEn can be found in Sperati et al.

[2017], Alessandrini and McCandless [2020]. Although the SS performs well in reconstructing the

spatial and temporal correlation, it is essentially a shu�ing technique that reorders the ensemble

members from di�erent forecast locations and FLTs, without changing the prediction values per

se. Therefore, any veri�cation statistics based on the mean of ensembles would be identical when

comparing AnEn SS to the AnEn. The SS is only needed when individual members are to be

analyzed.

2.3.5 Bias Correction with a Multi-Linear Regression

The AnEn technique uses a historical repository of forecasts and observations. However, the

number of analogs is �xed in the AnEn and the historical dataset can be limited. Literature

[Alessandrini et al., 2019, Plenkovi�c et al., 2018] has shown that the AnEn has a conditional

negative bias when applied to extreme event forecasting. For example, when predicting extreme

wind events, the AnEn consistently has a low bias. This is to be expected because the extreme

events have, by nature, fewer similar historical cases given a limited search history. To address

this problem, Alessandrini et al. [2019] proposed an additional postprocessing technique based

on multi-linear regression to compensate for the systematic negative bias.

A summary of the technique is provided with the example of temperature forecasts:

1. A simple linear regression is carried out between the model-forecasted temperature and

the observed temperature. The regression slope is subsequently used as a scaling factor

to determine the magnitude of correction. This slope is usually close to 1.0 because the

forecasted and the observed temperatures are typically well-correlated.

2. The di�erence between the current forecasted temperature and the average temperature

derived from its most similar historical forecasts is calculated.

3. This calculated bias is multiplied by the scaling factor (the regression slope) to calculate

the actual correction value.

4. The calculated bias is �nally added to each ensemble member.
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5. Repeat steps one to four for all forecast locations, forecast times, and FLTs.

This postprocessing technique has been shown to su�ciently correct extreme wind speed

forecasts, e.g.,> 5m=s and > 10m=s, and to improve AnEn predictions. It is worthwhile to

note that, in step four of the correction, all members in a particular ensemble are added with

the correction value, meaning that, while the forecasted distribution mean is shifted, the shape

of the distribution (e.g. the ensemble standard deviation) remains the same.

Another potential drawback of the bias correction based on a linear model is its reliance on

the baseline NWP model. Because the NWP model is already biased; for example, a cold-biased

target forecast is only similar to other potentially cold-biased historical forecasts. The calculated

di�erence (in step 2) could underestimate the real bias and lead to a lack of correction.

2.3.6 Bias Correction with a Percentile Mapping

Parallel to using linear regression for bias correction, as discussed in Section 2.3.5, another option

is to apply the Percentile Mapping (PM) to AnEn forecasts to compensate the forecast bias [Sidel

et al., 2020].

Given a percentile and a forecast ensemble from the AnEn, the following equations are used

to obtain a deterministic value from the ensemble [Hyndman and Fan, 1996]:

Q(p) = (1 �  )x j + x j +1

 = 1 + p(n � 1) � j

j = bnp � p + 1c

where Q returns the value corresponding with the percentilep; j is the statistical order; x j

is the ensemble member of thej th order,  is the weight on x j , and n is the sample size.

The key proposition is that, with the mean of the ensemble unsuitable towards evaluating

extreme values, a percentile from the forecast ensemble distribution can be calculated as the

summarization value of the ensemble. For an extreme heat event, this percentile essentially

would be a higher-than-medium value that favors the right tail of the distribution, leading to a

\warm" correction to the originally \cold" biased ensemble.

The PM is directly applied to AnEn forecasts, without relying on the underlying NWP model.

Sidel et al. [2020] show the PM correction outperforms the bias correction based on linear re-

gression in the case of predicting extreme heat events. However, a limitation of the PM is that

the percentile needs to be determined ahead of time and more importantly, separately for each

forecast location, time, and FLT. Calculating percentiles requires additional computation to de-

termine the most e�ective percentile. In addition, PM summarizes and collapses the forecast

ensemble to a bias corrected deterministic value. It is not applicable to situations where a �nal

ensemble format is desired.
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Figure 2.3: The spread-skill correlation diagram at six locations for the AnEn, the calibrated
AnEn, the persistence ensembles, and the calibrated persistence ensembles. Ensemble spread is
shown on the horizontal axis and the RMSE of the ensemble mean is shown on the vertical axis.
A diagonal line is shown on each panel for reference to perfect correlation.

2.3.7 Empirical Inverse Transform Function

The last postprocessing technique for the AnEn is designed to improve forecast reliability and

sharpness. Di�erent from the bias correction technique in Section 2.3.5 where the prediction

accuracy is improved but the distribution shape remains intact, the Empirical Inverse Transform

function (EITrans) [Hu et al., 2020b] aims to improve the reliability of the AnEn by attening

the rank histogram and improving spread-skill correlation.

The core idea of the EITrans technique is to calculate a series of correction values, each

of which corrects a ranked ensemble member (from the lowest to the highest). The number of

correction values depends on the number of ensemble members. These correction values are meant

to correct the forecast ensemble so that the forecasted distribution better matches the observed

distribution. For example, if an ensemble is known to be over-dispersive, values range from a

positive value (for the �rst ranked member) to a negative value (for the last ranked member).

When applied to the ranked members, this correction shrinks the ensemble spread, bringing the

tail values closer to their distribution mean. If an ensemble is known to be under-dispersive, the

correction tends to move the ensemble tails further away from the distribution mean, seeking to

enlarge the ensemble spread.
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Figure 2.3 shows the spread-skill correlation at six locations for the four types of ensembles.

Veri�cation on surface temperature forecasts is shown. Ensemble spread is shown on the hori-

zontal axis and the Root Mean Square Error (RMSE) of ensemble mean is shown on the vertical

axis. Spread-skill correlation quanti�es the reliability of ensembles. A high correlation between

the ensemble spread and the ensemble predictive skill is desired so that the ensemble uncertainty

can be approximated, without using the observations, but only using the ensemble spread.

The AnEn (green) lies below the diagonal line, meaning the ensemble spread is larger than

the RMSE, being over-dispersive. The calibrated AnEn (brown) moves the AnEn to the left,

reducing the ensemble spread and bringing the correlation line closer to the diagonal line. A

correction with a reverse direction can be observed for the Persistence because the Persistence

tends to be under-dispersive and therefore, the EITrans seeks to increase the ensemble spread.

2.4 An E�cient Implementation of Analog Ensemble

This section introduces an implementation that facilitates a complete workow to generate an

AnEn, the Parallel Analog Ensemble (PAnEn) [Hu et al., 2020a]. This is the �rst open source

library hosted on GitHub for the AnEn implementation. The AnEn is intrinsically a scalable

algorithm suited for high-performance computing [Cervone et al., 2017], and it is optimized to

provide an e�cient and scalable implementation.

In this section, a brief description of the AnEn technique is �rst provided. Then it dives

into the architectural design of the library. Multi-threading and multi-node pro�ling analysis are

carried out to assess the performance of the library. Last, some typical usage of the library is

introduced. Below is a list for additional documentation and tutorials for PAnEn:

1. Package landing page:https://weiming-hu.github.io/AnalogsEnsemble

2. Source code repository:https://github.com/Weiming-Hu/AnalogsEnsemble

3. Full documentation: https://weiming-hu.github.io/AnalogsEnsemble/doc

4. Tutorials: https://github.com/Weiming-Hu/AnalogsEnsemble/tree/master/RAnalogs/

examples

The PAnEn is implemented with the 2011 C++ standard. It builds upon a list of dependencies

including Boost C++ [Sch•aling, 2011] and NetCDF libraries [Li et al., 2003, Rew and Davis, 1990].

The complete list can be found in the full documentation. The R [R Core Team, 2013] interface

depends on Rcpp [Eddelbuettel et al., 2011] which provides seamless integration between C++

and R codes. Tests are designed and implemented using the CppUnit [Madden, 2006] framework.

Parallelization has been achieved with OpenMP [Dagum and Menon, 1998, Chandra et al., 2001,

Chapman et al., 2008] and the Message Passing Interface (MPI) standard [Gropp et al., 1996].

The package has been successfully installed and tested on some of the popular operating

systems, including CentOS, Ubuntu, Mac OS, and Windows. The tested compilers include GNU
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Figure 2.4: UML diagram describing the design of the data structure. Abstract classes are shown
in green and implementation classes are shown in yellow.

GCC (> = 4 :9) with OpenMP ( > = 4 :0) and Intel C++ compilers ( > = 18:0:0). The R interface

has been tested with R versions later than 3.0.0. The MPI implementation has been tested

with OpenMPI ( > = 4 :0:0) and Intel MPI ( > = 18:0:0). Despite the limited list, the package is

expected to work successfully with other execution environments.

2.4.1 Data Structure

Figure 2.4 demonstrates the Uni�ed Modeling Language (UML) diagram for the data structure

design. The overall data structure is built upon three abstract classes, shown in green,Array4D ,

Forecasts, and Observations, and the AnEn technique interface is built upon these abstract

classes. An abstract class is an interface describing the behavior or capabilities of a C++ class

without committing to a particular implementation of that class. Therefore, although these

classes do not yet have an actual implementation, they are of key importance in that they

describe what subsequent classes should be capable of doing to be able to be integrated into

the AnEn technique. ClassesObservations and Forecasts are designed for representing meta

information associated with observations and forecasts. Forecasts are usually four-dimensional

including predictors (e.g. weather variables), stations, forecast initialization times, and forecast

lead times while the structure of observations is similar except that observations only have times
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Figure 2.5: UML diagram describing the design of the AnEn technique and the �le I/O processes.
Abstract classes are shown in green and implementation classes are shown in yellow.

of measurement rather than forecast initialization and lead times. ClassArray4D is designed for

storing a generalized four-dimensional data structure.

ClassesForecastsPointer and ObservationsPointer are derived from their parent abstract

classes respectively. As the names suggest, these classes are implemented using C pointers for per-

formance purposes. ClassForecastsPointer is inherited from both Forecastsand Array4DPointer

becauseForecastsdescribes interfaces for meta information access andArray4DPointer describes

how the high-dimensional data portion of forecasts are stored and accessed.

Forecasts and Observations are inherited from classBasicData because they both have pa-

rameters, stations, and times except that classForecasts has an extra dimension of forecast lead

time. Stations, Parameters, and Times are implemented as bidirectional maps to carry out fast

queries mapping from indices to values and reversely from values to indices.

As a result, the above architecture achieves the following:

1. Interface stays agnostic of the underlying implementation. Forecasts, Observations, and

Array4D are currently represented as C pointers, but this behavior can be easily swapped

to other types of implementation.

2. Time and space alignment are critical for the AnEn and this design ensures that, once

forecasts and observations are created, these objects can only be changed through public

interfaces and the alignment is handled internally to prevent runtime errors.
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2.4.2 Algorithm Implementation

Figure 2.5 is the UML diagram describing the design of �le I/O and the AnEn. The abstract

class AnEn is shown in green. Being the interface of the technique, classAnEn provides a

method, AnEn::compute, which takes Forecasts and Observations as input to generate weather

analogs. Additional arguments can be passed to the class constructor to �ne-tune the technique

performance.

Building on top of AnEn, AnEn IS provides the multi-threading implementation of the AnEn

with OpenMP for IS. IS refers to the concept that similar historical forecasts are only sought at

the current forecast location. It is implemented in the class methodAnEnIS::compute. There are

various member variables ofAnEnIS to con�gure the behavior of the method. For example, the

number of analogs speci�es the number of ensemble members to generate and the toggle switch

of whether to use operational mode. When the operational mode is turned on, the search period

becomes variable and it grows with the progression of the test period. Test predictions will

be compared with all historical predictions available from the immediate past predictions. Class

AnEnIS enables two other class implementations,AnEnSSE and AnEnISMPI . ClassAnEnISMPI

is the parallelization of AnEnIS using MPI for distributed memory systems. ClassAnEnSSE

is a variant of AnEnIS for SSE. This version of AnEn searches similar predictions from nearby

stations in the spatial domain to increase the search repository size and have more available

historical predictions. Class AnEnSSE provides additional arguments to con�gure the method

including the number of nearest neighbors to search and the distance threshold.

Currently, PAnEn has NetCDF and WMO GRIB2 support because these two formats are

widely used in Geoscience. To be consistent with the data structure interface, I/O functions

accept abstract classes in the interface. GRIB and NetCDF �les can be read using classes

AnEnReadGrib and AnEnReadNcdf while the output of the PAnEn can be written to NetCDF

�les with class AnEnWriteNcdf . File I/O can potentially be a bottleneck for computationally

expensive tasks. In the case of numerical weather simulation, forecasts are usually saved to GRIB

�les and each GRIB �le contains simulation results for the entire domain at a certain cycle time,

initialization time, and forecast lead time. As a result, it is possible to have an enormously large

number of GRIB �les to read. Class AnEnGreadGribMPI is designed to solve this problem. It is

implemented with ecCodes from ECMWF to decode binary GRIB messages. The parallelization

is enabled through MPI to facilitate scaling.

2.5 Performance Analysis of Parallel Analog Ensemble

This section shows results from performance analysis of PAnEn. Some key questions that are

addressed in this section are:

1. How are time and memory consumed during the execution of the program?

2. How e�cient is the multi-threading and multi-node parallelization implementation?
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To assess the library performance, numerical weather model simulation data have been col-

lected from NAM [Unidata, 2003, NOAA, 2015]. The three-year time period spans from January

1, 2016, to December 31, 2018. The archived dataset exceeds 3 Tb in size and is stored on

NCAR Cheyenne [Computational and Laboratory, 2019] supercomputer. This dataset covers

North America with 262,792 grids. It includes 395 weather variables on 50 vertical levels and

forecast lead times are subset from the original 84 hours down to 36 hours.

Multi-threading analysis was carried out on a Dell Precision 7920 workstation with 64 GB

of memory and 16 physical cores (equivalent to 32 CPUs with hyper-threading). The operating

system was Ubuntu 18.04.1 LTS Bionic. PAnEn was compiled with GCC 7.3.0 with OpenMP

support. Multi-node analysis was carried out on NCAR Cheyenne supercomputers.

Although numerous pro�ling tools are available, e.g. GProf [Graham et al., 1982] and TAU

[Shende and Malony, 2006], pro�ling information is generated and gathered internally by the

program for simplicity. The execution runtime is measured based on the frequency clock of

processors and the wall time functionality from OpenMP. Information on memory consumption

is collected by reading from the system log �le. All pro�ling results are averaged from three runs

of the program given the same analysis condition.

2.5.1 Resource Consumption Analysis

Figure 2.6 shows the itemized pro�ling for PAnEn. Figure 2.6a shows the time pro�ling of the

master process for generating 10-member ensembles over 5,000 stations for one year as test using

two years as search. This was carried out on one node with 36 MPI processes. The three stages

that take up most of the runtime are forecast and observation reading and analog generation.

It is expected that analog generation takes up a signi�cant amount of runtime but the fact that

�le I/O can also consume a large amount of runtime should be alarming. In this example, the

three-year forecast data, having multiple lead times and cycle times per day, amount to a total

of 59,317 �les to read. Additional to the sheer number of total �les to read, reading a subset

(5,000 out of 262,792) of the �les can also lead to signi�cant overhead because the �le I/O process

needs to query and locate a speci�c message from the �le and most of the time, messages are not

contiguous to each other which means the I/O process needs to jump back and forth.

Two options are o�ered to bypass the �le I/O bottleneck stage. GRIB data can be subset

during the data preprocessing stage to signi�cantly shrink the size of the dataset. Fortunately,

this only needs to be done once, thus remain a constant factor, albeit sometimes a large constant.

In cases where the constant becomes too large to manage, �le I/O can be parallelized with MPI

with high e�ciency. MPI pro�ling is shown in the next section.

Figure 2.6b shows the peak heap allocation after each execution stage. This metric is used

to pro�le the memory usage of the program. 10-member analog ensembles are generated for

one month of test and three months of search using one node. This experiment was not run on

multiple nodes because multi-node memory pro�ling for MPI can be inaccurate. As Figure 2.6b

suggests, three signi�cant jumps of memory usage occur during the �le reading process (reading
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Figure 2.6: (a) Wall time pro�ling of the master process sorted by the amount of time spent
in each execution stage; (b) Peak heap allocation pro�ling organized in the order of runtime
execution of each stage

forecasts and analysis), analog generation preprocessing, and writing analog results. The last

stage of the execution outputs forecasts and observations in a NetCDF format from the test

period. Saving the test datasets is a feature of PAnEn so that they can be used in subsequent

veri�cation and analysis.

2.5.2 Multi-Threading and Multi-Node Pro�ling

Section 2.5.1 identi�es two potential bottlenecks of the PAnEn. The �rst bottleneck is analog

generation which is the core of the technique; the second bottleneck is the �le reading stage when

a long period of forecasts is required. The PAnEn solves these problems with a hybrid approach

of OpenMP and MPI. When the simulation can be carried out on a single computing node,

multi-threading can be used to speed up the generation of weather analogs. For large problems

where weather analogs are sought from a multi-year forecast repository for over thousands of

stations, MPI can be used on top of OpenMP to support large scale computation.

Figure 2.7 shows multi-threading pro�ling carried out on the Dell workstation. 10-member

analog ensembles are generated for 10 forecast lead times and only 10 days using one month as

search. The spatial domain is increased to the entire domain including 262,792 grids to ensure

su�cient amount of workload to parallelize. Figure 2.7a shows the speedup of analog generation
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Figure 2.7: (a) Multi-threading pro�ling of speedup; (b) multi-threading pro�ling of runtime

compared to the theoretical speedup de�ned by the Amdahl's Law as the following:

S(s) =
1

(1 � p) + p
s

;

where

1. S is the theoretical speedup of the execution of the whole task;

2. s is the speedup of the part of the task that bene�ts from improved system resources;

3. p is the proportion of execution time that the part bene�ting from improved resources

originally occupied.

The speedup ratio is well bounded between 95% and 98% which shows the majority of the

execution has been parallelized. Speedup of the PAnEn further improves by about 20% when

hyper-threading is used (the data point where 36 threads are used). The further increase suggests

that extra performance can be obtained on supercomputers with the same amount of compu-

tational budget because computation is usually charged by the number of nodes or cores, not

threads or processes.

Figure 2.7b shows the itemized time consumption with di�erent numbers of threads. The

stages are categorized into �le I/O, preprocessing, and analog generation. File I/O is currently

implemented serially because the dependent packages, ecCodes and netCDF, are currently not

thread-safe and multi-threading implementation is discouraged. As a result, the time consump-

tion remains constant across experiments when di�erent numbers of threads are used. Prepro-

cessing and analog generation are parallelized with multi-threading and the runtime decreases

proportionally as the number of threads increases.

Figure 2.7b suggests when the execution runtime is below 200 seconds, more than half of

the time is spent on serial �le I/O. As mentioned in Section 2.5.1, the extra time spent on data

conversion can be avoided by converting GRIB �les to NetCDF �les ahead of time. This solution,
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Figure 2.8: Multi-node pro�ling of program runtime

however, is not scalable and applicable for analog generation requiring a long search repository.

Figure 2.8 shows the multi-node pro�ling of speedup for the two most computationally expensive

stages, the reading stage and the analog generation stage. This experiment was carried out to

generate 10-member analog ensembles for one year using two years as the search period. There

are 18 forecast lead times and the total number of stations is 5,000. When the total runtime

exceeds 250 seconds, the speedup of the reading stage and the analog generation stage is about

10% slower than the theoretical optimum. When the total runtime is reduced to under 250

seconds, the speedup reaches a plateau. The latter occurs because, in these cases, the workload

distributed to each process becomes too small such that each process only needs to read several

�les and generate analogs for a handful of stations, but the communication between processes

becomes signi�cant. It is demonstrated in the case of analog generation going from 32 nodes

to 64 nodes. When the number of nodes increases, the wall time of analog generation increases

because, although the number of stations for each process decreases from 5000=(32 � 36) � 5 to

5000=(64� 36) � 2, the number of total processes increases from 32� 36 = 1152 to 64� 36 = 2304.

The plateau cases shown in Figure 2.8 are a contrived example of how communication overhead

overtakes the bene�t from multi-node parallelization. An obvious solution to better statistics is

to increase the total workload so that the program can achieve high parallelization e�ciency

when the total runtime is above 250 seconds. It is generally not suggested to request more nodes

after this critical line is hit.
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1 library(RAnEn)
2 config <- new(Config)
3 config$num_analogs <- 11
4 AnEn <- generateAnalogs(forecasts, observations,
5 test_times, search_times,
6 config, IS)

Listing 1: Code snippet for using aRAnEn::Con�g class object for analog generation

2.6 Typical Usage of Parallel Analog Ensemble

This section provides typical usages of the PAnEn. The complete C++ interface documenta-

tion can be found at https://weiming-hu.github.io/AnalogsEnsemble/CXX ; the complete R

package documentation can be found athttps://weiming-hu.github.io/AnalogsEnsemble/R .

2.6.1 RAnEn on Desktops

The R package RAnEn provides the interface to the underlying C++ libraries together

with preprocessing and �le I/O functions. This package is usually used in conjunction with

RAnEnExtra which provides extensive functions for forecast veri�cation and analog visualiza-

tion. RAnEnExtra can be access fromhttps://weiming-hu.github.io/RAnEnExtra/ .

A typical workow of using RAnEn includes:

1. Preparing forecasts and observations. Forecasts and observations are represented as R lists

with members including data, times, and locations. A complete list of accepted mem-

bers can be found athttps://weiming-hu.github.io/AnalogsEnsemble/2019/01/16/

NetCDF-File-Types.html ;

2. Specifying the test and search periods and the number of analogs to generate;

3. Calling the main function, RAnEn::generateAnalogs, to generate analogs.

There are several ways to prepare forecasts and observations in the required format. If fore-

casts are originally stored in GRIB �les, the command line utilities, grib convert and grib convert mpi,

can be used to convert GRIB �les to NetCDF �les with the required format. Then, these NetCDF

�les can be read into R using RAnEn::readForecasts and RAnEn::readObservations. These two

functions are actually designed to read NetCDF �les that already have the required variables

and they are not designed to read any arbitrary NetCDF �les. Observations are typically stored

with a multivariate time series format, for example, ground level ozone measurement from 2017

to 2019. This type of format can generally be read into R as data frames, and then converted

to the required format using RAnEn::formatObservations. For cases that are not covered, users

need to manually format forecasts and observations.
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1 # Data folders
2 forecasts-folder = /path/to/forecast/data
3 analysis-folder = /path/to/observation/data
4

5 # Tagged regular expressions for parsing file names
6 forecast-regex = ^.*nam_218_(?P<day>\d{8})_(?P<cycle>00)\d{2}_(?P<flt>000)\.grb2$
7 analysis-regex = ^.*nam_218_(?P<day>\d{8})_(?P<cycle>00)\d{2}_(?P<flt>000)\.grb2$
8

9 # Test and search time periods in standard format
10 search-start = 2016-01-01 00:00:00
11 search-end = 2017-12-31 23:59:59
12 test-start = 2018-01-01 00:00:00
13 test-end = 2018-12-31 23:59:59
14

15 # Which parameters to read from GRIB files as forecast predictors
16 #
17 # Parameter: Downward short-wave radiation flux
18 pars-name = DownwardShortwaveRadiation
19 pars-id = 260087
20 levels = 0
21 level-types = surface
22

23 # Parameter: 2 metre temperature
24 pars-name = Temperature_2m
25 pars-id = 167
26 levels = 2
27 level-types = heightAboveGround

Listing 2: Example con�guration �le for anen grib and anen grib mpi

To generate analogs,RAnEn::generateAnalogsaccepts six arguments including forecasts, ob-

servations, test times, search times, the name of the technique to use, and a detailed con�guration

object. The supported names are \IS" for independent search and \SSE" for search space exten-

sion. A RAnEn::Con�g object provides additional arguments for the analog generation function.

A typical use of RAnEn::Con�g is provided in Listing 1.

2.6.2 PAnEn on Supercomputers

PAnEn is designed and implemented to solve complex problems that require sizeable compu-

tation with state-of-the-art supercomputers. Although it is possible to run R scripts on super-

computers, it is suggested to use the command line utilities built on top of the C++ libraries
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on supercomputers for maximum performance. There are two groups of command line utilities,

grib convert and anen grib. Each group has its MPI variant. grib convert is designed for con-

verting and subsetting a large number of GRIB �les to NetCDF �les. anen grib is designed to

generate analogs from GRIB input. All utilities accept a regular text �le as its con�guration

�le, typically named with the extension \.cfg". A minimal example of the con�guration �le is

provided in Listing 2.

Generally, places where extra attention is needed are predictor de�nition and regular expres-

sions. At least three attributes are needed to locate a speci�c parameter from a GRIB �le: the

parameter ID, the vertical level, and the vertical level type. Parameter ID can be found from

the ECMWF GRIB parameters database at https://apps.ecmwf.int/codes/grib/param-db .

grib ls can be used to query the vertical levels and level types from a particular GRIB �le. An

example command for usinggrib ls to print out meta information from a GRIB �le is grib ls -

p shortName,name,paramId,level,typeOfLevel nam218 201901010000 000.grb2. This command

prints out the speci�ed �elds of all variables available in the GRIB �le.

Regular expressions [Thompson, 1968, Niebler, 2007] are used to extract time information

from a particular �le name because model simulation usually outputs all data for a particular

cycle time and a particular lead time to a single �le. This �le contains simulation results for the

entire domain for one timestamp and usually with all variables from all vertical levels. There-

fore, time information can be identi�ed from the �le name. Di�erent models, however, have

di�erent naming conventions and users need to provide the proper regular expression to assist

parsing �le names. For example, this is a typical �le name from WRF NAM model simulations,

nam 218 201901011200 084.grb2. Separated by underscores, components are, in turn, the model

type, the grid type, the forecast date in standard format, the simulation cycle time in military

time, and the forecast lead time in hours. PAnEn needs help to understand which parts corre-

spond to the forecast date, the cycle time, and the lead time. An example of a regular expression

is as follows,nam 218 (?P< day> ndf 8g) (?P< cycle> 00)ndf 2g (?P< t > ndf 3g).grb2. The three

pairs of parenthesis indicate parts of the string to match. Within the �rst pair, ? P< day> spec-

i�es that the matched portion should be referenced as the date which is an eight-digit string.

Similarly, the second pair of parentheses should be referenced as the forecast cycle time and this

expression speci�cally matches the cycle time \00". The third pair of parentheses matches the

forecast lead time from a three-digit string. If the regular expression is not properly formatted,

PAnEn will raise an error and ask for changes.

2.7 Summary

The AnEn generates accurate forecast ensembles e�ciently. The fact that only one run of the

NWP model is required to generate ensembles drastically lowers the computational cost. The

PAnEn is an open-source library developed to make this process even more accessible and man-

ageable. It provides highly e�cient implementation and a exible interface for generating the

AnEn.



32

The current interface supports C++ and R usage and �le I/O with GRIB and NetCDF.

Multi-threading pro�ling shows over 95% parallelization of the code and multi-node pro�ling

shows low overhead when the execution runtime exceeds 250 seconds. A hybrid architecture of

OpenMP and MPI ensures the scaling capability of the programs.

This library will continue to be maintained and improved with the addition of new analog

generation algorithms and better parallelization implementation for large scale problems.



Chapter 3
Uncertainty Quanti�cation of Solar

Photovoltaic Energy Production

This chapter proposes and provides an in-depth discussion of a scalable solution for running

ensemble simulation for solar energy production. Generating a forecast ensemble is com-

putationally expensive. But with the help of Analog Ensemble, forecast ensembles can be

generated with a single deterministic run of a weather forecast model. Weather ensembles

are then used to simulate 11 10 KW photovoltaic solar power systems to study the simula-

tion uncertainty under a wide range of panel con�gurations and weather conditions. This

computational workow has been deployed onto the NCAR supercomputer, Cheyenne, with

more than 7,000 cores.

Results show that, spring and summer are typically associated with a larger simulation

uncertainty. Optimizing the panel con�guration based on their individual performance under

changing weather conditions can improve the simulation accuracy by more than 12%. This

work also shows how panel con�guration can be optimized based on geographic locations.

3.1 Background and Motivation

The reliance on fossil fuels for power generation is not sustainable for meeting the increasing

demand of a growing global economy and population. Building a sustainable society requires

alternative sources for power production that can last for generations to come [Lewis and Nocera,

2006]. Thanks to new incentives, regulations, improvements in technology, development of a

competent workforce, paired with a general shift in sentiment against pollution and greenhouse

emissions, renewable sources account for a signi�cant portion of the overall energy production

portfolio.

In 2019, for the �rst time in history, more energy in the U.S. was produced from renewable
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sources than from coal [Administration, 2010]. Since the early 2000s, the general trend of energy

production in the U.S. showed a steady decline in coal, o�set by an increase in natural gas,

and renewable sources. Predictions by the U.S. Energy Information Administration (EIA) for

2050 suggest that 36% of energy will be generated using natural gas (37% in 2019), 38% from

renewables (19% in 2019), 12% nuclear (19% in 2019), and only 13% from coal (24% in 2019)

[Administration, 2010]. Therefore, while natural gas is predicted to remain almost constant

over the next 30 years, renewable will double to o�set coal and nuclear power. Speci�cally,

it is projected that solar generation will account for almost 80% of the increase in renewable

generation through 2050 [Dubin, 2021].

Relying on solar power, however, can be challenging, despite the massive progress in utility-

scale installation and the prevalence of residential PV systems among communities. The sheer

amount of available solar power does not necessarily guarantee its full utilization and integration

into our electricity grid. This is due to rapidly changing weather conditions, astronomical factors,

and other events that alter the amount of power produced. In general, it can be said that there

is a greater uncertainty associated with generating power using PV because external weather

conditions play a dominant e�ect.

The key challenging problem is to match power production with demand, both

of which are dynamic and variable. Furthermore, this must occur at di�erent time-

scales, ranging from day-ahead to seconds.

In the U.S. and most other countries, energy production planning occurs in what is referred

to as a day-ahead market [Ferruzzi et al., 2016]. Each day, a portfolio of energy sources is created

to meet predicted demand. A bidding process sets the price of electricity, where the di�erent

producers o�er to sell electricity at a speci�c price. Generally speaking, if a producer o�ers to

sell a certain amount of energy at a price, not meeting the speci�c amount incurs a penalty, and

generating more energy leads to an opportunity loss [Wen and David, 2001, Davatgaran et al.,

2018]. This process favors energy sources with smaller day-ahead uncertainty.

Traditional fossil fuel power sources, and some types of renewables such as hydroelectric

power, have little day-ahead uncertainly, because the amount of potential power generation is

directly proportional to the fuel available, may this be stored natural gas or volume of water in

a reservoir. On the other hand, PV solar energy has larger uncertainty due to changing weather

conditions, astronomical factors, technological constraints, operational practices.

Weather: NWP are used to forecast day-ahead irradiance, which depends on general weather

conditions [Alessandrini et al., 2015a]. While they are e�ective, they are also error prone, espe-

cially in case of rare or extreme events. For example, clouds [Chow et al., 2015, Kleissl et al., 2013]

and precipitation are an important factor that changes the amount of solar irradiance reaching

solar panels, but their day-ahead modeling is di�cult, and often requires multiple parameteriza-

tion schemes. Similarly, aerosols interact with the incoming solar irradiance [Wan et al., 2015,

Jimenez et al., 2016] by increasing the di�used component of insolation. Any changes in irradi-

ance, which can either decrease or sometimes increase, leads to an additional uncertainty in power

production. Aerosols are present in larger quantities and thus have stronger impact in areas with
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heavy air pollution, and transient events like desert storms or volcanic eruptions. Because of the

uncertainty in weather forecasts, it is currently not possible to always and consistently forecast

day-ahead PV solar energy production.

Astronomical: Additionally, PV solar energy is not available during the night, and daytime

production changes throughout the year depending on sunrise and sunset times, and solar ele-

vation. While this variability can be easily forecasted and accounted for, it still requires daily

optimization to properly estimate future energy production.

Technological: Another source of uncertainly is intrinsically related to the electrochemical

processes that PV panels rely upon to generate electricity. The e�ciency of power generation

varies based, in addition to irradiance, also on cell temperature [Dirnberger et al., 2015, Huld and

Amillo, 2015], which itself is related to ambient temperature. Wind speed a�ects air temperature,

and thus must be taken into account to make accurate predictions [Mills and Wiser, 2011, Al-

Dahidi et al., 2020]. Once irradiance and temperature are forecasted, the conversion to power

generation can be made through a PV panel simulator. However, the nominal panel power

capacity is evaluated under Standard Test Condition (STC), which might be di�erent than real-

world performance. For example, the STC speci�es a cell temperature of 25°C and an irradiance

of 1000W=m2 with an air mass 1.5 spectrum. These conditions are only rarely if ever met.

Operational: Finally, panels must be maintained clean and they generally degrade with time,

leading to their e�ciency changing constantly. Given two identical weather conditions, the same

panel might generate a di�erent amount of electricity at di�erent times.

3.1.1 Solar Power Forecasting

Solar power forecasting can be viewed as a two-step problem: characterizing the weather and

the PV panels. There are many di�erent methods to solve these two problems, sequentially or

concurrently, and they depend on factors such as the temporal and spatial scale of the results,

the temporal resolution, if a measurable level of uncertainty is required, and the computational

resources available.

Solar power forecasting is usually divided based on the temporal forecasting horizon [Gensler

et al., 2016a]. Forecasting up to six hours is referred to as short-term, and it is where extrapolation

and persistence methods excel due to their computational e�ciency and good accuracy [Pedro

and Coimbra, 2012]. Following, is mid-term forecasting, spanning from six to 72 hours, where

physical and/or statistical numerical modeling is considered the most e�ective technique. Because

of the rapidly changing environmental conditions, the immediate ambient history is not a good

predictor for future outcomes.

For day-ahead mid-term forecasts which are the focus of this research, the weather part is

solved using NWP models, that resolve weather features and forecast future conditions (e.g.,

cloud cover, wind speed, temperature). They are run at di�erent temporal and spatial scales,

and can be optimized for speci�c locations and weather patterns. However, weather forecasts do

not directly translate into the amount of power generated, and speci�c characteristics of the PV
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array and its installation, as well as operational status, must be taken into account.

The second step can be solved using solar panel numerical simulators or simple empirical

functions; or using statistical and computational methods based on past measurements. Which

method to use is dictated by the speci�c needs and the level of accuracy required, but in general,

it can be said that simulators are less e�ective at accounting for the speci�c aspects of installation

and location, while statistical and computational solutions are limited to historical patterns which

might under-represent conditions, most importantly, rare or extreme events. The latter methods

can also only be used in the presence of a robust history of measurements, and thus are generally

unsuitable for feasibility studies. The results are also very location dependent, and while they

might be optimal at predicting a speci�c panel con�guration and installation, their results are

likely to be so speci�c that cannot be generalized to other locations or installations. Finally,

because panels degrade over time, a statistical correction is also needed to capture and correct

for this e�ciency decrease.

Among the statistical and computational methods, Arti�cial Neural Network (ANN) have

been used to predict both the behavior of panels, and in some cases also the weather conditions.

A plethora of literature [Chen et al., 2011, Pedro and Coimbra, 2012, Omar et al., 2016, Sperati

et al., 2016, Nitisanon and Hoonchareon, 2017, Cervone et al., 2017, Chen et al., 2017, Kumar

and Kalavathi, 2018, Al-Dahidi et al., 2020, Theocharides et al., 2020] have emerged to study

the application of ANN on solar power forecasting because they can be trained to focus on a

geographically con�ned region and optimize local solar power forecasting. The general idea is to

train an ANN to learn the statistical pattern between weather variables and the observed power

production. This technique usually requires a historical archive of weather observations together

with the associated power production records. A properly trained ANN is able to model the

condition of solar panels and the surrounding environment like shadowing.

3.1.2 Quanti�cation of Uncertainty

The simulation of a power production system is a highly complex and volatile process. Uncer-

tainty arises when a complete and exact information on a process is lacking.

To simulate the amount of power generated, information regarding the weather (solar irradi-

ance and temperature) and the panel (installation and condition) are needed. However, both are

subject to a lack of information, and therefore, uncertainty. The atmosphere is a chaotic system

that cannot be precisely observed and as a result, \the prediction of the su�ciently distant fu-

ture is impossible by any means" [Lorenz, 1963]. Observations often have limited spatio-temporal

resolution and NWP models only approximate the true physical processes and atmospheric in-

teractions.

With regards to the simulation of panel performance, uncertainty can originate from an

imprecise representation of the surrounding environment, e.g. shadowing, and from an incomplete

characterization of real world performance under a wide range of possible weather conditions,

since the panels are typically tested under the STC.
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Simulation ensembles are particular helpful in quantifying uncertainty in the forecasts. In

weather forecasting, NWP models can be run many times to generate a range of possible de-

terministic realizations of the future state of the atmosphere. This ensemble of possible future

states provides a quanti�able representation of the uncertainty for a given forecast. If ensem-

ble members are very di�erent, referred to as ensemble spread, the speci�c uncertainty for the

forecast is high.

There are many approaches for constructing a forecast ensemble, for example, applying vary-

ing perturbations applied to initial state variables (i.e. wind speed, temperature), changing

dynamics schemes or parameterizations of an NWP model, or using stochastic means for per-

turbing physical parameterizations [Berner et al., 2009, Haupt et al., 2017]. A hybrid approach

can also be devised by combining one or more of the aforementioned methods. However, these

approaches involve running NWP models multiple times, which is computationally expensive.

The analog-based approach, AnEn, has been proposed [Delle Monache et al., 2013] to con-

struct forecast ensemble without extra runs of NWP models. The AnEn is a technique to generate

forecast ensembles with a deterministic NWP model and the corresponding historical observa-

tions. It does not require extra runs of the deterministic model which already o�ers a great

reduction in the computational cost of ensemble generation. It has been successfully applied to a

series of forecasting problems, including surface variables [Delle Monache et al., 2013, Junk et al.,

2015a, Hu and Cervone, 2019, Alessandrini et al., 2019] and renewable energy production [Van-

vyve et al., 2015, Alessandrini et al., 2015a, Junk et al., 2015b, Cervone et al., 2017, Alessandrini

and McCandless, 2020]. An in-depth introduction on the AnEn is provided in Section 3.3.1.

3.1.3 Scope and Organization

This chapter introduces a scalable workow that focuses on evaluating solar power production and

its predictability from geographically diverse regions. Instead of relying on ground observations,

a NWP model is coupled with a PV solar power simulation system which tests the predictability

of 11 di�erent PV modules. These PV modules vary in many aspects including material, size,

and e�ciency.

Power forecasts are generated by using an AnEn ensemble of NWP forecasts that characterize

future weather conditions, where each member of the ensemble is used as input for the panel

simulator. Therefore, for any given day 21 weather conditions are each used to generate 11

power predictions, where 21 is the size of the weather ensemble and 11 is the number of the panel

con�gurations. This is repeated for every grid over CONUS ( 60,000) every hour for the daylight

time of the day for 2019, leading to over 60 trillion computations. The system is veri�ed by

using the analysis �elds of the weather model, which is the closest complete and high-resolution

geographical estimation of real-world weather conditions.

Results show that PV modules have various levels of predictability and they should be chosen

based on optimizing both the power production and the predictability to support solar energy

penetration. This workow is designed to be scalable because of the very large number of
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Table 3.1: Variables from NAM-NMM and NAM-ANL used in this study

Variable Short name Unit Vertical level
Downward short-wave radiation ux dswrf W=m2 Surface
Albedo al % Surface
Pressure sp Pa Surface
Orography orog m Surface
Temperature 2t K 2 m above ground
U wind component 10u m=s 10 m above ground
V wind component 10v m=s 10 m above ground
Total Cloud Cover tcc % Atmosphere as a single layer

computations required, which can scale signi�cantly if testing more panel con�gurations, or

increasing further the spatial and temporal scope or their resolutions.

The rest of the chapter is organized as follows: Section 3.2 introduces the research data used

in this project; Section 3.3 describes the main methodology of generate ensemble forecasts with

the PAnEn implementation [Hu et al., 2019, 2020a] and its integration with a power simulation

system implemented with PV LIB [Holmgren and Groenendyk, 2016]; Section 3.4 shows results

for solar power simulation with a total of 11 PV modules; Section 3.5 speci�cally discusses the

design of the scalable workow with the RADICAL Ensemble Toolkit (EnTK) [Balasubramanian

et al., 2016]; and �nally, Section 3.6 summarizes the chapter.

3.2 Research Data

3.2.1 The North American Mesoscale Forecast System

The NAM is a weather forecast model operated by the National Centers for Environmental

Prediction (NCEP). It aims to provide short-term deterministic forecasts for weather variables at

a variety of vertical levels and on multiple nested domains. Currently, the WRF Nonhydrostatic

Mesoscale Model (NMM) is run as the core of NAM after its replacement of the Eta model in

2006, and since then, the three names are interchangeable, NAM, WRF, and NMM, typically

referring to the same model output.

NAM is initialized four times per day at 00, 06, 12, and 18 UTC. It is run with multiple nested

domains with di�erences in the geographic coverage and the spatio-temporal resolution. In this

study, the parent domain (NAM-NMM) with a 12 km spatial resolution is used. This domain

covers North America. The production run provides forecasts up to 84 hours into the future,

namely an 84-hour FLT, with the �rst 36 hours being hourly and the rest of the lead times being

every 3 hours. The parent domain run is initialized with a 6-hour data assimilation cycle and it is

updated hourly using the hybrid variational ensemble Gridpoint Statistical Interpolation (GSI)

and the NCEP Global Ensemble Kalman Filter method. The analysis production is usually

referred to as NAM-ANL. There are other one-way nested domains within the parent 12 km

domain, e.g., CONUS, Alaska, Hawaii, and Puerto Rico. These nested domains have a �xed 3
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