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ABSTRACT 

 

Relative permeability (kr) is a transport property used for characterizing the flow of multiple phases through 

a porous medium. Inputs of kr are integral for reservoir simulations. Multiple parameters such as phase 

saturation, wettability of the medium, fluid properties, flow characteristics, pore topology, fluid phase 

topology, and fluid/fluid  interfacial areas are known to affect relative permeabilities. Current kr models are 

functions of phase saturation that are matched for specific flow/experimental conditions. The other 

parameters affecting relative permeabilities are inherently captured through these saturation functions. 

Representation of relative permeabilities only in the saturation space causes non-uniqueness and path 

dependency in relative permeabilities which often cause simulations to fail because they lack generality 

and are not physically based. As a result, hysteresis in relative permeabilities arises, which is a major 

modeling issue for reservoir simulations.  

In this dissertation, models for relative permeabilities are presented by considering functional forms 

that include the effects of the key controlling parameters on relative permeabilities. The purpose of this 

dissertation is twofold, to (a) understand how different parameters, specifically, phase saturation, phase 

connectivity, capillary number, and wettability affect relative permeabilities; (b) propose physically-based 

kr models by including the effects of these parameters. 

Relative permeabilities are modeled using an equation-of-state (EOS) approach where the exact 

differential for relative permeability is written in phase connectivity and saturation ( Ĕ ).Sc-  A quadratic 

response-based EOS for relative permeability is modeled in theĔ Sc- space. Physical limiting conditions on 

the state parameters are considered to constrain the EOS model. This model is tested for different capillary 

numbers ranging from one to 10-6. In addition, we calculated the partial derivatives of relative permeabilities 

in the state parameters using numerical data sets generated with pore-network modeling. A response for 

relative permeability is derived in theĔ Sc- space following the state function approach. The locus bounded 

by residual nonwetting phase connectivity and residual nonwetting phase saturation is presented for two 

contact angles in the water-wet regime. Finally, we investigated the role of wettability on phase trapping 
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also using pore-network modeling. An extended Land-based hysteresis trapping model is presented and 

compared against models from the literature. In addition, models are presented to capture the trends of 

residual loci for different contact angles. 

Results show that a simple quadratic response for relative permeability in theĔ Sc- space captures trends 

across different capillary numbers. The model tuned for a capillary number in the capillary dominated 

regime can show predictive capability for other capillary numbers within the same regime. The linear kr-S 

paths for high capillary numbers (small Corey exponents) and nonlinear kr-S paths for low capillary 

numbers (high Corey exponents) are found to occur due to fast and slow changes in phase connectivity, 

respectively. Limiting constraints help in the identification of the physical region in theĔ Sc- state space. 

Results also show that the response derived for relative permeability from relative permeability partial 

derivatives using the state function approach can predict relative permeabilities over the entire numerical 

data sets, regardless of the direction of flow, thus mitigating hysteresis. Further, the analysis of the effect 

of wettability shows that both phase trapping as well as the locus of residual saturation and residual phase 

connectivity are sensitive to contact angle changes. For low receding phase contact angles, the residual 

locus remains fairly constant, but at higher contact angles, the shape of the residual locus resembles a closed 

loop. Pore structure constraint at negligible saturation is found to control the shape of the residual locus. 

Phase trapping was found to reduce significantly for high contact angles owing to pore-scale mechanisms 

of layer flow of the receding phase and piston-like advance of the invading phase. A newly proposed 

extended Land-based model is able to capture residual saturation trends for all contact angles. 

Overall, through this research endeavor, we gain insight into the different intrinsic parameters that 

affect relative permeability. Through the application of pore-scale measures, these insights are further 

manifested into practical models that helps describe relative permeabilities physically.  
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CHAPTER 1. INTRODUCTION  

 

1.1. Background 

 

Understanding fluid flow in a porous medium is at the heart of engineering disciplines such as petroleum 

engineering. Single-phase flow in porous systems is less complex, but the introduction of an additional 

immiscible phase creates a system with involved physics. Multiphase flow is found in a variety of technical 

challenges facing society today. Some examples include sequestration of CO2 in geological formations to 

mitigate greenhouse gas emissions, removal of nonaqueous chemicals for remediation of groundwater, and 

secondary and tertiary recovery methods to sustain/improve energy production from hydrocarbon 

reservoirs. 

Simple waterflooding is a multiphase process that is deployed in the secondary phase of oil production. 

The waterflooding process requires reinjection of produced water to sustain the production of oil after the 

decline of high reservoir pressure. Enhanced oil recovery (EOR), however, involves the injection of an 

agent such as a chemical or a gas to further oil production (Lake et al. 2014). EOR techniques are generally 

employed during the tertiary phase of oil recovery when waterflooding is in its most matured stage, and oil 

production is declining. One of the most common EOR method is the application of polymers to facilitate 

favorable mobility ratio (close to 1) by resolving viscosity imbalances between the injecting phase, water, 

and the receding phase, oil. Other common examples include the use of a surfactant to cause miscibility 

between oil and water by reducing interfacial tension differences. Similarly, gases such as CO2 are often 

used to improve oil recovery by oil swelling to cause the oilôs viscosity to reduce for easier recovery (Johns 

and Orr 1996). Although the application of CO2 has been with the petroleum industry for decades, it is now 

being increasingly favored as an important method for carbon capture purposes. This technique is referred 

to as carbon capture utilization and storage (CCUS). 
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Apart from utilization, CO2 storage known as carbon sequestration is also being ramped up to reduce 

carbon emissions for tackling problems of growing global temperatures. A few pilot scale efforts for this 

exist in the North Sea. CO2 sequestration is a multiphase process where CO2, primarily in the supercritical 

state, is injected in geological formations such as depleted hydrocarbon reservoir, or aquifers for long-term 

storage. In the process of injecting CO2, water (already present in the formation) is displaced. This is known 

as the primary drainage process for displacement in a water-wet media. The term óprimaryô is used to 

reflect that the external phase (CO2 in this case) is introduced in the pore space for the first time. On the 

trailing end of the CO2 plume, however, the CO2 phase experiences displacement by water and this process 

is typical of an imbibition process, once again, given the rock formation is primarily water-wet. A 3-D pore-

scale visualization of the endpoint states of a saturated porous medium after primary drainage and 

imbibition is shown in Figure 1.  

 

 

Figure 1. 3-D visualization of fluid flow in porous media showing the endpoint states of primary 
drainage and imbibition processes. (Left), (middle), and (right) show the states of the medium before 
primary drainage, after the completion of primary drainage, and after the completion of imbibition, 
respectively. Figure adapted from Schlüter et al. (2016). 
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Figure 1 is adapted from the x-ray imaging experiment by Schlüter et al. (2016). The porous medium is 

a bead pack which is shown with transparency to allow for the visualization of the pore space. Figure 1 

(left) represents the state just prior to primary drainage. At this point, the pore space is completely filled 

with the wetting phase which is shown by the clear background. Figure 1 (middle) shows the end of the 

primary drainage process, where the medium is occupied mostly by the nonwetting phase shown in green. 

Empty spaces in the middle figure mark the occupancy by the wetting phase which is quantified as the 

irreducible wetting phase saturation. Apart from CO2 injection into aquifers, in nature, the primary drainage 

process occurs when the oil first migrates from the source rock to the oil reservoir (Blunt 2017). During the 

natural density driven flow of oil, oil displaces brine which originally occupies the pore space. Figure 1 

(right) shows the state of the medium at the end of the imbibition process. The majority of the medium is 

now occupied by the wetting phase (clear) and the green blobs are the trapped nonwetting phase blobs, 

which are quantified together as the residual nonwetting phase saturation. 

Multiphase processes occur at different scales. From pore-scale (as shown in Figure 1), to core-scale 

(example, laboratory corefloods), to the reservoir-scale. At the reservoir-scale, multiphase flow in 

geological formations is modeled by using tools such as reservoir simulations. These are physics-based 

models that take information from the field as well as laboratory experiments as inputs to make engineering 

decisions. Reservoir simulations are critical as they allow for conducting ówhat-ifô scenarios to test diverse 

set of conditions and thus help in mitigating risk and finding optimum engineering decisions. To capture 

the physics of flow of multiple phases, simulations require transport properties such as relative 

permeabilities and capillary pressures. These inputs are often estimated in the laboratory and calibrated for 

use in the simulator for the process being simulated. 

In this dissertation, the focus is on relative permeabilities, but discussions for capillary pressures is 

provided wherever appropriate. 
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1.2. Relative permeability 

 

Relative permeability is the transport property that helps quantify the flow of multiple phases in a porous 

medium. The relative permeability (krj) to a phase (j) is the ratio of the phaseôs effective permeability (kj) 

to the base (or absolute) permeability (k) of the medium. The effective permeability of a phase is defined 

as the permeability of a phase at less than 100% occupancy in a porous medium saturated with multiple 

phases. It estimated from extensions to the Darcyôs law and is calculated as, 
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where uj is the flux of phase j; the ratio kj/µj is the proportionality constant termed as the mobility ratio of 

phase j; µj and ɟj are the viscosity and density of phase j, respectively; the terms inside the bracket, Pj - 

ɟjgDz, is the potential difference; Pj is the pressure of phase j; g is gravitational acceleration constant; ȹx is 

the finite distance within the porous medium; Dz is the elevation or depth from the reference datum.   

The effective permeability to a fluid is a complex function of a variety of different factors, such as the 

phase saturation, pore structure of the medium, wettability of the medium, the flow conditions such as the 

interfacial tension between the involved phases, flow rate, and fluid viscosities, and the topology of the 

individual phase. Each of these factors are described in more detail in the subsequent sections of this 

chapter. 

Figure 2 shows a schematic of relative permeabilities to oil and water typical for primary drainage and 

primary imbibition processes. This schematic is representative of a water-wet media and other wettabilities 

will be considered later. Primary drainage (shown in black) begins at 100% water saturation as the oil 

invades the pore space. As water recedes the porous medium, its saturation and relative permeability drops, 

while oil saturation and relative permeability to oil increases. The effect of saturation on relative 

permeability is intuitive. The more a phase is present in the medium, that phaseôs ability to move in the 
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pore space increases. Thus, the relationship for relative permeability with saturation remains monotonic. 

The curvature, the endpoint values on the relative permeability curve, and the endpoint saturations, 

however, are distinct for the set of experimental conditions. 

 

 

Figure 2. Schematic showing water-oil relative permeabilities for a water-wet medium. Hysteresis in 
relative permeabilities is also displayed. The black curves represent a primary drainage process, while the 
red curves represent a primary water injection process. The solid curves are water relative permeabilities, 
while the dashed curves are the oil relative permeabilities. Directions of flow are marked by arrows on 
the figure. Endpoint relative permeabilities and saturations are also marked on the figure. Adapted from 
(Blunt 2017). 
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The endpoint of primary drainage is marked by negligible change in the oil/water saturation. At this point, 

the water saturation left in the medium is termed as the irreducible water saturation (Swirr), and the endpoint 

oil relative permeability (kro
o) can be estimated from the flow experiment via stabilized pressure and flow 

rate measurements. The reverse cycle is the imbibition process (shown in red) where now water is injected 

into the medium. This is essentially waterflooding the core to extract oil. As water is injected into the 

medium, water saturation rises and so does the relative permeability to water. Now, oil saturation in the 

core drops as more oil is recovered, and so does the relative permeability to oil. The endpoint saturation for 

oil is called residual oil saturation (or residual nonwetting phase saturation or simply residual saturation). 

On the water saturation axis, this is marked as 1-Sor. At this point, the endpoint relative permeability to 

water (krw
o) can be measured.  

The choice of residual saturation is largely subjective. Experimentalists make their own decision to 

terminate the flow experiment based on the reason for the experiment. For example, some may conclude 

the experiment in the first few pore volume to get trends of early oil recovery, while others may extend for 

hundreds of pore volumes (or with the application of centrifuge) to drive to the limits of residual saturation 

possible. The ultimate trapped phase saturation depends on the pore structure together with the wettability 

of the medium and not on the stopping criterion or flow conditions. We bring more context on the issue of 

phase trapping in chapter 5 of this dissertation. 

The endpoint relative permeabilities and the endpoint oil/water saturations are critical inputs for 

reservoir simulations. In current modeling practices, these endpoint values, measured in the laboratory, are 

used for calibration of the kr-S path, specific to the experimental conditions and fed as inputs to the reservoir 

simulator. These models will be described in a later section.  

Figure 2 shows that the kr-S drainage paths versus imbibition paths are quite distinct for both oil and 

water relative permeabilities which shows that relative permeabilities are path dependent in the saturation 

space. This conveys that relative permeability models that are calibrated for the drainage cycle cannot be 

used for the imbibition cycle. This path dependency or nonuniqueness in relative permeabilities is termed 

hysteresis and can cause numerical problems in reservoir simulations. For example, the use of drainage 
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relative permeabilities over imbibition relative permeabilities can lead to incorrect estimation of oil 

recoveries through EOR processes (Carlson 1981). Similarly, without consideration of hysteresis when 

simulating carbon sequestration can lead to inaccurate estimates of CO2 migration and ultimate quantity of 

trapped CO2 (Juanes et al. 2006). 

One of the physical reasons considered responsible for hysteresis in relative permeabilities is associated 

with phase trapping. The remaining phase at the end of one cycle of injection (for example, primary 

drainage) is linked to possibilities of different reassociation of this phase when the cycle is reversed. This 

results in a different flow path of the phase. 

One other physical reason responsible for hysteresis in relative permeabilities is contact angle 

hysteresis. Contact angle hysteresis is the difference between the contact angles measured at the three phase 

(fluid/fluid/solid) contact point when the denser fluid is invading the medium (advancing contact angle) 

versus when this fluid is retracting from the medium (receding contact angle). Experimental evidence shows 

that advancing contact angle is greater than receding contact angle, and that both can be related to the 

intrinsic contact angle, which is the contact angle measure of the static fluid/fluid/solid system on a clean 

solid surface (Morrow 1975). Surface roughness is considered as the primary cause for hysteresis in contact 

angle. No porous media, when considered at the microscopic scale would have perfectly clean surfaces. 

These microscopic irregularities and the resultant entrapped fluid in the rough surface ridges are deemed as 

the reasons for hysteresis in contact angles.  

Another reason considered to cause relative permeability hysteresis, which is inherently associated with 

contact angle hysteresis, is the different types of flow mechanisms that may occur when a phase is 

advancing versus when the phase is receding. Piston-like advance, cooperative pore body filling, snap-off, 

layer flow, and flow with bypass are some key types of flow mechanisms identified in the literature for 

flow under capillary dominated regime (Lenormand and Zarcone 1984; Valvatne and Blunt 2004). Other 

flow mechanisms such as drop traffic flow and ganglion dynamics are found to occur at high capillary 

numbers (Avraam and Payatakes 1999; Avraam and Payatakes 1995; Rücker et al. 2015). 
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Early efforts for resolving hysteresis in multiphase flow began with the treatment of capillary pressures. 

It was identified that hysteresis occurs because of representation of transport properties strictly in the 

saturation space. The hypothesis was that phase saturation alone cannot represent flow and that inclusion 

of other pore-scale parameters is necessary toward resolving hysteresis. This hypothesis was proven in the 

works by Hassanizadeh and Gray (1993) and Reeves and Celia (1996) where application of fluid/fluid 

interfacial areas was included for addressing hysteresis.   

Together with phase saturation, multiple other key controlling parameters such as phase connectivity, 

fluid/fluid interfacial areas, wettability, capillary number, and pore structure have been recognized in the 

literature to affect relative permeabilities. In the following subsections each of these parameters is described 

in some detail. 

 

1.2.1. Parameters affecting relative permeabilities 

 

1.2.1.1. Fluid/fluid interfacial areas1 

 

Integral geometry provides a means to quantify the structures of geometrical entities. Researchers have 

adopted this approach to quantify connectivity measures of pore structures, as well as wetting and 

nonwetting phases to evaluate multiphase flow in permeable systems. There are four useful measures from 

integral geometry known as Minkowski integrals that describe the shape of a 3-D geometrical structure 

(Armstrong et al. 2018; Blunt 2017; Wildenschild and Sheppard 2013). The first Minkowski (M0) functional 

refers to the volume of the structure. For example, pore volume of a pore structure, or saturation of fluid 

phases occupying the pore space. The second Minkowski functional (M1), however, corresponds to the 

 
1 Parts of the text presented in this sub-section are published in Purswani et al. (2020) J. Pet. Sci. Eng.  
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phaseôs surface area (Ap). These, when divided by the bulk volume, result in specific surface area of the 

phase (Ŭp) (Landry et al. 2014; Landry et al. 2011),  

 

  
p

p

b

A

V
a = .  (1.2) 

 

The use of specific surface areas is recommended over actual surface areas because it removes system 

dependence. This is similar to the use of specific solid surface areas for the estimation of base permeability 

of a porous medium as observed in the development of the Carmen-Kozeny (CK) equation (Lake et al. 

2014). The specific surface areas are then used for estimating the specific fluid/fluid interfacial area as 

(Dalla et al. 2002), 
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Here, Ŭp represents a phase-specific surface area, (, ,
s w
a a  and 

nw
a  corresponding to the specific solid surface 

area, specific wetting phase surface area, and specific nonwetting phase surface area, respectively); Vb is 

the bulk volume of the medium; and Ŭw-nw represents the fluid/fluid  interfacial area.  

The third Minkowski functional (M2) corresponds to the average curvature at the boundary between 

two objects which is commonly used for quantifying local capillary pressure from two-phase image data 

(Armstrong et al. 2018; Blunt 2017). Finally, the fourth Minkowski functional (M3) represents the integral 

of the total Gauss curvature of an object which is related to the Euler characteristic (ɢ) as, 
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The discussion on Euler characteristic is available in the next subsection and additional details and 

examples for Minkowski functionals is available in appendix A. 

Fluid/fluid interfacial areas have been an important measure to analyze multiphase flow in porous 

media for a variety of applications (Culligan et al. 2004; Reeves and Celia 1996). One such application is 

the nonaqueous phase liquid dissolution rates which is critical for evaluating environmental chemical 

transport. Experimental attempts at measuring interfacial areas already exist, such as the oil/water and 

air/water  fluid/fluid  interfacial area measurements in a sand pack column (Saripalli et al. 1997b; Saripalli 

et al. 1997a). These measurements were made by the application of surface-reactive tracers which 

selectively adsorb at the fluid/fluid  interface and cause its retardation during the miscible displacement 

experiment. Although such independent methods exist, the application of x-ray imaging into fluid flow 

research has allowed for superior ways of quantifying fluid surface areas and interfacial areas (Blunt 2017; 

Culligan et al. 2005; Culligan et al. 2004; Dalla et al. 2002; Landry et al. 2014; Landry et al. 2011). 

Sophisticated visualization of the trapped fluid phases and improved algorithms for estimating surface areas 

of voxelated entities have enabled the estimation of the total surface areas of the various phases inside of a 

porous medium. These can then be used toward estimating interfacial areas among different phase pairs.  

A schematic 2-D visualization of a saturated porous media with trapped wetting and nonwetting phases 

at two different saturations is shown in Figure 3. The solid, the wetting, and the nonwetting phases are 

shown by the gray, blue, and green colors, respectively. The corresponding phase pair interfacial contact 

lines are also displayed. Figure 3 (right) can be understood as a snapshot following a saturation step-change 

during a typical imbibition process. In a 3-D representation, these contact lines would represent the surface 

areas of contact. As the respective phase saturations change, the respective total surface areas of the fluid 

phases change, consequently, the fluid/fluid  interfacial areas change (qualitatively expressed in Figure 3) 

and thus provide a pore-scale measure of the movement of a fluid during multiphase flow. 
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Figure 3. Schematic representation of a 2-D multiphase porous system showing possible phase/phase 
contact lines. Left to right the wetting phase saturation increases. When considered in 3-D, phase/phase 
interfacial areas would be estimated along the areal region of contact. Adapted from Dalla et al. (2002). 
 

1.2.1.2. Phase connectivity2 

 

Figure 4 shows 3-D representations of the nonwetting (left) and wetting (right) phases inside of a saturated 

porous medium. These 3-D renderings were acquired using x-ray imaging at static experimental conditions. 

More details on the experiment are available in chapter 2 of this dissertation. The disconnected nature of 

the nonwetting phase and the connected nature of the wetting phase can be easily visualized. The 

nonwetting phase appears as isolated blobs or clusters, while the wetting phase appears more continuous. 

  

 
2 Parts of the text presented in this sub-section are published in Purswani et al. (2019), Comput. Geosci. 
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Figure 4. Segmented image of a multiphase system acquired using x-ray imaging showing (a) 
disconnected nonwetting phase, and (b) more connected wetting phase. 

 

Finding a unique mathematical definition for connectivity in porous media has been an active point of 

research (Aydogan and Hyttinen 2013). There are a number of connectivity parameters proposed in the 

literature such as the Euler characteristic (Vogel 2002), percolation theory (Hovadik and Larue 2007), 

connectivity function (Allard 1993), contour tree connectivity (Aydogan and Hyttinen 2013), coordination 

number, and fractal dimension (Blunt 2017). Out of these measures, the Euler characteristic (c) has been 

the simplest and most widely used measure of connectivity in porous media (Allard 1993; Aydogan and 

Hyttinen 2014).  

The Euler number identifies phase connectivity by considering the number of clusters and the number 

of connections for these clusters. The Euler number decreases with an increase in the number of clusters. 

Euler characteristic is a topological invariant originally proposed by Leonhard Euler for a polyhedra as the 

alternating sum of vertices (V), edges (E), faces (F), and objects (O) and is computed as (Richeson 2008), 

 

  V E F Oc= - + -.  (1.5) 

 

a b
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Extending the concept to complex phase structures, the Euler Poincaré formula has been widely used 

for quantifying connectivity of microstructures as, 

 

 
0 1 2 c b b b= - +,  (1.6) 

 

where the parameters 
0 1 2, ,  and b b b are the zeroth, first, and second Betti numbers, respectively. 

0b 

represents the number of clusters, 
1bis the number of holes or redundant loops (the maximum number of 

breaks that can be made without having the cluster split into two as explained by Herring et al. 2013), and 

2bis the number of enclosed voids. 
2b is usually considered to be zero for the calculation of the Euler 

characteristic (connectivity) of both the wetting and the nonwetting phases. While this may be true for the 

nonwetting phase, since there can be no solid grains or wetting phase globules suspended in a continuous 

nonwetting phase in a consolidated porous medium, this may not be true when calculating the Euler 

characteristic of the wetting phase, where suspended nonwetting phase globules can occur within a 

continuous wetting phase. Euler numbers range from   to -¤ +¤ where a highly connected phase has a large 

negative value while a highly disconnected phase has a large positive value. 

Recent studies conducted using x-ray micro computed tomography (micro-CT) advocate for the use of 

either both fluid/fluid  interfacial area as well as the Euler characteristic (Mcclure et al. 2018; Mcclure et al. 

2016) or suggest use of just the Euler characteristic (Schlüter et al. 2016). In Mcclure et al. 2018 and 

Mcclure et al. (2016) it was shown that by including all Minkowski functional (i.e., both Euler characteristic 

and fluid/fluid interfacial areas together with saturation) nearly all of the hysteresis observed in capillary 

pressure measurements could be accounted for successfully. However, the authors fail to show capillary 

pressure predictions by including just phase saturation and Euler characteristic. It is likely that the majority 

of the hysteresis could still be captured without the need for the interfacial area measurements. Further, for 

modeling purposes, it is suitable to minimize the total number of variables involved, such that the physics 
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of the problem is reasonably captured and at the same time the overall computational complexity is 

minimized. Therefore, in this work, we use Euler characteristic as the measure of phase connectivity. 

Pore-scale fluid properties such as fluid/fluid  interfacial areas and fluid connectivity (measured through 

the Euler characteristic of a fluid phase) are measures that describe the flow of phases within the porous 

medium. The porous media properties such as porosity, permeability, and tortuosity, however, help define 

the representative elementary volume (REV) over which the continuum assumption holds valid. Thus, for 

consistency, the size of the extracted sub volume for pore-scale analysis and property estimation should be 

sufficiently large that it is equal to or greater than the porous media-defined-REV. 

 

1.2.1.3. Capillary number 

 

Capillary number is a dimensionless number that is described as the ratio of viscous forces to interfacial 

forces. The use of capillary number allows to account for important factors that affect relative 

permeabilities, namely, the interfacial tension, fluid viscosity, and the flood rate. It is usually calculated as 

(Lake et al. 2014), 

  

 ,Ca

u
N

m

s
=  (1.7) 

 

where u is the interstitial velocity; µ is the viscosity of the injecting phase; and ů is the interfacial tension 

between the flowing phases. Some researchers also include wettability (with the application of the term 

cosɗ) or the porosity into the definition of capillary number as multiplication factors in the denominator of 

Eq. (1.7).  

The importance of capillary numbers can be understood from capillary desaturation curves which show 

an inverted S-shaped relationship between capillary number and the residual saturation (Lake et al. 2014). 

The curve is specific to the experimental conditions of rock and fluids used. It shows that residual 

saturations can be reduced significantly at very high capillary numbers. The goal for EOR processes is thus 
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to achieve high capillary numbers to attain low residual oil saturations. High capillary numbers are 

accomplished through either high flood rates (within the engineering design to maintain reasonable 

injectivity) or through the use of high viscosity polymers to increase viscous forces, or with the application 

of surfactants to reduce interfacial tensions (and consequently reduce interfacial forces). 

Two types of flow regimes, namely, capillary dominated versus viscous dominated flow can be 

identified from the capillary desaturation curves. The threshold is marked around capillary numbers of 10-

4. Below this threshold, capillary dominated regime occurs which is attained with low flood rate and/or high 

interfacial tension conditions. Flow near the wellbore would experience high flow rates as opposed to flow 

far away from the wellbore, where the flow is capillary dominated, and thus relative permeabilities in these 

regions will be different. Hence, understanding of the full range of capillary number is important. This is 

critical for modeling carbon sequestration where storage in the formation is ensured via the capillary 

trapping mechanism.  

The kr-S paths for different capillary numbers are inherently different. From the experiments by 

(Delshad et al. 1987; Fulcher et al. 1985) it was shown that relative permeability paths are straighter (x-

shaped) for high capillary numbers (low interfacial tensions) while the paths are concave for low capillary 

numbers. In the work by Fulcher et al. (1985), the effect of capillary number on two-phase relative 

permeabilities was investigated through steady-state experiments by considering viscosity and interfacial 

tension effects independently. Both wetting and nonwetting phase relative permeabilities as well as residual 

saturations were found to be significantly affected by both interfacial tensions and viscosity changes 

(Fulcher et al. 1985). The overall impact of capillary number (as a group) was more significant on wetting 

phase flow than on nonwetting phase flow. The impact of capillary number on multiphase flow has also 

been demonstrated at the pore-scale with two-phase simulations by Armstrong et al. (2016). The 

implications of capillary number on relative permeability and modeling efforts are provided in chapter 3 of 

this dissertation.  
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1.2.1.4. Wettability  

 

Wettability is defined as the ability of a solid surface to have preferential affinity to one phase in the 

presence of another phase (Anderson 1986a). It is a property of the porous medium. Contact angle 

measurement provide the most accurate measure of wettability. It is conventionally measured through the 

denser phase. For example, for an oil/water/rock system the contact angle is measured through the water 

phase. Figure 5 shows a schematic of a water-wetting solid in the presence of oil. From the Youngôs 

equation, the balance of interfacial forces, gives the measure of wettability (ɗ) as follows,  

 

 ,
-ws os

ow

cos
s s

q
s

=  (1.8) 

 

where ůow, ůos, and, ůws are the oil/water, oil/solid, and water/solid interfacial tensions, respectively.  

   

 

Figure 5. Schematic showing a water-wet solid in the presence of oil. 
 

There are different types of wettabilities. With respect to oil/water/rock system, the rock may be 

characterized as water-wet (ɗ = 0Á-75°), intermediate-wet (ɗ = 75°-105°), or oil-wet (ɗ = 105Á-180°). These 

rough estimates were provided through experiments by Treiber et al. (1972). Complete water-wetness and 

complete oil-wetness would occur at ɗ = 0Á and ɗ = 180Á, respectively. Figure 6 shows a schematic of 

different rock wettabilities.   

Solid

OIL

WATER
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Figure 6. Illustrations of different types of wettability for oil/water/solid systems. From left to right 
the ƳŜŘƛǳƳΩǎ wettability to oil increases.  

 
Other important classifications of wettability include fractional-wettability and mixed-wettability. Both 

these types include parts of the porous medium that may be oil-wet and other parts that may be water-wet. 

The difference between the two lies in the way these wettabilities are developed in a porous medium. 

Fractional wettability is often developed in unconsolidated porous media by mixing solid grains of different 

wettability types (for example, plastic beadsðoil-wet and glass beadsðwater-wet)(Klise et al. 2016; 

Landry et al. 2014; Landry et al. 2011). When these grains are mixed and compressed to form one medium, 

there are pores that are completely oil-wet versus pores that are completely water-wet.  

On the contrary, mixed-wettability is developed in a porous medium due to the process of aging the 

rock sample. As such, most oil reservoirs are naturally mixed-wet. In a laboratory, the aging process is 

carried out after primary drainage when an initial oil saturation has been established in the rock. Aging 

requires subjecting the rock sample to high temperatures and pressures for a period of time. These 

conditions are subjective and depend on the experimentalist and are set based on the test requirements. At 

initial oil saturation conditions, parts of the rock are in direct contact with the oil and yet other parts are in 

contact with water which is present in irreducible amount. During aging, the portions of the rock in contact 

with oil are said to become oil-wet. This leads to the generation of mixed-wettability where within the same 

pore, parts can be oil-wet and parts can be water-wet (for example, corners of the pore space occupied by 

water will remain water-wet). The degree of wettability alteration depends on the aging conditions. Mixed-

wettability was first coined by Salathiel (1973). 

Neutral wettingWetting Nonwetting

OIL

Solid

WATER

Completely water-wet Water-wet Neutral-wet Oil-wet Completely oil-wet
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Wettability of a medium is often characterized qualitatively using relative permeability curves. A 

schematic for oil/water relative permeabilities during water injection are shown for three types of 

wettability in Figure 7. The endpoint water relative permeabilities and residual oil saturations are marked 

for the three scenarios.  

    

 

Figure 7. Schematic showing three types of rock wettabilities characterized qualitatively from the 
visualization of two-phase relative permeability curves. Here, the two phases are oil and water and the 
flow (direction marked by the arrow) represent water injection. The black, green, and red curves are for 
an oil-wet, a water-wet, and a mixed-wet rock, respectively. 
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The endpoint values of water relative permeabilities and residual oil saturation together with the cross-

point saturations where the oil and water relative permeability curves intersect are used as qualitative cues 

for wettability assessment of the rock from a flow experiment. Typically, for a water-wet rock (green curves 

in Figure 7), the cross-point saturation is greater than 0.5, and the endpoint water relative permeability is 

low ~ 0.2 and can go lower than 0.05 for extremely water-wet media (Blunt 2017; Lake et al. 2014). This 

is because water is wetting the surface and would consequently occupy the smaller regions of the pore space 

such as the pore corners or crevices. Thus, the water conductance remains low. For an oil-wet rock (black 

curves in Figure 7), however, water would occupy the centers of the pore space which leads to higher water 

conductance and consequently high endpoint water relative permeabilities (~0.5). Also, for oil-wet rocks, 

the cross-point saturation is typically lower than for water-wet rocks.  

For mixed-wettability, endpoint water relative permeability remains higher than the water-wet case. 

Interestingly, experiments have shown that the residual oil saturation for the mixed-wet case is often the 

lowest (Jadhunandan and Morrow 1995; Salathiel 1973). The reasons for this observation are still in debate 

in the literature, but one of the hypotheses is that mixed-wettability provides for continuous pathways for 

oil to flow in the medium and if flow experiments are prolonged over long periods, oil trapping can be 

minimized significantly. Discussions on wettability and its consequences to phase trapping are presented 

in detail in chapter 4 of this dissertation. 

 

1.2.1.5. Pore structure  

 

It has always been a challenge to quantify pore structure information. No single metric exists in the 

literature. Pore structure differs not just from one type of formation to another, but also from one medium 

to another even from the same formation. This is because of heterogeneity that exists in natural geological 

formations (Lake et al. 2014). No two naturally occurring porous media will be exactly alike. Some of the 

most used porous media properties that give insight into the pore structure are the permeability of the rock, 
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which describes the ability of a porous medium to transmit fluids, and the porosity of the medium, which 

describes the ability of the medium to store fluids. The ratio of the square root of permeability to porosity 

is often used as a quantitative measure for characterizing pore structure information. Other measures often 

used for modeling base permeabilities, are the tortuosity and specific surface areas of the solid surface. 

Tortuosity, a dimensionless porous medium property, is defined as the square of the ratio of capillary tube 

length to the length of the representative elementary volume (Lake et al. 2014), which is essentially the 

squared ratio of path length traversed by the fluid in the pore space to the length of the porous medium. 

Other quantitative measures most frequently used for characterizing pore structure information are the 

distribution of pore and grain sizes. Pore-size distributions are experimentally measured though the use of 

Mercury (Hg) intrusion porosimetry where a primary drainage capillary pressure curve is generated for a 

Hg/air/rock system. Hg is injected as the nonwetting phase into the medium to increasingly high capillary 

pressures to enter smaller sized pores. Through such experimentation, information on the pore sizes (and 

average pore sizes) for the medium is extracted in the form of a frequency distribution plot. A pore-size 

distribution parameter is often set as the calibrating exponent for capillary pressure and relative 

permeability curves (Brooks and Corey 1964; van Genuchten 1980; Land 1968).  

Measures for the pore structure such as the pore-size distribution, or the square root of permeability 

over porosity are bulk (or average) measures for a porous medium. Techniques like x-ray imaging, flow in 

micromodels, and pore-network extraction models provide other quantitative measures for characterizing 

pore structures by taking information at the pore-scale (Blunt 2017; Fatt 1956; Lenormand and Zarcone 

1984). These include the coordination number, aspect ratio, pore topology, geometric shape factor (or the 

distribution of the geometric shape factors).  

Coordination number and pore topology give direct information on the connectivity of the pore space. 

Coordination number is defined for a pore as the average number of throats that are in direct connection to 

a pore (Blunt 2017), whereas the topology of the pore space is estimated as the Euler characteristic of the 

pore space which can be represented for the entire region of interest by normalizing with respect to the bulk 

or pore volume of the region.  
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Individual pore element sizes play an important role in characterizing the pore structure information. 

For example, the pore-body to pore-throat aspect ratio is found to cause hysteresis in relative permeabilities. 

High aspect ratios are linked to increased trapping of the nonwetting phase due to increased snap-off events 

during imbibition (Jerauld and Salter 1990). The geometric shape factor, however, provides information of 

the shape of the pore/throat elements and is defined as the ratio of the cross-sectional area of an element to 

the square of its perimeter. If all pore/throat elements of a porous medium were circular and uniform, there 

would be no phase trapping in the pore space since all elements will be drained completely by the invading 

phase. Therefore, for simulation techniques such as pore-network modeling the shape factors becomes 

critical as it helps in attaining pore structures with noncircular (polygonal) network elements that allow for 

trapping of phases in pore corners. Availability of polygonal-shaped network elements also allow layer 

flow where the phase may be connected through the corners.  

In this dissertation, we keep pore structure information constant for the sets of simulations performed 

for numerical data set generation. This is critical for the state function approach of modeling relative 

permeability. Simultaneous efforts have been on going in our research group to develop state function-

based models for characterizing the base permeability of a porous medium with the knowledge of the 

different pore structure metrics.  

 

1.2.2. Models for relative permeability 

 

1.2.2.1. Corey-type models 

 

Initial efforts for modeling relative permeability were presented by Purcell (1949) using a bundle of 

capillary tubes, and Burdine (1953) with the application of capillary pressure curves and the tortuosity 

parameter. Burdineôs equations for wetting/nonwetting phase relative permeabilities were expressed as, 
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where krwet and krnwet are the relative permeabilities to the wetting and nonwetting phases, respectively; ɚrwet  

(=ɚ/ɚwet) and ɚrnwet (=ɚ/ɚnwet) are the wetting and nonwetting phase tortuosity ratios, respectively; ɚ is the 

porous medium tortuosity factor; ɚwet and ɚnwet are the wetting and nonwetting phase tortuosity factors, 

respectively; Sm is the minimum phase saturations; and Pc is the capillary pressure.  

Burdine provided simplified saturation-based expressions for the wetting and nonwetting phase 

tortuosity factors as, 
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where Swet and Snwet are the wetting and nonwetting phase saturations, respectively; Sm and Snwr are the 

minimum wetting and residual nonwetting phase saturation, respectively. 

Corey (1954) extended Burdineôs equation by approximating,  
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where ( )  / 1 ,orCC S= -   C is a constant. The following relative permeability equations were presented by 

Corey (1954). 
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Extension to Coreyôs equations were presented by Brooks and Corey (1964) in a more general form to 

estimate wetting and nonwetting phase relative permeabilities as follows,  
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where Se, known as the effective phase saturation, is defined as ( )( )/ 1r rS S S- - ; Sr is the residual phase 

saturation; the parameter, ɚ, is the pore-size distribution index.  

These Corey models were further simplified and generalized as exponential models as follows, 

  

 

1

1 1

1 1
2 21

n

p rpo
rp rp

rp rp

S S
k k

S S

å õ-
= æ ö

æ ö- -ç ÷

,  (1.18) 

 



 

24 
 

where krp1 and 1
o
rpk  are relative permeability and endpoint relative permeability to phase1; Sp1, Srp1, and Srp2 

represent the saturation of phase1, endpoint saturation of phase1, and endpoint saturation of phase2, 

respectively; n1 is the tuning exponent. This expression for water/oil relative permeabilities during 

waterflooding then are, 
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where krw and kro are the water and oil relative permeabilities during waterflooding. 
o
rwk  is the endpoint 

relative permeability to water and Sor is the residual oil saturation which are determined at the end of 

waterflooding, whereas 
o
rok  is the endpoint relative permeability to oil and Swirr is the irreducible water 

saturation which are determined at the end of oilflooding (prior to waterflooding). no and nw are the tuning 

exponents. Similar to the exponential model other empirical models are available in the literature for 

specific set of operating conditions (Fulcher et al. 1985; Honarpour et al. 1982). See Table 1 for empirical 

expressions of oil/water relative permeabilities from the literature. For additional saturation-based models 

for relative permeability the reader is referred to Honarpour et al. (1986).  

Three-phase relative permeability models are not discussed in detail here, but some of the more 

commonly used three-phase models include, Naar and Wygal (1961); Stone I (Stone 1970), Stone II (Stone 

1973), and Landôs model (Land 1968). A comprehensive comparison of these models against three-phase 

experimental data was summarized by Abder (1981).  
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Table 1. Empirical oil/water relative permeability functions for different rock types and wetting 
conditions from the literature. 

Reference Rock type Wettability  Injection type 

Honarpour et al. (1982) Sandstone and conglomerate Water-wet Water injection 

 

 ( )
2.9

3.60.035388 0.010874 0.56556
1 1

w wi w or
rw w w wi

wi or wi or

S S S S
k S S S

S S S S

å õ å õ- -
= - + -æ ö æ ö

- - - -ç ÷ ç ÷
  (1.21) 

 

Honarpour et al. (1982) Sandstone and conglomerate Oil/intermediate-wet Water injection 
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Honarpour et al. (1982) Sandstone and conglomerate All  Water injection 
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Honarpour et al. (1982) Limestone and dolomite Water-wet Water injection 
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Honarpour et al. (1982) Limestone and dolomite Oil/intermediate-wet Water injection 
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Honarpour et al. (1982) Limestone and dolomite Al l Water injection 
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Fulcher et al. (1985) Berea sandstone Water-wet Oil injection 
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Fulcher et al. (1985) Berea sandstone Water-wet Water injection 
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Residual saturations, endpoint relative permeabilities, and Corey exponents are used for tuning a 

specific kr-S path. These empirical models provide good match in most cases, but the challenge with such 

representation of relative permeabilities is that the information about the pore structure, wettability, and 

capillary number are all incorporated into the tuning exponents. Each kr-S path would thus be distinct and 

not generalizable. As such, hysteresis in relative permeability is not resolved. For this, different researchers 

have attempted different modeling solutions. Some of the commonly known hysteresis models are 

described next.  

 

 Table 1. (Continued) 
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1.2.2.2. Land-type models 

 

Figure 8 shows a schematic displaying hysteresis in nonwetting phase relative permeabilities. Hysteresis in 

relative permeability, as described previously, is the path dependency of relative permeability in the 

saturation space. The black curves show nonwetting phase relative permeability during primary drainage 

while the red curve shows the nonwetting phase relative permeability during imbibition. The imbibition 

process is begun at the initial nonwetting phase saturation (Snwi) and ends at the residual nonwetting phase 

saturation (Snwr). This set of primary drainage and imbibition forms one set of scanning relative permeability 

curves. Other such sets of scanning curves can be generated experimentally, each with its own starting and 

ending nonwetting phase saturation. 
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Figure 8. Schematic of nonwetting phase relative permeability showing hysteresis after flow reversal 
from primary drainage (black curve) to primary water injection (red curve). The initial, trapped, residual, 
and flowing nonwetting phase saturations are marked on the figure. Adapted from Carlson (1981).   

 

Naar and Henderson (1961) proposed a model for imbibition relative permeability by considering the 

trapped nonwetting phase saturation during the imbibition process. They developed the following 

relationship between the imbibition and drainage saturations for the same value of nonwetting phase relative 

permeability.  
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where *
,, ) / ( ),( 1w imbi wi iw wmbS S S S= - - is the reduced wetting phase saturation during an imbibition process; 

Swi is the initial wetting phase saturation (or the irreducible wetting phase saturation) prior to the imbibition 

process; Sw,imb is the wetting phase saturation during imbibition; 
*

,, ( 1) / ( ),w dr w dr wi wiS S S S= - - is the reduced 

wetting phase saturation during a drainage process; Sw,dr is the wetting phase saturation during 

drainage. Further, by using Eq. (1.33), the following model for nonwetting phase imbibition relative 

permeabilities ( I
rnwk ) could be established by using the saturation information of the prior drainage 

process, 
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Land (1968) observed trends of characteristic initial-residual (IR) saturation curves and proposed a 

relationship between Snwr and Snwi as follows, 
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The nonwetting phase relative permeability during imbibition is estimated by extracting information of 

flowing (Snwf) and trapped saturation (Snwt). On any point on the krnw-Snw path (see Figure 8), following 

relationship exist among the different saturations, 

 

  nw nwt nwfS S S= + .  (1.36) 

  

Using Eq. (1.35) and Eq. (1.36), Snwf is estimated as follows (derivation available in Carlson 1981, 

originally equation was presented in Land 1968),  
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Land (1968) then followed similar treatment as that of Corey (1954) model to propose the following relation 

for gas relative permeability with the use of the flowing gas saturation, 
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where *
gFS is the free-flowing gas phase saturation which is normalized to the effective pore space, 

* / ( )1gF wirrgFS S S-= ; and ɚ is the pore-size distribution index. 

Killough (1976) proposed an interpolation-based approach for estimating imbibition relative 

permeabilities based on drainage relative permeabilities as follows,  
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where ( )I
rnw nwk S  is the imbibition relative permeability and ( )D

rnw nwik S drainage relative permeability at 

initial nonwetting phase saturation. This proposed form satisfies the limiting conditions for imbibition 

relative permeabilities, where ( ) ( )I D
rnw nwi rnw nwik S k S= and ( ) 0I

rnw nwrk S = . Carlson further simplified 

Killoughôs approach and proposed that ( )I
rnw nwk S  can be estimated from the corresponding drainage 

nonwetting phase relative permeability (
D
rnwk ) with the knowledge of the flowing nonwetting phase 

saturation, 
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 ( ) ( ) I D
rnw nw rnw nwfk S k S= .  (1.40) 

 

Both Killoughôs and Carlsonôs model require the knowledge of the Landôs trapping coefficient.  

Thus far, most relative permeability models are developed for water-wet media. The trapping model by 

Spiteri et al. (2008) was an improvement over Landôs model. It was the first model to be used for different 

wettabilities. It was developed using initial-residual (IR) trapping data sets generated using pore-network 

modeling. Their model was given as, 

  

 
2

r i iS S Sa b= - ,  (1.41) 

 

where Ŭ and ɓ are model parameters. Similar to the treatments by Carlson (1981), based on the information 

of the trapped versus flowing saturation and the previous primary drainage curves, relative permeabilities 

for the waterflooding cycle for different contact angles can be calculated. 

 

1.2.2.3. Limitations of relative permeability models  

 

Some limitations of the models described for relative permeability in the previous subsections are as 

follows. 

¶ The major limitation of Land-based models is that the path dependency for relative permeability is 

not resolved. Based on the information of the trapped phase, the relative permeabilities for the water 

injection cycle are predicted which inherently depends on the particular scanning curve. Each set 

of scanning curve will consequently have its own initial and residual saturation and its own path to 

be traced. And each path will require tuning of its own Landôs trapping coefficient, for example, 
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for the set of flow conditions that process is subjected to. This leads to ad hoc combinations of 

Corey model with Landôs trapping coefficient for calculating relative permeabilities. 

¶ These models are empirical and lack pore-scale physics, despite the understanding of the different 

factors that affect relative permeabilities. These models are therefore less predictive away from the 

conditions under which they are developed. 

¶ Most Land-based models are developed for water-wet systems and are primarily used for predicting 

imbibition relative permeabilities.  

¶ These models are deficient because they require knowledge of previous drainage curve to calculate 

imbibition relative permeabilities. In addition, they require knowledge of different inputs such as 

the initial and residual nonwetting phase saturations. 
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1.3. Research objectives 

 

Current relative permeability (kr) models are functions of phase saturations that are matched for specific 

flow/experimental conditions. However, as examined from the literature, together with phase saturation, 

multiple parameters affect relative permeabilities such as the wettability of the medium, capillary number, 

pore structure, fluid phase topology, and fluid/fluid  interfacial areas. These other parameters affecting 

relative permeabilities are inherently captured through the empirical saturation functions. Representation 

of relative permeabilities only in the saturation space causes non-uniqueness and path dependency in 

relative permeabilities which often cause simulations to fail because they lack generality and are not 

physically based. As a result, hysteresis in relative permeabilities arises, which is a major modeling issue 

for reservoir simulations. 

Efforts have been presented in this dissertation to model relative permeabilities by considering 

functional forms that include the effects of the key controlling parameters on relative permeabilities. The 

purpose of this dissertation is twofold, to  

(a) understand how different parameters, specifically, phase saturation, phase connectivity, capillary 

number, and wettability affect relative permeabilities;  

(b) propose physically-based kr models by including the effects of these parameters. 
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1.4. Dissertation layout 

 

There are five additional chapters in this dissertation after the introductory chapter. For chapters 2 to 5, an 

abstract, relevant literature survey, methodology, results and discussions, and conclusions are presented. 

Below a brief summary for each chapter is presented. 

In chapter 2, a static x-ray imaging experiment of a multiphase system is discussed to quantify 

measurement-based errors due to image segmentation. A high-resolution (6 µm) and a low-resolution (18 

µm) x-ray scan of the same system was acquired. The high-resolution scan was used as ground truth while 

the low-resolution scan was used to test different image segmentation methods and quantify errors in pore-

scale measurements. It was found that pore-scale measures of phase topology and fluid/fluid  interfacial 

areas are highly sensitive to image analyses procedures such as that of image segmentation. To mitigate 

these errors, images with high-resolution should be acquired and these should be obtained in steps to 

improve the accuracy of image segmentation. In addition, supervised machine learning based-algorithm 

was found to provide the closest pore-scale measures to the ground truth. From this work, the need to 

supplement experimental data sets with numerical data sets was identified. 

In chapter 3, a state function-based approach for relative permeabilities is discussed. A relative 

permeability equation-of-state (kr-EOS) is forced as a quadratic response for kr in the phase connectivity-

phase saturation space ( Ĕ ).Sc-  The EOS is constrained to limiting conditions in the Ĕ Sc-  space. Although 

the model is built for fixed capillary number conditions, it is tested for different capillary numbers, ranging 

from one to 10-6. The dependence of phase connectivity on capillary number is also explored. It was found 

that a quadratic response for relative permeabilities work across different capillary numbers. The linear kr-

S paths for high capillary numbers (small Corey exponents) and nonlinear kr-S paths for low capillary 

numbers (high Corey exponents) were found to occur due to fast and slow changes in phase connectivity, 

respectively.  From this work, the need for large numerical data sets to calculate relative permeability partial 

derivates for the EOS development was identified. 
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In chapter 4, numerical data sets of phase saturation and phase connectivity are generated using pore-

network simulations to study the effect of wettability on phase trapping. During primary drainage, the 

contact angle was set at zero degrees. However, during secondary injection process, the contact angles were 

changed from 0° to 180°. Trends of residual phase saturation and residual phase connectivity are analyzed 

for different contact angles. Hysteresis trapping models are presented to capture the residual trends and 

comparison is presented against models from the literature. It was found that wettability significantly affects 

receding phase trapping and that pore-scale mechanisms of layer flow and piston-like advance of the 

invading phase become critical when the receding phase is wetting to the surface. 

In chapter 5, the workflow of pore-network simulations from chapter 4 is utilized to generate numerical 

data sets of nonwetting phase relative permeability, saturation, and connectivity. Here, capillary number 

and pore structures were kept fixed, and two wettability cases were considered both in the water-wet regime. 

Through hundreds of simulations, the kr, S, and Ĕc data sets are analyzed to estimate partial derivates of kr 

in the Ĕ Sc-  space. These partial derivatives are then utilized for the development of an EOS response for 

relative permeability. It is found that the EOS predicts kr for the entire data set, regardless of the direction 

of flow, thus resolving hysteresis in relative permeabilities. 

In chapter 6, key concluding remarks from this study and outlook for future research efforts that can be 

built from this dissertation are presented.  
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CHAPTER 2. IMAGING AND PORE-SCALE 

MEASUREMENTS 

 

Preface 

 

The contents of this chapter were originally published in the Journal of Petroleum Science and Engineering 

and are referenced as, 

 

Purswani P., Karpyn Z.T., Khaled E., Yuan X., Xiaolei H., (2020)  

Evaluation of Image Segmentation Techniques for Image-Based Rock Property Estimation, J. Pet. Sc. Eng, 

(195), https://doi.org/10.1016/j.petrol.2020.107890 

 

Author contributions: Purswani P. and Karpyn Z.T. conceptualized the experiment. Purswani P. and Enab 

K. performed the experiments and wrote the original draft in consultation with Karpyn Z.T. All coauthors 

contributed toward analyzing the data and updating the manuscript. 

 

Abstract 

Accurate characterization of rock and fluid properties in porous media using x-ray imaging techniques 

depends on reliable identification and segmentation of the involved phases. Segmentation is critical for the 

estimation of porosity, fluid saturations, fluid and rock topology, and pore connectivity, among other pore-

scale properties. Therefore, the purpose of this study was to compare the effectiveness of different image 

segmentation techniques when applied to image data analysis in porous media. Two machine learning based 

segmentation techniques ï a supervised ML technique called Fast Random Forest, and an unsupervised 

method combining k-means and fuzzy c-means clustering algorithms ï were compared using an 

https://doi.org/10.1016/j.petrol.2020.107890
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experimental data set.  Comparisons are also presented against traditional thresholding segmentation. In 

addition, we discuss the potential and limitations of applying deep learning-based segmentation algorithms. 

The performance of the segmentation techniques was compared on estimates of porosity, saturation, and 

surface area, as well as pore-scale estimates such as fluid/fluid  interfacial areas, and Euler characteristic. 

X-ray micro-computed tomography images for a sintered glass frit, saturated with two-phases (air and 

brine), were acquired at two different voxel resolutions. The high-resolution images (6 µm) were used as 

the benchmark case, while the low-resolution images (18 µm) were segmented by three segmentation 

techniques: Fast Random Forest, clustering, and thresholding. The results for porosity and phase saturation 

from thresholding and from the supervised ML method (i.e., Fast Random Forest) were found to be close 

to the benchmark case. Segmentation results from the unsupervised ML method (i.e., clustering) were 

largely unsatisfactory, except for total surface area measurements. The supervised ML segmentation results 

provided better measurements for air-brine interfacial areas by capturing three-phase interfacial regions. 

Also, all segmentation techniques resulted in similar measurements for air-phase Euler characteristic 

confirming poor connectivity of the trapped air phase, although the closest results were obtained by the 

supervised ML method. Finally, despite the supervised ML segmentation technique being more 

computationally intensive, it was found to require less user intervention and its implementation was more 

straightforward. In summary, this work provides insights into different segmentation techniques, their 

implementation, as well as advantages and limitations with regards to quantitative analysis of pore-scale 

properties in saturated porous media. 
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2.1. Introduction  

 

High-quality, non-destructive imaging is at the heart of innovative science in a variety of disciplines. It 

provides researchers with the ability to examine objects at small length scales, which enables the estimation 

of a variety of structural and topological properties. In the geosciences, applications of non-destructive 

imaging include characterization of rock heterogeneities, pore-network properties, roughness, fluid 

distributions, and transport in porous systems (Blunt 2017; Lai et al. 2015; Noiriel et al. 2004; Wildenschild 

and Sheppard 2013). X-ray micro-computed tomography (µCT) is one such imaging technique that 

generates a three-dimensional (3-D) mapping of linear attenuation coefficients acquired by a digital x-ray 

detector. These attenuation coefficients are distinct for each material phase in the object (Cnudde and Boone 

2013). As such, an x-ray image provides both quantitative and qualitative information about the elements 

constituting the object scanned. To draw meaningful information from these digital images, a series of 

image processing steps are necessary. These steps help improve the visual appearance of digital x-ray 

images, as well as prepare them for feature and property analyses.  

There are three main steps of image processing, namely, pre-processing, segmentation, and post-

processing. Image pre-processing consists of steps to reduce the impact of image artifacts such as noise, 

image blur, beam hardening, ring effects, and bright spots (Huda and Abrahams 2015). This is achieved by 

the application of image filters like median (Bernstein 1987), mean, non-local mean (Buades et al. 2005), 

and edge detecting filters (Sheppard et al. 2004) that help improve the quality of reconstructed raw images 

and prepare them for image segmentation. Image segmentation is the process of categorizing (or labeling) 

each voxel to a specified class or phase in the object. This labeling step assigns a characteristic number to 

all voxels belonging to the same phase. This assists in quantitative analysis on the images, for example, 

voxel counting is used for porosity and phase saturation measurements. Lastly, image post-processing is 

the operation of fixing any misrepresentation of phases in the segmented image. All image processing steps 

are crucial for consistent and accurate feature measurements. The purpose of this work is to evaluate various 

image segmentation techniques for image-based rock property estimation. 
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Due to the growing access of x-ray µCT scanners to numerous researchers in Earth sciences, there has 

been an increase in the number of studies that use this technique for studying fluid flow in porous media. 

Segmented images are used to measure phase characteristics to provide the observational basis for 

understanding different processes such as multiphase fluid flow, structural morphology, pore connectivity, 

fluid/fluid , and fluid/solid interfaces (Blunt 2017). These characteristics are subsequently used to quantify 

fluid transport through estimations of flow properties such as relative permeabilities and capillary pressures 

(Khorsandi et al. 2017). Carefully segmented x-ray images are often used as a starting point for simulating 

fluid flow by using techniques such as Lattice Boltzmann simulations (Armstrong et al. 2016; Landry et al. 

2014; Liu et al. 2018; Mcclure et al. 2018) or pore-network modeling (Dong and Blunt 2009; Joekar-Niasar 

et al. 2010; Joekar-Niasar et al. 2008; Reeves and Celia 1996; Valvatne and Blunt 2004). Table 2 lists a 

few of the experimental studies performed over the past two decades. It can be inferred from Table 2 that a 

variety of porous systems spanning natural and synthetic media have been studied. It can also be inferred 

that, in general, over time, the scanning resolutions have improved as technology advances. Further, there 

is a general acceptance for using non-local means filtering technique for pre-processing purposes. 

 

Table 2. Characteristics of imaging techniques from various experiments of fluid flow in porous media. 

Reference 
Porous 

media 

Image 

filtration  

Voxel 

resolution 

(um) 

Segmentation 

technique 
Post processing 

(Culligan et al. 

2004) 

Glass bead 

pack 
Median filter 18 k-means clustering  - 

(Culligan et al. 

2005) 

Soda lime 

beads 
Median filter 17 k-means clustering  - 

(Porter and 

Wildenschild 2010) 
Bead pack 

Anisotropic 

diffusion filter 
5.9; 11.8 k-means clustering  - 

(Karpyn et al. 2010) 
Glass bead 

pack 
- ~26 Thresholding - 

(Landry et al. 2011) 
Acrylic bead 

pack 
Median filter ~26 Thresholding 

Smoothing of 

surfaces for area 

measurements 

      



 

41 
 

 

(Herring et al. 2013) 
Bentheimer 

sandstone 
 - 10 Indicator Kriging 

Removal of 

nonwetting clusters 

smaller than 100 

voxels 

(Celauro et al. 2014) 
Coated glass 

bead packs 
- ~27 

Gauss curve fitting 

to gray value 

histograms 

- 

(Harper 2013; 

Herring et al. 2013; 

Joekar-Niasar et al. 

2013; Porter and 

Wildenschild 2010) 

Crushed tuff 
Anisotropic 

diffusion filter 
17.5 k-means clustering  -  

Sintered 

glass bead 

pack 

 Median filter 13  Thresholding  - 

(Herring et al. 2015) 
Bentheimer 

sandstone 
Median filter 5.8 Thresholding 

Removal of air 

clusters smaller 

than 125 voxels 

(Rücker et al. 2015) 
Gildehauser 

sandstone 

Non-local 

means 
2.2 Watershed -  

(Berg et al. 2016) 
Gildehauser 

sandstone 

Non-local 

means 
2.2 Watershed 

Segmented phases 

were cleaned using 

morphological 

operations 

(Schlüter et al. 

2016)  

Sintered soda 

lime bead 

pack 

Non-local 

means and 

total variation 

denoising filter 

8.4 
Markov random 

field technique 
 - 

Sintered 

glass bead 

pack 

Median filter 2.2 Watershed 

Removal of 

clusters smaller 

than 125 voxels 

(Gao et al. 2017)  
Bentheimer 

sandstone 

Non-local 

means 
6 Thresholding  - 

(Singh et al. 2017) 
Ketton 

limestone 

Non-local 

means 
3.28 

Seeded watershed 

algorithm and 

thresholding 

Dilation of rock 

phase for curvature 

analysis 

(Lin et al. 2018) 
Bentheimer 

sandstone 

Non-local 

means 
3.58 

Seeded watershed 

algorithm and 

thresholding 

Boundary 

smoothing for 

curvature analysis 

(Rücker et al. 2019) 
Ketton 

limestone 

Non-local 

means 
3 

Watershed 

algorithm and 

thresholding 

 - 

 Table 2. (Continued) 
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(Lin et al. 2019) 
Bentheimer 

sandstone 

Non-local 

means 
3.58 

Seeded watershed 

algorithm and 

thresholding 

Boundary 

smoothing for 

curvature analysis 

This work 

Sintered 

glass bead 

pack 

Non-local 

means 
6; 18 

Thresholding; k 

and c means 

clustering; and 

supervised machine 

learning 

Removal of small 

nonwetting phase 

clusters for Euler 

number analysis 

 

Pore-scale measurements such as porosity, phase saturation, fluid topology, and fluid/fluid  interfacial 

areas can be extremely sensitive to the results of image processing steps, in particular, image segmentation. 

Segmentation methods can largely be categorized into two groups, global methods and local adaptive 

methods (Iassonov et al. 2009). Global methods, such as intensity-based thresholding, work by identifying 

valley points on the voxel population histogram of the filtered images. A threshold gray value is set to 

classify the voxels, such that gray values above the threshold are identified as one phase, while the voxels 

below the threshold are identified as the other phases. This method worked reasonably well for a multiphase 

system with sufficient contrast in the gray-levels of each phase, which makes the identification of the valley 

points in the histogram easier. Because of its ease of application, intensity-based thresholding continues to 

be a common method of segmentation in the digital rocks community (Prodanovic et al. 2015).  

Locally adaptive segmentation refers to the segmentation methods that make segmentation decisions 

for each voxel in the image. There have been numerous developments on this type of segmentation to 

achieve more refined results. Watershed segmentation (Vincent and Soille 1991), converging active contour 

method (Sheppard et al. 2004), Markov random field segmentation (Kulkarni et al. 2012), and indicator 

kriging (Oh and Lindquist 1999) are a few examples of locally adaptive methods. A comprehensive review 

of the implementation and comparison of these locally adaptive methods is available in Schluter et al. 

(2014).  Machine learning techniques such as fuzzy c-means (Pham and Prince 1999), a combination of k-

means and fuzzy c-means (Dunmore et al. 2018), and supervised machine learning are other examples of 

locally adaptive methods of segmentation. 

 Table 2. (Continued) 
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The capability of machine learning (ML) approaches in solving classification problems has enabled the 

utilization of such techniques for generating segmentation algorithms. Traditional supervised ML 

algorithms work as feedback methods by learning from annotated voxel labels of some part of an image in 

order to predict the class distribution of each voxel in the whole image. Such an ML model is learnt in a 

training process that extracts a vector of features that influence voxel class labels based on feedback from 

annotated labels of some voxels (Kotsiantis 2007).  After training, the resulting ML model is used to assign 

a class label to each voxel in the entire image based on voxel feature values. Support Vector Machines, 

Neural Networks (Multilayer Perceptron), Decision Trees, Random Forest, and Fast Random Forest are 

examples of supervised ML algorithms that can be used to generate classification models for image 

segmentation purposes. 

Unsupervised ML approaches, unlike supervised methods, do not need annotations for part of data, but 

operate by grouping voxels based on similarities. Clustering, also known as cluster analysis, is one of the 

most common types of unsupervised ML methods and it is widely used for classification purposes in data 

analysis and data mining. K-means clustering, and fuzzy clustering (c-means or soft k-means clustering) 

are two common methods for clustering. Both k-means and c-means clustering are iterative methods that 

operate by identifying the similarity of an element in the population to different groups of elements. The 

assignment of an element to a particular group is probabilistic in c-means as opposed to deterministic in k-

means. 

In the past decade or so, deep learning (DL) methods based on multi-layer artificial neural networks 

have produced state-of-the-art results in many fields including computer vision, speech recognition, 

medical image analysis, and material inspection.  In the area of image segmentation, DL has also achieved 

success, including in the segmentation of µCT images. Through training with a large number of fully 

annotated images, DL models can extract meaningful visual features automatically and use them to infer 

segmentation maps. For 2-D image segmentation, U-net (Ronneberger et al. 2015), Deeplab series (Chen 

et al. 2018; Chen et al. 2017a; Chen et al. 2017b), Mask R-CNN (He et al. 2017) among others (Oktay et 

al. 2018; Xue et al. 2018; Zhou et al. 2018) cover a variety of different applications from natural images to 
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medical images. For 3-D image segmentation, prior works (Çiçek et al. 2016; Milletari et al. 2016; Xue et 

al. 2019) mainly focus on medical applications such as 3-D magnetic resonance imaging (MRI) or CT 

scans.  

For rock image segmentation, Wang et al. (2020) introduced a novel 3-D µCT segmentation method 

built on U-net (Ronneberger et al. 2015) and ResNet (He et al. 2016) in their recent work. Niu et al. (2020) 

and Karimpouli and Tahmasebi (2019) used Convolutional Neural Network (CNN)-based algorithms for 

segmenting sandstone data sets. It was found that CNN algorithms can minimize the need for user-defined 

inputs (Niu et al. 2020). Although DL methods can achieve promising segmentation results, their feature 

learning capacity heavily relies on the large amount of training images as well as high-quality manual 

annotations. Moreover, unlike other types of visual recognition tasks such as image classification which 

only require image level annotations, the annotation of 3-D µCT rock images for segmentation purposes 

requires labeling at a voxel-by-voxel level for the entire image, which can be very expensive and 

impractical. Further, because the mineral composition and structural features differ in porous media, voxel-

label annotations obtained for one rock system may not be useful as training data to train the segmentation 

model for other rock systems. Thus, DL methods may not be a suitable choice for image segmentation 

unless diverse saturated porous media image data are available as training data sets.  

In summary, the literature presents a variety of image segmentation techniques including both global 

and local techniques. However, newer ML techniques are less commonly used in the porous media 

community. Therefore, the purpose of this study is to compare the effectiveness of two ML-based 

segmentation techniques ï a supervised ML technique called Fast Random Forest, and an unsupervised 

method combining k-means and fuzzy c-means clustering algorithms ï for segmenting a saturated 

multiphase porous medium. Comparisons are also presented against a thresholding-based segmentation 

technique. We investigate the segmentation methods on a small-scale dataset where DL models can easily 

overfit to training samples which makes them less generalizable. For this reason, we do not include deep 

learning-based methods in our comparison. Our goal is to compare feasible segmentation methods for 

identification of fluid and solid phases in saturated porous media. We provide a quantitative analysis of the 
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segmented phases to estimate physical characteristics of porosity, phase saturations, phase surface areas, 

interfacial areas, and phase connectivity to demonstrate and compare the capabilities and limitations of each 

segmentation technique with recommendations for each when applied to saturated porous media. In this 

way, this research provides the readers with insight into emerging machine learning-based image 

segmentation techniques, their implementations, their comparative advantages, as well as limitations with 

regards to applications in porous media research.  
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2.2. Methodology 

 

Trusted segmented data are required as a benchmark for comparing the effectiveness of the different 

segmentation techniques examined in this research. For this, a saturated porous medium was prepared for 

this study and scanned at two different voxel resolutions. The first, benchmark scan was acquired at a voxel 

resolution of 6 µm. The second test scan was acquired at a voxel resolution of 18 µm which was used to 

test and compare different segmentation techniques. Although 18 µm represents low resolution in this 

research, it is still typical of x-ray micro-tomographic studies (Table 2). 

The experimental set-up (Figure 9) used in this research is a static set-up consisting of a sintered glass 

frit (pore sizes between 100-160 µm) saturated with brine and air, representing wetting and nonwetting 

phase, respectively. The x-ray scanner used was GE v | tome | x L300 system with a 300kV x-ray tube. The 

sintered glass frit was a specific type of borosilicate glass filter (Robu) procured from Adam and Chittenden 

Scientific Glass, California, USA. It is a glass filter widely used for water filtration purposes, 10 mm in 

diameter, 2.8 mm long, with ~18% porosity. The sintering allows for the porous medium to be rigid and 

maintain its pore structure during handling. The brine phase used in this experiment was a solution of 1M 

sodium iodide (NaI). Doping the brine with 1M NaI helps to attenuate more x-rays such that enough contrast 

can be achieved to isolate the three phases. This particular concentration of NaI was found to be optimum 

and was achieved after multiple trials to minimize imaging artifacts and maximize contrast. 
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Figure 9. Schematic of the laboratory setup and image acquisition system (x-ray MCT scanner). DO 
stands for the distance between the detector and the object, while OS stands for the object to source 
distance. This figure shows that the sample (object) is very close to the source for finer resolution, the 
resolution was coarsened by moving the sample stage laterally from the source, increasing OS and 
decreasing DO. 

 

The porous glass frit was held fixed inside a thin (~ 1mm wall thickness) plastic tubing, open at the top, 

closed at the bottom and secured to the scannerôs rotating sample mount. The setup was placed within a 

few millimeters of the x-ray source to maximize the image resolution to 6 µm (Figure 9). At this position, 

a scan for the dry frit was acquired. Next, a pipette filled with the brine solution was used to drop a couple 

of droplets into the porous glass frit. After waiting for 20 minutes for the liquid to saturate the glass frit, the 

benchmark x-ray scan was acquired. At this stage, the scanned system consisted of three phases (solid glass, 

brine, and trapped air). Upon completion of this scan, the sample mount was moved laterally by increasing 

the object-to-source (OS) distance and decreasing object-to-detector (DO) distance from the x-ray source 

to acquire the exact same scan at a resolution of 18 µm. This was termed as the test scan.  

 

X-ray 
source 

Detector

Glass frit

X-ray chamber 

Plastic 
tubing

Sample 
mount

NaI 
dropletPipette

DO OS
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2.2.1. Implementation of the segmentation techniques 

 

In this section, we discuss the image processing framework used in this research. Both dry and brine 

saturated raw CT images were processed through the non-local means filter to remove image noise. No 

other major image artifacts were observed in the CT images. The non-local means filter was found to be 

effective as compared to the median filter. The filtering step was not required for the supervised machine 

learning segmentation which directly works on raw CT images. This is discussed in the subsequent section. 

 

2.2.2. Benchmark case 

  

To generate the benchmark segmented images, both dry and saturated images of the high-resolution scan 

were used to generate reliable segmented images. First, thresholding was conducted on the filtered dry 

sample to segment the solid and the pore space. This was easier to accomplish because of the significant 

difference in the gray values between the air and the solid phase. Second, the segmented dry images were 

subtracted from the saturated images to eliminate the solid phase. This left only the brine and trapped air 

phase which were segmented once again using thresholding. 

 

2.2.3. Test case 

 

The comparative analysis between the supervised and unsupervised machine learning segmentation 

techniques was conducted using the scanned images at a voxel resolution of 18 µm. Additional comparison 

with thresholding is also presented. The implementation of these segmentation techniques is outlined below. 
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2.2.4. Supervised machine learning (ML)-based on Fast Random Forest algorithm 

 

The supervised ML-based segmentation technique is a multi-threaded implementation of the Random 

Forest algorithm, as provided in the WEKA (Waikato Environment for Knowledge Analysis) trainable 

segmentation toolbox (Arganda-Carreras et al. 2017).  The WEKA segmentation toolkit is implemented as 

a built-in plugin in ImageJ. It works as a bridge to apply machine learning tools for image processing and 

has been used in a few recent studies for segmentation purposes (Berg et al. 2018; Garfi et al. 2020). The 

Random Forest algorithm (Breiman 2001) is a classification algorithm consisting of many decision trees 

that operate as an ensemble.  Each individual decision tree provides a vote on class prediction and, the class 

with the most votes becomes the forest's class prediction. The Random Forest algorithm uses bagging and 

feature randomness when building each individual tree to try to build a forest of largely uncorrelated trees 

whose prediction by the "wisdom of crowds" is more accurate than that of any individual tree.  Random 

Forest is considered a fast classifier, but more recently, parallelized versions such as the WEKA Fast 

Random Forest implementation enable one individual tree per processor core to take advantage of multi-

core processors, further reducing forest build time. 

Below, we outline the general procedure for applying the Fast Random Forest segmentation method in 

this research: 

1. To build the training set, sample voxels representing each of the different target categories are 

selected and each such sample voxel is labeled with the category to which it belongs.  

2. To train the random forest classifier, a vector of image features for each voxel is used as the training 

feature. The vector of features contains the CT value of the voxel in the raw image, coupled with 

the CT values of the same voxel in different filtered images.  The available filters provided in the 

WEKA toolkit include Gaussian blur, Hessian, derivatives, structure, edges, 

minimum/maximum/mean/variance/median, etc.  After a trial-and-error process where different 

combinations of image filters were tested to arrive at the combination that provided the best 

performance, we finally chose the minimum, maximum, mean, and variance filters. Note that these 
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filters are applied at a voxel-level: the voxels within a small radius (e.g., within a 3x3x3 small 

neighborhood) from the target voxel are subjected to the pertinent operation (min, max, mean, or 

variance) and the target voxel is set to that value in the filtered image.  Once the training features 

for all sample voxels (with ground-truth labels) are computed, the random forest classifier is trained 

using the (feature-vector, label) pairs for the sample voxels. 

3. After the random forest classifier is trained, it is then used to classify every voxel in the entire 

image, thus achieving full segmentation of the whole image.  

During training of the classifier (step 2 above), the sample dataset of labeled voxels is automatically 

divided into three subsets: training, validation, and testing. The subset for training consists of ~ 80% of the 

sample data and is used to build the classifier. The subset for validation consists of ~ 10% of the sample 

data, and it is used to adjust parameters of the classifier and choose the combination of image filters to use; 

that is, many classifiers can be trained with different parameter values (e.g., number of trees in the forest) 

and different combinations of image filters, and then the optimal values and filters are chosen based on 

which ones give the best performance on the validation subset.  Lastly, the subset for testing consists of the 

remaining 10% of the sample data and is used to test and report the accuracy of the final chosen classifier.  

 

2.2.5. Unsupervised machine learning based on k-means and fuzzy c-means clustering 

 

The unsupervised technique selected for this study is the medical image analysis (MIA) ï clustering 

technique, which is an open-source algorithm useful for multiphase image segmentation (Dunmore et al. 

2018; Wollny et al. 2013). This segmentation technique requires denoised images as input, so we apply 

Gaussian filtering to a raw image before applying the technique, which combines two unsupervised 

clustering methods, k-means and fuzzy c-means. K-means clustering is an iterative scheme that places each 

member (e.g., a voxel) in a given data set (e.g., all voxels in a CT image) into different clusters representing 

different classes. The iterative process starts by defining the centroids (or means) of each cluster arbitrarily. 
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Then, each data point is grouped to a data cluster as a function of the Euclidean distance between the data 

point and a cluster centroid. Next, the cluster centroid values are updated until the difference between the 

previous and the updated centroid values meet a user-defined tolerance. C-means clustering is similar to k-

means clustering with one difference which lies in the flexibility of allowing a data point to probabilistically 

belong to more than one cluster (Bezdek, James C; Ehrlich, Robert; Full 1984; Dunn 1973). The 

probabilistic nature of this approach is enabled by the inclusion of a membership function (with value 

between zero and one) and a term called the fuzzifier (a real number between one and two). The membership 

function governs the degree to which a particular data point belongs to a particular cluster, whereas the 

fuzzifier determines the fuzziness level of a cluster. Larger values of the fuzzifier lead to smaller values of 

the membership function and vice versa.  

The MIA-clustering algorithm requires little user intervention. Two main input parameters supplied by 

the user are the number of classes that exist in the image and the grid-size used for partitioning the image 

into overlapping cubes so that segmentation can be refined locally within the cubes. In the first part of the 

algorithm, the K-means algorithm clusters all voxels, based on voxel intensity in the denoised CT image, 

into the number of classes specified by the user.  Subsequently the fuzzy c-means algorithm is applied to 

iteratively estimate all class membership probabilities for each voxel, expressed as a vector.  Then, by 

assigning each voxel to a class based on its highest membership probability, the whole image is clustered 

into distinct classes representing structures.  However, this global segmentation may miss some fine details 

because of intensity inhomogeneities in the input image. Therefore, in the second part of the MIA-clustering 

algorithm, fuzzy c-means is applied locally.  The whole image volume is subdivided into overlapping small 

cubes based on the grid-size parameter. In a cube, the sum of membership probabilities of all voxels for 

each class is calculated; if the sum for a class falls below a threshold, then that class is not considered for 

the local, refined c-means clustering in the cube.  After the local refinement is done for all cubes, class 

probabilities for each voxel in overlapping cubes are merged, and once again, voxels are assigned to the 

class for which they have the highest membership probability, producing the whole segmented image. More 

details about the MIA-clustering algorithm can be found in Dunmore et al. (2018). 
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2.3. Results and discussion 

 

In this section, results from the implementation and comparison of the machine learning (supervised and 

unsupervised) segmentation techniques are discussed. Additional comparisons are presented against 

thresholding segmentation. For quantitative analysis, we present bulk measurements of porosity, fluid 

saturations, phase fractions, and phase surface areas, as well as pore-scale measurements of phase 

connectivity (measured as the Euler characteristic) and fluid/fluid  interfacial areas. 

The imaged cross-sections of the porous glass frit (dry and brine saturated) are shown in Figure 10, and 

the corresponding grayscale intensity histograms are shown in Figure 11. In Figure 10 (top), the brighter 

region corresponds to the solid (sintered glass) whereas, the darker region corresponds to the pore (air) 

space. The solid, being denser, attenuates more x-rays and appears bright. Figure 10 (top) and Figure 11 

(top) show that the quality of the acquired dry x-ray scan is excellent as evidenced from the histogram of 

the raw image which is well resolved between the pore and solid space even before applying any 

enhancement filters. Minimal x-ray imaging artifacts are observed. Upon the application of the non-local 

means filter, the difference in the voxel populations of the solid phase and the pore space becomes clearer. 

This assists in the segmentation of two phases by thresholding. We note here that the parameters set for the 

non-local means image filtration were kept uniform across all image data sets, irrespective of the resolution, 

or whether the data sets were dry, or brine saturated to maintain a common pre-processing procedure for 

all images to be segmented. 

In Figure 10  (middle) and Figure 10 (bottom), light-gray regions correspond to the brine phase, middle-

gray regions represent the solid phase, and the darker isolated regions represents the air phase. Notice that 

the application of the non-local means filter removes image noise (Figure 10 right column). This is more 

prominent for the scan at a voxel resolution of 6 µm as opposed to the lower quality scan. 
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Figure 10. Imaged cross-section of dry (top) and brine saturated (middle and bottom) porous glass frit 
at different voxel resolutions. The brine used for saturating the porous medium was 1M NaI solution. Non-
local means was used for filtering the raw images to remove image noise. 

 

Filtered scan

D
ry

B
ri
n

e
 s

a
tu

ra
te

d

Raw scan

V
o
xe

l 
re

s
o

lu
tio

n
 =

 6
 µ

m
V

o
xe

l 
re

s
o

lu
tio

n
 =

 1
8

 µ
m



 

54 
 

 

 

Figure 11. Histograms showing the voxel population of the different grayscale intensity values for the 
corresponding scans shown in Figure 10. 

 

Figure 12 shows a comparison of segmented top view ortho slices using the machine learning and 

thresholding segmentation techniques, against the benchmark case. For thresholding, the average of two 

distinct attempts was considered. Each attempt was carried out by manually adjusting the threshold mark 

between the phases. We see that the air phase, represented by the darker isolated regions, is easier to 

recognize and is consequently successfully segmented by all techniques. Segmentation differences amongst 

the various approaches are most evident in the identification of brine and solid phases, as shown in Figure 
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12. The benchmark case (Figure 12a) shows that the brine phase has fragmented clusters making the phase 

appear more disconnected in the two-dimensional space, although the phase may be connected in the three-

dimensional pore space. This continues to be seen in the other segmented cases; however, relatively bigger 

clusters seem to be apparent for the unsupervised machine learning (Figure 12d). Further, it can be noticed 

that the benchmark case shows a clear interfacial contact among the air, brine, and the solid phases. When 

comparing the interfacial contact detected by the three segmentation techniques, it is observed that all the 

segmentation techniques closely detect the interfacial contact between the air and the solid phases. 

However, for the interfacial contact between the air and the brine (direct fluid/fluid  contact), supervised 

machine learning segmented image showed slightly better performance. Due to the missing three-phase 

contact in the unsupervised machine learning and thresholding cases (Figure 12b and Figure 12d), we 

observe that the air phase appears to be isolated. Oil-brine interfaces are being misidentified as part of the 

solid phase during segmentation, thus potentially leading to the loss of fluid/fluid  contact areas. This is 

problematic because inaccurate estimations of the three-phase contacts can lead to erroneous contact angle 

measurements (Alhammadi et al. 2017; Klise et al. 2016; Scanziani et al. 2017). These preliminary 

observations are substantiated quantitatively through bulk and pore-scale measures in the following 

sections. 
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Figure 12. Segmented cross-sectional images showing three phases (solid, brine, and air). (a) 
thresholding at a resolution of 6 µm (benchmark case), (b) thresholding at a resolution of 18 µm, (c) 
supervised machine learning segmentation at a resolution of 18 µm, and (d) unsupervised machine 
learning segmentation at a resolution of 18 µm. Zoomed-in version of the images are displayed on the 
sides to highlight distinct features of segmented images. The upper and lower regions of interest (marked 
inside the segmented images) correspond to labels 1 and 2, respectively. 
 

2.3.1. Bulk measurements 

 

Bulk measurements of porosity, phase saturations, and fluid surface areas are critical measures for 

understanding fluid flow in porous media. Porosity and saturation measures help quantify the amount of oil 

and gas reserves present in an oil reservoir (Lake et al. 2014); whereas, area measurements are often used 

by hydrologists to quantify the extent of a chemical (non-aqueous phase liquids) spill for groundwater 

remediation purposes (Culligan et al. 2005). These measurements are provided for all segmentation 

techniques used in this research. 
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