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ABSTRACT

Relative permeabilityl) isa transport property used for characterizing the bmultiple phases through

a porous mediuminputs ofk; areintegral for reservoir simulation$4ultiple parameters such as phase
saturation, wettability of the medium, fluid properties, flow characteristics, pore topology, fluid phase
topology, andluid/fluid interfacial areas are known to affect relative permeabilities. Cugreradels are
functons of phase saturation that are matched sfuecific flow/experimental conditions. The other
parameters affecting relative permeabilities are inherently captured through these saturation functions.
Representation of relative permeai@ktonly in the sturation space causes Roniqueness and path
dependency in relative permeabilitiedich often cause simulations to fail because they lack generality
and are nophysically basedAs a result, hysteresis in relative permeabilities arises, which is a major
modelingissue for reservoir simulations.

In this dissertationmodek for relative permeabilitieare presentetly considering functional forms
that include the effects of tHesy controlling parameters on relative permeabilities. The purpose of this
dissertation is twofold, to (a) understand how different parameters, specifically, phase saturation, phase
connectivity, capillary number, and wettability affect relative permeisiji(b) proposehysicallybased
k- models by including the effects of these parameters.

Relative permeabilities are modeled using an equaticriate EOS approach where the exact
differential for relative permeability is written in phase connectisityl saturation(&- S). A quadratic
responséaseEOSfor relative permeability is modeled in the S space. Physical limiting conditions on
the state parametese considered to constrain tESmodel. This model is tested for different capillary
numbers ranging from one to"4.0n addition, we calculated thpartial derivatives of relative permeahiéi
in the state parameters using numerical data sets generated wittepwooek modeling. A response for
relative permeability is derived in tiie S spacefollowing the state function approachhelocus bounded
by residual nonwetting phase connectivity and residual nonwetting phase saturation is presented for two
contact angles in the wateset regime. Finallywe investigatedhe role of wettability on phase trapping



alsousing porenetwork modeling An extended Lantbased hysteresis trapping model is presented and
compared against models from the literature. In addition, models are presented to capture the trends of
residual loci for differentontact angles

Results show that a simple quadratipuesse for relative permeability in tiée S space captures trends

across different capillary numberBhe nodel tuned for a capillary number in the capillary dominated
regime can show predictive capability for other capillary numbetsgmthe same regime. Thieeark.-S
pathsfor high capillary numbers (small Corey exponents) and nonlikeSrpathsfor low capillary
numbers (high Corey exponentgke found to occur due to fast and slow changes in phase connectivity,

respectively Limiting constraints help in the identification thfe physical region in thé&- Sstate space.

Results also show that the response derived for velgg&rmeability from relative permeability partial
derivatives using the state function approeah predictrelative permeabilities over the entimamerical
data sets, regardless of the direction of flow, thus mitigating hysteresis. Further, the ah#hssisffect
of wettability shows that both phase trapping as well as the locus of residual saturation and residual phase
connectivity are sensitive to contact angle changes. Fordoading phaseontact angles, the residual
locus remains fairlgonstantbut at higher contact angles, the shape of the residual locus resenibsesia
loop. Pore structure constraiat negligible saturatiois found to control the shape of the residual locus.
Phase trapping was found to reduce significantly fgh ltontact angles owing to peseale mechanisms
of layer flow of the receding phasand pistodike advance of the invading phase.newly proposed
extended Landased moddk able tocapture residual saturation trends for all contact angles.

Overall, through this research endeavor, we gain insight intodifierent intrinsicparameters that
affect relative permeabilityThrough the application of poscale measureshdse insights are further

manifested intgracticalmodek that hels describe relatie permeabilities physically.
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CHAPTER 1. INTRODUCTION

1.1.Background

Understanding fluid flow in a porousedum is at the heart of engineerimisciplines such as petroleum
engineering. Singlkphase flow in porous systems is less complex, but the introduction of an additional
immiscible phase creates a system with involved physics. Multiphase flow is foandiiety of technical
challenges facing society today. Some examples include sequestration iof g@@logical formations to
mitigate greenhouse gas emissiagemoval of nonagueous chemicads femediation ofroundwaterand
secondary and tertiary gevery methods to sustain/improve energy producfimm hydrocarbon
reservoirs

Simple waterflooding is a multiphase process that is deployed in the secondary phase of oil production.
The waterflooding procesgquires reinjection of produced water to sustain the production of oil after the
decline of highreservoirpressure. Enhanced oecovery (EOR), however, involves the injection of an
agent such as a chemical or a gas to further oil produtiake et al. 2014)EORtechniques are generally
employed during the tertiary phase of oil recovery when waterflooding is in its most maturedrtagjée
production is declining. One of the most comniiDR methods the application of polymers to facilitate
favorable mobilityratio (close to 1py resolvingviscosity imbalances between the injecting phase, water,
and the receding phase, oil. Other common examples include the use of a surfactant to cause miscibility
between oil and water by reducing interfacial tension diffexen8imilarly, gases such as £&fe often
used to i mprove oil recovery by oil swel [Johnsg t o c
and Orr 1996)Although the application of Cas been with the petroleum industoy flecades, it is now
beingincreasinglyfavored as an important method for carbon capture purposes. This technique is referred

to ascarbon capture utilizatiomnd storaggCCUS.



Apart from utilization, CQ storage known asarbonsequestratiorns also being ramped up to reduce
carbon emissions for tackling problems of growing global temperatures. A few pilot scale efforts for this
exist in the North Sea. G@equestration ia multiphase process where g@rimarily in the superdical
state is injected in geological formations such as depleted hydrocarbon reservoir, or aquifers-femong
storage. In the process of injecting £ ®ater (already present in the formation) is displaced. This is known
as theprimary drainageprocess for displacement in a watere t medi a. The term Opri
reflect that the external phase (£@ this case) is introduced in the pore space for the first time. On the
trailing end of the C@plume, however, the C(hase experiences displawent by water and this process
is typical of an imbibition process, once again, given the rock formation is primarilywetef 3D pore
scale visualization of the endpoint states of a saturated porous medium after primary drainage and

imbibition is shevn in Figurel.

/ A ¥ ‘1».

Pore
space filled J
with 100% — .

wetting ) i .

phase = X

Nonwetting
phase

Figurel. 3-D visualization of fluid flow in porous media showing the endpoint states of primary
drainage and imbibition processes. (Left), (middle), and (right) show the states of the medium before
primary drainage, after the completion of primary drainage, afigtr the completion of imbibition,
respectively. Figure adapted fro8chllter et al(2016)



Figurelis adaptedrom thex-ray imaging experiment b§cHuter et al.(2016) The porous medium is
a bead pack which is shown with transparency to allowhewisualization of the porspace Figurel
(left) represents the state just prior to primary drainage. At this point, the pore space is completely filled
with the wetting phase which ghownby the clearbackgroundFigure 1 (middle) showsthe end of the
primary drainage process, where the medium is occupasdly by the nonwetting phase shown in green.
Empty spaces in the middle figure mark the occupancy by the wetting phase which is quantifeed as t
irreducible wetting phase saturation. Apart fromy@@ection into aquifers, in nature, the primary drainage
process occurs when the oil first migrates from the source rock to the oil re¢Blwnir2017) During the
natural density driven flow of oil, oil displaces brine which originally occupies tihe gpaceFigure 1l
(right) shows the state of the medium at the end of the imbibition process. The majority of the medium is
now occupied by the wettinphase (clear) and the grelglobsare the trapped nonwetting phase bjobs
which are quantified together as the residual nonwetting phase saturation.

Multiphase processes occur at different scales. Fromguatle (as shown iRigure 1), to corescale
(example, laboratory corefloods), to the resergomle. At the reservescale, multiphase flow in
geological formations is modeled by using tools sucheasrvoir simulations. These are phydiesed
models that take information from the field as well as laboratory experiments as inpatetngineering
decisions. Reservoir simulations-i ad escestdiveriseas @G
set of conditions and thus help in mitigating risk and finding optimum engineering decisions. To capture
the physics of flow of multiple phases, simulations require transport properties such as relative
permeabilities and capillary pressurese3é inputs are often estimated in the laboratory and calibrated for
use in the simulator for the process being simulated.

In this dissertation, the focus is on relative permeabilities, but discussions for capillary pressures is

providedwherever appropriate.



1.2.Relative permeability

Relative permeability is the transport property that helps quantify the flow of multiple phases in a porous

medum. The relativepermeability kj) to aphas€))i s t he r ati o of rmedbibtyp haseods

to the base (or absolute) permeabiliky ¢f the medium. The effective permeability of a phase is defined
as the permeability of a phase at less th@@%6 occupancy in a porous medium saturated with multiple

phases. It estimated fromexteh ons t o t he Darcyds | aw and is cal

, (1.1)

wherey; is the flux of phasg the ratiok/y; is the proportionality constant termed as the mobility ratio of
phaseg; yj andy; are the viscosity and density of phgseespectivelythe terms inside the bracké,-
1igD;, is the potential differenc®; is the pressure of phagey is gravitational acceleration constaqus
the finite distance within the porous mediumjs the elevationodepth from the reference datum.

Theeffective permeabilityo a fluidis a complex function of a variety of different factors, such as the
phase saturation, pore structure of the medium, wettability of the medium, theofiolitionssuch as the
interfacial tension between the involved phadlesv rate, andfluid viscosities,and thetopology of the
individual phase. Each of these factors are described in more detail sutifequensectionsof this
chapter

Figure2 shows a schematic oélative permeabilities to oil and water typical for primary drainage and
primaryimbibition processes. This schematic is represemtatia watemwet media and other wettabilities
will be considered later. Primary drainage (shown in black) begins at 100% water satsdtieroé
invades the pore space. As water recedes the porous medium, its saturation and relative permeability drop
while oil saturation and relative permeability to oil increaséhe effect of saturation on relative

permeability is intuitveThemoreaphase i s present in the medi um,
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pore space increases. Thus, the relationshipelative permeability with saturation remains monotonic.
The curvature the endpoint values on the relative permeability curaed the endpoint saturatigns

however aredistinct for the set of experimental conditions.

— k., (Primary drainage)
- - -k, (Primary drainage)
—— k., (Primaryimbibition)
- - -k, (Primary imbibition

(0]

O S/\./irr SN 1'S)r 1

Figure2. Schematicshowingwater-oil relative permeabilities for a watewet medium.Hysteresis in
relative permeabilitiess also displayedrhe black curves represemprimary drainage process, while the
red curves represerd primarywater injection process. The solid curves are water relative permeabilities,
while the dashed curves atie oil relative permeabilities. Directions of flow are marked by arrows on
the figure. Endpoint relative permeabilities and saturations are also egagk the figure. Adapted from
(Blunt 2017)



The endpoint of primary drainage is marksadhegligible change in the oil/water saturation. At this point,

the water saturation left in the medium is termed as the irreducible water sati@atiprad tke endpoint

oil relative permeabilityl{,°) can be estimated from the flow experiment via stabilized pressure and flow
rate measurements. The reverse cycle is the imbibition process (shown in red) where now water is injected
into the medium. This is essentially waterflooding the core to extracA®iwateris injected into the
medium, water saturation rises and so does the relative permeability to N@teroil saturation in the

core drops as more oil is recovered, and so does the relative permeability to oil. The endpoint saturation for
oil is called residual oil saturation (or residual nonwetting phase saturation or simply residual saturation).
On the water saturation axis, this is marked &.1At this point, the endpoint relative permeability to

water kw°) can be measured.

The choice bresidual saturation is largely subjectixperimentalistsnake their own decision to
terminate the flow experiment based on the reason for the experiment. For example, some may conclude
the experiment in the first few pore volume to get trends of edntgcovery while otheis may extend for
hundreds of pore volumes (or with the application of centrifuge) to drive to the limits of residual saturation
possible. The ultimate trapped phase saturation depends on the pore structure together withithg wettab
of the medium and not on the stopping criterion or flow conditions. We bring more context on the issue of
phasdrapping inchapter 5 of this dissertation.

The endpoint relative permeabilities and the endpoint oil/water saturations are critical fimput
reservoir simulations. In current modeling practj¢tksse endpoint values, measuirethe laboratory, are
used forcalibration of theék.-Spath, specific to the experimental conditions andafethputdo the reservoir
simulator. These models Wie described in a later section.

Figure2 shows thathek.-S drainage paths versus imbibition paths are quite distinct for both oil and
water relative permeabilities which shows that relative permeabilities are path dependesaiortten
space. This conveys that relatipermeability models that are calibrated for the drainage cycle cannot be
used for the imbibition cycle. This path dependency or nonuniqueness in relative permeabilities is termed
hyseresisand cancau® numeri@l problems in reservoir simulationsor examplethe use of drainage

6



relative permeabilities over imbibition relative permeabilities can leathdorrect estimation obil
recoveries through EOR procesg€arlson 1981)Similarly, without consideration of hysteresithen
simulatingcarbon sequestration can lead to inaccuratnates of C@migration and ultimate quantity of
trapped CQ(Juanes et al. 2006)

One of the physicakasongonsidered responsible for hysteresis in redgtiermeabilities is associated
with phase trapping. The remaining phase at the end of one cycle of injection (for exannpey
drainage) is linked to possibilities of different reassociation of this phase when the cycle is reversed. This
resuls in adifferentflow pathof the phase.

One dher physical reasomesponsible for hysteresis in relative permeabilities is contact angle
hysteresis. Contact angle hysteresis is the difference between the contact angles measured at the three phase
(fluid/fluid/solid) contact point when the denser fluid is invading the medium (advancing contact angle)
versus when this fluid is retracting from the medium (receding contact angle). Experimental evidence shows
that advancing contact angle is greater than recedingatantgle and thatboth can be related to the
intrinsic contact angle, which is the contact angle measure of the static fluid/fluid/solid system on a clean
solid surfac€Morrow 1975). Surface roughness is considered as the primary cause for hysteresis in contact
angle. No porous media, when consideagthemicroscopicscalewould have perfectly clean surfaces.
These microscopic irregularities and the resultant entrapped fluid in the rough surface ridges are deemed as
the reasons for hysteresis in contact angles.

Another reason considered to cause relative permeabilityrbgstevhich is inherently associated with
contact angle hysteresis the different types of flow mechanisms that may occur when a phase is
advancing versus when the phase is recedisgorrlike advance, cooperative pore body filling, sitdf
layer fow, and flow with bypass are some key types of flow mechanisms identified in the literature for
flow under capillary dominated reginfeenormand and Zarcone 1984; Valvatne &haht 2004) Other
flow mechanisms such as drop traffic flow and ganglion dynamics are found to occur at high capillary

numbergAvraam and Payatakes 1999; Avraam and Payatd&l@s; Ricker et al. 2015)



Early efforts for resolving hysteresis in multiphase flow began with the treatment of capillary pressures.
It was identified that hysteresis occurs because of representatioensport propertiestrictly in the
saturation sace. The hypothesis was that phase saturation alone cannot represent flow and that inclusion
of other porescale parameters is necessary toward resolving hysteresis. This hypothesis was proven in the
works byHassanizadeh and Gr&¥993 andReeves and Celifl996) whereapplication offluid/fluid
interfacial areawas includedor addressing hysteresis

Together withphase saturation, multiple other key controlling paramesigeh as phase connectivity,
fluid/fluid interfacial areas, wettability, capillary number, and pore strudtave been recognized in the
literature to affect relative permeabilities. In the following subsections each of these parendetsrsbed

in some detail.

1.2.1.Parameters affectingelative permeabilities

1.2.11. Fluid/fluidinterfacial areas

Integral geometry provides a means to quantify the structures of geometrical entities. Researchers have
adopted this approach to quantify connectivity measures of pore structures, as well as wetting and
nonwettingphases to evaluate multiphase flow in peatrie systems. There are four useful measures from
integral geometrnknown as Minkowski integralthat describethe shapef a 3-D geometrical structure
(Armstrong et al. 2018; Blunt 2017; Wildenschild and Sheppard 20t8jirst Minkowski (Mo) functional

refers to the volume of the structuFer example,pore volume of a pore structure, or saturatbfiuid

phasesccupying the pore spac&he secondMinkowski functional M1), however corresponds to the

! Parts of the text presented in this mdgztion are published in Purswani et al. (20RMet. Sci. Eng.
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phaseods s(Ay These, wheradivieled by the bulk volume, result in spesififace areaf the

phase () (Landry et al. 2014; Landry et al. 2011)

(1.2)

The use of specific surface areas is recommended over actual surface areas because it removes system
dependenceThis is similar to the use of specific solid surface areas for the estimation of base permeability

of a porous medium as observed in the deyakent of theCarmenKozeny (CK) equation(Lake et al.

2014. The specific surface areawethenused for estimating the specifiwid/fluid interfacial areaas

(Dalla et al. 2002)

1
aw.nw=5[ 3, +a - (13)

Here,U, represents a phaseecific surface areaa(, 4, anda,_, corresponding to the specific solid surface

area, specific wetting phase surface area, and specific nonwetting phase surface area, respgadtively);
the bulk volume of the mediurandU,n represents thiuid/fluid interfacial area.

The third Minkowski functional M>) corresponds to the average curvature at the boundary between
two objects which is commonly used for quantifying local capillary pressure frorphtage image data
(Armstrong et al. 2018; Blunt 201 inally, thefourth Minkowski functional Ms) represents the integral

of the total Gauss curvature of an object which is related to the Euler charac@grasiic (

c=—2 (1.4)



The dscussion on Euler characteristic is available in the next subsectibadditional dails and
examples for Minkowski functionals is availablegppendix A.
Fluid/fluid interfacial areas have been an important measure to analyze multiphase flow in porous
media for a variety of applicatiorf€ulligan et al. 2004; Reeves and Celia 19@®)e such application is
the nonaqueous phase liquid dissolution rates which is critical for evaluating environmental chemical
transport. Experimental attempts at measuring interfacial areas already exist, such as the oil/water and
air/water fluid/fluid interfacial area measurements in a sand pack co{&amipalli et al. 1997b; Saripalli
et al. 1997a) These measurements were made by the application of stetetéve tracer which
selectively adsorb at thkuid/fluid interface and cause its retardation during the miscible displacement
experiment. Although such independent methods exist, the applicatiomayfimaging into fluid flow
research has allowed for superior ways of quantifying fluid surface areas and interfacig@lareg017;
Culligan et al. 2005; Culligan et al. 2004; Dalla et al. 2002; Landry €044; Landry et al. 2011)
Sophisticatedisualization of the trapped fluid phases and improved algorithms for estimating surface areas
of voxelated entities have enabled the estimation diotiaé surface areas of the various phases inside of a
porows medium. These can then be used toward estimating interfacial areas among different phase pairs.
A schemati@-D visualization of a saturated porous media with trapped wetting and nonwetting phases
at two different saturations is shown kigure 3. The solid, the wetting, and the nonwetting phases are
shown by the gray, blue, and green colors, respectivelycdimespondinghase pair interfacial contact
lines arealsodisplayedFigure3 (right) can be understood as a snapshot following a saturatioclsiege
during a typical imbibition process. In elBrepresentatiorthese conte lines wouldrepresent theurface
areas of contactAs the respective phase saturations change, the respective total surface areas of the fluid
phases change, consequently, fthil/fluid interfacial areas changgualitatively expressed iRigure3)

and thus provide a poszale measure tfie movement of #uid during multiphase flow.
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Figure3. Schematic representation of al2 multiphase porous system shagipossible phase/phase
contact lines. Left to right the wetting phase saturation increases. When considereld,ipt&ase/phase
interfacial areas would be estimated along tealregion of contact. Adapted fromalla et al(2002)

1.2.1.2.Phase connectivity

Figure4 shows 3D representations of the nonwetting (left) and wetting (right) phases inside of a saturated
porous medim. These3-D renderingsvereacquired using-rayimagingatstatic experimentalonditions

More details on the experimeate available irthapter 2 of this dissertatiofhe disconnected nature of

the nonwetting phase and the connected nature of the wetting phase can be easily visualized. The

nonwetting phase appears as isoldtieths orclusters while the wetting phase appears more continuous.

2 Parts of the text presented in this sdztion are published in Purswani et al. (20C®mput. Geosci.
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Figure 4. Segmented image of a multiphase system acquired usiry imaging showing (a)
disconnected nonwetting phase, and (b) more connected wetting phase.

Finding a unigue mathematical definition for connectivity in porous media has been an aictivef p
research(Aydogan and Hyttinen 2013Yhere are a number of connectivity paramepeaposedn the
literature such as the Euler characterigtiogel 2002) percolation theor§Hovadik and Larue 200y)
connectivity function(Allard 1993) contour tree connectivifAydogan and Hyttine2013) coordination
number and fractal dimensio(Blunt 2017) Out of these measures, the Euler characterisfibgds been
the simplest and most widely used measure of connectivity in porous (Adldia 1993; Aydogan and
Hyttinen 2014)

The Euler number identifies phase connectivity by considering the number of clustére anchber
of connections for thesdusters.The Eulemumberdecreases withreincrease in the number of clusters.
Euler characteristic is a topological invariant originally proposed by Leonhard Euler for a polyhedra as the

alternating sum of vertices (V), edges (E), faces (F), and object{id computed aRichesor2008)

c=V -E F O. (L5)
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Extending the concept to complex phaseictures, the Euler Poincaré formula has been widely used

for quantifying connectivity of microstructures as,

c=4-.b+, (1.6)

where theparameterss,, 4 and , are the zeroth, firstand second Betti numbers, respectivey.
represents the number of clustetsjs the number of holes or redundant loops (the maximum number of

breaks that can be made without having the cluster split into two as explaiHedring et al. 2013)and

b,is the number of eesed voids.b, is usually considered to be zero for the calculation of the Euler

characteristic (connectivity) of both the wetting and the nonwetting phases. Whiteathisetrue for the
nonwetting phase, since there can be tid gwains or wetting phase globules suspended in a continuous
nonwettingphase in a consolidated porous medium, thés/ mot be truewhen calculating the Euler
characteristic of the wetting phase, where suspemagdvetting phase globules can occur within
continuous wetting phasBulernumbergange from- ato + where a highly connected phase has a large
negative valuevhile a highly disconnected phase has a large positive value.

Recent studies conducted uskgay micro computed tomography (mici©T) advocate for the use of
either botHfluid/fluid interfacial area as well as the Euler characteridtizclure et al. 2018; Mcclure et al.
2016) or suggest use glist the Euler characteristi¢Schluter et al. 2016)in Mcclure et al. 201&nd
Mcclure et al(2016)it was shown that by imeding all Minkowski functional (i.e., both Euler characteristic
andfluid/fluid interfacial areas together with saturation) nearly all of the hysteresis observed in capillary
pressure measurements could be accounted for successfully. However, thefalitttoshiow capillary
pressure predictions by including just phase saturation and Euler characteristic. It is likely that the majority
of the hysteresis could still be captured without the need for the interfacial area measurements. Further, for

modelingpurposes, it isuitableto minimize the total number of variables involved, such that the physics
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of the problem is reasonably captured and at the same time the overall computational complexity is
minimized. Therefore, in this work,enise Euler charactistic asthe measure of phase connectivity.

Porescale fluid properties such thsid/fluid interfacial areas and fluid connectivity (measured through
the Euler characteristic of a fluid phase) are measures that describe the flow of phases within she porou
medium.The porous media properties such as porosity, permeability, and tortuusitever help define
the representative elementary volume (REV) over which the continuum assumption holds valid. Thus, for
consistency, the size of the extracted sub volume forgeake analysis and property estimation should be

sufficiently large that it is eq to or greater than the porous medéinedREV.

1.2.1.3 Capillary number

Capillary number is dimensionless number that is described as the ratio of viscous forces to interfacial
forces. The use of capillary number allows d@ocount forimportant fctors that affect relative
permeabilities, namely, the interfacial tensifinid viscosity,and the flood rate. It is usually calculated as

(Lake et al. 204),

NCa :?' (17)

whereu is the interstitial velocityp is the viscosityof the injecting phase; aniis the interfacial tension
between the flowing phase§ome researchers also include wettabitith the applicationof the term
cod) or the porositynto the definition of capillary numbets multiplication factors the denominator of
Eq. (1.7).
The importance of capillary numbers can be understooddegitiary desaturation curves which show
an inverted Shapedelationship between capillary number and the residual satufaadée et al. 2014)
The cuve is specific to the experimental conditions of rock and fluids used. It shows that residual
saturations can be reduced significantly at very high capillary nunifergoal for EOR processissthus
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to achieve high capillary numbets attain low residual oil saturationdHigh capillary numbers are
accomplishedthrough either high flood rates (within the engineering design to maingaisonable
injectivity) or through theuse of high viscosity polymers to increase viscous foaresith theapplication
of surfactants to reduce interfacial tensi¢grsd consequentiseduceinterfacial forces)

Two types of flow regimg namely,capillary dominated ersusviscous dominated flovean be
identified from the capillary desaturation curv&le threbold is marked aroundapillary numbersf 10
4. Below this threshold;apillary dominated regime oc@uwhich is attainedith low flood rate antbr high
interfacial tension condition&low near the wellbore would experience high flow rates as oppofiewto
far away from the wellboravhere the flow is capillary dominated, and thus relative permeabilities in these
regions will be different. Hence, understanding of the full range of capillary number is imp®Hhisnis
critical for modeling carbon seqstration where storage in the formation is ensuredhgaapillary
trapping mechanism.

The k-S paths for different capillary numbers are inherently different. From the experiments by
(Delshad et al. 1987; Fulcher et al. 1985)as shown that relative permeability paths areigitter(x-
shapedfor high capillary number (low interfacial tensionsyhile the paths are concave for low capillary
numbers.In the work by Fulcher et al. (1985he effect of capillary number on twphase relative
permeabilities was investigated thgbusteadystate experiments by considering viscosity and interfacial
tension effects independentBoth wetting and nonwetting phasgative permeabilities as well as residual
saturationswere found to besignificantly affected byboth interfacial tensiaos and viscosity changes
(Fulcher et al. 1985)he overall impact of capillary number (as a group) was more significanetimgv
phase flow than on nonwetting phase flMae impact of capillary nuiner on multiphase flowhas also
been demonstratedt the porescale with two-phasesimulations byArmstrong et al.(2016) The
implications of capillary number on relative permeability and modeling efforts are provideajter 3 of

this dissertation.
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1.2.1.4 Wettability

Wettability is defined as the ability of solid surface to have preferential affinity to one phase in the
presence of another phaé&nderson 1986a)lt is a property of theporous medium. Contact angle
measurement provide the most accurate measure of wettabilitgoliventionally measured through the

denser phaséor example, foan oil/water/rock systerthe contact angle is measurdtough the water
phase.Figure 5 showsa schematic of a watevetting solidin the presence of il Fr om t he Your

equation, the balance of interfacial forces, gives the measure of wett@bility follows

cogy = Sws ™ sos, (1.8)

ow

wherelow, Uos and Gusare the oil/water, oil/solicandwater/solidinterfacial tensions, respectively.

Oow Ows
Solid

Figure5. Schematic showing a watevret solid in the presence of oil.
There are different types of wettabilitiegVith respect tooil/water/rock system, the rock may be
characterized asaterw e t  (-%5°), interMelliatev e t  76°d05%, oroil-we t  ( ¢183°). Thede& A
rough estimatewereprovidedthrough experimentsy Treiber et al(1972) Complete watewetness and
complete olwet ness would occur at d Figure®showsastherdatioE 180 A,

differentrock wettabilities.
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Completely water-wet Water-wet Neutral-wet Oil-wet Completely oil-wet

--

Solid

Figure®. lllustrations of different types of wettability for oil/water/solid systems. From left to right
theY S R A dmdit@hility to oil increases.

Other importanctlassification®f wettability include fractionalvettability and mixeedvettability. Both
these tpes include parts of the porous medium that may beetiland other parts that may be watet.

The difference between the two lies in the way these wettabilities are developed in a porous medium.
Fractional wettability is often developed in unconsokdatorous media by mixirgplid grains oflifferent
wettability types (for example, plastic bedédsil-wet and glass beadlsvaterwet)(Klise et & 2016;

Landry et al. 2014; Landry et al. 201¥Yhen these grains amdxedand compressed to form one medium,
there are pores that are completelyvedit versus pores that are completely watet.

On the contrary, mixedettability is developed ia porous medium due to the process of aging the
rock sample. As such, most oil reservoirs are naturally mietd In a laboratory, the aging process is
carried out after primary drainage when an initial oil saturation has been established in the mogk. Agi
requiressubjectingthe rock sampldgo high temperatures and pressures for a period of time. These
conditions are subjective and depend on the experimentalist and are set based on the test requirements. At
initial oil saturation conditions, parts of theck are in direct contact with the oil and yet other parts are in
contact with water which is present in irreducible amount. During aging, the portithesa€k in contact
with oil are said to become eitet. This leads to the generation of mixedttability where within the same
pore, parts can be ewWet and parts can be watset (for example, corners of the pore space occupied by
waterwill remain waterwef). The degree of wettability alteration depends on the aging conditions.-Mixed

wettability was first coined bySalathiel(1973)
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Wettability of a mediumis often characterized qualitatively usirmglative permeability curves. A
schematicfor oil/water relative permeabilities during water injection are shown for three types of
wettability in Figure7. The endpoint water relative permeabilities and residual oil saturations are marked

for the three scenarios.

O 1'Sor1 l'SorS 1

1‘8 2
SW or

Figure7. Schematic showing three types of rock wettabilities characterized qualitatively from the
visualization of twephase relative permeability curves. Here, the two phases are oil and water and the
flow (direction marked by the arrow) represent water injectidine Back green, and red curvesre for
an oilwet, awater-wet, ard a mixedwet rock respectively.

18



The endpoint values of water relative permeabilities and residual oil saturation together with the cross
point saturations where the oil and water re@apermeability curves intersect are used as qualitative cues
for wettability assessment of the rock from a flow experiment. Typically, for a-watierock (green curves
in Figure7), the crosgoint saturation is greater than 0.5, dne endpoint water relative permeability is
low ~ 0.2 and can go lower than 0.05 for extremely watstrmedia(Blunt 2017; Lake et al. 2014) his
is becausevater is wetting the surface and would consequently occupy the smaller regions of the pore space
such as the pore corners or crevices. Thus, the water conductance remahas bowoilwet rock (black
curves inFigure?), howeverwater would occupy the centers of the pore space which leads to higher water
conductance and consequently high endpoint water relative permeabitigs Also, for oilwet rocks,
the crosspoint saturation is typically lower than for watget rocks.

For mixedwettability, endpoint water relative permeability remains higher than the -watecase.
Interestingly, experiments have shown that the residliahtiration for the mixedet case is often the
lowest(Jadhunandan and Morrow 1995; Salathiel 19TB¥ reasons for this observation are still in debate
in the literature, but one of the hypotheses is that mixettiability provides for continuous pathways for
oil to flow in the medium and if flow exp@nents are prolonged over long periods, oil trapping can be
minimized significantly. Discussions on wettability and its consequences to phase trapping are presented

in detail inchapter4 of this dissertation.

1.2.1.5.Pore structure

It has alwaysbeena challeng to quantify pore structure information. No single metric exists in the
literature.Porestructure differshot justfrom one typeof formationto another, but also from one medium
to anotheeven from the same formatiohhis is because of heterogeneity that exists in natural geological
formations(Lake et al. 2014)No two naturally occurring porous media will be exactlyka. Some of the

most usegborous media properties that give insight into the pore structure are the permeability of the rock,
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which describsthe ability ofa porousmedium to transmit fluids, and the porosity of the medium, which
describes the abilityfahe medium to store fluids. The ratio of the square root of permeability to porosity
is often used as a quantitative measure for characterizing pore structure infor@ihtgsmeasures often
usedfor modeling base permeabilities, are the tortuosity gpetific surface areas of the solid surface.
Tortuosity, a dimensioless porous medium propertg,defined as thequare of theatio of capillary tube
lengthto the length of the representative elementary vol(ila&e et al. 2014)which is essentially the
squared ratio gbath length traversed by the fluid in the pore space to the length of the porous medium.

Other quantitative measesmost frequentlyused forcharacterizingpore structure information are the
distribution of pore and grain sizes. Paiee distributions arexperimentallymeasured though the use of
Mercury (Hg) intrusion porosimetry wheegprimary drainage capillgrpressure curve is generated for a
Hg/air/rock system. Hg is injected as the nonwetting phase into the medium to increasingly high capillary
pressureso enter smaller sized pores. Through such experimentatfonmation on the pore sizéand
average pre sizesYor the medium is extractdd the form of a frequency distribution pl@t poresize
distribution parameter is ofteset as thecalibrating exponent forcapillary pressure and relative
permeability curveg¢Brooks and Corey 1964; van Genucht&8@; Land 1968)

Measuredor the pore structursuch as the porsize distribution, or the square root of permeability
over porosity are bulk (or average) measures fiorous medim. Techniques likex-rayimaging flow in
micromodelsand porenetworkextraction modelprovide othemquantitative measures for characiingy
pore structure by taking information at the peseale(Blunt 2017; Fatt 1956; Lenormand and Zarcone
1984). These include theoordination numberaspect ratio, pore topology, geometric shape factor (or the
distribution of the geometric shape factors).

Coordination number and pore topology give direct information on the connectivity of the pore space.
Coordination number is defined for a pore asaberagenumber of throats that are in direct connection to
a pore(Blunt 2017) whereas the topology of the pore space is estimated as the Euler characteristic of the
pore spac&hich can be represented fitre entire region of interest by normalizing with respect to the bulk
or pore volume of the region.
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Individual poreelement sizes play an important role in characterizing the pore structure information.
For example, thegre-body to porehroat aspect ratie found to cause hysteresis in relative permeabilities
High aspect ratioare linked to increased trapping bétnonwetting phase due to increased sifapvents
during imbibition(Jerauld and Salter 1990}he geometric shape factbigwever provides information of
the shape of the pore/throat elemeartdis defined as the ratio of the cressctional area of an element to
the square of its perimeter. If all pore/throat elements of a porous medium were eincleniform there
would be no phase trapping in the pore space since all elements will bel d@imgletely by the invading
phase. Therefore, for simulation techniques such asrtveork modeling the shape factors becomes
critical as it helps in attaining pore structures with noncircular (polygonal) network elements that allow for
trapping of phass in pore corners. Availability of polygorstiaped network elements also allow layer
flow where the phaseay beconnected through the corners.

In this dissertation, we keep pore structure information constant for the sets of simylatfonmed
for numerical data set generation. This is critical for the state function approach of modeling relative
permeability. Simultaneous efforts have beengoimg in our research group to develop state funetion
based models for characterizing the base permeability of a porous medium with the knowledge of the

different porestructure metrics.

1.2.2.Models for relative permeability

1.2.2.1.Coreytypemodeb

Initial efforts for modeling relative permeability were presentedPiycell (1949) using a bunk of
capillary tubes, an@urdine (1953) with the application of capillary pressure curves andtoniosity

parameter Bur di n e 6 svettmginonavettingphaseeldtive permeabilities were expressed as,
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krwet = (/ rwet)2 J— ) (1.9)

krnwet = (/ rnwet) ) (1-10)

wherekwe andknwe are therelative permeabilities tthe wettingandnonwetting phasesespectivelyamwe
(=alawe) andamwe (Fatanue) are thewetting and nonwetting phase tortuosisitios respectivelya-is the
porous medium tortuosity factosw: and ane are the wetting and nonwetting phase tortuosity factors,
respectively Sy is the minimum phase saturatioasidP. is the capillary pressure.

Burdine provided simplifiedsaturatiorbasedexpressionsfor the wetting and nonwetting phase

tortuosity factors as,

_Sie- S
rwet — 1- Sm (111)
/e = et S (1.12)
1 Sn- Sw

where Syet and Swetare the wetting and nonwetting phase saturations, respectiyedyid Swr are the
minimum wetting and residual nonwetting phase saturation, respectively.

Corey(1954)e xt ended Burdinebs equation by approxi mat.

1 _$C(S- §) forg >§ |
1

: 1.13
P2 Oforg < S, i (113

C
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where C =C/(1 -Sb,), C is a constantThe following relative permeability equations were presented by

Corey(1954)
_é'so_ %r 4@
km—gl_ s ¢ (1.14)
¢ 45-5 & §-5°
ko =6l o2— Gl —fe— . (1.15)
976 oS- S #£ kS

Extension to Coreyo6s BrapksandiCoreyk964)irear nore generas form toe d

estimate wetting and nonwetting phase relative permeabilities as follows,

Kwet =(Ss) 7 (1.16)
,a

krnwet:(l 'Se) % s/ ’ (1'17)
¢

whereS, known as the effective phase saturatisrdefined adS- $)/(1 - §); S is the residual phase

saturationthe parametegy is the poresizedistribution index.

These Corey models wei@ther simplified andjeneralized as exponential models as follows,

& S, Sn s

kpt = Kp1 @ ———c— Sor -50s 8 (119

¢
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wherekp1 and kg, are relative permeability and endpoint relative permeability to ph&seSp1, andSy:

represent the saturation of phasendpoint saturatiomf phase, and endpoint saturatioof phase,
respectively;n; is the tuning exponent. This expression feater/ol relative permeabilities during

waterfloodingthen are

- k{c\)Na SN_ Svirr ”:g’ (1.19)

krw Qi' Sor 'Svirr -

_od S-8 0
kro_ o% ’ 1.20
(o Sor '$virr 9 ( )

wherek. andk;, are the water and oil relative permeabilities during waterfloodifygis the endpoint
relative permeability to water arf, is the residual oil saturation which are determined at the end of
waterflooding, whereag?, is the endpoint relative permeability to oil afgh is the irreducible water

saturation which are determined at the end of oilflooding (prior to waterfloodingndn,, are the tuning
exponents. Similato the exponential odel other empirical models are available in the literature for
specific set of operating conditiofBulcher et al. 1985; Honarpour et al. 19&¥eTablel for empirical
expressions of oil/water relative permeabilities from the literafoeadditional saturatichased models
for relative permeabilityhe reader iseferedto Honarpour et al(1986)

Threephaserelative permeabilitymodelsare not discussed in detail herdut some of the more
commonlyusedthreephase modelsclude,Naar and Wyga|1961) Stone I(Stone 197Q)Stone lI(Stone
1973) andL a n d 6 s (Lana 1®&8B) A comprehensive comparison of these models againstphiaese

experimental data was summarizedAbder(1981)
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Table 1. Empirical oil/water relative permeability functions falifferent rock types and wetting

conditions from the literature.

Reference Rock type Wettability Injection type
Honarpour et al. (1982) | Sandstone and conglomerat Waterwet Water injection
45,8 O i5-§5 0
k :0.0353833?[7' | & 0.010874—3  5+0.56556°%(S, S (1.22)
" cl- S -S = e & =+ ( )

Honarpour et al. (1982) | Sandstone and conglomerat Oil/intermediatewet | Water injection

5, - 6
Ky =1. 581453M 0.58617—23?'9”—‘$r (S6 Si) 22484 1g)( s ) (122
cl-Si = Iei & =
Honarpour et al. (1982) | Sandstone and conglomerat All | Water injection
e N 18
%S 0o
eﬁ 0 “or 2 2.
ko =076067% M = UL S-S 856318 15,)(5 §) (123
g IS ﬂai S 9 -
é ¢
Honarpour et al. (1982) | Limestone and dolomite | Waterwet | Water injection
éSN— SN é_]_ 0643
Ky =0.002052g—2. g 00513(5N sv,)ai— 0 (1.24)
¢ ¢ka =
Honarpour et al. (1982) |  Limestone and dolomite | Oil/intermediatewet | Waterinjection
2 6 o _ 4
- 02998@@M 0 032797 "8 ($ §;) 6413059 " ® (1.25
cl-Su = Iei & = 1 o
Honarpour et al. (1982) |  Limestone and dolomite | All | Water injection
8-S, 035-§5 °
=1.2624¢ - Oree (1.26)
ro Ql Sor J-Q'%vl '§r
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Table 1.(Continued)

Fulcher et al. (1985) | Berea sandstone | Waterwet | Oil injection
. D
(B+cins)asmg, O
Kio(ar) = A gae—ng 0 (1.27)
¢ am @
o éB+DIn
as, - S, Enst
Kwa(cr) ‘Aaeisi” Sj“'” $ (1.28)
(ol ire +
o gB+DIn(Ng,) |
&4S,- S, ©
Kuwz(ar) = s T (1.29)
c 1- SNirr -
Fulcher et al. (1985) | Berea sandstone | Waterwet | Water injection
gB+CIns -oDIn;"i g
é - 0] m 3
ro(im) = A?S]_%S?r 0 ¢ (130)
o
e am @
o éB+Dln, ]
&4S,- Siy ® sy
I<rwl(im) = 5 (1.31)
®1- S -
C irr g
° gB+DIn(Ng,) |
&4S,- S, ©
Kuwz(im) = peen” Sin 5 (1.32
c 1- SNirr -

Residual saturations, endpoint relative permeabilitiead Corey exponents are used for tuning
specifick-S path. These empirical models provide good match in most,dagehe challenge with such
representation of relative permeabilities is that the information about the pore structure, wettability, and
capillary number are all incorporated into the tuning exponents. i=&path would thus be distinct and
not generakiable As such, hysteresis in relative permeability is not resolved. Fodtfierentresearchers

have attempted different modeling solutions. Some of gde@nmonly knownhysteresis models are

described next.
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1.2.2.2 Landtypemodels

Figure8 shows a schematic displaying hysteresis in nonwetting phase relative permeabilities. Hysteresis in
relative permeability, as described previguds the path dependency of relative permeability in the
saturation space. The black curngd®w nonwetting phase relative permeability during primary drainage
while the red curve shows the nonwetting phase relative permeability during imbibition. Tib&iamb
process is begun #ieinitial nonwetting phase saturatio&.(;) and ends at thesidualnonwetting phase
saturation &wr). This set of primary drainage and imbibition forms one set of scanning relative permeability
curves. Other such sets of scanning curves cgeherated experimentallgach with its own starting and

ending nonwetting phase saturation.
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Figure8. Schematic of nonwetting phase relative permeability showing hysteresis after flow reversal
from primary drainagéblack curvejo primarywater injection(red curve) The initia) trapped, residual
and flowingnonwetting phase saturatins are marked on the figure. Adapted fra@arlson(1981)

Naar and Hendersdii961)proposeda model for imbibition relative permeability lmpnsidering the
trapped nonwetting phase saturation during the imbibition process. They developed the following
relationship between the imbibition and drainage saturations for the same value of nonwetting phase relative

permeability.

S:v,imb = slv,dr 0.5( %d? ): (.33
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where S,imp = (Suimp - $i)/ @ -§).is the reduced wetting phase saturation during an imbibition process;
S is the initial wetting phase saturation (or the irreducible wetting phase saturation) prior to the imbibition
processSwmbis the wetting phase saturation during imbibiti&y, = (S,a - $)/@ -S). is the reduced
wetting phase saturation duringdeainageprocess;Svar is the wetting phase saturation during
drainageFurther, ly usingEg. (1.33), the following model for nonwetting phase imbibition relative
permeabilitieg k' ) could be established by using geurationinformation of the prior drainage

process,

40.5- Syimp P«
krlnw:ég% @- 'SN,imbz)' (134)

Land (1968) observed trends of characteristic initiakidual (IR) saturation curvesd proposed a

relationship betweeg.w andS.i as follows,

1 1
- . 13
S1wr Sﬁwi ( 5)

Thenonwetting phase relative permeability during imbibition is estimayexktracting information of
flowing (Sw) and trapped saturatigi®w). On any point on thé&n.~Sw path (seeFigure 8), following

relatiorship existamong the different saturatigns

S = St St (1.36)

Using Eq. (1.35) andEq. (1.36), Swr is estimated as$ollows (derivation available irCarlson 1981
origindly equation wapresentedn Land 1968)
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Land(1968)thenfollowed similar treatment as that Grey(1954)modelto propose the following retian

for gas relative permeability with the use of the flowing sgtsiration,

2+/

(%) "

(139

OO 0

krg = (S;F )2

O B D
»09383 Do

where S;F is the freeflowing gas phase saturation which is normalized to the effective pore space
See = §e /(- Sir); andais the poresize distribution index.

Killough (1976) proposed an interpolatidmased approach for estimating imbibition relative

permeabilities based on drainage relative permeabilities as follows,

o /.
aS*uw' S1wr C (1.39)

krlnw ( SWW) = I$nw( Smwi)m (_:],

where ki, (S.) is theimbibition relative permeabilityand kb, (S.i) drainage relative permeability at

initial nonwetting phaseaturation. This proged formsatisfies the limiting conditions for imbibition

relative permeabilitieswhere K, (Swi) = Knw( Swi) @nd Ky ( Sy ) =0. Carlson further simplified

Kill oughos peopopedtoaa kim;(SnW)i cad beestimated from theorrespondingdrainage

nonwetting phase relative permeabil(cyraw) with the knowledge of the flowing nonwetting phase

saturation
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krlnw(snw) = I'ﬁﬁw( $1Wf) - (140)

Both Killoughoés and Carl sonds model retquire the Kk
Thus far, most relative permeability modate developetbr waterwet mediaThetrappingmodel by

Spiteri et al(2008)wasan mpr ovement over Landdés model . It was

wettabilities.It was developed usinigitial-residual (R) trappingdata sets generated usipgrenetwork

modeling Their model was given as,

S=a$ -bg, (1.42)

whereUandb are model parameterSimilar to the treatments ¥arlson(1981) basedn the information
of the trapped versus flowing saturation and the previous primary drainage curves, relative permeabilities

for the waterfboding cyclefor different contact anglesan becalculated

1.2.2.3 Limitations ofelative permeability models

Some limitationsof the modelsdescribedfor relative permeability irthe previous subsections are as

follows.

1 The majodimitation of Land-based models is that the path dependency for relative permeability is
not resolved. Based on the information of the trapped ptieeseelative permeabilities for the water
injection cycle are predicted which inherently depends on the particularisganurve.Each set
of scanning curve wikkonsequenthave its own initial and residual saturation and its own path to

be tracedAnd each path will require tuning ofitsonand és trappi ng coef fic
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for the set of flow conditions that process is subjectedlits leads to ad hocombinations of
Corey model with L an dafcdatingrelatiye parnmegbilite ef f i ci ent
These models are empirical dadk porescale physicgsdespitehe understanding of the different
factors that affect relative permeabilitidfiese models are therefore less predictive away from the
conditionsunder which they are developed

Most Landbased modelga developed for aterwet systems and apeimarily used for predicting
imbibition relative permeabilities.

These models are deficient because ttezyuire kowledge of previous drainage cuteealculate
imbibition relative permeabilitiedn addition, they require knowledge of different inputs such as

the initial and residual nonwetting phase saturations.
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1.3.Research objectives

Currentrelative permeabilitylk) models are functions of phase saturatithred are matched for specific
flow/experimental conditiondHowever,as examined from the literatutegether with phase saturation,
multiple parameters affect relative permeabilisash as thevettability of the mediumcapillary number,

pore structure fluid pha® topology, andfluid/fluid interfacial areasThese other parameters affecting
relative permeabilities are inherently captured througtethpirical saturation functions. Representation

of relative permeabilities only in the saturation space causesimiqmeness and path dependency in
relative permeabilities which often cause simulations to fail because they lack generality and are not
physically based. As a result, hysteresis in relative permeabilities arises, which is a major modeling issue
for reservoirsimulations.

Efforts have been presented in this dissertation to model relative permeabilities by considering
functional forms that include the effectstbe key controllingparameters on relative permeabilities. The
purpose of this dissertatias twofold, to

(a) understand howifferent parameters, specificallphase saturation, phase connectivity, capillary
number, and wettability affect relative permeabilities;

(b) propose physicalipasedk; models by including the effexbf these parameter
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1.4. Dissertation layout

There areifre additionalchapters in this dissertation afteetimtroductorychapter.For chapters? to 5, an
abstract, relevant literature survey, methodology, results and discussions, and conclusions are presented.
Below abrief summaryfor eachchapteris presented.

In chapter2, a staticx-ray imaging experiment of a multiphase system is discussed to quantify
measuremerbasecderrors due to image segmentation. A higholution (6 um) and a lowesolution (18
pm) x-ray scan of the same system was acquired. Thetgigiblution scan was used as ground truth while
the lowresolution scan was used to test different image segmentation methods and quantify errors in pore
scale measurements. It was found that soede masures of phase topology afidid/fluid interfacial
areas are highly sensitive to image analyses procedures such as that of image segmentation. To mitigate
these errors, images with higésolution should be acquirethd these should babtainedin stepsto
improve the accuracy of image segmentation. In addition, supervised machine learningldastioh
was found to provide the closest pa@ale measures to the ground truth. From this work, the need to
supplement experimental data sets with numeriata dets was identified.

In chapter3, a state functiofvased approach for relative permeabilities is discus&etklative
permeability equaticwnf-state k-EOS is forced as a quadratic responsekfdn the phase connectivity

phasesaturation spaceg&- S). TheEOSis constrained to limiting conditions in thé- S space. Although

the model is built for fixed capillary number conditions, it is tested for different capillary numbers, ranging
from one to 16. The dependence of phase connectivity on capillary number is also explored. It was found
that a quadratic response for relative permeabilities work across different capillary ndrnbdiseark-

S paths for high capillary numbers (small Corey exponents) and nonkr&gpaths for low capillary
numbers (high Corey exponentggre found to occur due to fast and slow changes in phase connectivity,
respectively.From this work, th@eed for large numerical data sets to calculate relative permeability partial

derivates for th&€OSdevelopment was identified.
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In chapter4, numerical data sets of phase saturation and phase connectivity are generated using pore
network simulationgo study the effect ofvettability on phase trappinduring primary drainage, the
contact angle was satzero degrees. However, during secondary injection process, the contact angles were
changed from 0° to 180°. Trends of residual phase saturation and residual phase connectivity are analyzed
for different contact angles. Hysteresis trapping models arenpeelsto capture the residual trends and
comparison is presented against models from the literature. It was found that wettability significangly affect
recedingphase trapping and that peseale mechanisms of layer flow and pistiee advance of the
invading phase become critical when the receding phase is wetting to the surface.

In chapters, the workflow of porenetwork simulations frorahapter4 is utilized to generateaumerical
data sets of nonwetting phase relative permeability, saturation, andctieityneHere, capillary number
and pore structures were kéged, and two wettability cases were considered both in the wageregime.

Through hundreds of simulations, theS, and £ data sets are analyzed to estimate @laderivates ok
in the & S space. These partial derivativea® then utilized fothe development of aBOSresponse for

relative permeability. It is found that tlEOS predictsk; for the entire data set, regardless of the direction
of flow, thus resolving hysteresis in relative permeabilities.
In chapterg, key concluding remarks from this study and outlook for future research efforts that can be

built from this dissertation arggsented.
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CHAPTER 2. IMAGING AND PORE-SCALE

MEASUREMENTS

Preface

The contents of thishapter wer@riginally published in the Journal of Petroleum Science and Engineering

and are referendas

Purswani P., Karpyn Z.T., Khaled E., Yuan X., Xiaolei (2020)
Evaluation of Image Segmentation Techniques for IrBamed Rock Property Estimatiah,Pet.Sc. Eng,

(195), https://doi.org/10.1016/j.petrol.2020.107890

Author contributionsPurswaniP. and Karpyn Z.T.conceptualized the experimentirBwaniP. and Eab
K. performed the experiments and wrote the original draft in consultatiorkaiftyn Z.T.All coauthors

contributedowardanalyzing the datand updating the manuscript.

Abstract

Accurate characterization of rock and fluid properties in porous media xsengimaging techniques
depends on reliable identification and segmentation of the involved phases. Segmentation is critical for the
estimation of porosity, fluid saturations,ifii and rock topology, and pore connectivity, among otherpore
scale properties. Therefore, the purpose of this sttadyto compare the effectiveness of different image
segmentation techniques when applied to image data analysis in porous media. Twe leaating based
segmentation techniquésa supervised ML technique called Fast Random Forest, and an unsupervised
method combining 4neans and fuzzy -means clustering algorithms were compared using an
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experimental data set. Comparisons are alscepted against traditional thresholding segmentation. In
addition, we discuss the potential and limitations of applying deep ledvase segmentation algorithms.

The performance of the segmentation techniquescompared on estimates of porosity, satarg and
surface area, as well as pa@ale estimates such #sd/fluid interfacial areas, and Euler characteristic.
X-ray micro-computed tomography images for a sintered glass frit, saturated withhtvges (air and
brine), were acquired at two difnt voxel resolutions. The higlsolution images (6 pm) were used as

the benchmark case, while the logsolution images (18 um) were segmented by three segmentation
techniques: Fast Random Forest, clustering, and thresholding. The results for podogligse saturation

from thresholding and from the supervised ML methasl,Fast Random Forest) were found to be close

to the benchmark case. Segmentation results from the unsupervised ML methatugtering) were
largely unsatisfactory, except ftal surface area measurements. The supervised ML segmentation results
provided better measurements forlaiine interfacial areas by capturing thyglease interfacial regions.

Also, all segmentation techniques resulted in similar measurements fuvaag Euler characteristic
confirming poor connectivity of the trapped air phase, although the closest results were obtained by the
supervised ML method. Finally, despite the supervised ML segmentation technique being more
computationally intensive, it wdsund to require less user intervention and its implementation was more
straightforward. In summary, this work provides insights into different segmentation techniques, their
implementation, as well as advantages and limitations with regards to quantiadilysis of porscale

properties in saturated porous media.
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2.1.Introduction

High-quality, nondestructive imaging is at the heart of innovative science in a variety of disciplines. It
provides researchers with the ability to examine objects dktlemgth scales, which enables the estimation
of a variety of structural and topological properties. Indhesciencesapplications of nowlestructive
imaging include characterization of rock heterogeneities, -pet@ork properties, roughness, fluid
distributions, and transport in porous systéBlant 2017; Lai et al. 2015; Noiriel et al. 2004; Wildenschild
and Sheppard 2013X-ray micro-computed tomographyuCT) is one such imaging technique that
generates a thregimensional (2D) mapping of linear attenuation coefficients acquired by a digitaly
detector. These attenuation coefficients are distinct for each material phase in th€€objgdée and Boone
2013) As such, ax-ray image provides both quantitative and qualitative information about the elements
constituting the object scanned. To draw meaningfigrination from these digital images, a series of
image processing steps are necessary. These steps help improve the visual appearancexahyligital
images, as well as prepare them for feature and property analyses.

There are three main steps of imagecpssing, namely, pgrocessing, segmentation, and post
processing. Image pigrocessing consists of steps to reduce the impact of image artifacts such as noise,
image blur, beam hardening, ring effects, and bright gphitda and Abrahams 2013)his is achieved by
the application of image filters like mediéBernstein 1987)mean, nodocal meanBuades et al. 2005)
and edge detecting filte(Sheppard et al. 200#)at help improve the quality of reconstructed raw images
and prepare them for image segmentation. Image segmentation is the process of categorizing (or labeling)
each voxel to a specified class or phase in the object. This labeling step assigns eristiaraamber to
all voxels belonging to the same phase. This assists in quantitative analysis on the images, for example,
voxel counting is used for porosity and phase saturation measurements. Lastly, imgeqgessing is
the operation of fixing angnisrepresentation of phases in the segmented image. All image processing steps
are crucial for consistent and accurate feature measurements. The purpose of this work is to evaluate various
image segmentation techniques for imégsed rock property estinia.
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Due to the growing access)stay uCT scannerso numerous researchers in Earth sciences, there has
been an increase in the number of studies that use this technique for studying fluid flow in porous media.
Segmented images are used to measure ptfemmcteristics to provide the observational basis for
understanding different processes such as multiphase fluid flow, structural morphology, pore connectivity,
fluid/fluid, and fluidsolid interfacegBlunt 2017) These characteristics are subsequargbd to quantify
fluid transport through estimations of flow properties such as relative permeabilities and capillary pressures
(Khorsandi et al. 2017 Carefully segmentexiray images are often uses a starting point for simulating
fluid flow by using techniques such as Lattice Boltzmann simulafimastrong et al. 2016;andry et al.

2014; Liu et al. 2018; Mcclure et al. 20X8)porenetwork modelindDong and Blunt 2009; Joekdliasar

et al. 2010; JoekeNiasar et al. 2008; Reeves and Celia 1996; Valvatne and Blunt. 2Q00#& 2 lists a

few of the experimental studies performed over the past two decades. It can be inferfBableshthat a

variety of porous systems spanning natural and synthetic media have been studied. It can also be inferred
that, in general, over time, the scanning resolutions have improved as tgghaNances. Further, there

is a general acceptance for using+haral means filtering technique for ppeocessing purposes.

Table2. Characteristicef imaging techniques from various experiments of fluid flow in porous media

Voxel .
Porous Image . Segmentation .
Reference . I resolution . Post processing
media filtration technique
(um)
(Culligan et al. Glass bead I i . i
2004) pack Median filter 18 k-means clustering
(Culligan et al. Soda lime L i . )
2005) beads Median filter 17 k-means clustering
(Porter and Anisotropic . i . i
Wildenschild 2010) B34 PA%K | it sion filter | -9 118 | k-means clustering
(Karpyn et al. 2010 Glass bead - ~26 Thresholding -
pack
Acrvlic bead Smoothing of
(Landry et al. 2011 y ack Median filter ~26 Thresholding surfaces for area
P measurements
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Table 2. (Continued)

Remova of

. Bentheimer . - nonwettingclusters
(Herring et al. 2013 sandstone - 10 Indicator Kriging smaller than 100
voxels
Gauss curve fitting
(Celauro et al. 2014 Coated glass - ~27 to gray value -
bead packs hi
istograms
(Harper 2013; Anisotropic i . i
Herring et al. 2013; Crushed tuff diffusion filter 175 k-means clustering
JoekafNiasar et al. :
Sintered
2013; Porter and glallss bead | Median filter 13 Thresholding -
Wildenschild 2010) pack
Bentheimer Removal of air
(Herring et al. 2015 sandstone Median flter 5.8 Thresholding clusters smaller
than 125 voxels
(Rucker et al. 2015 Gildehauser Norvlocal 2.2 Watershed -
sandstone means
Segmented phase
(Berg et al. 2016) Gildehauser Non-local 29 Wateshed were cleaneq usin
sandstone means morphological
operations
Sintered sod: Norvlocal
. means and Markov random
lime bead L 8.4 . . -
) ack total variation field technique
(Schluter)et al. P denoising filter
2016
Sintered Removal of
glass bead | Median filter 2.2 Watershed clusters smaller
pack than 125 voxels
(Gao et al. 2017) Bentheimer Norvlocal 6 Thresholding -
sandstone means
Ketton Norlocal Seeded watersheq Dilation of rock
(Singh et al. 2017) limestone means 3.28 algorithm and phase for curvaturg
thresholding analysis
Bentheimer Non-local Seeded watershe Boundary
(Lin et al. 2018) sandstone means 3.58 algorithm and smoothing for
thresholding curvature anlgsis
Watershed
(Ricker et al. 2019 i Ketton Nor-local 3 algorithm and -
imestone means .
thresholding
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Table 2. (Continued)

. Bentheimer Non-local Seedeq watershe Boungiary
(Lin et al. 2019) sandstone means 3.58 algorithm and smoothing for
thresholding curvature analysis
Thresholding; k | I
Sintered and ¢ means Remova_ of sma
. Non-local . . nonwettingphase
This work glass bead 6; 18 clustering; and
means ) . clusters for Euler
pack supervised machin )
| . number analysis
earning

Porescale measurements such as porosity, phase saturation, fluid topolofjyicifidid interfacial
areas can be extremely sensitive to the results of image processing steps, in particular, image segmentation.
Segmentation methods can largely be categorized into two groups, global methods and local adaptive
methodglassonov et al. 2009%lobal methods, such as intendigsed thresholding, work by identifying
valley pointson the voxel population histogram of the filtered images. A threshold gray value is set to
classify the voxels, such that gray values above the threshold are identified as one phase, while the voxels
below the threshold are identified as the other phasés method worked reasonably well for a multiphase
system with sufficient contrast in the gryels of each phase, which makes the identification of the valley
points in the histogram easier. Because of its ease of application, intesesity threshoidg continues to
be a common method of segmentation in the digital rocks comn{iniiganovic et al. 2015)

Locally adaptive segmentation refers to the segmentation methods that make segmentation decisions
for each voxel in the image. There have beenearoms developments on this type of segmentation to
achieve more refined results. Watershed segmen{aincent and Soille 1991¢onverging active contour
method(Sheppard et al. 2004Markov random field segmentatigKulkarni et al. 2012)and indicator
kriging (Oh and Lindquist 199%re a few examples of localidaptive methods. A comprehensive review
of the implementation and comparison of these locally adaptive methods is avail&alellter et al.

(2014) Machine learning techniques such as fuzemyeangPham and Prince 1999 combination of k
means and fuzzy-meangDunmore et al. 2018and supervised machitearning are other examples of

locally adaptive methods of segmentation.
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The capability of machine learning (ML) approaches in solving classification problems has enabled the
utilization of such techniques for generating segmentation algorithms. Tradlitopervised ML
algorithms work as feedback methods by learning from annotated voxel labels of some part of an image in
order to predict the class distribution of each voxel in the whole image. Such an ML model is learnt in a
training process that extraca vector of features that influence voxel class labels based on feedback from
annotated labels of some vox@t®otsiantis 2007) After training, the resulting ML model is used to assign
a class label to each voxel in the entire image based @l faature values. Support Vector Machines,
Neural Networks (Multilayer Perceptron), Decision Trees, Random Forest, and Fast Random Forest are
examples of supervised ML algorithms that can be used to generate classification models for image
segmentation pposes.

Unsupervised ML approaches, unlike supervised methods, do not need annotations for part of data, but
operate by grouping voxels based on similarities. Clustering, also known as cluster analgsigfithe
most common types of unsupervised MLthaels and it is widely used for classification purposes in data
analysis and data mining.-tkeansclustering,and fuzzy clustering fmeans or soft kneans clustering)
are two common methods for clustering. Botm&ans and-means clustering are iterativaethods that
operate by identifying the similarity of an element in the population to different groups of elements. The
assignment of an element to a particular group is probabilistiecrieans as opposed to deterministic-n k
means.

In the past decade so, deep learning (DL) methods based on rtajter artificial neural networks
have produced statd-the-art results in many fields including computer vision, speech recognition,
medical image analysis, and material inspection. In the area of imagerdatjon, DL has also achieved
success, including in the segmentationu@T images. Through training with a large number of fully
annotated images, DL models can extract meaningful visual features automatically and use them to infer
segmentation maps. F8-D image segmentation,-blet (Ronneberger et al. 2019peephb seriegChen
et al. 2018; Chen et al. 2017a; Chen et al. 2QIVMbsk RCNN (He et al. 2017among othergOktay et
al. 2018; Xue et al. 2018; Zhou et al. 20t8Yer a variety of differerdgpplications from natural images to
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medical images. For-B image segmentation, prior woriSicek et al. 2016; Milletari et al. 2016; Xue et
al. 2019)mainly focus on medical applications such aB gagnetic resonance aging (MRI) or CT
scans.

For rock image segmentatiojang et al. (2020ntroduceda novel 3D uCT segmentation method
built on U-net(Ronneberger etl. 2015)and ResNefHe et al. 2016 their recat work. Niu et al. (2020)
andKarimpouli and Tahmasebi (2018%ed Convolutional Neural Network (CNigased algorithms for
segmenting sandstone data sets. It was found that CNN algorithms can minimize the neediéinesier
inputs(Niu et al. 2020) Although DL methods can achieve promising segmentation results, their feature
learning capacity heavilyelies on the large amount of training images as well asduglity manual
annotations. Moreover, unlike other types of visual recognition tasks such as image classification which
only require image level annotations, the annotation-Bf BCT rock image for segmentation purposes
requires labeling at a voxbl-voxel level for the entire image, which can be very expensive and
impractical. Further, because the mineral composition and structural features ¢liieaus media, voxel
label annotations ohtged for one rock system may not be useful as training data to train the segmentation
model for other rock system$hus, DL methodsmay not bea suitable choice for image segmentation
unless diverse saturated porous media image data are available as training data sets.

In summary, the literature presents a variety of image segmentation techniques including both global
and local techniques. However, newer ML techniques are less commonly used in the porous media
community. Therefore, the purpose of this study is to compseeeffectiveness of two Mbased
segmentation techniquésa supervised ML technique called Fast Random Forest, and an unsupervised
method combining #neans and fuzzy-means clustering algorithmis for segmenting a saturated
multiphase porous medium. @@arisons are also presented against a threshdddised segmentation
technique. We investigate the segmentation methods on assraldldataset where DL models can easily
overfit to training samples which makes them less generalizable. For this neastm,not include deep
learningbased methods in our comparison. Our goal is to compare feasible segmentation methods for
identification of fluid and solid phases in saturated porous media. We provide a quantitative analysis of the
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segmented phases to esdte physical characteristics of porosity, phase saturations, phase surface areas,
interfacial areas, and phase connectivity to demonstrate and compare the capabilities and limitations of each
segmentation technique with recommendations for each wheredpplsaturated porous media. In this

way, this research provides the readers with insight into emerging machine ldzaséty image
segmentation techniques, their implementations, their comparative advantages, as well as limitations with

regards to apptations in porous media research.
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2.2.Methodology

Trusted segmented data are required as a benchmark for comparing the effectiveness of the different
segmentation technigues examined in this research. For this, a saturated porous medium was prepared for
this study and scanned at two different voxel resolutions. The first, benchmark scan was acquired at a voxel
resolution of 6 um. The second test scan was acquired at a voxel resolution of 18 um which was used to
test and compare differesegmentation témiques. Although 18 pum represents low resolution in this
research, it is still typical of-ray micro-tomographic studiesT@ble?2).

The experimental setp (Figure9) used in this research is a staticigetconsistingf a sintered glass
frit (pore sizes between 140 um) saturated with brine and air, representing wettingnangvetting
phase, respectively. Tixeray scanner used was GH tome | x L300 system with a 300kvfay tube. The
sintered glass frit was a specific type of borosilicate glass filter (Robu) procured from Adam and Chittenden
Scientific Glass, California, USA. It is a glass filter widely used for water filtration purposes, 10 mm in
diameter, 2.8 mm long, with18% porosity. The sintering allows for the porous medium to be rigid and
maintain its pore structure during handling. The brine phase used in this experiment was a solution of 1M
sodium iodide (Nal). Doping the brine with 1M Nal helps to attenuate ra@gs such that enough contrast
can be achieved to isolate the three phases. This particular concentration of Nal was found to be optimum

and was achieved after multiple trials to minimize imaging artifacts and maximize contrast.
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Figure9. Schematic of the laboratory setup and image acquisition systeray(MCT scanner). DO
stands for the distance between the detector and the object, while OS stands for the object to source
distance. This figure shows that the sample (objectleiy close to the source for finer resolution, the
resolution was coarsened by moving the sample stage laterally from the source, increasing OS and
decreasing DO.

The porous glass frit was held fixed inside a thin (~ 2mm wall thickness) plastic tubémgaiothe top,
closed at the bottom and securEdsetupwasg pfaeed withiman ner 0 s
few millimeters of thex-ray source to maximize the image resolution to 6 [Higre9). At this position,

a scan for the dry frit was acquired. Next, a pipette filled with the brine solution was used to drop a couple
of droplets into the porous glass frit. After waiting forr@ihutes for the liquid to saturate the glass frit, the
benchmarkk-ray scan was acquired. At this stage, the scanned system consisted of three phases (solid glass,
brine, and trapped air). Upon completion of this scan, the sample mount was moved laténaligasing

the objectto-source (OS) distance and decreasing oltfedetector (DO) distance from thxeray source

to acquire the exact same scan at a resolution of 18 um. This was termed as the test scan.
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2.2.1.Implementation of theegmentatioriechniques

In this section, we discuss the image processing framework used in this research. Both dry and brine
saturated raw CT images were processed through théooanmeans filter to remove image noise. No
other major image artifacts were observethm CT images. The ndoncal means filter was found to be
effective as compared to the median filter. The filtering step was not required for the supervised machine

learning segmentation which directly works on raw CT images. This is discussed in tlgisnbsection.

2.2.2.Benchmarlcase

To generate the benchmark segmented images, both dry and saturated images of¢iselhtgin scan

were used to generate reliable segmented images. First, thresholding was conducted on the filtered dry
sample to segment the solid and the pore space. This was easier to accomplish because of the significant
difference in the gray values between the air and the solid phase. Second, the segmented dry images were
subtracted from the saturated images to elit@rihe solid phase. This left only the brine and trapped air

phase which were segmented once again using thresholding.

2.2.3.Testcase

The comparative analysis between the supervised and unsupervised machine learning segmentation
techniques wasonducted using the scanned images at a voxel resolution of 18 um. Additional comparison

with thresholding is also presented. The implementation of these segmentation techniques is outlined below.
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2.2.4.Supervisednachinelearning (ML}based on Fast Ra@omForestalgorithm

The supervised Mibased segmentation technique is a mhheaded implementation of the Random
Forest algorithm, as provided in the WEKA (Waikato Environment for Knowledge Analysis) trainable
segmentation toolbofArgandaCarreras et al. 2017)The WEKA segmentation toolkit is implemented as

a builtin plugin in ImageJ. It works as a bridge to apply maclteéaening tools for image processing and

has been used in a few recent studies for segmentation pu(Besg®t al. 2018; Garfi et al. 2020)he
Random Forest algorithifBreiman 2001)s a classification algorithm consisting of many decision trees
that operate as an ensemble. Each individual decision tree provides a vote on class prediction and, the class
with the most votes becomes the forest's class prediction. The Random Faoré@sinalgses bagging and
feature randomness when building each individual tree to try to build a forest of largely uncorrelated trees
whose prediction by the "wisdom of crowds" is more accurate than that of any individual tree. Random
Forest is considered fast classifier, but more recently, parallelized versions such as the WEKA Fast
Random Forest implementation enable one individual tree per processor core to take advantage of multi
core processors, further reducing forest build time.

Below, we outlinelte general procedure for applying the Fast Random Forest segmentation method in

this research:

1. To build the training set, sample voxels representing each of the different target categories are
selected and each such sample voxel is labeled with the categenich it belongs.

2. Totrain the random forest classifier, a vector of image features for each voxel is used as the training
feature. The vector of features contains the CT value of the voxel in the raw image, coupled with
the CT values of the same \ahin different filtered images. The available filters provided in the
WEKA toolkit include Gaussian blur, Hessian, derivatives, structure, edges,
minimum/maximum/mean/variance/median, etc. Aftdri@-anderror process where different
combinations ofimage filters were tested to arrive at the combination that provided the best

performance, we finally chose thenimum, maximum, mean, and variance filters. Note that these
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filters are applied at a voxédvel: the voxels within a small radius (e.githin a 3x3x3 small
neighborhood) from the target voxel are subjected to the pertinent operation (min, max, mean, or
variance) and the target voxel is set to that value ifilteeed image. Once the training features

for all sample voxels (with grountiuth labels) are computed, the random forest classifier is trained
using the (featurgector, label) pairs for the sample voxels.

3. After the random forest classifier is trained, it is then used to classify every voxel in the entire

image, thus achieving fulegmentation of the whole image.

During training of the classifier (step 2 above), the sample dataset of labeled voxels is automatically
divided into three subsets: training, validation, and testing. The subset for training consists of ~ 80% of the
sampledata and is used to build the classifier. The subset for validation consists of ~ 10% of the sample
data, and it is used to adjust parameters of the classifier and choose the combination of image filters to use;
that is, many classifiers can be trainedwdtfferent parameter values (e.gumber of trees in the forest)
and different combinations of image filters, and then the optimal values and filters are chosen based on
which ones give the best performance on the validation subset. Lastly, the @utestirfg consists of the

remaining 10% of the sample data and is used to test and report the accuracy of the final chosen classifier.

2.2.5.Unsupervisednachinelearningbased on #means and fuzzyroeans clustering

The unsupervised technique seldcter this study is the medical image analysis (MIAElustering
technique, which is an opeource algorithm useful for multiphase image segmentélonmore et al.

2018; Wollny et al. 2013)This segmentation technique requires denoised imagaypas so we apply
Gaussian filtering to a raw image before applying the technique, which combines two unsupervised
clustering methods -kneans and fuzzy-means. Kmeans clustering is an iterative schehs places each
member (e.g., a voxel) in a given data set (e.g., all voxels in a CT image) into different clusters representing

different classes. The iterative process starts by defining the centroids (or means) of each cluster arbitrarily.
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Then, eacluata point is grouped to a data cluster as a function of the Euclidean distance between the data
point and a cluster centroid. Next, the cluster centroid values are updated until the difference between the
previous and the updated centroid values meeg¢redadined tolerance. @eans clustering is similar te k
means clustering with one difference which lies in the flexibility of allowing a data point to probabilistically
belong to more than one clustBezdek, James C; Ehrlich, Robert; Full 1984; Dunn 1978
probabilistic natureof this approach is enabled by the inclusion of a membership function (with value
between zero and one) and a term called the fuzzifier (a real number between one and two). The membership
function governs the degree to which a particular data point kekong particular cluster, whereas the
fuzzifier determines the fuzziness level of a cluster. Larger values of the fuzzifier lead to smaller values of
the membership function and vice versa.

The MIA-clustering algorithm requires little user interventidono main input parameters supplied by
the user are the number of classes that exist in the image and te&gnsed for partitioning the image
into overlapping cubes so that segmentation can be refined locally within the cubes. In the first part of the
algorithm, the Kmeans algorithm clusters all voxels, based on voxel intensity in the denoised CT image,
into the number of classes specified by the user. Subsequently the dmeans algorithm is applied to
iteratively estimate all class membershiphabilities for each voxel, expressed as a vector. Then, by
assigning each voxel to a class based on its highest membership probability, the whole image is clustered
into distinct classes representing structures. However, this global segmentation snsymneisine details
because of intensity inhomogeneities in the input image. Therefore, in the second part of-thedtéing
algorithm, fuzzy emeans is applied locally. The whole image volume is subdivided into overlapping small
cubes based on theidpsize parameter. In a cube, the sum of membership probabilities of all voxels for
each class is calculated; if the sum for a class falls below a threshold, then that clasensidetedor
the local, refined -eneans clustering in the cube. Afteetlocal refinement is done for all cubes, class
probabilities for each voxel in overlapping cubes are merged, and once again, voxels are assigned to the
class for which they have the highest membership probability, producing the whole segmented image. More
details about the MIAlustering algorithm can be foundDunmore et al. (2018)
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2.3.Results and discussion

In this section, results from the implementation and comparison of the machine learning (supervised and
unsupervised) segmentation techniques are discussed. Additiomgdarisons are presented against
thresholding segmentation. For quantitative analysis, we present bulk measurements of porosity, fluid
saturations, phase fractions, and phase surface areas, as well -asafmrmeasurements of phase
connectivity (measurkas the Euler characteristic) a@hdd/fluid interfacial areas.

The imaged crossections of the porous glass frit (dry and brine saturated) are sh&wguial0, and
the corresponding grayscale intengitgtograms are shown Figure1l. In Figure 10 (top), the brighter
region corresponds to the solid (sintered glass) whereas, the darker region corresponds to the pore (air)
space. The solid, being denser, attenuates moags and appeansright. Figure 10 (top) andFigure11
(top) showthat the quality of the acquired dxyray scan is excellent as evidenced from the histogram of
the raw image which is well resolved between the pore and solid space even before applying any
enhancement filters. Minimakray imaging artifacts are observed. Upon the application of thdouah
means filter, the difference in the voxel populations of the solid phase and the pore space becomes clearer.
This assists in the segmentation of two phases by thresholding. We ndteahéne parameters set for the
norntlocal means image filtration were kept uniform across all image data sets, irrespective of the resolution,
or whether the data sets wehgy, or brine saturated to maintain a common-jm@cessing procedure for
all images to be segmented.

In Figurel0 (middle) and-igurel10(bottom), lightgray regions correspond to the brine phase, middle
gray regions represent the solid phase, and the darker isolated regions represents the air phase. Notice that
the application of the nelocal means filter removes image noiség(re 10 right column). This is more

prominent for the scan at a voxel resolution of 6 pm as opposed to the lower quality scan.
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FigurelO. Imaged crossection of dry (top) and brine saturated (middle and bottom) porous glass frit
at different voxel resolutions. The brine used for saturating the porous medium was 1M Nal solutien. Non
local means was used for fitieg the raw images to remove image noise.
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Figurell. Histograms showing the voxel population of the different grayscale intensity values for the
corresponding scans showmFigurelO.

Figure 12 shows a comparison of segmented top view ortho slices using the machine learning and
thresholding segmentation techniques, against the benchmark case. For thresholding, the average of two
distinct attempts was considered. Each attempt was carried out by manually adjusting the threshold mark
between the phases. We see that the air phase, represented by the darker isolated regions, is easier to
recognize and is consequently successfully segmémgtaliitechniques. Segmentation differences amongst

the various approaches are most evident in the identification of brine and solid phases, as Blyura in
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12. The benchmark casEigure12a) shows that the brine phase has fragmented clusters making the phase
appear more disconnected in the fimensional space, although the phase may be connected in the three
dimensional pore space. This continues to be seen in the other segmented cases; however, relatively bigger
clusters seem to be apparent for the unsupervised machine le&iging{2d). Further, it can be noticed

that the benchmark case shows a clear interfacial contact among the air, brine, and the solid phases. When
comparing the interfacial contact detected by the three segmentation techniques, it is observed that all the
segmentabn techniques closely detect the interfacial contact between the air and the solid phases.
However, for the interfacial contact between the air and the brine (8irgtfluid contact), supervised
machine learning segmented image showed slightly bettdormance. Due to the missing thigease

contact in the unsupervised machine learning and thresholding ¢hgese (2b andFigure 12d), we

observe that the air phase appears to be isolatebri@d interfaces are being misidentified as part of the

solid phase during segmentation, thus potentiagding to the loss dfuid/fluid contact areas. This is
problematic because inaccurate estimations of the-fiirage contacts can lead to erroneous contact angle
measurement§Alhammadi et al. 2017; Klise et al. 2016; Scanziani et al. 20IFgse preliminary
observations are substantiated quantitatively through bulk andspale measures in the following

sections.
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Figure 12. Segmented crossectional images showing three phases (solid, brine, and air). (a)
thresholding at a resolution of 6 um (benchmark case), (b) thresholding at a resolution of 18 um, (c)
supervised machine learning segmentationaaresolution of 18 um, and (d) unsupervised machine
learning segmentation at a resolution of 18 um. Zoonredersion of the images are displayed on the
sides to highlight distinct features of segmented images. The upper and lower regions of intemdéstdma
inside the segmented images) correspond to labels 1 and 2, respectively.

2.3.1.Bulk measurements

Bulk measurements of porosity, phase saturations, and fluid surface areas are critical measures for
understanding fluid flow in porous media. Porosityl saturation measures help quantify the amount of oll

and gas reserves present in an oil rese(laike et al. 2014)whereas, area measurements are often used

by hydrologists to quantify the extent of a chemical fagoeous phase liquids) spill for groundwater
remediation purposefCulligan et al. 2005) These measurements are provided for all segmentation

techniques used in this research.
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