
The Pennsylvania State University 

 

The Graduate School 

 

 

SIMULTANEOUS POSE AND MAPPING OF A NON-COOPERATIVE 

MANEUVERING TARGET USING AN OCTREE-BASED APPROACH 

 

A Dissertation in 

 

Aerospace Engineering 

 

by 

 

Peter C Scarcella 

 2021 Peter C Scarcella 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

May 2021 

 



ii 

 

The dissertation of Peter C Scarcella was reviewed and approved by the following: 

 

David B. Spencer 

Professor of Aerospace Engineering 

Dissertation Advisor 

Chair of Committee 

 

Robert Melton 

Professor of Aerospace Engineering 

 

Puneet Singla 

Professor of Aerospace Engineering 

 

 

 

Minghui Zhu 

Associate Professor of Electrical Engineering 

 

Amy Pritchett 

Professor of Aerospace Engineering 

Head of Aerospace Engineering 

 



iii 

 

ABSTRACT 

Autonomous proximity operation missions in the space domain are a multi-faceted, 

studied problem.  Performing such a mission around an uncooperative, unknown target presents 

many difficulties in estimating the relative pose of the target.  If the target executes a controlled 

or uncontrolled (outgassing from a damaged satellite) low-thrust continuous maneuver, tracking 

or rendezvousing with the target becomes challenging and potentially dangerous especially in 

close proximity.  A solution to this problem is desired such that the developed algorithm is 

amenable to onboard implementation, utilizes stereo vision, can estimate relative pose without 

initial relative information to the target, and can detect and estimate a continuous low-thrust 

maneuver. 

The developed algorithm presented in this dissertation utilizes an octree based approach 

to construct a three-dimensional map of the target while simultaneously estimating the pose in a 

multiplicative extended Kalman filter.  A coarse volume estimate and probabilistic uncertainty 

mapping are extrapolated from the octree map and used as the initialization of a consider 

parameter in a consider variable state dimension (VSD) filter following maneuver detection.  This 

framework switches to a thrusting model after the Mahalanobis distance passes a pre-defined 

threshold initializing the consider parameters and starting an interacting multiple model (IMM) 

filter.  Assuming an evenly-distributed density, eight density models comprising the models in the 

IMM establish a mechanism for thrust states to be estimated by combining the best amalgamation 

of density models and the coarse volume estimate.  Essentially, an online process is created to 

indirectly obtain mass information from the octree map without directly estimating it.  Since 

target volume is not completely observable, it is not directly estimated and instead used as a 

consider parameter with an associated covariance obtained from the octree mapping uncertainty. 
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Despite using coarse volume estimates, the simulated results show good convergence for 

pose and thrust states as well as accurate maneuver detection for continuous low-thrust 

maneuvers.  Two thrust magnitudes were analyzed (differing by an order of magnitude) varying 

the moment of maneuver detection such that the octree mapping was at two different levels of 

completion.  Results obtained from a complete octree mapping demonstrated accuracy both in 

relative pose estimates and maneuver detection.  Convergence and maneuver detection had more 

prevalent errors associated with a less robust octree mapping as expected though their results still 

showed promise.   

The developed algorithms create an online process of indirect mass estimation to enable 

the thrust estimation once a maneuver is detected.  Presented results demonstrate the algorithm’s 

ability to detect unknown maneuvers and accurately estimate relative pose and thrust states.  It is 

clearly shown that the octree map provides a clear effect on reducing the covariance and 

improving estimates of the pose and thrust.  Furthermore, utilizing the consider filter, VSD, and 

IMM solely in the maneuvering model keeps the computational cost low. 
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Chapter 1 

 

Introduction 

1.1. Motivation 

 Pose estimation in the space domain is a very challenging problem.  These challenges 

result from harsh lighting conditions, computational, power and thermal constraints, and 

observability issues.  In robotics, pose refers to the position and orientation of an object relative to 

the environment.  The necessity for developing robust capabilities is driven by the need for 

autonomy to perform proximity operations under the aforementioned constraints and conditions.  

Systems and algorithms need to be robust enough to handle the rigors of the space domain.  

Operations may include servicing damaged spacecraft
1
 that have become uncontrollable, 

refueling
2,3

, building infrastructure
4
, and debris removal

5–7
.   

 In this analysis, the observer is the satellite making optical observations of the target 

satellite.  Extensive work has been done in regards to estimation of the rotation, angular velocity, 

principal axes, moment of inertia, and center of mass of a spinning satellite
8–17

.  Tweddle’s
9
 

dissertation explored the estimation of motion of an uncontrolled tumbling object assuming the 

observer is stationary with known position and orientation.  In Lichter’s research
13

, a 

measurement fusion algorithm using multiple sensors was developed to estimate the pose of a 

spinning satellite. The observer position relative to the target satellite was known thus reducing 

the problem complexity.   Further studies
8,11,15

 have also examined the estimation of an 

uncontrolled spinning satellite.  However, an issue that has not seen much area of study is for a 

satellite exhibiting uncontrolled translational motion due to outgassing or damaged thrusters.  

This dissertation seeks to answer the following questions:  Can an observing satellite determine 
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its local pose in the relative frame and both detect and estimate the unknown translational motion 

due to an external force of an uncooperative target given that no prior information about the 

target’s shape or the local position of the observer relative to the target is available?  Can the 

shape of a target satellite be estimated and built from stereo vision with no a priori information 

and the resulting shape estimate exploited for use in improving estimation performance?  In this 

formulation, no external forces are assumed to be acting on the target except for a low-magnitude, 

continuous thrust.  It is also assumed that the target is not rotating though estimating its principal 

axes and center of mass are still desired.  Two cameras are utilized to observe the target and the 

resulting unknown translational motion and target shape is extrapolated. 

  While it is reasonable that unbalanced or damaged thrusters could also impart a 

rotational component on the target, coupling translational and rotational motion is presents 

several difficulties including:  image scale and rotation effects on determining pose estimation; 

wrongly estimating one motion for another causing issues in accurate estimation of angular 

velocities, moment of inertias, thrust, and maneuver detection; removing simplifying assumptions 

used in prior work for a rotating (non-translating) object and increasing difficulty of accurately 

tracking and matching image features across frames.  Since a simultaneous rotation and thrusting 

of an uncooperative satellite with a moving observer would be an exceedingly challenging 

problem, this dissertation assumes the target is not rotating.  Rotation of a tumbling spacecraft has 

been a well-studied problem making simplifying assumptions such as the observer is in a static 

position, multiple sensors are available, a priori information known about the target shape, or 

access to known state information of the observer.  A comprehensive review of the available 

methods will be covered in the literature review.  
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1.2. Organization 

 The organization of this dissertation is as follows.  Chapter 2 outlines the literature 

review of existing methodologies and theories pertinent to the developed algorithms.  Existing 

concepts in dynamics, kinematics, and computer vision are reviewed for the understanding of the 

contributions outlined in the previous section.   

 Chapter 3 covers the computer vision utilized in this work in addition to the estimation 

algorithms.  Existing approaches are outlined first so that the developed algorithms in the second 

half of Chapter 3 are better understood.  Assumptions made and decisions for implementation of 

methodologies are discussed.  The formulation of the synthetic imager is also covered. 

 Chapter 4 presents results from the developed algorithms.  Two scenarios are presented 

with different thrust magnitudes to analyze the algorithm’s effectiveness on detecting and 

estimating different order of magnitude of thrust.   

 Chapter 5 discusses the conclusions and proposed future work.  It provides scope on the 

presented results and overall analysis of performance.  Furthermore, future avenues of work are 

explored.
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Chapter 2 

 

Background and Literature Review 

This chapter discusses the filter approaches toward a Simultaneous Localization and 

Mapping (SLAM) solution.  Constraints dictate what filter approaches are amenable for 

implementation onboard a spacecraft.  Existing maneuver detection approaches are also 

discussed.  Lastly, previous work in applying SLAM to a space-based rendezvous proximity 

operations problem is overviewed. 

2.1. Filter-based SLAM 

 Autonomous rendezvous and proximity operations are of vital interest to space domain 

applications.  Some specific applications include docking, refueling or servicing missions, 

proximity operations and/or landing on an asteroid, and potentially orbital debris collection.  All 

of these missions differ in various ways but the one similarity is for the need to determine where 

the reference spacecraft is locally relative to the object of interest; being able to generate an 

accurate mapping of this position as well as a map of the object itself.  This is a complex problem 

compounded in the situation where a priori information about the object’s position and features 

are unknown.  Within the past couple decades, researchers have strived to explore this area and 

SLAM was derived from terrestrial autonomous robotic applications.  The basic premise of the 

SLAM approach is to determine the local position and orientation of a robot (pose) relative to an 

object or environment while simultaneously constructing a map
18,19

.  As SLAM iterates, further 

pose information updates the local maps ultimately building a global map. 

 SLAM has seen many innovations over the last few decades and has expanded to many 

applications
18-20

.  In general, the architecture of a modern SLAM problem can be split into two 
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main components
20

 (Figure 2-1).  The first part is referred to as the front end whose function is to 

take sensor data and apply them to suitable models for later pose estimation and map 

construction.  The second, the back end, extrapolates the data provided by the front end and then 

feeds it back for loop closure.  In a vision-based SLAM (VSLAM) application, the front end 

consists of the feature extractions from an input image of pixel locations.  Data association is also 

done by this component and within the VSLAM example, would consist of matching the 

extracted features to landmarks.  The back end models the observations and performs the pose 

estimation.  The loop ends when observations cease.  Overall, the goal of these two parts is for 

the autonomous object maneuvering in an unknown environment to iteratively build a map while 

simultaneously finding its location
18

.  Durrant-Whyte and Bailey
18,19

 conducted a series of 

surveys on the SLAM giving an excellent overview of the problem.  Two general types of 

implementations of the SLAM solution are discussed; the filter based Extended Kalman filter 

(EKF) solution and the particle based Rao-Blackwellised filter, or FastSLAM.  An EKF-SLAM 

formulation has been well studied and exhibits the advantages and disadvantages associated to 

EKF based solutions for navigation and tracking.   

 

Figure 2-1:  General SLAM architecture 
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 A popular approach for SLAM is using the Maximum a Posteriori (MAP) formulation 

often using factor graphs to reason the connection between variables.  Unlike Kalman filtering, 

MAP estimation is not reliant on any distinction between motion and observation models as both 

are treated as factors
20

.  Factor graphs represent interdependence between the various variables 

and factors through encoded nodes on the overall graph.  Unlike filter-based approaches, factor 

graphs enable loop closure and do not require linearization of measurement updates
9
 allowing for 

general improved performance.  This methodology is very useful and generally more robust then 

an EKF-SLAM at some extra computational expense and has been applied to many different 

applications
9,10,21–24

. 

 The shortcomings of the EKF-SLAM have been well documented in the literature
25–28

.  

Inconsistency in the estimation arises between the linearization made by the EKF, the inherent 

discrepancy from the true nonlinear system, and the observations. However, much work has been 

done to overcome these limitations and to improve their robustness.  One such approach is the 

Iterated Extended Kalman Filter (IEKF) which has been used to produce good results
15,26,29

.  The 

premise of the IEKF is that the estimated states are iteratively updated once the observations have 

been applied and re-linearized.  This new state estimate has higher accuracy over the standard 

EKF and produces better Jacobians (first-order partial derivatives of system dynamics with 

respect to the state variables) in the next time step.   

 Other methodologies for improving upon or replacing the EKF have been proposed as 

well.  The smooth variable structure filter
32,33

 uses variable structure theory and sliding mode 

concepts.  It has been shown to be robust and consistent when applied to an unknown system.  

Another approach involves eliminating the computation of covariance matrices altogether by 

using a small set of ensemble members that define the state
34

.  The Ensemble Kalman Filter is 

similar to a particle filter in that the ensemble members are a set of points (ensembles) that are 
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propagated instead of the state and covariance.  The mean of the ensemble represents the state 

estimates and the sample covariance represents the covariance.  

 Hybridization of techniques has also been explored.  Augenstein
8
 proposed a hybridized 

methodology for SLAM in which rotational and translational pose estimation are conducted 

simultaneously via Bayesian filtering and optimization respectively.  Furthermore, Leishman
22,23

 

developed an approach where a multiplicative extended Kalman filter (MEKF) is intertwined 

with a graph-based SLAM.  Estimates from the MEKF are kept relative to the nodes in the factor 

graphs instead of the global reference frame as done in a classical MEKF.  Utilizing this 

hybridized approach minimizes the needs that using the global states would entail.  The 

advantage of this method allows vision-based observations to be used directly and eliminates the 

need for feedback to the filter from loop closure which is a computationally expensive process. 

 Improving computational efficiency is highly desired in real-time applications.  However, 

this frequently comes at the cost of consistency and accuracy.  One key element within some of 

the aforementioned approaches is the sparsification of matrices
19,29–31

.  Sparsification refers to 

making elements much smaller than 1.0 set to 0.  An EKF-SLAM represents a state estimate and 

covariance matrix.  The state estimates comprise the desired parameters to be estimated and their 

associated uncertainty referred to as the covariance.  Alternatively, the information matrix, which 

is the inverse of the covariance matrix, is used in place of the covariance.  Through using this 

formulation, the off-diagonal terms of the normalized information matrix are close to zero.  This 

can be exploited in a sparsification procedure that sets all these approximately zero components 

to zero.  The advantage of this newly sparse matrix is the savings in computation with a little loss 

in accuracy
19

. 

 In this dissertation, a filter-based solution was chosen due to computational limitations 

onboard spacecraft.  While other approaches discussed have greater robustness, they are 
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computationally expensive and are better suited for offline estimation or terrestrial-based 

applications. 

2.2. Maneuver Detection 

 Objects classified within the space domain include both actively controlled non-

cooperative and cooperative objects as well as orbital debris
35

.  In the case of actively controlled 

non-cooperative objects, detecting unknown maneuvers is a part of the overall tracking and 

statistical orbital determination problem.  Many approaches exist for both detecting and 

estimating an unknown maneuver.  Specifically, many variations and extensions of the Kalman 

Filter have been successfully implemented and applied to maneuver detection
35–41

.   

 Detecting and estimating maneuvers can be a challenging problem for a variety of 

reasons.  Measurement and process noise can potentially mask the detection of a maneuver 

depending on their levels.  Inconsistencies in the dynamic model and the linearity assumptions 

from the Kalman Filter can also adversely affect the ability to detect and estimate maneuvers.  

Duration and magnitude of the thrusting maneuver itself is correlated to the success of the filter.  

Lower thrust magnitudes can be disguised by noises inherent in the system and short durations 

can make it difficult for the solution to converge. 

 Filter-based solutions have approached this problem in several ways.  One method 

applies a smoothing filter to utilize current measurement updates to check on the consistency of 

past states; a maneuver is indicated if the consistency test fails
35,38,41

.  An example of a smoother 

approach is the Rauch-Tung-Striebel smoother (RTS) which is an efficient way of smoothing as it 

does not need to directly compute the backward estimate or covariance
42,43

.  This formulation 

starts by executing a normal Kalman filter forwards in time up to a final time T.  Once this time is 
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reached, the RTS is initialized by setting the smoothed state and covariance at time T as the 

current state and covariance estimates respectively.  It starts at time equal to T and iterating 

backwards toward the start of the forward Kalman filter.  The filter test operates by defining the 

difference between the filter and smoother covariance.  Thus, the parameter performing the 

consistency test is related to the aforementioned covariance   If any element of this parameter is 

above a predefined threshold, the consistency test would fail. 

 A failure in the smoothing consistency indicates a change in the dynamics (from natural 

dynamics with no external forces to dynamics consisting of acceleration terms due to thrusting), 

and thus a maneuver is assumed to have occurred.  This approach is fairly robust, but still has a 

couple of limitations.  Since smoothers work by running backwards on previous batches of data, 

special care must be taken when implementing in real time.  The defined window in which the 

smoother processes a batch also affects its effectiveness on maneuver detection.  A maneuver 

occurring outside this window will not be detected until the next window.  The length of these 

windows is dependent on the frequency of observations. 

 Another general approach to maneuver detection is the Variable State Dimension filter 

(VSD)
35,36

.  This method works by estimating the nominal states until the residual grows (after a 

maneuver occurs) to a point where a threshold is surpassed.  This threshold is chosen based on the 

chi-squared test.  Passing this pre-defined threshold initiates a model switch, and the filter 

concatenates the thrust states onto the nominal state vector and estimates them directly.  

Advantages of the VSD include the ability to run in real-time due to its low computational cost.  

However, it is sensitive to the threshold value; depending on the process and measurement noises 

present, either a maneuver may go undetected or conversely a false maneuver will be detected.  

Results obtained are also dependent upon the lag between a maneuver occurring and the detection 

of the maneuver. 
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 Multiple model filters have been used in many estimation applications, and several have 

applied this methodology to maneuver detection
35,39,40

.  The main advantage of applying multiple 

model filters is that the state estimation is not dependent on any one solution; rather, the presence 

of multiple models allows for multiple solutions to be weighed and combined, used as feedback 

to improve the others, or chosen amongst the other solutions as the most viable option.  However, 

the drawback of this general approach is the expensive computational cost.  Weighting the results 

from multiple models and combining the state estimates provides robust correction to the update 

which may make the presence of consider parameters superfluous.   

 Another approach developed by Lubey and Scheeres
99,100

 utilizes an Optimal Control 

Based Estimator (OCBE) with additional algorithms for maneuver detection.  The OCBE is 

essentially a generalized Kalman filter with dynamic noise propagation (equivalent to continous 

process noise) and smoothing properties.  This algorithm fuses dynamics and state estimation 

through optimal control.  Output from this algorithm includes the control policy which identifies 

mismodeled natural dynamics which is used in an additional algorithm to detect maneuvers based 

on the level of dynamic uncertainty. 

 The VSD approach combined with multiple models forms the basis of the algorithm 

developed in this dissertation.  VSD filters provide a low computational cost method of thrust 

detection and estimation.  Multiple models are only used when the maneuver is detected and 

switches back to a single model approach when a maneuver is no longer active.  This reduces 

computational costs outside of the maneuver estimation and provides the ability for the filter to 

cope with higher uncertainty during a maneuver.  Utilizing a limited number of models keeps 

computations low during a maneuver while also providing further robustness. 
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2.3. Space Domain SLAM 

 A SLAM-based approach has provided solutions to several space-domain problems.  

Tweddle’s dissertation
9
  and resulting paper

10
 develops a factor graph approach in which a six 

degree-of-freedom rigid-body dynamics system estimates the position, attitude, linear and angular 

velocities, center of mass, principal axes and moment of inertia parameters.  An incremental 

smoothing and mapping (iSAM) is modified find these estimates using a feature-based stereo-

vision observation model.  Properties pertaining to the orientation of a target object are found 

from a static observer position with known camera position and orientation.  Contributions made 

to estimating a target object’s properties include a parametrization approach for estimating center 

of mass and the principal axes by use of a geometric frame in which the stereo-vision feature 

points are estimated.  Furthermore, the principal moment of inertias is parametrized by taking the 

natural logarithm of the ratio of elements in the principal moment of inertia matrix.  Estimating 

the moment of inertias is not observable and can only be recovered up to a scaling factor.  The 

approach developed by Tweddle
9,10

 is limited to an offline process as the algorithm estimates the 

set of stereo-vision feature points for the purposes of loop-closure and improving state estimates.  

Using the mapping estimated by this framework, the principal axes and moment of inertias are 

recovered up to a scaling factor by using MeshLab.  Feature points creating the target mapping 

are included in the state vector increasing the computational cost of the algorithm.  However, 

including the feature points comprising the map allows for loop closure. 

 In a paper by Lavagna et al,
12

 relative position, velocity, angular velocity, attitude and 

inertial properties of an uncooperative spacecraft are estimated by an Iterated Extended Kalman 

Filter (IEKF) using only stereo-vision measurements.  The developed observation model utilizes 

pixel coordinates along with exploiting the optical flow (velocity of the moving pixels between 
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frames).  A pseudo measurement constraint was included in the measurement model to force the 

convergence of the inertia matrix. 

 The inertia matrix itself is parametrized using an approach developed by Tweddle
9,10

 in 

which the first and third elements of the principal inertias are normalized by the second element 

and subjected to the natural logarithm.  This procedure reduces the number of variables to the 

degrees of freedom.  By using the natural logarithm, the two normalized parameters fit within the 

same domain as the natural logarithm itself.  The entire inertia matrix is reconstructed in an 

offline process by creating a triangular mesh from a sequence of point cloud data to produce the 

model geometry of the object.  By assuming density is constant, an estimate of the inertia 

parameters is found.  Mass properties of the object are found in a similar manner assuming a 

uniform density distribution. 

 Lichter’s work
13,14

  solves a similar problem to Tweddle in pose information of a 

tumbling spacecraft is extrapolated from optical observations.  In Lichter’s dissertation, 

observations from multiple sensors (stereo cameras, laser range finder) are fused together to form 

the basis of a coarse target attitude and center of mass estimation.  From these fused 

measurements, a voxel map is created to provide coarse approximations for the geometric 

principal axes and center of mass.  The voxel map is simultaneously built with no a priori 

information about the target shape.  The principal axes and center of mass estimates are used as 

the measurement model in an EKF framework that separates the rotational and translational 

(target translates under natural motion only) estimates of the target in the inertial frame into two 

separate filters.  A quaternion is used to represent the attitude estimates as well as the inertia 

parameters even though the attitude has three degrees-of-freedom and the inertia parameters only 

two.  The set of feature points comprising the mapping are not estimated which lowers the 

computational costs but does not provide loop closure and can lead to smearing of the map.  
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 Research conducted by Augenstein
8
  again focused on a tumbling spacecraft instead 

using a static monocular camera.  Assuming no priori information is available, a hybrid algorithm 

combining Bayesian estimation methods and nonlinear optimization techniques for pose 

estimation.  A modified Rao-Blackwellized particle filter is used to estimate the rotational 

dynamics of the target object assuming the rotation is modeled as a Gaussian process. Rigid body 

dynamics were not incorporated thus not estimating the moment of inertia. 

 Sharma and D’Amico
11

 presented a paper for a monocular based pose estimation.  Pose 

of a passive target is estimated using a known three-dimensional wireframe model with no priori 

information on range measurements or state estimates.  Due to the range ambiguity of monocular 

vision, a pose initialization approach was developed which uses the wireframe model with no 

other assumptions on translational or rotational information.  A weak gradient technique is 

implemented that pairs the wireframe model with the two-dimensional monocular images to 

create multiple correspondence hypotheses.  Multiple pose solutions are determined from this 

process and are refined iteratively by using the Newton Raphson Method.  Their navigation filter 

utilizes a MEKF with a measurement model that detects line segments in the images.  Using line 

segments makes the navigation filter more robust to illumination effects and helps to distinguish 

the boundaries of the spacecraft from the background. 

 Feng et al
16

 developed a methodology to estimate relative pose information and inertial 

properties of a target.  The approach consists of establishing a body-fixed frame to the target 

using the surface features and measures the relative attitude; a standard Kalman filter is 

implemented to estimate the translational states and center of mass; and an EKF and UKF to 

estimate the rotational states and moment of inertia ratios respectively.  The moment of inertia is 

parametrized by dividing all elements by Ixx. 
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 Estimation of a tumbling object in an autonomous proximity operation is a rich area of 

study.  However, an area of limited research pertains to unknown, uncontrolled translational 

maneuvers within an autonomous proximity operation using visual observations.  Furthermore, 

extrapolating mass information from the shape model is limited to an offline process in the 

literature (Tweddle
9,10

 and Lavagna et al
12,15

).  Model shape estimates are input into a robust 

mesh-based software to extrapolate more refined principal axes and mass estimates.  Leveraging 

an online mass estimator is something that is not present in the literature and can provide useful 

utility for a maneuver estimation algorithm. 

 In this dissertation the relative position of the inspector to the target is estimated in 

addition to the rotation between camera frames.  The inspector needs to determine its localization 

in relation to the target such that it can develop an accurate shape estimate of the target.  This 

shape estimate is exploited such that it can prune erroneous measurements from entering the filter 

as well as providing information directly to the estimation filter to aid in maneuver estimation.  

Parameters are extrapolated from the target shape map that are used in the estimation filter and 

guidance control algorithm.  Pose of the inspector is estimated simultaneously with the target 

shape.  The target executes an unknown maneuver with no information regarding thrusting 

magnitude and thrusting duration.  Detailed contributions towards this endeavor are in Section 

2.4. 

2.4. Contributions 

 This dissertation will make the following contributions toward the implementation of 

autonomous navigation systems onboard a spacecraft.  These contributions are based on gaps in 

the current state-of-the-art as described in Sections 2.1-2.3.  Areas of limited study include a low 

computational onboard process of visual maneuver detection and development of an online 
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process to exploit shape estimation to extrapolate target characteristics that can improve the 

maneuver detection and pose estimation. 

1) A computational optimal method using consider parameters and a variable state 

dimension (VSD) filter  is developed to detect and estimate thrust states of an 

uncooperative spacecraft with no a priori information of the thrusting start/end time.  

With little accuracy sacrificed to existing maneuver detection methods, this approach will 

allow onboard implementation. 

2) Using stereo-vision (two or more cameras) observations, an interactive multiple model 

octree-based approach provides an onboard coarse estimation of volume and thus mass 

assuming an evenly distributed density to be used in conjunction with the maneuver 

detection algorithm. 

3) Demonstrate how simultaneous localization (position and orientation of the inspector in 

the relative frame) and octree mapping (target shape estimation) provides information on 

target center of mass and principal axes with no priori information by exploiting mapping 

to improve measurements into the system once the confidence in the mapping reaches a 

pre-defined threshold. 

 A synthetic image generation framework is developed as a test-bed to create a sequence 

of images of a model spacecraft to provide measurements to the aforementioned estimation 

filters.  The localization and target mapping algorithms are separated and together form the basis 

of this dissertation. 
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(3.3) 

Chapter 3 

 

Mathematical Formulation, Computer Vision and Filter Approach 

This chapter details the necessary concepts to formulate the developed algorithm in the 

later parts of the chapter.  These include rigid body kinematics, stereovision, quaternions, and 

octrees.  The filter approaches and developed algorithms are explained in detail.  Creation of the 

observation system is also discussed. 

3.1. Rigid Body Dynamics 

 The rigid body equations with respect to an inertial frame are derived from Newton’s 

second law.  Angular momentum can be written as 

`  IH    (3.1) 

where I is the moment of inertia and ω is the angular velocity.  With respect to the inertial frame, 

the rate of change of angular momentum is equal to the torque L.  Using the transport theorem 

leads to 

  
d

I ( )
dt

     H H H L   (3.2) 

Euler’s equation of motion on a rigid body can be derived from Equations 3.1 and 3.2 yielding 

   I x I    L    

  𝛚x = [

0 −ω𝟑 ω𝟐

ω𝟑 0 −ω𝟏

−ω𝟐 ω𝟏 0
] 

where the [ωx] term is the skew of the angular velocity.  These dynamics are utilized by the 

inspector spacecraft in a non-linear Lyapunov control law detailed in Section 3.18.4. 
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3.2. Stereovision 

 A common model used for a camera is the pinhole model.  This model is depicted in 

Figure 3-1.  Consider a point PI in the inertial frame which can be projected onto the image plane 

with coordinates u and v; these coordinates reside in the two dimensional image plane.  The 

camera itself has a focal length f, which can be expressed in terms of millimeters or pixel length.  

In the image plane, the optical center is denoted by cx and cy.  This is the standard perspective 

geometry for the pinhole camera model. 

 

 

Figure 3-1: Pinhole Camera Model 

 



18 

 

 Homogeneous coordinates can be especially helpful in defining useful properties in the 

image processing model
44

.  They are a system of coordinates frequently used in projective 

geometry as they can express points at infinity using finite coordinates.  An extra dimension is 

required of the projective space considered.  A 2D homogeneous point can be defined by 

 

  ( , , ) ( , ,1)T Tx y w w x y w  x x   (3.4) 

 

where 𝑥̃, 𝑦̃, and 𝑤̃ are the homogenous coordinates and 𝐱̅ is the augmented vector made up of the 

imhomogeneous coordinates and an additional coordinate containing  the scalar value of 1.  The 

imhomogeneous coordinates are related to the homogeneous coordinates by dividing through by 

𝑤̃.  In a similar manner, homogeneous coordinates can be extrapolated to 3D coordinates.  This is 

written as 

 

  ( , , , ) ( , , ,1)T Tx y z w w x y z w  x x   (3.5) 

 

 Camera properties can be split into two categories:  camera intrinsics and extrinsics
44

.  

The intrinsics describe the camera’s optical properties and the extrinsics refer to the orientation of 

the camera.   Rotation and translation between the inertial and camera frame can be expressed by 

a rotation matrix R and a translation vector t.  Augmenting the translation vector to the rotation 

matrix yields a 3x4 matrix. 

   R | t   (3.6) 

 

These characteristics represent the extrinsics of the camera’s properties.  Together with the 

calibration matrix, a camera matrix can be defined as 
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   P R| tK   (3.7) 

 

where P is the camera matrix of size 3x4. A 4x4 invertible matrix can be used as well which is 

written as 

  
0 R

P
0 1 0 1

   
    
   

tK
  (3.8) 

 

  The calibration matrix K can be defined as 

 

  0

0 0 1

 
 


 
  

x

y

f s c

K af c  (3.9) 

 

where f is the focal length, cx and cy are the coordinates of the optical center, a is the aspect ratio, 

and s is the skew between the sensor axes due to improper alignment relative to the optical axis.  

A similar form of the calibration matrix exists by setting a = 1 and s = 0.  Commonly, the optical 

center of the image is set to half the sensor width and height.  Field of view can be defined as 

 

  12tan
2

W

f
   
  

 
 (3.10) 

 

where α is the field of view, and W is the camera width.   
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Figure 3-2: Camera projection of inertial coordinates on to image frame 

 

A calibration matrix K can be defined describing the camera intrinsics.  The 4x4 camera matrix 

can transform the inertial coordinates directly to the image coordinates.  Inertial and image 

coordinates can be denoted as 

 

  ( , , ,1)I I I Ix y zP   (3.11) 

  
Im ( , ,1, )u v dP   (3.12) 

 

where PI and PIm are the inertial and image coordinates respectively, and d is the disparity.  

Mathematically, the relationship between the inertial and image coordinates is given by 

 

  
Im IPP P   (3.13) 

 

Using the 3x4 camera matrix, the formulation changes slightly as follows 

 

  0

1 0 0 1

   
   


   
      

p

x

y C

u f s c

v af c  (3.14) 
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     R | R |

1

 
  
    
  
    

 

P t P t

I

C

I

C I C

I

C

x
x

y
y

z
z

 (3.15) 

where PC is the coordinates in the camera frame.  Here, the image vector contains one less 

component than Equation 3.12.  The projection of the inertial coordinates on the image plane is 

visualized in Figure 3-2.   

 

Figure 3-3: Stereovision Geometry 

 

 Utilizing two or more cameras is referred to as stereo vision.  It possesses inherent 

advantages in reducing the range ambiguity issue over monocular cameras due to the ability to 

triangulate a three dimensional position from multiple views.  Geometry of the two cameras can 

be seen in Figure 3-3.   
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Both the left and right cameras have image coordinates [ul vl] and [ur vr] respectively.  The 

baseline b is defined as 

  
l rb x x   (3.16) 

where xl and xr are the distances along the camera’s unit x vector.  A metric for the distance 

between two pixel pairs in the image frame is defined as the disparity.  The pixel locations in the 

image plane is related to the disparity, d, by 

  2 2( ) ( )l r l rd u u v v     (3.17) 

Normally, calibration of the cameras leads to the fact that vl = vr.  This simplification reduces the 

definition of disparity to 

  l rd u u   (3.18) 

Through the geometry established in Figure 3-3, the following relationships can be derived as 

  l lx u

z f
  (3.19) 

  r rx u

z f
  (3.20) 

where f is the focal length and z is the boresight of the camera.  The depth to these camera frame 

coordinates is given by 

  
fb

z
d

  (3.21) 

Combining Equations (3.19)-(3.21) and rearranging terms yields the camera frame coordinates 

  l l
l

u u b
x z

f d
    (3.22) 

  r r
r

u u b
x z

f d
   (3.23) 

  l l
l

v v b
y z

f d
   (3.24) 
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  r r
r

v v b
y z

f d
   (3.25) 

Within the scope of SLAM problem, these coordinates represent the landmark feature locations 

and will encompass the measurements sent to the pose estimation. 

3.3. Feature Detection and Matching 

 As described in the previous section, features from the environment are projected into a 

2-dimensional image plane.  Through the stereopsis relationships in Equations (3.22)-(3.24), 

these image features are triangulated into 3-dimensional space in the camera frame.  These 

features in the camera frame form the basis of the measurement model as described in Section 

3.6.  Given an image, these 2-dimensional image points must first be detected and extracted.  The 

Kanade Lucas Tomosi (KLT) is a feature tracker with the ability to track feature matches through 

continuous frames
45

.  This algorithm as seen many updates and optimizations over the years since 

its inception in 1981 by Lucas and Kanade
46

.  Fundamentally, the goal is to minimize error 

between a source image and an input image and to map that image back onto the source image.  

Let T(x) denote the source image and I(x) the input image where x is a 2D vector of the image 

coordinates u and v.  Lastly, define a mapping referred to as warps as W(x;p) where 

 

  1 2( , ,... )T

np p pp   (3.26) 

 

in which p is an n-dimensional vector containing parameters.  Warping is the map between a 

pixel coordinate in x of the source image frame and maps it to the corresponding point in the 

input image frame.  Minimizing the error (e) between the warped input image I(x) and the source 

image is accomplished by 
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  
2

x

e ( ( ; )) ( )  W x p xI T   (3.27) 

 

Minimization is conducted with respect to the parameters p and it is assumed that the 

current estimate of p is known and proceeds to iteratively solve for incremental changes in the 

parameters.  Equation (3.28) can thus be rewritten as 

 

  
2

x

( ( ; )) ( )      W x p p xe e I T  (3.28) 

 

where Δp is the incremental change in the parameters and Δe is the incremental change in the 

error.  The parameters are updated with this incremental change iteratively until they converge.  

Normally, this is done until the norm of Δp is below some predefined threshold.  Linearizing 

Equation 3.28 through a Taylor expansion yields 

 

 

2

( ( ; )) ( )
x

W
e e I I T

 
      

 
 W x p p x

p
 (3.29) 

 

where the gradient of the input image I is calculated in the input image frame and then warped to 

the source image frame through the mapping.  Additional formulations are needed to form the 

basis of the algorithm.  Taking the partial derivative of Equation (3.29) with respect to Δp yields 

 

 
( )

2 ( ( ; )) ( )

T

x

e e W W
I I I T

       
       

     
 W x p p x

p p p
 (3.30) 
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Taking Equation (3.30) setting it equal to zero, and solving for Δp gives the solution for 

the minimum of Equation (3.29) which is written as 

  1 ( ) ( ( ; ))

T

x

W
G I T I  

    
 

p x W x p
p

 (3.31) 

where G is a Hessian matrix defined as 
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 (3.32) 

Using the preceding equations, the algorithm for the KLT is displayed in Figure 3-4. 

 

 

Figure 3-4: The Lucas Kanade Algorithm
47
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 As previously mentioned, there have been many improvements upon this original 

formulation.  A more detailed derivation of the original algorithm as well as derivations of more 

robust versions are presented in the Baker and Matthews paper
47

.  The developed algorithms 

show improved results over the original formulation and perform similarly amongst themselves.  

Choice of the algorithm depends whether more noise is present in the source image or the input 

image and the importance of the algorithm optimization. 

3.4. Relative Dynamics 

 There are many dynamical models that have been used within the realm of the local 

vertical local horizontal (LVLH) frame.  In an excellent survey by Sullivan et al
48

, several relative 

models are evaluated based on metrics including but not limited to their performance and 

accuracy.  The model developed by Xu and Wang
49–51

 was incorporated in the estimation filter as 

the dynamics are nonlinear and contain the J2 oblateness term.  It is common in the LVLH frame 

to define both a chief and deputy satellite.  The chief is not moving within the LVLH frame 

(though the frame itself is moving in inertial coordinates) and the center of the frame is assumed 

to be the center of mass of the chief.  The deputy refers to the satellite that is trying to perform 

some rendezvous proximity operations relative to the chief.  Definition of the axes follows 

Vallado’s
52

 definition of the LVLH frame.  The x axis is aligned with the radial vector of the 

Earth with the positive direction pointing towards the center of the Earth.  The y axis is in the 

direction of the angular momentum and the z axis completes the triad. 
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The origin of the LVLH frame is centered on the chief satellite as shown in Figure 3-5 where the 

angular velocity of the frame is defined as:  

 

  
x z   x z   (3.33) 

 

where the individual components ωx and ωz are referred to as the steering rate of the orbital plane 

and the orbital rate respectively.  The term ωy is equal to zero.  They can both be computed as: 

 

  2 2

3

J i
x

k s s

hr

     (3.34) 

  
2/z h r    (3.35) 

 

Figure 3-5: ECI and LVLH frames 
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where h and r are the magnitudes of the chief’s angular momentum and geocentric radius in the 

ECI (Earth centered inertial frame with origins centered on the Earth) frame.  The s with 

subscripts i and ϴ denote the sine of the angles of inclination and true anomaly respectively.  

Furthermore, the subscript 2 means twice the angle.  The constant kJ2 appears in many of the 

following equations to group repeatedly used constants and is defined as: 

 

  
2

2 23 / 2J ek J R   (3.36) 

 

The constant Re is the equatorial radius of the Earth and µ is the gravitational constant.  Utilizing 

those formulations, the differential equations in the ECI frame describing the motion of the chief 

satellite’s orbit can be described by: 

  
xr v   (3.37) 
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2

2

3

2 J ik c s
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Xu and Wang defined the five variables (vx, h, r, ϴ, i) as the compact reference satellite variables 

(CRSV).  These variables define the motion of the chief and will be directly used in the derivation 
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of the rotation of the LVLH frame.  Taking the time derivative of Equations (3.33) and (3.34) and 

substituting the variables of the CRSV into the equations yields the following: 
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The variables of αx and αy are the steering acceleration and the orbital acceleration respectively.   

Before the differential relative dynamic equations can be defined, a few more variables need to be 

computed.  In the ECI frame, the position vector of the deputy satellite (satellite being tracked) is 

defined by the equatorial radius of the chief satellite plus the relative distance between both 

spacecraft (ρj): 

   ˆ ˆ ˆ ˆ
j j j jr x y z     r r x x y z   (3.45) 

 

Taking the magnitude of the deputy position vector gives the following equation: 

 

   
2

2 2

j j j j jr r x y z    r   (3.46) 

 

The projection of the deputy position vector on the Z axis of the ECI frame is derived to be: 

 

   ˆ
jZ j j i j i j ir r x s s y s c z c      r Z   (3.47) 
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Finally, all the necessary variables have been defined to now write the governing nonlinear 

differential equations of motion as: 

 

      2 2 2 22j j z j j z j z j x z j i j jxx y x y z s s r F                     (3.48) 

    2 2 22 2j j z j x j z j j z x j x j i jyy x z x y z s c F                     (3.49) 

    2 22j j x j x z j x j j x j i jzz y x y z c F                  (3.50) 

 

The various control forces are denoted by F and the accelerations of ζ and the velocities of η are 

as follows 
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A more rigorous derivation of the preceding equations can be found in Xu and Wang.
49

 

In this dissertation, the relative dynamics are used to express the relative position and velocity 

between the chaser (inspector) and chief (target).      Stereovision defined in Section 3.2 is used to 

extrapolate 3-dimensional features in the camera frame and applying a transformation between 

the camera and world frame (LVLH) leads to the relative states expressed in the equations of 

motion (Equations 3.48-3.50). 
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3.5. Rotational Kinematics 

 Quaternions are part of the four-tuple of real numbers consisting of four parameters
53

 that 

are useful in representing rotations due to their non-singularity, however, they have one constraint 

that must be maintained.  Three of these parameters are vectors and one part is a scalar.  The 

quaternion can be written in general form as 
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 (3.55) 

 

where q1, q2, and q3 are the vector components of the quaternion q1:3 and q4 is the scalar part.  The 

constraint that must be maintained is the unit norm constraint.  This vector has a magnitude of 1 

which can be written as 

  
2 2

1:3 4 1q  q q   (3.56) 

 

The unit norm of the quaternion must be equal to one in order for the attitude representation to 

remain orthogonal.  Because the attitude system has three degrees-of-freedom (3-DOF), this four 

dimensional representation is not independent
54

 and thus needs the constraint in Equation (3.56). 

 Quaternion multiplication is subject to special relations that must be preserved
53

.  Using i, 

j, and k as the orthonormal basis of R
3
, these products must be preserved for multiplication. 
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Multiplying two different quaternions q and p can be defined as 
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The inverse of a quaternion can be written as 

 

  

1

1:321

3

4

4

q

q

q

q

q


 
   
   
     
 


 q

q
 (3.59) 

 

Another important definition is that of the quaternion identity.  This can be written as 

 

   0 0 0 0 1
T

q  (3.60) 

 

By keeping the unit norm constraint of the quaternion, the attitude matrix can be defined as 
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Quaternions are widely utilized in attitude estimation due to the fact that they avoid singularities 

present for eigenaxis rotation, their kinematics have linear relationships with angular velocities, 

and the attitude matrix components as shown in Equation (3.61) are algebraic
54

.  One caveat for 

using quaternions in attitude estimation is that the unit norm constraint specified in Equation 

(3.56) must be enforced.  There are several ways to approach this issue with the most common 

way being to use the quaternion error between the estimation and measurements and associated 

state transition matrix of the error covariance.  It is common to parametrize this error and several 

parametrizations exist depending on the application and types of maneuvers being performed
54

.  

This is due to the presence of singularities inherent in the parametrization process.  The Modified 

Rodrigues Parameters (MRP) are frequently used as they allow for rotations up to 360°
54,55

.  The 

relationship between the MRP and quaternion are given by 

 

  1:3

41

4

q
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

q
p  (3.62) 

 

where p are the MRP.  This parametrization is a 3x1 vector.  Inversely, quaternions are related to 

the MRP through 
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Another parametric representation of quaternions is the Classical Rodriques parameters (CRP).  

These are related to the quaternion according to  

  1:3

14q


q
g   (3.64) 

where g is the CRP.  Unlike the MRP, the CRP parametrization is only valid for rotations up to 

180°.  However, applications involving small rotations certainly make using the CRP an 
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appropriate choice.  One major advantage for using CRP is that they are related to the rotation 

matrix by Cayley Transform which is given by 

       
1

R Q Q


  g gI I   (3.65) 

where I is a 3x3 identity matrix and the operator Q(g) is defined as the skew symmetric matrix 
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Quaternions in this dissertation are used to represent the rotation from the LVLH frame to the 

inspector’s body frame.  Furthermore, quaternion kinematics are also utilized to express the 

rotation of the camera frame with respect to the target.  The latter rotation is described in the 

following section and is a vital component of the measurement model in the estimation filter.  

Section 3.6 will describe the resulting rotation and translation of the camera frames around a 3-

dimensional point cloud. 

3.6. Optimal Linear Attitude Estimator 

 Consider two frames A and B as seen in Figure 3-6.  Frame B is related to Frame A 

through the rotation matrix RA/B and translation TA/B.  The relationship between the same set of 

points in both frames is given by 

  
/ / / / p p Ti A A B i B A BR  (3.67) 

 

where pi/A and pi/B are the set of points relative to each respective frame.  These points are 

obtained from the stereopsis process detailed in Section 3.2.  The set of these points create a point 

cloud and are observed from different camera frames as the camera moves through space. 
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Figure 3-6: Stereo reference Frames 

 

 In pose estimation, the goal is to determine the rotation and translation between 

subsequent frames.  These points would be the landmark features in this scenario.  To solve this 

problem, the centroid of the same set of points is computed by 

  / /

1

1 l

i A k A

kl 

 p p  (3.68) 

  / /

1

1 l

i B k B

kl 

 p p  (3.69) 

where 𝐩̅𝑖/𝐴 and 𝐩̅𝑖/𝐵 are the centroids in each respective frame and l is the total number of points.  

Using the centroids and the set of points for each respective frame, the rotation matrix RA/B can be 

computed by 

 

     / / / / /  p p p pi B i B A B i A i AR  (3.70) 
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Once the rotation matrix has been calculated, the translation can be solved for by substituting RA/B 

back into Equation (3.67). 

 The Optimal Linear Attitude Estimator (OLAE)
45,56,57

 provides an accurate optimal 

method to determine the rotation and translation from two sets of point clouds.  This approach 

solves for the rotation and translation without the need for any matrix inversion or decomposition.  

By taking the centroid relations defined in Equations (3.68)-(3.69), the difference between the 

centroid and any point in the point cloud is given by 

  
i i p p p  (3.71)  

Furthermore, the following parameters are defined to simplify further expressions: 

  
i/B i/A p p  (3.72) 

  
i/B i/A p p  (3.73) 

Equation (3.72) can be rewritten as 

     g   (3.74) 

Using the preceding equations and the requirement that the point cloud contains at least three 

points, the procedure to compute the CRP are as follows 
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The estimated CRP can be utilized along with the Cayley Transform to compute the estimated 

translation as 

  
i/B A/B i/AR t p p  (3.78) 
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Equations (3.77)-(3.78) form the basis of the measurement equations for the localization filter in 

Section 3.18.  The covariance of the attitude can be written as 

           
1 T2 1 1

attitude m m mP 1 I M 4M D M I


        g g g  (3.79) 

where the parameters Mm and D are defined below. 
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The matrix Mm is a real, symmetric, negative definite matrix and the parameters α and b are 

weights and the observed i
th
 unit vector.  The covariance complies with Wahba optimality and 

provides approximation of the attitude error produced by OLAE. 

3.7. Octrees 

 Shape estimation of the target spacecraft is created using an octree, which is a variant of a 

tree-based data structure in which each bin possesses eight octants.  Three dimensional space is 

recursively partitioned with a center node within the bin.  This recursive process occurs once a 

minimum bin size is reached.  Each bin represents a cubic volume and is commonly referred to as 

a voxel.   Higher resolution can be obtained by further subdivisions assuming the integrity of the 

data comprising the voxel space can be maintained.  The denser the data comprising the octree, 

the more refined the octree can become.  Since voxels represent a volume, they can model 

occupancy of the volume as long as that space contains information
58–60

.  Figure 3-7 shows the 

hierarchal structure of an octree structure.  Starting with a single bin, it is split into eight octants 

on the second level and three of those new bins are further split into another eight.  The voxels 

shaded in black are occupied.   
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Figure 3-7: Octree hierarchy 

 

 In robotic applications, it is appropriate to think of this occupancy in a probabilistic way.  

The higher the probability of occupancy of a volume, the certainty of the volume is better defined 

and has a lower associated covariance.  This mapping represents the probability that the volume is 

occupied by the scene in which the observer is measuring
13

.  In this work, the occupancy of the 

bins represents the probability that a target spacecraft is within this space.  An advantage of using 

octrees is that the initialization of map volumes can wait until measurements are processed and 

smoothed by a filter
60

.  As observations are conducted, the map is steadily built and does not 

require any priori information on the environment. 

 Uncertainty of the mapping can be quantified by using Shannon entropy
61

.  In this 

expression, ρi represents the probability of occupancy and i denotes the i
th
 bin. 

  i i i i

i

( ) ln( ) (1 )ln(1 )]U t           (3.82) 
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The probability of occupancy is bounded between zero and one the associated uncertainty 

is smallest when the probability is equal to the lower or upper bound.  One important caveat in 

evaluating the uncertainty and mapping is that points closest to the sensors are going to be biased 

due to the closer proximity.  This is a common problem in stochastic mapping.  To prevent over-

bias in occupancy values, a saturation level is set such that voxels with overly dense information 

have their contribution limited to the map estimate and confidence of the octree. 

Assuming a rigid target, it is possible to compute the centroid and principal geometric axes of 

the octree.  The centroid of the octree can be computed as 
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r   (3.83) 

where rm is the centroid, ri is the coordinates of the bins, and is summed over i bins.  To 

approximate the geometric principal axes, a principal component analysis (PCA) is conducted on 

the dataset comprising the bins.  Essentially the principal axes are the eigenvectors of the 

dataset’s covariance.  Given a centroid position, a set of orthogonal axes are attached and extend 

in the directions in order of the three largest eigenvalues
62

.  The covariance of the dataset is 

calculated according to 

   
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i m i m

i 1

1
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N 

   P r P r   (3.84) 

where rm is the centroid computed from Equation (3.83), and points in the dataset Pi.   The 

eigenvalues of the covariance are found along with the associated eigenvectors.  These 

eigenvectors define the principal axes of the dataset.  Computing an octree of the SOLIDWORKS 

target model (refer to sections 3.18.2 and 4.1.3 for target model description) used in this 

dissertation and the associated centroid and geometric axes is shown in Figure 3-8(d). 
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 Figure 3-8: Octree map progression with (a) three feature points of cubic body (b) full 

dataset of cubic body (c) cubic body with solar panel (d) full satellite model with geometric axes 

and geometric center estimate 

 

Here, the bins of the octree are colored differently with the centroids (denoted by 

asterisks) and data points (denoted by dots) the same color as their parent bin.  Figure 3-8 shows 

the progression of the octree map as it is recursively built.  A maximum bin size limit was not set 

so that the bins are clearly visible.  Otherwise, the bins would be too small to discern.  In Figure 

3-8(a), three of the eight bins are occupied with a single point forming a rough estimate of the 

actual cube size.  Using the full dataset of the spacecraft cubic body leads to a better defined 

shape of the cubic spacecraft body in Figure 3-8(b).  Several of the original eight bins were 
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recursively subdivided to refine the shape.  Next, a solar panel is added in addition to the cubic 

body in Figure 3-8(c) and all empty bins are removed from the plot to make occupied bins more 

visible.  In Figure 3-8(d), the full spacecraft model is utilized with geometric axes at the 

geometric center.  Increased number of points in the point cloud increases the fidelity of the 

octree map.  Setting a small maximum bin size will increase resolution of the shape with the bins 

more closely following the contours of the surface. 

3.8. Random Sample and Consensus 

 The RANdom SAmple Consensus (RANSAC) is a commonly used method for 

determining the best data to fit a model
63–66

.  Random subsets of data are taken from the whole 

data iteratively to find the best hypotheses of the data.  Once a good hypothesis is found, these 

points are kept as the inliers and the rest are discarded as the outliers.  There are two basic steps 

that occur iteratively in a general RANSAC algorithm:  a hypothesize step in which minimal 

sample sets are randomly selected (hypotheses) from the entire dataset and the system model 

parameters are computed from this step.  Next, a test is conducted to check which elements of the 

entire dataset are consistent with the system model parameters estimated in the first step
67

.  These 

set of elements are referred to as the consensus set.  The algorithm ends when the probability of 

finding a better consensus set drops below a pre-defined threshold.   

 A simple two-dimensional example to demonstrate the concept is finding the best line to 

fit a set of data.  Figure 3-9 shows the iterative steps.  Random hypothesis are taken from the raw 

data set.  Model parameters are computed from this dataset which in this case are the slope and y-

intercept of a line.  Afterwards, the entire dataset is used to validate the model parameters 

computed from the random hypothesis by fitting a line based on the computed slope and y-

intercept values.  A distance function 
Threshold 2|| y mx b ||    (which is the distance between the 
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data and the model) is applied to compare how the data set fits with the line and if it is within a 

threshold, the model is good.   

 

Figure 3-9: Two-dimensional RANSAC example 

 

Data points that cause degenerate model parameters are rejected as outliers and data points that 

produce consistent model parameters are kept as inliers.   

 In this dissertation, OLAE will be used as the model in which RANSAC will be looking 

for outliers.  The model parameters of g and t will be used to compare random hypothesis of 

three-dimensional feature points.  The distance function that will conduct the model consistency 

tests is 

  
i/A i/B Threshold 2|| R ||  p p t   (3.85)  

where the rotation matrix R is a result of the Cayley Transform of the CRP.   
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Figure 3-10: Octree-based RANSAC 

 

 In addition to the RANSAC conducted using OLAE as its model, the octree mapping is 

also utilized to test for model inconsistency.  Once the confidence in the mapping reaches a pre-

defined threshold, the octree map of the target is used to check if the inliers are contained within 

the bin boundaries (Figure 3-10).  It is important to wait for the octree mapping to have low 

uncertainty before using it to prune bad measurements as a mapping with high uncertainty will 

potentially lead to outliers being accepted as inliers.  Bad measurements can lead to a bad octree 

representation so care must be taken to avoid a feedback loop in which each continuously make 
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each other worse.  However, leveraging a well-defined map can greatly improve results from the 

RANSAC and reject inconsistent elements from the dataset. 

3.9. Ray Tracing 

 The framework for a visual-based pose estimation problem is dependent upon having 

available images for the measurement system.  Synthesizing images is accomplished through the 

development of scene generation architecture in MATLAB.  This architecture is structured as 

follows: a CAD model is imported into MATLAB as a stereolithography (STL) file containing 

the vertices, facets, and normal.  At any given time step, the vertices are projected onto the image 

plane via the projection equations outlined in Section 3.6.  Once the image coordinates are 

obtained from the projection of the model vertices, a bounding box is defined around the region 

encompassing the projected points.  This is done to reduce the number of calculations in the last 

step in which ray tracing is implemented to create the image. 

 The process of ray tracing is a straightforward concept.  Figure 3-11 illustrates the 

process; given a coordinate in the world frame of a camera, a ray is cast from the camera origin 

through the middle of each pixel in a projected image plane towards an object.  This ray will be 

referred to as the primary ray.  Once the primary ray is computed from the camera origin to the 

projected pixel point, another calculation is conducted to determine if the ray intersects anything.  

The approach chosen for the scene generation framework uses the Mӧller-Trumbore algorithm
68

.  

This algorithm is a computationally efficient triangle intersection algorithm that exploits the 

barycentric coordinates of a triangle to determine if a line intersects it.  
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Figure 3-11: Ray definition in ray tracing algorithm 

 

 For each primary ray drawn from the camera origin, every triangular mesh in the model 

must be checked to see if an intersection occurs.  If multiple intersections occur (for example, the 

ray hits the front and backside of the object), the intersection closest to the camera origin is 

chosen.  Once an intersection is determined, a secondary ray is drawn from this intersection point 

to the light source.  Again, all triangular meshes are checked again for the purposes of 

determining if the intersection point is obstructed by another surface or has direct line of sight to 

the light source.  This ray will be referred to as the shadow ray.  After the shadow ray is 

computed, the color and brightness of the pixel is determined according the chosen lighting 

model.  In this framework, the Phong Model
69

 is used which is detailed in the following section.  

In the event that the primary ray intersects nothing, the algorithm passes onto the next pixel.  

However, all the primary ray calculations on the triangular mesh are still done for empty pixels.   
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 Since this algorithm iterates over every pixel in the image, the computational 

requirements can be become extremely high.  Computational speed is highly dependent on the 

number of model vertices and the resolution of the synthesized image.  Aside from reducing the 

CAD model complexity and lowering the resolution, two other techniques were implemented to 

dramatically improve computational speed.  Unless the camera origin is very close to the target 

object or zoomed in, the object does not encompass the entire image frame.  As a result, lots of 

computations are wasted on empty space.  This space can be eliminated entirely from 

computations by first projecting the vertices onto the image plane and drawing a bounding box 

around the area of interest. 

 Figure 3-12 shows a bounding box overlapping the portion of the image in which 

something is visible.  It can be assumed that any area outside this region is empty and thus does 

not need to be computed in the ray tracing algorithm.   

 

 

 

 

 

 

 

 

 

 

Figure 3-12: Bounding box around projected vertices 
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This can eliminate many resulting calculations and dramatically improve the speed of the 

algorithm.  An error tolerance is applied to the boundary region to slightly increase the bounding 

box size to ensure that edges are not clipped during the ray tracing procedure. 

 Finally, the second approach to improving the computational speed is by making use of 

parallel processing.  Since the computation of a pixel is independent of the computation of other 

pixels, this process can be done in parallel.  By using the Parallel Computing Toolbox in 

MATLAB, the ray tracing algorithm can be performed in parallel achieving further computational 

savings.  An image produced by this process is shown in Figure 3-13. 

 

Figure 3-13: Image produced by ray tracing algorithm 
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3.10. The Phong Model 

 Once a particular pixel is determined to be along a ray extending to the light source, the 

brightness and color on the grayscale needs to be computed for that pixel.  Several approaches 

exist for this procedure ranging in accuracy and computational cost.  For this work, speed was 

determined to be more important over accuracy as the ability to run many simulations would 

quickly get bottlenecked by a computationally intensive algorithm.  While a method based on 

Bidirectional Reflectance Distribution Function (BRDF) can be very accurate, they tend to have 

higher computational requirements.  The advantages of these methods are that it is physically 

accurate and energy conserving.  For the purposes of this framework, the Phong Model
69,70

 was 

chosen as the lighting model. 

 The Phong Model was very popular for many years due to its computational efficiency.  

However, the advent of faster multi-core processers, GPU computing and more physically 

accurate algorithms resulted in its relative disuse today.  The Phong model works by making the 

assumption that the lighting on most materials can be approximated by a weighted sum of diffuse 

and specular components.  Here, the diffuse term refers to the component of light that is invariant 

to the viewing angle.  Diffuse materials can be modeled as reflecting light equally in all directions 

thus the brightness remains the same independent on the viewing orientation.  The specular 

component behaves in an opposite manner; it is dependent on the viewing angle and can be 

considered akin to a glossy appearance.  Diffuse surface color can be computed according to 

Equation (3.86) where ρs refers to the surface albedo, Li is the amount of incident light energy, 

and φ is the angle between the normal vector and the light direction.   

 

  s
iDiffuse Color L cos( ) 





  (3.86) 
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 Specular color is computed using Equation (3.87) where L and n refer to the incident 

light direction and normal vector direction respectively; V is the viewing direction and es is 

referred to as the specular exponent.  Combining these components and multiplying them by 

weights leads to the equation relating the specular and diffuse effects to the color at a pixel.   

 

     
se

Specular Color 2  V n nL L   (3.87) 

 

In Equation (3.88), Kd refers to the diffuse weighting coefficient and KS to the specular weighting 

coefficient.   

  
d SPixel Color Diffuse Color K Specular Color K         (3.88) 

 

 The drawback of this method is that it is not physically accurate.  The weighting 

coefficients and the specular exponent do not have any physical meaning; adjusting these values 

is a trial and error to achieve the desired look of the image.  Higher values of es result in a more 

focused specular highlight and the weighting confidents affect the overall intensity of the specular 

and diffuse components.  However, the simple algebraic relationships enable a very 

computationally efficient algorithm.  Since the focus of this dissertation is not on the computer 

vision aspect of generated images, accuracy is sacrificed for speed. 

3.11. Multiplicative Extended Kalman Filter 

 As discussed earlier, quaternions need to have their unit norm constraint enforced in the 

estimation process.  One such way to accomplish this is through the Multiplicative Extended 

Kalman Filter (MEKF)
55,71

.  The fundamental premise of this algorithm is to propagate the four 
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component quaternion state estimate by computing the quaternion error and its associated error 

covariance.  An error quaternion is related to the estimate quaternion by 

  
1ˆ  q q q  (3.89) 

where δq is the error quaternion, and q and 𝒒̂ are the measured and estimated quaternion 

respectively.  The filter is propagated according to the quaternion kinematics which are defined as 

  
1 1

02 2

 
    

 
q q


q  (3.90) 

where ω is the angular velocity.  Commonly, the angular velocity measurements are provided by 

gyros.  These can provide updates to the state estimates.  While the angular velocities are not 

directly estimated, the gyro biases are estimated.  Assuming gyro measurements are available, 

they can be modeled by 

  ˆˆ        (3.91) 

where ̂  and ω are the estimated and measured angular velocities respectively, ̂ is the estimated 

gyro bias, and η zero-mean Gaussian white noise.  Angular velocity is not directly estimated; 

rather the gyro bias is included in the state vector.  The state vector is written as 

  
 

  
 

q
x

b
 (3.92) 

The associated error states are defined as 

   
 

  
 b






q
x  (3.93) 

where δq is the quaternion error as defined in Equation (3.93) and δb is the bias error.  Bias error 

can be written as 

  ˆ      (3.94) 
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Once the parametrized error states and covariance are updated with the Kalman gain, the 

parametrized states must be converted back to the quaternion parametrization.  This is done by 

  1:3

14q


q
g  (3.95) 

Finally, the quaternion estimate must be computed from the error quaternion given by 

   ˆ ˆ ˆ     q g qq = q q =  (3.96) 

For discrete time computations, the components of the error covariance can be computed by 

  
11 12

21 22

  
   

  
 (3.97) 

  
 

 
 

  
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11 3 3 2

ˆ ˆ
ˆ ˆsin 1 cos

ˆ ˆ
x

x x
I t t      

 
 

 
 (3.98) 

  
 

  
 

  
2

12 3 3 2 3

ˆ ˆ
ˆ ˆ ˆ1 cos sin

ˆ ˆ
x

x x
I t t t t         

 
  

 
 (3.99) 

  21 3 30 x   (3.100) 

  22 3 3xI   (3.101) 

where Δt is the time period, 𝛚̂x is the skew of ω, 0 is a 3 x 3 null matrix, and I is a 3 x 3 identity 

matrix
72

. The State Transition Matrix (STM) is denoted as Φ and is used to compute the 

covariance P.  In summary, the algorithm can be seen in Figure 3-14.  The algorithm terminates 

once measurement updates cease.  The MEKF is utilized in the inspector localization algorithm to 

handle the attitude and bias states for the inspector’s attitude (LVLH to inspector body frame) and 

gyro bias respectively.  
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Figure 3-14:  Multiplicative Extended Kalman filter algorithm
71

 

3.12. Consider Kalman Filter 

 One of the main contributions in this dissertation is to provide an online indirect mass 

estimation approach for thrust estimation.  A coarse volume estimate is obtained from the octree 

map (Section 3.17) which possess an associated covariance.  Estimating the volume is mildly 

observable whereas estimating mass is unobservable.  Directly estimating either parameter in a 

filter could lead to divergence or an inherent bias.  Furthermore, ignoring or assuming a presumed 

value for these parameters may also cause similar outcomes.  Fortunately, there is an approach 

that can be utilized to consider the uncertainty associated with the volume estimate provided by 

the octree map while simultaneously excluding it from the estimation filter. 
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 The Consider Kalman Filter, also referred to as the Schmidt Kalman Filter (SKF), was 

originally developed by Schmidt in the 1960s for handling the uncertainty pertaining to errors 

present in dynamic and measurement models
73

.  Since the initial development of the SKF, there 

have been many improvements on the original algorithm
74–83

.  The consider filter was adapted to 

both the Extended Kalman Filter (EKF)
76,77,83

 and Unscented Kalman Filter (UKF)
78,79,81

.  This 

dissertation uses the EKF formulation as it computationally less expensive than the UKF and will 

be referred to as a SEKF throughout the remainder of this work.   

 Adopting the formulation of the SEKF as seen in Woodbury
74

 and Crassidis
54

, the 

algorithm will be presented as follows.  The discrete model for the states and measurement 

system can be written as 

 
1k k k k k   x x p w    (3.102) 

 
k kk x k p kH H  y x p v   (3.103) 

where Φk is the STM of the states and Θk is the STM of the consider parameters.  Both w and v 

are assumed to be zero mean Gaussian random noise.  The measurement matrices
kxH and 

kpH are 

defined for both the estimated states (x) and the consider parameters (p), respectively.   

 In the propagation portion of the SEKF, the estimated states are updated at each time 

step.  However, the consider parameter remains unchanged, as that is the underlying assumption 

of the consider filter
84

.   

 1
ˆˆ ˆ  

   x x pk k k k k kw  (3.104) 

 1
ˆ ˆ 

 p pk k   (3.105) 

 
1

           
k k k k k

T T T T

xx k xx k k xp k k px k k pp k kP P P P P Q   (3.106) 
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1k k kxp k xp k ppP P P


     (3.107) 

As can be seen in Equation (3.105), the consider parameters take on the same estimate 

from the previous time step and remain unchanged throughout the algorithm.  The covariance of 

the state estimates as seen in Equation (3.106) contains terms for both the states and the consider 

parameters.  The covariance for the cross-correlation between states and parameters is defined by 

Equation (3.107).  Consider parameter covariance 
kppP also remains unchanged as the consider 

parameters.  The optimal gain for the SEKF is similar to the classic Kalman gain except it 

contains extra terms encompassing the measurement matrix and covariances for the consider 

parameters. 

   
1

T T T T T T

k xx x xp p x xx x x xp p p px x p pp pK P H P H H P H H P H H P H H P H R


             (3.108) 

Terms denoted with subscript x refer to the state vector; terms denoted with subscript p refer to 

the consider parameters; terms with both x and p are cross-correlation components.  Subscript k 

refers to the current time step.  Finally, the estimated states and corresponding covariance are 

updated with the gain in the following formulations. 

  1
ˆˆ ˆ ˆ  

    x x x p
k kk k k k x k p kK y H H   (3.109) 

 ˆ ˆ p pk k   (3.110) 

       
k k k k kxx k x xx k p pxP I K H P K H P   (3.111) 

      
k k k k kxp k x xp k p ppP I K H P K H P   (3.112) 

It should be noted that the consider parameter estimate remains unchanged through the 

end as shown in Equation (3.110).  Equations (3.102)-(3.112) outline the common SEKF 
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algorithm and are summarized in Figure 3-15.  Components colored in yellow are related to the 

consider parameters; consider parameters affect the state estimate dynamics and covariance while 

reaming unchanged itself.  The consider parameters and associated covariance are colored in 

blue. 

 

 

Figure 3-15: SEKF algorithm
83
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3.13. Variable State Dimension Filter 

 Many approaches exist for detecting unknown maneuvers
35–40

 with varying degrees of 

advantages and disadvantages.  This dissertation follows the formulation of the VSD approach as 

outlined in Goff
35

 and Bar-Shalom
36

.  A summary of the VSD procedure is shown in Figure 3-16.  

The VSD filter can be split in two models.  During the time steps in which no maneuver is 

detected, the Kalman Filter runs normally; this portion of the algorithm is referred to as the 

quiescent model.  The quiescent states to be estimated are the same as those covered in the 

section detailing the differential equations of motion.  These include the relative position and 

velocity as shown: 

   xQ I J K I J Kx x x v v v   (3.113) 

 The accompanying state covariance is simply a 6x6 matrix corresponding to the position 

and velocity states.  Once a maneuver is detected, the measurement residuals will begin to grow 

as the quiescent model runs.  A metric called the Mahalanobis distance (ψ) is defined which 

utilizes residuals (ν), covariance, and measurement covariance R, to quantify the growing 

uncertainty in the estimates:   

   
1

  T T

k k k k k k kH P H R    (3.114) 

A predefined threshold is chosen such that when the Mahalanobis distance surpasses it, the 

quiescent model transitions to the VSD model.  Under this paradigm, the quiescent model states 

are expanded to encompass the thrust states.  

     x
I J KVSD I J K I J K th th thx x x v v v a a a   (3.115) 
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The thrust states are initialized as zeros.  Additionally, the state covariance is expanded to 

accommodate the added thrust states as: 

  

3 3

6 6 6 3

3 6

0

0 

 
 

  
 
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x
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P

P

  (3.116) 

 As researched by Goff 
35

, the covariance is inflated after the model switches to account 

for the uncertainty in the present state estimation as a result of the maneuvers.  This is 

accomplished by increasing the values of the covariance as long as the trace of the covariance is 

less than a predefined threshold.  The repeating calculation is performed according to the 

following heuristically determined relationship: 

  ˆ ˆ10k kP P  (3.117) 

In Equation (3.117), the covariance is iteratively multiplied by 10 until a threshold is reached.  

Choice of multiplying the covariance by 10 was arbitrarily chosen by Goff 
35

 and could be 

tweaked.  The threshold in which the operation stops is more important and directly affects filter 

performance.  State estimation will continue within the VSD model until maneuver time ceases.  

Again, the Mahalanobis distance will become larger until it surpasses the threshold, which will 

cause the model to switch back to the quiescent states.  The thrust states are removed from the 

state vector and covariance, and the same procedure of inflating the covariance occurs before 

continuing the estimation. 
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Figure 3-16: Variable State Dimension Filter model switching
85

 

3.14. The Consider Variable State Dimension Filter 

 The formulation of a VSD approach within the architecture of a SEKF was developed 

previously by Scarcella et al
85

 as a foundational part of this dissertation.  In the VSD approach 

outlined in the prior section, convergence of the thrust states are enabled through inflating the 

covariance to increase the uncertainty in the states post thrust maneuver.  Furthermore, 
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convergence is also helped through the addition of the process noise in the Kalman Filter at each 

time step.  In both instances, the additive noise is subject to precisely tuning the covariance 

inflation threshold and the overall level of process noise.  This can be partially mitigated through 

using the interacting multiple model (IMM), as each model uses a different level of process noise.   

 Inherently built into the consider filter design is the ability to handle uncertain biases 

within the model dynamics and measurements.  The associated uncertainty from these consider 

parameters adds another, more targeted source of adjustment to the state covariance and thus the 

gain.  Using these advantages with minimal extra computational power, this framework is applied 

to both the quiescent and VSD models of the maneuver detection scheme as shown in Figure 3-

17.  The consider parameters in the quiescent model are present in both the quiescent and VSD 

portions of the algorithm.  However, the consider parameters related to the thrusting component 

are present only in the VSD model.   
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Figure 3-17: Consider Variable State Dimension Filter model switching
85

 

 

 In the quiescent model, the algorithm is the same as described in the previous section on 

the consider Kalman filter.  The only difference regarding the VSD formulation of the quiescent 

model is in the calculation of the Mahalanobis distance. 

   
1

T T T T T

k k x xx x x xp p p px x p pp p kv H P H H P H H P H H P H R v


          (3.118) 
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Once a maneuver is detected and the model switches accordingly, the thrust states are 

concatenated to the state vector as before.  However, the consider parameters need to be 

accounted for.  This can be more easily shown using the augmented state vector definition of the 

consider filter. In general, the state vector and covariance for a consider filter is defined as 

  
 

  
 

z
k

Q

Q

Q

x

p
  (3.119) 
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  (3.120) 

where x are the estimated states,  p are the estimated consider parameters, and subscript Q denotes 

the quiescent states.  In the quiescent model of the VSD, this definition applies to the formulation.  

However, after transitioning to the maneuver detection portion of the algorithm, the quiescent 

consider parameter needs to be moved below the new thrust states since there cannot be a 

consider parameter in-between the estimated states.  The augmented state vector then becomes 

  
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  (3.121) 

where the quiescent consider parameter is moved below the new thrust states and the VSD 

consider parameter is added to the end.  The augmented covariance receives a similar adjustment 

wherein the cross-correlation terms in the quiescent state covariance are kept and moved to the 

appropriate positions as seen below 
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Keeping these terms retains the information between the states and consider parameters in the 

covariance during the model switch.  Once the maneuver ends and the filter detects it, the thrust 

states and associated VSD consider parameter are removed and reduced back to Equation (3.119).  

The same thing occurs for the covariance; the elements of the covariance related to the thrust and 

VSD consider parameters are removed.   

  

Q

Q

Q Q Q Q

x xp

x xp

Q Q

p x p p x p

P P

P P
P P

P P P P

 

 
 

  
     

   
  

  (3.123) 

Again, the cross-correlation terms are kept for the next time step in the switched model.  

3.15. Consider VSD Filter Results 

Results of this approach as shown in Scarcella et al
85

 demonstrated the computational 

savings and accuracy compared to more robust and computationally expensive algorithms.  These 

results validate using the combined VSD SEKF approach over using an EKF.  This framework is 

used as a component of the inspector algorithm in Section 3.18.  In this section, the capabilities of 

this algorithm are demonstrated such that their use in the whole inspector algorithm is proven. 

Initial conditions for a near circular LEO orbit are shown in Table 3-1.  A maneuver 

begins 4500 seconds into the simulation and lasts for 750 seconds.  In this scenario, the thrust 

acceleration only occurs in the in-track direction with an acceleration of 1.875x10
-4

 m/s
2
.  A small 
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thrust acceleration was chosen to determine the filter’s effectiveness.  Measurements are sampled 

at 1 Hz and include range and range rate with standard deviations of 1 m/s and 0.05 m/s
2
, 

respectively.  These are representative of typical sensor errors
35

.  Tuning parameters such as the 

Mahalanobis distance threshold and the covariance inflation threshold are not optimally set.  This 

is done to see how the filters handle a general situation in which the filter is not perfectly tuned. 

 There are two consider parameters set in this simulation; the quiescent consider 

parameter is the difference between the ballistic coefficients of both satellites (ΔBC) in the air 

drag acceleration in Equation (3.124).  Mass of the deputy spacecraft is the second consider 

parameter.  This parameter is solely used in the maneuver detection model of the algorithm.  It is 

assumed that the propellant consumption from the maneuver does not have a noticeable effect on 

the total mass of the spacecraft since the duration is short.  As a result, the nominal mass remains 

unchanged throughout the simulation.  

     2 2

1 2

1 1

2 2
da BC BC v BC v      (3.124) 
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p   (3.125) 

 The estimated consider parameters are five percent larger than the nominal values.  In the 

following series of simulations, an EKF and SEKF using a VSD filter are run using the same 

initial conditions and tuning parameters.  Having set up the initial system, the simulation is 

propagated for roughly one orbital period.  Two hundred Monte Carlo simulations were run to 

assess the overall performance of the SEKF relative to the EKF.  In these runs, measurements 

were generated with additional noise with standard deviations as previously described.  

Furthermore, the initial conditions, covariance, and process noise had random noise applied in 

different runs. Both filters detect the maneuver about 200 seconds after the initial maneuver 
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begins.  Given the low thrust acceleration and sub-optimal tuning parameters, this behavior is 

expected.  No inherent advantage is present in the detection of the maneuver using consider 

parameters.  Table 3-2 shows RMS error for the quiescent states using a VSD filter.  Results of 

the SEKF were on par with using the SEKF with a smoother without all the extra computational 

requirements. 

 

Table 3-1:  Orbital Initial Conditions
85

 

Initial Chief Orbit 
Initial Relative 

Orbit 

r = 8000 km 

i = 30° 

ϴ = 0° 

Ω = 120° 

e = 0.001 

h = 56,470 km
2
/s 

X = 500 m 

Y = 0 m 

Z = 86.6 m 

𝑋̇ = 0 m/s 

𝑌̇ = -0.71 m/s 

𝑍̇ = 0 m/s 

 

Table 3-2: RMS error of quiescent states over 200 simulations
85

 

 
X (m) Y (m) Z (m) 

Magnitude 

(m) 
𝑋̇(m/s) 𝑌̇(m/s) 𝑍̇(m/s) 

Magnitude 

(m/s) 

SEKF 18.672 5.336 35.009 40.034 0.0321 0.0130 0.0324 0.0474 

EKF 28.189 12.864 68.533 75.230 0.0384 0.0249 0.0872 0.0985 

SEKF 

Smoother 
15.539 5.657 19.278 25.539 0.0268 0.0090 0.0287 0.0403 

EKF 

Smoother 
25.949 5.746 21.010 33.879 0.0290 0.0092 0.0302 0.0408 
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Plotting of the residual error for the EKF and SEKF in Figure 3-18 shows that the EKF 

struggles to converge without the effects of the consider parameters.  Both filters detect the 

maneuver about 200 seconds after the initial maneuver begins.  Given the low thrust acceleration 

and sub-optimal tuning parameters, this behavior is expected.  No inherent advantage is present in 

the detection of the maneuver using consider parameters.  However, Figure 3-18 does show that 

after the maneuver occurs, the EKF (black line) struggles to remain within the 3σ bounds (dashed 

line).  The SEKF after the initial covariance inflation procedure recovers within the duration of 

the simulation.   

 

Figure 3-18:  Average residual error (solid line) with 3σ bounds (dashed line) of 200 simulations 

using the SEKF (red) and EKF (black) filters (a) in the radial position (b) in the in-track position 

(c) in the cross-track position
85
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 Mahalanobis distances over all Monte Carlo simulations are plotted versus time in Figure 

3-19.  The dashed line represents the threshold set for the model switching.  If the Mahalanobis 

distance exceeds this threshold at any time step, a maneuver is either detected or ended depending 

on which model is currently active.  One thing that becomes apparent is the frequency of false 

positives for both the SEKF and EKF before the initial maneuver at 4500 seconds.  This further 

emphasizes that the initial tuning parameters were not optimal for the simulations; in this case, 

the threshold for the Mahalanobis distance was set slightly too low.  Despite this, most maneuvers 

occur and end around the same time for both SEKF and EKF filters.  However, the EKF has 

another large spike in the Mahalanobis distance around 6000 seconds.  This indicates that a 

second false maneuver is potentially detected fairly frequently during the 200 Monte Carlo runs.   

 

 

Figure 3-19:  Mahalanobis distance during Monte Carlo simulations
85

 



67 

 

 The SEKF is less sensitive to the tuning parameters of the process noise and thresholds 

set for the system.  With more tuning optimization, the EKF could demonstrate enhanced 

performance.  Having a filter that can be more easily tuned (meaning less sensitive to sub-par 

optimal tuning parameters) and more robust to uncertainties in an actual environment is 

especially beneficial.   Since there are thrust estimates following the end of the maneuver at 5250 

seconds, this indicates that the end of the maneuver was not detected.  Both filters struggle with 

detecting the end of the maneuver (Figure 3-20) given the sub-optimal tuning parameters and low 

thrust accelerations.   

  

Figure 3-20: Thrust acceleration magnitudes of SEKF and EKF filters
85

 

Despite the poor thrust estimation, the SEKF under these difficult conditions still gives 

much enhanced trajectory estimate, as shown in Figure 3-21.  After the maneuver begins, the 

SEKF quickly recovers and converges back towards the true trajectory. 
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Figure 3-21:  Relative Orbit of Continuously Thrusting Spacecraft
85

 

3.16. Interacting Multiple Model 

 An interacting multiple model filter has been used for object tracking
86,87

 in previous 

studies.  The algorithm works by generating n number of models in which the process noise is 

adjusted.  Weights are assigned to these models and are initialized to be equal.  As the filter 

propagates forward in time, the weights change based on how well a particular model performs; 

models that produce better state estimates will have its weight contribution increase.  Varying the 

process noise helps to prevent filter divergence especially when estimating smaller thrusting 

maneuvers.  Different levels of process noise provide the filter with the ability to find a better 

estimate of thrust as the maneuver is unknown and convergence can be difficult if the initial 

estimate guess is far from the truth.  For low thrusting magnitudes, varying process noise 

provides enough variation such that the filter can find the model that works best. 
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 The Interacting Multiple Model (IMM) approach proposed by Goff
35

 only utilizes the 

IMM when switching to the maneuver detection portion of the VSD filter.  Other methodologies 

use the IMM filter for both the quiescent and VSD model which is very inefficient for tracking.  

The IMM is in these approaches combines the quiescent and thrusting models at each step thus 

introducing errors when estimating a non-thrusting spacecraft using a thrust model.  By only 

using the IMM in the thrusting model, these errors due to combining the models is avoided. 

 The algorithm begins by defining n number of models for the IMM.  Higher number of 

models will increase the computational cost so caution needs to be used to use the lowest number 

of models needed to produce good state estimates.  As mentioned before, the initial weights are 

initialized to be equal which will be used to weight each model in the filter to be combined for the 

final state and covariance estimate.  This initial weight is defined as 
k

i  with initial states and 

covariance as 
k

ix and k

iP̂  respectively.  A probability matrix called j|kPr  is defined containing the 

static mixing probabilities that switch from each model at every time step.  The following steps 

are done initialize the weights, states, and covariance at the beginning of each filter time step.  To 

determine the mixing weights, the sum of weights and probabilities for each model are done as 

follows 

  
n

j

k j|k i 1

j 1

c Pr  



    (3.126) 

The mixing weights are thus computed according to 

  
j|k j

i 1 j|k i 1

k

1
Pr

c
    (3.127) 

Using these updated mixing weights, the mixed state and covariance for each model is calculated 

by 
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n

j|k j j|k

i 1 i 1 i 1

j 1

ˆ   



x x  (3.128) 

   
n

T
k j|k j j k j k

i 1 i 1 i 1 i 1 i 1 i 1 i 1

j 1

ˆ ˆ ˆPi P      



          x x x x  (3.129) 

 Initial states and covariance for each model are input into the filter and propagated.  

Normal steps for the EKF are conducted for each model state and covariance and stored.  

Furthermore, the residual and residual covariance (ν and S respectively) are stored for each 

model.  Once the filter has n model number of states, covariance, residuals, and residual 

covariance, the weights are updated by 

  
k T k 1 k
i i i

1
( ) (S )

k 2
i

k

i

1
e

(2 )S

 





   (3.130) 

  
k
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j
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j 1

c

c









 (3.131) 

All models are combined with their corresponding weights to determine the combined IMM 

estimate 

   
n

k k

i i i

k 1

ˆ 


x x  (3.132) 

   
n

T
k k k k

i i i i i i i

k 1

ˆ ˆ ˆP P


          x x x x  (3.133) 

These states and covariance are then used to initialize Equations (3.128) and (3.129) for the next 

time step.  In this dissertation, target spacecraft density values comprise the models in the IMM.  

Further explanation how the model densities are chosen and utilized in the architecture are 

described in the following section. 



71 

 

 

3.17. Octree Target Mapping 

Obtaining information about an unknown target is vital to rendezvous and proximity 

operations.  By taking a series of stereo observations and storing the resulting feature points, an 

octree map is constructed.  Since the feature points are not estimated as a part of the state vector 

in the filter from the increased computational cost, accuracy is sacrificed.  Instead, feature points 

(obtained from the KLT algorithm) are updated to the current frame using the latest localization 

estimates (rotation and translation) and spacecraft body to camera frame rotation.  Feature points 

are initially in the camera frame and require a transformation.  This can lead to the map estimate 

smearing if too many bad observations are utilized to construct the map
13

.  It is important to 

eliminate bad observations through RANSAC.  Once the map reaches a pre-defined uncertainty 

threshold, the map itself is used to improve the feature point correspondence.  Using the map 

before it reaches a high confidence can lead to a feedback loop in which bad observations make 

the map estimate worse leading to more bad observations making it through the RANSAC.   

Building an accurate map serves multiple purposes shown in Figure 3-22.  The octree 

map is created in the target’s body-fixed frame.  The attitude of this frame is estimated using the 

principal component analysis procedure outlined in Section 3.7.  Since the target is not rotating, 

better estimations of the principal axes cannot be obtained since they are not observable.  Target 

geometric center (CoG) is also extrapolated from the octree map as described in Section 3.7.  In 

the localization filter, the relative distance between the observer and target is assumed to be the 

distance between both centers of mass.  The difference between the target’s geometric center and 

center of mass is defined as roffset (Figure 3-23) and is estimated in the filter to correct the center 

of mass location.  It also helps to better detect maneuvers by keeping track of this parameter. 
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Figure 3-22:  Flow of octree estimates between RANSAC and localization 

 

Figure 3-23:  Range offset between center of mass and geometric center 
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Most importantly, the volume is estimated from the octree map.  Development of an 

online process to estimate mass for the maneuver detection scheme is a key component of this 

dissertation.  An assumption is made that the target has a uniform density.  Using publically 

available information on existing satellite dimensions and mass, a list of densities was computed 

assuming a uniform density distribution.  These densities provide a bank of models to be used in 

accordance with the volume estimate and an IMM filter.  Each density corresponds to a model in 

the IMM.  A broad range of densities (Table 3-3) are included due to the uncertainty in the 

target’s density.  The mixing weights corresponding to the models in the IMM will allow the 

filter to converge to the amalgamation of densities that best fits the observations. 

 

Table 3-3:  Computed densities of existing spacecraft
*
 

Density (kg/m
3
) 

74.5578 

153.8462 

253.9062 

150.7937 

137.8378 

192.0000 

197.2387 

107.9771 

 

                                                      
*
 Densities are computed from publically available information on existing satellites assuming a 

uniform density 
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Mass of the target is indirectly obtained from the volume estimate and the bank of 

densities.  Estimation of the volume is done by computing the volume of each bin that is 

occupied.  Equation (3.134) shows the computation of volume v as the summation of the length l, 

width w, times the height h of the i
th
 bin. 

  
N

i
i i i

i 1 i

v w h




 l   (3.134) 

 Each bin is weighted by its occupancy value α and its saturation level ψ.  Bins that are 

sparsely occupied account for less of the total volume than fully occupied bins.  Furthermore, 

bins that are overly saturated are prevented from biasing the volume estimate.  Bins that have no 

occupancy do not contribute to the total volume.  The accuracy of the volume (as well as 

geometric center and principal axes) is highly dependent on the number of feature points 

comprising the octree and the bin size.  Smaller maximum bin sizes produce better results.  

However, there is a trade-off between the length of bin size and computational cost.  Smaller bin 

sizes produce more bins in the map and thus require more calculations for the octree itself, 

geometric center, and the principal axes.   

 Summarized in Table 3-4 are the maximum bin size allowed versus the volume estimate 

and computational time.  All computations were done using 2000 feature points.  The true volume 

obtained from the CAD model of the spacecraft is 1.8864 m
3
.  A maximum bin size of 3 m

3
 has a 

very low computational cost but is over three times the true volume.  Conversely, a bin size of 

0.25 m
3
 has a computational time roughly 137 times higher but only a 10.3% difference from the 

true volume.  Since the computation of the map is done every time an observation update occurs, 

a compromise must be made to keep computational times amenable for onboard spacecraft 

implementation.  The estimation filter must utilize less accurate volume estimates for the sake of 

computational efficiency.  Filter performance is judged on its ability to cope with these coarse 
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volume estimates.  This is why implementation of the IMM is required to overcome the effects of 

a coarse volume estimate.  Details of this procedure are outlined in Section 3.18. 

 

Table 3-4:  Effect of maximum bin size on volume accuracy and computational cost 

Maximum 

Bin Size (m) 

Volume 

Estimate (m
3
) 

Computational 

Time (sec)
†
 

3.00 5.9450 0.009125 

1.50 4.2886 0.086805 

1.25 4.1993 0.086943 

1.00 3.6438 0.094156 

0.75 3.2994 0.584452 

0.60 2.2692 0.690648 

0.25 2.0824 1.249712 

 

3.18. Inspector Localization Algorithm 

The architecture of the inspector localization algorithm is one of the main contributions 

to this body of work.  The full algorithm is presented and discussed including all assumptions and 

decisions for the approaches.  This section includes the state dynamics, observation model, image 

processing, data association, implementation of octree mapping properties, and the guidance and 

control laws. 

                                                      
†
 Simulation done on an Intel Core i7-4770K CPU @ 3.50 GHz 
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3.18.1. Nonlinear State Dynamics 

The purpose of the localization algorithm is to smooth out the rotation and translation 

estimates from OLAE.  Utilizing the estimated target properties extrapolated from the octree 

model, the inspector localization also detects and estimates thrusting maneuvers.  As described in 

Sections 3.13 and 3.14 on the VSD and Consider VSD filters, the maneuver detection algorithm 

consists of two components.  A quiescent model describing the initial model states are initialized 

as  

  LVLH LVLH LVLH/S gyro offset
ˆ    X r v q b r  (3.135) 

where rLVLH is the relative distance between observer and target centers of mass in the LVLH 

frame; vLVLH is the relative velocity in the LVLH frame; qLVLH|S is the quaternion expressing the 

rotation from the LVLH frame to the observer body frame S; bgyro and roffset are the gyro bias 

states and offset from geometric center and center of mass (Figure 3-23) respectively.   The 

quiescent model states do not include the thrust states. 

 Once the Mahalanobis distance reaches a pre-defined threshold due to rising residuals, 

the model switches to a thrust state model.  The state vector in Equation (3.135) is concatenated 

to include the thrust states ath. 

  LVLH LVLH LVLH/S gyro offset th
ˆ    X r v q b r a  (3.136) 

  ˆ 0b  (3.137) 

  
offset 0r   (3.138) 

Equations (3.48)-(3.50) are the dynamics governing rLVLH and vLVLH in the LVLH frame.  

Quaternion kinematics in Equation (3.108) govern the attitude state of the inspector qLVLH|S.  It is 

assumed that the bias states and the offset between the geometric center and center of mass do not 



77 

 

change with respect to time.  The external forces (Fjx, Fjy, and Fjz) in the quiescent model are 

nonexistent however, in the thrust model thrust states are added as 

  th
m


T

a   (3.139) 

where m is the mass of the target spacecraft and ath is the acceleration due to thrust T. 

 The attitude component of the state vector is done through a MEKF in which the 

quaternion states are parametrized.  In this dissertation, the quaternions are parametrized by the 

CRP.  The reason for this is the ability to obtain the rotation matrix from the Cayley 

Transformation upon which the OLAE is built upon.  Within the inspector localization filter, the 

quiescent and thrust model states become 

    *

LVLH LVLH LVLH/S gyro offset
ˆ    X r v g b r  (3.140) 

  *

LVLH LVLH LVLH/S gyro offset th
ˆ    X r v g b r a  (3.141) 

where the quaternion state has been replaced by gLVLH|S.  These reduced state vectors are used 

locally inside the filter and are used to update the full quaternion state as described in Section 3.8. 

3.18.2. Observation Model 

Observations made by the inspector are conducted via two stereo cameras.  Each camera 

is assumed to be perfectly aligned thus making the stereo perspective equations in Section 3.2 

valid.  Both cameras are defined in the inspector spacecraft body frame S and the rotation from 

the body frame S and the camera frame C is defined as RS/C.  This rotation is assumed to be 

known.  These frames are defined in Figure 3-24 in which the spacecraft body frame XS axis 

points in the forward facing direction of the spacecraft.  The YS axis points in the opposite 

direction of the solar array and the ZS axis completes the triad.  In the camera frame, the ZC axis 
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points along the boresight of the camera in the same direction as XS and XC points in the same 

directions as the solar array.  The YC axis completes the triad. 

 

Figure 3-24:  Spacecraft body and camera frames 

 

For any given observation time step, two images are generated for the left and right 

cameras respectively.  The image generation procedure described in Sections 3.9 and 3.10 takes 

the above spacecraft CAD model and imports it into MATLAB as a STL file.  Using the ray 

tracing procedure, greyscale images are generated based on both cameras’ pose relative to the 

target CAD model.  This procedure is depicted in Figure 3-25.  These images form the basis of 

observations for the inspector spacecraft. 
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Figure 3-25:  The original CAD Model is imported as a STL and transformed into an image 

 

 Features from the left and right images are matched and triangulated to extrapolate three-

dimensional feature points in the camera frame.  When an observation occurs at some time step 

later (k+1), the same procedure is repeated.  Next, features from the current and previous frame 

are matched and the resulting 3-dimensional feature pairs are run through RANSAC using OLAE 

as the model in which the set of feature points are compared.  Once the outliers are removed, the 

best OLAE estimates of the rotation and translation between frames are used as the observation 

model for the inspector localization filter. 

 OLAE was chosen as the observation model for two main reasons.  The more commonly 

used observation models for visual-based observations are based on pixel-level features
21,23,88–97

.  
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However, performance is strongly related to the quality of images and lighting conditions.  Over-

saturation, occlusion, shadows, and other lighting conditions may affect the ability for a pixel 

feature based observation system to provide adequate information for the estimation filter.  

Furthermore, the model itself is highly non-linear which can introduce errors in the measurement 

update of an EKF.  OLAE provides an approach that is computationally efficient and is linear in 

nature thus making it conducive for implementation in a filter-based estimation method.  It is also 

more invariant to lighting conditions as the pixel features themselves are not used as the 

observation model; rather the movement between point clouds is the basis of the model.  The 

rotation and translation are less dependent on perfect lighting conditions. 

 The observation model is thus defined as 

  
k|k 1

k|k 1





 
  
 

t
y

g
 (3.142) 

where tk|k+1 is the translation between frame k and frame k+1; and gk|k+1 is the CRP representation 

of the rotation between frames k and k+1.  These frames are from the corresponding observation 

estimates are thus 

  
k|k 1

k|k 1

ˆ
ˆ

ˆ





 
  
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t
y

g
 (3.143) 

The full relationship of the translation between frames k and frame k+1 is written as 

   k|k 1 S/C k 1 LVLH/S LVLH|k LVLH|k 1
ˆ ˆR R( )   t g r r  (3.144) 

where 
k 1

ˆR( )g  is the Cayley Transform of the CRP state estimate qLVLH|S, and rLVLH|k and 

rLVLH|k+1 are the previous and current state estimates of the inspector position relative to the target.  

The resulting translation from frame k to k+1 is in the camera frame C relative to the LVLH 

frame.   Derivation of the CRP measurement estimate ( k|k 1
ˆ

g ) between frames starts with a 

transformation of the current and previous CRP state estimate into the camera frame. 
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  k LVLH|k S/C
ˆ g g g  (3.145) 

  k 1 LVLH|k 1 S/C
ˆ

  g g g  (3.146) 

The transformation is done by using CRP multiplication which is defined as 

     1 2 1 2 1 2/ 1    g g g g g g g  (3.147) 

where g1 and g2 are two CRP vectors and their resulting product is 𝐠̅.  Finally, the measurement 

estimate for the rotation between frames is 

  1

k|k 1 k 1 k
ˆ ˆ ˆ

  g g g  (3.148) 

Thus the measurement estimates in Equation (3.143) are defined by Equations (3.144) and 

(3.148).  The corresponding measurement matrix H is the Jacobian of these equations with 

respect to the state variables. 

  
*

*

ˆ
H

ˆ








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 
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t

X

g

X

 (3.149) 

The measurement covariance for OLAE was defined in Section 3.6. 

3.18.3. IMM Consider VSD Filter 

Utilizing the previously defined state dynamics and observation model leads to the 

formulation of the inspector localization algorithm.  The architecture of the algorithm is shown in 

Figure 3-26 for reference in the following discussion. 
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Figure 3-26:  IMM Consider VSD Filter architecture 
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 The estimation process begins once two observations have been made.  This is due to the 

fact that the translation and rotation between frames can only be computed once observations 

from two frames exist.  Once the observations are available, the system is initialized by the 

available information provided by OLAE.  In Figure 3-26, this would be the block close to the top 

named initialize quiescent system.  The quiescent system follows the flow of the black arrows and 

black boxes which is a MEKF using the previously defined state estimates and observation 

model.  Refined state estimates are then used to build the octree map and extrapolate the volume 

estimate and geometric center of the target.  This process is iterative and will continue until a 

maneuver occurs.   

 Maneuvers made by the target (controlled or uncontrolled) occur at unknown times, 

duration, thrusting direction and magnitude.  At the end of each loop through the filter, the 

Mahalanobis distance is computed and compared to the pre-defined threshold ε to check if a 

maneuver occurred.  Since the quiescent states do not model thrusting, their associated dynamics 

are absent thus causing errors to grow in the filter.  This is reflected in growing residuals.  

Depending on the magnitude of thrust, noise present in the system and observations, the lag 

between maneuver commencement and detection will vary.  Once a maneuver is detected, a 

model switch occurs to include the thrust states.  This is depicted in Figure 3-26 by the red 

arrows.  It is at this point that the consider filter and IMM are introduced.  At the time the 

maneuver is detected, the consider parameter p is defined as 

  p v  (3.150) 

where v is the volume estimate from the octree map.  The consider parameter covariance is 

  ppP U  (3.151) 

in which U is the Shannon entropy metric defined in Section 3.7.  The consider parameter and its 

associated covariance are initialized as the current estimate of the volume and Shannon entropy 
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respectively.  As per the requirement that these parameters remain unchanged, the initialized 

values remain constant throughout this procedure.  Though if a maneuver ends and a second 

begins, the consider parameter and covariance may be re-initialized.   

 Covariance of the state estimate is inflated to account for increased uncertainty in the 

state estimates as a result of using the quiescent model for an unknown duration to estimate thrust 

dynamics.  Following the blue arrows in Figure 3-26 steps through the IMM consider VSD 

process.  After the thrust states are concatenated to the state vector and the consider parameter 

and covariance are initialized, the filter initializes the IMM.  The procedure begins as outlined in 

Section 3.14 in which the mixing weights (equally weighted at time t0) are computed as well as 

the bank of state estimates and covariances equal to the number of models j.  In this dissertation, 

the number of models is equal to the number of density models in Table 3-3.  After the IMM is 

initialized, the filter proceeds as normal through the black colored portions of Figure 3-26.  This 

occurs j times for each density.  Since a consider parameter is present after the model switch, the 

state dynamics, state estimates, and covariance are affected as shown in Figure 3-11.  The 

associated uncertainty in the consider parameter is reflected in updating the state estimate and 

covariance.  The consider parameter STM is defined as the Jacobian of the nonlinear state 

dynamics with respect to the consider parameter. 
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  (3.152) 

The variables Tx, Ty, and Tz are the thrust components in each direction in the LVLH frame.  The 

density and volume are denoted by ρ and v respectively.  Each j
th
 time through the filter, a 
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different density is used thus changing the thrusting acceleration on the dynamics and directly 

affecting the resulting state estimate and covariance.   

 After the filter has run j times, the mixing weights are recomputed based on the residual 

and residual covariance.  The state estimates and associated covariance for each j model are 

weighted and combined to form the complete state and covariance estimate at the current time 

step.  The Mahalanobis distance is also weighted and combined in the same manner.  Since the 

mixing probabilities are updated and used in the next step, this allows the filter to converge to the 

density model that provides the best agreement to the dynamics.  By providing a coarse volume 

estimate from the octree map, the filter utilizes the consider parameter and covariance within an 

IMM architecture to both consider the volume uncertainty and provide the filter with enough 

density information to converge.  Since the density of the target is unobservable and unknown, 

including a bank of densities and making the evenly distributed density assumption is necessary 

for filter performance.  Since any single density guess could cause a biased or divergent filter, 

including multiple options allows the filter to choose which combination of densities work best.  

By indirectly extrapolating mass information from coarse volume estimate and a bank of 

densities, this allows the target mass to be utilized without directly estimating it in an online filter 

process.  Since mass is also unobservable, estimating it directly would cause divergence.  By 

approaching it indirectly, this is avoided and provides enough information for the estimation filter 

to converge.  

 After a given maneuver ends, the thrust model dynamics begin to cause a discrepancy in 

the estimates.  Residuals begin to grow and once the threshold is reached, the model switches 

again to the green colored portion of Figure 3-26.  The consider parameters are removed as well 

as the thrust states.  Thrust state covariance terms are removed from the state covariance and the 

remaining covariance is inflated to account for the uncertainty in estimating non-thrusting 
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dynamics with a thrust model.  Quiescent model resumes and the IMM is no longer utilized 

unless another maneuver occurs and is detected. 

 3.18.4. Guidance and Control 

After the current state estimates are updated, guidance and control law is implemented to 

direct the inspector’s attitude to center the target in the left camera frame.  The control law is 

based on the Lyapunov quaternion error control in Sidi
98

 and Markley
55

.  The quaternion error 

between the inspector spacecraft body frame S and the target body frame T is defined as 
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
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   
 
    
    
   
     

q q q    (3.153) 

where qE is the quaternion error and subscripts S and T denote the quaternion in the inspector and 

target frames respectively.  Subscripts 1, 2, 3, 4 denote the respective quaternion component in 

q1:3 and q4.  It is desired to achieve regulation control in which the attitude is brought to a fixed 

location with zero angular velocity.  Starting with the quaternion kinematics (Equation 3.90) and 

rigid body dynamics defined in Equation (3.3) and the error quaternion in Equation (3.123), the 

derivative of Equation (3.123) and substituting it into Equations (3.124) and (3.125) leads to 

   1:3 1:3 4

1 1
q

2 2
      q q   (3.154) 

  
T

4 1:3

1
q

2
    q   (3.155) 

A simple feedback controller can simply be defined as 

  p 1:3 dL k k   q   (3.156) 
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where kp and kd are positive scalar gains.  Though it meets the stability criteria using Lyapunov’s 

direct method, there is no guarantee that the shortest path is followed to reach the final desired 

attitude.  A better non-linear control law which achieves the shortest distance is 

  T

p 4 1:3 d 1:3 1:3L sign( q ) (1 )k k       q q q   (3.157) 

This is the control law used in the inspector localization algorithm.  Since developing control law 

is not a focus of this dissertation, using a straightforward proven approach was desired. 

 The guidance of the inspector’s control is determined by the attitude of the target 

spacecraft, geometric center of the target, and the estimated offset between geometric center and 

center of mass.  The target attitude and geometric center is extrapolated from the octree map and 

is utilized to determine the guidance (desired quaternion) for the control law. 

3.18.5. Inspector Localization Algorithm 

 Compiling the procedures and algorithms from Sections 3.18.1 through 3.18.4 defines the 

full inspector localization algorithm.  Figure 3-27 shows the flow of the approach beginning with 

the image generation.  After an image in the current time step is generated, the image is sent to 

the image processing algorithm (KLT) to extract a sparse set of features in pixel coordinates. 
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Figure 3-27:  Inspector localization algorithm 

 

Between the left and right images, matches are found and triangulated in the stereopsis 

process.  RANSAC is performed to eliminate the outliers and the remaining inliers are used to 

compute the rotation and translation between the current and previous point clouds using OLAE.  

This forms the basis of the observation model and thus the inspector localization algorithm is 

initialized to smooth out these parameters.  An octree map is formed from the state estimates and 

feature points to extrapolate volume, geometric center, and geometric axes.  The octree map itself 

is used to improve the RANSAC performance after the confidence in the map is high enough.  

Volume and the geometric center are fed into the localization algorithm to provide the foundation 
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for maneuver detection and estimation.  Finally, the geometric axes and center of geometry from 

the octree are used in the guidance and control algorithm to aim the camera’s boresight toward 

the target.  Iteration continues until no new images are taken.  This framework will be tested in 

simulated experiments in Chapter 4. 
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Chapter 4 

 

Results and Analysis 

4.1. Simulation Setup 

The following sections will define the setup of the simulated scenarios.  These will cover 

the assumptions and initialization of the scenario orbital regime, stereo camera optical 

parameters, and information about the target spacecraft.  Two scenarios are analyzed in which the 

thrust magnitude is different by a factor of ten.  This is done to determine how the algorithm 

handles different magnitudes of thrust in regards to detection and estimation.  For each scenario, 

two cases are conducted.  The first case involves initiating the maneuver after the observer has 

developed a robust, low uncertainty octree map.  The second case initiates the maneuver before 

the target has been fully mapped causing the octree mapping to be sub-optimal.  These cases are 

compared to analyze the effects of the octree mapping on the filter performance. 

4.1.1. Simulation Parameters 

The deputy spacecraft is placed in a natural motion circumnavigation (NMC) orbit 

around the target (chief) satellite.  This type of orbit shown in Figure 4-1 is conducive for 

conducting an inspection.  Initially, the target is located at the center of the NMC and lies at the 

origin of the LVLH frame.  The initial conditions for the deputy and chief satellites are in Table 

4-1.  The LVLH and ECI frames are initially aligned at the start of the simulation.  As time 

propagates, the LVLH frame rotates about the common z axis at an angular rate equal to the mean 

motion of the orbit. 
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Figure 4-1:  Natural motion circumnavigation orbit in LVLH Frame 

 

After 500 seconds into the simulation, a continuous thrusting maneuver occurs in the y 

direction of the LVLH frame for 500 seconds; the simulation continues for an additional 150 

seconds after the thrusting maneuver ends.  A thrusting duration of 500 seconds was chosen so 

the estimation filter has an opportunity to detect and estimate the maneuver.  Additional time is 

added after the maneuver to analyze when the maneuver end detection occurs and how the filter 

copes post-maneuver.  Lighting conditions are more optimal at the start of the simulations and 

become less so as it progresses.  This was set up to have varying lighting conditions for the filter 

to handle.  At simulation start, the sun vector is illuminating the object; however, towards the end, 
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the trajectories begin to enter the shadow of the Earth.  If the simulation were to continue beyond 

its timeframe, the sun would not have line of sight with both spacecraft. 

 

Table 4-1:  Orbital initial conditions for the Deputy (a) and Chief (b) 

 (a) (b) 

 Deputy (LVLH)   Chief (ECI) 

Position 

(meters) 

[-7.5, 0, -6] 
 Position 

(meters) 

[6906385, 0, 0] 

Velocity 

(m/s) 

[0, 0.0165, 0] 
 Velocity 

(m/s) 

[0, 7597, 0] 

 

 Two scenarios are conducted in which the magnitude of the thrusting maneuver changes.  

In each scenario, two cases are run in which the observing satellite has already completed an 

initial orbit and thus has developed a converged mapping of the target before the maneuver 

begins.  The second case is that the maneuver occurs before the observing satellite has fully 

developed a complete mapping of the object.  As described in Chapter 3, the estimate volume and 

associated covariance are initialized as the consider parameters upon the detection of a maneuver 

and remain unchanged for the duration of the detected maneuver.  The purpose of running these 

two cases are to determine the effectiveness on filter performance of a converged mapping versus 

a sub-optimal mapping.  Summarized in Table 4-2 are the simulation parameters utilized in these 

simulations. 
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Table 4-2:  Simulation Parameters 

 Scenario 1 Scenario 2 

Simulation Duration 1150 seconds 1150 seconds 

Thrust Start Time 500 seconds 500 seconds 

Thrust End Time 1000 seconds 1000 seconds 

Thrust Magnitude 0.465 mm/s
2
 0.0465 mm/s

2
 

 

4.1.2. Stereo Camera Initialization 

Observations of the deputy spacecraft are conducted via two stereo cameras with 

identical intrinsic properties (Table 4-3).  Camera parameters were arbitrarily chosen.  The 

baseline of the cameras is the center to center distance between both cameras.  Rotation 

describing the spacecraft to camera frame is a known quantity and assumed to be constant.  The 

pixel spacing defines the center to center distance between pixels in the generated image.  

Random pixels encompassing the target had its brightness randomly adjusted to add noise to the 

images. 

 

 

 

 

 

 

 



94 

 

Table 4-3: Camera properties
‡
 

Resolution [width, height] (pixels) [2400, 1900] 

Optical Center [width, height] (pixels) [1200, 850] 

Focal Length 20 mm 

Camera Screen Size 28.2 mm (along diagonal) 

Baseline 0.6 m 

Spacecraft to Camera Frame 

0 0 1

1 0 0

0 1 0

 
 

 
  

 

Pixel Spacing 9.2125 μm 

Horizontal Field of View 47.268 ° 

4.1.3. Target Model Parameters 

The target spacecraft was created using SOLIDWORKS and is shown in Figure 4-2.  

Model properties including those from Table 4-4 were obtained from the SOLIDWORKS Mass 

Properties command manager.  These properties are computed in SOLIDWORKS based on how 

the model is constructed. 

 

Figure 4-2:  Spacecraft model 

                                                      
‡
 Camera properties are not representative of any particular camera 
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It should be noted that the SOLIDWORKS model is solid so the mass, center of mass, and 

moment of inertias are computed in SOLIDWORKS as such.  All parameters are in the target 

body Frame.  Center of Mass is positioned at [0, 0, 0] meters in the LVLH Frame.  Since 

spacecraft are not solid objects, the values in Table 4-4 are assumed to be the best approximation 

for a satellite of this shape. 

 

Table 4-4:  SOLIDWORKS model parameters 

Mass of target 215 kg 

Center of Mass [0.005, -0.0131, 0.0127] m 

Principal Moment of Inertias [469.141, 503.221, 520.301] kg m
2
 

 

 The spacecraft model was created to be generic containing a solar array, two optical 

cameras on the front, and an antenna on the upper right.  Each surface of the spacecraft body was 

given further detail for the simulated cameras to detect. 

4.1.4. Gyroscope and Bias Initialization 

The gyro model is taken from Markley
55

 and is written as 

 

 𝛚 = (𝐼3 + 𝑆𝑇𝑟𝑢𝑒)𝛚𝑇𝑟𝑢𝑒 + 𝐛𝑇𝑟𝑢𝑒 + 𝜂 (4.1) 

 𝑆𝑇𝑟𝑢𝑒 = [

𝑠1
𝑇𝑟𝑢𝑒 𝑘𝑈1

𝑇𝑟𝑢𝑒 𝑘𝑈2
𝑇𝑟𝑢𝑒

𝑘𝐿1
𝑇𝑟𝑢𝑒 𝑠2

𝑇𝑟𝑢𝑒 𝑘𝑈3
𝑇𝑟𝑢𝑒

𝑘𝐿2
𝑇𝑟𝑢𝑒 𝑘𝐿3

𝑇𝑟𝑢𝑒 𝑠3
𝑇𝑟𝑢𝑒

] (4.2) 
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where I3 is a 3x3 identity matrix, ω and ω
True

 are the measured and true angular velocities, 

respectively.  Scale factors are denoted by s
True

 with vector components s1
True

, s2
True

, and s3
True

.  

The true bias is b
True

 and gyro misalignments are given by kU
True

 and kL
True

.  The spectral density is 

denoted as η.  Noise added to the gyro measurements is increased when the attitude changes 

rapidly. 

The bias itself is modeled as a discrete-time linear system.  It can be written in the form 

 𝑥 = 𝐴𝑥 + 𝐵𝑢 (4.3) 

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (4.4)  

where u is an input to the system and matrices A, B, C, and D are the state space representation 

for a single-input transfer function. The transfer function is given by 

  𝐻(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
=

𝑏1𝑠𝑛−1+⋯𝑏𝑛−1𝑠+𝑏𝑛

𝑎1𝑠𝑚−1+⋯𝑎𝑚−1𝑠+𝑎𝑚
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (4.5) 

where a is a vector containing coefficients in descending powers of s.  Rows of matrix contain 

vectors of numerator coefficients in descending powers of s.  Initial conditions for the gyro bias 

were taken from Markley
55

 and are summarized in Table 4-5.  It should be noted that ppm 

denotes parts per million. 

 

Table 4-5:  Gyroscope initial parameters
55

 

Initial Gyro Bias 0.1 deg/h for each axis 

Gyro Scale Factors s1 = 1500 ppm, s2 = 1000 ppm, s3 = 1500 ppm 

Gyro Misalignments 

kU1 = 1000 ppm, kU2 = 1500 ppm, kU3 = 2000 ppm 

kL1 = 500  ppm, kL2 = 1000 ppm, kL3 = 1500 ppm 

Coefficients a = [2, -2] b = [1, 1] 
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4.1.5. Scenario Initialization 

Utilizing the aforementioned parameters defining the simulation including the 

trajectories, camera properties, and the target model, the system is initialized for scenarios 1 and 2 

according to Figures 4-3 and 4-4 respectively.  In both of these figures, the deputy is visualized in 

black and the target spacecraft in blue.  Lines emanating from the spacecraft models represent the 

trajectory over the simulation duration in the LVLH frame.  Attached to the deputy spacecraft is a 

semi-transparent prism cone representing the field of view of the stereo cameras.  The prism cone 

is merely a visual representation so the range extends beyond the edge of the prism encompassing 

the target.  The dashed blue, green, and red lines define the camera axes for both cameras. 

 

 

Figure 4-3:  Simulation start of Scenario 1 
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Figure 4-4:  Simulation start of Scenario 2  

 

Initial conditions are randomized for the inspector spacecraft (Deputy) at the start of the 

simulation.  The positional states in Table 4-1(a) had random Gaussian noise with a standard 

deviation of 3.5 meters applied to those initial conditions.  The velocity states in Table 4-1(b) 

added random Gaussian noise with a standard deviation of 0.05 meters/second to initialize the 

velocity states for the estimation filter.  The true attitude quaternion for the inspector in the 

LVLH to inspector spacecraft body frame is [0, -0.3, -0.1, 1].  Gaussian noise with a standard 

deviation of 0.2 is added to each element of the quaternion and normalized.  Both the geometric 
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to center of mass offset vector and thrust acceleration states are initialized as a 3x1 vector of 

zeros.  Gyro bias is initialized as described in Section 4.1.4.  The covariance is initialized as 

 

𝑃𝑟𝐿𝑉𝐿𝐻
= [

400 0 0
0 400 0
0 0 400

]    𝑃𝑣𝐿𝑉𝐿𝐻
= [

60 0 0
0 60 0
0 0 60

]    𝑃𝑔𝐿𝑉𝐿𝐻/𝑆
= [

40 0 0
0 40 0
0 0 40

] 

 𝑃𝑏 = [
10 0 0
0 10 0
0 0 10

]   𝑃𝑎𝑡ℎ
= [

100 0 0
0 100 0
0 0 100

] (4.6) 

 

where each 3x3 matrix corresponding to the states in the state vector from Equations (3.140) and 

(3.141) form a 12x12 for the quiescent states and 15x15 for the thrust model, respectively. 

4.2. Feature Matching and Three-Dimensional Point Cloud  

At any given observation time step, two images are generated for each camera.  A sparse 

feature set is extrapolated from each image and matched according to the procedure in Section 

3.3.  In Figure 4-5, an image from the left and right cameras are shown with the full extracted 

features (depicted by red dots) and the corresponding matched features (represented by yellow 

circles).  The pixel coordinates of these stereo correspondences are triangulated to produce three-

dimensional features from the camera frame.  The set of these features form the three-

Dimensional point cloud.  However, outliers need to be removed from this set as mismatched 

feature correspondences will occur.  Mismatched features are highly more likely in repeating 

textures (solar panels) and similar looking structures or components.  Any mismatched features 

that make it through the RANSAC will create bad observations and adversely affect the octree 

map. 
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Figure 4-5:  Stereo correspondences between left and right images 

 



101 

 

 Figure 4-6 shows a sample time step in which mismatched features makes it through the 

RANSAC.  In these situations, it is up to the estimation filter to handle periodic bad observations.  

In the formation of the octree, outliers are further pruned by comparing the dataset to itself and 

the confines of the bins.  After the estimation for the newest observations are complete, the octree 

map for the current time step is updated into the global octree map.  Features overwrite existing 

matched features if the produced covariance from the estimation filter is better than the previous 

time step.  This ensures that features with better certainty are updated without having to include 

them directly in the estimation filter.  New features that do not currently exist in the octree map 

are added.   

 

Figure 4-6:  Three-dimensional point cloud with outliers 
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4.3. Simulated Results 

 

Continuous thrusting maneuvers can be very difficult to detect since their corresponding 

thrust magnitudes are smaller than impulsive thrusts.  Detecting the start and end of a maneuver 

occurs with a certain amount of lag depending on thrusting magnitude, level of noise present in 

the measurements, and the tuning parameters of the estimation filter.  In a visual based 

measurement system, the quality of the observations is based upon the lighting in the image and 

mismatched feature correspondences.  Shadows, over-saturation, occlusions, and reflections are 

dependent on the position of the spacecraft relative to the sun vector.  In the image generation 

used in this dissertation, only the first three effects are modeled.  Due to the harsh lighting 

conditions in the space environment, detected features can be easily lost from one frame to the 

next.  Tuning the maneuver detection properly is vital as making them too sensitive will cause 

bad measurements to falsely detect a maneuver or its end.  Conversely, making the tuning 

parameters too high will cause maneuvers to go undetected.   

Results in the following sections will analyze the filter performance of two different 

thrusting maneuvers with a very low thrust magnitude.  For each thrusting maneuver, the start of 

the thrusting maneuver was planned such that the convergence of the octree map was converged 

and incomplete.  Robustness of the octree map is correlated to the convergence of the volume 

estimate obtained from the octree map.  In following figures, the volume refers to the estimate 

volume of the target obtained from the octree map.  This is demonstrated to study the effects on 

map convergence for maneuver detection and estimation for a robust and sub-optimal octree 

target mapping.  A Monte Carlo study was conducted in which 100 simulations were run per 

octree mapping case (robust and sub-optimal) for each scenario.  Thus, 200 total simulations were 

conducted for each scenario.  In each Monte Carlo run, the initial conditions and process noise for 
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the estimation filter are randomized.  Furthermore, the generated images have random noise 

applied to some pixels adding noise to the measurements for every Monte Carlo simulation. 

4.3.1. Translational Estimation 

Relative position and velocity are estimated in the LVLH frame with the target satellite 

centered at the origin of the frame.  After 500 seconds, the target begins a thrusting maneuver in 

the y direction in the LVLH frame after which the target begins to move from the center of the 

frame.  Upon detecting the maneuver, the estimation filter initializes the volume estimate from 

the octree map and the associated uncertainty as the consider parameter and covariance 

respectively.  For 100 simulations, the observer has had a chance to complete an entire revolution 

around the target before the simulation starts.  This allowed the observer to develop an octree 

map of the target with low uncertainty.  Conversely, another 100 simulations were conducted in 

which the observer did not have a previous orbit of the target and thus began building the octree 

map at the simulation start.  Since the maneuver occurs before the observer has an opportunity to 

image the entire target, the octree map is incomplete.  As a result, the volume estimate is more 

inaccurate with higher covariance at the time a maneuver is detected and the consider filter 

initialized. 

In Figure 4-7, relative trajectories for the more robust and incomplete octree mapping are 

plotted against the true relative position for scenario 1.  Converged volume refers to the volume 

estimate of the target obtained from the robust octree target mapping; sub-optimal volume refers 

to the volume estimate of the target obtained from the incomplete octree target mapping.  

Trajectory data from the full 100 runs are averaged and plotted.  It can be easily seen along the 

trajectory where the maneuver is detected as the less robust octree mapping (Sub-optimal 

Volume) begins to diverge from the true trajectory. 
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Figure 4-7:  Estimate relative trajectories for 0.465 mm/s
2
 thrust in Scenario 1 

 

Both during the maneuver and afterwards, the trajectory estimate does not fully recover.  

However, the estimate having a better octree mapping remains relatively close to the true 

trajectory throughout the simulations.  In scenario 2 with a lower thrust magnitude, the trajectory 

estimation is considerably better for the less converged octree target mapping.  The estimated 

trajectories in Figure 4-8 are both very accurate.  In this scenario, having a better octree mapping 

is less important for filter performance.  Even with a coarser volume estimate, the simulations 

conducted with a less robust octree mapping performed similarly to the more converged map. 
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Figure 4-8:  Estimate relative trajectories for 0.0465 mm/s
2
 thrust in Scenario 2 

 

Plotting the trajectories versus time in Figures 4-9 and 4-10 better shows the maneuver 

timing’s effects on the estimated trajectories for scenario 1 and 2 respectively.  Again, these plots 

are a result of the averaged dataset for all Monte Carlo runs.  In scenario 2, the estimated 

trajectories have very little deviation from the truth for all positional states.  However, the higher 

thrust magnitude present in scenario 1 shows greater error for the incomplete octree target 

mapping.  After the maneuver initiates at 500 seconds, the estimation begins to grow in error as 

the thrusting continues.  The error continues after the maneuver ends especially in the x and y 

positional states.   
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Figure 4-9:  Scenario 1 translational states versus time 
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Figure 4-10:  Scenario 2 translation states versus time 
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Examining the root mean square (RMS) residual positional error for both scenarios 

provides better explanation for the results.  As described in Chapter 3, the transition from the 

quiescent model to the thrusting model (and vice versa) is accompanied by a covariance inflation 

up to a pre-defined threshold to account for increased uncertainty in the states from using an 

incorrect dynamical model to perform the state estimation.  The dotted lines in Figures 4-11 

through 4-16 represent the 3σ bounds and the moment in which the start and end times of 

maneuver detection are clearly visible.  Around 500 seconds, the covariance bounds have a sharp 

increase for both scenarios signifying a covariance inflation preceding maneuver detection.  

Again after 1000 seconds, another increase in the covariance is depicted signifying the detected 

end of the maneuver.   

In scenario 1 (Figures 4-11 to 4-13), the difference between the positional errors and 

associated covariance between both octree mapping cases is noticeable.  After the maneuver 

occurs until the end of the simulation, the positional covariance bounds for the less robust (blue 

lines) mapping are larger than those for the complete octree mapping (black lines).  The RMS 

residual error of all the positional states is greater for the incomplete octree mapping with the 

error struggling to remain within the covariance bounds.  The covariance of the less robust target 

mapping has two large spikes in the covariance after 1000 seconds.  Since these plots are the 

RMS of the entire dataset, a large number of simulations detected the end of the maneuver around 

those time steps; whereas the end maneuver detection for the more robust octree mapping were 

more varied occurring on average with less lag after the maneuver actually ended. 
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Figure 4-11:  Scenario 1 RMS residual error of the x positional state with 3σ covariance bounds 
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Figure 4-12:  Scenario 1 RMS residual error of the y positional state with 3σ covariance bounds 
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Figure 4-13:  Scenario 1 RMS residual error of the z positional state with 3σ covariance bounds 
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Figure 4-14:  Scenario 2 RMS residual error of the x positional state with 3σ covariance bounds 
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Figure 4-15:  Scenario 2 RMS residual error of the y positional state with 3σ covariance bounds 
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Figure 4-16:  Scenario 2 RMS residual error of the z positional state with 3σ covariance bounds 
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Positional results from scenario 2 have less variance in the RMS residual error.  Figures 

4-14 through 4-16 show a tighter covariance bound post maneuver for both octree mapping cases.  

This is expected behavior as the thrust magnitude is an order of magnitude less than that of 

scenario 1.  The covariance for the more robust octree mapping is slightly better than the less 

robust mapping with similar RMS residual errors.  Similar to the less robust target mapping 

covariance in scenario 1, both octree mapping cases have several large spikes in the covariance 

after 1000 seconds.  These spikes are a result of various maneuver detection times.  Since the 

thrust magnitudes an order of magnitude less than scenario 1, the maneuver start and end are 

more difficult to detect resulting in a wider variance of detection times. 

Relative velocity estimates from both scenarios (Figures 4-17 through 4-22) larger 

covariance variations than the positional estimates due to the uncertainty caused in the velocity by 

the velocity component due to thrusting.  In scenario 1 (Figures 4-17 to 4-19), the velocity 

estimates for both octree mapping cases remain very stable through most of the simulation.  Most 

of the error occurs during and after the maneuver especially in the less robust octree mapping 

case which has larger error spikes.  Again, around 500 and 1000 seconds, large spikes in the 

covariance occur with smaller spikes in the covariance surrounding indicating variance in the 

times the maneuver detection occurred.   

Relative velocity estimates in scenario 2 present similar characteristics with the 

oscillating spikes in the covariance relative to the positional states.  Residual RMS errors are 

smaller than scenario 1 due to the lower thrust magnitude.  A noticeable large spike after 500 

seconds is visible signifying the covariance inflation after maneuver detection.  Similar to the 

positional states of scenario 2, several large spikes after 1000 seconds occur indicating multiple 

runs in which the end maneuver detection happened at several times.   
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Figure 4-17:  Scenario 1 RMS residual error of the x velocity state with 3σ covariance bounds 
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Figure 4-18:  Scenario 1 RMS residual error of the y velocity state with 3σ covariance bounds 
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Figure 4-19:  Scenario 1 RMS residual error of the z velocity state with 3σ covariance bounds 
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Figure 4-20:  Scenario 2 RMS residual error of the x velocity state with 3σ covariance bounds 
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Figure 4-21:  Scenario 2 RMS residual error of the y velocity state with 3σ covariance bounds 
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Figure 4-22:  Scenario 2 RMS residual error of the z velocity state with 3σ covariance bounds 
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4.3.2. Attitude Estimation 

Attitude estimation represents the rotation from the LVLH frame to the observer 

spacecraft body frame.  Attitude is represented in the quaternion formulation though all 

subsequent plots are converted to CRP as the corresponding covariance states in the filter were 

stored using the CRP attitude representation as described in the MEKF formulation.  Since the 

attitude is the only controlled state in this dissertation, it is subject to not only the observations 

but the resulting guidance and control.  Lighting conditions have a great effect on the quality of 

the observations and the resulting guidance and control.  When conditions are especially dark, the 

control can be susceptible to larger attitude errors which are reflected in the results.  Lighting 

becomes less optimal as the simulation progresses causing an additional source of error in the 

control law. 

The attitude estimation is stable as shown in Figures 4-23 and 4-24 for both scenarios 

before the maneuver occurs.  After the maneuver occurs in scenario 1 (Figure 4-23), the attitude 

error begins to grow for the case in which the octree target mapping is incomplete.  It should be 

noted that while the error increases, the target satellite is still within view though not in the center 

of the image frame.  As the maneuver approaches its end time, the sub-optimal octree mapping 

attitude estimate begins to realign itself with the true attitude.  By the end of the simulation, both 

the robust and sub-optimal octree target mapping are slightly offset from the true attitude.  Since 

at this point the lighting conditions are worse than the beginning of the simulation, the attitude is 

no longer keeping the target in the center of the image frame. 

In scenario 2 (Figure 4-24), both octree mapping cases are very stable until just before the 

maneuver ends.  Both attitude estimates act in a similar manner with the octree mapping having 

very little affect upon the resulting attitude.  The lighting conditions adversely affect the attitude 

just as it occurred in scenario 1. 
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Figure 4-23:  Scenario 1 CRP attitude representation versus time 
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Figure 4-24:  Scenario 2 CRP attitude representation versus time 
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Angular velocity measurements are provided by onboard gyros providing updates with 

each new image.  Bias state estimates in Figure 4-25 shows excellent convergence.  As these 

estimates are independent of the other states, the gyro bias is unaffected by the uncertainty of 

maneuvers.  They are also independent of the octree mapping so only the bias estimates from the 

robust octree mapping case are plotted.  Angular velocities are recovered using the quaternion 

estimates since angular velocities were not estimated directly.  In scenario 1, Figures 4-26 to 4-28 

show very stable angular velocity estimates (ω1, ω2, ω3) up until after the maneuver end detection 

occurs.  These plots show the RMS residual angular velocity error from just before the maneuver 

occurs until the simulation end.  Corresponding to the covariance inflation spike detecting the end 

of the maneuver is a large residual error especially in the sub-optimal octree target mapping.  The 

CRP estimates in Figures 4-29 to 4-31 have their highest error correlating to the largest errors in 

the angular velocity.  Residuals in the attitude oscillate in this period with the sub-optimal octree 

target mapping estimates having higher error on average.  Two spikes in the covariance following 

1000 seconds correspond to similar behavior in the scenario 1 translational states.  These 

represent two times frequently in which the end maneuver detection occurred. 

Gyro bias estimates in scenario 2 Figure 4-32 were very similar to those of scenario 1, 

which is expected behavior.  The angular velocity RMS residual errors for scenario 2 in Figures 

4-33 to 4-35 reflect similar behavior to that exhibited in scenario 1.  However, the variance in the 

residual error is less than those present in scenario 1 for both octree mapping cases.  As in 

scenario 1, the robust octree mapping residual are better on average though with less disparity.  

RMS residual error of the attitude in scenario 2 (Figures 4-36 to 4-38) follows the same trends as 

scenario 1.  Similar to the translational states of scenario 2, multiple covariance spikes are present 

attributed to the fact that detecting the end of the maneuver is more difficult with lower thrust 

magnitude.  The error for both sub-optimal and robust octree mapping cases is relatively the same 

with no inherent advantage for the more optimal mapping. 
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Figure 4-25:  Scenario 1 gyro bias estimates 
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Figure 4-26:  Scenario 1 angular velocity in x 
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Figure 4-27:  Scenario 1 angular velocity in y 
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Figure 4-28:  Scenario 1 angular velocity in z 
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Figure 4-29:  Scenario 1 RMS residual error of the g1 CRP state with 3σ covariance bounds 
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Figure 4-30:  Scenario 1 RMS residual error of the g2 CRP state with 3σ covariance bounds 
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Figure 4-31:  Scenario 1 RMS residual error of the g3 CRP state with 3σ covariance bounds 
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Figure 4-32:  Scenario 2 gyro bias estimates 
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Figure 4-33:  Scenario 2 angular velocity in x 
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Figure 4-34:  Scenario 2 angular velocity in y 
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Figure 4-35:  Scenario 2 angular velocity in z 
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Figure 4-36:  Scenario 2 RMS residual error of the g1 CRP state with 3σ covariance bounds 
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Figure 4-37:  Scenario 2 RMS residual error of the g2 CRP state with 3σ covariance bounds 
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Figure 4-38:  Scenario 2 RMS residual error of the g3 CRP state with 3σ covariance bounds 
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4.3.3. Thrust Estimation and Maneuver Detection 

Detecting a maneuver is highly dependent upon several factors.  The overall noise 

inherent in a system, imperfect model dynamics, and measurement noise can either mask a 

maneuver or create a false positive.  These are the contributing reasons as to why a continuous 

thrusting maneuver is easier to detect than an impulsive thrust.  A continuous maneuver usually 

lasts for longer durations (though at lower thrust) such that an observer tracking the object has 

ample time to detect inconsistencies in the motion resulting from using a non-thrusting model to 

estimate the translational states of the tracked object.   

To avoid situations in which false maneuvers are detected or maneuvers go unnoticed, 

tuning the Mahalanobis distance and covariance inflation parameters correctly are vital.  In 

choosing the Mahalanobis distance threshold, a chi-squared test is conducted to ensure that the 

threshold is higher than 99% of the expected values.  The covariance inflation threshold is chosen 

such that it adequately allows the switched model (quiescent to thrust or vice versa) to improve 

the state estimation. 

The Mahalanobis distances for all simulations in each octree mapping case are shown in 

Figures 4-39 and 4-40 where the red-dashed line denotes the Mahalanobis distance threshold.  In 

scenario 1, the left plot of Figure 4-39 shows the moment in which the maneuver is detected.  

Any Mahalanobis distances above the red-dashed line signify that a maneuver has been detected. 

It is a very narrow region around 500 seconds into the simulation occupied by the Mahalanobis 

distance.  This indicates that the maneuver detection occurred consistently shortly after it 

happened for both octree mapping cases.  After the maneuver is detected, the Mahalanobis 

distance is reduced below the threshold.  Examining Figure 4-39 from left to right, the 

Mahalanobis distance remains beneath the threshold until the maneuver ends.  The region 

encompassing the maneuver detection end is considerably wider than the maneuver detection at 
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the start.  Due to the increased uncertainty during the maneuver and inherent noise in the 

measurements from the diminishing lighting conditions, detecting the ending of the maneuver is 

more difficult.  The time period in which the maneuver end detection occurs for the robust octree 

target mapping is between 1010 seconds and 1071 seconds.   

 

Figure 4-39:  Scenario 1 Mahalanobis distance of the robust (black) and sub-optimal (blue) octree 

mapping 

 

 In contrast, the sub-optimal octree target mapping has an extended region up till the 

scenario end.  The longer it takes to detect the end of the maneuver, the larger the error grows due 

to using a thrusting model for a non-thrusting object.  This is the cause of the larger error in the 

residual translational states for the sub-optimal mapping over the more robust mapping in Figures 
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4-11 to 4-13 and 4-17 to 4-19 for the position and velocity states respectively.  It is very clear that 

the sub-optimal octree target mapping has a profound affect detecting the end of the maneuver.   

 The Mahalanobis distances in scenario 2 (Figure 4-40) shows no discernable difference 

between both octree mapping cases.  In comparing the left plot of Figure 4-40 to the left plot of 

Figure 4-39, the range of maneuver detection times are wider in scenario 2.  This behavior is 

expected since the thrust maneuver is ten times smaller and is inherently harder to detect.  The 

estimation filter needs additional time to properly detect the effects of a maneuver on the target’s 

natural motion.  Detecting the end of the maneuver presents a similarity difficult problem.  In 

scenario 2, both octree target mapping cases have the same range of time in which end maneuvers 

are detected. 

 

Figure 4-40:  Scenario 2 Mahalanobis distance of the robust (black) and sub-optimal (blue) octree 

mapping 
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Estimating thrust acceleration states begins after the switch from the quiescent model to 

the thrust model.  Thrust acceleration states are appended to the state vector and are estimated 

during the detected maneuver until the end of the maneuver is determined.  Higher thrust 

acceleration magnitudes are easier to estimate correctly as lower thrust acceleration magnitudes 

can be distorted by various factors including process and measurement noise.   

 

Figure 4-41:  Scenario 1 thrust magnitude estimates of the robust (black) and sub-optimal (blue) 

octree mapping 

 

The thrust magnitude estimates for scenario 1 in Figure 4-41 are plotted with the true 

thrust acceleration magnitude (represented by the red-dashed line).  Thrust acceleration 

magnitude estimates from the robust octree target mapping runs show a consistent convergence 

near the true thrust acceleration magnitude.  There are several outlier estimates above the true 
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thrust magnitude contributed from poor measurements and overall system noise.  It can be seen 

that the distribution above the true thrust acceleration magnitudes occupies a narrower region 

than the sub-optimal octree target mapping.  The incomplete octree target mapping has a larger 

variance in its estimates around the true thrust acceleration magnitude and has a wider 

distribution of erroneous thrust acceleration magnitude estimates above the true thrust 

acceleration magnitude.  Furthermore, the thrust estimates in several Monte Carlo runs of the sub-

optimal octree target mapping continue toward the end of the simulation time as the maneuver 

end failed to be detected. 

 

Figure 4-42:  Scenario 2 thrust magnitude estimates of the robust (black) and sub-optimal (blue) 

octree mapping 
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Thrust acceleration magnitude estimates in scenario 2 (Figure 4-42) produced similar 

results between both octree mapping cases.  Convergence issues were more prevalent in scenario 

2 versus scenario 1 as the thrust magnitude estimation has a wider distribution below the true 

thrust magnitude.  Error is roughly equivalent for both octree mapping cases with no inherent 

advantage for the robust mapping.  As stated previously, both cases have more difficulty 

detecting the maneuver end thus both continued to estimate to the simulation end time during 

some runs.   

4.3.4. Octree Target Parameters 

As described in Section 3.18.3, the IMM is utilized in the VSD portion of the filter to 

leverage a range of density models to indirectly estimate the mass through applying a weight to 

the available densities and using the estimated target volume provided by the octree map (and 

initialized as a consider parameter).  As the filter iterates through time, the weighting factors 

applied to each density is updated at the end of each filter loop.  Table 3-3 contains the list of 

densities utilized in the IMM filter.  These densities and the volume estimate contribute to the 

thrusting contribution to the orbital dynamics.  By allowing the filter to converge to the mixture 

of densities that best predicts the state estimates that fit the observations, it provides the filter 

mass information of the object without directly estimating it.  Based on the performance of each 

density model from the list in Table 3-3 in updating the state estimates, the corresponding 

weighting factors to the densities are updated.  Over time, densities that do not contribute 

properly to the best combined state estimate are lowered in their weighting whereas densities that 

produce the best results are weighted higher.  Figure 4-43 shows the 8 weighting factors 

corresponding to each density in Table 3-3 over the course of the Monte Carlo runs for both 

octree mapping cases.  The filter consistently chose certain densities over others; the third density 
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generally contributed more whereas the first density predominately contributed the least to the 

combined state estimates.  There were several runs where the order (from highest to lowest 

weighting) changed between the top four contributing densities.  However, the convergence for 

each density was very consistent. 

 

 

Figure 4-43:  Scenario 1 weighting factors of the IMM 

 

In scenario 2, the weighting factors converged in a very similar manner to that of scenario 

1 with less variance in how each individual weighting converged.  Figure 4-44 shows that each 

weighting factor converges in a tighter grouping across the Monte Carlo runs.  This is contributed 

to the higher uncertainty inherent in the larger thrust scenario as the state estimates possessed 

larger covariance due to the target moving at a faster rate. 
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Figure 4-44:  Scenario 2 weighting factors of the IMM 

 

Taking the densities, corresponding weighting factors, and target volume estimate, a 

coarse mass estimate can be extrapolated to determine the values of mass used by the filter.  By 

multiplying the densities (ρ) with their corresponding weights and summing them, a combined 

density is retrieved to compute the mass (m) from the volume estimate (v). 

  
8

i i

i 1

m v 


   (4.7) 

The resulting coarse mass estimates for both octree cases compared to the true mass for scenarios 

1 and 2 are shown in Figures 4-45 and 4-46 respectively.  As with the weighting factors, the mass 

estimation in scenario 2 has a lower variance than the mass estimates of scenario 1.  Again, this is 

attributed to the higher uncertainty derived from the larger thrust magnitude.     
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Figure 4-45:  Scenario 1 extrapolated mass estimate of the robust (black) and sub-optimal (blue) 

octree mapping 

 

Figure 4-46:  Scenario 2 extrapolated mass estimate of the robust (black) and sub-optimal (blue) 

octree mapping 
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The true mass of the target is 215 kg and the resulting mass estimates have over a 50 % 

difference for the robust octree mapping cases and over a 60 % difference for the sub-optimal 

cases.  Table 4-6 summarizes the average mass estimation for each scenario and both octree 

mapping cases.  Since estimating mass is not observable, attempting to do so could cause biased 

estimates or divergence in the estimation filter.  By relying on an indirect approach to extrapolate 

mass information, accurate results are still achieved despite the large error in the mass used in the 

estimation filter. 

Table 4-6:  Coarse mass estimation 

 Scenario 1 

Percent 

Difference 

Scenario 2 

Percent 

Difference 

Robust octree mapping mass 

estimate (average) 

333 kg 54.88 % 328 kg 52.56 % 

Sub-optimal mapping mass 

estimate (average) 

76 kg 64.65 % 76 kg 64.65 % 

 

 

Though the coarse mass estimates used in the filter were incorrect, they were consistent 

in their error as the mass used in the dynamics over time did not change by much as shown in 

Figures 4-45 and 4-46.  Successive Monte Carlo runs with varying noise produced very steady 

coarse mass estimates that did not have much variance.   

The geometric center of the target is obtained from the octree map and using the offset 

from geometric center (included in the state vector) and attitude of the target (from the octree 

map), the center of mass is extrapolated. 

 
CoM LVLH G offsetr r R r    (4.8) 
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Since the target object is not rotating, the attitude of the target is the geometric axes rather than 

the principal axes.  Estimating the principal axes is unobservable unless the target is rotating.  

This means that an inherent bias is prevalent in the attitude as the principal axes cannot be 

extrapolated from the geometric axes.  This bias is also inherent in the center of mass as it relates 

to the geometric axes RG in Equation (4.8).   Figure 4-47 shows the true attitude and center of 

mass compared to the geometric attitude and center of mass extrapolated from the robust octree 

map. 

 

Figure 4-47:  True target attitude (red) versus geometric attitude (black) for robust octree target 

mapping 
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Despite the octree map having low uncertainty, a rotational and translational offset between the 

true axes and center of mass and the geometric axes and geometric center exists.  In both 

scenarios, the geometric axes converged to roughly the same yaw, pitch, and roll (Table 4-7).  

However, a noticeable difference exists between the octree mapping cases as the robust mapping 

has had a chance to observe most of the target’s surfaces.   

 

Table 4-7:  Center of mass in target body frame and attitude of target 

 
True target 

parameters 

Robust octree 

target mapping 

Sub-optimal octree 

target mapping 

Yaw 180° 170.91° 169.46° 

Pitch 11.42° 2.29° -7.30° 

Roll 0° -1.24° -0.94° 

Center of mass 

(Target Body 

Frame) 

[0.0050, -0.0131, 

0.013] m 

[0.016, -0.026, 

0.022] m 

[-0.026, -0.23, 0.11] m 

 

 Figure 4-48 visualizes the disparity in the attitude between the sub-optimal octree target 

mapping and the true target attitude.  Though the map is continued to be built after the maneuver 

occurs, it uses the parameters initialized at maneuver detection to keep the consider filter 

consistent.  The center of mass of the target is utilized in the guidance and control algorithm.  

While the inherent biases are an unfortunate product of the un-observability of the principal axes, 

the estimate is good enough for the controller to track the object.  
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Figure 4-48:  True target attitude (red) versus geometric attitude (black) for sub-optimal octree 

target mapping 
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Chapter 5 

 

Summary, Conclusions and Future Work 

This dissertation sought to contribute toward the following areas in development of an 

algorithm capable of detecting an unknown maneuver from an uncooperative spacecraft using 

visual observations. 

1) Develop a computationally efficient approach to detect and estimate a thrusting maneuver 

with no prior information available on the target. 

2) Create an algorithm capable of extrapolating information from the target using visual 

observations to retrieve mass information in an online process. 

3) Exploit information obtained about the target to improve the quality of future 

observations. 

Detecting and estimating maneuvers whether intentional or uncontrolled are important for 

proximity operations missions.  Development of robust and computationally efficient algorithms 

was developed in this dissertation toward that goal. 

5.1. Summary 

The work presented in this dissertation aimed to develop algorithms for the purposes of 

performing simultaneous localization and mapping on an uncooperative target conducting an 

unknown maneuver during a proximity operation.  Previous work in this area is limited.  Further 

constraints in consideration in this work are that the observer does not possess any information on 

the target and its initial relative position to the target.  An algorithm was developed that estimates 
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pose information and simultaneously builds an octree map of the target and extrapolates target 

volume, geometric center and axes to indirectly estimate the mass.  These parameters are used in 

a consider variable state dimension (VSD) and interacting multiple model (IMM) filter which 

leverages bank of densities (and assuming equally distributed density) that comprise the models 

in the IMM to consider the uncertainty in the target volume on a detected maneuver.  Estimated 

volume from the octree map and its associated uncertainty initialize the consider parameters at the 

start of the model switch from the quiescent model (initial state vector) to the thrusting model 

(initial states plus concatenated thrust states).  As the uncertainty in the octree map decreases, the 

octree map is utilized as a pruning mechanism for inconsistent observations before they can enter 

the estimation filter. 

Results presented in this dissertation show the developed algorithm’s capability in 

handling an unknown continuous thrusting maneuver of very low magnitude for an object of 

previously unknown characteristics.  Estimates converged over the course of several Monte Carlo 

simulations with the maneuver detection at the start and end of the maneuver being detected.  To 

analyze the octree map’s contributions to the algorithm’s performance, two cases were explored:  

one in which the octree map had low uncertainty before a maneuver was detected and the second 

in which the octree mapping had higher uncertainty.  While the robust octree mapping performed 

very well, the sub-optimal mapping had larger errors in the state estimates and maneuver 

detection.  However, the filter on average was able to cope despite the deficiency in the mapping.   

5.2. Conclusions 

The developed algorithms fulfill the requirements set forth in the desired goals of this 

dissertation.  Implementation of the VSD maneuver estimation approach provides a low-cost 

method of estimation.  Keeping the number of models within the IMM low to kept the 
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computational cost in check while ensuring enough models were present for robustness and filter 

performance.  Tying the octree mapping to the consider parameters provided the filter with a 

computationally efficient approach to utilize the uncertainty in the target volume to estimate the 

thrust.  Accuracy was sacrificed for speed in keeping the octree bin size larger.  Despite an 

estimated target volume that was 22-30 % different, the estimation filter performed well.  

Estimations converged and the maneuver initiation and end were detected with accurate thrust 

acceleration estimation.   

The octree mapping providing a volume estimate for the consider filter enabled an online 

indirect mass estimation approach to extrapolate target information from the octree map and 

using it for thrust acceleration estimation.  Volume estimates had noticeable error causing the 

indirectly obtained mass to possess upwards of 50 % difference from the true volume as specified 

in Table 4-5.  Estimation of volume and by extension mass is an inherently challenging problem 

due to observability of these parameters being severely limited.  As such, it was known from the 

outset that obtaining accurate volume and mass estimates would not be realistic.  Instead, it was 

desired to achieve same order of magnitude estimates that while coarse, could be refined in the 

estimation filter to provide enough information for the filter to converge.  Results showed that 

despite the inaccurate volume estimate (and mass by extension), the filter reliably converged and 

performed well in the maneuver detection and estimation.  Clearly, the octree mapping provided a 

benefit as its uncertainty decreased as shown in the results of the robust octree mapping versus 

the sub-optimal case.  The estimated volume (while course) from the robust octree mapping case 

consistently provided better estimation and maneuver detection over the sub-optimal mapping. 

As the octree map’s associated uncertainty became low, the map was utilized in pruning 

bad measurements from entering the filter.  Implementation of this provided a low cost approach 

to improve filter performance by eliminating erroneous measurements.  Comparing the results of 

the octree mapping cases shows an effect on having the pruning of bad measurements available in 
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the robust octree mapping case versus the sub-optimal case in which the mapping had high 

uncertainty and thus no measurement pruning.   

5.3. Future Work

There are several avenues of improvements that can be implemented from this work.  

Firstly, modifying the algorithm to handle both an unknown translation and rotation of an 

uncooperative target is a natural next step.  This is not trivial as a moving observer satellite 

inspecting a rotating and translating target is a very challenging problem.  Even assuming both 

motions are decoupled, one of the difficulties present is that a perceived rotation could cause a 

false maneuver to be detected.  This behavior was seen in preliminary work into implementation 

of a rotating target.  Most previous work in the literature examines the rotation problem so 

solving the extended rotation and translation problem is the natural progression. 

Further work can also be done in the creation of the octree map itself.  Developing a more 

efficient and accurate methodology for creating a map to extrapolate target characteristics would 

be greatly beneficial toward robustness especially if the target is rotating.  More work related to 

the octree mapping would be to explore further approaches to improve incoming measurements.  

In this work, a simple pruning method was implemented only checking for features contained 

within the bins.  Implementation of a nearest neighbor approach or some other optimized 

searching algorithm may enhance filter performance.  Improvement of the mapping may also lead 

to better volume estimates and indirectly better mass estimates. 

Another direction for future research would be in development of the control to 

rendezvous with the target.  If the target is performing a maneuver, developing the control to 

predict its future translational states from the predicted thrust estimates to rendezvous with the 

target would be an interesting extension of this work. 
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Further validation would be required to propose this work as a flight experiment.  In 

orbit, further situations may occur that could affect performance and would need to be tested.  

Such things include images containing stars and/or the Moon and Earth.  Images may also contain 

hot/dead pixels and electric noise.  Furthermore, external forces like drag, solar radiation 

pressure, n-body effects (gravitational sources from the Moon and Sun), sloshing, and gravity-

gradient torques (both acting on the target) may impede maneuver detection and make thrust 

estimation more difficult.  Finally, the estimation of a rotating target would need to be 

implemented as this dissertation currently makes a non-rotating assumption.  In reality, any of the 

mentioned external forces as well as the thrusting maneuver may induce a rotating torque upon 

the object.  A rotating object would trigger the maneuver detection in the current framework so 

implementation of this capability is vital.  Testing on hardware and processor-in-the-loop systems 

would further be necessary before proposing a flight experiment. 
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