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ABSTRACT 

This thesis investigates the use of piezoelectric circuitry networking technology 

for mode delocalization and effective vibration suppression in nearly periodic structures.    

Periodic structures, such as bladed-disks in turbo-machinery, are well known to 

be susceptible to vibration localization effect which can be caused by the small 

differences (also referred to as mistuning) in the substructures.  As a result of localization, 

vibration energy is confined to a small number of substructures, and the dynamic 

behavior of periodic structures can be drastically changed.  Consequently, the localization 

effect could significantly impact the health of such nearly (mistuned) periodic structures.  

Extensive studies exist concerning mode localization and forced response of 

nearly periodic structures.  Most investigations have focused on exploring the cause of 

localization, developing methods to quantify the degree of localization, and predicting the 

maximum forced response.  A few studies have explored means to reduce or eliminate 

localization effect.  Recently, Tang and Wang (2003) proposed a new piezoelectric 

networking concept for mode delocalization of nearly periodic structures and have shown 

promising results.  This thesis aims to further extend the state of the art of delocalization 

and vibration control of nearly periodic structures via piezoelectric networking 

technology. 

First, piezoelectric networking for mode delocalization is further investigated 

analytically and experimentally.  An active coupling enhancement approach via negative 

capacitance is proposed for improving the effectiveness of the network for mode 

delocalization.  The analysis is conducted using the transfer matrix approach and 

Lyapunov exponent.  A localization index is defined from the correlation between 

Lyapunov exponents and the localized modes of the electromechanically bi-coupled 

system, and is used in a comprehensive parameter study.  Experiments are carried out to 

validate the delocalization concept on a bladed disk specimen.  The effect of negative 

capacitance on the network’s performance is also investigated. Both analysis and 

experiments verify that the mode localization level of mistuned periodic structures can be 

effectively reduced by the piezoelectric network, and the performance of the network can 
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be further improved by the active coupling enhancement approach via negative 

capacitance.   

The investigation on the piezoelectric networking is then extended to vibration 

suppression of the mistuned bladed disk.  Due to the localization effect, mistuned bladed 

disks in turbo-machinery often suffer from large forced response. This study provides a 

comprehensive analysis on piezoelectric networking for effective multiple harmonic 

vibration suppression of mistuned bladed disks.  The analysis consists of two parts.  In 

the first part, the bladed disk is modeled as a multi-blade periodic system with disk 

dynamics neglected. A piezoelectric network is designed and optimized analytically after 

applying the U-transformation technique.  The effectiveness of the optimal network for 

multiple harmonic vibration suppression is demonstrated and compared to the traditional 

absorber design.  Monte Carlo simulation is performed to further examine the 

effectiveness of the network for mistuned bladed disk systems.  Robustness issues 

associated with key circuitry elements are also investigated.  An approach via negative 

capacitance to improve the system performance and robustness is explored.  The analysis 

shows that the piezoelectric network is quite effective and robust for multiple harmonic 

vibration suppression of mistuned bladed disks, and the performance and robustness can 

be further improved by negative capacitance.   Based on the analysis in the first part 

study, we then extend the investigations to a more complex scenario.   A bladed disk 

model with coupled blade-disk dynamics is developed to better describe the actual system 

and correspondingly, a new multi-circuit piezoelectric network is proposed and optimized 

analytically for multiple harmonic vibration suppression.  The performance and 

robustness issues of the network are examined numerically via Monte Carlo simulation.  

Finally, experiments are carried out to demonstrate the multiple harmonic vibration 

suppression effect of the newly developed piezoelectric network.   
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Chapter 1 
 

Introduction 

1.1 Background 

Periodic structures have been widely utilized in a variety of engineering 

applications. Typical examples include multi-span beams, truss structures, bladed disks in 

turbo-machinery and satellite antenna.  These structures are designed to contain repetitive 

identical substructures that are connected in some certain manner (often referred to as 

coupling) to form a spatial periodicity.  In an ideal situation, the substructures are indeed 

identical in all aspects, including geometrical and mechanical properties; the structure is 

called perfectly periodic (or tuned).  Modes of a tuned structure are extended sine/cosine 

wave type without attenuation. Vibration energy is uniformly distributed among its 

substructures. This dynamic characteristic has been exploited in the modeling of large 

complex periodic systems, which significantly reduces the analysis and computation 

efforts.  However, in realistic situations, there are always small variations (hereafter 

referred to as mistuning) among the substructures, such as blade-to-blade differences in 

geometry and mechanical properties.  The structure then becomes nearly periodic or 

mistuned.  Mistuning is small and random, and can be caused by variations in material 

properties, manufacturing tolerance, in-service degradation, etc.  Mistuning breaks the 

perfect periodicity and can change the dynamic behavior of periodic structures 

qualitatively.  It is well known that localization phenomenon could occur when a periodic 
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structure is mistuned, especially when the coupling among substructures is weak.  In a 

localized mode, modal energy is confined to a small region of the structure, causing 

increased local amplitude.   Figures 1-1 and 1-2 show examples that illustrate the 

localization phenomenon in free and forced vibrations.  The periodic system is a bladed 

disk structure with 80 substructures (blades).  The mode shown in the figure is the 10th 

mode for the tuned and mistuned cases.  In general, tuned modes are extended throughout 

the substructures, just as the one shown in Figure 1-1(a), and mistuned modes are 

localized, which, depending on the mistuning level and coupling between substructures, 

could be as localized as the one shown in Figure 1-1(b). As illustrated in Figure 1-1(b), in 

the mistuned system, high modal amplitude is only concentrated in a small number of 

substructures (blades).  Due to the localization effects caused by mistuning, the dynamic 

behavior of the periodic structure is also qualitatively changed under force excitation.  

Figure 1-2 presents an example of the maximum forced vibration response of the tuned 

and mistuned bladed disk systems under engine order excitation.  As shown in Figure 1-

2, not only the amplitude pattern of the mistuned system is drastically changed compared 

to the tuned system, but also the maximum amplitude is increased.  Because of this 

drastic change in forced response, vibration localization can have significant impact on a 

structure’s health.  For instance, when localization occurs to a bladed disk system of 

modern jet engines, the resulting excessively large forced response can lead to 

accelerated failure of the engine components via high-cycle-fatigue.  
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Figure 1-1:  Examples of tuned and mistuned modes (the 10th mode) of a periodic 
system; (a) tuned case; (b) mistuned case. 
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Figure 1-2:  Examples of forced responses for tuned and mistuned systems. 
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1.2 Literature Review 

1.2.1 Localization in periodic structures 

The localization phenomenon in periodic systems has been extensively studied by 

researchers and engineers since Anderson’s (1958) pioneering work in solid state physics, 

to name a few, Hodge, 1982; Hodge and Woodhouse, 1983, 1989; Kissel, 1987; Cornwell 

and Bendikson, 1989; Cai and Lin, 1991; Cha and Pierre, 1991; Bouzit and Pierre, 1992; 

Lust, et al., 1993; Mester and Benaroya, 1995; Pierre, et al., 1996; Ottarsson and Pierre, 

1996; Xie and Ariaratnam, 1996(a,b); Cox and Agnes,1999.  

Hodges (1982) was the first to introduce Anderson’s localization concept into 

structural dynamics.  Using a set of coupled pendula with randomly varying natural 

frequencies, Hodge showed that in one dimension all modes are localized for arbitrarily 

small disorder. Hodge concluded that the degree of localization is dependent on the ratio 

of disorder strength to the coupling strength.  Subsequently, Hodges and Woodhouse 

(1983) carried out experiments and demonstrated localization phenomenon in a stretched 

string with masses attached to it.  Bendiksen (1987) investigated localization 

phenomenon in large space structures, and found that weakly coupled structures have 

high modal densities, and are most likely to have localized modes.  Pierre et al. (1987) 

studied the localization of the modes of disordered multi-span beams both theoretically 

and experimentally, where they showed small deviation in the span lengths may have 

drastic effects on the dynamics of the system.  

Analysis on localization has been mostly based on the wave propagation theory 

(Mead, 1975; Cai and Lin, 1991; Pierre et al., 1996). Perfectly periodic structures feature 
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frequency passband and stopband.  Passband is of most interest since most natural 

frequencies of the tuned periodic system can be found within the passband. Within the 

passband, wave can propagate throughout the substructures without any attenuation. 

When mistuning exists, mistuning causes partial reflection of the wave at each bay of the 

periodic structure, which eventually leads to localization (Pierre et al, 1996). When a 

wave is localized, wave amplitude is found to decay exponentially for a periodic system 

with large number of substructures. This decay rate is often referred to as localization 

factor.  

Much research effort has been applied to the calculation of the localization factor.  

Kissel (1987) used the concept of wave transmission and reflection, and exploited 

Furstenberg’s limit theorem (Furstenberg, 1963) on products of random matrices to state 

a formula for the frequency dependent localization factor for a generic mono-coupled 

disordered periodic system.  Localization factor in mono-coupled systems has also been 

calculated using probability theory (Cai and Lin, 1991), stochastic perturbation 

techniques (Bendiksen, 1987; Pierre et al., 1987; Pierre, 1990), and Monte Carlo 

numerical simulation (Bouzit and Pierre, 1992).  Lyapunov exponent (Kissel, 1991; 

Castanier and Pierre, 1995; Xie and Ariaratnam, 1996) has been shown to be a good 

measure of the exponential decay rate of the wave/modal amplitudes, and thus can serve 

as the localization factor.  The Lyapunov exponents of a periodic system (mono-coupled 

or multi-coupled) can be computed from the global wave transfer matrix that relates the 

wave amplitude vector at one end of the structure to the wave amplitude vector at the 

other end.  Wolf’s algorithm is often used in the calculation of the Lyapunov exponent 

spectrum (Wolf et al., 1985).  
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Cyclically periodic structures, such as bladed disk assemblies in turbo-machinery 

have attracted wide attention in literature (Afolabi, 1985; Wei and Pierre, 1988; Sinha 

and Chen, 1989; Cornwell and Bendiksen, 1992; Ottarsson and Pierre, 1993; Cha and 

Pierre, 1997; Kruse and Pierre, 1997; Slater et al., 1999; Bladh et al., 2002; Kenyon and 

Griffin, 2003; Kenyon et al., 2003).  Special interest has been paid to the forced response 

of mistuned bladed disks which are commonly found in turbo-machinery such as jet 

engines. The example shown in Figure 1-2 has illustrated that the forced response of 

mistuned bladed disk can be drastically changed from that of a tuned system due to 

mistuning.  Significant amount of research has focused on the prediction of the maximum 

forced response (Whitehead, 1966), and on the development of modeling and analysis 

tools (Sinha and Chen, 1988; Castanier et al., 1997). Few studies have focused on 

developing methods to reduce the vibration.  Since mistuning plays an important role, 

methods based on intentional mistuning (Castanier and Pierre, 2002) and mistuning 

pattern optimization (Hou and Cross, 2005) have been proposed. It has been shown that 

through intentional design of a mistuning pattern, one can reduce the bladed disk’s 

sensitivity to random mistuning, and thereby reduce the forced response.  

1.2.2 Piezoelectric material based vibration control 

Piezoelectric materials, such as lead zirconate titanate (PZT), have been 

extensively used as sensors and actuators for vibration control because of their numerous 

merits such as light weight, wide bandwidth, efficient energy conversion, and easy of 

integration to the controlled structure.  These materials can transform mechanical 



8 

 

vibration energy of the structure to which it is bonded or embedded to electrical energy 

and vise versa.   Details about the basic properties and constitutive equations of 

piezoelectric materials can be found in (IEEE, 1988).   Exploiting these materials’ energy 

conversion capability, researchers have developed various schemes for vibration control, 

such as passive shunts (Forward, 1979; Hagood and von Flotow, 1991; Hollkamp, 1994; 

Wu, 1999; Behrens et al., 2003), active actuation (Crawley and de Luis, 1987) and active-

passive hybrid shunts (Kahn and Wang, 1994; Tsi and Wang, 1996), etc.  Comprehensive 

literature reviews can be found in (Lesieutre, 1998; Tang et al., 2000).  For addressing the 

localization issues, methods using piezoelectric materials have been investigated.  

Following the principle that higher coupling among substructures will reduce 

localization, Gordon and Hollkamp (2000) investigated the potential of utilizing 

piezoelectric strain actuators to increase blade-to-blade coupling of bladed disks, and 

found that the improvement was marginal.  Cox and Agnes (1999), and Agnes (1999) 

attempted to reduce vibration localization in bladed-disk assemblies by embedding 

piezoelectric patches to blades with connection in a certain manner.  Their studies found 

that directly shorting the piezoelectric patches had little effect on reducing localization.  

An inductive element was later added to the shorted piezoelectric patches, where it was 

observed that this addition could enhance the system coupling.  Recently, Tang and 

Wang (2003) proposed a new approach for vibration delocalization via piezoelectric 

circuitry networking.   
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1.3 Thesis Objectives 

Although promising results for mode delocalization through piezoelectric 

networking have been shown in (Tang and Wang, 2003), further analytical and 

experimental investigations through actual circuitry design are needed for thorough 

understanding of this concept.  It is also realized that the performance of the network 

might be limited by its intrinsic electro-mechanical coupling of piezoelectric transducers.  

Thus an effective method is needed to increase the electro-mechanical coupling 

coefficient.  Furthermore, vibration suppression using the extended piezoelectric network 

for mistuned periodic structures has not yet been systematically investigated.  Therefore, 

the goal of this thesis is to advance the state of the art by addressing the following two 

technical objectives: 

 (a) To perform investigations on developing piezoelectric networks with 

enhanced electro-mechanical coupling and utilize them for mode delocalization. 

 (b) To extend the circuit networking concept for vibration suppression of 

mistuned periodic structures under spatial harmonic (or engine order) excitations.    

Both theoretical analysis and experimental investigation will be performed to 

provide insight and better understanding related to the piezoelectric networking concept 

for vibration delocalization and control of nearly periodic structures. 

1.4 Thesis Outline 

The rest of this thesis is organized as follows. In Chapter 2, an analytical study on 

mode delocalization using the piezoelectric network with enhanced electro-mechanical 

coupling is presented.  The purpose is to examine the piezoelectric networking concept 

and the idea of negative capacitance for coupling enhancement.   
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In Chapter 3, experiments are carried out to validate the vibration delocalization 

concept using the piezoelectric network with enhanced electro-mechanical coupling. 

In Chapter 4, the piezoelectric networking concept is extended to address 

vibration suppression of periodic structures.  In this chapter, a simple bladed disk model 

is adopted. An optimal passive network design is derived analytically.  Monte Carlo 

simulation is used to examine the performance and robustness of the network.  An 

approach using negative capacitance for improvement of the network is investigated. 

In Chapter 5, the analysis of piezoelectric networking for vibration suppression of 

mistuned bladed disk is further extended using a coupled blade-disk model which can 

better represent the dynamics of an actual system. Based on this model, a new 

piezoelectric network topology is formulated.  The circuitry design is optimized 

analytically. Monte Carlo simulation is used to examine the performance of this network, 

and the effect of circuitry parameter variations (mistuning and detuning) on the network.  

The effect of the negative capacitance on the network’s performance and robustness is 

also examined.  

In Chapter 6, experiments are performed to demonstrate the vibration suppression 

effect of the newly designed piezoelectric network. 

Finally, conclusions and recommendations for future work are summarized in 

Chapter 7. 



 

 

Chapter 2 
 

 Mode Delocalization Analysis 

2.1 Background 

It is well known that periodic structures are susceptible to localization effect 

caused by small mistuning among substructures. The dynamic behavior of a periodic 

structure can be drastically changed by localization. In a tuned structure, where 

substructures are identical, modes are extended, vibration energy is uniformly distributed 

among the substructures.  In a mistuned structure, however, modes can become highly 

localized, especially when the coupling between substructures is weak. Localization 

could cause severe damage to a structure due to the confinement of vibration energy to a 

small portion of the whole structure.   

While research on the fundamental aspects of localization is extensive, few 

studies have been performed to develop methods to reduce or control vibration 

localization in nearly periodic structures.  Recently, Tang and Wang (2003) proposed a 

new approach for vibration delocalization via piezoelectric circuitry networking and 

showed promising results. An example networking configuration is shown in Figure 2-1.  

In this case, the original mono-coupled system becomes bi-coupled with an additional 

electrical coupling.  In general, an inductive piezoelectric circuit (LC shunt) can absorb 

vibration energy from the substructure to which it is bonded and store that portion of 

energy in the electrical form.  While in most cases directly increasing the mechanical 
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coupling between substructures is difficult to achieve due to various design limitations, 

one can easily introduce strong electrical coupling, such as connecting the LC shunts with 

capacitors (Ca) as shown in Figure 2-1(b), to create a new wave channel.  With this 

coupled piezoelectric circuits design, the otherwise localized vibration energy in a nearly 

periodic structure can now be transferred into electrical form and propagate in the 

integrated system through the newly created electro-mechanical wave channel.   

2.2 Problem Statement and Objective 

While the recent investigations (Zhang and Wang, 2002; Tang and Wang, 2003) 

have illustrated promising delocalization results utilizing piezoelectric networks, the 

studies are still preliminary.  The concept has not been thoroughly examined via a 

comprehensive parameter study, and nor has it been realized and validated through actual 

circuitry design.  Most of all, it was recognized that the effectiveness of the treatment can 

be limited by the level of the electro-mechanical coupling of the piezoelectric patches.  

From observing Figure 2-1, one can see that since the electrical coupling established 

through the external capacitors (Ca) can be easily adjusted, the performance bottleneck of 

the piezoelectric network is the electro-mechanical coupling, i.e., how much mechanical 

energy can be transferred into electrical energy.  For most of the cases investigated in 

previous studies, the electro-mechanical coupling coefficient is not high enough to ensure 

that all the modes are significantly delocalized.  In other words, while the degrees of 

localization of all the modes were reduced with the treatment, the improvements in some 

modes were marginal.   This electro-mechanical coupling coefficient is determined by the 
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piezoelectric material property, the size and the location of patches on the host structures, 

and the stiffness of the host structures.  Thus it is in general difficult to change with only 

passive designs.    

Based on the above observations, the objectives of this research are (a) to explore 

the possibility of utilizing an active coupling enhancement approach to increase the 

system electro-mechanical coupling, such that the effectiveness of the piezoelectric 

network for delocalization can be further improved; (b) to analyze the integrated system 

and quantitatively evaluate the delocalization effect; and (c) to implement and validate 

the proposed concept experimentally.  In this study, the negative capacitance circuit 

approach (Tang and Wang, 2001) is proposed and investigated for active coupling 

enhancement.  In this paper, the possibility of increasing the system generalized electro-

mechanical coupling coefficient by using negative capacitance is discussed and the 

relationship between the negative capacitance and the coupling coefficient is presented.  

An integrated system consisting of a mistuned periodic structure with the piezoelectric 

network is modeled, and based on this model, the mode shapes of the mistuned system 

are investigated and the Lyapunov exponents are derived using transfer matrix approach.  

The correlation between the Lyapunov exponents and the spatial exponential decay of the 

modal amplitudes is discussed.   A localization index is then defined and used to evaluate 

the system’s delocalization performance in a parameter study. 
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2.3 System Model 

To maintain simplicity, the periodic structure considered in this research is 

assumed to consist of N identical cantilever beams coupled by N springs, as shown in 

Figure 2-1(a).  The lumped springs are used to emulate the coupling effect in a generic 

periodic structure.  Though simple, this model is capable of describing the basic 

localization phenomenon in periodic structures.  The network topology, integrated with 

the host periodic structure, is shown in Figure 2-1(b).  

In this configuration, a piezoelectric patch is embedded in each of the 

substructures.  An inductive shunt circuit (piezoelectric transducer connected in series 

with an inductor) is applied to each of the substructures in order to absorb the vibration 

energy and transform it into electric form.  Then these individual local circuits are 

coupled through capacitive elements to form a global network.  This network topology 

creates an additional wave channel, through which the localized vibration energy can be 

propagated.  
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The system equations of motion can be derived as follows.  Let φ  be the first 

cantilever beam mode of the substructure.  The transversal displacement of the jth beam is 

approximated as, 

( , ) ( ) ( )j jw x t x q tφ≈                                                       (2.1) 

 The equations of motion for the periodic structure integrated with piezoelectric 

transducers can be derived using Hamilton’s principle (Tang and Wang, 2003), which 

are, 

1 1 1( ) ( )j j j j c j j c j j jmq cq kq k Q k q q k q q f− ++ + + + − + − =                                (2.2)   

2 1j j jk Q k q V+ =                                                            (2.3) 

where m , c , k , ck , 1k and 2k  are, respectively, mass, damping, substructure stiffness, 

substructure coupling stiffness, cross coupling coefficient related to the electro-

Figure 2-1: Schematics of (a) mechanical period structure and (b) periodic structure 
integrated with coupled piezoelectric circuit network. 
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mechanical coupling of the piezoelectric patch, and inverse of the capacitance of 

piezoelectric patch (k2=1/Cpzt), which are given by, 

HdxAdxAm b bl l

ppbb∫ ∫ Δ+=
0 0

22 φρφρ  , 2

0

bl

bc c dxφ= ∫  

2 2

0 0
" "b bl l

b b p pk E I dx E I Hdxφ φ= + Δ∫ ∫ , )(2
ssc xkk φ=  

∫ Δ= bl

p
pp

HdxhF
lw

k
0 311 "1 φ , 

pp

p

lw
A

k 2
33

2

β
=       

Here, qj and jf  are the generalized mechanical displacement and external force of 

the jth beam.  Qj and Vj are the charge flowing to and the voltage across the piezoelectric 

patch attached to the jth beam, respectively.  )()( rl xxHxxHH −−−=Δ , where H(x) 

is the Heaviside step function.  xl and xr are distances from the piezoelectric patch edges 

to the root of the cantilever beam, and the length of the patch is thus lp = xr – xl.  Other 

relevant notations used here are: ρb and ρp  – density of beam and piezoelectric patch; Ab 

and Ap – cross sectional area of beam and piezoelectric patch; Eb and Ep – elastic modulus 

of beam and piezoelectric patch; Ib and Ip – moment of inertial of beam and piezoelectric 

patch; lb – length of beam; wp – width of piezoelectric patch; Fp – moment of area of 

piezoelectric patch; cb – beam damping constant; ks and xs – stiffness of coupling spring 

and location of coupling spring; h31 – piezoelectric constant; and β33 – dielectric constant 

of piezoelectric patch. 

Applying circuit network analysis using Kirchhoff’s law, the equation for the jth 

circuit branch can be derived as, 

2 1 1 1 1 1(2 ) (2 )j j j j j j j j
a a

L LV LQ k Q Q Q k q q q
k k− + − += − − − − − − −                       (2.4) 
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where L is the circuitry inductance.  1/a ak C=  denotes the inverse of the coupling 

capacitance.  Substituting Equation (2.4) into Equation (2.3), we can derive the equations 

of motion of the electro-mechanically integrated system as, 

1 1 1( ) ( )j j j j c j j c j j jmq cq kq k Q k q q k q q f− ++ + + + − + − =                        (2.5) 

2 1 1 1 1 1 2 1(2 ) (2 ) 0j j j j j j j j j
a a

L LLQ k Q Q Q k q q q k Q k q
k k− + − ++ − − + − − + + =                    (2.6) 

For the original periodic structure without the piezoelectric circuits, the equation 

of motion is, 

1 1( ) ( )j j j c j j c j j jmq cq kq k q q k q q f− ++ + + − + − =                                    (2.7) 

 In the above derivation, we assume that the system is perfectly periodic.  In 

reality, however, there will be imperfections.  Without loss of generality, in this model 

we assume that the structural imperfection (mistuning) exists in the stiffness of the 

substructures, which is the common practice in many localization studies.  The stiffness 

of the jth beam with mistuning is, 

j jk k k= + Δ                                                              (2.8) 

where k is the nominal stiffness of the perfectly periodic structure, and jkΔ  is the zero-

mean random mistuning in stiffness.  In the following we consider harmonic solutions for 

free vibration, and neglect damping.  The equations of motion of the electro-mechanically 

integrated system can be non-dimensionalized as follows, 

2 2 2
1 1(1 ) ( ) ( ) 0j j j c j j c j j jx s x R x x R x x yδξ− +−Ω + + Δ + − + − + =                        (2.9a) 

2
2 2 2

1 1 1 1[ (2 ) (2 )] 0a
j a j j j j j j j j

Ry R y y y x x x x yξ δξ δ
δ− + − +−Ω + − − + − − + + =                (2.9b)  
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and the equation for the mistuned system without piezoelectric network becomes, 

2 2 2
1 1(1 ) ( ) ( ) 0j j j c j j c j jx s x R x x R x x− +−Ω + + Δ + − + − =                                (2.10) 

where the non-dimensionalization parameters are, 

/m k mω = , 2 /e k Lω = , /e mδ ω ω=  

                                             / mΩ ω ω= , j jx mq= , j jy LQ=  

1 2/k kkξ = , /c cR k k= , 2 /a aR k k= , /j js k kΔ = Δ  

Here ω and Ω are the dimensional and non-dimensional harmonic frequencies; ωm 

and ωe are the natural frequencies of the uncoupled substructure and circuit, respectively; 

δ is the frequency tuning ratio which characterizes the circuitry inductance; xj and yj are 

the non-dimensional generalized mechanical and electrical displacements of the jth 

substructure and circuit branch respectively; ξ is the generalized electro-mechanical 

coupling coefficient which reflects the energy transfer capability of the piezoelectric 

transducer; Rc is the mechanical coupling ratio between the substructures; Ra is the 

electrical coupling ratio related to the  coupling capacitance; and Δsj is the mistuning 

ratio which is a zero-mean random variable with standard deviation σ.   

2.4 Active Coupling Enhancement 

The generalized electro-mechanical coupling coefficient (ξ) plays an important 

role in the piezoelectric network delocalization mechanisms, since it characterizes the 

amount of energy that can be transformed from mechanical into electrical form.  

Although previous studies have shown promising delocalization results using the 
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proposed piezoelectric network, it was also recognized that the improvements in some 

modes were marginal due to the low electro-mechanical coupling coefficient ξ.  It should 

be noted that this generalized electro-mechanical coupling coefficient is not the same as 

the intrinsic coupling factor of the material itself.  For piezoelectric materials, the electro-

mechanical coupling factor is a non-dimensional number quantifying the energy 

conversion capability of the materials, the definition of which can be found from (IEEE, 

1988).  The coupling factor (km) quantifies the level of coupling at the system level, 

which can be expressed as (Lesieutre and Davis, 1997): km
2=(cD-cE)/cD, where cD is the 

material stiffness under the open circuit (constant electric displacement) condition and cE 

is that under the short circuit (constant electric field) condition.  The material coupling 

factor has different values corresponding to different conditions.  For patch application 

considered in this study (i.e., in the 3-1 direction application where the uniaxial stress is 

perpendicular to the poling direction), the coupling factor is about 0.35.  The largest 

coupling factor for polycrystalline piezoelectric ceramic materials can be on the order of 

0.7, corresponding to energy conversion factor of about 50% (Lesieutre and Davis, 1997).  

When devices made of piezoelectric materials are integrated to a structure, the 

generalized electro-mechanical coupling coefficient ξ can be defined at the structural 

level (Lesieutre and Davis, 1997).  The coupling coefficient can be calculated based on 

the structural open circuit natural frequency (ωD) and short circuit natural frequency (ωE): 

2 2( ) ( ) /D E Dξ ω ω ω= − .  This value is in general smaller than the intrinsic electro-

mechanical coupling factor of the material itself.  The formula of the generalized electro-

mechanical coupling coefficient used in this study, 1 2/k kkξ = , is consistent with the 



20 

 

above definition, which can be easily derived and verified from Equations (2.2) and (2.3) 

when the open and short circuit conditions are applied (Tang and Wang, 2001).  It is clear 

that in a dynamic system, this generalized electro-mechanical coupling coefficient is a 

function of the cross coupling term k1, the stiffness of the host structure k, and the inverse 

of the piezoelectric capacitance k2.  To obtain a higher ξ, one can either increase k1, or 

decrease k and k2.  Since k1 is usually fixed once the material type (thus the material 

coupling factor), the size and the location of the piezoelectric patch on the host structure 

are determined, it is difficult to be increased due to practical limitations.  On the other 

hand, to increase the generalized electro-mechanical coupling coefficient, one can also 

change k and k2.  Lesieutre and Davis (Lesieutre and Davis, 1997) proposed a method 

using destabilizing mechanical pre-loads to counter the inherent stiffness, thus to reduce 

the stiffness k of the host structure, and increase the apparent coupling coefficient.  

Although this method is indeed interesting, it might be difficult to implement since it 

usually requires pre-conditioning or modification of the host structure.  Tang and Wang 

(2001) proposed a negative capacitance circuit approach to partially cancel the inherent 

capacitance of the piezoelectric patch, which will reduce the electrical stiffness k2 and 

increase the coupling coefficient ξ.  Such an approach can be easily realized utilizing an 

electric circuit, which might be much easier to implement than changing k and k1 via 

mechanical tailoring.  In this study, this negative capacitance approach is adopted to 

increase the generalized electro-mechanical coupling coefficient, for the purpose of 

enhancing the delocalization performance of the network. 
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In the formula 1 2/k kkξ = , k2 is the inverse of the piezoelectric capacitance 

(k2=1/Cpzt).  When a negative capacitance is added in series to the piezoelectric element 

in the network, the inverse of the total capacitance in each branch of the piezoelectric 

network becomes, 

2 2
ˆ

nk k k= −                                                              (2.11) 

where kn is the inverse of the negative capacitance added (kn=1/Cneg).  With the negative 

capacitance, the generalized electro-mechanical coupling coefficient becomes, 

1 2
ˆ/k kkξ =                                                              (2.12) 

Since 2k̂  is less than 2k  (Equation (2.11)), it is obvious that the generalized 

electro-mechanical coupling coefficient (ξ) can be increased by the negative capacitance 

treatment.  However, to ensure stability of the system, there is a limit on the negative 

capacitance, which is governed by maintaining the positive definiteness of the system 

generalized stiffness matrix (Equation (2.13)), 

1

1 2

0ˆ
k k

k k

⎡ ⎤
>⎢ ⎥

⎢ ⎥⎣ ⎦
                                                           (2.13) 

which means  2
2 1

ˆkk k>  or  1ξ < .   

From Equation (2.11), it is clear that kn must be less than k2, or in other words, the 

absolute value of the negative capacitance should be larger than the piezoelectric 

capacitance.  The relationship between the generalized electro-mechanical coupling 

coefficient and the negative capacitance is given in Figure 2-2, where the coupling 

coefficient for the original system without negative capacitance is assumed to be 0.1, and 
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the ratio of kn/k2 is referred to as the negative capacitance ratio.  It can be seen that the 

coupling coefficient can increase monotonically and nonlinearly as the negative 

capacitance ratio (kn/k2) increases.  The closer the negative capacitance value is to the 

piezoelectric capacitance, i.e., the closer the negative capacitance ratio (kn/k2) is to 1, the 

larger the coupling coefficient would be.  However, in practice, the circuit will be 

vulnerable to instability as the ratio gets closer to 1, as indicated by Equation (2.13).  The 

negative capacitance cannot be realized passively and one needs to use an operational 

amplifier to form a negative impedance converter circuit that requires a power source.  

Therefore, this approach is referred to as an active coupling enhancement approach.   
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Figure 2-2:  Effect of negative capacitance on the electro-mechanical coupling 
coefficient. 
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2.5 Integrated System Analysis 

As indicated earlier, the localization phenomenon in mistuned periodic structures 

has been analyzed extensively in the past.  The probabilistic nature of the localization 

phenomenon was recognized and stochastic methods were applied to study the spatial 

exponential decay rate of the vibration amplitude (Hodges and Woodhouse, 1983; Kissel, 

1991; Pierre et al, 1996).  Lyapunov exponents calculated from the global stochastic 

wave transfer matrix have been introduced to approximate the spatial exponential decay 

rate of the amplitude, and have been demonstrated as a good measure of the localization 

level (Kissel, 1991; Castanier and Pierre, 1995; Pierre et al., 1996; Xie and Ariaratanam, 

1996(a,b)).  The wave transfer matrix method and the numerical computation of the 

Lyapunov exponents for multi-coupled periodic structures have been discussed by Pierre 

et al. (1996).  To formulate the wave transfer matrix expression for the periodic system, a 

displacement state vector is defined for each bay (a bay consists of two adjacent 

substructures).  Then the transfer matrix that relates the dynamics of two adjacent bays 

can be derived from the equations of motion.  The dimension of the state vector is always 

twice of the number of inter-bay coupling coordinates n, and the dimension of the square 

transfer matrix is 2n by 2n, which is independent of the number of substructures N.  The 

wave transfer matrix for the original system without piezoelectric network can be found 

in (Tang and Wang, 2003).  Below, only the formulation for the system with integrated 

piezoelectric network is presented.  This integrated system is bi-coupled, thus the number 

of inter-bay coupling is n=2, and the dimensions of the displacement state vector and 

transfer matrix are 4 × 1 and 4 × 4, respectively.  The 4 × 1 displacement state vector for 
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the jth bay, consisting of both mechanical and electrical generalized displacements from 

the jth and the j+1th substructures, is defined as: 

T

1 1j j j j jx y x y+ +⎡ ⎤= ⎣ ⎦u                                                (2.14) 

The system equations in Equations (2.9(a)) and (2.9(b)) can be rewritten into the 

transfer matrix expression using the displacement state vector: 

1j j j−=u T u                                                               (2.15) 

where Tj is the 4 × 4 transfer matrix given by Equation (2.16): 

2 2

2 2

2 2 2
2

2 2 2 2 2 2

1 2
1 0

1
( ) (2 1/ ) 0 1

1 0 0 0
0 1 0 0

c j

c c

j
j a

a c a c

R s
R R

s
R

R R R R

δξ

δξ ξ δ ξ
δ

⎡ ⎤+ + Δ −Ω
−⎢ ⎥

⎢ ⎥
⎢ ⎥⎛ ⎞+ Δ −Ω ⎛ ⎞⎢ ⎥= − + − − + + −⎜ ⎟ ⎜ ⎟Ω Ω⎢ ⎥⎝ ⎠⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T
                 (2.16) 

 

Obviously, the transfer matrix is random for mistuned structures because of the 

random mistuning Δsj.  For tuned structures, Δsj=0, and Tj is identical for all j’s.  A 

Lyapunov exponent is defined as:  

0 N
1(u ) lim log u

N N
γ

→∞
=                                                      (2.17) 

where u0 is the initial displacement state vector and uN is the displacement state vector of 

the Nth substructure.  It can be shown that the Lyapunov exponent can be calculated from 

the product of the transfer matrices (Tang and Wang, 2003):  

11lim log ( T )k k jN
j NN

γ σ
→∞

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∏                                                     (2.18) 

where σk(·) denotes the singular value operator.  
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In this study, the Lyapunov exponents of the bi-coupled periodic structure 

integrated with piezoelectric network are calculated using the Wolf’s algorithm (Wolf et 

al., 1985).  The number of Lyapunov exponents equals to twice of the number of 

coupling coordinates.  For this bi-coupled system, there are four Lyapunov exponents in 

total.   In fact, these Lyapunov exponents appear in pairs, with same magnitude but 

opposite signs, ±|γ|.  For a periodic structure, both these positive and negative Lyapunov 

exponents share the same physical meaning.  Therefore, calculating the positive 

Lyapunov exponents is sufficient to identify the entire spectrum.  In the following 

discussion, Lyapunov exponents by default refer to the positive ones unless otherwise 

noted.  

For this study, the structural damping and circuitry resistance are neglected so that 

the vibration localization effect can be clearly identified.  The original periodic structure 

without piezoelectric network is a mono-coupled system, so there is only one Lyapunov 

exponent and mode localization can be directly evaluated by the Lyapunov exponent, as 

demonstrated in (Pierre et al., 1996) and (Tang and Wang, 2003).  For the periodic 

structure with the piezoelectric network treatment, the introduction of the strong electrical 

coupling enabled by the capacitors between the local shunt circuits creates another wave 

channel.  Therefore, the system becomes bi-coupled; and there are two Lyapunov 

exponents at each frequency.  Figures 2-3 to 2-5 show the Lyapunov exponents for the 

tuned and mistuned (σ = 0.01) systems with parameters ξ=0.1, Ra=0.6, δ =1.2, and Rc= 

0.005.  Here Figure 2-3 is for the tuned case, Figure 2-4 is for the mistuned case and 

Figure 2-5 provides a zoom-in view around Ω=1 for both the tuned and mistuned cases.  

The two Lyapunov exponents are referred to as upper and lower branches in Figures 2-3 
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to 2-5.  For this system, as indicated in Figure 2-3, there are two separate passbands 

(referred to as passband 1 and passband 2) for the tuned case.  The natural frequencies are 

found to be inside the passbands.  It is well known that mode shapes of the tuned system 

are extended without attenuation throughout the substructures, or in other words, having 

zero decay rates.  This characteristic of tuned system is captured by the zero Lyapunov 

exponents in the passbands.  When the system has mistuning, there are no longer any 

passbands; and the lower Lyapunov exponent branch becomes non-zero (see the lower 

dotted line in Figure 2-5), indicating mode localization caused by mistuning.  When 

localization occurs, the localized modal amplitudes will have a spatial exponential decay, 

the rate of which can be approximated by the lower one of the two Lyapunov exponents 

in the original separate passbands.   
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Figure 2-3:  Lyapunov exponents for the tuned system with piezoelectric network. 
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Figure 2-4:  Lyapunov exponents for the mistuned system with piezoelectric network. 
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To support the above argument, the correlation of the modal amplitude 

exponential decay rates and the lower Lyapunov exponents is studied.  In the following 

analysis, mode shapes of the mistuned periodic structure with piezoelectric network are 

obtained by solving the eigenvalue problem of the system, the parameters of which are 

the same as those used for Figures 2-3 to 2-5.  For modal analysis, the mistuned periodic 

structure is assumed to have N=80 substructures.  To demonstrate the exponential decay 

of the modal amplitudes, the substructure whichever has the highest amplitude is chosen 

as the 1st substructure.  Two examples are demonstrated in Figure 2-6.  Amplitudes of 
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Figure 2-5:  Lyapunov exponents for the tuned and mistuned systems with piezoelectric 
network. 
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two modes are shown, the 70th mode with natural frequency of Ω=0.9832, which lies in 

the original passband 1 and the 93rd mode with natural frequency of Ω=1.0006, which lies 

in the original passband 2.  The amplitudes of the 70th mode in logarithm scale are plotted 

with dotted line.  It is shown that the modal amplitudes decay exponentially throughout 

the first half of the substructures.  Actually, the exponential growth in the second half of 

the substructures can be seen as exponential decay at the same rate towards the other 

direction, due to the cyclic nature of the periodic structure.  At its natural frequency 

Ω=0.9832, the upper and lower Lyapunov exponents are computed to be 6.6969 and 

0.2720 respectively.  The dash-dotted line is a straight line with a slope of -0.2720, which 

is directly related to the lower Lyapunov exponent.  It can be seen that the exponential 

decay rate for the 70th mode is well captured by this straight line, which means, the lower 

Lyapunov exponent can characterize the exponential decay of the modal amplitude.   

Another example is the 93rd mode, with natural frequency of Ω=1.0006.  At this 

frequency, the upper and lower Lyapunov exponents are calculated to be 5.8572 and 

0.7202, respectively.  The modal amplitudes in natural logarithm scale are plotted with 

solid line in Figure 2-6.  The dashed straight line has a slope of -0.7202, which is 

corresponding to the lower Lyapunov exponent at this frequency.  Obviously, this straight 

line can approximate the spatial exponential decay of the mode amplitudes very well.  

Based on the correlation study, we conclude that it is the lower Lyapunov exponent that 

can characterize the exponential decay of the mode localization for the mistuned system.  

Therefore, the lower Lyapunov exponent can be served as a measure to quantify the level 

of the modal localization.   
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From the above argument, a mode localization index can be defined as the 

average of the lower Lyapunov exponents of the mistuned system within the frequency 

range where the original tuned system exhibits two separate passbands.  The effect of 

negative capacitance on mode delocalization performance of the piezoelectric network 
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Figure 2-6:  Correlation of modal amplitudes exponential decay rates to the lower 

Lyapunov exponents.  Solid line: modal amplitude of the 93rd mode (Ω=1.0006); Dashed 
line: straight line with slope (-0.7202) corresponding to the lower Lyapunov exponent at 
Ω=1.0006. Dotted line: modal amplitude of the 70th mode (Ω=0.9832); Dash-dotted line: 

straight line with slope (-0.2720) corresponding to the lower Lyapunov exponent at 
Ω=0.9832. 
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can now be evaluated using the defined index.  In the following parametric study, the 

average of the lower Lyapunov exponents is taken over fifty frequency points in each 

passband.  As discussed earlier, the introduction of negative capacitance into the 

piezoelectric network can increase the generalized electro-mechanical coupling 

coefficient ξ.   To examine the consequence of this coupling enhancement, a single case 

is first illustrated.  In this case study, the system parameters are set to be Ra=0.5, δ=0.5, 

Rc=0.005, σ =0.01.  It is shown in Figure 2-7 that the localization index decreases as the 

electro-mechanical coupling coefficient is increased by adding the negative capacitance.  

Without negative capacitance (ξ = 0.1), the localization index is more than 0.6; with 

negative capacitance, as the electro-mechanical coupling coefficient ξ is increased, the 

localization index can be reduced to as low as below 0.1.  This reduction in localization 

index indicates that the level of localization is further reduced by the addition of the 

negative capacitance.   
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To gain more insight, a more extended parameter study on the effect of negative 

capacitance on the delocalization performance of the system is carried out using the 

localization index.  The system parameters ξ, Ra and δ  are varied within realistic 

application ranges, which cover the operation parameter region of the experimental study 

(see next section).  Figure 2-8 and Figure 2-9 show the contour plots of the localization 

index versus ξ  and Ra (or δ).  In Figure 2-8, δ is fixed at 0.5, ξ and Ra are varied.  In 

Figure 2-9, Ra is fixed at 1.2, ξ and δ are varied.   As shown in both of these two figures, 
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Figure 2-7:  Localization index versus electro-mechanical coupling coefficient ξ for the 
mistuned system (Ra = 0.5, δ =0.5, Rc= 0.005, σ = 0.01). 
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the localization index tends to decrease as ξ increases.  These results indicate that as a 

consequence of increasing the electro-mechanical coupling coefficient by negative 

capacitance, the delocalization performance of the piezoelectric network can be 

improved.  Physically, this is because by increasing the system electro-mechanical 

coupling coefficient one could increase the capability of energy transformation, thereby 

more localized mechanical energy can be transferred into electrical form and propagate 

throughout the network.  
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Figure 2-8:  Contour plot of localization index versus Ra and ξ for the mistuned system 
(Rc=0.005, δ =0.5, σ =0.01). 
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Figure 2-9:  Contour plot of localization index versus δ and ξ  for the mistuned system 
(Rc=0.005, Ra =1.2, σ =0.01). 
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2.6 Summary 

This research presents vibration delocalization study of nearly-periodic structures 

using piezoelectric networks with negative capacitance circuitry for active coupling 

enhancement.   The correlation between the Lyapunov exponents and the spatial 

exponential decay of the modal amplitudes is studied.  A localization index is defined for 

the bi-coupled nearly periodic system and applied to evaluate the effectiveness of the 

proposed scheme.  With this localization index, parametric study is performed where it is 

found that the negative capacitance circuit approach can greatly enhance the system’s 

ability for vibration delocalization.  The negative capacitance can effectively increase the 

electro-mechanical coupling coefficient, such that more localized mechanical energy can 

be transferred into electrical form and eventually distributed through the strongly coupled 

electrical circuits.   



 

 

Chapter 3 
 

 Mode Delocalization Experimental Investigation 

3.1 Objective 

In this investigation, experiments are conducted to validate the concept of mode 

delocalization using piezoelectric network, as studied in Chapter 2.  The effect of 

negative capacitance on the delocalization performance of the network is also examined. 

3.2 Experimental Setup 

The overall experimental setup is shown in Figure 3-1.  The mistuned bladed disk 

is vertically bolted at the hub disk center to a fixture mounted on an isolation table.  A 

shaker is used to provide excitation at the disk hub.  Tip displacements of the blades are 

measured by a laser vibrometer (OFV-303, Polytec Germany), which converts the 

displacement information into a voltage related output (calibrated in μm/Volt or 10-6 

meter/Volt).  This voltage related output is then recorded by an HP35665A analyzer.  The 

resolution of the vibrometer could be as high as 0.5 μm/Volt.  The laser vibrometer is 

mounted on two perpendicular stages (X-Y stages as shown in Figure 3-1), which, 

controlled by LabVIEW programs, can precisely locate the measurement point on each 

blade tip.  The bladed disk specimen with 18 equally spaced blades is fabricated from a 

single piece of aluminum alloy plate (figure and dimension are listed in Table 3-1), which 

is mistuned in nature due to manufacturing tolerances.  Each blade is bonded with an 
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identical piezoelectric patch (type 5A, APCI, Ltd., properties shown in Table 3-2) at its 

root.   

 

Dimensions (10-2m) 

 

Inner (hole) diameter of the hub disk: 3.81 

Outer diameter of the hub disk: 8.89 

Length of blade: 10.80 

Width of blade: 0.77 

Thickness of blade: 0.32 

 

 

Geometry  (10-2m) Material Property 
Length:             2.54 

 
Width:              0.76 

 
Thickness:        0.10 

Piezoelectric material:                              Type 5A 
Relative dielectric constant KT:                1750 
Electro-mechanical coupling factor k31:     0.36 
Piezoelectric charge constant:                  175*10-12 (m/V) 
Young’s modulus:                                    6.3*1010 (N/m2) 
Capacitance (Cp):                                      3.3 nF 

 

Table 3-1:  Figure and Dimensions of the Bladed Disk Model 

 
 

Table 3-2:  Geometric Parameters and Material Properties of Piezoelectric Patches 
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The bonding process of the piezoelectric patches also contributes to the mistuning 

of the bladed disk.  Therefore, the term mistuned bladed disk in the following experiment 

context refers to the bladed disk with piezoelectric patches attached to it.  Each 

piezoelectric patch has a negative electrode wrap-up design, which improves the bonding 

effectiveness and provides convenience in wiring.  The patches are electrically insulated 

from the aluminum blades since later on the negative capacitance circuits will be inserted 

between the piezoelectric patches and the ground.  The piezoelectric circuit network is 

synthesized and integrated with the bladed disk as shown in Figure 2-1(b).  Each passive 

 

Figure 3-1:  Overall experimental setup. 

X 

  LASER VIBROMETERR

STAGES

CIRCUIT BOARDS

HP ANALYZER

BLADED DISK

LABVIEW PROGRAM

SHAKER

Y 



40 

 

piezoelectric patch is connected in series with a synthetic inductor to form an LC shunt 

circuit.  Then these 18 shunt circuits are coupled through capacitors (Ca) each with a 

value of 2.2 nF (corresponding to non-dimensional Ra=1.2, as studied in Figure 2-9). 

The circuit diagrams of the synthetic inductor (Chen, 1986) and negative 

capacitor are shown in Figure 3-2 and Figure 3-3.  From Figure 3-2, the equivalent 

inductance value can be calculated as L=R1R0 C1 (Henry).  In principle, any desired 

inductance value can be achieved by adjusting one component in the circuit, i.e., the 

potentiometer (R0), with the other eight components  fixed at appropriate values (R1 and 

C1).  The negative capacitance circuit is essentially a Negative-Impedance Converter 

(NIC) (Horowitz and Hill, 1989).  From Figure 3-3, the equivalent negative capacitance 

value can be expressed as Cn = - R2 C2 / R2 = - C2.   In order to increase the electro-

mechanical coupling coefficient, each negative capacitance circuit will be connected in 

series with each piezoelectric patch.  Since the negative capacitance circuit needs to be 

grounded, it is inserted between the negative electrode of each piezoelectric patch and the 

ground. 
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Figure 3-2:  Circuit diagram of the synthetic inductor. 
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3.3 Experimental Results 

A sample frequency response function (FRF) of the mistuned bladed disk is 

shown in Figure 3-4.  The figure shows high modal density within the frequency range 

from 190 Hz to 250 Hz, which is a characteristic feature of mistuned periodic structures.  

Due to this feature, it is very difficult to obtain mode shapes using common modal 

analysis methods.  Therefore, alternatively, the amplitudes of blade tips when the bladed 

disk is under harmonic excitation at resonant frequencies are chosen as comparison 

objectives in evaluating the delocalization effect of the piezoelectric circuit network.  To 

excite the bladed disk at resonance, a series of frequencies within the range of 190 Hz to 

 

 
Figure 3-3:  Circuit diagram of the negative capacitor. 
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250 Hz, most of which are where FRF exhibits a resonant peak, are used for sine wave 

excitations.   

In the preliminary test, it is found that under excitation frequency of 193.5 Hz and 

202.3 Hz, the amplitude distribution shows obvious localization phenomena, illustrated 

by the dotted lines in Figure 3-5 and Figure 3-7.  In this investigation, we will thus focus 

our attention around these two resonant frequencies, and compare the amplitude 

distribution of the mistuned bladed disk with and without piezoelectric circuit network.  
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Figure 3-4:  Sample frequency response of the mistuned bladed disk without circuit 

network. 
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3.3.1 Results of network without negative capacitance 

First, the mistuned bladed disk without circuit network is excited at 193.5 Hz.  

The tip displacements of all the 18 blades are measured with the laser vibrometer.  Then 

the circuit network is connected to the piezoelectric patches on the bladed disk.  The 

network has 18 synthetic inductors tuned to the same value.  The circuit frequency, 

defined as 1/ / 2e pf LC π=  (Hz), where Cp is the piezoelectric capacitance, can be tuned 

to different values by adjusting the synthetic inductance (L).  Six different circuit 

frequency tunings are investigated, ranging from 193.5 Hz to 234 Hz (corresponding to 

the non-dimensional parameter δ of range 0.88 ~ 1.06, which is covered in Figure 2-9), as 

shown in Figure 3-5.  At each circuit frequency, the resonant response amplitudes of the 

blade tips are measured.  These amplitudes are plotted in Figure 3-5 for the mistuned 

bladed disk with and without circuit network.  The amplitude data shown in this figure 

reflect the “relative amplitude” (the relative amplitude of each blade is defined to be the 

difference between its absolute amplitude and the lowest amplitude among all the 18 

blades), which also applies to all other figures showing amplitude hereafter.  It should be 

noted that when the piezoelectric circuit network is connected to the mistuned bladed 

disk, the resonant frequencies are slightly changed.  In order to maintain the resonant 

excitation, for each particular circuit frequency tuning (fe), the new resonance of the 

system is identified and the structure is excited at the new resonant frequency.  This also 

applies to the case when negative capacitance circuits are introduced into the network. 
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The dotted data line in Figure 3-5 shows that the relative vibration amplitudes are 

high over a small region (only 4-5 blades) around blade number 10.  Outside this region, 

amplitudes are relatively small.  This indicates that vibration is highly localized in the 

mistuned bladed disk.  With the treatment, the solid lines corresponding to various circuit 

tunings show a more even distribution of the amplitudes over the 18 blades.  This more 

even amplitude distribution indicates a reduction of the level of localization.  
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Figure 3-5:  Relative amplitudes of 18 blades for mistuned bladed disk without network 
and with network at various circuit frequency tunings (fe) from 193.5 Hz to 234 Hz. 

Legends: dotted line: (◊) without network;  solid lines: (□)  fe = 193.5 Hz; (Δ)  fe = 201 
Hz; (×)  fe = 206 Hz; (*)  fe = 212 Hz; (○)  fe = 222 Hz; (+)  fe = 234 Hz. 
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As a tool to quantify how the amplitude data is distributed spatially, standard 

deviations are plotted in Figure 3-6.  However, it should be noted that the standard 

deviation is not used as an exact index for quantifying localization, but only as a 

measurement of the scatterness of the amplitude data distribution.  As Figure 3-6 shows, 

the standard deviations for the mistuned bladed disk with treatment are much smaller 

than that without treatment.  

Moreover, delocalization effect of the piezoelectric circuit network is also 

demonstrated when the mistuned bladed disk is excited under the resonant frequency of 

(and around) 202.3 Hz.  Resonant response amplitudes for the mistuned bladed disk with 

and without piezoelectric network are plotted in Figure 3-7.  Without network, blade 
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Figure 3-6:  Standard deviations of blade relative amplitudes for the system without 

network (1st column) and with network at various circuit frequency tunings (fe) (all other 
columns). 
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amplitudes are confined only in small regions around blade number 2, 3 and 7.  With the 

piezoelectric circuit network (at three circuit frequency tunings: fe= 201 Hz, 206 Hz, and 

222 Hz), the blade amplitudes again become more evenly distributed over the 18 blades, 

which means the level of localization is reduced. 
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Figure 3-7:  Blade relative amplitudes distribution for the system without network (dotted 
line) and with network (solid lines) at resonances around 202.3 Hz.  Legends: (◊) without 

network; (□)  fe = 201 Hz; (Δ)  fe = 206 Hz; (×)  fe = 222 Hz . 
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3.3.2 Results with negative capacitance 

Next, negative capacitance circuits are incorporated into the piezoelectric 

network, and their effects on the delocalization performance are examined.  The 

analytical results suggest that the electro-mechanical coupling coefficient (ξ) of the 

piezoelectric patch can be increased by the negative capacitance.  As a result of this 

coupling enhancement, the overall delocalization effect of the piezoelectric circuit 

network can be further improved.  To validate this prediction, negative capacitance 

circuits are built and connected in series with piezoelectric patches to the negative 

electrodes.  The same experimental approach used in (Tang and Wang, 2001) is adopted 

here to measure the electro-mechanical coupling coefficient.  The value of ξ is calculated 

according to 2 2 2(( ) ( ) ) /( )D E Dξ ω ω ω= − , which is based on the resonant frequencies of 

the substructure under open circuit condition (ωD) and short circuit condition (ωE) 

(Lesieutre and Davis, 1997) Note that this formula is exactly the definition of the electro-

mechanical coupling coefficient at the structural level.  The original electro-mechanical 

coupling coefficient of the piezoelectric patch is measured to be ξ = 0.1224.  With a 

negative capacitance of Cn = -4.7 nF, the coupling coefficient is measured to be ξ = 

0.1930, which is a 57.7% increase. This range of ξ is covered in the analytical study 

shown in Figure 2-9. 

Eighteen negative capacitance circuits with the same value (Cn = -4.7 nF) are then 

built and integrated into the piezoelectric network.  The network with negative 

capacitance is also referred to as the augmented network.  Tip displacements of the 18 

blades are re-measured for bladed disk with this augmented network.  Resonant response 
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amplitudes are compared to previous results shown in Figure 3-5 and Figure 3-7 in order 

to evaluate the delocalization performance improvement.  First, the responses at the 

resonance around 193.5 Hz are examined and amplitudes are plotted in Figure 3-8 (a)-(f), 

with each corresponding to a circuit frequency tuning (fe).  It can be seen that for all of 

these six circuit frequency tunings, the vibration amplitude distributions with the 

augmented piezoelectric network become more uniform.  This is predicted because with 

negative capacitance, the network has a larger electro-mechanical coupling (ξ).  

Therefore, the network is capable of transforming more mechanical energy into electrical 

form, which is then propagated throughout the network by the coupling capacitors.   
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Figure 3-8:  Blade relative amplitudes of system without network (◊ in dotted line); with 
network (□ in solid line);  and with network augmented by negative capacitance (∆ in 

solid line);  (a) fe = 193.5 Hz; (b) fe = 201 Hz; (c) fe = 206 Hz; (d) fe = 212 Hz; (e) fe = 222 
Hz; (f) fe = 234 Hz; Horizontal axis: blade number; Vertical axis: relative amplitude (unit: 

μm). 
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Again, the standard deviations of the amplitudes are calculated and shown in 

Figure 3-9 for the mistuned bladed disk without any treatment, with network but no 

negative capacitance, and with the augmented network, marked as Case 1, Case 2 and 

Case 3, respectively.  The decreasing trend of the standard deviations from Case 1 to 

Case 3 indicates that vibration amplitudes become more and more evenly distributed.  

These results show that the delocalization ability of the piezoelectric network is improved 

by the integrated negative capacitance circuits.  Amplitudes of the mistuned bladed disk 

under resonant excitation frequencies of (and around) 202.3 Hz are also compared for 

Cases 1, 2 and 3, as shown in Figure 3-10 and Figure 3-11, with fe = 201 Hz and 206 Hz, 

respectively.  Both figures show that amplitude localization is further reduced and the 

distribution is more even for Case 3, as compared to that of Case 2.  The results again 

illustrate improvements in the delocalization performance when negative capacitance 

circuits are added. 
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Figure 3-9:  Standard deviations of blade relative amplitudes for Case 1 (mistuned bladed 

disk without network), Case 2 (with network) and Case 3 (with network augmented by 
negative capacitance). Vertical axis: standard deviation (unit: μm). 
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Figure 3-10:  Relative amplitudes distribution for the system without network (◊ in dotted 
line), with network (□ in solid line) and with network augmented by negative capacitance 

(∆ in solid line) at frequency fe = 201 Hz; 
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3.4 Summary 

Experiments are carried out to validate the vibration delocalization concept using 

piezoelectric network.  A network is implemented and integrated with a mistuned bladed 

disk.  The experimental results showed that the level of localization can be reduced by 

using the piezoelectric network over a range of circuit frequency tunings and that the 

electro-mechanical coupling coefficient of the system can be increased by the negative 

capacitance, thereby the delocalization effect can be further enhanced.   
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Figure 3-11:  Relative amplitudes distribution for the system without network (◊ in dotted 
line), with network (□ in solid line) and with network augmented by negative capacitance 

(∆ in solid line) at frequency fe = 206 Hz; 
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Chapter 4 
 

Vibration Suppression Analysis: Simple Bladed Disk Model and Network 

4.1 Background 

As studied in Chapters 2 and 3, mode localization can occur to a periodic 

structure when mistuning is present in the substructures with weak mechanical coupling.  

Modern bladed disk systems in turbo-machinery are especially sensitive to mistuning, 

and thus are very susceptible to localization.  The effect of mode localization can result in 

large forced vibration amplitude when the rotating bladed disks are under harmonic 

aerodynamic loading (known as engine order excitation). The large forced response 

caused by mistuning can lead to accelerated fatigue and failure of engine components.   

Vibration localization study in mistuned bladed disk systems has attracted a lot of 

attention in recent decades.   Mistuning has been known as the primary factor that causes 

excessively large forced response compared to the ideally tuned system.  Many of the 

researches have focused on the analysis and experimental investigation of this 

phenomenon and on developing tools for predicting the maximum forced response 

(Whitehead, 1966; Griffin and Hoosac, 1984; Afolabi, 1985; Sinha and Chen, 1989; Cha 

and Pierre, 1997; Kruse and Pierre, 1997; Castanier et al., 1997; Slater et al., 1999; 

Keynon et al., 2003).  Only a few of them have focused on exploring means of 

eliminating the effect of localization.  One school of thought is to develop methods via 

mechanical tailoring, where intentional mistuning (Catanier and Pierre, 2002; Choi et al., 
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2003; Kenyon and Griffin, 2003; Hou and Cross, 2005) was introduced to reduce the 

sensitivity of the structural response to mistuning.   

4.2 Problem Statement and Research Objective 

In previous studies (Zhang and Wang, 2002; Tang and Wang, 2003; Yu et al., 

2006), the piezoelectric networking concept has been realized and shown to be effective 

for vibration mode delocalization.  However, in bladed disks with mistuning, the more 

pressing issue is on vibration suppression under forcing inputs (e.g., engine order 

excitations).  A variety of piezoelectric material based circuits have been studied for 

suppressing mechanical vibration in the past (Hollkamp, 1994; Wu, 1999; Behrens et al., 

2003).  Hagood and von Flotow (1991) first systematically studied piezoelectric passive 

shunt circuits for vibration suppression.  They derived the analytical solution to the 

optimal resistance-inductance tuning of a piezoelectric damped absorber for single degree 

of freedom mechanical systems.  A significant amount of studies in this field have been 

carried out since then.  Comprehensive reviews of this subject can be found in (Lesieutre, 

1998; Tang et al., 2000).  Recently, Tang and Wang (1999) have explored the feasibility 

of utilizing piezoelectric absorber circuits for vibration control of periodic structures, 

where they derived an active compensation law to achieve multi-harmonic excitation 

suppression.  While the results are interesting, their investigations did not address the 

mistuning or uncertainty issues. 
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Building upon the findings in (Tang and Wang, 1999), the objective of this 

research is to advance the state of the art of vibration suppression of the mistuned bladed 

disks with piezoelectric damper-absorber circuitry.  It is aimed to provide an effective 

means to reduce the forced response in bladed disks, addressing the mistuning and 

uncertainty issues.  The new advancements are summarized as follows: 

(a) Unlike the treatment in (Tang and Wang, 1999), where active 

compensation is required to obtain optimal absorber tuning, this system utilizes simple 

passive coupling capacitors to create a networked architecture and achieve the optimal 

design goal.  

(b) In this investigation, a coupling enhancement concept via negative 

capacitance is explored for performance improvement.  

(c) In this study, the network’s vibration suppression ability for the mistuned 

bladed disk system is systematically investigated through Monte Carlo simulation.  Both 

the effectiveness and the robustness issues of this approach are discussed.   

4.3 Modeling and Network Design 

To analyze the proposed piezoelectric network for vibration suppression, we 

begin with the model derivation of the bladed disk with an integrated piezoelectric 

network, followed by the optimal network design. 
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4.3.1 Modeling 

As a typical example of periodic structures, a bladed disk is considered as the 

baseline system in this study.  For simplicity, the model of the bladed disk is assumed to 

be composed of N blades evenly spaced along the circumference of a center disk, as 

shown in Figure 4-1.  Each blade is modeled as a cantilever beam.  Coupling through the 

disk is modeled by the spring connecting adjacent blades.   Mistuning is assumed to be 

present only in blade stiffness.  Identical piezoelectric patches are attached to each blade.  

The piezoelectric network is constructed as follows: first an inductor (L) and a resistor 

(R) are connected to each piezoelectric patch (with electric capacitance C) in order to 

form a resonant LRC circuit.  For reasons to be clear later, these shunts are then 

networked through passive capacitors (Ca). 

 

(a) 

Piezoelectric Patch 
L

Piezoelectric Patch 
L

Piezoelectric Patch 
L

C a

C a

C a

Piezoelectric Patch 
L

Piezoelectric Patch 
L

Piezoelectric Patch 
L

C a

C a

C a
R 

R 

R 

(b) 
 

Figure 4-1:  System schematics of (a) bladed disk; and (b) bladed disk integrated with 
piezoelectric network. 
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Detailed derivation of the model can be found in (Tang and Wang, 2003).  Here 

we will give a brief description.  For each cantilever beam, we only consider the 

transverse motion ( , )w x t .  We expand the transverse motion of the beam using only its 

first beam mode, ( )xφ .  Then ( , ) ( ) ( )w x t x q tφ≈ .  After formulating the energy 

expressions and using Hamilton’s principle, the equations of motion for the mechanical 

periodic system with and without piezoelectric circuits can be derived.  The equation of 

motion for the jth blade without the piezoelectric circuits is shown in Equation (4.1).  

 1 1( ) (2 )j j j j c j j j jmq cq k k q k q q q f− ++ + + Δ + − − =                          (4.1) 

And the equations of motion for the jth blade integrated with the jth circuit branch are 

shown in Equation (4.2), 

1 1 1( ) (2 )j j j j c j j j j jmq cq k k q k q q q k Q f− ++ + + Δ + − − + =                   (4.2a) 

2 1 1 1(2 ) 0j j j a j j j jLQ RQ k Q k Q Q Q k q− ++ + + − − + =                        (4.2b) 

where m, c, k, kc, are respectively, mass, damping, stiffness of substructure (blade), and 

substructure coupling stiffness.  L, R, k2 are circuitry elements: inductance, resistance, 

inverse of piezoelectric capacitance Cpzt (k2=1/Cpzt) respectively.  jkΔ is the assumed 

mistuning in blade stiffness.  k1 is the piezoelectric coupling coefficient.  ka is related to 

the coupling capacitance (Ca) of the network (ka=1/ Ca).  qj and Qj are the generalized 

mechanical displacement and electrical charge in the circuit respectively.  

 fj is the external force applied to the jth blade.  In this case, we assume engine 

order excitation force.  As the engine rotates through the air flow field, bladed disk 

assemblies experience periodic disturbances such as wakes caused by the fixed upstream 

stator vanes.  The frequencies of the periodic disturbances are integer multiples (i.e., 



60 

 

engine order) of the engine rotating frequency. Resonant forced vibration condition can 

be established when the engine order frequency coincides with the natural frequency of 

the bladed disk system, and will cause large vibration amplitude (Duffield and Agnes, 

2001).  The engine order excitation can be expressed as ( )
0

ji t
jf F e ω φ+= .  Here F0 is the 

magnitude of the force.  1i = − .  ω  is the frequency of the excitation force.  jφ  is the 

phase of the force at the jth blade, and 2 ( 1)( 1)
j

E j
N

πφ − −
= , where E is the engine order 

number.  As it shows in these expressions, on each blade, the force has same magnitude 

with different phases.  The phase difference between adjacent blades is determined by 

engine order E, which is ( 1)E θ− , where θ  is determined by the total number of blades, 

2 / Nθ π= . 

One can also perform the analysis from a non-dimensional perspective.  Starting 

from Equations (4.1) and (4.2), by assuming harmonic motion, one can derive the non-

dimensional equation of motion for the original bladed disk system as follows, 

2 2
1 1(1 ) 2 (2 )j j j c j c j j j jq s q i q R q q q fζ − +−Ω + + Δ + Ω + − − =                          (4.3) 

And for the bladed disk system integrated with piezoelectric network, 

2 2
1 1(1 ) 2 (2 )j j j c j c j j j j jq s q i q R q q q Q fζ δξ− +−Ω + + Δ + Ω + − − + =                       (4.4a) 

2 2 2 2
1 12 (2 ) 0j j r j a j j j jQ Q i Q R Q Q Q qδ δζ δ δξ− +−Ω + + Ω + − − + =                         (4.4b) 
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The parameters for non-dimensionalization are defined as: 

2 /e k Lω = , /m k mω = , / mω ωΩ = , /c cR k k= , 

/e mδ ω ω= , 2/a aR k k= , 1 2/k kkξ = , / 2r eR mζ ω=                    (4.5)  

/ 2c mc mζ ω= ,  j jq mq= , j jQ LQ= , /j js k kΔ = Δ , /j jf f m k=  

where eω  and mω  are the natural frequencies of the local electrical circuit and local 

blade.  Ω  is the non-dimensional frequency.  δ  is the circuit frequency tuning ratio, 

which is related to the inductance.  aR  is related to the coupling capacitance.  ξ  is the 

generalized electro-mechanical coupling coefficient of piezoelectric patch.  rζ  is the 

modal damping ratio in the electrical circuit, related to resistance.  cR  is the non-

dimensional coupling between blade.  cζ  is the modal damping of the substructure 

(blade).  jq  and jQ  are the non-dimensional generalized mechanical and electrical 

displacement.  jsΔ  is the non-dimensional mistuning. jf  is the non-dimensional force. 

4.3.2 Optimal absorber design through networking 

To design the absorber circuitry, first consider the tuned mechanical systems in 

Equations (4.1) and (4.2), i.e., jkΔ =0.  Equations (4.1) and (4.2) can be written into 

matrix forms by grouping equations from j = 1 to N for a system with N subsystems (with 

or without circuits),  

[ ] [ ] [ ]M q C q K q f+ + =                                                       (4.6)  

where [ ]M , [ ]C , [ ]K  are all circulant matrices (Davis, 1979).  
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[ ] ( , 0,..., 0)
m

m

m

a
M circ a

a

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

                                            (4.7) 

[ ] ( , 0,..., 0)
c

c

c

a
C circ a

a

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

                                               (4.8) 

0 ... 0
0 ... 0

[ ] ( , , 0,..., 0, )

0 0
0 ... 0

k k k

k k k

k k k

k k k

k k k

a b b
b a b

K circ a b b

b a b
b b a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

                            (4.9) 

 

For the original mechanical system without piezoelectric networks, i.e., for 

Equation (4.1), the displacement vector is of size 1×N, 1 2[ , ,..., ]T
Nq q q q= .  The elements 

in those circulant matrices [ ]M , [ ]C , [ ]K   are scalars listed below:  

ma m= , ca c= , 2k ca k k= + , k cb k= − .                                    (4.10) 

For the mechanical system integrated with piezoelectric networks, i.e., for 

Equation (4.2), the displacement vector is of size 1×2N, 1 1 2 2[ , , , ,..., , ]T
N Nq q Q q Q q Q= .  

Parameters in these circulant matrices are 2×2 matrices in Equation (4.11), thus [ ]M , 

[ ]C , [ ]K   are also called block-circulant matrices. 

m

m
a

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, c

c
a

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

1

1 2

2
2

c
k

a

k k k
a

k k k
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
, 

0
0

c
k

a

k
b

k
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
.                                   (4.11) 
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The forcing vector for mechanical system is: 

20
0 [ , ,..., ,..., ]j Ni iii t Tf F e e e e eφ φφω=                                                 (4.12) 

For the mechanical system with integrated piezoelectric networks, since we 

assume no external voltage source is applied, the forcing vector is: 

20
0 [ ,0, ,0,..., ,0,..., ,0]j Ni iii t Tf F e e e e eφ φφω=                                    (4.13) 

U-transformation (Tang and Wang, 1999) can be applied to diagonalize (or block-

diagonalize) the circulant matrices (or block-circulant matrices) in Equation (4.6).  For 

mechanical system alone, the U-transformation matrix is an N×N matrix, denoted as 

[ ]mU , whose (p,q)th element is defined as: 

( 1)( 1)1[ ] i p q
m pqU e

N
θ − −=                                              (4.14) 

For mechanical system with network, the U-transformation matrix is a 2N×2N 

matrix, denoted as [ ]meU , which is an expansion of [ ]mU , i.e., 2[ ] [ ]me mU U I= ⊗ , where 

⊗  is the Kronecker tensor product. 

If we let 

[ ]q U x= ,                                                       (4.15a) 

and substitute (4.15a) into the matrix form of Equation (4.6), and pre-multiply by *[ ]U , 

                    * * * *[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ]U M U x U C U x U K U x U f+ + =                   (4.15b) 

where *[ ]U  is the complex conjugate transpose of [ ]U , the system equations in Equation 

(4.6) are transformed into the spatial harmonic space, where the originally coupled 

stiffness matrix [ ]K  can be decoupled so that the stiffness matrix becomes diagonal (for 
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mechanical system without circuit) or block-diagonal (for mechanical system with 

circuit).  

To design the absorber circuitry, let us take Equation (4.2) with jkΔ =0, and 

neglect structural damping c since bladed disk systems usually have very light damping.  

After U-transformation Equation (4.2) becomes:  

1[ 2 (1 cos(( 1) ))]j c j j jmx k k j x k y hθ+ + − − + =                                   (4.16a) 

2 1[ 2 (1 cos(( 1) ))] 0j j a j jLy Ry k k j y k xθ+ + + − − + =                                (4.16b) 

where 0
i t

jh N F e ω= .  Note that in Equation (4.16), j denotes the jth spatial harmonic.  

The non-zero hj exists only when the spatial harmonic equals to the engine order number, 

i.e., j=E, otherwise, it will be zero.  In this case, the state vectors are 

1 1 2 2[ , , , ,..., , ]T
N Nq q Q q Q q Q=  and 1 1[ , ,..., , ]T

N Nx x y x y= . 

Assuming harmonic motion, the frequency response function between the blade 

motion and the force can be obtained from Equation (4.16): 

2
1

1/j jx h
kα
β

=
−

                                                          (4.17) 

where 

2 2 (1 cos(( 1) ))cm k k jα ω θ= − + + − −                                                (4.18a) 

2
2 2 (1 cos(( 1) ))aL i R k k jβ ω ω θ= − + + + − −                                       (4.18b) 

First let us examine the traditional absorber design without the network 

capacitance, i.e., ka=0.  By following the procedure in (Tang and Wang, 1999) or (Den 

Hartog, 1934) for vibration absorber design, one can find the optimal inductance L to be,  
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  2

2 (1 cos(( 1) ))opt
c

mkL
k k j θ

=
+ − −

                                          (4.19) 

In this case, it is obvious that the optimal tuning is dependent on the spatial 

harmonic number j.  In other words, the non-networked traditional absorber can only be 

optimally designed to suppress a specific spatial harmonic excitation. 

By applying the coupling capacitance and forming the network, one can derive 

the optimal inductance: 

                              2[ 2 (1 cos(( 1) ))]
2 (1 cos(( 1) ))

a
opt

c

m k k jL
k k j

θ
θ

+ − −
=

+ − −
                                       (4.20) 

While the expression in Equation (4.20) is still j-dependent, by properly tuning 

the coupling capacitance ka, one can design an Lopt that is independent of the spatial 

harmonic number j.  This can be accomplished by letting  

   2 c
a

k kk
k

=                                                            (4.21) 

in Equation (4.20).  Then the optimal L will become, 

* 2mkL
k

=                                                            (4.22a) 

It is thus obvious that this expression is no longer j-dependent, meaning that it 

will be effective for all spatial harmonic excitations. 

For resistance tuning, previous study (Zhang and Wang, 2002) has found that the 

system performance is not very sensitive to small perturbation in the resistance, thus a 

single resistance value is used for all spatial harmonics by taking j=1.  Thus, 

                    * 1
22kR mk

k
=                                                       (4.22b) 
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The corresponding non-dimensional optimal parameters to Equations (4.21)-

(4.22) are:  

                   a cR R= , * 1δ = , * / 2rζ ξ=                                        (4.23) 

4.4 Analysis of Network Performance 

It should be noted that the optimal absorber design in Equation (4.22) is derived 

in the context of perfectly tuned periodic structure system (i.e., tuned bladed-disk in this 

case).  However, in reality, periodic structures such as bladed disks in turbo-engines are 

often mistuned due to factors such as manufacturing tolerance and in-service wear.  

Mistuning in bladed disk can drastically change the system dynamic characteristics and 

increase the maximum forced response compared to the ideally tuned case.  Therefore, 

mistuned bladed disk system is considered next to examine the performance of the 

optimal network.   

4.4.1 Comparison with traditional absorber 

First, we examine the above described optimal network using single random 

mistuning.  In Figure 4-2, we compare the multiple-harmonic vibration suppression 

effects of the traditional absorber and the optimal network for bladed disk under 

summation of engine order excitations.  Shown in this figure are the maximum blade 

responses versus frequency.  Here, the mistuned system is realized by generating a 

random mistuning set for the mechanical stiffness matrix.  In this case, the non-
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dimensionalized system equations are used.  The mechanical parameters used in the 

simulation are: Rc=0.5, N=10.  The random mistuning follows normal distribution, with a 

standard deviation of σ = 0.05.   The optimal network is designed according to Equation 

(4.23) with a default electro-mechanical coupling coefficient ξ =0.1.  The non-

dimensional equivalence to the traditional absorber design in Equation (4.19) is 

21 2 (1 cos( 1) )opt cR jδ θ= + − − .  For the traditional absorber, harmonic number j is 

arbitrarily picked to be j=2 in the above equation.  In Figure 4-2, the maximum blade 

response of the baseline system without control is plotted in grey solid line, that with 

traditional absorber in black dotted line, and that with optimal piezoelectric network in 

black solid line.  As one can see that the traditional absorber can only effectively suppress 

a few frequency-response peaks, and loses its effectiveness on others.  Nevertheless, the 

optimal network can effectively suppress the vibration at all peaks.  This is because the 

traditional absorber can only be optimally tuned to a specific harmonic, while the optimal 

network, through networking, can be tuned to suppress all spatial harmonics (i.e., 

harmonic independent).  
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4.4.2 Monte Carlo simulation 

In this section, we examine the optimal network’s vibration suppression 

performance systematically from a statistical point of view, from which we can establish 

a more rigorous conclusion. 

In this study, Monte Carlo simulation is used to analyze the network’s vibration 

suppression performance.  Due to the random nature of mistuning, for a given standard 

deviation σ , there are virtually infinite number of sets of mistuning realizations that 
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Figure 4-2:  Comparison of suppression effectiveness between traditional absorber and 

optimal network.  Gray solid line: without control; Black solid line: with optimal 
network; Black dotted line: with traditional absorber. 
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follow the same random distribution pattern.  Each realization of mistuned system may 

yield different maximum forced response.  Hence, one has to simulate a large number of 

the mistuning realizations in order to draw a solid conclusion.  Monte Carlo simulation is 

thus well-suited for this study. 

For a given standard deviation σ of the random mistuning, a large number (say, 

P=500 sets) of mistuning realizations will be generated according to the distribution 

pattern, in this case, normal distribution.  Correspondingly, there will be P mistuned 

bladed disk assemblies.  For each mistuned assembly, its maximum blade amplitude will 

be calculated using frequency sweep under all possible engine order excitations (E=1~N).  

One engine order is considered for each calculation.  The maximum blade response for 

this specific realization of mistuned system is obtained from all blades, at all frequencies 

and under all engine orders.  The same process is applied to the mistuned bladed disk 

incorporated with the networks and the maximum blade response is obtained in the same 

way.  A ratio r is then defined based on Equation (4.24).  

max( )
max( )

me

m

Ar
A

=                                                             (4.24) 

where, 

max( )meA = maximum forced response of the mistuned system with networks; 

max( )mA = maximum forced response of the mistuned system without networks. 

For all P mistuned bladed disk realizations, one will get P ratios.  Since the ratio r 

is between the maximum forced response of mistuned system with and without network, 

smaller r means better suppression performance.  Then, the vibration suppression 

performance index of the network is defined as the 95th percentile value of the P ratios 
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generated by the Monte Carlo simulation.  The 95th percentile is the statistical value from 

a set of data that only 5 percent of the data lies above.   

4.4.3 Results of systems with random mistuning 

In this section, the effectiveness of the network against mistuning level is studied 

using Monte Carlos simulation and the performance index defined above.  As mentioned 

earlier, the networked absorber design in Equation (4.22) is derived from tuned bladed 

disk system where mistuning is not considered.  In reality, the bladed-disk is often 

mistuned.  Here, we perform the study within a reasonable range of the standard 

deviation σ, 0~0.08, where σ =0 corresponds to the tuned system.  The random mistuning 

is assumed to be normally distributed and only exists in stiffness (mass mistuning can be 

tackled in the same way).  For Monte Carlo simulation, the non-dimensionalized 

equations of motion in Equation (4.4) are used.  The parameters used in Figure 4-3 are: 

Rc=0.05, N=20, P=500, damping in the structure is assumed to be very small, with 

damping ratio 0.001cζ = .  Network is optimally tuned according to Equation (4.23). 

Here for the original piezoelectric patches that are used on the bladed disk, we assume the 

electro-mechanical coupling coefficient to be ξ =0.1, which will be the default value 

without negative capacitance.  As we discussed in section 2.4 of Chapter 2, this 

coefficient is physically determined by the property of the material and the host structure 

and is difficult to alter by passive means.  However, one can use a negative capacitance 

treatment to increase this coefficient, the effect of which will be discussed later.   
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Observing Figure 4-3, when σ =0, i.e., when the bladed disk system is tuned, the 

performance index is r=0.025, which means that with the network, the maximum blade 

response is reduced by 97.5%.  As the mistuning level increases, the performance 

degrades, as seen in the increasing trend of the performance index.  However, even with 

σ =0.08, which is considered as a quite large mistuning level, the performance index is 

still smaller than 0.12.  This means the maximum blade amplitude is still reduced by 

approximately 88%.  Such a result shows that our piezoelectric system, although 

designed based on tuned system, performs very well for mistuned system. 
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Figure 4-3:  Performance index versus standard deviation of mechanical mistuning. 
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The same approach is carried out to analyze the system with random mistuning in 

electrical elements and similar results can be concluded.  That is, the system’s 

performance is quite robust against moderate differences among the electrical circuitry 

parameters as well as that among the mechanical structural parameters. 

4.4.4 Results of systems with circuitry detuning 

In this section, the performance robustness of the network in terms of circuitry 

detuning is investigated.  Detuning means that the nominal values of a circuitry parameter 

in all local circuits are uniformly off-tuned by the same amount.  Such detuning could be 

results of modeling or design errors, where the relative errors could be larger than those 

caused by random mistuning.  In a case study, the detuning effect on δ  is examined and 

the results are shown in Figure 4-4 with parameters Rc=0.05, N=20, cζ =0.001, and 

engine order E=11.  Here, one random set of mistuning is used instead of using the 

Monte Carlo simulation.  The frequency response with maximum blade amplitude is 

illustrated for comparison.   The circuit frequency tuning ratio δ  is detuned from its 

optimal value 1.0 to 0.95 (-5% detuning) and 0.9 (-10% detuning).  Figure 4-4 shows the 

maximum blade response in dB.  With -5% detuning and -10% detuning in the optimal 

circuitry, the circuit becomes non-optimal and the maximum blade response is increased 

by 7dB and 11dB.  However, the overall amplitude reduction is still significant (over 

40dB reduction) compared to the maximum response of the original mechanical system 

without network.  Case studies involving same detuning in other circuitry parameters 

show similar results: the maximum blade response is slightly increased when compared 
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with the perfectly tuned case but is still significantly lower than that of the original 

mechanical system.  In other words, the network is quite robust against small to moderate 

detuning in the circuitry parameters.  However, as can be seen, the vibration suppression 

performance degrades when the detuning increases.  Therefore, if worse detuning 

happens, the performance might no longer satisfy the performance requirement.  In this 

case, the negative capacitance can be included to further improve the robustness of the 

network, as will be discussed later. 
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Figure 4-4:  Maximum blade response versus frequency.  Dotted line: original 
mechanical system without network; solid line: system with optimal tuning (δ  =1.0); 
dashed line: system with -5% detuning (δ =0.95); dash-dotted line: system with -10% 

detuning (δ  =0.9). 
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A more comprehensive study is conducted via Monte Carlo simulation using the 

performance index.  Figure 4-5 shows the effect of detuning in the circuit frequency 

tuning ratio on the performance of the network.  Parameters used in generating Figure 4-5 

are: Rc=0.05, N=20, P=500, with all engine orders (E=1~N) and optimal circuit tuning as 

in Equation (4.23).  The optimal tuning is δ =1.0, corresponding to the lowest point on 

the curve.  Then δ  is detuned from 0.5 (-50% detuning) to 1.5 (+50% detuning).  In 

either direction departing from the optimal tuning, the performance index increases, 

indicating performance degradation.  This range of detuning is quite large, emulating 

possible worst cases.  However, even with this large range, the performance index is still 

less than 0.45, which means that 55% reduction is guaranteed in the maximum blade 

response.  This may or may not meet the suppression requirement in practice, depending 

on how the suppression reduction threshold is set.  With smaller detuning range, say, 

20% detuning, the performance index is smaller than 0.1, indicating that 90% of 

reduction is guaranteed with 20% detuning in δ .  Therefore, it can be concluded that the 

network performs quite robustly with moderate detuning.   
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The effects of detuning of the other two circuit parameters, circuit resistive modal 

damping ratio rζ  and coupling capacitance Ra, are shown in Figure 4-6 and Figure 4-7 

respectively.  Parameters used in Figure 4-6 are the same as those used in Figure 4-5 

except that δ  is kept at optimum and only rζ  is detuned.  It can be seen from Figure 4-6 

that the network performance is not very sensitive to detuning in rζ .  In Figure 4-6, rζ  is 

detuned from the optimal value 0.0707 to 0.02 (-72% detuning) and 0.15 (+112% 

detuning), the maximum performance index is still below 0.06, meaning a 94% reduction 

in maximum blade response is guaranteed.  Secondly, it is seen that detuning toward 
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Figure 4-5:  Effect of detuning in circuit frequency tuning ratio δ on the network 
performance for  ξ  = 0.1. 
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lower damping ratio degrades the performance faster than detuning toward larger 

damping ratio.  In practice, it is more likely to have detuning toward larger damping ratio, 

because there is always unknown resistance in the circuit that is not taken into account.  

In Figure 4-7, to better illustrate the detuning effect, Rc=0.5 is used, other parameters are 

the same as that in Figure 4-5 except Ra (the only detuned parameter).  The optimal 

Ra=0.5 is detuned within a range from 0.3 (-40% detuning) to 0.7 (+40% detuning).  One 

can see that if the detuning is within roughly 20% range, the performance index can be 

kept below 0.1.  As the detuning level becomes larger, the performance index can go up 

to as high as 0.6.   

In summary, the network performance is robust for moderate range of detuning in 

the circuitry parameters.  To compensate for the more serious degradation in performance 

when large detuning occurs, a network enhancement concept is proposed and presented 

in the next section. 
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Figure 4-6:  Effects of detuning in circuit damping ratio on network performance for  
rζ =0.1 (optimal  rζ =0.0707). 
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4.4.5 System enhancement via negative capacitance 

Previous sections show that the system’s performance is quite robust under 

moderate level of random mistuning and electrical element detuning.  In this section, we 

will present an approach, by incorporating negative capacitances into the network, to 

further improve the system’s robustness if needed (i.e., if the mistuning or detuning level 

is higher, or better vibration suppression performance is required). 
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Figure 4-7:  Effect of detuning in aR  on network performance for ξ =0.1 (optimal 

aR =0.5). 
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As discussed in section 2.4 of Chapter 2, negative capacitance can increase the 

generalized electro-mechanical coupling coefficient and greatly improve the 

delocalization effect.  Here, by increasing the electro-mechanical coupling, more 

mechanical vibration energy can be transformed into the electrical form and be dissipated 

by the resistance.  Further reduction in the maximum blade amplitude can be achieved by 

this means with negative capacitance, thus improving the performance of the network.  

More discussions on negative capacitance can be found in Chapter 2 and (Tang and 

Wang, 2001).  Here in our simulation, we consider two cases of increased electro-

mechanical coupling coefficient after negative capacitance is used: ξ =0.2 and ξ =0.3.  

Monte Carlo simulation is performed with these two higher coupling coefficients for the 

cases shown in Figure 4-3 and Figures 4-5 to 4-7.  The results are shown in Figures 4-8 to 

4-11. 

It can be seen from Figure 4-8 (corresponding to Figure 4-3) that with negative 

capacitance (thus higher ξ ), the performance index is lowered throughout the entire 

range of stiffness mistuning level.  For example, with ξ =0.2, for mistuning level as large 

as σ =0.08, the performance index is below 0.02, meaning 98% reduction in the 

maximum forced response.  Higher ξ  (ξ = 0.3) yields even better vibration suppression 

results.  

When circuitry parameter detuning is considered, results with negative 

capacitance are shown in Figures 4-9 to 4-11.  In these figures, with negative capacitance 

(thus higher electro-mechanical coupling ξ ), the performance index can be further 

reduced, not only making the network more robust against detuning around optimal 
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tuning, but also making the network capable of tolerating a wider range of detuning.  For 

example, if the performance satisfaction threshold is set at performance index equal to 

0.05 in Figure 4-9 with detuning in δ , then without negative capacitance the detuning 

tolerance range in δ  is roughly [0.8, 1.3].  On the other hand, with negative capacitance, 

for ξ =0.2, δ  can be detuned within the range of [0.6, 1.5], and for ξ =0.3, the entire 

range [0.5, 1.5] can be used.  Similar results can be seen in Figures 4-10 to 4-11.  
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Figure 4-8:  Performance index versus standard deviation comparison between without 
negative capacitance case (solid line for ξ =0.1) and with negative capacitance case 

(dashed line forξ =0.2 and dotted line forξ =0.3). 
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Figure 4-9:  Detuning effect of circuit frequency tuning ratio δ  on the performance, 
without negative capacitance (solid line for ξ = 0.1) and with negative capacitance 

(dashed line for ξ = 0.2 and dotted line for ξ = 0.3). 

Pe
rf

or
m

an
ce

 in
de

x 
 

Circuit frequency tuning ratio



82 

 

 

 

0.02 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 
 

Figure 4-10:  Detuning effect of circuit damping ratio rζ  on the performance, without 
negative capacitance (solid line for ξ = 0.1, optimal rζ = 0.0707) and with negative 

capacitance (dashed line forξ = 0.2, optimal rζ = 0.1414, and dotted line forξ = 0.3, 
optimal rζ = 0.2121). 
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4.5 Summary 

Piezoelectric networking for vibration suppression of mistuned bladed disk is 

investigated in this research.  An optimal network design that is independent of spatial 

harmonics is derived using proper design of coupling capacitance.  The optimal 

network’s performance is examined through Monte Carlo simulation.  Simulation results 

show that the optimal network, although designed based on the perfectly tuned periodic 
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Figure 4-11:  Detuning effect of coupling capacitance Ra on performance, without 
negative capacitance (solid line for ξ=0.1) and with negative capacitance (dashed line for 

ξ=0.2 and dotted line for ξ=0.3). 
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structure assumption, is very effective on reducing the maximum forced response of 

mistuned bladed disk with a range of mistuning level.  The network performance is also 

shown to be robust against small to moderate detuning in the circuitry parameters.  

Negative capacitance is introduced to further improve the performance and robustness of 

the network. 



 

 

Chapter 5 
 

Vibration Suppression Analysis: Coupled Blade-Disk Model and Network 

5.1 Problem Statement and Research Objective 

In Chapter 4, networked piezoelectric circuits have been investigated for vibration 

suppression in mistuned bladed disks.  A simple model for bladed disk was used in that 

study, where disk dynamics were neglected for simplicity.  Blades were modeled as 

cantilever beams, and the coupling between blades were modeled by springs that directly 

connect adjacent two springs.  Though simple, this model and its lumped mass-spring 

equivalent model have been extensively used in studying the basic mode localization 

phenomenon and the mistuning effects on the forced response in bladed disks in literature 

(e.g., Castanier and Pierre, 2002; Cha and Sinha, 2002; Tang and Wang, 2003).  It has 

been shown that this model can describe the basic dynamics of bladed disk systems 

qualitatively and is a good candidate for the analysis of mode localization and forced 

vibration of such systems.  However, it is also recognized that this simple model can not 

capture some very important features of the bladed disk systems, such as frequency 

veering, due to the lack of disk dynamics consideration.   Frequency veering (or more 

generally known as curve veering) refers to a phenomenon where two curves coming 

together and then veer apart at some point without crossing each other (Leissa, 1974; 

Balmes, 1993).  Studies in the forced vibration of bladed disks have shown that frequency 

veering can increase the sensitivity of the tuned system to mistuning (Bladh et al., 2002; 
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Kenyon et al., 2004; Kenyon et al., 2005).  Consequently, frequency veering can lead to a 

much higher amplitude magnification factor compared to the situations where frequency 

veering does not occur (e.g., in the case where only blade degrees-of-freedom are 

considered).  

With the above argument, to better represent the bladed disk system, we propose a 

more complex model with disk dynamics considered, as shown in Figure 5-1.  The 

objective of this research is to analyze the bladed disk system with coupled blade and 

disk degrees-of-freedom, and explore a new piezoelectric network scheme such that 

effective vibration suppression can be achieved.  The effectiveness of the network for 

vibration suppression of mistuned bladed disk systems is investigated.  Variations in 

circuit parameters are also taken into account, and their effects on the network 

performance are evaluated.  Finally, a method to further enhance network performance 

and robustness is discussed.  

5.2 System Modeling, Analysis and Network Design 

5.2.1 Bladed disk system modeling and analysis 

As discussed in the previous section, to better represent the dynamic 

characteristics of bladed disk systems, it is necessary to include the disk degrees-of-

freedom in the model.   In literature, lumped mass-spring models that include disk 

degrees-of-freedom have been used in forced vibration studies (Kenyon et al., 2004; Baik 

et al., 2004).  With the disk degrees-of-freedom, these models can capture the frequency 
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veering characteristic that relates to blade-disk interaction, and have been shown to 

provide more insight to the bladed disk dynamics such as mistuning effects on forced 

vibration of bladed disks.  Here, a similar model is proposed in Figure 5-1.   

 

In this new bladed disk model, assuming that the system has N blades, the system 

is first virtually partitioned into N repetitive identical bays, with each bay consisting of a 

sector of the disk (therefore, the whole disk is partitioned into N identical disk sectors), 

and a blade (as shown in Figure 5-1, the jth bay is enclosed in the dotted frame).  At each 

bay, the blade is modeled as a cantilever beam (marked with ‘b’, and referred to as the 

‘blade-model beam’ hereafter), and for simplicity, the disk sector is also modeled as a 

cantilever beam (marked with ‘d’, and referred to as the ‘disk-model beam’ hereafter).  

The coupling mechanism of the system is modeled by two parts: spring ks  that emulates 

the coupling between the blade and disk (blade-disk coupling), and spring kc that 

emulates the coupling between adjacent disk sectors (disk-disk coupling).  Therefore, the 

inter-blade coupling is now implicitly modeled through the combination of the blade-disk 
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Figure 5-1:  Complex bladed disk model with consideration of disk dynamics. 
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coupling and disk-disk coupling.  The model is cyclically symmetric with a ring type 

rigid base to provide clamping condition for those cantilever beams.  It should be noted 

that Figure 5-1 only shows a portion of the system for illustration purpose.  Assuming 

there are N bays, the 1st bay is connected with the last bay (the Nth) to form a closed loop. 

Following the same principle and procedure as used in (Tang and Wang, 1999) 

and Chapter 4, one can derive the system equations.  Here we only briefly describe the 

procedure.  For each cantilever beam, only the transverse motion, ( , )w x t , is considered.  

( , )w x t  is expanded using only the first mode of the cantilever beams, ( )xφ , i.e., 

( , ) ( ) ( )w x t q t xφ= .  Then using Hamilton’s principle, equations of motion for the tuned 

system can be derived as shown in Equations (5.1a,b), 

1 ( )b bj b bj bj s bj dj bjm x k x c x k x x f+ + + − =                                       (5.1a) 

2 1 1( ) (2 )d dj d dj dj s dj bj c dj dj dj djm x k x c x k x x k x x x f+ −+ + + − + − − =                     (5.1b) 

Here, mb, kb, c1 (or md, kd, c2) are the mass, stiffness, and damping of the blade-

model beams (or disk-model beams); ks (or kc) is the ‘blade-disk’ (or ‘disk-disk’) 

coupling spring stiffness; bjx  (or djx ) is the generalized displacement of the jth blade-

model beam (or disk-model beam); fbj (or fdj) is the force on the jth blade-model beam (or 

disk-model beam).  The force used in the study is the engine order excitation.  Engine 

order excitation applies the same forcing magnitude to each bay with a fixed phase 

difference between adjacent bays.  For example, the force on the jth blade-model beam 

can be expressed in the form of: ( 1)( 1)
0

i j E
bj bf f e θ − −= , where 0bf  is the forcing amplitude, 

1i = − , 2 / Nθ π= , N is the total blade number, E is the engine order number. The 
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phase difference between adjacent bays is ( 1)Eθ − , which is determined by the engine 

order number E.  In this study, the same engine order excitation formula is applied to the 

disk-model beams. 

To design the network, first the dynamics of the system is studied.  The non-

dimensional version is used (see Equations (5.2a,b)).  Detailed non-dimensional 

parameters are shown in Equation (11).   

2
12 s

bj c bj bj s bj dj bj
kx i x x k x x f
m

ζ−Ω + Ω + + − =                               (5.2a) 

2 2
2

2
1 1

2 ( / )

(2 ) ( / )
dj c d dj d dj s dj

d c dj dj dj s bj dj

x i x x k m x

k x x x k m x f

ζ δ δ

δ − +

−Ω + Ω + +

+ − − − =
                         (5.2b) 

The parameters used for generating Figures 5-2 and 5-3 are: N=20, dδ =0.5, 

m =10, sk  = 0.1364,  ck  = 2.1172.  Figure 5-2 depicts an example frequency veering plot 

based on the new bladed disk model (tuned system).  Frequency veering (more generally 

known as curve veering) refers to a phenomenon where two natural frequency loci 

converge and then veer apart without crossing each other at certain point as some 

parameter varies.  In this example, frequency veering occurs as the natural frequencies 

are plotted versus the nodal diameter number of the tuned modes, and occurs at a region 

around nodal diameter number 4 and 5.  Curve veering has been widely studied in 

physics and engineering, with much attention on localization (Leissa, 1974; Perkins and 

Mote, 1986; Pierre, 1988; Kenyon et al., 2004; Baik et al., 2004).  It has been shown that 

frequency veering is related to the coupling between mode shapes, which could lead to 

localization when the structure is disordered (Pierre, 1988).  In bladed disk systems, 
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frequency veering is associated with the interaction between the blade dominant modes 

and the disk dominant modes.  Studies (Bladh et al., 2002; Kenyon et al., 2004) on the 

forced vibration of bladed disks have shown that frequency veering increases the 

sensitivity of the tuned system to mistuning.  Consequently, frequency veering can lead 

to a much higher amplitude magnification factor compared to the situations where 

frequency veering does not occur (e.g., in the case where only the blade degrees-of-

freedom are considered).  
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Figure 5-2:  Curve veering characteristics of bladed-disk system. 

N
at

ur
al

 fr
eq

ue
nc

y 

Nodal diameter number



91 

 

 

Figure 5-3 depicts the ratio between the modal amplitudes of the blade-model 

beams and the disk-model beams at each mode corresponding to Figure 5-2.  Observing 

Figure 5-3, one can see that before veering, modes in the upper curve (squares) are blade 

dominant, while in the lower curve (diamonds) are disk dominant.  After veering, the 

modes in the upper curve (diamonds) become disk dominant, while in the lower curve 

(squares), modes become blade dominant.  Although for the modes in the veering region 

(with nodal diameter 4 and 5), the modal amplitude difference between the blade and disk 

are not as large as those in the off-veering region, still, one component (either blade or 

disk) is dominant.  From Figures 5-2 and 5-3, it is also observed that the blade dominant 
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Figure 5-3:  Blade and disk modal amplitude ratio (blade/disk). 
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modes are clustered in natural frequencies around frequency 1.1, while disk dominant 

modes have a wider frequency span (from about 0.5 to 1.6).  This characteristic captures 

one of the modal features of the bladed disk systems, where the blade dominant modes 

tend to be less affected by the nodal diameter (thus frequency curve is flatter versus nodal 

diameter), whereas the disk dominant modes tend to be more affected by the nodal 

diameter (thus frequency curve is steeper versus nodal diameter).  

5.2.2 Multi-circuit network design and analysis 

In this research, a new multi-circuit network architecture is proposed to achieve 

effective vibration suppression for this bladed disk model.  The bladed disk model with 

integrated new piezoelectric circuitry configuration is shown in Figure 5-4.  This new 

network is constructed in the following fashion.  First, piezoelectric patches are 

embedded to the root of each cantilever beam, as shown in Figure 5-4.   The 

corresponding treatment on the corresponding actual bladed-disk system would be: on 

each blade, a piezoelectric patch is applied to the position close to the root of the blade 

(note that the blade is fixed to the disk); and on the disk, each piezoelectric patch is 

applied to each disk sector, at the root position of the sector (note that the disk is fixed to 

the rotating shaft, and is first virtually partitioned into N identical sectors as discussed in 

the previous section).  On each blade-model beam, local damped absorber shunt circuit is 

formed by connecting the piezoelectric patch with an inductor (L1) and a resistor (R1).  

On each disk-model beam, a coupled circuit network is configured as shown in Figure 5-

4 using L2, R2, C2, and Ca.  Here L2, R2 and the piezoelectric patch form a local shunt.  
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Capacitor Ca is used to couple these local shunt circuits.  The additional capacitor C2 is 

added to cancel out some effects caused by the mechanical coupling ks between the 

blade-model beam and the disk-model beam.  The importance of these two capacitive 

elements will be clearer in the derivation of the optimal network for suppressing multiple 

harmonics. 

 

 

The equations of motion for the electro-mechanically integrated system in Figure 

5-4 can be derived using Hamilton’s principle and circuit analysis procedure similar to 

that in (Tang and Wang, 2003):  

1 1 1( )b bj b bj bj s bj dj bp j bjm x k x c x k x x k Q f+ + + − + =                              (5.3a) 
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Figure 5-4:  Bladed disk model with piezoelectric network. 
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1 1 1 1 1 1 1 0j pzt j j bp bjL Q k Q R Q k x+ + + =                                     (5.3b) 

2 1 1 2 2(2 ) ( )d dj d dj dj c dj dj dj s dj bj bp j djm x k x c x k x x x k x x k Q f− ++ + + − − + − + =                (5.3c) 

2 2 2 2 2 2 2 2 2 2 1 2 1 2(2 ) 0j pzt j j j a j j j bp djL Q k Q R Q k Q k Q Q Q k x− ++ + + + − − + =                (5.3d) 

 

Here, Equation (5.3b) is derived from the circuit branch on the jth blade-model 

beam, and Equation (5.3d) is derived from the circuit branch on the jth disk-model beam.  

In Equation (5.3), kbp1 (or kbp2) are parameters related to the electro-mechanical coupling 

factors of the piezoelectric patches on the blade-model beams (or disk-model beams); L1, 

R1 (or L2, R2) are inductance and resistance in the circuit connected to piezoelectric patch 

on the blade-model beams (or disk-model beams). kpzt1=1/Cpzt1 (or kpzt2=1/Cpzt2) is the 

inverse of piezoelectric capacitance on the blade-model beams (or disk-model beams).  

k2=1/C2, is the inverse of the additional capacitance C2; and ka=1/Ca, is the inverse of 

coupling capacitance Ca; 1 jQ (or 2 jQ ) is the charge flow across the piezoelectric patch on 

the jth blade-model beam (or disk-model beam). 

Due to the complexity of the system, it is very difficult to analytically derive the 

closed form optimal circuit parameter tuning from the original equations of motion in 

Equations (5.3a,b,c,d).  However, based on the observation from the analyses in Figure 5-

2 and Figure 5-3, it is reasonable to separate the design problem into two parts: (a) the 

blade-dominant case and (b) the disk-dominant case.  In part (a), where the system 

dynamics are blade dominant, Equations (5.3a) and (5.3b) can be approximated by 

neglecting the disk degree of freedom xdj, and simplified as Equations (5.4a,b).  In part 

(b), where the dynamics are disk dominant, Equations (5.3c) and (5.3d) can be 
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approximated by neglecting blade degree of freedom xbj, and simplified as shown in 

Equations (5.4c,d). 

1 1 1b bj b bj bj s bj bp j bjm x k x c x k x k Q f+ + + + =                                        (5.4a) 

1 1 1 1 1 1 1 0j pzt j j bp bjL Q k Q R Q k x+ + + =                                           (5.4b) 

2 1 1 2 2(2 )d dj d dj dj c dj dj dj s dj bp j djm x k x c x k x x x k x k Q f− ++ + + − − + + =                   (5.4c) 

2 2 2 2 2 2 2 2 2 2 1 2 1 2(2 ) 0j pzt j j j a j j j bp djL Q k Q R Q k Q k Q Q Q k x− ++ + + + − − + =               (5.4d) 

Following the same U-transformation technique and design procedures that are 

used in (Tang and Wang, 1999) and Chapter 4, an optimal solution can be derived from 

Equations (5.4a,b) for L1 and R1 tuning, which are given in Equations (5.5a,b).  The 

detailed process is omitted here. 

1 1 /( )opt pzt b b sL k m k k= +                                                 (5.5a) 

1 1 12 /( )opt bp b pzt b sR k m k k k= +                                            (5.5b) 

From Equations (5.4c,d), following the same design procedure, one can derive 

inductance tuning for L2,  

2 2
2

[ 2 (1 cos(( 1) ))]
2 (1 cos(( 1) ))

pzt a d

d s c

k k k j m
L

k k k j
θ
θ

+ + − −
=

+ + − −
                                    (5.6) 

where j now denotes the jth spatial harmonic.  From Equation (5.6), it is clear that this 

inductance tuning is dependent on the spatial harmonic j.  However, if one tune the 

additional capacitor (C2) and coupling capacitor (Ca) such that Equations (5.7a,b) are 

satisfied, one can simplify the expression Equation (5.6) and obtain a solution that is 

independent of spatial harmonic j, as shown in Equation (5.8).  Here, one can see that in 

order to get this solution, ka and k2 play an very important role. 
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2 2/ /pzt s dk k k k=                                                       (5.7a) 

2/ /a pzt c dk k k k=                                                      (5.7b) 

2 2 /opt pzt d dL k m k=                                                         (5.8) 

Following the same procedure as used in Chapter 4 and (Zhang and Wang, 2002), 

circuit resistance tuning can be derived.  Since our previous studies have shown that 

network performance is not sensitive to resistance tuning, which will also be seen in the 

study that follows, the resistance tuning in the circuits on the disk-model beams is tuned 

to spatial harmonic j=1, as shown below: 

 2 2 22 / 1 /opt bp d pzt d s dR k m k k k k= +                                           (5.9) 

The system equations in Equations (5.3a,b,c,d) can also be non-dimensionalized, 

as shown in Equations (5.10a,b,c,d).  Future simulation is conducted using these non-

dimensionalized equations of motion.  These equations are for a tuned system.  For a 

mistuned system, the equations can be modified by adding additional random mistuning 

to the appropriate terms, the details of which are not discussed here. 

2
1 1 1 12 s

bj c bj bj s bj dj e j bj
kx i x x k x x Q f
m

ζ δ ξ−Ω + Ω + + − + =                            (5.10a) 

2 2
1 1 1 1 1 1 1 12 0j e j R e j e bjQ Q i Q xδ ζ δ δ ξ−Ω + + Ω + =                                   (5.10b) 

2 2
2

2
1 1 2 2 2

2 ( / )

(2 ) ( / )
dj c d dj d dj s dj

d c dj dj dj s bj e d j dj

x i x x k m x

k x x x k m x Q f

ζ δ δ

δ δ δ ξ− +

−Ω + Ω + +

+ − − − + =
                    (5.10c) 

 
2 2 2

2 2 2 2 2 2 2 2 2

2
2 2 2 1 2 1 2 2

2

(2 ) 0
j e j R e j e j

e a j j j e d dj

Q Q i Q k Q

k Q Q Q x

δ ζ δ δ

δ δ δ ξ− +

−Ω + + Ω +

+ − − + =
                                         (5.10d) 

Here, the non-dimensionalization parameters are: 
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/ bω ωΩ = , /d d bδ ω ω= , /b b bk mω = , /d d dk mω = , bj bj bx x m= , dj dj dx x m= , 

/s s bk k k= , /c c dk k k= , /d bm m m= , /bj bj b bf f m k= , 2 /dj dj d d df f m kδ= ,  

1 1 /(2 )c b bc mζ ω= , 2 2 /(2 )c d dc mζ ω= , 1 1 /e e bδ ω ω= , 2 2 /e e bδ ω ω= , 1 1 1j jQ Q L= ,      (11)  

2 2 2j jQ Q L= , 2 2 2/ pztk k k= , 2/a a pztk k k= , 1 1 1/bp b pztk k kξ = , 2 2 2/bp b pztk k kξ = , 

1 1 1 1/(2 )R eR Lζ ω= , 2 2 2 2/(2 )R eR Lζ ω=  

 

The key tuning factors in the circuits are: (1) for the non-coupled circuit branch 

on the blade-model beams: the electric circuit frequency tuning ratio 1eδ  (related to 

inductance L1), and circuit damping ratio 1Rζ  (related to resistance R1); (2) for the 

coupled circuit branch on the disk-model beams:  the circuit frequency tuning ratio 2eδ  

(related to inductance L1), the circuit damping ratio 2Rζ  (related to resistance R2), 

capacitance ratio 2k  (related to the additional capacitance C2), and coupling capacitance 

ratio ak  (related to the coupling capacitance Ca). 

The non-dimensionalized counterparts for the circuit tunings in Equations (5.5a,b) 

and Equations (5.7) – (5.9) are shown in Equations (5.12a,b) and Equations (5.13)-(5.16). 

For circuits on the blade-model beams: 

1 1e skδ = +                                                       (5.12a) 

1 1 / 2(1 )R skζ ξ= +                                               (5.12b) 

For circuits on the disk-model beams: 

2
2 / /s dk k m δ=                                                      (5.13) 
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a ck k=                                                            (5.14) 

2e dδ δ=                                                            (5.15) 

2 2 2/ 2(1 )R kζ ξ= +                                                 (5.16) 

5.2.3 Multiple-harmonic vibration suppression 

Next, the effectiveness of this network for multiple harmonic vibration 

suppression of bladed disks is examined by analysis.  In all the simulations thereafter, 

parameters for the baseline bladed disk system are: N=20, 1cζ =0.05%, 2cζ =0.05%, 

dδ =0.5, m =10, sk  = 0.1364, ck  = 2.1172, | |bjf =1, | |djf =5. 

Figures 5-5 shows the comparison of the vibration suppression performances 

between the newly developed network (black solid line) and the ‘traditional’ absorber 

(grey solid line).  The black dotted line is the forced response of the baseline bladed disk 

system without any circuit.  The ‘traditional’ absorber design is referred to as simple 

uncoupled individual LCR circuits applied to each cantilever beam (regardless of 

representing blade or disk sector) in Figure 5-1, without C2 and Ca elements.  More 

specifically, for the blade-model beams, the circuits remain the same; for the disk-model 

beams, circuits with the same architecture as those used on the blade-model beams are 

applied here.  Following the same derivation procedure in Chapter 4, it can be shown that 

the optimal inductance tuning for traditional absorber is dependent on spatial harmonic j, 

the mathematical expression of which is 2
_ 2 (1 cos(( 1) ))

pzt d
opt trad

d s c

k m
L

k k k j θ
=

+ + − −
.  This 
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means traditional absorber can only be tuned to suppress a specific spatial harmonic (j) in 

engine order excitations.  In Figure 5-5, the spatial harmonic j for the traditional absorber 

is arbitrarily chosen to be j=1.  The force is a summation of all engine order excitations, 

thus contains multiple harmonics.   

Figure 5-5 shows the maximum response of the blade-model beams.  It can be 

seen that compared to the traditional absorber, the optimal network is much more 

effective in suppressing multiple harmonics simultaneously, and as a result, the 

maximum responses are much lower. 
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5.3 Analysis of Network Performance 

In this section, the performance of the newly designed network for vibration 

suppression of mistuned bladed disks is systematically analyzed.  The evaluation is 

conducted through Monte Carlo simulation.  The performance is first examined for 

bladed disk with different random mistuning levels, where circuits are assumed to be 

tuned as defined in Equations (5.12) to (5.16).  Then, the performance and robustness of 
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Figure 5-5:  Maximum response of the blade-model beams versus frequency for: without 
circuit case, with traditional absorber case, and with the new optimal network case. 



101 

 

the network are examined by considering mistuning and detuning in the circuit 

parameters.  When considering mistuning in the circuit parameters, the mechanical 

system (bladed disk) is assumed to be tuned.  When considering detuning in circuit 

parameters, the mechanical system is assumed to be mistuned with standard deviation σ 

=0.01. 

5.3.1 Monte Carlo simulation 

Monte Carlo simulation is used in the following analyses.  In our study, random 

mistuning is quantified by its standard deviation σ.  For a given standard deviation, there 

are virtually infinite sets of random realizations; therefore, one has to generate a large 

number of mistuned systems in order to obtain a relatively solid conclusion.  Here, for the 

trade-off of accuracy and computational time, the number of realizations is chosen to be 

100.  That is, for each standard deviation of mistuning, 100 mistuned systems are 

generated.  Then forced response is solved for each mistuned system with frequency 

sweep.  The force is engine order excitation, with all engine orders considered, one at a 

time.  Then the maximum blade responses of ‘with circuit’ case and ‘without circuit’ case 

are extracted and a maximum blade response ratio r is defined:  

max blade response with circuit
max blade response without circuit

r =  

Monte Carlo simulation produces 100 ratios.  A statistical data, the 95th percentile 

value is extracted from the distribution of these results.  The 95th percentile value is the 

one that only five percent of the data exceeds, and is used as the performance index.  
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From the definition of r, it is clear that smaller r indicates better performance, so, smaller 

index means better performance.   

5.3.2 Performance with mechanical mistuning 

First, the network performance for vibration suppression of mistuned bladed disk 

is considered.  The network is tuned according to Equations (5.12) to (5.16).  Random 

mistuning in both blades and disk sectors are taken into account.  For simplicity, in this 

model, we assume the mistuning only exists in the stiffness of the blade-model beams 

and the disk-model beams.  Mistuning patterns follow normal distribution with the same 

standard deviation.  Hereafter, only the blade vibration amplitudes are analyzed.  The 

result from Monte Carlo simulation is shown in Figure 5-6.  Figure 5-6 plots the 

performance index versus mechanical mistuning level (the standard deviation σ), within a 

reasonable range from σ =0 to σ =0.08.  It can be seen from Figure 5-6 that the 

performance of the network degrades as mistuning level increases.  For the tuned case (σ 

=0, no mistuning), the performance index is about 0.06, which means, compared to the 

baseline mechanical system without circuits, the network can reduce the maximum blade 

response by 94%.  At the highest mistuning level considered, σ =0.08, the ratio is below 

0.11, which only increases from the tuned case by 0.05.  The curve shows that an 89% 

reduction in blade vibration can be achieved over the whole mistuning range by using the 

network.  Therefore, from the simulation results, one can conclude that although the 

network is designed based on the tuned system through an approximation approach, it 

performs very well for vibration suppression of mistuned system as well.   
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5.3.3 Performance with circuit parameter variations 

In this complicated circuit network, there are many components.  It is possible 

that variations between the same components in different local branches may exist.  In 

the following study, variations such as mistuning and detuning are taken into account for 

the evaluation of the circuit performance and robustness.  The baseline circuit network is 

the optimal network with parameters tuned according to Equations (5.12)-(5.16).  In this 

study, the variations in the non-dimensionalized circuit tuning parameters listed in the left 

hand side of Equations (5.12)-(5.16) will be examined.  Here, the effects of both 

mistuning and detuning in those key parameters on network performance will be 

evaluated.  Similar to the mistuning consideration of mechanical parameters, mistuning in 

electrical parameters is also assumed to be random numbers quantified by the standard 
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Figure 5-6:  Performance index versus standard deviation of mechanical mistuning. 
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deviation σ.  Mistuning range is also taken to be σ =0 to σ =0.08.  Detuning refers to the 

case where the same parameters in each local branch are uniformly off-tuned by the same 

amount.  Detuning can be caused by errors such as modeling error, and can be larger than 

mistuning, therefore, a range of [-20%, +20%] detuning is considered in our study.   

First, let us discuss the effects of circuit parameter mistuning on the performance 

of the network.  In this case, the bladed disk is assumed to be tuned.  The results are 

shown in Figures 5-7 to 5-10. 

Figure 5-7 and Figure 5-8 show the effect of mistuning in δe1, the frequency 

tuning ratio for the piezoelectric circuits on the blade-model beams, and the effect of 

mistuning in δe2, the frequency tuning ratio for the piezoelectric circuits on the disk-

model beams.  It can be seen from both figures, that increasing mistuning level in these 

two parameters will generally increase the performance index, which means mistuning in 

these two parameters will degrade the network performance.  For both mistuning cases, 

the largest performance index is less than 0.3 at the largest mistuning level (σ =0.08).  

This means more than 70% vibration can be reduced within the whole range of mistuning 

in δe1 or δe2.  For the smaller range of mistuning ( 0.04σ ≤ ), the vibration amplitude 

reduction is more than 90% for the mistuned δe1 case and more than 80% for the 

mistuned δe2 case. Another interesting observation from Figure 5-7 is that, smaller 

mistuning in δe1 ( 0.04σ ≤ ) has little effect on the performance compared to the tuned 

case (σ =0), while with larger mistuning level in δe1 (σ > 0.04), the network performance 

is more sensitive.  
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Figure 5-7:   Performance index versus standard deviation of mistuning in circuit 

frequency tuning ratio δe1. 
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Figure 5-8:  Performance index versus standard deviation of mistuning in circuit 

frequency tuning ratio δe2. 
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Figure 5-9:  Performance index versus standard deviation of mistuning in additional 

capacitance tuning ratio 2k (■) and coupling capacitance tuning ratio ak (●). 
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Figure 5-9 shows the results with mistuning consideration in two parameters 

associated with the circuits on the disk-model beams: ak , which is related to the coupling 

capacitance, and 2k , which is related to the additional capacitance.  As the figure shows, 

the performance index remains almost unchanged when the mistuning level is increased 

from σ =0 to σ =0.08 for 2k .   This means the network is not sensitive to mistuning in the 

additional capacitance.  For ak , the index is slightly increased as mistuning level is 

increased, as shown in Figure 5-9.  With the largest mistuning level in ak (σ =0.08), the 

index is still less than 0.1, indicating over 90% reduction in the maximum blade response.   

Figure 5-10 shows the results with mistuning in electrical damping ratios: 1Rζ , 

which is related to the resistance in the circuits on the blade-model beams, and 2Rζ , 
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Figure 5-10:  Performance index versus standard deviation of mistuning in resistance 

damping ratio 1Rζ (■) and 2Rζ (●). 
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which is related to the resistance in the circuits on the disk-model beams.  As both curves 

show, the mistuning effects in these two parameters on the network performance are 

negligible.  

In summary, from the above analyses, it is clear that among these key parameters, 

the network is relatively more sensitive to the circuit frequency tuning ratios δe1 and δe2 , 

and less sensitive to the coupling capacitance (reflected in ak ), additional capacitance 

(reflected in 2k ), and resistance damping ratio 1Rζ and 2Rζ  for the case studied.  At the 

largest mistuning level in all cases, all the performance indices are less than 0.3, which 

means over 70% reduction in the maximum blade response.  Therefore, the overall 

performance of the network can be regarded as quite robust against the mistuning in 

circuit parameters.  For those parameters with higher sensitivity to mistuning, a method 

with negative capacitance can be used to improve the performance and robustness, which 

will be discussed later. 

Next, the circuit network performance is studied by considering detuning in the 

circuit parameters.  As mentioned earlier, detuning is different from mistuning.  Detuning 

is a uniform off-tune for the same parameters in all circuit branches from their nominal 

values, while mistuning is random.  In this study, the detuning range is taken to be [-20%, 

+20%] for each parameter.  The results are shown in Figures 5-11 to 5-14.  The nominal 

values for the parameters before detuning are according to Equations (5.12) to (5.16). 

Figure 5-11 shows the effect of detuning in δe1.  On the horizontal axis, 0% 

corresponds to ‘no detuning’ case (the nominal case).   The best performance seems to 

occur not at the nominal case, but at -5% detuning.  This could be due to the reason that 
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the set of approximated equations (Equations (5.4a,b,c,d)) are used to derive the optimal 

tuning.  However, the performance index only changes slightly when the parameter is 

detuned to the -5% detuning point from the nominal case (0% detuning case).  The worst 

situation in the whole detuning range has an index of 0.25 (at -20% detuning), which 

means a 75% vibration reduction.  Within a more modest range of detuning, [-10%, 

+10%], the effects of detuning on network performance tend to be very small.  For 

instance, the performance index only changes from 0.054 (or 94.6% vibration reduction) 

at the lowest point (with -5% detuning) to 0.08 (or 92% vibration reduction) at the 

highest point (with 10% detuning).  For detuning greater than 10% in magnitude, the 

effect on the network performance becomes larger, as indicated by the relatively deeper 

slope.   

Figure 5-12 shows the effect of detuning in δe2.  In this figure, the ‘no detuning’ 

case (0%) shows the best performance.  Detuning towards either positive or negative 

direction will increase the index monotonically.  Compared to Figure 5-11, detuning in 

δe2 has larger effect on system performance than that in δe1, in other words, system 

performance is more sensitive to detuning in δe2 than in δe1.  In the worst situation, a -

20% detuning in δe2 will increase performance index to about 0.7, which means only 30% 

reduction can be achieved.  Further treatment to improve the robustness of the network 

against δe2 will be discussed later. 

Figure 5-13 plots the result concerning detuning in ak .  It also shows that the 

nominal case (0% detuning) has best performance.  Both positive and negative detuning 

will degrade the network performance.  In the worst situation, at -20% detuning, the 

performance index is 0.25, which corresponds to a 75% reduction in vibration.  
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Figure 5-14 depicts detuning in three parameters: the additional capacitance 

tuning ratio 2k , circuit resistance damping ratios 1Rζ  and 2Rζ .  As seen from the figure, 

the detuning in these three parameters will not change the network performance much, in 

other words, the network is quite robust against these parameters. 
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Figure 5-11:  Performance index versus detuning in circuit frequency tuning ratio δe1. 
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Figure 5-12:  Performance index versus detuning in circuit frequency tuning ratio δe2. 
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Figure 5-13:  Performance index versus detuning in coupling capacitance tuning ratio ak .
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In summary, the study shows that the network performance is relatively more 

sensitive to the detuning in δe2 and less sensitive to the detuning in 2k , 1Rζ  and 2Rζ .  For 

most parameters (except δe2), the network can achieve at least 75% reduction in vibration 

amplitude within the whole detuning range investigated.  Network performance can be 

severely degraded if detuning in δe2 is large (e.g., -20%), as shown in Figure 5-12.  In this 

situation, a more advanced treatment with negative capacitance can help improve the 

robustness and performance of the network, which will be discussed next. 
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Figure 5-14:  Performance index versus detuning in additional capacitance tuning ratio 
2k (●), resistance damping ratio 1Rζ (■) and resistance damping ratio 2Rζ (▲). 
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5.3.4 Performance enhancement with negative capacitance 

It is shown in above analyses that in most cases with modest range of mistuning 

and detuning ( 0.04σ ≤  for mistuning, and within ±10% for detuning), the network can 

provide good vibration suppression results.  However, in some cases (e.g., δe2), large 

detuning can severely degrade the suppression performance.  Therefore, one may need to 

use further treatments to improve the performance and robustness of the network.  

Negative capacitance has been shown to be able to fulfill this purpose, as discussed in 

Chapters 2, 3, 4.   Negative capacitance can be realized by a negative impedance circuit 

(Tang and Wang, 2001).  It has been shown that negative capacitance can be used to 

increase the electro-mechanical coupling of piezoelectric transducers.  The effect of the 

negative capacitance on improving network performance and robustness has been shown 

in Chapter 4.  Here similar study is conducted for all cases with mechanical mistuning, 

and circuit parameter mistuning and detuning, where similar conclusions are found.  That 

is, by increasing the electro-mechanical coupling of the piezoelectric transducers using 

negative capacitance, the network performance and robustness can be improved.  Here, 

only some examples are shown for illustration purpose in Figures 5-15 to 5-17.  In the 

analyses in previous sections, the electro-mechanical coupling of piezoelectric 

transducers on the blade-model beams and the disk-model beams are assumed to be 

1ξ =0.1, 2ξ =0.1.  With negative capacitance, one can choose to add it to the circuits on 

the blade-model beams to increase 1ξ , or to the circuits on the disk-model beams to 

increase 2ξ .  In this study, for demonstration purpose, we assume that with negative 

capacitance, 1ξ  or 2ξ  can be increased to 0.2.  Figure 5-15 shows the effect of negative 
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capacitance on the network performance and robustness with detuning in δe1.  The result 

in Figure 5-11 is also shown here for comparison purpose ( 1ξ =0.1).  Here, negative 

capacitance is only added to the circuits on the blade-model beams, therefore, 2ξ  remains 

unchanged (0.1), 1ξ  is increased to 0.2.  As we can see from the figure, with negative 

capacitance, the curve becomes quite flat, meaning the network becomes insensitive to 

the detuning in δe1.  Also, for the large detuning case, the performance is significantly 

improved.  For example, for -20% detuning, without negative capacitance, the original 

performance index is 0.25 (75% vibration reduction); with negative capacitance, the 

index is reduced to 0.05 (95% vibration reduction).  
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Figure 5-15:  Performance comparison with detuning in δe1 for the cases of without 
negative capacitance (ξ1=0.1, ●) and with negative capacitance (ξ1=0.2, ■). 
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Figure 5-16 shows the effect of negative capacitance with detuning in δe2.  Here, 

negative capacitance is added to the circuits on the disk-model beams, therefore, 

1ξ remains at the nominal value (0.1), and 2ξ  is increased to 0.2.  It is shown in the figure 

that the performance index is generally reduced throughout the detuning range.  

Significant reduction in the index is achieved at the larger detuning levels.  For example, 

for -20% detuning, the original index is about 0.7 without negative capacitance, and is 

reduced to only 0.35 with negative capacitance.  With negative capacitance, the slopes of 

the curve become smaller for either positive detuning or negative detuning.  Also, larger 

detuning range can be tolerated if one has a pre-set performance index threshold.  For 

example, if the performance threshold is set at index=0.25, the tolerable detuning range 

for the case without negative capacitance is about [-5%, +8%], while with negative 

capacitance, for 2ξ =0.2, the tolerance range can be increased to about [-15%, +20%]. 

Similar improvement is shown in Figure 5-17, where ‘with’ and ‘without’ 

negative capacitance for detuning of ak  is compared.  In this case, only 2ξ  is increased to 

0.2 by adding negative capacitance to the circuits on the disk-model beams.  It also shows 

improvement in both network performance and robustness. 
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Figure 5-16:  Performance comparison with detuning in δe2 for the cases of without 
negative capacitance (ξ2=0.1, ●) and with negative capacitance (ξ2=0.2, ■). 
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5.4 Summary 

In this research, piezoelectric circuitry is explored for effective vibration 

suppression of a mistuned coupled bladed-disk system.  A bladed disk model including 

both blade and disk dynamics is proposed to represent the systems.  With this system 

model, a new multiple-circuit piezoelectric network design is proposed to achieve multi-

harmonic vibration suppression.  Based on the model, an optimal network is analytically 

designed using the U-transformation technique.  Multiple-harmonic vibration suppression 
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Figure 5-17:  Performance comparison with detuning in ak  for the cases of without 
negative capacitance (ξ2=0.1, ●) and with negative capacitance (ξ2=0.2, ■). 
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is demonstrated.  The network performance and robustness issues are addressed using 

Monte Carlo simulation.  It is found that the network, although designed based on tuned 

bladed disk systems, is quite effective for suppressing vibration in mistuned bladed disk 

systems.  The effects of mistuning and detuning in key circuit parameters on the network 

performance are also examined.  The results show that the network is quite robust against 

mistuning and detuning in most parameters, and can provide good vibration suppression 

within the variation range studied.  The network is relatively more sensitive to the 

detuning in circuit frequency tuning ratio δe2, which is related to the circuits on the disk-

model beams.  It is demonstrated that the treatment with negative capacitance can be used 

to enhance the performance and robustness of the network.  



 

 

Chapter 6 
 

Vibration Suppression Experimental Investigation 

6.1 Objective 

The purpose of this experiment is to verify the multiple harmonic vibration 

suppression effect of the piezoelectric network for mistuned bladed disk system under 

engine order excitation. 

6.2 Experimental Setup 

The baseline bladed disk model system with piezoelectric patches is shown in 

Figure 6-1.  This system is designed according to the new bladed disk model presented in 

Chapter 5.    

In this periodic system, there are twelve aluminum beams forming six bays, with 

each bay consisting of a shorter beam, a longer beam and two connecting springs.  As 

presented in the new model in Chapter 5, the shorter beams are the blade-model beams 

that simulate the blade dynamics; and the longer beams are disk-model beams which 

simulate the disk dynamics.  The steel base with twelve slots provides cantilever 

conditions to the equally spaced beams.  The effect of the base vibration on the beams is 

negligible due to the heavy mass of the base. The major avenues for coupling of beam 

dynamics are through the coupling springs, with longer ones corresponding to kc in 

Figure 5-1 and shorter ones corresponding to ks in Figure 5-1. The longer spring emulates 
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the coupling between adjacent disk-model beams, and the shorter spring emulates the 

coupling between blade-model beams and disk-model beams.  The springs are fixed to 

the beams through specially designed fixtures that are glued to the beams. Identical 

piezoelectric transducers (patch type) are bonded to the root of each beam on both sides, 

with one functioning as an exciter to provide engine order excitation for the structure 

(transforming electric energy to mechanical energy); and the other functioning as a part 

of the piezoelectric circuitry network (transforming mechanical vibration energy into 

electrical form). These piezoelectric transducers use the negative electrode wrap up 

design, which makes the transducers electrically insulated from the beams.  The 

dimension and material properties of the beams and piezoelectric patches are shown in 

Table 6-1 and Table 6-2. The properties of the springs are shown in Table 6-3. This 

periodic bladed disk system is intrinsically mistuned due to many sources that can cause 

differences among bays, including the variations in the lengths of beams, the clamping 

conditions, the piezoelectric patches’ bonding conditions, the spring fixing conditions, 

etc. 
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Figure 6-1:  Baseline bladed disk model system with piezoelectric patches. 
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Dimension (10-2 m) Material Property 
Effective Length: 8 (shorter), 11.5 (longer) 
Width (same for all beams): 1.5 
Thickness (same for all beams): 0.3 

Material Type: Aluminum 
Young’s Modulus: 69*109 (N/m2) 
Density: 2700 (kg/m3) 

 

 

Dimension (10-2 m) Material Property 
Effective Length: 2.0 
Width: 1.5 
Thickness: 0.0508 
 

Young’s Modulus (YE
11): 6.3*1010 (N/m2) 

Density: 7700 (kg/m3) 
Relative Dielectric Constant (KT): 1900 
Measured PZT capacitance: 7nF 

 

 

Shorter Springs Longer Springs 
Length: 0.05 (m) 

Stiffness: 1722.2 (N/m) 
Length: 0.14 (m) 

Stiffness: 4730.2 (N/m) 

 

 

 

Table 6-1:  Dimension and Material Property of Beams 

 
 

Table 6-2:  Dimension and Material Properties of Piezoelectric Patches 

 
 

Table 6-3:  Dimension and Properties of Springs 
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The overall experiment setup is shown in Figure 6-2.  This testing system includes 

the bladed disk structure, a traveling wave excitation system, a measurement system, and 

a piezoelectric circuitry.  

The traveling wave excitation system is designed to simulate the engine order 

excitation force. This system includes a MATLAB/Simulink model that generates 

sine/cosine wave signals with different phases, a dSpace ControlDesk graphic user 

interface for controlling the experiment, such as selecting engine orders and calibrating 

fiber optical sensors, and two six-channel PCB power amplifiers to provide excitation.  

The Simulink model for the excitation system is shown in Appendix A.  The excitation 

force on the jth blade-model beam (or disk-model beam) can be expressed as: 

0 cos( ( 1) )jF F t jω φ= + − , where 2 /E Nφ π= , N=6, and E is the engine order number, 

E=0, …, N/2.  Using simple trigonometry, the force formula above can be equivalently 

expressed as 0 0cos(( 1) ) cos( ) sin(( 1) )sin( )jF F j t F j tφ ω φ ω= − − −  (Judge et al., 2001), 

which is easier for Simulink implementation.  The Simulink model uses this formula to 

generate harmonic signals with different phases, determined by the engine order E, then 

feeds these signals to the PCB power amplifiers that are connected to the piezoelectric 

exciters bonded on the bladed disk system.  This system provides one engine order 

excitation at a time.  Since the periodic system consists of six bays, the effective engine 

order numbers are E=0, 1, 2, 3, which are the same as the numbers of spatial harmonics.  

In the experiment, we used frequency sweep for each engine order within a specified 
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frequency range at a resolution of 1Hz, the process of which is automated by a Matlab 

code. 

Displacement measurements are taken using six fiber optic sensors (Philtec D20) 

positioned in the close proximity of the tips of blade-model beams (shorter beams). The 

sensitivities of these sensors are listed in Appendix B.  The displacement data is acquired 

by the Simulink model and dSpace, and processed by a Matlab code. 

 

 

 

 

Figure 6-2:  Overall experiment setup for vibration suppression study. 
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Due to the complexity and the mistuned nature of the bladed-disk system, it was 

found very difficult to accurately identify the system parameters since a rigorous system 

identification method for mistuned periodic structures is generally not available. In this 

experiment, an analytical model is first developed for the theoretically tuned system. The 

system parameters are then estimated based on the analytical model calculation and 

adjustment via trial and error. The guideline is to make the natural frequencies of the 

analytically tuned system to be around those resonant frequencies obtained from the 

experimental frequency responses of the mistuned system.  The analytically estimated 

system parameters are shown in Table 6-4.  Table 6-5 shows the natural frequencies of 

the tuned system calculated based on the estimated parameters in Table 6-4, and the 

resonant frequencies of the mistuned system obtained from experiment.  It is shown that 

the tuned system’s natural frequency range is pretty close to the range of the 

experimentally obtained resonant frequencies of mistuned system. 

On the other hand, it is also noted that the analysis in Chapter 5 suggests that the 

network is quite robust in terms of circuitry parameter detuning which could be caused by 

the error in the parameter identification of the mechanical system.  Therefore, the purpose 

of this experiment, that is, the demonstration of the multiple harmonic vibration 

suppression effect of the network, may still be fulfilled even if the mechanical system’s 

parameters were not identified accurately, and the network were not tuned at the optimal 

point.   So, in the following test, the estimated system parameters listed in Table 6-4 are 

used in the circuitry design. 
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mb 0.0388 (kg) 
kb 104772 (N/m) 
ks 6500 (N/m) 
md 0.0425 (kg) 
kd 103710 (N/m) 
kc 434450 (N/m) 

kbp1 494042 (N/m) 
kbp2 259330(N/m) 

 

Analytical Estimate: Tuned 
System’s Natural Frequency 
(Hz) 

252.6, 268.0, 269.1, 269.2, 273.0, 304.0, 379.0, 411.6 
 

Experimental Data: Mistuned 
System’s Resonant Frequency 
(Hz) 

257.0, 265.0, 267.0, 272.0, 273.0, 276.0, 277.0, 279.0, 
280.0, 282.0, 283.0, 284.0, 288.0, 398.0, 405.0, 407.0 

 

For the circuitry, a network is designed and tuned according to the optimal 

solutions presented in Chapter 5, as shown in Equation (5.5) and Equations (5.7) to (5.9). 

Table 6-6 lists the values of these circuit design parameters. In this experiment, synthetic 

inductors are used. The synthetic inductor has been used in our previous mode 

delocalization experiment in Chapter 3, which is based on operational-amplifiers (Chen, 

1986). Similar to the traditional passive inductors, these synthetic inductors have internal 

Table 6-4:  System Parameters for Bladed Disk Model Structure 

 
 

Table 6-5:  Frequencies From Analytical Estimate and Experimental Data 
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resistances. With the inductance value shown in Table 6-6, the inherent resistance values 

are measured to be 12.45k Ohms for L1, and 14.4k Ohms for L2.  The theoretically 

optimal (total) resistance values (R1 and R2) are shown in Table 6-6, which are also 

applicable to the traditional absorber case.  The external resistance needed for optimal 

damping is then calculated after taking into account of the internal resistance of the 

synthetic inductors. In the network case, for the circuits with L1 (connected to the blade-

model beams), the external resistance theoretically needed is 2.33k Ohms, and for the 

circuits with L2 (connected to disk-model beams) it is zero ohms because the inherent 

resistance of L2 is already higher than the theoretical calculation.  For the traditional 

absorber design, the circuits connected to the disk-model beams are designed as 

described in Chapter 5. The coupling capacitors (Ca) and the additional capacitors (C2) 

are removed.  Individual LR shunt circuits that have the same architecture as those 

circuits attached to the blade-model beams are used for the disk-model beams.  For the 

traditional absorber, the inductors are designed for harmonic (or engine order) 0, that is, 

letting j=1 in Equation (5.6) (also k2=ka=0), the inductance of which is 55 (Henry) with 

an intrinsic resistance of 13.1k Ohms (thus the theoretical external resistance needed is 

1.68k Ohms). However, in the experiment, different trials found that with an external 

330-Ohm resistor in the circuits with L1, both the network and the traditional absorber 

perform better than using the calculated external resistance. This might be due to the 

error in the estimation of the system parameters.  Therefore, in the results shown later, 

330-Ohm external resistors are used in the circuit with L1. 
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Inductance L1 49.8 (Henry) 
Inductance L2 58.5 (Henry) 

Additional capacitance C2 0.11 (uF) 
Coupling capacitance Ca 0.016 (uF) 

Optimal damping resistance R1 14.78 k ohms 
Optimal damping resistance R2 8.45 k ohms 

6.3 Experimental Results 

Figures 6-3 to 6-6 compare the vibration suppression results of the network and 

the traditional absorber within the frequency range of interest, where without circuit, the 

blade forced response shows large amplitude under engine order excitation. In each 

figure, the maximum blade response curve corresponding to the ‘without circuit’ case 

(i.e., the baseline mechanical system case) is the black dotted line, the grey solid line 

represents the ‘with traditional absorber’ case, and the ‘with network’ case is denoted by 

the black solid line.  The maximum blade responses are obtained from all blades.  Each 

figure uses one specific engine order excitation, E=0, 1, 2, 3.  The maximum response 

ratios are shown in Table 6-7. This ratio is defined by taking the division between the 

maximum response of with circuit case (with network or with traditional absorber) and 

that of the baseline mechanical system case. Therefore, the ratio indicates the vibration 

suppression effectiveness, with smaller value meaning more vibration reduction. For 

Table 6-6:  Circuit Network Parameters 
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example, the ratio of 0.445 for engine order 0 (‘with network’) means that the maximum 

blade response is suppressed by 55.5% with the use of the network.   Observing Figures 

6-3 to 6-6 and Table 6-7, one can see that at engine order 0, the performance of the 

network and the traditional absorber is similar in terms of maximum response ratio.  

However, the ratios for traditional absorber are much higher than that for the network 

when the structure is under other engine orders (E=1,2,3).  This is expected since the 

traditional absorber is tuned to engine order 0.  The experimental results indicate that the 

piezoelectric network is effective for vibration suppression at all engine order excitations, 

and outperforms the traditional absorber that is only effective at one specific engine order 

excitation. 

 

Engine Order With network With traditional absorber 
0 0.445  0.543  
1 0.374 0.756  
2 0.331  0.883  
3 0.226  0.966  

 

Table 6-7:  Maximum Blade Response Ratio 
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Figure 6-3:  Maximum blade response vs. frequency for without circuit case (dotted line), 

with traditional absorber case (grey solid line) and with network case (black solid line) 
under engine order 0 excitation. 
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Figure 6-4:  Maximum blade response vs. frequency for without circuit case (dotted line), 
with traditional absorber case (grey solid line) and with network case (black solid line) 

under engine order 1 excitation. 



133 

 

 

 

 

 

200 250 300 350
0

5

10

15

Frequency(Hz)

M
ax

 b
la

de
 re

sp
on

se
 (u

m
)

Engine Order = 2

w/o circuit
w/trad.abs.
w/network

Figure 6-5:  Maximum blade response vs. frequency for without circuit case (dotted line), 
with traditional absorber case (grey solid line) and with network case (black solid line) 

under engine order 2 excitation. 
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Figure 6-6:  Maximum blade response vs. frequency for without circuit case (dotted line), 
with traditional absorber case (grey solid line) and with network case (black solid line) 

under engine order 3 excitation. 
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6.4 Summary 

Experiments are performed to study the multiple harmonic vibration suppression 

effect of piezoelectric network for mistuned bladed disk system.   A six bay bladed disk 

model system is built using cantilever beams and springs according to the bladed disk 

model presented in Chapter 5.  A traveling wave excitation system is realized using 

piezoelectric patches, power amplifiers, MATLAB/Simulink and dSpace experimental 

control software.  A piezoelectric network is designed and applied to the baseline system.  

Investigations are conducted to examine the vibration suppression effects of the new 

network and the traditional absorber.  The experimental results verified that network can 

effectively suppress vibration of a mistuned bladed disk for multiple engine order 

excitations, whereas, traditional absorber is only effective for certain spatial harmonic 

excitation, as predicted in the analysis in Chapter 5.   



 

 

Chapter 7 
 

Conclusion and Future Work 

In this Chapter, we summarize the major efforts and contributions of this thesis, 

and provide recommendations for the future work. 

7.1 Mode Delocalization Analysis and Experiment 

A piezoelectric networking configuration with enhanced electro-mechanical 

coupling is analyzed for vibration mode delocalization.  The model of the periodic 

structure integrated with the piezoelectric network is derived via Hamilton’s principle.  

An effort is made to define the localization index for quantifying the degree of 

localizaiton.  Lyapunov exponents of the periodic system are examined.  The correlation 

of the Lyapunov exponents and the exponential spatial decay rate of localized modes of 

the electro-mechanically coupled system is studied.   Based on the analysis, a localization 

index is defined using the average of the lower Lyapunov exponents within the original 

frequency passbands. A comprehensive parameter study, with varying circuitry 

parameters, is performed using this localization index to evaluate the effectiveness of the 

proposed scheme and provide guidelines for the circuitry design. 

An active coupling enhancement method using negative capacitance is utilized to 

increase the electro-mechanical coupling of the piezoelectric patches.  The analysis 
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shows that by increasing the electro-mechanical coupling coefficient, the negative 

capacitance can improve the delocalization effect of the piezoelectric network. 

Experiments are performed to validate the concept of piezoelectric networking for 

delocalization.  The experiments use an 18-blade inherently mistuned periodic system as 

the baseline mechanical structure.  A piezoelectric network is designed, synthesized and 

integrated with the structure.  The experimental results show that with the piezoelectric 

network, vibration localization level of the mistuned mechanical system can be reduced.  

Furthermore, the experiments also confirmed that adding negative capacitance can 

effectively improve the delocalization effectiveness of the network. 

7.2 Vibration Suppression Analysis and Experiment 

The piezoelectric networking concept is extended for vibration suppression of 

mistuned bladed disks.  The analysis involves two parts.  The study is first conducted 

based on a simple bladed disk model, which only considers blade dynamics and neglects 

the disk motion.  The second part considers a more complex bladed disk model, where 

coupled blade-and-disk dynamics are taken into account.  Finally, experiments are also 

conducted to validate the vibration suppression effect of the piezoelectric network. 

To explore the design of piezoelectric network for vibration suppression of 

mistuned bladed disks, first, the study is conducted based on a simple bladed disk model, 

which only considers blade motion, and neglects the disk dynamics.  The system 

equations are derived using Hamilton’s principle, and then decoupled using the U-

transformation technique.  An optimal network is analytically derived.  The vibration 
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suppression effectiveness of the optimal network is compared with that of the traditional 

absorber design.  Analysis shows that although traditional absorber can suppress some 

specific engine order excitations, it loses its effectiveness at others.  Whereas, the optimal 

network can effectively suppress all engine order excitations, therefore, outperforms the 

traditional absorber design in terms of multiple harmonic vibration suppression.  Monte 

Carlo simulation is performed to evaluate the effectiveness of the piezoelectric network 

for vibration suppression of mistuned bladed disks with various mistuning levels, and the 

performance and robustness of the optimal network with circuitry parameter variations.  

The simulation analysis shows that the optimal piezoelectric network performs well for 

quite a large mechanical mistuning level.  The performance of the optimal network is also 

quite robust against the circuitry parameter variations.  The analysis also shows that 

inclusion of the negative capacitance can further improve the performance and robustness 

of the network. 

The vibration suppression study of the piezoelectric network is further extended 

in the second part of the study by considering a more complex model for bladed disks 

with coupled blade-disk interaction. This complex model can better represent the 

dynamic characteristics of a bladed disk in that it can capture the frequency veering 

phenomenon that is often present in bladed disk systems.  With the analysis of this 

model, a new piezoelectric network configuration is proposed for multi-harmonic 

vibration suppression.  Based on the analysis of the dynamics of the bladed disk model, 

closed form solutions are analytically obtained for the optimal network design.  Multiple 

harmonic vibration suppression effect of this new network is demonstrated and compared 

to that of the traditional absorber design. It is shown that the new optimal network, 
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although designed based on the tuned system assumption, is quite effective for mistuned 

mechanical systems.  The robustness of the network is also examined via Monte Carlo 

simulation by considering the mistuning and detuning in the key circuitry parameters.  

Simulation results show that the new optimal network is also quite robust in most 

parameters, and can provide good vibration suppression results within the variation 

ranges studied.  Among these parameters, it is found that the network is most sensitive to 

the detuning in the circuit frequency tuning ratio of the circuits on the disk-model beams. 

The treatment with negative capacitance also enhances the performance and robustness of 

the new network. 

Experiments are also carried out to validate the vibration suppression effect of the 

piezoelectric network.  The baseline structure used in the experiment is designed 

according to the new complex bladed disk model presented in the analysis in the second 

part of the analysis.  A traveling wave excitation system is built to emulate the engine 

order excitation force that real bladed disk systems experience due to aerodynamic 

loading.  The network designed based on the analysis is applied to the mistuned periodic 

mechanical test structure.  The maximum blade amplitudes under engine order excitations 

are obtained and compared for the ‘without circuit’ case (the pure mechanical system 

case), ‘with traditional absorber’ case, and ‘with network’ case.  The results show that the 

network is effective in vibration suppression for all engine order excitations, and 

outperforms the traditional absorber design, which is only effective for a specific engine 

order. 
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7.3 Recommendation for Future Work 

Comprehensive studies have been conducted in this research, and good 

achievements have been obtained and presented in this thesis.  Below are some 

recommendations for the future work to advance the state of the art of this piezoelectric 

networking technology. 

7.3.1 Improvement of current technology 

1. In this thesis, the Lyapunov exponent is used as the localization index for vibration 

delocalization study.  The computation of this index is very time consuming, and is 

based on wave propagation.  Defining an index that directly works on mode shapes 

would be very interesting and valuable. 

2. Often times, the periodic mechanical structures have low natural frequencies.  When 

applying the piezoelectric network experimentally, one has to use tunable synthetic 

inductors. However, the synthetic inductor design used in this research is not stable 

enough.   A more robust design is desirable for real application. 

3. To better utilize the optimal piezoelectric network design for vibration suppression, it 

is desirable to develop an accurate system identification method for the mechanical 

system. 

4. Circuitry network topology other than those used in this research may also be 

effective for vibration suppression of bladed disks, including active control schemes 

and passive-active hybrid schemes. These could be explored in the future. 
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7.3.2 Extension of current technology for damage detection 

In addition to vibration control, the networking technology may also be used for 

damage detection of mistuned bladed disks.   

Bladed disks are common structures in jet engines.  When a small crack starts to 

develop in a blade, catastrophic consequences may occur if the crack is not detected in 

time.  However, detection of a small crack in bladed disks is extremely challenging. 

Currently available techniques for damage detection of bladed disks are mostly based on 

ultrasound and eddy current technologies (Patkanen et al., 2001).  These methods are 

usually off-line methods, which require the disassembling of the engine, and are usually 

position sensitive. Vibration based damage detection methods have also been explored 

(Salawu, 1997; Zou et al, 2000).  These methods use frequency response function or 

mode shapes of a structure for damage information extraction.  However, for mistuned 

bladed disks, which usually have high modal intensity, these methods may fail.  Also, for 

mistuned system, a small damage might not cause drastic change in the dynamic 

characteristics.  From the studies in the previous chapters, it is clear that in mistuned 

bladed disks, localization often occurs. One possibility is to utilize this unique 

characteristic to create a method for damage detection.   When the engine speed up and 

speed down, the bladed disk will be subject to engine order excitation due to 

aerodynamic loading. With sensing technologies such as BTT (Blade Tip Timing) 

(Zielinski and Ziller, 2000; Dimitriadis et al., 2002), one is possible to measure the blade 

forced response and extract useful information from the measurement for damage 

detection. The idea here is to create innovative piezoelectric circuitry that can temporarily 
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induce or intensify structural vibration localization to amplify the damage effect (since 

damage is a form of mistuning) on the system vibratory signature during the inspection 

stage.  In this manner, one can better capture the damage by comparing the BTT 

measurements before and after damage occurs.  
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Appendix A 
 

Matlab/Simulink Model for Traveling Wave Excitation 

The figure shown below is the Matlab/Simulink model for the traveling wave 

excitation system (upper group) and the fiber-optical sensor data acquisition system 

(lower group). 



 

 

Appendix B 
 

Fiber-Optical Sensor Sensitivities 

This table shows the sensitivity data for the fiber-optical sensors used in the 

experiment. 

Sensor # Sensitivity (mv/mil) 
1 -240.6 
2 -219.2 
3 -250.9 
4 -234.4 
5 -237.8 
6 -237.5 

 

 

Table B-1: Sensitivities of Fiber-Optical Sensors 
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