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ABSTRACT 

Root phenomics involves the study of root architecture which is highly complex and 

multidimensional. Root architectural and anatomical phenotypes determine nutrient uptake from 

soil and plant productivity. Root phenotypes are comprised of phenes, the states of which 

determine the utility of a root phene in an environment. Interactions between phenes is non-linear 

and evaluating the utility of the integrated phenotypes is made easier with in-silico methods. In 

this work I used SimRoot, a functional-structural plant model, to evaluate the utility of multiple 

phenes in contrasting states in common bean root systems. I extended the work to explore the 

entire phenotypic space of several architectural phenes in all possible states, by linking SimRoot 

to a multiobjective evolutionary algorithm, to identify optimal root phenotypes for nutrient uptake 

and carbon costs in bean as well as maize root systems. I found that several optimal integrated root 

phenotypes exist and are specific to target environments.  

Selecting robust, stable and reliable phenotyping metrics is an important step towards obtaining 

relevant data from phenotyping studies to map the phenotype to the genotype, an important goal 

to explore root phenomics. The complexity and inaccessibility of roots along with the technicalities 

in image processing make it difficult to evaluate which metrics are most useful and informative. I 

used SimRoot to simulate hundreds of bean and maize root phenotypes, estimated an array of 

phenotyping metrics and conducted a comparative analysis of the metrics. I found that phenes such 

as root number, root diameter, lateral root branching density are stable, reliable measures and are 

not affected by imaging method or plane. Metrics aggregating multiple phenes such as total length, 

total volume, convex hull volume, bushiness index etc. estimate different subsets of the constituent 

phenes, they however do not provide any information regarding the underlying phene states. 
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Chapter 1 
 

Introduction 
 

Crop production needs to double by 2050 to provide for the increasing global population 

(Tilman et al., 2011; Ray et al., 2013; Wise, 2013; FAO, 2017). A major challenge is the 

identification of efficient crops that cope with climate change and reduce the need for fertilizer 

and water inputs to make agriculture environmentally sustainable. Root architecture influences 

water and nutrient uptake, so, selecting and developing efficient crops based on their root system 

architecture (RSA) has been proposed as a strategy towards a “second green revolution” (Lynch, 

2007; Herder et al., 2010; Villordon et al., 2014; Lynch, 2019).  

Root phenotypes are avenues to the development of crop cultivars with improved nutrient 

capture, which is an important goal for global agriculture. Root phenotypes are comprised of 

phenes, which are elementary units of the phenotype; phenes are related to phenotypes as genes 

are to genotypes (Lynch and Brown, 2012; York et al., 2013). Phenes exist in several states and 

may be beneficial in specific scenarios. Fitness tradeoffs for contrasting soil resources, and 

between abiotic and biotic constraints, determine the utility of phenes (Ho et al., 2005; Hu et al., 

2014; Postma et al., 2014; Miguel et al., 2015; Dathe et al., 2016; Galindo-Castañeda et al., 

2018; Rangarajan et al., 2018; Yang et al., 2019). The fitness landscape of specific phene states 

is also dependent on other aspects of the plant phenotype including dynamic constraints such as 

carbon availability which further add to the complexity of the system. Multiple phenes interact 

through highly non-linear interaction to impact plant performances. The fitness landscape of root 

phenotypes is therefore highly complex and multidimensional.  

In-silico studies allow evaluation of interaction of several phenes across several 

environmental scenarios. In the first chapter, I tried to explore how interactions among 

architectural phenes in common bean determine the acquisition of phosphate and nitrate, two key 

soil resources contrasting in mobility using the functional-structural plant model (FSPM), 

SimRoot. We evaluated the utility of basal root whorl number (BRWN) when basal root growth 

angle (BRGA), hypocotyl-borne roots (HBR), and lateral root branching density (LRBD) were 

varied in the bean root system, under varying availability of phosphate and nitrate. We conclude 

that the utility of a root architectural phenotype is determined by whether the constituent phenes 

are synergistic or antagonistic. Competition for internal resources and tradeoffs for external 
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resources result in multiple phenotypes being optimal under a given nutrient regime. However, 

there is no single optimal architectural phenotype; there exist multiple co-optimal root 

architectural phenotypes for a given environment (Rangarajan et al., 2018). This was a study 

which included contrasting and extreme phene states combined factorially and showed that 

interactions among phenes in combination with trade-offs due to carbon limitations result in 

several distinct root architectures with varied fitness in environments varying in nutrient 

availability.  

Considering multiple states for each phene, phene synergisms and antagonisms, 

acquisition of multiple nutrients simultaneously, multiple soil types, multiple precipitation 

regimes etc., the number of relevant scenarios is extremely large. Moreover, when evaluating the 

functional benefits of alternative trait interactions there a large number of conflicting objectives 

(e.g., maximize biomass production, minimize nutrient requirements, etc.). Therefore, the 

challenge of mapping and understanding the fitness landscape for root phenotypes (i.e., the 

relationship of root phenes and root phenotypes to plant performance), is a hugely complex and 

challenging nonlinear problem. To address this problem, in Chapter 2, we used Borg, multi-

objective optimization algorithm, with SimRoot to explore the fitness landscape. Evolutionary 

algorithms in multi-objective search and optimization are effective in their ability to handle 

complex problems, involving features such as discontinuities, multimodality, disjoint feasible 

spaces and noisy function evaluations (Fonseca and Fleming, 1995). The parameters explored 

(also called input variables or decision variables) are states of phenes including angles, number 

of roots, lateral root branching density. The numerical outputs from SimRoot model are used as 

the objectives subjected to optimization. The constraints on the range of values a decision 

variable can assume is set based on studies on root trait variations derived from phenotypic 

studies in published literature and this defines the space to be explored within a given domain of 

variation. By linking SimRoot with Borg we were able to identify optimal integrated common 

bean and maize root phenotypes, representing a dicot and a monocot species that are both 

primary global food security crops. The main difference between dicot and monocot root systems 

is that new roots (laterals) emerge from already existing roots in dicots, whereas in monocots 

nodal roots continually emerge over time from shoot nodes near or above the soil surface. Using 

the SimRoot – Borg framework, we were able to identify optimal integrated common bean and 

maize root phenotypes, which have optimal phosphorus and nitrate uptake, representing a mobile 
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and immobile nutrient in the soil, under a dynamic constraint imposed by carbohydrate 

availability. 

Another challenge in root phenomics is root phenotyping, which is especially challenging 

because of the complexity, plasticity, and inaccessibility of roots. Phenotyping is a bottleneck for 

breeding and genetic analysis because it is species-specific, labor intensive and environmentally 

sensitive, unlike genotyping, which is uniform across organisms, highly automated, and 

increasingly inexpensive (Furbank and Tester, 2011; Lynch and Brown, 2012; Cobb et al., 2013; 

Atkinson et al., 2019). In order to develop efficient strategies to explore the phenome, it is 

important to clarify what constitutes a phenotype, delineate the key components that comprise a 

phenotype, and determine the level of resolution at which phenotypic data must be collected. 

Several conventionally measured traits including total root length, total area, total volume, as 

well as novel phenotypic metrics such as convex hull volume, convex hull area, ellipse major 

axis, ellipse minor axis, ellipse aspect ratio, volume distribution, solidity, bushiness (Iyer-

Pascuzzi et al., 2010; Clark et al., 2011; Cobb et al., 2013; Topp et al., 2013) and metrics which 

measure the geometry and complexity of root systems such as fractal dimension (FD), fractal 

abundance (FA), and lacunarity (Fitter and Stickland, 1992; Nielsen et al., 1999; Walk et al., 

2004). Aggregate phenotypic metrics are comprised of phenes, some of these can be measured as 

a simple aggregate of phenes (e.g. total length), some are represented as a function of other 

aggregates (e.g. bushiness index, solidity, volume distribution), some measure shapes resulting 

from interaction of the constituent phenes (e.g. Convex hull volume), and some metrics are 

complex metrics which measure emergent properties of root architecture and cannot be described 

as a simple aggregate, shape aggregate or a function of other aggregates (e.g. Fractal 

Dimension). Although an essentially infinite number of measurements may be collected to 

describe each phenotype, a smaller number of more basic variables may explain most of the 

important phenotypic variation among genotypes. In Chapter 3, we use SimRoot as a tool to 

generate several hundred phenotypes to evaluate the various phenotyping metrics to identify 

phenotyping metrics that are sensitive enough to provide information on the constituent root 

phenes and their states, are stable over time and are independent of the time of phenotyping and 

are robust to the imaging method i.e., do not vary when measured in the intact 3D root system or 

when estimated using 2D rotational image series. Our analysis shows that phene aggregates can 

be explained by phenes. Different phene aggregates capture different combinations of subtending 
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phenes, but do not provide any information or measure of the phene state of the constituent 

phenes.  Several combinations of phenes in different states can produce phenotypes which have 

comparable estimates of phene aggregates.  Estimates of phene aggregates are not unique 

representations of the state of the underlying phenes. As the number of phenes captured by an 

aggregate phenotypic metric increases, the stability of that metric becomes less stable over time. 

This work demonstrates the applications of FSPM, SimRoot in particular, in exploring the 

root phenome in terms of identifying optimal integrated phenotypes as well as a tool to evaluate 

metrics of root phenotyping. The value of FSPM when used with advanced computational 

methods is exemplified in this study and leads to opening of several possibilities. 
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ABSTRACT 

 

Background and Aims Root architecture is a primary determinant of soil resource 

acquisition. We hypothesized that root architectural phenes will display both positive 

and negative interactions with each other for soil resource capture because of 

competition for internal resources and functional trade-offs in soil exploration. 

Methods We employed the functional-structural plant model SimRoot to explore how 

interactions among architectural phenes in common bean determine the acquisition of 

phosphate and nitrate, two key soil resources contrasting in mobility. We evaluated 

the utility of basal root whorl number (BRWN) when basal root growth angle 

(BRGA), hypocotyl-borne roots, and lateral root branching density (LRBD) were 

varied, under varying availability of phosphate and nitrate. 

Key Results Three basal root whorls were optimal in most phenotypes. This optimum 

shifted towards greater values when LRBD decreased and to smaller numbers when 

LRBD increased. The maximum biomass accumulated for a given BRWN phenotype 

in a given limiting nutrient scenario depended upon root growth angle. Under 

phosphorus stress shallow phenotypes grew best, whereas under nitrate stress fanned 

phenotypes grew best. The effect of increased hypocotyl-borne roots depended upon 

BRWN as well as the limiting nutrient. Greater production of axial roots due to 

BRWN or hypocotyl-borne roots reduced rooting depth, leading to reduced biomass 

under nitrate-limiting conditions. Increased BRWN as well as greater LRBD 

increased root carbon consumption, resulting in reduced shoot biomass. 

Conclusions We conclude that the utility of a root architectural phenotype is 

determined by whether the constituent phenes are synergistic or antagonistic. 

Competition for internal resources and trade-offs for external resources result in 

multiple phenotypes being optimal under a given nutrient regime. We also find that no 

single phenotype is optimal across contrasting environments. These results have 
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implications for understanding plant evolution and also for the breeding of more 

stress-tolerant crop phenotypes.  

Keywords: root architecture, basal root whorl number, common bean, functional 

structural plant modelling, nitrate, phene integration, phosphorus. 

 

INTRODUCTION 

 

Global population is projected to increase to 9.6 billion by 2050 (United 

Nations: Department of Social and Economic Affairs, 2013). Agricultural production 

needs to increase by at least 60% to keep up with the food demand of the increasing 

population. Limited access to fertilizers by smallholder farmers in developing nations 

and constraints on the sustainability of intensive fertilization makes it imperative to 

develop crops and cropping systems capable of sustaining satisfactory yields with 

reduced fertilizer inputs. An approach towards this goal is the selection of plants with 

superior root phenotypes (Lynch, 2007).  

Root system architecture, the spatial arrangement of a root system, is 

important for anchorage in the soil (Ennos et al., 1993; Stokes et al., 1996) and for 

soil resource acquisition by allocating root foraging to soil domains with optimal 

resource availability (Lynch and Brown, 2012). Root system architecture is composed 

of architectural phenes (‘phene’ is to ‘phenotype’ as ‘gene’ is to ‘genotype’ 

[Serebrovsky, 1925; Lynch, 2011; Pieruschka and Poorter, 2012; Lynch and Brown, 

2012; York et al., 2013]), such as number of axial roots, root growth angle (RGA), 

and lateral root branching density (LRBD) (Lynch, 2011; Pieruschka and Poorter, 

2012; Lynch and Brown, 2012; York et al., 2013). The combination of root phenes 

and phene states produces a wide variety of diverse phenotypes that differ in their 

ability to acquire nutrients and water and require differing investments of internal 

resources. The interaction of these phenes can be additive, synergistic or antagonistic 

(York et al., 2013). In addition to trade-offs due to competition for internal resources, 

contrasting patterns in the spatiotemporal availability of nutrients lead to trade-offs in 

resource acquisition when more than one resource is limiting (Ho et al., 2004; Lynch 

and Ho, 2005). Phenotypes that have superior performance under conditions of low 

phosphorus, representing immobile resources including ammonium and potassium, 
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and low nitrate, representing mobile resources including water, are likely to co-

optimize acquisition of multiple soil resources of varying mobility. 

Extensive study of the common bean (Phaseolus vulgaris) root system has led 

to the identification of several architectural phenes that influence the acquisition of 

mobile and immobile resources (Bonser et al., 1996; Miller et al., 2003; Lynch and 

Ho, 2005; Miguel et al., 2013). The bean root system consists of the primary root, 

hypocotyl-borne roots, basal roots (HBRs), and lateral roots associated with each of 

these root classes (Zobel, 1986; Lynch and van Beem, 1993; Lynch, 2011). An 

important feature of the bean root system is the presence of basal roots which form a 

major portion of the axial root system (Miguel et al., 2013). Basal roots emerge from 

distinct nodes (whorls) along the base of the hypocotyl (Basu et al., 2007). The 

number of these whorls, basal root whorl number (BRWN), varies from one to four, 

with each whorl giving rise to up to four roots. The uppermost whorls produce roots 

with shallower RGAs and the lower whorls produce steeper angles (Lynch 2011). 

Basal root gravitropism is regulated by phosphorus availability and is genotype-

specific (Bonser et al., 1996; Liao et al., 2001, 2004). Phenotypes with similar RGA 

have greater competition among roots of the same plant as well as with roots of 

neighbouring plants (Ge et al., 2000; Rubio et al., 2001). However, phenotypes with 

greater BRWN and a greater range of growth angles enable a more dispersed root 

system for greater soil exploration (Basu et al., 2007; Miguel et al., 2013). Basal roots 

emerge within 2 d of germination (Basu et al., 2007). Initially resources are made 

available from the large seed reserves, but as the plant grows, competition for internal 

resources results in trade-offs in resource allocation among different sinks which can 

limit root elongation and branching (Rubio and Lynch, 2007). This competition 

becomes more evident under nutrient stress where resource availability is very 

limited. This suggests that the utility of BRWN depends on the optimal placement of 

roots in different soil depths as determined by RGAs and by phenes which affect the 

sink strength of the root system. The optimal number of basal root whorls may 

therefore depend on nutrient regimes, and specifically the balance of mobile and 

immobile resources, as well as other architectural phene states.  

Most functional studies of root phenes are conducted by comparing genotypes 

which vary only in the phene of interest, i.e. near-isophenic lines (Lynch, 2011; York 

et al., 2013). Populations of recombinant inbred lines (RILs) have been used for 
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comparisons and evaluation of phenes in common bean and maize (Lynch, 2013; 

Chimungu et al., 2014 a, b; Chimungu et al., 2015; Saengwilai et al., 2014a; Miguel et 

al., 2015; Zhan and Lynch, 2015; Zhan et al., 2015). A recent study used intensive 

field phenotyping of maize crown roots to identify phenes and phene integration for 

nitrogen acquisition (York and Lynch, 2015). Results from simulation studies have 

successfully predicted the utility of various root phenes as well as phene interactions 

(Postma and Lynch, 2011a, b; York et al., 2013; Postma et al., 2014). Studies of 

multiple phene combinations in multiple environmental conditions are a daunting task 

due to trade-offs among phenes for contrasting soil resources, interaction with other 

phenes and phene plasticity to environmental conditions (Lynch and Brown, 2012). In 

such situations, functional-structural plant modelling has proven to be a valuable tool. 

Simulation models allow the study of functional utility of specific phenes and their 

interactions with other phenes in different climates, nutrient availability and soil types 

(York et al., 2013).  

In this study, we used the functional-structural plant model SimRoot to 

evaluate the optimal BRWN for soil resource capture and how it is influenced by 1) 

basal RGA, which influences the depth of the root system 2) basal root lateral 

branching density, which influences the sink strength and density of the root system 

or 3) HBR formation, which changes the sink strength of the root system and 

increases shallow soil exploration (Walk et al., 2006).  

 

METHODS 

 

The functional-structural plant model SimRoot, which has been used 

successfully to simulate the growth of the bean root system (e.g. Lynch et al., 1997; 

Rubio et al., 2001; Walk et al., 2006; Postma and Lynch, 2011a,2011b; Postma et al., 

2014) was used in this study. SimRoot is now an open source platform (Postma et al. 

2017). SimRoot simulates nutrient uptake and resource utilization of a root system in 

three dimensions over time. The root system simulated by the model comprises roots 

of distinct root classes. In SimRoot, root architecture is discretized into small (~1 cm) 

connected root segments. Nutrient uptake by the entire root system is estimated by 

integrating the nutrient uptake over all root segments. We simulated root system 

development from germination to 40 d after germination.  
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Carbon module 

Carbon required for growth is derived initially from seed reserves. Initial seed dry 

weight and an on-demand release function determine carbon availability from seed 

reserves. The shoot is not simulated geometrically, but is represented by two pools: 

leaves and stems. Leaf photosynthesis, which becomes the dominant source of carbon 

after the seedling has been established, is simulated in SimRoot using techniques 

similar to LINTUL (Spitters and Schapendonk, 1990, Postma and Lynch, 2011a). 

Allocation of assimilated carbon to the different pools is based on sink strength and 

priority. The strength of growth sinks in SimRoot is based on potential growth. 

Maintenance sinks like respiration and root exudates are obligatory costs and 

prioritised over growth sinks. The shoot has a greater priority over the root for carbon 

partitioning. In the shoot, leaves and stems receive carbon proportional to their sink 

strength. Carbon allocated to roots is partitioned between primary and secondary 

growth. Carbon for primary growth is divided among major axes and fine roots, with 

the major axes having priority over fine roots. The model includes carbon storage 

which increases when available carbon is more than that needed for potential growth. 

When carbon requirements are not met, this storage acts as an added carbon source 

until depletion of the storage. Root and shoot growth over time lead to changes in sink 

strength and resource capture, thereby causing positive and negative feedbacks. The 

model keeps track of the carbon assimilated and utilized.  

We simulated single plants as representatives of an individual plant in a 

monoculture stand. The light interception function assumed a planting density of 15 

plants per m2 and a light extinction coefficient of 0.9. Root competition for soil 

resources is an emergent property of the model and depends on the placement of roots 

in different soil domains. In order to simulate root densities relevant to field 

conditions we used a mirroring boundary condition for the roots at a mid-distance 

between the simulated and neighbouring plants. 

 

Phosphorus module 

Nutrient uptake can be simulated using either the Barber-Cushman (Itoh and Barber, 

1993) model or the SWMS3D (Šimůnek et al., 1995) model in SimRoot. Previous 

studies have shown that SWMS3D is better for simulating mobile nutrients while 

Barber-Cushman model is better for simulation of immobile nutrients (Postma and 
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Lynch, 2011). Hence, phosphorus uptake was simulated using the Barber-Cushman 

model. Since Barber-Cushman is a one dimensional radial model, in order to account 

for inter-root competition, the average mid-distance between roots in the vicinity of 

each root segment was used as the boundary across which nutrient flux is assumed to 

be zero. As new roots grow in the neighbourhood of existing roots, this mid-distance 

is adjusted. The initial concentration of nutrients which is available for the new root is 

corrected for nutrient extraction by existing roots. The kinetic parameters for nutrient 

uptake were kept constant over time and phosphorus uptake was a function of root 

class and development only. Phosphorus availability was vertically stratified with 

greatest phosphorus availability in the top 10 cm of the soil. In the low phosphorus 

soil, the top 5 cm of had 15 µM phosphorus and the 5 cm below this had 7.5 µM 

phosphorus in the soil nutrient solution. At soil depths > 10 cm, 1 µM phosphorus 

was available. High phosphorus soil had at all depth 10 times as much phosphorus as 

low phosphorus soil. 

 

Nitrate module  

SimRoot coupled to SWMS3D was used for simulation of nitrate uptake (Postma and 

Lynch, 2011; Dathe et al., 2013). SWMS3D simulates water and solute movement in 

a variably saturated 3-D medium. This program solves the Richards equation for 

unsaturated water flow numerically and the advection dispersion equation for solute 

transport. The flow equation includes a term in the Richards equation to include water 

uptake by plant roots, while nutrient uptake is introduced as a sink term in the solute 

transport equations. In our simulations, nitrate is initially in the topsoil but leaches to 

the deeper strata over time with precipitation events. Phosphorus leaching is, 

however, negligible in the time span of the simulations. 

 

Nutrient stress module  

A stress factor is used to reduce the potential leaf area expansion rate for plants under 

phosphorus stress (Lynch et al., 1991) and photosynthetic efficiency for plants under 

nitrogen stress (Sinclair and Horie, 1989). The stress factor is estimated based on the 

actual uptake and the minimal and optimal nutrient content of the whole plant. The 

target nutrient content of different plant parts are calculated based on the optimal and 

minimal ratios of nutrient to dry weight.  
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Phenotypes 

We simulated root phenotypes by varying the number of basal root whorls from one 

to four. The angles attained by roots of each whorl can range from 0 to 90° (from the 

soil surface). Simulating all the permutations of all the basal whorls with all possible 

angles would require numerous simulations and hence three representative angles 

were selected to parameterise the RGA. The factorial combination of four BRWN and 

three RGAs resulted in 12 phenotypes (3 angles X 4 whorls) which were considered 

throughout the studies. The number of basal root whorls and the associated angles are 

given in Table 1. All the roots in a whorl in a phenotype had the same angle. All of 

these phenotypes had five HBRs and LRBD of 4 branches cm-1. The simulations 

included four levels of BRWN, three levels of RGA, two levels of phosphorus and 

two levels of nitrate in a factorial design. In order to study the effect of increasing 

HBR, the 12 phenotypes were simulated with 0, 10, 20, 30 and 40 HBRs under two 

levels of phosphorus and two levels of nitrate (42.6 kg/ha and 213 kg/ha). Two levels 

of LRBD (2 and 6 branches cm-1) were also included in the study. The 12 phenotypes 

were also evaluated under low and high leaching scenarios simulated by changes in 

precipitation. 

We repeated the runs 6 times in order to show the variation caused by 

stochasticity in root growth rates in the model. All simulations were run for 40 d of 

growth after germination. All simulations were run on the Penn State computational 

LionXF, LionXG, LionXH or LionXJ clusters (https://rcc.its.psu.edu/resources/hpc/). 

Visualization toolkit (www.vtk.org) was used for model visualization.  

 

Parameterization 

The parameter set, with references, is published in the appendix of Postma and Lynch 

(2011a). For the present study we used the previously published parameter set, but 

varied the initial phosphorus and nitrogen availability by varying the initial 

concentrations. Full parameterization is provided in the Supplementary Data 

parameterization. Basal whorls emerged within a few hours of germination (Basu et 

al., 2007). All the basal roots have identical growth parameters. Hypocotyl-borne 

roots emerged 10 days after germination. Each whorl was assumed to give rise to four 

roots (Miguel et al., 2013). Full parameterization is provided in the Supplementary 

Data (Parameterization file). 
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Validation  

To validate the model, we compared the simulated root lengths of six root classes 

(primary roots, basal roots, HBRs and their respective laterals) of two- and three-

whorl phenotypes with measured root lengths of two- and three-whorl genotypes 

reported by Walk et al. (2006). The measured data was an independent data set, not 

used for model parameterization. 

 

RESULTS  

 

An illustration of simulated roots with one, two, three and four whorls in 

plants with deep, fanned and shallow RGAs is shown in Figure 2-1. The accuracy of 

simulated root growth was verified by comparing the measured lengths of each root 

type in plants with two and three whorls with simulated roots. This empirical data set 

was not used for the parameterization of the model. Simulated phenotypes show good 

agreement with empirical data (Supplementary Data Figure 2-S1). 

The distribution of growth among the different root classes in SimRoot is 

determined by carbon availability, which is in turn determined by initial seed reserves 

and shoot photosynthesis (Postma and Lynch, 2011a). Nutrient deficiency reduces 

shoot growth and photosynthesis, thereby reducing carbon availability. When 

nutrients and carbon were non-limiting, root length increased with number of whorls. 

The four-whorled phenotype had the greatest root length. Light-use efficiency of 3.8 × 

10-7 g µmole-1 was used in our simulations. At this level of light-use efficiency, root 

length increased with increased whorl number but was much less than that under non-

limiting carbon conditions. At the level of light-use efficiency used for simulations, 

the genotypes with greater whorl numbers are carbon-limited. This was seen as the 

difference in root length in plants simulated with greater carbon fixation and default 

carbon fixation (Figure 2-2). The three- and four- whorl phenotype had no nutrient 

deficiency under high phosphorus + nitrogen. Phenotypes with one and two whorls 

had slight phosphorus deficiency, the magnitude of which was dependent on the 

RGA. The stress levels for low phosphorus, low nitrogen, Low phosphorus + nitrogen 

as well as high phosphorus + nitrogen are depicted in Supplementary Data Figures 2-

S2-2-S4. 
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Root length in the topsoil increases with increased whorl number (Figure 2-3). 

This corresponds to greater phosphorus uptake in phenotypes with greater whorl 

number (Figure 2-4). Hypocotyl-borne-roots and basal roots contributed substantially 

to the total root length in the top 10 cm of the soil corresponding to the region of 

greatest phosphorus availability in our simulations (Figure 2-3). Among phenotypes 

varying in angle under a given stress environment, root length differed by 30-40 m. 

Shallow-angled phenotypes have greater root length in the topsoil than fanned or deep 

angled phenotypes (Figure 2-3).  

Greater topsoil exploration, however, occurred at the cost of deep soil 

exploration, resulting in reduced nitrate uptake (Figures 2-5 and 2-6). Leaching was 

enabled in the simulations. The amount of nitrate at different soil depths changes with 

precipitation events, resulting in nitrate becoming available in deeper soil strata over 

time. Greater rooting depth as well as root length in different soil strata therefore 

determines nitrate capture. Phenotypes with greater whorl number had fewer roots at 

greater depths as well as reduced rooting depth (Figure 2-5). Deep- and fanned-angle 

phenotypes have greater rooting depth (Figure 2-5) and so greater nitrate uptake 

(Figure 2-6) than shallow-angled phenotypes. Among deep-angled phenotypes, 

phenotypes with fewer whorls had more roots at greater depth than those with more 

whorls (Figure 2-5). The rate of nitrate uptake was greater for the deep- and the 

fanned-angled phenotypes compared with the shallow-angled phenotype (Figure 2-7). 

Nitrate uptake by basal roots was much greater than that of the primary root except in 

shallow one-whorl phenotypes. When the precipitation was half that of the default 

precipitation, the trends in biomass accumulation were similar to those of the default 

precipitation (Supplementary Data Figure 2-S5). The utility of greater rooting depth 

as caused by deep-angled phenotypes with fewer whorls was even more evident in 

greater leaching environment (Supplementary Data Figure 2-S6). 

Biomass is a result of trade-offs in carbon allocation to different root classes 

and the resulting uptake of limiting nutrients. Phenotypes that are able to optimally 

acquire different nutrients perform better under combined stress condition than those 

that are superior for a single resource acquisition. Deep- and fanned-angle phenotypes 

with three whorls are able to efficiently explore more soil layers and so have the 

greatest biomass (Figure 2-8). Further increasing whorl number increases competition 

for available carbon, resulting in reduced shoot biomass as seen in phenotypes with 
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four whorls (Figure 2-8). The benefit of BRWN is therefore dependent on the carbon 

status of the plant. When carbon fixation was increased by 20%, increasing whorl 

number increased biomass irrespective of RGA. Four-whorled phenotypes had the 

largest biomass, this optimum reduced to two whorls when the carbon fixation was 

reduced by 20% (Supplementary Data Figure 2-S7). 

Sink strength is sensitive to variation in LRBD. The LRBD was maintained at 

4 branches cm-1 in the previous simulations. When sink strength was reduced by 

reducing LRBD to 2 branches cm-1, the biomass in phenotypes under low nitrate 

availability increased and optimal whorl number increased to four (Supplementary 

Data Figure 2-S8). When LRBD was increased to 6 branches cm-1, biomass was 

reduced when compared to the default LRBD (Supplementary Data Figure.2-S9). The 

four-whorl phenotype was much more carbon-limited than phenotypes with fewer 

whorls, as seen in a drastic reduction in shoot biomass upon increasing sink strength 

by increasing LRBD. Increasing HBRs enabled greater topsoil exploration but also 

increased sink strength. Under low phosphorus, increasing the number of HBRs 

increased biomass. This increase was greatest for phenotypes with fewer basal roots. 

Increasing the number of HBRs under conditions of limiting nitrate decreased 

biomass (Figure 2-9).  

We conducted sensitivity analyses to determine whether simulation results 

were sensitive to planting density (Supplementary Data Figure 2-S10). Increasing 

planting density from 15 to 25, 40 or 50 plants m-2 resulted in plants with reduced 

biomass even under high nitrogen + phosphorus. Biomass was similar for one-, two- 

and three-whorl phenotypes when greater planting densities were simulated. Further 

increase in whorl number reduced plant biomass. A greater whorl number was 

optimal for plants simulated with reduced planting density.  

DISCUSSION 

This study investigates the utility of axial root phenotypes, focusing on 

BRWN, for the acquisition of nitrate, the primary mobile nutrient resource, and 

phosphate, the primary immobile nutrient resource, in contrasting nutrient regimes. 

Our results confirm that BRWN has important roles for nutrient acquisition, and 

indicate that the utility of BRWN is affected by interactions with other architectural 
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phenes. 

Root phenes which enhance topsoil foraging are important for the capture of 

topsoil resources (Lynch and Brown, 2001; Lynch, 2011). Shallow RGA, greater 

BRWN, more HBRs, greater LRBD, increased root hair length and density can by 

themselves increase root exploration of the topsoil and increase the capture of topsoil 

resources (Lynch and Brown, 2001; Zhu and Lynch, 2004; Zhu et al., 2005). 

However, when several phenes are co-expressed, the fitness of integrated root 

phenotypes is determined by phene interactions and trade-offs (York et al., 2013). 

Shallow BRGA and HBRs explore different regions of soil independently and hence 

their interaction is synergistic when HBR increased up to 20 (Walk et al., 2006). 

Shallow BRGA and greater BRWN are also synergistic for phosphorus uptake (Figure 

2-4). Trade-offs between basal roots, HBRs and their laterals in phenotypes with 

greater BRWN, shallow or fanned RGA and greater HBRs result in an increase in 

total root length in the topsoil, leading to increased P uptake. The result is that, in a 

low phosphorus environment, the three- and four-whorl shallow-sangled phenotypes 

and the four-whorl fanned phenotypes are optimal and have similar fitness for 

phosphorus uptake. 

Shallow RGAs and BRWN > 3, however, are antagonistic for biomass 

accumulation (Figure 2-8). Soil resources are distributed heterogeneously through the 

soil profile: phosphorus, potassium and ammonium are more abundant in the topsoil 

and nitrogen can be available in topsoil due to mineralization or continual fertilizer 

applications or in low-leaching scenarios caused by low precipitation (Dathe et al., 

2013). Water and nitrate are mobile soil resources and are eventually available in deep 

soil domains (Jobbágy and Jackson, 2001; Di and Cameron, 2002; Lynch and 

Wojciechowski, 2015). As the number of axial roots (basal roots or HBRs) increases, 

the sink strength of the root system increases. The resulting carbon limitation leads to 

reduced elongation of axial roots (Walk et al., 2006; Saengwilai et al., 2014 ; Postma 

et al., 2014). This reduces rooting depth, resulting in trade-offs for nitrate acquisition 

(Figure 2-6) and growth (Figure 2-8). Reducing root metabolic burden by formation 

of fewer BRWN, fewer HBRs and/or reduced LRBD can increase root depth and 

enable better nitrate capture (Figure 2-9; Supplementary Data Figure.2-S8). The 

benefit of this increased rooting depth becomes more apparent in leaching 

environments (Supplementary Data Figure.2-S6). Bean can obtain 20-60% of its 
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nitrogen requirement by symbiotic nitrogen fixation. Root depth is more important for 

nitrate uptake in maize and other crops which depend on soil nitrate. Deep roots are 

also important for water uptake, especially under water limitation (Uga et al., 2013; 

Lynch and Wojciechowski, 2015). 

Trade-offs for water and phosphorus acquisition in shallow- and deep- rooted 

common bean genotypes have been demonstrated by Ho et al. (2004). Use of 

multilines with contrasting root architectures can co-optimize capture of shallow and 

deep resource at the stand level (Henry et al., 2010). Root architectural differences 

among crops in traditional polyculture systems facilitate niche complementarity, 

enabling better resource acquisition and better yields than component monocultures 

(Postma and Lynch, 2012; Zhang et al., 2014). Shallow and deep resource capture can 

also be co-optimized by use of dimorphic architectural phenotypes (Dunbabin et al., 

2003, 2004). Phenotypes with greater BRWN are an example of dimorphic 

phenotypes. In phenotypes with greater BRWN, lower whorls produce deeper roots 

while upper whorls develop progressively shallower roots (Miguel et al., 2013). This 

increases the vertical range of soil exploration except when BRGA are shallow. The 

shallow portions of deep or fanned root systems explore the topsoil, therefore root 

length in the topsoil increases along with increased whorl number. This improves 

plant growth under low phosphorus in phenotypes with deep and fanned RGA and 

greater BRWN (Figure 2-8). Greater BRWN phenotypes with fanned growth angles 

perform consistently well under all scenarios; this phenotype is important when there 

are limitations in multiple resources with conflicting spatial availability, as well as for 

capture of mobile resources whose distribution in the soil profile changes with soil 

type and precipitation dynamically over time (Figure 2-8). These characteristics are 

also important in circumstances where roots are lost due to herbivory or disease 

(Miguel et al., 2013).  

The main constraint in maintaining greater BRWN is carbon limitation. Our 

results show that the three-whorled phenotype is optimal under most conditions. The 

results of the trade-off between phosphorus and nitrate uptake brought about by the 

trade-offs in length of basal roots and hypocotyl roots and their laterals, resulted in the 

three-whorled phenotype having the greatest growth when both N and P were limiting 

(Figure 2-8). Poorter et al. (2012) in a meta-analyses study showed that around 80% 

of biomass is allocated to the shoots in herbaceous species. We relaxed these ratios 
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somewhat as short term allocation patterns may deviate from long term patterns, and 

set the threshold for carbon allocation to shoot growth to a maximum 85% of the total 

carbon allocation for growth, while minima were not set, as severe nutrient deficiency 

may arrest shoot growth completely and seedlings tend to have greater allocation to 

roots. This threshold means that, even when nutrients do not limit shoot growth, 

carbon allocation may do so in strongly source-limited scenarios or in sink-limited 

scenarios in which the sink strength of the root system is <15% of the total sink 

strength of the plant. Source-limitation of shoot growth occurred in the four-whorl, 

abundant-nutrient scenarios unless carbon fixation rates were increased 

(Supplementary Data Figure 2-S7). This, along with the finding that the majority of 

cultivated beans have two or three whorls (Miguel et al., 2013), suggests that 

phenotypes with more than three whorls could have better utility when carbon fixation 

is greater as expected with increased CO2 in the environment.  

Plants initially derive their required carbon from seed reserves. There is a 

significant positive correlation between seed weight and the number of whorls in bean 

genotypes (Vieira et al., 2008). Hence larger seeds could provide the required greater 

carbon reserves in plants with greater BRWN. Carbon made available by reducing 

metabolic costs can increase axial root length of HBRs or basal roots. However, the 

relative benefit of carbon allocation to one class over other depends on the limiting 

nutrient. For example, drought stress results in reduced allocation to adventitious 

roots (Pardales and Yamauchi, 2003); however, phosphorus stress results in more 

HBRs (Miller et al., 2003). When both stresses occur together, the optimum allocation 

is determined by the benefits accrued over costs incurred (Ho et al., 2004). 

In our simulations, phenotypes with one shallow whorl performed better under 

combined phosphorus + nitrogen stress than when only nitrate was limited (Figure 2-

8). Phosphorus stress results in increased carbon allocation to roots. In shallow-angled 

phenotypes this results in improved phosphorus uptake and growth under phosphorus 

limitation. This is in agreement with the study of (Postma and Lynch, 2011a), who 

observed a similar response where phosphorus stress developed early, but as the root 

system developed uptake rates of phosphorus increased and plants eventually grow 

out of stress.  

Intense competition exists among neighbouring plants for soil resources and 

root architecture is a primary factor affecting root competition among plants (Rubio et 
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al., 2003). In this study, a single plant was modelled, which represented an individual 

in a monoculture stand. Modelling predicts that competition is greater among plants 

with similar root architecture (Rubio et al., 2001; Postma and Lynch, 2012). Relative 

biomass partitioning to roots may be an expression of a functional equilibrium, and as 

such may be influenced by competition depending on whether competition for light is 

greater than that for nutrients. In greenhouse studies with beans, no change in root to 

shoot ratios was found in response to neighbours (Nord et al., 2011). Competition 

reduces resource uptake per unit root length and leaf area, i.e., there is less benefit for 

the same amount of carbon invested. This leads to a decrease in resource capture and 

reduced relative growth rates in plants grown under greater planting densities. 

Phenotypes with less BRWN perform better at greater planting densities. Phenotypic 

plasticity is an important factor in resource capture (Zhu et al., 2010; Lynch and 

Brown, 2012). Phenotypic plasticity of RGA in response to N and phosphorus 

availability exists in some genotypes of common bean and maize (Bonser et al., 1996; 

Trachsel et al., 2013). Phenotypic plasticity is not simulated in our models, but there 

exist trade-offs to plasticity as evident by the presence of non-plastic genotypes 

(Bonser et al., 1996; Trachsel et al., 2013).  

This study focuses on the common bean root system, but concepts emerging 

from this study are applicable to root systems of other crops. Basal roots in bean are 

analogous to crown roots in maize and the mesocotyl-borne roots in maize are 

homologous with HBRs in dicots (Lynch, 2013). Some dicots do not have basal roots 

but are dominated by lateral root systems emerging from the primary root. The main 

difference between bean which is a dicot root system and monocot root systems is that 

new roots (laterals) emerge from already existing roots in dicots, whereas in 

monocots, nodal roots continually emerge from shoot nodes near or above the soil 

surface over time. These differences suggest that the optimal phene state is likely to 

be different in different species, but the fitness of the resulting phenotype is likely to 

depend on the outcome of phene interactions among each other and with the 

environment. 

We have used mechanistic simulation modelling to demonstrate the 

importance of BRWN and phene interactions in determining nutrient capture. 

Previous studies have considered the interaction of two phenes (Walk et al., 2006; 

Postma and Lynch, 2011a; York et al., 2013; Miguel et al., 2015). In this study, for 
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the first time the interaction of more than two phenes has been considered. In-silico 

studies allow evaluation of interaction of several phenes across several environmental 

scenarios of interest including scenarios that do not yet exist such as future climate 

scenarios (Lynch, 2015). These experiments, however, require greater computational 

power and strategies to analyse the resulting complex fitness landscape. The results 

will be heuristic; however, they will prove invaluable in identifying subsets of cases 

that warrant field evaluation (Lynch and Brown, 2012; York et al., 2013; Lynch, 

2015). 

 

CONCLUSIONS 

 

Our study indicates that the utility of a root phene is largely dependent on the 

expression of other root phenes. The fitness landscape of plant performance against 

the multi-dimensional array of environmental and internal factors is highly complex. 

Interactions among phenes in combination with trade-offs due to carbon limitations 

result in several distinct root architectures with varied fitness in environments varying 

in nutrient availability. However, plants with different phenotypes can have 

comparable performance. For example, shallow root phenotypes with two or three 

basal root whorls and tens HBR, one or three whorls and greater LRBD, and four 

whorls with lower LRBD, had comparable biomass under low phosphorus. Therefore, 

there is no single optimal architectural phenotype; there exist multiple optimal root 

architectural phenotypes for a given environment. In an interesting study with shoot 

architectures optimized for light capture, reproductive success, mechanical stability 

and minimizing water loss, Niklas (1994) demonstrated that the number of optimal 

shoot architectures increases with increase in the number of functions they need to 

perform. In this study we have considered only a few root phenes and have 

demonstrated that there exists more than one optimal architectural phenotype for a 

given environment. We hypothesize that when all the identified phenes are 

considered, under varied environmental condition; the number of optimal phenotypes 

will be much greater and will provide insight into the mechanisms of phene 

interactions.  
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FIGURES AND TABLES 
 

 
 
Figure 2-1: Visualization of the simulated root architecture of bean at 40 d after 
germination. The phenotypes vary in basal root whorl number as well as root growth 
angle. Units shown are cm. 
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Figure 2-2: Root length 40 d after germination (d.a.g) at low phosphorus, low 
nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and 
phosphorus availability. Lines show results for plants with one, two, three and four 
whorls with shallow, fanned and deep root growth angles along with plant simulated 
under high carbon availability. Error bars show the standard error for six repeated 
runs, with inter-run variation caused by stochasticity in root growth rates and 
branching frequency. 
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Figure 2-3: Root length in the top 10 cm of soil for plants with one, two, three and 
four whorls with deep, fanned and shallow root growth angles. The plants are 
simulated in soil which is low in phosphorus but non-limiting in nitrate availability. 
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Figure 2-4: Phosphorus acquisition 40 d after germination (d.a.g) at low phosphorus, 
low nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen 
and phosphorus availability. Lines show results for plants with one, two, three and 
four whorls with shallow, fanned and deep root growth angles. Error bars show the 
standard error for six repeated runs, with inter-run variation caused by stochasticity in 
root growth rates and branching frequency.  
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Figure 2-5: Root length distribution for plants with one, two, three and four whorls 
with deep, fanned and shallow angles at 20 d.a.g (top) and 40 d.a.g (bottom).  
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Figure 2-6: Nitrate acquisition 40 d after germination (d.a.g) at low phosphorus, low 
nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and 
phosphorus availability. Lines show results for plants one, two, three and four whorls 
with shallow, fanned and deep root growth angles. Error bars show the standard error 
for six repeated runs, with inter-run variation caused by stochasticity in root growth 
rates and branching frequency. 
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Figure 2-7: Nitrate uptake rate of different root classes for plants with one, two, three 
and four whorls with deep, fanned and shallow root growth angles. The plants are 
simulated in soil which is low nitrate but non-limiting in phosphorus availability. 
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Figure 2-8: Shoot biomass 40 d after germination (d.a.g) at low phosphorus, low 
nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and 
phosphorus availability. Lines show results for plants with one, two, three and four 
whorls with shallow, fanned and deep root growth angles. Error bars show the 
standard error for six repeated runs, with inter-run variation caused by stochasticity in 
root growth rates and branching frequency. 
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Figure 2-9: Shoot biomass at 40 d after germination in plants with one, two, three and 
four whorls and different number of hypocotyl-borne roots at low phosphorus, low 
nitrogen and combined low phosphorus and low nitrogen availability. The color scale 
represents biomass in g per plant. The arrow in the axes indicated the direction of 
increasing whorl number, HBR or biomass. 
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Table 2-1: Root angles and basal root whorl number used in simulation of bean root 
architecture. *Whorl position was counted from basipetal to acropetal position. 
 

 Whorl Position* Shallow  Fanned  Deep 

 

One-whorl 

Phenotype 

Whorl 4 

Whorl 3 

Whorl 2  

Whorl 1 

5 

- 

- 

- 

45 

- 

- 

- 

85 

-- 

 

Two-whorl 

phenotype 

Whorl 4 

Whorl 3 

Whorl 2  

Whorl 1 

5 

25 

- 

- 

25 

65 

- 

- 

65 

85 

- 

- 

 

Three-whorl 

phenotype 

Whorl 4 

Whorl 3 

Whorl 2  

Whorl 1 

5 

25 

45 

- 

25 

45 

65 

- 

45 

65 

85 

- 

 

Four-whorl 

phenotype 

Whorl 4 

Whorl 3 

Whorl 2  

Whorl 1 

5 

25 

45 

65 

5 

25 

65 

85 

25 

45 

65 

85 

 

Mean of angles   < 45  45  > 45 
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Chapter 3 
 

Multi-objective optimization of root phenotypes for nutrient capture using 
evolutionary algorithms 

 
ABSTRACT 

 

Root phenotypes are avenues to the development of crop cultivars with improved nutrient 

capture, which is an important goal for global agriculture. The fitness landscape of root 

phenotypes is highly complex and multidimensional. In this study, we demonstrate the 

application of a Multi-Objective Optimization Algorithm (MOEA) to find optimal root 

architectures for the acquisition of N and P by maize and common bean. The three-dimensional 

structural functional root architectural model, SimRoot, was linked to the Borg MOEA, and the 

optimization runs were evaluated for several generations to find the optimal root phenotype in 

terms of biomass production, nutrient acquisition and root carbon costs. The solution set 

identified multiple optimal phenotypes for the objectives. The optimal phenotype was dependent 

on the limiting nutrient as well as how limiting the nutrient is. Phenotypes were found to co-

optimize several objectives but none of the phenotypes performed the best in all the objectives. 

Optimal phenotypes reflected the trade-offs between objectives. Some trade-offs such as those 

between root carbon cost and shoot biomass were common in all regions of the landscape 

whereas others such as between uptake of different nutrients and shoot biomass were specific to 

specific regions. Several combinations of root phenes generated optimal integrated phenotypes, 

and such combinations differed for mobile nutrient and non-mobile nutrient and for maize and 

bean. The number of optimal phenotypes decreased in the order of low N+P, low N, low P. We 

demonstrate that FSPM can be used with multiobjective optimization to identify optimal root 

phenotypes under various environments.  

 

INTRODUCTION 

 

Root system architecture (RSA) plays key roles in a range of processes from anchorage to 

nutrient and water acquisition (Lynch, 1995; Voss-fels et al., 2018). Increased nutrient 

acquisition can increase fertilizer use efficiency and is critical for crop production. Genotypes 
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with optimal RSA can be exploited for crop design especially with respect to plant breeding in 

infertile soils (Kong et al., 2014; Meister et al., 2014; Paez-Garcia et al., 2015; Koevoets et al., 

2016; Lynch, 2019). However, an important obstacle to deploying root phenotypes in crop 

breeding is that we do not understand the utility of specific phenotypes in specific soil 

environments (Lynch, 2019; Schneider and Lynch, 2020).  

Root phenotypes are comprised of phenes which exist in several states, which may be 

beneficial in specific scenarios. Fitness tradeoffs for contrasting soil resources, and between 

abiotic and biotic constraints, are important (Ho et al., 2005; Hu et al., 2014; Postma et al., 

2014a; Miguel et al., 2015; Dathe et al., 2016; Galindo-Castañeda et al., 2018; Rangarajan et al., 

2018; Yang et al., 2019). In addition to tradeoffs for external resources, the fitness landscape of 

specific phene states is dependent on other aspects of the plant phenotype. Dynamic constraints 

such as carbon availability further increase the complexity of the system. For example, 

phosphorus-deficient plants have smaller leaves and slower leaf appearance resulting in reduced 

sink strength of the shoot, thereby increasing relative allocation of carbon to the root system, 

whereas nitrogen deficiency slows growth, sometime severely, due to reduction in 

photosynthetic efficiency, both engendering C limitations, though, in different ways (Sinclair and 

Horie, 1989; Lynch et al., 1991). Identifying optimal integrated phenotypes is a highly complex, 

nontrivial challenge. 

Considering multiple states for each phene, phene synergisms and antagonisms, 

acquisition of multiple nutrients simultaneously, multiple soil types, multiple precipitation 

regimes etc., the number of relevant scenarios is of the order of 6 x 1023. Moreover, when 

evaluating the functional benefits of alternative trait interactions there a large number of 

conflicting objectives (e.g., maximize biomass production, minimize nutrient requirements, etc.). 

Therefore, the challenge of mapping and understanding the fitness landscape for root phenotypes 

(i.e., the relationship of root phenes and root phenotypes to plant performance), is a hugely 

complex and challenging nonlinear problem. In a recent study with three root phenes (BRWN 

[Basal Root Whorl Number], RGA [Root Growth Angle], and LRBD [Lateral Root Branching 

Density]) in contrasting and extreme phene states combined factorially, we have shown that 

interactions among phenes in combination with trade-offs due to carbon limitations result in 

several distinct root architectures with varied fitness in environments varying in nutrient 

availability. However, there is no single optimal architectural phenotype; there exist multiple co-
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optimal root architectural phenotypes for a given environment (Rangarajan et al., 2018). The 

findings of multiple optimal integrated phenotypes have been supported by a recent study which 

identified multiple integrated root phenotypes associated with improved drought tolerance in 

maize (Klein et al., 2020). These phenotypes were found to co-optimize three strategies; enabling 

greater root construction and soil exploration by reducing maintenance costs brought about by 

increase in aerenchyma formation and larger cortical cells; increasing penetrability by formation 

of thicker roots with larger proportion of stele, and slower water extraction by restricted 

hydraulic conductance through narrower metaxylem vessels (Klein et al., 2020).  

One approach to identify optimal root phenotypes in a varying nutrient landscape is via 

Multi-Objective Evolutionary Algorithms (Coello Coello et al., 2007). Multi-objective 

algorithms were chosen over other optimization techniques because there are multiple objectives 

to optimize, and most of the decision variables (i.e. input parameters) are continuous, so by 

discretizing the decision space, there are an extremely large number of model configurations to 

evaluate. Inherent trade-offs exist between component of fitness which limits the set of potential 

phenotypes (Ho et al., 2005), therefore, the integrated phene space is discontinuous. 

Evolutionary algorithms in multi-objective search and optimization are effective in their ability 

to handle complex problems, involving features such as discontinuities, multimodality, disjoint 

feasible spaces and noisy function evaluations (Fonseca and Fleming, 1995). Multi-objective 

evolutionary algorithm frameworks, particularly Borg (Hadka and Reed, 2013), have been shown 

to give better solutions than other evolutionary algorithms and random evaluations in several 

real-world optimization applications. The premise of multi-objective optimization is that the best 

phenotype for one task is usually not the best for other tasks—resulting in a fitness tradeoff.  

Tradeoffs occur when the benefit of one trait comes at the cost of allocating resources to a 

different trait (Kimball et al., 2013). Biomass is the result of trade-offs between uptake of 

nutrients which require deployment of strategies which are conflicting in functionality. Tradeoffs 

also exist among different phenes in terms of function as well as carbon investment required. 

Due to these tradeoffs, different strategies are adapted by different phenotypes to obtain 

comparable biomass. Addressing the optimization as a single objective problem, i.e. evaluation 

of the phenotypes based solely on their biomass, will result in a single optimal solution while 

disregarding a wealth of information regarding comparable phenotypes. The result of the multi-

objective optimization is a set of non-dominated solutions (Pareto optimal solutions), which are 
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points on the pareto–front (Coello Coello et al 2007; Noor and Milo 2012; Shoval et al. 2012). 

This set comprises phenotypes whose performance in one objective cannot be improved without 

reducing performance in the other objectives.  

SimRoot, a functional-structural plant model has been used extensively for elucidating the 

functional value of one or more phenes, and to analyze phene interactions (Walk et al., 2006; 

Lynch, 2007; Postma and Lynch, 2011a; Postma and Lynch, 2011b; Postma et al., 2014; Dathe et 

al., 2016; Rangarajan et al., 2018). In this study, we use Borg with SimRoot to identify optimal 

root phenotypes of common bean (Phaseolus vulgaris) and maize (Zea mays), representing a 

dicot and a monocot species that are both primary global food security crops. The optimizing 

routine searches the decision space constrained by a range of root phenes while optimizing for 

several objectives including maximizing phosphorus uptake, nitrate uptake, shoot biomass and 

rooting depth while minimizing carbon investment in root construction and maintenance 

including root respiration. Rooting depth was chosen as an objective in the study. Deeper rooting 

improves water and N capture in many agroecosystems ((Tuberosa, 2012; Wasson et al., 2012; 

Comas et al., 2013; Lynch, 2013; Maeght et al., 2013; Lynch and Wojciechowski, 2015; Pierret 

et al., 2016; Lynch, 2019), and increases the stability of plant-derived carbon (C) in the soil.  

Globally, soil C is estimated to be twice as large as the pool of atmospheric C (Kell, 2011, 2012), 

and the capacity of soils to retain C has not yet been saturated. Since the depth of C deposited in 

the soil by root activity is related to its residence time, deeper crop rooting, achieved by genetic 

selection or agronomic management, has been proposed as a viable option to sequester 

atmospheric CO2 and partially mitigate global climate change (Rasse et al., 2005; Gewin, 2010; 

Kell, 2011; Kell, 2012; Grieder et al., 2014). Numerous combinations of root phenes could 

generate integrated phenotypes and such combinations differ between monocots and dicots, and 

among taxa within these groups (Lynch, 2019). Using SimRoot with Borg, we are able to identify 

optimal integrated common bean and maize root phenotypes which have optimal phosphorus and 

nitrate uptake, representing a mobile and immobile nutrient in the soil, under a dynamic 

constraint imposed by carbohydrate availability. 
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METHODS 

 

Description of the model 

In this study, the functional-structural plant model SimRoot (Lynch et al., 1997; Postma and 

Lynch, 2011; Rangarajan et al., 2018) was used in conjunction with Borg (Hadka and Reed, 

2013), a multi-objective evolutionary algorithm. Evolutionary algorithms are nature inspired 

heuristic stochastic algorithms. In these algorithms the space of parameters are encoded as 

strings and the algorithm use these strings to create populations of candidate solutions and the 

principle of survival of the fittest selects those candidates that are better in terms of objective 

function (fitness function). The Borg multiobjective evolutionary algorithm (MOEA) is a many 

objective, multimodal optimization procedure (Hadka and Reed, 2013). It represents a class of 

algorithms whose operators are adaptively selected based on the problem and combines ɛ-

dominance, ɛ-progress and randomized restarts (Hadka and Reed, 2013). The algorithm includes 

an ɛ-box dominance archive for maintaining convergence and diversity through-out search, use 

of ɛ-progress, which is a computationally efficient measure of search progression and stagnation, 

an adaptive population sizing operator to maintain search diversity and to facilitate escape from 

local optima, and multiple recombination operators to enhance search in a wide assortment of 

problem. 

Figure 3-1 outlines the functioning of the SimRoot-Borg evaluation system. The 

parameters explored (also called input variables or decision variables) are root phene states 

including angles, number of roots, lateral root branching density. The numerical outputs from 

SimRoot model are used as the objectives subjected to optimization. The constraints on the range 

of values a decision variable can assume is set based on studies on root trait variations derived 

from phenotypic studies in published literature and this defines the space to be explored within a 

given domain of variation. The input variables for the maize root system and bean root 

phenotypes included in the study with the constraints on the range of values are presented in 

Table 3-1 and 3-2 respectively. 

Population size and the number of generations were chosen after performing many 

simulations and taking into account the needs of our case study. Preliminary studies showed that 

the optimization runs headed towards regions of high nutrient availability. In order to include all 

regions of the nitrate phosphorus availability landscape, availability was included as an objective 
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which was minimized. Optimization runs were conducted on Texas Advanced Computing 

Center’s Stampede and Cornell University’s The Cube. 50,000 runs corresponding to 500 

generations were run with at least 5 random seed resulting in at least 250,000 total evaluations 

each for the bean system and maize system and the solutions from the end of the run with each 

seed were used for further analysis.  Epsilon values corresponding to 10% of objective values 

were used. Solutions from specific regions in the nitrate and phosphorus landscape were selected 

further analysis. The regions included corresponds to regions with low phosphorus and non-

limiting nitrate, low nitrate and non-limiting phosphorus and regions where both nitrate and 

phosphorus were limiting. 

 

Analysis of simulation results 

Model outputs and visualization of the objective space 

SOM was performed to analyze the objective space within the Pareto-optimal set of solutions. 

The pareto-optimal solutions consist of a variety of distinct phenotypes which differ in their 

performances in one or more objectives. Self-organizing maps (SOMs) provide a graphical and 

qualitative way of extracting knowledge. SOMs result from a process in which neighboring 

clusters influence each other, resulting in a network topology reminiscent of biological systems 

(Kohonen, 1997; Wehrens and Buydens, 2007). A SOM allows the projection of information 

embedded in the multidimensional objective and decision spaces onto a two- dimensional map 

(Bandaru et al., 2017). All phenotypes, regardless of the region in the nitrate -phosphorus 

landscape they evolved in, were clustered under a SOM scheme (som function).1000 training 

iterations were used during clustering, over which the α-learning rate decreased from 0.05 to 

0.01. Phenotypes are thus assigned to a node in the SOM grid based on their combined 

performance in all the objectives. In this way different phenotypes in the pareto front are 

clustered solely based on their position in the objective space. Phenotypes evolved in different 

regions of the nitrate/phosphorus landscape having similar performances in all the objectives 

were clustered on the same or neighboring nodes by this method. 

 

Analysis of optimal phenotypes 

Nodes containing phenotypes with greater biomass under each combination of available nitrate 

and phosphorus was considered for further analysis. The optimal phenotypes resulting from the 
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optimization procedure are obtained as vectors of numerical values of root traits corresponding 

to each root type. These values are in a continuous space and to represent them, a heatmap plot 

was used. The root systems were simulated based on the optimized root phene values and images 

rendered for visualizing the root phenotype.  

Several phenotypes were seen in the optimal set. Three phenotypes were selected for 

further analysis in each region of the NP landscape (low P, low N, low N+P). A sensitivity 

analysis was conducted on the phenotypes evolved in low N region by varying the number of 

nodal roots. 

 

RESULTS 

 

The objective space 

2700 maize solutions and 2400 bean solutions corresponding to optimal phenotypes in regions 

varying in nitrate and phosphorus were obtained. Shoot biomass, phosphorus uptake and nitrate 

uptake were maximized in the optimization routines. The Pareto solutions were obtained in the 

multi-dimensional objective function space (5 dimensions for bean root system; biomass, P 

uptake, N uptake, carbon cost and root respiration and 6 dimensions for the maize root system; 

biomass, P uptake, N uptake, carbon cost,  root respiration and root length at depth). The pareto-

front is mapped onto the two-dimensional Self-Organizing Map (SOM) (Kohonen, 1997), 

according to the scaled objective function values, where trade-offs are successfully visualized. 

The clustering by SOM can be visualized as fan plots or as SOM heatmaps. The performances of 

the various phenotypes in different objectives in the optimal solution set of bean and maize root 

system in a region with low N+P is visualized in Figure 3-2(a) and Figure 3-2(c) respectively. 

The complete pareto set obtained from the bean and maize optimization routines are shown in 

Supplementary Figure 3-S1(a) and Supplementary Figure 3-S1(b). 

Regions with greatest shoot biomass corresponded to regions with greatest nutrient 

availability, however, not all phenotypes evolved under greatest nutrient availability had high 

shoot biomass. Root carbon cost and root respiration were minimized in the optimization routine. 

The regions with low carbon cost and low respiration typically had low phosphorus uptake, 

nitrate uptake and so, low biomass also (Figure 3-2(a), Figure 3-2(b) node 9; Figure 3-2(c), 

Figure 3-2(d) node 7, Supplementary Figure 3-S1(a), Supplementary Figure 3-S1(b) region 1). 
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Phenotypes with good biomass varied in carbon costs. Few phenotypes had very good nitrate 

uptake and/or very good phosphorus uptake in every region of the NP landscape. Phenotypes 

with good biomass had good nitrate and phosphorus uptake but phenotypes with very good 

nitrate uptake or phosphorus uptake did not necessarily have the greatest shoot biomass and 

depended upon the carbon invested in the root system (Figure 3-2(c), Figure 3-2(d): node 9). 

Regions with optimal biomass were regions which had intermediate performances in all other 

objectives (Figure 3-2(a), Figure 3-2(b): node 4; Figure 3-2(c), Figure 3-2(d): node 3, 

Supplementary Figure 3-S1(a), Supplementary Figure 3-S1(b) region 2).  

Different phenotypes had different performances in different objectives in the same 

region of the NP landscape. Trade-offs between objectives were seen in different regions of the 

landscape. The trade-offs in performance in the objective was specific to specific NP regions. 

For example, phenotypes optimizing for greater P uptake in a low P environment were also the 

ones which had the greatest biomass (Figure 3-3: Phenotype a1). However, phenotypes 

optimized for P uptake in a low N environment had less than optimal biomass for that region of 

the NP landscape (Figure 3-3: Phenotype b2)). 

The maize root optimization routine included an objective to find optimal phenotypes 

which had greatest root length at deeper soil strata, i.e., maximize root length at greater depth. 

Many phenotypes with the greatest root length in deeper soil strata were also the phenotypes 

which had good nitrate uptake and consequently good biomass (Supplementary Figure 3-S1(b) 

region 3). There were also phenotypes which had good root length but not as efficient in 

accumulating biomass (Figure 3-4). 

Different phenotypes had similar performances in at least one of the objectives in the 

same region of the NP landscape, i.e. multiple optimal phenotypes existed for an objective. For 

example, the phenotypes evolved in a region of the landscape with suboptimal N and P had less 

than 10% Coefficient of variation (CV) in all the one of the objectives i.e. shoot biomass whereas 

they had greater than 10% CV in other objectives. (Supplementary Figure 3-S2, Supplementary 

Figure 3-S3). Similar trends were seen in other regions of the NP landscape too. In this study we 

focus on optimal phenotypes for shoot biomass in bean and maize and for greater rooting depth 

in maize. The data corresponding to these objectives, irrespective of how they performed in the 

other objectives, in specific regions of NP landscape corresponding to low P, low N and low 

N+P were further analyzed. 
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The phenotypic space / Morphospace 

Preliminary investigation of the optimal phenotypes suggested that not all combinations of states 

of different phenes were represented in the final optimal solution set. The phene states of the 

constituent phenes represented in the optimized phenotypes had very skewed distribution. For 

better interpretation of the characteristics of the optimal solutions, the phenotypes were analyzed 

at the root class levels. 

Primary root (PR): The primary root phenotype in bean and maize root system is defined by 

diameter and LRBD. Phenotypes with primary roots differing in both diameter and LRBD were 

found among the optimal solutions of both bean as well as maize (Supplementary Figure 3-S4(a), 

Supplementary Figure 3-S4(b)). None of the optimal phenotypes had high values for both 

diameter and LRBD in bean or maize. Some phenotypes had very large diameter and some very 

high LRBD (Supplementary Figure 3-S4(a), Supplementary Figure 3-S4(b)). Phenotypes with 

large diameter primary roots typically had low biomass and also low carbon cost and lower 

respiration in bean as well as maize. Phenotypes with very high LRBD were seen in phenotypes 

optimal under low P in bean and in maize root systems. Roots under low P had smaller primary 

root diameter than under low N or low N+P (Figure 3-5(a), Figure 3-5(b)).  

Hypocotyl-borne roots (HBR) in bean: The HBR phenotype is defined by the number of root 

axes, their diameter and LRBD, and phenotypes differing in all three of these phenes were found 

among the optimal solutions in bean (Supplementary Figure 3-S5). Phenotypes with more HBR 

as well as greater LRBD of HBR were found in optimal phenotypes evolved under low P (Figure 

3-5(a)). Some phenotypes did not have any HBR and were typically found in regions low in N 

and under very low P (Supplementary Figure 3-S5). 

Seminal roots (SR) in maize: The SR phenotype is defined by the number of root axes, and their 

angle, diameter and LRBD. Phenotypes differing in all of these phenes were found among the 

optimal solutions in maize (Figure 3-6). Some optimal phenotypes had no SR whereas some had 

many SR. Under low P, phenotypes had fewer SR, which were highly branched and had shallow 

growth angles. Under low N, phenotypes had deep angled SR, with very few lateral roots. 

Phenotypes under low P had shallow SR, while those under low N had deep angles and those 

under low N+P had intermediate SR angles. Greatest LRBD in SR was found in regions with low 

P (Figure 3-5(b)). The seminal root characteristics were dependent on the primary root. For 

example, if the primary root diameter was larger than 2 mm, there were more constraints on the 
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possible phene states of SR phenes; there was a constraint on SR LRBD in that high LRBD SR 

were not found when primary root diameter was large (Figure 3-6). 

Basal roots (BR) in bean: The BR phenotype is defined by the number of root axes, and their 

angle, diameter and LRBD as well as the BRWN. Small diameter, highly branched, shallow 

basal roots were found almost exclusively in low P regions as well as in low N+P (Figure 3-

5(a)). Basal root phenotypes in low N are distinctly different from those expressed in low P 

conditions and typically had more basal roots with fewer lateral roots (Figure 3-5(a)) and had a 

wide range of root growth angles. The basal root phenotypes found in the optimal bean 

phenotypes are presented in Supplementary Figure 3-S6. 

Nodal roots (NR) in maize: The NR phenotype is defined by the number of root axes, and their 

angle and diameter as well as time of emergence. Optimal phenotypes under low P had fewer NR 

while those under low N had more NR (Figure 3-5(b)). Phenotypes with the greatest NR LRBD 

were found in the low P region (Figure 3-5(b)). The nodal root phenotypes found in the optimal 

maize phenotypes are presented in Supplementary Figure 3-S7. 

 

The integrated phenotype   

The optimal phenotypes that evolved in different regions of the NP landscape were based on 

certain root class specific phenotypes. None of the phenotypes had the maximum potential value 

for all the phenes even under non-limiting nutrient conditions, i.e., huge root systems were not 

found in the optimal set. Some of the optimal bean and maize root phenotypes in high N+P 

region are depicted in Supplementary Figure 7. There were differences in root class phenotypes 

in different regions of the NP landscape. Optimal phenotypes under low P had the greatest 

LRBD, shallowest angles, greatest number of roots (Figure 3-5(a), 3-5(b)) and whorl occupancy 

The characteristics of root classes emerging later in development depended upon the 

already emerged phenotype as well as nutrient availability in a particular region of the NP 

landscape. For example, optimal maize roots with very highly branched primary roots were 

found in regions with suboptimal P, suboptimal N as well as suboptimal N+P regions but with 

different states of phenes of the SR and NR (Figure 3-7). While phenotypes in suboptimal P had 

no SR (Figure 3-7: Phenotype a ), those under suboptimal N had a large number of SR with steep 

growth angles (Figure 3-7:  Phenotype b) and when both P and N were suboptimal, the 

phenotype with highly branched PR had shallow-angled SR (Figure 3-7: Phenotype c). 
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Optimal bean root phenotypes under low P had highly branched PR with few highly 

branched, shallow BR and more HBR (Figure 3-8: Phenotype Low P1). Other optimal 

phenotypes under low P included a phenotype with more BR and greater LRBD and no HBR 

(Figure 3-8: Phenotype Low P2). A phenotype with more BR with varying number of branches 

and few HBR was also found to be optimal in low P (Figure 3-8: Phenotype Low P3). Tradeoffs 

between the number of BR, BR LRBD and number of HBR with shallow angled BR resulted in 

optimal phenotypes in low P. Optimal bean root phenotypes under low N had slightly larger 

diameter PR than optimal phenotypes under low P, more basal whorls were occupied with 

varying number of BR and LRBD and varying RGA (Figure 3-8: Phenotype Low N1). A 

phenotype with well-developed PR having optimal LRBD and very few BR with intermediate 

angles, very low BR LRBD, no HBR was also found to be optimal under low N (Figure 3-8: 

Phenotype Low N2). This phenotype, Phenotype Low N2, had very few axial roots which 

enabled much greater production of primary and secondary root laterals of PR (Figure 3-8: 

Phenotype Low N2). The combination of low carbon cost due to very few axial and a well-

developed primary root resulted in a phenotype optimal under low N. Another optimal phenotype 

under low N had greater occupancy at basal whorls, with few roots at each whorl and BR with 

more branches and intermediate angles (Figure 3-8: Phenotype Low N3). More whorl occupancy 

with few roots at each whorl, varying number of BR with varying angles and very few LRBD as 

compared to optimal phenotypes under low P were characteristic of optimal bean root 

phenotypes under low N. Optimal bean phenotypes under low N+P conditions had phenotypes 

with few or medium number of lateral roots, intermediate growth angles and few or no HBR 

(Figure 3-7: Phenotype Low N+P1, Phenotype Low N+P2, Phenotype Low N+P3).  

Maize root phenotypes in low P had highly branched primary roots with no SR and few 

NR (Figure 3-9: Phenotype Low P1), or primary roots with very low LRBD, no SR and highly 

branched NR (Figure 3-9: Phenotype Low P2) or primary roots with very few branches and 

highly branched shallow SR with few NR with very low LRBD (Figure 3-9: Phenotype Low P3). 

Under Low N, one of the optimal maize phenotypes had more SR with intermediate branching 

(Figure 3-9: Phenotype Low N1) and very few deep NR with very low LRBD. Another optimal 

phenotype under low N had SR with very few branches and many NR with very low LRBD. This 

phenotype had more NR with some NR with deep angles and some with shallow angles (Figure 

3-9: Phenotype Low N2). A phenotype with more SR with few lateral root branches and few NR 
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with greater LRBD was also found to be an optimal phenotype under low N (Figure 3-9: 

Phenotype Low N3). Under low N+P, varying number of SR and SR LRBD as well as varying 

NR number and NR LRBD with intermediate root growth angles were found among the optimal 

maize phenotypes (Figure 3-9: Phenotype Low N+P1, Low N+P2, Low N+P3) 

 

Sensitivity analysis 

While phenotypes with low P tended towards very high LRBD obtained in terms of high LRBD 

in PR or SR or NR, those under low N had different phenotypes varying specifically only in SR 

LRBD and number of nodal roots or NR LRBD and number of nodal roots. Varying all the 

parameters to perform sensitivity analysis would be computationally very expensive. So, we 

conducted a sensitivity analysis by varying only the number of nodal roots in the three optimal 

phenotypes presented under low N. (Figure 3-10). We changed the number of nodal roots in two 

distinct optimal phenotypes under low N (Phenotype Low N1, Phenotypes Low N2) and 

analyzed the performance of the phenotypes in various objectives and found that the biomass of 

several phenotypes with different number of nodal roots were comparable, while the 

performance in other objectives varied. This suggests that when the state of a single phene is 

varied, the states a particular phene could occupy to result in optimal biomass is not a single 

unique value but a range of values, as long as roots are allocated to regions with greater resource 

availability (Figure 3-10(a), Figure 3-10(b)) and there is balance in the tradeoffs in carbon costs 

and nutrient acquisition.  

 

DISCUSSION 

 

In this study we used SimRoot, a FSPM with Borg, a multi-objective evolutionary algorithm to 

identify optimal maize and bean root phenotypes in environments with varying availability of N 

and P. Nutrient uptake and biomass were maximized while root carbon costs were minimized in 

the routine and the optimal root phenotypes were identified by estimating the performances of 

various phenotypes generated by varying the states of phenes such as the number of root axes, 

root growth angle, diameter and branching density of different root classes. Using the Borg-

SimRoot framework, we were able to obtain optimal root phenotypes under varying levels of N 

and P in bean and maize root systems. Nitrogen and P are primary limitations to plant growth in 
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terrestrial environments, and providing an interesting contrast in that N (as nitrate) is highly 

mobile in soil water whereas as P is highly immobile in soil. These two resources therefore 

represent two broad classes of resources; mobile (including water and nutrients soluble in water 

such as nitrate, sulfate, Ca, Mg, silicate) and immobile (remaining nutrients). We analyzed root 

phenotypes of two species, maize and common bean, representing a monocot and a dicot root 

architecture. The main difference between dicot and monocot root systems is that new roots 

(laterals) emerge from already existing roots in dicots, whereas in monocots nodal roots 

continually emerge over time from shoot nodes near or above the soil surface. Similarities and 

differences were seen among the optimal phenotypes in the two species. While diameter of all 

root classes in both species were optimized towards thinner diameters, states of the other phenes 

varied based on the limiting nutrient. Some strategies for optimal nutrient uptake were similar 

while others differed between bean and maize. Multiple phenotypes with similar biomass were 

seen in each region of the NP landscape. The optimal phenotypes were distinct based on trade-

offs between root class for optimum nutrient uptake to maximize shoot biomass while being 

economical in terms carbon invested in the root system. 

SimRoot is a FSPM which considers the dynamic feedbacks between function and 

structure, spatial and temporal heterogeneity in resource distribution and competition and also 

includes costs and benefits of different root phenes and growth strategies, was used in this study 

to generate and evaluate various root phenotypes (Lynch et al., 1997). SimRoot has been 

extensively used to evaluate trait utility, estimate process such as competition for soil resources 

within and among neighboring plants, discover new traits, and to evaluate phenotypes and 

environments that do not exist in nature (Postma and Lynch, 2011a; Postma and Lynch, 2011b, 

York and Lynch, 2015; Rangarajan et al., 2018; Strock et al., 2018; Benes et al., 2020).  Few 

studies have attempted to optimize root phenotypes, typically using simple representations of 

root structure and function and relatively few parameters (Dunbabin et al., 2003; Ho et al., 2004) 

and fewer studies have used evolutionary algorithms towards attaining this goal. Evolutionary 

algorithms and plant structural models have been used to explore multicriteria fitness landscapes 

for shoots (Niklas, 1994). A study by Renton and Poot (2014) used an evolutionary optimization 

algorithm to simulate the evolution of water foraging strategies using a simple representation of 

the dynamic root structure. The complexity of both the root phenotype and the soil environment, 

the large number of parameters involved and their dynamic nature make exploring all possible 
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parameter combinations to identify optimal phenotypes a nontrivial computational challenge 

(Lynch and Brown, 2012; Renton and Poot, 2014; Rangarajan et al., 2018). 

 

Optimal root phenotypes in low P 

Phenotypes with maximum biomass under low P had the greatest LRBD in both maize and bean. 

Studies have shown that greater LRBD and more axial roots are independently beneficial for P 

uptake (Lynch, 2007; Postma et al., 2014a; Jia et al., 2018; Rangarajan et al., 2018; Sun et al., 

2018; Lynch, 2019). However, the optimal number of axial roots depends on the LRBD 

(Rangarajan et al., 2018). The phenotypes optimized under low P prioritized greater LRBD over 

production of more axial roots in maize as well as bean resulting in root phenotypes with greater 

soil exploitation, a requirement for the uptake of immobile soil resources such as P. Bean had 

shallow basal roots with a very narrow range of growth angles; this is in agreement with several 

studies which show that topsoil foraging is beneficial for P uptake (Liao et al., 2001; Rubio et al., 

2003; Ho et al., 2004; Ho et al., 2005; Lynch and Ho, 2005; Zhu et al., 2005; Lynch, 2011; 

Miguel et al., 2013; Kong et al., 2014; Rangarajan et al., 2018).  However, maize did not have 

very shallow root growth angles. Like other monocots, maize continually forms nodal roots 

which pass through topsoil as they descend to deeper soil strata (Lynch and Wojciechowski, 

2015) and so are not dependent on an exclusively shallow angled root class for topsoil 

exploration, unlike dicots. The different alternate bean root phenotypes selected as optimal were 

variation of the same phenotype with occupancy at different whorls. Basal roots emerge around 

the same time (Basu et al., 2007; Miguel et al., 2013) and since the states of the other basal root 

phenes were similar except for the whorl position in several of the phenotypes, these phenotypes 

were not very distinct from each other, resulting in fewer distinct phenotypes under low P. In the 

case of maize, temporal variation in emergence of different classes of roots (Hoppe et al., 1986) 

results in more distinct phenotypes for phosphorus uptake as compared to bean. At very low P, 

optimal maize phenotypes had a highly branched primary root with an absence of seminal roots. 

The large carbon cost imposed by a highly branched primary root and absence of emerging 

seminal roots for next few days enabled better primary root, which subsequently supported 

production of more nodal roots. In bean, the basal roots emerge soon after germination, forming 

the scaffold of subsequent lateral roots. However, hypocotyl-borne roots emerge much later and 

are restricted in their root growth angle, growing almost horizontally, exploring almost 
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exclusively the topsoil( Miller et al., 2003 )) unlike nodal roots in maize which have a greater 

range of growth angles (Trachsel et al., 2011; Trachsel et al., 2013; Wu et al., 2014; Dathe et al., 

2016). Hypocotyl-borne roots are therefore well-represented in the optimal phenotypes under 

low P but not under low N. Hypocotyl-borne roots with greater plagiogravitropism in dicots such 

as those in cowpea (Burridge et al., 2016) could enable more varied phenotypes under low P 

similar to those seen in maize. The effects of other complementary traits for phosphorus 

acquisition such as root hairs, colonization by mycorrhiza, etc. (Zhu et al., 2006; Miguel et al., 

2015; Hochholdinger, 2016; Galindo-Castañeda et al., 2018) have not been included in this study 

and could certainly have a significant influence in determining optimal number of axial and 

LRBD. 

  

Optimal root phenotypes in low N 

Phenotypes evolving in a low N environment have to optimize against another level of 

complexity as compared to those in low P due to fact that nitrate availability varies spatially and 

temporally. Nitrate has greater mobility than P and competition for mobile resources is much 

greater than for immobile resources (Postma and Lynch, 2012; Postma et al., 2014a). The greater 

number of constraints for N uptake results in a greater number of distinct optimal phenotypes 

under low N than under low P in both maize and bean. It is well established that the number of 

optimal phenotypes increases in proportion to the number of biological tasks that must be 

simultaneously performed (Niklas, 1997). Optimal phenotypes under N-limiting conditions had 

steep root growth angles or had a wide range of growth angles and low LRBD in both maize and 

bean. The utility of low LRBD and steep root growth angles for N uptake under low N 

conditions is well established (Lynch, 2013; Trachsel et al., 2013; Postma et al., 2014a; Lynch 

and Wojciechowski, 2015; Zhan et al., 2015; Dathe et al., 2016; Rangarajan et al., 2018, Lynch, 

2019). We found that optimal phenotypes under low N were those that were able to place roots 

where nutrient availability was greatest (Dathe et al., 2016) while being economical in carbon 

investment. By investing in axial roots with low LRBD, the optimal phenotype is able to reduce 

carbon cost, while the number and angle of axial roots at different nodes/whorls result in a wide 

range of angles allowing greater soil exploration by optimally placing roots in regions with 

greater nutrient availability. The performance of the optimal phenotypes was not sensitive to root 

growth angles as long as the angles were not too deep as roots with very deep angles resulted in 
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competition between roots (Ge et al., 2000; Rubio et al., 2001, Dathe et al., 2016). The 

emergence of roots at different nodes sequentially over time enabled maize to adopt other 

strategies of optimizing nitrate uptake. One strategy was to develop a deep seminal root system 

with an optimal number of branches, such that the benefit of having more branches outweighs 

the effect of competition, enabling early vigorous root growth with deep soil exploration. 

Seminal roots are known to be important for seedling vigor during early development 

(Hochholdinger et al., 2018, Perkins and Lynch, 2020). In wheat, by the time the nodal roots 

appear, the seminal root system was found to be up to 40 cm deep in the soil. Increasing root 

length contributed by seminal roots is thought to increase water extraction from deeper soil 

layers (Richards, 2008). An added advantage of vigor during early development is that greater 

root and shoot development earlier during the season could synchronize with availability of N in 

the topsoil while reducing loss of nitrogen especially in soils prone to leaching. The phenotypes 

in the optimal set varied in the number of crown roots. While previous studies have shown that 

fewer crown roots are efficient for N capture (Saengwilai et al., 2014), our study shows that the 

optimal nodal root number depends on LRBD of nodal roots as well as the branching frequency 

and number of seminal roots. Phenotypes with fewer nodal roots with very low LRBD were 

beneficial when expressed with a well-developed seminal root system, and phenotypes with 

fewer nodal roots with relatively greater LRBD were beneficial when the seminal LRBD was 

low. A highly branched seminal or nodal root system had better nutrient acquisition with a large 

carbon cost associated with the greater LRBD of the seminal roots or nodal roots. In contrast, a 

phenotype with more nodal roots with very low LRBD was beneficial when the seminal roots 

had very fewer branches. In the low LRBD phenotype with more nodal roots, the root system did 

not acquire as much nutrients as the well branched phenotype, but since the carbon cost of the 

root system was much lower in comparison to the well branched seminal roots and  few nodal 

roots phenotype or the well branched few nodal root phenotype, all three phenotypes varying in 

the number of  nodal roots had comparable biomass. With an increased number of nodal roots, 

the length of the lateral roots is reduced, however, the resulting phenotypes will still have 

comparable biomass as long as roots coincide with regions of high nutrient availability in time 

and space and, tradeoffs in the different root classes do not result in phenotypes with vastly 

different total carbon cost or resource acquisition.   
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Optimal root phenotypes in low N+P 

The importance of colocalizing root foraging and nutrient availability becomes evident when 

multiple nutrients are limited. Optimal phenotypes in low N+P had integrated strategies 

optimized for uptake of both N and P. The phenotypes were found to have roots with more 

node/whorl occupancy and a wide range of growth angles as were seen in optimal phenotypes in 

low N. The LRBD was intermediate between those in low P and low N, with shallower roots 

having more branches than deep roots. This ensured that efficient soil exploitation could occur in 

regions with greatest availability of phosphorus while exploring for nitrate in subsoil. Even 

though the number of whorls occupied were more in the optimal phenotypes under low N+P, the 

number of roots per node was low. The different states of the number, growth angle and LRBD 

of roots at different whorls in bean ensured that the root system had a wide range of angles for 

exploring maximum soil volume. Another strategy was to have roots that were neither deep nor 

shallow but intermediate angled roots. Basal roots in bean and nodal roots in maize with optimal 

number of branching were found to assume intermediate angles when both N and P were 

limiting. Dimorphic root architectures with axial roots with greater range of growth angles, or 

comprising of specific combinations of topsoil foraging such as HBR with traits for subsoil 

foraging such as steep axial growth angles are thought to be efficient for uptake of P and N 

(Miller et al., 2003; Miguel et al., 2013). Maize roots with early shallow and late deep rooting are 

dimorphic (Postma et al., 2014b; Lynch, 2019). Dimorphic root systems (Burridge et al., 2020; 

Lynch, 2019) with shallow and deep roots are also efficient for uptake of mineralized and 

leached N (Ho et al., 2005). A phenotype with greater LRBD in the topsoil and fewer LRBD in 

the subsoil along the same axial root is thought to be an important (Kong et al., 2014), however, 

such phenotypes were not seen in our simulations because plasticity was not included in out 

simulations. The utility of plasticity varies depending on the environment and is poorly 

understood (Schneider and Lynch, 2020). Under low N+P, several phenotypes were found to be 

optimal. The phene states occupied by the various phenes were intermediate in terms of LRBD 

as well as angles. This along with more whorl/ node occupancy and fewer roots resulted in many 

combinations of phenes resulting in greater number of optimal phenotypes than in low P or low 

N. 

 

Phenotypes with large diameter / low carbon cost 

53



 

 
 

Optimal phenotypes had small root diameter with those under low N having slightly larger 

diameter than those in low P. While small diameter roots are cheaper to construct and maintain, 

large diameter roots may have better penetrability and are useful under drought stress (Wu et al., 

2016; Klein et al., 2020). Larger diameter roots are also better for mycorrhizal colonization 

(Reinhardt and Miller, 1990). Some of the phenotypes in the optimized set had larger diameter. 

These phenotypes, while not having as much biomass as those with smaller diameter, had lower 

carbon costs. Development of a strong, large diameter primary root imposed carbon constraints 

such that only roots with low LRBD could have enough growth to efficiently explore and exploit 

nutrient resources needed to accumulate optimal biomass. Investing in axial roots rather than 

high LRBD thereby reduced carbon requirement of the total root system, while at the same time 

enabling much better development of the primary root and more seminal and/or nodal axes 

tending towards greater soil exploration. Root diameter is an aggregate trait by itself, comprised 

of several anatomical phenes which can further be optimized to reduce the carbon cost including 

root cortical aerenchyma, living cortical area, cortical cell file number, cortical cell size many of 

which have tradeoffs between nutrient and water acquisition, mechanical strength of root 

structure and  susceptibility to microbial colonization (Galindo-Castañeda et al., 2019; Lynch, 

2015; Lynch, 2018). In dicots like bean which undergo radial growth, large diameter phenotypes 

can benefit by phenes such as root etiolation (reduced secondary growth) which reduces root 

metabolic costs (Lynch, 2007; Strock et al., 2018).  

 

Phenotypes with greater root length at depth 

Our optimization included maximizing root length deeper than 1 meter as one of the objectives. 

The phenotypes were evaluated after 40 days of growth. At 40 days all optimal phenotypes 

except those with large diameter primary roots had roots beyond 1 meter; however, only 

phenotypes that had greater primary or seminal root LRBD had more root length beyond 1 meter. 

Nodal roots of phenotypes with low LRBD of nodal roots and steep growth angles were found at 

depths greater than 70 cm, suggesting these roots could contribute to deep soil exploration over 

time. Early fast root proliferation could improve nutrient capture and vigorous growth during 

early development helps better establishment of the plant. Phenotypes with deeper roots are 

better for capturing deeper soil resources (Lynch, 2013; Lynch and Wojciechowski, 2015; 

Lynch, 2019). Roots contribute to soil organic carbon in the form of exudates, mucilage and also, 
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since fine root turnover decreases with soil depth, deeper roots can contribute to carbon 

sequestration as well (Pierret el al., 2016; Kell, 2011; Kell, 2012). 

 

Complexity of the landscape 

In this study, we focused only on a small subset of data corresponding to regions low in N, P and 

low N+P, as N and P limitations are ubiquitous in natural soils, are primary constraints to food 

production in low-input systems, and are primary causes of environmental pollution in high-

input systems (Lynch 2019). However, the ultimate landscape of all possible constraints faced by 

a plant in an environment is highly complex and multidimensional. Optimal phenotypes will be 

different for different soil types / precipitation scenarios as the utility of root traits are dependent 

on the pattern of water availability in the target environment (Dathe et al., 2016) seasonal rainfall 

distribution, soil type, crop management, etc. (Lilley and Kirkegaard, 2011). Optimal phenotypes 

also depend on biotic factors, root loss as well as competition among plants of same species as 

well as other species. Many chemical and physical constraints occur in the subsoil which 

effectively reduce rooting depth, water use and nutrient acquisition. These include mechanical 

impedance, hypoxia, soil temperature, changes in physical and chemical characteristics of the 

rhizosphere brought out by the release of protons and exudates. Occurrence of several constraints 

simultaneously requires the integration of several distinct phene states in one optimal phenotype 

specific to the target environment. The use of FSPM with MOEA provides a valuable tool to 

identify phenotypes specific to target environments.   

 

Future directions  

Understanding the root phenome is a bottleneck to breeding crops with improved nutrient 

efficiency and stress tolerance. The complexity of fitness landscapes and inability of plant 

biologists and crop breeders to explore the phenotypic space through empirical experimentation 

is a major constraint to the design of breeding strategies for complex phenotypes. The focus on 

identifying useful phenotypes has been limited to evaluating a specific phene or small set of 

phenes rather than a large number of phene combinations. Because of their complexity, the large 

number of parameters and their dynamic nature, exploring all possible parameter combinations 

to identify optimal growth strategies is a computational challenge. Our approach of combining a 

mechanistic model of root architecture with an evolutionary algorithm can be very useful in 
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providing information for selecting and breeding for a limited number of distinct root 

phenotypes. These results identify phenotypes that have specific elements of ideotypes 

confirmed to have utility for improved P acquisition or N capture. These phenotypes warrant 

empirical validation. Spatial arrangement of roots for competition between species is also an 

optimization problem (Postma et al., 2014b). SimRoot can simulate a single plant or a plant in a 

crop stand and so can also be used to include to optimize overall system benefits in cropping 

systems. Scenarios of future climate scenarios can also be conveniently included and tested in 

our Borg-SimRoot framework 

 

CONCLUSIONS 

 

Many optimal phenotypes identified by the optimization algorithm are phenotypes 

integrating specific nutrient acquisition strategies previously identified empirically. The 

algorithm results in several alternate phenotypes cross the NP landscape, all of which have not 

been included in this study. A wealth of information is made available by the MOEA which can 

be further used to study integrated phenotypes across different regions of the NP landscape as 

well get insights into the mechanisms of phene interactions. Including several other parameters 

of agronomical interests can expand the utility of the framework to identify optimal phenotypes 

across various constraints. 
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Table 3-1: Decision variables, root phenes, with constraints for the maize root system. 
  

  Units Min Max References 
Number of roots Seminal Roots; 

Nodal Roots at 
position 1 to 4 

Number 0 12 Hochholdinger and Tuberosa, 
2009; Burton et al., 2013; York 
and Lynch, 2015 
 

Angle Nodal Roots 1 to 4 Degree from 
horizontal 

0 90 Liao et al., 2004; 
Zhu et al., 2005 

Lateral root 
density 

Primary Roots, 
Seminal Roots;  
Nodal roots at 
position 1 to 4 

lateral roots per 
cm 

1  30 Postma et al., 2014; York and 
Lynch, 2015 

Diameter Primary Roots; 
Seminal Roots;  
Nodal roots at 
position 1 to 4 

mm 0.5 6 Burton et al., 2013, 2014; 
York and Lynch, 2015 

Aerenchyma Primary Roots; 
Seminal Roots;  
Nodal roots at 
position 1 to 4 

Percent of cross- 
sectional area 

0 40 Postma and Lynch, 2011b; 
Hu et al., 2014; Saengwilai et al., 
2014 
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Table 3-2: Decision variables, root phenes, with constraints for the bean root system. 

  Units Min Max References 
Number of 
Whorls  

Basal root Number  0 5 Miguel et al., 2013 

Number of roots Basal Roots; 
HBR 

Number 0 4 (Basal 
roots) 
 

Miller et al., 2003 

Angle Basal roots Degree from 
horizontal 

0 90 Miguel et al., 2013 

Lateral root 
density 

Primary Roots, 
Basal Roots, 
HBR 

lateral roots per 
cm 

1  30 Miller et al., 2003 

Diameter Primary Roots; 
Basal Roots whorl 
1 to 5; 
HBR  

mm 0.6 5 Henry et al., 2009 

Aerenchyma Primary Roots; 
Basal Roots whorl 
1 to 5 ;HBR  

Percent 
 of cross sectional 
area 

0 40 Postma and Lynch, 2011a 
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Objectives SimRootBORG

BORG provides SimRoot with a vector of root phene values

SimRoot returns the objective function values for the vector of root phene values

Stopping criteria – Number of evaluations

✔ Optimized Objectives
✔ Phene values corresponding to the optimized objectives

Figure 3-1: Flow chart of the SimRoot-Borg loop. Vector of phene values is provided by Borg to 
SimRoot as SimRoot inputs. The root architecture model is generated based on the input values 
by SimRoot and outputs obtained at the end of the model run are provided as objective function 
values to Borg for evaluation.

65



Low

High

Biomass P Uptake N Uptake
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Root Carbon Cost Root Respiration Root Length at Depth
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Figure 3-2: Self organizing map (SOM) heatmap of performance of phenotypes in different 
objectives in a region with low N+P. The objectives are clustered by SOM. Each cluster (node) 
in the heatmap has phenotypes with similar performance in all objectives. (a) and (c) presents 
the average value of the objective in bean and maize root systems respectively in that node. (b) 
and (d) show the relative performances of phenotypes in all the objectives in bean and maize 
root systems respectively in that node
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a2

b1

a1 a3
a4

b2 b3 b4

Figure 3-3: Tradeoffs in performance in different objectives. Representative optimal phenotypes in 
low P (a1-a4). Representative optimal phenotypes in low N (b1-b4). The fan plots show the relative 
performance of the different phenotypes in different objectives. Primary roots are in black; Seminal 
roots in red; Nodal roots in green.
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Figure 3-4: Performance of optimal maize phenotypes varying in root length at depth in 
different objectives (a). Distribution of root length with depth for the phenotypes (b). 
Visualization of the phenotypes (c). Primary roots are in black; Seminal roots are in red; Nodal 
roots are in green
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Figure 3-5: Distribution of phene states of bean root phenes in optimal bean phenotypes in low N, 
low P and low N+P regions of the landscape (a). Distribution of phene states of maize root phenes 
in optimal maize phenotypes in low N, low P and low N+P regions of the landscape (b).
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Figure 3-6: Different seminal root phenotypes found in the optimal maize phenotypes. 
The nodes shaded in grey contain the phenotypes that are seen when primary roots have 
larger diameter.
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Figure 3-7: Phenotypes with similar primary root ideotypes and different SR and 
NR ideotypes in optimal maize phenotypes in regions with low P, low N and low 
N+P.
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Figure 3-8: Heatmap showing the phene states of different phenes of optimal bean root system  low 
P, low N and low N+P (a). The respective phenotypes are visualized in (b). Primary roots are in 
black; Basal roots in red; Hypocotyl-borne roots in green. 
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Figure 3-9: Heatmap showing the phene states of different phenes of optimal maize root system 
under low P, low N and low N+P (a). ThThe distribution of the variables are represented color 
coded. White represents the absence of the particular class of roots and traits associated with that 
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trait. The respective phenotypes are visualized in (b). #- Number of roots; Dia - Axial root 
diameter; LRBD - Lateral root branching density. Primary root is in black; Seminal roots are in 
red; Nodal roots are in green. 74
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Figure 3-10: Root length distribution of maize root phenotypes Low N1, Low N2 and Low N3 
(a). Color scale ranges from blue to red with blue being low values of root length. Regions in 
white depict absence of that root class in the phenotype. PR- Primary root; SR - Seminal root; 
NR - Nodal root.  Nitrate availability in the soil profile at  20 days and 40 days (b). Performance 
of maize phenotypes Low N1, Low N2 and Low N3 with change in number of nodal roots (c). 
Performance of maize phenotype Low N1 in different objectives with change in NR number 
(d). Performance of maize phenotype Low N2 in different objectives with change in NR 
number (e).
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A comparative analysis of quantitative metrics of root architectural phenotypes 
Harini Rangarajan and Jonathan Lynch 
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ABSTRACT 
 
High throughput phenotyping is important to bridge the gap between genotype and phenotype. 

The methods used to describe the phenotype therefore should be robust to measurement errors, 

relatively stable over time, and most importantly, provide a reliable estimate of elementary 

phenotypic components. In this study, we use functional-structural modeling to evaluate 

quantitative phenotypic metrics used to describe root architecture to determine how they fit these 

criteria. Our results show that phenes such as root number, root diameter, lateral root branching 

density are stable, reliable measures and are not affected by imaging method or plane. Metrics 

aggregating multiple phenes such as total length, total volume, convex hull volume, bushiness 

index etc. estimate different subsets of the constituent phenes, they however do not provide any 

information regarding the underlying phene states. Estimates of phene aggregates are not unique 

representations of underlying constituent phenes: multiple phenotypes having phenes in different 

states could have similar aggregate metrics. Root growth angle is an important phene which is 

susceptible to measurement errors when 2D projection methods are used. Metrics that aggregate 

phenes which are complex functions of root growth angle and other phenes are also subject to 

measurement errors when 2D projection methods are used. These results support the hypothesis 

that estimates of phenes are more useful than metrics aggregating multiple phenes for 

phenotyping root architecture. We propose that these concepts are broadly applicable in 

phenotyping and phenomics. 

 

INTRODUCTION 

 

Crop production needs to double by 2050 to provide for the increasing global population (Tilman 

et al., 2011; Ray et al., 2013; Wise, 2013; FAO, 2017). A major challenge is the identification of 

efficient crops that cope with climate change and reduce the need for fertilizer and water inputs 

to make agriculture environmentally sustainable. Root architecture influences water and nutrient 
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uptake, so, selecting and developing efficient crops based on their root system architecture 

(RSA) has been proposed as a strategy towards a “second green revolution” (Lynch, 2007; Den 

Herder et al., 2010; Villordon et al., 2014; Lynch, 2019). 

Development of powerful tools in genomic research has resulted in a deluge of genomic 

information. However, this genomic information cannot be fully exploited for crop improvement 

unless it is linked to the phenome (Lynch and Brown, 2012; Cobb et al., 2013; Tardieu et al., 

2017). In the context of roots, the root phenome is the set of phenes manifested by roots of a 

plant, where phenes are elementary units of the phenotype; phenes are related to phenotypes as 

genes are to genotypes (Lynch and Brown, 2012; York et al., 2013). Phenotyping is a bottleneck 

for breeding and genetic analysis because it is species-specific, labor intensive and 

environmentally sensitive, unlike genotyping, which is uniform across organisms, highly 

automated, and increasingly inexpensive (Furbank and Tester, 2011; Lynch and Brown, 2012; 

Cobb et al., 2013; Atkinson et al., 2019). Phenotyping is especially challenging for roots because 

of their complexity, plasticity, and inaccessibility. Significant advances are being made in 

phenotyping methods and technology in an attempt to develop high-throughput platforms. In 

order to develop efficient strategies to explore the phenome, it is important to clarify what 

constitutes a phenotype, delineate the key components that comprise a phenotype, and determine 

the level of resolution at which phenotypic data must be collected. Although an essentially 

infinite number of measurements may be collected to describe each phenotype, a smaller number 

of more basic variables may explain most of the important phenotypic variation among 

genotypes. These basic variables, or phenes are the elementary units of the root phenotype and 

cannot be decomposed to more phenes at the same scale of organization (Lynch and Brown, 

2012). Based on this definition, number of axial roots, lateral root branching density (LRBD), 

root growth angle, root diameter, root length of different root classes of the root system can be 

considered as phenes.   

Current methods for developing high-throughput phenotyping platforms and 

identification of relevant quantitative trait loci (QTL) associated with traits of interest are largely 

based on non-elementary phenotypic metrics. Non-phenes, referred to as phene aggregates in this 

paper, are aggregate components of the root phenotype and describe the distribution of roots, 

shape of roots and/or size of the root system. Phene aggregates include several conventionally 

measured traits including total root length, total area, total volume, as well as novel phenotypic 
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metrics such as convex hull volume, convex hull area, ellipse major axis, ellipse minor axis, 

ellipse aspect ratio, volume distribution, solidity, bushiness index (Iyer-Pascuzzi et al., 2010; 

Clark et al., 2011; Cobb et al., 2013; Topp et al., 2013) and metrics which measure the geometry 

and complexity of root systems such as fractal dimension (FD), fractal abundance (FA), and 

lacunarity (Fitter and Stickland, 1992; Nielsen et al., 1999; Walk et al., 2004). Aggregate 

phenotypic metrics (referred to as aggregate metrics) are comprised of phenes, some of these can 

be measured as a simple aggregate of phenes (e.g. total length), some are represented as a 

function of other aggregates (e.g. bushiness, solidity, volume distribution), some measure shapes 

resulting from interaction of the constituent phenes (e.g. Convex hull volume), and some metrics 

are complex metrics which measure emergent properties of root architecture and cannot be 

described as a simple aggregate, shape aggregate or a function of other aggregates (e.g. Fractal 

Dimension).  

Estimates of phene aggregates change over time and are phenotype specific. Some phene 

aggregates increase over time, some remain relatively static and some decrease in value over 

time (Iyer-Pascuzzi et al., 2010; Zurek et al., 2015). The magnitude of change in estimates of 

phene aggregates with time also vary greatly. This is because some of the phene aggregates are 

one-dimensional measurements while some measurements are a function of more than one 

dimension (Mairhofer et al., 2013). Many phene aggregates are estimates generated from the 

average values of the 2D projections in a rotational image series (Topp et al., 2013) and are 

thought to represent 3D root shape accurately. However, which traits can be measured accurately 

using estimates derived from 2D data and which require 3D representations is poorly understood. 

Depending on the phenotype, metrics derived from rotated 2D projections of the same 3D root 

system can vary significantly. This leads to a related question of how much should an aggregate 

phenotypic metric differ for two phenotypes to be considered distinctly different. Fractal analysis 

of corn roots have shown that the FD of two genotypes can be same but vary in FA (Eghball et 

al., 1993). Root systems with similar FD may vary functionally and genotypes can be 

distinguished when fractal analysis involves FD, FA and lacunarity (Walk et al., 2004). 

Aggregate phene metrics estimate the aggregate of multiple phenes. For example, greater rooting 

depth is an important trait for capture of subsoil N in maize. Greater rooting depth results from a 

combination of deeper axial root growth angle (Manschadi et al., 2006; Trachsel et al., 2013; 

Uga et al., 2013), root elongation rate (Manschadi et al., 2008), expression of fewer crown roots 
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(Saengwilai et al., 2014b; Gao and Lynch, 2016), reduced lateral branching density (Postma et 

al., 2014; Zhan et al., 2015), formation of root cortical aerenchyma (RCA) (Postma and Lynch, 

2011; Saengwilai et al., 2014a), reduced cortical file number and increased cortical size 

(Jaramillo et al., 2013; Chimungu et al., 2014). Each of these phenes are under distinct genetic 

control and have important interactions with each other. Selection for combination of specific 

phenes will therefore be much simpler and precise than would selection for root depth itself 

(Lynch, 2019). Phenes are under more simple genetic control and permit more precise control 

over the root system architecture (RSA) and so, are more useful for selection for crop breeding 

(Lynch and Brown, 2012; Lynch, 2019).  

In this study, we use the functional-structural plant model SimRoot to identify 

phenotyping metrics that are  

• sensitive enough to provide information on the constituent root phenes and their 

states,  

• stable over time and are independent of the time of phenotyping, 

• robust to the imaging method i.e., do not vary when measured in the intact 3D root 

system or when estimated using 2D rotational image series. 

Our analysis shows that 

• Phene aggregates can be explained by phenes. Different phene aggregates capture 

different combinations of subtending phenes. However, these metrics do not provide precise 

information or measures of subtending phene states.  

•  Several combinations of phenes in different states can produce phenotypes which 

have comparable estimates of phene aggregates.  Estimates of phene aggregates are not unique 

representations of the state of the underlying phenes.  

• As the number of phenes captured by an aggregate phenotypic metric increases, the 

stability of that metric becomes less stable over time.  

 

METHODS 

 

Simulation of phenotypes 

The functional-structural plant model SimRoot (Lynch et al., 1997) was used to simulate bean 

(Phaseolus vulgaris) and maize (Zea mays) root phenotypes. In SimRoot, simulated root system 
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comprises of roots of distinct classes as specified by their root diameters, lateral root branching 

density, root growth rate and root growth angle in the input parameters. The root growth angle 

over time depends on the gravitropism. Stochasticity is included in all parameters. The roots are 

simulated as small connected root segments over time. Co-ordinates corresponding to the root 

being simulated as well as the root length, volume, area parameters are stored for the simulated 

root segments as the root grows at specified time points. The root length, area, volume of the root 

system is estimated by integrating the respective parameters over all root segments. The root 

image co-ordinates are used to visualize the simulated root system. The environment was 

considered to be uniform and plastic responses were not considered in this study. 

The number of roots of different root classes, angle, diameter, lateral root branching 

density (LRBD) were varied to produce 1500 maize root phenotypes and 1500 bean root 

phenotypes. The range of values used for each of the root parameter used are given in 

Supplementary Material 2.  

The data corresponding to the simulated root phenotypes were saved during the 

simulation runs. These data files contained the X, Y, Z co-ordinates of the simulated root system 

images used to simulate the root as well as data of root length, area, volume etc. of the simulated 

root segments with their corresponding root class. Roots were allowed to grow without any 

boundaries so that the growing roots did not touch any boundary surface and so no artifacts were 

introduced due to mirroring roots. Stochasticity was included in all the simulated parameters. 

Root growth angle was influenced by root gravitropism. The angle made by the root at 5 cm with 

the horizontal (soil surface) was calculated from the image co-ordinates and used as estimate of 

root angle. In order to obtain accurate estimates of all the phenotypic traits, elementary and 

aggregate phenotypic were extracted/calculated from the data of the simulated images.  

 

Measurement of phene and aggregate phene metrics 

Estimates of phene metrics were measured from the simulated images. Aggregate phenotypic 

trait metrics were calculated for intact 3D root systems as well as projections of the roots systems 

on a 2D plane. The root system was rotated by 20 degrees and the projections on a 2D plane 

were obtained (Figure 2-1 and Supplementary Figure S1).  The average of the estimates of each 

metric in all the projected images for each phenotype was used in studies considering 2D 

projections. The average value was used also in 3D studies where 3D estimates were not 
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obtained including ellipse major axis, ellipse minor axis and ellipse aspect ratio.  The phene 

aggregates estimated and considered in this study, the definitions of these traits and the method 

of obtaining those metrics from SimRoot output is given in Table 1. In order to evaluate how 

phene metrics and phenotypic trait metrics change over time, root images were obtained every 5 

days starting 10 days after germination and metrics obtained for these root systems. This way 

phenotyping metrics were obtained for 3D root systems, 2D projections of the root systems, and 

root system images after different periods of growth.  

 

Random forest analysis 

Data obtained from 3D root systems were analyzed using Random Forest regression. For metrics 

where 3D metric data were not available (ellipse minor axis, ellipse major axis and ellipse aspect 

ratio), the average value of the aggregate phenotypic trait from 2D rotational series was used. 

Random Forest, is a nonparametric technique derived from classification and regression trees 

(CART). Random Forest consists of a combination of many trees, where each tree is generated 

by boot- strap samples, leaving about a third of the overall sample for validation (the out-of-bag 

predictions – OOB). Each split of the tree is determined using a randomized subset of the 

predictors at each node. The final outcome is the average of the results of all the trees (Breiman, 

2001; Cutler et al., 2007). It uses the OOB samples (independent observations from those used to 

grow the tree) to calculate error rates and variable importance, no test data or cross-validation is 

required. However, this method does not calculate regression coefficients nor confidence 

intervals (Cutler et al., 2007). It allows the computation of variable importance measures that can 

be compared to other regression techniques. The R package Random Forest was employed for 

the data analyses, with ntree =1000 and mtry =8. Random forest regression was used with each 

aggregate phenotypic metric as the dependent variable and the input variables as the independent 

variables to identify the most important variables. The selection of the most relevant variables to 

include in the final model was done by ranking the variables according to their importance and 

excluding the least important variables. The variable importance measure, the mean decrease in 

accuracy (%IncMSE) was used for selecting the important variables. Variable importance is 

measured by mean squared error of a variable p, which is averaged increase in prediction error 

among all regression trees when the OOB data for variable p is randomly permuted. If variable p 

is important there will be an increase in prediction error. Random forest was conducted 50 times 
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and 90 percentile from distribution of mean squared error as the significance threshold of 

individual variables. The variables thus chosen were used to run a reduced variable model of the 

original random forest model for each aggregate metric. The reduced variable models were 

deemed acceptable if the Random Forest trained upon the most important descriptors gave a fit 

to the data set which was similar or better than that trained upon all variables.  

 

Variation in estimates of phene aggregate metrics 

One aspect of the study was to find if estimates of aggregate phenotypes were a unique 

representation of the phenes. To address this, a representative phenotype was chosen for the 

maize root system and phenotypes varying by less than 1 % of an aggregate phenotypic trait a 

shape phenotypic trait (Convex hull volume) and a complex phenotypic trait (FD) were chosen to 

find if the phenes constituting the phenotype varied when the aggregate phenotypic trait was 

similar. In an alternate approach, the estimates of convex hull volume and FD of bean root 

phenotypes with differences in basal root whorl number and root growth angles with distinct 

functional value (Rangarajan et al., 2018) were studied. 

 

Estimates of phene and aggregate phene metrics obtained from 2D projections 

In order to study the variation in metrics estimated in 2D rotational image series, the coefficient 

of variation for each phenotype for each phenotypic trait metric was calculated from 2D 

projections of the root system and the phenotypic metrics were compared. 

 

Estimates of phene and aggregate phene metrics over time 

 Root system image data were saved every 5 days from day 10 to day 40 of growth and the 3D 

estimates of the phenes and phene aggregates were collected.    

 

RESULTS 

 

Different bean and maize phenotypes were simulated by varying input parameters in SimRoot. 

 

Variation in simulated phenotypes 
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The estimates of all phenotypes were min-max scaled and the phenotypes were clustered by 

hierarchical cluster analysis of the phenotypes based on their phenes. The results of our study are 

based on a wide array of phenotypes. Phenotypes included in the study had vastly different 

phenotypes and differed in few or many phenes. The heatmap in Figure 4-2(a) shows a small 

subset of data: the relative values of the bean phenes in a few phenotypes (rows) and the 

corresponding phenotypes in Figure 4-2(b). Phenotype 1 had very shallow basal root growth 

angle compared to phenotype 2 while phenotypes 8 and 9 had deep basal root growth angles. 

Phenotype 7 had more basal roots than the other phenotypes. Phenotypes 5 and 6 differed in the 

basal root branching density as well as basal root angle. The heatmap in Figure 4-3(a) shows a 

small subset of data: the relative values of maize phenes in a few phenotypes (rows) and the 

corresponding phenotypes in Figure 4-3(b).  Phenotypes 2 and 3 differed in the number of nodal 

roots with phenotype 2 having more nodal roots than phenotype 3. Phenotypes 4 and 6 had 

similar primary root lateral branching but phenotype 6 had no seminal roots while phenotypes 4 

had 5 seminal roots. Phenotypes 8 and 9 differed in the number of seminal roots as well as 

seminal root LRBD and the number of nodal roots. The heatmap of all bean root phenotypes and 

representative phenotypes considered in this study is included in Supplementary Figure S2(a) 

and S2(b). A similar heatmap for maize root phenotypes are presented in Supplementary Figure 

S3(a) and S3(b) respectively. 

 

Correlation among phenotypic metrics 

Strong correlations were found among the phenes (Figure 4-4(a) and Figure 4-4(b)), in the bean 

root system as well as the maize root system. Axial root length was negatively correlated with 

diameter, number and LRBD of basal roots in bean and nodal roots in maize root system. The 

primary axial root length and seminal axial root length was negatively correlated with diameter 

of the primary root, seminal root axial root length was also negatively correlated with nodal root 

LRBD. Phenotypes with longer axial roots had greater maximum width, maximum depth, convex 

hull area, convex hull volume, major ellipse axis, minor ellipse axis but smaller values for 

solidity (Figure 4-4(b). Solidity was positively correlated with diameter and number of basal 

roots in bean. Strong correlations also exist between aggregate phenotypic trait metrics. Major 

ellipse axis positively correlated with maximum depth.  Convex hull area, convex hull volume, 
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minor ellipse axis and maximum width are highly positively correlated with each other. but are 

negatively correlated with solidity (Figure 4-4).   

 

Random forest analysis: Different phenes are important in determining the estimate of different 

aggregate phenes 

The results of the random forest analysis are shown in Table 4-2. Reduced variable models 

created with Random Forest show proportion of explained variance (R2) between 80 % and 99 % 

for models with all aggregate phenotypic metric except bushiness, which had 62 % in bean and 

41% in maize; and FD which had R2 of 67 % in bean and 20 % in maize. The most important 

variables for each aggregate phenotype for the bean and maize models are summarized in Table 

4-3. The variables have been summarized based on the phene the variable represents. 

Among the variables evaluated by the random forest analysis, axial root length and lateral root 

length were found to be important explanatory variables for all the phene aggregates in both bean 

as well as maize. Lateral Root Branching Density (LRBD) was found to be an important variable 

for total length, total area, total volume, maximum number of roots, median number of roots 

bushiness, FD and FA in bean as well as maize. LRBD was also important for volume 

distribution in maize root phenotypes and ellipse aspect ratio in bean root phenotypes. Number 

of roots and diameter played important roles in determining the total area in maize and bean root 

systems respectively. Root diameter was an important variable for total volume, volume 

distribution, maximum depth, solidity and FD in both bean and maize phenotypes. Diameter was 

also an important variable in total area and ellipse aspect ratio in bean and bushiness in maize 

root phenotypes. Angle was selected as an important variable by the random forest models for 

maximum width, convex hull area, convex hull volume, ellipse minor axis, ellipse aspect ratio, 

solidity and FD for both maize and bean. All the variables evaluated are important for the model 

with FD as the dependent variable. 

 

Estimates of aggregate phene metrics can be similar for phenotypes with different phene states 

Even in phenotypes with similar estimates for aggregate phenotypic metrics, the phene states of 

the constituent phenes varied greatly (Figure 4-5(a), Figure 4-5(b)). Phenotypes chosen based on 

the similarity of aggregate phenotypic metrics had different diameter, LRBD, and number of 

roots of different classes. Conversely, phenotypes in which phenes exist in different states have 
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similar aggregate phenotypic metrics (Figure 4-6). Four bean phenotypes that vary only in the 

number of basal roots and root growth angle were chosen and the estimate of total volume, 

convex hull volume and FD were compared (Figure 4-6). Phenotype 1 has one whorl of basal 

roots with shallow angles, phenotype 2 has one whorl of basal roots with deep angles, phenotype 

3 has three whorls with fanned root growth angles. While phenotypes 1 and 2, which vary only 

in root growth angle, have different estimates for all the three metrics considered (total volume, 

convex hull volume and FD) phenotypes 1 and 3 have similar estimates for FD (varying by less 

than 2%) even though they vary in both in number of basal roots as well as root growth angles. 

Similarly, phenotype 4 has four whorls with fanned angles and differs from phenotype 3 and 

phenotype 1 in number of basal roots as well as root growth angle, but varies in the estimates of 

total volume by 1% and 16 % respectively; and in the estimate of convex hull volume by 1% and 

4% respectively (Figure 4-6). 

 

Variation in estimates of phene and phene aggregate metrics obtained from 2D projections 

 In order to study which metrics are not accurately represented by 2D projections, elementary 

and aggregate phenotypic metrics were estimated from 2D projections obtained by rotating the 

root system through 360 degrees at 20 degree intervals. It should be noted that convex hull 

volume and area of a 2D projection corresponds to surface area of a 2D hull and the length of the 

perimeter of a 2D hull respectively. Analysis with 2D image series shows that among phenes, 

estimates of root growth angle differ when projections are obtained at different rotations. Among 

aggregate phenotypic trait metrics, the metrics which have angle as one of the most important 

variables, including convex hull volume, convex hull area, minor ellipse axis, major ellipse axis, 

ellipse aspect ratio, solidity, FD and FA, as determined in the random forest analysis, are 

sensitive to projection. These phenotypic metrics had a coefficient of variation of 10-20 % but 

some had much greater CV depending on the phenotype in both the maize and bean (Figure 4-

7(a) and Figure 4-7(b)). The differences in estimates inflated when an aggregate phenotypic trait 

was calculated as a function of two metrics which are already subject to lot of measurement 

variation (Figure 4-7(a) and Figure 4-7(b)).  

 

Variation in estimates of phene and phene aggregate metrics over time 
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Some phene aggregates such increase substantially over 30 days, while some remained relatively 

static and estimates of some aggregate metric decreased with time (Figure 4-8(b), Figure 4-9(b)). 

Of the traits, total length, total area, total volume, maximum depth, convex hull area, convex hull 

volume, major ellipse axis, minor ellipse axis and FA progressively increased over time in both 

bean and maize (Figure 4-8(b), Figure 4-9(b), Supplementary Figure 4-S4(b), Supplementary 

Figure 4-S5(b)). There was only a small change in the maximum number of roots in bean over 

time but this value increased significantly in maize over time (Supplementary Figure S5(b)).  

The pattern of changes in FD over time was dependent on the phenotype. There was a small 

decrease in bushiness of bean over time (Figure 4-8(b)). In maize, the phenotypes showed a 

significant increase from day 10 to 20 followed by a drop from day 20 onwards (Figure 4-9(b)). 

The magnitude of increase was dependent on the phenotype. Volume distribution was either 

static or there was a slight increase in the bean phenotypes over time (Supplementary Figure 4-

S4(b), Supplementary Figure 4-S5(b)). In maize the change in magnitude of volume distribution 

over time was dependent on the phenotype. 

 

DISCUSSION 

 

This study investigated the importance and utility of phenes and phene aggregate traits in 

phenotyping studies. Our results confirm that phenes are robust and stable over time and also 

sensitive enough to discriminate between highly similar root systems. In contrast, since phene 

aggregates capture combinations of subtending phenes, and several combinations of phenes in 

different states can produce phenotypes which have comparable estimates of phene aggregates, 

the estimates of phene aggregates are not unique representations of the state of the underlying 

phenes. Aggregate phene metrics are not stable over time, mostly because there is a rapid 

development of many elementary root phenes over time. When the number of phenes estimated 

by the aggregate metric increases, the complex interactions among phenes result in the same 

phenotype having vastly different estimates for the same aggregate metric at different time 

points. 

 

Root models can aid exploration of root phenomics  
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In this study we use SimRoot to simulate root systems and use the simulated phenotypes to 

evaluate various root phenotyping metrics. We used modelling for this study due to constraints in 

obtaining empirical data caused by limitations in phenotyping methodologies and artifacts due to 

technicalities in image processing. Phenotyping efforts represent a compromise between 

throughput, precision and data processing. Many high-throughput phenotyping methodologies 

involve obtaining 2D metrics and depend on growing plants in controlled growth systems such as 

pouch, pots, gel plate systems, germination paper, etc. where root architecture is affected due to 

spatial growth constraints, in particular, branching angles. Not all 3D RSA estimates can be 

obtained by series of 2D image data; some phenotyping metrics such as volume of non-convex 

shapes cannot be obtained from 2D projections, especially from complex root systems. 

Occlusions in 2D images caused by crossing roots increase complexity of systems and reduce 

accuracy of many 2D estimates; this is especially true for mature root systems which are 

complex branched structures composed of overlapping and crossing segments (Lobet et al., 

2017) ; 3D estimates are better for measuring these “traits” but are biased for other parameters 

such as surface area due to technicalities in image reconstructions. 3D imaging techniques such 

as x-ray computed tomography (µCT) and magnetic resonance imaging allow non-invasive 

studying of spatiotemporal dynamics of root growth (Mooney et al., 2012; Tracy et al., 2012; 

Schulz et al., 2013; Metzner et al., 2015), but require elaborate data processing and are suitable 

for relatively small and young root systems due to technical restrictions in container size 

(Bucksch et al., 2014; Landl et al., 2018) and are scanned at low throughput (Downie et al., 

2015; Landl et al., 2018). Studies under controlled conditions enable study of growth of roots 

over time, however are generally used to assess less complex root structures on younger plants 

from germination to ca. 10 day after germination (Clark et al., 2011). This is a particular 

limitation for monocot roots which develop more axial roots over time. Destructive field 

sampling methods such as shovelomics (Trachsel et al., 2011; Burridge et al., 2016) allow the 

measurement of the root crown phenotype however is  associated with loss and possible 

displacement of fine roots (Pagès and Pellerin, 1994; Pellerin and Pagès, 1994). Estimates of 

phenotyping metrics such as fractal dimension is sensitive to incompleteness of the excavated 

root network (Nielsen et al., 1999; Bucksch et al., 2014).  

SimRoot, a functional-structural plant model has been used extensively for elucidating the 

functional value of one or more phenes, and to analyze phene interactions and root complexity 

88



 
 

(Walk et al., 2004; Walk et al., 2006; Lynch, 2007; Postma and Lynch, 2011a; Postma and 

Lynch, 2011b; Postma et al., 2014; Dathe et al., 2016; Rangarajan et al., 2018). Simulations with 

SimRoot enable comparing genotypes that vary only in the phene of interest, i.e. near-isophenic 

lines, which are exceedingly difficult to obtain empirically (Lynch, 2011; York et al., 2013; 

Rangarajan et al., 2018). A significant advantage of using SimRoot is that root architecture over 

time is known in its entirety devoid of measurement and sampling error. Highly complex root 

systems can be simulated and resulting root images can be used without any requirement of 

cleaning images as there is no image noise. Root image co-ordinates are recorded as they grow in 

3D space, and so root phenotyping traits can be measured at any time step without additional 

effort. One of the major hurdles in phenotyping roots is that artifacts may be present so that the 

representation of the root system may not be accurate. 

 

Correlation among estimates of phenes and phene aggregates are an emergent property of 

SimRoot 

Our studies with phenes and phene aggregates show that some phenes are highly correlated with 

each other. SimRoot is a mechanistic model and has no fixed relationships for the root 

architectural parameters. The phenotype is simulated based on a set of input parameters 

including number of roots of different root classes, root growth angles, root diameter, lateral root 

branching density with some stochasticity included in each of the parameters. Due to carbon 

feedbacks and restricted carbon availability, not all phenotypes are simulated. The root system 

develops based on carbon availability as determined by availability in the seed initially. Plant 

growth and development occurs as emerging from underlying processes such as photosynthesis, 

allocation of assimilates, uptake of nutrients and determine the growth of the plant root system 

(Walk et al., 2006; Postma et al., 2014; Rangarajan et al., 2018). There are no correlations built 

into the model and the correlations seen among the phenes in the phenotypes are a result of the 

mechanistic processes that are captured in the model. For example, larger diameter root axes 

result in larger carbon sinks leaving few resources for other roots. A set of carbon allocation 

rules determine carbon allocated to different root classes with axial roots having precedence over 

lateral roots. This is seen as a reduction in lateral root length when the number of roots is greater 

or when the root diameter is greater. Growth rates of the root tips are a function of carbon 

availability and if severe carbon limitations occur (as would occur if the phenotype being 
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simulated had many axial roots, greater branching density or large diameter roots or combination 

of these), axial root length is affected and in extreme cases may inhibit the emergence of roots 

emerging later. Attempts to factorially design phenotypes based on discrete values of the phene 

states resulted in some phenotypes not developing for more than few days due to carbon 

limitations. This is because SimRoot keeps track of resource allocation (C, N, P) and trade-offs in 

carbon allocation result in trade-offs among root traits, as occurs with real plants. The trade-offs 

include longer axial roots and longer lateral roots when number of axial roots/axial root diameter 

is reduced, which are seen as high correlations among those phenes. Only those phenotypes that 

supported plant growth for 40 days were used so that the metrics were dependent only on the 

phenotype. All metrics were recalculated/extracted from the simulated root system in order to get 

an accurate estimate of the phenotypic metric.  

Correlations also exist among phene aggregates; maximum depth and major ellipse axis were 

highly correlated; Convex hull area, convex hull volume, maximum width and minor ellipse axis 

were also highly correlated as seen in several other studies Major ellipse axis and maximum 

depth are measures of rooting depth (Wedger et al., 2019) and were correlated with primary root 

length. Maximum width, minor ellipse axis and convex hull are phene aggregates which 

characterize expansion in sense of the outer shape of the root system (Paulus et al., 2014). 

Maximum width and minor ellipse axis estimates are one-dimensional metrics, convex hull is a 

function of all three dimensions (Mairhofer et al., 2013). These differences mean that as the root 

grows, estimates of the convex hull have a much greater increase in magnitude than does 

maximum width. Solidity, which is a ratio of the total volume and convex hull, could increase or 

decrease as total volume is dependent on number of roots, lengths of the roots of different root 

classes and diameters, however convex hull estimates the volumetric expansion of the outer 

shape of the root system.  

 

Phene aggregate metrics are not an unique estimate of phenotype 

Phene aggregate measures such as rooting depth are functionally useful traits, as has been 

demonstrated by several studies. Rooting depth however is influenced by several phenes 

including root angle, number of roots, LRBD , as shown by several studies (e.g. Manschadi et 

al., 2010; Trachsel et al., 2013; Saengwilai et al., 2014b; Zhan et al., 2015; Gao and Lynch, 

2016). A measure of rooting depth however does not provide any information on the constituent 
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phenes such as rooting angle, number of roots etc. which all contribute to rooting depth. The 

same is true for other phene aggregate measures such as convex hull volume. Convex hull, 

defined as the shape of an object created by joining its outermost points, has been used as an 

indicator of the extent of soil exploration. Calculating convex hull from point clouds requires 

minimal preprocessing, making it a popularly used phenotyping metric. Although convex hull 

can provide interesting information about the overall root system shape (Ingram et al., 2012; 

Zurek et al., 2015), it was not found to be useful in discriminating between phenotypes of 

different populations (Iyer-Pascuzzi et al., 2010). In a study comparing roots in compacted and 

uncompacted soil where root geometry is severely affected by soil characteristics, convex hull 

volume differed by a factor of 3 (Tracy et al., 2012). Here we demonstrate that phenotypes with 

convex hull estimates within as low as 5% of each other can have phenes expressed in distinctly 

different states.  

While the estimate of a single phene aggregate metric might not be useful in discriminating 

between phenotypes, using multiple phene aggregate metrics can probably be useful. Each phene 

aggregate trait gives an estimate of the phenotype by capturing different combinations of phenes. 

Total length, area and volume give an estimate of the size of the root system by indirectly 

measuring the number of roots, length of roots and the diameter of the roots. Convex hull, minor 

ellipse axis, major ellipse axis, ellipse aspect ratio, maximum width and maximum depth provide 

information of the extent of the shape by providing a measurement root angle and root length. 

Estimates of these phene aggregates, even though they distinguish features of the root system 

and complement one another in important ways (Topp et al., 2013), do not provide any 

information on the phene states that comprise the phenotype. Studies aimed at finding root traits 

which discriminate between populations / phenotypes have found that no single phene aggregate 

trait was important (Zurek et al., 2015). Which traits were key as well as the number of 

informative traits were highly dependent on differences between RSA and the imaging day 

(Zurek et al., 2015). Complexity of RSA over time reinforce the necessity of assessing a large 

number of traits to distinguish between different varieties as well as individual varieties at 

different ages (Iyer-Pascuzzi et al., 2010; Topp et al., 2013; Zurek et al., 2015). Accuracy of the 

different metrics is strongly linked to the root phenotypes analyzed as well as their size and 

complexity.  
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Variation in estimates from 2D projection images arise especially due to phenes that determine 

the geometry of the root system 

Root angle is an important phene for soil resource capture; studies have shown that shallow root 

angles are important for capture of immobile soil nutrients and deep root angles for mobile soil 

nutrients as well as water capture(Zhu et al., 2005a; Omori and Mano, 2007; Uga et al., 2011; 

Dathe et al., 2013; Lynch, 2013; Miguel et al., 2013; Miguel et al., 2015; Dathe et al., 2016; 

Lynch, 2019) . Differences in root growth angle result in phenotypes with distinct differences 

due to trade-offs in the capture of mobile and immobile soil resources and resulting trade-offs in 

phenes leading to large effects in biomass production (Ge et al., 2000; Dathe et al., 2016; 

Rangarajan et al., 2018). Our results show that estimate of root angle is affected by the 2D 

projection of the root system. Root angle determines the geometry of the root system and was 

found to be an important variable in determining variations in convex hull area, convex hull 

volume, maximum width and minor ellipse axis (Table 2). Aggregate phene traits capturing the 

geometry or overall shape of the root cannot be measured accurately using estimates derived 

from 2D data. The variation in the estimates of root angle when measured using 2D projections 

affect the estimates of all phene aggregate traits in which they play an important role directly or 

indirectly; these include secondary phene aggregate traits such as solidity, ellipse aspect ratio as 

well as root complexity traits FD and FA (Figure 8 and Figure 9). Variation is greater in phene 

aggregates which are estimates of some function of more than one aggregate phene. Even though 

our root phenotypes are simulated, they are based on empirical parameters, and differences in 

number of roots, angles of each root class etc. were varied and as a result, our root phenotypes 

were not symmetrical, to replicate actual root system in fields. This is important because most 

roots found in nature are not symmetrical. We found that greater asymmetry was associated with 

greater variation in the aggregate phenotypic metrics estimated from 2D projections.  Results 

from studies using 2D images from gel culture, growth pouches, narrow growth containers with a 

transparent face, etc., should be interpreted with caution. 

 

Variation in phene aggregate metrics with time is species dependent 

We analyzed root phenotypes of two species, maize and common bean, representing a monocot 

and a dicot root architecture. The main difference between bean, which is a dicot root system, 

and monocot root systems is that new roots (laterals) emerge from already existing roots in 
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dicots, whereas in monocots nodal roots continually emerge over time from shoot nodes near or 

above the soil surface (Rangarajan et al., 2018). Therefore, the vertical distribution of roots vary 

between maize and bean, with the bean root system having a relatively equal root distribution 

whereas maize has more proportion of roots in the topsoil (Postma and Lynch, 2012; Zhang et 

al., 2014). The number of roots as well as root diameter depends on the nodal position in maize. 

This is probably the reason for the great temporal variation in metrics such as volume 

distribution and bushiness which are related to root size. It has been suggested that metrics 

accurate for small dicot root systems might fail for large dicot or small monocot root systems 

(Lobet et al., 2017). Our study confirms that estimates of phene aggregates are not only 

dependent on phenotype and time but also on the plant species. 

 

Metrics of root complexity  

Fractal parameters are different from all the estimated phene aggregates in that they do not 

provide information on shape of the phenotype, extent of shape or size of the root system, but 

instead measure the geometric complexity of the root phenotype (Fitter and Stickland, 1992; 

Nielsen et al., 1997; Nielsen et al., 1999). All the phenes tested were important in determining 

fractal estimates. Fractal dimension was useful in differentiating between P inefficient and P 

efficient bean genotypes (Nielsen et al., 1999) as well study of roots fractal parameters with 

uptake of diffusion limited nutrients and between genotypic variation in wheat, study 

developmental responses in rice (Manschadi et al., 2008; Wang et al., 2009). It was found, 

however, that not a single but combinations of multiple fractal measurements provide useful 

information (Nielsen et al., 1999; Walk et al., 2004). Phenotypes with comparable aggregate 

phene trait estimates can be a result of different combinations of phenes in distinctly different 

phene states. This implies that estimates of phene aggregate traits measure the aggregate of 

multiple phenes (York et al., 2013). Studies have shown that complex phenotypic traits such as 

root complexity as measured by fractal analysis are determined by a multitude of genes with 

small effects (Grift et al., 2011). Even though several studies have resulted in identification of 

QTLs for aggregate phene traits (Topp et al., 2013; Atkinson et al., 2015; Zurek et al., 2015; 

Kenobi et al., 2017), only one gene directly controlling RSA has been cloned (Uga et al., 2011). 

Estimates of QTL locations or effects per se do not give us direct biological information 

regarding the product or function of each gene and the interactions among genes (Bernardo, 
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2008). Phenes are unique, meaning, are the product of only one set of genes and processes at a 

specified scale of resolution (Lynch and Brown, 2012; Lynch, 2019) and so, phene selection is 

more genetically tractable than selection for traits that aggregate multiple phenes, because 

axiomatically phenes are under simpler genetic control than any combination of phenes (Lynch, 

2019). 

 

Selection of phenotypes based on phenes are useful for breeding 

Several phenes have been studied and their functional utility has been established including 

number of roots (crown roots in maize, basal roots in bean), root growth angle (shallow for 

phosphorus uptake and deep rooting angle for nitrogen capture), lateral root branching density 

and length for nitrate uptake(Zhu et al., 2005b; Lynch, 2013; Trachsel et al., 2013; Saengwilai et 

al., 2014; Miguel et al., 2015; Zhan and Lynch, 2015; Rangarajan et al., 2018; Sun et al., 2018). 

In the bean root system, basal roots emerge at the seedling stage and seedling root phenotypes 

have significant relationships with mature root phenotypes in the bean root system. Number of 

basal roots as well as basal root growth angle is stable over time as proven by the fact that 

studies selecting for basal root number and angle  at different stages of growth from seedling to 

few weeks old  plants (Liao et al., 2001; Vieira and Lynch, 2001; Vieira et al., 2008) have been 

consistent. Genetic factors explained 52% to 57 % of genetic variation of phenes in bean 

including basal root whorl number, basal root number, adventitious root number, and 52% of 

phenotypic variation in taproot length in seedlings (Strock et al., 2019). Crown root and brace 

root number , angle and LRBD were found to be genotype-specific and did not change across 

growth stages in maize  (Trachsel et al., 2013).  Basal diameter remains constant in maize while 

apical diameter varies; in dicots like bean, diameter increases with age due to secondary root 

growth (Strock et al., 2018). Root growth/ elongation rates determine the length of the root and 

are thought to be phenes (York et al., 2013; Strock et al., 2019). However, carbon limitations 

could result in delay of emergence of axial roots as well as play a role in determining the final 

number of axial roots. Demotes-Mainard and Pellerin (1992) have observed on maize that the 

emergence of axial roots was delayed, and the final number of axial roots was reduced, with 

increasing levels of competition for light between plants. Time of emergence of roots could also 

be an important phene, especially in maize where roots emerge from different nodes over time. 

Recent studies have shown that cellular anatomy varies among nodes providing evidence for 
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node-specific traits (Yang et al, 2019). Our approach using elemental phenes to discriminate 

between architecturally and anatomically distinct phenotypes based on phene states has been 

used successfully for selection of functionally superior phenotypes for different crop species 

(Burridge et al., 2017). We suggest that it is best to study the phenotypes at their elementary 

level of organization, namely phenes in order to get a better understanding of their functional 

value in terms of the interactions among the phenes and also to identify their genetic features.  

 

CONCLUSIONS 

 

These results demonstrate that phenes including number of roots, diameter of roots, lateral root 

branching density and root growth angle provide reliable descriptors of root phenotypes. Phenes 

are also stable over time and independent of time of phenotyping. Estimates of phenes provide a 

complete description of the resulting phenotype and also enable easier prediction of functional 

attributes the phenotype could potentially have. Data from our in-silico phenotyping environment 

provides access to complete information concerning root architectural phenotypes without 

measurement error, sampling limitations, or confounding factors such as phenotypic plasticity or 

root loss. Even under these conditions, estimates of aggregate phenotypic metrics are less 

reliable than those of phene states. Even though the estimates of aggregate phenotypic metrics 

are dependent on the phenotype, the estimates are not unique estimates of underlying states of 

the constituent phenes. Estimates of phene aggregates also vary in magnitude at different time 

points of growth, the magnitude of change being dependent on the aggregate phenotype metric 

used as well as the constituent phenes. Unlike methods used to estimate aggregate phenotypes, 

estimation of phenes involves simple, straightforward procedures and yield reliable results. We 

suggest that measurement of phenes provides data that are more robust, reliable and relevant than 

metrics that estimate the aggregation of multiple subtending phene states. We show this in the 

context of root architectural phenotypes but propose that these concepts apply to phenomic 

analysis of any organism.  
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Table 4-1: Aggregate phene metrics, definition and method of obtaining them from SimRoot 
output. 

 

Parameter 3D 2D Description Measurement 
Total Length Y Y Summed length along the whole root system Calculated from SimRoot output 
Total Area Y Y Summed surface area of the whole root system Calculated from SimRoot output 
Total Volume Y Y Summed volume of the whole root system Calculated from SimRoot output 

Maximum width  Y Y Maximum horizontal width of the whole root system Calculated using minimum enclosing 
circle algorithm in R 

Maximum depth  Y Y Maximum vertical depth of the whole root system Calculated from SimRoot output 
Median no. of roots  Y Y Median no. of roots from root counts  Calculated from SimRoot output 

Maximum no. of roots  Y Y No. of roots at the 84th percentile of a sorted list 
(smallest to largest) of root counts  Calculated from SimRoot output 

Bushiness   Y Y Ratio of the maximum no. of roots to the median no. of 
roots  Calculated from SimRoot output 

Volume distribution Y Y 

Ratio of the volume of the root system contained above 
one-third depth of the root system to the volume of the 
root system contained below one-third depth of the root 
system 

 Calculated from SimRoot output 

Convex hull volume  Y Y Volume of the convex hull that encompasses the whole 
root system Obtained using Convhulln function in R 

Convex hull area Y Y Surface Area of the convex hull that encompasses the 
whole root system Obtained using Convhulln function in R 

Solidity Y Y Ratio of volume to convex hull volume  Calculated  

Major Ellipse axes Y N Length of major axis of an ellipse best fit to overall 
shape and size of root system 

Obtained using minimum volume 
enclosing ellipse algorithm in R 

Minor Ellipse Axes Y N Length of minor axis of an ellipse best fit to overall 
shape and size of root system 

Obtained using minimum volume 
enclosing ellipse algorithm in R 

Ellipse axis aspect ratio Y N Ratio of major axis of ellipse to minor axis Calculated from minor ellipse axes and 
major ellipse axes 

Fractal Dimension (FD) Y Y 
Measure of root complexity. Fractal dimension 
expresses the space filling properties of a structure (e.g. 
root system) and is associated with branching pattern  

Obtained using box count code written in 
R 

Fractal Abundance (FA) Y Y Measure of root complexity. Fractal abundance is 
associated with the volume of space explored 

Obtained using box count code written in 
R 
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Table 4-2:  Results of regression models created with random forest. The R2. values of Random 
Forest model with entire set of variables and those with only most important variables are 
presented for the bean and maize aggregate phene metrics.  
 

Aggregate Phenotypic 
Metric 

R2  (% Variance Explained)  
 
Bean Maize 

 
Model 
With All 
Variables 

Model with 
Most Important 
Variables 

Model with 
All 
Variables 

Model with Most 
Important 
Variables 

Total Length 89.5 91.6 82 85 
Total Area 87 87 78 81 
Total Volume 81.7 88.5 79 81.6 
Volume Distribution 87 91 61  66 
Max no. of roots 78.8 84 67 72.8 
Median no. of roots 79.9 87 71  75 
Bushiness  62 67 36 41 
Max Depth 98.6 99.6 79 84 
Max Width 91 90 95 99 
Convex hull Area 97.8 97 90 93.4 
Convex hull Volume 97.6 97.6 87 89.9 
Ellipse Minor Axis 94.9 93.6 80 85 
Ellipse Major Axis 96.7 97.3 95 98.6 
Ellipse Aspect Ratio 85.9 87.4 51.9 62 
Solidity 97.4 97.5 89 89 
FD 67 68 16 20 
FA 93.5 94.9 88 90 

 

Note: Random Forest possesses its own reliable statistical characteristics, which could be used for 
validation and model selection. The major criterion for estimation of internal predictive ability of 
the Random Forest models and model selection is the value of R2. R2 in Random Forest is 
interpreted as a measure of predictive quality of Random Forest model on independent samples. 
Random Forest models were run with the aggregate phenotype as dependent variable and all the 
phenes as predictor variables. Most important variables were chosen based on the % increase in 
mean square and Random Forest models were run with only the most important variables.  
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Table 4-3: Summary of the most important variables selected by random forest model for 
phenotyping metric evaluated for bean root system and maize root system. 
 

 

Phene aggregates 
 

                                                        Phenes  
Axial Root 
Length 

No. of 
Roots 

LRBD Angle Diameter Lateral Root 
Length 

Total Length Maize 
Bean 

Maize 
Bean 

Maize 
Bean   Maize 

Bean 
Total Area Maize 

Bean Maize Maize 
Bean  Bean Maize 

Bean 
Total Volume Maize 

Bean 
Maize 
Bean 

Maize 
Bean  Maize 

Bean 
Maize 
Bean 

Volume Distribution Maize 
Bean 

Maize 
Bean Maize  Maize 

Bean 
Maize 
Bean 

Max # of Roots Maize 
Bean 

Maize 
 

Maize 
Bean   Maize 

Bean 
Median # of Roots Maize 

Bean Maize Maize 
Bean   Maize 

Bean 
Bushiness Maize 

Bean Maize Maize 
Bean Bean Maize Maize 

Bean 
Max Depth Maize 

Bean   Maize 
 

Maize 
Bean 

Maize 
Bean 

Max Width Maize 
Bean   Maize 

Bean  Maize 
Bean 

Convex hull Area Maize 
Bean   Maize 

Bean  Maize 
Bean 

Convex hull Volume Maize 
Bean   Maize 

Bean  Maize 
Bean 

Ellipse Minor Axis Maize 
Bean   Maize 

Bean  Maize 
Bean 

Ellipse Major Axis Maize 
Bean     Maize 

Bean 
Ellipse Aspect Ratio Maize 

Bean 
Maize 
Bean Bean Maize 

Bean Bean Maize 
Bean 

Solidity Maize 
Bean Maize  Maize 

Bean 
Maize 
Bean 

Maize 
Bean 

FD Maize 
Bean 

Maize 
Bean 

Maize 
Bean 

Maize 
Bean 

Maize 
Bean 

Maize 
Bean 

FA Maize 
Bean Maize Maize 

Bean Bean  Maize 
Bean 
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(a) (b) (c)

Figure 4-1: Representation of 2D projection of a 3D root system (a) Visualization of maximum 
width, major ellipse axis of a 2D root system (b) and convex hull volume of a 3D root system (c).

106



P
he

ne

BW1

BW2

BW3

BW4

BW5

HBR

PR

BW1

BW2

BW3

BW4

BW5

HBR

PR

BW1

BW2

BW3

BW4

BW5

HBR

PR

BW1

BW2

BW3

BW4

BW5

HBR

BW1

BW2

BW3

BW4

BW5

PR

BW1

BW2

BW3

BW4

BW5

HBR

PR

BW1

BW2

BW3

BW4

BW5

HBR

P
he

ne
 A

gg
re

ga
te

TotalLength

TotalVolume

TotalArea

Maximum#Of Roots

Median#Of Roots

Bushiness

VolumeDistribution

MaxWidth

MaxDepth

ConvexhullArea

ConvexhullVolume

Solidity

MajorEllipseAxis

MinorEllipseAxis

EllipseAspectRatio

FD

FA

987654321

−4
−2

0
2

4

#
A

xi
al

.D
ia

m
LR

B
D

A
xi

al
.L

en
gt

h
A

ng
le

La
t.L

en
gt

h
La

t.D
ia

m

(a
)

107



95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

95

25

50

75

100

1 2 3

4 5 6

7 8 9

(b)

Figure 4-2: Cluster heatmap of phenotypic traits.  Hierarchical clustering of a few phenotypes was 
generated using Spearman correlation of max-min scaled phene values of bean phenotypes at 40 
days (a). The color scale indicates the magnitude of the trait values (blue, low value; red, high 
value). The numbers indicated on the heatmap refer to the phenotype in the specific row of the 
heatmap. The corresponding phenotypes are visualized in (b). Primary roots are in black; basal 
roots are in red; hypocotyl-borne roots are in green. # - number of axial roots; Axial.Diam – axial 
root diameter; LRBD – lateral root branching density; Lat.Length – lateral root length; Lat.Diam – 
lateral root diameter; BW1 – basal roots at whorl 1; BW2 – basal roots at whorl 2; BW3 – basal 
roots at whorl 3; BW4 – basal roots at whorl 4; BW5 – basal roots at whorl 5; HBR – hypocotyl-
borne roots; PR – primary root.
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Figure 4-3: Cluster heatmap of phenotypic traits. Hierarchical clustering of a few phenotypes 
was generated using Spearman correlation of max-min scaled phene values of maize phenotypes 
at 40 days (a). The color scale indicates the magnitude of the trait values (blue, low value; red, 
high value). The numbers indicated on the heatmap refer to a phenotype in the specific row of 
the heatmap. The corresponding phenotypes are visualized in (b). Primary roots are in black; 
seminal roots are in red; nodal roots are in green.  # - number of axial roots; Axial.Diam – axial 
root diameter; LRBD – lateral root branching density; Lat.Length – lateral root length; Lat.Diam 
– lateral root diameter; NR1 – nodal roots at position 1; NR2 – nodal roots at position 2; NR3 – 
nodal roots at position 3; NR4 – nodal roots at position 4; SR – seminal roots; PR – primary 
root.
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(a)
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(c) (d)
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a5 a6 a7 a8

(b)

Figure 4-5: Phene values of maize root phenotypes with comparable FD (a) and convex hull volume 
(b). The heatmap shows values of the traits obtained by dividing the values with maximum values of 
respective traits. Phenotypes with similar FD and similar convex hull volume are visualized in (c) 
and (d) respectively Phenotypes a1 - a8 have similar FD; Phenotypes b1-b8 have similar convexhull 
volume; PR- Primary Root; SR -Seminal root; NR - Nodal root; LRBD- lateral root branching 
density; Len - axial root length; Lat.Len - lateral root length; # - number of axial roots; Dia - 
diameter; FD -Fractal Dimension. 
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1 3 42

Figure 4-6: Convex hull volume, FD and total volume of bean root phenotypes with (a) one whorl and 
shallow angle, (b) one whorl and deep angle(c) two whorls and fanned angle (d) four whorls and 
fanned angles. The corresponding phenotypes are visualized in lower panel. FD – fractal dimension.
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Chapter 5 

General conclusions 

Exploring root phenomics in situ is challenging because it is labor intensive, time consuming and 

observation of root systems in 3 dimensions non-invasively through opaque soil is challenging. 

Root architectural models capture the interactions between the root components as well as the 

environment and are valuable to investigate the influence of various environmental factors on the 

growth of root system and plant productivity. 

In the first chapter, I used the functional structural model SimRoot to study the interaction among 

axial root phenes in the bean root system to identify optimal root phenotypes in an environment 

with limited phosphorus, limited nitrate and an environment limited in both phosphorus and 

nitrate. The results from chapter 1 suggest that interactions among the phenes result in distinct 

phenotypes with similar performances in a given environment. The occurrence of several optimal 

phenotypes when just a few phenes were considered got us thinking about methods to identify 

the optimal phenotypes when all possible architectural phenes are considered. We realized that 

the large decision space presented by the numerous phenes needed alternate methods of 

evaluation and found that multiobjective evolutionary algorithms would be perfect to address the 

problem.  

In chapter 2 we used SimRoot with a multiobjective evolutionary algorithm to identify several 

optimal bean and maize root systems in environments low in phosphorus or/and nitrate. While 

we have conducted the study in a specific soil and precipitation scenario, the study can be 

extended to several other scenarios. The optimal phenotypes identified in Chapter 2 have specific 

elements of ideotypes confirmed to have utility for improved P acquisition or N capture. So, our 

approach using multiobjective evolutionary algorithms can be a valuable tool to identify and 

select phenotypes specific for the target environment. 

We recognize that the scenarios presented in our study are simplified compared to what plants 

experience in the field. However, models can be made to include processes of interest. Modelling 

a process stimulates new ideas and suggests priorities in the application of resources for research. 

Architectural models are, by themselves, computationally challenging because the various 

processes associated with root growth is explicitly calculated while also coupling the root 

processes with processes in the environment. So, the level of details that the modeler includes 
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(type of model, level of resolution) in any model depends on the purposes. It is important to 

make sure that model is simple enough to allow manipulation and understanding the process and 

sufficiently complex to simulate relevant processes and allow meaningful conclusions. 

In chapter 3, we had a different utility for the functional structural model in which we did not 

consider the functional aspect of the model but utilized the capability of the model to generate 

explicit root architectures to estimate and compare various root phenotyping metrics. We found 

that estimates of phenes are more useful than metrics aggregating multiple phenes for 

phenotyping root architecture. Based on this finding, we suggest that selection for combination 

of specific phenes will be much simpler and more precise and more useful for selection for crop 

breeding. 

The theme binding all the chapters of this dissertation is the utility of functional structural 

models in exploring various aspects of the root phenome. We have demonstrated the application 

of functional structural models specifically in root phenomics; however, the concepts and 

applications demonstrated in this research work is pertinent broadly in phenomic studies. 
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Appendix A 

Supplementary figures for Chapter 2 

Supplementary Figure 2-S1: Validation of simulated data. Data of root lengths of different root 
classes from greenhouse experiments as reported in Walk et al., 2006 are represented along with 
simulated data. Error bars present SE for three repeated runs. Variation is caused by simulated 
stochasticity in root growth rates, growth direction and branching frequency. 
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Supplementary Figure 2-S2: Nutrient stress as it develops over time. Stress is calculated as 1-(u-
m)/(o-m), where u is the nutrient uptake (phosphorus or nitrate), o is the optimal nutrient content 
in the plant and m is the minimal nutrient content in the plant. 0 indicates no stress, 1 indicates 
severe stress. The plants are simulated in soil with low phosphorus and low nitrate, and default 
precipitation. The phenotypes are deep angled. 

123



Supplementary Figure 2-S3: Nutrient stress as it develops over time. Stress is calculated as 1-(u-
m)/(o-m), where u is the nutrient uptake (phosphorus or nitrate), o is the optimal nutrient content 
in the plant and m is the minimal nutrient content in the plant. 0 indicates no stress, 1 indicates 
severe stress. The plants are simulated in soil with low phosphorus and low nitrate, and default 
precipitation. The phenotypes are fanned angle. 
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Supplementary Figure 2-S4: Nutrient stress as it develops over time. Stress is calculated as 1-(u-
m)/(o-m), where u is the nutrient uptake (phosphorus or nitrate), o is the optimal nutrient content 
in the plant and m is the minimal nutrient content in the plant. 0 indicates no stress, 1 indicates 
severe stress. The plants are simulated in soil with low phosphorus and low nitrate, and default 
precipitation. The phenotypes are shallow angle. 
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Supplementary Figure 2-S5: Shoot biomass 40 days after germination (d.a.g) at low phosphorus, 
low nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and 
phosphorus availability. Lines show results for plants one, two, three and four whorls with shallow, 
fanned and deep root growth angles. Simulations were conducted with half the default 
precipitation. Error bars show the standard error for three repeated runs. Variation is caused by 
simulated stochasticity in root growth rates and branching frequency. 
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Supplementary Figure 2-S6: Shoot biomass 40 days after germination (d.a.g at low phosphorus, 
low nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and 
phosphorus availability. Lines show results for plants one, two, three and four whorls with shallow, 
fanned and deep root growth angles. Simulations were conducted with 1.5 times the default 
precipitation. Error bars show the standard error for three repeated runs. Variation is caused by 
simulated stochasticity in root growth rates and branching frequency. 
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Supplementary Figure 2-S7: Shoot biomass 40 days after germination (d.a.g) at low phosphorus, 
low nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and 
phosphorus availability under varying carbon fixation. Roots are fanned angled. Error bars show 
the standard error for three repeated runs. Variation is caused by simulated stochasticity in root 
growth rates and branching frequency. 
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Supplementary Figure 2-S8: Shoot biomass, of plants with lower LRBD, 40 days after germination 
(d.a.g) at low phosphorus, low nitrogen, combined low phosphorus and low nitrogen, and non-
limiting nitrogen and phosphorus availability. Lines show results for plants one, two, three and 
four whorls with shallow, fanned and deep root growth angles. Error bars show the standard error 
for three repeated runs. Variation is caused by simulated stochasticity in root growth rates. 
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Supplementary Figure 2-S9: Shoot biomass of plants with greater LRBD, 40 d after germination 
(d.a.g) at low phosphorus, low nitrogen, combined low phosphorus and low nitrogen, and non-
limiting nitrogen and phosphorus availability. Lines show results for plants one, two, three and 
four whorls with shallow, fanned and deep root growth angles. Error bars show the standard error 
for three repeated runs. Variation is caused by simulated stochasticity in root growth rates. 
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Supplementary Figure 2-S10: Shoot biomass 40 d after germination (d.a.g) at low phosphorus, low 
nitrogen, combined low phosphorus and low nitrogen, and non-limiting nitrogen and phosphorus 
availability, under varying planting densities given as plants per m2. Roots are fanned angled. Error 
bars show the standard error for three repeated runs. Variation is caused by simulated stochasticity 
in root growth rates and branching frequency. 
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Appendix B 

SimRoot parameterization 

SimRoot uses a hierarchical xml formatted input file which is graphically presented below. The 
hierarchy gives the parameters context. For example, the parameter 'specific leaf area'belongs to 
the shoot of a specific plant. In SimRoot parameters can be a single value, a value drawn from a 
distribution, or the result of an interpolation table.  
1 'environment' 

1.1 'atmosphere' 
1.1.1 'evaporation'(cm) =f{'time'} (day) x,y pairs :{ 0 0 1 0.05 2 0.1 3 0.1 4 0.05 

5 0.05 6 0.1 7 0.05 8 0.05 9 0.1 10 0.1 
11 0.05 12 0.1 13 0.1 14 0.05 15 0.04 16 0.03 17 0.02 18 0.09 19 0.09 20 0.04 

21 0.09 22 0.09 23 0.04 24 0.03 25 0.02 26  
0.02 27 0.08 28 0.03 29 0.08 30 0.03 31 0.08 32 0.07 33 0.07 34 0.07 35 0.03 36 

0.02 37 0.01 38 0 39 0 40 0 41 0 42 0.06} 
1.1.2 'irradiation'= 4000 (uMol/cm2/day) 
1.1.3 'precipitation'(cm) =f{'time'} (day) x,y pairs :{ 0 0 1 0 2 1 3 0.29 4 0 5 0 6 

0.61 7 0 8 0 9 0.25 10 0.03 11 0 12 
0.64 13 0.33 14 0 15 0 16 0 17 0 18 1.8 19 0.2 20 0 21 2.84 22 0.38 23 0 24 0 25 

0 26 0 27 0.18 28 0 29 0.46 30 0 31 1.35 
32 0.13 33 0.23 34 0.25 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 1.42 } 

1.2 'dimensions' 
1.2.1 'max corner'= 30 0 34 (cm) 
1.2.2 'min corner'= -30 -150 -26 (cm) 

1.3 'soil' 
1.3.1 'bulk density'(g/cm3) =f{'depth'} (cm) x,y pairs :{ -200 1.51 -65 1.51 -47 

1.4 -30 1.42 -16 1.29 -5 1.24 0 1.24 } 
1.3.2 'nitrate' 

1.3.2.1 'adsorption coefficient'= 0 (uMol/cm) 
1.3.2.2 'buffer power'(noUnit) =f{'depth'} (cm) x,y pairs :{ -1000 0.4 

1000 0.4 } 
1.3.2.3 'concentration'(uMol/ml) =f{'depth'} (cm) x,y pairs :{ -1000 1.59 

-55 1.59 -45 1.67 -35 2.17 -25 3.15 -15 4.02 -5
2.36 0 2.8 0.01 0 100 0 } 
1.3.2.4 'diffusion coefficient'(cm2/day) =f{'depth'} (cm) x,y pairs :{ -

1000 0.216 -0 0.216 1e-05 1e-08 1000 1e-08 } 
1.3.2.5 'longitudinal dispersivity'= 1 (cm) 
1.3.2.6 'r1-r0'= 4 (cm) 
1.3.2.7 'saturated diffusion coefficient'= 1.6416 (cm2/day) 
1.3.2.8 'transverse dispersivity'= 0.5 (cm) 

1.3.3 'organic' 
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   1.3.3.1 'C/N ratio microbes'= 10 (g/g) 
   1.3.3.2 'C/N ratio'(g/g) =f{'depth'} (cm) x,y pairs :{ -10000 13 0 13 } 
   1.3.3.3 'assimilation efficiency microbes'= 1 (noUnit) 
   1.3.3.4 'carbon content'(g/g) =f{'depth'} (cm) x,y pairs :{ -200 0.005 -40 
0.005 -30 0.01 -10 0.02 0 0.02 } 
   1.3.3.5 'initial relative mineralisation rate'(g/g/year) =f{'depth'} (cm) x,y 
pairs :{ -1000 0 -25 0 -10 0.037 0 0.037 } 
   1.3.3.6 'speed of aging'= 0.46 (noUnit) 
   1.3.3.7 'time offset'= 30 (day) 
  1.3.4 'phosphorus' 
   1.3.4.1 'adsorption coefficient'= 400 (uMol/cm) 
   1.3.4.2 'buffer power'(noUnit) =f{'depth'} (cm) x,y pairs :{ -1000 400 
1000 400 } 
   1.3.4.3 'concentration'(uMol/ml) =f{'depth'} (cm) x,y pairs :{ -1000 
0.00024 -30 0.00025 -29 0.00175 0 0.00175 
   0.0001 0 1000 0 } 
   1.3.4.4 'diffusion coefficient'(cm2/day) =f{'depth'} (cm) x,y pairs :{ -
1000 0.00019872 -0 0.00019872 1000 
   0.00019872 } 
   1.3.4.5 'longitudinal dispersivity'= 1 (cm) 
   1.3.4.6 'r1-r0'= 0.3 (cm) 
   1.3.4.7 'saturated diffusion coefficient'= 0.094 (cm2/day) 
   1.3.4.8 'transverse dispersivity'= 0.5 (cm) 
  1.3.5 'potassium' 
   1.3.5.1 'adsorption coefficient'= 10 (uMol/cm) 
   1.3.5.2 'buffer power'(noUnit) =f{'depth'} (cm) x,y pairs :{ -1000 10 
1000 10 } 
   1.3.5.3 'concentration'(uMol/ml) =f{'depth'} (cm) x,y pairs :{ -1000 0.05 
-30 0.05 -29 0.15 0 0.15 1e-05 0 1000 0 } 
   1.3.5.4 'diffusion coefficient'(cm2/day) =f{'depth'} (cm) x,y pairs :{ -
1000 0.0143 -0 0.0143 1000 0.0143 } 
   1.3.5.5 'longitudinal dispersivity'= 1 (cm) 
   1.3.5.6 'r1-r0'= 1.5 (cm) 
   1.3.5.7 'saturated diffusion coefficient'= 1.56 (cm2/day) 
   1.3.5.8 'transverse dispersivity'= 0.5 (cm) 
  1.3.6 'water' 
   1.3.6.1 'initial hydraulic head'(cm) =f{'depth'} (cm) x,y pairs :{ -200 0 -
151 -50 -50 -150 -45 -155 -40 -160 -35 -165 -30 
   -170 -25 -175 -20 -180 -15 -190 -10 -200 -5 -220 -2 -240 -1 -300 -0 -400 
} 
   1.3.6.2 'residual water content'(100%) =f{'depth'} (cm) x,y pairs :{ -300 
0.067 0 0.067 } 
   1.3.6.3 'saturated conductivity'(cm/day) =f{'depth'} (cm) x,y pairs :{ -300 
10.8 0 10.8 } 
   1.3.6.4 'saturated water content'(100%) =f{'depth'} (cm) x,y pairs :{ -300 
0.39 -65 0.39 -35 0.39 -25 0.43 -15 0.45 0 
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0.46 } 
1.3.6.5 'van genuchten:alpha'(noUnit/cm) =f{'depth'} (cm) x,y pairs :{ -

300 0.02 0 0.02 } 
1.3.6.6 'van genuchten:n'(noUnit) =f{'depth'} (cm) x,y pairs :{ -300 1.41 

0 1.41 } 
1.3.6.7 'volumetric water content in barber cushman'= 0.3 (cm3/cm3) 

2 'root type parameters' 
2.1 'bean- carioca- sim root4' 

2.1.1 'basal whorl1' 
2.1.1.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 

pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
0.268 } 
2.1.1.2 'bottom boundary'= 1 (noUnit) 
2.1.1.3 'bounce of the side'= 1 (noUnit) 
2.1.1.4 'branch list' 

2.1.1.4.1 'lateral basal roots' 
2.1.1.4.1.1 'allow branches to form above ground'= 0 

(noUnit) 
2.1.1.4.1.2 'branching frequency'= 0.15 (cm) 
2.1.1.4.1.3 'length root tip'= 8 (cm) 

2.1.1.5 'branching angle'= 90 (degrees) 
2.1.1.6 'density'= 0.094 (g/cm3) 
2.1.1.7 'diameter'= 0.068 (cm) 
2.1.1.8 'gravitropism'= 0.002 (noUnit) 
2.1.1.9 'gravitropism.v2'(cm) =f{'uniform distribution'} minimum=-0.08 

maximum=-0.04 
2.1.1.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 

0 0.1 3 4 10 4 15 3 25 2.352 35 2.352 40 0 
1000 0 } 
2.1.1.11 'nitrate' 

2.1.1.11.1 'Cmin'= 0.001 (uMol/ml) 
2.1.1.11.2 'Imax'= 1.9 (uMol/cm2/day) 
2.1.1.11.3 'Km'= 0.0161 (uMol/ml) 
2.1.1.11.4 'minimal nutrient concentration'= 600 (uMol/g) 
2.1.1.11.5 'optimal nutrient concentration'= 1200 (uMol/g) 

2.1.1.12 'number of xylem poles'= 4 (noUnit) 
2.1.1.13 'phosphorus' 

2.1.1.13.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.1.13.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.1.13.3 'Km'= 0.00545 (uMol/ml) 
2.1.1.13.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.1.13.5 'optimal nutrient concentration'= 60 (uMol/g) 

2.1.1.14 'potassium' 
2.1.1.14.1 'Cmin'= 0.002 (uMol/ml) 
2.1.1.14.2 'Imax'= 0.467 (uMol/cm2/day) 
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2.1.1.14.3 'Km'= 0.039 (uMol/ml) 
2.1.1.14.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.1.14.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.1.15 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 

0.7 0.6 1 } 
2.1.1.16 'regular topology'= 0 (noUnit) 
2.1.1.17 'relative carbon cost of exudation'(g/cm/day) =f{'time since 

creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
2.1.1.18 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 

pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
2.1.1.19 'root class ID'= 99 (noUnit) 
2.1.1.20 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 

pairs :{ 0 2000 10 2000 30 2000 100 2000 } 
2.1.1.21 'root hair diameter'= 0.0005 (cm) 
2.1.1.22 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 

0 0 1 0 2 0.03 100 0.03 } 
2.1.1.23 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 

x,y pairs :{ 0 0 2 0 4 0.0005 5 0.001 7 0.0015 
11 0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
2.1.1.24 'secondary growth scaling factor'(100%) =f{'distance to base of 

the root'} (cm) x,y pairs :{ 0 0.7 20 0.7 40 
0.4 100 0.4 } 
2.1.1.25 'soil impedence'= 0.008 (noUnit) 
2.1.1.26 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.04 maximum=0.04 
2.1.1.27 'top boundary'= 1 (noUnit) 

2.1.2 'basal whorl2' 
2.1.2.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 

pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
0.268 } 
2.1.2.2 'bottom boundary'= 1 (noUnit) 
2.1.2.3 'bounce of the side'= 1 (noUnit) 
2.1.2.4 'branch list' 

2.1.2.4.1 'lateral basal roots' 
2.1.2.4.1.1 'allow branches to form above ground'= 0 

(noUnit) 
2.1.2.4.1.2 'branching frequency'= 0.15 (cm) 
2.1.2.4.1.3 'length root tip'= 10 (cm) 

2.1.2.5 'branching angle'= 90 (degrees) 
2.1.2.6 'density'= 0.094 (g/cm3) 
2.1.2.7 'diameter'= 0.068 (cm) 
2.1.2.8 'gravitropism'= 0.001 (noUnit) 
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   2.1.2.9 'gravitropism.v2'(cm) =f{'uniform distribution'} minimum=-0.04 
maximum=-0.02 
   2.1.2.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 
0 0.1 3 4 10 4 15 3 25 2.352 35 2.352 40 0 
   1000 0 } 
   2.1.2.11 'nitrate' 
    2.1.2.11.1 'Cmin'= 0.001 (uMol/ml) 
    2.1.2.11.2 'Imax'= 1.9 (uMol/cm2/day) 
    2.1.2.11.3 'Km'= 0.0161 (uMol/ml) 
    2.1.2.11.4 'minimal nutrient concentration'= 600 (uMol/g) 
    2.1.2.11.5 'optimal nutrient concentration'= 1200 (uMol/g) 
   2.1.2.12 'number of xylem poles'= 4 (noUnit) 
   2.1.2.13 'phosphorus' 
    2.1.2.13.1 'Cmin'= 0.0002 (uMol/ml) 
    2.1.2.13.2 'Imax'= 0.0555 (uMol/cm2/day) 
    2.1.2.13.3 'Km'= 0.00545 (uMol/ml) 
    2.1.2.13.4 'minimal nutrient concentration'= 30 (uMol/g) 
    2.1.2.13.5 'optimal nutrient concentration'= 60 (uMol/g) 
   2.1.2.14 'potassium' 
    2.1.2.14.1 'Cmin'= 0.002 (uMol/ml) 
    2.1.2.14.2 'Imax'= 0.467 (uMol/cm2/day) 
    2.1.2.14.3 'Km'= 0.039 (uMol/ml) 
    2.1.2.14.4 'minimal nutrient concentration'= 168 (uMol/g) 
    2.1.2.14.5 'optimal nutrient concentration'= 234 (uMol/g) 
   2.1.2.15 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
   0.7 0.6 1 } 
   2.1.2.16 'regular topology'= 0 (noUnit) 
   2.1.2.17 'relative carbon cost of exudation'(g/cm/day) =f{'time since 
creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
   1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
   2.1.2.18 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
   2.1.2.19 'root class ID'= 99 (noUnit) 
   2.1.2.20 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 
pairs :{ 0 2000 10 2000 30 2000 100 2000 } 
   2.1.2.21 'root hair diameter'= 0.0005 (cm) 
   2.1.2.22 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 
0 0 1 0 2 0.03 100 0.03 } 
   2.1.2.23 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 
x,y pairs :{ 0 0 2 0 4 0.0005 5 0.001 7 0.0015 
   11 0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
   2.1.2.24 'secondary growth scaling factor'(100%) =f{'distance to base of 
the root'} (cm) x,y pairs :{ 0 0.7 20 0.7 40 
   0.4 100 0.4 } 
   2.1.2.25 'soil impedence'= 0.008 (noUnit) 
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2.1.2.26 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-
0.04 maximum=0.04 

2.1.2.27 'top boundary'= 1 (noUnit) 

2.1.3 'basal whorl3' 
2.1.3.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 

pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
0.268 } 
2.1.3.2 'bottom boundary'= 1 (noUnit) 
2.1.3.3 'bounce of the side'= 1 (noUnit) 
2.1.3.4 'branch list' 

2.1.3.4.1 'lateral basal roots' 
2.1.3.4.1.1 'allow branches to form above ground'= 0 

(noUnit) 
2.1.3.4.1.2 'branching frequency'= 0.15 (cm) 
2.1.3.4.1.3 'length root tip'= 10 (cm) 

2.1.3.5 'branching angle'= 90 (degrees) 
2.1.3.6 'density'= 0.094 (g/cm3) 
2.1.3.7 'diameter'= 0.068 (cm) 
2.1.3.8 'gravitropism'= 0.0005 (noUnit) 
2.1.3.9 'gravitropism.v2'(cm) =f{'uniform distribution'} minimum=-0.02 

maximum=-0.01 
2.1.3.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 

0 0.1 2 4 10 4 15 3 25 2.352 35 2.352 40 0 
1000 0 } 
2.1.3.11 'nitrate' 

2.1.3.11.1 'Cmin'= 0.001 (uMol/ml) 
2.1.3.11.2 'Imax'= 1.9 (uMol/cm2/day) 
2.1.3.11.3 'Km'= 0.0161 (uMol/ml) 
2.1.3.11.4 'minimal nutrient concentration'= 600 (uMol/g) 
2.1.3.11.5 'optimal nutrient concentration'= 1200 (uMol/g) 

2.1.3.12 'number of xylem poles'= 4 (noUnit) 
2.1.3.13 'phosphorus' 

2.1.3.13.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.3.13.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.3.13.3 'Km'= 0.00545 (uMol/ml) 
2.1.3.13.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.3.13.5 'optimal nutrient concentration'= 60 (uMol/g) 

2.1.3.14 'potassium' 
2.1.3.14.1 'Cmin'= 0.002 (uMol/ml) 
2.1.3.14.2 'Imax'= 0.467 (uMol/cm2/day) 
2.1.3.14.3 'Km'= 0.039 (uMol/ml) 
2.1.3.14.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.3.14.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.3.15 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
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   0.7 0.6 1 } 
   2.1.3.16 'regular topology'= 0 (noUnit) 
   2.1.3.17 'relative carbon cost of exudation'(g/cm/day) =f{'time since 
creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
   1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
   2.1.3.18 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
   2.1.3.19 'root class ID'= 99 (noUnit) 
   2.1.3.20 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 
pairs :{ 0 2000 10 2000 30 2000 100 2000 } 
   2.1.3.21 'root hair diameter'= 0.0005 (cm) 
   2.1.3.22 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 
0 0 1 0 2 0.03 100 0.03 } 
   2.1.3.23 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 
x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
   0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
   2.1.3.24 'secondary growth scaling factor'(100%) =f{'distance to base of 
the root'} (cm) x,y pairs :{ 0 0.7 20 0.7 40 
   0.4 100 0.4 } 
   2.1.3.25 'soil impedence'= 0.008 (noUnit) 
   2.1.3.26 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-
0.04 maximum=0.04 
   2.1.3.27 'top boundary'= 1 (noUnit) 
    
  2.1.4 'basal whorl4' 
   2.1.4.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 
pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
   0.268 } 
   2.1.4.2 'bottom boundary'= 1 (noUnit) 
   2.1.4.3 'bounce of the side'= 1 (noUnit) 
   2.1.4.4 'branch list' 
    2.1.4.4.1 'lateral basal roots' 
     2.1.4.4.1.1 'allow branches to form above ground'= 0 
(noUnit) 
     2.1.4.4.1.2 'branching frequency'= 0.15 (cm) 
     2.1.4.4.1.3 'length root tip'= 10 (cm) 
   2.1.4.5 'branching angle'= 90 (degrees) 
   2.1.4.6 'density'= 0.094 (g/cm3) 
   2.1.4.7 'diameter'= 0.068 (cm) 
   2.1.4.8 'gravitropism'= 0.0005 (noUnit) 
   2.1.4.9 'gravitropism.v2'(cm) =f{'uniform distribution'} minimum=-0.02 
maximum=-0.01 
   2.1.4.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 
0 0.1 2 4 10 4 15 3 25 2.352 35 2.352 40 0 
   1000 0 } 
   2.1.4.11 'nitrate' 
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    2.1.4.11.1 'Cmin'= 0.001 (uMol/ml) 
    2.1.4.11.2 'Imax'= 1.9 (uMol/cm2/day) 
    2.1.4.11.3 'Km'= 0.0161 (uMol/ml) 
    2.1.4.11.4 'minimal nutrient concentration'= 600 (uMol/g) 
    2.1.4.11.5 'optimal nutrient concentration'= 1200 (uMol/g) 
   2.1.4.12 'number of xylem poles'= 4 (noUnit) 
   2.1.4.13 'phosphorus' 
    2.1.4.13.1 'Cmin'= 0.0002 (uMol/ml) 
    2.1.4.13.2 'Imax'= 0.0555 (uMol/cm2/day) 
    2.1.4.13.3 'Km'= 0.00545 (uMol/ml) 
    2.1.4.13.4 'minimal nutrient concentration'= 30 (uMol/g) 
    2.1.4.13.5 'optimal nutrient concentration'= 60 (uMol/g) 
   2.1.4.14 'potassium' 
    2.1.4.14.1 'Cmin'= 0.002 (uMol/ml) 
    2.1.4.14.2 'Imax'= 0.467 (uMol/cm2/day) 
    2.1.4.14.3 'Km'= 0.039 (uMol/ml) 
    2.1.4.14.4 'minimal nutrient concentration'= 168 (uMol/g) 
    2.1.4.14.5 'optimal nutrient concentration'= 234 (uMol/g) 
   2.1.4.15 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
   0.7 0.6 1 } 
   2.1.4.16 'regular topology'= 0 (noUnit) 
   2.1.4.17 'relative carbon cost of exudation'(g/cm/day) =f{'time since 
creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
   1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
   2.1.4.18 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
   2.1.4.19 'root class ID'= 99 (noUnit) 
   2.1.4.20 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 
pairs :{ 0 2000 10 2000 30 2000 100 2000 } 
   2.1.4.21 'root hair diameter'= 0.0005 (cm) 
   2.1.4.22 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 
0 0 1 0 2 0.03 100 0.03 } 
   2.1.4.23 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 
x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
   0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
   2.1.4.24 'secondary growth scaling factor'(100%) =f{'distance to base of 
the root'} (cm) x,y pairs :{ 0 0.7 20 0.7 40 
   0.4 100 0.4 } 
   2.1.4.25 'soil impedence'= 0.008 (noUnit) 
   2.1.4.26 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-
0.04 maximum=0.04 
   2.1.4.27 'top boundary'= 1 (noUnit) 
    
  2.1.5 'finelateral' 
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2.1.5.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 
pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 

0.268 } 
2.1.5.2 'bottom boundary'= 1 (noUnit) 
2.1.5.3 'bounce of the side'= 1 (noUnit) 
2.1.5.4 'branch list' 
2.1.5.5 'branching angle'= 75 (degrees) 
2.1.5.6 'density'= 0.094 (g/cm3) 
2.1.5.7 'diameter'= 0.01 (cm) 
2.1.5.8 'gravitropism'= 0 (noUnit) 
2.1.5.9 'gravitropism.v2'= 0 0 0 (cm) 
2.1.5.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 

0 0.2 3 0.2 5 0 100 0 } 
2.1.5.11 'longitudinal growth rate multiplier'(cm) minimum=0.3 

maximum=1 mean=0.6 stdev=0.1 
2.1.5.12 'nitrate' 

2.1.5.12.1 'Cmin'= 0.001 (uMol/ml) 
2.1.5.12.2 'Imax'= 1.9 (uMol/cm2/day) 
2.1.5.12.3 'Km'= 0.0161 (uMol/ml) 
2.1.5.12.4 'minimal nutrient concentration'= 600 (uMol/g) 
2.1.5.12.5 'optimal nutrient concentration'= 1200 (uMol/g) 

2.1.5.13 'number of xylem poles'= 4 (noUnit) 
2.1.5.14 'phosphorus' 

2.1.5.14.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.5.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.5.14.3 'Km'= 0.00545 (uMol/ml) 
2.1.5.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.5.14.5 'optimal nutrient concentration'= 60 (uMol/g) 

2.1.5.15 'potassium' 
2.1.5.15.1 'Cmin'= 0.002 (uMol/ml) 
2.1.5.15.2 'Imax'= 0.467 (uMol/cm2/day) 
2.1.5.15.3 'Km'= 0.039 (uMol/ml) 
2.1.5.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.5.15.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.5.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 

0.7 0.6 1 } 
2.1.5.17 'regular topology'= 0 (noUnit) 
2.1.5.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 

creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
2.1.5.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 

pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
2.1.5.20 'root class ID'= 97 (noUnit) 
2.1.5.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 

pairs :{ 0 3000 100 3000 } 

140



2.1.5.22 'root hair diameter'= 0.0005 (cm) 
2.1.5.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 

0 0 1 0 2 0.03 100 0.03 } 
2.1.5.24 'soil impedence'= 0.5 (noUnit) 
2.1.5.25 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.1 maximum=0.1 
2.1.5.26 'top boundary'= 1 (noUnit) 
2.1.5.27 'topology offset'= 0 (noUnit) 

2.1.6 'finelateral fast growing' 
2.1.6.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 

pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
0.268 } 
2.1.6.2 'bottom boundary'= 1 (noUnit) 
2.1.6.3 'bounce of the side'= 1 (noUnit) 
2.1.6.4 'branch list' 
2.1.6.5 'branching angle'= 75 (degrees) 
2.1.6.6 'density'= 0.094 (g/cm3) 
2.1.6.7 'diameter'= 0.015 (cm) 
2.1.6.8 'gravitropism'= 0 (noUnit) 
2.1.6.9 'gravitropism.v2'= 0 0 0 (cm) 
2.1.6.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 

0 0.5 1 0.8 2 1 3 1 4 0 100 0 } 
2.1.6.11 'longitudinal growth rate multiplier'(cm) minimum=0.3 

maximum=1 mean=0.6 stdev=0.1 
2.1.6.12 'nitrate' 

2.1.6.12.1 'Cmin'= 0.001 (uMol/ml) 
2.1.6.12.2 'Imax'= 1.9 (uMol/cm2/day) 
2.1.6.12.3 'Km'= 0.0161 (uMol/ml) 
2.1.6.12.4 'minimal nutrient concentration'= 600 (uMol/g) 
2.1.6.12.5 'optimal nutrient concentration'= 1200 (uMol/g) 

2.1.6.13 'number of xylem poles'= 4 (noUnit) 
2.1.6.14 'phosphorus' 

2.1.6.14.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.6.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.6.14.3 'Km'= 0.00545 (uMol/ml) 
2.1.6.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.6.14.5 'optimal nutrient concentration'= 60 (uMol/g) 

2.1.6.15 'potassium' 
2.1.6.15.1 'Cmin'= 0.002 (uMol/ml) 
2.1.6.15.2 'Imax'= 0.467 (uMol/cm2/day) 
2.1.6.15.3 'Km'= 0.039 (uMol/ml) 
2.1.6.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.6.15.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.6.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
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0.7 0.6 1 } 
2.1.6.17 'regular topology'= 0 (noUnit) 
2.1.6.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 

creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
2.1.6.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 

pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
2.1.6.20 'root class ID'= 97 (noUnit) 
2.1.6.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 

pairs :{ 0 3000 100 3000 } 
2.1.6.22 'root hair diameter'= 0.0005 (cm) 
2.1.6.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 

0 0 1 0 2 0.03 100 0.03 } 
2.1.6.24 'soil impedence'= 0.5 (noUnit) 
2.1.6.25 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.1 maximum=0.1 
2.1.6.26 'top boundary'= 1 (noUnit) 
2.1.6.27 'topology offset'= 0 (noUnit) 

2.1.7 'hypocotyl' 
2.1.7.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 

pairs :{ 0 0 100 0 } 
2.1.7.2 'bottom boundary'= 1 (noUnit) 
2.1.7.3 'bounce of the side'= 1 (noUnit) 
2.1.7.4 'branch list' 

2.1.7.4.1 'basal whorl1' 
2.1.7.4.1.1 'branching frequency'= 0.01 (cm) 
2.1.7.4.1.2 'branching spatial offset'= 0.01 (cm) 
2.1.7.4.1.3 'branching time offset'= 4.167 (day) 
2.1.7.4.1.4 'max number of branches'= 4 (#) 
2.1.7.4.1.5 'number of branches/whorl'= 4 (#) 

2.1.7.4.2 'basal whorl2' 
2.1.7.4.2.1 'branching frequency'= 0.5 (cm) 
2.1.7.4.2.2 'branching spatial offset'= 0.3 (cm) 
2.1.7.4.2.3 'branching time offset'= 6.25 (day) 
2.1.7.4.2.4 'max number of branches'= 4 (#) 
2.1.7.4.2.5 'number of branches/whorl'= 4 (#) 

2.1.7.4.3 'hypocotyl born roots' 
2.1.7.4.3.1 'allow branches to form above ground'= 0 

(noUnit) 
2.1.7.4.3.2 'branching delay'= 0 (day) 
2.1.7.4.3.3 'branching frequency'= 0.4 (cm) 
2.1.7.4.3.4 'branching spatial offset'= 0.4 (cm) 
2.1.7.4.3.5 'branching time offset'= 10 (day) 
2.1.7.4.3.6 'max number of branches'= 10 (#) 

2.1.7.5 'density'= 0.094 (g/cm3) 
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    2.1.7.6 'diameter'= 0.4 (cm) 
    2.1.7.7 'gravitropism.v2'(cm) =f{'uniform distribution'} 
minimum=0.5 maximum=0.6 
    2.1.7.8 'growth rate'(cm/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 1 1 3 2 3 3 1 3.3 0.5 4 0.2 5 0 1000 0 } 
    2.1.7.9 'nitrate' 
     2.1.7.9.1 'Cmin'= 0.001 (uMol/ml) 
     2.1.7.9.2 'Imax'= 1.9 (uMol/cm2/day) 
     2.1.7.9.3 'Km'= 0.0161 (uMol/ml) 
     2.1.7.9.4 'minimal nutrient concentration'= 600 (uMol/g) 
     2.1.7.9.5 'optimal nutrient concentration'= 1200 (uMol/g) 
     2.1.7.10 'number of xylem poles'= 4 (noUnit) 
    2.1.7.11 'phosphorus' 
     2.1.7.11.1 'Cmin'= 0.0002 (uMol/ml) 
     2.1.7.11.2 'Imax'= 0.0555 (uMol/cm2/day) 
     2.1.7.11.3 'Km'= 0.00545 (uMol/ml) 
     2.1.7.11.4 'minimal nutrient concentration'= 30 (uMol/g) 
     2.1.7.11.5 'optimal nutrient concentration'= 60 (uMol/g) 
    2.1.7.12 'potassium' 
    2.1.7.12.1 'Cmin'= 0.002 (uMol/ml) 
    2.1.7.12.1 'Imax'= 0.467 (uMol/cm2/day) 
    2.1.7.12.3 'Km'= 0.039 (uMol/ml) 
    2.1.7.12.4 'minimal nutrient concentration'= 168 (uMol/g) 
    2.1.7.12.5 'optimal nutrient concentration'= 234 (uMol/g) 
    2.1.7.13 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
    0.7 0.6 1 } 
    2.1.7.14 'relative carbon cost of exudation'(g/cm/day) =f{'time 
since creation'} (day) x,y pairs :{ 0 0 100 0 } 
    2.1.7.15 'relative respiration'(g/g/day) =f{'time since creation'} 
(day) x,y pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
    2.1.7.16 'root class ID'= 96 (noUnit) 
    2.1.7.17 'root hair density'(#/cm2) =f{'time since creation'} (day) 
x,y pairs :{ 0 0 100 0 } 
    2.1.7.18 'root hair diameter'= 0.0005 (cm) 
    2.1.7.19 'root hair length'(cm) =f{'time since creation'} (day) x,y 
pairs :{ 0 0 1 0 2 0.03 100 0.03 } 
    2.1.7.20 'secondary growth rate'(cm/day) =f{'root segment age'} 
(day) x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
    0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
    2.1.7.21 'secondary growth scaling factor'(100%) =f{'distance to 
base of the root'} (cm) x,y pairs :{ 0 7 2 7 10 7 1000 
    7} 
    2.1.7.22 'soil impedence.v2'(cm) =f{'uniform distribution'} 
minimum=-0.01 maximum=0.01 
    2.1.7.23 'top boundary'= 0 (noUnit) 
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  2.1.8 'hypocotyl born roots' 
   2.1.8.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 
pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
   0.268 } 
   2.1.8.2 'bottom boundary'= 1 (noUnit) 
   2.1.8.3 'bounce of the side'= 1 (noUnit) 
   2.1.8.4 'branch list' 
   2.1.8.4.1 'lateral hypocotyl born roots' 
   2.1.8.4.1.1 'allow branches to form above ground'= 0 (noUnit) 
   2.1.8.4.1.2 'branching frequency'= 0.4 (cm) 
   2.1.8.4.1.3 'length root tip'= 10 (cm) 
   2.1.8.5 'branching angle'= 85 (degrees) 
   2.1.8.6 'density'= 0.094 (g/cm3) 
   2.1.8.7 'diameter'= 0.064 (cm) 
   2.1.8.8 'gravitropism'= 0 (noUnit) 
   2.1.8.9 'gravitropism.v2'(cm) =f{'uniform distribution'} minimum=-0.002 
maximum=0 
   2.1.8.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 
0 1 25 0.8 35 0 60 0 } 
   2.1.8.11 'longitudinal growth rate multiplier'(cm) minimum=0.5 
maximum=1.5 mean=1 stdev=0.1 
   2.1.8.12 'nitrate' 
    2.1.8.12.1 'Cmin'= 0.001 (uMol/ml) 
    2.1.8.12.2 'Imax'= 1.9 (uMol/cm2/day) 
    2.1.8.12.3 'Km'= 0.0161 (uMol/ml) 
    2.1.8.12.4 'minimal nutrient concentration'= 600 (uMol/g) 
    2.1.8.12.5 'optimal nutrient concentration'= 1200 (uMol/g) 
   
   2.1.8.13 'number of xylem poles'= 4 (noUnit) 
   2.1.8.14 'phosphorus' 
    2.1.8.14.1 'Cmin'= 0.0002 (uMol/ml) 
    2.1.8.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
    2.1.8.14.3 'Km'= 0.00545 (uMol/ml) 
    2.1.8.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
    2.1.8.14.5 'optimal nutrient concentration'= 60 (uMol/g) 
    
   2.1.8.15 'potassium' 
    2.1.8.15.1 'Cmin'= 0.002 (uMol/ml) 
    2.1.8.15.2 'Imax'= 0.467 (uMol/cm2/day) 
    2.1.8.15.3 'Km'= 0.039 (uMol/ml) 
    2.1.8.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
    2.1.8.15.5 'optimal nutrient concentration'= 234 (uMol/g) 
  ) 
   2.1.8.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
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   0.7 0.6 1 } 
   2.1.8.17 'regular topology'= 0 (noUnit) 
   2.1.8.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 
creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
   1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
   2.1.8.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
   2.1.8.20 'root class ID'= 98 (noUnit) 
   2.1.8.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 
pairs :{ 0 3000 10 3000 30 3000 100 3000 } 
   2.1.8.22 'root hair diameter'= 0.0005 (cm) 
   2.1.8.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 
0 0 1 0 2 0.03 100 0.03 } 
   2.1.8.24 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 
x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
   0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
   2.1.8.25 'secondary growth scaling factor'(100%) =f{'distance to base of 
the root'} (cm) x,y pairs :{ 0 0.6 50 0.2 100 
   0.2 } 
   2.1.8.26 'soil impedence'= 0.003 (noUnit) 
   2.1.8.27 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-
0.04 maximum=0.04 
   2.1.9.28 'top boundary'= 1 (noUnit) 
    
  2.1.9 'lateral basal roots' 
   2.1.9.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) x,y 
pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
   0.268 } 
   2.1.9.2 'bottom boundary'= 1 (noUnit) 
   2.1.9.3 'bounce of the side'= 1 (noUnit) 
   2.1.9.4 'branch list' 
   2.1.9.4.1 'finelateral' 
   2.1.9.4.1.1 'allow branches to form above ground'= 0 (noUnit) 
   2.1.9.4.1.2 'branching frequency'= 0.5 (cm) 
   2.1.9.4.1.3 'length root tip'= 4 (cm) 
   2.1.9.5 'branching angle'= 75 (degrees) 
   2.1.9.6 'density'= 0.094 (g/cm3) 
   2.1.9.7 'diameter'= 0.03 (cm) 
   2.1.9.8 'gravitropism'= 0 (noUnit) 
   2.1.9.9 'gravitropism.v2'= 0 0 0 (cm) 
   2.1.9.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs :{ 
0 0.768 2 0.768 4 0.768 6 0.2 10 0 1000 0 } 
   2.1.9.11 'longitudinal growth rate multiplier'(cm) minimum=0.6 
maximum=1 mean=0.8 stdev=0.1 
   2.1.9.12 'nitrate' 
    2.1.9.12.1 
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2.1.9.12.2 
2.1.9.12.3 
2.1.9.12.4 
2.1.9.12.5 

'Cmin'= 0.001 (uMol/ml) 
'Imax'= 1.9 (uMol/cm2/day) 
'Km'= 0.0161 (uMol/ml) 
'minimal nutrient concentration'= 600 (uMol/g) 
'optimal nutrient concentration'= 1200 (uMol/g) 
2.1.9.13 'number of xylem poles'= 4 (noUnit) 
2.1.9.14 'phosphorus' 

2.1.9.14.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.9.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.9.14.3 'Km'= 0.00545 (uMol/ml) 
2.1.9.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.9.14.5 'optimal nutrient concentration'= 60 (uMol/g) 

2.1.9.15 'potassium' 
2.1.9.15.1 'Cmin'= 0.002 (uMol/ml) 
2.1.9.15.2 'Imax'= 0.467 (uMol/cm2/day) 
2.1.9.15.3 'Km'= 0.039 (uMol/ml) 
2.1.9.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.9.15.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.9.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 

0.7 0.6 1 } 
2.1.9.17 'regular topology'= 0 (noUnit) 
2.1.9.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 

creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
2.1.9.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 

pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
2.1.9.20 'root class ID'= 97 (noUnit) 
2.1.9.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 

pairs :{ 0 3000 100 3000 } 
2.1.9.22 'root hair diameter'= 0.0005 (cm) 
2.1.9.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs :{ 

0 0 1 0 2 0.03 100 0.03 } 
2.1.9.24 'soil impedence'= 0.02 (noUnit) 
2.1.9.25 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.1 maximum=0.1 
2.1.9.26 'top boundary'= 1 (noUnit) 
2.1.9.27 'topology offset'= 0 (noUnit) 

2.1.10 'lateral hypocotyl born roots' 
2.1.10.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) 

x,y pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 1000 
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   0.268 } 
   2.1.10.2 'bottom boundary'= 1 (noUnit) 
   2.1.10.3 'bounce of the side'= 1 (noUnit) 
   2.1.10.4 'branch list' 
   2.1.10.5 'branching angle'= 75 (degrees) 
   2.1.10.6 'density'= 0.094 (g/cm3) 
   2.1.10.7 'diameter'= 0.03 (cm) 
   2.1.10.8 'gravitropism'= 0 (noUnit) 
   2.1.10.9 'gravitropism.v2'= 0 0 0 (cm) 
   2.1.10.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs 
:{ 0 0.768 2 0.768 4 0.768 6 0.2 10 0 1000 0 } 
   2.1.10.11 'longitudinal growth rate multiplier'(cm) minimum=0.6 
maximum=1 mean=0.8 stdev=0.1 
   2.1.10.12 'nitrate' 
    2.1.10.12.1 'Cmin'= 0.001 (uMol/ml) 
    2.1.10.12.2 'Imax'= 1.9 (uMol/cm2/day) 
    2.1.10.12.3 'Km'= 0.0161 (uMol/ml) 
    2.1.10.12.4 'minimal nutrient concentration'= 600 (uMol/g) 
    2.1.10.12.5 'optimal nutrient concentration'= 1200 (uMol/g) 
   2.1.10.13 'number of xylem poles'= 4 (noUnit) 
   2.1.10.14 'phosphorus' 
    2.1.10.14.1 'Cmin'= 0.0002 (uMol/ml) 
    2.1.10.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
    2.1.10.14.3 'Km'= 0.00545 (uMol/ml) 
    2.1.10.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
    2.1.10.14.5 'optimal nutrient concentration'= 60 (uMol/g) 
   2.1.10.15 'potassium' 
    2.1.10.15.1 'Cmin'= 0.002 (uMol/ml) 
    2.1.10.15.2 'Imax'= 0.467 (uMol/cm2/day) 
    2.1.10.15.3 'Km'= 0.039 (uMol/ml) 
    2.1.10.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
    2.1.10.15.5 'optimal nutrient concentration'= 234 (uMol/g) 
   2.1.10.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
   0.7 0.6 1 } 
   2.1.10.17 'regular topology'= 0 (noUnit) 
   2.1.10.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 
creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
   1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
   2.1.10.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
   2.1.10.20 'root class ID'= 97 (noUnit) 
   2.1.10.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 
pairs :{ 0 3000 100 3000 } 
   2.1.10.22 'root hair diameter'= 0.0005 (cm) 
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2.1.10.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs 
:{ 0 0 1 0 2 0.03 100 0.03 } 

2.1.10.24 'soil impedence'= 0.015 (noUnit) 
2.1.10.25 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.1 maximum=0.1 
2.1.10.26 'top boundary'= 1 (noUnit) 
2.1.10.27 'topology offset'= 0 (noUnit) 

2.1.11 'lateral primary root' 
2.1.11.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) 

x,y pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 
1000 0.268 } 
2.1.11.2 'bottom boundary'= 1 (noUnit) 
2.1.11.3 'bounce of the side'= 1 (noUnit) 
2.1.11.4 'branch list' 

2.1.11.4.1 'finelateral' 
2.1.11.4.1.1 'allow branches to form above ground'= 0 (noUnit) 
2.1.11.4.1.2 'branching frequency'= 0.5 (cm) 
2.1.11.4.1.3 'length root tip'= 4 (cm) 

2.1.11.5 'branching angle'= 75 (degrees) 
2.1.11.6 'density'= 0.094 (g/cm3) 
2.1.11.7 'diameter'= 0.03 (cm) 
2.1.11.8 'gravitropism'= 0 (noUnit) 
2.1.11.9 'gravitropism.v2'= 0 0 0 (cm) 
2.1.11.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs 

:{ 0 0.768 2 0.768 4 0.768 6 0.768 10 0 1000 
0} 
2.1.11.11 'longitudinal growth rate multiplier'(cm) minimum=0.8 

maximum=1.2 mean=1 stdev=0.1 
2.1.11.12 'nitrate' 

2.1.11.12.1 'Cmin'= 0.001 (uMol/ml) 
2.1.11.12.1 'Imax'= 1.9 (uMol/cm2/day) 
2.1.11.12.3 'Km'= 0.0161 (uMol/ml) 
2.1.11.12.4 'minimal nutrient concentration'= 600 (uMol/g) 
2.1.11.12.5 'optimal nutrient concentration'= 1200 (uMol/g) 

2.1.11.13 'number of xylem poles'= 4 (noUnit) 
2.1.11.14 'phosphorus' 

2.1.11.14.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.11.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.11.14.3 'Km'= 0.00545 (uMol/ml) 
2.1.11.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.11.14.5 'optimal nutrient concentration'= 60 (uMol/g) 

2.1.11.15 'potassium' 
2.1.11.15.1 'Cmin'= 0.002 (uMol/ml) 
2.1.11.15.2 'Imax'= 0.467 (uMol/cm2/day) 
2.1.11.15.3 'Km'= 0.039 (uMol/ml) 
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2.1.11.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.11.15.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.11.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 

0.7 0.6 1 } 
2.1.11.17 'regular topology'= 0 (noUnit) 
2.1.11.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 

creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
2.1.11.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 

pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
2.1.11.20 'root class ID'= 97 (noUnit) 
2.1.11.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 

pairs :{ 0 2000 10 2000 30 2000 100 2000 } 
2.1.11.22 'root hair diameter'= 0.0005 (cm) 
2.1.11.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs 

:{ 0 0 1 0 2 0.03 100 0.03 } 
2.1.11.24 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 

x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
2.1.11.25 'secondary growth scaling factor'(100%) =f{'distance to base of 

the root'} (cm) x,y pairs :{ 0 0.1 50 0.1 100 
0.1 } 
2.1.11.26 'soil impedence'= 0.02 (noUnit) 
2.1.11.27 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.2 maximum=0.2 
2.1.11.28 'top boundary'= 1 (noUnit) 
2.1.11.29 'topology offset'= 0 (noUnit) 

2.1.12 'lateral primary root fast growing' 
2.1.12.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) 

x,y pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 
1000 0.268 } 
2.1.12.2 'bottom boundary'= 1 (noUnit) 
2.1.12.3 'bounce of the side'= 1 (noUnit) 
2.1.12.4 'branch list' 
2.1.12.4.1 'finelateral fast growing' 
2.1.12.4.1.1 'allow branches to form above ground'= 0 (noUnit) 
2.1.12.4.1.2 'branching frequency'= 0.55 (cm) 
2.1.12.4.1.3 'length root tip'= 4 (cm) 
2.1.12.5 'branching angle'= 75 (degrees) 
2.1.12.6 'density'= 0.094 (g/cm3) 
2.1.12.7 'diameter'= 0.03 (cm) 
2.1.12.8 'gravitropism'= 0 (noUnit) 
2.1.12.9 'gravitropism.v2'= 0 0 0 (cm) 
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   2.1.12.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs 
:{ 0 0.768 2 0.768 15 0.768 20 0 1000 0 } 
   2.1.12.11 'longitudinal growth rate multiplier'(cm) minimum=1.4 
maximum=1.8 mean=1.6 stdev=0.2 
   2.1.12.12 'nitrate' 
    2.1.12.12.1 'Cmin'= 0.001 (uMol/ml) 
    2.1.12.12.2 'Imax'= 1.9 (uMol/cm2/day) 
    2.1.12.12.3 'Km'= 0.0161 (uMol/ml) 
    2.1.12.12.4 'minimal nutrient concentration'= 600 (uMol/g) 
    2.1.12.12.5 'optimal nutrient concentration'= 1200 (uMol/g) 
   2.1.12.13 'number of xylem poles'= 4 (noUnit) 
   2.1.12.14 'phosphorus' 
    2.1.12.14.1 'Cmin'= 0.0002 (uMol/ml) 
    2.1.12.14.2 'Imax'= 0.0555 (uMol/cm2/day) 
    2.1.12.14.3 'Km'= 0.00545 (uMol/ml) 
    2.1.12.14.4 'minimal nutrient concentration'= 30 (uMol/g) 
    2.1.12.14.5 'optimal nutrient concentration'= 60 (uMol/g) 
   2.1.12.15 'potassium' 
    2.1.12.15.1 'Cmin'= 0.002 (uMol/ml) 
    2.1.12.15.2 'Imax'= 0.467 (uMol/cm2/day) 
    2.1.12.15.3 'Km'= 0.039 (uMol/ml) 
    2.1.12.15.4 'minimal nutrient concentration'= 168 (uMol/g) 
    2.1.12.15.5 'optimal nutrient concentration'= 234 (uMol/g) 
   
   2.1.12.16 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 
   0.7 0.6 1 } 
   2.1.12.17 'regular topology'= 0 (noUnit) 
   2.1.12.18 'relative carbon cost of exudation'(g/cm/day) =f{'time since 
creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
   1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
   2.1.12.19 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 
pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
   2.1.12.20 'root class ID'= 97 (noUnit) 
   2.1.12.21 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 
pairs :{ 0 3000 100 3000 } 
   2.1.12.22 'root hair diameter'= 0.0005 (cm) 
   2.1.12.23 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs 
:{ 0 0 1 0 2 0.03 100 0.03 } 
   2.1.12.24 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 
x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
   0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
   2.1.12.25 'secondary growth scaling factor'(100%) =f{'distance to base of 
the root'} (cm) x,y pairs :{ 0 0.3 50 0.2 100 
   0.2 } 
   2.1.12.26 'soil impedence'= 0.02 (noUnit) 
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2.1.12.27 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-
0.1 maximum=0.1 

2.1.12.28 'top boundary'= 1 (noUnit) 
2.1.12.29 'topology offset'= 0 (noUnit) 

2.1.13 'primary root' 
2.1.13.1 'aerenchyma formation'(100%) =f{'time since creation'} (day) 

x,y pairs :{ 0 0 3 0 5 0.05 10 0.1 20 0.268 
1000 0.268 } 
2.1.13.2 'bottom boundary'= 1 (noUnit) 
2.1.13.3 'bounce of the side'= 1 (noUnit) 
2.1.13.4 'branch list' 
2.1.13.4.1 'lateral primary root' 

2.1.13.4.1.1 'allow branches to form above ground'= 0 (noUnit) 
2.1.13.4.1.2 'branching frequency'= 0.1 (cm) 
2.1.13.4.1.3 'length root tip'= 10 (cm) 
2.1.13.4.1.4 'number of branches/whorl'= 1 (#) 

2.1.13.4.2 'lateral primary root fast growing' 
2.1.13.4.2.1 'allow branches to form above ground'= 0 (noUnit) 
2.1.13.4.2.2 'branching frequency'(cm) minimum=1 maximum=5 
2.1.13.4.2.3 'length root tip'= 10 (cm) 
2.1.13.4.2.4 'number of branches/whorl'= 1 (#) 

2.1.13.5 'branching angle'= 0 (degrees) 
2.1.13.6 'density'= 0.094 (g/cm3) 
2.1.13.7 'diameter'= 0.09 (cm) 
2.1.13.8 'gravitropism'= 0.011 (noUnit) 
2.1.13.9 'gravitropism.v2'(cm) =f{'uniform distribution'} minimum=-

0.015 maximum=-0.005 
2.1.13.10 'growth rate'(cm/day) =f{'time since creation'} (day) x,y pairs 

:{ 0 2.357 10 2.357 15 2.357 250 2.357 } 
2.1.13.11 'nitrate' 

2.1.13.11.1 'Cmin'= 0.001 (uMol/ml) 
2.1.13.11.2 'Imax'= 1.9 (uMol/cm2/day) 
2.1.13.11.3 'Km'= 0.0161 (uMol/ml) 
2.1.13.11.4 'minimal nutrient concentration'= 600 (uMol/g) 
2.1.13.11.5 'optimal nutrient concentration'= 1200 (uMol/g) 

2.1.13.12 'number of xylem poles'= 16 (noUnit) 
2.1.13.13 'phosphorus' 
2.1.13.13.1 'Cmin'= 0.0002 (uMol/ml) 
2.1.13.13.2 'Imax'= 0.0555 (uMol/cm2/day) 
2.1.13.13.3 'Km'= 0.00545 (uMol/ml) 
2.1.13.13.4 'minimal nutrient concentration'= 30 (uMol/g) 
2.1.13.13.5 'optimal nutrient concentration'= 60 (uMol/g) 
2.1.13.14 'potassium' 

2.1.13.14.1 'Cmin'= 0.002 (uMol/ml) 
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2.1.13.14.2 'Imax'= 0.467 (uMol/cm2/day) 
2.1.13.14.3 'Km'= 0.039 (uMol/ml) 
2.1.13.14.4 'minimal nutrient concentration'= 168 (uMol/g) 
2.1.13.14.5 'optimal nutrient concentration'= 234 (uMol/g) 

2.1.13.15 'reduction in respiration due to aerenchyma'(100%) 
=f{'aerenchymaFormation'} (100%) x,y pairs :{ 0 0 0.3 

0.7 0.6 1 } 
2.1.13.16 'relative carbon cost of exudation'(g/cm/day) =f{'time since 

creation'} (day) x,y pairs :{ 0 1.915e-05 1.8 
1.511e-05 3.1 1.699e-05 4.4 1.362e-05 100 1.362e-05 } 
2.1.13.17 'relative respiration'(g/g/day) =f{'time since creation'} (day) x,y 

pairs :{ 0 0.09 2 0.04 6 0.04 1000 0.04 } 
2.1.13.18 'root class ID'= 100 (noUnit) 
2.1.13.19 'root hair density'(#/cm2) =f{'time since creation'} (day) x,y 

pairs :{ 0 2000 10 2000 30 2000 100 2000 } 
2.1.13.20 'root hair diameter'= 0.0005 (cm) 
2.1.13.21 'root hair length'(cm) =f{'time since creation'} (day) x,y pairs 

:{ 0 0 1 0 2 0.03 100 0.03 } 
2.1.13.22 'secondary growth rate'(cm/day) =f{'root segment age'} (day) 

x,y pairs :{ 0 0 4 0.0005 5 0.001 7 0.0015 11 
0.002 13 0.0023 18 0.0026 24 0.00285 29 0.003 100 0.003 } 
2.1.13.23 'secondary growth scaling factor'(100%) =f{'distance to base of 

the root'} (cm) x,y pairs :{ 0 4 0.5 4 1 4 20 
4 40 2 100 2 } 
2.1.13.24 'soil impedence'= 0.01 (noUnit) 
2.1.13.25 'soil impedence.v2'(cm) =f{'uniform distribution'} minimum=-

0.05 maximum=0.05 
2.1.13.26 'top boundary'= 1 (noUnit) 

2.1.14 'resources' 
2.1.14.1 'cto dry weight ratio'= 0.45 (100%) 
2.1.14.2 'carbon allocation2 leafs factor'(100%) =f{'time since creation'} 

(day) x,y pairs :{ 0 0.7 10 0.65 30 0.65 40 
0.65 60 0.4 } 
2.1.14.3 'carbon allocation2 roots factor'(100%) =f{'time since creation'} 

(day) x,y pairs :{ 0 1 1 0.5 5 0.2 1000 0.2 } 
2.1.14.4 'carbon cost of biologcial nitrogen fixation'= 3.95e-05 (g/uMol) 
2.1.14.5 'carbon cost of nitrate uptake'= 1.392e-05 (g/uMol) 
2.1.14.6 'max carbon allocation2 secondary growth'= 0.7 (100%) 
2.1.14.7 'max carbon allocation2 shoot'= 0.85 (100%) 
2.1.14.8 'nitrate' 

2.1.14.8.1 'initial nutrient uptake'= 714 (uMol) 
2.1.14.9 'phosphorus' 

2.1.14.9.1 'initial nutrient uptake'= 39 (uMol) 
2.1.14.10 'potassium' 
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    2.1.14.10.1 'initial nutrient uptake'= 45 (uMol) 
   2.1.14.11 'relative reliance on b n f'= 30 (100%) 
   2.1.14.12 'reserve allocation rate'(100%/day) =f{'time since creation'} 
(day) x,y pairs :{ 0 0.4 2 0.4 3 0.4 4 0.4 1000 
   0.4 } 
   2.1.14.13 'seed size'= 0.2 (g) 
    
  2.1.15 'shoot' 
   2.1.15.1 'aerenchyma photosynthesis mitigation'= 0.5 (100%) 
   2.1.15.2 'area per plant'= 660 (cm2) 
   2.1.15.3 'extinction coefficient'= 0.9 (noUnit) 
   2.1.15.4 'leaf area expantion rate'(cm2/day) =f{'time'} (day) x,y pairs :{ 0 
0 2 0 3 3 4 5 6 5 7.04 3.91 7.29 4.21 7.55 
   4.52 7.8 4.85 8.05 5.19 8.3 5.54 8.56 5.92 8.81 6.31 9.06 6.72 9.31 7.14 
9.57 7.59 9.82 8.06 10.07 8.55 10.32 9.06 10.58 
   9.59 10.83 10.15 11.08 10.74 11.33 11.35 11.59 11.99 11.84 12.66 12.09 
13.36 12.34 14.09 12.6 14.85 12.85 15.65 13.1 
   16.49 13.35 17.37 13.61 18.28 13.86 19.24 14.11 20.24 14.36 21.29 
14.62 22.39 14.87 23.53 15.12 24.73 15.37 25.98 
   15.63 27.3 15.88 28.67 16.13 30.1 16.38 31.6 16.64 33.17 16.89 34.81 
17.14 36.53 17.39 38.32 17.65 40.2 17.9 42.16 
   18.15 44.21 18.4 46.36 18.66 48.61 18.91 50.96 19.16 53.41 19.41 55.98 
19.67 58.67 19.92 61.48 20.17 64.42 20.42 
   67.49 20.68 70.71 20.93 74.07 21.18 77.59 21.43 81.27 21.69 85.12 
21.94 89.14 22.19 93.35 22.44 97.75 22.7 102.35 
   22.95 107.17 23.2 112.2 23.45 117.47 23.71 122.98 23.96 128.74 24.21 
134.76 24.46 141.06 24.72 147.65 24.97 154.55 
   25.29 156.06 25.66 154.09 26.02 152.11 26.38 150.11 26.74 148.1 27.1 
146.08 27.46 144.05 27.83 142.02 28.19 139.98 
   28.55 137.94 28.91 135.9 29.27 133.85 29.63 131.81 29.99 129.77 30.36 
127.73 30.72 125.7 31.08 123.67 31.44 121.65 
   31.8 119.64 32.16 117.64 32.52 115.65 32.89 113.67 33.25 111.71 33.61 
109.75 33.97 107.81 34.33 105.89 34.69 
   103.98 35.06 102.09 35.42 100.21 35.78 98.36 36.14 96.52 36.5 94.7 
36.86 92.9 37.22 91.12 37.59 89.36 37.95 87.62 
   38.31 85.9 38.67 84.2 39.03 82.53 39.39 80.87 39.76 79.24 40.12 77.63 
40.48 76.05 40.84 74.49 41.2 72.95 41.56 71.43 
   41.92 69.94 42.29 68.47 42.65 67.02 43.01 65.59 43.37 64.19 43.73 
62.82 44.09 61.46 44.45 60.13 44.82 58.82 45.18 
   57.53 45.54 56.27 45.9 55.03 46.26 53.81 46.62 52.61 46.99 51.44 47.35 
50.29 47.71 49.16 48.07 48.05 48.43 46.96 
   48.79 45.89 49.15 44.84 49.52 43.82 49.88 42.81 50.24 41.83 50.6 40.86 
50.96 39.91 51.32 38.99 51.69 38.08 52.05 
   37.19 52.41 36.32 52.77 35.47 53.13 34.63 53.49 33.82 53.85 33.02 
54.22 32.23 54.58 31.47 54.94 30.72 55.3 29.99 
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55.66 29.27 56.02 28.57 56.38 27.88 56.75 27.21 57.11 26.56 57.47 
25.92 57.83 25.29 58.19 24.68 58.55 24.08 58.92 

23.49 59.28 22.92 59.64 22.36 } 
2.1.15.5 'light use efficiency'= 3.8e-07 (g/uMol) 
2.1.15.6 'nitrate' 

2.1.15.6.1 'leaf minimal nutrient concentration'= 1300 (uMol/g) 
2.1.15.6.2 'leaf optimal nutrient concentration'= 2600 (uMol/g) 
2.1.15.6.3 'stem minimal nutrient concentration'= 700 (uMol/g) 
2.1.15.6.4 'stem optimal nutrient concentration'= 1300 (uMol/g) 

2.1.15.7 'phosphorus' 
2.1.15.7.1 'leaf minimal nutrient concentration'= 50 (uMol/g) 
2.1.15.7.2 'leaf optimal nutrient concentration'= 100 (uMol/g) 
2.1.15.7.3 'stem minimal nutrient concentration'= 25 (uMol/g) 
2.1.15.7.4 'stem optimal nutrient concentration'= 50 (uMol/g) 

2.1.15.8 'potassium' 
2.1.15.8.1 'leaf minimal nutrient concentration'= 273 (uMol/g) 
2.1.15.8.2 'leaf optimal nutrient concentration'= 430 (uMol/g) 
2.1.15.8.3 'stem minimal nutrient concentration'= 273 (uMol/g) 
2.1.15.8.4 'stem optimal nutrient concentration'= 215 (uMol/g) 

2.1.15.9 'relative potential transpiration'= 100 (cm3/g) 
2.1.15.10 'relative respiration rate leafs'= 0.04 (g/g/day) 
2.1.15.11 'relative respiration rate stems'= 0.02 (g/g/day) 
2.1.15.12 'specific leaf area'(g/cm2) =f{'time'} (day) x,y pairs :{ 0 0.0015 

24 0.0025 40 0.003 60 0.003 } 

2.1.16 'stress impact factors' 
2.1.16.1 'impact on:leaf area expantion rate' 

2.1.16.1.1 'impact by:nitrate'(noUnit) =f{'nitrate stress factor'} 
(noUnit) x,y pairs :{ 0 0 0.3 0.1 1 1 } 

2.1.16.1.2 'impact by:phosphorus'(noUnit) =f{'phosphorus stress 
factor'} (noUnit) x,y pairs :{ 0 0 1 1 } 

2.1.16.1.3 'impact by:potassium'(noUnit) =f{'potassium stress 
factor'} (noUnit) x,y pairs :{ 0 1 1 1 } 

2.1.16.2 'impact on:photosynthesis' 
2.1.16.2.1 'impact by:nitrate'(noUnit) =f{'nitrate stress factor'} 

(noUnit) x,y pairs :{ 0 0 0.4 0.5 1 1 } 
2.1.16.2.1 'impact by:phosphorus'(noUnit) =f{'phosphorus stress 

factor'} (noUnit) x,y pairs :{ 0 0.5 1 1 } 
2.1.16.2.3 'impact by:potassium'(noUnit) =f{'potassium stress 

factor'} (noUnit) x,y pairs :{ 0 0 1 1 } 
2.1.16.3 'impact on:root segment carbon cost of exudates' 

2.1.16.3.1 'impact by:nitrate'(noUnit) =f{'nitrate stress factor'} 
(noUnit) x,y pairs :{ 0 1 1 1 } 

2.1.16.3.2 'impact by:phosphorus'(noUnit) =f{'phosphorus stress 
factor'} (noUnit) x,y pairs :{ 0 1 1 1 } 
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2.1.16.3.3 'impact by:potassium'(noUnit) =f{'potassium stress 
factor'} (noUnit) x,y pairs :{ 0 1 1 1 } 

2.1.16.4 'impact on:root segment respiration' 
2.1.16.4.1 'impact by:nitrate'(noUnit) =f{'nitrate stress factor'} 

(noUnit) x,y pairs :{ 0 1 1 1 } 
2.1.16.4.2 'impact by:phosphorus'(noUnit) =f{'phosphorus stress 

factor'} (noUnit) x,y pairs :{ 0 1 1 1 } 
2.1.16.4.3 'impact by:potassium'(noUnit) =f{'potassium stress 

factor'} (noUnit) x,y pairs :{ 0 1 1 1 } 
2.1.16.5 'impact on:root segment secondary growth' 

2.1.16.5.1 'impact by:nitrate'(noUnit) =f{'nitrate stress factor'} 
(noUnit) x,y pairs :{ 0 0 1 1 } 

2.1.16.5.2 'impact by:phosphorus'(noUnit) =f{'phosphorus stress 
factor'} (noUnit) x,y pairs :{ 0 0 1 1 } 

2.1.16.5.3 'impact by:potassium'(noUnit) =f{'potassium stress 
factor'} (noUnit) x,y pairs :{ 0 0 1 1 } 
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2

1

(b)

1

3

Supplementary Figure 3-S1: Distribution of each objective in bean SOM map (a). Distribution of 
each objective in maize SOM map (b). Region 1 corresponds to nodes with phenotypes with low 
carbon cost and root respiration. Region 2 corresponds to nodes with greatest biomass. Region 3 
corresponds to nodes with greatest root length at depth. The mean of the objective in each node 
is represented. The change in color from blue to red show a change in magnitude of the value 
with red representing greatest values.
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Supplementary Figure 3-S2: Mean value of objective in each node for bean optimal phenotypes 
in a region with sub-optimal N and P (a). The relative performance of the phenotypes in 
different objective in each node (b). Nodes 6, 8 and 9 have comparable biomass but vary in 
performance in other objectives. Some representative bean phenotypes with comparable 
biomass from nodes 6, 8 and 9 (c). Primary root is in black; Basal roots in red; Hypocotyl-borne 
roots in green.
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Supplementary Figure 3-S3: Mean value of objective in each node for maize optimal phenotypes in a 
region with sub-optimal N and P (a). The relative performance of the phenotypes in different 
objective in each node (b). Nodes 1, 2, 3, 5 and 6 have comparable biomass but vary in performance 
in other objectives. Some representative phenotypes with comparable biomass from nodes 1, 2, 3, 5 
and 6 (c). Primary root is in black; Nodal roots in red; Nodal roots in green.
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(a)

(b)

Supplementary Figure 3-S4: Different primary root phenotypes found in optimal bean phenotypes (a) 
and optimal maize phenotypes (b). 
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Few HBR
Low LRBD
Large diameter
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Supplementary Figure 3-S5: Different hypocotyl-borne root phenotypes found in optimal bean 
phenotypes.
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Supplementary Figure 3-S6: Different basal root phenotypes found in optimal bean 
phenotypes. Nodes in blue have phenotypes found in low N regions. Nodes in yellow have 
phenotypes found in low P regions. Nodes in grey have phenotypes found in low P as well as 
low N.
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Supplementary Figure 3-S7: Different nodal root phenotypes found in optimal maize phenotypes.
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Supplementary Figure 4-S1(a)-S1(i): Representative images of 2D projections of a maize root 
system rotated by 20°, 60°, 100°, 140°, 180°, 220°, 260°, 300°, 340°.
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Supplementary figures and tables for Chapter 4
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Supplementary Table 4-S1: Range of input values for generating bean root phenotypes. PR – 
primary root; HBR- Hypocotyl-Borne-Root; BW – Basal Whorl; BW1, BW2, BW3, BW4, BW5 
refer to the position of the basal whorl counted from basipetal to acropetal position; Dia – axial 
root diameter; Lat.Dia – lateral root diameter; LRBD – lateral root branching density. 

Units Min Max References 
Number.BW1 NA 0 4 Miguel et al., 2013 
Number.BW2 NA 0 4 
Number.BW3 NA 0 4 
Number.BW4 NA 0 4 
Number.BW5 NA 0 4 
Number.HBR NA 0 30 Miller et al., 2003 
PR.Dia cm 0.08 0.45 Henry et al., 2009 
BW1.Dia cm 0 0.45 
BW2.Dia cm 0 0.45 
BW3.Dia cm 0 0.45 
BW4.Dia cm 0 0.45 
BW5.Dia cm 0 0.45 
HBR.Dia cm 0 0.45 
BW1.Lat.Dia cm 0 0.03 
BW2.Lat.Dia cm 0 0.03 
BW3.Lat.Dia cm 0 0.03 
BW4.Lat.Dia cm 0 0.03 
BW5.Lat.Dia cm 0 0.03 
HBR.Lat.Dia cm 0 0.03 
PR.Lat.Dia cm 0 0.03 
BW1.LRBD cm-1 0 40 Miller et al., 2003 
BW2.LRBD cm-1 0 40 
BW3.LRBD cm-1 0 40 
BW4.LRBD cm-1 0 40 
BW5.LRBD cm-1 0 40 
PR.LRBD cm-1 0 40 
HBR.LRBD cm-1 0 40 
BW1.Angle degree 0 90 Miguel et al., 2013 
BW2.Angle degree 0 90 
BW3.Angle degree 0 90 
BW4.Angle degree 0 90 
BW5.Angle degree 0 90 

177



Supplementary Table 4-S2:  Range of input values for generating maize root phenotypes. PR -
Primary Root; SR -Seminal Root; NR-Nodal Root; NR1, NR2, NR3, NR4 refer to the nodal root 
position; Dia – axial root diameter; Lat.Dia – lateral root diameter; LRBD – lateral root 
branching density. *NR at different positions  were considered to have similar parameters. 

Units Min Max References 
Number.SR NA 0 12 Hochholdinger and Tuberosa, 2009 
Number.NR1 NA 0 12 Burton et al., 2013; 

 York and Lynch, 2015 Number.NR2 NA 0 12 
Number.NR3 NA 0 12 
Number.NR4 NA 0 12 
PR.Dia cm 0.08 0.6 Burton et al., 2013; 

 Burton et al., 2014;  
York and Lynch, 2015 

SR.Dia cm 0 0.6 
NR1.Dia cm 0 0.6 
NR2.Dia cm 0 0.6 
NR3.Dia cm 0 0.6 
NR4.Dia cm 0 0.6 
PR.Lat.Dia cm 0 0.05 
SR.Lat.Dia cm 0 0.05 
NR1.Lat.Dia cm 0 0.05 
NR2.Lat.Dia cm 0 0.05 
NR3.Lat.Dia cm 0 0.05 
NR4.Lat.Dia cm 0 0.05 
PR.LRBD cm-1 0 40 Postma et al., 2014;  

York and Lynch, 2015 SR.LRBD cm-1 0 40 
NR1.LRBD cm-1 0 40 
NR2.LRBD cm-1 0 40 
NR3.LRBD cm-1 0 40 
NR4.LRBD cm-1 0 40 
SR.Angle degree 0 90 Liao et al., 2004; 

Zhu et al., 2005 NR1.Angle degree 0 90 
NR2.Angle degree 0 90 
NR3.Angle degree 0 90 
NR4.Angle degree 0 90 
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