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ABSTRACT 

 Fungi in the Ophiocordyceps (Ascomycota, Hypocreales) genus are remarkable for their 

ability to manipulate an ant host to leave the nest and die biting into vegetation, hence creating a 

‘zombie ant’. This dissertation explores Ophiocordyceps ant parasites in natural field conditions. 

Ant colonies have a suite of behaviors that protect the colony from disease and I explore how host 

manipulation helps the parasite evade colony defenses. I compare three zombie ant systems from 

different areas of the phylogeny, providing insight into the evolutionary innovations and 

adaptations of this fungal group. First, I examine the characteristics of a social insect society, 

focusing on the foraging dynamics of a commonly infected ant. Finding that most ants walk 

similarly, I suggest this uniform walking style prevents widespread infection, while the more 

exploratory ants may be at higher risk of picking up fungal spores. Next, I created a model to 

predict how zombie ants move in this system, then compared zombie and uninfected ant 

movement to demonstrate how zombie ant cadavers end up surrounding the main foraging trails. 

In the following two chapters, I investigate two other zombie ant systems featuring different host 

and parasite species. I look into how foraging ants interact with the zombie ant cadavers and find 

that cadavers are sometimes removed by conspecifics. These observations show how the ant host 

can fight back against the parasite. Overall, my dissertation illustrates the fascinating arms race 

between hosts and parasites, and in particular, the conflicting forces of a highly specialized 

parasite and a deeply protected altruistic society.   
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Chapter 1 
 
Introduction 

The social insects 

 Group living species exist across the span of eukaryotic taxa, including primates, birds, 

fish, and even single-celled organisms such as slime molds. While many species temporarily form 

groups, a group living organism can be defined as a set of individuals belonging to the same 

species that remain together and interact more than with other conspecific organisms (Wilson, 

2000). Group living is thought to evolve when the benefits of living in a group outweigh the costs 

and these advantages gained from the group are known as inclusive fitness (Hamilton, 1964). 

Main advantages of forming a cooperative group include increased capacity to gather and access 

resources, improved defense from predators, as well as more mating opportunities. In some cases, 

group living developed into an advanced form of sociality referred to as eusociality.  

Certain characteristics distinguish a eusocial society, including overlapping of 

generations, cooperative brood care, and reproductive division of labor (Michener, 1969; Wilson, 

1971). The major eusocial groups are the ants, bees, wasps, termites, as well as a few select thrip, 

aphid, and beetle species (Choe & Crespi, 1997). Outside of the insects, the only organisms 

known to exhibit eusociality are two species of mole-rats and several species of shrimp in the 

genus Synalpheus (Duffy, 2007; Jarvis & Bennett, 1993). The eusocial insect species are known 

as the social insects. 

Social insects have garnered fascination for centuries for their innovative and cooperative 

behaviors. Social insects are able to coordinate complex activities without central control, 

resulting in impressive nesting structures (Franks & Deneubourg, 1997; Theraulaz et al., 1998), 
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traffic management (Couzin & Franks, 2003; Dussutour et al., 2004; John et al., 2009), and even 

forms of agriculture (Mueller et al., 2005). Moreover, workers perform these behaviors while 

sacrificing their own reproductive fitness for the benefit of the colony. These qualities have 

allowed social insects to flourish all over the world, forming dense colonies of hundreds to 

thousands of individuals. Their ecological success warrants study into how social insects have 

overcome major colony threats such as infectious disease.  

  Sociality and disease risk 

“Although I believe not yet tested, the prediction is compelling that group-living 
animals will either be plagued more heavily with parasites and diseases than their 
solitary-living close relatives, or they will be plagued with greater expense of 
time and energy, and greater risk, in reducing the attacks of such organisms.”  

      – R.D. Alexander (1974) 

 The above quote highlights a fundamental idea in infectious disease: living in a group 

makes it easier for a directly transmitted parasite to infect new hosts (Anderson & May, 1979). 

Human disease exemplifies this tradeoff through the number of devastating pandemics sustained 

by humanity through time along with the global cost of disease prevention and treatment 

worldwide. Certain diseases of humans can quickly spread and harm a population, with notable 

examples including the bubonic plague of the 14th century, the 1918 influenza pandemic, and 

most recently the H1N1 influenza, Ebola, and COVID-19 outbreaks (Fineberg, 2014; Hays, 2005; 

Kaner & Schaack, 2016; Perlman, 2020). To mitigate global cost of disease, humans have 

developed technologies such as vaccination and antibiotics to lessen infection spread.   

 Analogously, social insects have developed a suite of behaviors that help protect the 

colony from disease, collectively known as ‘social immunity’ (Cremer et al., 2007). Similar to the 

human use of antibiotics, some social insects use antimicrobials in nest material and other places 
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to limit the growth of unwanted organisms (Brütsch et al., 2017; Fernández-Marín et al., 2006; 

Graystock & Hughes, 2011; Wang et al., 2015). Colony members will groom themselves and 

nestmates contaminated with fungal pathogens to reduce spore loads (Okuno et al., 2012; Reber 

et al., 2011). A multiple compartment nest design as well as the flexible structure of contact 

networks helps prevent the rapid spread of pathogens within the colony (Pie et al., 2004; 

Stroeymeyt et al., 2018). Additionally, social insects will remove corpses and other waste in the 

nest, limiting potential contact to harmful organisms (Diez et al., 2014; Sun & Zhou, 2013; 

Wilson-Rich et al., 2009).  

 While Alexander's (1974) prediction remains to be quantified regarding whether the 

social insects or their solitary counterparts experience more disease, the development of anti-

parasite behaviors in the social insects suggests infection has posed a significant evolutionary 

threat to these animals. This investment in social immunity appears worthwhile, considering 

social insect disease epidemics are rarely reported in nature. 

Parasite strategies for infecting social insects 

 Social insects are a widespread resource, meaning it is advantageous for parasites to 

evolve to exploit them despite colony defense behaviors. To focus on the ants specifically, there 

are over 13,000 species spread across nearly the entire globe (Bolton et al., 2006). Ants are often 

dominant members of an ecosystem. They comprised 69% of the insect biomass in a rainforest 

canopy sample (Erwin, 1989) and together with termites, were 30% of the total biomass in 

another rainforest sample (Fittkau & Klinge, 1973). The number of ant mimics and inquilines, 

from spiders (Cushing, 1997) to butterflies (Thomas & Settele, 2004) to other ants (Buschinger, 

2009), demonstrates the benefits of infiltrating an ant fortress. Given the abundance and 

distribution of ants, it seems unlikely that parasites have not evolved the ability to circumvent 
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colony defense behaviors. This dissertation explores the idea that social immunity limits 

transmission within the nest and promotes alternative routes of infection for parasites of social 

insects. 

An inspection of the main ant parasites demonstrates the prevalence of transmission 

outside of the nest as a strategy for infecting social insects. A database cataloguing ant parasites 

showed that 88.3% of ant parasites need the host to leave the nest for transmission to a new host 

(Quevillon & Hughes, 2018). Similarly, recent studies have highlighted the importance of bee 

pathogen transfer via flowers (Adler et al., 2018; Alger et al., 2019; Figueroa et al., 2019), 

including between different bee species (Graystock et al., 2015; Purkiss & Lach, 2019). Although 

some evidence suggests that bumblebees can avoid pathogen contaminated flowers (Fouks & 

Lattorff, 2011). Not much else is known about the interaction between parasites found in the 

environment and foraging social insect workers. The disparity between what we understand about 

disease prevention within the nest versus the actual transmission and behavior towards pathogenic 

material outside of the nest emphasizes the need for more research in this area.  

 Parasites that are particularly interesting in the context of social insects are manipulative 

parasites that alter a host’s behavior in order to enhance transmission (Poulin, 2010). 

Manipulation might allow a parasite to bypass the social immunity behaviors of the colony by 

inducing a host to leave the nest to spend time in a more favorable transmission location. In fact, 

distantly related parasites have convergently evolved similar ways of manipulating ants (Table 1-

1). These parasites induce summit disease, where ants climb up vegetation to increase the chances 

of transmission, and biting behavior, where the ant dies biting into vegetation, fixing itself to a 

potentially adaptive location. A closer look at these manipulative parasites, such as the 

Ophiocordyceps fungi, might provide insight into parasite strategies that promote infection of 

social insects. 
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Table 1-1. Convergent evolution in manipulation traits of ant parasitic taxa. 

Host species Parasite 
species 

Parasite 
Group 

Summit 
disease 

Biting 
behavior 

References 

Formica sp. Pandora 
formicae; 
Pandora 
myrmecophaga 

Fungi  
Entomophthoromycota 
Entomopothorales 

X X (Boer, 2008; 
Csata et al., 
2013; 
Małagocka 
et al., 2017; 
Marikovsky, 
1962) 

Formica sp.; 
Lasius sp.   

Dicrocoelium 
dendriticum 
 

Platyhelminthes 
Trematoda 
Plagiorchiida 

X X (Heussler et 
al., 1998; 
Krull & 
Mapes, 
1953; 
Manga-
González et 
al., 2001) 

Camponotini 
ants 

Ophiocordyceps 
unilateralis 
sensu latu. 

Fungi 
Ascomycota 
Hypocreales 
 

X1 X (Araújo et 
al., 2018; 
Evans et al., 
2011; Loreto 
et al., 2018) 

Myrmicine 
ants 
 

Ophiocordyceps 
kniphofioides 
sensu latu 

Fungi 
Ascomycota 
Hypocreales 

X X2 

 
(Araújo et 
al., 2018) 

1Ophiocordyceps blakebarnesii infecting Camponotus chromaiodes is found inside logs 
2Ophiocordyceps daceti infecting Daceton armigerum does not bite (Fig. 1-1F) 
 

When fungi in the genus Ophiocordyceps (Ascomycota, Hypocreales) infect ants, the 

fungus induces the ant to leave the nest and die biting into vegetation (Andersen et al., 2009; 

Hughes et al., 2011). As infected ants act in a way that benefits the parasite to the host’s 

detriment, infected ants are known as ‘zombie ants’ (Roy et al., 2006). Other species in the 

Ophiocordyceps genus that infect insects do not cause this manipulation behavior, suggesting this 

is an evolved strategy to infect ants (Araújo & Hughes, 2019; Wang & Yao, 2011). Moreover, 

each fungal species specializes on one ant host (Araújo et al., 2018; Evans et al., 2011), with the 

manipulation appearing to reflect the ecology and environment of the ant host (Loreto et al., 
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2018). A variety of different manipulation phenotypes exist, with different fungi manipulating 

ants to bite into leaves, branches, tree trunks, or not even bite at all (Figure 1-1).  

 

Figure 1-1. Diversity in extended phenotypes of ant infecting Ophiocordyceps fungi. 

(A) Ophiocordyceps ponerinarum (fungus) – Paraponera clavata (ant) (B) Ophiocordyceps 
camponoti-renggeri – Camponotus renggeri (C) undescribed Ophiocordyceps (with a 
hyperparasite) – Paltothyreus tarsatus (D) Ophiocordyceps lloydii – Camponotus atriceps (E) 
Ophicordyceps camponoti-atriceps – Camponotus atriceps (F) Ophiocordyceps daceti – Daceton 
armigerum (G) Ophiocordyceps buquetii – Polyrachis sp. (Photo credits: João Araújo) 

Overview of chapters 

 This dissertation uses the zombie ant system to demonstrate how host manipulation 

allows a parasite to bypass social immunity behaviors and infect social insects. I use three ant-

parasite pairs to investigate this: 1) the ant Camponotus rufipes and the fungus Ophiocordyceps 

camponoti-rufipedis, 2) the ant Cephalotes atratus and the fungus Ophiocordyceps kniphofioides 

and 3) the ant Oecophylla smaragdina and the fungus Ophiocordyceps oecophyllae (Fig. 1-2). 

Chapters 2 and 3 focus on the first paring. The parasite Ophiocordyceps camponoti-rufipedis is 

part of Ophiocordyceps unilateralis species complex and manipulates ants to die biting onto 

leaves surround the ant’s foraging trails. In chapter 2, I look into the behavior of foraging ants on 
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these trails to understand the different infection risk for foraging ants. Then, I create an agent-

based model using this system in chapter 3 to understand how zombie ants are likely moving 

before death.  

 In chapter 4, I introduce a different zombie ant fungus, Ophiocordyceps kniphofioides. 

This fungus manipulates ants to die biting onto tree trunks, instead of the underside of leaves. I 

perform an ecological study where I map out the distribution of cadavers in the environment to 

better understand the infection cycle of the system. Moreover, I investigate the behavior of ants 

towards the cadavers to begin to understand how ants interact with pathogens outside of the nest. 

Lastly, in chapter 5, I investigate what is thought to be an early diverging species, 

Ophiocordyceps oecophyllae, to explain the mystery of why infected cadavers are always found 

damaged. The dissertation ends with a discussion in chapter 6 on the major insights of this work, 

general trends in zombie ants, and future research directions. 

 Overall, I intend for this thesis to show how the relationship of ants to parasites satisfies 

both aspects of Alexander’s prediction: ants invest significant energy into protecting the colony, 

but are still frequently plagued by parasites. An entire fungal group specializes on manipulating 

particular ant species, meaning ants must be beneficial to exploit. I hope more work dives deeper 

into how this could evolve, the fitness impact to the ant host, and the diversity in this fungal 

group. 
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Figure 1-2. Overview of host and parasite species studied in dissertation research with geographic 
locations indicated.  

Chapters 2 and 3 focus on Ophiocordyceps camponoti-rufipedis in Atlantic rainforest of 
Southeastern Brazil, chapter 4 investigates O. kniphofioides in the Brazilian Amazon, and chapter 
5 looks into O. oecophyllae in rainforest of North Queensland, Australia. Phylogeny from Araújo 
et al. (2018). 
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Chapter 2 
 
Automated tracking and analysis of ant trajectories shows variation in 
forager exploration1 

Abstract 

Determining how ant colonies optimize foraging while mitigating pathogen and predator risks 

provides insight into how the ants have achieved ecological success. Ants must respond to 

changing resource conditions, but exploration comes at a cost of higher potential exposure to 

threats. Fungal infected cadavers surround the main foraging trails of the carpenter ant 

Camponotus rufipes, offering a system to study how foragers behave given the persistent 

occurrence of disease threats. Studies on social insect foraging behavior typically require many 

hours of human labor due to the high density of individuals. To overcome this, we developed 

deep learning based computer vision algorithms to track foraging ants, frame-by-frame, from 

video footage shot under the natural conditions of a tropical forest floor at night. We found that 

most foragers walk in straight lines overlapping the same areas as other ants, but there is a subset 

of foragers with greater exploration. Consistency in walking behavior may protect most ants from 

infection, while foragers that explore unique portions of the trail may be more likely to encounter 

fungal spores implying a trade-off between resource discovery and risk avoidance. 

                                                   
1 This chapter was published under the following citation (a copy is available in Appendix A): 

Imirzian, N., Zhang, Y., Kurze, C., Loreto, R.G., Chen, D.Z. and Hughes, D.P., 2019. 
Automated tracking and analysis of ant trajectories shows variation in forager 
exploration. Scientific Reports, 9(1), pp.1-10. 
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Introduction 

Resource acquisition drives animals into new territories, while threat avoidance limits 

where animals move. A consistent threat is the presence of infectious propagules of parasites and 

these are hypothesized to be major determinants of the distribution of animals in the wild (Moore, 

2002). Examples of animals avoiding pathogen contaminated areas span diverse taxa, from 

mammals to insects, implying anti-parasite behavior is widespread (Fouks & Lattorff, 2011; 

Moore, 2002; Villani et al., 2002; Weinstein et al., 2018; Wynne et al., 2016).  Central place 

foragers are interesting in the context of parasite avoidance as they must obtain food while 

avoiding threats with the additional constraint of returning to a defined location after each trip. 

For volant central place foragers, like wasps, bees, bats and birds, much of the trip is through the 

air likely reducing contact with infectious material. However, for taxa which walk on the ground 

(e.g. ants), encounters with parasite propagules are presumably higher (Boomsma et al., 2005). 

Unlike threats from mobile predators and competitors, parasites could directly alter movement 

patterns since infection occurs from a stable location on the ground. For social organisms, it 

would be advantageous to avoid pathogen contaminated areas in order to protect the entire colony 

from becoming infected. 

While some ant species send workers out from the colony to forage independently, other 

ant species use highly coordinated groups to forage, often facilitated through chemical signaling 

(Hölldobler & Wilson, 1990). Group foraging via chemical trails can lead to semi-permanent 

trails known as ‘trunk trails’ (Edelstein-Keshet et al., 1995). Trunk trails stimulate research 

interest largely from the perspective of the self-organization behavior of ants, such as how ants 

regulate traffic (Couzin & Franks, 2003; Edelstein-Keshet, 1994; Fourcassié et al., 2010). Trunk 

trails have also been studied from the perspective of their temporal and spatial dynamics as well 
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as their energetic value in terms of efforts expended and resources obtained (Kost et al. 2005;  

Howard 2001). Yet, studies have not investigated how utilizing the same trails day after day 

impacts the exposure of ants to threats. Moreover, studies on ant foraging have largely occurred 

in a laboratory setting, and of the work that took place in the field, most studies relied on human 

observation or manipulated the environment in some way (see references in Table AA-1). An ant 

species that forages collectively and predictably in time and space would be useful to assess the 

relationship between trail behavior and risk avoidance. 

A potential system is the carpenter ant Camponotus rufipes in southeastern Brazil, which 

forms trunk trails lasting for multiple months (Jaffe & Sanchez, 1984; Loreto et al., 2013). 

Colonies of this ant were recorded as having a chronic infection by the fungal parasite 

Ophiocordyceps camponoti-rufipides across 20 months (Evans, Elliot, and Hughes 2011; Loreto 

et al. 2014). This fungus manipulates foragers to leave the nest and die biting the underside of a 

leaf (Loreto et al. 2014; Evans and Samson 1984). To complete its lifecycle, the fungus must 

grow out of the ant cadaver and form a fruiting body that releases spores onto the ground below 

that will infect other ants (Evans and Samson 1984). Cadavers are found attached to leaves 

surrounding the ant nest (Loreto et al., 2014). The chronic nature of infection at the colony level 

means the spores of the pathogen are continuously in the environment from the perspective of the 

foragers. The spores are curved and large (80-95 microns (Evans, Elliot, and Hughes, 2011)) 

implying they do not travel far and land on the nearby trails once released from ant cadavers that 

hang above trails. Spores germinate to produce infectious secondary spores on hairs 

(capilliconidia) which attach to ants as they walk over them (Araújo & Hughes, 2017). Thus, 

infection does not require a spore to hit an ant as it walks on a trail below a cadaver. Instead, the 

trail substrate itself serves as the source of contamination. 

Foragers of the carpenter ant C. rufipes mostly collect nectar from hemipteran secretions 

and extrafloral sources (Del-Claro & Oliveira, 1999; Jaffe & Sanchez, 1984). The exploitation of 
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a stable resource suggests that the most efficient way for a colony to obtain resources is for the 

majority of foragers to walk directly to the food source, utilizing trails near the colony entrance as 

a highway. However, if all foragers walked directly towards the food source, this would hinder 

the colony’s response to changes in resource availability. We hypothesize that some individual 

trajectories will show evidence of searching behavior, but the majority of ants will walk directly 

across the trail and cover similar areas limiting the exposure of most ants to threats.  

We studied the trails of seven C. rufipes colonies in their rainforest habitat to determine 

how individual ant trajectories vary in their consistency and coverage of trail space to investigate 

whether all foragers are at equal risk of encountering a fungal spore. Importantly, we studied ant 

movement on undisturbed trails, keeping pathogen risk at natural levels and including the factors 

undetectable to humans that influence ant foraging. We devised a system of recording trails using 

infrared lights and modified cameras to contend with the nocturnal foraging of this species. We 

then used computer vision and deep learning to automate ant tracking then characterized forager 

trajectories on speed, straightness, direction, and exploration.  

First, we focused on the straightness of trajectories to assess the efficiency of the colony 

in food retrieval and to investigate whether some ants are engaged in searching behavior. Next, 

we analyzed the tendency of trajectories to cover unique areas of the trail through calculation of 

an “exploration index” of each trajectory. We predicted that most trajectories will have high 

straightness and low exploration scores as this increases food retrieval while limiting risk 

exposure. We then investigated the relationship between straightness and exploration, as well as 

exploration and time. We predicted that ants that walk directly across the trail are more likely to 

cover the same area of the trail as other ants (lower exploration), while ants with lower 

straightness scores are more likely to walk over a new area of the trail (high exploration). We also 

predicted exploration levels would be higher at the beginning of a foraging period, as this is when 

the pheromone trail would be the weakest. We found that some ants wander when crossing the 
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trail and these ants are more likely to explore a unique area of the trail, possibly increasing the 

flexibility of the foraging system by heightening food discovery. Conversely, covering a new area 

of the trail could expose wandering ants to threats other ants may avoid through following the 

main foraging trail.   

Methods 

Study site 

Fieldwork took place at the Research Station of Mata do Paraíso, Universidade Federal 

de Viçosa, Minas Gerais, Southeast Brazil (20°48’08 S 42°52’31 W) between 10 and 25 January 

2017. The carpenter ant Camponotus rufipes is abundant in this area, forming trails lasting 

multiple months (Jaffe & Sanchez, 1984; Loreto et al., 2013). The forest floor in the area of study 

is usually covered in 10 – 20 cm of leaf litter. Instead of traversing through the leaf litter,  C. 

rufipes trails often use ‘bridges’ composed of woody debris, lianas, and tree branches 2 cm or 

more above the leaf litter (Loreto et al., 2013).  Occasionally, when there are patches of clear soil 

(usually due to human made paths) trails would cross these areas. Ants forage at night and 

activity peaks in the early evening (Loreto et al., 2013). 

Trail filming 

Trails from seven different C. rufipes nests were filmed between 10 and 25 January 2017. 

Nests were selected based on their location and structure. Only nests found above the ground with 

nest material clearly visible were used. Trails were filmed before a branching point from the main 

trail so that ants were filmed coming directly from or towards the nest. In the case where multiple 
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trails came from one nest, the busiest trails were selected. The width of the branches filmed 

ranged from 0.8 cm to 7 cm (mean ± standard deviation; 2.97 cm ± 2.53) and the length of the 

area filmed for all branches was approximately 15 cm.  

GoPro cameras (model: HERO 3+, GoPro, Inc., San Mateo, USA) with a modified 

infrared filter (RageCams.com, Michigan, USA) were used for filming. Stakes were placed 30 

centimeters from the trails and 30 cm medium trigger clamps (DWHT83140, DeWalt, Towson, 

USA) were attached to the stakes. Cameras were attached to clamps so that cameras were 

approximately 30 centimeters above the trails looking down at the ants walking on the trails (Fig. 

AA-1). An additional camera was placed on the stake, looking sideways at the ants, to allow 

another perspective for behavioral analysis. Filming lasted from 19:30 to 00:00 for 4-7 nights for 

each trail. Timing of filming was based on previous work showing activity begins around 19:30 

and peaks around 21:00 (Loreto et al., 2013). Infrared lights (IR30, CMVision, Houston, USA) 

were connected 12-Volt 7Ah batteries (UP1270, UniPower, São Paulo, Brazil) to allow 

illumination of the trail without disturbing the behavior of the ants. The camera batteries lasted 

for approximately 1.5 hours, so the battery was changed once in the middle of a filming period. 

Slight adjustments in where the trail was positioned in the video view would sometimes occur at 

this time. Figure 2-1a provides an example image of a trail filmed and images of the remaining 

trails filmed can be found in Figure AA-2. 

Automated ant tracking 

A total of 78 hours and 56 minutes of video were recorded for seven colonies across four 

nights. We developed a machine learning approach to process and analyze these videos using a 

deep learning based segmentation model that identified ants as they came onto the screen and 

tracked them as they moved across the screen (Appendix A). 
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Our automatic ant tracking method contains two main processes: (1) detecting ants in 

each image frame of all videos, and (2) building ant trajectories for every video based on the 

detected ants. Commonly, deep learning schemes require a large amount of labeled ground truth 

data for model training. Since our dataset is quite large (> 8 million image frames), we aimed to 

generate sufficient labeled data for training our deep learning model without incurring excessive 

human labeling effort. Also due to the large size of our dataset, common active learning based 

sample selection methods (e.g. Yang et al. (2017)) are not efficient. The goal of ant detection is to 

build ant movement trajectories and since ant trajectories normally span multiple consecutive 

frames in videos, detected ant positions in earlier frames assist with ant detection in later 

consecutive frames. That is, while ant detection forms a basis for building ant trajectories, 

trajectories of detected ants may also help ant detection. Hence, we designed our trajectory 

building procedure such that it not only can track detected ants but also can provide cues to 

indicate where (which frames and locations) there might be inconsistencies in ant trajectories and 

difficult scenarios for ant detection (e.g. densely clustered ants). We used such cues to select 

difficult cases from the frames for labeling to improve the deep learning detection model as well 

as the ant detection results. Therefore, our detection-tracking method consists of two rounds (with 

the second round improving the detection and tracking results of the first round), and each round 

performs two major steps, ant detection and trajectory building, as described below. 

 

(1) Ant detection. This aims to detect ants in all the frames of the videos. We applied a 

novel object detection and segmentation model, Mask R-CNN (He et al., 2017), to automatically 

detect ants in every frame. 

 

(2) Ant trajectory building. Given the detected ants in each frame, the next step is to form 

ant trajectories that connect detected ants frame-by-frame in videos. We formulated this ant 
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trajectory building problem as a transportation problem, that is, between every two consecutive 

frames in each video, we find an optimal transportation (for ants) that corresponds to real 

movement of ants. In this transportation formulation, each detected ant in frame K can be viewed 

as a ‘supplier’ and each detected ant in frame K+1 can be viewed as a ‘receiver’. The 

dissimilarity (based on spatial distance and appearance difference) between ants in two 

consecutive frames is a measure of how much ‘cost’ it would take to transport (move) one ant in 

frame K to another in frame K+1. The objective is to transport detected ants (as many as possible) 

in frame K to frame K+1 with the minimum total cost. Optimal transportation based tracking 

methods are known to be effective for tracking sets of moving and changing objects in image 

sequences(Chen et al., 2016; Chen et al., 2014). 

 

In the first round, we randomly selected frames to label as training data. This allowed us 

to quickly and unbiasedly obtain data samples for training a decent detection model. We then 

applied the trained model to all of the frames to produce ant detection results. We conducted 

trajectory building on detected ants to form the ant trajectories. Besides tracking ant movement, 

our trajectory building procedure in the first round also provided cues for identifying 

inconsistencies in ant trajectories and difficult cases in the frames for ant detection. In the second 

round, we applied training data selection to those difficult cases to find additional frames for 

labeling, and the enlarged training dataset thus obtained was used to re-train the Mask R-CNN 

detection model. The re-trained detection model was then applied to all the frames to produce the 

final ant detection results, which were used to build the final ant trajectories in the videos.  

To identify difficult cases for additional training data selection, we used the following set 

of measures to capture possible errors in ant detection and trajectory results. (i) Ant speed: At a 

place where ants usually do not move very fast but a fast movement is suggested by the optimal 

transportation solution, this instance might indicate an error in ant detection. (ii) Missing ants in 
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the middle part of a tree branch: When the optimal transportation solution does not find a 

corresponding ant instance in the next frame in the interior section of a tree branch, it might 

suggest a missing data point in ant detection. (iii) Ant identification (ID) switching: Each detected 

ant was assigned an ID number; when multiple ants are seen at spatially close interaction and 

slight changes on the dissimilarity scores among these ants give largely different solutions for the 

optimal transportation problem, this might suggest an ant ID switch error. Based on these 

observations and measures, our trajectory building process can help identify difficult detection 

and tracking cases for additional training data selection to improve model performance.  

Overall, we annotated 20,666 images for training the deep learning model for the ant 

detection task. Thus, the model is fairly robust to complex backgrounds, low contrast image 

areas, illumination differences. Besides relying on the training data and the robustness of Mask-

RCNN model, our tracking algorithm works on the temporal information and is also robust to 

false-detection and miss-detection of ant. In particular, our tracking algorithm is tuned to be very 

robust to false-positive detections. Namely, our tracking algorithm has a strong prior/preference 

to discarding false-detections using temporal information. When we train and apply the Mask-

RCNN model, we tolerate the Mask-RCNN model to produce some false-positive detections in 

order to keep the number of miss detections very low. For occasional miss-detection cases, our 

tracking algorithm can also recover them using temporal information.  

 Our automatic ant detection and tracking method extracted the x and y coordinates in 

pixels of detected ants in every frame and assigned each ant an identification number (Fig. 2-1a; 

Supplementary Video S2-1). Ant identification numbers were used to form ant trajectories used in 

further analysis.  
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Error assessment  

To assess the accuracy of the computer model, we watched a subset of videos and 

determined the error rate. GoPro cameras automatically divide footage into 26-minute-long 

videos, so one night of footage at a single trail has 6 to 10 videos. This provides a way of 

checking the accuracy of the computer tracking at random points throughout a night. We first 

error checked videos from the middle of the night (when the trails should be busiest) to determine 

if the data from that colony was high enough quality to use in our analysis. If the average 

accuracy was greater than 60% for these videos, we continued to error check all videos and nights 

for that colony. To error check, we counted the number of ant trajectories with errors out of the 

first 15-30 tracked ants. The number of ant trajectories checked varied because videos from early 

in the foraging period sometimes had fewer ants.  

To ensure consistency in the type of ant trajectories that were analyzed, trajectories 

beginning in the middle of the field of video view were removed. This created uniformity 

between all colonies and nights in the type of ants that were compared as it focused on the ants 

that made it from one end of the trail to the other completely in the view of the video.  

Trajectory analysis  

We used R version 3.4.4 and RStudio version 1.1.447 for all analyses (R Core Team, 

2018; RStudio Team, 2016). Ant location data was frame-by-frame, so we used the native frame 

rate of the cameras (29.97 or 25 frames per second; the default setting of the cameras varied) to 

convert the time in frames to seconds and then used the start times of each video to convert it to 

real time. To convert ant location data from pixels to centimeters, we placed a ruler in each video 

to determine the conversion factor (Fig. AA-2).  
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To determine how individual ants were moving, we calculated the following variables: 

average speed, overall direction, time on the trail, and straightness. Average speed was taken as 

the total distance an ant travels while in the video over the time it takes for them to travel that 

distance. Overall direction was whether the ant headed away from or towards the nest which we 

determined based on where the ant entered and exited the video view. A variety of measures are 

used to determine the straightness or tortuosity of an animal’s movement path (Almeida et al., 

2010; Benhamou, 2004). Ant movement on trunk trails is expected to move in an oriented 

direction, and not be a random search path, thus we used the simplest measure, the straightness 

index (Almeida et al., 2010). The straightness index (ST) is a ratio between the net displacement 

and total path length: 

    ST = d/L; 

where d = the distance between the beginning and end of the path and L = total path length. 

To assess similarity between individual ant trajectories, we calculated an exploration 

index (EI) for each trajectory (Appendix A). The exploration index measures how much an 

individual trajectory covers unique areas of the trail space. First, we computed an Ants Visiting 

Map (Appendix A) for a video which estimates how frequently ants are visiting different parts of 

the trail. We then scored grid cells of the trail space based on how many trajectories pass through 

each cell. The exploration index for an individual trajectory is calculated from the scores of the 

grid cells that the trajectory passes through. If a trajectory mostly passes through areas of the trail 

space that are visited by many ants, the individual trajectory will have a low EI. To control for 

trajectory length, we divided the EI for a trajectory by trajectory length to get an average 

exploration index (AEI) for each trajectory.  

Inspection of the trajectories showed that some ants performed U-turns, where they 

would exit the field of view from the same side that they entered on (Supplementary Video S2-2). 

To more accurately represent the shape of the trajectories, we broke U-turning trajectories into 
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two parts at the point the trajectory turned from one direction on the trail to the other and 

calculated straightness and exploration for the different trajectory parts individually. 

Statistical analysis 

A linear mixed-effects model was used to assess whether the speed of ants changes over a 

foraging period. The model was generated using the lmer function in the R package’ lme4’ (Bates 

et al., 2015), with speed as the response variable, time as the fixed effect, and colony and date as 

the random effects. The package ‘lmerTest’ (Kuznetsova et al., 2017) was used to generate p-

values. We checked the plotted residuals to ensure homoscedasticity prior to utilizing the results 

of the model. We also used a linear mixed-effects model to test whether the trajectories of ants 

with lower straightness scores have higher exploration values. We included colony, date, and 

video as random effects. We fit our model with the straightness index (ST) as the fixed effect and 

the response variable as the average exploration index (AEI). 

To analyze whether exploration differed across a foraging period, we compared the 

average exploration index within 30-minute intervals across the recording period. We pooled our 

data within 30-minute intervals to overcome discrepancies in recording times across dates. We fit 

a linear mixed-effects model with the interval as the fixed effect, colony and date as random 

effects, and the AEI for that interval as the response variable. We used a comparison of means 

with the Tukey method to investigate how the AEI of trajectories differed between 30-minute 

intervals. 
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Results 

Automated tracking performance 

The automated tracking of ants in video frames resulted in 20,230,585 data points on ant 

movement. The model had two types of accuracy against which it can be judged, relative to a 

human. The first is species accuracy (detection accuracy) which is a measure of how well the 

model recognized the correct species of ant. The model correctly detected C. rufipes ants with an 

accuracy of 97.86%. The model picked up other insects or species of ants on the trail (false 

positive) or failed to detect a C. rufipes ant as it went across the trail 2.14% of the time.  

The second accuracy measurement is tracking accuracy. The computer had to detect C. 

rufipes ants and follow them as they moved across the screen. If an ant moved in a straight line 

this required the computer to recognize and track that ant for about 4 seconds or 120 frames. The 

computer assigned identification numbers to individual ants to follow an ant as it travelled across 

the screen. The machine learning model sometimes made errors in doing this. The computer may 

switch identification numbers when ants walked too closely together (Supplementary Video S2-

3). An average of 78.70% of complete ant trajectories across all colonies had no mistakes as 

identified by a human observer. The tracking accuracy was the lowest for colonies MP2 (40.0%), 

MP11 (31.7%), and MP17 (50.6%). Identification number switches commonly happened in 

colonies MP2 and MP11. These trails were very thin and introduced more challenges in 

determining the trajectories of individual ants, so they were removed from further analysis. We 

have additionally removed colony MP17 as an obstruction in the trail led to ants departing from 

the branch and walking underneath leaves (Supplementary Video S2-4). Ants disappearing under 

leaf debris made it difficult to track an individual ant. We have made all videos and data available 

as we expect improved future machine learning models can make use of them.  
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The exclusion of these colonies brought the size of the dataset to 8,412,477 data points on 

ant movement from four colonies: MP1, MP6, MP10, and MP16. The large reduction in number 

of data points from the elimination of 3 colonies can be attributed to the configuration of these 

trails creating congested areas on the trails where single ants were tracked multiple times falsely 

inflating the number of ants and overall data points. The data points from the 4 included colonies 

represents the movement data for 64,498 ants. The average tracking accuracy of the remaining 

colonies was 81.39% (MP1: 72.0%; MP6: 82.1%; MP10: 77.2%; MP16: 92.1%). Most errors 

were due to an identification number switching to a different ant (8.28%). The high error rate for 

colony MP1 could be attributed to the darkness of the videos causing the model to miss part of an 

ant’s trajectory or failing to detect an ant in the dark areas of the trail. If we consider only the 

errors where a number is on a wrong ant or a number is not on an ant, the accuracy improves 

greatly (overall: 90.94%; MP1: 91.5%; MP6: 88.8%; MP10: 86.6%; MP16: 96.3%). We are 

mainly concerned with the direction and shape of trajectories, and the main error that impacts an 

individual ant’s trajectory is when ants switch to the wrong identification number, so the second 

calculation of accuracy rate is more reflective of this.  

Collective movement pattern 

Most ants walk on the same area of the available trail space (Fig. 2-1). The trail usage 

pattern is consistent between nights (Fig. 2-1c).  The mean speed of all ants from all colonies and 

nights was 5.15 cm/s ± 1.63 (standard deviation). The average speed of the colonies ranged from 

4.74 cm/s to 5.62 cm/s and within colony variability in speed was similar between colonies (mean 

(cm/s) ± standard deviation; MP1: 4.94±1.72; MP6: 5.58±1.62; MP10: 4.82±1.55; MP16: 

4.72±1.43). The results of the linear mixed effects model showed that ant speed decreases by 0.45 

cm/s ± 0.07 (standard error) throughout the night (t(94) = -6.60, p < 0.0001; Fig. AA-3).  
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Individual trajectory analysis 

Most ants walked in nearly straight lines (Fig. 2-2a). However, the negative skew of the 

distribution highlights the tendency of ants with low straightness scores to wander across the trail 

(Fig. 2-2a-b; Supplementary Video S2-5). The median straightness score across all colonies was 

0.88 and was similar for each colony (MP1: 0.87; MP6: 0.89; MP10: 0.86; MP16: 0.87). We fit a 

beta mixture model using the R package betareg (Zeileis et al., 2016) to determine whether the 

distribution represents different groups. We used the Bayesian Information Criterion (BIC) to 

assess model fit and found that the distribution was best represented by four groups: straight 

(37.0%; n = 25,224; mean straightness = 0.94), semi-straight (26.2%; n = 17,840; mean 

straightness = 0.88), semi-curvy (30.0%; n = 20,437; mean straightness = 0.77), and curvy (6.8%; 

n = 4623; mean straightness = 0.49). The semi-curvy straightness group has a minimum 

straightness score of 0.64, so 93.2% of ants have straightness scores greater than 0.64. 

The distributions of average exploration index (AEI) of trajectories differed in shape for 

each colony (Fig. 2-3). Across all colonies, a majority of ants showed low levels of exploration, 

but the positive skew of the AEI distributions indicates a group of ants that are more exploratory 

(Fig. 2-3). Colony 1 had the highest median AEI at 0.24, closely followed by colony 16 at 0.19. 

The median AEI for colony 6 and colony 10 were both approximately 0.06. There was a weak 

negative relationship between the straightness of a trajectory and its exploration value, as average 

exploration was estimated to decrease by 0.11± 3.14e-3 as straightness increases (linear mixed-

effect model; t(6810) = -36.09, p < 2e-16). The straightness groups significantly differed in average 

exploration (Fig. 2-4a; linear mixed-effect model; t(6810) = -11.03, p < 2e-16). Post-hoc analysis 

using the Tukey Test showed that ants with curvy trajectories had the highest AEI followed by 

ants with semi-curvy trajectories, then ants with semi-straight trajectories, and ants with straight 

trajectories had the lowest AEI (linear mixed-effect model; Tukey Test; p < 0.0001).  
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Temporal pattern 

Average exploration of trajectories decreased from the beginning of the foraging period 

to the middle of the foraging period, before increasing slightly again (Fig. 2-4b). The AEI was 

significantly greater (linear mixed-effect model; Tukey Test; p < 0.0001) at the beginning of the 

nigh t to all other time intervals. However, the AEI at 22:30 was significantly lower (linear 

mixed-effect model; Tukey Test; p < 0.0001) than at 23:30 or 00:00.  

 

Discussion 

Our study used an unobtrusive filming set-up to record behavioral data on more than 

64,000 ants moving in a rainforest at night in an area of high disease pressure. Most ants walk in 

a straight line across the trail, matching our prediction of how ants might behave when using 

trunk trails (Figure 2-2). Similar to straightness, most ants show low levels of exploration, but a 

subset of ants cover unique areas of the trail (Figure 2-3). Average exploration of ants was higher 

at the beginning of the foraging period (Figure 2-4b). Exploration may enhance food discovery, 

but the low levels of exploration exhibited by the majority of ants may protect most foragers from 

the risks associated with venturing from the main trail.  

The variation in exploration of trajectories indicates that the ants may have different 

foraging roles. Social insects have members of the colony known as scouts that assist in 

discovering and recruiting the colony to new food sources (Von Frisch 1967; Seeley 1983; 

Howard et al. 1996; Crawford and Rissing 1983).  The higher exploration levels at the beginning 

of the night indicate that perhaps some of those ants are acting as scouts and recruiting ants to 

new food sources. Recruits should subsequently show lower levels of exploration than the scouts 
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as they follow a pheromone trail to the food source. Forager categories can extend beyond just 

scouts and recruits, as a forager’s experience level and information source will alter its behavior 

(Biesmeijer & de Vries, 2001; Ravary et al., 2007). A forager recently recruited to a food source 

must engage in some searching behavior as they follow external stimuli to the food source. 

Meanwhile, a forager that has already made the trip to a food source is familiar with the route and 

should exhibit less searching behavior. Considering the variation in forager information may 

explain the distributions of exploration and straightness scores, showing all different levels of 

straightness and exploration.  

A majority of the trajectories likely represent ‘employed foragers’ (Seeley, 2009), or 

foragers repeatedly exploiting a known resource, since the trails last for multiple months and 

usually visit a stable homopteran or honeydew secretion. Employed foragers should have lower 

exploration scores, as their trajectories will overlap other trajectories and this has implications for 

disease risk. Fungal infected cadavers surround the trunk trails of Camponotus rufipes in this 

habitat, likely dropping spores directly onto the trails below (Loreto et al., 2014). It is not possible 

to quantify the abundance and distribution of micron sized spores on trails in a forest, but the long 

term tracking of cadaver abundance and the proximity to the trails implies spore presence on the 

foraging trails (Loreto et al., 2014). Thus, for most ants, only the first ants walking across the trail 

after spores have dropped would likely pick up spores. In contrast, ants with higher exploration 

scores, the “explorers”, are constantly more likely to encounter a spore that has not been picked 

up by a different ant. Through the same logic, an explorative ant has a higher chance discovering 

a new food source, demonstrating the benefits of this searching behavior.   

We filmed only a small area of the foraging trails, providing a brief snapshot of an ant’s 

behavior. To know whether higher exploration values represented ants that were more likely to 

wander from the trail and discover new food sources, one would need to follow individual ants 

for their entire foraging trip, which was beyond the scope of this study. In our study area, 
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exploration values were also impacted by the size of the trail, as ants will have higher overlap (= 

lower exploration) on narrower trails. The wider trails (colony 1 = 6 cm and colony 16 = 7 cm) 

had higher median exploration scores than the narrower trails (colony 6 = 3 cm and colony 10 = 

1.7 cm). Observing ants beyond one portion of the trunk trails could remove differences between 

colonies on exploration based on trail size. Trail width still has implications in the context of 

disease exposure, however, as wider trails offer more substrate for possible spores and perhaps 

colonies that select larger trails have higher levels of infection.  

Following individual ants for their entire foraging trip would also clarify whether 

individual ants vary in their level of exploration across a foraging trip. Experienced foragers tend 

to continue exploiting the same food source until it runs out (Seeley, 1983). Moreover, individual 

ants have been shown to be consistent in their exploratory behavior (d’Ettorre et al., 2017). The 

ants with low exploration values appear to be in retrieval mode and thus will likely continue 

exhibiting the same levels of exploration. Laboratory studies on trail bifurcations provide some 

evidence on the likelihood of ants to explore away from the main trail. For example, when 

Argentine ants (Linepithema humile) were placed in a maze to a food source, over 80% of the total 

traffic used the shorter path to the food source in the majority of experiments(Goss et al., 1989). 

Ants selecting a longer path, and ignoring pheromone signals, could represent patrollers or 

explorers. In a study on Pharaoh’s ants (Monomorium pharaonis), 30% of the foragers failed to 

reorient themselves when placed into a trail network without other ants (Jackson et al., 2004). 

Perhaps these ants that fail to correctly follow the trail represent another group of foragers and 

match up with the exploratory group observed in our study.  

Beyond food discovery and retrieval, other species of ants provide evidence of more roles 

within foragers, such as trail maintenance and defense. Ants were observed carrying leaves 

(Supplementary Video S2-6), although this could be for nest material and not trail cleaning. 

Another role could be maintaining the pheromone trail. For example, Atta sexdens minims help 
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with the pheromone trail instead of food transport (Evison et al., 2008). Ants were observed 

dragging their gaster on the trail likely depositing trail pheromone (Supplementary Video S2-7). 

U-turning ants have been shown to deposit pheromones at a higher rate (Hart & Jackson, 2006). 

Perhaps the main distinction between the groups is not in trail exploration, but in pheromone 

deposition, with the U-turners serving as the ants that are maintaining the strong chemical signal 

and allowing most ants to walk directly across the trail.  

The different walking styles could also reflect defensive behavior. Smaller workers 

hitchhike on leaf fragments carried by larger workers in Atta colombica leaf-cutting ants, and this 

likely serves as a defense against parasitoid Phorid flies (Feener & Moss, 1990). Flies, that could 

possibly be parasitoids, were observed closely following ants on the trail and in some cases 

appearing to land which may indicate laying eggs on the ants which later become endoparasitoids 

(Supplementary Video S2-8). Although the prevalence of parasitoid flies attacking C. rufipes is 

unknown, we have observed adult ants infected by decapitating phorid flies in our study area 

(Supplementary Video S2-9). The presence of phorids could directly cause the exploring and U-

turning behavior, as ants attempt to avoid flies landing on them. A follow up study could 

investigate this question of parasite avoidance by directly quantifying how ants behave when 

phorids are in the environment.  

In this study, however, we focused on variability in individual forager trajectories. We 

found a group of foragers that explores more areas of the trail. Increased exploration increases a 

forager’s chance of encountering a new food resource while simultaneously increasing their 

exposure to possible risks. The variability in forager behavior provides a possible mechanism for 

how a colony might mitigate risk through only having a small percentage of foragers exploring 

out from the safety of the main trail. The scale of our dataset, and ability to collect this data 

across multiple nights and colonies, increases the reliability and strength of our conclusions. 

Combining computational advances with behavioral observations provides a technique to 
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investigate the mechanisms of individual movement patterns that influence the distribution of 

animals in time and space.  
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Figures  

 

Figure 2-1: Trail image, trajectory overlay, and collective movement pattern  

(a) Example trail image from GoPro footage of colony MP1. Individual ants are labeled with 
identification numbers. (b) All of the trajectories from a single night of footage (January 14) at 
colony MP1. Each line across the trail represents a different ant, with the different colors 
distinguishing between different ant tracks. (c) The trail space from (a) was divided into a grid with 
each square representing approximately 1cm2. The number of times an ant walks into a square of 
the grid was calculated and the darker colors represent areas of the trail that ants walked over more. 
Each heatmap represents a different date (January 11 through January 14) from approximately the 
middle of the night to control for differences in the timing of filming. Different scales were used 
for each night, due to variance in the number of ants that walked across the trail. 
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Figure 2-2: Distribution of trajectory straightness scores  

(a) Histogram showing the distribution of straightness scores of ant trajectories for all nights and 
colonies. (b) Example trajectories for ants with different straightness scores. The straightness score 
(St) for each trajectory is included below. All 4 example trajectories were taken from the same 
colony and night (colony MP16 – January 15). Supplementary Video S2-5 features video of the 
example ants with their trajectories annotated. 
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Figure 2-3: Average exploration of trajectories for different colonies  

Histogram showing the distribution of the average exploration index values for all trajectories 
divided by colony. The average exploration index varies from 0 to 1, with 1 indicating the highest 
amount of exploration. 
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Figure 2-4: Average exploration across time and for different straightness groups  

(a) The mean of the average exploration scores for the trajectories in each of the straightness groups 
from Fig. 2-2a. Lines indicate ± standard error of the mean. Superscripts indicate straightness 
groups as significantly different (linear mixed-model p < 0.0001). (b) The mean of the average 
exploration scores for all trajectories within each 30-minute interval across the recording period, 
divided by colony. 
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Chapter 3 
 
An agent-based model shows zombie ants turn frequently before death2 

Abstract 

Parasites can alter the behavior of animals. Such alterations could be a byproduct of infection or 

actively controlled and directed by the parasite. Ants infected with zombie ant fungi 

(Ophiocordyceps sp.) show behavioral changes culminating in the ant dying while biting into 

vegetation. To investigate the influence of the parasite on behavioral changes, we created an 

agent-based model that provides a prediction of how fungal infected ants move before death. The 

model shows how alterations in movement, such as an increased turning rate, within the normal 

range of ant behavior, can lead a host from the nest to the underside of a leaf. This demonstrates 

the simplicity in how such behavioral changes could evolve, as the fungal parasite could benefit 

from the natural behavior of the host, contesting a hypothesis of highly directed manipulation.  

 

                                                   
 2 This chapter is currently under review at the Journal of Theoretical Biology 
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Introduction 

Parasites impact the behavior of animals in both subtle and complex ways (Moore, 2002). 

In some cases, parasites act as ‘puppeteers’, manipulating hosts to perform behaviors adaptive to 

the parasite. For example, after a parasitoid emerald wasp (Ampulex compressa) stings its 

cockroach (Periplaneta americana) host, the wasp takes control of the cockroach’s movement via 

the antennae, directing the cockroach to a safe location where the wasp’s eggs can develop within 

the cockroach (Gal and Libersat, 2008). More commonly, however, behavioral changes are likely 

a byproduct of infection, with little adaptive benefit to the parasite (Poulin, 1995, 2010). To 

understand the evolution and mechanism of behavioral changes, we must distinguish where 

changes in host behavior fall along a spectrum from incidental changes to highly directed and 

adaptive manipulation.   

Determining the cause of changes in host behavior requires detailed comparison between 

uninfected and infected host behavior. While molecular methods can elucidate changes within a 

host (Feldmeyer et al., 2016; Hoover et al., 2011; van Houte et al., 2013), our limited genetic 

toolbox for many hosts impairs our ability to connect within-host changes induced by infection to 

behavioral outcomes. In many systems, such direct comparisons of behavior are difficult due to 

an inability to distinguish infected from uninfected hosts. Hence, because a recently infected host 

may not show morphological changes, work on parasite behavioral changes is sometimes limited 

to documenting the end phenomenon, not the intermediate steps.  

For instance, ants infected with zombie ant fungi in the genus Ophiocordyceps are 

identifiable as infected once the host is dead, as the host exhibits a behavior unique to infected 

ants where it dies biting into vegetation in the environment (Andersen et al., 2009; Hughes et al., 

2011). In the hours prior to biting, infected ants show evidence of abnormal behavior, such as 

tremors, wandering behavior, convulsions, and low responsiveness to air, but otherwise appear 
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similar to uninfected ants (de Bekker et al., 2015; Hughes et al., 2011; Sakolrak, Blatrix, 

Sangwanit, Arnamnart, et al., 2018). Questions remain regarding the extent of parasitic influence 

on the pre-death behavior of the ant. The existence of clumps or ‘graveyards’ of infected ants in 

the environment (Loreto et al., 2014; Pontoppidan et al., 2009) suggests highly directed 

manipulation, but this might reflect the natural distribution of hosts in the environment. A study 

documenting how an infected host moves from the nest to the underside of a leaf is needed to 

understand whether zombie ants are like cockroaches on a parasitoid wasp’s leash (Gal et al., 

2005; Gal & Libersat, 2008) or the host ant maintains control of its movement.  

While laboratory infections of zombie ants are possible (de Bekker et al., 2015; 

Fredericksen et al., 2017; Mangold et al., 2019), a large part of the change in behavior in this 

system is the spatial process of the ant moving from the nest to biting the underside of a leaf. 

Replicating a complex patch of rainforest where the system is naturally located in the laboratory 

to obtain the same pre-biting dynamics poses challenges. Moreover, as previously mentioned, 

infected ants show no definite signs of infection before death, limiting our ability to observe 

infected ants in the field. Agent-based models offer a way to overcome these challenges and 

could be a promising computational approach to understanding behavioral manipulation. In these 

simulation models, individual agents are provided rules on how to interact with each other and the 

environment, allowing us to test how altering these rules impacts the outcome or measured 

behavior.  

Here, using field data on the spatial locations of zombie ant cadavers and trails (Loreto et 

al., 2014) and movement parameters from over 60,000 ant trajectories (Imirzian et al., 2019), we 

recreated the steps of an infected ant leaving the nest to biting the underside of a leaf using an 

agent-based model. The system, with ants originating from a defined nest and dying in an 

identified location, provides the information needed to quantify how a parasite impacts an 
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animal’s movement. Comparing the simulation results with the uninfected ant movement data 

allows us to test the strength of behavioral changes in this host-parasite pair.  

 

Methods 

Biological info 

Our model replicates the zombie ant system of the carpenter ant Camponotus rufipes infected 

with the fungal parasite Ophiocordyceps camponoti-rufipedis. The ant Camponotus rufipes forms 

trunk trails on tree branches, logs, and woody debris that last for multiple months (Jaffe & 

Sanchez, 1984; Loreto et al., 2013). Ants infected with Ophiocordyceps camponoti-rufipedis  

 die biting onto the underside of leaves surrounding these trunk trails and release fungal spores 

onto the trails below (Loreto et al. 2014). Loreto et al. (2014) recorded the locations of C. rufipes 

zombie ant cadavers attached to leaves and the main trunk trails across seven different months for 

four different nests within a 200m3 plot (10m x 10m x 2m) with the nest at the center (Fig. 3-1). 

At the same field station, 64,384 C. rufipes ants were filmed and tracked walking on the trunk 

trails surrounding the ant nests (Imirzian et al., 2019). We calculated ant movement parameters 

from these trajectories (Appendix B.1-2) and these values formed the basis for testing our 

hypotheses, while the location data informed our model set-up.   
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The model 

The model description follows the ODD (Overview, Design concepts, Details) protocol for 

describing agent-based models (Grimm et al., 2006, 2010). The model was created using 

NetLogo 6.0.3 (Wilensky, 1999).  

 1. Purpose 

We aim to create a mechanistic model of zombie ant movement before death to demonstrate a 

method for investigating parasite manipulation of host behavior. This model will test whether 

infected ants move similarly to uninfected ants, exploring how much control the parasite has over 

the host.  

 2. Entities, state variables, and scales 

The entities of the model are the ant agents and the square spatial units indicating the 

nest, trail, and zombie ant cadaver locations. Ants have the following state variables: size, step-

length, turning-index, and time-on-trail. All ants are the same size, 0.8 cm, which was the average 

measured from the field (Appendix B.1). The step-length is the distance traveled by the ant in a 

model time step, while the turning-index controls the turning of the ant (see submodel 7.1). Time-

on-trail determines how long an ant follows the trail after emerging from the nest. 

The entire environment is represented by 100 x 100 grid cells, where each grid square 

corresponds to 10cm2, leading to a 10m x 10m world matching the field data (Fig. 3-1). Each grid 

square can be a location of the nest, trail, cadaver/target location, or neither. The nest is located at 

the center of the environment (x = 0, y = 0). All trails emerge from the nest. Trails have a width 

of half a patch (5 cm), which is close to the average trail width (4.4 cm) of the trails filmed in the 

field study (Imirzian et al., 2019). One patch marks a cadaver location, which accurately 

represents the range of occupiable space since biting occurs on leaves covering a larger space 

above the ground. The model time step is 0.2 seconds, which reflects the average time for an ant 
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to travel one body length (Appendix B.1). Simulation runs had a time limit of 108,000 time-steps 

(approx. 6 hours), the observed maximum amount of time for a zombie ant to bite after leaving 

the nest (de Bekker et al., 2015; Hughes et al., 2011). 

 

 3.  Process overview and scheduling 

The model begins with all ants at the nest (Fig. 3-1). Ants must follow trails to leave the 

nest. We constrict ants to exiting on trails because nests for this species are typically located 

above the ground with the only exit points as branches. Additionally, this ant species prefers to 

walk on branches over walking on the ground (Loreto et al., 2013). When walking on the trail, if 

the grid squares in front of an ant are not trail patches, the ant performs the smallest turn 

necessary to face the trail. Otherwise, the ant moves according to its step-length and turning-

index. The ant walks on the trail for the length of time specified by time-on-trail.  

At the beginning of each time step, an ant assesses whether it has reached a cadaver 

location. If the ant is at a cadaver location, the ant becomes a cadaver and remains at its current 

xy-coordinates for the rest of the model run. Ants can walk out of the bounds of the model area 

but cannot reenter. The model run finishes when all ants have become cadavers, exited the arena 

area, or the time limit has been reached (see Supp. Video S3-1 for an example run).   

 

4. Design concepts 

4.1 Basic principles 

The basic principle of this model is that infected ants may move similarly to uninfected 

ants, or the parasite might inhibit the normal locomotion of infected ants. This model aims to test 

the likelihood of different zombie ant walking styles, offering a prediction on how manipulated 

hosts move through the environment.  
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4.2 Sensing 

Ants can access whether their cell and their surrounding cells are trail cells or nest cells. 

Additionally, ants can sense when they have reached a biting location.  

 

4.3 Stochasticity 

Ants begin the model facing a random direction in a 360-degree circle at x = 0, y = 0 (the 

nest location). The amount an agent turns is determined by drawing a random number from a 

normal distribution, with 0 as the mean and the standard deviation determined from the ant’s 

turning-index (see section 7.1). The amount of time an ant follows the trail is determined 

randomly as a number between 40 seconds and 10 minutes (see section 7.2). 

 

4.4 Observation 

The xy-coordinates of ants are recorded throughout the simulation and the final location 

of each ant is recorded when the time limit is reached. If an ant leaves the environment during a 

model run, the location where the ant exits is recorded. Additionally, we visually compared 

simulated trajectories with trajectories from the field with the same parameters to ensure correct 

implementation of the movement parameters. Validating the parameters allows us to compare the 

results from the simulation model with uninfected ant trajectory data from the field.  

 

 5. Initialization 

Each run begins with a number of zombie ants equivalent to the number of targets in the 

set-up (Fig. 3-1). The input data determines the location of the trails and cadaver targets. At time 

= 0, all ants are located at the nest (x = 0, y = 0). All ants in a run are assigned the same turning-

index and step-length. The ants are randomly assigned different time-on-trail values within the 

input range. Time-on-trail is at its max and will decrease every time step.  
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6. Input data 

The model uses four different nest set-ups (Fig. 3-1). Each nest set-up is a combination of 

all trails recorded as coming from the nest across 10 months of field study. We used a 

combination of trails since zombie ants may not use the main trails used by the rest of the ants in 

a month. However, we wanted to limit the nest exit points to these trails since the nests are 

elevated above the surface of the ground and ants are likely not exiting in any direction. We used 

the cadaver locations from one of the first three months of field data from Loreto et al. (2014) 

because this represented the peak of new infections. We used month 2 for nests 4 and 5, month 3 

for nest 1, and month 1 for nest 2 (Fig. 3-1). We removed cadaver points that were directly on a 

trail since the cadaver location would actually be above or below the trail, not directly on the trail. 

We removed one point for nest 2 and one point for nest 5.  

 

7. Sub-models  

7.1 Turning  

We determined the turning for the ant agents through a random-normal distribution. We 

found that 75% of the field trajectories had a mean turning angle between -1.46 degrees (first 

quartile) and 1.50 degrees (third quartile) indicating most ants show no bias in direction turned 

(Appendix B.2). We assumed zombie ants also do not have directional bias and set the mean 

turning angle (µ) as equal to 0 in the distribution. We considered the standard deviation of the 

distribution (s) as the turning-index, or standard deviation of turning angles. The turning-index 

gives an approximation for how tortuous a path is, with a low turning-index indicating a straight 

path and a high turning-index indicating a tortuous path. Thus, by altering the turning-index in the 

model we can investigate how turning influences the proportion of ant agents ending up on a 

cadaver location.  
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7.2 Time on trail 

Considering the variation in where cadavers are found (Fig. 3-1) and the previously 

observed tendency of zombie ants to fall over and walk erratically (Hughes et al., 2011), different 

zombie ants are unlikely to spend the same amount of time following the trail once they have 

exited the nest. For this reason, the time an individual ant follows the trail is determined randomly 

within a range in the model. We decided upon the range based on the speed distribution of ants 

from the field trajectory analysis (Appendix B.1) and the size of the study area. Based on the 

minimum and maximum speeds recorded from the field, the fastest an ant could exit the arena if 

they kept the same pace and ran in a straight line is 30.86 seconds and the slowest an ant could 

exit the arena is 41.67 minutes. To narrow in on a more appropriate range, we performed 

preliminary model runs (Appendix B.3). From our analysis, the time-on-trail parameter was 

assigned as a random value between 40 seconds and 10 minutes, as between these values allow 

the ants to remain within the environment which is necessary for the ants to end up on targets.   

7.3 Trail movement 

Zombie ants might move similarly to uninfected ants on the trail, as they may keep up 

with the foraging traffic, respond to the pheromone signals on the trail, or be constrained by the 

boundaries of the trail. To test how ant movement on the trail impacts the outcome, we used three 

different setups. In setup 1, ants have the same turning rate as determined from the input 

parameter. Setups 2 and 3 used a two-step movement rule, where ants turned differently on the 

trail and off the trail. In setup 2, ants turned on the trail according to the average turning rate from 

the field data (low turning rate), simulating ants keeping up with foraging traffic. For setup 3, a 

separate input parameter determined how ants turned on the trail. We found altering the ant’s 

turning rate on the trail relative to the turning rate off of the trail had little effect on the results 

(Table AB-1). Consequently, we used the simplest model for the following analysis (setup 1), 

where ants turn on the trail and off the trail according to the same input parameter. 
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Analysis 

We performed a systematic search over the parameter range to find combinations that 

lead to a high proportion of ants ending up on targets. To distinguish between similar solutions, 

we measured runs based on the following: (1) number of ants on targets (2) number of ants near 

targets and (3) number of ants still in the arena. The proportion of ants reaching targets is the 

most important factor so we gave it the highest weight, followed by the number of ants near 

targets, and then the number of ants still in the arena. As we are not aiming to optimize ants 

reaching precise targets (the cadaver locations), measuring runs this way promotes solutions 

where ants are moving in a likely biting area at the end of the model run. We used the following 

equation to measure runs: 

𝑓 =
𝑛$%&'($ + 0.5𝑛-(%& + 0.25𝑛%&(-%

𝑛
 

where n is the number of ants in run, ntarget is the number of ants that had reached a 

zombie ant cadaver target, nnear is the number of ants within 30 cm of a target, and narena is the 

number of ants that remained within the environment bounds. The maximum (f = 1) indicates that 

all ants reached a target location and the minimum (f = 0) indicates that all ants exited the arena 

during the model run.  

We used a genetic algorithm search method to iterate through the entire parameter range 

to find the combinations that maximize f. We performed 30 searches for the 4 nest set-ups for a 

total of 120 searches to find the parameter distribution that most frequently leads ants near or on 

zombie ant cadaver locations. Within a search, each parameter combination was run 10 times in 

the model and the mean fitness obtained to account for stochasticity. Each parameter search 

evaluates the results from 500 model runs, although on some instances the search extended 
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beyond 500 model runs to distinguish between similar solutions. We compared the movement 

parameters found from the parameter search to the actual distribution of ant movement 

parameters to determine the probability of observing such behavior in uninfected ants. 

 

Results 

The turning-index obtained from all 120 parameter searches varied from 22 to 103 

degrees (Fig. 3-2a). The mean turning-index across all searches was 73.7 degrees/step (SD = 

19.4). The mean turning-rate that maximizes f did not significantly differ between nest set-ups 

(one-way ANOVA; F(3,118) = 0.10, p = 0.96). The mean turning-index for nest 1 was 73.3 

degrees/step (SD = 20.1), nest 2 = 72.9 degrees/step (SD = 17.3), nest 4 = 73.2 degrees/step (SD 

= 21.0) and nest 5 = 75.4 degrees/step (SD = 19.8). The mean turning-index found from the 

parameter searches was significantly higher than the mean turning-index of ants in the field data 

(Fig. 3-2a; Two-sample t-test; t(119) = -25.4, p  = 5.43e-50).  

Step-length was also significantly elevated compared to the field data (Fig. 3-2b; Two-

sample t-test; t(119) = -12.7, p = 5.52e-24). The step-length obtained from the parameter searches 

varied from 0.5 cm to 2.9 cm with a mean of 1.6 cm. There was some variation in mean step-

length between nests (nest 1 = 1.6 cm, nest 2 = 1.8 cm, nest 4 = 1.5 cm, and nest 5 = 1.6 cm), but 

the values were not significantly different (one-way ANOVA; F(3, 118) = 1.94, p = 0.13).  

The parameter search results also showed that a higher turning-index was correlated with 

a larger step-length in the combinations that maximized the fitness equation (Fig. 3-3; Pearson’s 

correlation test; r(118) = 0.67; p < - 2.2e-16). The highest mean fitness (f) value obtained across all 

120 searches was 0.71 for nest 2 and the mean score across all searches was 0.58. The nest set-

ups varied in their accuracy with nest 2 performing the best (mean f = 0.68), followed by nest 5 
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(mean f = 0.55), then nest 4 (mean f = 0.55), and finally nest 1 (mean f = 0.52). High fitness 

scores occurred throughout the range of step-length and turning-index combinations that were 

obtained from the parameter searches (Fig. 3-3).  

Discussion 

Carpenter ants (Camponotus rufipes) infected with the fungus Ophiocordyceps 

camponoti-rufipedis exhibit behavioral changes following infection, with ants eventually dying 

while biting onto a leaf near the foraging trails. This agent-based model investigated how ant 

locomotion might be altered by infection prior to this biting behavior. The model suggests 

infection induces wandering behavior in ant hosts, as more tortuous trajectories led to a greater 

proportion of ant agents ended up on the biting locations. Ant agents performed a type of random 

walk, resulting in up to 70% of ants ending up at a zombie ant cadaver location (Fig. 3-3). 

Reaching a cadaver location at a high frequency was dependent on an elevated turning rate and 

step size compared to uninfected ants (Fig. 3-2). We suggest increased turning ensures zombie 

ants stay close to the nest and main trails, promoting transmission of the fungus to future ants.  

Altering an infected ant’s movement capabilities – whether through intentional or 

unintentional processes – has evolutionary consequences for the parasite. The location a zombie 

ant dies largely impacts the parasite’s fitness, as the ant must die somewhere released spores will 

encounter and infect new ants. Preserving an ant’s normal movement behavior might cause the 

ant to walk too far away from the nest, limiting transmission. Conversely, an excessive impact on 

ant movement might prevent the ant from leaving the nest (where the fungus cannot grow (Loreto 

et al., 2014)) or inhibit the ant’s ability to climb up vegetation to a biting location. The different 

possibilities exemplify a tradeoff similar to that of virulence—a parasite with high virulence 

makes the host too sick to transmit, while a parasite with low virulence might not produce enough 
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infectious material for transmission (Frank, 1996; May & Anderson, 1983). Thus, parasites tend 

to evolve towards intermediate virulence, like how a zombie ant fungus has an intermediate 

impact on host movement.   

In our model, some ant agents moved with a correlated random walk, as step length was 

fixed and turning was determined from a normal distribution with the mean as 0, indicating the 

individual will tend to persist in the same direction of travel (Turchin, 1998). However, when the 

standard deviation of the turning angles (the turning-index) is large, like for the simulated zombie 

ants, the walk resembles an uncorrelated random walk or Brownian motion. Interestingly, some 

ant trajectories have been shown to have properties of a random walks, particularly when engaged 

in search behavior (Crist & MacMahon, 1991; Torres-Contreras & Canals, 2010). For example, 

when a pair of ants is tandem running, removing the leader causes the follower ant to search in a 

way similar to Brownian motion (Nigel R. Franks et al., 2010). Such tortuous search paths can be 

inefficient, due to high path overlap, which explains why ants tend to have straighter trajectories 

at lower ant density (F. R. Adler & Gordon, 1992; Gordon, 1995) and ants better at discovering 

food resources move in straighter lines (Pearce-Duvet et al., 2011). However, zombie ants are not 

concerned with efficiency, only with the maximum allowable distance from the nest and foraging 

trails that allows the fungus to grow and release spores that future ants will encounter. 

A circular, wandering walking style seems to achieve this—and other examples of 

infected animal movement support erratic movement as an infection outcome. Enhanced 

locomotory activity (ELA) refers to wandering and hyperactive behavior often exhibited by 

holometabolous insect larvae prior to pupation, thought to help the insect reach a suitable 

metamorphosis location (Nijhout, 1994). However, ELA can also be induced by baculovirus 

infection (Goulson, 1997). Other parasitized ants show differences in movement, such as how 

Camponotus ants infected with a liver fluke (Dicrocoelium dendriticum) were observed moving 

sluggishly, slowly circling rocks and sometimes remaining motionless (Carney, 1969).  
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Interestingly, our results indicate that movement cannot be overly impaired for ants to 

reach a biting location. For a high proportion of ants to reach a biting location, a higher turning 

rate must be matched with a larger step size (Fig. 3-3). This indicates the inefficiency of turning 

frequently as ants must walk faster in order to reach a biting location. When ants turn less, they 

must walk slower in order to stay within the maximum allowable distance where the fungus still 

has the potential to transmit to future ants. A caveat to the results is that step length was 

implemented as a constant in our model, meaning that zombie ants could instead be moving at 

variable speeds or even stopping or falling frequently, which has been observed in the field and 

laboratory (Hughes et al., 2011). Additionally, the rainforest patches surrounding the ant nests are 

typically dense with vegetation which was not captured in our simplified model space. Ants are 

likely walking up and down the vegetation in order to reach a biting spot, meaning turning is 

likely still frequent. An interesting follow-up study would investigate how adding complexity to 

the environment would alter zombie ant movement.  

Overall, there are few mechanistic studies on how animal locomotion changes with 

infection status, perhaps because of limited techniques. Our work aims to show the power of 

combining field data with an agent-based modeling approach to investigate hypotheses of how 

infection alters animal behavior. We demonstrate that zombie ants likely turn more than 

uninfected ants, but the parasite does not need to control the ant to an exact location for the ant to 

bite in a position that appears adaptive for transmission. The results were robust to changes in 

time limit as well as consistent across nest set-ups. Moreover, this model sets the stage for future 

investigation on the adaptiveness of the biting locations, further opening up how we can approach 

questions on the proximate and ultimate causes of parasite manipulation.   
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Figures 

 

Figure 3-1. The location of the trails and zombie ant targets for model setups.  

A) Nest 1 B) Nest 2 C) Nest 4 and D) Nest 5. Green lines represent the trails, blue squares are the 
zombie ant target locations, and the brown box is the nest. The size of the area replicated by the 
the model is 10m by 10m.   
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Figure 3-2. Comparison of simulated zombie ant movement values to ant movement values from 
the field.  

Distributions of (A) turning index values and (B) step lengths obtained from simulations (red; n = 
120) as compared to the field data of uninfected ant values (blue; n = 64,683). To standardize for 
the number of observations, we calculated the density across the range.    
 

 

 

 

 

 

 

 

 

 



50 

 

 

 

Figure 3-3. Parameter search results 

Each point is the parameter combination that led to the highest fitness score (f) for a single 
parameter search (500 model runs). Higher turning rate was correlated with a larger step size. 
Each point shape indicates a different model setup and the point color indicates the maximize 
fitness score obtained from the indicated turning rate and step size.    

 

 
 

  



51 

 

Chapter 4 
 
A new zombie ant behavior unraveled: aggregating on tree trunks3 

Abstract 

Hosts can be manipulated by parasites to move to locations advantageous for onward 

transmission. To investigate the role of behavioral manipulation in creating transmission hotspots, 

we studied the distribution of zombie turtle ants in the Amazon rainforest. The turtle ant 

Cephalotes atratus nests and mostly forages in the canopy, but is found at the base of trees when 

infected with the zombie ant fungus Ophiocordyceps kniphofioides. We found 626 infected 

cadavers on 14.7% of 162 trees sampled. Cadavers were highly aggregated on the surface of the 

trees, explained by behavioral observations indicating infected ants as slightly attracted to zombie 

ant cadavers on a tree. From 1,726 hours of camera footage, we recorded the removal of three 

zombie ant cadavers by live ants. The number of removals compared to the density of infected 

individuals indicates the base of a tree as an escape from the evolved ability of social insects to 

recognize and treat disease inside the nest, allowing the parasite to continuously remain in the 

environment. 

                                                   
 3 This chapter was published under the following citation: 

Imirzian, N., Araújo, J.P. and Hughes, D.P., 2020. A new zombie ant behavior unraveled: 
Aggregating on tree trunks. Journal of Invertebrate Pathology, 177, p.107499. 
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Introduction 

Social insects form highly evolved societies (Wilson, 1971). The evolutionary pathway of 

social insects towards increased group living necessitated the evolution of functional traits that 

prevent the spread of disease through the colony (Cremer et al., 2007; Meunier, 2015). Much 

attention has been paid to the limited ability of parasites to persist in the nest (Stroeymeyt et al., 

2014; Wilson-Rich et al., 2009), but less researched are the ways parasites can evade social insect 

defense behaviors (Araújo & Hughes, 2019; Hughes et al., 2008). Limited transmission within a 

colony may promote other routes of infection for social insects outside of the nest, such as 

parasitic manipulation of host behavior (Hughes, 2012).   

Manipulative parasites can lead a host to an area that will heighten transmission and 

subsequently increase the parasite’s fitness (Moore, 2002; Poulin, 2010). Striking examples 

include hosts drowning themselves to allow a parasitic worm to reproduce (F. Thomas et al., 

2002) or rats losing their fear of cats when infected with Toxoplasma gondii, increasing the 

likelihood the rat will get eaten by the definitive cat host of the parasite (Berdoy et al. 2000). 

Parasites with direct life cycles, where transmission occurs directly from one host to the next 

without a free living stage or intermediate host, can also manipulate behavior, such as viruses that 

induce their host to spend increased time in a location where onward transmission is favored 

(Hoover et al., 2011). Unlike trophically transmitted parasites, parasites with direct life cycles 

cannot rely upon the predatory behavior of the next host and must place themselves where they 

are most likely to encounter their current host.   

Directly transmitted parasites face unique challenges when infecting social insects. As 

central place foragers, most social insects return to the same nest after each foraging trip. 

Although the nest contains a high density of individuals, seemingly conducive for transmission, 
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colony organization and behavioral defense mechanisms limit insect-to-insect transmission within 

the nest (Cremer et al., 2007; Stroeymeyt et al., 2018). Social insects are known to remove 

corpses and diseased individuals (Baracchi et al., 2012; Diez et al., 2014; Renucci et al., 2011), 

reduce fungal spore loads through grooming (Okuno et al., 2012; Reber et al., 2011), as well as 

use antimicrobial compounds to prevent the growth of microorganisms (Brütsch et al., 2017; 

Graystock & Hughes, 2011; Tragust et al., 2013). However, returning to the same nest implies 

that workers move in similar areas of the environment, providing a predictable opportunity for 

parasites to infect susceptible foragers outside of the nest. If parasites are capable of manipulating 

the behavior of their host, it would be advantageous for the parasite to use host predictability to 

position a host where transmission is enhanced. Given that we know parasites aggregate within 

specific hosts in a population (Poulin, 1993; Shaw & Dobson, 1995; Wilson et al., 2002), our 

question is if parasites capable of manipulating their hosts can cause an aggregation of infectious 

individuals. 

Host location is particularly important for parasites that produce propagules from an 

insect cadaver, like the baculovirus discussed above or certain fungal pathogens, since once the 

parasite kills the insect, the dispersal of infectious material is limited to a small area surrounding 

the cadaver. Some hypocrealean fungal entomopathogens, such as Metarhizium and Beauveria, 

produce huge numbers of small conidia that are passively transmitted (Hesketh et al., 2010; 

Humber, 2012). In contrast, some species-specific fungal pathogens, such as those in the 

Entomopthorales or Ophiocordyceps infecting ants, tend to produce fewer spores that are very 

large (Araújo & Hughes, 2017; Boomsma et al., 2014; Kobmoo et al., 2012). The location of the 

host cadaver for these species is especially important since the spores need to come in contact 

with a specific host. Interestingly, some of these fungi have evolved adaptations to increase 

transmission, such as manipulating a host to move to an elevated location to increase spore 

dispersal (Roy et al., 2006). 
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The fungal species complex Ophiocordyceps unilateralis sensu latu (Ascomycota, 

Hypocreales) became popularized as 'zombie ant fungi' for an ability to manipulate ants to leave 

the nest and die biting onto the underside of leaves or twigs (Andersen et al., 2009; Evans et al., 

2011; Loreto et al., 2018). The zombie ant extended phenotype is characterized by this death grip 

or biting behavior, where the ant is attached to vegetation through its mandibles. We consider the 

infected ants as ‘zombies’ because the insect’s behavior is altered in a way that benefits the 

parasite (Libersat et al., 2009; Roy et al., 2006). The majority of zombie ant studies have 

investigated the O. unilateralis group (currently comprised of 28 species), but fungi in the closely 

related O. kniphofioides complex (5 species, including O. kniphofioides sensu stricto) also 

manipulate ants and can be considered zombie ant fungi (Araújo et al., 2018).  

Notable differences exist between these two fungal groups (Araújo & Hughes, 2017). 

Fungi in the O. unilateralis group mostly manipulate ants in the Camponotini tribe to die biting 

onto twigs or leaves (Loreto et al., 2018). In contrast, ants infected with fungi in the O. 

kniphofioides group tend to die biting into tree trunks, and are mostly Myrmicinae ants, as well as 

Dolichoderus and Paraponera, but never a Camponotini species (see Fig. 19 in Araújo et al. 

2018). Additionally, the fungal structures produced by O. kniphofioides sensu stricto differ to the 

fungal structures produced by O. unilateralis sensu latu. Most commonly, O. 

unilateralis s.l. produces a single fungal stalk emerging from the ant’s dorsal pronotum with an 

ascoma or sexual fruiting body (teleomorph) containing vermiform spores that are actively shot 

into the environment. The fungus also produces asexual morphs (anamorphs) with conidia 

transmitted by contact (Hirsutella anamorphs) (Araújo et al., 2018; Evans et al., 2011). Although 

O. kniphofioides s.s. can also produce a teleomorph, multiple types of anamorphs frequently grow 

from the infected ant cadavers (Fig. 4-1C-E; Araújo et al., 2018; Evans & Samson, 1982). The 

asexual conidia produced by O. kniphofioides are enveloped in mucus, forming a mucous droplet, 

which is a characteristic usually associated with transmission by contact (Fig. 4-1F-G; Evans & 
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Samson, 1982). Considering the risk of transmission by contact, we are interested in host 

behavior towards cadavers infected with O. kniphofioides. 

The fungal species O. kniphofioides sensu stricto infects the turtle ant Cephalotes atratus 

and is particularly interesting due to a historical record documenting hundreds of ant cadavers 

found at the base of rainforest trees in the Brazilian Amazon (Evans & Samson, 1982). The ant 

host, Cephalotes atratus, is an arboreal ant widely distributed across the Neotropics (De Andrade 

& Urbani, 1999). Colonies can contain over 10,000 individuals spread among one or multiple 

nests in tree cavities of the same or nearby trees (Corn, 1976, 1980; Weber, 1957). Workers 

mainly forage in the canopy on hemipteran honeydew and extrafloral nectaries (Fig. 4-1A), but 

sometimes forage on the ground on arthropod remains and slow-moving prey (Corn, 1976). 

Nitrogen-recycling bacterial gut symbionts housed in specialized gut chambers support their 

herbivorous diet (Bution & Caetano, 2008; Hu et al., 2018; Russell et al., 2009), perhaps 

contributing to their abundance (Davidson et al., 2003). In turn, their abundance may have made 

them a target for specialized parasites, such as a nematode that turns the ant’s abdomen red 

(Yanoviak et al., 2008) and a zombie ant fungus that is the focus of this study.  

To determine the scale of zombie turtle ant aggregations, we first searched for hotspots of 

infection, or trees with large numbers of C. atratus ants infected with O. kniphofioides fungi. At 

each hotspot, we mapped out the spatial distributions of cadavers and determined the density of 

cadavers on the surface of the tree. We set up cameras to record the natural interactions between 

live C. atratus ants and the dead infected cadavers. We found that infected ants die in highly 

clumped distributions across multiple scales, as cadavers are found on specific trees in an area as 

well as clumped on the surface of a tree. Moreover, we observed live ants interacting with 

cadavers just before dying and biting, providing insight into the mechanism of our observations.  
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Methods 

Spatial data 

Research took place at Reserva Florestal Adolpho Ducke (02°55’S, 59°59W) near 

Manaus, Amazonas, Brazil, from 13 to 27 August 2018 and from 16 February to 9 March 2019. 

At the field site, we thoroughly inspected the base of trees for Cephalotes atratus cadavers killed 

by Ophiocordyceps kniphofioides (Fig. 4-1B-E). We searched for trees with a high density of 

cadavers. Trees with 10 or more cadavers were considered hotspots. We mapped out the trees 

surrounding a hotspot tree within a 10-meter radius and referred to the area as a ‘graveyard’ 

(Pontoppidan et al., 2009). We selected a distance of 10 meters since most ground foraging ants 

stay within this distance from the nest (Corn, 1976). We recorded the tree family, circumference 

at breast height, the number of cadavers, and distance and direction from the hotspot tree of all 

trees with a circumference above 20 centimeters. We focused on trees of this circumference since 

we have not found infected C. atratus cadavers on trees smaller than this size. 

At each tree in a graveyard where we found O. kniphofioides infected C. atratus 

cadavers, we counted the number of cadavers and documented their location on the tree. We 

recorded the distance from the ground, degree of damage, type of fungal growth, and orientation 

on the tree. We recorded damage to cadavers as an estimate of age and how frequently other 

organisms interact with the infected cadavers. We measured damage on a 3-point scale: 0 = no 

damage, 1 = missing gaster (the abdomen of an ant), and 2 = missing gaster and thorax. We 

observed 3 morphologically distinct types of anamorphs growing from the cadavers, coinciding 

with the original fungal description (Evans & Samson, 1982). For clarification purposes, we 

called them type A (Fig. 4-1C), type B (Fig. 4-1D-E), and type C (close-up in Fig.4-1F-G, see 

also Fig. 22 in Araújo et al. 2018). Anamorph type A forms a fungal stalk that can then develop 
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into the sexual fruiting body or teleomorph. We recorded which anamorph was currently growing 

or if there was no fungal growth. Often, we found broken apart dead C. atratus ants at the base of 

the trees (see Fig. 23 in Araújo et al. 2018). We only counted heads with thoraxes at the base of 

trees as cadavers. We recorded the horizontal distance from the base of the tree for the cadavers 

found on the ground.  

Field behavioral data 

The cadavers with visible external fungal growth were filmed for 27 days (10 days from 

13 August to 27 August and 17 days from 16 February to 9 March) to capture any interactions 

with conspecifics or other arthropods. We used GoPro cameras (model: HERO 5, GoPro, Inc., 

San Mateo, USA) to take a picture every 10 or 30-seconds at each focal cadaver then created a 

time-lapse video from these images to analyze these videos for interactions. Preliminary 

experiments determined a time-lapse interval of 30-seconds was sufficient to capture interactions, 

but improved storage capabilities allowed us to switch to taking an image every 10-seconds. In 

August, cadavers were only filmed during the day, while in February, cadavers were filmed for 

24-hours a day. For night-time recording, we used infrared lights (IR30, CMVision, Houston, 

USA) as to not disturb behavior and GoPros with modified infrared filter (RageCams.com, 

Michigan, USA). We recorded at cadavers with anamorphs type 1 and 2, as well as at cadavers 

with the teleomorph.  

We watched each time-lapse video to record if any invertebrate touched the cadaver or if 

a C. atratus ant walked in the background. A touch was defined as the invertebrate touching any 

part of the cadaver’s body (including the legs) or walking over the surrounding fungal material. If 

a C. atratus ant touched a cadaver, we recorded the number of images where it touched the 

cadaver and multiplied the number of images by the time-lapse interval (either 2 or 6 frames per 
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minute) to estimate the total time the ant interacted with the cadaver. If the ant touched multiple 

cadavers located close together (within the same camera view), we considered this as one 

interaction event and added the time spent touching either cadaver together.  

Statistical methods 

We used linear regression to test whether larger trees have more cadavers, using tree 

circumference as the explanatory variable and cadaver density (number of cadavers/m2) as the 

response variable. To determine the density of cadavers, the number of cadavers on a tree was 

divided by the surface area of the tree. The tree circumference at breast height and a height of 2.5 

meters (the highest a cadaver was found was 2.2 meters high) was used to calculate the surface 

area for all trees. Next, we investigated how aggregated cadavers are on the trees with 10 or more 

cadavers using Monte-Carlo simulations. A number of points equal to the number of cadavers 

found on a tree was randomly distributed in an area the same size of the tree sampled. The mean 

nearest neighbor distance was calculated for 500 simulated distributions of points for each tree. 

To get a p-value, we calculated the number of times the actual mean nearest neighbor value was 

greater than the simulated mean nearest neighbor value and divided that by the number of 

simulations. All analyses were performed in RStudio version 1.1.463 (RStudio Team, 2016) and 

R version 3.4.4 (R Core Team, 2018). 
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Results 

Spatial distribution 

We found a total of 626 Cephalotes atratus ant cadavers infected with the fungus 

Ophiocordyceps kniphofioides across 6 graveyards in a patch of Brazilian Amazon rainforest. All 

cadavers counted were assumed to be infected. This assumption is valid since biting behavior is 

only recorded from infected ants. The sample areas of the 6 graveyards had a total of 162 trees 

and 24 of those trees (14.8%) had cadavers (Fig. 4-2). The number of infected cadavers found in a 

graveyard ranged from 20 to 246 ants (median: 79 ants; G1 = 176, G2 = 20, G3 = 29, G4 = 246, 

G5 = 129, G6 = 26). Cadavers usually concentrated on one to three trees in the sample area (Fig. 

4-2). An average of 85.2% of trees did not have cadavers in a graveyard (G1: 25/27, 92.6%; G2: 

21/23, 91.3%; G3: 23/28, 82.1%; G4: 26/32, 81.5%; G5: 23/27, 85.2%; G6: 21/25, 84.0%).  

Larger trees did not have a higher density of cadavers (linear regression: F1,21= 1.25, p = 

0.28). Zombie ants were found on trees from 11 different families (Figure AC-1). The most 

common tree families found with cadavers were Fabaceae and Sapotaceae (63.6% and 36.4% of 

trees with cadavers, respectively). However, tree families did not significantly differ in the 

proportion of trees found with an infected cadaver (Fisher’s Exact Test; p = 0.22).  

Most cadavers clustered around the base of the trees (Fig. 4-3). The mean cadaver height 

above the ground ± the standard deviation was 30.64 ± 43.39 centimeters. At each tree with a 

concentration of cadavers greater than 20, zombie ant cadavers are located significantly closer 

together than expected from complete spatial randomness (Table AC-1; Monte-Carlo simulations; 

p < 0.001). For trees with less than 20 cadavers, cadavers were not more clumped than expected 

from complete spatial randomness (Table AC-1; Monte-Carlo simulations; p > 0.3). A majority of 

cadavers were undamaged (70.4%, n = 441), but 25.7% (n = 161) were missing a gaster 
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(abdomen), and 2.72% (n = 17) were missing a gaster and a thorax. Seven cadavers were knocked 

from the tree and lost in the leaf litter before we could determine the degree of damage.  

The majority of cadavers (69.8%; n = 442) did not yet show external fungal growth, 

though some showed growth beginning in the ant’s joints (Fig. 4-1E). Only 5.21% (n = 33) of 

cadavers were growing fungal anamorph type A, some with a mature teleomorph while others 

with only the stalk (Fig. 4-1B). In contrast, 11.1% (n = 70) were growing fungal anamorph type B 

(Fig. 4-1D) and 14.4% (n = 91) were growing fungal anamorph type C (Fig. 4-1F-G). The 

graveyards differed in the most common type of anamorph. In graveyards 1, 3, and 5, type B was 

the most common anamorph growing, at 94.9% (n = 37), 60% (n = 12), and 100% (n = 15) of 

cadavers growing fungi, respectively. In comparison, fungal anamorph type C was most common 

in graveyards 2, 4, and 6 as it was present on 50% (n = 2), 73.5% (n = 72), and 73.3% (n = 11) of 

cadavers growing fungi.  

Field behavior 

We recorded 22 ant cadavers across 27 days, capturing a total of 418,406 time-lapse 

pictures amounting to 1,726.63 hours of film coverage (Table 4-1). During this time, we observed 

an invertebrate touching a cadaver 108 times. Out of those 108 cadaver interactions, 11 cadaver 

touches were by a Cephalotes atratus ant. Additionally, C. atratus ants were observed in the 

videos but not touching a cadaver 14 times. During 3 of the C. atratus cadaver interactions, the 

cadaver was removed from the tree by the C. atratus ants (Supplementary Video S4-1). Removal 

occurred twice at night and once during the daytime. Removal took 19.17 minutes, 21.33 

minutes, and 100.67 minutes. In the removal taking over an hour, the cadaver was removed by 

two ants working together (Removal Event 1 – Supp. Video S4-1).  
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In the 8 remaining C. atratus interactions, the ants touched but did not remove the 

cadaver (Supplementary Video S4-2). On average, C. atratus ants touched a cadaver for 8.21 

minutes, with a range from 1 minute to 19.5 minutes. Combining removal and touch events, 11 C. 

atratus ants interacted with cadavers for a total of 206.83 minutes or 3.44 hours, amounting to 

0.19% of the total video footage.  

We additionally observed 5 infected ants immediately before biting into the tree and 

dying. The main activities performed by the ants before biting were pulling at moss, boring into 

the tree bark, and twitching (Supplementary Video S4-1). Many of the observed cadavers died 

burrowed into the tree bark (Fig. 4-1B). We observed an ant picking the fungal material off a 

cadaver on a tree in graveyard one (Zombie 1 - Supplementary Video S4-1). Shortly afterwards 

the ant bit into the tree trunk below the cadaver (Supplementary Video S4-1). Of the five fresh 

cadavers observed, three were removed during the study period. The first was removed in 1 day, 

the second in 10 days, and the third in 4 days (average number of days until removal = 5 days). 

The cadaver that was removed in 4 days (Zombie 5 - Supp. Video S4-3) was caught on camera 

being removed (Removal Event 3 - Supp. Video S4-1). 

Discussion 

We found Ophiocordyceps kniphofioides infected Cephalotes atratus ants die in highly 

aggregated distributions across multiple scales. Only 14.8% of trees sampled had cadavers, 

indicating that behavioral manipulation of ants by this fungus leads infected ants to preferentially 

occur on certain trees in an area (Fig. 4-2). Manipulation by this fungus also includes directed 

behavior on a tree as cadavers were clumped together near the bottom of trees (Fig. 4-3). Some 

live ants, which were suspected but could not be confirmed as infected, showed signs of attraction 

to the cadavers (Supp. Video S4-2 and 3) We recorded five manipulated ants just before biting, 
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three cadavers being removed by C. atratus ants, and eight C. atratus ants touching cadavers. 

Ants tend to die biting into moss or bark with the fungus growing under the bark, which might 

allow persistence of fungal structures in the environment even after the ant host cadaver is 

removed (Fig. 4-1B, D; Supp. Video S4-1). The low number of interactions (only 0.19% of the 

1,726 total hours of coverage on 4 trees over 27 days) suggests that epidemics are not a major 

feature of this system and infection is maintained with a low frequency of transmission.  

Only 26 C. atratus ants were observed on the tree trunks in the 1,726 hours of video 

coverage (Table 4-1), contributing to the low number of interactions. Similarly, in Thailand, the 

carpenter ant Camponotus leonardi was rarely observed outside of the canopy but found in dense 

aggregations near the forest floor when infected with Ophiocordyceps unilateralis s.l. 

(Pontoppidan et al., 2009). The similarity between systems, despite different continents, host and 

parasite species, indicates this as part of an evolved parasitic strategy to infect ants. Unlike 

manipulative parasites that have free-living stages (e.g., hairworms that induce terrestrial insects 

to enter water (Thomas et al. 2002)) or manipulative parasites which exploit already well-adapted 

systems of predation (i.e., trophic transmission: Carney 1969; Berdoy et al. 2000; Cezilly et al. 

2000; Yanoviak et al. 2008), this fungal parasite must find new hosts while limited by the 

distinctive behavioral ecology of its current host. Principally, effective transmission must contend 

with the anti-parasite defense behaviors of the host (Cremer et al., 2007), which likely limits the 

parasite’s ability to transmit to other hosts inside of the ant nest. One known mechanism to 

overcome within nest defenses is inducing infected insects to leave the colony so onward 

transmission to foraging workers can occur (Araújo & Hughes, 2019; Hughes & Libersat, 2019; 

Loreto et al., 2014).  

Manipulating ants to leave the nest heightens the importance of where infected ants die as 

they must encounter future hosts to transmit. After ants are infected by Ophiocordyceps sp., the 

fungus grows within the ant for approximately 2-3 weeks (de Bekker et al., 2015; Sakolrak, 
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Blatrix, Sangwanit, & Kobmoo, 2018), while remaining undetected by nestmates within the 

colony (Gracia et al., 2018). The fungus is unable to grow within the nest (Loreto et al., 2014), 

meaning the parasite’s fitness relies on the infected ant leaving and dying outside of the nest. 

Location is particularly important for O. kniphofioides, since only 5.21% of cadavers found were 

growing the fungal structure that leads to the teleomorph that can distribute spores through the 

air. In contrast, the more common fungal structures growing on 25.2% of the cadavers likely 

require direct contact by a new host for transmission. Thus, cadavers must die where future hosts 

will encounter them, perhaps leading the parasite to direct infected hosts to specific trees in the 

environment (Fig. 4-2).  

The hotspot trees could not be explained by the tree family or the size of the tree. Instead, 

the ecology of the host might explain why the cadavers aggregated on certain trees in the area. 

The trees with cadavers might reflect the location of a nest, or where foraging ants come down 

from the canopy. This ant species exhibits an anti-predator defense behavior where workers jump 

from aerial walkways to descend in a directed manner using gliding to alight on tree bases 

(Yanoviak et al., 2005, 2010; Yanoviak & Dudley, 2006). One hypothesis is that certain trees are 

landed on and climbed more frequently following such descents, promoting the aggregation of 

cadavers on certain trees in the environment (Fig. 4-2). A future study documenting the 

movement of ants from the canopy would be useful for investigating the full transmission cycle 

of the system.  

However, host ecology does not explain why cadavers were highly aggregated on the 

surface of target trees (Fig. 4-3), sometimes even biting on top of each other (Fig. 4-1E). Another 

hypothesis is that the aggregation is due to an autocatalytic mechanism emerging from 

interactions between live infected ants and cadavers. Entomopathogenic fungi are known to lure 

insects using chemical mimicry (Roy et al., 2006). The parasite could benefit from an infected ant 

recognizing other infected cadavers since it could indicate an area with a suitable density of hosts 
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for transmission. Interestingly, our results imply that there is a threshold needed for aggregation 

to begin, as cadavers were not more aggregated on a tree than expected from a random 

distribution unless there were more than 20 cadavers on a tree (Table AC-1). Simple individual 

rules can drive collective patterns, such as an increased stopping rate near an aggregation (Ame et 

al., 2004; Deneubourg & Goss, 1989). Our video observations showing zombie ants interacting 

with cadavers just prior to biting (Supp. Video S4-3) indicate attraction could be playing a role in 

creating the zombie ant aggregations.   

While infected ants might be lured by zombie ant cadaver volatiles, we suggest a 

different interaction between uninfected ants and infected cadavers. Interestingly, the cadavers 

removed did not have extensive external fungal growth (Supp. Video S4-1), in addition to the 

cadavers that were touched (Supp. Video S4-2). Ants are known to modify their behavior 

depending on fungal concentration (Konrad et al., 2018; Okuno et al., 2012; Pereira & Detrain, 

2020), implying that the uninfected ants might avoid heavily sporulating cadavers. Ants avoiding 

highly infective cadavers could explain the low number of C. atratus interactions observed in our 

study (Table 4-1).  

Yet, foraging C. atratus ants were rarely observed on the graveyard trees, indicating that 

the low number of interactions could be due to ants infrequently coming down from the canopy. 

The low encounter rate might protect the fungus from excessive removal behavior, allowing the 

fungus to remain on hotspot trees throughout the entire year (Evans & Samson, 1982). 

Meanwhile, producing fungal structures that extend out from the cadaver and remain on the tree 

substrate (Fig. 4-1D) could create infection points for unsuspecting ants even in the absence of 

cadavers. It would be useful to study the interaction between uninfected ants and the different 

fungal anamorphs growing with and without a cadaver to elucidate whether avoidance, attraction, 

or no reaction is occurring, and whether that behavior is modified by the presence of a cadaver.   
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In conclusion, manipulating infected ants to solidly bite into tree bark, away from a high 

traffic foraging area, may limit the host’s anti-parasite defense behaviors and allows the parasite 

to use tree trunks as transmission hubs. A rule that relies on a threshold of infected cadavers to 

begin aggregating creates a situation where fungal infected cadavers group in an area with 

sufficient host density to improve the chances of transmission. At the same time, being distant 

from the main host encounter areas leads to a low frequency of transmission, lessening the 

chances of an epizootic and promoting coexistence of host and parasite.  
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Tables 

Table 4-1. Zombie ant cadaver interactions.  

Total amount of footage captured and the number of interactions with Ophiocordyceps 
kniphofioides infected Cephalotes atratus cadavers on tree trunks.  
 August Feb/March Total 
Number of days cameras set-up 10 17 27 
Hours recorded 422.65 1303.98 1726.63 
Number of cadaver interactions 14 94 108 
Number of C. atratus cadaver interactions 1 11 12 
Avg. time C. atratus spent touching a cadaver (minutes) 19.5 7.52 8.21 
Number of times C. atratus in camera view 7 19 26 
Number of cadavers removed 0 3 3 
Number of zombie ants observed biting 0 5 5 
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Figures 

 

Figure 4-1. Images of uninfected and infected Cephalotes atratus ants.  

(A) Uninfected foraging Cephalotes atratus ants tending honeydew-producing treehoppers (one 
marked with a red arrow -- difficult to see since their color, size and texture closely match that of 
C. atratus) (B) Two recently killed ants biting into crevices on the tree trunk (C) C. atratus 
infected with Ophiocordyceps kniphofioides (zombie turtle ants) growing anamorph type-A, that 
will later become the sexual morph (D) Anamorph type-B (Hirsutella-like) growing around C. 
atratus cadaver (E) Two infected ants dead next to each other. Note the white cottony structures 
arising from abdomen and leg joints, evidencing early stages of fungal growth. (F) and (G) Close 
up of mucous droplet containing conidia formed from anamorph type C. Credits: A) Alex Wild; 
B–F) João Araújo. 
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Figure 4-2. The number of infected cadavers on each graveyard tree.  

Circles represent individual trees and size is scaled to tree circumference. Center numbers 
indicate how many Ophiocordyceps kniphofioides infected Cephalotes atratus cadavers were 
found on that tree. Circle locations correspond to the direction from the hotspot/center tree (see 
the uncondensed layout in Fig. AC-2). The bar below each graveyard shows the percent of trees 
with the number of cadavers indicated by the scale bar. 
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Figure 4-3. Location of zombie ant cadavers on the surface of the trees.  

The red points indicate where a cadaver was found on the surface of the tree. The horizontal 
distance of each point is the curved distance from the north-facing side of the tree, and the 
vertical distance is the height above the ground for each point. The horizontal bar below each plot 
indicates the circumference at breast height of each tree. The total height represented for each tree 
is 2.5 meters. The heatmap to the right of each tree surface represents the density of the cadavers 
found on the trees, with blue representing the lowest density and red representing the highest 
density. Only trees with 15 or more cadavers were included

Graveyard 1: Tree 1 Graveyard 2: Tree 1 Graveyard 3: Tree 1

Graveyard 4: Tree 1 Graveyard 4: Tree 11 Graveyard 4: Tree 20

Graveyard 5: Tree 1 Graveyard 5: Tree 3 Graveyard 6: Tree 1

n = 175 n = 15 n = 21

n = 92 n = 48 n = 87

n = 59 n = 73 n = 15
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Chapter 5 
 
Removal of zombie ant cadavers by conspecifics: social insect strategy 
limiting parasite diversification? 

Abstract 

The ants (Hymenoptera: Formicidae) form one of the most abundant groups of animals on earth. 

Part of their success has been attributed to an ability to defend the nest against disease. However, 

certain specialized parasites of ants, such as fungi in the Ophiocordyceps genus (Ascomycota, 

Hypocreales), have evolved to manipulate ants to die outside of the nest possibly to avoid colony 

defense behaviors. We investigated Ophiocordyceps oecophyllae infecting green tree ants 

(Oecophylla smaragdina), which is unique within the phylogeny for several reasons: (1) the 

infected cadavers are always found damaged, (2) the fungus grows from the ant cadaver 

differently than other Ophiocordyceps species and (3) it appears to be a dead-end species in the 

parasite phylogeny. Through behavioral observations, we demonstrate a mechanism for the 

damage to the cadavers by O. smaragdina ants. Thus, despite being a highly specialized 

manipulative parasite, the fungus appears to be limited by host behavior.  
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Introduction 

Parasites and hosts are in opposition to each other. While the parasite aims to evade 

detection by the host, the host benefits from recognizing and destroying the parasite. Some 

parasites have evolved clever ways of overcoming host defenses and enhancing transmission 

through manipulation of host behavior (Poulin, 2010). Manipulative parasites can lead hosts to 

new environments where transmission is enhanced (Ponton et al., 2011; Wesołowska & 

Wesołowski, 2014), make hosts less fearful of predators that are the definitive host of the parasite 

(Baldauf et al., 2007; Berdoy et al., 2000), or alter social behaviors to increase interactions with 

new hosts (Burand et al., 2005; Keesey et al., 2017).  

Zombie ants, which are ants manipulated by fungi in the genus Ophiocordyceps to leave 

the nest and die biting onto vegetation, are a popular example of parasite manipulation (Andersen 

et al., 2009). Manipulating the ant host to leave the nest is thought to help the parasite evade the 

defense behaviors of ants within the nest, as social insects have a variety of anti-parasite defense 

behaviors known as social immunity (Cremer et al., 2007). This has been a successful strategy for 

some parasitic fungi in the genus, as large aggregations of infected ants, known as ‘graveyards’, 

can be found in the environment (Chapter 4, Loreto et al., 2014; Pontoppidan et al., 2009). Fungi 

forming graveyards are typically within the O. unilateralis sensu latu group (Fig. 5-1A). Fungi 

within this group produce a fungal stalk that grows out of the ant’s head with a spore producing 

fruiting body called an ascoma (Fig. 5-1C). Producing such a fruiting body allows distribution of 

spores through the air to the surrounding environment, allowing transmission to new ants without 

the ant touching the infected cadaver, and potentially allowing distribution onto high encounter 

areas such as a foraging trails (Loreto et al., 2014).  
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However, in contrast to other Ophiocordyceps species, ants infected with the parasite 

Ophiocordyceps oecophyllae do not produce a fungal stalk and have only ever been found 

damaged (Fig. 5-1B). The host species for O. oecophyllae is the green ant Oecophylla 

smaragdina (Araújo et al., 2018), which is abundant through its range from southern Asia to 

north-eastern Australia (Wetterer, 2017). The fungal growth of O. oecophyllae is limited to 

asexual fungal structures emerging from the leg joints and fissures, which suggests transmission 

requires a new host to touch the infected cadaver (Fig. 5-1B; Araújo et al. 2018). Considering the 

different transmission modes, one would expect species in the O. unilateralis group to more 

easily infect ants than O. oeceophyllae, since spores are released to a larger area from O. 

unilateralis fungi.   

Indeed, the Ophiocordyceps unilateralis sensu latu species complex has 28 described 

species, with likely more to be discovered (Evans, Elliot, and Hughes 2011), while the group 

containing Ophiocordyceps oecophyllae has only 1 described species (Fig 5-1; Araújo et al. 

2018). Thus, in some parts of the Ophiocordyceps lineage, the parasite’s strategy appears to have 

facilitated diversification, while Ophiocordyceps oecophyllae seems a dead-end species. Green 

ants are well documented for their aggression towards other colonies and arthropods (Holldobler 

1983; Peng, Christian, and Gibb 1995, 1997; Crozier et al. 2010), as well as their ability to 

control over 40 species of insect pests on many tropical tree crops (Way and Khoo 1992). Given 

the noted aggressive behavior of the host, we hypothesize that uninfected green ants are causing 

the damage to O. oecophyllae infected cadavers.  

In this study, we set out to test our hypothesis and solve the mystery of why 

Ophiocordyceps oecophyllae infected cadavers are always found damaged. We first performed 

surveys to assess the abundance of the parasite, seeing whether the host is commonly infected and 

the fungus is prevalent in the environment. We then set up cameras and continuously recorded O. 
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oecophyllae infected cadavers to determine the cause of damage. Overall, we found that while the 

host species is abundant, the parasite is rare, likely due to the aggressiveness of the host. 

Methods 

Surveying for infected ants  

In October 2018 and April 2019, we searched for Oecophylla smaragdina ants infected 

with the zombie ant fungus Ophiocordyceps oecophyllae from the Daintree National Rainforest 

(Cape Tribulation, Queensland, Australia) in the North to Djiru National Park in the South (Djiru, 

Queensland, Australia. Infected ants could be identified by a characteristic behavior of biting onto 

the underside of a leaf (Fig. 5-1), not known to occur with uninfected ants. To find infected O. 

smaragdina, we looked beneath the leaves of all of the trees in an area, focusing more intently on 

trees near O. smaragdina nests or large foraging trails. When an infected ant was found, we 

recorded the height above the ground, the location on the leaf, and the level of damage to the 

cadaver: legs missing, gaster (ant abdomen) missing, or gaster and thorax missing.  

We combined our data with previous unpublished survey data from July 2011. During 

this survey, the infected ant cadavers were collected and pinned. A macro photograph was taken 

of each pinned specimen to determine how the cadavers were angled against the leaf they were 

biting. The angle of the ant against the leaf  was measured using the Fiji distribution of the 

software program ImageJ (Schindelin et al., 2012). We measured the angle formed between the 

surface of the leaf and the body of the thorax. We were unable to measure the angle for damaged 

ants with only the head remaining.  
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Behavioral observations 

To assess the cause of damage to infected O. smaragdina ants, we filmed infected ant 

cadavers using GoPro cameras (model: HERO 5, GoPro, Inc., San Mateo, USA). Filming 

occurred from 24 April to 3 May 2019 on the property of the Daintree Rainforest Observatory 

(James Cook University, Cape Tribulation, Queensland, Australia). Cadavers were filmed for 24-

hours a day for up to 1 week or until the ant was removed. For night filming, we used cameras 

with a modified infrared filter (RageCams.com, Michigan, USA) and illuminated the cadaver 

with a small infrared light (IR30, CMVision, Houston, USA) connected to a 12-Volt 7Ah 

batteries (PS 1270S, Century Yuasa Batteries, Carole Park, Queensland, Australia). The GoPro 

cameras took pictures every 10-seconds and converted these images into time-lapse videos. We 

watched each time-lapse video and recorded if any organism touched or damaged the cadavers. 

Results 

Survey results 

From 11 October to 28 November 2019, we found 1 infected O. smaragdina. From 19 

April to 28 April 2020, we found 6 infected O. smaragdina. We additionally examined 20 pinned 

specimens of infected O. smaragdina ants that were collected in July 2011.  

Manipulation attributes 

All O. smaragdina cadavers found (n = 39) were missing a gaster (Fig. 5-2A). Only the 

head was remaining for 13 out of 39 (33.3%) of the cadavers found. Sometimes the legs and 

antennae would remain (Fig. 5-3A-B) or sometimes the legs and antennae would be completely 
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removed (Fig. 5-3C-D). Ants were angled an average of 46.7 ± 21.6° away from the leaf surface 

(Fig. 5-2B). and attached to leaves an average of 143.6 ± 21.8 cm above the ground (Fig. 5-2C).  

Behavioral observations 

We filmed a total of 5 O. smaragdina cadavers, 2 of which were completely removed 

during the filming period (Supplementary Videos S5-1 and S5-2). The first ant that was removed 

still had its legs attached when it was found (Fig. 5-3A). The legs were removed by an 

unidentified Orthopteran the same night as the cadaver was found (Supplementary Video S5-3). 

The next day the remaining parts of the ant were removed by an O. smaragdina ant in 

approximately 20 minutes (Supplementary Video S5-2). The second cadaver that was removed 

was pulled apart over a period of 3 hours by an O. smaragdina ant (Supplementary Video S5-1). 

Additionally, another cadaver that was found with its legs remaining (Fig. 5-3B) was removed 

within 3 days of discovery, but this was not caught on camera. No interactions were recorded 

with the other 3 cadavers during the filming period, apart from a spider touching a cadaver 

briefly. The cadavers that remained had an older looking appearance and more visible fungal 

material (Fig. 5-3C-E).  

Discussion 

In this study, we determined that infected green tree ant cadavers are found damaged due 

to host behavior. Green tree ants (Oecophylla smaragdina) parasitized by the manipulative 

fungus Ophiocordyceps oecophyllae were removed by conspecifics in the area, eliminating the 

infectious material that could infect new ants. Interestingly, all removed ants appeared newly 

infected, while older cadavers with visible fungal material were not touched (Fig. 5-3). We 
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suggest that ants modulate their behavior depending on the perceived risk of the fungal material. 

This aggression towards infected cadavers, limiting the number of parasitized ants in the area, 

could explain the lack of speciation in this lineage when compared to other ant parasitic fungi in 

the Ophiocordyceps genus (Fig. 5-1). 

However, an opposite possibility is that the parasite induces the observed removal 

behavior in order to enhance its transmission. The morphology of O. oecophyllae suggests that an 

ant must touch the cadaver for transmission ( Araújo et al., 2018). Thus, it would be advantageous 

for O. oecophyllae to evolve to attract the ant host, but we would expect to see live ants 

interacting with cadavers in the video footage if attraction was occurring. Apart from the cadavers 

that were removed, we observed no green ants touching cadavers in the continuous recording of 

cadavers over 6 days. Furthermore, the low number of parasitized cadavers found in our study 

(over 200 hours of searching uncovered 7 cadavers), indicate that if host attraction is occurring it 

is an ineffective strategy. Especially considering cadavers were typically located near O. 

smaragdina nests and foraging trails.  

A question remains regarding why some cadavers persisted in the environment while 

others were removed within a day of discovery. Social insects are known to modify their behavior 

depending on the perceived infection risk. Ants are less likely to touch fungal infected cadavers 

that are sporulating (Pereira & Detrain, 2020) and will modify their grooming behavior depending 

on fungal concentration (Konrad et al., 2018; Okuno et al., 2012). Perhaps, in our study, foraging 

ants were able to perceive the higher concentration of spores on the older cadavers and 

consequently avoid those cadavers. A similar pattern was observed for a distantly related 

Entomophthorales fungal parasite, Pandora formicae infecting Formica rufa ants, that also 

manipulates ants to die biting into vegetation (Małagocka et al., 2017). Worker ants removed 

infected ants from the stems of grass surrounding a colony, but only if there was not extensive 

fungal growth (Marikovsky, 1962).  
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Infected cadaver removal by conspecifics also occurs for a different species of zombie 

ant, Ophiocordyceps kniphofioides infecting the ant Cephalotes atratus (Fig. 5-1D; Chapter 4, 

Evans and Samson 1982). However, in contrast to O. oecophyllae, large numbers of O. 

kniphofioides infected cadavers are still found in the environment despite removal, likely because 

the fungus remains growing on the substrate after removal (Fig. 5-1D; Evans and Samson 1982; 

Araújo et al. 2018). In fact, dense aggregations of infected ants known as ‘graveyards’ can be 

found for both zombie ants in both the O. kniphofioides and O. unilateralis group (Pontoppidan et 

al. 2009; Loreto et al. 2014; Evans and Samson 1982). No graveyards have been observed for O. 

oecophyllae infected ants, perhaps due to differences in fungal morphology, as O. oecophyllae 

lacks the fruiting body observed in O. unilateralis fungi (Fig. 5-1C) or an ability to grow onto the 

substrate as seen with O. kniphofioides (Fig. 5-1D). A study comparing transmission rates for the 

different fungal types would be useful to elucidate whether fungal morphology is a factor limiting 

O. oecophyllae infection.  

Currently, the evidence suggests host behavior plays a role in limiting O. oecophyllae, as 

all cadavers were found damaged (Fig. 5-2). It is important to note that the host may not be 

causing all of the damage to the cadavers. We observed an unidentified Orthopteran removing the 

legs from one of the cadavers (Supp. Video S5-3). Interestingly, the insect did not fully remove 

the cadaver, only the legs. The cadavers might be difficult to remove, as shown by Supplementary 

Video S1 where the ant was observed pulling on the cadaver for over an hour. Similarly, in the 

removal of P. formicae infected ants, the ants exerted much effort when pulling off the cadavers 

and often removed them in pieces (Marikovsky, 1962). The strength required for removal may 

explain why we found cadavers missing parts of their body, instead of the whole cadaver 

removed, as some insects or ants may not be able to remove the whole cadaver.  

Overall, this work explores how host behavior might explain the status of O. 

oeceophyllae as a dead-end species in a group showing high levels of diversification. The host 
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may limit persistence of the parasite in the environment by removing cadavers, reducing 

opportunities for the parasite to adapt and evolve. Coupled with the limited dispersal of the 

parasite’s spores, we provide an explanation for why this parasite is comparatively rare. The 

Ophiocordyceps genus thus provides a good system to investigate how the outcome of 

specialization is varied, sometimes increasing and sometimes decreasing diversity, and should not 

be considered a universal factor that drives evolution in one direction. Moreover, it shows the 

incredible ability of ants to fight back against threats to their colony, explaining their status as a 

diverse and abundant group.  
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Figures 

Figure 5-1. Simplified phylogeny of the ant parasitic fungi in the Ophiocordyceps genus. Each 
fungal species is only known to parasitize one ant species.  

A) Phylogeny summarized from Araújo et al. (2018). B) Ophiocordyceps oecophyllae 
parasitizing the ant Oecophylla smaragdina C) Ophiocordyceps camponoti-atricipis parasitzing 
the ant Camponotus atriceps, with fungal stalk and ascoma emerging from ant D) 
Ophiocordyceps kniphofioides infecting the ant Cephalotes atratus with white fungal material 
surrounding ant.  
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Figure 5-2. Characterizing the manipulation niche for Ophiocordyceps oecophyllae.  

A) Proportion of zombie ant cadavers (n=39) found that were missing a gaster or missing a gaster 
and thorax. B) Angle of zombie ant cadaver’s body relative to leaf surface (n=17) C) Average 
height above ground zombie ant cadavers were found attached to leaves.    
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Figure 5-3. Images of zombie green tree ants.  

A-B) Oecophylla smaragdina ants infected with Ophiocordyceps oecophyllae with a fresh-
looking appearance that were removed during study period and C-E) infected ants with an older 
looking appearance that were not removed during the study period. 
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Chapter 6 
 
Discussion 

Summary  

The Ophiocordyceps fungi are manipulative fungal parasites of ants. Infected ants are known as 

zombie ants and are manipulated to leave the nest to die. Manipulation is likely necessary to 

infect ants because of behavioral defenses limiting transmission within the nest. Throughout this 

dissertation, I emphasize how transmission outside of the nest helps parasites avoid colony 

defenses.  

 I began by investigating the dynamics outside of the nest in chapter 2 by studying how 

ants are foraging in an area of high disease pressure. On foraging trails, I found that most ants 

have similar trajectories and walk over the same areas as other ants, but there is a subset of 

foragers that tends to explore new areas. I suggest the explorative ants have a higher risk of 

exposure to parasites, while having the majority of ants walk in a similar manner could lessen the 

probability of transmission for most ants. Chapter 3 studied this system further and demonstrated 

that infected ants are likely turning more than most foragers. A higher frequency in turning for 

zombie ants could be adaptive as it helps the infectious host stay close to the nest and foraging 

trails, allowing spores to be released in area where they are more likely to be encountered by 

future ants. Interestingly, the group of ants discovered in chapter 2 with high turning rates (curvy 

ants – Fig. 2-2B) is similar to the expected zombie ant movement predicted by chapter 3 (overlap 

in Fig. 3-2A).  

 Chapter 4 explored a different system of the ant Cephalotes atratus infected with the 

parasite Ophiocordyceps kniphofioides. Infected ants are found biting at the base of trees, and I 
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found they die on specific trees and highly aggregated on the tree surfaces. Infected ants show 

some evidence of being attracted to the infected cadavers and this could lead to the aggregated 

distribution. Some cadavers were also removed by conspecifics, suggesting that social immunity 

behaviors extend outside of the nest.  

 Chapter 5 additionally demonstrates the potential pathogen clean up ability of ants 

outside of the nest, as 100% of green tree ants (Oecophylla smaragdina) infected with 

Ophiocordyceps oecophyllae were found damaged. Video recordings captured green tree ants 

removing infected cadavers from the leaves, eliminating the infectious material in the area. 

Interestingly, these cadavers were exceedingly rare, especially considering the abundance of the 

host ant and the density of cadavers found in the other two systems explored in this dissertation.  

 This last system shows how even after evolving highly specialized manipulation, a 

parasite can still face barriers when infecting ants. Certain strategies seem to work better than 

others, demonstrated by the large number of O. kniphofioides cadavers found in chapter 4. The 

multiple spore types produced by O. kniphofioides, particularly the type that can remain on the 

substrate surface after cadaver removal, might improve the success of the parasite. Moreover, the 

distance manipulated away from the nest might be important, such as how O. kniphofioides 

infected cadavers are found at the base of a tree while the host ant is mostly in the canopy. 

Location is also adaptive for the system discussed in chapters 2-3, Ophiocordyceps camponoti-

rufipedis, as it allows the fungus to distribute spores onto the foraging trails that ants leaving the 

nest walk upon. Green tree ants also make trails, but O. oecophyllae does not produce a fruiting 

body and stalk like Ophiocordyceps camponoti-rufipedis, so it likely needs a host to touch the 

cadaver for transmission. Thus, the different biting locations and spore types produced could 

explain the relative success of the zombie ant fungi species studied.  
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Miscellaneous observations 

In chapter 2, a variety of times I observed small arthropods, such as a spider (Supp. 

Video S5-1) and a cockroach (Supp. Video S5-2), following ants on the trails. Interestingly, the 

spider followed the ant’s trajectories quite closely and even appeared to touch the ants without 

negative consequences. Other times, if an insect walked on the trunk trails, I observed the ants 

aggressively chasing it away. It would be interesting to further investigate the myrmecophile trail 

behavior. Possible directions include looking into the nature of their relationship 

(commensal/symbiotic/predatory), the mathematical similarity of their movements, how they 

avoid ant aggression, and what senses they primarily use to follow the ants.  

When taking photographs of zombie ants, I often discovered small invertebrates next to 

the cadavers (Fig. 6-1). These small creatures could simply happen to be in the area at the time, 

but many were located directly on or below the cadaver. Perhaps these invertebrates could have 

an influence on the fungus growing from the cadaver. The invertebrates may eat the spores of the 

fungus or could even vector the spores to a new location, as mites are known to vector spores. A 

particularly interesting possibility is that the invertebrates could be introducing other fungal 

species, as zombie ant fungi are often parasitized by fungal ‘hyperparasites’ (example in Fig. 1-

1C). Additionally, ant cadavers often have holes in the gaster or other parts of the body, so the ant 

itself may serve as a nutritional source. Future work could investigate the relationship between 

cadavers and the small invertebrates that interact with them.  
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Figure 6-1. Example invertebrates observed near zombie ant cadavers.  

Future directions 

Conspecific removal behavior 

Further investigation of the cadaver removal behavior observed in the turtle (chapter 4) 

and green (chapter 5) ant systems would be useful to understand when infected cadavers are 

removed and how this influences the transmission cycle. Does the amount of fungal growth 

impact the removal behavior? What happens to the cadaver once removed? Do the removing ants 

become infected?  

 

Production of different spore types 

The transmission cycle should also be investigated from the perspective of the spores 

produced by the cadavers. The species Ophiocordyceps kniphofioides studied in chapter 4 

produces a variety of different spore types, some that appear adapted for aerial transmission, and 

others for touch or rain dispersal. It would be interesting to quantify the rates of transmission of 



86 
 

 

these different spore types and if the production of the different types can be induced by 

environmental conditions.  

 

Evolution of extended phenotypes 

There are trends within the zombie ant phylogeny, with most ants biting onto leaves in 

the O. unilateralis group and tree trunks in the O. kniphofioides, although there are exceptions in 

each group. Additionally, there are examples of ants not biting at all or biting underground or 

inside logs. Future work should look further into how these different extended phenotypes evolve. 

Work in this direction might additionally provide broad insights into the evolution of parasite 

manipulation. 

Concluding remarks

Overall, more work is needed to understand the interaction between sociality and disease 

risk. This dissertation shows how a fungal parasite can successfully infect ants, but does infection 

have fitness consequences for the host? Typically, only foraging workers are infected, which is 

only a fraction of the colony’s population. Successfully avoiding epidemics might be one of the 

reasons ants are abundant in many ecosystems. However, many studies on social insect disease 

dynamics use abnormally high pathogen loads and focus on transmission within the nest, which 

may miss part of the puzzle. Studies mimicking natural conditions and using host-parasite pairs 

found in nature are crucial to new insights related to infectious disease in social insects. 

Moreover, with climate change and anthropogenic activities threatening many of the earth’s 

biodiverse areas, it is imperative we understand and appreciate the diversity in social insect 

parasites. 
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Appendix A 
 
Supplementary Material for Chapter 2 

Description of the ant detection and tracking approach 

The overall pipeline of our approach for ant detection and tracking is sketched in the 

following figure. We first apply a Mask R-CNN model [2] on every image frame in a video to 

detect all ants (and their positions) in the frame; we then apply an optimal transportation based 

tracking method [1] to match and connect the detected ants in each frame to form ant trajectories 

for individual ants throughout the video. 
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The Mask R-CNN model: 

Overall, we hand-labeled 20666 images for training a Mask R-CNN model [2]. Our code for 

training and testing the Mask R-CNN model can be found via the Google Drive link below: 

https://drive.google.com/drive/folders/15w3VAhG9vvc0-Psx2cjoEpBh8EFy4rTE?usp=sharing 

 

Optimal transportation based ant matching/tracking method: 

We applied the tracking method developed in [1] for tracking ants detected by the Mask R-CNN 

model. Our code for this method can be found via the Google Drive link below: 

https://drive.google.com/drive/folders/19REUh1HmD97niFB4KlkZ8QxeqR6dRW6h?usp=sharin

g 

 

[1] J. Chen, C. W. Harvey, M. Alber, and D. Z. Chen. A matching model based on earth 

mover’s distance for tracking Myxococcus xanthus. In International Conference on Medical 

Image Computing and Computer-Assisted Intervention (MICCAI), pp. 113-120, 2014. 

[2] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. IEEE International 

Conference on Computer Vision (ICCV), pp. 2980-2988, 2017.  
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Ant visiting map 

Trajectories can be embedded into the 2D space of the images in the video, as follows. Suppose 
we divide an image into a grid structure of size m x n (i.e., the image consists of m x n grid cells). 
Then we can represent an ant trajectory T as a sequence of grid cells that T travels or visits. 
Further, for each grid cell C(i, j), we can count the number V(i, j) of times that C(i, j) is visited by 
the ant trajectories. This will generate a map of the image which has a similar effect as a heat 
map: The larger the value V(i, j) is (i.e., the more often the cell C(i, j) is visited by the ant 
trajectories), a higher temperature the cell C(i, j) has. 

 
Suppose we have K trajectories T1, T2, . . . , TK. For a trajectory Tk, it consists of a sequence of 
grid cells C(xk

1, yk
1), C(xk

2, yk
2), . . . ,  C(xk

Pk, yk
Pk), where Pk is the number of cells in trajectory Tk.  

 
We compute the “ants visiting map" of trajectories using the following procedure. 

 
 
The following is an example image output from the above calculation: 
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Exploration index 

After computing the ants visit map, we can further compute an index, called the exploration index 

(EI), of each trajectory. The exploration index may better capture the ant exploration of the image 

areas. For every grid cell C(i,j), we give it an initial exploration value E(i,j). To avoid introducing 

any bias here, we set E(I,j) as a constant (e.g.,1) for every grid cell C(i,j). Then when a trajectory 

T passes through cell C(i,j), it picks up a value E(i,j)/V(i,j), where V(i,j) is the number of 

trajectories that visit C(i,j) computed in the above procedure. That is, the more trajectories pass 

through cell C(i,j), a lower value of exploration that the trajectories will pick up from visiting 

C(i,j) (as C(i,j) is visited by multiple ants, its exploration value becomes low. We may then 

compute the total sum of exploration values in all the cells of trajectory T as the exploration index 

(EI) of T, and also the average exploration index (AEI) of T which can be obtained by dividing 

the EI by the length of the trajectory. When comparing between videos in a night of footage, we 

removed short videos or early videos with only a few trajectories as this gives inaccurate 

exploration indices. 
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Figure AA-1. Image of field camera set-up for filming ants on trails.  

 

 

 

 

 

 

 

 

 

 

GoPros were attached to a 30cm clamp that was attached to a pole placed in a ground 30cm from 
the trail. An infrared light was attached the end of the clamp next to the GoPro and powered by a 
12-volt battery (pictured to the left). The camera was approximately 30 cm above the trail.  
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Figure AA-2. Images of trunk trails filmed for all colonies.  

 

 

 

 

 

 

 

 

 

MP 1
MP 2

MP 6

MP 10

MP 11 MP 16

MP 17

Images taken from GoPro footage, pink/purple color due to infrared light and infrared filter in 
camera.  
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Figure AA-3. Speed of ants over time.  

 

 

 

 

 

 

 

 

Average speed of ants within a 30-minute interval, broken down by colony.  
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 Table A-1. Summary of field studies that have observed ant foraging trails.  

Method of 
collecting data 

Observer of 
behavior 

Alterations to 
environment Type of trail? Reference 

in person human none trunk (Gordon, 2013) 
in person human none trunk (Gordon, 1991) 

film human none raid (Couzin & Franks, 2003) 

film human artificial surface trunk (Burd & Aranwela, 2003) 

in person human 
column around 
trail trunk (Moffett, 1987) 

in person human none trunk (Anderson & Jadin, 2001) 

film computer 
ants walked on 
index card temporary (Pearce-Duvet et al., 2011) 

in person human baiting temporary (Lynch et al., 1980) 
in person human mark-recapture trunk (Porter & Jorgensen, 1981) 

in person human trail disturbance trunk (Evison et al., 2008) 

in person human 

feeding sites, gut 
contents used to 
create artificial 
trails temporary (Hölldobler, 1981) 

in person human 
gridlines; feeding 
sites temporary (Kohler & Wehner, 2005) 

in person human baiting temporary (Holway & Case, 2000) 

in person human none trunk (Heller & Gordon, 2006) 

film/in person human baiting temporary/trunk (Flanagan et al., 2013) 

in person human removed ants trunk (Gordon et al., 2011) 

film human 

walked on 
masonite board in 
respirometer 
chamber trunk (Lighton & Duncan, 2002) 

in person human removed ants 
extrafloral 
nectary visitation (Dreisig, 2000) 

film human 

removed bridges 
& inserted 
specially made 
apparatus raid (Reid et al., 2012) 

in person human feeders temporary (Latty & Beekman, 2013) 

in person human none temporary (Detrain, 1990) 

in person human none trunk (Detrain et al., 2000) 
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Automated tracking and analysis of 
ant trajectories shows variation in 
forager exploration
Natalie Imirzianͷ, Yizhe Zhang͸, Christoph Kurzeͷǡ͹, Raquel G. Loretoͷǡͺ, Danny Z. Chen͸ & 
David P. Hughesͷǡ͹

Determining how ant colonies optimize foraging while mitigating pathogen and predator risks provides 
insight into how the ants have achieved ecological success. Ants must respond to changing resource 
conditions, but exploration comes at a cost of higher potential exposure to threats. Fungal infected 
cadavers surround the main foraging trails of the carpenter ant �������������Ƥ���ǡ��ơ������������������
study how foragers behave given the persistent occurrence of disease threats. Studies on social insect 
foraging behavior typically require many hours of human labor due to the high density of individuals. To 
overcome this, we developed deep learning based computer vision algorithms to track foraging ants, 
�����Ǧ��Ǧ�����ǡ���������������������������������������������������������������������������ƪ������������Ǥ�
We found that most foragers walk in straight lines overlapping the same areas as other ants, but there 
is a subset of foragers with greater exploration. Consistency in walking behavior may protect most ants 
from infection, while foragers that explore unique portions of the trail may be more likely to encounter 
������������������������������Ǧ�ơ����������������������������������������������Ǥ

Resource acquisition drives animals into new territories, while threat avoidance limits where animals move. A 
consistent threat is the presence of infectious propagules of parasites and these are hypothesized to be major 
determinants of the distribution of animals in the wild1. Examples of animals avoiding pathogen contaminated 
areas span diverse taxa, from mammals to insects, implying anti-parasite behavior is widespread1–5. Central place 
foragers are interesting in the context of parasite avoidance as they must obtain food while avoiding threats with 
the additional constraint of returning to a de!ned location a"er each trip. For volant central place foragers, like 
wasps, bees, bats and birds, much of the trip is through the air likely reducing contact with infectious material. 
However, for taxa which walk on the ground (e.g. ants), encounters with parasite propagules are presumably 
higher6. Unlike threats from mobile predators and competitors, parasites could directly alter movement patterns 
since infection occurs from a stable location on the ground. For social organisms, it would be advantageous to 
avoid pathogen contaminated areas in order to protect the entire colony from becoming infected.

While some ant species send workers out from the colony to forage independently, other ant species use highly 
coordinated groups to forage, o"en facilitated through chemical signaling7. Group foraging via chemical trails 
can lead to semi-permanent trails known as ‘trunk trails’8. Trunk trails stimulate research interest largely from 
the perspective of the self-organization behavior of ants, such as how ants regulate tra#c9–11. Trunk trails have 
also been studied from the perspective of their temporal and spatial dynamics as well as their energetic value in 
terms of e$orts expended and resources obtained12,13. Yet, studies have not investigated how utilizing the same 
trails day a"er day impacts the exposure of ants to threats. Moreover, studies on ant foraging have largely occurred 
in a laboratory setting, and of the work that took place in the !eld, most studies relied on human observation 
or manipulated the environment in some way (see references in Supplementary Table S1). An ant species that 
forages collectively and predictably in time and space would be useful to assess the relationship between trail 
behavior and risk avoidance.

A potential system is the carpenter ant Camponotus ru!pes in southeastern Brazil, which forms trunk trails 
lasting for multiple months14,15. Colonies of this ant were recorded as having a chronic infection by the fungal par-
asite Ophiocordyceps camponoti-ru!pides across 20 months16,17. &is fungus manipulates foragers to leave the nest 
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and die biting the underside of a leaf17,18. To complete its lifecycle, the fungus must grow out of the ant cadaver 
and form a fruiting body that releases spores onto the ground below that will infect other ants18. Cadavers are 
found attached to leaves surrounding the ant nest17. !e chronic nature of infection at the colony level means the 
spores of the pathogen are continuously in the environment from the perspective of the foragers. !e spores are 
curved and large (80–95 microns)16 implying they do not travel far and land on the nearby trails once released 
from ant cadavers that hang above trails. Spores germinate to produce infectious secondary spores on hairs (cap-
illiconidia) which attach to ants as they walk over them19. !us, infection does not require a spore to hit an ant as 
it walks on a trail below a cadaver. Instead, the trail substrate itself serves as the source of contamination.

Foragers of the carpenter ant C. rufipes mostly collect nectar from hemipteran secretions and extraflo-
ral sources14,20. !e exploitation of a stable resource suggests that the most e"cient way for a colony to obtain 
resources is for the majority of foragers to walk directly to the food source, utilizing trails near the colony entrance 
as a highway. However, if all foragers walked directly towards the food source, this would hinder the colony’s 
response to changes in resource availability. We hypothesize that some individual trajectories will show evidence 
of searching behavior, but the majority of ants will walk directly across the trail and cover similar areas limiting 
the exposure of most ants to threats.

We studied the trails of seven C. ru!pes colonies in their rainforest habitat to determine how individual ant 
trajectories vary in their consistency and coverage of trail space to investigate whether all foragers are at equal risk 
of encountering a fungal spore. Importantly, we studied ant movement on undisturbed trails, keeping pathogen 
risk at natural levels and including the factors undetectable to humans that in#uence ant foraging. We devised a 
system of recording trails using infrared lights and modi$ed cameras to contend with the nocturnal foraging of 
this species. We then used computer vision and deep learning to automate ant tracking then characterized forager 
trajectories on speed, straightness, direction, and exploration.

First, we focused on the straightness of trajectories to assess the e"ciency of the colony in food retrieval and 
to investigate whether some ants are engaged in searching behavior. Next, we analyzed the tendency of trajec-
tories to cover unique areas of the trail through calculation of an “exploration index” of each trajectory. We pre-
dicted that most trajectories will have high straightness and low exploration scores as this increases food retrieval 
while limiting risk exposure. We then investigated the relationship between straightness and exploration, as well 
as exploration and time. We predicted that ants that walk straight across the trail are more likely to cover the 
same area of the trail as other ants (low exploration), while ants with lower straightness scores are more likely to 
walk over a new area of the trail (high exploration). We also predicted exploration levels would be higher at the 
beginning of a foraging period, as this is when the pheromone trail would be the weakest. We found that some 
ants wander when crossing the trail and these ants are more likely to explore a unique area of the trail, possibly 
increasing the #exibility of the foraging system by heightening food discovery. Conversely, covering a new area of 
the trail could expose wandering ants to threats other ants may avoid through following the main foraging trail.

Methods
Study site. Fieldwork took place at the Research Station of Mata do Paraíso, Universidade Federal de Viçosa, 
Minas Gerais, Southeast Brazil (20°48′08S 42°52′31W) between 10 and 25 January 2017. !e carpenter ant 
Camponotus ru!pes is abundant in this area, forming trails lasting multiple months14,15. !e forest #oor in the 
area of study is usually covered in 10–20 cm of leaf litter. Instead of traversing through the leaf litter, C. ru!pes 
trails o%en use ‘bridges’ composed of woody debris, lianas, and tree branches 2 cm or more above the leaf litter15. 
Occasionally, when there are patches of clear soil (usually due to human made paths) trails would cross these 
areas. Ants forage at night and activity peaks in the early evening.

Trail filming. Trails from seven different C. rufipes nests were filmed between 10 and 25 January 2017. 
Nests were selected based on their location and structure. Only nests found above the ground with nest mate-
rial clearly visible were used. Trails were $lmed before a branching point from the main trail so that ants were 
$lmed coming directly from or towards the nest. In the case where multiple trails came from one nest, the busiest 
trails were selected. !e width of the branches $lmed ranged from 0.8 cm to 7 cm (mean ± standard deviation; 
2.97 cm ± 2.53) and the length of the area $lmed for all branches was approximately 15 cm.

GoPro cameras (model: HERO 3+, GoPro, Inc., San Mateo, USA) with a modi$ed infrared $lter (RageCams.
com, Michigan, USA) were used for $lming. Stakes were placed 30 centimeters from the trails and 30 cm medium 
trigger clamps (DWHT83140, DeWalt, Towson, USA) were attached to the stakes. Cameras were attached to 
clamps so that cameras were approximately 30 centimeters above the trails looking down at the ants walking on 
the trails (Supplementary Fig. S1). An additional camera was placed on the stake, looking sideways at the ants, to 
allow another perspective for behavioral analysis. Filming lasted from 19:30 to 00:00 for 4–7 nights for each trail 
(Supplementary Table S2). Timing of $lming was based on previous work showing activity begins around 19:30 
and peaks around 21:0015. Infrared lights (IR30, CMVision, Houston, USA) were connected 12-Volt 7Ah batteries 
(UP1270, UniPower, São Paulo, Brazil) to allow illumination of the trail without disturbing the behavior of the 
ants. !e camera batteries lasted for approximately 1.5 hours, so the battery was changed once in the middle of a 
$lming period. Slight adjustments in where the trail was positioned in the video view would sometimes occur at 
this time. Figure 1a shows an example image of a trail $lmed and images of the remaining trails $lmed are found 
in Supplementary Fig. S2.

Automated ant tracking. A total of 78 hours and 56 minutes of video were recorded for seven colonies 
across four nights (Supplementary Table S2). We developed a machine learning approach to process and analyze 
these videos using a deep learning based segmentation model that identi$ed ants as they came onto the screen 
and tracked them as they moved across the screen (Supplementary Material).
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Our automatic ant tracking method contains two main processes: (1) detecting ants in each image frame of 
all videos, and (2) building ant trajectories for every video based on the detected ants. Commonly, deep learning 
schemes require a large amount of labeled ground truth data for model training. Since our dataset is quite large 
(>8 million image frames), we aimed to generate su!cient labeled data for training our deep learning model 
without incurring excessive human labeling e"ort. Also due to the large size of our dataset, common active learn-
ing based sample selection methods (e.g.21) are not e!cient. #e goal of ant detection is to build ant movement 
trajectories and since ant trajectories normally span multiple consecutive frames in videos, detected ant positions 
in earlier frames assist with ant detection in later consecutive frames. #at is, while ant detection forms a basis for 
building ant trajectories, trajectories of detected ants may also help ant detection. Hence, we designed our trajec-
tory building procedure such that it not only can track detected ants but also can provide cues to indicate where 
(which frames and locations) there might be inconsistencies in ant trajectories and di!cult scenarios for ant 
detection (e.g. densely clustered ants). We used such cues to select di!cult cases from the frames for labeling to 
improve the deep learning detection model as well as the ant detection results. #erefore, our detection-tracking 
method consists of two rounds (with the second round improving the detection and tracking results of the $rst 
round), and each round performs two major steps, ant detection and trajectory building, as described below.

Ant detection. #is aims to detect ants in all the frames of the videos. We applied a novel object detection and 
segmentation model, Mask R-CNN22, to automatically detect ants in every frame.

Ant trajectory building. Given the detected ants in each frame, the next step is to form ant trajectories that con-
nect detected ants frame-by-frame in videos. We formulated this ant trajectory building problem as a transporta-
tion problem, that is, between every two consecutive frames in each video, we $nd an optimal transportation (for 
ants) that corresponds to real movement of ants. In this transportation formulation, each detected ant in frame K 
can be viewed as a ‘supplier’ and each detected ant in frame K + 1 can be viewed as a ‘receiver’. #e dissimilarity 
(based on spatial distance and appearance di"erence) between ants in two consecutive frames is a measure of 
how much ‘cost’ it would take to transport (move) one ant in frame K to another in frame K + 1. #e objective is 
to transport detected ants (as many as possible) in frame K to frame K + 1 with the minimum total cost. Optimal 
transportation based tracking methods are known to be e"ective for tracking sets of moving and changing objects 
in image sequences23,24.

In the $rst round, we randomly selected frames to label as training data. #is allowed us to quickly and unbi-
asedly obtain data samples for training a decent detection model. We then applied the trained model to all of 
the frames to produce ant detection results. We conducted trajectory building on detected ants to form the ant 
trajectories. Besides tracking ant movement, our trajectory building procedure in the $rst round also provided 
cues for identifying inconsistencies in ant trajectories and di!cult cases in the frames for ant detection. In the 
second round, we applied training data selection to those di!cult cases to $nd additional frames for labeling, and 
the enlarged training dataset thus obtained was used to re-train the Mask R-CNN detection model. #e re-trained 

Figure 1. Trail image, trajectory overlay, and collective movement pattern. (a) Example trail image from GoPro 
footage of colony MP1. Individual ants are labeled with identi$cation numbers. (b) All of the trajectories from 
a single night of footage (January 14) at colony MP1. Each line across the trail represents a di"erent ant, with 
the di"erent colors distinguishing between di"erent ant tracks. (c) #e trail space from (a) was divided into a 
grid with each square representing approximately 1 cm2. #e number of times an ant walks into a square of the 
grid was calculated and the darker colors represent areas of the trail that ants walked over more. Each heatmap 
represents a di"erent date (January 11 through January 14) from approximately the middle of the night to 
control for di"erences in the timing of $lming. Di"erent scales were used for each night, due to variance in the 
number of ants that walked across the trail.



123 

 

4SCIENTIFIC REPORTS |         (2019) 9:13246  | �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶͷͿǦͺͿͼͻͻǦ͹

www.nature.com/scientificreportswww.nature.com/scientificreports/

detection model was then applied to all the frames to produce the !nal ant detection results, which were used to 
build the !nal ant trajectories in the videos.

To identify di"cult cases for additional training data selection, we used the following set of measures to 
capture possible errors in ant detection and trajectory results. (i) Ant speed: At a place where ants usually do not 
move very fast but a fast movement is suggested by the optimal transportation solution, this instance might indi-
cate an error in ant detection. (ii) Missing ants in the middle part of a tree branch: When the optimal transporta-
tion solution does not !nd a corresponding ant instance in the next frame in the interior section of a tree branch, 
it might suggest a missing data point in ant detection. (iii) Ant identi!cation (ID) switching: Each detected ant 
was assigned an ID number; when multiple ants are seen at spatially close interaction and slight changes on the 
dissimilarity scores among these ants give largely di#erent solutions for the optimal transportation problem, this 
might suggest an ant ID switch error. Based on these observations and measures, our trajectory building process 
can help identify di"cult detection and tracking cases for additional training data selection to improve model 
performance.

Overall, we annotated 20,666 images for training the deep learning model for the ant detection task. $us, the 
model is fairly robust to complex backgrounds, low contrast image areas, illumination di#erences. Besides relying 
on the training data and the robustness of Mask-RCNN model, our tracking algorithm works on the temporal 
information and is also robust to false-detection and miss-detection of ant. In particular, our tracking algorithm is 
tuned to be very robust to false-positive detections. Namely, our tracking algorithm has a strong prior/preference 
to discarding false-detections using temporal information. When we train and apply the Mask-RCNN model, we 
tolerate the Mask-RCNN model to produce some false-positive detections in order to keep the number of miss 
detections very low. For occasional miss-detection cases, our tracking algorithm can also recover them using 
temporal information.

Our automatic ant detection and tracking method extracted the x and y coordinates in pixels of detected ants 
in every frame and assigned each ant an identi!cation number (Fig. 1a and Supplementary Video S1). Ant iden-
ti!cation numbers were used to form ant trajectories used in further analysis.

Error assessment. To assess the accuracy of the computer model, we watched a subset of videos and deter-
mined the error rate. GoPro cameras automatically divide footage into 26-minute-long videos, so one night of 
footage at a single trail has 6 to 10 videos. $is provides a way of checking the accuracy of the computer tracking 
at random points throughout a night. We !rst error checked videos from the middle of the night (when the trails 
should be busiest) to determine if the data from that colony was high enough quality to use in our analysis. If the 
average accuracy was greater than 60% for these videos, we continued to error check all videos and nights for that 
colony. To error check, we counted the number of ant trajectories with errors out of the !rst 15–30 tracked ants. 
$e number of ant trajectories checked varied because videos from early in the foraging period sometimes had 
fewer ants.

To ensure consistency in the type of ant trajectories that were analyzed, trajectories beginning in the middle of 
the !eld of video view were removed. $is created uniformity between all colonies and nights in the type of ants 
that were compared as it focused on the ants that made it from one end of the trail to the other completely in the 
view of the video.

Trajectory analysis. We used R version 3.4.4 and RStudio version 1.1.447 for all analyses25,26. Ant location 
data was frame-by-frame, so we used the native frame rate of the cameras (29.97 or 25 frames per second; the 
default setting of the cameras varied) to convert the time in frames to seconds and then used the start times of 
each video to convert it to real time (Supplementary Table S2). To convert ant location data from pixels to centim-
eters, we placed a ruler in each video to determine the conversion factor (Supplementary Fig. 2).

To determine how individual ants were moving, we calculated the following variables: average speed, overall 
direction, and straightness. Average speed was taken as the total distance an ant travels while in the video over the 
time it takes for them to travel that distance. Overall direction was whether the ant headed away from or towards 
the nest which we determined based on where the ant entered and exited the video view. A variety of measures are 
used to determine the straightness or tortuosity of an animal’s movement path27,28. Ant movement on trunk trails 
is expected to move in an oriented direction, and not be a random search path, thus we used the simplest measure, 
the straightness index28. $e straightness index (ST) is a ratio between the net displacement and total path length:

=ST d/L;

where d = the distance between the beginning and end of the path and L = total path length.
To assess similarity between individual ant trajectories, we calculated an exploration index (EI) for each tra-

jectory (Supplementary Information). $e exploration index measures how much an individual trajectory covers 
unique areas of the trail space. First, we computed an Ants Visiting Map (Supplementary Information) for a video 
which estimates how frequently ants are visiting di#erent parts of the trail. We then scored grid cells of the trail 
space based on how many trajectories pass through each cell. $e exploration index for an individual trajectory is 
calculated from the scores of the grid cells that the trajectory passes through. If a trajectory mostly passes through 
areas of the trail space that are visited by many ants, the individual trajectory will have a low EI. To control for 
trajectory length, we divided the EI for a trajectory by trajectory length to get an average exploration index (AEI) 
for each trajectory.

Inspection of the trajectories showed that some ants performed U-turns, where they would exit the !eld of 
view from the same side that they entered on (Supplementary Video S2). To more accurately represent the shape 
of the trajectories, we broke U-turning trajectories into two parts at the point the trajectory turned from one 
direction on the trail to the other and calculated straightness and exploration for the di#erent trajectory parts 
individually.
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Statistical analysis. A linear mixed-e!ects model was used to assess whether the speed of ants changes over 
a foraging period. "e model was generated using the lmer function in the R package’ lme4’29, with speed as the 
response variable, time as the #xed e!ect, and colony and date as the random e!ects. "e package ‘lmerTest’30 
was used to generate p-values. We checked the plotted residuals to ensure homoscedasticity prior to utilizing the 
results of the model. We also used a linear mixed-e!ects model to test whether the trajectories of ants with lower 
straightness scores have higher exploration values. We included colony, date, and video as random e!ects. We #t 
our model with the straightness index (ST) as the #xed e!ect and the response variable as the average exploration 
index (AEI).

To analyze whether exploration di!ered across a foraging period, we compared the average exploration 
index within 30-minute intervals across the recording period. We pooled our data within 30-minute intervals 
to overcome discrepancies in recording times across dates. We #t a linear mixed-e!ects model with the interval 
as the #xed e!ect, colony and date as random e!ects, and the AEI for that interval as the response variable. We 
used a comparison of means with the Tukey method to investigate how the AEI of trajectories di!ered between 
30-minute intervals.

Results
Automated tracking performance. "e automated tracking of ants in video frames resulted in 20,230,585 
data points on ant movement. "e model had two types of accuracy against which it can be judged, relative to a 
human. "e #rst is species accuracy (detection accuracy) which is a measure of how well the model recognized 
the correct species of ant. "e model correctly detected C. ru!pes ants with an accuracy of 97.86%. "e model 
picked up other insects or species of ants on the trail (false positive) or failed to detect a C. ru!pes ant as it went 
across the trail 2.14% of the time.

"e second accuracy measurement is tracking accuracy. "e computer had to detect C. ru!pes ants and fol-
low them as they moved across the screen. If an ant moved in a straight line this required the computer to rec-
ognize and track that ant for about 4 seconds or 120 frames. "e computer assigned identi#cation numbers to 
individual ants to follow an ant as it travelled across the screen. "e machine learning model sometimes made 
errors in doing this. "e computer may switch identi#cation numbers when ants walked too closely together 
(Supplementary Video S3). An average of 78.70% of complete ant trajectories across all colonies had no mistakes 
as identi#ed by a human observer (Supplementary Table S3). "e tracking accuracy was the lowest for colonies 
MP2 (40.0%), MP11 (31.7%), and MP17 (50.6%). Identi#cation number switches commonly happened in colo-
nies MP2 and MP11. "ese trails were very thin and introduced more challenges in determining the trajectories 
of individual ants, so they were removed from further analysis. We have additionally removed colony MP17 as 
an obstruction in the trail led to ants departing from the branch and walking underneath leaves (Supplementary 
Video S4). Ants disappearing under leaf debris made it di%cult to track an individual ant. We have made all vid-
eos and data available as we expect improved future machine learning models can make use of them.

"e exclusion of these colonies brought the size of the dataset to 8,412,477 data points on ant movement from 
four colonies: MP1, MP6, MP10, and MP16. "e large reduction in number of data points from the elimination 
of 3 colonies can be attributed to the con#guration of these trails creating congested areas on the trails where sin-
gle ants were tracked multiple times falsely in&ating the number of ants and overall data points. "e data points 
from the 4 included colonies represents the movement data for 64,498 ants. "e average tracking accuracy of the 
remaining colonies was 81.39% (MP1: 72.0%; MP6: 82.1%; MP10: 77.2%; MP16: 92.1%). Most errors were due 
to an identi#cation number switching to a di!erent ant (8.28%). "e high error rate for colony MP1 could be 
attributed to the darkness of the videos causing the model to miss part of an ant’s trajectory or failing to detect 
an ant in the dark areas of the trail. If we consider only the errors where a number is on a wrong ant or a number 
is not on an ant, the accuracy improves greatly (overall: 90.94%; MP1: 91.5%; MP6: 88.8%; MP10: 86.6%; MP16: 
96.3%). We are mainly concerned with the direction and shape of trajectories, and the main error that impacts 
an individual ant’s trajectory is when ants switch to the wrong identi#cation number, so the second calculation of 
accuracy rate is more re&ective of this.

Collective movement pattern. Most ants walk on the same area of the available trail space (Fig. 1). "e 
trail usage pattern is consistent between nights (Fig. 1c). "e mean speed of all ants from all colonies and nights 
was 5.15 cm/s ± 1.63 (standard deviation). "e average speed of the colonies ranged from 4.74 cm/s to 5.62 cm/s 
and within colony variability in speed was similar between colonies (mean (cm/s) ± standard deviation; MP1: 
4.94 ± 1.72; MP6: 5.58 ± 1.62; MP10: 4.82 ± 1.55; MP16: 4.72 ± 1.43). "e results of the linear mixed e!ects 
model showed that ant speed decreases by 0.45 cm/s ± 0.07 (standard error) throughout the night (t(94) = −6.60, 
p < 0.0001) (Supplementary Fig. S3).

Individual trajectory analysis. Most ants walked in nearly straight lines (Fig. 2a). However, the nega-
tive skew of the distribution highlights the tendency of ants with low straightness scores to wander across 
the trail (Fig. 2a,b and Supplementary Video S5). "e median straightness score across all colonies was 0.88 
and was similar for each colony (MP1: 0.87; MP6: 0.89; MP10: 0.86; MP16: 0.87). We #t a beta mixture model 
using the R package betareg31 to determine whether the distribution represents di!erent groups. We used the 
Bayesian Information Criterion (BIC) to assess model #t and found that the distribution was best represented 
by four groups: straight (37.0%; n = 25,224; mean straightness = 0.94), semi-straight (26.2%; n = 17,840; mean 
straightness = 0.88), semi-curvy (30.0%; n = 20,437; mean straightness = 0.77), and curvy (6.8%; n = 4623; mean 
straightness = 0.49). "e semi-curvy straightness group has a minimum straightness score of 0.64, so 93.2% of 
ants have straightness scores greater than 0.64.

The distributions of average exploration index (AEI) of trajectories differed in shape for each colony 
(Fig. 3). Across all colonies, a majority of ants showed low levels of exploration, but the positive skew of the AEI 



125 

 

6SCIENTIFIC REPORTS |         (2019) 9:13246  | �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶͷͿǦͺͿͼͻͻǦ͹

www.nature.com/scientificreportswww.nature.com/scientificreports/

distributions indicates a group of ants that are more exploratory (Fig. 3). Colony 1 had the highest median AEI at 
0.24, closely followed by colony 16 at 0.19. "e median AEI for colony 6 and colony 10 were both approximately 
0.06. "ere was a weak negative relationship between the straightness of a trajectory and its exploration value, 
as average exploration was estimated to decrease by 0.11 ± 3.14e-3 as straightness increases (linear mixed-e#ect 
model; t(6810) = −36.09, p < 2e-16). "e straightness groups signi$cantly di#ered in average exploration (Fig. 4a; 
linear mixed-effect model; t(6810) = −11.03, p < 2e-16). Post-hoc analysis using the Tukey Test showed that 
ants with curvy trajectories had the highest AEI followed by ants with semi-curvy trajectories, then ants with 
semi-straight trajectories, and ants with straight trajectories had the lowest AEI (linear mixed-e#ect model; Tukey 
Test; p < 0.0001).

Temporal pattern. Average exploration of trajectories decreased from the beginning of the foraging period 
to the middle of the foraging period, before increasing slightly again (Fig. 4b). "e AEI was signi$cantly greater 
(linear mixed-e#ect model; Tukey Test; p < 0.0001) at the beginning of the night to all other time intervals. 
However, the AEI at 22:30 was signi$cantly lower (linear mixed-e#ect model; Tukey Test; p < 0.0001) than at 
23:30 or 00:00.

Discussion
Our study used an unobtrusive $lming set-up to record behavioral data on more than 64,000 ants moving in a 
rainforest at night in an area of high disease pressure. Most ants walk in a straight line across the trail, matching 
our prediction of how ants might behave when using trunk trails (Fig. 2). Similar to straightness, most ants show 
low levels of exploration, but a subset of ants cover unique areas of the trail (Fig. 3). Average exploration of ants 
was higher at the beginning of the foraging period (Fig. 4b). Exploration may enhance food discovery, but the low 
levels of exploration exhibited by the majority of ants may protect most foragers from the risks associated with 
venturing from the main trail.

"e variation in exploration of trajectories indicates that the ants may have di#erent foraging roles. Social 
insects have members of the colony known as scouts that assist in discovering and recruiting the colony to new 
food sources32–35. "e higher exploration levels at the beginning of the night indicate that perhaps some of those 
ants are acting as scouts and recruiting ants to new food sources. Recruits should subsequently show lower levels 
of exploration than the scouts as they follow a pheromone trail to the food source. Forager categories can extend 
beyond just scouts and recruits, as a forager’s experience level and information source will alter its behavior36,37. A 
forager recently recruited to a food source must engage in some searching behavior as they follow external stimuli 
to the food source. Meanwhile, a forager that has already made the trip to a food source is familiar with the route 
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and should exhibit less searching behavior. Considering the variation in forager information may explain the 
distributions of exploration and straightness scores, showing all di!erent levels of straightness and exploration.

A majority of the trajectories likely represent ‘employed foragers’38, or foragers repeatedly exploiting a known 
resource, since the trails last for multiple months and usually visit a stable homopteran or honeydew secretion. 
Employed foragers should have lower exploration scores, as their trajectories will overlap other trajectories and 
this has implications for disease risk. Fungal infected cadavers surround the trunk trails of Camponotus ru!pes 
in this habitat, likely dropping spores directly onto the trails below17. It is not possible to quantify the abundance 
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and distribution of micron sized spores on trails in a forest, but the long term tracking of cadaver abundance 
and the proximity to the trails implies spore presence on the foraging trails17. !us, for most ants, only the "rst 
ants walking across the trail a#er spores have dropped would likely pick up spores. In contrast, ants with higher 
exploration scores, the “explorers”, are constantly more likely to encounter a spore that has not been picked up by 
a di$erent ant. !rough the same logic, an explorative ant has a higher chance of discovering a new food source, 
demonstrating the bene"ts of this searching behavior.

We "lmed only a small area of the foraging trails, providing a brief snapshot of an ant’s behavior. To know 
whether higher exploration values represented ants that were more likely to wander from the trail and discover 
new food sources, one would need to follow individual ants for their entire foraging trip, which was beyond 
the scope of this study. In our study area, exploration values were also impacted by the size of the trail, as ants 
will have higher overlap (= lower exploration) on narrower trails. !e wider trails (colony 1 = 6 cm and col-
ony 16 = 7 cm) had higher median exploration scores than the narrower trails (colony 6 = 3 cm and colony 
10 = 1.7 cm). Observing ants beyond one portion of the trunk trails could remove di$erences between colonies 
on exploration based on trail size. Trail width still has implications in the context of disease exposure, however, as 
wider trails o$er more substrate for possible spores and perhaps colonies that use larger trails have higher levels 
of infection.

Following individual ants for their entire foraging trip would also clarify whether individual ants vary in their 
level of exploration across a foraging trip. Experienced foragers tend to continue exploiting the same food source 
until it runs out33. Moreover, individual ants have been shown to be consistent in their exploratory behavior39. !e 
ants with low exploration values appear to be in retrieval mode and thus will likely continue exhibiting the same 
levels of exploration. Laboratory studies on trail bifurcations provide some evidence on the likelihood of ants to 
explore away from the main trail. For example, when Argentine ants (Linepithema humile) were placed in a maze 
to a food source, over 80% of the total tra&c used the shorter path to the food source in the majority of experi-
ments40. Ants selecting a longer path, and ignoring pheromone signals, could represent patrollers or explorers. In 
a study on Pharaoh’s ants (Monomorium pharaonis), 30% of the foragers failed to reorient themselves when placed 
into a trail network without other ants41. Perhaps these ants that fail to correctly follow the trail represent another 
group of foragers and match up with the exploratory group observed in our study.

Beyond food discovery and retrieval, other species of ants provide evidence of more roles within foragers, 
such as trail maintenance and defense. Ants were observed carrying leaves (Supplementary Video S6), although 
this could be for nest material and not trail cleaning. Another role could be maintaining the pheromone trail. 
For example, Atta sexdens minims help with the pheromone trail instead of food transport42. Ants were observed 
dragging their gaster on the trail likely depositing trail pheromone (Supplementary Video S7). U-turning ants 
have been shown to deposit pheromones at a higher rate43. Perhaps the main distinction between the groups is 
not in trail exploration, but in pheromone deposition, with the U-turners serving as the ants that are maintaining 
the strong chemical signal and allowing most ants to walk directly across the trail.

!e di$erent walking styles could also re'ect defensive behavior. Smaller workers hitchhike on leaf fragments 
carried by larger workers in Atta colombica leaf-cutting ants, and this likely serves as a defense against parasitoid 
Phorid 'ies44. Flies, that could possibly be parasitoids, were observed closely following ants on the trail and in 
some cases appearing to land on the ants which may indicate laying eggs which later become endoparasitoids 
(Supplementary Video S8). Although the prevalence of parasitoid 'ies attacking C. ru!pes is unknown, we have 
observed adult ants infected by decapitating phorid 'ies in our study area (Supplementary Video S9). !e pres-
ence of phorids could directly cause the exploring and U-turning behavior, as ants attempt to avoid 'ies landing 
on them. A follow up study could investigate this question of parasite avoidance by directly quantifying how ants 
behave when phorids are in the environment.

In this study, however, we focused on variability in individual forager trajectories. We found a group of forag-
ers that explores more areas of the trail. Increased exploration increases a forager’s chance of encountering a new 
food resource while simultaneously increasing their exposure to possible risks. !e variability in forager behavior 
provides a possible mechanism for how a colony might mitigate risk through only having a small percentage of 
foragers exploring out from the safety of the main trail. !e scale of our dataset, and ability to collect this data 
across multiple nights and colonies, increases the reliability and strength of our conclusions. Combining compu-
tational advances with behavioral observations provides a technique to investigate the mechanisms of individual 
movement patterns that in'uence the distribution of animals in time and space.

Data Availability
!e original videos analyzed in this study, along with the full tracking dataset, are accessible through Pennsylvania 
State University’s institutional repository ScholarSphere (https://doi.org/10.26207/q14b-gx36). Information about 
our process of analyzing the videos and links to the code used can be found in the Supplementary Information.
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Appendix B 
 
Supplementary Material for Chapter 3 

1. Calculation of model time step  

Our model time step is based on the average time it takes for a foraging Camponotus rufipes ant 

to move one body length. Standardizing movement data by the amount of time needed to move 

one body length prevents unrealistic turning values per move and allows better comparison of 

individuals (Tourtellot et al., 1991).  

To determine the average body length of a foraging Camponotus rufipes ant, we 

measured ants from video frames in the videos analyzed in Imirzian et al. (2019). All videos can 

be accessed at https://doi.org/10.26207/q14b-gx36. Using ImageJ (Rueden et al., 2017), we 

measured the body length of each ant in pixels. Body length was measured from the tip of 

mandibles to the tip of the gaster (ant abdomen). We only measured ants that were in full view 

from overhead (Fig AB-1). We used each video’s conversion factor (found in the Supp. Material 

of Imirzian et al., 2019) to convert the length in pixels to centimeters. We measured 15 ants from 

four different colonies for a total of 60 ants. Average body length was 0.81cm ± 0.12 cm 

(standard deviation). We divided the body length by the average speed of the ant trajectories 

(5.15 cm/s) to determine 0.16 as the average time it takes an ant to go the distance of one body 

length. We rounded up to use 0.2 seconds for the trajectory sampling factor (Appendix B.2) and 

time step in the model.  
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Figure AB-1. Demonstration of how ants measured from videos.  

Circled ant has a line running across body length which was used to measure average body 
length.  
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2. Calculation of ant movement parameters 

To determine the movement parameters for this species of ant, we used the full tracking 

dataset from Imirzian et al. (2019) available at https://doi.org/10.26207/q14b-gx36. This dataset 

includes the trajectories for 64,383 Camponotus rufipes ants foraging on trails in the rainforest. 

Ant locations were recorded every video frame so trajectories are at a resolution of 25 or 30 

location points per second, depending on the native frame rate of the camera. We first resampled 

our trajectories according to the model time step (see Appendix B.1 for calculation of the model 

time step). We used the R package ‘trajr’ (McLean and Volponi, 2018) to resample the 

trajectories every 0.2 seconds then calculated the turning angle and step length for each step of a 

trajectory. Most trajectories had an average step-length close to 1 (mean = 0.93; Figure AB-2) 

with a range from 0.01 to 2.61 cm.  

 

 

 

Figure AB-2. Distribution of mean length between steps for all ant trajectories. 
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We found the turning angle from the difference in angular orientation between adjacent 

time steps. The mean turning angles for all trajectories followed a normal distribution, with most 

trajectories averaging around a 0 degree turn (mean = -0.07; SD=8.67; Fig. AB-3A). The turning-

index was calculated as the standard deviation of the turning angles. The mean turning-index for 

ant trajectories was 28.6 degrees (SD=16.89) and ranged from 0.65 to 92.2 (Fig. AB-3B). 

 

 

Figure AB-3. (A) Distribution of the mean turning angles for all field ant trajectories. (B) 
Distribution of the turning rates for all field ant trajectories. 
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3. Time-on-trail analysis 

We looked at how specifying the time ants walk on the trail before they can move throughout the 

entire environment to end up on a cadaver location impacts the results. To test the likely range of 

time ants are spending on the trail, we assigned all ants in a model run to spend the same amount 

of time on the trail and investigated how altering time-on-trail impacted the proportion of ants on 

or near a target (measured by equation 1 (f) in the main text). We tested how the results change 

from changing time-on-trail along a range from 150 ticks (30 seconds) to 180,000 ticks (60 

minutes). We tested this using two opposite movement styles at the high and low end of the 

parameter input distribution: fast moving ants (step-length = 2.5 and turning-index = 20) and 

slow-moving ants (step-length = 0.5 and turning-index = 70). All runs had a time limit of 108,000 

ticks and we performed 10 runs per nest for each parameter combination. We found that for fast 

ants, as time-on-trail increased for a given parameter combination, the number of ants reaching a 

target decreased (Fig. AB-4). In contrast, the time-on-trail has little impact on the number of ants 

reaching a target for slow moving ants (Fig. AB-4). Thus, for our parameter searches, individual 

ants received a random value between 40 seconds and 10 minutes, as this would allow the ants to 

reach targets regardless of the movement parameters. 

Figure AB-4. All ants in a model followed the trail for the time specified by time-on-trail and the 
number of ants reaching targets was measured by the fitness score (f).   
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4. Trail movement  

We tested how specification of ant movement on trails impacts the results with three different 

setups (see section 7.3 in the chapter 3). We ran 10 parameter searchers for each setup and found 

they performed similarly as measured by the fitness equation, f (ANOVA; F(1,118) = 0.836, p = 

0.36; Table D.1). Interestingly, in setup 3, when turning rate on the trail was selected through 

parameter search, it resulted in a turning index close to that off of the trail: a mean of 73.48 on the 

trail compared to 70.85 off the trail (Table AB-1). Additionally, in setup 2, when ants had a low 

turning rate on the trail, the step size found from the parameter search was reduced, indicating 

slower movement is required for more ant agents to reach the targets when turning rate is 

increased. This result is replicated in the main analysis (Fig. 3-3).  

 

Table AB-1. Comparison of results for three different ways of specifying movement on trails.  

The fitness equation specified by f can be found in the main text. ‘Turning on trail’ refers to how 
ants move when they are following the trail, while ‘turning off trail’ refers to how ants move once 
they have moved off of the trail.  
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Appendix C 
 
Supplementary Material for Chapter 4 

Table AC-1. Results from Monte-Carlo simulations investigating whether the cadavers are located 
closer together than expected from complete spatial randomness.  

The average distance to the nearest neighbour (ann) of a cadaver was first calculated for all trees 
with 15 or more cadavers. We then randomly distributed the same number of cadavers in same 
tree space and calculated the average nearest neighbour for the simulated distribution. We then 
counted the number of times the actual average nearest neighbour was greater than the simulated 
average nearest neighbour (ann) for 1000 simulations and divided that by the number of 
simulations (+ the actual observation) to get the p-value. 

graveyard tree 
number of 
cadavers 

actual 
ann 
(cm) 

simulated 
ann (cm) 

simulations 
with actual ann 
> simulated ann 

number of 
simulations p 

1 1 175 3.52 6.26 0 1000 0.000999 
2 1 15 17.82 18.89 351 1000 0.351648 
3 1 21 7.84 14.53 0 1000 0.000999 
4 1 92 8.08 10.14 1 1000 0.001998 
4 11 48 5.34 10.02 0 1000 0.000999 
4 20 87 5.81 8.49 0 1000 0.000999 
5 1 54 10.14 14.39 0 1000 0.000999 
5 3 73 2.64 7.88 0 1000 0.000999 
6 1 15 12.30 11.44 702 1000 0.702298 
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Figure AC-1. The total number of trees found in all 6 graveyards divided by tree family.  

The color of the bars indicates the number of trees found with the corresponding number of 
zombie ant cadavers.  
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Figure AC-2. Distribution of trees in six different graveyards.  

Size of dots reflect circumference of tree and colour of dots indicate number of Ophiocordyceps 
kniphofiodes infected Cephalotes atratus cadavers found on the tree. Overlapping of points are 
due to the minimizing of distribution into the available space.  
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Appendix D 
 
Here today and there tomorrow: improving predictions of Desert Locust 
migration4 

Abstract 

The Desert Locust (Schistocerca gregaria) is one of the world’s most destructive pest species due 

to its ability to switch from a solitary to a gregarious form. When gregarious, the insect 

aggregates in swarms covering up to 200 km2 containing 40-80 million locusts per kilometer, 

each able to eat its own weight in food per day. The invasion area extends over 30 million km2 of 

land from West Africa to western India, threatening the food of up to 20 million people. The 

expansive area covered by the Desert Locust is a huge barrier to control operations, as it is often 

unknown where a swarm will move next. However, today’s technological capabilities should 

offer solutions to improve predictions of Desert Locust migration. In this review, I discuss what is 

known about the factors influencing where swarms of locusts fly. A tremendous amount of 

research has focused on this species, synthesizing this research with current technologies could 

gain an understanding into how to track and control this significant pest.  

                                                   
4 Additional study completed during PhD  
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Introduction and basic biology 

  Within its solitary phase, the Desert Locust (Schistocerca gregaria) causes little harm 

and exists throughout its breeding range at low densities. However, if locust density at a location 

crosses above a threshold, the locusts undergo a phase transformation to a gregarious form, 

involving a full change in morphology, physiology, and behavior (Maeno & Tanaka, 2008; Pener 

& Yerushalmi, 1998; Simpson et al., 2005; Sword et al., 2000). Despite the apparent complexity, 

phase transformation is simply stimulated by increased contact to the insect’s hind legs (Simpson 

et al., 2001). Once in the gregarious form, the locust is extremely destructive, forming swarms 

with densities of 50 million locusts/ km2 and moving over 100 kilometers in a day (Kennedy, 

1951; Rainey, 1963).  

When the desert locust is primarily solitarious throughout its range, this period of time is 

known as a recession. As the locust begins to multiply and increase in density, leading to 

gregarization and swarm formation, an outbreak can occur. If outbreaks are left uncontrolled, they 

can lead to upsurges, and eventually plagues, which are periods of time of widespread and heavy 

infestations (Hemming et al., 1979; Roffey et al., 1970). In the 20th century, there were 7 major 

plagues, leading to a significant amount of damage to crops (Magor et al., 2008). Consequently, 

there is substantial interest in understanding locust biology and movement ecology to better 

understand how to control outbreaks.  

Development of the desert locust takes place in three stages, through egg, nymph, and 

adult forms. Eggs are typically laid 5-10 cm deep in sandy soil, and there must be moisture in the 

soil for the female to lay her eggs (Hunter-Jones, 1964). Eggs can take anywhere from 10-65 days 

to develop depending on environmental conditions, with development time shortening at higher 

soil temperatures (Hunter-Jones, 1970; Nishide et al., 2015). Females usually lay around 80 eggs 
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per pod in their gregarious form, and between 90 - 160 in their solitary form (Ashall & Ellis, 

1962; Roffey & Popov, 1968). Typically, eggs laid by gregarious locusts show synchronicity, 

hatching within a few hours of dawn (Ashall & Ellis, 1962; Ellis & Ashall, 1957; Padgham, 1981; 

Wardhaugh et al., 1969).  

Once an egg hatches, it passes through 5 nymphal stages before molting into an immature 

adult form, although some small solitary nymphs will pass through 6 stages (Maeno & Tanaka, 

2008). The nymphs are known as ‘hoppers’ due to their tendency to hop from place to place. 

Hoppers can eat their own weight in vegetation in each day (Davey, 1954). In the solitary form, 

hoppers behave independently while roosting and feeding (Maxwell-Darling, 1934; Roffey & 

Popov, 1968). However, in the gregarious state, their daily behavior follows a coordinated pattern 

where the insects form bands that march in a uniform fashion. At night and mid-day when the 

temperature is highest, the locust nymphs can be found roosting in vegetation. In the morning and 

mid-afternoon, the locusts spend 2-3 hours marching, traveling up to 30 kilometers (Ellis & 

Ashall, 1957; Kennedy, 1939; Maxwell-Darling, 1936; Pedgley, 1981).  

Like egg development, hopper development is dependent on temperature, as well as food 

availability, population density, and humidity (Hamilton, 1936; Maeno & Tanaka, 2008; 

Wardhaugh et al., 1969). After its last instar, the hopper molts into a fledgling with wings not 

fully developed making it unable to migrate. After spending approximately 10 days as a fledgling, 

the locusts take flight. 

Locust migration 

 Similar to hopper bands, gregarious adult locusts show a predictable daily pattern in 

activity. They roost in vegetation overnight, then take off in the morning once they are 

sufficiently warm (Gunn et al., 1945; Waloff, 1946b). Departure takes place in a series of steps, 
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first with small numbers of locusts flying in many directions, then more locusts joining in with 

increasingly coordinated directions, until mass departure with the entire swarm rising to fly in one 

direction (Kennedy, 1951). The locust swarm will fly for 9-10 hours before settling in the evening 

before sunset, although heavy rain or cloud cover may inhibit flying and cause them to settle 

(Gunn et al., 1945; Waloff & Rainey, 1951). Swarms take on various formations in the air, 

sometimes flying in a low flying horizontal sheet known as a stratiform formation, or extending 

vertically as a cumuliform shape (Rainey, 1958).  

General patterns in where locusts breed and move are determined by wind patterns, 

precipitation, and vegetation availability. Coastal areas near the Red Sea and Gulf of Aden serve 

as a reservoir for breeding during recessions, due to consistent rainfall, as well as some areas in 

northwestern Africa (Skaf et al., 1990). These areas, along with parts of Iran, Pakistan, and 

central Saudi Arabia, compose the winter and spring breeding areas (Symmons & Cressman, 

2001). In the summer, locusts migrate to other breeding areas: from the Gulf of Aden and the Red 

Sea to other parts of eastern Africa (Sudan, Eritrea, Ethiopia), from Iran and Pakistan to the Indo-

Pakistan border, and from northwest Africa into Sahel region of West Africa.  

Importantly, flight behavior differs between swarming and solitary locusts. Swarms 

migrate almost exclusively by day, except for some low-density and immature swarms (Roffey, 

1963), while non-swarming populations tend to fly at night (Roffey & Popov, 1968). The 

gregariousness of swarms allows them to enter territories unusual for recession populations, 

expanding the invasion area by almost double the size of the recession area. Additionally, a 

variety of long-distance migrations have been documented by swarms, from Morocco to Portugal 

(Waloff, 1946a) and even from western Africa to South America (Rosenberg & Burt, 1999), a 

testament to the enhanced flying ability of locusts in swarms (Lorenz, 2009). 

The precise location of locust migration can be highly variable. The difficulty in knowing 

exactly where locusts will show up next can inhibit control operations during outbreaks. Current 
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work by the Hughes Lab through PlantVillage has created the eLocust3m app to enable more 

accurate collection of data on locust swarms. This has resulted in over 16,000 new records of 

locusts collected by the app and mapped with historic examples (1985-2019) on this ArcGIS map 

https://arcg.is/0aHGHi.  To support this work, it is important to examine the factors that influence 

swarm movement. One important factor is wind. The ArcGIS board already integrates wind 

dispersion models by NOAA which have been used by UN FAO to model movement. But these 

are unparametrized models and it is likely that the literature contains important information useful 

to understanding the role wind plays in predicting locust movements. Here I set out to review the 

literature to contribute to the ongoing work of PlantVillage with the UN FAO to monitor locust 

swarms. 

Swarm movement  

I systematically searched all research articles from 1930 - present for information on the 

movement of desert locust swarms relative to wind. I found a total of 12 field studies across the 

invasion region that connected swarm movements to wind patterns (Table D-1). Interestingly, no 

recent studies have looked at wind patterns relative to swarm movement, with 8 out of 12 studies 

taking place between 1940-1951 by a total of 4 researchers.  

Generally, swarms move downwind (Draper, 1980;  Kennedy, 1951; Rainey, 1963; 

Roffey, 1963; Waloff, 1972). However, at low wind speeds (<4 m/s), when locust flight speed is 

greater than wind speed, locusts may fly upwind or crosswind (Kennedy, 1951; Waloff & Rainey, 

1951). Convection currents alter the structure of locust swarms, as cumuliform swarms are 

associated with strong up-currents, while lower-flying stratiform swarms are more likely in the 

absence of vertical air movements (Rainey & Waloff, 1951). In a cumuliform swarm, where 

locusts are spread out vertically, it is unclear at what height the wind has the largest impact on 
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swarm movement. The flying height of locust swarms ranges from 15-1700 meters above the 

ground, with cumuliform swarms generally higher above the ground (Pedgley, 1981).  

Although the evidence indicates that locust swarms consistently move downwind, 

swarms may not necessarily migrate with prevailing winds. Swarms may stay in an area until 

wind patterns reverse, such as when swarms migrate in the rare cross-sea winds from Arabia to 

central Sudan or northwards across the Sahara desert (Symmons & Cressman, 2001). 

Consequently, it is important to understand the factors influencing swarm takeoff and settling 

(Table D-2). Temperature plays a large role in initiating swarm departure, as the locust’s flight 

muscles must be warm enough to fly (Gunn et al., 1945; Waloff & Rainey, 1951). Conversely, if 

the temperature is too hot, often during midday, locusts may settle to cool down (Pedgley, 1981). 

Overall, studies show that the time swarms takeoff can be highly variable, ranging from 2-6 hours 

after sunrise, depending on the temperature. Gunn et al. (1945) and Waloff & Rainey (1951) 

developed equations for estimating the temperature of swarm departure based on the previous 

day’s temperature, but the accuracy varies (see page 56 in Pedgley, 1981). A better understanding 

of the factors controlling mass departure of swarms would help immensely with predicting swarm 

movement, as it would allow researchers to use the precise wind conditions at the time of takeoff.  

As far as how laboratory studies contribute to our understanding, a few have looked at the 

mechanics of tethered locust flight (Mappes & Homberg, 2004; Preiss & Gewecke, 1991; Preiss 

& Spork, 1993; Taylor & Thomas, 2003). Some laboratory studies have indicated locusts respond 

to polarized light and could use this for orientation (Bech et al., 2014; Beetz et al., 2016; Mappes 

& Homberg, 2004; Shashar et al., 2005), although this has not been thoroughly investigated in the 

field, apart from a few observations by Kennedy (1951). Observations of a locust swarm avoiding 

flying over a body of water (the Gulf of Aqaba in 2004) have indicated that locusts use light 

polarization in swarm migration (Shashar et al., 2005). A recent study further demonstrated the 

locust’s ability to use solar polarization patterns (Zittrell et al., 2020), promoting the idea of an 
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internal sun compass (reviewed in Homberg, 2015). More work is needed to elucidate how this 

factor interacts with wind in determining swarm direction.  

Possible research directions 

Digitizing records 

Many older studies on desert locusts collected detailed data on the location of swarms over time. 

If digitized, this data could be correlated with historical climate conditions and used in machine 

learning models to form a prediction of where locusts move over time. A few suggestions of good 

sources containing this data include: 

• Kennedy (1951), Table 2, page 168: list of observations of swarms giving location, date, 
wind condition, swarm direction and characteristics from 1942-1944 

• Waloff (1946a), Appendix 3, pages 73-74: chart showing number of swarms recorded at 
different locations for 1928-31 and 1941, 1944 

• Rainey & Waloff (1948), all figures: trajectories of swarm movements and wind direction 
in the Gulf of Aden area from 1943-1946 

• Rainey (1963), Figure 2, 8-16, Table 2: trajecoteries of swarm movements 
• Pedgley (1980): 24 maps accompanying manual (Pedgley, 1981) showing frequency of 

locust observations across region over 37-year period 1939-1975 
 

Tracking locusts 

Technology has advanced to the point where individual tracking devices are small enough to be  

placed on insects (Kissling et al., 2014). Tracking devices have been used on at least 94 different 

arthropod species (Batsleer et al., 2020), including on Orthopteran species (Fornoff et al., 2012; 

Gwynne & Kelly, 2018; Lorch et al., 2005; Srygley et al., 2009; Watts et al., 2011). Desert 

locusts offer challenges for this technique due to height and distance flown, as well as the 

remoteness of some of the breeding sites. However, if radio tracking could be adapted for desert 

locusts, this would be immensely helpful for learning the precise trajectories of swarms, which 

could then be used to improve predictive models.  
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Sun compass experiments  

Since Kennedy (1951), there have been no field studies investigating how solar light impacts 

locust flight. Given the recent laboratory research indicating light as a possible factor in locust 

navigation, it would be extremely useful to replicate and expand on this in a natural setting. 

Moreover, a laboratory study singling out each navigation factor, limiting the locust’s sensory 

capabilities one-by-one, would help elucidate what plays the strongest role in influencing locust 

flight direction. A huge barrier to laboratory investigations is how behavior differs when locusts 

are a part of a swarm, which is difficult to replicate in controlled conditions. Thus, a mixture of 

these different approaches would be best. 

Conclusions 

To improve control operations, we need a better understanding of the relative role of each factor 

influencing locust swarm movement. After many foundational studies on swarm movement in the 

mid 20th century, locust research has taken a different direction with fewer field studies 

investigating locust movement. Yet, swarm migration is still not fully understood, and more 

research is needed to understand this complex phenomenon. To improve our predictions of desert 

locust movement, I suggest digitizing earlier records to improve predictive models, remote 

tracking of swarms, and controlled studies isolating the factors involved in locust migration. 

Additionally, engaging the populations most affected by outbreaks in research is the best way to 

ensure studies are happening in high impact areas. This work is crucial to protect the food of 

millions of people. 
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Tables 

Table D-1. Studies investigating locust movement relative to wind direction, in order of year. 

Study 
Type 

Location Main Observations Reference 

Field Egypt Flight direction corresponds with prevailing winds (Ballard et al., 
1932) 

Field India Eastward and northward migration in spring and summer coincides 
with south-westerly winds; swarms in central Indo-Gangetic plain 
swept east by westerly winds in September; swarms in western 
Rajputana swept south westwards to Baluchistan 

(Rao, 1942) 

Field Morocco to 
Portugal 

Direction of long-distance migration of swarm corresponded with 
direction of air movement 

(Waloff, 1946a) 

Field East Africa Overall patterns show swarm migrations follow prevailing wind 
patterns (downwind). However, swarm movements in northwestern 
Kenya, Ethiopia and part of the Somali Peninsula were observed 
against the prevailing winds in October to March (but mentioned it 
may be due to lack of data on local wind). Found older swarms will 
move against prevailing wind even when younger swarms did not. 

(Waloff, 1946b) 

 Field Gulf of Aden Convection currents affect flying - frequent association of swarm 
movements with rising sand, dust storms 

(Rainey & Waloff, 
1948) 

 Field Entire Region Locusts change direction to downwind when wind speed increases 
to greater than 4 m/s 

(Kennedy, 1951) 

Field East Africa At wind speeds less than flying speed of locusts, takeoff into the 
wind. Locusts at winds above flying speed altered course to down-
wind. 

(Waloff & Rainey, 
1951) 

 Field East Africa Cumuliform swarms associated with convection currents (Rainey & Waloff, 
1951) 

Field Entire Region Major swarm displacements downwind towards areas of low-level 
wind convergence; association between the Intertropical 
Convergence Zone and movement of locust swarms 

(Rainey, 1951) 

Field Kenya Hourly movement of swarms followed the direction of wind. Areas 
with uniform wind patterns tended to show systematic 
displacements downwind while complex wind-fields led to 
complex tracks where swarms would cross over trajectories or 
show little overall displacement.  

(Rainey, 1963) 
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 Field Entire Region Orientation of swarm mostly with wind. Lower flying locusts will 
fly into wind but this is reduced at high winds. Downwind 
displacements likely mostly with denser and high-rising swarms 

(Waloff, 1972) 

 Field Eastern Africa No evidence that swarms follow a preferred compass direction, 
rain-in-sight, or orient towards high ground. Swarms show 
significant deviation from downwind direction, but consistent with 
errors of calculating mean wind over range of swarm height 

(Draper, 1980) 

 

Table D-2. Other factors that impact Desert Locust swarm movement.  

 Departure from roosting site Swarm 
Displacement 

Settling from flight 

Factor Effect Effect Effect 

Wind Drop in wind speed leads to 
outburst of flying (Kennedy, 
1951) 
 
High wind (6-10 m/s) may 
hinder flight, swarms shown to 
only take to the air when wind 
calms even with high air 
temperature  
and sunshine (Waloff, 1972) 

Generally swarms move downwind 
(Table D-1) 
 
At low wind speeds (< 4m/s) can 
move against wind (J. S. Kennedy, 
1951) 
 
 
 
 

Wind gusts can lead to settling of 
some locusts (Kennedy, 1951; 
Waloff, 1972) (Kennedy 1951; 
Waloff 1972) 

Temperature Take off at: 
Sunny: >15-17 C 
Cloudy: >23-24 C (immature); 
>26 C (mature) (Gunn et al., 
1945; Waloff & Rainey, 1951) 
 
Air temperature of the previous 
day correlated with air 
temperature at mass departure 
(Gunn et al., 1945; Waloff & 
Rainey, 1951) 
 
T=5.6+0.74 X, where X is mean 
temp of previous day, and T is 
the temp at mass departure 
(Waloff & Rainey, 1951); 
however, equation is not very 
reliable (D. E. Pedgley, 1981) 

Limited displacement at low 
temperatures as few locusts can fly 
(Rainey, 1963)  

Swarms settled when clouds pass 
over sun at air temp <23 C, but 
continued flying at higher temps 
(Gunn et al., 1945)  
 
May also settle midday at high 
temperatures (D. E. Pedgley, 
1981) 

Other locusts 
 
 
 
 

Mass departure when basking 
locusts join swarm flying 
overhead (Kennedy 1951; Gunn 
et al. 1945) 

Two meeting swarms will change 
orientation to denser swarm to be in 
alignment (Kennedy, 1951) 
Larger, high-flying swarms move 
faster than smaller, low-flying 
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 swarms (Pedgley, 1981)  

Vegetation 
 
 
 
 
 
 

Swarms will leave location 
when not enough vegetation to 
continue feeding 

 Fledglings in Iran showed some 
attraction to large trees or tallest 
vegetation available, took short 
flights and collected in large 
numbers in oases (Kennedy, 
1951)  

Precipitation Dry weather = swarms more 
likely to leave an area (Waloff, 
1946b)  
 
Fewer flying swarms during 
rainy/breeding season (Waloff, 
1946b)   

 Swarms will settle in heavy rain 
(Waloff & Rainey, 1951) 
 
End migration when reach area 
with sufficient moisture for laying 

Solar 
Orientation 
 
 
 
 
 

Cloud cover may delay the 
initiation of flying  

Dorsal rim area has specialized 
photoreceptors with receptive fields 
that can perceive nearly the entire 
sky (Bech et al., 2014; Schmeling et 
al., 2015) 
 
Laboratory studies provide some 
evidence of orientation using a sun 
compass (reviewed in Homberg, 
2015), but yet to be shown in field 

Passing of cloud over sun causes 
settling (Gunn et al., 1945)  
 
Swarms settle from 2 hours before 
sunset to ½ an hour after sunset 
(Gunn et al., 1945; Waloff & 
Rainey, 1951) 

Locust Age Locusts will begin migration 
once their wings have hardened 
sufficiently for long-distance 
flight 
 
Immature swarms may be more 
likely to fly during the nighttime  

Older/mature locusts better able to 
fly against wind compared to 
immature locusts. Fledglings only 
take short low flights for several 
days after fledging  
(Kennedy, 1951) 
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