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Abstract

In this thesis, we use numerical exact diagonalization to contrast an interacting integrable
Hamiltonian (the paradigmatic spin-1/2 XXZ chain) with related quantum chaotic models.
In systems with translational symmetry, we first demonstrate that the bipartite von
Neumann entanglement entropy can powerfully distinguish the two classes of systems.
Then, the majority of the thesis is spent studying the matrix elements of local operators
in Hamiltonian eigenstates at the center of the spectrum. The most novel results are
in interacting integrable models: for diagonal matrix elements, we show evidence that
the support does not vanish with increasing system size, while the average eigenstate-
to-eigenstate fluctuations vanish in a power-law fashion. For the off-diagonal matrix
elements, we show that they follow a distribution that is close to (but not quite) log-
normal, and that their variance is a well-defined function of ω = Eα − Eβ ({Eα} are the
eigenenergies) proportional to 1/D, where D is the Hilbert space dimension. Establishing
this for translationally symmetric operators, we continue on to study the off-diagonal
matrix elements of observables that break the translational symmetry of the Hamiltonian,
and as such connect energy eigenstates from different total quasimomentum sectors.
In quantum-chaotic models, we find that there is eigenstate thermalization, and in
interacting integrable models, we find the same behavior noted above. We deepen our
study of off-diagonal matrix elements in both classes of systems by investigating the
low-frequency behavior of their variances and unveiling the regimes in which it exhibits
diffusive vs ballistic scaling. We show that in quantum-chaotic models the behavior
of the variance is qualitatively similar for matrix elements that connect eigenstates
from the same vs different quasimomentum sectors. We also show that this is not the
case in the interacting integrable model for observables whose translationally invariant
analogue does not break integrability if added as a perturbation to the Hamiltonian.
Additionally, we demonstrate that a single magnetic defect embedded in the XXZ chain
with open boundary conditions gives rise to eigenstate thermalization while retaining
the microcanonical predictions of local observables and the ballistic character of spin
transport from the integrable model. Lastly, we show that the onset of quantum chaos
in the perturbed XXZ chain and perturbed Anderson models is marked by universal
behavior including a peak in the fidelity susceptibility that scales with the square of
the inverse level spacing. This peak is located at decreasing perturbation strengths,
suggesting that neither model is stable to perturbations in the the thermodynamic limit.
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Chapter 1 |
Introduction

In this chapter, I provide an overview of some recent advances in quantum many-body
physics, with a particular emphasis on the relaxation dynamics of observables in chaotic
and integrable quantum systems and its relationship with matrix elements. I borrow
heavily from a review article which has been written by our research group (Ref. [2])
while adding further depth in some areas. I also include details of advances in the field
which were published more recently, and which directly connect with the story told in the
later chapters of this thesis. Lastly, I provide some details about our numerical methods,
which are usually not discussed in the literature.

1.1 Relaxation Dynamics in Isolated Quantum systems

1.1.1 Classical Chaos and Integrability

In classical mechanics, chaos is understood to be the underlying mechanism for thermal-
ization. Non-linearity in the underlying equations of motion of classically chaotic systems
allows them to unpredictably sample their phase spaces1. The rigorous connection
between chaos and thermalization in classical systems is beyond the scope of this thesis,
and is perhaps still a subject of academic debate. Here, I qualitatively describe a couple
of connections between chaos and thermalization which lend themselves to our later
discussion of quantum thermalization. Interestingly, quantum thermalization is better
understood from microscopic dynamics than classical thermalization is, as will be made

1Non-linearity is a necessary but not sufficient condition for chaos: general linear differential equations
are always reducible into systems of first order linear ones, which can be readily solved and are not
chaotic. It is much harder to find analytic solutions to nonlinear differential equations. This is not
diagnostic of chaos, however, and the accepted way to characterize chaos in classical systems is through
the Lyapunov exponent which will be described later.
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clear in Section 1.3.
A major defining feature of classically chaotic systems is that their phase space

trajectories are exponentially sensitive to their initial conditions. The motion of such a
system in its accessible phase space is unconstrained and it uniformly covers its phase
space in infinite time. This notion is called ergodicity, wherein one can state that long
time averages of physical quantities are equivalent to unbiased (microcanonical) averages
of the physical quantity over the accessible phase space of the system. In isolated systems,
one generally identifies convergence to this microcanonical average as thermalization
(for large systems, it is equivalent to the canonical average of systems in contact with
a thermal bath). Thus, ergodicity implies thermalization of the long-time average of
physical quantities.2

Ergodicity explains thermalization of the long-time average of a physical quantity,
but does not guarantee thermalization at instantaneous points of time. For this, one
must invoke typicality, which is the notion that the vast majority of points in phase
space have similar physical properties. Then, the microcanonical average of a physical
quantity will be equal to the value of that quantity at a typical point in the phase
space. A system evolving under chaotic dynamics would then tend from its atypical
initial configuration into typical phase space points and yield measurements consistent
with the microcanonical ensemble. This explanation of thermalization presumes that
all accessible points in phase space are equally probable (ergodicity), or at least that
atypical configurations are not much more likely to be sampled than typical ones under
dynamical evolution.3

The relaxation process described above is impossible if the system cannot freely explore
its phase space. Systems that have conserved quantities have constrained trajectories
in phase space. For these systems, the microcanonical average of a physical quantity
includes regions of phase space that are inaccessible to the system and will therefore be
inaccurate. One can still obtain an accurate phase space average for which the argument
of typicality applies within the subdomain of phase space for which the system is chaotic.
In the limit where a system has as many conserved quantities as it has degrees of freedom,
its motion is fully constrained. Such a system is said to be integrable, and the statistical

2While the above definition of ergodicity does not apply in quantum systems, where there is no
well-defined phase space, quantum ergodicity is related to delocalization of the Hamiltonian eigenvectors.

3In quantum systems, it will be shown that the vast majority of eigenstates have thermal expectation
values for few-body observables in both chaotic and integrable systems, so in that sense the eigenstates
of both classes of systems are ‘typical’; however, the latter class of systems does not thermalize. The
reason for this will be discussed later.

2



arguments made above no longer apply4. We next delve into relaxation dynamics in
quantum mechanical systems and its connection with matrix elements, which is the main
subject of this thesis.

1.1.2 Ultracold Atom Experiments

Within the last twenty years, questions of relaxation dynamics in isolated quantum systems
have been opened by modern advances in the control and isolation of ultracold atoms.
These advances have enabled physicists to probe relaxation phenomena in quantum
many-body systems over large time scales in what is known as quantum simulation [3–5].
Certain landmark experiments confirmed that there is a lack of thermalization in some
setups [6–9] while there is thermalization in others [9–12]. For example, in Ref. [6], a
so-called quantum Newton’s cradle was created in which one-dimensional Bose gases
with point-like interactions did not thermalize over the time-scale of the experiment.
This is rationalized by the near-integrability of the setup. Recently, Ref. [9] took this
a step further using a quantum Newton’s cradle with tunable integrability-breaking
magnetic dipole interactions to show a separation of relaxation timescales between a
pre-thermal one at short times (which was captured by Ref. [6], and can be described by
the generalized Gibbs ensemble (GGE), to be discussed later) and the thermal one which
occurs at long times. From a theoretical standpoint, it is interesting to wonder how a
pure quantum state which depends on exponentially many parameters (the expansion
coefficients of the initial state in the eigenbasis of the Hamiltonian governing the quantum
dynamics) can relax to the predictions of a statistical ensemble which depends on a
much smaller set of parameters (a set which is O(1) in nonintegrable systems but O(L)
in integrable systems). Additionally, how can pure quantum states yield the same
measurements at long times as statistical ensembles, which are mixed states? We discuss
next how the unitary dynamics of pure states in quantum systems plays out at the level
of observable matrix elements, the behavior of which is the main subject of this thesis.
We will also later see a connection between thermalization and entanglement entropy.

1.1.3 Unitary Dynamics of a Pure State

Suppose we have a quantum system prepared in an eigenstate of Hamiltonian Ĥ0 and
evolving under a new Hamiltonian Ĥ. In the basis of Ĥ, the initial state |ψ(0)〉 =

4Conversely, as we will describe later, quantum integrable systems can still be described by a fully
constrained ensemble known as the generalized Gibbs ensemble (GGE).

3



∑
αCα|Ψα〉 evolves under Ĥ as |ψ(t)〉 = ∑

αCαe
−iEαt|Ψα〉. The expectation value of an

observable Ô in this time-evolved state is

〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉 =
∑
αβ

C∗αCβe
i(Eα−Eβ)tOαβ, (1.1)

where Oαβ = 〈Ψα|Ô|Ψβ〉. This sum can be broken up into diagonal and non-diagonal
sums as follows:

〈Ô(t)〉 =
∑
α

|Cα|2Oαα +
∑
α 6=β

C∗αCβe
i(Eα−Eβ)tOαβ. (1.2)

Clearly, the diagonal sum is constant in time but the terms in the non-diagonal sum are
oscillating with frequencies given by the eigenenergies of Ĥ. In order to see what the
equilibrium value of this quantity would be (if it equilibrates at all), one can take the
time average of 〈Ô(t)〉 over the domain [0,∞). Each term in the second sum yields an
integral

lim
T→∞

1
T

∫ T

0
ei(Eα−Eβ)t = lim

T→∞

1
T

ei(Eα−Eβ)t

i(Eα − Eβ) = 0. (1.3)

Importantly, we have assumed that the spectrum is non-degenerate5. Thus, because all
of the contributions to the second sum vanish over the infinite time average, the long
time average of observable Ô is

〈Ô(t)〉 =
∑
α

|Cα|2Oαα. (1.4)

We note that this result is equivalent to the prediction of a so-called ‘diagonal ensemble’
with density matrix (ρDE)αβ = |Cα|2δαβ. To summarize what we have shown so far,
decoherence of the initial state yields an expected equilibrium value that is the same as
that of mixed state with exponentially many parameters. This equilibrium value depends
on diagonal matrix elements of the observable in question, while all of the time-dependent
behavior (including the approach to equilibrium and fluctuations about equilibrium)
are controlled by the off-diagonal elements. In what follows, we seek to understand
how 〈Ô(t)〉 can be equivalent to the equilibrium value of observables obtained from
various statistical ensembles, and additionally how we can expect relaxation to occur over

5In the systems studied throughout this thesis, both integrable and nonintegrable, it is generally the
case that the spectrum is nondegenerate once one has accounted for all symmetries. Even if there are
O(1) degeneracies, they will only negligibly effect the time-independent outcome of this analysis since
the number of terms in the first sum is exponentially large.

4



reasonable timescales given that the longest physical timescale, the so-called Heisenberg
time tH ∼ 1/ωH , is expected to diverge exponentially in system size due to energy
levels being exponentially close. We first explore quantum chaos and thermalization
in non-integrable quantum systems, which is understood on the mathematical basis of
random matrix theory (RMT) and its generalization to physical systems in the eigenstate
thermalization hypothesis (ETH). Then, we explore how Eq. (1.4) is equivalent to the
GGE in quantum integrable systems through generalized eigenstate thermalization.

1.2 Quantum Chaos
One of the defining questions of quantum thermalization is how Eq. (1.4) can be equivalent
to the microcanonical ensemble which only depends on one parameter: the energy density
of the initial state. In order for 〈Ô(t)〉 to reach thermal equilibrium, Eq. (1.4) must be
equal to ∑

α

|Cα|2Oαα = OME(〈E〉) = 1
N

∑
|Eα−E0|<∆E

Oαα, (1.5)

where OME(〈E〉) is the microcanonical average of Ô at 〈E〉 = 〈ψ(0)|Ĥ|ψ(0)〉, ∆E
defines a small window of energy eigenvalues, and N is the normalization constant. In
a landmark paper, Rigol et al. demonstrated relaxation of a nonintegrable quantum
many-body system to the microcanonical result after a quantum quench [13]. After
demonstrating that this relaxation occurs within a reasonable timescale (and later
positing that this is possible due to smallness of off-diagonal matrix elements), the article
convincingly showed that smoothness of the diagonal matrix elements as a function of
energy density is the explanation for the equality in Eq. (1.5). Ref. [13] was the first step
in numerically confirming the ETH, which is based on the theory of quantum chaos and
RMT. Because the ETH is now well-tested numerically and well-founded mathematically
in RMT (though not analytically proved), and especially since there is no equivalent
foundation for what is now known about matrix elements in integrable systems (a major
thrust of this thesis), it is worth briefly reviewing quantum chaos and RMT.

1.2.1 History

Classical notions of chaos do not easily apply to quantum mechanics. Exponential
sensitivity to initial conditions of trajectories in phase space, the defining feature of

5



classically chaotic systems, is expressed using the Lyapunov exponent λ [14]:

δZ(t) ≈ eλt|δZ(0)|. (1.6)

If λ > 0, the system is chaotic. This definition of chaos cannot be readily used in quantum
mechanical systems because they have no well-defined phase space (and therefore no
phase space trajectories) due to the Heisenberg uncertainty principle. Additionally, the
natural quantum analogue to a classical phase space trajectory is a wavefunction under
dynamical evolution, but the overlap between two wavefunctions is always constant in
time and therefore cannot exponentially diverge. There have been many attempts to
reconcile the two pictures, including attempting to quantize classical chaotic trajectories
(which are not closed in phase space) using the WKB quantization method [2]; we will
not dwell on that here. Recently, it has become popular to use the exponential growth
of out-of-time order correlators (OTOC) to define quantum chaos in a way which is
reminiscent of Eq. (1.6) [15]. The OTOC is beyond the scope of this thesis, and the
notion of quantum chaos presented here is based entirely on random matrix theory
(RMT) and its direct implications for quantum thermalization. That said, contact has
been made in the literature between the picture of quantum chaos based on OTOC and
the picture based on RMT [16].

The connection between chaos and RMT was introduced by physicists who wanted
to understand the spectra of complex nuclei. The initial idea, conceived by Wigner,
was that the Hamiltonian of a quantum chaotic system (when represented in a generic
basis) should be essentially random within a small energy window where the density of
states is approximately constant [2]. Using this assumption, it was confirmed that the
level spacings of complex nuclei are well-described by the Wigner-Dyson distribution,
which is a key result from RMT, and it was discovered later that the level statistics of
quantum systems which have a chaotic classical counterpart also follow RMT (with some
exceptions) [2]. This has led to features of RMT becoming defining features of quantum
chaos, even for systems which do not have any classical counterpart.

1.2.2 Gaussian Orthogonal Ensemble

The random matrix ensemble that we will focus on is the Gaussian orthogonal ensemble
(GOE), because it is the one which is relevant for systems which obey time-reversal
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symmetry. The probability distribution underlying the GOE is as follows:

P (Ĥ) ∝ exp
[
− 1
a2 TrĤ2

]
. (1.7)

In (1.7), a sets an overall energy scale, and Ĥ are Hermitian matrices. It is called
Gaussian because it is depends on the sum of many independent random variables, and
orthogonal because TrĤ2 is invariant under orthogonal transformations. While when
studying quantum mechanical models we do not actually have an ensemble of random
matrices, or any randomness at all in the matrix elements, the quantum many-body
systems we typically study have a sufficiently high dimensionality that it becomes sensible
to think of their eigenvalues and eigenvectors in statistical terms. Below I state a few
significant results from the GOE.

1.2.2.1 Level Spacing Statistics

The distribution which underlies the eigenvalue spacings in the GOE is called the Wigner-
Dyson distribution. For a 2 × 2 matrix, the (normalized) distribution can be written
as

P (ω) = π

2ω exp
[
−π4ω

2
]
, (1.8)

where ω is the difference between the eigenvalues. The above expression assumes a mean
level spacing equal to one. From this example, one can see two defining features of the
Wigner-Dyson distribution: level repulsion (P (0) = 0) and a Gaussian tail. For general
n× n matrices, Eq. (1.8) is called the Wigner surmise. In contrast to Eq. (1.8), the level
spacings of quantum integrable systems obey an exponential distribution because the
energy levels are uncorrelated random numbers and thus obey Poisson statistics.

1.2.2.2 Level Spacings in 1D Lattice Models

Let us show that the distributions of the level spacings of the quantum chaotic and
integrable models studied later in this thesis comply with the previous theoretical
predictions. We calculate the eigenvalue spectrum of a spin-chain Hamiltonian for which
the λ = 0 point is the XXZ model (∆ is the anisotropy) and λ modulates next-nearest
neighbor interactions and spin flipping. The Hamiltonian, with L sites and periodic
boundary conditions, is

Ĥ =
L∑
i=1

[1
2
(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
+ ∆Ŝzi Ŝzi+1

]
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+λ
L∑
i=1

[1
2
(
Ŝ+
i Ŝ
−
i+2 + H.c.

)
+ 1

2 Ŝ
z
i Ŝ

z
i+2

]
, (1.9)

where Ŝνi are spin-1/2 operators in the ν ∈ {x, y, z} directions on site i, and Ŝ±i = Ŝxi ±iŜ
y
i

are the corresponding ladder operators. As mentioned, the level spacings of a non-
integrable quantum system are typically characterized by aWigner-Dyson distribution [17],
while those of an integrable one are characterized by a Poisson distribution [18]. Instead
of directly using the level spacings (which requires a procedure known as “unfolding"
to properly account for changes in the local density of states), we use the ratio of
consecutive levels rn = min(δn, δn+1)/max(δn, δn+1), first introduced in Ref. [19], where
δn = En+1 − En and the eigenenergies {En} of the relevant symmetry sector form an
ordered list. The probability distribution for r when {En} are from the GOE is [20]:

PGOE(r) = 27
4

r + r2

(1 + r + r2) 5
2

Θ(1− r), (1.10)

where Θ(x) is the Heaviside step function. On the other hand, when eigenvalues can
be treated as uncorrelated random numbers as in Poisson processes, as is expected in
integrable systems, the probability distribution for r is:

2
(1 + r)2 Θ(1− r). (1.11)

Figure 1.1 compares the ratio of consecutive levels distributions for an integrable
point (λ = 0) and a quantum chaotic one (λ = 1), both at ∆ = 0.55. It can be seen that
the distribution in the system with λ = 0 follows the Poisson distribution, while the one
with λ = 1 follows the Wigner-Dyson distribution.

1.2.2.3 Eigenvector Statistics and Entanglement Entropy

The individual coefficients of normalized eigenvectors in the GOE are Gaussian distributed
in the thermodynamic limit, with a variance of 1/D [21]. The joint probability distribution
of these coefficients is

P (ψ1, ψ2, ..., ψN) ∝ δ(
∑
j

ψ2
j − 1), (1.12)

where δ(x) is the Dirac delta function. Eq. (1.12) is justified based on the normalization
requirement of eigenvectors and the invariance of the GOE under orthogonal transforma-
tions. Therefore, eigenvectors in the GOE can be said to be “essentially" random vectors
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Figure 1.1 | The distribution of the ratio of consecutive energy levels, which is
Poissonian for the Hamiltonian with λ = 0 and Wigner-Dyson for Hamiltonian with
λ = 1. ∆ = 0.55 is used in both cases. We consider a fully resolved symmetry sector in
L = 26 chains (see Chapter 2 for the exact specification).

in the Hilbert space.
The entanglement properties of eigenvectors in the GOE are of interest because they

point to the thermal properties of these states without the need to reference observable
matrix elements. In Ref. [22], the entanglement entropy of so-called random canonical
states, which are states with fixed particle number6 and Gaussian distributed coefficients
(i.e. like the ones from the GOE), was studied. It was analytically and numerically
demonstrated that, at half filling and for a bipartition of the system between two equal
halves, they exhibit nearly maximal entanglement (with an O(1) deviation that was
predicted for random pure states in Ref. [23]), and away from half filling there is a

√
L

deviation from maximal entanglement7. Thus, to leading order, the entanglement entropy
6They consider states on a lattice with L sites and two states per site (which correspond with the

‘occupied’ or ‘unoccupied’ designations).
7Maximal entanglement is the von Neumann entropy of a completely random ensemble with ραβ =

(1/D)δαβ , which is also known as the infinite temperature ensemble.
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of GOE eigenstates (in a physically relevant fixed particle number basis) is the same
as the entropy of an infinite temperature ensemble. In the same article, these results
were numerically confirmed to hold for eigenstates around the center of the spectrum of
a nonintegrable quantum Hamiltonian. In Chapter 2, we extend the discussion of the
entanglement entropy of eigenstates to interacting integrable systems, which will be seen
to have a sub-maximal leading order term suggestive of a different universality class for
the average entanglement entropy of these classes of Hamiltonians.

1.2.2.4 Operators in the Random Eigenbasis

Using a Gaussian distribution for the eigenvector coefficients, one can derive the following
expression for the matrix elements of Hermitian operators in the GOE eigenbasis:

Omn ≈ Oδmn +
√
O2

D
Rmn, (1.13)

where O = 1
D

∑
iOi, O2 = 1

D

∑
iO

2
i , Rmn is a Gaussian-distributed random number with

a variance of 2 for m = n and a variance of 1 for m 6= n, and D is the dimension of
the Hilbert space. One can see that the variance of both diagonal and off-diagonal
element distributions goes to zero in the limit D →∞. Clearly, Eq. (1.5) is satisfied if
one uses the above ansatz for matrix elements of observables in the GOE; one obtains∑
α |Cα|2Oαα ≈ O

∑
α |Cα|2 = O. It is also important to note that, because off-diagonal

elements are exponentially small compared to diagonal elements, one also expects temporal
fluctuations in Eq. (1.2) to be very small. Therefore, if there is any energy scale at
which a quantum mechanical system can be considered as a random matrix, an initial
state which samples states from that window will thermalize in reasonable times to the
predictions of the microcanonical ensemble.

1.3 Eigenstate Thermalization Hypothesis
The generalization of random matrix theory to physical systems which have structure in
energy is called the eigenstate thermalization hypothesis (ETH). It manifests as a matrix
element ansatz for observables and was proposed by Mark Srednicki [24], and is written
as

Oαβ = O(Ē)δαβ + e−S(Ē)/2fO(Ē, ω)Rαβ, (1.14)
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where Ē ≡ (Eα+Eβ)/2, ω = Eα−Eβ, and S(Ē) is the thermodynamic entropy at energy
Ē. The functions O(Ē) and fO(Ē, ω) are smooth, and Rαβ is a random variable with
zero mean and unit variance (variance 2) for α 6= β (α = β) in Hamiltonians that exhibit
time-reversal symmetry. Importantly, O(E) is identical to the microcanonical prediction
at energy E. It is easy to see that within small energy windows where O(Ē) and fO(Ē, ω)
are approximately constant, and at the center of the spectrum where e−S(Ē)/2 = 1/

√
D,

Eq. (1.14) reduces to Eq. (1.13). Recently, some progress has been made in finding the
regime where matrix elements become uncorrelated and true RMT behavior emerges in
nonintegrable quantum spin chains [25].

Important features of Eq. (1.14) are as follows. The smoothness of the diagonal matrix
elements allows observables described by Eq. (1.14) to thermalize (i.e., to be described
by traditional ensembles of statistical mechanics) for experimentally relevant initial
conditions. The ETH also states that the off-diagonal matrix elements are exponentially
small, and this ensures equilibration (the time fluctuations of observables about the
time average are small) at long times [2]. Physically, the smooth function |fO(Ē, ω)|2

is central to fluctuation-dissipation relations [2], and can be probed experimentally by
measuring heating rates in periodically driven systems [1]. The ETH ansatz (1.14) has
been extensively tested in exact diagonalization studies of nonintegrable Hamiltonians [2,
13, 26–41]. Further support of this ansatz will be given throughout this thesis, and
Chapter 4 will explore its extension to symmetry-breaking observables. The ways in
which this ansatz is broken in interacting integrable models will be explored primarily in
Chapter 2 but also to some extent in later chapters.

Consider the implications of Eq. (1.14). Suppose that Oαα = O(Eα), i.e. that
observable eigenstate expectation values (EEV) are a smooth function of the energy
eigenvalues. Suppose also that Cα are narrowly distributed such that the left-hand side
of (1.5) will only have contributions from α for which Eα ≈ 〈E〉, where 〈E〉 is the energy
of an initial state. Then, Taylor expanding Oαα about 〈E〉, we obtain

Oαα ≈ O(〈E〉) + dO

d〈E〉
(Eα − 〈E〉) + 1

2
d2O

d〈E〉2
(Eα − 〈E〉)2. (1.15)

From here, inserting into the left-hand side of (1.5), we obtain

∑
α

|Cα|2Oαα = O(〈E〉) + 1
2
d2O

d〈E〉2
〈∆E2〉. (1.16)

Thus, given that 〈∆E2〉 is subextensive, the second term is negligible in the thermody-
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namic limit, and we obtain ∑
α

|Cα|2Oαα ∼ O(〈E〉). (1.17)

Therefore, subextensive fluctuations in energy give us (1.5).
Importantly, one can use Eq. (1.14) to show exponentially decaying time fluctuations

of O(t) in system size, which implies that thermalization does occur in the strong sense,
although there is still the open question of how long exactly it takes for nonintegrable
systems to thermalize. This is expected to be observable dependent, but not exponentially
slow (in L) unless one is very close to an integrable point [42]. Thus, thermalization in
quantum chaotic systems is well understood through the ETH ansatz, and has RMT
as a mathematical underpinning. We next turn to integrable systems, which relax to a
different ensemble (the GGE) by the mechanism of generalized eigenstate thermalization.

1.4 Generalized Gibbs Ensemble
As mentioned, integrable quantum systems do not thermalize because they have an
extensive number of local conserved quantities which obstruct thermalization. The
ensemble that they relax to instead is known as the generalized Gibbs ensemble (GGE),
and is designed to account for the full set of conserved quantities. The form for the GGE
can be found as follows:

ρ̂GGE =
exp

(
−∑k λkÎk

)
Tr
[
exp

(
−∑k λkÎk

)] , (1.18)

where {Îk} are the set of conserved quantities and λk are found by setting 〈Îk〉 =
Tr(ρ̂GGEÎk) = Tr(ρ̂I Îk), where ρ̂I is the density matrix of the initial state. The GGE was
first postulated and demonstrated to be accurate for an integrable quantum system in
Ref. [43].

The question is: how can we understand Eq. (1.4), which is still valid for integrable
systems, in the context of the GGE? In this case, the number of parameters needed
to describe the equilibrium state is only O(L) when an exponentially large set (the
|Cα|2) are expected from the diagonal ensemble. Further, as it will be demonstrated
in Chapter 2, the vast majority of diagonal matrix elements of local observables are
thermal in these systems. Thus, we wonder why the arguments for ETH do not cause
Eq. (1.4) to be equivalent to the microcanonical ensemble. The resolution lies in the
fact that the initial state samples eigenstates from a subextensive shell in all of the
conserved quantities, not only the energy as in nonintegrable systems. It has been
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demonstrated that if one carefully constructs a generalized microcanonical ensemble
which accounts for all of the conserved quantities of an integrable Hamiltonian, one finds
that its predictions are equivalent to those of the diagonal ensemble [44]. Generalized
eigenstate thermalization states that the diagonal matrix elements of observables would
be approximately constant within the generalized microcanonical shell, and equilibration
to the generalized microcanonical ensemble follows from arguments along the lines of
those in Section 1.3.

Just as in nonintegrable systems, the diagonal matrix elements of observables dictate
equilibrium properties and off-diagonal matrix elements of observables dictate out-of-
equilibrium properties in integrable systems. One of the biggest contributions of the
work reported in this thesis to the literature is that it has deepened the understanding of
matrix elements in integrable systems. See the introductions of the remaining chapters of
this thesis for discussions of pre-existing work on matrix elements in integrable systems.
What remains is to resolve the mathematical foundations of the behavior of matrix
elements in integrable systems which, in contrast to nonintegrable ones, have no random
matrix structure. We next turn to an example of the physical implications of off-diagonal
matrix elements which is relevant to both nonintegrable and integrable quantum systems.

1.5 Heating Rates
One notable application of the off-diagonal matrix elements of operators in both noninte-
grable and integrable quantum many-body systems is in the calculation of heating rates.
Reference [1] discovered that heating rates in these systems are in excellent agreement
with Fermi’s golden rule which, as demonstrated in the article, is related to the spectral
function |f(Ē, ω)|2 through the ETH ansatz (1.14). Reference [1], which goes on to show
that heating rates can be used to probe the behavior of |f(Ē, ω)|2 in both nonintegrable
and integrable systems, was an important motivation for us to carry out the detailed study
of |f(Ē, ω)|2 in interacting integrable systems that is presented in Chapter 2. Before
Refs. [1] and [45], it had been thought that the spectral function is not well-defined in
integrable systems (this is still thought to be the case in noninteracting ones [29]).

In Ref. [1], the numerical linked cluster expansion (NLCE) technique was used in
a periodically driven system of hard-core bosons to calculate energy as a function of
driving time in the thermodynamic limit. The 1D Hamiltonian that was considered is
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Ĥ(τ) = Ĥ0 + g(τ)K̂, with Ĥ0 and K̂ as follows:

Ĥ0 =
∑
i

[(
−t b̂†i b̂i+1 − t′ b̂

†
i b̂i+2 + h b̂†i

)
+ H.c. (1.19)

+V
(
n̂i −

1
2

)(
n̂i+1 −

1
2

)
+ V ′

(
n̂i −

1
2

)(
n̂i+2 −

1
2

)]
,

K̂ = −
∑
i

(
b̂†i b̂i+1 + H.c.

)
. (1.20)

We note that Ĥ0 is integrable (and mappable onto the XXZ model) for t′ = V ′ =
h = 0, and nonintegrable otherwise. The function g(τ) was chosen to be a square wave
g(τ) = g sgn[sin(Ωτ)] = ∑

m>0 2gm sin(mΩτ), where gm are the strengths of the individual
Fourier modes. The energy as a function of driving time is defined with respect to the
static Hamiltonian as in E(τ) = Tr

[
Ĥ0ρ̂(τ)

]
, where ρ̂(τ) is the density matrix of a state

(initially taken to be a thermal state at finite temperature) that has been evolved to
stroboscopic times τ = nT = 2nπ/Ω (n = 0, 1, 2, ...). Figure 1.2, reproduced from Ref. [1],
shows that e(τ) = E(τ)/L decays exponentially toward the infinite temperature result
(E∞/L = 0) for (a) nonintegrable and (b) integrable Hamiltonians at three different
strengths (g) of the time-dependent perturbation g(τ)K̂.

More importantly for us, the insets of Fig. 1.2 show that the heating rates are
quadratic in the driving parameter g and in good agreement with Fermi’s golden rule,
which is given by

Ėm(τ) = 2πg2
m

∑
i,f

| 〈E0
f | K̂ |E0

i 〉 |2(E0
f − E0

i )P 0
i (τ) δ(E0

f − E0
i ±mΩ), (1.21)

where Ėm(τ) is the heating rate of Fourier mode m of the perturbation (strength gm),
|E0

i 〉 (|E0
f〉) are the eigenstates of Ĥ0 with energies E0

i (E0
f ), and P 0

i (τ) = 〈E0
i | ρ̂(τ) |E0

i 〉
are the diagonal matrix elements of ρ̂(τ) in the eigenbasis of Ĥ0. From here, the heating
rate is defined as Γ(τ) = ∑

m>0 Γm(τ), where Γm(τ) = Ėm(τ)/[E∞ − E(τ)] is the rate
for mode m and E∞ is the energy at infinite temperature. One can see from Eq. (1.21)
that the heating rates are an important physical application of the off-diagonal matrix
elements of operators.

1.6 Exact Diagonalization Studies
Here, I discuss some details of the exact diagonalization calculations reported in this
thesis. The Hamiltonian of a quantum many-body system with Hilbert space dimension
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Figure 1.2 | Heating rates, reproduced from Ref. [1]. Energy per site |e(τ)| vs τ
for nonintegrable (a) and integrable (b) Hamiltonians at three different perturbation
strengths g = {0.05, 0.2, 0.8} with period T = 1.0 and inverse temperature of the initial
state βI = (30)−1. In (a), the NLCE is computed up to order 16 (NCLE-16) and 17
(NCLE-17), while in (b) it is computed up to order 17 (NLCE-17) and 18 (NLCE-18).
Exponential fits to the highest NCLE order are shown in both panels as solid lines. Insets:
heating rates as a function of g. NLCE results (filled symbols) are obtained from the
exponential fits to |e(τ)| vs τ . Fermi’s golden rule results (open symbols) were calculated
using Eq. (1.21) with results from exact diagonalization in periodic chains of length (a)
17 (Fermi-17) and 18 (Fermi-18) and (b) 19 (Fermi-19) and 20 (Fermi-20). Dashed lines
are power law fits to the highest order of NLCE for 0.05 ≤ g ≤ 0.3.
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D is represented as a D ×D matrix on the computer. In order to do this, one chooses a
convenient basis of states to represent the system and perform calculations.

Most basically, we use the Fock basis |s〉 = |n1, n2, ..., nL〉, where {ni} are the
occupation numbers of the ith site in a one-dimensional chain. We always work with
spinless fermions or hard-core bosons, where only a single particle can occupy any given
lattice site. Thus our states are represented as binary numbers and labeled by the
corresponding base-10 integer. This basis is useful if the system has no underlying
symmetries that one can take advantage of.

A brute force diagonalization of the Hamiltonian (necessary if one wants to study
the bulk properties of eigenvalues and eigenvectors) scales with time t ∼ D3. Therefore,
in most cases, we choose a computational basis which shares the symmetries of the
Hamiltonian. For translationally invariant systems, which are my focus in this thesis,
we use the total quasimomentum eigenstates |k, a〉 = 1√

Da

∑Da
n=1 e

−iknT̂ n|a〉, where k are
quasimomenta, T̂ is the translation operator, |a〉 is a representative Fock state (usually
taken to be the state with the lowest state integer in its translation cycle), and Da is the
dimensionality of the translation cycle of |a〉. Things become more interesting (and more
complicated) when one involves additional symmetries such as parity and particle-hole
symmetry.

1.7 Thesis Outline
This thesis presents research that largely builds on the body of work described above
that deals with the properties of matrix elements in quantum many-body systems. Our
first publication (Ref. [45]) contributed significantly to the understanding of matrix
elements in interacting integrable quantum systems, and will be presented in Chapter
2. This publication also served to confirm and solidify expected behaviors in quantum
chaotic systems, expressed through the ETH ansatz (1.14). Additionally, this work
introduced the idea that the average entanglement entropy over eigenstates can be used
to differentiate between quantum chaotic and quantum integrable many-body systems.

After the publication of Ref. [45], there was a surge of interest in the low-ω properties
of the spectral function |f(Ē, ω)|2. This subject, while not explored in Ref. [45], needed to
be thoroughly addressed. Additionally, questions started to emerge about the properties
of matrix elements of observables that break translational symmetry in a translationally
invariant Hamiltonian. Thus, in Ref. [46], we sought to address those gaps in our
knowledge. In that paper, we discovered that symmetry-breaking operators obey the
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ETH ansatz in quantum chaotic systems. Additionally, we found that they exhibit some
of the behaviors found in Ref. [45] for translationally invariant operators in integrable
systems. A low ω analysis of off-diagonal elements revealed differences between observables
which break integrability and those which do not. The findings of Ref. [46] will be the
subject of Chapter 4.

In between Refs. [45] and [46], and motivated by Ref. [47], we became interested in
the emergence of eigenstate thermalization in a spin chain with a single-site defect. In
Chapter 3, we demonstrate that a local impurity indeed results in eigenstate thermaliza-
tion, but that the thermodynamic and transport properties remain the same as those of
the unperturbed system. Lastly, in Chapter 5, which focuses on Ref. [48], we seek to
address universal behavior in the onset of quantum chaos by studying the behavior of
two different models, the perturbed XXZ model and the perturbed Anderson insulator.

This thesis closely follows the publications noted above, with modifications introduced
to avoid redundancy.
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Chapter 2 |
Entanglement and Matrix Elements
of Observables in Interacting In-
tegrable Systems

2.1 Introduction
Much work has been done in the last decade to understand the far-from-equilibrium
dynamics and description after equilibration of isolated nonintegrable (generic) and
integrable quantum many-body systems [2, 49, 50]. Despite tremendous progress in
recent years [51–60], the microscopics of interacting integrable systems are those which
remain less understood. On the one hand, interactions are present in those systems as
in nonintegrable ones (making their study challenging), and on the other hand, they
exhibit extensive numbers of local conserved quantities as noninteracting systems do.
The presence of such quantities precludes thermalization in integrable (noninteracting
and interacting) quantum systems [6, 43,61–63].

Thermalization does occur in generic isolated quantum systems, and is understood
to be a consequence of quantum chaos and eigenstate thermalization [2, 13, 64, 65].
Essentially, the matrix elements of observables (few-body operators) Ô in eigenstates of
generic quantum Hamiltonians are described by the eigenstate thermalization hypothesis
(ETH) ansatz (1.14). The ETH ansatz (1.14) has been extensively tested in exact
diagonalization studies of nonintegrable Hamiltonians [2, 13, 26–41]. While the diagonal
matrix elements display a shrinking support and an exponentially decaying variance
with increasing system size in nonintegrable systems, confirming that the diagonal ETH
is valid for them, the same is not true in integrable systems [26–28, 31, 41, 44, 56]. In
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integrable systems, the support of the diagonal matrix elements need not shrink, and
their variance is expected to decay as a power law in system size [66–68]. The latter is
consistent with the fact that the variance of the diagonal matrix elements of intensive
translational invariant observables must vanish at least as a power law in system size
because it is bounded from above by the Hilbert-Schmidt norm (which vanishes as a
power law in system size) [41].

The off-diagonal matrix elements of observables in the eigenstates of interacting
integrable quantum many-body systems have received little attention. While some results
have been reported for specific models and system sizes alongside those of quantum
chaotic systems [27,28,35], there has been no systematic study of their properties. For
noninteracting models (or models mappable to them), the existence of an increasingly
large (with increasing system size) fraction of vanishing off-diagonal matrix elements
precludes the definition of a meaningful function fO(Ē, ω), in contrast to quantum chaotic
models [29]. On the other hand, recent results in the context of periodically driven
systems provided strong evidence that one can define (and experimentally measure) a
function |fO(Ē, ω)|2 = eS(Ē)|Oαβ|2 for interacting integrable models [1]. Exploring this,
along with other properties of the off-diagonal (and diagonal) matrix elements in the
spin-1/2 XXZ chain, is one of the two central goals of this chapter.

The other central goal of this chapter is to study the structure of highly-excited
energy eigenstates by means of their bipartite entanglement. Recently, much work has
been devoted to understanding entanglement properties of highly-excited eigenstates of
many-body Hamiltonians [22,69–103]. Here we study the average entanglement entropy
over all eigenstates of the spin-1/2 XXZ Hamiltonian in the zero-magnetization sector.
We argue that this average universally reveals the fundamentally different natures of
interacting integrable and quantum chaotic models. While in both nonintegrable and
interacting integrable systems the leading term of the average entanglement entropy
exhibits a volume-law scaling, we show that the corresponding volume-law coefficient
is markedly different between the two. In quantum chaotic systems [22] it matches the
prediction by Page [23] for random pure states in the Hilbert space, while it is smaller for
interacting integrable systems. Remarkably, our results for interacting spin-1/2 integrable
systems are consistent with this coefficient being very close to, or the same as, the one
for translationally invariant free [80] and (more generally) quadratic [87,89] fermionic
Hamiltonians. This suggests that, entanglement-wise, the overwhelming majority of the
eigenstates are very similar between interacting spin-1/2 integrable Hamiltonians and
noninteracting fermionic Hamiltonians.
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The presentation is organized as follows: In Sec. 2.2, we discuss the specific integrable
and nonintegrable models and observables considered, as well as details about the
numerical calculations carried out. In Sec. 2.3, we compare the average entanglement
entropy of eigenstates of the spin-1/2 XXZ chain with that of eigenstates of noninteracting
and nonintegrable models. In Sec. 2.4, we discuss the distributions and scaling properties
of the diagonal matrix elements of two local observables at the center of the spectrum.
In Sec. 2.5, we discuss the off-diagonal matrix elements of the same observables: their
distributions, scaling properties, and functional dependence of |fO(Ē, ω)|2 on ω, for Ē at
the center of the spectrum. Lastly, in Sec. 2.6, we summarize our results.

2.2 Model and Observables
We study the spin-1/2 XXZ chain with the addition of next-nearest neighbor interactions,
with L sites and periodic boundary conditions. The Hamiltonian is

Ĥ =
L∑
i=1

[1
2
(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
+ ∆Ŝzi Ŝzi+1

]

+λ
L∑
i=1

[1
2
(
Ŝ+
i Ŝ
−
i+2 + H.c.

)
+ 1

2 Ŝ
z
i Ŝ

z
i+2

]
, (2.1)

where Ŝνi are spin-1/2 operators in the ν ∈ {x, y, z} directions on site i, and Ŝ±i = Ŝxi ±iŜ
y
i

are the corresponding ladder operators. When λ = 0, Hamiltonian (2.1) is integrable and
can be solved exactly using Bethe ansatz [104]. When λ 6= 0, Hamiltonian (2.1) is quantum
chaotic [105]. We set λ = 0 and 1 to compare the integrable and nonintegrable regimes,
respectively. Unless otherwise specified, we show results for ∆ = 0.55 and ∆ = 1.1 to
illustrate that they are qualitatively similar in the (nearest-neighbor) easy-plane (∆ < 1)
and easy-axis (∆ > 1) regimes.

We study the matrix elements of two local operators: The nearest neighbor z-
interaction

Â = 1
L

L∑
i=1

Ŝzi Ŝ
z
i+1, (2.2)

and the next-nearest neighbor flip-flop operator

B̂ = 1
L

L∑
i=1

(
Ŝ+
j Ŝ
−
j+2 + H.c.

)
. (2.3)

To study the entanglement entropy of energy eigenstates, as well as the matrix
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elements of Â and B̂ in those eigenstates, it is important to resolve all the symmetries
of the Hamiltonian [2, 28]. First, we note that Hamiltonian (2.1) conserves the total
magnetization in the z-direction, M z = ∑

i Ŝ
z
i . In this chapter we focus on the zero

magnetization sector in chains with even numbers of lattice sites. The next important
symmetry is translation, which allows one to block diagonalize the Hamiltonian in
different total quasimomentum k sectors. All quasimomentum sectors are used in the
average entanglement entropy calculations reported in Sec. 2.3. Within the M z = 0 and
k = 0 sector, there are two further symmetries, namely, spin inversion (Z2) and space
reflection (P ). In our studies of matrix elements we focus on the even-Z2 even-P sector
within the M z = 0 and k = 0 sector. We use full exact diagonalization of periodic chains
with up to L = 26 sites. The even-Z2 even-P sector within the M z = 0 and k = 0 sector
of the chain with L = 26, the largest considered, has 101, 340 states.

2.3 Entanglement Entropy
In this section, we study the entanglement properties of eigenstates {|α〉} of Hamilto-
nian (2.1) in the zero magnetization sector. We consider a bipartition into a subsystem A

and its complement Ā that consist of LA and L−LA consecutive lattice sites, respectively.
We calculate the bipartite entanglement entropy of an eigenstate |α〉 as

Sα = −Tr{ρ̂A ln(ρ̂A)} , (2.4)

where ρ̂A = TrĀ{|α〉〈α|} is the reduced density matrix of the subsystem A. We average
Sα over all Hamiltonian eigenstates in the zero magnetization sector to obtain the average
entanglement entropy S̄ = D−1∑

α Sα, where D =
(
L
L/2

)
. The upper bound for the

entanglement entropy of pure states in a given magnetization sector (or, equivalently, in
a given particle-number sector when mapping spin-1/2 systems onto hard-core bosons or
spinless fermions), for a given LA/L, depends both on the magnetization and on LA/L.
The leading term, which scales with the volume, depends on the magnetization [22,85].
There is also a subleading, O(1), term that depends on LA/L [22].
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Figure 2.1 | Average entanglement entropy S̄, in the zero-magnetization sector
(half filling for free fermions), for three paradigms of many-body quantum systems: the
spin-1/2 XXZ model [λ = 0 in Eq. (2.1), an interacting integrable model], a nonintegrable
model [λ = 1 in Eq. (2.1)], and free fermions [which are mappable to the spin-1/2 XX
spin chain, Eq. (2.1) with ∆ = λ = 0]. (a) S̄ vs LA for L = 20 (∆ = 0.55 in the
interacting models). The dashed line shows the results for random pure states from
Eq. (2.5) in the thermodynamic limit. The dashed-dotted line is the average for free
fermions in all particle sectors at L = 36 (the same results reported in Fig. 1 in Ref. [80]).
Panels (b) and (c) show finite-size scaling analyses at LA/L = 1/2. We normalize S̄ by
S̄max

ran ≡ S̄ran
(
L
2 ,

1
2

)
, see Eq. (2.5), and plot the results vs S̄max

ran to show that S̄ = S̄max
ran

for the nonintegrable model in the thermodynamic limit and to improve the scaling
analyses in our small systems. (b) Normalized averages as functions of 1/S̄max

ran at the
nonintegrable point and for free fermions. Lines are two-parameter fits to c0 + c1/S̄

max
ran
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with c0 = 0.999 (with 1 minus the coefficient of determination, 1 − R2 = 4.3 × 10−3)
and c0 + c1/S̄

max
ran with c0 = 0.536 (with 1− R2 = 2.5× 10−5), respectively, for L ≥ 14.

(c) Normalized averages at ∆ = 0.55, 1.0, 1.1, and 1.45 in the spin-1/2 XXZ model as
functions of 1/

√
S̄max

ran . Lines are single-parameter fits to the function sfree
(

1
2

)
+d1/

√
S̄max

ran

for systems with L ≥ 14. Inset in (c), δ = 1 − R2 of the fits to sxxz + d1/
√
S̄max

ran as a
function of the volume-law coefficient sxxz chosen. Note that the minima are very close
to sfree

(
1
2

)
for ∆ ' 1, and depart from that value as the quality of the fit worsens when

departing from ∆ = 1 (presumably because of stronger finite-size effects).

In the zero magnetization sector, for LA ≤ L/2, the leading and first subleading terms in
the average entanglement entropy of random pure states with normally distributed real
coefficients are [22]

S̄ran

(
LA,

LA

L

)
= LA ln(2) +

LA
L

+ ln(1− LA
L

)
2 − 1

2

∑LA
nA=0

(
LA
nA

)2(
L
L/2

)
= LA ln(2) +

LA
L

+ ln(1− LA
L

)
2 − 1

2

(
2LA
LA

)
(
L
L/2

) . (2.5)

On the r.h.s. of Eq. (2.5), the first two terms are the upper bound for the entanglement
entropy of pure states in theM z = 0 sector [22], while the third term is the generalization
of the correction derived by Page [23] for the M z = 0 sector of a system with conserved
M z. Motivated by the numerical results in Ref. [22], we think of S̄ran

(
LA,

LA
L

)
as an

upper bound for the average entanglement entropy over all eigenstates of any given
physical Hamiltonian, with S̄max

ran ≡ S̄ran
(
L
2 ,

1
2

)
as the maximum. The dashed line in

Fig. 2.1(a) shows S̄ran
(
LA,

LA
L

)
in the thermodynamic limit.

On the opposite (low-entropy) side of physical Hamiltonians one has noninteracting (free)
fermions. Translationally invariant free fermionic Hamiltonians exhibit the same leading
term of the average entanglement entropy as the XX model, Eq. (2.1) with ∆ = λ = 0 [89].
It was proved in Ref. [80] that the leading (volume) term of the average entanglement
entropy over all (i.e., including all particle-number sectors) eigenstates in those models is

S̄free

(
LA,

LA

L

)
= sfree

(
LA

L

)
LA ln 2, (2.6)

with sfree (0) = 1, and 0 < sfree
(
LA
L

)
< 1 for LA/L > 0. In Ref. [80], sfree

(
LA
L

)
was
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computed numerically [dashed-dotted line in Fig. 2.1(a)] and, for LA = L/2, it was found
that sfree

(
1
2

)
= 0.5378(1). Subsequently, it was conjectured that sfree

(
LA
L

)
is universal

for all translationally invariant quadratic fermionic models [87, 89]. The horizontal lines
in Figs. 2.1(b) and 2.1(c) show sfree

(
1
2

)
/S̄max

ran .
In Fig. 2.1(a), we show the average entanglement entropy over all eigenstates within the
half-filled sector of noninteracting fermions, as well as within the zero-magnetization
sector of integrable (∆ = 0.55 and λ = 0) and nonintegrable (∆ = 0.55 and λ = 1) points
of Eq. (2.1), for chains with L = 20. The results at the nonintegrable point are closest to
the thermodynamic limit ones for random pure states. Figure 2.1(b), for LA/L = 1/2,
shows that the small differences seen in Fig. 2.1(a) appear to vanish in the thermodynamic
limit, in agreement with complementary results reported in Ref. [22]. For free fermions,
on the other hand, the results in Fig. 2.1(a) are closest to the thermodynamic limit ones
obtained in Ref. [80] by averaging over all fillings. Figure 2.1(b), for LA/L = 1/2, shows
that the differences seen in Fig. 2.1(a) appear to vanish in the thermodynamic limit as
expected (the zero magnetization sector is the one dominant in the thermodynamic limit
when averaging over all fillings).
The numerical results at the interacting integrable point (∆ = 0.55) in Fig. 2.1(a) are
in between the ones for random pure states and the noninteracting ones. However, the
finite-size scaling analysis reported in Fig. 2.1(c) for LA/L = 1/2 suggests that the
leading term of the average entanglement entropy at ∆ = 0.55 (easy-plane regime) is
very close to, or the same as, the one for noninteracting fermions. As a matter of fact,
finite-size scaling analyses in Fig. 2.1(c) for ∆ = 1.1, 1.45 (easy-axis regime) and ∆ = 1.0
(Heisenberg point, the most symmetric point in the spin-1/2 XXZ model) suggest that
this is true independently of the value of ∆.
The finite-size scaling analyses in Figs. 2.1(b) and 2.1(c) suggest that the qualitatively
new effect of interactions in integrable systems is subleading, as they change the first
subleading term from O(1) in noninteracting models [the leading correction to S̄/S̄max

ran in
Fig. 2.1(b) is ∝ 1/LA] to O(

√
LA) in interacting integrable models [the leading correction

to S̄/S̄max
ran in Fig. 2.1(c) is ∝ 1/

√
LA].

2.4 Diagonal Matrix Elements
In this section, we study expectation values of observables in eigenstates of interacting
integrable and nonintegrable Hamiltonians, referred to in what follows as the eigenstate
expectation values of the observables, in the even-Z2 even-P sector within the M z = 0
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and k = 0 sector (see Sec. 2.2).
In Fig. 2.2, we show the eigenstate expectation values of observables Â and B̂ as functions
of the eigenenergies per site (Eα/L) for different chain sizes at integrable [Figs. 2.2(a)
and 2.2(c)] and nonintegrable [Figs. 2.2(b) and 2.2(d)] points of Hamiltonian (2.1). At
the nonintegrable point, for both observables, one can see in the plots that the support
(maximum spread) of the eigenstate expectation values around each Eα/L (away from
the edges of the spectrum) shrinks upon increasing the chain size L. The scaling of
a quantifier of the support, see the insets in Figs. 2.2(b) and 2.2(d), indicates that
the support vanishes exponentially fast with increasing L. This suggests that, in the
thermodynamic limit, the eigenstate expectation values are described by the smooth
function O(E), which, in turn, is the thermal expectation value of observable Ô at energy
E [2]. Hence, one expects all eigenstate expectation values at the nonintegrable point
away from the edges of the spectrum to be thermal in the thermodynamic limit. On

Figure 2.2 | Eigenstate expectation values (Oαα) vs the eigenstate energies per
site Eα/L for each eigenstate |α〉. We consider local observables Â [(a) and (b),
see Eq. (2.2)] and B̂ [(c) and (d), see Eq. (2.3)] at integrable [(a) and (c), λ = 0] and
nonintegrable [(b) and (d), λ = 1] points of Hamiltonian (2.1). Results are shown
for chains with L = 22, 24, and 26 sites, and are superposed to demonstrate non-
shrinking (shrinking) support in the integrable (nonintegrable) case. ∆ = 0.55 in all plots
(qualitatively similar results were obtained, not shown, for other values of ∆). (Insets) A
quantifier for the support of the eigenstate expectation values, s = max(

∣∣∣Oαα −Oαα

∣∣∣),
where Oαα is the running average over 201 eigenstate expectation values centered at Oαα

and max(·) is taken over the central 50% of the spectrum, plotted as a function of L.
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the other hand, at integrability, Figs. 2.2(a) and 2.2(c) show that the support of the
eigenstate expectation values is wide and does not shrink with increasing system size
[see the insets in Figs. 2.2(a) and 2.2(c)]. The wide nonshrinking support indicates
that at the integrable point ETH is not satisfied, as nonthermal states persist in the
thermodynamic limit. The next question to address at the integrable point is how those
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Figure 2.3 | Normalized 2D histograms of the eigenstate expectation values
as functions of Eα/L. We consider local observables Â [(a) and (b)] and B̂ [(c) and
(d)] at the integrable point (∆ = 0.55 and λ = 0) of Hamiltonian (2.1). We show the
microcanonical average (calculated for L = 26 using δE/L = 0.05) as a solid (red) line.
Results are reported for L = 22 [(a) and (c)] and L = 26 [(b) and (d)].
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eigenstate expectation values are distributed.
In Fig. 2.3, we show the normalized distribution (color coded) of the eigenstate expectation
values for observables Â and B̂ for two different system sizes (L = 22 and 26) at the
integrable point in Fig. 2.2, along with the microcanonical averages (solid lines) for the
respective observables. The microcanonical averages are calculated using the results
from L = 26 in an energy window δE that is small enough to yield a smooth curve
independent of δE. By comparing the results for L = 22 and L = 26 for each observable,
one can see that, despite the large non-vanishing support, the distribution of eigenstate
expectation values (on the y-axis) becomes increasingly peaked (with increasing system
size) about the microcanonical average (further evidence for this is reported in Fig. 2.5).
Similarly, on the x-axis, the distribution becomes increasingly peaked about the center
of the spectrum (Eα/L = 0). The latter occurs because of the known Gaussian behavior
of the density of states in local Hamiltonians [2, 106,107].
In Fig. 2.4, we plot the many-body density of states DOS(Eα) as a function of the energy
per site Eα/L at integrable and nonintegrable points along with Gaussian functions that
have the same mean and variance as the data. The Gaussian functions agree well with
the numerical results. This makes it apparent that, even for the small chains that one
can solve using full exact diagonalization, the density of states is very close to a Gaussian
function (away from the edges of the spectrum). This is true regardless of whether the
Hamiltonian is integrable or not. The insets show that the variances in our calculations
decay as a power law in L, with a power that is close to the expected L−1 behavior. This
shows that, with increasing system size, the overwhelming majority of eigenstates of
local Hamiltonians are at the center of the spectrum (with a vanishing energy per site in
our case). In what follows, we focus our scaling analyses on that region of the spectrum
(Eα/L ' 0).
To quantify the differences seen in Fig. 2.2 between the eigenstate expectation values of
observables in integrable and nonintegrable systems, we study the average of the absolute
value of the eigenstate-to-eigenstate fluctuations [34,36,40]

|δOαα| = |Oαα −Oα+1α+1| , (2.7)

where the index α labels the eigenenergies Eα (sorted in increasing order), and | . . . |
denotes an average over the central 20% of eigenstates. To carry out an accurate
comparison between our results for |δOαα| and the ETH ansatz for quantum chaotic
systems, a modification needs to be introduced to the ansatz in order to tailor it to
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Figure 2.4 | Densities of states (DOS) as functions of Eα/L. We consider chain
lengths L = 18 through L = 26 at integrable [(a), λ = 0] and nonintegrable [(b), λ = 1]
points (∆ = 0.55). The black lines are Gaussian functions with the same mean and
variance as the data. (Insets) Variances of the data vs L, along with power law fits of
the variances to c1L

−c2 .

28



1

2

3

4

∆ = 0.55

∆ = 1.1

18 20 22 24 26
L

8

10

12

Fit(L)

Fit(L)

10
-1

10
4

10
5

10
6

10
-1

10
0

10
-1

(LD)
-0.48

(LD)
-0.49

10
4

10
6

LD

10
-1

10
0

(LD)
-0.48

(LD)
-0.50

|δ
A

α
α

| x
 1

0
2

|δ
B

α
α

| x
 1

0
2

(a) λ = 0 

(c) λ = 0 

(b) λ = 1

(d) λ = 1

Figure 2.5 | Scaling of the average eigenstate-to-eigenstate fluctuations of di-
agonal matrix elements, |δOαα| [see Eq. (2.7)], for Â [(a) and (b)] and B̂ [(c) and (d)]
at two integrable [(a) and (c), λ = 0] and two nonintegrable [(b) and (d), λ = 1] points
of Hamiltonian (2.1). We report results for ∆ = 0.55 and ∆ = 1.1. The symbols show
the numerical results, while the lines depict fits to the functions fit(L) = c1/

√
L+ c2/L

[(a) and (c)] and c1(LD)−c2 [(b) and (d)] for L = 22 through L = 26.

our observables of interest. This modification is related to the fact that we focus on
intensive operators that are defined via extensive sums, as seen in Eqs. (2.2) and (2.3),
in the presence of translational invariance. The Hilbert-Schmidt norm of those operators
scales as 1/

√
L [41], as opposed to the O(1) Hilbert-Schmidt norm one has in mind when

writing Eq. (1.14). As a result, for the diagonal part of our operators Â and B̂, Eq. (1.14)
needs to be rewritten as:

Oαα = O(Eα) + e−S(Eα)/2
√
L

fO(Eα, 0)Rαα . (2.8)

Since we are focusing on the regime Eα/L ' 0, in which S(Eα) ' ln(D) (D is the
dimension of the Hilbert space of the symmetry sector studied), we expect the average
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eigenstate to eigenstate fluctuations of Ô to be ∝ (LD)−1/2. For integrable systems,
on the other hand, the average eigenstate-to-eigenstate fluctuations are expected to be
proportional to 1/

√
L [68].

In Fig. 2.5, we show the finite size scaling of |δAαα| [Figs. 2.5(a) and 2.5(b)] and |δBαα|
[Figs. 2.5(c) and 2.5(d)] at two integrable [Figs. 2.5(a) and 2.5(c), λ = 0] and two
nonintegrable [Figs. 2.5(b) and 2.5(d), λ = 1] points. For the nonintegrable points, we
observe a near perfect scaling ∝ 1/

√
LD for both observables. This is in agreement with

the ETH ansatz and indicates that the scaling is robust against the parameters of the
model and the choice of observables. On the other hand, at integrability, |δAαα| and
|δBαα| exhibit a much slower decay with increasing system size, and also exhibit very
strong finite-size effects. While we expect the decay to be ∝ 1/

√
L [68], this is not the

exponent of the power law we find if we fit the data to c1L
−c2 . Instead, we have fitted

the data to the function fit(L) = c1/
√
L+ c2/L and find a reasonably good agreement.

This suggests that higher powers of 1/
√
L still play an important role in the system sizes

accessible to us through full exact diagonalization.

2.5 Off-Diagonal Matrix Elements
In this section, we study the off-diagonal matrix elements of observables in the eigenstates
of Hamiltonian (2.1). We focus on their distributions, scaling properties, and functional
dependence of |fO(Ē ' 0, ω)|2 on ω, for eigenstates that are in the even-Z2 even-P sector
within the M z = 0 and k = 0 sector (see Sec. 2.2).

2.5.1 Distribution

We first study the distribution of off-diagonal matrix elements of observables Â and
B̂ within 200 energy eigenstates at the center of the spectrum of a chain with L = 26
sites. In this eigenstate window, Ē = (Eα + Eβ)/2 ' 0 and ω = |Eα − Eβ| ' 0. For
nonintegrable systems, this window is small enough to have fO(Ē, ω) approximately
constant, so that the probability distribution of Oα,β is determined by Rα,β.
In Fig. 2.6 we show the probability distributions of Aαβ and Bαβ at integrable and
nonintegrable points of Hamiltonian (2.1), with ∆ = 0.55. At the nonintegrable point,
Figs. 2.6(b) and 2.6(d) clearly show that the numerical results are well described by
Gaussian distributions, as expected. At the integrable point, on the other hand, the
distributions are fundamentally different [Figs. 2.6(a) and 2.6(c)]. While they also
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Figure 2.6 | Probability distributions P (Oαβ) for off-diagonal matrix elements.
We consider observables Â [(a) and (b)] and B̂ [(c) and (d)] at integrable [(a) and (c),
λ = 0] and nonintegrable [(b) and (d), λ = 1] points of Hamiltonian (2.1) with ∆ = 0.55.
We consider 200 energy eigenstates at the center of the spectrum. The insets in (a)
and (c) show the probability distributions P (ln |Oαβ|), along with Gaussian distributions
(continuous lines) with the same mean and variance. The continuous lines in the main
panels in (a) and (c) are the corresponding log-normal distributions. The continuous
lines in panels (b) and (d) are Gaussian distributions with the same mean and variance
as the distributions P (Oαβ).

have approximately zero mean, they exhibit sharp peaks at the origin. Analyses of the
distributions of ln |Oαβ| (shown in the insets) provide a better insight on the distributions
of Oαβ. We find that, for our observables, the ln |Oαβ| distributions have skewed normal-
like shapes [insets in Figs. 2.6(a) and 2.6(c)]. Gaussian distributions with the same
mean and variance as our numerical results for ln |Oαβ|, shown as continuous lines in
the insets, illustrate the Gaussianity and skewness of the ln |Oαβ| distributions. The
corresponding log-normal distributions, shown as continuous lines in the main panels,
capture some of the features observed in the distributions of Oαβ but fail to describe them
quantitatively. Which distribution fully characterizes our results for Oαβ at integrability
remains a question for future studies.
We have also studied the distributions of Aαβ and Bαβ for E = (Eα+Eβ)/2 ' 0 and ω > 0,
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obtaining qualitatively similar results as those shown in Fig. 2.6 for E = (Eα+Eβ)/2 ' 0
and ω ' 0. Next, instead of reporting those distributions for ω > 0, we study the ratio

ΓO(ω) = |Oαβ|2/|Oαβ|
2
, (2.9)

where α and β are eigenstates that satisfy |Ē|/L ≤ 0.025, ω = |Eα−Eβ| takes values that
vary throughout the entire spectrum, and (. . . ) denotes a running average of the relevant
quantity over eigenstates within a small ω window. If Oαβ has a Gaussian distribution
with zero mean, then ΓO(ω) = π/2 irrespectively of model parameters and the observable
considered.
At the nonintegrable point, Figs. 2.7(b) and 2.7(d) show that both ΓA(ω) and ΓB(ω) are
almost indistinguishable from π/2 for ω . 5. Discrepancies from π/2 can be seen for
ω & 5. In this regime, we find in the next section that the variance of the off-diagonal
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Figure 2.7 | Gaussianity test for off-diagonal matrix elements. ΓO [see Eq. (2.9)]
vs ω for observables Â [(a) and (b)] and B̂ [(c) and (d)] at integrable [(a) and (c), λ = 0]
and nonintegrable [(b) and (d), λ = 1] points (∆ = 0.55) and different system sizes. We
compute ΓO using eigenstates that satisfy |Ē|/L ≤ 0.025. The averages |Oαβ| and |Oαβ|2
are calculated with eigenstates in a window δω = 0.175 centered at points in ω separated
by ∆ω = 0.025.
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matrix elements decreases rapidly with increasing ω. For 5 . ω . 8 in Figs. 2.7(b)
and 2.7(d), ΓA(ω) and ΓB(ω) appear converged to results that could signal a small
system-size-independent deviation from the Gaussian distribution prediction. However,
finite-size effects are evident for ω & 8 (where ΓA(ω) and ΓB(ω) decrease with increasing
system size) and could also be affecting the regime 5 . ω . 8. Thus, whether ΓO(ω)
agrees with the Gaussian distribution prediction at high values of ω is something that
requires future investigation. However, for ω . 5, our results are a stringent test of the
Gaussianity of the distributions of Oαβ in the nonintegrable case.
In contrast, at the integrable point, Figs. 2.7(a) and 2.7(c) show that ΓA(ω) and ΓB(ω)
depend on ω, L, and the observable considered. This shows that the distribution of Oαβ

is not Gaussian at any ω. A second point to be highlighted from the behavior of ΓO(ω) at
integrability is that, since ΓO(ω) increases with increasing system size L, |Oαβ|2 decreases
more slowly with increasing L than |Oαβ|

2. Since |Oαβ|2 is the quantity that enters
in fluctuation dissipation relations [2, 29], transport properties [30, 108], and heating
rates under periodic driving [1], in what follows we focus on the scaling of |Oαβ|2 with
increasing system size, and on the smooth function that characterizes the dependence of
|Oαβ|2 on ω.

2.5.2 Variance

In Fig. 2.8, we show normalized distributions (color coded) of log10 |Aαβ|2 and log10 |Bαβ|2

vs ω at integrable and nonintegrable points of Hamiltonian (2.1), for eigenstates that
satisfy |Ē|/L ≤ 0.025. These results were obtained for ∆ = 0.55 in chains with L = 26.
While for all values of ω the distributions are clearly different between the integrable and
nonintegrable cases in that the former have a much broader support, neither of them
have an increasing fraction of matrix elements that vanish with increasing system size as
in quadratic models [29]. This means that one can define a meaningful average |Oαβ|2

for each value of ω, which, given that Oαβ ' 0, is also the variance of Oαβ. In Fig. 2.8,
we also plot the variances of Oαβ. Again, while they are quantitatively different between
the integrable and nonintegrable cases, the overall behavior is qualitatively similar. They
exhibit a slow decay at intermediate values of ω (0.5 . ω . 4) and a fast decay at larger
values of ω.
Next, we study how |Oαβ|2 scales with increasing the system size (and, hence, with
increasing the dimension D of the Hilbert space). In the quantum chaotic case, we expect
the scaling to be the one prescribed by the ETH. However, as we did when studying the
fluctuations of the diagonal matrix elements in Sec. 2.4, we need to update the ETH
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Figure 2.8 | Normalized 2D histograms of log10 |Oαβ|2 vs ω. We consider observables
Â [(a) and (b)] and B̂ [(c) and (d)] at integrable [(a) and (c), λ = 0] and nonintegrable [(b)
and (d), λ = 1] points of Hamiltonian (2.1) with ∆ = 0.55. We consider eigenstates that
satisfy |Ē|/L ≤ 0.025. The solid (red) lines are averages calculated using all the matrix
elements in windows of widths δω = 0.175 centered at points separated by ∆ω = 0.025.
The red dashed lines show the values of ω up to which results for |Oαβ|2 are included in
the scaling analyses of Fig. 2.9.

ansatz to account for the fact that our translationally invariant operators Â and B̂ have a
Hilbert-Schmidt norm that scales as 1/

√
L. The ETH ansatz for the off-diagonal matrix
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Figure 2.9 | Scaling of the variance of off-diagonal matrix elements. We plot
|Aαβ|2 [(a) and (b)] and |Bαβ|2 [(c) and (d)] vs LD at integrable [(a) and (c), λ = 0]
and nonintegrable [(b) and (d), λ = 1] points (∆ = 0.55 and 1.1) of Hamiltonian (2.1).
The straight lines show power-law fits to the results for L = 22 through L = 26. The
average over |Oαβ|2 for different system sizes was calculated using eigenstates that satisfy
|Ē|/L ≤ 0.025. For the integrable cases we used eigenstates with ω < 9 [see the
vertical dashed lines in Figs. 2.8(a) and 2.8(c)], while for the nonintegrable ones we used
eigenstates with ω < 15 [see the vertical dashed lines in Figs. 2.8(b) and 2.8(d)]. These
ranges of ω were the ones populated with matrix elements for the system sizes considered.

elements of Â and B̂ has the form

Oαβ = e−S(Ē)/2
√
L

fO(Ē, ω)Rαβ, (2.10)

where Ē ≡ (Eα + Eβ)/2, ω = Eα − Eβ, and S(Ē) is the thermodynamic entropy at
energy Ē. Since we are focusing on the regime Ē/L ' 0, in which S(Ē) ' ln(D), we
expect |Oαβ|2 ∝ (LD)−1, where D is the dimension of the symmetry sector studied.
Figures 2.9(b) and 2.9(d) show that this is indeed the way |Oαβ|2 scales with increasing
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Figure 2.10 | Smooth functions |fO(Ē ' 0, ω)|2 vs ω. See Eq. (2.11). We use
observables A [(a) and (b)] and B [(c) and (d)] vs ω at integrable [(a) and (c), λ = 0] and
nonintegrable [(b) and (d), λ = 1] points (∆ = 0.55) for different system sizes L. The
straight continuous lines are exponential fits ∝ exp(−aω) to |fO(Ē ' 0, ω)|2 for L = 26.
The insets in (a) and (c) show |fO(Ē ' 0, ω)|2 vs ω2, at high ω, for different system
sizes L. The straight dashed lines are Gaussian fits ∝ exp(−bω2) to |fO(Ē ' 0, ω)|2 for
L = 26.

system size. More remarkably, as shown in Figs. 2.9(a) and 2.9(c), the same is equally
true for the integrable case as conjectured in Ref. [1].
Armed with this knowledge, we can now extract the smooth function |fO(Ē ' 0, ω)|2,
which is independent of system size for nonvanishing values of ω [2], that characterizes
|Oαβ|2. That function, calculated as

|fO(Ē ' 0, ω)|2 = LD |Oαβ|2 , (2.11)

is plotted in Fig. 2.10 for our two observables of interest, at integrable [Figs. 2.10(a)
and 2.10(c)] and nonintegrable [Figs. 2.10(b) and 2.10(d)] points, for the three largest
system sizes studied. As advanced, we obtain nearly perfect data collapse for different
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system sizes. At the nonintegrable point, |fO(Ē ' 0, ω)|2 exhibits finite-size effects for
ω & 10. This is the result of running out of spectrum in our finite-system calculations.
However, Figs 2.10(b) and 2.10(d) show that, with increasing system size, the results
for different values of L agree over a larger range of values of ω. Overall, the results in
Fig. 2.10 strongly suggest that the function |fO(Ē, ω)|2 is a well defined smooth function
of Ē and ω (independent of system size for nonvanishing values of ω) both in interacting
integrable and nonintegrable systems.
Finally, we would like to discuss the decay of |fO(Ē ' 0, ω)|2 for large values of ω, after
the slow decay mentioned before. (The behavior of |fO(Ē ' 0, ω)|2 for very small values of
ω is of much interest, but it is also more challenging to address computationally [2]. It will
not be discussed here.) As shown in Fig. 2.10, at both the integrable and nonintegrable
points, |fA(Ē ' 0, ω)|2 and |fB(Ē ' 0, ω)|2 can be well described by exponentials after
the initial slow decay. This is well known for nonintegrable systems [2], and we find
that it also occurs for integrable ones. However, at the integrable point we find yet
another regime beyond the exponential one. As shown in the insets in Figs. 2.10(a)
and 2.10(c), we find that the final decay of |fA(Ē ' 0, ω)|2 and |fB(Ē ' 0, ω)|2 to zero
(within machine precision) is nearly perfectly Gaussian. Whether a Gaussian decay
occurs at nonintegrable points for larger values of ω than those accessible to us via full
exact diagonalization remains an open question. Upon replotting the |fO(Ē ' 0, ω)|2

data reported in Ref. [40] for the Holstein polaron model, which was shown to be a
quantum chaotic model, we found that it can be well described by a Gaussian decay
(without any exponential part). This suggests that Gaussian decays of |fO(Ē, ω)|2 with
ω are not unique to integrable models.

2.6 Summary
We studied the bipartite von Neumann entanglement entropy and matrix elements of
local operators in highly excited eigenstates of interacting integrable (the spin-1/2 XXZ
chain) and nonintegrable models.
For the average entanglement entropy over all eigenstates in the zero magnetization
sector, we found that the leading term is extensive at interacting integrable points with
a coefficient of the volume-law that is smaller (for nonvanishing ratios LA/L) than the
universal ln 2 coefficient in quantum chaotic models. Finite-size scaling analyses suggested
that the coefficient at LA/L = 1/2, and for arbitrary ratios LA/L (not reported), is
(almost) independent of the XXZ chain anisotropy parameter ∆, and that it is very
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close or equal to that of translationally invariant free fermionic Hamiltonians. Since
the average entanglement entropy over all eigenstates is dominated by eigenstates at
“infinite temperature”, the presence, or lack thereof, of interactions (and their values)
at integrability may play no role in the leading extensive term. What may be essential
is that the system is integrable so that it has an underlying quasiparticle description.
Hence, we find it plausible that all translationally invariant (two-state per site) integrable
models (noninteracting and interacting) have the same average entanglement entropy
for any given ratio LA/L. If this is the case, then one could think of two universality
classes for the average entanglement entropy of all “q-bit” based physical Hamiltonians,
(translationally invariant) free fermions characterizing integrable models and random
matrices characterizing nonintegrable ones.
For the diagonal matrix elements of observables at the center of the spectrum and at
interacting integrable points, we showed evidence that the support does not vanish with
increasing system size and that the average eigenstate to eigenstate fluctuation vanishes
as a power law in system size. At nonintegrable points, however, both the support and the
average eigenstate to eigenstate fluctuation vanish exponentially with increasing system
size. For the off-diagonal matrix elements with Ē = (Eα + Eβ)/2 at the center of the
spectrum, we showed that at interacting integrable points they follow a distribution that
is close to (but not quite) log-normal, and that their variance is a well-defined function
of ω = Eα−Eβ whose magnitude scales as 1/D, where D is the Hilbert space dimension.
The latter is a known property of the off-diagonal matrix elements of observables in
nonintegrable models, which, however, exhibit a Gaussian distribution. We also studied
the smooth function |fO(Ē ' 0, ω)|2 that characterizes the variance and contrasted its
behavior at interacting integrable and nonintegrable points. It was recently argued that
this function can be measured in experiments with periodically driven systems, both
nonintegrable and interacting integrable ones, by studying how heating rates change
when changing the frequency of the drive [1]. An interesting open question is whether
the Bethe ansatz can be used to analytically learn about the smooth function |fO(Ē, ω)|2

in interacting integrable systems. This would open a path for the analytic understanding
of the effect of interactions in the matrix elements of observables in many-body quantum
systems.
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Chapter 3 |
Eigenstate Thermalization in a
Locally Perturbed Integrable Sys-
tem

3.1 Introduction
How do statistical ensembles and thermal behavior emerge from the fundamental unitary
dynamics of isolated quantum systems? This question, first posed in the earliest days of
quantum mechanics [109–111], is still at the forefront of modern research in quantum
statistical mechanics [2, 49, 50]. The current interest in this foundational topic can be
attributed to advances in ultracold atomic experiments where many-body systems can be
time propagated coherently over unprecedented time scales [3–5]. In particular, seminal
experiments have demonstrated that integrability inhibits thermalization [6], and that
integrability breaking perturbations can be used to controllably bring a system to thermal
equilibrium [9]. The latter experimental results are consistent with the expectation that
generic isolated quantum systems thermalize to a microcanonical distribution consistent
with their energy density. The accepted mechanism for this is eigenstate thermalization,
as prescribed by the eigenstate thermalization hypothesis (ETH) (1.14).
Integrable systems, which possess extensive sets of nontrivial conserved quantities, do
not follow the ETH. The diagonal matrix elements of observables exhibit eigenstate to
eigenstate fluctuations that do not vanish in the thermodynamic limit [13,26–28,30,31,45,
56], while their variance vanishes as a power law in the system size [45,66–68]. Because of
this, in general, integrable systems do not thermalize [112]. They do equilibrate and, after
equilibration, they are described by generalized Gibbs ensembles (GGEs) [43,51,55,56].
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For the off-diagonal matrix elements of observables in interacting integrable systems,
it was recently shown that their variance is a well-defined (exponentially small in the
system size) function of the average energy and the energy difference of the eigenstates
involved [1, 45], like in systems that satisfy the ETH.
Integrability is believed to be unstable to perturbations [2]. Surprisingly, it has been
shown that even a single magnetic impurity perturbation at the center of the integrable
spin-1/2 XXZ chain is enough to induce level repulsion and random matrix statistics in
the spectrum [47,113–118]. Recently, a study of both linear response and steady-state
transport showed that this model displays ballistic spin transport [47], challenging our
expectation that quantum chaotic systems (those exhibiting random matrix statistics
in the spectrum) should exhibit diffusive transport. In this chapter we show that the
matrix elements of observables in such a model are fully consistent with the ETH. Unique
to breaking integrability with local perturbations, we argue that statistical mechanics
and transport properties of the unperturbed integrable model can end up embedded in
properties of the eigenstates of the perturbed (quantum chaotic) one.

3.2 Model and Observables
The Hamiltonian of the spin-1/2 XXZ (in short, the XXZ) chain can be written as (we
set ~ = 1):

ĤXXZ =
N−1∑
i=1

(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1 + ∆ σ̂zi σ̂

z
i+1

)
, (3.1)

where σ̂νi , ν = x, y, z, correspond to Pauli matrices in the ν direction at site i in a chain
with N (taken to be even) sites and open boundary conditions. In Eq. (3.1), ∆ is the
anisotropy parameter. We focus on ∆ = 0.55, for which spin transport is ballistic, but
also show results for ∆ = 1.1, for which spin transport is diffusive [119].
The XXZ chain is a quintessential interacting integrable model [104, 120]. We study
properties of its eigenstates along with those of eigenstates of the nonintegrable model
obtained by perturbing it with a magnetic impurity about the center of the chain. This
local perturbation produces an energy spectrum with a Wigner-Dyson distribution of
nearest-neighbor level spacings [47, 113–115,117,118]. The single-impurity Hamiltonian
has the form

ĤSI = ĤXXZ + h σ̂zN/2, (3.2)

where h is the strength of the magnetic impurity. We henceforth set h = 1 so that all
energy scales in our perturbed Hamiltonian are O(1).
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Both Hamiltonians of interest in this chapter, Eqs. (3.1) and (3.2), commute with the
total magnetization operator in the z direction, [ĤXXZ,

∑
i σ̂

z
i ] = [ĤSI,

∑
i σ̂

z
i ] = 0, so they

are U(1) symmetric. We focus on the zero magnetization sector, ∑i 〈σ̂zi 〉 = 0, which is
the largest sector. Reflection symmetry is present in ĤXXZ. We explicitly break it by
adding a very weak magnetic field at site i = 1, h1 = 10−1 (like open boundary conditions,
this perturbation does not break integrability [113]). We use state of the art full exact
diagonalization, and study chains with up to N = 20 sites, for which the Hilbert space
dimension D = N !/[(N/2)!]2 = 184 756.

3.3 Diagonal ETH
Let us first study the diagonal matrix elements of two related local observables. We
choose the local kinetic energy at site i = N/4 (far away from the boundary and the
impurity),

K̂ ..= K̂N
4 ,
N
4 +1 =

(
σ̂xN

4
σ̂xN

4 +1 + σ̂yN
4
σ̂yN

4 +1

)
, (3.3)

and the total kinetic energy per site, the average local kinetic energy, defined as

T̂ ..= 1
N

N−1∑
i=1

(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
. (3.4)

The contrast between the two shows the effect of averaging in nontranslation invariant
systems. Qualitatively similar results were obtained for other local observables.
In Fig. 3.1, we show the diagonal matrix elements of K̂ and T̂ in the eigenstates of the
Hamiltonians in Eqs. (3.1) and (3.2). The results are plotted as functions of the energy
density defined as εn ..= En − Emin/Emax − Emin, where En is the nth energy eigenvalue,
and Emin (Emax) is the lowest (highest) energy eigenvalue. Despite the quantitative
differences in the behavior of the two observables in each model (at each energy, the
spread of Tnn is smaller than that of Knn), they both exhibit a qualitatively similar
behavior depending on whether the model is integrable (ĤXXZ) or nonintegrable (ĤSI).
In the integrable model, the spread of Tnn and Knn at each energy does not change with
changing system size (the system does not satisfy the ETH), while in the nonintegrable
model it decreases exponentially fast with increasing N [away from the edges of the
spectrum, see insets in Figs. 3.1(b) and 3.1(d) for a variance indicator] suggesting that
Tnn and Knn satisfy the ETH [115,116].
Since the single impurity is a subextensive local perturbation to the XXZ chain, it does
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Figure 3.1 | Diagonal matrix elements and equivalence of microcanonical pre-
dictions. Diagonal matrix elements of operators T̂ [(a), (b)] and K̂ [(c), (d)] in the
eigenstates of ĤXXZ [(a), (c)] and ĤSI [(b), (d)] (∆ = 0.55). The black lines show
microcanonical averages (within windows with δεn = 0.008) in ĤXXZ for the largest
chain (N = 20). The insets in (a) and (c) show the equivalence of the microcanonical
predictions in both models for each observable, while the insets in (b) and (d) show
the (ND)−1/2 and D−1/2 scalings, respectively, of |δOnn| ..= |Onn −On+1n+1| (the dashed
lines are ∝ x−1/2), where we average over the central 20% of the eigenstates in chains
with N = 10, 12, . . . , 20.

not affect the microcanonical predictions (away from the edges of the spectrum) for
local observables (away from the impurity) in sufficiently large system sizes. This is
confirmed in the insets in Figs. 3.1(a) and 3.1(c). Hence, a remarkable consequence of
the single impurity producing eigenstate thermalization (something that is achieved via
mixing nearby unperturbed energy eigenstates) is that the smooth functions Tnn and
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Knn are nothing but the microcanonical ensemble predictions for the integrable model.
Another interesting consequence of it is that if one evolves highly excited eigenstates
of ĤSI under the integrable dynamics generated by ĤXXZ, thermalization will occur
at long times (as in the limit of vanishingly small but extensive integrability breaking
perturbations [112,121]).

3.4 Off-diagonal ETH

Next we study the off-diagonal matrix elements of the total kinetic energy per site T̂
[Eq. (3.4)], and of the spin current operator per site Ĵ ,

Ĵ ..= 1
N

N−1∑
i=1

(
σ̂xi σ̂

y
i+1 − σ̂

y
i σ̂

x
i+1

)
. (3.5)

Since T̂ and Ĵ have Hilbert-Schmidt norms that scale as 1/
√
N , the off-diagonal part of

the ETH needs to be modified to read [41,45]

Onm = e−S(Ē)/2
√
N

fO(Ē, ω)Rnm. (3.6)

We focus on the “infinite-temperature” regime, in which Ē ≈ 0 and S(Ē) ≈ lnD.
In Figs. 3.2(a) and 3.2(b), we show the off-diagonal matrix elements |Tnm|2 in the XXZ
and single-impurity models, respectively. As expected, their overall dispersion is larger
in the former (integrable) model than the latter (nonintegrable) one. For both models,
Figs. 3.2(a) and 3.2(b) show that the coarse-grained average |Tnm|2 (which corresponds
to the variance of the off-diagonal matrix elements as Tnm = 0) is a smooth function of
ω [45]. In Ref. [45], it was shown that the variance of the off-diagonal matrix elements of
observables like the ones of interest here satisfies |Onm|2 ∝ (ND)−1 both for integrable
interacting and nonintegrable models. Figures 3.2(c) and 3.2(d) for |Tnm|2, and Figs. 3.2(e)
and 3.2(f) for |Jnm|2, show that such a scaling is satisfied by our observables in the XXZ
and single-impurity models.
Figures 3.2(c) and 3.2(d) [Figs. 3.2(e) and 3.2(f)] also show that the variances |Tnm|2

(|Jnm|2) are very similar in the two models (the differences are consistent within present
finite-size effects). For |Jnm|2, see insets in Figs. 3.2(e) and 3.2(f), the similarity extends
to features that occur at low frequencies (see also Fig. 3.4). This opens the question of
whether there is any difference between the off-diagonal matrix elements of observables
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Figure 3.2 | Off-diagonal matrix elements and their scaled variances. [(a),
(b)] Off-diagonal matrix elements of T̂ , and the corresponding coarse-grained average
[continuous (black) line], plotted vs ω for chains with N = 18. [(c), (d)] Coarse-grained
averages of Tnm, including the ones reported in (a) and (b), for different chain sizes. [(e),
(f)] Coarse-grained averages of Jnm for different chain sizes (the insets show results at low
ω, see also Fig. 3.4). The left panels [(a), (c), and (e)] show results for ĤXXZ, while the
right ones [(b), (d), and (f)] show results for ĤSI (∆ = 0.55). The matrix elements were
computed within a small window of energy around Ē ≈ 0 (center of the spectrum) of
width 0.05ε (0.075ε for the insets), where ε ..= Emax −Emin. The coarse-grained averages
were computed using a window δω = 0.1 [δω = 0.075 and δω = 0.01 for the insets in (e)
and (f), respectively].
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Figure 3.3 | Gaussianity test of off-diagonal matrix elements. ΓÔ(ω), see Eq. (3.7),
for the total kinetic energy per site [(a), (b)] and for the current operator [(c), (d)], in
the XXZ [(a), (c)] and single-impurity [(b), (d)] models (∆ = 0.55). The horizontal line
in (b) and (d) marks π/2. The matrix elements were computed using the same energy
window as in Fig. 3.2, while the coarse-graining parameter is δω = 0.05.

in both models.
We find that the off-diagonal matrix elements of observables are normally distributed
in the single-impurity model (qualitatively similar results have been obtained in other
nonintegrable models [35, 37, 45]), while they are close to log-normally distributed in the
XXZ chain [45]. To test the normality of the distribution in the single-impurity model for
different values of ω, and to contrast it to the results for the XXZ chain, we compute [45]

ΓÔ(ω) ..= |Onm|2/|Onm|
2
. (3.7)

ΓÔ = π/2 for normally distributed matrix elements.
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In Fig. 3.3, we show results for ΓT̂ (ω) [Figs. 3.3(a) and 3.3(b)] and ΓĴ(ω) [Figs. 3.3(c)
and 3.3(d)] in the XXZ [Figs. 3.3(a) and 3.3(c)] and single-impurity [Figs. 3.3(b)
and 3.3(d)] models. For all values of ω shown in Figs. 3.3(b) and 3.3(d) for the single-
impurity model, ΓT̂ (ω) and ΓĴ(ω), respectively, approach π/2 as N increases, i.e., Tnm
and Jnm are well described by a normal distribution. On the other hand, in Figs. 3.3(a)
and 3.3(c) for the XXZ model, ΓT̂ (ω) and ΓĴ(ω), respectively, depend on the system size,
i.e., Tnm and Jnm are not normally distributed.
The results discussed so far for the matrix elements of local operators in the single-
impurity model show that they are fully consistent with the ETH. The fact that the
off-diagonal matrix elements are normally distributed (the variance sets all central
moments) means that one can define a meaningful fO(Ē, ω), while this is not the case for
the XXZ chain. The question we address next is related to the ballistic spin transport in
the single-impurity model [47], which is in stark contrast to the usual diffusive transport
found in nonintegrable models.

3.5 Ballistic Transport
Within linear response, the real part of the conductivity reads (kB = 1) [119,122–125]

Re[σN(ω)] = πDNδ(ω) + π

N

(
1− e−βω

ω

) ∑
εn 6=εm

pn|Jnm|2δ(εm − εn − ω), (3.8)

where DN is known as the Drude weight, β is the inverse temperature, pn = e−βEn/Z

is the Boltzmann weight of eigenstate |n〉, and Z is the partition function. Jnm are the
matrix elements of the spin current operator. In integrable systems with open boundary
conditions (e.g., our XXZ chain), DN can be proved to be identically zero no matter
the nature of the spin transport [125]. When transport is ballistic, a peak (or peaks)
appear in Re[σN(ω)] at a nonzero frequency (frequencies) proportional to 1/N . When
N → ∞, the peak (peaks) move toward ω → 0 resulting in a peak in Re[σN(ω = 0)]
that signals ballistic transport [125]. Exactly the same was shown to occur in our single
impurity model in Ref. [47]. Therefore, in our integrable and nonintegrable models
ballistic transport emerges because of the ω → 0 behavior of the off-diagonal matrix
elements of the current operator.
In Fig. 3.4(a), we show the scaled variances of the matrix elements of Ĵ in XXZ chains
with N = 16, 18, and 20 as functions of Nω for ∆ = 0.55. A large peak can be seen at
a frequency that scales as 1/N whose area does not change with increasing N . This is
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Figure 3.4 | Ballistic scaling of off-diagonal matrix elements. Scaled variances of
the off-diagonal matrix elements of Ĵ in the eigenstates of ĤXXZ (a) and ĤSI (b) plotted
vs Nω. The main panels (insets) show results for ∆ = 0.55 (∆ = 1.1). The matrix
elements were computed within a small window of energies around Ē ≈ 0 of width 0.075ε.
For the binned averages, we used δω = 0.075 in (a) and δω = 0.01 in (b).

consistent with the behavior of Re[σN (ω)] [47,125] signaling coherent transport [126]. The
position of the smaller (second) peak is nearly N independent [see inset in Fig. 3.2(e)],
appearing to mark the onset of the N -independent behavior shown in Fig. 3.2. The
variances of the matrix elements of Ĵ in the (nonintegrable) single-impurity model,
which, remarkably, define a novel N -independent ETH function |fJ(Ē ≈ 0, Nω)|2/N
[Fig. 3.4(b)], display the same low-frequency behavior as in the (integrable) XXZ chain.
In contrast, as shown in the insets in Fig. 3.4, the scaled variances of the matrix elements
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of Ĵ behave completely differently for ∆ = 1.1 (for which spin transport is diffusive).
The nature of the spin transport in the absence and presence of the single magnetic
defect, for ∆ in the easy-plane and easy-axis regimes, is something that can readily be
probed in ultracold gases experiments [127].

3.6 Summary
We showed that the ETH is fully fulfilled when breaking integrability with a local
perturbation and that, in such setups, it can inherit statistical mechanics and transport
properties of the integrable model. Specifically, we showed that the diagonal matrix
elements of observables in the perturbed energy eigenstates can follow the microcanonical
predictions for the integrable model, and that ballistic transport in the integrable
model can result in a novel N -independent ETH function |fJ(Ē ≈ 0, Nω)|2/N that
characterizes the off-diagonal matrix elements of the current operator in the perturbed
energy eigenstates at low frequencies.
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Chapter 4 |
Eigenstate thermalization for ob-
servables that break Hamiltonian
symmetries and its counterpart in
interacting integrable systems

4.1 Introduction
The emergence of thermalization under unitary dynamics in generic isolated quantum
systems has been intensively explored over the past decade [2, 49, 50, 128]. On the
experimental side, where high levels of control and isolation in ultracold atomic gases
have recently enabled the study of quantum dynamics over long time scales [3–5], both
thermalization and the lack thereof have been observed in chaotic [9–12] and (near-
)integrable [6–9] quantum systems, respectively. Thermalization in quantum chaotic
systems is generally understood in the context of the eigenstate thermalization hypothesis
(ETH) [2, 13,64, 65]. On the integrable side, thermalization is precluded by an extensive
set of local conserved quantities, though equilibration in these systems has also been
the subject of much interest [43,56,61–63]. As the outcomes of quantum dynamics are
ultimately determined by properties of matrix elements, the content of the ETH is usually
expressed through a matrix-element ansatz for few-body operators (observables) in the
eigenstates of chaotic Hamiltonians (1.14) [2, 24].
In quantum integrable systems, the presence of extensive sets of local conserved quantities
is manifest in the properties of the matrix elements of observables. It is known that the
diagonal matrix elements have both a support that does not vanish in the thermodynamic
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limit and average fluctuations that decay as a power law in system size [26–28,30,31, 36,
41,44,45,56,66–68,129], and thus defy Eq. (1.14). In an interacting integrable system
(the spin-1/2 XXZ chain), the off-diagonal matrix elements were recently found to be
nearly log-normally distributed [45]. In addition, it was found that the variance is a
smooth function of ω (for Ē at the center of the spectrum) that scales as prescribed
by the ETH (as a result, it can also be probed experimentally by measuring heating
rates in periodically driven systems [1]). The scaling of other moments, of course, is not
determined by the scaling of the variance, which means that there is no equivalent of the
off-diagonal part of Eq. (1.14) in integrable models.
Using that in interacting integrable systems one can define a smooth scaled variance
VO(Ē, ω) ≡ eS(Ē)Var(Oαβ) [45], recent works have unveiled properties of that function at
low values of ω (for Ē at the center of the spectrum of spin-1/2 lattice Hamiltonians,
Ē ≈ 0) [42, 130–132]. Via the computation of the adiabatic gauge potential (AGP)
norm, in Ref. [42] it was shown that at exponentially small (in system size) frequencies
VO(0, ω) vanishes for observables that do not break integrability if added as perturbations
to the Hamiltonian, while it scales as in quantum chaotic models for observables that
do. Such behaviors were observed in Ref. [131] at frequencies that are polynomially
small in the system size. In the latter work it was also shown that observables for
which VO(0, ω → 0) scales as in quantum chaotic models do not exhibit eigenstate
thermalization at integrability.
By now, several studies have explored properties of the off-diagonal matrix elements of
observables in quantum chaotic [2,13,27–30,35,37,39,40,42,45,130–136] and integrable [27–
29, 35, 42, 45, 130–136] models. In this chapter we contribute to that existing body of
literature by studying the off-diagonal matrix elements (in the energy eigenbasis) of
observables that break symmetries of the Hamiltonian. Specifically, we study the
off-diagonal matrix elements of observables that break translational symmetry in the
eigenstates of translationally invariant Hamiltonians. This means that the off-diagonal
matrix elements are nonvanishing between eigenstates from different total quasimomentum
sectors. We are not aware of previous studies of the structure of such matrix elements.
We compute these matrix elements in the eigenstates of both a quantum-chaotic model
and an interacting integrable model, for average energies at the center of the spectrum.
In the quantum-chaotic model, we find that the off-diagonal matrix elements exhibit
all of the properties prescribed by the ETH. We also find that finite-size effects are
larger in matrix elements that connect eigenstates from different total quasimomentum
sectors (the overwhelming majority of the matrix elements) than in matrix elements that
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connect eigenstates from the same quasimomentum sector. Since, for eigenstates from the
same quasimomentum sector, the matrix elements of operators that break translational
symmetry are identical to those of the corresponding translationally invariant operator,
another way to phrase the latter finding is that non-translationally invariant observables
exhibit larger finite-size effects than their translationally invariant counterparts. In the
interacting integrable model, we find that the distribution of the matrix elements of the
non-translationally invariant observables is skewed log-normal-like with zero mean and a
variance that scales as 1/D (D is the Hilbert space dimension), as found in Ref. [45] for
translationally invariant observables.
Another major goal of this chapter is to understand the low-frequency behavior of the
scaled variances. For quantum-chaotic systems, for which the ETH (1.14) is expected
to be valid, we refer to the scaled variances as |fO(Ē, ω)|2. For integrable systems, for
which there is no well defined fO(Ē, ω) function (the scaling of the moments of the
distribution of Oαβ is not determined by the scaling of the variance, as mentioned before),
we refer to the scaled variances as VO(Ē, ω). We focus on Ē at the center of the spectrum
(Ē ≈ 0), which is where the overwhelming majority of matrix elements is located in our
local Hamiltonians. In the quantum-chaotic model, we find |fO(0, ω)|2 to be consistent
with random matrix theory, namely, to exhibit a plateau as ω → 0 (with a diffusive
scaling) [2]. In the interacting integrable model, we find the behavior and scaling of
VO(0, ω) to be rich and observable dependent. For matrix elements that connect energy
eigenstates from within the same total quasimomentum sector, we find two possible
behaviors as ω → 0. Either VO(0, ω) goes to a nonzero value proportional to L (as
in quantum-chaotic models), or it vanishes. For matrix elements that connect energy
eigenstates from different quasimomentum sectors, we find that VO(0, ω) always goes to
a nonzero value proportional to L. Hence, there are observables for which the ω → 0
behavior of VO(0, ω) is qualitatively different between matrix elements that connect energy
eigenstates from the same quasimomentum sector and those that connect eigenstates
from different quasimomentum sectors. In Sec. 4.4, we discuss the connection between
these findings and the results in Refs. [42, 130–132].
The presentation is organized as follows: In Sec. 4.2, we introduce the spin-1/2 chains
and the specific observables studied, and discuss details of our numerical calculations. In
Sec. 4.3, we report our results for the off-diagonal matrix elements of observables in the
quantum-chaotic model, which include a characterization of their distributions and the
study of their variances. In Sec. 4.4, we carry out a parallel analysis for the interacting
integrable model. In Sec. 4.5, we summarize our results.
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4.2 Model
We study the same spin-1/2 chains as in Chapter 2, namely, the XXZ chain with the
addition of next-nearest neighbor interactions and periodic boundary conditions. The
Hamiltonian reads

Ĥ =
L∑
i=1

[1
2
(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
+ ∆Ŝzi Ŝzi+1

]

+λ
L∑
i=1

[1
2
(
Ŝ+
i Ŝ
−
i+2 + H.c.

)
+ 1

2 Ŝ
z
i Ŝ

z
i+2

]
, (4.1)

where Ŝνi are spin-1/2 operators in the ν ∈ {x, y, z} directions on site i (represented by
Pauli matrices), Ŝ±i = Ŝxi ± iŜ

y
i are the corresponding ladder operators, and L is the

number of lattice sites. ∆ is the so-called anisotropy parameter in the XXZ chain, and
λ 6= 0 breaks the integrability of the XXZ chain [105]. In Sec. 4.3, we set λ = 1 to study
matrix elements of Hamiltonian (4.1) in the quantum-chaotic regime, while in Sec. 4.4
we set λ = 0 to study matrix elements at integrability. We mostly compare results for
∆ = 0.55 (easy-plane regime of the XXZ chain) and ∆ = 1.1 (easy-axis regime of the
XXZ chain).
To study the matrix elements of observables in the energy eigenstates of Hamiltonian (4.1),
it is important to resolve all of its symmetries [2,28]. First, we note that the Hamiltonian
commutes with M̂ z = ∑

i Ŝ
z
i , which is the total magnetization in the z-direction. We

focus on the zero magnetization sector of chains with an even number of lattice sites.
This sector has an additional spin inversion (Z2) symmetry; we focus on the even-Z2

sector. Next, translational symmetry allows us to block-diagonalize the Hamiltonian in
different total quasimomentum k sectors. Lastly, within the k = 0 and π sectors, we
resolve the space reflection (P ) symmetry.
We study the matrix elements of three local operators that break the translation symmetry
of Hamiltonian (4.1): the nearest neighbor z-interaction

Ûn = Ŝz1 Ŝ
z
2 , (4.2)

the next-nearest neighbor z-interaction

Ûnn = Ŝz1 Ŝ
z
3 , (4.3)
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and the next-nearest neighbor flip-flop operator

K̂nn = Ŝ+
1 Ŝ
−
3 + Ŝ+

3 Ŝ
−
1 . (4.4)

These local operators connect all total quasimomentum sectors of the Hamiltonian. Since
the Hamiltonian is translationally invariant, the sites used to define Ûn, Ûnn, and K̂nn do
not influence the results.
The first important consequence of the translational symmetry of the Hamiltonian is
that the diagonal matrix elements of Ûn, Ûnn, and K̂nn (referred to in what follows
as “symmetry-breaking” operators) are identical to the diagonal matrix elements of
the corresponding translationally invariant operators (referred to in what follows as
“symmetry-preserving” operators)

ÛT
n = 1

L

L∑
i=1

Ŝzi Ŝ
z
i+1, (4.5)

ÛT
nn = 1

L

L∑
i=1

Ŝzi Ŝ
z
i+2, (4.6)

K̂T
nn = 1

L

L∑
i=1

(
Ŝ+
i Ŝ
−
i+2 + Ŝ+

i+2Ŝ
−
i

)
. (4.7)

In addition, within a given total quasimomentum sector, the off-diagonal matrix elements
of Ûn, Ûnn, and K̂nn are identical to those of ÛT

n , ÛT
nn, and K̂T

nn, respectively.
The diagonal and the off-diagonal matrix elements of symmetry-preserving operators
were studied in detail (within the k = 0 sector) in Ref. [45] (reproduced in Chapter 2).
In this chapter our focus will be on off-diagonal matrix elements. In our discussions,
by way of comparing the set of all matrix elements with the set of matrix elements
that connect energy eigenstates from the same quasimomentum sector, we contrast the
behaviors of matrix elements of the symmetry-breaking operators with those of their
symmetry-preserving counterparts, respectively.
The off-diagonal matrix elements (Oαβ) of symmetry-breaking operators in the energy
eigenstates are obtained using full exact diagonalization within the even-Z2 sector of the
M z = 0 sector (with dimension De

Z2) that, in turn, is split in L total quasimomentum
k sectors. Whenever kα or kβ are neither 0 nor π, one generally has Oαβ 6= 0. For the
off-diagonal matrix elements within the k = 0, π sectors and between them, for which
space reflection symmetry is resolved, we remove from our analyses the blocks of matrix
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elements that are zero 1. We note that, when reporting the kα = kβ results for Oαβ, we
exclude the k = 0 and π sectors (two out of L sectors) due to the extra symmetry present
in those sectors.
The dimension D of the Hilbert space used in our normalization for each observable is
the square root of the total number of matrix elements that do not vanish for symmetry
reasons. Since the number of blocks with vanishing off-diagonal matrix elements is only
O(1), D ' De

Z2 . We carry out calculations for chains with up to L = 22, including all
quasimomentum sectors. For matrix elements that connect eigenstates from the same
quasimomentum sectors, we carry out calculations up to L = 24. For our low-frequency
analyses, we also report results for the k = 0, even-P , even-Z2 sector up to L = 26 [45].

4.3 Quantum-Chaotic Chain
In this section, we study the off-diagonal matrix elements of our observables of interest
in the eigenstates of Hamiltonian (4.1) with ∆ = 0.55, 1.1, and λ = 1. We focus on the
regime Ē = (Eα + Eβ)/2 ≈ 0, namely, on average energies at the center of the spectrum
(the so-called infinite-temperature regime).

4.3.1 Distributions

Here we characterize the distribution of |Oαβ|. We take the absolute value because Oαβ

is complex whenever kα or kβ are neither 0 nor π. In addition to considering Ē ≈ 0, we
first focus on the regime in which ω = |Eα − Eβ| ≈ 0. In the context of the ETH ansatz,
|fO(Ē, ω)| exhibits a plateau in this regime [2], and the distribution of |Oαβ| is expected
to be the same as in random matrix theory.
Figure 4.1 shows the probability distributions of |(Un)αβ| [(a), (b)] and |(Unn)αβ| [(c),
(d)] for Hamiltonian (4.1) with ∆ = 0.55, in a chain with L = 22 (qualitatively similar
results were obtained, not shown, for |(Knn)αβ|). Figures 4.1(a) and 4.1(c) show the
distributions for pairs of energy eigenstates with kα = kβ, and Figs. 4.1(b) and 4.1(d)
show the distributions for pairs that connect all quasimomentum sectors. In all panels in
Fig. 4.1 we also show half-normal distributions, for which the variances are the same as
those of the numerical results, as continuous black lines.

1Within the k = 0 (k = π) sector, the off-diagonal matrix elements vanish between blocks with
different parity (under space reflection). Between the k = 0 and π sectors, the off-diagonal matrix
elements of Ûn vanish between blocks with different parity, while they vanish for Ûnn and K̂nn between
blocks with the same parity.
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Figure 4.1 | Probability distributions P (|Oαβ|) for off-diagonal matrix elements.
We consider observables Ûn [(a), (b)] and Ûnn [(c), (d)] for Hamiltonian (4.1) with
∆ = 0.55 (similar results were obtained for ∆ = 1.1) and λ = 1 (quantum-chaotic regime).
We consider pairs of energy eigenstates for which |Ē|/L ≤ 0.025, and choose the 40,000
matrix elements with the lowest ω (this results in ω ≤ 0.001). We show results for matrix
elements with kα = kβ (excluding the k = 0 and π sectors, we do the same in all plots
that follow) [(a), (c)] and matrix elements that mix all quasimomentum sectors [(b), (d)],
in the L = 22 chain. The continuous lines are half-normal distributions with the same
variance as the distributions P (|Oαβ|).

Overall, the results in Fig. 4.1 show that |(Un)αβ| and |(Unn)αβ| are normally distributed
regardless of whether one looks at eigenstate pairs for which kα = kβ (i.e., at symmetry-
preserving operators) or at all eigenstate pairs (i.e., at symmetry-breaking operators). A
comparison between the results in the left columns (kα = kβ) and the right columns (all
eigenstate pairs) of Fig. 4.1 suggests that the variances of the distributions are generally
different between the symmetry-preserving and the symmetry-breaking versions of any
given observable, and that the magnitude of the difference depends on the observable.
We continue to explore those observations in the next subsections.
Next, we probe the Gaussianity of the distributions of matrix elements for ω > 0. For
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that purpose we calculate the ratio [45]

ΓO(ω) = |Oαβ|2/|Oαβ|
2
. (4.8)

In Eq. (4.8), (. . . ) denotes a coarse-grained average (over small δω windows) for pairs of
energy eigenstates that satisfy |Ē|/L ≤ 0.025. If Oαβ has a Gaussian distribution with
zero mean, then ΓO(ω) = π/2. ΓO(ω) has been computed recently for various models and
observables [45, 130,131,135], as the normality of the distribution of off-diagonal matrix
elements of observables has started to be used to identify the occurrence of eigenstate
thermalization.
In Fig. 4.2(a), we show ΓUnn(ω) for matrix elements that connect energy eigenstates with
the same quasimomentum (kα = kβ) and, in Fig. 4.2(b), we show ΓUnn(ω) for matrix
elements that connect all sectors. The results in Fig. 4.2(a) appear to have converged to
ΓUnn(ω) = π/2, with deviations at large values of ω occurring because of finite-size effects
(the curves move toward π/2 with increasing L). Figure 4.2(b) contains deviations from
Gaussianity (small bumps) for ω < 6, but overall exhibits the same behavior as Fig. 4.2(a).
Both other observables we studied (Ûn and K̂nn) exhibited qualitatively similar behaviors
for both sets of matrix elements, indicating that, for the chain sizes accessible to us: (i)
the distributions of matrix elements appear to be Gaussian at all frequencies and (ii)
finite-size effects (in the form of deviations from Gaussianity at intermediate values of ω)
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Figure 4.2 | Gaussianity test of off-diagonal matrix elements. ΓUnn [see Eq. (4.8)]
at a nonintegrable point (λ = 1) of Hamiltonian (4.1) with ∆ = 0.55 for different chain
sizes (similar results were obtained for ∆ = 1.1). We show results for pairs of energy
eigenstates with kα = kβ (a) and pairs that mix all quasimomentum sectors (b). All
pairs of eigenstates satisfy |Ē|/L ≤ 0.025. The averages |(Unn)αβ| and |(Unn)αβ|2 were
coarse-grained in windows of width δω = 0.025.
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are stronger for symmetry-breaking observables than for symmetry-preserving ones.
In Ref. [45], for translationally invariant observables within the k = 0 quasimomentum
sector, a small nearly L-independent deviation in ΓO(ω) from π/2 was observed for
5 . ω . 8 (for the chain sizes available). That deviation was argued to be consistent with
strong finite-size effects. In Fig. 4.2(a), which includes results from all pairs of energy
eigenstates with kα = kβ, one can see that ΓUnn(ω) approaches π/2 with increasing L
in that frequency regime. This further strengthens the case that the deviations from
Gaussianity seen in Ref. [45] for translationally invariant observables are the result of
finite-size effects. In Fig. 4.2(b), and for Ûn and K̂nn (not shown), we see similar small
nearly L-independent deviations from π/2. No such deviations have been observed
in recent full exact diagonalization calculations in systems with broken translational
symmetry [130, 131], so we attribute them here to strong finite-size effects for symmetry-
breaking observables in our translationally invariant energy eigenstates. To further test
this, we performed calculations for larger [but still O(1)] values of λ and found that the
deviations from π/2 decrease deeper in the quantum chaotic regime.

4.3.2 Variances

Next we study the behavior of the off-diagonal matrix elements and their variances as
functions of the frequency ω, as well as the scaling of the variances with system size.
Since the average Oαβ = 0, the variances are given by the averages |Oαβ|2, namely,
Var(Oαβ) = |Oαβ|2.
In Fig. 4.3, we visualize the distribution of log10 |(Unn)αβ|2 as a function of ω using
normalized 2D histograms for matrix elements between pairs of energy eigenstates
with kα = kβ [Fig. 4.3(a)] and between pairs that connect all quasimomentum sectors
[Fig. 4.3(b)]. In both panels, we have included matrix elements for pairs of energy
eigenstates for which Ē/L ≤ 0.025, and used ∆ = 0.55 for chains with L = 22. The
results are qualitatively similar in Fig. 4.3(a) and 4.3(b), and they are qualitatively
similar to the results for translationally invariant operators in the k = 0 sector reported
in Ref. [45]. This reveals that the matrix elements of symmetry-breaking operators are
not qualitatively affected by the block diagonal structure of the Hamiltonian matrix.
In Fig. 4.3, we also plot the variances |(Unn)αβ|2 (solid lines) vs ω for the two sets of
matrix elements considered. Comparing these variances makes apparent that they are
qualitatively similar, but quantitatively different. The differences are best seen for ω . 5.
For ω & 5, both variances exhibit a similar exponential decay. Qualitatively similar
results were obtained, not shown, for Ûn and K̂nn.
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Figure 4.3 | Normalized 2D histograms of log10 |(Unn)αβ|2 vs ω. We consider a
nonintegrable (λ = 1) point of Hamiltonian (4.1) with ∆ = 0.55 for L = 22 (qualitatively
similar results were obtained for ∆ = 1.1). We consider pairs of energy eigenstates
with kα = kβ (a) and pairs that mix all quasimomentum sectors (b). All pairs of
energy eigenstates satisfy |Ē|/L ≤ 0.025. The (red) solid lines are running averages
log10 |(Unn)αβ|2 calculated in windows of width δω = 0.175 centered at points separated
by ∆ω = 0.025. The vertical dashed lines show the values of ω up to which results for
|Oαβ|2 are included in the scaling analysis of Fig. 4.4.

Next, we study the scaling of the variances. Figure 4.4 shows |(Un)αβ|2 [(a), (b)] and
|(Unn)αβ|2 [(c), (d)] for ∆ = 0.55, 1.1 in chains with L = 16 − 22. The averages are
calculated over frequencies ω < 4 (qualitatively similar results were obtained averaging
over other intervals of frequencies, see also Ref. [45]). The ETH ansatz (1.14) advances
that the variances should scale as 1/D in the “infinite-temperature” regime, where
eS(Ē) ' D. The results in Fig. 4.4 confirm that the variances for both observables and
both sets of matrix elements (those for which kα = kβ [(a), (c)] and those that connect all
k-sectors [(b), (d)]) scale as 1/D. In this respect, matrix elements of symmetry-breaking
observables are no different than those of symmetry-preserving ones, despite the fact
that the latter are nonvanishing only for kα = kβ.
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Figure 4.4 | Scaling of the variance of off-diagonal matrix elements. We plot
|(Un)αβ|2 [(a), (b)] and |(Unn)αβ|2 [(c), (d)] vs D at the nonintegrable (λ = 1) point of
Hamiltonian (4.1) with ∆ = 0.55 and 1.1. We consider pairs of energy eigenstates with
kα = kβ [(a), (c)] and pairs that mix all quasimomentum sectors [(b), (d)]. The straight
lines show power-law fits to the results for L = 18 through L = 22. The average over
|Oαβ|2 for different chain sizes was calculated using pairs of energy eigenstates that satisfy
|Ē|/L ≤ 0.025. We restricted the average to pairs of eigenstates for which ω < 4, the
regime in which the variances exhibit a plateau-like behavior in Fig. 4.3 (see Ref. [45] for
scalings when one averages over all frequencies).

4.3.3 Scaled Variances

The results in Fig. 4.4 suggest that, for Ē ≈ 0, one can define a Hilbert-space-size
independent scaled variance

|fO(0, ω)|2 = DVar(Oαβ), (4.9)

as advanced by the ETH (1.14).
In Fig. 4.5, we plot the scaled variance |fUnn(0, ω)|2 for three chain sizes. One can see
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Figure 4.5 | Scaled variance |fUnn(0, ω)|2 vs ω. We consider the nonintegrable (λ = 1)
point of Hamiltonian (4.1) with ∆ = 0.55 for different chain sizes L (qualitatively similar
results were obtained for ∆ = 1.1). We show results for pairs of energy eigenstates with
kα = kβ (a) and pairs that mix all quasimomentum sectors (b). All pairs of eigenstates
satisfy |Ē|/L ≤ 0.025. The averages |(Unn)αβ|2 were coarse-grained in windows of width
δω = 0.025.

that there is excellent data collapse away from the exponential regime at high ω. In
the latter regime, the scaled variances for contiguous chain sizes collapse over a larger
ω window with increasing L. This points to finite-size effects as the reason for the
lack of data collapse at high ω. Larger finite-size effects are expected in finite chains
at high frequencies because the matrix elements probe pairs of energy eigenstates at
opposite edges of the energy spectrum [45]. Qualitatively similar results were found for
all three observables studied irrespective of the Hamiltonian parameter ∆. Altogether,
our calculations show that for symmetry-breaking observables the function |fO(0, ω)|2 is
a well-defined smooth function of ω.
We note that, for translationally invariant intensive observables such as the ones in
Eqs. (4.5)–(4.7), which have a Hilbert-Schmidt norm that scales as 1/

√
L, the scaled

variance was computed in Ref. [45] as

|fTO (0, ω)|2 = DLVar(OT
αβ), (4.10)

where D was the dimension of the specific symmetry sector considered. The results from
Eq. (4.10) are consistent with the results from Eq. (4.9) when one restricts the variance
in the latter to only include pairs of states with kα = kβ. This is the case because, for
kα = kβ, Var(Oαβ) = Var(OT

αβ) and D ' DL.
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4.3.4 Low-Frequency Scaling

For local operators in quantum chaotic systems, because of diffusion, one expects all
dynamics to occur within times that scale with L2. In the frequency domain, this
means that |fO(Ē, ω)|2 is expected to exhibit a plateau as ω → 0 whose size (which
defines the so-called Thouless energy) scales as 1/L2. Below the Thouless energy, the
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Figure 4.6 | Low-frequency plots of the scaled variances |fO(0, ω)|2/L vs ωL2

(kα = kβ vs. all sectors). We consider observables Ûn [(a), (b)] and Ûnn [(c), (d)] at the
nonintegrable (λ = 1) point of Hamiltonian (4.1), with ∆ = 0.55 (main panels) and 1.1
(insets), for different chain sizes L. We consider pairs of energy eigenstates with kα = kβ
[(a), (c)] and pairs that mix all quasimomentum sectors [(b), (d)]. All pairs of eigenstates
satisfy |Ē|/L ≤ 0.025. The running averages |Oαβ|2 were calculated in windows of width
δω = 0.009 centered at points separated by ∆ω = 0.001.
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ETH ansatz coincides with the (featureless) predictions of random matrix theory. The
magnitude of |fO(Ē, ω)|2 in the plateau is expected to be proportional to L [2]. Such
expectations have been confirmed in lattice systems with no translational symmetry (but
no disorder) [2, 131], and the plateau has also been observed and its size characterized in
systems with weak disorder [137].
Next, we study the low-frequency behavior of |fO(Ē, ω)|2 for translational symmetry-
breaking and symmetry-preserving operators in the energy eigenstates of the translation-
ally invariant Hamiltonian (4.1) with λ = 1 (in the quantum-chaotic regime).
In Fig. 4.6, we plot |fO(0, ω)|2/L vs ωL2 for Ûn [(a), (b)] and Ûnn [(c), (d)] using pairs
of energy eigenstates with kα = kβ [(a), (c)] and pairs that connect all quasimomentum
sectors [(b), (d)]. The main panels (insets) show results for ∆ = 0.55 (∆ = 1.1). All the
results reported in Fig. 4.6 are consistent with the function |fO(0, ωL2)|2/L becoming
system-size independent for large systems at low ω. Namely, they are consistent with
the scaling advanced for quantum chaotic systems [2]. From Fig. 4.6, given the finite-size
effects, it remains a challenge to extract the Thouless energy.
Since the results in Fig. 4.6 for pairs of energy eigenstates with kα = kβ [(a), (c)] are
qualitatively similar to those of pairs that connect all quasimomentum sectors [(b),
(d)], albeit with smaller finite-size effects in the former (i.e., for symmetry-preserving
observables) than in the latter (i.e., for symmetry-breaking observables), we focus on
symmetry-preserving observables next. In Figs. 4.7(a) and 4.7(c), we plot |fO(0, ω)|2/L
vs ωL2 for Ûn and K̂nn, respectively, in pairs of energy eigenstates with kα = kβ for
chains with up to L = 24, for ∆ = 0.55 (main panels) and for ∆ = 1.1 (insets). The
agreement between the results for ∆ = 1.1 (insets) in the two largest chains is much
better than in Fig. 4.6 [finite-size effects remain large for ∆ = 0.55 (main panels)]. The
results in Figs. 4.7(a) and 4.7(c) further strengthen the expectation that the function
|fO(0, ωL2)|2/L becomes, at low ω, system-size independent for large systems.
In Figs. 4.7(b) and 4.7(d), we plot |fTO (0, ω)|2/L vs ωL2 for ÛT

n and K̂T
nn, in the even-Z2,

even-P subsector of the k = 0 sector for chains with up to L = 26, for ∆ = 0.55 (main
panels) and for ∆ = 1.1 (insets). These are low-frequency results corresponding to the
scaled variances reported in Ref. [45] for intermediate and large values of ω. Figures 4.7(b)
and 4.7(d) show that the behavior in the k = 0 sector is qualitatively similar to the
behavior for all pairs of energy eigenstates with kα = kβ [Figs. 4.7(a) and 4.7(c)], but
exhibits stronger finite-size effects. This suggests that, in exact diagonalization studies
of matrix elements of translationally invariant operators, it may be better (in terms of
reducing finite-size effects) to study averages over all quasimomentum sectors (excluding
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Figure 4.7 | Low-frequency plots of the scaled variances |fO(0, ω)|2/L vs ωL2

(kα = kβ vs. k = 0). We consider observables Ûn (a) and K̂nn (c), and of |fTO (0, ω)|2/L for
observables ÛT

n (b) and K̂T
nn (d), at the nonintegrable (λ = 1) point of Hamiltonian (4.1),

with ∆ = 0.55 (main panels) and 1.1 (insets), for different chain sizes L. We consider
pairs of energy eigenstates with kα = kβ [(a), (c)] and within the even-Z2, even-P
sub-sector of the k = 0 sector [(b), (d)]. All pairs of eigenstates satisfy |Ē|/L ≤ 0.025.
The running averages |Oαβ|2 were calculated in windows of width δω = 0.009 centered at
points separated by ∆ω = 0.001.

the k = 0 and π sectors) in smaller chains than to focus on the k = 0 sector in larger
ones.
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4.4 Interacting Integrable Chain
Next, for the interacting integrable XXZ chain [λ = 0 in Hamiltonian (4.1)], we carry out
an analysis parallel to the one in the previous section. We show that the key results of
Ref. [45] remain valid for symmetry-breaking observables, including a skewed log-normal-
like distribution of off-diagonal matrix elements and a variance that is a smooth function
of ω that scales as 1/D. Additionally, we extend the analysis of Ref. [45] by identifying
low-frequency ballistic and diffusive scalings of the variance of the off-diagonal matrix
elements of both symmetry-breaking and symmetry-preserving observables. Lastly, we
highlight differences between integrability-breaking and integrability-preserving observ-
ables, supporting the findings of Refs. [42,131].

4.4.1 Distributions

Figure 4.8 shows the distributions of |Oαβ| for Ûn [(a), (b)] and Ûnn [(c), (d)] for matrix
elements for which Ē ≈ 0 and ω ≈ 0. One can see that, regardless of whether matrix
elements connect pairs of eigenstates from the same quasimomentum sectors [(a), (c)] or
from all sectors [(b), (d)], the distributions are close to log-normal (the solid black lines
are log-normal distributions with the same mean and variance as ln |Oαβ|). Qualitatively
similar results were obtained (not shown) for other frequencies, and for K̂nn.
A closer inspection of the distributions of ln |Oαβ| (insets) reveals the nature of the
differences between the P (|Oαβ|) and log-normal distributions. Specifically, the insets
show that the ln |Oαβ| distributions are skewed normal, with a skewness that depends
both on the observable [compare the insets in Figs. 4.8(a) and 4.8(c)] and on whether
one looks at matrix elements that connect energy eigenstates from the same [Figs. 4.8(a)
and 4.8(c)] or from all [Figs. 4.8(b) and 4.8(d)] quasimomentum sectors. For the three
observables and the two values of ∆ (∆ = 0.55 and 1.1) studied, we found that the
distributions of matrix elements involving eigenstates from all quasimomentum sectors are
the ones that exhibit a higher skewness. In Appendix 4.7, we report a preliminary analysis
that suggests that the distributions are skewed log-normal-like in the thermodynamic
limit.

4.4.2 Variances

The lack of normality in the distribution of off-diagonal matrix elements of observables
in integrable models means that the variance of the distribution does not determine
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Figure 4.8 | Probability distributions P (|Oαβ|) of off-diagonal matrix elements.
We consider observables Ûn [(a), (b)] and Ûnn [(c), (d)] for Hamiltonian (4.1) with
∆ = 0.55 (similar results were obtained for ∆ = 1.1) and λ = 0 (the integrable XXZ
chain). We consider pairs of energy eigenstates for which |Ē|/L ≤ 0.025, and choose the
40,000 matrix elements with the lowest ω (this results in ω ≤ 0.001). We show results for
matrix elements with kα = kβ [(a), (c)] and matrix elements that mix all quasimomentum
sectors [(b), (d)] in the L = 22 chain. The insets show the probability distributions
P (ln |Oαβ|), along with Gaussian distributions (continuous lines) with the same mean
and variance. The continuous lines in the main panels are the corresponding log-normal
distributions.

other moments. Thus, there is no meaningful equivalent of the off-diagonal part of
the ETH (1.14) in integrable systems. Still, the variance Var(Oαβ) = |Oαβ|2 (because
Oαβ = 0) is what is physically relevant, e.g., for fluctuation-dissipation relations [2,29],
heating rates [1], transport properties [30, 130], and the multipartite entanglement
structure of energy eigenstates [138]. Thus, next, we seek to characterize the variance of
the distribution of off-diagonal elements for symmetry-breaking observables and compare
it to that of symmetry-preserving ones in the integrable XXZ chain.
In Fig. 4.9, we show normalized 2D histograms of log10 |(Unn)αβ|2 for pairs of energy
eigenstates that satisfy |Ē|/L ≤ 0.025 in chains with L = 22. We report results
for ∆ = 0.55 (the ones obtained for ∆ = 1.1, not shown, are qualitatively similar)
between pairs of eigenstates with kα = kβ [Fig. 4.9(a)] and between pairs that connect
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Figure 4.9 | Normalized 2D histograms of log10 |(Unn)αβ|2 vs ω. We consider the
XXZ chain with ∆ = 0.55 for L = 22 (qualitatively similar results were obtained for
∆ = 1.1). We consider pairs of energy eigenstates with kα = kβ (a) and pairs that mix
all quasimomentum sectors (b). All pairs of energy eigenstates satisfy |Ē|/L ≤ 0.025.
The (red) solid lines are running averages log10 |(Unn)αβ|2 calculated in windows of width
δω = 0.175 centered at points separated by ∆ω = 0.025. The vertical dashed lines show
the values of ω up to which results for |Oαβ|2 are included in the scaling analysis of
Fig. 4.10.

all quasimomentum sectors [Fig. 4.9(b)]. We note that the results in Fig. 4.9(a) are
qualitatively similar to those reported in Ref. [45] for translationally invariant observables
in the k = 0 sector. As in Ref. [45], the support of the distribution for Ûnn is much
broader for the interacting integrable system [Fig. 4.9(a)] than for the nonintegrable one
[Fig. 4.3(a)]. Also, in Fig. 4.9(a), no significant fraction of matrix elements has a vanishing
magnitude as seen in quadratic models [29]. Because of this, for interacting integrable
models, one can define a meaningful average |Oαβ|2 at each value of ω. Figure 4.9(b) shows
that the same is true for symmetry-breaking observables that connect all quasimomentum
sectors.
The (red) solid lines in Fig. 4.9 show the ω-resolved variances of |(Unn)αβ|. As in the
quantum chaotic case (Fig. 4.3), differences can be seen in the variances of matrix elements
connecting the same quasimomentum sectors [Fig. 4.9(a)] and all sectors [Fig. 4.9(b)] for
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Figure 4.10 | Scaling of the variance of off-diagonal matrix elements. We plot
|(Un)αβ|2 [(a), (b)] and |(Unn)αβ|2 [(c), (d)] vs D in the (integrable) XXZ chain with
∆ = 0.55 and 1.1. We consider pairs of energy eigenstates with kα = kβ [(a), (c)] and
pairs that mix all quasimomentum sectors [(b), (d)]. The straight lines show power-law
fits to the results for L = 18 through L = 22. The average over |Oαβ|2 for different chain
sizes was calculated using pairs of energy eigenstates that satisfy |Ē|/L ≤ 0.025. We
restricted the average to pairs of eigenstates for which ω < 3.5, the regime in Fig. 4.9 in
which the variances exhibit a plateau-like behavior (see Ref. [45] for scalings when one
averages over all frequencies).

ω . 4. The exponential and Gaussian regimes at high ω (see Ref. [45]) are similar in
both sets of matrix elements.
Next, we study how the variances scale with increasing chain size. In Fig. 4.10, we show
finite-size scaling analyses of the variance |Oαβ|2 vs D for Ûn [(a), (b)] and Ûnn [(c),
(d)] for chains with L = 16 − 22. The average is calculated over frequencies ω < 3.5
(qualitatively similar results were obtained averaging over other intervals of frequencies,
see also Ref. [45]). As found in Ref. [45] for translationally invariant observables in the
k = 0 sector of the XXZ chain, all variances in Fig. 4.10 scale as 1/D (as they do in
the quantum chaotic system in Fig. 4.4). This occurs regardless of whether the matrix
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elements are computed between pairs of energy eigenstates from the same quasimomentum
sector [(a), (c)] or between pairs that mix all quasimomentum sectors [(b), (d)].

4.4.3 Scaled Variances

The results in Fig. 4.10 suggest that, for Ē ≈ 0, one can define a Hilbert-space-size
independent scaled variance

VO(0, ω) = DVar(Oαβ), (4.11)

as for quantum-chaotic systems (4.9). Note that we use a different label for the scaled
variance in integrable systems to emphasize that there is no equivalent of the off-diagonal
part of the ETH (1.14) for them.
In Fig. 4.11, we plot the scaled variance VUnn(0, ω) for three chain sizes. The results in
Fig. 4.11(a) confirm the data collapse expected from Ref. [45] for symmetry-preserving
observables, while the results in Fig. 4.11(b) demonstrate that the same is true for
symmetry-breaking ones. We note that, for translationally invariant intensive observables
such as the ones in Eqs. (4.5)–(4.7), which have a Hilbert-Schmidt norm that scales as
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Figure 4.11 | Scaled variance VUnn(0, ω) vs ω. We consider the XXZ chain with
∆ = 0.55 for different chain sizes L (qualitatively similar results were obtained for
∆ = 1.1). We show results for pairs of energy eigenstates with kα = kβ (a) and pairs that
mix all quasimomentum sectors (b). All pairs of eigenstates satisfy |Ē|/L ≤ 0.025. The
averages |(Unn)αβ|2 were coarse-grained in windows of width δω = 0.025.
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1/
√
L, the scaled variance was computed in Ref. [45] as

V T
O (0, ω) = DLVar(OT

αβ), (4.12)

where D was the dimension of the specific symmetry sector considered. The results from
Eq. (4.12) are consistent with the results from Eq. (4.11) for states with kα = kβ because
Var(Oαβ) = Var(OT

αβ) and D ' DL.
In Fig. 4.11, finite-size effects are smaller for the smallest values of VUnn(0, ω) computed
than in nonintegrable systems (see Fig. 4.5). The reason is that VUnn(0, ω) decays more
quickly with ω in integrable systems [1,45] so that, for the smallest values of VUnn(0, ω)
computed (limited by the machine precision) for the largest chains, the matrix elements
are not probing the edges of the spectrum.
Overall, the results in Fig. 4.11 strengthen the conclusion in Ref. [45], explored recently
in non-translationally invariant XXZ chains [130, 131], that in interacting integrable
systems there is a well defined scaled variance VO(Ē, ω). As per our results here, the
scaled variance is well defined even for observables that break Hamiltonian symmetries.

4.4.4 Low-Frequency Scaling

Next we study the low-frequency behavior of the scaled variances VO(0, ω). Two recent
works [130, 131] have studied the low-frequency behavior of scaled variances of non-
translationally invariant operators like the ones in Eqs. (4.2)–(4.4), and of averages like
the ones in Eqs. (4.5)–(4.7), in the XXZ chain with open boundary conditions (namely,
without translational symmetry). For the average spin current operator per site, in
Ref. [130] it was shown that the scaled variance exhibits a large low-frequency peak in the
easy-plane regime (∆ = 0.55) whose height is proportional to L and location in frequency
scales as 1/L. The area under the peak does not change with increasing system size,
and in the thermodynamic limit it is expected to signal ballistic DC transport (the peak
would be at ω = 0 and it would have a nonzero weight) [47,139]. Such a peak was absent
in the scaled variance in the easy-axis (∆ = 1.1) regime [130]. For other observables, the
results in Ref. [131] are qualitatively similar to results that we report here so we will
mention them along with our discussion.
In Fig. 4.12, we plot VO(0, ω)/L vs ωL in chains with up to L = 22 for Ûn [(a), (b)],
Ûnn [(c), (d)], and K̂nn [(e), (f)]. In the left column [(a), (c), (e)], we show results for
pairs of energy eigenstates from the same quasimomentum sectors and, in the right
column [(b), (d), (f)], we show results for pairs that connect all quasimomentum sectors.
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Figure 4.12 | Low-frequency plots of the scaled variances VO(0, ω)/L vs ωL. We
consider observables Ûn [(a), (b)], Ûnn [(c), (d)], and K̂nn [(e), (f)] in the (integrable)
XXZ chain with ∆ = 0.55 (main panels) and 1.1 (insets), for different chain sizes L. We
consider pairs of energy eigenstates with kα = kβ [(a), (c), (e)] and pairs that mix all
quasimomentum sectors [(b), (d), (f)]. All pairs of eigenstates satisfy |Ē|/L ≤ 0.025.
The averages |Oαβ|2 were coarse-grained in windows of width δω = 0.025.
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In the main panels (insets), we show results for ∆ = 0.55 (∆ = 1.1). All plots in
Fig. 4.12 exhibit good data collapse. In particular, one can see that the location of small
features (e.g., peaks and valleys) does not change for different chain sizes (see also the
results in Appendix 4.8). This shows that in the XXZ chain, both in the easy-plane
and easy-axis regimes, as well as for both symmetry-preserving and symmetry-breaking
observables, there is a robust regime in which the variances VO(0, ω)/L exhibit ballistic
scalings. Qualitatively similar results were reported in Ref. [131] for the XXZ chain with
open boundary conditions. Ballistic scalings of variances have also been observed in
quantum-chaotic systems [2, 130]. The collapse of the scaled variances VO(0, ω)/L when
plotted vs ωL degrades as ω increases and one enters the L independent regime depicted
in Fig. 4.11. Characterizing the transition between these two regimes is an interesting
problem that should be tackled in future works.
Let us focus first on the behavior of VO(0, ω)/L for matrix elements that connect energy
eigenstates from the same quasimomentum sectors (symmetry-preserving observables).
Comparing the results in Fig. 4.12(a) with those in Figs. 4.12(c) and 4.12(e), one can see
that VUn(0, ω → 0)/L vanishes while VUnn(0, ω → 0)/L and VKnn(0, ω → 0)/L converge
to a nonzero system-size-independent value (see also the results in Appendix 4.8). This
behavior is qualitatively similar to the one reported in Ref. [131] for the XXZ chain with
open boundary conditions. There, the scaled variance was found to vanish as ω → 0 for
observables that do not break the integrability of the XXZ chain (as is the case here
for ÛT

n ), while VO(0, ω)/L was found to converge to a nonzero system-size-independent
value for observables that do (as is the case here for ÛT

nn and K̂T
nn). This is consistent

with the results from Ref. [42] for frequencies that are exponentially small in system
size. However, we must emphasize that the results in Fig. 4.12 and in Ref. [131] are for
frequencies that are polynomially small in system size and, as such, involve an average
over a rapidly (exponentially) growing number of matrix elements with increasing system
size.
An interesting feature in the behavior of VO(0, ω)/L in Figs. 4.12(a), 4.12(c), and 4.12(e),
for both ∆ = 0.55 (main panels) and 1.1 (insets), is that there is a worsening of the data
collapse as ω → 0 (it is difficult to see in the plots because it occurs at small values of
ωL). This was also noticed in results reported in Ref. [131]. In Figs. 4.13(a), 4.13(c),
and 4.13(e), we replot (using a finer coarse graining) the lowest frequency results from
Figs. 4.12(a), 4.12(c), and 4.12(e) but against ωL2. The excellent data collapse in
Figs. 4.13(a), 4.13(c), and 4.13(e) at the lowest frequencies (see also the results in
Appendix 4.8) suggests that, no matter whether the XXZ chain is in the easy-plane
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Figure 4.13 | Low-frequency plots of the scaled variances VO(0, ω)/L vs ωL2 for
symmetry-preserving observables. We consider observables Ûn (a), Ûnn (c), K̂nn (e),
and of V T

O (0, ω)/L for observables ÛT
n (b), ÛT

nn (d), and K̂T
nn (f), in the XXZ chain with

∆ = 0.55 (main panels) and 1.1 (insets), for different chain sizes L. We consider pairs of
energy eigenstates with kα = kβ [(a), (c), (e)] and within the even-Z2, even-P sub-sector
of the k = 0 sector [(b), (d), (f)]. All pairs of eigenstates satisfy |Ē|/L ≤ 0.025. The
running averages |Oαβ|2 were calculated in windows of width δω = 0.009 centered at
points separated by ∆ω = 0.001.
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Figure 4.14 | Comparison of low-frequency behavior of the scaled variances
VO(0, ω)/L vs ωL2 for different ∆. We consider observables Ûn (a), Ûnn (b), and
K̂nn (c) in the XXZ chain with ∆ in the easy-plane regime (∆ < 1, main panels) and
the easy-axis regime (∆ > 1, insets). We consider pairs of energy eigenstates with
kα = kβ. All pairs of eigenstates satisfy |Ē|/L ≤ 0.025. The running averages |Oαβ|2 were
calculated in windows of width δω = 0.009 centered at points separated by ∆ω = 0.001.

or easy-axis regimes, the variances exhibit diffusive scalings. For completeness, in
Figs. 4.13(b), 4.13(d), and 4.13(f), we plot V T

O (0, ω)/L vs ωL2 for ÛT
n , ÛT

nn, and K̂T
nn

in the even-Z2, even-P subsector of the k = 0 sector for chains with up to L = 26 for
both ∆ = 0.55 (main panels) and ∆ = 1.1 (insets). The results resemble the ones from
Figs. 4.13(a), 4.13(c), and 4.13(e), but exhibit larger finite-size effects, as found in Fig. 4.7
for quantum-chaotic systems.
To further explore the role of ∆ in the low-frequency behavior of the scaled variances
of symmetry preserving operators, in Fig. 4.14 we plot VUn(0, ω)/L (a), VUnn(0, ω)/L
(b), and VKnn(0, ω)/L (c) vs ωL2 for different values of the anisotropy parameter ∆ for
lattices with L = 22 2. The main panels show results in the easy-plane regime, while the
insets show results in the easy-axis regime. For Ûn, which is the integrability-preserving
observable, VUn(0, ω → 0)/L vanishes irrespective of ∆. Conversely, for the integrability-
breaking observables Ûnn and K̂nn, VUnn(0, ω → 0)/L and VKnn(0, ω → 0)/L do not vanish
for any ∆. In the lowest frequency regime for the latter observables, a robust plateau is
seen in the scaled variances for ∆ > 1, and the results for ∆ < 1 are consistent with a
plateau. Hence, our results suggest that, as in quantum chaotic systems, diffusion puts
the ultimate limit on the equilibration time for integrability-breaking observables in the
XXZ chain.

2Note that the new values of ∆ considered are irrational numbers. Irrational values of ∆ help
eliminate non-generic features that may appear in the matrix elements because of finite-size effects.
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Figure 4.15 | Low-frequency plots of the scaled variances VO(0, ω)/L vs ωL2 for
symmetry-breaking observables. We consider observables Ûn (a), Ûnn (b), and K̂nn
(c), in the XXZ chain with ∆ = 0.55 (main panels) and 1.1 (insets), for different chain
sizes L. We consider pairs of energy eigenstates that mix all quasimomentum sectors. All
pairs of eigenstates satisfy |Ē|/L ≤ 0.025. The running averages |Oαβ|2 were calculated
in windows of width δω = 0.009 centered at points separated by ∆ω = 0.001.

To conclude, let us discuss the behavior of the variances for the operators that break
translational symmetry. In Figs. 4.12(b), 4.12(d), and 4.12(f), we show results for
VO(0, ω)/L vs ωL when averaging over all matrix elements (i.e., for the symmetry-
breaking operators). The scaled variances for the three observables, for ∆ = 0.55 (main
panels) and 1.1 (insets), are all qualitatively similar. The contrast with the results in
Figs. 4.12(a), 4.12(c), and 4.12(e) for matrix elements within the same quasimomentum
sectors (symmetry-preserving operators) is remarkable. Breaking translational symmetry
does not affect the ballistic scaling of the variances but erases many features in VO(0, ω)/L,
especially the vanishing [Fig. 4.12(a)] or the fast decrease [Figs. 4.12(c), and 4.12(e)]
seen in VO(0, ω)/L as ω → 0. For all results in Figs. 4.12(b), 4.12(d), and 4.12(f),
VO(0, ω → 0)/L is seen to plateau to a (close to) system-size-independent value. Since
Ûn, Ûnn, and K̂nn break the integrability of the XXZ chain if added as perturbations, the
observed behavior is consistent with our previous discussion for integrability-breaking
observables. In Figs. 4.15(a), 4.15(b), and 4.15(c), we replot (using a finer coarse-graining)
the lowest frequency results from Figs. 4.12(b), 4.12(d), and 4.12(f), respectively, but
against ωL2. They are qualitatively similar to the results shown in Fig. 4.6 for quantum
chaotic systems. As in Fig. 4.6, larger finite-size effects for the symmetry-breaking
observables appear to disrupt the expected scaling for the magnitude of the variance.
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4.5 Summary and Discussion
We studied the off-diagonal matrix elements of observables that break translational
symmetry in eigenstates of translationally invariant Hamiltonians. In contrast to transla-
tionally invariant observables, the matrix elements of the observables considered here
connect sectors with different total quasimomentum. We probed properties of the matrix
elements in a quantum-chaotic Hamiltonian, as well as in an interacting integrable one
(the XXZ chain).
In the quantum-chaotic model, we found that the qualitative behavior of the off-diagonal
matrix elements is unaffected by the block diagonal structure of the Hamiltonian in
quasimomentum space. Namely, they exhibit all the properties prescribed by the ETH
for pairs of eigenstates that mix quasimomentum sectors and pairs of eigenstates that do
not. Also, the scaled variances |fO(Ē, ω)|2 exhibit the expected diffusive scaling in both
sets of matrix elements as ω → 0. We do find that there are quantitative differences
between matrix elements that mix or do not mix quasimomentum sectors; specifically,
the scaled variances were found to be generally different, and finite-size effects appear to
be stronger in the ones that mix quasimomentum sectors.
A much richer behavior was found in interacting integrable models. While the main
findings of Ref. [45] for translationally invariant observables still apply to observables
that break translational symmetry, namely that the off-diagonal matrix elements exhibit
skewed log-normal-like distributions and the scaled variances VO(Ē, ω) are well-defined
smooth functions, new behaviors were found for symmetry-breaking operators at low
frequencies. Most notably, for the operators that have a translationally invariant coun-
terpart that does not break integrability if added as a perturbation to the Hamiltonian,
VO(Ē, ω) vanishes as ω → 0 for matrix elements that do not mix quasimomentum sectors
while it approaches a nonvanishing value proportional to L for matrix elements that
do. For other observables, VO(Ē, ω) approaches a nonvanishing value proportional to
L as ω → 0 regardless of whether or not the matrix elements mix quasimomentum
sectors. However, the low-frequency behavior of VO(Ē, ω) for those other observables is
still clearly different between the two sets of matrix elements. For matrix elements that
do not mix quasimomentum sectors, there is a dip at low frequencies in VO(Ē, ω) that is
absent for those that do. The scaled variances in the latter exhibit a behavior that is
qualitatively similar to the one seen in quantum chaotic systems.
We also showed that, for the observables studied in the integrable XXZ chain (which do
not include the spin current [130]), the lowest frequency scaling of VO(Ē, ω) is consistent
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with being diffusive regardless of whether the chain is in the easy-plane or easy axis
regimes. For integrability-breaking observables, our results suggest that diffusion puts
the ultimate limit on the equilibration time in the XXZ chain. In addition, we found a
robust frequency regime in which the scaling of VO(Ē, ω) is ballistic for all observables.
These results are complementary to the rich recent literature on the interplay between
ballistic, superdiffusive, and diffusive spin transport in the XXZ chain and other lattice
models [140–147] (see Ref. [119] for a recent review on this topic).
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4.7 Appendix: Skewed log-normal-like distributions
in the XXZ Chain
In order to probe whether the skewness observed in Fig. 4.8 is a finite-size effect or remains
in the thermodynamic limit, we consider P (ln |Oαβ|) to be a more general function of
ln |Oαβ| than just a Gaussian. Specifically, we take

P (ln |Oαβ|) ∝ exp
[
(lnD)f

(
ln |Oαβ|

lnD

)]
, (4.13)

where f(x) is an unknown concave function (quadratic for the log-normal distribution).
This form is motivated by studies of multiplicative noise and multifractals in which
similar skewed log-normal-like distributions appear [148]. We focus on matrix elements
that connect pairs of eigenstates from the same quasimomentum sectors as those are the
ones that have been found to exhibit smaller finite-size effects.
In Fig. 4.16 we plot lnP (ln |(Knn)αβ|)/(lnD) as a function of ln |(Knn)αβ|/(lnD) for the
three largest chain sizes considered in this work. The data collapse observed suggests
that P (ln |(Knn)αβ|) is described by the ansatz (4.13) with an f(x) function that is not
quadratic, namely, that P (ln |(Knn)αβ|) is a skewed log-normal-like distribution in the
thermodynamic limit. We defer finding the f(x) function to future studies. Similar
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Figure 4.16 | Probability distributions P (ln |(Knn)αβ|)/(lnD) plotted as functions
of ln |(Knn)αβ|/(lnD). We consider XXZ chains with ∆ = 0.55 and L = 20, 22, and 24.
We show results for matrix elements with kα = kβ selected as explained in Fig. 4.8.

results were obtained for the other integrability-breaking observable Ûnn which, like K̂nn,
has a well defined plateau at low frequency in which the scaled variance VO(Ē, ω) is
nonvanishing.

4.8 Appendix: Ballistic vs Diffusive Scalings
in the XXZ Chain
Here we show the low-frequency behavior of the scaled variances VUn(0, ω)/L [Figs. 4.17(a)
and 4.17(b)] and VKnn(0, ω)/L [Fig. 4.17(c) and 4.17(d)] plotted vs ωL [Figs. 4.17(a)
and 4.17(c)] and vs ωL2 [Figs. 4.17(b) and 4.17(d)] side-by-side for the two largest
(integrable) XXZ chains studied (L = 22 and L = 24). The main panels show results for
∆ = 0.55 while the insets show results for ∆ = 1.1. Figure 4.17 makes apparent that
the data collapses discussed in the main text improve with increasing chain size. Also,
plotting only two chain sizes in Fig. 4.17 allows one to better see the level of detail at
which the data collapses occur, including the various features in the scaled variances
whose location remains system-size independent in the plots vs ωL and vs ωL2.
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∆ = 0.55 (main panels) and 1.1 (insets). The results are for the two largest chain sizes
studied (L = 22 and 24) for matrix elements between pairs of energy eigenstates with
kα = kβ. All pairs of eigenstates satisfy |Ē|/L ≤ 0.025. The averages |Oαβ|2 in (a) and
(c) were coarse-grained in windows of width δω = 0.025. The running averages |Oαβ|2 in
(b) and (d) were calculated in windows of width δω = 0.009 centered at points separated
by ∆ω = 0.001.
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Chapter 5 |
Universality in the Onset of
Quantum Chaos in Many-Body
Systems

5.1 Introduction
Quantum chaos and eigenstate thermalization are two intertwined fields that have
been the focus of much recent attention in the context of the emergence of statistical
mechanics and thermodynamics in isolated quantum systems [2, 128, 149]. Those two
fields are built on foundational analytical and computational results [13, 17, 24, 64,
65, 150–155], and they have been recently linked to typicality ideas that date back
to von Neumann’s work [121, 156, 157]. When quantum chaotic systems (which are
expected to exhibit eigenstate thermalization) are taken far from equilibrium, few-
body operators (observables) generically equilibrate under unitary dynamics to the
predictions of traditional statistical mechanics (they “thermalize”). This has been
verified in experiments with ultracold quantum gases [9–12]. The “nonthermalizing”
counterpart to quantum chaotic systems are integrable [51,52,55,56,59] and disorder-
localized [59,158–160] systems, which have also been probed in experiments with ultracold
quantum gases [6–9,161–163].
In the clean case, a deeper understanding of what happens when quantum chaotic systems
approach integrable points is still needed. In finite systems there is a crossover in which
quantum chaos [28,36,37,42,105,164–166] and eigenstate thermalization [26–28,36,37]
indicators worsen. In the thermodynamic limit one expects quantum chaos and eigenstate
thermalization to break down only at the integrable point [28, 36,37,42,105,164–166],
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but the time scale for thermalization to diverge as one approaches that point. The
latter has been seen in recent experiments [9] and numerical experiments [167], and
can be understood in the context of Fermi’s golden rule [168] and of the scaling of the
quantum metric tensor with system size [42]. In the disorder-localized case, localization
was argued to be perturbatively stable against weak short-range interactions [169,170]
and against strong interactions in one-dimension (1D) [19]. Disorder-induced localization
in interacting systems is known as many-body localization and has attracted much
theoretical and experimental research in the strongly interacting regime [59, 158–160].
Recent works have discussed the possible absence of localization in that regime in the
thermodynamic limit [171–175].
We explore the onset of quantum chaos at infinite temperature in perturbed integrable
and noninteracting disorder-localized chains, as well as its destruction upon approaching
trivial classical limits. Our goal is to identify universal features and differences between
the clean and disordered cases. We compute fidelity susceptibilities χ, which are equivalent
to the diagonal components of the quantum geometric tensor [176, 177] or the norm
of the adiabatic gauge potential [42], and spectral functions. Fidelity susceptibilities
are commonly used to detect quantum phase transitions [176–180]. We find that the
departure from quantum chaos is characterized by a higher sensitivity of eigenstates to
perturbations [42,132,174], which results in maxima of the typical fidelity susceptibility
that scale with the square of the inverse level spacing. The shifts in the maxima’s positions
with system size are consistent with, at infinite temperature in the thermodynamic limit,
quantum chaos only failing to occur at the integrable, noninteracting disorder-localized,
and integrable infinite-interaction (classical) limits.

5.2 Model and Observables
We study the (clean) extended spin-1/2 XXZ chain:

Ĥcln =
L∑
i=1

[
J

2
(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
+ ∆Ŝzi Ŝzi+1 + ∆′Ŝzi Ŝzi+2

]
, (5.1)

with J =
√

2, ∆ = (
√

5 + 1)/4, and ∆′ ∈ [10−4, 101]. Ĥcln is Bethe-ansatz integrable for
∆′ = 0, and corresponds to two disconnected Ising chains for ∆′ =∞. We also study the
Anderson chain with added nearest neighbor interactions, which we write in the spin
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language as

Ĥdsr =
L∑
i=1

[
J

2
(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
+ hiŜ

z
i + ∆Ŝzi Ŝzi+1

]
, (5.2)

with J =
√

2, hi uniformly distributed in [−h, h] with h = (
√

5+1)/4, and ∆ ∈ [10−3, 101].
Ĥdsr is the Anderson model for ∆ = 0, and the Ising chain for ∆ =∞.
To probe the eigenkets |n〉 of the models above, we compute the typical fidelity suscepti-
bility χtyp(O) = exp(ln[χn(O)]) (in short, the susceptibility) associated to observable Ô,
where

χn(O) = L
∑
m 6=n

|〈n|Ô|m〉|2

(En − Em)2 . (5.3)

The average ln[χn(Ô)] is carried out over the central 50% of eigenstates in the spectrum.
We also compute the average spectral function |fO(ω)|2 = |fOn (ω)|2 over the same 50% of
eigenstates, where

|fOn (ω)|2 = L
∑
m 6=n
|〈n|Ô|m〉|2δ(ω − ωnm). (5.4)

We replace δ(x)→ µ/[2π(x2 + µ2)] with µ = 0.9ωmin, where ωmin is the minimum level
spacing. The factor of L in Eqs. (5.3) and (5.4) accounts for the Hilbert-Schmidt norm
of our translationally invariant intensive observables.
The specific observables Ô considered [181] are the nearest neighbor “kinetic” K̂n and
interaction Ûn energies:

K̂n = 1
L

L∑
i=1

(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
, Ûn = 1

L

L∑
i=1

Ŝzi Ŝ
z
i+1, (5.5)

and the next-nearest neighbor kinetic energy K̂nn. As shown recently [42, 46, 131], in
integrable systems the response of eigenstates to perturbations depends on whether the
perturbations do or do not break integrability. Keeping in mind that if Ûn (K̂nn) is
added to Ĥcln integrability is preserved (destroyed), while if K̂n (Ûn) is added to Ĥdsr

localization is preserved (destroyed), in what follows we show results for Ûn and K̂nn (K̂n

and Ûn) when studying Ĥcln (Ĥdsr).

5.3 Clean System
In Fig. 5.1 we show χtyp vs ∆′ (strength of the integrability breaking next-nearest neighbor
interaction), for Ûn [Fig. 5.1(a)] and K̂nn [Fig. 5.1(b)]. The susceptibilities are scaled
as expected for quantum chaotic systems, for which χtyp ∝ LD−1ω−2

H (ωH is the mean
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Figure 5.1 | Typical fidelity susceptibility in clean periodic chains. Typical
fidelity susceptibility χtyp (scaled to exhibit collapse in the quantum chaotic regime)
vs the integrability-breaking parameter ∆′ for observables Ûn (a) and K̂nn (b) in clean
periodic chains. To calculate χtyp and ωH we average over the central 50% of the
eigenstates in each total quasimomentum sector considered. For L < 24, we report
the weighted average over all k 6= (0, π) sectors, while for L = 24 we report results for
the k = π/2 sector. Circles on the y-axis show χtyp at the integrable point (∆′ = 0),
and diamonds show the maximal χ∗typ (at ∆′∗ = −b/2a) obtained from polynomial fits
ax2 + bx+ c (black solid lines about the maxima). The dotted line on the right of the
first peaks depicts ∆′−2.5 behavior. Inset in (a): χ∗typ vs ωH for both observables, along
with the results of power-law fits. Inset in (b): ∆′∗ vs ωH for both observables (the values
of ∆′∗ overlap). The dotted line depicts ω0.39

H behavior
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level spacing 1) because |〈n|Ô|m〉|2 ∝ D−1 for En − Em → ωH [2, 46]. For all chain sizes,
the scaled susceptibilities exhibit an excellent collapse for about a decade in ∆′ when
∆′ ∼ 1. The region over which the scaled susceptibilities collapse increases (both towards
smaller and larger values of ∆′) with increasing system size. This highlights a robust,
and increasing with system size, quantum chaotic regime.
The quantum-chaotic regime in Fig. 5.1 is separated from the integrable ones at small
and large ∆′ by maxima in χtyp [181]. As a result of the trivial nature of the ∆′ =∞
model, the large-∆′ maxima are more affected by finite-size effects than the small-∆′

ones. In what follows we focus on the latter. The inset in Fig. 5.1(a) shows that χtyp

at the small ∆′ maxima scales as the square of the inverse average level spacing ωH .
This scaling corresponds to the maximum possible sensitivity of quantum eigenstates
to a perturbation [42]. It is exponentially larger, in system size, than expected from
random matrix theory. The position of the maxima, ∆′∗, appears to move towards ∆′ = 0
exponentially fast with increasing system size (notice the near equal shift with increasing
L and the log scale in the ∆′-axis). In the inset in Fig. 5.1(b), we plot of ∆′∗ vs ωH
showing that our numerical results are consistent with ∆′∗ ∝ (ωH)α, with α ∼ 0.39. We
note that our results in Fig. 5.1 are robust, ∆′∗ and the scaling of χ∗typ are nearly identical
for both observables [181].
The susceptibility is related to the spectral function defining the dynamical response of
the system [42,177]. Indeed, it follows from Eqs. (5.3) and (5.4) that

χn(O) =
∫ ∞
−∞

|fOn (ω)|2
ω2 dω. (5.6)

In integrable systems, |fO(ω → 0)|2 vanishes for integrability preserving perturbations [42,
46, 131, 181], leading to a polynomial in L scaling of χn(O) [42]. Typical, integrability
breaking, perturbations in contrast have |fO(ω → 0)|2 = O(1) [42, 46,131,181] resulting
in exponential in L, ∼ D scaling of the susceptibility χn(O) [42]. As mentioned before, in
quantum chaotic systems χn(O) ∝ L/[D(ωH)2] ∼ D. The faster scaling at the maxima
χ∗typ ∝ 1/ω2

H ∼ D2 implies that the spectral function diverges as |fO(ωH)|2 ∼ 1/ωH
around ∆′∗.
Figures 5.2(a) and 5.2(c) show |fO(ω)|2 vs ω/∆′ for different values of ∆′ about ∆′∗ for
L = 24. The data for both observables collapse at frequencies ω/∆′ . 1 showing that
|fO(ω)|2 ∼ (∆′/ω)2 in that regime 2. In the top insets, we plot FO = (ω/∆′)2|fO(ω)|2

1For large systems ωH ∼
√
LD−1, because the effective width of the many-body energy spectrum is

∝
√
L (D is the number of energy levels).

2The differences in the extent of the (∆′/ω)2 regime is due to the difference in behavior of |fO(ω)|2
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Figure 5.2 | Spectral functions in clean periodic chains. Spectral functions in clean
periodic chains with L = 24 for observables Ûn [(a) and (b)] and K̂nn [(c) and (d)] over
two decades of the integrability-breaking parameter ∆′ [see labels at the top and legends
in (b) and (d)]. In (a) and (c), the top insets show FO = (ω/∆′)2|fO(ω)|2 vs ω/∆′ at
∆′ = 1.58× 10−2, while the bottom insets show |fO(ω)|2 vs ω/∆′ at ∆′ = 1.58× 10−1,
for the three largest chains studied. The insets in (b) and (d) show |fpO(ω)|2 vs ∆′, where
|fpO(ω)|2 is the value of |fO(ω)|2 at the plateaus in the main panels (and for other values
of ∆′ for which |fO(ω)|2 is not shown). The dotted lines depict ∆′−2.55 behavior. All
computations were done as for Fig. 5.1.

for different chain sizes when ∆′ < ∆′∗. The plateaus show that the |fO(ω)|2 ∼ (∆′/ω)2

behavior is robust to changing L [181]. For ∆′ < ∆′∗, the susceptibilities in Figs. 5.2(a)

for integrability preserving (Ûn) vs breaking (K̂nn) operators at ∆′ = 0, which results in a spectral gap
for the former when ∆′ is very small.
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and 5.2(c) also collapse at lower frequencies showing a nontrivial dependence of ω/∆′ [181],
but this collapse gradually disappears as ∆′ approaches ∆′∗.
When ∆′ increases beyond ∆′∗ and the system enters in the quantum chaotic regime
[Figs. 5.2(b) and 5.2(d)], a plateau develops in the spectral function at low frequencies 3.
The formation and growth of the plateau with increasing L, at a fixed ∆′ & ∆′∗,
is illustrated in the bottom insets in Figs. 5.2(a) and 5.2(c). The plateau and the
|fO(ω)|2 ∼ (∆′/ω)2 behavior coexist in the regime in which ∆′ & ∆′∗, which is consistent
with the occurrence of thermalization with relaxation rates dictated by Fermi’s golden
rule [167,181]. In that regime, we find that the spectral function |fO(ω)|2 at the plateau,
|fpO|2, appears to diverge as (∆′)−β with β ∼ 2.55 [see insets in Figs. 5.2(b) and 5.2(d)],
consistent with the divergence of χtyp in Fig. 5.1 (see dotted lines in the main panels).
Remarkably, it is possible to relate the scaling of |fpO|2 with ∆′ with the drift of ∆′∗ with
L: ∆′∗ ∼ ωαH with α = 1/β ∼ 0.39 [see inset in Fig. 5.1(b)].
We can understand this under the following scenario, let |fO(ω)|2 = |fpO(∆′)|2 for ω <
ωp(∆′) and |fO(ω)|2 ∝ (ω/∆′)−κ for ω > ωp(∆′), with ωp(∆′) playing the role of the so-
called Thouless energy, and κ > 1. Then from the spectral sum rule:

∫
|fO(ω)|2dω = O(1),

we infer that ωp(∆′) ∝ (∆′)β, with β = κ/(κ− 1), and that |fpO(∆′)|2 ∝ (∆′)−β. The
maximum of χtyp then occurs when ωp = ωH , i.e., when the maximum of the spectral
function occurs at the Heisenberg scale. This results in ∆′∗ ∼ ωαH with α = 1/β, and
χ∗typ ∼ ω−2

H . Currently, we do not know the origin of the values of the exponents suggested
by our numerical calculations. Given our observation of |fO(ω)|2 ∼ (∆′/ω)2 behavior for
∆′ below and above ∆′∗, which appears to grow in extent with increasing system size
[see top insets in Figs. 5.2(a) and 5.2(c)], two scenarios come to mind: (i) the exponents
observed numerically are affected by finite-size effects and for larger systems than those
accessible to us κ = 2, β = 2, and α = 1/2, and (ii) the spectral function develops a
power-law with an exponent 1 < κ < 2 before saturating to a constant at low frequencies
so that β > 2 and α < 1/2.

5.4 Disordered System
In Fig. 5.3, we show results for the spectral function of disordered chains in the presence
of nearest neighbor interactions. The corresponding typical fidelity susceptibilities are
shown in Fig. 5.4. The results in Figs. 5.3 and 5.4 are similar to those in Figs. 5.2 and 5.1,

3For large L, a diffusive 1/
√
ω regime is expected to develop at frequencies above those of the

plateau [2]
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Figure 5.3 | Spectral functions in disordered periodic chains. Spectral functions
in disordered periodic chains with L = 18 for observables K̂n [(a) and (b)] and Ûn [(c)
and (d)] over two decades of the interaction strength ∆ [see labels at the top, and legends
in (b) and (d)]. In (a) and (c), the top insets show FO = (ω/∆′)2|fO(ω)|2 vs ω/∆′ at
∆′ = 2.51× 10−2, while the bottom insets show |fO(ω)|2 vs ω/∆′ at ∆′ = 2.51× 10−1,
for the three largest chains studied. The insets in (b) and (d) show |fpO(ω)|2 vs ∆, where
|fpO(ω)|2 is the value of |fO(ω)|2 at the plateaus in the main panels (and for other values
of ∆ for which |fO(ω)|2 is not shown). The dotted lines depict ∆′−2.4 behavior. To
calculate |fO(ω)|2, we average over the central 50% of the eigenstates in each chain, and
then over disorder realizations (200 for L ≤ 16, 100 for L = 17, and 30 for L = 18).

respectively. The similarity is remarkable considering that the unperturbed models in
both cases are strikingly different, the disordered one being a noninteracting localized
model and the clean one being an interacting integrable one. The slight differences
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Figure 5.4 | Typical fidelity susceptibility in disordered periodic chains. Typical
fidelity susceptibility χtyp (scaled to exhibit collapse in the quantum chaotic regime) vs
the interaction strength ∆ for observables K̂n (a) and Ûn (b) in disordered periodic chains.
Circles on the y-axis show χtyp at the Anderson-localized point (∆ = 0), and diamonds
show the maximal χ∗typ (at δ∗ = −b/2a) obtained from polynomial fits ax2 + bx + c
(black solid lines about the maxima). The inset in (a) shows χ∗typ vs ωH for both
observables, along with the results of power-law fits. The errorbars show ±σ, where σ
is the (propagated) standard deviation of the average over disorder realizations at the
value of ∆ (for which we carried out a calculation) that is closest to ∆∗. The inset in
(b) shows ∆∗ vs ωH for both observables. The dotted line depicts ω0.28

H behavior. All
computations were done as for Fig. 5.3.
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between the results in Figs. 5.3 and 5.2 include a narrower |fO(ω)|2 ∼ (∆′/ω)2 regime in
Figs. 5.3(a) and 5.3(c) as compared to Figs. 5.2(a) and 5.2(c), and a narrower regime
in which |fpO|2 is consistent with a power law scaling with ∆ in Fig. 5.3(d). Related to
the latter, in the inset in Fig. 5.4(b) the dynamical range for ∆∗ vs ωH is smaller than
in the inset in Fig. 5.1(b). Consequently, and also keeping in mind that in Fig. 5.4 we
plot typical fidelity susceptibilities while in Fig. 5.3 we plot raw averages of the spectral
functions, we cannot establish a relationship between the scaling of |fpO|2 with ∆′ and
the drift of ∆′∗ with L as we did for the clean case. That said, all those differences are
consistent with stronger finite-size effects, and fluctuations associated to the disorder
average, in the disordered systems. For the latter, the largest chains studied have L = 18
versus the L = 24 chains considered for clean systems.

5.5 Summary
In summary, our results suggest that the onset of quantum chaos at infinite temperature
in the models studied, as well as its destruction when approaching classical limits for
very strong interactions, is characterized by universal behavior. We focused our analysis
on the onset of quantum chaos as finite-size effects (and fluctuations associated to
disorder averages) are smaller. The main universal feature identified is the divergence of
the typical fidelity susceptibilities as ω−2

H when entering (exiting) the quantum chaotic
regime and the associated divergence of the spectral functions below the Thouless energy.
The latter is potentially universal, and diverges as ε−β (ε being either the strength of
the integrability or localization-breaking perturbation) in the quantum chaotic regime.
Also potentially universal is the shift of the position ε∗ of the maximum of the fidelity
susceptibilities as ε∗ ∼ ωαH , as well as the relation α = 1/β between the exponents.
We note that while ε∗ ∼ ωαH supports the expectation that in clean systems in the
thermodynamic limit quantum chaos and eigenstate thermalization break down only at
the integrable point [28,36,37,42,105,164–166], it contradicts the expectation that at
infinite temperature the 1D Anderson insulator is stable against adding interactions [160].
Much still needs to be explored, such as what happens at finite temperatures and when
one changes the parameters of the unperturbed Hamiltonians (which we selected to be
O(1) to minimize finite-size effects). In the disordered case, two parameter regimes to be
explored are the strong disorder and strong interaction regimes. The contrast between
the small ∆ and large ∆ peaks in the fidelity susceptibilities in Fig. 5.4 suggest that
obtaining meaningful scalings using full exact diagonalization in those regimes will be
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computationally very challenging. We note that the results reported in this work required
about one million cpu hours of calculations.

5.6 Acknowledgements
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supercomputer of the Institute for Computational and Data Sciences (ICDS) at Penn
State.

5.7 Appendix: Additional numerical results for clean sys-
tems

In Fig. 5.5 we plot |fO(ω)|2 vs ω/∆′, for observables Ûn [Fig. 5.5(a)] and K̂nn [Fig. 5.5(b)],
at the integrable point for chains with L = 18 through L = 24. These results show
that for the integrability preserving operator (Ûn) the spectral function plateaus (as ω
approaches ωH) at a value that decreases exponentially with L, while for the integrability
breaking operator (K̂nn) the spectral function plateaus at an O(1) value, as found in
Ref. [42]. In the insets in Fig. 5.5, the low-frequency data collapse for different values of
L show that the spectral function is a function of ωL2 at low frequencies, as found in
Ref. [46].
In Fig. 5.6 we plot |fO(ω)|2 vs ω/∆′, for observables Ûn [Fig. 5.6(a)] and K̂nn [Fig. 5.6(b)],
when 10−3 ≤ ∆′ ≤ 10−2 for chains with L = 24. These results are the lower ∆′ precursors
of the results shown in Figs. 2(a) and 2(c) in the main text. The plateaus in the insets
make apparent the robust with increasing system size (∆′/ω)2 behavior in the spectral
functions for ∆′ < ∆′∗.
In Fig. 5.7, we plot the (scaled) typical fidelity susceptibility for the nearest-neighbor
kinetic energy K̂n in clean systems. These results are the equivalent of the ones reported
in Fig. 1 of the main text for Ûn and K̂nn. The results in Fig. 5.7 are very similar to
those in Fig. 1, and are most similar to the ones reported in Fig. 1(a). This is expected
as K̂n is an operator that if added as a perturbation to the spin-1/2 XXZ Hamiltonian
preserves integrability, like Ûn. Hence, the scaling of the typical fidelity susceptibilities is
the same for K̂n and Ûn at the unperturbed integrable point.
The right inset in Fig. 5.7 shows that the scaling of χ∗typ for K̂n is the same as for Ûn and
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Figure 5.5 | Spectral functions in clean periodic chains at the integrable point.
Spectral functions in clean periodic chains for observables Ûn (a) and K̂nn (b) at the
integrable point ∆′ = 0. In our calculations we average over the central 50% of the
eigenstates in each total quasimomentum sector considered. For L < 24, we report the
weighted average over all k 6= (0, π) sectors, while for L = 24 we report results for the
k = π/2 sector.
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strength. Spectral functions in clean periodic chains with L = 24 for observables Ûn
(a) and K̂nn (b) over one decade of the integrability-breaking parameter ∆′ [see label
at the top and legends in (b)]. The insets show FO = (ω/∆′)2|fO(ω)|2 vs ω/∆′ at
∆′ = 6.31× 10−3 for the three largest chains studied. All computations were done as for
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Figure 5.7 | Typical fidelity susceptibility in clean periodic chains for K̂n. Typ-
ical fidelity susceptibility χtyp (scaled to exhibit collapse in the quantum chaotic regime)
vs the integrability-breaking parameter ∆′ for K̂n. Triangles on the y-axis show χtyp
at the integrable point (∆′ = 0), and squares show the maximal χ∗typ (at ∆′∗ = −b/2a)
obtained from polynomial fits ax2 + bx+ c (black solid lines about the maxima). The
straight dotted line on the right of the first peaks depicts ∆′−2.5 behavior. Right inset:
χ∗typ vs ωH , along with the result of a power-law fit. Left inset: ∆′∗ vs | ln(ωH)| for K̂n,
Ûn, and K̂nn (the values of ∆′∗ for the three observables overlap). The dotted line depicts
| ln(ωH)|−2.8 behavior. All computations were done as for Fig. 5.5.

K̂nn in the main text. The left inset in Fig. 5.7 shows that ∆′∗ is less consistent with a
polynomial scaling in ln(ωH) (polynomial in L) than with a polynomial scaling in ωH
(exponential in L) as shown in the main text. If it were to be a polynomial scaling in
ln(ωH) then the power would be large (∆′∗ ∼ | ln(ωH)|−2.8).
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5.8 Appendix: Additional numerical results for disor-
dered systems

In Fig. 5.8 we plot |fO(ω)|2 vs ω/∆′, for observables K̂n [Fig. 5.5(a)] and Ûn [Fig. 5.5(b)],
at the noninteracting point for disordered chains with L = 15 through L = 18. These
results show that for the localization preserving operator (K̂n) the spectral function
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Figure 5.8 | Spectral functions in disordered periodic chains at the noninter-
acting point. Spectral functions in disordered periodic chains for observables K̂n (a),
and Ûn (b) at the noninteracting point ∆ = 0. To calculate |fO(ω)|2, we average over
the central 50% of the eigenstates in each chain, and then over disorder realizations (200
for L ≤ 16, 100 for L = 17, and 30 for L = 18).
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plateaus (as ω approaches ωH) at a value that decreases exponentially with L while for
the localization breaking operator (Ûn) the spectral function plateaus at an O(1) value,
as in Fig. 5.5 for integrability preserving and breaking operators, respectively.
In Fig. 5.9, we plot the (scaled) typical fidelity susceptibility for the local Ŝzi operator in
disordered systems. These results are the equivalent of the ones reported in Fig. 4 of the
main text for K̂n and Ûn. The results in Fig. 5.9 are very similar to those in Fig. 4, and
are most similar to the ones reported in Fig. 4(a). This is expected as Ŝzi is an operator
that if added as a perturbation to the Anderson chain preserves localization, like K̂n.
The right inset in Fig. 5.9 shows that the scaling of χ∗typ for Ŝzi is the same as for K̂n and
Ûn in the main text. The left inset in Fig. 5.7 shows that ∆′∗ is less consistent with a
polynomial scaling in ln(ωH) (polynomial in L) than with a polynomial scaling in ωH
(exponential in L) as shown in the main text. If it were to be a polynomial scaling in
ln(ωH) then the power would be large (∆′∗ ∼ | ln(ωH)|−2.4).

5.9 Appendix: (ε/ω)2 perturbative scaling and Fermi’s
golden rule
We use perturbation theory to analyze the spectral function of a weakly perturbed
integrable Hamiltonian. Let us assume that the Hamiltonian can be written as

Ĥ = Ĥ0 + εV̂ , (5.7)

where Ĥ0 is an integrable Hamiltonian and V̂ is the integrability breaking perturbation.
For simplicity, we assume that the diagonal matrix elements of V̂ in the eigenstates of
Ĥ0 vanish. They produce shifts in the perturbed eigenenergies without affecting the
eigenstates, and can be absorbed in the definition of Ĥ0.
Let us compute the leading perturbative correction to the magnitude of the matrix
elements |〈n|Ô|m〉|2 of an arbitrary operator Ô in the perturbed Hamiltonian eigenstates
{|m〉}. Expanding

Onm ≡ 〈n|Ô|m〉 = O(0)
nm + εO(1)

nm + . . . , (5.8)

and applying standard perturbation theory, one finds

O(1)
nm = −Onn −Omm

E
(0)
n − E(0)

m

Vnm +
∑

k 6=n,m

OnkVkm

E
(0)
m − E(0)

k

+ VnkOkm

E
(0)
n − E(0)

k

, (5.9)
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Figure 5.9 | Typical fidelity susceptibility in disordered periodic chains for Ŝzi .
Typical fidelity susceptibility χtyp (scaled to exhibit collapse in the quantum chaotic
regime) vs the interaction strength ∆ for Ŝzi in disordered periodic chains. Triangles
on the y-axis show χtyp at the Anderson-localized point (∆ = 0), and squares show the
maximal χ∗typ (at δ∗ = −b/2a) obtained from polynomial fits ax2 + bx + c (black solid
lines about the maxima). To calculate χtyp, we average over the central 50% of the
eigenstates in each chain, over sites, and over disorder realizations (all sites and 200
disorder realizations for L ≤ 16, 8 sites and 100 disorder realizations for L = 17, and 3
sites and 30 disorder realizations for L = 18). Right inset: χ∗typ vs ωH , along with the
result of a power-law fit. The errorbars show ±σ, where σ is the (propagated) standard
deviation of the average over disorder realizations at the value of ∆ (for which we carried
out a calculation) closest to ∆∗. Left inset: ∆′∗ vs ln(ωH) for Ŝzi , K̂n, and Ûn. The
dotted line depicts | ln(ωH)|−2.4 behavior.

where all energies and matrix elements refer to those of the unperturbed integrable
Hamiltonian Ĥ0. We intentionally separated diagonal and off-diagonal contributions in
the expression above.
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It is straightforward to check that for integrable Ĥ0 the first (diagonal) term is the most
divergent one, because the diagonal matrix elements On ≡ Onn and Om ≡ Omm do not
have to be close to each other when the energy difference ωnm = En−Em becomes of the
order of the level spacing, in contrast to what happens in generic systems which exhibit
eigenstate thermalization. Therefore, this term is singular. The second (off-diagonal)
term [in the second line in Eq. (5.9)] can be divergent as well, but generally it has
weaker singularities because even in integrable systems the off-diagonal matrix elements
of generic operators are exponentially small in the system size [45]. This second term
may play a more prominent role when the unperturbed Hamiltonian is quadratic (as in
our disorder-localized systems) because there only a vanishing fraction of off-diagonal
matrix elements is nonvanishing so the nonvanishing matrix elements can be large [29].
Hence, we find the most singular perturbative correction to the spectral function
|fO(ω)|2 = |fOn (ω)|2 (the overline stands for the average over eigenstates), with |fOn (ω)|2

defined in Eq. (4) in the main text, is

|fO(ω)|2 − |f (0)
O (ω)|2 ≈ L

ε2

ω2

[∑
m

(On −Om)2|Vnm|2δ(ω − ωnm)
]
. (5.10)

We note that the linear in ε terms vanish because they are linear in the off-diagonal
matrix elements Omn and Vnm, whose average vanishes [45].
Interestingly Eq. (5.10) can be viewed as the Fermi golden rule (FGR) type Lorentzian
broadening of the δ(w) part of the spectral function in the integrable limit by the
perturbation. The FGR was recently shown to apply to weakly perturbed integrable
systems under unitary dynamics in the context of quantum quenches [168] and periodic
drivings [1]. Indeed for a given state n, LO2

n can be viewed as a δ(ω) part of the spectral
function or the Drude weight 4. Within the FGR this δ-function broadens to a Lorentzian
resulting in:

|fOn (ω)|2 ≈ |fOn,0(ω)|2 +O2
n

L

π

Γn(ω)
ω2 + Γ2

n(ω) , (5.11)

where |fOn,0(ω)|2 is the spectral function in the integrable limit (not including the Drude
weight). This shape of the spectral function was recently numerically observed on a
different model [182].
Comparing Eqs. (5.11) and (5.10), we see that they are consistent if we set

Γn(ω) = πε2
∑
m

(
1− Om

On

)2
|Vnm|2δ(ω − ωnm). (5.12)

4We assume that the microcanonical average of Ô is zero, otherwise it should be subtracted from On
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The rate Γn(ω) is nothing but the FGR rate of change of the normalized variance of Ô
under perturbation εV̂ cos[ωt]. Indeed, within the FGR

d δO2(t)
dt

≡ d(〈Ô2(t)〉 − 〈Ô(t)〉2
dt

= πε2
∑
m

|Vnm|2(On − Om)2δ(ω − ωnm). (5.13)

Defining the decay rate through

d δO2(t)
dt

= Γn(ω)O2
n,

we get Eq. (5.12). Let us finally note that, at small frequencies ω, this rate is expected
to be independent of ω and thus it can be replaced with the static rate Γn obtained in
the limit ω → 0.
Around the maxima in the typical fidelity susceptibilities in Figs. 1 and 4 in the main
text, our numerical results in Figs. 2 and 3 in the main text, and in Fig. 5.6, are consistent
with the spectral function exhibiting the previously noted (ε/ω)2 regime. This is a regime
in which perturbation theory breaks down at low frequencies, as made apparent in our
numerical results by the fact that the low-frequency parts of the spectral functions exhibit
a slower than (ε/ω)2 divergence.
It is important to emphasize that the (ε/ω)2 regime is in general absent if Ĥ0 is quantum
chaotic and V̂ does not break any conservation law. In that case, per the eigenstate
thermalization hypothesis, the diagonal matrix elements Onn and Omm are exponentially
close (in L) to each other when ωnm approaches the level spacing, and the off-diagonal
matrix elements Vnm are exponentially suppressed, so that the perturbative correction to
the spectral function does not diverge when ω approaches the level spacing. The (ε/ω)2

regime is also absent if the perturbation V̂ preserves the integrability of the unperturbed
Hamiltonian Ĥ0. In that case, the matrix elements Vnm have an additional exponential
suppression with the system size as ωnm approaches the level spacing, as shown in Fig. 5.5
and in Ref. [42]. As a result, the perturbative correction to the spectral function does
not diverge at ω approaches the level spacing.
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Chapter 6 |
Summary

The research presented in this thesis has expanded our understanding of the properties
of the matrix elements of observables in interacting integrable systems. Our motivation
in doing this research has been to deepen our understanding of the many-body quantum
dynamics of those systems. As discussed in Chapter 1, thermalization in quantum chaotic
systems is understood on the basis of the eigenstate thermalization hypothesis, which is
rooted on random matrix theory. The description of integrable systems after relaxation,
on the other hand, is understood on the basis of generalized thermalization, in which
an initial state of a system evolving under an integrable Hamiltonian selects eigenstates
that have a narrow distribution in all of the conserved quantities of the system. Then,
the smoothness of the diagonal matrix elements as a function of all of the conserved
quantities results in a generalized Gibbs ensemble description after equilibration.
In Chapter 2, which focuses on Ref. [45], the behavior of the diagonal matrix elements in
interacting integrable systems was explored in detail. There, it was demonstrated that
the eigenstate-to-eigenstate fluctuations decay as a power law in system size at the center
of the spectrum, while they decay exponentially in system size in nonintegrable systems.
This shows that the vast majority of eigenstates are thermal in interacting integrable
systems in the thermodynamic limit. We also showed that the support of the distribution
does not decrease in interacting integrable systems as opposed to its exponential decrease
in nonintegrable ones. Therefore, nonthermal eigenstates persist in the thermodynamic
limit and they are the ones that disrupt thermalization.
The off-diagonal matrix elements in interacting integrable systems were much less well-
understood in the literature preceding Ref. [45] than the diagonal matrix elements were.
In Chapter 2, we showed that the off-diagonal matrix elements are dense rather than
sparse, and that they obey a nearly log-normal distribution. While in Ref. [45] it was
not known whether deviations from log-normality persist in the thermodynamic limit,
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our later work (Ref. [46], reproduced in Chapter 4) clarified that they do. Additionally,
confirming what was suggested in Ref. [1], we demonstrated in Chapter 2 that the
off-diagonal matrix elements of observables in interacting integrable systems have a
well-defined variance that scales as in nonintegrable ones. Interestingly, although the
off-diagonal elements can be used in a similar fashion as in nonintegrable systems (a
scaled variance function |f(Ē, ω)|2 is well-defined and can be probed using heating rates
as in Ref. [1]), the distributions have a fundamentally different character than those of
nonintegrable systems (which exhibit normal distributions).
In Chapter 2, the average entanglement entropy over eigenstates was also probed and
shown to be a powerful tool to distinguish between integrable and quantum chaotic
Hamiltonians. While the universal (maximal) volume-law coefficient was confirmed to
hold in quantum chaotic systems, a smaller one (consistent with being equal to the one
for noninteracting fermions) was found in interacting integrable systems. This, together
with what was learned about the off-diagonal matrix elements as noted above, hints at a
distinctly different underlying mathematical framework in interacting integrable systems
than in quantum chaotic ones. We can understand this to be the case because integrable
systems have an underlying quasiparticle description that is fundamentally different from
the random matrix theory underlying nonintegrable ones. A question we leave open is
how to analytically understand the emergence of a skewed log-normal-like distribution in
the off-diagonal matrix elements of interacting integrable systems. On the entanglement
entropy side, recent progress has been made via understanding the average entanglement
entropy over eigenstates in random quadratic Hamiltonians [183].
In Chapter 4, which is based on Ref. [46], we studied the properties of matrix elements of
observables that break translational symmetry in both quantum chaotic and interacting
integrable Hamiltonians. These observables connect different total quasimomentum
sectors of translationally invariant Hamiltonians. It was found that the underlying block-
diagonal structure of the Hamiltonian does not qualitatively impact the properties of the
off-diagonal matrix elements of operators in the quantum chaotic case, with the ETH
ansatz being obeyed for the distributions of matrix elements that connect quasimomentum
sectors and those that do not. A comparison between these two distributions showed
that they are quantitatively different, and have different variances, although they share
the same qualitative properties. For example, both distributions exhibit diffusive scaling
for ω → 0 and an exponential decay at large ω.
In interacting integrable systems, the behavior of the matrix elements that connect
different quasimomentum sectors of the Hamiltonian was shown to be the same as
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what was found for translationally invariant operators in Ref. [45]. However, for low
ω, differences were found between the behavior of operators that break integrability if
added as perturbations to the Hamiltonian and those that do not. In the former case,
the scaled variances of the off-diagonal matrix elements plateau at a constant nonzero
value as ω → 0 regardless of whether or not the matrix elements mix quasimomentum
sectors of the Hamiltonian. In the latter case, the variances approach zero for matrix
elements that do not mix quasimomentum sectors, but plateau at a nonzero value for
those that do. These observations are consistent with the findings in Ref. [130].
Additionally, in Chapter 4, we discussed the low-ω scaling properties of the variances
of off-diagonal matrix elements of observables, which is especially rich in interacting
integrable systems. First, we found a robust ballistic scaling regime of the variances for
all observables considered. Ballistic scalings of the variances are of much interest due to
their relevance to transport. For example, in Chapter 3, which is based on Ref. [131],
a peak that scales ballistically in the variance of the current operator was shown to
be present in a quantum-chaotic single-impurity model. This is indicative of coherent
transport in that system.
Notably, we demonstrated in Chapter 4 that, irrespective of the value of ∆ considered,
the scaled variances of off-diagonal matrix elements exhibit diffusive scaling at low ω. We
suggested that this implies that diffusion puts the ultimate limit on equilibration time in
the XXZ chain. In quantum chaotic systems, a plateau that scales diffusively is expected
because there must be lack of structure in the matrix elements below some ω threshold
in order to make contact with random matrix theory, where there is no structure. An
interesting open question is to characterize the Thouless energy, which is the energy scale
that defines diffusive transport, in both classes of systems.
Lastly, in Chapter 5, we demonstrated that the onset of quantum chaos in both the
perturbed XXZ model and the perturbed Anderson model is marked by universal
behavior, with a peak in the fidelity susceptibility that scales as the square of the inverse
level spacing developing in both cases. It was additionally observed that the value of
perturbation strength at which these peaks occur decreases with increasing system size,
a mark that only an infinitesimally small perturbation is needed to break induce chaos
in the thermodynamic limit. Most notably, this implies that the Anderson insulator is
not stable to perturbations in the thermodynamic limit.
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