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ABSTRACT 

Transposable Elements (TEs) are important constituents of the human genome and are considered 

to play a critical role in shaping the genome architecture and evolution. In previous in vivo and in 

vitro studies, the genomic distribution of TEs has been investigated along with some of their 

functions in gene regulation and various cellular processes. However, to date, there has not been a 

high-resolution, genome-wide study of TEs in an evolutionary framework, through which the 

insertion and fixation preferences of the elements can be addressed in detail. Also, the interactions 

between TE activities and local genome landscape have not been fully revealed. The long-term goal 

of this study is to characterize the transposition dynamics of TEs and to further understand their 

contribution to the structure, function, and evolution of the human genome. In this dissertation, I 

focused on one specific TE family, namely the Long Interspersed Element-1 (LINE-1 or L1), which 

constitutes >17% of the human genome and still actively transpose in it. I studied the genome-wide 

insertion and fixation preferences of L1s at a high-resolution and investigated their interactions 

with different genomic landscape features such as histone modifications and DNA methylation. In 

detail, I analyzed three large datasets of L1s that integrated at different evolutionary time scales: 

17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 

polymorphic and 1,205 human-specific L1s (from public databases). I also characterized 49 

genomic features—proxying chromatin accessibility, transcriptional activity, replication, 

recombination, etc.—in the ±50 kb flanks of these elements. These features were contrasted 

between the three L1 datasets and L1-depleted regions using state-of-the-art Functional Data 

Analysis (FDA) statistical methods, which treat high-resolution data as mathematical functions. 

The results indicate that de novo, polymorphic and human-specific L1s are surrounded by different 

genomic features acting at specific locations and scales. This led to an integrative model of L1 

transposition, according to which L1s preferentially integrate into open-chromatin regions enriched 
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in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection—

depleted of genes and non-coding most conserved elements. Intriguingly, the results also suggest 

that L1 insertions modify local genomic landscape by extending CpG methylation and increasing 

mononucleotide microsatellite density. Altogether, the findings in this dissertation substantially 

improved our understanding of L1 integration and fixation preferences, and implied the critical role 

of TE activities in human health and diseases.  
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Chapter 1 
 

Introduction 

Background 

Human genome evolution and Transposable Elements 

Mutations provide evolution with variants upon which natural selection and random genetic drift 

operate. Also, mutations are not evenly distributed across the human genome; instead, they vary in 

rates among different chromosomes and also among different regions of individual chromosomes 

(Hardison et al. 2003a; Don et al. 2013). Regional variation in mutation rates applies to multiple 

mutation types such as base substitutions, small insertions and deletions (indels), and insertions of 

Transposable Elements (TEs)(Hardison et al. 2003b; Makova and Hardison 2015). In particular, 

TEs are important constituents of the human genome and are considered to play a critical role in 

human genome evolution. More than 45% of the modern human genome consists of TEs or 

repetitive sequences that are derived from TEs (Lander et al. 2001a; Cordaux and Batzer 2009). 

Most TEs are inactive due to their truncated structure or due to the accumulation of mutations, 

while a small portion of them are still mobile and continue to reshape the landscape of our genome 

through ongoing transposition (Mills et al. 2007a; Kvikstad and Makova 2010; de Koning et al. 

2011; Sotero-Caio et al. 2017). For instance, transpositional events in germline cells have direct 

mutagenesis effects at multiple scales and influence the genome structure of the offspring, 

triggering potential developmental disorders (Goodier and Kazazian 2008; Ivics et al. 2009). In 

addition, TE activities and their products can affect different cellular processes such as cell fate 

change and immune response. For instance, it has been reported that TE transcripts can trigger the 
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innate immune response in mammalian cells and regulate the formation of hematopoietic stem and 

progenitor cells (HSPC) through inflammatory signaling (Ahmad et al. 2018; Lefkopoulos et al. 

2020). In previous in vivo and in vitro studies, the genomic distribution of TEs has been 

investigated along with their functions in different biological processes (Boissinot 2004; Kano et 

al. 2009; Elbarbary et al. 2016; Zhao et al. 2019). Therefore, TEs have been considered to 

continuously shape the genome architecture, including its structure and functions, through their 

sequences, transcripts, and insertion activities (Boissinot et al. 2006; Kejnovsky et al. 2015; 

Elbarbary et al. 2016). 

Classification of Transposable Elements 

TEs can be broadly classified into retrotransposons (Class I) and DNA transposons (Class II) 

according to their transpositional mechanisms (Graur and Li 2000; Bourque et al. 2018). The 

activity of retrotransposons follows a “copy-and-paste” mechanism, during which an RNA 

intermediate is reverse-transcribed and integrated to another genome locus (target site), while the 

original copy (donor site) is preserved (Boeke et al. 1985; Luan et al. 1993). In contrast, the DNA 

transposons follow a “cut-and-paste” mechanism, whereby a DNA intermediate is involved 

(Greenblatt and Brink 1963; Rubin et al. 1982). The majority of human TEs came from the activities 

of retrotransposons, particularly the non-LTR retrotransposons, in which the long terminal repeats 

(LTRs) are absent (Lander et al. 2001b; Liu et al. 2003). Non-LTR retrotransposons have a critical 

impact on the human genome at multiple levels, such as genome size expansion, genomic instability 

and rearrangements, and gene regulation (Lander et al. 2001a; Cordaux and Batzer 2009). While 

most of the non-LTR retrotransposons have lost mobility and remain inactive, some families are 

still active in the human genome (Kazazian et al. 1988; Deininger and Batzer 1999; Mills et al. 

2007b; Belancio et al. 2008). 
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DNA Transposons 

The DNA transposons occupy approximately 3% of the human genome, while they have lost 

mobility over 40 million years ago and are no longer active in humans (Lander et al. 2001b; 

Campos-Sánchez et al. 2014). In contrast, some DNA transposon families have recently been found 

active in the genome of bats and potentially other species (Pace and Feschotte 2007; Mitra et al. 

2013). Several mutagenesis applications in mammalian cells have also been developed from the 

active DNA transposons, for instance, the Sleeping Beauty and piggyBac systems (Ding et al. 2005; 

Liu et al. 2005). In addition, the integration of DNA transposons has been studied previously and 

was shown to have a bias towards actively transcribed genomic regions (Campos-Sánchez et al. 

2014). 

LTR Retrotransposons 

LTR retrotransposons possess two long terminal repeats (LTRs) and transpose via the reverse 

transcription of an RNA intermediate. LTR elements are commonly found in the eukaryote genome, 

for instance, they comprise 8% of the human genome and 10% of the mouse genome selection 

(Havecker et al. 2004; Zeng et al. 2017). Most of the human LTR-retrotransposons have lost 

mobility, except for a few Endogenous Retroviruses (ERVs), which might still be recently 

active (Belshaw et al. 2005; Campos-Sánchez et al. 2016). In contrast, the mouse genome harbors 

much higher LTR activities mainly from three groups: Intracisternal A Particle (IAP), Early 

Transposon family (ETn), and Mammalian apparent LTR-retrotransposons (MaLRs) (Deininger et 

al. 2003; Campos-Sánchez et al. 2016). In addition, LTR elements are usually found depleted in 
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gene-rich regions, potentially due to negative selection (Deininger and Batzer 2002; Medstrand et 

al. 2002). 

SINEs 

SINEs are non-LTR retrotransposons and have successfully accumulated in a wide range of 

mammalian genomes. For instance, Alu—a family of SINEs, comprises at least 10% of the human 

genome with over one million copies (Deininger 2011; Wagstaff et al. 2012a), Alu elements have 

high transpositional activities throughout the genome and have a wide range of effects on genome 

evolution and gene regulation (Deininger 2011; Wagstaff et al. 2012b). The activities of Alus are 

facilitated by the transposition machinery of LINEs via shared endonuclease (EN) and reverse 

transcriptase (RT) (Boeke 1997; Deininger 2011; Wimmer et al. 2011; Elbarbary et al. 2016). 

Moreover, Alus are frequently located in the GC-rich regions of the genome and have been found 

responsible for the majority of human diseases caused by TE activities (Deininger 2011; Wagstaff 

et al. 2012c). Another example is Mammalian-wide Interspersed Repeats (MIRs), which are 

positively correlated with the presence of gene enhancers and have been proposed to have potential 

regulatory functions (Matassi et al. 1998; Jjingo et al. 2014). 

LINEs 

LINE elements belong to the non-LTR retrotransposons and are autonomous, given that they code 

for the two enzymes (EN and RT) required in the transposition process. LINEs can be up to several 

kilobases in size, the elements usually contain an internal promoter for RNA polymerase II, a 5′ 

untranslated region (UTR), two open reading frames (ORFs), and a 3′ terminal poly-A site (Loeb 
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et al. 1986; Finnegan 1997). The ORF1 protein is an RNA binding protein, and the ORF2 encodes 

both the EN and RT (Finnegan 1997; Kolosha and Martin 1997; Weiner 2002). LINEs can be 

classified into five superfamilies (Jockey, L1, R2, RTE, and I), depending on their nature and 

location of the EN domain. They also have differences in other functional characteristics, as well 

as in the corresponding host defense systems developed by the genome (Rebollo et al. 2012; Lindič 

et al. 2013; McLaughlin et al. 2014). For instance, the LINE-2 (L2) and LINE-3 (L3) elements 

belong to the Jockey superfamily, they have lost mobility in human and are commonly found in 

conserved genomic regions (Silva et al. 2003; Meyers 2006). In particular, the L2 elements have 

been proposed to involve in the post-transcriptional gene regulatory networks via miRNAs(Petri et 

al. 2017). Among all the LINE superfamilies, the most notable group is the Long Interspersed 

Element-1, abbreviated as LINE-1 or L1. L1 elements are still active in human and have drawn 

increasing attention due to their critical roles in genome evolution, cellular functions, and human 

health (Singer 1982; Cordaux and Batzer 2009). 

L1s in the human genome 

More than 17% of the human genome is occupied by L1s (Singer 1982; Cordaux and Batzer 2009), 

and their youngest copies are the only active LINE retrotransposons in human (Penzkofer et al. 

2017; Feusier et al. 2019). L1s facilitate the activity of SINEs (Goodier and Kazazian 2008; Meyer 

et al. 2016; Scott and Devine 2017). Moreover, the L1 transposition machinery can be utilized by 

noncoding and messenger RNAs and thus contributes to generating processed pseudogenes 

(Konkel et al. 2010; Beck et al. 2011). Altogether, L1-related transposition is thought to give rise 

to ~69% of the modern human genome (de Koning et al. 2011; Sotero-Caio et al. 2017). Therefore, 

studying L1 transposition dynamics should substantially advance our understanding of the 

evolution of genome structure.  
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L1 transposition follows a ‘copy-and-paste’ mechanism (Boeke et al. 1985; Kazazian and Moran 

1998; Elbarbary et al. 2016). Full-length human L1 elements are usually >6 kb long, yet the 

majority of L1s in the genome have experienced 5′ truncations, inversions, or point mutations 

within their open reading frames, and thus became inactive (Ostertag and Kazazian 2001; Beck et 

al. 2011). Recent advances in whole-genome sequencing (WGS) have enabled the detection of L1 

elements that are polymorphic among human populations and individuals (Ratcliffe et al. 2002; 

Konkel et al. 2007; Ewing and Kazazian 2011), and an increase in the number of identified human 

L1 elements has facilitated studies of L1 evolution and transposition mechanisms (Moran et al. 

1996; Kazazian and Moran 1998; Eric M. Ostertag and Kazazian 2001; St. Laurent et al. 2010; 

Richardson et al. 2017). Meanwhile, WGS and transposon capture sequencing in human and other 

model organisms (e.g., mice) have revealed heritable L1 insertions in both the germline and early 

embryogenesis, suggesting their contribution to genomic diversification (Feusier et al. 2019). 

L1 transposition in germline and somatic cells 

L1 transposition has mutagenesis effects as a result of both direct insertions and genetic variations 

induced by the insertional events (Cordaux and Batzer 2009; Payer and Burns 2019). It has been 

previously reported that germline de novo insertions of L1s and dysregulation of in the human 

genome can lead to a variety of genetic disorders(Goodier and Kazazian 2008; Belancio et al. 2009; 

Beck et al. 2011; Payer and Burns 2019). For instance, the L1 insertions in exon 14 of the factor 

VIII gene were found to cause Haemophilia A in patients (Kazazian et al. 1988). Another example 

is Duchenne/Becker muscular dystrophy, which can be caused by the partial exonization of L1 

copy disrupting the open reading frame of the dystrophin gene (Gonçalves et al. 2017). 

L1 insertions are also frequently found in somatic tissues, and can potentially play important roles 

in the developmental processes (Muotri et al. 2005; Kano et al. 2009) and behavior learning(Baillie 
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et al. 2011; Bedrosian et al. 2018). For instance, L1 activities can assist in forming brain plasticity 

in response to environmental stress via somatic variations in the neurons and other regulatory 

functions (Baillie et al. 2011; Bedrosian et al. 2018). Moreover, frequent somatic L1 

retrotransposition events have also been found in different cancer types, including lung and colon 

cancers, suggesting a potential role of somatic L1 insertions in carcinogenesis (Miki et al. 1992; 

Scott and Devine 2017).  

Use L1s as genetic tools 

L1 transposition provides a powerful platform for mutagenesis screens with successful applications 

in mammalian systems—including mouse and human cells (An et al. 2006). There are many 

advantages to using L1 retrotransposons as a mutagenesis tool; for instance, they provide stable 

donor copies and enable RNA-level manipulation (Ivics et al. 2009). Therefore, in addition to 

providing information on genome functions and evolution, a detailed understanding of L1 

transpositional activity and integration preferences can further facilitate the use of L1s as a 

mutagenesis tool in molecular genetic studies. For example, knowing what genomic landscape may 

attract  L1 insertions, one can engineer L1s to target specific locations and to avoid genomic regions 

prone to structural rearrangements (Graham and Boissinot 2006). 

Previous studies on L1 transposition 

The chromosomal distribution of L1 elements in the human genome with respect to several 

genomic features has been investigated in some previous studies. For instance, densities of fixed 

L1 elements of different evolutionary ages were found to vary by chromosome (Kvikstad and 

Makova 2010), and to be affected by local nucleotide composition and recombination rate (Graham 
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and Boissinot 2006). It has also been reported that younger human L1s are abundant in AT-rich 

regions with low gene density (Boissinot 2004). Recent studies of de novo L1 integrations in 

cultured human cells have suggested a strong correlation between L1 insertion preferences and 

DNA replication (Sultana et al. 2019), while the distribution of recently inserted elements was 

found to be influenced by chromatin state (Singer 1982; Sultana et al. 2017; Sultana et al. 2019). 

These findings imply that, while L1 activities shape the structure of the human genome, the 

genomic landscape may at least partially determine the dynamics of L1 transposition over the 

course of evolution (Beauregard et al. 2008). In agreement with this notion, L1 transposition was 

found to be affected by a wide range of molecular and cellular processes. For instance, such genes 

as MORC2 and p53 can restrain L1 activity through selective transcriptional silencing (Liu et al. 

2018) and post-translational regulation via the piRNA (piwi-interacting RNA) pathway (Wylie et 

al. 2016).   

Therefore, addressing the human L1 dynamics can aid in understanding the structure, function and 

evolution of our genome, which also has significant implications in human health. However, to 

date, there has not been a high-resolution, genome-wide study of L1s in an evolutionary framework, 

through which the insertion and fixation preferences of the elements can be elucidated. In addition, 

the interactions between L1s and local genome landscape have largely remained unclear. 
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Outline of Chapters 

The long-term goal of the study is to characterize the transposition dynamics of TEs and to further 

understand their contribution to the structure, function, and evolution of the human genome. The 

specific objectives of this dissertation are to develop a framework to investigate the genome-wide 

distribution of L1s at a high-resolution and to address their interactions with local genomic 

landscape features. I address those objectives in the following three chapters, under the working 

hypothesis: Different local genomic landscape features contribute in various ways to the L1 

insertion and fixation preferences in the human genome. 

Chapters two focuses on the study design to investigate human L1 transposition dynamics using 

the methods of Functional Data Analysis (FDA). I introduced the experimental design and 

analytical framework of the study. The analysis leverages three large L1 datasets representing 

distinct evolutionary distances, as well as a comprehensive collection of high-resolution genomic 

features. I also present a successful application of FDA framework in the high-resolution genomics 

research (Cremona et al. 2018). The framework allows us to effectively address the scale and 

location of the features’ effects on specific genomic intervals. It can be applied to a wide range of 

topics in future genomics research.  

Chapter three focuses on the discussion of the correlation between human L1 activities and the 

local genomic landscape, as well as the biological models of L1 insertion and fixation. I examine 

the hypothesis that different local genomic landscape features contribute in various ways to the L1 

insertion and fixation preferences in the human genome. In particular, I investigate the genome-

wide distribution of L1s at different evolutionary time scales, and correlate the insertion and 

fixation preferences of the elements with local genomic features thus building an integrative model 

of L1 transposition dynamics. I demonstrate that the genomic distribution of human L1s is driven 

by the local genomic landscape, and our FDA analysis reveals the potential mechanisms through 



 

 

10 

 

which regional genomic characteristics influence new element insertions and their abilities to fix 

in the genome (Chen et al. 2020).  

Chapter four extends the work in previous chapters by examining the robustness of the study design 

and reproducibility of the findings. Specifically, I validate different aspects of the study design in 

chapter two with computational experiments using multiple publicly available datasets. I also apply 

our analytical framework to several recently published de novo L1 datasets and different subsets of 

the polymorphic L1s to test the reproducibility and generalizability of the findings in previous 

chapters. 

In the final chapter, I summarize the results from the previous chapters and further address the 

contribution of TEs to the architecture and evolution of the human genome. I also discuss the 

significance of this work and its broader impact on evolutionary biology, genomic research, and 

medicine. Finally, I point out several directions through which the methods and results from the 

current study can be extended in the future. 
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Chapter 2 
 

Study design of a genome-wide investigation of human L1 transposition 

Most data in this chapter are published as a research article by Chen, D., Cremona, M.A., Qi, Z., 

Mitra, R.D., Chiaromonte, F. and Makova, K.D., 2020. Human L1 Transposition Dynamics 

Unraveled with Functional Data Analysis. Molecular Biology and Evolution. D.C. and M.C. 

contributed equally to this work. Reuse of content from the publication for thesis is in compliance 

of the journal policies. 

Background 

The main goal of this project is to perform a high-resolution, genome-wide study of L1s in an 

evolutionary framework. Specifically, we aim to address the insertion and fixation preferences of 

L1s with respect to the local genome landscape. With the development of multiple high-throughput 

experimental approaches (e.g., ChIP-seq, DNA footprinting, and bisulfite sequencing), genomic 

landscape features can be investigated at increasingly high resolution (Hesselberth et al. 2009; 

Krueger et al. 2012; Landt et al. 2012) and can provide critical information for studying L1 

integration and fixation dynamics. In particular, genomic landscape measurements in consecutive 

sub-regions can be treated as ‘curves’ along each chromosome. On the one hand, this enables 

comparisons of landscape features among different genomic regions, revealing not only the 

presence, but also the location and scale of significant differences. On the other hand, this allows 

one to take into account the ordered nature of the measurements, hence gaining power in 

characterizing differences. We can analyze genomic features as curves using Functional Data 

Analysis (FDA) (Ramsay and Silverman 2005), a branch of statistics specifically developed to 

study data described as curves (mathematical functions), that was only recently introduced into 



 

 

19 

 

genomics research (Zhang et al. 2014; Campos-Sánchez et al. 2016; Cremona et al. 2018; Guiblet 

et al. 2018; Cremona et al. 2019).  

Design of study and methods 

Design of study   

To examine the working hypothesis that different local genomic landscape features contribute in 

various ways to the L1 insertion and fixation preferences in the human genome, we considered 

three datasets comprising integrations of L1 elements at different evolutionary time points; namely, 

de novo, polymorphic, and human-specific L1s (Table S1). De novo L1s experienced minimal 

selection. Human-specific L1s could have been subject to selection for millions of years. 

Polymorphic L1s experienced levels of selection somewhere between those of de novo and human-

specific L1s. Thus, studying de novo L1s should inform integration preferences, contrasting 

distributions of human-specific vs. de novo L1s should highlight fixation preferences, and 

investigating polymorphic L1s might provide additional insights on the interplay between 

integration and fixation. We then collected 49 genomic landscape features cross-referenced from 

other studies and analyzed them using the FDA statistical methods, which treat high-resolution data 

as mathematical functions. Specifically, we contrasted the genomic feature signals in the flanking 

regions of three L1 datasets and L1-depleted control regions via six pairwise comparisons (Fig. 2-

1). Three advanced FDA methods (Interval-Wise Testing, single Functional Logistic Regression, 

and multiple Logistic Regression) were implemented in the workflow to identify the differences in 

genomic feature signals at high resolution, quantify the contribution of each feature, and address 

the joint effect from multiple features (Fig. 2-1). Through this study design, we performed the first 



 

 

20 

 

genome-wide analysis of L1 transposition dynamics in an evolutionary framework and used the 

FDA to leverage an extensive list of genomic landscape features at high resolution.  

 

  



 

 

21 

 

 

 
 

 
Figure 2-1. Functional Data Analysis (FDA) workflow. Illustration of the FDA workflow used in the study. 
The 100-kb L1 regions were constructed taking 50-kb in each direction of the insertion sites, and the control 
regions were constructed as 100-kb non-overlapping intervals with low coverage (<7%) of L1s. High-
resolution genomic features were measured within each 1-kb window of the 100-kb regions, and treated as 
functional data (i.e. curves) for FDA analyses. Curves in different groups (different types of L1s, or each L1 
type vs. controls) were then compared using IWTomics (Interval-Wise Testing for omics data) and Functional 
Logistic Regression. The control regions in this study contain less than 7% coverage by all annotated L1 
elements.  
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Experimental and computational methods 

Collection of L1 datasets 

We harvested the de novo L1s from an induced L1 insertion experiment conducted in the cultured 

human kidney stem cell line HEK-293T (Figs. 2-2 and S1), which allows efficient vector 

amplification and high levels of expression with transient transfection (Rio et al. 1985; Lin et al. 

2014). Positions of L1 insertions were captured by inverse PCR followed by Illumina sequencing 

(Details are shown in the section “in vivo L1 insertion experiment”). By analyzing sequencing data 

from this experiment, we identified 17,037 de novo L1 insertions (Figs. S2; S3A). To the best of 

our knowledge, this is one of the largest collections of de novo L1 insertions in human cells.  

Next, we obtained 1,012 polymorphic L1s from a cross-referenced study of human polymorphic 

L1s (Ewing and Kazazian 2011)—the ones present in some but not all human genomes examined 

(Figs. S2; S3B). The polymorphic L1 dataset we have chosen for our analysis (Ewing and Kazazian 

2011) is well-balanced in terms of sample size (1,012 polymorphic L1s) and population 

representation (310 individuals from 13 populations), while also reflecting insertion rates and allele 

frequency spectra similar to those in other studies of polymorphic L1s (Stewart et al. 2011; Yu et 

al. 2017)(Table S5). We also converted their genomic coordinates from hg18 to hg19 using the 

LiftOver utility (Casper et al. 2018). 

Finally, we obtained 1,205 human-specific L1s (annotated as L1HSs) using the RepeatMasker 

(Smit et al. 2015) track of GRCh37/hg19 from the UCSC Genome Browser (Karolchik et al. 2004). 

We performed the following filtering: we conservatively selected only those L1HSs that were 

absent from the genomes of non-human great apes (Boissinot et al. 2000; Ovchinnikov et al. 2002; 

Philippe et al. 2016) and were not annotated as polymorphic in (Ewing and Kazazian 2011) (Figs. 

S2; S3C). 
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For each of these three L1 datasets, we only considered elements on autosomes and chromosome 

X for the subsequent analyses (Table S1).   

in vivo L1 insertion experiment 

The positions of de novo L1 insertions were retrieved from an L1 integration experiment in HEK-

293T cells according to the following steps. First, vectors containing both a synthetic full-length 

ORFeus-Hs element (An et al. 2011) the human L1 element, and Green Fluorescent Protein (GFP) 

were transfected into cultured cells. The vectors were marked with two restriction enzyme sites 

(MspI: CCGG and TaqI: TCGA) and 14 different 4- to 6-nucleotide barcodes, which enabled the 

identification of unique insertion events in the downstream analysis. The high genome-wide 

densities of the two restriction sites minimized potential bias in detecting the insertion events (Fig. 

S18). Second, the successful de novo L1 integration events were captured by the expression of GFP. 

Finally, the positions of L1 insertions were revealed using inverse PCR followed by Illumina 

sequencing (Fig. 2-2). 

Cell transfection and FACS: The plasmid pld225 containing the L1 element was contributed by the 

lab of Jef Boeke (An et al. 2011). The plasmid DNA was extracted using EndoFree Plasmid Maxi 

Kit (Qiagen) following the manufacturer’s protocol and then prepared for cell transfection. The de 

novo retrotransposition of L1 was performed in human embryonic kidney cell line HEK-293T, 

which was maintained in Dubecco’s Modified Eagle Media (DMEM; Gibco) supplemented with 

10% fetal bovine serum, penicillin (100 units/ml), and streptomycin (100 μg/ml). HEK-293T cells 

were first seeded at 2×105 cells per well in six-well plates and grown overnight. The next day, 
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transfections were performed with 1 μg plasmid and 2.5 μl transfection reagent (Fugene HD; Roche) 

according to the manufacturer’s protocol. The day after transfection, cells were treated with trypsin 

and transferred to 60-mm plates with complete medium containing puromycin at 1 μg/ml. After 3 

days of puromycin selection, cells were washed in 1×phosphate-buffered saline and sorted by 

fluorescence-activated cell sorting (FACS). The gating for GFP positive cells was determined by 

analyzing cells transfected with a puromycin-resistant but GFP-negative control plasmid. A 

minimum of 500,000 cells were sorted for genomic DNA extraction.  

Inverse PCR and Illumina sequencing: Genomic DNA was extracted using DNeasy blood and 

tissue kit (Qiagen) following the manufacturer’s protocol. Each DNA sample was divided into three 

2-mg aliquots, each digested by Msp I or Taq I individually (New England Biolabs). Digested DNA 

was ligated overnight at 16°C in dilute solution to encourage self-ligation. Following ligase 

inactivation, the ligation pool was then concentrated with either Microcon YM-100 or Amicon 

Ultra 10K columns (Millipore), and the volume was adjusted to 30 μL with water (when necessary). 

One microliter was used for inverse PCR with primers (iPCR_F_fixORFeous: 

AATGATACGGCGACCGCCGAGATCTACACAGCTCTGTAACCATTAGCTGCAATAAAC

AAGTTAAC;iPCR_R_fixORFeus:CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACT

GGAGTTCAGACGTGTGC) that anneal at a complementary region of the pld225 plasmid to 

amplify the genomic regions flanking L1 insertion loci (Figs. 2-2; S1A). The adapter sequences 

(Adapter (P5) added on the forward iPCR primer: 

AATGATACGGCGACCGCCGAGATCTACAC; adapter (P7) added on the reverse iPCR primer: 

CAAGCAGAAGACGGCATACGAGAT), which allow the PCR products to be sequenced on the 

Illumina genome analyzer, were added to the inverse PCR primers. The inverse PCR products were 

then purified using the QIAquick PCR purification kit (Qiagen) and diluted to 10-nM concentration. 

For each sample, the same amount of PCR product from digestion with each restriction 

endonuclease was pooled and submitted for Illumina MiSeq sequencing.  
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Sequencing analysis of de novo L1 insertions: We estimated the insertion locus of each de novo L1 

as the 3’-end of read 2 (Fig. 2-2); read 2 should lead to a more precise location that read 1, since it 

does not need to sequence the entire poly-A tail to reach the insertion locus. In particular, we first 

filtered the fastq reads by barcode and restriction sites (i.e. we only retained reads with both barcode 

and at least one of the restriction sites, which correspond to successful L1 insertion events), 

trimmed the 5’ end of the retained reads (keeping the two restriction sites as part of the reads, but 

not the L1 element, Figs. 2-2; S1), and separately stored barcodes and restriction sites. We then 

trimmed the poly-Ts at the 3’-end of the reads that reached the poly-A tail using Sequence Content 

Trimmer on Galaxy (Afgan et al. 2018) (parameters: window size 10; frequency threshold 0.89; 

minimum read length 15), and subsequently using PRINSEQ 0.20.4 (Schmieder and Edwards 2011) 

(parameters: minimum tail length to trim poly-A/T at 3'-end 4; minimum sequence length in base 

pairs 15; set output data as FASTQ and Both). Next, we aligned the processed reads to the hg19 

reference genome using BWA aligner (with default parameters), and filtered aligned reads with the 

cut-off parameter q≥1 using samtools and bedtools. Next, we retrieved the barcode and restriction 

site information by matching the sequencing read IDs, and annotated the strand information for all 

of the de novo L1 insertions (Fig. S1). Finally, we collapsed the insertions at the same location by 

merging reads containing the same barcode and with start (for the positive strand) or end (for the 

negative strand) positions at a distance less than 4 bps–since it is very unlikely to obtain two very 

close insertions with the same barcode. As a result, we retrieved 17,037 unique de novo L1 

insertions. In addition, we examined the potential bias from genomic poly(A/T) sequences on de 

novo L1 detection, which might create false positive signals or shift the estimated insertion site, but 

did not find any significant effect from the genomic poly(A/T) sequences (Supplementary Note 3). 
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Figure 2-2. Identification of in vivo de novo L1 insertions by Inverse-PCR. Vectors containing both a 
synthetic human L1 element (full-length synthetic ORFeus-Hs, see Methods) and Green Fluorescent Protein 
(GFP) were transfected into cultured cells. The vectors were marked by two restriction enzyme sites (MspI 
and TaqI) and 14 different barcodes of four to six nucleotides. While the successful de novo L1 integration 
events are captured by GFP expression, the genomic DNA along with a stretch of the L1 element (its poly-
A tail end) is obtained by restriction enzyme digestion. The positions of L1 insertions are acquired by inverse 
PCR and pair-end Illumina sequencing. Figure designed by Zongtai Qi. 
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Analysis of L1 distance distribution 

To investigate whether the genomic distribution of L1s is random, we compared the distribution of 

distances between L1 elements of the same type with a random expectation (Fig. S4). We also 

compared the distribution of distances between L1 elements of two different types with a random 

expectation (Fig. S5). In particular, for each of the three L1 datasets (de novo L1s, polymorphic 

L1s, and human-specific L1s), we computed distances between each element and the closest 

element of the same type (on either strand, and either upstream or downstream). We then compared 

the resulting distance distribution with the distance distribution obtained by randomly shuffling L1 

genomic positions (produced considering a dataset with the same number of elements and element 

lengths, but randomized positions). In particular, we performed a bootstrap Kolmogorov–Smirnov 

test (with 100 resamplings) to test for differences between the empirically observed and the 

randomized distance distributions, using the “ks.boot” function from the R package “Matching” 

(Sekhon 2011). The purpose of bootstrapping was to provide comparable sample sizes across 

different L1 sets and the number of subsamples selected as a balance of sufficient statistical power 

and reasonable computational time. The comparison was visualized using cumulative distribution 

plots (Fig. S4A-C) and quantile-quantile (Q-Q) plots (Fig. S4D-F). In addition, to compare distance 

distributions across the three L1 datasets, we considered a ‘normalized’ cumulative distribution of 

the distances between L1 elements. Specifically, we first subsampled 900 elements from each L1 

dataset, and used these subsamples to compute the cumulative distributions of the distances 

between L1 elements of the same type. We then normalized these distributions by subtracting the 

corresponding expected cumulative distribution, and plotted results based on 100 subsamples. We 

also analyzed the distances between L1 elements from different datasets using the same procedure 

and plots (Fig. S5A-F), and compared the distance distributions across the three pairs of data sets 



 

 

28 

 

(de novo L1 and human-specific L1; de novo L1 and polymorphic L1; polymorphic L1 and human-

specific L1).  

Generation of a comprehensive blacklist 

With the wide use of functional genomics experiments such as ChIP-seq and DNase-seq, it was 

observed that certain regions of the genome frequently produce artifactual signals, mainly due to 

the erroneous mapping of reads originating from repetitive regions (ENCODE Project Consortium 

2012; Amemiya et al. 2019). These regions are frequently found at certain types of sequences such 

as centromeres, telomeres, and satellite repeats. Since in our genomic landscape analysis we 

considered functional genomics features measured by ChIP-seq and DNase-seq, it was essential to 

remove these artifactual regions. First, we considered the ENCODE blacklist for hg19 (ENCODE 

Project Consortium 2012; Amemiya et al. 2019), a set of problematic regions in the genome that 

show artificially high signal in several ENCODE experiments, independently of the cell line and 

experiment type. We then expanded this blacklist to include problematic regions specific to H1-

human embryonic stem cell line (H1-hESC, the cell line we are considering for most of the 

functional genomic experiments in this study). In particular, we added to the blacklist the genomic 

regions that showed extreme signal in the H1-hESC ChIP-Seq control sample. The bam files of this 

control experiment were retrieved from the ENCODE portal (ID: ENCSR000AMI), and the two 

replicates were merged into a single control file with samtools. We then employed two approaches 

to identify regions with extreme signals. First, we called peaks in the control file using MACS2 

with default parameters (Zhang et al. 2008; Feng et al. 2012). Second, we screened the genome 

based on the strength of the control ChIP-Seq signal using a script originally developed by Chris 

Morrissey and Belinda Giardine from Ross Hardison’s Lab at Penn State University (Morrissey 
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2013; Cheng et al. 2014). In particular, we considered a 5,000-bp sliding window, and blacklisted 

all regions with signal 4 standard deviations greater than average, with at least 8-fold change in 

spikes. The two approaches revealed 2,094 and 519 blacklisted regions, respectively (Table S3). 

Our comprehensive blacklist was obtained by merging the ENCODE blacklist with the genomic 

regions of extreme H1-hESC ChIP-Seq control signals, and it contained 861 regions for a total size 

of 11.8 Mb (Table S3).  

Construction of L1 flanking and control regions 

Given the low quality of the sequencing data on sex chromosomes for several genomic features, 

only the L1 elements on autosomes were considered when we constructed flanking regions for the 

FDA workflow. This reduced our data sets to 16,322 de novo L1s, 954 polymorphic L1s, and 1,094 

human-specific L1s (Table S1). We constructed the flanking regions of the 16,322 autosomal de 

novo L1 insertions by taking the 50-kb upstream and 50-kb downstream sequences centered at the 

insertion sites. Overlaps between flanking regions might affect subsequent analyses, assigning 

more weight to genomic regions covered by multiple L1 flanks; hence we removed part of the 

overlapping regions, in order to obtain a data set of non-overlapping regions that maximized the 

number of regions retained (for a pair of overlapping regions, we kept only the first one; for a group 

of three overlapping windows we kept the first one and the third one, if they did not overlap, etc.). 

After filtering out genome assembly gaps and blacklisted regions, we retained a total of 7,981 de 

novo L1 regions. The 954 autosomal polymorphic L1s (Ewing and Kazazian 2011) are not 

annotated in the reference genome, hence we used the sites of polymorphic L1 directly and 

constructed 100-kb flanking regions centered at these sites for each polymorphic L1. After 

removing overlapping windows, genome assembly gaps, and blacklisted regions, 836 polymorphic 
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L1 regions were retained. For the 1,094 autosomal human-specific L1s (Karolchik et al. 2004; Smit 

et al. 2015), we first merged the overlapping and adjacent elements and then constructed the regions 

by flanking 50 kb upstream and 50 kb downstream of each element—the element sequences were 

not included. This resulted in 834 non-overlapping human-specific 100-kb L1 flanking regions, 

after removing genome assembly gaps and blacklisted regions (Table S3). In addition, when 

constructing the flanking regions, we annotated the L1 elements strand information (whether they 

were inserted on the positive or negative strand) whenever possible. The strand was annotated for 

all 7,981 de novo L1s regions, but only for 670 polymorphic L1 regions and 725 human-specific 

L1 regions. This was due to the lack of information about insertion directions for a subset of 

polymorphic L1s (Ewing and Kazazian 2011) and to the merging of overlapping/adjacent human-

specific L1s on opposite strands. We considered the strand information in our FDA analysis (see 

below).  

To construct our controls, we partitioned the hg19 human genome into 100-kb consecutive regions, 

and excluded those that overlapped with genomic gaps (Kent et al. 2002) or blacklisted regions (as 

described below). We then filtered out regions overlapping with any of the three L1 100-kb flanking 

region datasets. In addition, we filtered out regions overlapping 100-kb regions flanking 

polymorphic L1s from dbRIP (Wang et al. 2006). These L1s were not included in our polymorphic 

L1 dataset because of their heterogeneity (some of them are in the reference genome while some 

are not, hence merging them with the Ewing and Kazazian’s dataset (Ewing and Kazazian 2011) 

might introduce bias). Yet we excluded them and their flanks to obtain cleaner controls. Finally, in 

order to minimize the ‘noise’ from older L1 elements in the genome, we filtered the control regions 

based on their coverage of all referenced L1 elements in the hg19 genome assembly (except for 

human-specific L1s since they were already removed). Only control regions with less than 7% 

coverage by (all referenced) L1 element were kept, leading to a final set of 1,034 “clean” control 
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regions. The 7% threshold was chosen in order to obtain a number of control regions of the same 

order of magnitude as in each of the three L1 datasets.  

We also considered the fact that some of the 100-kb flanking regions from different L1 datasets 

(e.g. de novo L1s and human-specific L1s) might overlap, making the datasets not completely 

independent. We performed IWTomics analysis (see section ‘Interval-wise testing with IWTomics’) 

both on the complete datasets and after removing all the overlapping regions among different 

datasets (this left us with 7,517 de novo L1 regions, 332 polymorphic L1 regions, and 357 human-

specific L1 regions). Since results were similar (not shown), we kept the overlapping regions 

among different L1 datasets in our analyses, in order to maximize the number of considered L1s 

and thus our statistical power.  

Extraction of genomic landscape features 

We extracted genomic features in the flanking regions of de novo L1s, polymorphic L1s, human-

specific L1s, and in control regions. A total of 49 features were collected from various sources 

(Table 1), among which 44 high-resolution features measured at 1-kb resolution over the 100-kb 

regions, and five low-resolution features (telomere hexamers, distance to the telomere, distance to 

the centromere, replication timing, and recombination rate) measured at 100-kb resolution, 

providing a single measurement per region.  

All the features obtained from ChIP-Seq experiments (histone modifications, DNase hypersensitive 

sites, and CTCF motifs) were measured as ‘signals’, i.e. as the average number of reads aligned in 

each 1-kb window. For the features measured as ‘coverage’ (Table 1), we computed the proportion 

of the window covered by the feature using bedtools 2.25.0 (Quinlan 2014). For the features 

measured as ‘weighted averages’, the extraction was performed on the Galaxy platform, using the 
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function ‘Assign Weighted Average Values’ (Goecks et al. 2010; Afgan et al. 2018). The extraction 

of ‘count’ features was performed via bedtools 2.25.0. (Quinlan 2014) and the Galaxy platform 

(Afgan et al. 2018). While extracting the high-resolution genomic features in the L1 flanking 

regions, we also considered strand information by reversing the order of 1-kb windows when the 

element was on the negative strand. 

For the high-resolution features, we performed a clustering based on Spearman’s correlation. In 

detail, we considered all 1-kb windows corresponding to L1 flanking regions and control regions 

and performed a hierarchical clustering using 1-|Spearman’s correlation| as dissimilarity and 

complete linkage (Fig. S6). At a cutoff of 0.2 (corresponding to a Spearman’s correlation of ±0.8), 

we identified two tight clusters of features. One comprised three expression profiles (testis 

expression, gene expression, transcript expression), and the other exon-related (exon coverage and 

exon expression). We selected only one representative feature for each cluster, and thus excluded 

three features (testis expression, transcript expression, and exon expression) in order to reduce 

multicollinearity issues in the multiple regression analysis (see below). 
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Table 2-1. Genomic landscape features and their contributions in single and multiple Functional 
Logistic Regressions.  
 
 
 

Group 

 
 

Name 

 
 

Format 

 
 

Resolution 

 
 

Source 

de novo L1 vs control Human-specific L1 vs  
de novo L1 

pseudo-R2 for 
sFLR (%) 

RCDE for 
mFLR (%) 

pseudo-R2 for 
sFLR (%) 

RCDE for 
mFLR (%) 

Chromatin DNase hyper. 
sites Signals High ENCODE  1.00 5.03 18.12 1.89 

Chromatin RNA Pol II Coverage High (Barski et al. 
2007) 

0.23 1.59 5.72 Not sel. 
Chromatin CTCF Signals High ENCODE Not sign. Not sign.  13.22 Not sel. 

Transcription  H3K4me2 Signals High ENCODE 2.51 Not sel. 15.56 0.70 
Transcription  H3K9ac Signals High ENCODE 2.38 1.10 15.64 Not sel. 
Transcription  H3K4me3 Signals High ENCODE 1.48 1.42 11.09 Not sel. 
Transcription  H3K79me2 Signals High ENCODE Not sign.  Not sign.  4.10 Not sel. 
Transcription  H3K27ac Signals High ENCODE 2.69 Not sel. 12.62 Not sel. 
Transcription  H4K20me1 Signals High ENCODE 1.21 Not sel. 9.57 Not sel. 
Transcription  H3K4me1 Signals High ENCODE 4.20 0.93 12.32 2.64 
Transcription  H3K36me3 Signals High ENCODE 1.48 0.71 7.55 Not sel. 
Transcription  H3K9me3 Signals High ENCODE Not sign.  Not sign.  1.50 4.46 
Transcription  H3K27me3 Signals High ENCODE 0.76 Not sel. 9.18 Not sel. 
Transcription  H2AFZ Signals High ENCODE 0.54 Not sel. 1.91 Not sel. 
Transcription  Gene expression W. aver.  High UCSC Genome 

Browser 1.19 Not sel. 3.84 Not sel. 
DNA methylation Sperm hypometh Count High (Molaro et al. 

2011) 

2.04 1.34 3.22 2.12 
DNA methylation CpG methylation W. aver.  High (Lister et al. 

2009) 

0.27 Not sel. 0.32 Not sel. 
DNA methylation 5-hMc Count High (Szulwach et al. 

2011) 

Not sign.  Not sign.  11.28 Not sel. 
DNA methylation CHH methylation W. aver.  High (Lister et al. 

2009) 

Not sign.  Not sign.  Not sign.  Not sign. 
DNA methylation CHG methylation W. aver.  High (Lister et al. 

2009) 

Not sign.  Not sign.  1.95 Not sel. 
Non-B DNA G-quadruplex Coverage High (Cer et al. 2011)  1.16 1.64 9.43 Not sel. 
Non-B DNA A-phased repeats Coverage High (Cer et al. 2011)  Not sign.  Not sign.  9.29 Not sel. 
Non-B DNA Direct repeats Coverage High (Cer et al. 2011)  0.44 Not sel. 4.78 Not sel. 
Non-B DNA Inverted repeats Coverage High (Cer et al. 2011)  Not sign. Not sign. 1.78 Not sel. 
Non-B DNA Mirror repeats Coverage High (Cer et al. 2011)  2.18 Not sel. 0.31 Not sel. 
Non-B DNA Z DNA motifs Coverage High (Cer et al. 2011)  Not sign. Not sign. 2.30 Not sel. 

Microsatellites Mononucl. 
microsats Coverage High Genome 

screening 0.16 Not sel. 1.73 Not sel. 
Microsatellites Di-, tri-, and 

tetranucl.  Coverage High Genome 
screening 0.22 Not sel. Not sign.  Not sign. 

Nucl. 
composition  GC-content Percent High Genome 

screening 1.23 13.99 17.13 1.92 
L1 target motifs L1 target motifs Count High Genome 

screening 4.43 16.22 3.75 Not sel. 
Other TEs Alu Coverage High UCSC Genome 

Browser 0.81 3.72 12.61 5.44 
Other TEs MIR Coverage High UCSC Genome 

Browser 6.56 Not sel. 1.23 Not sel. 
Other TEs L2 and L3 Coverage High UCSC Genome 

Browser 4.94 8.52 Not sign.  Not sign.  
Other TEs DNA transposons Coverage High UCSC Genome 

Browser Not sign.  Not sign.  Not sign.  Not sign.  
Other TEs LTR elements Coverage High UCSC Genome 

Browser 0.67 Not sel. 3.38 Not sel. 
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Replication  Replication origins Count High (Besnard et al. 
2012) 

0.45 0.95 11.75 Not sel. 
Recombination Recomb. hotspots Count Low (Myers et al. 

2008)  0.05 Not sel. 1.25 Not sel. 
Selection Most cons. 

elements Coverage High UCSC Genome 
Browser 8.74 2.17 3.45 Not sel. 

Selection CpG islands Coverage High UCSC Genome 
Browser 2.54 4.04 13.68 2.75 

Selection Exons Coverage High UCSC Genome 
Browser 0.54 1.21 8.98 2.77 

Selection Introns Coverage High UCSC Genome 
Browser 2.65 Not sel. 1.08 Not sel. 

Chr. location Dist. to 
centromere  Distance Low Genome 

screening Not sign.  Not sign.  0.09 Not sel. 
Chr. location Distance to 

telomere  Distance  Low Genome 
screening Not sign.  Not sign.  1.54 Not sel.  

Chr. location Telomere 
hexamer Count Low (Plohl et al. 

2002) 

9.96 0.85 1.00 Not sel. 
Replication Replication timing  W. aver.  Low (Ryba et al. 

2010) 

0.33 3.47 11.74 Not sel. 
Recombination  Recombination 

rate W. aver.  Low (Kong et al. 
2010) 

Not sign.  Not sign.  Not sign.  Not sign.  
Total pseudo-R2      

31.97  
26.97 

 
Chromatin = chromatin structure, Transcription = transcription regulation and gene expression, “Res.” = 
Resolution, “W.ave” = weighted average, “Not sign.” = features that showed no significant differences in 
IWTomics tests; “Not sel.” = features that were not selected in the final mFLR models (potentially due to 
interdependencies among features). Testis gene expression (Brawand et al. 2011), exon expression and 
transcript expression (UCSC Genome Browser) were excluded from the analysis due to their high 
correlations with other features (Fig. S6). 
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Interval-wise testing with IWTomics 

To compare the profiles described by high-resolution features along the 100-kb flanking regions of 

different L1s, as well as between L1 flanks and control regions, we employed the Interval-Wise 

Testing for omics data (IWTomics) (Pini and Vantini 2016; Cremona et al. 2018). IWTomics is a 

non-parametric inference procedure that tests for differences between the distributions of two sets 

of curves. In particular, IWTomics tests the null hypothesis that the distributions of the two sets of 

curves are equal against the alternative hypothesis that they differ. Importantly, if a significant 

difference is detected, it provides also the locations (i.e. the 1-kb windows) where such difference 

is observed. This is achieved by first computing pointwise p-values (i.e. a p-value for each 1-kb 

window), and then by adjusting them for multiple comparison, taking into consideration the ordered 

nature of the measurements (i.e. of the 100 1-kb windows). In addition, the extended version of the 

test that we employed – implemented in the R package IWTomics (Cremona et al. 2018) – also 

provides the scales (i.e. lengths of the subintervals) at which significant differences unfold (see Fig. 

S7 for an example of IWTomics complete output). The test is fully non-parametric and based on 

permutations, so it requires no assumption on the curve distributions; this characteristic makes it 

particularly advantageous for testing the heterogeneous genomics features used in our study.  

We employed IWTomics to analyze each of the 41 high-resolution genomic features measured in 

contiguous 1-kb windows along the 100-kb flanks of different groups (de novo L1s, polymorphic 

L1s, human-specific L1s), and along the 100-kb control regions. We considered six pairwise 

comparisons: de novo L1 vs control, polymorphic L1 vs control, human-specific L1 vs control, 

polymorphic L1 vs de novo L1, human-specific L1 vs de novo L1, and polymorphic L1 vs human-

specific L1 (Figs. 2-1 and S8). Specifically, each curve was defined in the interval [− 50 kb, 50 kb], 

where 0 represents the L1 or the center of a control region, with values over a grid of 100 points 

corresponding to the 100 1-kb windows where the genomic features were measured. In order to 
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denoise and turn these discrete measurements into functional data, we slightly smoothed each curve 

using Nadaraya-Watson kernel smoothing with Gaussian kernel and bandwidth = 2. We used a 

higher level of smoothing (bandwidth = 3) for CpG islands, since the sparsity and uneven 

distribution of this feature induced massive zero-inflation (less than 10% of the 1-kb windows had 

non-zero original measurements). Smoothing was performed via the smooth function in the 

IWTomics package. All curves corresponding to the same feature and to regions of the same type 

were then aligned over their [− 50 kb, 50 kb] domain, and the four groups of curves were treated 

as samples from four underlying stochastic functions, each with its distribution. For each genomic 

feature and each of six pairwise comparison, we tested the null hypothesis that the two stochastic 

functions have the same distribution, against the alternative hypothesis that their distributions differ. 

We tested all possible scales, from the 1-kb window to the entire 100-kb region, detecting both the 

scales and the locations at which the distributions differ. We employed IWTomics with three 

different test statistics – mean difference, median difference, and multi-quantile difference (the sum 

of the 5th, 25th, 50th, 75th, and 95th quantile differences)–in order to focus on different characteristics 

of the distributions. The results with mean differences captured group differentiation quite 

efficiently, and were thus used for further analysis (multi-quantile differences produced similar 

results, while median differences detected less differentiation). IWTomics’ empirical p-values were 

computed using 10,000 random permutations. The five low-resolution features were analyzed 

considering the same six pairwise comparisons and employing the univariate version of IWTomics, 

where one single value is considered for each 100-kb region (Figs. 2-1 and S9).  

Since the de novo L1 dataset was substantially larger than the polymorphic L1, human-specific L1 

and control datasets, we randomly subsampled 1,000 de novo L1 regions in order to achieve a 

comparable sample size across all groups analyzed. IWTomics tests involving de novo L1s were 

run ten times, using 10 independent random subsamples of 1,000 de novo L1 regions. The ten runs 

produced similar results (e.g. significance, location, scale, etc.; data not shown) which we 
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summarized using pointwise medians of the adjusted p-value curves (Figs. S7 and S8; pointwise 

medians were computed for each comparison and each possible adjustment scale, from the 1-kb 

window to the entire 100-kb region).  

Single functional logistic regression analysis 

For genomic features that showed significant differences in some of the IWTomics comparisons, 

we quantified individual effects using single Functional Logistic Regression models (sFLR). For 

each of the six pairwise comparisons (de novo L1 vs control, polymorphic L1 vs control, human-

specific L1 vs control, polymorphic L1 vs de novo L1, human-specific L1 vs de novo L1, and 

polymorphic L1 vs human-specific L1), we identified significant features (according to IWTomics, 

at any location and scale), and for each significant feature we fitted a sFLR with the two groups as 

binary response and the feature as predictor. For example, in the comparison between de novo L1 

and control, we fitted single logistic regression models on each of the 33 genomics features (31 

high-resolution features and two low-resolution features) identified by IWTomics in the same 

comparison, using as response the binary variable denoting de novo L1 flanking regions as 𝑌 = 1 

and control regions as 𝑌 = 0. Prior to fitting the sFLRs, we examined the distribution of each 

genomic feature (considering all 1-kb windows for high-resolution features, and all 100-kb regions 

for low-resolution features) and performed a transformation by taking a shifted logarithm if the 

distribution was skewed. In detail, we computed the natural logarithm after adding a positive shift 

parameter 𝑠, i.e. we used the transformation 𝑙𝑜𝑔(𝑥 + 𝑠), and we selected 𝑠	𝜖{1, 10!", . . . , 10!"#} 

in order to maximize the p-values of the Shapiro-Wilk normality test on the transformed data in all 

groups (except for replication timing, that had both positive and negative values, where we 

considered 𝑠	𝜖{2,4, . . . ,22}). Each genomic feature was then included in a sFLR as either functional 
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or scalar predictor (indicated as 𝑥(𝑡) and 𝑥 in the following equations, respectively) – with the 

model reducing to an ordinary single logistic regression in the latter case. In symbols, we fitted the 

models 

logit6𝔼8Y│𝑥$(𝑡)9:=ln ; %!
"!%!

< =β#+ 1
&|(!|

∫ 		(! 𝛽$(𝑡)𝑥$(𝑡) 𝑑𝑡   

 

 

logit6𝔼8Y│𝑍$9:=ln A
𝑝$

1 − 𝑝$
D=β#+ 𝛽$𝑍$ 

for functional and scalar predictors, respectively, where 𝑝 represents the probability of being in the 

group denoted by 𝑌 = 1 conditionally to the observed predictor. A high-resolution feature was 

treated as a functional predictor in a given comparison if it showed significant, localized differences 

in IWTomics results and in pointwise boxplots. In contrast, a high-resolution feature was 

considered as a scalar predictor in a given comparison if IWTomics results suggested a significant 

but non-localized (i.e. global) difference across the entire 100-kb interval, and pointwise boxplots 

showed flat signals. In this case, the high-resolution feature was summarized by computing its 

average over the 100 1-kb measurements in each 100-kb region. The five low-resolution features 

(recombination rate, replication timing, distance from the telomere, distance from the centromere, 

and telomere hexamers), when significant, were also treated as scalar predictors. The R function 

glm was employed to fit the models for scalar predictors, using the binomial family and the logit 

link function. The sFLR for functional predictors were fitted with the function fregre.glm from the 

R package fda.usc (Febrero-Bande and de la Fuente 2012), using again the binomial family and the 

logit link function. A quadratic B-spline basis (order 3) with six equispaced breaks was employed 

for representing both 𝛽(𝑡) and 𝑥(𝑡) (we used the function create.bspline.basis from the R package 

fda).  
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For each sFLR model (in each comparison), we measured the discriminatory strength of the 

predictor with the pseudo-R2, which indicates the proportion of Deviance Explained by the model, 

i.e. with 

DE = R%*+,-.
/ =

𝐷0+11 − 𝐷2.-,1
𝐷0+11

 

 

where 𝐷0+11 is the null deviance and 𝐷2.-,1 is the model residual deviance.  

In comparisons involving de novo L1s, also the sFLR analysis was performed 10 times—using the 

same 10 random subsamples of de novo L1 flanking regions generated for the IWTomics analysis. 

Again, results from the 10 random subsamples revealed similar signals (pseudo-R2, significance, 

beta coefficients, etc.). We then compared the pseudo-R2 values for each predictor across all 10 

random subsamples and selected the subsample (random 1) with the least extreme values for 

downstream analyses (Fig. S10).  

Multiple functional logistic regression analysis  

For each of the six pairwise comparisons (de novo L1 vs control, polymorphic L1 vs control, 

human-specific L1 vs control, polymorphic L1 vs de novo L1, human-specific L1 vs de novo L1, 

and polymorphic L1 vs human-specific L1), we employed a multiple Functional Logistic 

Regression (mFLR) model to quantify the joint effects of different genomic landscape features on 

the insertion and fixation preferences of the L1 elements. Similarly to what was done in the above 

sFLR analysis, we considered the genomic features that showed significant differences in some of 

the IWTomics comparisons, and we included each of them in the mFLR model either as a functional 

or as a scalar predictor (indicated as 𝑥3(𝑡) and 𝑥3 in the following equations, respectively). If a 
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feature showed a skewed distribution, we transformed it with a shifted logarithm in the same way 

we did for sFLRs (see details in previous Subsection). As response, we used a binary indicator for 

the two types of regions being compared (for example, in the comparison between de novo L1 and 

control we indicated de novo regions with 𝑌 = 1 and control regions with 𝑌 = 0). In symbols, for 

each comparison we fitted the model: 

logit(𝔼[𝑌|𝑥", …, 𝑥4, 𝑥45"(𝑡), …,𝑥45*(𝑡)]) = ln A
𝑝

1 − 𝑝D

= 𝛽# +K𝛽3𝑥3

4

36"

+ K L 𝛽3(𝑡)𝑥3(𝑡)𝑑𝑡
7#

!7#

45*

3645"

 

 

where 𝑥", . . . , 𝑥4  are the 𝑟  scalar predictors, 𝑥45"(𝑡), . . . , 𝑥45*(𝑡) are the 𝑠  functional predictors, 

and 𝑝  represents the probability of being in the group denoted by 𝑌 = 1  conditionally to the 

observed predictors.  

Even omitting features that were non-significant in the IWTomics analysis, and reducing to scalar 

predictors high-resolution features that showed significant but flat signals, each mFLR model 

included several predictors. For example, the mFLR model to compare de novo L1 and control 

included 13 scalar and 20 functional predictors. In order to reduce the complexity of the mFLR 

models and retain only relevant predictors (i.e. only those genomic features that are useful in 

differentiating among the two compared groups), we employed a variable selection method for 

generalized functional regression models based on group lasso (Matsui 2014). In particular, we 

standardized each predictor and expressed each of the functional predictors 𝑥3(𝑡) via a quadratic 

B-spline basis expansion (order 3) with six equispaced breaks (we used the function 

create.bspline.basis from the R package fda):  
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𝑥3(𝑡) = K𝑤3,9

:

96"

𝜙9(𝑡) = 𝒘3;𝝓(𝑡) 

 

The same basis was employed for representing each coefficient curve 𝛽3(𝑡), obtaining: 

𝛽3(𝑡) = K𝑏3,9

:

96"

𝜙9(𝑡) = 𝒃3;𝝓(𝑡) 

 

 The mFLR model could therefore be rewritten as: 

logit(𝔼[𝑌|𝑥", …, 𝑥4, 𝑥45"(𝑡), …,𝑥45*(𝑡)]) = ln A
𝑝

1 − 𝑝D
 

= 𝛽# +K𝛽3𝑥3

4

36"

+ K 𝒃3;𝑱𝝓𝒘3

45*

3645"

 

 

where  

𝑱𝝓 = L 𝝓(𝑡)𝝓3
;(𝑡)𝑑𝑡

7#

!7#
 

is the cross-product matrix of the B-spline basis. The vector of parameters  

𝒃 = [𝛽#, 𝛽", … , 𝛽4 , 𝒃45"; , … , 𝒃45*; ]; 

  

was then estimated using the group lasso penalty for logistic regression (Yuan and Lin 2006; Meier 

et al. 2008), treating the parameters corresponding to the expansion of the same predictor as a group. 

In symbols, the vector of parameters was estimated by minimizing the penalized log-likelihood 

function  
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𝑙=(𝒃) = −𝑙(𝒃) + 𝜆W|𝛽#| +KX𝛽3X
4

36"

+ K √6[𝒃3[
45*

3645"

\ 

 

where 𝑙(𝑏) is the log-likelihood function, ‖ ∙ ‖  indicates the Euclidean norm, and 𝜆  is a 

regularization parameter. This minimization was performed using an R in-house script based on 

Matsui’s code (Matsui 2014). The regularization parameter 𝜆 was selected using the BIC (see Fig. 

S12).  

To conclude, for each comparison we fitted a final mFLR comprising only the variables selected 

by the group lasso. Also here, we employed the function fregre.glm from the R package fda.usc 

(Febrero-Bande and de la Fuente 2012), with binomial family, logit link function and a quadratic 

B-spline basis (order 3) with six equispaced breaks for representing each 𝛽3(𝑡) and 𝑥3(𝑡) (we used 

again the function create.bspline.basis from the R package fda).  

We measured the total discriminatory power of each final mFLR model with the total pseudo-R2, 

which corresponds to the proportion of Deviance Explained by the model: 

DE = R%*+,-.
/ =

𝐷0+11 − 𝐷2.-,1
𝐷0+11

 

 

where 𝐷0+11  is the null deviance and 𝐷2.-,1  is the model’s residual deviance. In addition, we 

measured the contribution of each individual feature to the final mFLR model with the Relative 

Contribution to the Deviance Explained (RCDE): 

𝑅𝐶𝐷𝐸 =
(𝐷0+11 − 𝐷2.-,1) − (𝐷0+11 − 𝐷4,-	2.-,1)

(𝐷0+11 − 𝐷2.-,1)
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where 𝐷0+11  is the null deviance, 𝐷2.-,1  is the model’s residual deviance and 𝐷4,-	2.-,1  is the 

residual deviance of a reduced model obtained by removing the predictor whose contribution is 

being measured. 

Data availability and contribution 

We have set up a github repository (https://github.com/makovalab-psu/L1_Project) and included 

the chromosomal coordinates of de novo, polymorphic, and human-specific L1s analyzed in this 

study. The repository also contains the computational pipelines and code, along with the 

corresponding intermediate files (.RData) used to generate the results. Marzia Cremona helped with 

the customization of IWTomics package and developed the R code for L1 distance analysis and 

mFLR. Zongtai Qi and Robi Mitra performed the de novo L1 integration experiment. Thanks to 
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Chapter 3 
 

Human L1 transposition dynamics unraveled with Functional Data Analysis 

Most data in this chapter are published as a research article by Chen, D., Cremona, M.A., Qi, Z., 

Mitra, R.D., Chiaromonte, F. and Makova, K.D., 2020. Human L1 Transposition Dynamics 

Unraveled with Functional Data Analysis. Molecular Biology and Evolution. D.C. and M.C. 

contributed equally to this work. Reuse of content from the publication for thesis is in compliance 

of the journal policies. 

Summary of Analysis 

As described in the previous chapter, we designed a genome-wide study of human L1 transposition 

dynamics, using three large datasets of L1s integrated at different evolutionary times: 17,037 de 

novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic 

and 1,205 human-specific L1s (from public databases). We also analyzed an extensive list of high-

resolution genomic features to characterize the landscapes correlated with L1 integration and 

fixation. In this chapter, we demonstrated that the genomic distribution of human L1 elements is 

not random and is strongly associated with the local genomic landscape. Our analyses revealed 

potential mechanisms through which local genomic features have influenced L1 transposition 

dynamics and, in turn, L1 transposition has shaped the genomic landscape over the course of 

evolution. Here we summarize the results and discuss the biological models of human L1 

transpositional dynamics in detail. 
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Results 

L1 elements are not randomly distributed in the human genome 

To assess whether L1 elements are randomly distributed across the genome, we analyzed their 

positions and the distances between subsequent L1s within and between our three datasets. 

Karyotype plots (Fig. S2) and chromosome-specific element densities (Fig. S3) did not suggest any 

obvious enrichment or depletion of de novo, polymorphic, or human-specific L1s on specific 

chromosomes in agreement with previous studies (Sultana et al. 2019). However, within each of 

the three L1 datasets considered, the distribution of distances between L1 elements was far from 

random (Figs. 3-1A and S4). In particular, L1 elements from the same dataset were closer to each 

other compared to random expectation (p=10-16 for de novo L1s, p=1.5×10-5 for polymorphic L1s, 

and p=9.7×10-11 for human-specific L1s, Kolmogorov–Smirnov test; see Materials and Methods). 

Furthermore, the analysis of distances between L1s from different datasets (Fig. 3-1B) revealed 

distinct patterns for de novo, polymorphic, and human-specific L1s. In particular, de novo L1s were 

generally located further than expected from the other two types of L1s (Figs. 3-1B and S5). 

Notably, the distribution of de novo L1 insertions appears non-random also when considering de 

novo L1 datasets generated in other recent studies (Flasch et al. 2019; Sultana et al. 2019) (Table 

S6; Fig. S16). 
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Figure 3-1. Distribution of distances between L1 elements. A. Differences between observed and 
expected cumulative distributions of the distances between L1 elements of the same type (de novo, 
polymorphic, or human-specific). B. Differences between observed and expected cumulative distributions 
of the distances between L1 elements of different types. Each line shows results based on a random sample 
of 900 L1s of each type (100 random samples in total). Distances are reported on a log scale. Positive 
differences indicate smaller distance between L1s compared to random expectation, negative differences 
indicate larger distance compared to random expectation.   
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Characterizing local landscape with various genomic features 

To understand the determinants of the (non-random) distributions observed for L1s along the 

genome, we quantitated the genomic landscape surrounding L1 elements and studied its association 

with L1 integration and fixation. Specifically, using publicly available sources (e.g. ENCODE 

(ENCODE Project Consortium 2012), UCSC Genome Browser (Karolchik et al. 2004), etc.) and 

results from previous studies (see Material and Methods), we collected data on 49 quantitative 

genomic features that may influence L1 integration and fixation dynamics (Table 1 and Table S2). 

These included features related to chromatin structure, transcription regulation, DNA methylation, 

nucleotide composition, non-B DNA structures, non-L1 transposons, gene expression in human 

embryonic stem cells (hESC expression), replication, recombination, and selection. In general, we 

strived to be consistent regarding the sources of genomic features, which was an important 

component in our study design. Specifically, 22 features (e.g., GC content, exon coverage, most 

conserved elements, etc.) were not cell-line specific, and we extracted most of the other features 

(e.g. Histone modifications, DNA methylation, etc.) from hESC.  

We constructed 100-kb flanking genomic regions surrounding each L1 insertion (±50 kb), as well 

as 10,037 100-kb control regions with minimal L1 element coverage (<7%; Fig. 2-1). We excluded 

regions overlapping with unsequenced gaps (Kent et al. 2002) and repetitive regions with artifactual 

ChIP-seq or DNase-seq signals (Table S3; Materials and Methods), as well as sex chromosomes, 

given the lack of genomic feature data available for them. Forty-four features were measured at 1-

kb resolution (‘high-resolution features’), providing 100 measurements per L1-flanking (or control) 

region. Five additional features—telomere hexamers, distance to the telomere, distance to the 

centromere, replication timing profile, and sex-averaged recombination rate—were measured at 

100-kb resolution (‘low-resolution features’), providing a single measurement per L1-flanking (or 

control) region. Features were extracted as coverage (percentage of the window covered by a 
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feature), average value weighted by window coverage (‘weighted average’), count, or average 

signal, per 1-kb window (or per 100-kb in the case of low-resolution features) in each L1-flanking 

(or control) region. Then, for each feature, values were averaged across all L1 elements belonging 

to the same data set, producing 100 mean values and thus mean curves (or a single mean value in 

the case of low-resolution features). Three high-resolution features were highly correlated 

(Spearman’s correlation coefficient >0.8) with other features (Fig. S6) and were excluded from 

subsequent analyses. Thus, a total of 41 high-resolution and five low-resolution features were 

retained. 

Pairwise comparisons of high-resolution features with Functional Data Analysis 

To capture multi-scale (up to 100 kb) differences in local genomic landscape features among L1s 

from the three data sets and control regions, we utilized four FDA approaches. First, to identify 

differences in low-resolution features between L1s from the three data sets and control regions, we 

used the univariate version of Interval-Wise Testing for omics data (IWTomics) (Cremona et al. 

2018). Considering the low-resolution features one at a time, the test focuses on a mean value for 

every 100-kb region and evaluates the difference in means between two sets of L1-flanks, or one 

set of L1-flanks and a set of controls. We compared low-resolution features between de novo L1s 

and controls; human-specific L1s and de novo L1s; human-specific L1s and controls; polymorphic 

L1s and controls; polymorphic L1s and de novo L1s; and finally, human-specific L1s and 

polymorphic L1s (a total of six comparisons). Second, to investigate differences in high-resolution 

features, we used IWTomics in its standard (i.e. functional) version, running the same six 

comparisons for each feature (again one at a time). Standard IWTomics allows one to contrast two 

sets of curves composed of contiguous values. In our case, we tested for differences between curves 

composed of 100 mean values (one per 1-kb window) for each genomic feature, for the three L1 
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data set and the controls (the same six comparisons). Third, to quantify the impact of each specific 

feature (independent of the effects of other features) on distributions of L1s at different 

evolutionary time points, we ran single Functional Logistic Regressions (sFLRs) (Febrero-Bande 

and de la Fuente 2012)(Ramsay and Silverman 2005), using the low- and high-resolution features 

that were significant according to IWTomics test and the same six comparisons (Fig. 2-2). The 

discriminatory strength of each feature was quantified with pseudo-R2s from these sFLRs. Fourth, 

to quantify joint effects of multiple features, many of which can interact and are correlated 

according to our clustering analysis (Fig. S6), we built multiple FLRs (mFLRs), again using the 

same genomic landscape feature data and the same six comparisons. mFLRs take into account 

multiple features at a time. For each pairwise comparison of L1 flanks and controls, we identified 

a subset of relevant features among the (low- and high-resolution) ones that were significant 

according to IWTomics, using a functional variable selection method based on group lasso (Meier 

et al. 2008)(Matsui 2014), and then ran the corresponding mFLR with this subset. The mFLR 

provided quantification of the total impact (total deviance explained by the selected features taken 

together), as well as the impact of each individual feature (Relative Contribution to the Deviance 

Explained, or RCDE) when considered with others (Table 2-1; S2). Notably, due to the functional 

(i.e. curve) nature of the data, neither sFLR nor mFLR provides a sign for the effect of each feature 

on the differences between L1 flanks and/or controls (effect estimates are themselves curves). 

However, this information can be retrieved from the IWTomics analysis.  

Here we present results (for all four FDA approaches) from comparisons of de novo L1 flanks vs. 

controls (Figs. 3-2A and S7; Table 1) and of human-specific vs. de novo L1 flanks (Figs. 3-2B and 

S7; Table 1). They should reflect, respectively, L1 integration and selection preferences with 

respect to different genomic features—and are thus particularly informative. Results for the other 

four comparisons are included in the Appendix (Figs. S8-S9 and Table S2). 
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Figure 3-2. Summary of IWTomics results for individual high-resolution features. A. De novo L1 
flanking regions vs. control regions. B. Human-specific L1 vs. de novo L1 flanking regions. The X-axis 
represents the position analyzed within the 100-kb flanking regions of L1 elements (or 100-kb control 
regions); each unit is a 1-kb window. The black vertical line across the center marks the insertion site. 
Each row represents one genomic feature and reports the adjusted p-value curve on a log10 scale. White: 
nonsignificant difference (p-value>0.05). Red: significant difference, with over-representation of the 
feature. Blue: significant difference, with under-representation of the feature. The selected scale thresholds 
corresponding to the adjusted p-value curves are noted on the left (column ‘Threshold’). The control 
regions in this study contain less than 7% coverage by all annotated L1 elements.  
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de novo L1 insertion landscape  

To investigate insertion preferences, we compared genomic features in the flanks of de novo L1s 

vs. control regions. The univariate IWTomics analysis (Fig. 3-3) contrasting low-resolution 

features suggested that de novo L1 insertions are significantly and positively associated with early 

replication timing (p=0.0001; Fig. 3-3C), and significantly and negatively associated with telomere 

hexamers (p=0.0001; Fig. 3-3E). 
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Figure 3-3. Summary of IWTomics results for individual low-resolution features. A. Distance to the 
telomere. B. Distance to the centromere. C. Replication timing. D. Sex-averaged recombination rate. E. 
Count of telomere hexamers. Each panel presents the boxplots of the feature in the flanking regions of de 
novo and human-specific L1s and in control regions. Black dot: mean; bold horizontal line: median; box 
limits: 25th and 75th percentiles (whiskers and outliers not shown). The p-values of pairwise IWTomics tests 
are noted at the bottom; significant ones (p-value<0.05) are in bold. An extended summary comprising also 
the flanking regions of polymorphic L1s is provided in Fig. S9. The control regions in this study contain 
less than 7% coverage by all annotated L1 elements.  

 

 



59 

  

The standard (functional) IWTomics analysis revealed 17 high-resolution genomic features that 

were significantly overrepresented at de novo L1 flanks, suggesting their positive association with 

L1 insertions (Figs. 3-2A and S7A-B). Among these features, 13 had highly localized signals 

centered at the L1 integration site. These included seven features with particularly strong 

overrepresentation at the L1 integration site: DNase hypersensitive sites, H3K4me2, H3K4me3, 

and H3K9ac histone marks, sperm hypomethylation, CpG islands, and G-quadruplexes. In contrast, 

Alu density was significantly overrepresented across almost the entire 100-kb flanks of de novo L1s 

(Fig. 3-2A). Additionally, IWTomics identified 12 high-resolution features with underrepresented 

signals at de novo L1 flanks, suggestive of their negative influence on L1 insertion preferences (Fig. 

3-2A). Among them, H3K36me3 histone marks and CpG methylation had underrepresented signals 

localized at the L1 integration site, whereas most conserved elements, introns, MIRs, and L1 target 

sites were significantly underrepresented across the entire de novo L1 flanks analyzed. Interestingly, 

H3K4me1 histone marks were significantly underrepresented starting at ±2 kb from L1 integration 

sites, but not closer to them (Fig. 3-2A).  

The sFLR models estimated the strength of each genomic feature (not considering other features) 

in explaining de novo L1 integration preferences (Table 1). Most conserved elements, MIRs, and 

telomere hexamer were the strongest predictors, each explaining deviance above 5% (pseudo-

R2=8.74%, pseudo-R2=6.56%, and pseudo-R2=9.96% respectively). Other strong predictors were 

H3K4me1 histone marks, L1 target sites, and L2 and L3 (pseudo-R2= 4.20%, pseudo-R2=4.43%, 

and pseudo-R2=4.94%, respectively).  

The mFLR model comparing de novo L1 flanks with controls selected 18 genomic features (Table 

1). Taken together, these features explained 31.97% of the total deviance. Based on their relative 

contributions (here evaluated in the context of the mFLR), several features had a particularly strong 
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effect (RCDE>5%) on L1 integration preferences (Table 1), including L1 target sites 

(RCDE=16.2%), GC content (RCDE=14.0%), and DHS (RCDE=5.03%).  

L1 fixation landscape 

To investigate fixation preferences, we compared the distribution of genomic features in the flanks 

of human-specific vs. de novo L1s. The univariate IWTomics analysis contrasting low-resolution 

features (Fig. 3-3) suggested that L1 fixation is significantly and negatively associated with early 

replication timing (p=0.0001), telomere hexamers (p=0.0001), and distance to centromere 

(p=0.0245). 

The standard (functional) IWTomics (Fig. 3-2B) identified six high-resolution features that were 

significantly overrepresented at human-specific L1 flanks vs. those of de novo L1s. These included 

three features that were overrepresented over most of the 100-kb flanks analyzed—H3K9me3 

histone marks, A-phased repeats, and L1 target motifs; two features that had localized 

overrepresentation at the L1 integration site—CpG methylation (stronger effect) and mirror repeats 

(weaker effect); and LTR elements that displayed a ‘patchy’ overrepresentation. IWTomics also 

identified as many as 27 features that were underrepresented at human-specific L1-flanks vs. those 

of de novo L1s (Fig. 3-2B), suggesting that the regions might undergo selection against L1 fixation, 

and thus lack fixed L1 elements. While most of them were underrepresented over the entire 100-

kb flank length, H2AZF histone marks, sperm hypomethylation, and sex-averaged recombination 

hotspots were underrepresented only in the vicinity of the L1 integration site. Interestingly, 

mononucleotide microsatelites were enriched close to the integration site but underrepresented 

along the remainder of the flanks (Fig. 3-2B), suggesting distinct associations of this feature at 

different scales.  
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Also, the sFLR models allowed us to evaluate the strength of each genomic feature in explaining 

de novo L1 fixation preferences. Features such as DHS, GC content, and H3K9ac and H3K4me2 

histone marks had strong effects, each explaining more than 15% of the deviance (Table 1). The 

next tier of predictors each explained 10-15% of deviance and included CpG islands, CTCF, 

H3K27ac, H3K4me1 and H3K4me3 histone marks, Alus, replication origins, replication timing 

profile, and 5hMC methylation. Several other predictors each explained 5-10% of deviance. These 

included H3K4me1, H3K27me3 and H3K36me3 histone marks, G-quadruplexes, A-phased repeats, 

exons, and RNA Pol2.  

The mFLR model comparing human-specific and de novo L1 flanks selected nine predictors and 

explained 26.97% of the deviance (Table 1). Among the strongest predictors (with RCDE >2%) 

were Alus (RCDE=5.44%), H3K9me3 (RCDE=4.46%) and H3K3me1 (RCDE=2.64%) histone 

marks, exons (RCDE=2.77%), CpG islands (RCDE=2.75%), and sperm hypomethylation 

(RCDE=2.12%).  

Discussion 

Our analysis of 49 genomic features with FDA suggested that de novo, polymorphic, and human-

specific L1s in the human genome are characterized by unique genomic landscapes, with different 

features exhibiting associations at specific locations and scales. In general, de novo L1 integrations 

tend to occur in regions with open chromatin structure, elevated transcriptional activities, and high 

GC-content (Fig. 3-2A). In contrast, after accounting for their integration preferences, human-

specific L1s tend to concentrate in regions with relatively low exon content, enriched 

transcriptional repression marks and conserved elements (Fig. 3-2B). The genomic landscape for 

polymorphic L1s is generally similar to that of human-specific L1s, yet their comparison with 

control suggests less significant, weaker associations (Fig. S8A; Table S2). This is consistent with 
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our results showing that, in the genome, polymorphic L1s are located closer to human-specific than 

de novo L1s (Fig. 3-1). Below we discuss the results from our analyses, and relate the L1 

transposition dynamics with different biological processes represented by genomic landscape 

features. 

Biological processes and features associated with L1 integration and fixation 

Chromatin structure. Our results suggest that L1 integration and fixation are associated with open 

and condensed chromatin structure, respectively. Three chromatin structure features were 

considered in our analysis: (1) DNase I hypersensitive sites (DHSs), which are open chromatin 

regions accessible to trans-factors and other regulatory elements (Wallrath et al. 1994; Tsompana 

and Buck 2014); (2) RNA Pol II binding sites, which are positively correlated with open chromatin 

structure and gene expression (Barski et al. 2007; Kines and Belancio 2012; Sun et al. 2015); and 

(3) CTCF motifs, which facilitate interactions between transcription regulatory sequences and are 

hypothesized to facilitate boundaries between topologically associated domains (TADs) (Kim et al. 

2007; Schmidt et al. 2012; Ong and Corces 2014; Ghirlando and Felsenfeld 2016). We found that 

DHS and RNA Pol lI sites were enriched at integration sites of de novo L1s (Figs 3-2A and S7A), 

with relatively weak signals identified in sFLRs, but stronger signals in the mFLR (Table 1; CTCF 

was not significant in any of our analyses). Thus, chromatin structure features may play an 

important role in L1 integration, even when considered in the context of other genomic features. In 

contrast, DHS, RNA Pol II and CTCF sites were underrepresented over the whole 100 kb 

surrounding L1s in the comparison of human-specific vs. de novo elements (Fig. 3-2B). These 

effects were strong in sFLRs (all three predictors had pseudo-R2 above 5%), but weaker in the 

mFLR (only DHSs were selected; Table 1), suggesting that effects of chromatin features might be 

partially masked by other features included in this model. We hypothesize that open chromatin 
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structure can provide better accessibility for the L1 integration machinery, in line with other studies 

(Cost and Boeke 1998; Sultana et al. 2019). In contrast, L1 elements that inserted into genome 

regions with condensed chromatin structure are more likely to become fixed, likely due to the lack 

of regulatory units and lower transcription output in these regions of the genome (ENCODE Project 

Consortium 2012; Ward and Kellis 2012). 

Transcriptional regulation and gene expression. Our investigation of 11 epigenetic marks from 

ENCODE (ENCODE Project Consortium 2012) and gene expression profiles in human embryonic 

stem cells (hESC gene expression) (Karolchik et al. 2004) indicated a strong correlation between 

transcriptional regulation and L1 transposition dynamics. Epigenetic marks of active transcription 

landscape (Zhou et al. 2011; Anon)—H3K4me2 (active promoters), H3K9ac (transcription 

activation; transition between transcription initiation and elongation) (Gates et al. 2017) and 

H3K4me3 (transcriptional elongation)—were all overrepresented specifically at the insertion sites 

of de novo L1s (Fig. 3-2A; S7B). The associations of these features with L1 integration were 

confirmed by their significance in both single and multiple FLR models (except for H3K4me2, 

which was not selected in the mFLR). This suggests a localized positive effect (at the scale of 

several kilobases) of active transcriptional activities on L1 insertion.  

In contrast, a comparison of the landscape between human-specific and de novo L1s revealed 

significantly decreased hESC gene expression levels, as well as underrepresented histone marks of 

active transcription (H3K4me2, H3K9ac, H3K4me3, K79me2), elevated transcription activities 

(H3K27ac, H3K20me1, H3K4me1), and open chromatin (H3K36me3) over the whole 100-kb L1 

flanking region (Fig. 3-2B). Moreover, the transcription repression mark H3K9me3 was 

significantly overrepresented over most of the 100-kb region, and this overrepresentation was 

particularly strong within ±8 kb from L1 insertion site (Figs. 3-2B and S7C). However, the 

transcription shutdown mark H3K27me3, which is also linked to high-CpG promoters (Zhou et al. 
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2011) due to ‘bivalent domains’, was underrepresented over the whole 100-kb region. The 

heterochromatin mark H2AFZ (Rangasamy et al. 2004; Nishida et al. 2005) was underrepresented 

in the immediate vicinity of integration sites comparing human-specific vs. de novo L1s. sFLR 

models indicated particularly strong effects of hESC gene expression and of active transcription 

marks, but few histone marks were selected in the mFLR model, highlighting their 

interdependencies with other genomic features. 

In summary, our results suggest that de novo L1 insertions are facilitated by active transcription 

marks, whereas human-specific L1s are fixed in non-heterochromatic regions—where transcription 

is inactive or repressed and levels of gene expression are low, suggesting a potentially strict 

regulation of fixed L1s (Philippe et al. 2016). Moreover, epigenetic marks act at larger scales on 

L1 fixation preferences (e.g., 100 kb) and at smaller scales on L1 insertion preferences (e.g. 1-2 

kb), arguing for different molecular and evolutionary mechanisms.  

DNA methylation. Our analysis revealed significant but contrasting effects of DNA methylation 

on L1 insertion and fixation. Five DNA methylation features were analyzed: (1) sperm 

hypomethylation (at CpG sites), which reflects genomic regions with low methylation levels in 

sperm (Molaro et al. 2011); (2) CpG methylation (in human embryonic stem cell line H1), which 

silences gene expression (Weber et al. 2007; Lister et al. 2009; Straussman et al. 2009) and limits 

TE transcription thus controlling their expansion in the genome (Oliver and Greene 2009) 

(Rodriguez et al. 2008); (3) 5-hMc methylation, the first oxidative product in the active 

demethylation of 5-methylcytosine, which is preferentially established at CpG dinucleotides 

(Szulwach, Li, Li, Song, Wu, et al. 2011; Branco et al. 2012) and silences gene expression 

(Szulwach, Li, Li, Song, Han, et al. 2011; Mooijman et al. 2016); (4-5) CHH and CHG methylation, 

which is enriched in exons of highly expressed genes (Lister et al. 2009; He and Ecker 2015). In 

the immediate vicinity (±1 kb) of de novo L1 insertions, CpG methylation was depleted, while 
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sperm hypomethylation was enriched (Fig. 3-2A); sFLRs showed a weak effect of CpG methylation, 

and stronger effect of sperm hypomethylation, which was also selected in the mFLR (Table 1). In 

contrast, after subtracting the effects of de novo insertions, in the immediate vicinity of fixed L1s 

CpG methylation was enriched and sperm hypomethylation was depleted (Fig. 3-2B); sperm 

hypomethylation had again a strong effect according to sFLRs and was selected in the mFLR (Table 

1). L1 fixation preferences were also associated with underrepresented 5-hMc and CHG 

methylation across the whole 100-kb flanking region analyzed (Fig. 3-2B); these two features 

showed strong and weak effects, respectively, in sFLRs, but were not selected in the mFLR (Table 

1). 

We hypothesize that genomic regions with low CpG methylation (and high hypomethylation) have 

elevated transcription, and thus are more accessible to the L1 transposition machinery. Besides, the 

underrepresented CpG methylation signals both upstream and downstream of the L1 insertion site 

may act as barriers to prevent the expansion of L1s. In agreement with this, hypomethylation was 

associated with young and active L1 subfamilies in previous studies (Khan et al. 2006; Molaro et 

al. 2011). Regarding fixation preferences, our results point towards a paucity of fixed L1s in regions 

with actively expressed genes (we observe increased CpG methylation and decreased sperm 

hypomethylation). Moreover, L1s are usually not fixed in regions with highly expressed genes, 

explaining the negative association with CHG methylation. Increased CpG methylation near fixed 

L1s might also limit their own transcriptional activity (Zemach et al. 2010; Huang et al. 2017).  

Non-B DNA motifs and microsatellites. Based on our results, non-B DNA motifs and 

microsatellites have significant associations with the insertion and fixation preferences of L1s. 

Specifically, we examined six types of non-B DNA: G-quadruplexes, A-phased repeats, direct 

repeats, inverted repeats, mirror repeats, and Z-DNA motifs—all potentially altering the DNA 

structure relative to the most common B form (Zhao et al. 2010; Cer et al. 2013; Sahakyan et al. 
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2017). We also examined coverage of mononucleotide microsatellites and combined coverage of 

di-, tri-, and tetranucleotide microsatellites, many of which also form non-B DNA (Guiblet et al. 

2018). We found that G-quadruplexes, mirror repeats and mononucleotide microsatellites were 

enriched in the immediate vicinity of L1 insertion sites (Fig. 3-2A); however, only G-quadruplexes 

were selected by the mFLR (Table 1). In the comparison of human-specific vs. de novo L1s flanks, 

G-quadruplexes were underrepresented, and A-phased repeats were overrepresented, over the 

whole 100-kb region, and mononucleotide microsatellites were enriched at the fixation site but 

underrepresented away from it (Fig. 3-2B). The three features were not selected in the mFLR (Table 

1). G-quadruplexes, mirror repeats, and mononucleotide microsatellites might attract new L1 

integrations by inducing DNA stability (Li et al. 2002; Kejnovský et al. 2013) and/or by changing 

chromatin structure (Li et al. 2002; Bochman et al. 2012; Lexa et al. 2014; Hou et al. 2019). The 

mononucleotide microsatellites enrichment observed in the immediate vicinity of L1 integration 

sites persisted for fixed elements. The depletion of mononucleotide microsatellites observed across 

the entire flanks of fixed L1s, which are enriched at poly-A tails of retrotransposed genes and TEs, 

could reflect gene scarcity in the broader vicinity of fixed elements. Underrepresentation of G-

quadruplexes and overrepresentation of adenine-rich A-phased repeats (Yi et al. 2010) might reflect 

the overall low GC content of the flanks of fixed L1s.  

Nucleotide composition and L1 target motifs. We found that nucleotide composition (i.e. GC-

content) and L1 target motifs exhibit major associations with L1 insertion and fixation preferences. 

Specifically, GC content was elevated in the immediate vicinity of de novo L1 insertion sites (Fig. 

3-2A) and was a strong predictor in both sFLR and mFLR comparing de novo L1 flanks with 

controls (Table 1). In contrast, GC content was globally lower in the flanks of human-specific L1s 

compared to de novo L1s (Fig. 3-2B); also here, it was a strong predictor in both sFLR and mFLR 

(Table 1). These results are in agreement with previous findings that fixed L1 elements are usually 

found in AT-rich regions of the genome (Lander et al. 2001; Medstrand et al. 2002; Kvikstad and 
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Makova 2010). We also ruled out the potential experimental bias from the two restriction enzymes 

MspI and TaqI used for the de novo L1 insertion assay, by analyzing the genome-wide distance 

distribution of MspI and TaqI sites (Fig. S18) as well as comparing their enrichment against 

different genomic features, including GC-content. L1 target motifs (TTAAAA, TTAAGA, 

TTAGAA, TTGAAA, TTAAAG, CTAAAA, and TCAAAA) (Feng et al. 1996; Jurka 1997; Zhao 

et al. 2019) were under- and overrepresented in the 100-kb regions surrounding de novo and fixed 

L1 elements, respectively; this feature effect was strong in both sFLRs, but was selected only in 

the de novo vs. control mFLR. The underrepresentation of L1 target motifs in the flanks of de novo 

L1s is at first sight counterintuitive. However, because its signal extends over the whole 100-kb 

flanking region, it might reflect the overall AT-richness of L1 target motifs, as de novo L1s prefer 

integrating into GC-rich regions abounding in transcribed genes. Specifically, we observed a 

depletion of L1 target sites in the whole 100-kb flanking regions of de novo L1s (Fig. 3-2A), and 

not at smaller resolution. Thus, depletion may be largely driven by the resolution used -- which we 

selected because it is preferable for most other genomic features. Other potential explanations for 

this counterintuitive observation include (1) the suboptimal scale analyzed for L1 target motifs 

(they are 6-bp long, while we analyzed scales starting from 1 kb); and (2) the lack of specificity of 

the L1 endonuclease, as the majority of L1s were found to insert into sites that differ from the exact 

consensus L1 target motif (TTAAAA) (Feng et al. 1996; Cost and Boeke 1998; Boissinot 2004; 

Zhao et al. 2019).  

Interestingly, the separate effects of L1 target motifs and GC-content in the sFLRs comparing de 

novo L1 flanks vs. controls were not particularly strong, but increased drastically when the two 

features were considered together in the mFLR (Table 1). We hypothesize that this might be due to 

GC-content correlating with many genomic features in the genome, including L1 target motifs 

(Kvikstad and Makova 2010). This was supported by our comparisons of L1 target motif counts 

between L1 flanking regions and controls matched for GC content. Specifically, we computed the 
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quartiles of mean GC content considering all regions simultaneously, and plotted L1 target counts 

in L1 regions vs. controls for each level of GC content (Fig. S11). The results revealed more 

prominent differences in L1 target motif counts between L1 flanks and control at GC-poor (0-25% 

and 25-50% quantiles) than GC-rich (higher quantiles) regions (Fig. S11B-D), suggesting 

interactions between GC content and L1 target motifs.  

Chromosomal location. Location on the chromosome, which we characterized considering 

distance to the nearest centromere, distance to the nearest telomere, and count of telomere hexamers, 

is also associated with integration and fixation preferences of L1s. Fixed L1s were generally located 

further from telomeres compared to de novo L1s, suggesting that telomeric regions are less tolerant 

of L1 fixation. However, telomere hexamers were significantly underrepresented in de novo L1 

flanks vs. controls (strong effect in sFLR, selected in mFLR), and in the flanks of fixed vs. de novo 

L1s (weaker effect in sFLR, not selected in mFLR). This observation might be explained by the 

negative impact of telomere hexamers on L1 activities possibly due to the Telomere Position Effect 

(TPE), according to which heterochromatin is formed and gene expression is repressed near the 

telomeres (Pedram et al. 2006; Calado and Dumitriu 2013; Venkatesan et al. 2017). Alternatively, 

this observation may be due to the difficulty in mapping L1 sequences to regions close to telomeres 

and enriched with hexamer repeats (Plohl et al. 2002; Treangen and Salzberg 2011; Lee et al. 2014). 

Thus, these results should be treated with caution. We also observed that human-specific L1s are 

located closer to centromeres than de novo L1s (Fig. 3-3). While this effect was weak (Table 1), 

pericentromeric regions have decreased GC content (Duret and Arndt 2008) and experience relaxed 

selection (Horvath and Slotte 2017), potentially explaining an enrichment of fixed, human-specific 

L1s close to centromeres. 

Transposition of other TEs. Investigating the distributions of five types of transposable 

elements—Alus, MIRs, L2/L3 elements, DNA transposon, and LTR elements—revealed important 
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associations between some such elements and L1 transposition dynamics. Specifically, Alus were 

overrepresented, while MIRs and L2s/L3s were underrepresented, over 100 kb analyzed for de 

novo L1 flanks vs. controls (the underrepresentation of L2s/L3s was ‘patchy’; Fig. 3-2A). All three 

effects were strong in sFLRs, and Alus and L2s/L3s were selected by the mFLR. The 

underrepresentation of L2/L3 elements in de novo L1 flanks may be explained by (1) the fact that 

L2 and L3 elements have lost mobility and are common in conserved genomic regions (Silva et al. 

2003; Meyers 2006), which lack de novo L1 insertions (Fig. 3-2A); and/or (2) an observation that 

regions enriched with L2 elements, especially those involved in regulatory networks via miRNAs, 

may have nucleotide composition or DNA structures repelling insertion of new L1 elements (Petri 

et al. 2017). This is in line with proposed differences between L1 and L2 elements in structural and 

functional characteristics, as well as in host defense systems developed by the genome (Rebollo et 

al. 2012; Lindič et al. 2013; McLaughlin et al. 2014). The overrepresentation of Alus in the flanking 

regions of de novo L1s can be related to the fact that fixed Alu elements are frequently found in the 

GC-rich regions of the genome, which might also be preferred by new L1 insertions (Soriano et al. 

1983; Jurka 2004; Wagstaff et al. 2013) (Fig. 3-2A). Also, such enriched Alu signals near de novo 

L1s can in part be explained by the dependency of Alu activity on the L1 transposition machinery 

and the associated endonuclease cleavage sites (Boeke 1997; Deininger 2011; Wimmer et al. 2011; 

Elbarbary et al. 2016).  

In the human-specific vs. de novo L1 flanks comparison, Alus were globally underrepresented, and 

MIRs and LTRs were under- and overrepresented, respectively, but in a more ‘patchy’ fashion. 

Alus had a very strong effect in sFLR, and were selected by the mFLR. Higher coverage of LTR 

elements in the flanks of human-specific vs. de novo L1s is consistent with the depletion of both 

L1 and LTR elements in gene-rich regions, due to negative selection (Deininger and Batzer 2002; 

Medstrand et al. 2002). MIR-rich regions do not tolerate L1 fixations likely due to the potential 

regulatory functions of MIRs and their positive correlation with the presence of gene enhancers 
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(Matassi et al. 1998; Jjingo et al. 2014). The paucity of Alus in human-specific L1 flanking regions 

could be explained by their dearth in AT-rich genomic regions, which are favored by L1 fixation 

(Wagstaff et al. 2012) (Fig. 3-2B).  

Replication and recombination. Our results suggest that replication and recombination profiles 

have significant but weak associations with the insertion and fixation preferences of L1 elements. 

We analyzed two replication-associated features—replication timing profile (Ryba et al. 2010) and 

replication origins (Besnard et al. 2012), and two recombination-associated features—

recombination rate (Kong et al. 2010) and recombination hotspots (Myers et al. 2008). We found 

that early-replicating regions were positively associated with L1 insertion, but with limited effects 

(pseudo-R2<0.5% in sFLRs, both features selected by the mFLR). At the same time, early-

replicating regions, replication origins, and recombination hotspots were negative predictors of L1 

fixation; all three features had strong effects according to sFLRs, but not selected by the mFLR.  

Our results on the association between L1 integration and early replication timing are consistent 

with the S-phase bias of L1 transposition suggested by other studies (Mita et al. 2018; Sultana et 

al. 2019). Genomic regions rich in early replicating domains might allow earlier access to sites of 

less compact chromosomal folding, which are exploited by new L1 integrations (Ryba et al. 2010; 

Xie et al. 2013; Flasch et al. 2019; Sultana et al. 2019). High density of replication origins might 

facilitate this process. The negative association of L1 fixation with early replication timing and 

replication origins might be due to potential effects of replication on the deletion of inserted 

elements (Yehuda et al. 2018). This is consistent with a potential crosstalk between L1 insertion 

and other activities and DNA replication, especially during cell division (Ryba et al. 2010). In 

addition, different replicating domains might not only influence the retrotransposition of L1s, but 

also affect the DNA replication of L1 genomic sequences (Koren et al. 2012; Zaratiegui 2017), 

which might also suggest additional contribution of the replication process to the L1 life cycle. The 
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negative association of L1 fixation with recombination hotspots might also be due to recombination 

effects on L1 deletion (Boissinot et al. 2001; Song and Boissinot 2007; Belancio et al. 2009; 

Bourgeois and Boissinot 2019), as well as to the fact that human-specific L1 regions are located 

closer to the centromere (Fig. 3-3), where recombination rates are low (Mahtani and Willard 1998; 

Myers et al. 2005; Croll et al. 2015).  

Selection. Here we focus on the associations of L1 integration and fixation with most conserved 

elements, CpG islands, exons, and introns—which all act as proxies for purifying selection in the 

genome. Particularly informative for selection inference are associations between these features 

and L1 fixation preferences, as gleaned from the comparison of human-specific vs. de novo L1 

flanks. All four features considered were underrepresented across the whole 100-kb flanks studied 

(with most conserved elements underrepresented more strongly in the ±15 kb surrounding the 

elements; Fig. 3-2B). CpG islands and exons were also selected in the mFLR. These results indicate 

strong selection against fixation of L1 elements in these functionally constrained parts of the 

genome (Bejerano et al. 2004; Asthana et al. 2005; Kines and Belancio 2012; Yang et al. 2014). 

Integrative models of L1 transposition dynamics 

To summarize how different genomic features are correlated with L1 transposition dynamics, we 

combined the results from IWTomics and FLR analyses (Figs. 3-2 and 3-3, Table 1) and developed 

two integrative biological models relating the local genomic landscape with L1 insertion and 

fixation preferences (Fig. 3-4). In these models, the scale and the direction (enrichment vs. 

depletion) of the signal originate from IWTomics results (Fig.3-2) and are depicted by the width 

and positive vs. negative location in the model schematics, respectively. The strength of the signals 

originates from the pseudo-R2 based on the sFLRs (left part of Table 1) and is depicted by the bars 

in the schematics (proportional to bar height; Fig. 3-4).  
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Figure 3-4. Integrative models of L1 transposition dynamics based on IWTomics and sFLR results.  
A. A model for insertion preferences. B. A model for fixation preferences. The horizontal black line 
represents the linear genome structure, with boundaries marking the 100-kb flanking region centered at the 
L1 insertion site. Each rectangle represents a genomic feature. The placement (above or under the horizontal 
black line) of the rectangle indicates the sign of a feature’s effect (positive or negative), whereas the location 
and width of the rectangle indicates the location and scale of the effect within the 100-kb flanking region, 
respectively (based on IWTomics). The height of the rectangle indicates the strength of effect (based on 
sFLR). Features not included due to unlocalized signals or negligible contributions are: gene expression, 
direct repeats, mirror repeats, di-, tri-, and tetranucleotide microsatellites, LTRs, recombination hotspots, and 
five low-resolution features (insertion model); and direct repeats, inverted repeats, Z DNA, and five low-
resolution features (fixation model). 
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A model of L1 insertion (Fig. 3-4A). We found that de novo L1s preferentially integrate into 

actively transcribed, hypomethylated, open-chromatin and early-replicating regions of the genome. 

These regions are also enriched in G-quadruplex motifs and mononucleotide microsatellites, which 

can form non-B DNA (Sinden 2012). These signals are evident at the scale of a few kilobases from 

the integration site. The potential underlying mechanism is that the genomic regions with actively 

transcribed genes usually have higher chromatin accessibility, which facilitates the insertion of L1 

elements. Also, unstable non-B DNA might provide opportunities for L1 insertions. Because 

actively transcribed regions are usually GC-rich (Eyre-Walker and Hurst 2001; Vinogradov 2003), 

we also observed increased GC-content and Alu content in regions enriched for de novo L1 

insertions. Alu elements, particularly older ones, are usually enriched in GC-rich regions (Smit 

1999; Gu et al. 2000; Jurka et al. 2004; Kvikstad and Makova 2010). In addition, early-replicating 

domains and regions with higher transcriptional activities, found to be associated in previous 

studies (Rivera-Mulia et al. 2015; Fu et al. 2018). On the other hand, regions enriched with old 

inactive TEs (ancient L2/L3 and MIR elements) are usually GC-poor (Matassi et al. 1998; 

Medstrand et al. 2002), and most conserved elements as a rule are present in non-genic (i.e. AT-

rich) regions, explaining why they appear to be negative predictors over large regions in Fig. 3-

4A.  

A model of L1 fixation (Fig. 3-4B). In contrast to L1 integration, L1 fixation occurs in genomic 

regions depleted of exons, introns, CpG islands, gene expression, and most conserved elements 

(this is observed across the 100-kb flanks considered in our analysis). This pattern suggests strong 

effects of purifying selection acting against fixing L1s in these functional (or putatively functional) 

regions of the genome (Medstrand et al. 2002; Lowe et al. 2007; Elbarbary et al. 2016). Because 

genes are usually GC-rich and many of them are actively transcribed from DNA with open 

chromatin, L1 fixation is negatively associated with GC-content, transcription activation histone 

marks and other predictors of open chromatin (e.g. DHS and Pol II sites), and positively associated 
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with repressive histone marks (again with effects over the whole 100-kb region analyzed). 

Therefore, we propose that L1 fixation tends to occur in AT-rich regions with low gene content, 

low levels of transcription activities and closed chromatin structure, likely due to the relaxed 

selection pressure in such regions.  

Impact of L1 transposition on the genomic landscape 

Based on our results, the genomic landscape influences L1 transpositional activities and, in turn, 

fixed L1s modify the genomic landscape surrounding them. For instance, we found an enrichment 

in CpG methylation ±1 kb from the insertion site of human-specific L1s (Fig. 3-4B). L1s 

themselves are prone to DNA methylation (possibly as a genome-defense system to control the 

expression and spread of the elements) (Yoder et al. 1997; Cohen et al. 2011; Noshay et al. 2019), 

and methylation may spread to the neighboring region—potentially altering the expression pattern 

of genes located nearby (Elbarbary et al. 2016). This is consistent with suggestions that L1s can 

fine-tune transcriptional activities via the genome-wide inhibition of transcriptional elongation 

(Han et al. 2004) and that L1s can affect gene structure, transcriptional activities, and translation 

(Belancio et al. 2006; Chuong et al. 2017).  

Somatic L1 insertions have also been reported to modulate local DNA methylation levels in the 

mouse genome by carrying CpG islands that can be subsequently hypermethylated (Grandi et al. 

2015). In contrast, an opposite effect was previously observed for germ-line L1 insertions, which 

often introduce hypomethylated CpG islands and have a localized influence on the neighboring 

CpG sites (Lees-Murdock et al. 2003; Rosser and An 2012; Grandi et al. 2015). These findings 

might further explain the enriched CpG methylation close to the insertion sites of human-specific 

L1s, which result from germ-line insertions. 
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In addition, when transcribed as part of a larger transcript context, LINEs and SINEs can also affect 

mRNA stability and thus further influence the translation process (Boissinot et al. 2006; Elbarbary 

et al. 2016; Petri et al. 2019). We also detected an enrichment in mononucleotide microsatellites 

±1 kb from the insertion site of human-specific L1s (Fig. 3-4B). L1 sequences themselves are 

known to be hotbeds of AT-rich microsatellites, which constitute the majority of mononucleotide 

microsatellites (Kelkar et al. 2011), and it is possible that this process ‘spills over’ to the genomic 

regions in the vicinity of fixed L1s.  

To sum up, here we presented the first high-resolution, genome-wide analysis of L1 transposition 

dynamics in an evolutionary framework. We demonstrated that insertion and fixation preferences, 

and thus the genomic distribution of L1s in the human genome, are affected by the local genomic 

landscape. Moreover, our results suggest that L1 transpositional activities, in turn, re-shape the 

genomic landscape over the course of evolution. The findings significantly extend our 

understanding of L1 transposition dynamics and provides insights into how TEs shape the structure 

and evolution of the human genome. 
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Chapter 4 

Reproducibility and generalizability of the study 

Part of the data and analysis in this chapter are published as a research article by Chen, D., Cremona, 

M.A., Qi, Z., Mitra, R.D., Chiaromonte, F. and Makova, K.D., 2020. Human L1 Transposition 

Dynamics Unraveled with Functional Data Analysis. Molecular Biology and Evolution. Reuse of 

content from the publication for thesis is in compliance of the journal policies. 

Summary of Analysis 

Reproducibility is critical in scientific research, and as the field of Life Sciences becomes 

increasingly data-driven, it is now possible to efficiently reproduce most of the analysis by 

leveraging the publicly available data from different studies. Here we examined the robustness of 

the experimental design and computational methods employed in this study. We collected multiple 

datasets representing different sources of L1 integrations and genomic features. We then applied 

our analytical framework on those sets to test the reproducibility and generalizability of the findings. 

Finally, we discussed the limitation of the current study and several implications for future work. 

Examining the robustness of experimental design  

Analysis of MspI and TaqI site enrichment with different genomic features 

We employed the restriction enzymes MspI and TaqI in the de novo L1 insertion experiment (Fig. 

2-2), which corresponds to the sites CCGG and TCGA respectively. In order to exclude the 

possibility that our observation of GC-enrichment near de novo L1s is driven by the high GC-
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content of the restriction enzyme sites, we studied the enrichment of these sites against different 

genomic features involved in the FDA analysis, including GC-content. In particular, we extracted 

the counts of each restriction enzyme recognition site within all the 100-kb regions (L1 flanking 

regions and control regions) in the current study, and examined their correlation with other high-

resolution genomic features (Fig. 4-1). None of the correlations (Spearman) between restriction 

sites counts and genomic features exceeded 0.8 in absolute value. In fact, MspI and TaqI showed 

the highest correlation between themselves (absolute value = 0.45) and the next highest with Exons 

(0.30 between MspI and Exons; 0.21 between TaqI and Exons) and Most conserved elements (0.27 

between MspI and Most conserved elements; 0.34 between TaqI and Most conserved elements). 

This suggests that our results are not driven by potential experimental biases originating from the 

composition of the two restriction enzyme recognition sites. In addition, we examined the genome-

wide distribution of the two restriction enzyme sites, which might introduce potential bias regarding 

the detection of de novo L1s in the sequencing experiment. Specifically, we analyzed the pairwise 

distances among all the MspI and TaqI restriction sites in the human genome (Fig. S18). Our results 

suggested that the two types of restriction sites in the genome are located close to each other, while 

more than 87% of the pairwise distances are less than the read length of Illumina MiSeq sequencing 

(150 bp). Therefore, the MspI and TaqI restriction sites in the genome are adequately enriched 

(close enough to each other) and are not likely to impact the detection of de novo L1s.  
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Figure 4-1. Correlation among MspI and TaqI restriction sites and other genomic features using all 
windows from the current study. Hierarchical clustering (complete linkage function) based on Spearman’s 
correlation and including MspI and TaqI restriction sites counts and all features analyzed in the study. The 
red dashed line marks an absolute value of 0.8 for Spearman’s correlation.  
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Genome-wide analysis of poly(A/T) sequences 

Regarding the detection of de novo L1 insertions, it is possible that some poly(A/T)s might be 

trimmed (and the corresponding reads kept) even if they are present in the genome and not encoded 

by L1s, which might lead to a shift of the integration points. Therefore, we performed a further 

examination of the genome-wide distribution of poly(A/T) sequences with respect to the de novo 

L1s from the current study. Specifically, we first extracted the genomic coordinates of all poly(A/T) 

sequences with at least 15 bp in length. Next, we examined the number of (trimmed) reads 

corresponding to our de novo L1 elements and their 1-kb flanks that overlap with the genomic 

poly(A/T) sequences (Table S8). We found that only a small portion of de novo L1s and of their 1-

kb flanking regions (<1.3% in both cases) overlap with the polyA/T encoded in the genome (See 

table below), which is unlikely to compromise the robustness of the de novo L1 dataset in our study. 

 
 
Table 4-1 Number of L1 reads or of their 1-kb flanking regions overlapping genomic poly(A/T) 
tracts. All L1 de novo insertions were used (no filtering). 
 

Dataset Number of 
elements/regions 

Number of regions overlapping with 
genomic polyA/T  

de novo L1 element 
reads  

17,037 7 

1-kb flanks of de novo 
L1 reads  

17,037 207 
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Revisit filtering strategy for de novo L1 insertions  

Here we revisited the characterization of de novo L1 insertions and addressed potential false 

positive due to PCR-artefacts or random plasmid integration events. In order to ensure the 

identification of unique de novo L1 insertions, we trimmed the poly-Ts at the 3’-end of the reads 

(read 2) that reached the poly-A tail, and then used the barcode and at least one of the restriction 

sites as signatures of successful insertion (Fig. S1). Subsequently, we collapsed the insertions at 

the same location by merging reads containing the same barcode and with start (for the positive 

strand) or end (for the negative strand) positions at a distance less than 4 bps, given that it is very 

unlikely to obtain two very close insertions with the same barcode.  

Meanwhile, to exclude the potential bias from PCR-artefacts or random plasmid integration events 

in the sequencing experiment, we further filtered our de novo L1 dataset using a more stringent 

criterion—only keeping 2,091 insertions supported by a poly-A/T tail longer than 15 bp. This 

filtering procedure enables us to keep only a fraction of the reads that does reach the junction 

between the flanking sequence and L1, which yielded the subset of L1 insertions with the exact 

insertion sites (compared to other approximated insertion loci when the reads do not reach the 

polyA/T regions).  

The stringently filtered subset allowed us to further compare the genomic features such as L1 target 

site signals with the original de novo L1 set and examine the robustness of our current filtering 

strategy. For instance, the distribution of distances between L1 insertions and the closest consensus 

L1 target site motifs is shown below (Fig. 4-2). We observed that the closest consensus L1 target 

site motif was at a distance less than 1 kb for 85.5% of L1 insertions from the first dataset and 88.4% 

of L1 insertions from the second dataset. While endonuclease nicking at the target DNA occurs at 

the L1 insertion site, distances between the detected L1 insertion and consensus L1 target site 

motifs have been reported between a few bases and several hundred bases (Feng et al. 1996; Jurka 
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1997; Cost et al. 2002; Flasch et al. 2019; Sultana et al. 2019; Zhao et al. 2019) -- depending on the 

position of the nicking site of target DNA and the length of the polyA within the transposed 

RNA  (Jurka 1997; Cost et al. 2002; Szak et al. 2002). The variation shown by the distances in our 

study may be due to the following: (a) endonuclease nicking is not entirely specific, and thus there 

might have been cases when the actual target motif corresponding to the insertion was different 

from the seven consensus motifs considered in our analyses (Jurka 1997; Cost and Boeke 1998; 

Boissinot 2004; Zhao et al. 2019); and (b) some of the insertion sites were approximated from the 

sequencing reads in the original, unfiltered de novo L1 dataset.  

Therefore, the de novo L1 insertions captured in this study are not likely to be false positives, 

instead, the detection accuracy is supported by both the robust filtering strategy and nearby L1 

target motifs. 
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A 

 

B 

 

Figure 4-2. Frequency distribution of distances between de novo L1 insertions and consensus L1 
target site motifs. (A) All de novo L1s from the current study. (B) Stringently filtered de novo L1s 
containing polyA/T (polyA/T >15 bp). The X-axis indicates the distance between de novo L1s and L1 target 
motifs. The Y-axis indicates the frequency of the corresponding distance value. The blue vertical line marks 
distance of 1,000 bp.  
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Reproduce L1 target motif analysis with a further filtered de novo L1 set  

We analyzed the distribution of distances between L1 elements and consensus L1 target site motifs 

(TTAAAA, TTAAGA, TTAGAA, TTGAAA, TTAAAG, CTAAAA, and TCAAAA) (Jurka 1997; 

Zhao et al. 2019). Our results suggested an underrepresentation of L1 target sites near de novo L1s 

compared with the (L1-depleted) control, which is counter-intuitive. To further analyze the 

presence of L1 target site motifs near the de novo L1s within the FDA framework, we also 

contrasted L1 target motifs between de novo L1 and control regions, using two de novo L1 datasets. 

The first dataset included all 17,037 de novo L1 insertions analyzed in our manuscript. The second 

was a more stringently filtered subset of the first, consisting of 2,091 de novo L1 insertions 

supported by a poly-A/T tail longer than 15 bp (as described in the previous section). As a result, 

the L1 target site signals were still underrepresented in the de novo L1 vs. control comparison (Fig. 

4-3B, see below), which is consistent with our initial findings (Figs. 3-2 and 4-3A). Furthermore, 

the comparison revealed that in both cases, the mean motif counts (per 1 kb window) in the de novo 

L1 regions were between two and three (Fig. 4-4), which does not indicate a complete depletion of 

L1 target site motifs. In addition, the results further supported that the detection of L1 insertions 

with our current filtering strategy is robust.   
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A  B  

  

Figure 4-3. IWTomics results for L1 target site motifs in de novo L1s and controls. Comparisons of 
L1 target site signals between (A) All de novo L1s from the current study vs. controls, and (B) Stringently 
filtered de novo L1s containing polyA/T (polyA/T >15 bp) vs. controls. The top heat map shows the 
IWTomics-adjusted p-value curves at all possible scales—the X-axis reports the position in the flanking 
region, from -50 kb to +50 kb; the Y-axis reports the scale used for p-value correction, from 1 kb (no 
correction) to 100 kb (considering the whole region). The central panel shows the adjusted p-value curve 
at the selected scale, with a gray area indicating significant p-values (≤0.05). The bottom panel reports 
pointwise boxplots of the feature values (dotted curves: 25%, 50%, and 75% quantiles, solid curves: 
averages). The control regions used have less than 7% coverage by all annotated L1 elements. 
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Analysis of aneuploid hotspots in HEK-293T cell lines 

Here we studied integration preferences for de novo L1s using engineered L1 sequences from 

kidney stem cells (HEK-293T). This represents a useful model system to capture de novo L1 

insertions. However, HEK-293 cells have previously been reported to be aneuploid, with different 

levels of structural variation found in several lines, including the HEK-293T line (Lin et al. 2014; 

Binz et al. 2019) we utilized here. Although this may lead to copy number changes in some genomic 

regions in the cell line we used, our conclusions are still robust for several reasons. First, while 

capturing the L1 insertion events, we retained only the unique L1 insertions in each genomic region 

using the co-occurrence of barcode markers and restriction sites as criteria for successful insertions 

(Fig. S1; Materials and Methods). Second, our results on the chromosome-wide distribution of de 

novo L1 insertions revealed a strong linear correlation between the number of insertions and 

chromosomal size (Fig. S3), suggesting minimal effects of potential changes in copy number on 

target sites. Third, we have contrasted the density of de novo L1 insertions between “aneuploid 

hotspots” in HEK-293T cells obtained from the literature (Lin et al. 2014; Binz et al. 2019) and 

other, randomly selected genomic regions. No significant differences were found (Fig. S14), again 

suggesting a minimal impact of potential target sites duplications on our L1 insertion assay. Fourth, 

we performed an additional IWTomics analysis of de novo L1 insertion hotspots, defined as 

multiple overlapping de novo L1 flanking regions (i.e. two, three, or more than three overlapping 

regions). We observed increasingly stronger signals of genomic features contributing positively to 

L1 insertions in our model (such as DHS and H3K4me2) in regions where close de novo L1 

insertions were found (Fig. S13), suggesting that multiple insertion events were actually driven by 

local genomic landscape features instead of by amplified regions in the genome of HEK-293T cells. 
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Testing reproducibility of the study using publicly available datasets 

de novo L1 datasets from different studies 

The de novo L1 insertions included in our study were harvested from a cell line experiment and 

might not reflect germ-line events, in contrast to the polymorphic and human-specific elements. 

This caveat might influence some of our findings regarding the influence of local genomic features 

on TE integration, particularly the ones that are cell-type specific, for example, DNA methylation 

and replication timing profiles (Lees-Murdock et al. 2003; Ryba et al. 2010; Rosser and An 2012; 

Grandi et al. 2015). Therefore, we compared our findings with those of two recent de novo L1 

integration datasets generated in hESC (Flasch et al. 2019) and HeLa (Sultana et al. 2019) cells 

(Table S6). Regardless of the differences in experimental design, genomic scales analyzed, and 

statistical methods used, we still found many features having similar effects on L1 insertion (Table 

4-2). For instance, active histone marks and early replicating domains contributed positively to L1 

integration (though with different strengths) across all three studies. This suggested that our 

biological model of the L1 insertion dynamics is generalizable. However, some other findings were 

inconsistent among the studies (e.g., for DHS and H3K27me3; Table 4-2). These discrepancies 

were not due to different statistical approaches, as we still observed them when we reran a 

substantial part of our IWTomics analyses on the datasets from (Flasch et al. 2019; Sultana et al. 

2019) (Figs. S16 and 17) but might be explained by differences in cell lines and genomic scales 

used in different studies (Flasch et al. 2019; Sultana et al. 2019; Chen et al. 2020).  

  



100 

  

Table 4-2 Comparison of genomic landscape features and their contribution to L1 activities in 
different studies. Chromatin=chromatin structure, Transcription = transcription regulation and gene 
expression, Res.=Resolution. “NS” cells indicate features that showed no significant differences (in 
current study). “NI” cells indicate features not included (from other recent studies). 

 

 

 

 

Group 

 

 

 

Name 

 

Current study 

(HEK-293T) 

 

Sultana et al 2019 

(Hela) 

 

Flasch et al 2019 

(hESC,PA-1, K562,  

Hela, NPC) 

L1 Insertion 

(de novo L1 vs control) 

L1 Insertion 

 

L1 Insertion 

 

Chromatin  DNase hypersensitive 
sites Positive Slightly Positive 

Open chromatin does 
not promote local L1 

integration 

Chromatin RNA Pol II Positive NI NI 

Chromatin CTCF  NS NI NI 

Transcription  H3K4me2 Positive Positive 

Minimal enrichment 
in some enhancer 

states in certain cells 
(e.g. HeLa-JVM and 

hESC); Insertions 
slightly depleted in 
regions with active 

transcription 
epigenetic marks  

Transcription  H3K9ac Positive Positive 

Transcription  H3K4me3 Positive Positive 

Transcription  H3K79me2 NS Positive 

Transcription  H3K27ac Positive Positive 

Transcription  H4K20me1 Positive Negative 

Transcription  H3K4me1 Positive Positive 

Transcription  H3K36me3 Positive Positive 

Transcription  H3K9me3 NS Negative 

Transcription  H3K27me3 Positive Negative 

Transcription  H2AFZ NS Positive 

Transcription  Gene expression NS 
 

Slightly Positive 

 

Level of expression 
not directly correlated 

with integration. 

DNA methylation Sperm hypometh Positive NI NI 

DNA methylation CpG methylation NS NI NI 

DNA methylation 5-hMc NS NI NI 

DNA methylation CHH methylation NS NI NI 

DNA methylation CHG methylation NS NI NI 

Non-B DNA, microsats G-quadruplex Positive NI NI 

Non-B DNA, microsats A-phased repeats NS  

 

 

 Non-B DNA, microsats Direct repeats NS 
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Non-B DNA, microsats Inverted repeats NS  

 

 

 

 

Preferred integration 
into AT-rich low-

complexity repetitive 
DNA 

 

 

 

 

Positive 

(L1 insertions 
detected in tandem 
repeat sequences 

located on different 
chromosomes)  

 

Non-B DNA, microsats Mirror repeats Positive 

Non-B DNA, microsats Z DNA motifs NS 

Non-B DNA, microsats Mononuc. Microsats Positive 

Non-B DNA, microsats 
Di-, tri-, and tetranucl. 

 microsats 
NS 

Nucleotide composition  GC-content Positive Negative Negative 

L1 target motifs L1 target motifs Negative NI Positive 

Other TEs Alu Positive 

No strong evidence for 
preferred integration 

into existing 
transposable elements 

 

L1 insertions found 
in SINEs and LINEs 
(Enriched; Dataset 

S15)  

Other TEs MIR Negative 

Other TEs L2 and L3 Negative 

Other TEs DNA transposons NS L1 Insertions found 
in transposon-free 

regions (Not 
enriched; Dataset 

S15)  
Other TEs LTR elements NS 

Replication  Replication origins Negative 
No evidence of 
enrichment at 

replication origins  

No strong preference 
for L1 integration at 

origins or termination 
zones 

Recombination Recomb. hotspots NS NI NI 

Selection Most conserved 
elements Negative NI Not enriched 

Selection CpG island Positive NI NI 

Selection Exons Positive NI  

Genes not preferred 
by insertions, yet 

fewer insertions in 
introns than expected 

(Figure 3D) 

(Engineered L1s 
readily integrated into 
the introns of genes. 

However, genes were 
not preferential L1 
integration targets.) 

 

Selection Introns Negative NI 

Chromosomal location 
Distance to 

 centromere  
NS NI  

Positive 

(Centromeric or Chromosomal location Distance to telomere  NS NI 
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Chromosomal location Telomere hexamer Negative NI 

telomeric regions 
were found to contain 

highly non-random 
clusters of 
insertions.) 

 

Replication Replication timing  
Positive 

(Early replicating 
domains) 

Positive 

(Early replicating 
domains) 

Positive 

(Early replicating 
domains) 

Recombination  

  
Recombination rate NS NI NI 

 
 

Revisit polymorphic L1s based on allele frequency information 

We are aware that the polymorphic L1 dataset is relatively small compared to our de novo L1 

dataset, though its size is comparable to that of our L1HS dataset. Therefore, we examined several 

other data sets of human polymorphic L1s (Stewart et al. 2011; Consortium and The 1000 Genomes 

Project Consortium 2015; Yu et al. 2017), including two studies based on the 1000 

Genomes/Human Genome Structural Variation Consortium (Stewart et al. 2011)(Yu et al. 2017). 

The following data table (Table S5) summarizes sample information and insertion allele frequency 

spectra based on the relevant datasets provided by these studies. In general, the main findings from 

these additional L1 polymorphism studies are comparable to those reported by (Ewing and 

Kazazian 2011)—in terms of both estimated insertion rates and allele frequency spectrum. The 

datasets from the additional studies, too, could be analyzed with our approaches and statistical 

pipelines. However, we opted not to include them in our current study because (i) they have 

substantial overlap with the data we already analyzed (over 40% of the polymorphic L1 elements 

from (Stewart et al. 2011) are represented in our referenced dataset), or (ii) they are limited to a 

single population (Yu et al. 2017) (Table S5). In comparison, the polymorphic L1 dataset we have 
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chosen for our analysis (Ewing and Kazazian 2011) is well-balanced in terms of sample size (1,012 

polymorphic L1s) and population representation (310 individuals from 13 populations), while also 

reflecting insertion rates and allele frequency spectra similar to those in other studies of 

polymorphic L1s (Swewart et al. 2011; Yu et al. 2017) (Table S5). 

Next, to further address the evolutionary stages of the polymorphic L1s and their potential impact 

on our results, especially the pairwise comparisons involving the polymorphic L1 dataset, we took 

into account the allele frequency information of the elements. We first calculated the estimated 

allele frequencies for each element as described in (Ewing and Kazazian 2011) and divided the 

polymorphic L1s into four subsets based on the allele frequency (0-25%, 25-50%, 50-75%, and 75-

100% quantiles)(Fig. 4-4).  
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A 

 
B 

 
Figure 4-4. Reanalyze the polymorphic L1s based on allele frequency. A. Histogram showing the 
estimated of allele frequencies for polymorphic L1 insertion sites based on binary present/absent insertion 
site genotypes in the sample of 310 unrelated individuals (Ewing and Kazazian 2011). B. Violin plot 
showing the four polymorphic L1 subsets based on allele frequency quantiles (0-25%, 25-50%, 50%-
75%, 75%-100%). 
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We then reproduced the pairwise comparison and IWTomics analysis using the four polymorphic 

L1 subsets (Fig. 4-5). Our results suggested that genomic feature signals (e.g., DHS and H3K27ac) 

are consistent across the four polymorphic L1 subsets (Fig. 4-5A; C). Meanwhile, the subset with 

highest allele frequencies (75-100% quantile) has signals closest to the human-specific L1s, 

indicated by no significant difference in the 100-kb flanks based on the IWTomics analysis (Fig. 4-

5B; D). The results suggested that polymorphic L1s with higher allele frequency are likely to be 

closer to the fixation stage than insertion stage, which might also help explain our observation that 

polymorphic L1s are located closer to human-specific L1s compared to de novo L1s based on the 

distance distribution analysis (Fig. 3-1). This also complement our previous findings and models 

based on the main comparisons, which only involved de novo L1s and human-specific L1s (Figs 

3-2 and 3-4). In addition, our results also indicated that polymorphic L1s may be an important 

resource for future studies. For instance, one can utilize the allele frequency of polymorphic L1s to 

parse out different selection stages and further characterize the transition from insertion to fixation 

of the L1 elements. 
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A 

 
B 

                    
C 

 
D 

          
Figure 4-5. IWTomics analysis for selected genomic features using polymorphic L1 subsets based 
on estimated allele frequencies. Comparisons of genomic features between flanking regions of different 
polymorphic L1s and other L1 regions, where the former are parsed based on allele frequencies; 
specifically, presenting 0-25%, 25-50%, 50-75%, and 75-100% quantiles. A. DNase Hypersensitive Sites 
(DHS) B. H3K27ac C. H3K27ac. In each figure, the top panel reports pointwise boxplots of the feature 
values (dotted curves - 25%, 50%, and 75% quantiles) with averages (solid curves). Different L1 flanking 
regions are represented by colored curves and control regions are shown in black curves. The bottom heat 
map shows the IWT adjusted p-value curves at all possible scales - the X-axis reports the position in the 
flanking region, from -50 kb to +50 kb; the Y-axis reports the scale used for p-value correction, from 1 kb 
(no correction) to 100 kb (considering the whole region). The control regions contain less than 7% 
coverage by all annotated L1 elements.  
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A random control set without considering genomic L1 sequences 

Given the strategy of constructing the control set in the pairwise comparisons, we were aware that 

the 100-kb L1-poor regions chosen as control may influence our results. For instance, the control 

regions are unlikely to be neutral in terms of genomic features, and may introduce bias to the 

overrepresented and underrepresented signals. However, we think that such regions, although not 

perfect, are appropriate for our study design and can generate robust signals based on the following 

reasoning. First, we designed our study in such a way that the conclusions and models were drawn 

from six pairwise comparisons, three of which do not involve this control set (polymorphic L1 vs. 

de novo L1, human-specific L1 vs. de novo L1, and polymorphic L1 vs. human-specific L1). Our 

observations were consistent across different pairwise comparisons, thus our findings were not 

driven by the choice of controls. Second, we repeated the analysis using a completely random 

control set, created without imposing the absence of other LINE elements. In this alternative control 

set the genomic feature signals shifted towards the ones of the human-specific L1 set, yet the vast 

majority of our main observations and conclusions remained the same (Fig. 4-6). In fact, the shift 

of control signals towards L1HS (and away from de novo L1s) is likely due to older, fixed L1 

elements (e.g. L1PAs) which are abundant in random control regions (L1s constitute 17% of the 

human genome).  
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A 

    
B 

 

Figure 4-6. DHS and H3K4me3 signals for a random control set. Pointwise boxplots of (A) DHS and 
(B) H3K4me2 signal values in L1 flanking regions vs. controls using a completely random control set 
created without imposing the absence of other LINE elements. Boxplots of the feature values are shown in 
different quantiles (dotted curves: 25%, 50%, and 75% quantiles, solid curves: averages). The same color 
scheme is used in boxplots and scatterplots (Black: control; Red: de novo L1; Blue: polymorphic L1; Green: 
human-specific L1). 
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Genomic features produced in different cell lines 

Given that our de novo L1 dataset was generated in HEK-293T cells, while a substantial set of 

genomic features were generated from the hESC cells, we were aware of the potential biases from 

such differences, especially for the cell line-specific features such as histone modification signals. 

Therefore, we also examined epigenetic features available for hg19 in the HEK-293T cell line (or 

in HEK-293 when not available in HEK-293T), and compared them to the same features generated 

in hESC cells. The results indicated substantial genome-wide correlation between the features from 

HEK-293T (or HEK-293) and hESC (Table S4; Fig. S15). Therefore, the genomic feature datasets 

employed in our study are generally representative of the genomic landscape of HEK-293T cells. 

Limitations of the current study 

In this study, we collected the de novo L1s from an integration experiment performed in HEK-

293T. Although this is a stem cell line and we excluded the potential bias from aneuploidy hotspots 

(Lin et al. 2014; Binz et al. 2019)(Fig. S14), we are aware that it does not fully represent the 

karyotype and genome landscape of germline cells. The issue can be further reflected by the 

inconsistencies between similar studies in different cell lines (Flasch et al. 2019; Sultana et al. 2019; 

Chen et al. 2020). Therefore, future work should ideally utilize de novo L1 insertions collected 

from large trio sequencing experiments, alternatively, corrections of cell-specific structural 

variations and rearrangements can be made by whole-genome sequencing of the cell lines (Sultana 

et al. 2019). In addition, our mFLR models explained as much as ~30% of the variability in L1 

insertion and fixation behavior (Table 2-1), which suggested a strong explanatory power and 

allowed us to gain important insights. However, we also realized that a substantial share of 

variability was not explained, and the reason can be two-fold. First, our mFLR models did not 
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comprise explicitly interactions between two or more features. Although interactions between 

functional predictors can be included in mFLR (Usset et al. 2016; Greven and Scheipl 2017), 

coefficient estimation becomes more complex and interpretation of the interaction terms is not 

straightforward. Seconds, some genomic features affecting L1 integration and fixation dynamics 

might still be missing from this study. Additional features, once information on them becomes 

available, should be incorporated in future investigation.  
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Chapter 5 
 

Conclusions 

Summary 

The main focus of this dissertation is to characterize the transposition dynamics of TEs and 

understand their contribution to the architecture and evolution of the human genome. Specifically, 

we addressed the objectives by testing the working hypotheses: Different local genomic landscape 

features contribute in various ways to the L1 insertion and fixation preferences in the human 

genome. First, we presented a study design to investigate the genome-wide distribution of L1s at 

different evolutionary distances and the correlation between local genomic features and L1 

insertion and fixation preferences. Second, we applied the study design to three large L1 datasets 

and an extensive list of high-resolution genomic landscape features to test the above working 

hypothesis. We built an integrative model of L1 transposition dynamics based on our findings 

(Chen et al. 2020). Finally, we tested the robustness of the study design and reproducibility of our 

findings. We conducted multiple computational experiments to test the robustness of the study 

design. We also validated the reproducibility of our findings using recently published L1 datasets 

and genomic feature signals from different sources. 

In general, we found that the genomic distribution of de novo L1s, polymorphic L1s and fixed, 

human-specific L1s are not random, while they reveal distinct patterns by different evolutionary 

times. We also developed an integrative view of the L1 transposition dynamics (Fig. 5-1), 

suggesting that L1s preferentially integrate into active, open-chromatin regions enriched in non-B 

DNA motifs and high transcriptional activities (Fig. 5-1A and B). However, such insertions are 

mostly removed from the gene pool, possibly due to strong selection pressure on those regions (Fig. 
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5-1C). In contrast, the L1 elements are more likely to reach high frequencies and to become fixed 

in non-active genomic regions that are largely free of purifying selection—depleted of genes and 

most non-coding conserved elements, although such regions usually have closed chromatin 

structures and are less prone to L1 insertion events (Fig. 5-1). Furthermore, our results also suggest 

that L1 insertions can even potentially modify local genomic landscape by extending CpG 

methylation and increasing mononucleotide microsatellite density (Fig. 3-2). 
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A 

 
B 

 
C 

 

Figure 5-1. An overview of L1 transposition dynamics in the genome. An overview of the L1 
transposition dynamics in closed chromatin regions (Left) compared to open chromatin regions (Right) 
showing A. Different nucleosome distribution and chromatin accessibility; B. Different frequencies of L1 
insertion events; C. Different number of L1s retained in the gene pool after negative selection. The 
visualization of nucleosomes was inspired by (Klemm et al., 2019).  
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Significance and future directions 

In this dissertation, we performed the first genome-wide analysis of L1 transposition dynamics in 

an evolutionary framework and leveraged an extensive list of genomic landscape features at high 

resolution. We demonstrated that the genomic distribution of human L1s is driven by the local 

genomic landscape, and our analysis revealed the potential mechanisms through which regional 

genomic characteristics influence new element insertions and their abilities to fix in the genome. 

Our findings provided a dynamic view of the human L1 transposition, while we connected the 

integration, selection, and fixation processes of L1s with local genomic features. This is critical for 

understanding the impact of L1s in the genome functions and evolution. The work also provides 

significant clinical implications in the study of different genetic disorders and cancers, given the 

presence of L1 activities in both germline and somatic cells. In addition, we presented a successful 

application of FDA framework, which allowed us to effectively address scale and location of the 

features’ effects on specific genomic intervals, and can be widely applied in the field of 

genomics. Altogether, the findings in this dissertation substantially facilitate understanding of TE 

integration and fixation preferences, pave the way for uncovering their role in human health and 

diseases, and inform their use as mutagenesis tools in genetic studies. 

Future studies can be conducted from the following aspects: 

1. We studied integration preferences for de novo L1 insertions in kidney stem cells (HEK-

293T). While this is a useful model system to study L1 activities, we are aware that cell 

lines might not fully represent the same karyotype and genomic landscape for TE activities 

as in germline cells. Therefore, our findings can be further validated in future large-scale 

trio resequencing studies, using a similar analytical framework.  

2. We reproduced our analysis on recently published de novo L1 datasets and found generally 

similar patterns (Flasch et al. 2019; Sultana et al. 2019; Chen et al. 2020). However, some 
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findings were still inconsistent among the studies, possibly due to different cell lines used, 

different genomic scales analyzed, and other methodological differences. Future studies 

applying the same framework and genomic landscape features across different cell lines 

can help explain the cell and tissue-specific differences with more confidence. More 

importantly, since L1 insertions are often found in different somatic tissues, addressing 

such differences can further reflect the potential role of L1 transposition in human 

development and provide important clinical implications (Muotri et al. 2005; Kano et al. 

2009; Baillie et al. 2011; Bedrosian et al. 2018). 

3. It is possible that some genomic features affecting L1 insertion and fixation preferences 

might still be missing from our list, since there was a substantial share of variability that 

our models cannot explain. Therefore, additional genomic features should be incorporated 

in future studies as the data become increasingly available. For instance, information on 

L1 mRNAs can be utilized to identify expressed donor copies and might help explain some 

cell-specific differences. Also, new data from chromosome conformation capture (3C) 

technologies can be added to indicate the high-order chromatin organization near L1s. In 

addition, the post-integration selection on L1s could be further characterized by additional 

features such as fixation index (FST), phyloP scores, and SNP densities. 

4. Anticipated advances in statistical methods, particularly in the domain of functional 

variable selection and functional logistic regression, are likely to provide better models. 

For instance, an effective algorithm to select functional predictors from a large pool will 

permit us to include all available genomic features simultaneously and reduce the need of 

pre-selecting features based on individual tests. Future studies can also benefit from 

improved mFLR algorithms implemented with interaction terms (Usset et al. 2016; Greven 

and Scheipl 2017), which will help better explain the joint effect between two or more 

predictors. 
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5. Future studies with similar experimental design and analytical framework can be applied 

to the investigation of other TE families, such as Alus and ERVs, which will further shed 

light on how different TEs jointly contribute to the structure, function, and evolution of the 

human genome. 
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Appendix 
 
 

Figure S1. Using Inverse-PCR to identify de novo L1 insertions in vivo.   
A. Sequence map of plasmid pld225. Locations of barcode and two restriction enzymes are 
highlighted green. B. Frequency distribution of 14 barcodes implemented in the vector. C. The 
combinations of 14 barcodes and two restriction enzyme sites implemented in the vector, with 28 
combinations in total.  

A 

  

 

 

 



121 
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C 

GTGAATTCGA GAGGTGTCGA GTGAATTCGACCGG GAGGTGTCGACCGG 

CTCTTTCGA AAAGCATCGA CTCTTTCGACCGG AAAGCATCGACCGG 

AAAGTCGA GAATATCGA AAAGTCGACCGG GAATATCGACCGG 

GGAGGTCGA CTCGATTCGA GGAGGTCGACCGG CTCGATTCGACCGG 

TTAAATCGA CGTGTCGA TTAAATCGACCGG CGTGTCGACCGG 

TCTCTTCGA CTCCCTCGA TCTCTTCGACCGG CTCCCTCGACCGG 

CCGTACTCGA CCCTGTCGA CCGTACTCGACCGG CCCTGTCGACCGG 
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Figure S2. Karyotype plots of the chromosome-wise distribution of L1 elements.  
Genomic position of de novo, polymorphic, and human-specific L1s. The height of the colored bars 
(Red: de novo L1s; Blue: polymorphic L1s; Green: human-specific L1s) above each chromosome 
represents the number of elements from the corresponding dataset. Cytogenetic band information was 
retrieved from the UCSC Genome Browser, which was used to annotate different chromosomal 
regions, as seen on Giemsa-stained chromosomes. Centromere regions are represented as red blocks. 
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Figure S3. Scatter plots of the chromosome-wise distribution of L1 elements.  
Element count of A. de novo L1s; B. polymorphic L1s; C. human-specific L1s against chromosome 
size. Fitted regression lines and 95% confidence intervals are shown for each scatter plot. Correlation 
between the count of elements and chromosome sizes are indicated below the main title. 
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Figure S4. Distribution of distances between L1 elements of the same type, compared with the 
random distribution.  
A-C: Cumulative distribution of the distance between L1 elements of the same type (red: de novo L1; 
blue: polymorphic L1; green: human-specific L1), compared with the expected cumulative 
distribution (black). D-F: Q-Q plots of the distance distribution between L1 elements of the same 
type (Y-axis), compared with the expected distribution (X-axis). Colored line represents the identity 
line. Each panel reports the p-value of a bootstrap Kolmogorov–Smirnov test for equality of observed 
and expected distributions. Distances are reported on a log scale. 

A B 

 

 

C D 

  

  



127 

  

E F 

  

 
  



128 

  

Figure S5. Distribution of distances between L1 elements of different types, compared 
with the random distribution.  
A-C. Cumulative distribution of the distance between L1 elements of different types (orange: de novo 
L1 and human-specific L1; magenta: de novo L1 and polymorphic L1; cyan: polymorphic L1 and 
human-specific L1, compared with the expected cumulative distribution (black). D-F. Q-Q plots of 
the distance distribution between L1 elements of different types (Y-axis), compared with the expected 
distribution (X-axis). The colored line represents the identity line. Each panel reports the p-value of 
a two-sample bootstrap Kolmogorov–Smirnov test for equality of observed and expected 
distributions. Distances are reported on a log scale. 
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Figure S6. Clustering of correlations among high-resolution genomic features.  
Hierarchical clustering based on Spearman’s correlation among 45 high-resolution features. The red 
dashed line shows our threshold for high correlation between features (absolute value of Spearman’s 
correlation above 0.8). Only one feature in each of the two clusters (shown in cyan and green) was 
kept for subsequent analyses.  
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Figure S7. IWTomics results for selected genomic features.  
Comparisons of genomic features between L1 flanking regions and controls (left: de novo L1 vs. 
control; right: human-specific L1 vs. de novo L1). A. DNase hypersensitive sites (DHS) B. H3K4me2 
C. H3K9me3. In each figure, the top heat map shows the IWTomics adjusted p-value curves at all 
possible scales - X-axis reports the position in the flanking region, from -50 kb to +50 kb; Y-axis 
reports the scale used for p-value correction, from 1 kb (no correction) to 100 kb (considering the 
whole region). The central panel shows the adjusted p-value curve at the selected scale, with gray 
area indicating significant p-values (≤0.05). Bottom panel reports pointwise boxplots of the feature 
values (dotted curves: 25%, 50%, and 75% quantiles, solid curves: averages). The control regions 
contain less than 7% coverage by all annotated L1 elements.   
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Figure S8. Summary of ITWomics results on high-resolution features.  
A. Polymorphic L1 and control regions. B. Human-specific L1 and control regions. C. Polymorphic 
L1 and de novo L1 regions. D. Human-specific L1 and polymorphic L1 regions. The X-axis represents 
the position analyzed within the 100-kb flanking region of the L1 element, while each unit is a 1-kb 
window. The black vertical line across the center represents the insertion site. Each row represents 
one genomic feature and reports the adjusted p-value curve on a log10 scale. White: non-significant 
difference (p-value>0.05). Red: significant difference, with over-representation of the feature in L1 
flanking regions. Blue: significant difference, with under-representation of the feature in L1 flanking 
regions. The selected IWTomics scale threshold is noted on the left. Note that the results of de novo 
L1 vs control are summarized by taking the median p-values over 10 random samples of the same 
size. The control regions contain less than 7% coverage by all annotated L1 elements.  
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Figure S9. IWTomics analysis on low-resolution genomic features (comparisons involving 
polymorphic L1s only).  
A summary of the three pairwise comparisons on five low-resolution genomic features between 
polymorphic L1s and other datasets, using the univariate version of IWTomics. A. Distance to the 
telomere. B. Distance to the centromere. C. Replication timing. D. Recombination rate (sex-
averaged). E. Count of telomere hexamers. Each panel represents the boxplot of the features in the 
different groups. Black dot: mean; bold horizontal line: median; box limits: 25th and 75th percentiles 
(whiskers and outliers not shown). The p-values of pairwise IWTomics tests involving polymorphic 
L1s are noted at the bottom; significant ones (p-value<0.05) are in bold. The control regions contain 
less than 7% coverage by all annotated L1 elements.  
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Figure S10. Selection of random subsample based on individual regression analysis.  
Visualization of pseudo-R2 for sFLR of the different genomic features across 10 random samples 
for the three pairwise comparisons involving the de novo L1 dataset (A. de novo L1s vs control; B. 
de novo L1s vs polymorphic L1s; C. de novo L1s vs human-specific L1s). Each point on X-axis 
represents a genomic feature, Y-axis is the pseudo-R2 for the corresponding feature. Each line 
corresponds to a random subsample, while the red lines denote the random subsample 1 that was 
employed in subsequent analyses.  
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Figure S11. Visualization of L1 target motifs after matching for GC content. 
Comparisons of L1 target motifs between L1 flanking regions (left: de novo L1; right: human-specific 
L1) and controls, while matching for GC content. A. All regions. B. Regions with GC content 
between 0-25% quantiles. C. Regions with GC content between 25-50% quantiles. D. Regions with 
GC content between 50-75% quantiles. Regions with GC content between 75-100% quantiles are not 
reported, given the limited sample size of human-specific L1s in this category. In each pointwise 
boxplot, X-axis reports the position in the flanking region, from -50 kb to +50 kb; Y-axis reports the 
value of L1 target motif count. Each plot reports the different quantiles (dotted curves - 25%, 50%, 
and 75% quantiles) and averages (solid curves) of the feature values. The control regions contain less 
than 7% coverage by all annotated L1 elements.  
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Figure S12. Regularization parameter for variable selection in mFLR. 
Plot of BIC corresponding to different values of the regularization parameter, for variable selection 
in mFLR models related to different comparisons. A. de novo L1 vs control regions B. Polymorphic 
L1 vs control regions. C. Human-specific L1 vs control regions. D. Polymorphic L1 vs de novo L1 
regions. E. Human-specific L1 vs de novo L1 regions. F. Human-specific L1 vs polymorphic L1 
regions. The red vertical line indicates the minimum BIC. 
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Figure S13. Interval-Wise Testing analysis for selected genomic features at de novo L1 hotspots. 
Comparisons of genomic features between de novo L1 flanking regions and control regions, where 
the former are parsed based on whether they overlap with other de novo L1 flanking regions; 
specifically, presenting no overlap, one, two or more than two overlaps. A. DNase Hypersensitive 
Sites (DHS) B. H3K4me2 C. H3K9me3. In each figure, the top panel reports pointwise boxplots of 
the feature values (dotted curves - 25%, 50%, and 75% quantiles) with averages (solid curves). de 
novo L1 flanking regions are represented by colored curves and control regions are shown in black 
curves. The bottom heat map shows the IWT adjusted p-value curves at all possible scales - the X-
axis reports the position in the flanking region, from -50 kb to +50 kb; the Y-axis reports the scale 
used for p-value correction, from 1 kb (no correction) to 100 kb (considering the whole region). The 
control regions contain less than 7% coverage by all annotated L1 elements.  
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Figure S14. Distribution of de novo L1s in HEK-293T duplicated sites. 
Violin plots of observed de novo L1 insertion density (the number of insertions per base pair) in 146 
Mb of HEK-293T duplicated sites (measured separately for each duplicated region) from (Lin et al. 
2014) (right) and in the rest of the genome (left; measured in 100-kb windows), for comparison. The 
p-value of a t-test was 0.46, demonstrating no significant difference in mean L1 insertion density 
between duplicated sites and the genome background. 

 

                     Insertions/bp:   6.0010-6                                  4.6810-6 
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Figure S15. Comparisons of H3K4me3 signals generated from hESC versus HEK-293. 
(A) A scatterplot matrix of the H3K4me3 signals in hESC and in two HEK-293 replicates, with the 
corresponding Peason’s correlation coefficients (considering all 1-kb windows in our de novo L1 and 
control datasets). (B-D) Pointwise boxplots of the H3K4me3 signal values in L1 flanking regions and 
controls using data from (B) hESC; (C) HEK-293 replicate one; (D) HEK-293 replicate two. 
Boxplots of the feature values are shown in different quantiles (dotted curves: 25%, 50%, and 75% 
quantiles, solid curves: averages). The same color scheme is used in boxplots and scatterplots (Black: 
control; Red: de novo L1; Blue: polymorphic L1; Green: human-specific L1). The control regions 
contain less than 7% coverage by all annotated L1 elements. 
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Figure S16. Comparison of distance distributions of de novo L1s across three studies. 
A. Differences between observed and expected cumulative distributions of the distances between L1 
elements of the same type (de novo, polymorphic, or human-specific), using A. de novo L1s obtained 
from HEK-293T in this study. B. de novo L1s obtained in hESC by Flasch et al. (2019). C. de novo 
L1s generated from Hela cells by Sultana et al. (2019).  
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Figure S17. IWT analysis of selected features using de novo L1s from recent studies. 
Comparisons of de novo L1 vs control regions using de novo L1s in A. hESCs, from (Flasch et al. 
2019), and B. HeLa, from (Sultana et al. 2019). The X-axis reports the position in the 100-kb flanking 
region (+50-kb, -50-kb) of the L1 element (the black vertical line across the center represents the 
insertion site). Each row represents one genomic feature and reports the adjusted p-value curve on a 
log10 scale. White: non-significant difference (p-value>0.05). Red: significant difference, with over-
representation of the feature in L1 flanking regions. Blue: significant difference, with under-
representation of the feature in L1 flanking regions. The IWTomics scale threshold is noted on the 
left. The control regions contain less than 7% coverage by all annotated L1 elements.  

A 

 

B 
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Figure S18. Distribution of distances between the two restriction sites MspI and TaqI. 
Histogram showing the distribution of distances between any MspI or TaqI restriction sites in the 
genome. Log10 distances (with a +0.0001 shift) are plotted. The blue vertical line indicates the 150 
bp threshold on this transformed scale. 87.46% of the data are below this threshold.   

 

 

 
  



153 

  

 
 
Table S1. L1 Datasets and construction of 100-kb L1 regions.  
 

L1 Dataset de novo L1 Polymorphic L1 Human-specific L1 

Total number of elements analyzed 17,037 1,012 1,205 

Number of autosomal elements 16,322 954 1,094 

Number of 100-kb autosomal non-overlapping 
flanking regions after filtering gaps and blacklist 

7,981  836  834  

Number of 100-kb non-overlapping flanking 
regions on autosomes with strand information 

7,981  670 725  
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Table S2. Genomic landscape features and their contribution to single and multiple Functional 
Logistic Regression for four non-major comparisons.  
 
Chromatin=chromatin structure, Transcription = transcription regulation and gene expression, 
Res.=Resolution. “Not sign.” cells indicate features that showed no significant differences in 
IWTomics tests; “Not sel.” cells in mFLR columns indicate features that were not selected in the final 
mFLR models. Three features, including Testis Gene Expression (Brawand et al. 2011), Exon 
Expression (UCSC), and Transcript Expression (UCSC) were excluded in the analysis, due to their 
high correlation with the Gene Expression dataset (Spearman’s correlation coefficient >0.8)(Fig. S4). 
 
 
 

Group 

 
 

Name 

 
Polymorphic L1 

vs control  

 
Human-specific 

L1 vs control 

 
Polymorphic L1 vs 

de novo L1  

 
Human-specific 

L1 vs 
polymorphic L1 

pseudo-R2 
for sFLR 

(%) 

RCDE 
for 

mFLR 
(%) 

  

 pseudo-
R2 for 

sFLR (%) 

RCDE 
for 

mFLR 
(%) 

  

 pseudo-
R2 for 

sFLR (%) 

RCDE for 
mFLR (%) 

pseudo-R2 
for sFLR 

(%) 

RCDE 
for 

mFLR 
(%) 

Chromatin  DNase 
hypersensitive 

sites 

12.31 Not sel.  19.20   Not 
sel.   

11.60 4.88 1.81 100 

Chromatin RNA Pol II 2.43 Not sel.  3.78 1.28 4.21 Not sel.  0.38 Not sel.  
Chromatin CTCF 17.05 Not sel.  24.53 Not sel.  7.87 Not sel.  1.58 Not sel.  

Transcription  H3K4me2 20.83 Not sel.  28.09 Not sel.  10.01 Not sel.  0.60 Not sel.  
Transcription  H3K9ac 22.54 Not sel.  33.05 0.36 9.78 Not sel.  1.24 Not sel.  
Transcription  H3K4me3 14.40 Not sel.  19.00 Not sel.  7.56 Not sel.  0.28 Not sel.  
Transcription  H3K79me2 7.54 Not sel.  8.28 Not sel.  3.57 Not sel.  0.03 Not sel.  
Transcription  H3K27ac 19.31 Not sel.  28.25 Not sel.  7.41 Not sel.  1.38 Not sel.  
Transcription  H4K20me1 14.54 Not sel.  20.76 Not sel.  6.54 Not sel.  0.89 Not sel.  
Transcription  H3K4me1 21.36 0.29 29.20 1.04 7.38 2.48 1.12 Not sel.  
Transcription  H3K36me3 11.20 Not sel.  16.41 Not sel.  4.72 Not sel.  0.62 Not sel.  
Transcription  H3K9me3 0.84 Not sel.  1.16 Not sel.  1.38 Not sel.  0.50 Not sel.  
Transcription  H3K27me3 9.11 1.29 14.84 Not sel.  4.53 Not sel.  0.63 Not sel.  
Transcription  H2AFZ 0.09 Not sel.  1.75 Not sel.  1.71 Not sel.  1.07 Not sel.  
Transcription  Gene expression 9.14 Not sel.  9.05 Not sel.  3.87 Not sel.  Not sign.   Not 

sign.  
DNA 

methylation 
Sperm hypometh 0.42 1.69 0.36 1.22 2.38 Not sel.  0.15 Not sel.  

DNA 
methylation 

CpG 
methylation 

 Not sign.  Not 
sign.   

Not sign.    Not 
sign.   

0.85 Not sel.  Not sign.  Not 
sign.   

DNA 
methylation 

5-hMc 11.29 Not sel.  15.65 Not sel.  7.94 Not sel.  0.39 Not sel.  

DNA 
methylation 

CHH 
methylation 

0.23 Not sel.  0.18 Not sel.  Not sign.   Not sign.  Not sign.  Not 
sign.  

DNA 
methylation 

CHG 
methylation 

0.75 Not sel.  1.17 Not sel.  1.41 Not sel.  Not sign.  Not 
sign.  

Non-B DNA, 
microsats 

G-quadruplex 4.76 Not sel.  6.28 Not sel.  7.43 Not sel.  Not sign.  Not 
sign.  

Non-B DNA, 
microsats 

A-phased 
repeats 

8.22 0.14 10.34 Not sel.  7.36 Not sel.  Not sign.  Not 
sign.  

Non-B DNA, 
microsats 

Direct repeats 1.95 1.25 2.45 Not sel.  4.01 Not sel.  0.58 Not sel.  
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Non-B DNA, 
microsats 

Inverted repeats 1.73 Not sel.  2.33 Not sel.  1.00 Not sel.  0.11 Not sel.  

Non-B DNA, 
microsats 

Mirror repeats 1.24 Not sel.  3.47 Not sel.    Not 
sign.  

  

Not sign.  0.72 Not sel.  

Non-B DNA, 
microsats 

Z DNA motifs 2.08 0.92 3.12 Not sel.  1.29 Not sel.  Not sign.  Not 
sign.  

Non-B DNA, 
microsats 

Mononuc. 
Microsats 

0.92 Not sel.  1.94 Not sel.  1.05 Not sel.  1.62 Not sel.  

Non-B DNA, 
microsats 

Di-, tri-, and 
tetranucl. 

  microsats 

0.51 1.16 0.73 0.74  Not sign.  
 

  

Not sign.  Not sign.  Not 
sign.  

Nucleotide 
composition  

GC-content 12.90 14.23 18.63 15.84 11.98 3.32 0.51 Not sel.  

L1 target motifs L1 target motifs 0.92 20.27 0.64 20.12 4.22 Not sel.  Not sign.  Not 
sign.  

Other TEs Alu 5.31 0.91 8.73 1.74 9.07 11.19 0.53 Not sel.  
Other TEs MIR 11.04 0.78 14.03 Not sel.  0.46 Not sel.  0.86 Not sel.  
Other TEs L2 and L3 5.04 1.53 5.94 2.93 Not sign.   Not sign.  Not sign.  Not 

sign.  
Other TEs DNA 

transposons 
Not sign.   Not 

sign.   
Not sign.    Not 

sign.  
Not sign.   Not sign.  Not sign.  Not 

sign.  
Other TEs LTR elements 5.51 Not sel.  6.84 1.70 2.53 Not sel.  Not sign.  Not 

sign.  
Replication  Replication 

origins 
7.43 Not sel.  10.64 Not sel.  9.35 4.21 0.92 Not sel.  

Recombination Recomb. 
hotspots 

0.90 0.93 2.24 Not sel.  0.27 Not sel.  0.53 Not sel.  

Selection Most conserved 
elements 

16.99 1.15 19.97 1.20 2.58 Not sel.  0.21 Not sel.  

Selection CpG island 4.51 0.82 6.39 Not sel.  10.41 10.42 0.25 Not sel.  
Selection Exons 5.71 1.40 8.34 1.22 6.30 Not sel.  0.22 Not sel.  
Selection Introns 6.75 Not sel.  6.18 Not sel.  1.29 Not sel.  Not sign.  Not 

sign.  
Chromosomal 

location 
Distance to 

  centromere  
  Not 
sign.   

Not 
sign.  

  Not 
sign.   

 Not 
sign.   

0.17 Not sel.   Not sign.  Not 
sign.  

Chromosomal 
location 

Distance to 
telomere  

0.81 Not sel.  1.01 Not sel.  1.31 Not sel.   Not sign.   Not 
sign.  

Chromosomal 
location 

Telomere 
hexamer 

13.14 Not sel.  16.49 Not sel.  0.33 Not sel.  Not sign.  Not 
sign.  

Replication Replication 
timing  

4.89 Not sel.  8.42 Not sel.  7.56 Not sel.  0.50 Not sel.  

Recombination  
  

Recombination 
rate 

Not sign.   Not 
sign.  

Not sign.   Not 
sign.   

Not sign.  Not sign.  Not sign.  Not 
sign.  

Total pseudo-
R2 

  
47.64 

 
57.61 

 
18.66 

 
1.81 
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Table S3. Construction of the comprehensive blacklist.  

We considered problematic regions specific to H1-human embryonic stem cell line (H1-hESC) by 
adding blacklist the genomic regions that showed extreme signal in the H1-hESC ChIP-Seq control 
sample (ID: ENCSR000AMI) We then employed two approaches to identify regions with extreme 
signals.  
 

Blacklist ENCODE 
blacklist  

(Amemiya et 
al. 2019) 

MACS on 
ENCSR000AMI  

(Control ChIP-seq on 
H1-hESC)A 

Customized script on 
ENCSR000AMI  

(Control ChIP-seq on 
H1-hESC)B 

Comprehensive 
ENCODE blacklist 

Number of 
regions 

292 2,094 519 861 

Size of 
regions 

10.2 Mb 0.116 Mb 4.6 Mb 11.8 Mb 

 

AFirst, we called peaks in the control file using MACS2 with default parameters (Zhang et al. 2008; 
Feng et al. 2012). BSecond, we screened the genome based on the strength of the control ChIP-Seq 
signal using a script originally developed by Chris Morrissey and Belinda Giardine from Ross 
Hardison’s Lab at Penn State University (Morrissey 2013)(Cheng et al. 2014). 
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Table S4. Correlation and overlap between genome-wide epigenetic profiles in HEK-293 and 
hESC cell lines. 

Feature HEK293T 
(data from HEK-293 cell line 

were used when not available in 
HEK-293T)  

hESC Correlation/ 
Overlap 

DHS 
(Read-depth normalized 

signal) 

https://www.encodeproject.org/ex
periments/ENCSR000EJR/ 

 

https://www.encodeproj
ect.org/experiments/EN

CSR000EMU/ 

0.962 

H3K27ac 
(Fold change over 

control) 

https://www.encodeproject.org/ex
periments/ENCSR000FCH/ 

 

https://www.encodeproj
ect.org/experiments/EN

CSR000ANP/ 

0.475 

H3K4me3 
(Fold change over control) 

https://www.encodeproject.org/expe
riments/ENCSR000DTU/ 

https://www.encodeproj
ect.org/experiments/EN

CSR814XPE/ 

0.804 

CpG methylation 
(Methylated sites) 

https://www.encodeproject.org/ex
periments/ENCSR087IEW/ 

(Lister et al. 2009) Overlap=58.8% 
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Table S5. Comparison across recent polymorphic L1 Studies. 

Study Number of 
polymorphic 

L1s 

Source Estimated 
insertion rate 

Figure in the 
publication’s study 
showing the allele 

frequency spectrum 

 

Dataset used in 
current study  

(Ewing and 
Kazazian 2011) 

 

 

 

1,012 

5 cross-referenced L1 
polymorphism studies on 
310 individuals from 13 

populations  
(Wang et al. 2006; Beck et 

al. 2010; Ewing and 
Kazazian 2010; Huang et al. 

2010; Iskow et al. 2010) 

0.0037 - 0.0105 

[1/95-1/270] 
(Ewing and Kazazian 

2010; Ewing and 
Kazazian 2011) 

Figure 1B 

(Stewart et al. 2011) 792 1000 Genomes Project 0.0061  

[0.0059-0.0062] 

Figure 6A 

 

(Yu et al. 2017) 2,398 1000 Genomes data from 
90 Han Chinese 

0.005 

[1 in 200 births] 

Figure 4C 
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Table S6. Comparison of de novo L1 dataset across three studies.  

 
Cell line 

 
HEK-293T 

 
hESC 

 
Hela 

 
 

Total number of elements analyzed 
 

17,037 
 

3,582 
 

1,565 
 

 
Source 

 
Current study 

 
(Flasch et al. 2019) 

 
(Sultana et al. 2019) 
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