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ABSTRACT 

The goal of this dissertation is to illustrate how the standard cash-in-advance 

model can be adapted to study the role of monetary and technology shocks in business 

cycles, and the analysis presented can also be easily extended to variety of dynamic 

stochastic equilibrium models. I derived a linearized CIA model that provides a link 

between the deep parameters and model coefficients. Through the linearized model I then 

assess the empirical performance of the theoretical model and estimate the deep 

parameters. The 90% confidence intervals of the deep parameters are also obtained by a 

bootstrap approach. The effects of the monetary and technology shocks are further 

analyzed by innovation response analysis. Finally, the distortional effects of the Hodrick-

Prescott and rational square-wave filters are also examined. 
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Chapter 1

Introduction

The goal of this thesis is to investigate the empirical performance of a cash-in-advance

(CIA) model and to illustrate how it can be adapted to study the role of monetary

and technology shocks in business cycles using an econometric approach. The most

direct motivation for this analysis comes from Lucas and Stokey (1987). They state

that a theoretical model should permit the calculation of a predicted theoretical joint

distribution of shocks and endongenous variables that can be compared to observed

distributions. Although macroeconomic theorists have proposd a variety of theoret-

ical models, there is little empirical investigation of the joint distribution of shocks

and endogenous variables of these models. Another motivation for this analysis is the

empirical failure of nonmonetary, dynamic, stochastic models in model specifications
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tests. Therefore, I consider a monetary model, where money is introduced by a cash-in-

advance constraint, that may provide a better explanation for the observed data than

a barter economy.

The most common approach used in assessing the performance of CIA models

is calibration. Calibration compares the moments of artificial data generated by the

theoretical model with those of the observed data. However, Dejong, Ingram, and

Whiteman (1996 and 2000) criticized this approach for lacking a formal statistical

foundation because the deep parameters are chosen instead of estimated.

There are few empirical studies which have evaluated the suitability of the

CIA model or suggest how it can be used as an analytical tool for business cycles.

Part of the reason is that it is difficult to obtain an appropriately estimable model that

not only represents the theoretical model but also provides a link between the deep

parameters and the model coefficients. Moreover, since the theoretical models usually

have only one or a few stochastic shocks, the joint distribution of the model endogenous

variables is singular. Singularity means that the variance of the model distribution in

some particular directions is zero, so the joint density does not exist in this case. Hence,

even if a suitable model is used, it is still difficult to use econometric methods, such as

maximum likelihood, to investigate the empirical implications of these models.

Now I discuss how one can investigate the empirical performance of a CIA
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model and illustrate how a CIAmodel can be adapted to study the role of monetary and

technology shocks in business cycles using econometrics. First, I use the methods sug-

gested by Kydland and Prescott (1982), Hansen and Prescott (1995), and McGrattan

(1990) to derive a linearized CIA model that links the deep parameters of the theo-

retical model to an estimable theoretical model with a singular distribution. Different

econometric techniques are then used to estimate the linearized version of the model.

The role of stochastic shocks in business cycles can then be examined.

I first investigate the empirical relevance of this model using the approach of

Bierens and Swanson (2000). I evaluate the CIA model in the nonsingular direction

by the Bierens-Swanson average conditional reality bound. In other words, how much

information is contained in the theoretical model is evaluated without penalizing the

possibility of model misspecification or missing variables.

Furthermore, I apply the Bierens multiplicative conditional reality bound to

estimate the deep parameters of the theoretical model. The linearized version of the

CIA model can be used to provide predictions about the joint stochastic properties of

the endogenous variables, e.g. investment, consumption, inflation rate, and the output

growth rate. Their innovation responses to monetary and technology shocks are also

investigated. Using the bootstrap, confidence intervals for the deep parameters can also

be obtained.
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Finally, I discuss the effects of applying the Hodrick-Prescott (H-P) filter and

a rational square-wave filter on the CIA model. In the last stage of calibration, it is

common to use the H-P filter to remove the stochastic trend and then compare the

moments of the artificial and observed data. However, some studies, such as Harvey

and Jaeger (1993) and Cogley and Nason (1995), show that the H-P filter can generate

spurious business cycles even if none are present in the original data. In order to

understand the distortional effect of the filters, the Bierens-Swanson average conditional

reality bound is applied to evaluate the possible damage of the filters.

The rest of this thesis is organized as follows. Chapter 2 reviews the relevant

empirical and theoretical work and discuss their findings. Chapter 3 introduces the

cash-in-advance model and shows that the linearized model implies a cointegrated error

correction model. The linearized model will be used to represent the CIA model in

our application and analysis. Chapter 4 introduces the two econometric approaches,

the Bierens-Swanson average conditional reality bound and the Bierens multiplicative

conditional reality bound, which will be used to evaluate and estimate the CIA model.

Chapter 5 presents the empirical results and discusses the effects of technology and

monetary shocks on inflation and output growth. Chapter 6 considers the H-P filter

and Pollock’s rational square-wave filter and examines the effects of the filters. Chapter

7 summarizes and concludes.
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Chapter 2

Review of the literature

This chapter reviews the relevant theoretical and empirical literature. Section 2.1 re-

views some empirical work of cash-in-advance models. Section 2.2 and 2.3 discuss the

recent work on measurement of the reality of theoretical models and estimation of the

deep parameters. Section 2.4 discusses the motivation of using the average and multi-

plicative conditional reality bound. Finally, Section 2.5 highlights and summarizes the

findings about applying the Hordick-Prescott filter on data.
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2.1 Money and growth

Contemporary thought on the topic of money and growth originally begins with the

work of Tobin (1965). His model predicts that higher inflation is associated with a

larger capital stock and also higher per capita output because saving can only be divided

into money and capital, and inflation lowers the real return on money. In Sidrauski’s

(1967) model, money is superneutral. Monetary growth rate and inflation have no

effects on steady-state output and capital since the long-run capital stock depends only

on its depreciation rate, population growth, and discount rate. Moreover, in the CIA

model studied by Stockman (1981), inflation acts as a tax on productivity and therefore

impedes capital accumulation. Subsequent work on money and growth has focused on

the effects of inflation on capital and output. For instance, Ireland (1994) discusses the

issue of how sustained capital accumulation affects money’s role and growth. Dotsey

and Sarte (2000) use a CIA model to analyze the effects of inflation variability on

output growth.

Despite abundant discussion of the cash-in-advance models, there is only little

empirical investigation of them. Hordick, Kocherlakota, and Lucas (1991) use a cali-

bration technique to study CIA models. They found that the first and second moments

of the artificial data generated by such models cannot match that in the empirical data,
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and thus did not proceed with a further formal estimation. Finn, Hoffman, and Schla-

genhauff (1990) use serval versions of CIA models to explore whether liquid services

and nonsuperneutral effects of money are important for asset pricing. Sill (1998) uses

a generalized method of moments to estimate parameters from first-order conditions of

a CIA model. The responses of money demand and velocity to exogenous shocks to

monetary growth and income growth are also examined and compared with that of an

unrestricted VAR.

2.2 Measurement of the reality of a theoretical model

Lately the issue in assessing the empirical relevance of theoretical models, has been

widely debated. Calibration of models is markedly different from the standard econo-

metrics approach, and has been widely used in evaluating business cycle models by

most macroeconomists.

However, this technique has been criticized for a few of its aspects. First, a

model is evaluated by examining the moments of the artificial data generated by cali-

bration experiments, but matching the major moments of the data is not necessary the

most desirable feature of a model, because even a complicated model is still a simplified

description of reality. Secondly, use of a calibration technique to evaluate models is not

7



a test against an alternative; therefore, it cannot be used to compare whether another

different model can match the data better. Third, it lacks a formal statistical founda-

tion. The parameter values of the theoretical model are selected, instead of estimated,

on the basis of data evidence. For example, the rate of population growth in a business

cycle model is set according to data statistics, rather than estimated by an econometric

method. In other words, the parameter values selected in the beginning of calibration

are not necessarily the ones that provide the best fit of the model in some statistical

sense.

Dejong, Ingram, andWhiteman (1996 and 2000) (hereafter DIW) and Geweke

(1999) develop a Bayesian approach, different from calibration, that provides a statis-

tical framework for combining the theoretical and empirical models. Since calibration

does not involve realistic specifications of uncertainty regarding the parameterization of

the model in question, they suggest incorporating the uncertainty regarding the para-

meters of the theoretical model in the calibration technique. They use prior probability

distributions to represent the uncertainty of the parameters of the theoretical model

and then compute the implied distributions over statistical properties of artificial data

simulated by the model.

Alternatively, Watson (1993) also suggests a procedure for evaluating the fit of

a calibrated theoretical model. By augmenting the variables in the model with enough
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stochastic error, the second moment of the simulated data can be made to exactly

match that of the observed data. The greater the required error, the worse is the fit of

the theoretical model.

2.3 Estimation of the deep parameters based on

data

In addition to evaluating the theoretical models, estimating the deep parameters of the

theoretical model has also lately become an important issue in the analysis of theoretical

macro-models. In standard calibration experiments, it has been criticized that the deep

parameters are chosen based on the data evidence and thus lack statistical foundation.

DIW and Geweke (1999) suggest a Bayesian approach to incorporate the cal-

ibration technique into a statistical framework. However, two main limitations of the

Bayesian approach are pointed out by Bierens (2003). First, the Bayesian approach as-

sumes the theoretical model represents the data generating process (DGP), which is not

a realistic assumption. Second, this approach requires the existence of the conditional

densities of the observables, but it is not the case if the theoretical model is driven by

only a few stochastic shocks, which leads to singularity of the model distribution.

Traditional econometric approaches, such as the maximal likelihood method,
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thus no longer apply because the conditional density of the theoretical model does not

exist under this circumstance. DIW and Geweke (1999) did not deal with singularity

when applying the Bayesian approach. DIW focus on a subset of the variables such

that their distribution is not singular and Geweke (1999) uses a risk premium model

and concentrate on one variable only.

Christiano and Eichenbaum (1992) suggest to use a generalized method of

moments (GMM) to estimate the deep parameters by the first order conditions in the

first stage of calibration. They ignore the singularity problem by implicitly adding

error terms in the first order conditions directly when applying GMM. Moreover, their

approach still relies on the unrealistic assumption that the theoretical model represents

the DGP.

2.4 Motivation to use the average and multiplica-

tive conditional reality bound

Most model specification tests rely on a null hypothesis that the theoretical model is

equal to the DGP. Since the true data comes from a much more complex real economy

and observables are often restricted to a degenerate space of lower dimension in the

theoretical model, it is not surprising that business cycle models are easily to be rejected
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by classical model specification tests. Therefore, a model that fits data well along every

dimension except one unimportant one might be overwhelmingly rejected statistically.

Interpretation of the criteria for rejection or lack of rejection is thus not so obvious

under this situation.

The average andmultiplicative conditional reality bounds introduced in Bierens

and Swanson (2000) and Bierens (2003) have some good properties which other mea-

sures do not have. First, it not a test against an alternative. The theoretical model

is treated as only an approximation of the DGP, instead of the DGP itself. It can be

used as a criterion in choosing models.

Second, this measure represents the probability that the theoretical model is

correctly specified or a criterion of how much information about the data-generating

process is contained in the theoretical model. The conditional density of a theoretical

model is embedded in the true conditional density by a probability, which is estimated

by comparing the theoretical and the true densities. Moreover, the scale is between 0

and 1.

Third, the multiplicative reality bound in Bierens (2003) can be estimated in a

way similar to the maximal likelihood method. The deep parameters of the theoretical

model link to the coefficients in the econometric model derived from the theoretical

model, thus then can be estimated by maximizing the objective function. It not only
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provides an alternative to calibration, but also provides the statistical inference of the

parameters.

The main advantage of Bierens’(2003) approach over Bierens and Swanson’s

(2000) is that the latter focuses on the nonsingular part of the model, so that some links

between the deep parameters and model coefficients will be lost. In other words, the

deep parameters are in fact estimated by using a subset of the equations which results in

lack of identification of some deep parameters. Although the average conditional reality

bound can still be obtained by maximizing the objective function, lack of identification

cannot be detected during the whole process in estimation.

In order to identify the deep parameters and further solve for them, Bierens

(2003) then suggests using convolutions of the distributions of the theoretical model and

the data-generating process with a non-singular distribution. The same non-singular

noise is added to both distributions, so that they are non-singular and can be compared

in a way similar to the previous approach without marginalization in the singular

direction. This approach is related to Watson’s (1993) approach in the sense that

Watson (1993) suggests augmenting the theoretical variables with enough stochastic

errors such that the model can match the second moments of the actual data.
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2.5 The Hodrick-Prescott Filter

Since many statistical procedures assumes stationarity, it is often considered necessary

to transform data into stationary series by removing the trends. For example, the second

moments of the series should be finite if we are interested in their cross-correlations.

Among a number of transformations H-P filter is the most popular method and has

been widely applied in most real business cycle analysis. For example, Kydland and

Prescott (1982) and Cooley and Hansen (1989) use this technique to remove trend in

the data before calibration.

In the work of Harvey and Jaeger (1993) and Cogley and Nason (1995), they

show that detrending based on the H-P filter can lead investigators to report spurious

cyclical behavior. Cogley and Nason (1995) further argue that standard real business

cycle models do not generate business cycle dynamics in pre-filtered data and that the

business cycles observed in H-P filtered data are due to the filter. The ‘stylized facts’

are in fact ‘stylized artifacts’, resulted from the filter, not the time series itself.

Similarly, Pollock (2000) and Pedersen (2001) criticized that the H-P filter

has some leakage. Pedersen (2001) argues that the H-P filter passes some frequencies

which it was supposed to impede and dampen the component which it was supposed

to pass since it is only a close approximation of a high-pass filter, which cuts off com-
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ponents with frequencies below the specified cut-off frequency and leaves components

with higher frequencies unchanged. This deficiency is the main reason that the H-P

filter induces spurious cycles in detrended data.
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Chapter 3

The cash-in-advance model

This chapter develops an estimable econometric model fromCooley and Hansen’s (1989)

cash-in-advance model. The linearized model is obtained by applying the Taylor’s

expansion to the nonlinear objective function and constraints. The linearized model

will be used to analyze the effect of technology and monetary shocks on inflation and

output growth.

Section 2.1 introduces the Cooley and Hansen model where money is intro-

duced by a cash-in-advance constraint. Section 2.2 defines the equilibrium. Section 2.3

explains the approach to solve this dynamic model and introduces part of Cooley and

Hansen’s result. Section 2.4 linearizes the cash-in-advance model and section 2.5 shows

that the linearized model is equivalent to a cointegrated error correction model.
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3.1 The Cooley and Hansen model

One of the major differences between the Cooley and Hansen model and the standard

business cycle model is that the former includes money, introduced via a cash-in-advance

constraint1. Another distinction is that, in addition to a technology shock, a monetary

shock is also included in this model. Further, labor is assumed to be indivisible instead

of a continuous variable between 0 and 1, which follows the assumptions in Hansen

(1985).

To begin with, let Et be the conditional expectation operator given the infor-

mation at time t and let β̄ ∈ (0, 1) be the discount rate. All agents in this economy

maximize their lifetime utilities based on all information available at time t. Each agen-

t’s utility depends on nonstorable consumption ct and working hours ht. The utility

function takes the form

u(ct, ht) = ln ct −Bht,
1The cash-in-advance constraint is based on the assumption that cash balances are required for the

purchase of cash goods. In this model economy, two categories of goods are considered: cash goods and

credit goods. Cash goods include only consumption goods here. We can imagine that consumption

goods are exchanged in circumstances where the buyer is unknown to the seller, so that the seller is

unwilling to accept invoices or trade credit as payments issued in securities trading. Such goods, if

purchased at all, must be paid for with currency acquired in advance at the market. The other goods,

such as labor, are treated as credit goods.
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whereB > 0 is a constant and u is strictly concave, continuous, differentiable, increasing

in ct and, of course, decreasing in ht.

The capital stock follows the law of motion

kt+1 = (1− δ)kt + xt

with a depreciation rate δ ∈ (0, 1), where kt represents capital stock in period t and xt

represents investment, the portion of output that is not consumed. The capital stock kt

is owned by the household, and the investment is used to replace the depreciation and

the augmentation of capital stock. Therefore, ct + xt ≤ Yt, where Yt is the per capita

output.

Given the price level pt, the real wage rate wt, and the real capital rental rate

rt, each agent can spend his income on consumption and investment, or keep some cash

and carry it to the next period. His income mainly comes from his wage payroll, capital

return, government’s lump-sum transfer, so his budget constraint can be written as

ct + xt +mt/pt ≤ wtht + rtkt + (mt−1 + (gt − 1)Mt−1)/pt.

The individual specific variables includes ct, xt, and kt, and ht∈ (0, 1) is the normalized

working hours. Moreover, in period t the nominal money balance of each household,

mt−1, is augmented with a lump-sum transfer (gt − 1)Mt−1 from government, where

Mt = gtMt−1 is the per capita money supply in period t, gt is the gross growth rate of
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money, and Mt−1 be the per capita money supply in period t− 1.

After gt is realized in the beginning of each period, each agent uses the money

balancesmt−1+(gt−1)Mt−1 to purchase nonstorable consumption goods. The purchase

of cash goods should satisfy the cash-in-advance constraint

ptct ≤ mt−1 + (gt − 1)Mt−1.

It has been shown by Cooley and Hansen (1989) that the cash-in-advance constraint

will be binding if and only if Et(1/gt+1) < 1/β. Thus, a sufficient condition for this

constraint to be binding is that the gross growth rate of money gt always exceeds the

discount factor β. Here, we only concentrate on the case in which this constraint always

holds with equality.

Therefore, the representative agent’s problem can be summarized as below:

maxE0

∞X
t=0

β̄
t
u(ct, ht), (3.1)

subject to

ptct ≤ mt−1 + (gt − 1)Mt−1, (3.2)

ct + xt +mt/pt ≤ wtht + rtkt + (mt−1 + (gt − 1)Mt−1)/pt, (3.3)

kt+1 = (1− δ)kt + xt. (3.4)

Two stochastic shocks, zt and gt, are assumed in this cash-in-advance model,

and both of them are revealed to all agents at the beginning of period t. One of the

18



exogenous random shocks considered in this model is the technology shock zt. The

technology shock zt obeys a law of motion

zt+1 = γzt + ²t+1, ²t ∼ i.i.d.(0,σ2²), where 0 < γ < 1. (3.5)

In other words, the technology shock is a stationary AR process. Since E(zt) = 0,

technology progress is not considered; otherwise, E(zt) would be positive.

Another random disturbance is the monetary shock gt:

ln gt+1 = ᾱ ln gt + ξt+1, ξt ∼ i.i.d.(ln ḡ(1− ᾱ),σ2ξ), where 0 < α < 1. (3.6)

The monetary shock is assumed to follow the law of motion given by (3.6), which is

also a stationary AR process, where ln ḡ is the unconditional mean of ln gt.

The firms’ production technology is assumed to be a constant return-to-scale

function

Yt = exp(zt)K
ρ
t H

1−ρ
t ,

where 0 ≤ ρ ≤ 1. Here, the fixed cost of each individual firm is ignored; therefore,

the assumptions of the competitive market and the constant return-to-scale technology

imply that firms make zero profit in equilibrium. We can assume, without loss of

generality, that there is only one competitive firm in the market and it makes zero

profit in equilibrium. By the first-order condition of maximizing the firm’s profit,
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Yt − wtHt − rtKt, it is easy to show that the wage rate and capital rental rate in the

budget constraint (3.3) are

w(zt, Kt,Ht) = (1− ρ) exp(zt)(
Kt

Ht
)ρ, (3.7)

and

r(zt,Kt,Ht) = ρ exp(zt)(
Kt

Ht
)ρ−1, (3.8)

and they are equal to the marginal productivity of labor and capital, respectively.

3.2 The equilibrium

Given the business cycle model introduced in the previous section, in a manner similar

to Cooley and Hansen’s (1989) calibration steps we first define the equilibrium and then

solve for the decision rules by iterating the quadratic version of Bellman’s equation. The

procedure is outlined in Section 3.3. I will also show that the monetary business cycle

model implies a cointegrated error correction model by linearizing the constraints.

In order to obtain the stationary solution, a change of variable is introduced

since mt, Mt, and pt are nonstationary. Let m̂t = mt/Mt and p̂t = pt/Mt. Also let

the maximized expected present value of the agent’s lifetime utility at equilibrium be

V (zt, gt, m̂t−1,Kt, kt), where z, g, and K are the aggregate state variables and m̂ and k
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are individual state variables. Variables with primes represent the next period values.

Then the representative agent’s dynamic problem can be rewritten as

V (z, g, m̂,K, k) =max
c,h

{U(c, h)

+β̄E[V (z0, g0, m̂0,K 0, k0)|z, g, m̂,K, k]ª (3.9)

s.t. z0 = γ̄z + ² (3.10)

ln g0 = ᾱ ln g + ξ (3.11)

c = (m̂+ g − 1)/(p̂g) (3.12)

c+ x+ m̂0/p̂ = w(z,K,H)h+ r(z,K,H)k (3.13)

+ (m̂+ g − 1)/(p̂g)

k0 = (1− δ)k + x (3.14)

K 0 = (1− δ)K +X. (3.15)

Denote the state vector by s = (z, g, bm,K, k)T and S = (z, g,K)T . The stationary

competitive equilibrium of this model contains a set of decision rules for the household

c(s), x(s), bm0(s), and h(s); a set of aggregate decision rules, X(S) and H(S); pricing

functions bp(S), w(S),and r(S), and a value function, V (s), such that:
21



(i) The household’s problems are solved. In other words, given the pricing

functions and the aggregate decision rules, v(s) solves the functional equation in (3.9),

and c(s), x(s), bm0(s), and h(s) are the associated decision rules.

(ii) The firm’s profit is maximized. In a competitive market, the constant

return-to-scale technology implies zero profit; therefore, the wage and rental rate of

capital are decided by their marginal productivity, (3.7) and (3.8), respectively.

(iii) By symmetry, each individual’s decision is consistent with aggregate out-

comes: x = X, h = H, and bm0 = 1, when k = K and bm = 1.
(iv) The equilibrium of commodity goods should satisfy c(s) + x(s) = Y (S)

for all s.

3.3 Solution method

The system equation (3.9)-(3.15) can be solved by a dynamic programming technique2.

Since the utility function is concave and the constraint set is convex, the value function

is also concave. Therefore, there exists a unique continuous function V : s → R that

satisfies the Bellman equation. However, the maximization problem cannot be solved

analytically but only numerically, because there is no explicit functional form for the

2See Stocky and Lucas (1989) for further detail.
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value function V.

In order to compute the equilibria of business cycle models, the class of mod-

els that fluctuate around a steady state and display local dynamics is approximated by

a set of linear functions in most macroeconomic research. In other words, a quadratic

approximation of the objective function is formed by a Taylor’s expansion of the func-

tion at the deterministic steady-state values. It gives an approximated version of the

maximization problem, which then can be solved by a numerical method. The approxi-

mation method used here and section 6.2 is based on the work of Kydland and Prescott

(1982), Hansen and Prescott (1995), and McGrattan (1990).

The maximization in (3.9) is over c and h, so we first solve for the per capita

working hours and then substitute it into the utility function. By so doing, we can

eliminate the nonlinearity in the constraint set. The next step is to use the second-

order Taylor’s expansion to approximate the utility function and solve the quadratic

version of Bellman’s equation.

We first combine (3.12) and (3.13), so the budget constraint can be rewritten

as

x+ m̂0/p̂ = w(z,K,H)h+ r(z,K,H)k. (3.16)

Since both labor and investment are credit goods, the cash-in-advance constraint only

applies to nonstorable consumption goods. It implies that agents can only reduce their
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money holdings by reducing their consumption. Next, by aggregating (3.16) and using

(3.7) and (3.8), we can solve for H :

H =

·
X + (1/p̂)

exp(z)Kρ

¸ 1
1−ρ
. (3.17)

Using (3.16), (3.17), and the utility function u(c, h), we obtain

u(c, h) = ln

µ
m̂+ g − 1

p̂g

¶
−B

"¡
x+ m̂/p̂− ρ(X + 1/p̂) k

K

¢
(X + 1/p̂)

ρ
1−ρ

(1− ρ)(exp(z)Kρ)
1

1−ρ

#
. (3.18)

In order to linearize the nonlinear functions, we work with the logarithm of each variable

for the sake of convenience. We let g̃ = ln g, p̃ = ln p̂, x̃ = lnx, X̃ = lnX, k̃ = ln k,

K̃ = lnK, then we replace p, x, X, k, and K with exp(ep), exp(ex), exp( eX), exp(ek), and
exp( eK), respectively. Furthermore, let the state vector be s̃ = (1, z, g̃, m̂, K̃, k̃)T and
S̃ = (1, z, g̃, K̃)T , the individual’s decision vector be ũ = (m̂0, x̃)T , the economy-

wide variables be Ũ = (p̃, X̃)T , W = (z, g̃, m̂, K̃, k̃, m̂0, x̃, p̃, X̃)T , and let the variables

with superscript “*” represent the values at steady state. Then the utility function

(3.18) can be approximated by a second-order Taylor’s expansion around the steady

state as follows:

u(c, h) = ln

µ
m̂+ exp(eg)− 1
exp(ep) exp(eg)

¶

−B


h
exp(ex) + m̂0

exp(ep) − ρ
³
exp( eX) + 1

exp(ep)
´
exp(ek)
exp( eK)

i³
exp( eX) + 1

exp(ep)
´ ρ
1−ρ

(1− ρ)
³
exp(z) exp( eKρ)

´ 1
1−ρ

 ,
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' u(W ∗) +DTu(W ∗)(W −W ∗) +
1

2
(W −W ∗)TD2u(W ∗)(W −W ∗),

= (1,W −W ∗)T

 u(W ∗) 1
2
DTu(W ∗)

1
2
Du(W ∗) 1

2
D2u(W ∗)


 1

W −W ∗

 ,

= (1,W ∗T )Q

 1

W ∗

 ,
where Q is a 10× 10 symmetric matrix with elements3:

Q1,i+1 = Qi+1,1 =
1
2
[Diu(W

∗)−P9
j=1D

2
iju(W

∗)W ∗
j ],

Qi+1,j+1 = Qj+1,i+1 =
1
2
D2
iju(W

∗),

Q11 = u(W
∗)−P9

j=1Dju(W
∗) + 1

2

P9
i=1

P9
j=1D

2
iju(W

∗)W ∗
i W

∗
j ,

for i, j = 1, · · · , 9. Therefore, the approximation of the representative agent’s problem

can be summarized as

s̃TV s̃ = max[s̃t ũT ŨT ]Q


s̃

ũ

Ũ

+ βs̃
0TV s̃0, (3.19)

s.t. g̃0 = ᾱg̃ + ², (3.20)

z0 = γ̄z + ², (3.21)

3See the details in Hansen and Prescott (1995).
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eK̃
0
= (1− δ)eK̃ + eX̃ , (3.22)

Ũ = U(S), (3.23)

where U is a linear function which describes the relationship between Ũ and S̃ realized

by the households in the beginning of each period.

The equilibrium process for the approximate economy maximizes the repre-

sentative’s lifetime utility (3.19) subject to the constraints (3.20) through (3.23). To

obtain the decision rules, we start with a guess of the matrix V , called V0, and also

choose a candidate for the function U. Then we iterate on the quadratic version of

Bellman’s equation until Vn and Vn+1 are sufficiently close.

Substituting (3.20) through (3.23) into (3.19), we can obtain the linear deci-

sion rule by using the first-order condition for ũ,

ũ = D1s̃+D2Ũ ,
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or

 m̂0

lnx

 = D1



1

z

ln g

m̂

lnK

ln k



+D2

 ln bp
lnX

 ,

where D1 and D2 are 2× 6 and 2× 2 matrices, respectively.

Imposing the equilibrium conditions, x̃ = X̃, m̂0 = m̂ = 1, and k̃ = K̃, we

further have

Ũ = D3S̃,

where D3 is a 2× 4 matrix. Using the results obtained from the previous steps, we can

further compute the value function for the next iteration. The procedure is repeated

until Vn+1 is sufficiently close to Vn. When the iteration converges, we obtain the

decision rules for equilibrium price and investment, which are the same as those in

Cooley and Hansen (1989):

ln p̂ = d11 + d12z + d13 ln g + d14 lnK, (3.24)

lnX = d21 + d22z + d23 ln g + d24 lnK. (3.25)
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Equations (3.24) and (3.25) show that, at equilibrium, the price and investment are

completely decided by the two stochastic shocks and capital stock.

3.4 Linearization

This section uses the above decision rules and Taylor’s expansion to linearize the non-

linear constraint around the steady state to obtain the linearized version of the Cooley

and Hansen model.

Since in this model cash goods contains only consumption goods, the binding

cash-in-advance constraint implies that all money is used on consumption goods. The

marginal utility of consumption lim
c→0

∂u(c, h)/∂c =∞, guaranteeing that money holding

must be positive. Combined with the equilibrium condition bm = 1, the binding cash-

in-advance constraint (3.12) implies that price level and per capita consumption have

an inverse relationship,

C =
1

p̂
,

or

lnC = − ln p̂.

Replacing p̂ by equation (3.24), we then have

lnC = −d11 − d12z − d13 ln g − d14 lnK.
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Here d11, d12, d13, and d14 are the coefficients.

Next, taking the logarithms with respect to the per capita working hours,

(3.17) yields

lnH = 1
1−ρ ln

³
X + 1

p̂

´
+ z

1−ρ +
ρ
1−ρ lnK,

= 1
1−ρ ln

³
exp( eX) + 1

exp(ep)
´
+ z

1−ρ +
ρ
1−ρ lnK,

which can be approximated by the first-order Taylor’s expansion in the neighborhood

of the steady state. Therefore,

lnH ' 1

1− ρ

lnµexp( eX∗) +
1

exp(ep∗)
¶
+
(X̃ − X̃∗) exp( eX∗)

exp( eX∗) +
1

exp(ep∗)
+

(p̃− p̃∗) exp(ep∗)
exp( eX∗) +

1

exp(ep∗)
+ z

1− ρ
+

ρ

1− ρ
lnK,

= h1 + h2 lnX + h3 ln p̂+
z

1− ρ
+

ρ

1− ρ
lnK,

where

h1 =
1

1− ρ

"
ln

µ
X∗ +

1

p∗

¶
− X

∗ lnX∗ + p∗ ln p∗

X∗ + 1
p∗

#
,

h2 =
1

1− ρ

X∗

X∗ + 1
p∗
,

and

h3 = − 1

1− ρ

p∗

X∗ + 1
p∗
.

Here h1, h2, and h3 are all constants dependent on the deterministic steady-state values

eX∗ and p̃∗, as well as the coefficient ρ.

29



Replacing ln p̂ and lnX by (3.24) and (3.25) yields

lnH = α1 + α2z + α3 ln g + α4 lnK,

where

α1 = h1 + h2d21 + h3d11,

α2 = h2d22 + h3d12 + 1/(1− ρ),

α3 = h2d23 + h3d13, and

α4 = h2d24 + h3d14 + ρ/(1− ρ).

Similarly, taking logarithms with respect to the constant return-to-scale pro-

duction function Yt = exp(zt)K
ρ
t H

1−ρ
t ,yields

lnY = z + ρ lnK + (1− ρ) lnH,

' β1 + β2z + β3 ln g + β4 lnK,

where

β1 = (1− ρ)α1,

β2 = 1 + (1− ρ)α2,

β3 = (1− ρ)α3, and

β4 = ρ+ (1− ρ)α4.

Since capital stock is a state variable which is given in the beginning of each period,

the variation of total output is affected by the two stochastic shocks only through the

per capita working hours H.
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Furthermore, using the law of motion of capital accumulation (3.22), yields

0 = exp( eK 0)− (1− δ) exp( eK)− exp( eX)
' exp( eK 0∗) + exp( eK 0∗)(K̃ 0 − K̃ 0∗)− (1− δ)[exp( eK∗) + exp( eK∗)(K̃ − eK∗)]

−[exp( eX∗) + exp( eX∗)(X̃ − X̃∗)],

= exp( eK 0∗)

(
K̃ 0 − (1− δ)

exp( eK∗)

exp( eK 0∗)
K̃ − exp( eX∗)

exp( eK 0∗)
X̃

+

"
(1− K̃ 0∗)− (1− δ)

exp( eK∗)

exp( eK 0∗)
(1− K̃∗) +

exp( eX∗)

exp( eK 0∗)
(1− X̃∗)

#)
.

Therefore,

K̃ 0 − (1− δ)
exp(K̃∗)

exp(K̃ 0∗)
K̃ − exp(X̃∗)

exp(K̃ 0∗)
X̃

+

"
(1− K̃ 0∗)− (1− δ)

exp(K̃∗)

exp(K̃ 0∗)
(1− K̃∗) +

exp(X̃∗)

exp(K̃ 0∗)
(1− X̃∗)

#
' 0.

Under the constant return-to-scale technology, the marginal product of capital is pos-

itive, but it declines as capital rises. When the capital stock reaches the steady state,

we have K̃
0∗ = K̃∗ such that

K̃ 0 ' (1− δ)K̃ +
exp( eX∗)

exp( eK 0∗)
X̃

−
"
(1− K̃ 0∗)− (1− δ)(1− K̃∗) +

exp( eX∗)

exp( eK 0∗)
(1− X̃∗)

#
,

' k1 + k2 lnK + k3 lnX,

' γ1 + γ2z + γ3 ln g + γ4 lnK,
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where

γ1 = k1 + k3d21,

γ2 = k3d22,

γ3 = k3d23,

γ4 = k2 + k3d24,

k1 = δ [2− (1 + δ) lnK∗] ,

k2 = (1− δ), and

k3 = δ.

k1, k2, and k3 are constants and depend only on the steady state values K̃∗, X̃∗, and

the depreciation rate δ.

Moreover, Mt = gtMt−1 can also be written as

lnMt = ln gt + lnMt−1,

=
t−1X
j=0

ln gt−j +M0, (3.26)

where M0 is the initial money stock. We may, without loss of generality, set M0 = 1.

Since ln p̂t = ln pt − lnMt, replacing lnMt in (3.24) by (3.26) yields

ln pt = d11 + 1 + d12zt + d13 ln gt+
t−1X
j=0

ln gt−j + d14 lnKt.

The above results can be summarized as the following linearized version of
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the business cycle model:

ln pt = d11 + 1 + d12zt + (d13 + 1) ln gt+
t−1P
j=1

ln gt−j + d14 lnKt,

lnXt = d21 + d22zt + d23 ln gt + d24 lnKt,

lnCt = −d11 − d12zt − d13 ln gt − d14 lnKt,

lnHt = α1 + α2zt + α3 ln gt + α4 lnKt,

lnYt = β1 + β2zt + β3 ln gt + β4 lnKt,

lnKt+1 = γ1 + γ2zt + γ3 ln gt + γ4 lnKt,

(3.27)

with two stochastic shocks

zt+1 = γ̄zt + ²t+1,

ln gt+1 = ᾱ ln gt + ξt+1.

Since (3.27) is a linear approximation of the deterministic steady state when

²t = 0 and ξt = 0, it follows that zt = γtz0 and ln gt = αt ln g0. Therefore, Kt+1 = Kt =

K∗ implies that the coefficients γ1 and γ4 equal 0 and 1, respectively, which means that

lnK is an I(1) process. Moreover, X∗ = δK∗ implies that d21 = ln δ and d24 = 1. Since

γ1 = k1 + k3d21 = 0, together with d21 = ln δ, it follows that

lnK∗ =
2 + ln δ

1 + δ
.

Furthermore, both γ̄ and ᾱ are less than one in absolute value, so both z and

ln g are stationary. The system of equations (3.27) allow all the variables to be written
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as functions of zt, ln gt, and lnKt. Since lnKt is an I(1) process, it is clear that lnPt,

lnXt, lnCt, lnHt, and lnYt are also I(1) processes according to (3.27).

3.5 The Error Correction Model

In this section I will show that the linearized Cooley and Hansen model implies a

cointegrated error correction model. For the sake of convenience, we rewrite the system

of equations in (3.27) as

Wt = δ0 +D1ut + δ3

t−1X
j=1

ln gt−j + δ4 lnKt, (3.28)

∆ lnKt = ηTut−1, (3.29)

ut = Γut−1 + et, (3.30)

where

Wt =



ln pt

lnXt

lnCt

lnHt

lnYt


,
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δ0 =



d11 + 1

ln δ

−d11

h1 + h2 ln δ + h3d11

(1− ρ)(h1 + h2 ln δ + h3d11)


,

δ1 =



d12

d22

−d12

h2d22 + h3d12 + 1/(1− ρ)

2 + (1− ρ)(h2d22 + h3d12)


,

δ2 =



d13 + 1

d23

−d13

h2d23 + h3d13

(1− ρ)(h2d23 + h3d13)


,
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δ3 =



1

0

0

0

0


,

δ4 =



d14

1

−d14

h2 + h3d14 + ρ/(1− ρ)

2ρ+ (1− ρ) (h2 + h3d14)


D1 = (δ1, δ2),

η =

 γ2

γ3

 ,

ut =

 zt

ln gt

 ,

Γ =

 γ̄ 0

0 ᾱ

 ,
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and

et =

 ²t

ξt

 ∼ i.i.d. N

 0

(1− ᾱ) ln ḡ

 ,
 σ2² 0

0 σ2ξ


 .

Since the two stochastic shocks are independent, their joint distribution has zero co-

variance.

Let D2 = (δ1,δ2, δ3, δ4) , then (3.28) can be rewritten as

DT
2Wt−1 = DT

2 δ0 +D
T
2D2


ut−1

t−1P
j=1

ln gt−j

lnKt−1

 .

Furthermore, let

I0 =

 1 0 0 0

0 1 0 0

 ,
so that

ut−1 = I0(DT
2D2)

−1DT
2 (Wt−1 − δ0). (3.31)

Taking the first difference with respect to equation (3.28) and then substitut-

ing (3.29) and (3.30) into it yields:

∆Wt = D1∆ut + δ3 ln gt−1 + δ4∆ lnKt.

Let δ5 = δ3(0, 1); then

∆Wt = D1(ut − ut−1) + δ5ut−1 + δ4η
Tut−1,
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= D1(Γut−1 + et)−D1ut−1 + δ5ut−1 + δ4η
Tut−1,

= [D1(Γ− I2) + δ4η
T + δ5]ut−1 +D1et.

Replacing ut−1 by (3.31), then (3.28) through (3.30) can be rewritten in the

form of an error correction model:

∆Wt = [D1(Γ− I2) + δ4η
T + δ5]I0(D

T
2D2)

−1DT
2 (Wt−1 − δ0) +D1et,

= ν0 + αβT (Wt−1 − δ0) + εt, (3.32)

where

ν0 = D1ē,

α = D1(Γ− I2) + δ4η
T + δ5,

β = D2(D
T
2D2)

−1IT0

and

ē =

 0

(1− α) ln ḡ

 .

Here, ν0 is a 5×1 matrix, and both α and β are 5×2 matrices.

Moreover, the error term has distribution

εt = D1(et − ē) ∼ i.i.d. N(0,Σ(θ)),
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and

Σ(θ) = D1ΞD
T
1 = σ2²δ1δ

T
1 + σ2ξδ2δ

T
2 ,

where

Ξ =

 σ2² 0

0 σ2ξ

 .
and θ is the set of parameters. The system of equations (3.27) show that the model

is driven by only two stochastic shocks, so the variance of the error term εt in (3.32)

has only rank two. In other words, the randomness of Wt is solely due to the two

random variables because there are only two stochastic shocks assumed in this CIA

model. Therefore, the conditional distribution of the theoretical model is a singular

multivariate normal distribution. The main consequence of the singularity is that the

density function of the theoretical model does not exist. Bierens and Swanson (2000)

suggest working on the transformed theoretical and empirical distributions and then

concentrate on only the marginal distributions. Bierens (2003) proposes to add some

noise to both the theoretical and empirical models using convolution. Further details

are stated in sections 4.2 and 4.4.

On the other hand, both α and β are 5× 2 matrices, and thus αβT is a 5× 5

matrix with rank two. Accordingly, two cointegrating vectors are implied by the theo-
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retical model. In the error correction model, βTWt−1 equal to a constant represents an

economic equilibrium relation with α the adjustment coefficient, and β the cointegra-

tion vector. In other words, the representative agent reacts to the disequilibrium error

or the deviation of βtWt−1 from the constant through the adjustment coefficient α in

order to bring the variables back on the right track such that the economic relationship

is satisfied.

In summary, in this section we have shown that the business cycle model

with a cash-in-advance constraint implies a cointegrated error correction model. The

theoretical model turns out to be an error correction model with two cointegration

vectors and singular variance with rank two, and the model conditional distribution of

∆Wt is

∆Wt|Wt−1 ∼ N5(µt(θ),Σ(θ)),

where

µt(θ) = ν0 + αβT (Wt−1 − δ0).
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Chapter 4

The average and multiplicative

conditional reality bound

This chapter introduces the two econometric approaches that will be used to analyze the

cash-in-advance model. The first approach is proposed by Bierens and Swanson (2000).

They suggest an information measure, called average conditional reality bound, to eval-

uate a theoretical model. The second approach is proposed by Bierens (2003). He sug-

gests using convolutions of the theoretical and DGP distributions with a non-singular

distribution. The deep parameters in the theoretical model can then be estimated,

instead of calibrated.

Section 3.1 discusses the ceteris paribus assumption and its consequences on
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model specification. Section 3.2 and 3.3 introduces the Bierens-Swanson average condi-

tional reality bound and its implementation. Section 3.4 and 3.5 introduces the Bierens

multiplicative conditional reality bound and its implementation, respectively.

4.1 The ceteris paribus assumption

Economic theorists and econometricians have different ways to link the economic theo-

ries and econometric models. One major difference is the way they deal with a ceteris

paribus condition. Theorists simplifies the environment of the real world to construct

a theoretical model by imposing ceteris paribus assumptions. In other words, they set

the variables outside the scope of theoretical models to be constant. However, a ceteris

paribus condition might have two major undesirable consequences on the theoretical

model: model misspecification and missing variables.

The most common interpretation of a ceteris paribus assumption is that the

state of world is fixed as a constant. For example, if Y is a vector of endogenous

variables, X is a vector of exogenous variables in the theoretical model, and W is a

vector of variables outside the scope of the theoretical model, then the conditional

distribution of Y given X = x and W = w is f(y|x,w). Imposing a ceteris paribus

condition is equivalent to settingW as a constant, sayW = 0. Therefore, the conditional
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mean of the theoretical model is

E[Y |x,W = 0] =

Z
yf(y|x,W = 0)dy.

On the other hand, the econometricians take the uncertainty of the variables

outside the scope of the theoretical model into account by integrating it out. Thus the

conditional distribution of y, given x is

f(y|x) =
Z
f(y|x,w)dG(w),

and the true conditional mean of Y given X = x is

E[Y |x] =
Z Z

yf(y|x,w)dG(w)dy,

where G(·) is the distribution function of W. Generally, E[Y |x,W = 0] 6= E[Y |x],

which not only means that the theoretical model does not represent the data generating

process, but also means that a ceteris paribus assumption causes model misspecification.

Furthermore, a ceteris paribus assumption can also be interpreted as omitted

variables. For example, according to the DGP yt is generated by

yt = α0 + α01xt + α02wt + ut,

with the conditional distribution

yt|xt, wt ∼ i.i.d.N(α0 + α01xt + α02wt,σ
2),
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and the conditional density fDGP (y|x,w), where ut ∼ i.i.d.N(0,σ2). Under the ceteris

paribus assumption, the variables outside the scope of the theoretical model represented

by wt are assumed to be a constant vector, say wt = w = 0. The theoretical model then

becomes

yt = α0 + α01xt + u
∗
t ,

with the conditional distribution

yt|xt ∼ i.i.d.N(α0 + α01xt,σ
2
∗),

and the conditional density fTM(y|x), where u∗t ∼ i.i.d.N(0,σ2∗). Generally, the condi-

tional mean of the DGP is not equal to that of the theoretical model

EDGP (y|x) =
Z
yfDGP (y|x,w)dG(w)dy 6= ETM(y|x) =

Z
yfTM(y|x)dy.

With possible misspecification and missing variables in the setting of models,

it is not surprising that theoretical models do not fit data well and are often rejected

by classical specification tests. To measure the reality content of the theoretical model

under a ceteris paribus assumption, we introduce the approaches suggested by Bierens

and Swanson (2000) and Bierens (2003) in Section 3.2 and 3.4.

44



4.2 The Bierens-Swanson average conditional real-

ity bound

Bierens and Swanson (2000) suggests to measure the goodness of fit of the theoretical

model by comparing the joint densities of the theoretical model and DGP. Consider

two densities, say f0(y) and f(y), where f0(y) represents the ‘model version’ of f(y).

Then, if both fTM(y) and f(y) have the same support, there exists a p0 ∈ (0, 1) such

that p0f0(y) ≤ f(y), ∀y. In other words, the theoretical density is squeezed under the

true density by multiplying it by a measure p0, which can be treated as a measure of

the reality content of the theoretical model. An illustrative graphical example is given

in Figure 4.1.

Therefore, if the true density f(y) and the theoretical density f0(y) have the

same supports, then one can write the true density as

f(y) = p0f0(y) + (1− p0)f1(y),

where f1(y) = (f(y) − p0f0(y)/(1 − p0), and f1(y) = f(y) if p0 = 0. Therefore, the

maximal p0 can be further written as

p0 =inf
y

f(y)

f0(y)
.

Here p0 can be interpreted either as an upper bound of the probability that
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Figure 4.1: The theoretical and true densities.
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f0(y) is correct, or as the maximal Bayesian prior that the model f0(y) is correctly

specified.

In the case that f(y) =
R
f(y|x,w)dG(w) = f(y|x) and f0(y) = f(y|x,W =

0; θ), both p0 and θ depend on x, where θ is the parameters in the theoretical model.

Then, p0 can be rewritten as

p0(x) =sup
θ
inf
y

f(y|x)
f0(y|x, θ) , (4.1)

and θ as

θ(x) = argmax
θ

inf
y

f(y|x)
f0(y|x, θ) .

Therefore, in order to make p0 and θ independent of x, Bierens and Swanson (2000)

further define the ‘average conditional reality bound’

p0 = sup
θ
E[p0(x)],

which can be estimated by

bp0 = sup θ 1
n

nX
t=1

p0(xt).
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4.3 Implementation of the average conditional re-

ality bound

The average conditional reality bound not only compares the true density and the

density of the theoretical model (hereafter called the theoretical density), but also

evaluates the difference between them. However, we can never know the real DGP, so

we replace the true density in (4.1) by the density implied by the econometric model

(hereafter called the empirical density).

Supposing that the empirical model is a Gaussian vector autocorrelation re-

gression (V AR) model with lag length q, Yt ∈ Rk is the dependent variable, and the

regressor Zt = (Y Tt−1, Y
T
t−2, ..., Y

T
t−q)

T is a kq× 1 vector, then the empirical model can be

written as

Yt = ΓZt + Vt, Vt ∼ i.i.d.Nk(0,Ω), det(Ω) 6= 0, (4.2)

where Γ is a k×(kq) matrix of coefficients in the linear econometric model and Vt ∈ Rk

is a stochastic shock process with nonsingular variance. It has a conditional distribution

Yt|Zt ∼ Nk(ΓZt,Ω).

The linearized version of the theoretical model takes the form

Yt = A(θ)Xt +B(θ)Ut, Ut ∼ i.i.d.Nm(0, Im), (4.3)
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where Xt ∈ Rp is a vector of stacked lags of Yt, A(θ) is a k × p matrix, B(θ) is a

k ×m matrix, and Ut ∈ Rm is a stochastic shock process with singular variance. It is

usually the case that m < k, instead of m = k, because in dynamic structural economic

models the assumption that the model is driven by one or only a few shocks leads to

singularity of the model distribution. In other words, the number of stochastic shocks

is less than the number of dependent variables in the model. The theoretical model has

a conditional distribution

Yt|A(θ)Xt ∼ Nm(A(θ)Xt, B(θ)B(θ)T ), where rank(B(θ)B(θ)T ) = m < k.

Since det(B(θ)B(θ)T ) = 0, the variance of the model distribution in some particular

dimensions is zero. In other words, the joint density of Yt does not exist because of the

ceteris paribus condition, which fixes some state of the world as constants. Therefore,

one cannot compare the theoretical and empirical joint distribution directly.

One way to solve this problem is to compare the theoretical marginal distrib-

ution with the empirical marginal distribution. In other words, one needs to integrate

out the empirical distribution in the singular dimensions where a ceteris paribus con-

dition is imposed. Bierens and Swanson (2000) suggest working with the transformed

distribution instead. By using the orthogonal matrix of eigenvectors of the singular

conditional variance of the theoretical model, the theoretical and empirical distribu-
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tions can be rotated so that the singular directions are on some of the principal axis.

Then the variables in the distribution of the empirical model in the singular direction

can easily be integrated out.

To begin with, one needs to find the orthogonal matrix of eigenvectors of

Σ(θ), Π(θ) = (Π1(θ), Π2(θ)), where Σ(θ) = B(θ)B(θ)T , Π1(θ) is the k× (k−m) matrix

of eigenvectors corresponding to the zero eigenvalues of Σ(θ), and Π2(θ) is the k ×m

matrix of eigenvectors corresponding to the two positive eigenvalues (λ1(θ),λ2(θ)). In

other words,

Σ(θ) = (Π1(θ),Π2(θ))× diag(0, 0, 0,λ1(θ),λ2(θ)) ×

 ΠT1 (θ)

ΠT2 (θ)

 .
Multiplying both distributions by the orthogonal matrix Π(θ) gives the or-

thogonal transformations, which implies that the shapes of the distribution functions

are invariant under rotation and location shifts1.

Let y∗ = Π(θ)y + µ(θ) represent the transformed vector of variables in the

empirical model, and y∗∗ = Π(θ)y + µ(θ) represent the transformed vector of variables

in the theoretical model. Also, let y∗ = (y∗1, y
∗
2)
T ∈ Rk−m ×Rm, where y∗1 represents

the variables on the singular direction. Then the empirical marginal density is

fy(y
∗
2) =

Z
f(y∗1, y

∗
2)dy

∗
1,

1See Bierens and Swanson (2000) for further details.
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=
exp[−1

2
(y∗2 −Π2(θ)

Tµ(θ))T (Π2(θ)
TΩΠ2(θ))

−1(y∗2 −Π2(θ)
Tµ(θ))]¡√

2π
¢mp

det(Π2(θ)TΩΠ2(θ))
.

and the theoretical distribution on the nonsingular dimensions can be obtained by

setting y∗∗1 = 0.

fy,0(y
∗∗
2 |θ) =

exp
£−1

2
y∗∗T2 Λ−1y∗∗2

¤¡√
2π
¢mp

det (Λ)
,

where Λ = diag(λ1(θ),λ2(θ)). Therefore, the reality bound is

p0 =sup
θ
inf
y

fy(y
∗
2)

fy,0(y∗∗2 |θ)
. (4.4)

It is shown by Bierens and Swanson (2000) that, under some mild condition2,

the reality bound in (4.4) can be further written as

p0 = sup
θ,λmax[Ψ]<1

½√
detΨ exp

·
−1
2
ϑt(θ)

0Ψϑt(θ)

¸
(4.5)

× exp
·
−1
2
ϑt(θ)

0Ψ(I −Ψ)−1Ψϑt(θ)

¸¾
,

where

Ψ = Λ1/2(Π02ΩΠ2)
−1Λ1/2,

and

ϑt(θ) = Λ−1/2Π02(ωt − µt(θ)).
2Bierens and Swanson (2000) show that the infimum in p0 can be taken out if the maximum

eigenvalue of the matrix Λ(θ)1/2(Π2(θ)0ΩΠ2(θ))−1Λ(θ)1/2] is less than one.
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Λ is a 2× 2 diagonal matrix of positive eigenvalues of Σ(θ), and λmax[Ψ] represents the

maximal eigenvalue of Ψ. The maximal p0 then can be estimated according to (4.5).

In the case of conditional densities, p0 depends on observations xt. Therefore,

taking the average of p0(xt) over t gives the Bierens-Swanson average conditional reality

bound

bp = sup
θ,λmax[Ψ]<1

1

n

nX
t=1

½√
detΨ exp

·
−1
2
ϑt(θ)

0Ψϑt(θ)

¸
(4.6)

× exp
·
−1
2
ϑt(θ)

0Ψ(I −Ψ)−1Ψϑt(θ)

¸¾

In this approach, the variables of the empirical model on the singular direction are

integrated out and thus not compared when one estimates p0. In other words, the

consequence of imposing the ceteris paribus condition, such as model misspecification,

in the theoretical model is not penalized. In Section 4.4, I introduce another approach

where the singular part of the theoretical model is considered.
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4.4 The Bierens multiplicative conditional reality

bound

As mentioned earlier, using the Bierens-Swanson reality bound to estimate the deep

parameters may have the problem of lack of identification because it focuses only on the

distributions on the nonsingular direction by marginalizing the distributions in the sin-

gular direction. Moreover, the singular part of the model is not penalized because the

distribution of DGP in the nonsingular direction is integrated out when compared with

the theoretical distribution. Bierens (2003) then suggests augmenting both the theoreti-

cal and empirical models by the same independent nonsingular stochastic disturbances,

when estimating the reality bound.

Let R be a k-variate independent nonsingular normal noise, R ∼ i.i.d.N(0,Ω),

and det(Ω) 6= 0. Let y∗ = R + y represent the transformed vector of variables in the

empirical model and y∗∗ = R+y be the transformed vector of variables in the theoretical

model, then both distributions of the theoretical and empirical models are nonsingular.

Similar to the Bierens-Swanson reality bound, the reality bound based on convolution

can be defined as

p0(x|θ) = inf
y

f(y∗|x)
f0(y∗∗|x, θ) ,

where p0(x) can be interpreted as the probability that the distribution of the theoretical
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model is equal to that of the empirical model.

Moreover, given the data x1, ..., xT , the probability that the joint distribution

of the theoretical model is the same as the joint distribution of DGP can be written as

the product of p0(xt|θ)

TY
t=1

p0(xt|θ). (4.7)

By maximizing (4.7), one can further estimate the parameters θ

θ(x) = arg max
θ

TX
t=1

ln p0(xt|θ), (4.8)

which provides an alternative to calibration.

4.5 Implementation of the multiplicative reality bound

In the case of the V AR(q)model in Section 3.3, for instance, letRt = τΩ, where τ ∈ R+

is a constant that decides the degree of shock to be added into both the theoretical

and empirical models, and Ω is the variance matrix of the empirical model. Then (4.3)

becomes

Y TMt = A(θ)Xt +B(θ)Ut +Rt ∼ Nk (µt(θ),Σ(θ) + τΩ) , (4.9)
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where µt represents the conditional mean of Y TMt , and it depends on both the obser-

vation Xt and the parameter θ. The density of theoretical model is

fTM(y|Xt, θ) =
exp

£−1
2
(yt − µt(θ))T (Σ(θ) + τΩ)−1(yt − µt(θ))

¤¡√
2π
¢kp

det (Σ(θ) + τΩ)
.

Furthermore, the distribution of the empirical model after convolution in (4.2)

becomes

Y EMt = ΓZt + Vt +Rt, Vt ∼ Nk (ωt, (1 + τ)Ω) , (4.10)

where ωt is the conditional mean of Y EMt , and the empirical conditional density is

fEM(y|Zt,Γ,Ω) =
exp

h
− 1
2(1+τ)

(yt − ωt)
TΩ−1(yt − ωt)

i
¡√
2π
¢kp

(1 + τ)k det (Ω)
.

Therefore, similar to the Bierens-Swanson reality bound, the reality bound

based on convolution can be written as

pt(Γ,Ω, θ|τ) = inf
y

fEM(y|Zt,Γ,Ω)
fTM(y|Xt, θ) ,

=

s
det (Σ(θ) + τΩ)

(1 + τ)k det (Ω)
× exp

½
−1
2

·
yTt

µ
(Σ(θ) + τΩ)−1 − 1

1 + τ
Ω−1

¶
yt

¸

−2yT
µ
(Σ(θ) + τΩ)−1 − 1

1 + τ
Ω−1

¶
µt(θ) (4.11)

+
2

1 + τ
yTΩ−1 (ωt − µt(θ))

+µt(θ)
T (Σ(θ) + τΩ)−1µt(θ)− 1

1 + τ
ωtΩ

−1ωt

¾
,
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which can be interpreted as the probability that Y TMt and Y EMt have the same condi-

tional distributions.

It has been proven by Bierens (2003) that if all the eigenvalues ofΩ−1/2Σ(θ)Ω−1/2

are less than 1,
£
(Σ(θ) + τΩ)−1 − 1

1+τ
Ω−1

¤
is positive definite and thus (4.11) is mini-

mized when

y = µt(θ)− 1

1 + τ

·
(Σ(θ) + τΩ)−1 − 1

1 + τ
Ω−1

¸
Ω−1 (ωt − µt(θ)) . (4.12)

Substituting (4.12) into (4.11), the multiplicative reality bound takes the form

pt(Γ,Ω, θ|τ) =inf
y

fEM(y|Zt,Γ,Ω)
fTM(y|Xt, θ) ,

=

s
τk−m det(Λ1(θ) + τIm)

(1 + τ)k
(4.13)

× exp
½
−1
2
(ωt − µt(θ))TΩ−1/2Q(θ)(Ik − Λ(θ))−1Q(θ)Ω−1/2(ωt − µt(θ))

¾
,

where

Ω−1/2Σ(θ)Ω−1/2 = Q(θ)Λ(θ)Q(θ)T

= (Q1(θ), Q2(θ))

 Λ1(θ) 0

0 0

 (Q1(θ), Q2(θ))T ,

Λ1(θ) = diag(λ1(θ), ...,λm(θ)), 0 < λm(θ) ≤ ... ≤ λ1(θ) < 1,
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andQ1(θ) andQ2(θ) are k×m and k×(k−m)matrices of the corresponding orthogonal

eigenvectors.

Moreover,
nY
t=1

pt(Γ,Ω, θ|τ) (4.14)

is the probability that, conditional on the data, the joint distribution of Y TM1 , ..., Y TMn

is the same as the joint distribution of Y EM1 , ...Y EMn . Maximizing (4.14) provides an

alternative way to estimate the parameters in the linearized theoretical model by

θ(Γ,Ω, τ) = arg max
1

n

nX
t=1

ln pt(Γ,Ω, θ|τ). (4.15)

Consequently, after some tedious calculation, the log of the multiplicative

reality bound can be written as

1

n

nX
t=1

ln pt(Γ,Ω, θ, Q,Λ1|τ) =
k −m
2

ln τ − k
2
ln(1 + τ) +

1

2
ln (det(Λ1(θ) + τIm))

−1
2
trace

¡
(Ik − Λ(θ))−1QTΓn(θ)Q

¢
, (4.16)

where

Γn(θ) = Ω−1/2
Ã
1

n

nX
t=1

(ωt − µt(θ))(ωt − µt(θ))T
!
Ω−1/2,

which can be decomposed as a product of matrices of eigenvalues and eigenvectors

Γn(θ) = S(θ)Ξ(θ)S(θ)
T ,
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where Ξ(θ) = diag(ξn,1(θ), ..., ξn,k(θ)), S(θ)S(θ)
T = I, and ξn,1(θ) ≤ ... ≤ ξn,k(θ) are

the eigenvalues of Γn(θ).

Furthermore, Bierens (2003) shows that (4.16) is maximized if Q(θ) = S(θ)

and λj(θ) = 1 + ξn,j(θ)/2− 1/2
q

ξ2n,j(θ) + 4(1 + τ)ξn,j(θ), which satisfies λj(θ) < 1, if

ξn,j(θ) > 0, and λj(θ) > 0, if ξ−1n,j(θ) > τ, for j = 1, ...,m. Then

max
Q,Λ1,λmax[Λ1]<1

1

n

nX
t=1

ln pt(Γ,Ω, θ, Q,Λ1|τ)

=
k −m
2

ln τ − k
2
ln(1 + τ) +

1

2

mX
j=1

(lnλj(θ, τ) + τ) (4.17)

−1
2

mX
j=1

ξn,j(θ)

1− λj(θ, τ)
− 1
2

kX
j=m+1

ξn,j(θ),

and the deep parameters of the theoretical model can be obtained by

bθ = arg max
Q,Λ1,λmax[Λ1]<1

1

n

nX
t=1

ln pt(Γ,Ω, θ, Q,Λ1|τ). (4.18)
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Chapter 5

The empirical results

This chapter estimates the linearized version of the cash-in-advance model that is devel-

oped in Chapter 2. When applying the Bierens-Swanson and Bierens reality bounds, the

empirical model based on the data evidence is used to replace the DGP and compared

with the theoretical model since the DGP is unknown. We also use an approach differ-

ent from that used in Bierens and Swanson (2000) to estimate the average conditional

reality bound to simplify the whole process in estimation. The effects of technology

and monetary shocks on inflation and output growth are also discussed.

Section 4.1 discusses the data properties. Section 4.2 estimates the empirical

model that will be used to represent the DGP. Section 4.3 applies the Bierens-Swanson

reality bound to evaluate the CIA model. Section 4.4 applies the Bierens multiplicative
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reality bound to estimate the deep parameters. Section 4.5 uses innovation response

analysis to examine the effects of the stochastic shocks.

5.1 The data

The data set that is used for estimating the theoretical and empirical models are taken

from Citibase database. The sample period is from 1948:1 to 2001:2, so there are

214 quarterly observations. The five U.S. time-series used include CPI, real GNP,

consumption of nondurables and services, gross private domestic investment (all in

1996 dollars), and also working hours. The working hours used here only include

the employee-hours in nonagricultural industries. All the variables used are already

seasonally adjusted and natural logged. These five series are shown in Figure 5.1. All

of the series have linear trends, except the working hours lnH. The main difference

between the data used here and the data used in Cooley and Hansen (1989) is that in

the latter the Hodrick-Prescott filter is used to remove the time trend.

The augmented Dickey-Fuller and Phillips-Perron unit root tests for each

series are conducted. The test results show that lnP , lnC, lnH, and lnY are all

I(1) processes, except the result of lnX is mixed. The unit root test of lnX is not

rejected by the augmented Dickey-Fuller test, but is rejected by the Phillips-Perron test
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Figure 5.1: The five U.S. series
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at a 5% significance level. Since the test results are not consistent, the simulation of

the actual p-value of the Phillips-Perron test is used. The simulated p-value based on

1000 simulations is 0.368, which means that the unit root hypothesis is not rejected.

Therefore, based on these test results, we conclude that all variables are I(1) processes.

5.2 The empirical model

Since the DGP is unknown, the empirical model is used to replace the DGP and com-

pared with the theoretical model. Given the data properties found out in Section 5.1,

I first parameterize the empirical model as an error correction model with p lags as

follows:

∆Wt = ΓZt + Vt

= π0 +

p−1X
j=1

πj∆Wt−j + αβTWt−1 + Vt,

where Vt ∼ N5(0,Ω) and det(Ω) 6= 0. Therefore, the conditional distribution of ∆Wt is

∆Wt|Zt ∼ i.i.d. N5(ωt,Ω),

where

Zt = (1,∆W
0
t−1, · · · ,∆W 0

t−p+1,W
0
t−1)

0,
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and

ωt = π0 +

p−1X
j=1

πj∆Wt−j + αβTWt−1.

Two consistent criteria, the Hannan-Quinn criterion (HQ) and the Schwartz

criteria (SC), have been used widely in applied work lately, so I use them to decide the

number of lags for the empirical model. I choose the lag order for the error correction

model by examining values of HQ and SC for lag order from one to ten. The HQ

suggests two lags, while the SC selects one lag. Since the SC is more conservative than

the HQ, and it has been shown by Lutkepohl (1993) that bp(SC) ≤ bp(HQ) for all T,
where bp represents the number of lags suggested by the criterion and T is the sample
size. Accordingly, I choose the error correction model with two lags.

Next, as Figure 5.1 shows, all of the five series have linear trends, except

lnH, so an error correction model with the intercept term is considered. Moreover, I

consider two error correction models. One has cointegrating restriction on the intercept

parameters in the error correction equation, i.e.,∆Wt = π1∆Wt−1+αβT (Wt−1−δ0). The

other one has no restriction on the intercept term, i.e.,∆Wt = π0+π1∆Wt−1+αβTWt−1.

Given these two models, I also conduct Johansen’s lambda max and trace tests to decide

the cointegration rank. The test of imposing the restriction in the model is rejected

and both of Johansen’s tests suggest one cointegrating vector under the second model.

Therefore, an error correction model with two lags is chosen as the empirical
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model:

∆Wt = π0 + π1∆Wt−1 + αβTWt−1 + ²t,

where α is the adjustment coefficient and β is the cointegration coefficient. Since there

is only one cointegrating relationship, both α and β are 5 × 1 matrices and αβT is a

5× 5 matrix with rank one.

The estimated results are shown in Table 5.1. The empirical model has the

error correction term

lnCt − 0.014515 lnPt − 0.150909 lnXt + 0.526272 lnHt − 0.709652 lnYt,

which represents the equilibrium relationship among the observables. This empirical

model will be used to represent the DGP in following analysis.

5.3 Estimation of the Bierens-Swanson average con-

ditional reality bound

The Bierens-Swanson average reality bound is a measure of the information about

the DGP contained in the theoretical model. It assumes that the theoretical model

is only an approximation of the DGP; therefore, this reality bound does not rely on

a null hypothesis that the theoretical model is equal to the DGP. Moreover, it is an
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Table 5.1: Estimated results of the empirical error correction model.

∆ ln pt ∆ lnXt ∆ lnCt ∆ lnHt ∆ lnYt
πT0 0.083804 -2.594961 0.119320 0.133220 -0.286075

0.773510 -0.183231 -0.140898 -0.012110 -0.144154
0.019726 0.001275 -0.000686 0.037889 -0.009099

πT1 -0.051514 0.780754 0.126317 0.126547 0.160191
-0.126529 1.583506 -0.299232 -0.063446 0.293419
0.022300 -0.821750 0.006262 0.017970 -0.109158

αT -0.027337 0.870706 -0.038333 -0.044787 0.097519
βT -0.014515 -0.150909 1 0.526272 -0.709652
s.e. 5.04734×10−3 5.19469×10−2 5.31770×10−3 5.69996×10−3 8.91614×10−3
R2 0.6358 0.1272 0.1509 0.0952 0.0959

information measure, which summarizes the ability of a theoretical model in explaining

the data. In this section, the approach suggested by Bierens and Swanson (2000) is

applied, but the estimation method is different from theirs due to the complexity of the

CIA model.

We now follow the lines in Bierens and Swanson (2000) to compute the average

reality bound. According to the results in section 6.3, the error correction model derived

from the theoretical model has one lag and can be written as

∆Wt = ν0 + αβTWt−1 + εt,

and the model conditional distribution of ∆Wt is

∆Wt|Wt−1 ∼ N5(µt(θ),Σ(θ)).
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Since there are only two, instead of five, stochastic shocks in the Cooley and Hansen

model, the theoretical model has a 5-variate singular normal distributionN5(µt(θ),Σ(θ)),

where rank(Σ(θ)) = 2. Moreover, both α and β are 5× 2 matrices, and thus the theo-

retical model implies two cointegrating relationships.

Furthermore, as shown in section 5.2, the empirical model has two lags and

one cointegrating relation:

∆Wt = π0 + π1∆Wt−1 + αβTWt−1 + Vt,

with the conditional distribution of ∆Wt is

∆Wt|∆Wt−1,Wt−1 ∼ N5(ωt,Ω).

Recall that the Bierens-Swanson average conditional reality bound can be

estimated by

bp = sup
θ,λmax[Ψ]<1

1

n

nX
t=1

½√
detΨ exp

·
−1
2
ϑt(θ)

0Ψϑt(θ)

¸
(3.6)

× exp
·
−1
2
ϑt(θ)

0Ψ(I −Ψ)−1Ψϑt(θ)

¸¾
,

where

Ψ = Λ1/2(Π02ΩΠ2)
−1Λ1/2,
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and

ϑt(θ) = Λ−1/2Π02(ωt − µt(θ)).

One way to estimate p0 is to obtain the parameter values in θ and then substitute them

into (4.6). However, due to the complexity of Ψ in (4.6), we suggest a different approach

to simplify the computation by using the information contained in the empirical model.

First, we decompose Ω as

Ω = QΛ∗QT = (Q1, Q2)

 Λ∗1 0

0 Λ∗2


 QT1

QT2

 ,
where

Λ∗ =

 Λ∗1 0

0 Λ∗2


contains the eigenvalues of Ω, and the eigenvalues are arranged in ascending order. Q1

and Q2 are 5 × 3 and 5 × 2 matrices, respectively. Λ∗1 and Λ∗2 are 3 × 3 and 2 × 2

matrices with the eigenvalues of Ω as their diagonal elements. Then, replacing Ω in Ψ

by QΛ∗QT yields

Ψ = Λ1/2(Π02QΛ
∗QTΠ2)−1Λ1/2.

Let R = QTΠ2, which is a 5× 2 matrix, and RTR = I. Then

Ψ = Λ1/2(RTΛ∗R)−1Λ1/2.
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The key of this approach is to simplifyΨ by imposing the assumptionΠ2 = Q2.

In other words, we let that two of the eigenvectors in the empirical and theoretical

models are equal. Imposing this condition not only simplifies the computation, but more

importantly makes the theoretical variance-covariance matrix closer to the variance in

reality since Q2 is estimated from the empirical model.

However, one drawback of imposing this condition is that some link between

the parameters in Σ(θ) and the deep parameters in the theoretical model is broken;

therefore, some parameters cannot be estimated or recovered by this method because of

losing some information contained in Σ(θ). In addition, this condition adds a restriction

on the variance matrix Σ(θ), and thus the estimated reality bound will actually be a

lower bound of p0. Imposing the restriction Π2 = Q2 yields

R = QTΠ2 =



0 0

0 0

0 0

1 0

0 1


,

and thus

RTΛ∗R = Λ∗2.
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Consequently, Ψ can be rewritten as

Ψ = Λ1/2Λ∗−12 Λ1/2.

In addition, the constraint in (4.6), that λmax[Ψ] is less than 1, is equivalent

to restricting the maximal root of the eigenvalue problem

det(Λ∗−12 − λΛ−1) = 0 (5.1)

to a value less than 1. Moreover, (5.1) can also be written as

det(Λ− λΛ∗2) = 0,

which is equivalent to

2

Π
j=1
(λj/λ

∗
j − λ) = 0.

Therefore,

λmax[Ψ] =max
1≤j≤2

λj
λ∗j
, (5.2)

which should be less than one.

Using the above results, the maximization of the average reality bound in

(4.5) can be further simplified. Let λ1 = c1λ∗1 and λ2 = c2λ
∗
2 be the optimal solution in

maximizing (4.5), where both c1 and c2 ∈ (0, 1) are constants. Then Ψ becomes

Ψ =

 c1 0

0 c2

 ,
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and (4.5) can be rewritten as

bp = sup
θ,λmax[Ψ]<1

1

n

nX
t=1

½√
detΨ exp

·
−1
2
at(θ)

0Λ−1/2ΨΛ−1/2at(θ)
¸

× exp
·
−1
2
at(θ)

0Λ−1/2Ψ(I −Ψ)−1ΨΛ−1/2at(θ)
¸¾
,

= sup
θ,0<c1,c2<1

1

n

nX
t=1

½√
detΨ exp

·
−1
2

¡
a21t(θ)/λ

∗
1 + a

2
2t(θ)/λ

∗
2

¢¸

× exp
·
−1
2

µ
c1

(1− c1)λ∗1
a21t(θ) +

c2
(1− c2)λ∗2

a22t(θ)

¶¸¾
, (5.3)

where

at(θ) =

 a1t(θ)

a2t(θ)

 = Π02(ωt − µt(θ)).

The restriction λmax[Ψ] < 1 in (4.5) while maximizing bp over θ is equivalent to the

restrictions 0 < c1 < 1 and 0 < c2 < 1. The estimated result of the theoretical model is

shown in the second and third columns of Table 5.2.

Since Π2 is a 5× 2 matrix and α is a 5× 2 vector, there are five unknowns in

α but only two equations. α cannot be solved by α∗ because of underidentifying. For

the same reason, µ cannot be solved by µ∗. Substituting the result into (4.5), we obtain

the average reality bound

p0 = 0.473989,
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Table 5.2: The estimated results of the Bierens-Swanson average conditional reality
bound. α∗ = Π

0
2α, ν

∗
i = Π

0
2νi, i = 1, 2.
ECM(1) ECM(2)

α∗ 0.086405 −0.000203 −0.035978 −0.033471
−0.157441 0.3437208 0.068734 0.768659
0.067988 −0.113876 0.049727 −0.027650
−0.107506 −0.028441 −0.105175 −0.129882

β 0.004592 1 0.017184 1
1 −2.147265 1 0.239859

−0.12338 −0.821485 0.052610 −0.721728
ν∗0 −0.447942 — 0.249045 —

4.739475 — −1.479041 —
— — −0.308585 −0.316561
— — 0.004048 0.023821

ν∗T1 — — 0.183906 0.908812
— — −0.070266 1.394924
— — −0.009533 −0.837362

c1 0.739475 — 0.949792 —
c2 0.649947 — 0.944327 —
p0 0.473989 0.897437
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which suggests that the nonsingular part of the theoretical model can explain about 47%

of the corresponding part of the data-generating process. Comparing with the result

in Bierens and Swanson (2000), where p0 = 0.77, the estimated p0 is relatively low and

suggests that the reality content of the Cooley and Hansen model is relatively lower

than the KPR model. Comparing the results in Table 5.1 and 5.2, the standardized

cointegrating vectors of the theoretical and empirical models are quite a bit different

from the cointegrating vector of the empirical model, which is mainly caused by the

lag and rank differences between these two models since only the nonsingular part of

the distributions of the empirical and theoretical models are compared. In Section 5.4,

we use an approach similar to that used in Section 3.5 to show that the theoretical

model implies an error correction model with two lags under a different assumption of

stochastic structure. Whether the lag difference can explain the difference between the

empirical and theoretical models is further examined.

5.4 Interpretation of the discrepancy between the

empirical and the theoretical model

Since the assumption that the two stochastic shocks follow AR(1) processes is not

essential in the CIA model, in this section we consider the case where the shocks follow
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AR(2) processes, in order to examine whether the main penalty of the Bierens-Swanson

reality bound is caused by the lag difference between the empirical and theoretical

models. We change the assumption of the stochastic shocks in (3.30) to

ut = Γ1ut−1 + Γ2ut−2 + et, (5.4)

and (3.28) and (3.29) remain unchanged:

Wt = δ0 +D1ut + δ4 lnKt + δ5ut−1,

and

∆ lnKt = ηTut−1.

Using a procedure similar to that used in section 6.3, ut−1 can be written as

ut−1 = I0(DT
2D2)

−1DT
2 (Wt−1 − δ0). (5.5)

Then

∆Wt = D1∆ut + δ4∆ lnKt + δ5∆ut−1,

= D1(Γ1ut−1 + Γ2ut−2 + et) + (δ4ηT + δ5 −D1)ut−1 − δ5ut−2,

= (D1(Γ1 − I2) + δ4η
T + δ5)ut−1 + (D1Γ2 − δ5)ut−2 +D1et,

= (D1(Γ1 − I2) + δ4η
T + δ5)I0(D

T
2D2)

−1DT
2 (Wt−1 − δ0)
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+(D1Γ2 − δ5) I0(D
T
2D2)

−1DT
2 (Wt−2 − δ0) +D1et,

= − (D1Γ2 − δ5) I0(D
T
2D2)

−1DT
2∆Wt−1

+(D1(Γ1 + Γ2 − I2) + δ4η
T )I0(D

T
2D2)

−1DT
2 (Wt−1 − δ0) +D1et;

therefore,

∆Wt = ν0 + ν1∆Wt−1 + αβTWt−1 + vt, (5.6)

where

ν0 = [−(D1(Γ1 + Γ2 − I2) + δ4η
T )I0(D

T
2D2)

−1DT
2 δ0],

ν1 = − (D1Γ2 − δ5) I0(D
T
2D2)

−1DT
2 ,

α = D1(Γ1 + Γ2 − I2) + δ4η
T ,

β = D2(D
T
2D2)

−1IT0 .

Consequently, the CIA model implies a cointegrated error correction model with two

lags, as shown in (5.6), given the assumption that both of the shocks follow AR(2)

processes.

Applying the same estimation procedure used in (5.3), the estimated results

are shown in the fourth and fifth columns of Table 5.2. In this case, the average reality

bound is 0.897437, which means that the information content in the theoretical model
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is about 90% of that found by the empirical model. Comparing this with the previous

result, it is clear that the lag difference leads to the major penalty of the Bierens-

Swanson reality bound. The remaining 10% penalty may be due to the rank difference.

Moreover, the second cointegration vector estimated by the theoretical model is also

very close to the cointegration vector of the empirical model.

Our finding shows that along the nonsingular direction the Cooley and Hansen

model cannot successfully account for the data, mainly because of the lag difference.

The CIA model accounts for 47% of the reality in the nonsingular dimension. 43% of

the penalty comes from the lag difference, which is implied by the stochastic process.

The other 10% of the penalty can be accounted by the rank difference between the

theoretical and empirical model.

5.5 Estimation of the Bierens multiplicative condi-

tional reality bound

In order to estimate, instead of calibrate, the deep parameters in the theoretical model,

Bierens (2003) suggests augmenting both the theoretical and empirical models by the

same independent stochastic disturbances, R∗t and R
∗∗
t . For instance, let R

∗
t and R

∗∗
t ∼

i.i.d.N(0, τΩ), where det(Ω) 6= 0. Given the error correction model in Section 3.5, the
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theoretical model becomes

∆W ∗
t = ν0 + αβTWt−1 + εt +R

∗
t ,

with the conditional distribution

∆W ∗
t |Wt−1 ∼ N5(µt(θ),Σ(θ) + τΩ),

and the density

fTM(y|θ, τ) = 1

(
√
2π)5

p
det(Σ(θ) + τΩ)

exp

½
−1
2
(y − µt(θ))T (Σ(θ) + τΩ)−1(y − µt(θ))

¾
.

Similarly, the empirical model after augmenting with stochastic errors can be

written as

∆W ∗∗
t = ΓZt + Vt,

= π0 + π1∆Wt−1 + αβTWt−1 + Vt +R∗∗t ,

with the conditional distribution

∆W ∗∗
t |∆Wt−1,Wt−1 ∼ N5(ωt, (1 + τ)Ω)

and the density

fEM(y|θ, τ) = 1

(
√
2π)5

p
(1 + τ)5 det(Ω)

exp

½
− 1

2(1 + τ)
(y − ωt)

TΩ−1(y − ωt)

¾
.
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Using (4.13), if all the eigenvalues of Ω−1/2Σ(θ)Ω−1/2 are less than 1, the multiplicative

reality bound takes the form

pt(Γ,Ω, θ, Q,Λ1|τ) =inf
y

fEM(y|τ)
fTM(y|θ, τ) ,

=

s
τ 3 det(Λ1(θ) + τI2)

(1 + τ)5

× exp
½
−1
2
(ωt − µt(θ))TΩ−1/2Q(θ)(I5 − Λ(θ))−1Q(θ)Ω−1/2(ωt − µt(θ))

¾
,

where

Ω−1/2Σ(θ)Ω−1/2 = Q(θ)Λ(θ)Q(θ)T

= (Q1(θ), Q2(θ))

 Λ1(θ) 0

0 0

 (Q1(θ), Q2(θ))T ,

Λ1(θ) = diag(λ1(θ),λ2(θ)), 0 < λ2(θ) ≤ λ1(θ) < 1,

and Q1(θ) and Q2(θ) are 5 × 2 and 5 × 3 matrices of the corresponding orthogonal

eigenvectors. Consequently, (4.17) becomes

1

n

nX
t=1

ln pt(Γ,Ω, θ, Q,Λ1|τ) =
3

2
ln τ − 5

2
ln(1 + τ) +

1

2
ln (det(Λ1(θ) + τI2))

−1
2
trace

¡
(I5 − Λ(θ))−1QTΓn(θ)Q

¢
, (5.7)
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and the parameters can be estimated by (5.7).

Given different values of τ , we maximize (5.7) over θ = (d11, d12, d13, d14,

d22, d23, p
∗, α, γ, ρ, δ, ln g)T , where p∗, ln g > 0, and α, γ, ρ, δ ∈ (0, 1). Since the set of

parameters, θ, is in fact a subset of all deep parameters, we cannot obtain all values of

the deep parameters here. The main reason is that in the process of linearization, some

links between the model coefficients and the deep parameters, such as the discount rate

in the utility function, are lost.

The estimated parameters shown in Table 5.3 and 5.4 are stable with only little

fluctuation under different values of τ, but values of both ρ and δ are much higher than

the usual calibrated values. For example, Cooley and Hansen (1989) use ρ = 0.36 and

δ = 0.025 in calibration. This suggests that some important features of the economy

are missing from the model. In other words, the Cooley and Hansen model does not fit

the data well although the failure is not so immediately evident. In spite of that the

parameters may be restricted to a reasonable area or an area close to the calibrated

values, I choose to leave the parameters free and let the data speak. Moreover, the

estimated ln g implies an average annual monetary growth rate between 3.8% to 5.7%

for different τ values.

The 90% confidence interval of θ is also simulated by a bootstrap approach.

Under the assumption that the empirical model is correctly specified, by Cholesky
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Table 5.3: The estimation results of the mulitplicative reality bound. α is a 5×2matrix,
so the ten elements of α represent the first and second columns of α, respectively. So
is β.

τ 0.1 0.2 0.3 0.4 0.5
d11 -1.619234 -1.512823 -1.616875 -1.458609 -1.668025
d12 -0.10916 -0.071137 -0.223706 -0.079165 -0.066965
d13 0.296333 0.310649 0.333028 0.293085 0.273301
d14 0.450385 0.503996 0.486075 0.479013 0.450597
d22 -1.787301 -1.608197 -2.219154 -1.919055 -1.416365
d23 1.255176 1.210487 1.318714 1.308205 1.08544
p∗ 2.909936 2.756174 2.871515 2.510822 3.33487
α 0.024367 0.016469 0.02759 0.022449 0.002292
γ 0.000276 0.000045 0.00069 0.000045 0.000078
ρ 0.685083 0.724187 0.693556 0.726532 0.686299
δ 0.728562 0.746744 0.759689 0.622586 0.87312
lng 0.009448 0.010802 0.007361 0.010945 0.013176

0.01195 0.013924 0.009542 0.013835 0.016738
0.011571 0.01286 0.009439 0.013997 0.014269

v0 -0.002732 -0.0033 -0.002384 -0.003136 -0.003593
0.000785 0.000975 0.000553 0.0012 0.001142
0.000247 0.000269 0.000169 0.000328 0.000358
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Table 5.4: (Continue the above table) The estimation results of the mulitplicative
reality bound. α is a 5 × 2 matrix, so the ten elements of α represent the first and
second columns of α, respectively. So is β.

τ 0.1 0.2 0.3 0.4 0.5
-0.477343 -0.534121 -0.595906 -0.493152 -0.490275
0.484649 0.407213 0.531756 0.72419 0.179598
0.477343 0.534121 0.595906 0.493152 0.490275
-0.782309 -0.909008 -0.785469 -0.652465 -1.008403
-2.138174 -2.120355 -2.409255 -2.046427 -2.164976

α

0.147119 0.166511 0.190706 0.126086 0.156657
-0.310119 -0.286628 -0.280518 -0.464366 -0.135232
-0.122752 -0.150042 -0.163116 -0.103637 -0.154365
0.248924 0.30735 0.24522 0.186018 0.348953
0.70488 0.739382 0.769959 0.642609 0.759886
0 0 0 0 0

0.015946 0.020352 0.02621 -0.009813 0.017823
0.328613 0.347141 0.318413 0.313028 0.350173

1 1 1 1 1
-0.288901 -0.337351 -0.24148 -0.246081 -0.384911

β

0 0 0 0 0
0.048525 0.058627 0.082314 -0.029656 0.051106

1 1 1 1 1
3.043089 2.880674 3.140578 3.193549 2.855649
-0.879151 -0.9718 -0.758388 -0.787716 -1.099408
-0.619234 -0.512823 -0.616875 -0.458609 -0.668025
-0.316683 -0.292033 -0.274847 -0.473873 -0.135682

δ0 1.619234 1.512823 1.616875 1.458609 1.668025
5.056568 4.938796 5.152627 5.094518 4.724877
1.592398 1.362182 1.57899 1.393189 1.482196
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Table 5.5: The 90% confidence intervals of the estimated parameters when τ = 0.1.

L U τ = 0.1 L U τ = 0.1
d11 -2.193731 -1.036577 -1.619234 -1.116254 -0.111663 -0.477343
d12 -0.554408 0.297962 -0.10916 -0.006407 0.883481 0.484649
d13 0.147071 0.646388 0.296333 0.111663 1.116254 0.477343
d14 0.263902 0.721664 0.450385 -2.362188 -0.097241 -0.782309
d22 -3.377627 0.277362 -1.787301 -3.38308 -1.137422 -2.138174
d23 0.635488 2.192187 1.255176 α
p∗ 2.178594 3.94882 2.909936 0.030684 0.381615 0.147119
α 0.000695 0.031071 0.024367 -0.578817 -0.012813 -0.310119
γ 3.90E-05 0.011439 0.000276 -0.380407 -0.015095 -0.122752
ρ 0.411646 0.852235 0.685083 0.004677 1.349834 0.248924
δ 0.59951 0.975084 0.728562 0.394092 1.654245 0.70488
ln g 0.002248 0.015261 0.009448

0 0 0
0.003037 0.021012 0.01195 -0.118079 0.172992 0.015946
0.001774 0.025537 0.011571 0.214314 0.673088 0.328613

v0 -0.007328 -0.000502 -0.002732 1 1 1
-5.00E-05 0.004891 0.000785 -0.862711 -0.014307 -0.288901
-9.00E-06 0.00171 0.000247 β

0 0 0
-1.193731 -0.036577 -0.619234 -0.421385 0.39417 0.048525
-0.511642 -0.025231 -0.316683 1 1 1

δ0 1.036577 2.193731 1.619234 1.48558 4.66604 3.043089
3.893588 5.460241 5.056568 -1.640804 -0.051375 -0.879151
0.580104 2.934035 1.592398
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decomposition one can write the variance matrix of the empirical model as

bΩ = P TP.
Next, I randomly draw a 5× 1 vector zt from N5(0, I5), and generate the disturbance

z∗t = P
Tzt, such that E(z∗t z

∗0
t ) = bΩ, where t = 1, ..., T. The artificial data W ∗

t can then

be generated by

W ∗
t = bπ0 + (I5 + bπ1 + bαbβT )W ∗

t−1 − bπ1W ∗
t−2 + z

∗
t , t = 3, ..., T,

where W ∗
t = Wt for t = 1, 2, and bπ0, bπ1, bα,and bβ are the estimated coefficients in

the empirical model. The deep parameters and the model coefficients can be estimated

according to (4.18). Repeating the same steps 500 times, the bootstrap distribution of

θ can then be obtained. The choice of τ = 0.1 is arbitrary and, as shown in Table 7.3,

the estimated parameters appear to be about the same under different values of τ. The

bootstrap results at τ = 0.1 are given in Table 5.5.

Furthermore, according to Table 5.5, the signs of the coefficients in the decision

rules also show that monetary growth rate has positive effects on price level as well

as investment. Our finding is consistent with the prediction of the cash-in-advance

constraint. In other words, increasing money supply causes inflation. Under the cash-

in-advance constraint, ln bp = − lnC implies that consumption decreases because of the
higher price level. Since output can be only used either in consumption or investment,
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increasing of money supply then indirectly causes the decrease in investment. On the

other hand, the effects of technology shocks on price level and investment are not

significant. The bootstrap confidence interval also shows that lnX does not play a

significant role in the cointegrating relationships.

5.6 Inflation and economic growth

The coefficients in the system of equations (5.7) for the case τ = 0.1 can also be obtained

by the Bierens multiplicative reality bound, as follows:

lnPt = −0.619234− 0.109160zt + 1.296333 ln gt +
t−1X
j=1

ln gt−j (5.8)

+0.450385 lnKt,

lnXt = −0.316683− 1.787301zt + 1.255176 ln gt + lnKt, (5.9)

lnCt = 1.619234 + 0.109160zt − 0.296333 ln gt − 0.450385 lnKt, (5.10)

lnHt = 5.056568− 0.309707zt + 0.085107 ln gt + 0.363003 lnKt, (5.11)

lnYt = 1.592398 + 1.097532zt + 0.026802 ln gt + 0.799399 lnKt, (5.12)

lnKt+1 = −1.302159zt + 0.914473 ln gt + lnKt, (5.13)
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and two stochastic processes

zt = 0.000276zt−1 + ²t, (5.14)

ln gt = 0.024367 ln gt−1 + ξt. (5.15)

Equation (5.13) is equivalent to

∆ lnKt = −1.302159zt−1 + 0.914473 ln gt−1. (5.16)

Taking the first difference of (5.8) gives the inflation rate. Together with

(5.16), we have

∆ lnPt = −0.109160zt − 4.773129zt−1 + 1.296333 ln gt + 0.914473 ln gt−1. (5.17)

Similarly, differencing (5.12) gives the output growth rate, which is

∆ lnYt = 1.097532zt − 2.138477zt−1 + 0.026802 ln gt + 0.704223 ln gt−1. (5.18)

The estimated parameters can be used to generate predictions about the re-

sponses of technology and monetary shocks. The innovation responses for both shocks

for 15 periods are shown in Figure 5.2. The first panel in Figure 5.2 shows the innova-

tion response of ∆ ln p corresponding to one unit of technology shock and the second
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panel shows the innovation response of ∆ lnY corresponding to the same technology

shock.

Since a technology shock has no permanent effect on productivity and no

technology progress is assumed, a positive technology shock only boosts the productivity

in current and the consecutive periods. It only reduces the inflation rate in the short run

as panel 1 shows. On the other hand, a positive technology also has a beneficial effect

on output growth in the current period, but a negative effect in the second period. Both

(5.9) and (5.13) suggest that the technology shock has a negative effect on investment

and thus reduces the level of capital stock in the next period. Therefore, in the second

period the positive effect of the technology shock on productivity is dominated by its

negative effect on capital stock. The combination of the two effects almost wears off

after three periods as shown in panel 2.

The third and fourth panels shows the innovation response of∆ ln p and∆ lnY

corresponding to one unit of monetary shock. The third panel suggests that increasing

money only causes inflation in the current and consecutively two periods. The effect dies

out after three periods and the inflation rate goes back to the original level afterward.

Panel 4 shows that an expansionary monetary also has positive effect on output growth

in short run, but has no effect in the long run.

Although the two stochastic shocks have no permanent effects on inflation
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Figure 5.2: Innovation responses for the technology and monetary shocks. Panel 1 and

2 show the effects of one unit of technology shock on inflation rate and output growth

rate. Panel 3 and 4 show the effects of one unit of monetary shock on inflation rate

and output growth rate.
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and output growth rate, they do have permanent effects on the levels of the variables

through the change of capital stock. The innovation responses of the levels of the

variables to the two stochastic shocks are shown in Figure 5.3 and Figure 5.4. Figure

5.3 shows the effects of a unit of technology shock on the levels of the variables. Panel

1 in Figure 5.3 shows that the price level ln p becomes lower after a positive technology

shock and panel 6 shows that the capital stock also drops to a lower level. Since lnX,

lnH, and lnY are positive correlated with lnK, as (5.9), (5.11), and (5.12) predicted,

they all drop to lower levels after the shock. On the contrary, (5.10) shows that lnC

positively depends on lnK, so lnC jumps to a higher level after the shock.

The stochastic shock has no effect on the level of capital stock during the

shock period, because lnK is already decided in the previous period before a shock

happens. Panel 5 shows that lnY has a peak during the shock period and drops to a

lower level later because the positive effect of a technology shock is dominated by the

effect of lower capital stock. On the other hand, a technology shock has significantly

negative effect on investment, so lnX has a trough during the shock period and still

stays at a lower level than that before the shock because of the lower level of lnK.

The innovation responses of the levels of the variables to a unit of monetary

shock are shown in Figure 5.4. Panel 1 in Figure 5.4 shows that the price level jumps

to a higher level after a positive monetary shock and panel 6 shows that the capital
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Figure 5.3: The innovation responses of the levels of the variables to one unit of tech-

nology shock for 15 periods. The unit shock happens in period 2.
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stock also jumps to a higher level. Similarly, the new levels of lnX, lnH, and lnY are

all higher than that before the shock. lnC drops to a lower level after the shock. lnX

has a peak during the shock period and still stays at a higher level after the effect of

the shock wears off because of the higher level of lnK.

In summary, our results suggest that an expansionary monetary policy has

permanent positive effects on the level of investment, working hours, and a temporary

effect on output growth. Its deficiency implied by (5.17) is that it induces inflation.

Moreover, a beneficial technology shock decreases the levels of investment and working

hours by increasing the productivity during the shock period, but the level of output

stays at a lower level after the shock period because of the lower capital stock.
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Figure 5.4: The innovation responses of the levels of the variables to one unit of mon-

etary shock for 15 periods. The unit shock happens in period 2.
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Chapter 6

Filters

This chapter discusses the effects of the Hodrick-Prescott and rational square-wave

filters on macroeconmic analysis. Section 6.1 introduces some notation and concepts

from spectral analysis and filtering. Section 6.2 and 6.3 introduce the H-P filter and

the rational square-wave filters. Section 6.4 examines the distortional effects of these

two filters. Section 6.5 compares the effects of the filters.

6.1 Linear filters

In most macroeconomic research, filters are use to achieve two main objectives. One

is to extract a component, such as cyclical or seasonal components. The other is to
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transform a nonstationary series into a stationary one. Here, we focus on the first

motivation. In order to examine the effect of filters, we start with the introduction of

some notation and concepts in spectral analysis and linear filters.

Let yt be a stationary series and γj be the jth autocovariance, the autocovari-

ance generating function of y is then given by

ay(z) =
∞X

j=−∞
τjz

j, (6.1)

where z is complex scalar. Dividing (6.1) by 2π and replacing z by e−iω, we obtain the

power spectrum (or the power spectral density function) of yt

fy(ω) =
1

2π
ay(e

−iω),

where −π < ω < π is the angular frequency measured in radians and i =
√−1. The

area under the spectrum over the interval [−π,π] represents the variance of yt. On the

other hand, given the spectrum of y the autocovariance can also be obtained by

τj =

Z
0

π2fy(ω)e
iωjdω. (6.2)

A linear filter F (L) decomposes a time series into cyclical and growth com-

ponents,

yt = gt + ct,

= [1− F (L)] yt + F (L)yt,

92



where gt = [1− F (L)] yt is the growth component and ct = F (L)yt is the cyclical

component. It implies that the power transfer function is

fc(ω) = |F (e−iω)|2fy(ω),

where F (e−iω) is the frequency response function (or transfer function) and |F (e−iω)|2

is the power transfer function, which multiplies the spectrum of the input series y at

frequency ω and generates the output series at the same frequency.

The effect of a linear filter can be decomposed into the gain effect and phase

effect. The gain effect of a filter is the change of the amplitudes of a signal and the

phase effect is the advance or delay of the signal in time. Both the effect can jointly

be refereed as the frequency response of the filter. By the polar decomposition, the

frequency response function becomes

F (e−iω) = G(ω)e−iP (ω),

where |G(ω)| is called the gain of the filter, |G(ω)|2 is call the square gain of the

filter, and P (ω) is the phase. The phase shift is zero if a linear filter is symmetric, or

F (L) = F (−L).

A low pass filter is a filter which allows frequencies below the cutoff point

to pass and impede the frequencies above the cutoff point. On the other way, a high

pass filter allows frequencies higher than the cutoff frequency to pass and impede the
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frequencies below the cutoff point. For example, the ideal high-pass filter has a power

transfer function which satisfies

|F (e−iω)|2 =
½
0 if |ω| < ω0,

1 if |ω| > ω0,
(6.3)

where ω0 is the cutoff frequency.

Furthermore, applying a linear filter to a stationary series usually changes

the variance and autocovariances of the original series. The original series yt has the

autocovariance γ∗j given in (6.2) which in general is not equal to the autocovariance of

the filtered series F (L)yt

γ∗j =
Z
0

π2|F (e−iω)|2fy(ω)eiωjdω, (6.4)

Similarly, so is the cross-covariance of the filtered and unfiltered series.

6.2 The Hodrick-Prescott filter

In this section I will discuss the effect of the Hodrick-Prescott filter on business cycle

research. The H-P filter is an approach of fitting a smooth curve through a set of points.

It decomposes a time series yt into a cyclical component ct and a growth component

gt, such that yt = gt + ct. More specifically, the H-P filter computes a trend {gt}Tt=1
by minimizing the sum of squared deviations of a time series from its trend (yt − gt)2

94



subject to the constraint that the sum of the squared second differences is not too large,

which can be written as

min
{gt}Tt=1

TX
t=1

(yt − gt)2 + λ
T−1X
t=2

[(gt+1 − gt)− (gt − gt−1)]2 , λ > 0,

where T is the sample size, and λ is the penalty parameter. The first term is a measure

of ‘goodness-of-fit’ and the second term is a measure of ‘degree-of-smoothness’ which

penalizes decelerations in the growth rate of the trend component. The penalty para-

meter λ controls the smoothness of the series gt and also alters the trade-off between

the goodness-of-fit and degree-of-smoothness. The larger the λ, the smoother the gt.

As λ approaches infinity, gt approaches a linear trend.

According to Harvey and Jaeger (1993), the detrended observations ct can be

written as

ct =

·
(1− L)2(1− L−2)2

1/λ+ (1− L)2(1− L−2)2
¸
yt, (6.5)

= HP (L)yt,

where

HP (L) =
(1− L)2(1− L−1)2

1/λ+ (1− L)2(1− L−1)2 ,

is a lag polynomial and L is the lag operator. Similarly, the growth component can be

written as

gt = [1−HP (L)] yt.
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Both HP (L) and 1−HP (L) are the so called linear filters.

6.3 The rational square-wave filter

Pollock (2000) suggests rational square-wave filter, which is applied by passing forward

and backward through the series. In other words, the same filter is used in both

directions. Let yt be the time series, then the filtering operation can be described by

γ(L)qt = δ(L)yt,

γ(L−1)ct = δ(L−1)qt,

where L is the backwards-shift operator, L−1 is the forwards-shift operator, qt is the

intermediate output, and ct is the final output generated by the filter. The stability

condition of the filter should satisfies that the roots of γ(z) = 0 lie outside the unit

circle. The above two filters can be combined as a symmetric two-side rational filter

R(L) =
δ(L−1)δ(L)
γ(L−1)γ(L)

,

and it is shown by Pollock (2000) that the optimal high-pass filter takes the form

R(L) =
1

1 + 1
λ
[i(1 + L)/(1− L)]2n ,

where λ decides the cut-off frequency and n is a positive integer. The rate of transition

from the passband to the stopband of a filter can be increased by increasing the value
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of n. Decreasing the cut-off frequency also has similar effect in increasing the rate of

transition. Therefore, the detrended observation of the cyclical component is

ct = R(L)yt.

6.4 The distortional effect of the H-P Filter

In this section we analyze the distortionary effect of the H-P filter by its frequency

response function. According to (6.5), the H-P filtered yt or the cyclical component ct

can be written as

ct = HP (L)yt, (6.6)

= HP1(L)(1− L)yt,

where

HP1(L) =
(1− L)(1− L−2)2

1/λ+ (1− L)2(1− L−2)2

is a lag polynomial. If yt is stationary, then, according to Cramer representation, when

applying the H-P filter to yt the spectrum for the input and output series the following

equality should hold

fc(ω) = |HP (ω)|2fy(ω),
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The frequency response functions of the H-P filter and the rational square-

wave filter are shown in Figure 6.1. Both filters are close approximations of the ideal

filter, but the ideal filter cuts off low frequencies sharper as (6.3) suggested. The

frequency response functions smoothly move from 0 to 1 in the neighborhood of the

cutoff frequency. Therefore, both filters pass some frequencies which it was supposed

to suppress and also remove part of the frequencies which it was supposed to pass

around the cutoff frequency. Figure 6.1 shows that the rational square-wave cuts off

low frequencies relatively sharper than the H-P filter does.

Cogley and Nason (1995) and Park (1996) pointed out that when the H-P

filter is applied to an I(0) series, HP (L) is a symmetric moving average filter that

operates like a high pass filter as intended. But, when applied to an I(1) process,

HP1(L) becomes an asymmetric moving average filter that amplifies certain frequency

components and dampens all the other high and low frequency components, which

creates the spurious cycles. Similar argument applies to Pollock’s rational square-wave

filter.

One obvious example is provided by Figure 6.2, which shows the unfiltered and

filtered series of lnH and lnY . The first panel in Figure 6.2 shows the two standardized

series. There is no obvious cycles exist between these two series. The second panel shows

that there exists spurious cycles between the same two series in the H-P filtered data.
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Figure 6.1: The frequency responses of the H-P filter and the rational square-wave

filter. The upper graph shows the frequency response of the H-P filter and the lower

graph shows that of the rational square-wave filter.
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The third shows the same result in the rational square-wave filtered data.

6.5 Comparison of the rational square-wave filter

and the H-P filter

The graphs of the H-P and the rational square-wave filtered data are shown in figure 6.3

and 6.4, respectively. The tests for unit roots for all filtered series are rejected. Both

filters have similar effects on all series, except ln p. Table 5.2 also suggests the same

results. The CCF are similar in both filtered series. Notably, the cross-correlations

between ln p and lnY have dramatically differences. In the H-P filtered data, the

correlation of ln p with lnY is -0.2177 while it is 0.0342 in the rational square-wave

filtered data.

Periodicity and comovement between the variables are the main focuses in

business cycle research. In the case of calibration, periodicity is measured by the

autocorrelation function (ACF) and comovements are summarized by cross-correlation

functions (CCF) between the variables. The ACF and CCF of the H-P filtered and

rational square-wave filtered data are shown in Table 5.1 and Table 5.2.

The autocorrelation of the original and unfiltered series are shown in Table

5.1. It is clear that both filters alter the moments of the series. All ACF values in the
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Figure 6.2: The spurious cycles between lnY and lnH. The first graph shows the

standardized original series, the second graph shows the H-P filteres series, and the

third graph shows the rational square-wave filtered series.
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Figure 6.3: The five series filteres by the H-P filter
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Figure 6.4: The five series filtered by Pollock’s rational square-wave filter
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filtered series become lower than that in the original data. In long periods, the ACF

values have negative values while they are all positive in the original series.

The cross-correlation of the original and unfiltered series are shown in Table

5.2. As shown by (6.2) and (6.4) in Section 6.1, since the stochastic trend has been re-

moved by the filters, the cross-correlation functions that measures the cyclical behavior

are altered by both filters.

The effects of the filters can be further examined by applying the Bierens-

Swanson average conditional reality bound. The estimation results by using the filtered

series are shown in Table 5.3. It shows that the Bierens-Swanson reality bounds esti-

mated by using both filtered data are lower than that estimated by using the original

series. In other words, it implies that some useful information included in the stochastic

trend has been removed by both the H-P filter and the rational square-wave filter.

However, in this application we have to point out that in the Bierens and

Swanson’s approach the theoretical density is embedded in the empirical density, which

requires that both the theoretical and empirical densities are estimated by the same

data. Since we focus on the distortionary effect of the filters, we use the filtered data

in the theoretical model and unfiltered data in empirical models as a comparison.

Moreover, the filters remove the interesting part of the theoretical model.

As shown in Section 3.5, the theoretical model is equivalent to a cointegrated error
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Table 6.1: The autocorrelation of the original and filtered series.

The original series

Variable 1 2 4 8 12

y 0.981 0.962 0.924 0.847 0.778

p 0.990 0.980 0.959 0.916 0.870

x 0.973 0.944 0.876 0.771 0.706

c 0.983 0.965 0.931 0.867 0.804

h 0.972 0.939 0.866 0.777 0.709

The H-P filtered data

y 0.728 0.457 -0.080 -0.233 -0.179

p 0.926 0.778 0.374 -0.374 -0.504

x 0.751 0.474 -0.146 -0.273 -0.177

c 0.746 0.445 -0.056 -0.321 -0.174

h 0.746 0.468 -0.065 -0.325 -0.120

The rational square-wave filtered data

y 0.648 0.313 -0.304 -0.226 0.032

p 0.941 0.845 0.585 -0.002 -0.409

x 0.717 0.409 -0.256 -0.305 -0.073

c 0.799 0.568 0.148 -0.221 -0.225

h 0.854 0.677 0.314 -0.058 -0.146
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Table 6.2: The cross-correlation of the original and filtered series.

Cross-correlations with yt−j , j = 0,±1,±2,±4,±8,±12
Moments of the original series

Variable −12 −8 −4 −2 −1 0 1 2 4 8 12

y 0.778 0.847 0.924 0.962 0.981 1 0.981 0.962 0.924 0.847 0.778

p 0.7947 0.8335 0.8735 0.8929 0.9025 0.9124 0.8963 0.8802 0.8480 0.7832 0.7220

x 0.7807 0.8216 0.9001 0.9249 0.9363 0.9483 0.9265 0.9037 0.8537 0.7637 0.6809

c 0.8006 0.8644 0.9272 0.9611 0.9780 0.9950 0.9970 0.9590 0.9221 0.8475 0.7802

h -0.5368 -0.5175 -0.4908 -0.4959 -0.4972 -0.5053 -0.5138 -0.5223 -0.5394 -0.5574 -0.5681

Moments of the H-P filtered data

y -0.179 -0.233 -0.080 0.457 0.728 1 0.728 0.457 -0.080 -0.233 -0.179

p 0.1162 0.0461 -0.0329 -0.0924 -0.1547 -0.2177 -0.2407 -0.2400 -0.1407 0.1519 0.1821

x -0.1017 -0.2355 -0.0588 0.3585 0.5384 0.6878 0.5037 0.3173 -0.1552 -0.1794 -0.1287

c 0.0956 -0.0145 -0.3045 -0.2577 -0.1351 0.0933 0.2438 0.3317 0.3108 -0.0651 -0.1189

h -0.1159 -0.1218 0.2230 0.5316 0.6231 0.6417 0.3533 0.0516 -0.3725 -0.2596 -0.0023

Moments of the rational square-wave filtered data

y 0.032 -0.226 -0.304 0.313 0.648 1 0.648 0.313 -0.304 -0.226 0.032

p 0.0377 0.0087 0.0539 0.0814 0.0622 0.0342 0.0186 0.0071 0.0142 0.0637 0.0366

x 0.0269 -0.2143 -0.2191 0.2590 0.4767 0.6621 0.4597 0.2586 -0.2536 -0.1615 -0.0314

c 0.0847 0.0853 -0.1237 -0.1167 -0.0364 0.1434 0.2372 0.2814 0.2177 -0.1086 -0.0785

h -0.0560 -0.2125 0.0342 0.3423 0.4414 0.4874 0.2785 0.0556 -0.2470 -0.0890 0.1542
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Table 6.3: The estimated results of the Bierens-Swanson average conditional reality
bound by using the H-P and rational square-wave filtered data. α∗ = Π

0
2α, ν∗ = Π

0
2ν.

The H-P filter The rational filter
α∗ −0.042027 −0.098711 −0.040869 −0.067609

0.240875 −0.049976 −0.006381 −0.130503
−0.005697 −0.0365778 −0.082767 −0.041228
−0.052834 0.048628 −0.197311 0.151988

β 0.025507 1 −0.454957 1
1 0.185909 1 −0.340934

−0.523602 0.090135 0.076582 0.100724
ν∗0 0.004897 — 0.004954 —

0.00496 — 0.004991 —
c1 0.641691 — 0.632687 —
c2 0.544205 — 0.500316 —
p0 0.355856 0.325611

correction model. With the unit roots removed by the filters, the cointegrating relations

are removed as well.
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Chapter 7

Summary and conclusion

The goal of this dissertation was to illustrate how the standard cash-in-advance model

can be adapted to study the role of monetary and technology shocks in business cycles,

and the analysis presented can also be extended to a variety of dynamic stochastic

equilibrium models. I derived a linearized cash-in-advance model that provides a link

between the deep parameters and model coefficients. Through the linearized model I

then assessed the empirical performance of the theoretical model and estimated the

deep parameters. I also obtained confidence intervals for the estimated parameters

using the bootstrap and the effects of the stochastic shocks are further analyzed using

the innovation response analysis. Finally, I also examined the distortional effects of the

Hodrick-Prescott and rational square-wave filters.
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My findings can be summarized as follows. First, the business cycle model

under review provides an explanation for some, but not all, observable macroeconomic

fluctuation. If the possible model misspecification or missing variables in the CIAmodel

are not penalized, the model can account for about 47% of the information contained in

the empirical model. Moreover, most of the penalty is due to the lag difference between

these two models and the rest can be accounted by their rank difference. The theoret-

ical model implies a cointegrated error correction with one lag and two cointegrating

relations, and the empirical model representing the data-generating process is an error

correction model with two lags and only one cointegrating relation.

My second finding is that the cash-in-advance model does not do well in

explaining the observed data if model misspecification is allowed for. For instance, the

estimated capital depreciation rate and capital share are much higher than the usual

calibrated values. These high values imply that some important features of the economy

are missing from the model. The question as to how to build a better model should be

further explored.

Third, the innovation response analysis suggests that an expansionary mon-

etary policy has a positive effect on economic growth but the effect almost wears off

after three periods. The main deficiency is that it also causes inflation. Moreover, it

has permanent positive effects on the level of investment, working hours, and output
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and negative effects on the level of consumption because of the permanent change in

the level of capital stock. In contrast, a positive technology shock decreases the levels

of investment and working hours by increasing productivity during the shock period,

but the level of output is lower after the shock period because of the lower capital stock.

Positive technology shocks have a positive effect on consumption.

Finally, in addition to generating spurious cycles, both the Hodrick-Prescott

and rational square-wave filters remove the unit roots of the series. I showed that

the theoretical model is equivalent to a cointegrated error correction model. With the

unit roots removed by the filters, important features of the model economy implied by

the cointegrating relations are removed as well. The interesting part of the theoretical

model, contained in the stochastic trend, no longer exists in the filtered series. Re-

searchers should be careful when applying filters because they can influence the model

predictions substantially.

This application is based on the assumption that the estimated parameters

have kept the same values throughout the sample period from 1948 to 2001. This

analysis is not suitable for studying and predicting how macroeconomic aggregates

reacts towards the structural changes. However, the stability of the parameters can be

further examined by decomposing the sample data into subsamples.

The main limitation of the econometric approaches used in this study is that

110



since some links between the model coefficients and the deep parameters, such as the

discount rate in the utility function, are lost in the process of linearization, only a subset

of the deep parameters can be estimated. However, since the estimated coefficients

of the decision rules are in fact complicated functions of the deep parameters in the

utility function, in principle they can be solved using those functions. Therefore, further

analysis that requires the full specification of the utility function, such as the analysis

of welfare cost of inflation, can be done in future research.
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