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Abstract

Atmospheric methane concentrations are at an unprecedented level and are on a trajectory
to continue climbing as the demand for food and energy increase anthropogenic emissions.
As a potent greenhouse gas, rising methane concentrations pose a serious threat to global
temperatures. Any small change in global temperature can amplify the effects of climate
forcing agents, resulting in impacts to human and environmental systems. In the interest of
strategically reducing methane emissions, it is imperative we evaluate methane’s growing role in
the changing climate. In this dissertation, we begin by demonstrating that plausible methane
reductions in the global agricultural sector help mitigate projected global warming. Guided
by measurements of low-emission practices on U.S. dairy farms, life cycle assessments, and
detailed emission inventories, we can design science-informed emission reduction scenarios. To
simulate the climatic response to lower emissions, we use an intermediate-complexity Earth
system model, the Massachusetts Institute of Technology Earth System Model (MESM). Having
modeled the critical role of future methane reductions, we then characterize the specific impact
atmospheric methane has on future climate change. Through impulse response tests, we assess
feedbacks associated with the methane and carbon cycles that would otherwise be obscured in
standard emission scenarios. Our results demonstrate that the MESM impulse response is non-
linear due to feedbacks that arise from interactive atmospheric chemistry and biogeochemistry.
Unlike the MESM and other comprehensive models, several reduced-form climate models and
integrated assessment models do not account for these methane feedbacks. Lacking feedbacks
is a flaw that leads to poor projections. To correct this limitation, we modify the methane
components of the FaIR and FUND models to emulate the evolution of atmospheric methane in
the MESM. Incorporating representations of a self-abundance feedback on methane’s lifetime
and a temperature-feedback on natural wetland methane emissions greatly improves the model’s
ability to project changes in atmospheric methane. As an integrated assessment model, FUND
links socioeconomic factors to changes in emissions and the climate. We use the updated FUND
model to estimate the impact of the newly introduced methane feedbacks on the calculation
of the social cost of methane. Our study shows that the higher methane abundance, largely
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due to the feedback mechanisms, increases the monetary damages of future climate change to
an incremental emission pulse. Consequently, the social cost of methane rises. Overall, this
dissertation contributes to the understanding of how methane emissions and emergent methane
cycle feedbacks impact the Earth system behavior within a range of model complexities.
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Chapter 1 |

Introduction

Evidence of rapid climate change is compelling and unequivocal. Extreme changes seen in the
last thirty years from multiple records are largely unprecedented for over decades to millennia.
As the primary indicator of climate change, Earth’s average surface temperature has risen 0.85
°C between 1880 and 2012, a change predominately driven by emissions of heat-trapping gases
and aerosols from human activities (IPCC, 2013). Powerful evidence comes from atmospheric
and oceanic measurements, as well as, reconstructions of paleoclimate data (Delmas et al., 1980;
Keeling et al., 1976). From these measurements, discoveries of past glacial cycles, periods of
extreme drought, human developments, and much more are unveiled. Essentially, each specific
measurement takes a snapshot of the whole system but it does not reveal the whole picture.

To better perceive the complex interactions that shape the climate, scientists develop
comprehensive models that portray the intertwined processes of the land, atmosphere, ocean,
and cryosphere (McGuffie and Henderson-Sellers, 2014). Climate models, also known as Earth
System Models, reveal the short and long response-timescales of how the world naturally
functions. They also uncover the influence humans make on climate and the ramifications
of rapid climate change to society. Without quick adaptation to meet the projected changes,
societal consequences of climate change can seriously affect human welfare, health, food security,
water resources, and biodiversity (Xu et al., 2009; Gregory et al., 2005; Adams et al., 1995).
This dissertation aims to improve climate predictions by evaluating the impact of a potent
greenhouse gas, methane, on the Earth’s response, particularly, the atmospheric chemistry and
biogeochemistry. Implications of our results could help decision-makers prioritize environmental
issues based on climate projections and scientific evidence.
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1.1 Why Methane Matters

Global dependence on fossil fuel use continues to remain high and the pathway to low-emission
or net-zero emission technologies is a gradual transition that has yet to strongly compete in
international markets. The urgency of the climate crises and the setback of carbon dioxide
reductions implies that additional reductions in other greenhouse gases must be included in a set
of solutions. With established mitigation opportunities, combating methane emissions is a much
needed low-hanging fruit that we can use to limit rising global temperatures. Methane (CH4) is
a more potent greenhouse gas than carbon dioxide (CO2) because it significantly traps more
heat in the atmosphere. As a result, reductions in methane emissions could undoubtedly help
reach well-established temperature targets. In the following sections, we introduce the many
concerns of rising atmospheric methane and potential trajectory of future methane emissions.

1.1.1 Evolution of Global Methane

Long-term records of polar ice cores provide direct evidence of past atmospheric concentrations
up to 800,000 years ago (Loulergue et al., 2008), with discontinuous samples as far back as 2.7
million years ago (Yan et al., 2019). Multi-millennial timescales reveal that maximum methane
concentrations of 800 parts per billion (ppb) were observed during interglacial periods and
minimum concentrations of 350 ppb during glacial periods (Loulergue et al., 2008). The most
rapid variations (greater than 50 ppb) occurred within the last glacial period and are likely due
to strong Northern Hemispheric temperature fluctuations. Scientists have also speculated that
a large and rapid release of carbon stocks initiated the Paleocene–Eocene Thermal Maximum
(PETM), the warmest 170-thousand year period since the extinction of the dinosaurs (Bowen
et al., 2004). Methane emissions from terrestrial permafrost could have acted as positive
feedbacks to prolong the warming (DeConto et al., 2012). Other proposed carbon sources
that led to the PETM warming include methane hydrates, hydrothermal vents, and volcanic
intrusions (Turner et al., 2019; Frieling et al., 2016; Zeebe, 2013).

Nowhere in the climate record have global atmospheric methane concentrations been as high
as the present-day (Figure 1.1). Atmospheric methane levels reached 1850 ppb in 2017, more
than 2.6 times greater than its estimated preindustrial equilibrium value (Saunois et al., 2020).
There is no debate that the increase is human caused. The late 1970s marked the beginning
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of global monitoring of methane emissions (Blake et al., 1982) and soon scientists took notice
of the strong anthropogenic increase coming from the Soviet gas industry through the 1980s
(Dlugokencky et al., 1998). While the general trend indicated anthropogenic sources dominated,
there were periods of volcanic eruptions (e.g. Mt. Pinatubo in 1992) and the major El Niño
events (1997–1998) that led to higher methane growth rates (Nisbet et al., 2016). Positive-phase
El Niño events create warmer and drier conditions in the tropics, generating widespread fire and
biomass burning that release anomalously emissions (Rowlinson et al., 2019).

In the early 2000s, global atmospheric levels stabilized at 1750 ppb (Dlugokencky, 2019).
But in 2007, atmospheric levels began increasing again (Rigby et al., 2008), with contradictory
speculations on the particular cause (Nisbet et al., 2016; Kirschke et al., 2013). It is difficult
to attribute the trend as there is a multitude of uncertain natural and anthropogenic emission
processes that are arduous to monitor. Suggested culprits include changes to methane sources;
wetlands, livestock, fossil fuels, biomass burning, and to the atmospheric chemical sink (Rigby
et al., 2017; Hausmann et al., 2016; Schaefer et al., 2016). While uncertainties in the methane
budget exist, it is becoming more evident that anomalous stabilization periods fall within a
long-term, increasing trend due to human activities (Figure 1.1).

1.1.2 An Imbalance of Sources and Sinks

Attributing changes to different sources is important for generating better projections and
determining effective mitigation strategies to lower methane emissions (Karakurt et al., 2012).
Since the stagnation period of the early 2000’s, the globally averaged atmospheric growth rate
has varied between 5–10 ppb per year (Kirschke et al., 2013), reflecting fluctuations in methane
sources and sinks. The methane budget refers to the atmospheric concentration variation that
results from an imbalance of the cumulative emission sources and atmospheric chemical sink. A
schematic representation of the 2008–2017 methane budget is shown in Figure 1.2. The methane
budget is updated regularly to reflect new data from observations and global models (Saunois
et al., 2020, 2016). However, large uncertainties in emissions from anthropogenic sources (up to
20–35% uncertainty) and natural sources (50–100% uncertainty) affect the budget. Uncertainties
in emission inventories reflect the difficulty in differentiating geographically-overlapping methane
sources, as well as, monitoring emissions at regional scale and aggregating to the global scale
(Saunois et al., 2020).
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1.1.2.1 Primary Sources

In total, 572 Teragrams of methane per year (Tg-CH4 yr−1) were emitted from all methane
sources for the 2008-2017 decade (Saunois et al., 2020). The greatest source of uncertainty is
attributed to natural emissions coming from wetlands and other inland waters (lakes, ponds,
rivers). High water content areas limit oxygen availability, creating an environment that promotes
decomposition of organic matter by methane-producing bacteria or methanogens (Fiedler and
Sommer, 2000; Ferry, 1999). In these environments, methane formation accompanies methane
consumption or oxidation by methanotroph bacteria. What determines the magnitude of the
flux from wetlands is environmental factors like water saturation, temperature, and availability
of organic matter (Kip et al., 2010; Frenzel and Karofeld, 2000). Analyses indicate a rise in soil
temperature up to 30 °C could generate a 57-fold increase in methane emissions (Yvon-Durocher
et al., 2014). Additional uncertainties arise from modeling wetland extent and seasonal variations,
as regional differences are difficult to capture (Poulter et al., 2017; Wania et al., 2013). Globally,
it is estimated wetlands emit 148 ± 25 Tg-CH4 yr−1, making up 30% of all total methane

Figure 1.1. Atmospheric methane over the past 2000 years from the Law Dome ice core record (blue)
and seasonal record of the South Pole (gray). Also shown is the hypothetical continuation of the trend
if the 2000–2007 stagnation period did not occur (red). Figure taken from Turner et al. (2019).
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emissions (Saunois et al., 2020). And, other inland water bodies emit an additional 117 Tg-CH4

yr−1 (Stanley et al., 2016; Deemer et al., 2016; Bastviken et al., 2011).

Although not as significant as wetlands, additional natural methane emissions come from
geothermal systems, oceans, and permafrost (Saunois et al., 2020). Geologic sources including
emissions from volcanoes, seepage from gas-oil fields, and microbial sedimentary basins make up
37 Tg-CH4 yr−1 (Etiope et al., 2019). Possible oceanic emissions result from biogenic origins
(6 Tg-CH4 yr−1) and seabed plumes (65 Tg-CH4 yr−1) (Saunois et al., 2020). Marine hydrates,
ice formations which trap methane, are largely uncertain in extent but are considered to be
negligible as water column absorption prevents a measurable flux to the atmosphere (Wallmann
et al., 2012; Milkov, 2005). A growing concern is emissions from permafrost, which consist of
frozen organic carbon in soils and sediments. While nearly negligible in present-day, a warming
climate could thaw extensive areas permafrost in the Northern Hemisphere (Schuur et al., 2015)
making 5–15% of the carbon pool vulnerable to a 130–160 Gigaton (GtC) release over the next
century (Koven et al., 2015).

Figure 1.2. The global methane budget (2008–2017) including estimated emissions and sinks from
bottom-up and top-down approaches. Figure taken from Saunois et al. (2020).
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While natural biogeochemical and geologic sources make up a considerable fraction of the
methane budget, methane emissions are predominately anthropogenic, accounting for 50–65% of
total emissions (IPCC, 2013). Livestock production is by far the largest source of anthropogenic
methane emissions (Tubiello et al., 2013). Methanogens living within the digestive tracks of
ruminant animals emit methane as a by-product of consuming plant matter (Johnson and
Johnson, 1995). Manure decomposition within anaerobic conditions also creates conditions
favorable for microorganisms to produce methane. Considering both emission sources, global
livestock emissions are estimated to be 111 Tg-CH4 yr−1, about a third of total anthropogenic
emissions (Saunois et al., 2020).

Additional methane emissions result from human operations and exploitation of natural
resources. Human initiated forest fires and burned agricultural residues emit methane when
low-oxygen availability prohibits full combustion (van der Werf et al., 2017). Along the same
lines, burning of biofuel for energy production and domestic cooking also produce substantial
methane. Biomass and biofuel burning make up about 11% of anthropogenic methane emissions.
A larger fraction (35%) of anthropogenic methane emissions come from fossil fuel production
and use of coal, oil, and natural gas (Saunois et al., 2020).

Finally, we touch on methane emissions from waste management and agricultural cultivation
of rice. Shallow-flooded paddy fields deplete oxygen in the soils to form anaerobic conditions
for microbial methane production. It is estimated rice paddies, largely in China and India,
make up 8% of anthropogenic emissions of methane (Saunois et al., 2020; Carlson et al., 2017;
Hayashida et al., 2013). And, degradable organic material in wastewater and landfills is treated
anaerobically, leading to increased emissions (Börjesson and Svensson, 1997). Wastes make up
12% of global anthropogenic emissions (Saunois et al., 2020), but in the U.S. waste is the largest
single contributor to anthropogenic methane, almost 26% of all anthropogenic methane in 2014
(EPA, 2016).

1.1.2.2 Atmospheric Sink

After methane reaches the troposphere, about 90% of the removal is through chemical oxidation
by hydroxyl radical (OH) (Ehhalt, 1974). Additional small losses occur by stratospheric reactions
(Brasseur et al., 2006), soil uptake (Curry, 2007), and reactions with chloride in the marine
boundary layer (Allan et al., 2007). But, our focus will be on the predominant loss mechanism
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due to oxidation by OH. When methane oxidizes, the net reaction removes tropospheric OH,
the main driver for methane’s atmospheric sink, and produces greenhouse gases, CO2 and H2O.
OH does not only react with methane, it oxidizes atmospheric pollutants such as nitrogen
oxides (NOx), carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs),
and hydrofluorocarbons (HFCs) (DeMore, 1996). Globally, methane directly removes 15% of
tropospheric OH. Accounting for the indirect effect methane has on other species, the amount
of OH removed from the troposphere increases to approximately 40% (Holmes, 2018). Since
OH is very reactive in the atmosphere, its lifetime is only a few seconds (Lelieveld et al., 2004).
However, such a short lifespan makes measurements very difficult on the regional to global scales,
creating substantial uncertainty in the methane chemical loss (Prather et al., 2012). Variations in
anthropogenic emissions, natural tropical ecosystem emissions, and El Niño–Southern Oscillation
can lead to changes in OH, with interannual variability ranging 0.4–1.8% (Zhao et al., 2019).

1.1.3 Methane Lifetime

Methane lifetime refers to the ratio of global atmospheric burden to the total loss from all sinks
in a steady state condition (Ehhalt et al., 2001). In several simplifications, methane lifetime
refers only to the loss by OH oxidation, neglecting the small losses to the stratosphere, soils, and
marine boundary layer. Multi-modeled estimates of the steady state tropospheric lifetime range
7.2–10.1 years (Morgenstern et al., 2018). Since methane is not presently in steady state, the
lifetime is always changing in response to small perturbations in concentration and atmospheric
chemistry. In particular, changes to the OH sink inversely affect the methane lifetime.

The amount of methane in the atmosphere is the most significant variable to affect the
OH sink, and subsequently methane lifetime. Just a 1% increase in methane decreases mean
tropospheric OH by 0.31% (Holmes et al., 2013). Any subtle changes in tropospheric OH
will have a direct impact on methane levels. For example, Rigby et al. (2017) found that a
declining trend in OH abundance during the post-stagnation period (2007–2014) is statistically
attributable (64–70% probability) to the rise in methane concentration. The oxidation rate
decreases with increasing methane concentration, affecting the amount of time methane spends
in the atmosphere. This results in a self-abundance positive feedback known as the methane
lifetime feedback effect (Prather, 1994). Holmes (2018) has shown that the lifetime feedback
strength varies geographically and seasonally with OH concentration, where the feedback is
strongest over tropical oceans in the summer and generally weaker over the continents and poles.
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1.1.4 Methane Climate Forcing and Indirect Effects

Radiative forcing is the net change in the radiative flux (shortwave plus longwave) at the top of
the atmosphere to an imposed perturbation (Myhre et al., 2013). Methane creates a powerful
radiative forcing effect due to its absorption of infrared radiation at wavelengths of 3.3 and
7.7 µm (Reay et al., 2018). Since 1750, atmospheric methane has contributed 23% (0.62 W m−2)
to the additional radiative forcing (Etminan et al., 2016). Including the indirect effects on its
lifetime and other chemical compounds, methane’s total radiative forcing is 0.97 W m−2, making
it the second largest contributor (behind CO2, 1.68 W m−2) to the increase in radiative forcing
(Myhre et al., 2013).

1.1.5 The Future of Atmospheric Methane

The twenty-first century is likely to see a continual rise in methane as underlying emission drivers,
like demand for energy and food, increase with population. Climate researchers are continuously
adopting and updating plausible emission trajectories. The current general body of literature
has adopted the Representative Concentration Pathways (RCPs) from the Fifth Assessment
Report (AR5) of Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2013). Each RCP
scenario is identified by their approximate total radiative forcing in year 2100 relative to 1750
(Moss et al., 2010; Meinshausen et al., 2011b; van Vuuren et al., 2011b). At our current rate
of global anthropogenic emissions, our trajectory most closely resembles RCP8.5, the highest
concentration scenario (Schwalm et al., 2020).

Standardized setups of inter-comparison model studies use prescribed RCP concentrations to
drive complex climate models and produce projections of the Earth system response. Results from
simulations performed for the Atmospheric Chemistry and Climate Modeling Intercomparison
Project (ACCMIP) indicate end of century methane concentration could increase 117% relative
to year 2000 for RCP8.5 (Voulgarakis et al., 2013). In addition, the inter-comparison project
showed methane lifetime is projected to increase 8.5±10.4% for RCP8.5, but could decrease
4.5±9.1% for RCP2.6.
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1.1.6 Methane Mitigation Opportunities

Methane mitigation refers to capturing methane at the source or preventing its formation. Across
the globe, cost-effective mitigation technologies and practices are already widely available and
in-use. Shindell et al. (2017) projects another 110 Tg-CH4 yr−1 of abatement is possible by
scaling up existing technologies. Naturally, the mitigation potential and particular practices that
could be put into place will vary by country and available resources. Besides mitigating climate
change, solutions have shown to provide additional societal benefits to local environments and
human health that outweigh implementation costs (Nisbet et al., 2020). We provide a brief
synopsis of current technologies for the energy and agricultural sectors.

The energy sector provides a substantial opportunity for methane mitigation. As one practice,
coal miners can drill holes before excavation and capture methane for energy use (Dontala et al.,
2015). This ventilation provides the extra benefits of improved air quality and safety within
the mines (Karacan et al., 2011). In a promising review by the EPA, better mining practices
could eliminate 64% of mining methane emissions in 2030 (EPA, 2019). Other energy sector
mitigation opportunities eliminate fugitive emissions by upgrading equipment to detect gas leaks
(Lamb et al., 2015).

This dissertation focuses more deeply on mitigation opportunities within the agricultural
sector, particularly mitigation of dairy farms. Agricultural emissions tend to be geographically
disseminated and hard to pin-point for abatement purposes (Reisinger and Clark, 2018), but
implementation of several better farming practices can make substantial cuts in methane
emissions (Veltman et al., 2018; Smith et al., 2008). Mitigation measures aim to cut emissions
from livestock manure and enteric fermentation. For one, separating the solid and liquid
components of manure can reduce 81% of manure methane emissions (VanderZaag et al., 2018).
Another option for industrial-scale dairy farms is sealing manure in anaerobic digester tanks to
produce nutrient-rich fertilizer and biogas (Pratt and Tate, 2018). As an extra benefit, burning
the biogas by-product can be used for heating or equipment fuel. Changes in livestock diets
have also proved to decrease enteric methane emissions from the cattle digestive tracks. Feed
additives and supplements combined with typical cattle feed inhibit enteric methane production
and subsequently reduce emissions (Knapp et al., 2014).
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1.2 A Hierarchy of Earth System Models

Models exhibit a wide range of physics, parametric simplifications, and spacial scales. The most
fundamental of climate models aim to understand the Earth’s energy balance and thermodynam-
ics of the system (North et al., 1981). As more components are represented, a model hierarchy
tends to develop (Figure 1.3) (McGuffie and Henderson-Sellers, 2005). Depending on the nature
of the scientific question posed, the most relevant model will be chosen based on complexity
level and the pertinent timescales.

Performing at the highest feasible spatiotemporal resolution are fully coupled Earth System
Models (ESMs). Their model components account for the best current representations of
the full climate system, including the atmosphere, ocean, land surface, carbon cycle, and ice
sheet dynamics (Arora et al., 2013). Considered the most comprehensive instruments available,

Figure 1.3. The climate modeling pyramid. Progression up the pyramid indicates greater complexity
for four primary pillars; dynamics, radiation, surface processes, and chemistry. Figure taken from
McGuffie and Henderson-Sellers (2005).
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ESMs contain high spatial resolutions, detailed surface processes, biogeochemistry, and intricate
radiation schemes (McGuffie and Henderson-Sellers, 2014). Given the number of processes
included and the need for high resolution, ESMs require significant computational resources,
limiting the number of experiments or ensemble simulations that can be run.

As computing power can be a significant barrier to conducting multiple simulations, Earth
system models of intermediate complexity (EMICs) have been developed to operate at lower
temporal and spatial resolutions (Weber, 2010). Albeit in a more reduced and parameterized
form, EMICs include most of the processes described in state-of-the-art models (Claussen et al.,
2002). Because they are calibrated to replicate results of complex models, they are very useful
in representing the climate system with fewer computational resources. This makes EMICs ideal
for long simulations to understand decade to century timescale processes. They are also ideal
for uncertainty studies requiring multiple model runs with slightly altered inputs (Zickfeld et al.,
2013; Claussen et al., 2002).

Having the lowest resolution of the modeling hierarchy, reduced-complexity models can
take anywhere from a few seconds to minutes on a personal computer to simulate century-long
experiments. This is because they parameterize complex processes seen in higher complexity
models (McGuffie and Henderson-Sellers, 2014). They have been instrumental for investigating
the sensitivity of the climate system to external forcing agents and interpreting results of more
complex ESMs (Knutti and Sedláček, 2013b). As one type of reduced-complexity model, box
models resemble reservoirs of the climate system, where fluxes into and out of the box represent
the exchange between system components. Other examples of reduced-complexity models
include energy balance models and one-dimensional radiative convective models (McGuffie and
Henderson-Sellers, 2014). As the name suggests, energy balance models illustrate the amount of
energy coming in and out of the Earth system, which is assumed to be in an equilibrium state.
With more detail in the vertical direction, one-dimensional radiative convective models simulate
how energy is absorbed, emitted, and scattered (Harvey et al., 1997).

While climate models are often used as stand-alone models, they can also be linked to
socioeconomic models to form integrated assessment models (IAMs) (Tol and Fankhauser,
1998). IAMs usually follow a cause-and-effect chain, where emissions and land-use modifications
from human activities drive changes in the climate system. An economic component will then
translate the physical climate changes into impacts on human health, agriculture, and economic
activity (Schneider, 1997).
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1.3 Impulse Response Behavior

A way to explore a model’s behavior is to insert a large instantaneous perturbation and conduct
idealized impulse response tests. By doing so, we can uncover climate behavior that is not
discernible in observations or standard emission-driven model simulations (Schwarber et al.,
2019). A way to approximate the complex model results in a simplified mathematical manner
is fitting it to an impulse response function (IRF). The IRF of some perturbed subsystem (x)
likens as a superposition of decaying exponential functions of different amplitudes (Ai) and
perturbation times (τi):

IRFx(t) =
n−1∑
i=0

Ai ∗ exp−t
τi

(1.1)

Many studies have developed IRFs for the global carbon cycle by fitting a function to
the atmospheric response to a CO2 perturbation of a more complex model or a multi-model
mean (van Vuuren et al., 2011a; Hooss et al., 2001; Maier-Reimer and Hasselmann, 1987). The
parameters of the IRF are then adjusted to match the full representation of the carbon cycle of
the more complex model (Maier-Reimer and Hasselmann, 1987). Standing alone, the IRF can
reproduce the time evolution of how carbon is transferred from the atmosphere to the terrestrial
and oceanic carbon pools. Because IRFs are designed to replicate the behavior of complex
models, they are often used within the structure of conventional IAMs (eg. FUND (Tol, 2006)
and MERGE (Manne and Richels, 2005)).

1.3.1 Nonlinearities and Feedback Limitations

IRFs are able to accurately mimic a fully linear system. By definition they assume the climate
responds slowly and predictably as atmospheric concentrations increase (Olivié and Peters, 2013).
Yet, the climate is subject to rapid nonlinear changes and feedbacks. For example, an increase
in greenhouse gases accelerates warming and in turn that warming affects the atmospheric
concentration and carbon cycle. Complex model simulations that include an interactive carbon
cycle indicate that the climate-carbon cycle feedback decreases the net absorption into the
land and ocean carbon pools, resulting in an extension of the CO2 lifetime in the atmosphere
(Archer et al., 2009). The IPCC AR5 impulse response model, designed to quantify the carbon
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cycle response to a 100 Gigaton carbon (GtC) pulse (Joos et al., 2013), does not include the
temperature feedback on the carbon sinks. As a result it greatly overestimates the global mean
temperature response to an instantaneous quadrupling of CO2 (Schwarber et al., 2019).

For small perturbations, IRFs can approximate some nonlinearities exhibited in complex
climate models (Hooss et al., 2001). As an example, the Finite-amplitude Impulse Response
model (FaIR) (Smith et al., 2018; Millar et al., 2017) can simulate the decreasing efficiency of the
carbon sinks with increasing global temperature, thus replicating the behaviors and feedbacks
seen in more complex ESMs (Fung et al., 2005).

However, IRFs are limited in their ability to only describe one state of the climate system that
they were built to emulate. Depending on the state of the system, background concentrations,
and size of a perturbation, nonlinearities that arise could generate very different climate response
outcomes (Joos et al., 2013; Zickfeld and Herrington, 2015; Gregory et al., 2005). For example,
when the FaIR model tests an impulse emission under changing background conditions, it loses

Figure 1.4. Fraction of the CO2 impulse perturbation remaining in the atmosphere for 1000 model
years. Impulse response functions shown for pulse emissions 10 to 10,000 GtC simulated in the
comprehensive Bern3D-LPJ model. Dashed lines represent a constant climate without carbon cycle
feedbacks. Figure taken from Joos et al. (2013).
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its strength in predictability. The results show an underestimate of the airborne CO2 fraction
following a standard emission impulse (Schwarber et al., 2019).

Also, the size of the perturbation matters when calibrating the IRF (Maier-Reimer and
Hasselmann, 1987). Figure 1.4 shows the time-integrated IRF for several pulse sizes between
10 and 10,000 GtC for one of the coupled EMICs, the Bern3D-LPJ, in Joos et al. (2013). The
larger pulse sizes show a slower response to remove carbon from the atmosphere as the carbon
pools become overwhelmed by the influx of carbon. The investigation also demonstrates how
carbon cycle-climate feedbacks influence IRF evolution. When feedbacks are omitted (dashed
lines in Figure 1.4) the model underestimates the fraction of CO2 remaining in the atmosphere.

1.4 Integrated Assessment Models and their Implications

While climate models are often used as stand-alone models, they can also be linked to socioe-
conomic models to form integrated assessment models (IAMs) (Tol and Fankhauser, 1998).
Encompassing several disciplines, IAMs risk becoming too complex. For this reason, many
existing IAMs operate on uncomplicated equations (Goodess et al., 2003). Developers of IAMs
simplify more complex models by using box models that represent the bulk properties of the
reservoirs. Within an atmospheric box model, an IRF will simulate the evolution of an greenhouse
gas (Joos and Bruno, 1996). As simplifications are often flawed, they can end up generating a
great deal of imprecision and impact the result quality (Füssel, 2007; Smith and Edmonds, 2006).
To improve IAMs, a number of studies have focused on the technical deficiencies of the economic
components, suggesting that the approaches to future discounting rates and damage functions
are inadequate (Tol and Fankhauser, 1998; de Bruin et al., 2009). As research progresses on the
economic components, more progress is needed to better represent the climate system in IAMs.

Recent attention has shifted to updating IAMs to reflect modeling progress in carbon cycle
dynamics and non-CO2 impacts (Hof et al., 2012). A few IAMs are aggregating all feedbacks
into a single equation that relates natural emissions to linear temperature changes (Bouwman
et al., 2006). Despite the effort, calculated temperature feedbacks in IAMs appear to fall short
of complex model results under high emission scenarios (van Vuuren et al., 2011a). In addition,
many widely-used IAMs (e.g. FUND, PAGE, DICE) do not include feedbacks related to changes
in non-CO2 greenhouse gases that are seen in complex model results. For example, they lack
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the methane lifetime feedback, which extends the methane atmospheric residence time with
increasing abundance (Voulgarakis et al., 2013). This dissertation aims to rectify this limitation
by parameterizing the methane lifetime feedback in the FUND integrated assessment model.

Further, commonly used IAMs tend to show lower radiative forcing projections when
compared to expert models of the ACCMIP model range in Figure 1.5. Especially for a high
emission scenario like the RCP8.5, non-CO2 forcing agents fall short of the more complex models,
largely due to the exclusion methane’s indirect effect on other atmospheric species like ozone
(Harmsen et al., 2015).

In summary, IAMs are in need of upgrades to their climate model components. Many lack
the necessary representations of carbon cycle processes and timescales, as well as, interactive
atmospheric chemistry. Our research aims to address the flaws in integrated assessment modeling
by bridging the gap between reduced-complexity climate models and fully coupled models.

Figure 1.5. Total non-CO2 forcing for projected RCP2.6 and RCP8.5 scenarios for individual IAMs
and expert model ranges from the Atmospheric Chemistry and Climate Model Intercomparison Project
(ACCMIP). Figure taken from Harmsen et al. (2015).
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1.4.1 Social Cost of Carbon

One use of integrated assessment models is for the calculation of the Social Cost of Carbon
(SCC), which refers to the marginalized monetary cost of climate damages resulting from
an incremental emission of a greenhouse gas (National Academies, 2017). Typically this is
calculated by comparing trajectory of climate damages from a baseline emission scenario to a
pulsed emission trajectory, where an additional unit ton emission of a greenhouse gas is released
in a single year onto the baseline scenario. The climate model component of the IAM will
estimate the changes in climate properties; temperature, precipitation, and sea level (Thompson,
2018; Nordhaus, 2017). The farther the climate properties are from idealized threshold values,
the greater the IAM estimates damages to human health, natural ecosystems, productivity, and
property. The difference in monetary damages from the baseline and pulsed trajectory is the
marginal damage per unit emission, otherwise known as the SCC.

Because several IAMs contain a model structure that prevents the exogenous modeling of
non-CO2 greenhouse gases, very few estimates of the social cost of methane (SC-CH4) exist.
The current SC-CH4 estimates used by the U.S. Government for emission regulations were
determined by Marten et al. (2015). However, their methane calculation underestimates the
fraction of methane in the atmosphere following the impulse emission. Our improvement of this
work represents methane’s self-abundance feedback on its lifetime.

1.5 Driving Research Questions

In this dissertation, we aim to assess the impact of the methane cycle on the Earth system
response within reduced- and intermediate-complexity models. As discussed, we rely on the best
available models to draw conclusions about past and future climate. Intermediate-complexity
models allow for multiple simulations to explore uncertainties in model assumptions and their
potential to influence future projections. Using approximations (e.g. zonal-mean atmosphere),
EMICs can run more quickly while still replicating processes described in state-of-the-art Earth
System Models (ESMs). Although EMICs are very useful for many modeling applications, they
might not always be the best tool. In this case, reduced-form models and integrated assessment
models may be more appropriate.
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Climate system representations within integrated assessment models (IAMs) account for
complexity by aggregating and reducing comprehensive model results into a manageable set
of equations, often in the form of an impulse response function (IRF). They serve the purpose
of computational efficiency and transparency where large sample simulations cannot be made
with highly complex and slow-to-run ESMs. Integrated assessment models also simulate the
socioeconomic consequences to changes to the climate, as they connect an economic component
to the climate component. Albeit, to some extent, all reduced-complexity models are flawed
and could lead to poor projections. The one flaw we focus on and try to remedy is the lack of
methane feedbacks within IAMs and the calculation of the social cost of methane. Our research
exemplifies how an intermediate-complexity model can be used to improve reduced-form climate
models to better reproduce the response of the Earth system and methane cycle.

One application of climate modeling is to help inform policy by providing the science.
Keeping this in mind, we are providing model simulations which will help address policy-relevant
questions, rather than directly making policy decisions from the model results. We begin this
dissertation by addressing a scientific question stemmed from policy; To what extent can
plausible reductions in agricultural greenhouse gas emissions, specifically methane,
help mitigate projected impacts of global warming? As the agricultural sector is a
major emitter of methane, we aim to understand the importance of non-CO2 mitigation. In this
research, we advocate for the application of an EMIC as a proper tool for emission reduction
simulations. We use an EMIC that includes the representation of atmospheric chemistry, as well
as, nonlinearities associated with the carbon cycle.

EMICs and complex ESMs demonstrate that interactions across model components result
in nonlinearities in the response of the system. Of particular interest are the feedbacks that
arise from perturbations of atmospheric methane. As a reactive greenhouse gas, methane
can indirectly affect other atmospheric gases by its reaction with hydroxyl radical. This in
turn affects methane’s own lifetime. Knowing this we then ask a follow up question: How
do feedbacks in an Earth system model of intermediate complexity influence the
response to an idealized methane perturbation? Depending on the state of the system
and size of a perturbation, nonlinearities that arise within the system could generate very
different climate response outcomes. By conducting this research we better understand how
model interactions between the atmosphere, ocean, and biosphere define the system response
and produce emergent feedbacks.
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Current IAMs used for policy analysis and social cost estimates are lacking crucial repre-
sentations of atmospheric chemistry, carbon cycle processes, and nonlinear dynamics. As a
result, several important methane feedbacks are not represented. When compared to more
complex models, the reduced-complexity models within IAMs are falling short in their re-
sponse to high emission scenarios, thus underestimating the damages resulting from additional
emissions. We ask a two-part question: Does incorporating methane feedbacks in a
reduced-complexity climate model improve its ability to reproduce the results of
higher complexity models? We introduce formulations to mirror feedbacks to methane’s
lifetime and natural emission sources. The model is tuned to emulate the Earth system response
of the EMIC. Having improved the methane component of a model conventionally used to
calculate the Social Cost of Carbon, we ask a final question: How much does the social cost
of methane change with additional feedbacks included in an integrated assessment
model? In this final project, we update the social cost of methane to more accurately reflect
the emergent feedbacks on the methane and carbon cycles.

In summary, we aim to address the overarching question: How does the methane cycle impact
the Earth system response within reduced- and intermediate-complexity models? Given this
broad topic, it is only feasible to address parts of it and so we focus on the following questions:

1) To what extent can plausible reductions in agricultural greenhouse gas emissions,
specifically methane, help mitigate projected impacts of global warming?

2) How do feedbacks in an Earth system model of intermediate complexity influence
the response to an idealized methane perturbation?

3) Does incorporating methane feedbacks in a reduced-complexity climate model
improve its ability to reproduce the results of higher complexity models?

4) How much does the social cost of methane change with additional feedbacks
included in an integrated assessment model?
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Chapter 2 |

Non-CO2 Mitigation Options
Within the Dairy Industry for
Pursuing Climate Change Targets

The contents of this chapter is published in Rolph et al. (2019), with the following citation:
Rolph, K. A., C. E. Forest, and M. D. Ruark, 2019: The role of non-CO2 mitigation options
within the dairy industry for pursuing climate change targets. Environ. Res. Lett., 14 (8),
084039, doi:0.1088/1748-9326/ab28a3.

2.1 Abstract

Mitigation of non-CO2 climate forcing agents must complement the mitigation of CO2 to achieve
long-term temperature and climate policy goals. A large share of global non-CO2 greenhouse gas
emissions is attributed to agriculture, with a significant contribution related to dairy production.
As demonstrated by the results of a recent USDA coordinated project, Dairy-CAP, dairy farmers
can significantly reduce their greenhouse gas emissions by implementing beneficial management
practices. This study assesses the potential mitigation of projected climate change if greenhouse
gases associated with the dairy subsector were reduced. To compare the performance of several
mitigation measures under future climate change, we employ a fully coupled Earth system
model of intermediate complexity, the MIT Earth System Model (MESM). With an interactive
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carbon-cycle, the model is capable of addressing important feedbacks between the climate and
terrestrial biosphere impacting greenhouse gas concentrations. We illustrate the importance of
ongoing mitigation efforts in the agricultural sector to reduce non-CO2 greenhouse gas emissions
towards established climate goals. If beneficial management practices are implemented globally
within the next three decades, projected warming by the end of the century can be reduced by
0.21 °C on average or 6% of total warming, with dairy farm mitigation contributing to 0.03 °C
of the temperature reduction.

2.2 Introduction

Substantial reductions in anthropogenic greenhouse gas emissions are needed to limit the rise in
global temperatures to 2 °C above the preindustrial level (Sanderson et al., 2016; Rogelj et al.,
2015; Meinshausen et al., 2009; Matthews and Caldeira, 2008). While anthropogenic emissions
of carbon dioxide (CO2) are the largest contributors, non-CO2 emissions collectively contribute
to a quarter of the total current greenhouse gas emissions based on equivalent emissions using
the 100-year global warming potential (GWP) (van Vuuren et al., 2006). To meet climate
stabilization goals, efforts to reduce CO2 would benefit from complementary efforts in reducing
non-CO2 emissions (Gambhir et al., 2017; Hansen et al., 2000). Mitigation of short-lived climate
pollutants such as methane (CH4) can lead to a rapid decline in radiative forcing, and will
significantly impact the magnitude of the peak temperature response and CO2 budget set for a
policy-relevant temperature limit (Montzka et al., 2011). Following strict CH4 mitigation, a CO2

emissions budget could extend to 25% higher than a budget that does not limit CH4 (Rogelj
et al., 2015). Long-lived non-CO2 emission reductions can also provide additional benefits.
Mitigation of nitrous oxide (N2O) will offer the combined benefit of limiting dangerous climate
change and sustaining stratospheric ozone. With soils producing the most N2O emissions, the
greatest mitigation potential lies in the agricultural sector (Reay et al., 2012).

The agricultural sector is the principal contributor to anthropogenic non-CO2 greenhouse
gas emissions, accounting for 45% of global CH4 emissions and 82% of global N2O emissions in
2005 (EPA, 2012). Between 1961-2010, on average, agricultural emissions increased at 1.6% per
year with the greatest growth in Africa, Asia, and the Americas (Tubiello et al., 2014). During
this same period, some emission growth was offset by sustainable farming practices in Europe
and Oceania. As the demand for food increases with population growth, agricultural emissions
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are projected to further increase by 20% before 2030 (EPA, 2012). As a whole, the sector
must reduce emissions and increase resilience to changes in future climate, while simultaneously
increasing productivity and achieving sustainable food security (Wollenberg et al., 2016).

To address food security challenges and support agricultural development, the U.S. Depart-
ment of Agriculture launched the Sustainable Dairy Coordinated Agricultural Project (hereafter,
Dairy-CAP). Dairy-CAP brought together multi-disciplinary teams of researchers to understand
how U.S. dairy agroecosystems are connected to the global environment and how improved
farm management practices can reduce greenhouse gas emissions. The coordinated Dairy-CAP
project developed multiple agricultural beneficial management practices (BMPs) to reduce
greenhouse gas emissions, while ensuring continued productivity and economic profitability of
the U.S. dairy industry (Veltman et al., 2018). BMPs identified by the collaboration included
changes to animal feed, manure management systems, and field systems (Hristov et al., 2013;
Montes et al., 2013). The Dairy-CAP project differs from other agricultural investigations by
considering combinations of practices on the whole-farm rather than assessing implementation
of a single BMP at a time (Dolfing, 2017; Wollenberg et al., 2016). Whole-farm solutions are
necessary because introducing a BMP for one farm component can impact total farm emissions
by counteracting emission reductions in another farm component (Dijkstra et al., 2011). If
considered as whole-farm strategies, BMPs in dairy production systems have the potential to
reduce 41% of carbon and reactive nitrogen footprints, while increasing net monetary return
and milk production (Veltman et al., 2018).

As a component of the Dairy-CAP project, we evaluate the global impact and effectiveness of
the management practices that were developed for U.S. dairy farms. We seek to understand how
implementation of whole-farm BMPs can contribute to the reduction in atmospheric non-CO2

greenhouse gases in an effort to reach policy-relevant temperature targets in a warming world.

To our knowledge, no studies exist that estimate the dairy contribution to warming or
calculate how mitigation efforts in the dairy subsector can limit future warming. However,
several modeling studies look at net livestock emissions, in which emissions from beef production
and dairy production are aggregated together (Beach et al., 2015; Persson et al., 2015). Using a
carbon-climate model, a recent study determined that global livestock emissions caused about
23% of the total warming in 2010 and could potentially lead to an additional 0.23 °C of warming
by 2100 (Reisinger and Clark, 2018).
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Our work extends beyond previous livestock studies by using whole-farm BMP strategies to
inform plausible emission reductions within an Earth system model of intermediate complexity.
The model we employ contains a more sophisticated representation of the carbon-cycle with
interactive atmospheric chemistry to capture the time-evolving chemical feedbacks that extend
the lifetime of atmospheric species like CH4 and ozone.

Dairy-CAP research results guide the development of future emission scenarios for this Earth
system modeling study. We design two plausible emission scenarios based on the whole-farm
BMP strategies for two farm sizes; a representative 150-cow and 1500-cow U.S. dairy farm as
defined in Veltman et al. (2018). The scenarios assume whole-farm BMPs begin to be globally
implemented in 2020 and are fully employed within 30 years. Because it is unlikely all farms
would abruptly implement BMPs, we use a linear trend in emissions reductions to broadly
represent a wide range of pathways for economies to adjust to new farming technologies and
practices. With this study, we demonstrate the global impact agricultural mitigation options
can have on the global mean temperature. By demonstrating how non-CO2 reductions from
globally implemented BMPs will limit future warming, our study could help motivate the dairy
and agricultural policy makers to begin transitioning to better farm practices.

2.3 Methods

2.3.1 Whole-farm Beneficial Management Practices

Here, we briefly summarize the Dairy-CAP work of Veltman et al. (2018) which developed
whole-farm beneficial management practices (BMPs) for two distinct but representative U.S.
dairy farms. Simulated farms portray present-day dairy farming practices of a small 150 herd-size
Wisconsin farm and a 1500 herd-size New York farm. As a comparison, a control farm with no
BMPs was simulated for each farm size. BMPs were applied to three farm components; animal
feed, manure management, and field cultivation. The individual BMPs for each component
were combined to provide whole-farm mitigation strategies. Implementation of the combined
strategies was simulated on a whole-farm process-based model, Integrated Farm System Model
(IFSM4.3) (Alan Rotz et al., 2015). In the simulations, cultivated area and herd size were fixed,
milk production was allowed to increase, and purchases of crops and proteins were minimized.
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Table 2.1. Emission scenarios including whole-farm BMP scenario descriptions, prescribed emission reductions, and global mean
temperature change relative to preindustrial levels using a 20-year running mean centered on 2090. BMP descriptions and raw data
provided by Veltman et al. (2018).

Global
Emission
Reduction

GMSAT
(relative to
1861-1880)

Scenario Description CH4 N2O CO2 ∆ T (°C)

No Mitigation Business as usual projection. No climate policies after 2015. No BMPs included. 0% 0% 0% 3.14

Dairy - Low
Mitigation

Resembles a 1500-cow farm.
Non-CO2 emission reductions applied to the global dairy subsector.
Feed BMPs: 50% forage rations, high NDF, high feed efficiency, decreased diet protein.
Manure BMPs: anaerobic digester, manure solids separated.
Field BMPs: cover crop, no-till system, subsurface injection of manure,
summer application of manure.

43% 4% 10% 3.12

Dairy - High
Mitigation

Resembles a 150-cow farm.
Non-CO2 emission reductions applied to the global dairy subsector.,
Feed BMPs: 50% forage rations, high NDF, high feed efficiency, decreased diet protein.
Manure BMPs: sealed flare storage, free-stall barn for heifers.
Field BMPs: no-till system, subsurface injection of manure, summer application of manure.

53% 56% 20% 3.10

Agr - Low
Mitigation

Same percent emission reductions as the Dairy - Low Mitigation scenario
but emission reductions applied to the whole agricultural sector. 43% 4% 10% 2.95

Agr - High
Mitigation

Same percent emission reductions as the Dairy - High mitigation scenario
but emission reductions applied to the whole agricultural sector. 53% 56% 20% 2.92
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Three types of BMPs were considered; cow feed, manure processing, and field cultivation. A
description for each BMP is in Table 2.1. Both the 150-cow and 1500-cow mitigation strategies
assumed the same feed BMPs. This included providing lactating cows feed with low forage rations
at 50% dry matter intake, increased (2%) neutral detergent fiber, decreased diet protein (14%),
and increased cow feed efficiency (1.65 kg milk per kg feed of dry matter intake). The mitigation
strategies varied in their prescribed manure management and field cultivation practices. The
150-cow farm applied a flare to burn trapped biogas in a sealed manure storage system and
shelters the heifers in a separate free-stall barn. In comparison, the larger 1500-cow farm used
a separator to remove the manure-solids and ran an anaerobic digester on the liquid manure.
The two farm strategies were similar in the way fields were managed. Both used a no-till crop
establishment with subsurface injection of manure and summer manure application on the fields.
The larger farm also applied an additional grass cover-crop following corn harvest. Further
details about each BMP studied by the Dairy-CAP project can be found in Veltman et al.
(2018).

For both the large and small herd-size farms, there is an overall potential to reduce greenhouse
gas emissions by implementing whole-farm BMP strategies (Table 2.1). Smaller farms have
greater mitigation potential than large farms due to the scale of the infrastructure, applied
practices, and herd size. For this reason, we describe the 150-cow farm as the Dairy-High
Mitigation scenario and the 1500-cow farm the Dairy-Low Mitigation scenario. Compared to a
controlled no-BMP farm scenario, a small 150-cow farm can reduce CH4 emissions by 53% per
hectare, and reduce N2O and CO2 emissions by 56% and 20%, respectively per hectare. A large
1500-cow farm can reduce CH4 emissions by 43% per hectare, N2O emissions by 4%, and CO2

emissions by 10% per hectare.

2.3.2 Estimation of Regional and Global Dairy Emissions

Because emission projections that drive Earth system models rarely separate agricultural
emissions into subsectors, it is necessary to estimate dairy emissions from an external data
set. We infer percentage contributions of non-CO2 emissions attributable to the global dairy
subsector using the FAOSTAT database (FAO, 2018). The FAOSTAT classifies agricultural
emissions into commodity and activity categories for nearly 200 countries without relying on
any equivalence metric like the GWP (Tubiello et al., 2013). Direct and indirect emissions
of CH4 and N2O are documented for dairy activities related to manure management, manure
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Figure 2.1. Fraction of CH4 and N2O agricultural emissions that come from dairy practices of manure
management, manure application to soils and pasture, and enteric fermentation for the world and 16
economic regions, averaged over 2007–2016. Africa [AFR], Australia and New Zealand [ANZ], High
Income East Asia [ASI], Brazil [BRA], Canada [CAN], China [CHN], European Union [EUR], India
[IND], Japan [JPN], Central and South America [LAM], Middle East [MES], Mexico [MEX], Rest of
East Asia [REA], Rest of Europe and Central Asia [ROE], Russia [RUS], United States of America
[USA]. Data provided by the FAOSTAT (FAO, 2018).

application to soils and pasture, and enteric fermentation. However, the FAOSTAT omits CO2

emissions from dairy and treats them as carbon neutral. We take a 10-year average for the
non-CO2 emissions over the 2007–2016 period to reflect recent emission trends in dairy activities.
To account for localized differences in dairy production and practices, we partition country-level
dairy emissions into 16 economic regions.

Non-CO2 dairy emissions are then compared to emissions from the whole agricultural sector
to calculate fractional contributions for each region (Figure 2.1). In every region, CH4 emissions,
originating primarily from enteric fermentation, predominate all dairy emissions. Methane
emissions also vary significantly across regions, from 1% in high income countries of East Asia
to 41% in Russia, reflecting the diversity in farm practices and production sizes. Unlike the
variability in dairy CH4 emissions, N2O emissions remain fairly homogeneous across nations.
Nitrous oxide emissions coming from manure management and field application tend to stay
less than 13% of total N2O agricultural emissions.
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We assert that our approach is likely to underestimate dairy emissions and thus potential
warming mitigation attributed to milk production because the FAOSTAT data does not con-
stitute a full life-cycle assessment (LCA). Methodologies for LCA are designed to assess the
environmental impact at all stages of dairy production from the development of feed to the
processing of milk. Only a select number of studies have conducted LCA approaches for dairy
systems on a country-by-country basis (Mc Geough et al., 2012; Yan et al., 2013; Weiler et al.,
2014). But, LCA quantification of global dairy emissions remains a challenge as measurements,
particularly those in developing nations, are limited and often highly uncertain. In addition, the
data products from LCA use aggregated CO2-equivalencies to compare emissions of greenhouse
gases, making it difficult to extract separate emissions. Using different life cycle assessment
models, two studies have estimated global dairy emissions make up around 2.7% of total an-
thropogenic emissions (Gerber et al., 2010; Hagemann et al., 2012). This figure agrees with our
estimate of 1.2% based on CH4 and N2O dairy activities within the FAOSTAT.

2.3.3 Emission Scenarios

We develop five emission scenarios (Table 2.1) to demonstrate the influence agricultural mitigation
strategies have on future global climate change. We include a business as usual scenario to
represent the future in anthropogenic emissions without any climate policies. And, we develop
emission reduction strategies designed to reflect the mitigation potential of the two U.S. dairy
farms considered by the Dairy-CAP project (Veltman et al., 2018).

To design our emission scenarios, we use emissions output of the Economic Projection and
Policy Analysis model Version 5.0 (EPPA), a computable general equilibrium model of the world
economy and human system (Paltsev et al., 2005; Chen et al., 2017). EPPA projects global
economic development at multi-regional and multi-sectoral levels by solving for the prices of
consumer goods, as well as, domestic and international trade of energy and non-energy markets.
It allows for simulation of changes in land-use, technological advancements, and greenhouse gas
emissions. Using population mapping, the scenarios spatially distribute anthropogenic emissions
as either agricultural or non-agricultural and interpolate to yield yearly latitudinal emissions.
More importantly, emissions from agricultural subsectors are aggregated within EPPA. Modeling
detailed changes in individual farm practices, food demand, and production by country is not
structurally possible in EPPA’s current configuration.
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For our No Mitigation scenario, we use a projection that assumes no climate policies restrict
greenhouse gas emissions or pollutants after 2015 (Chen et al., 2015). Starting from about 330
million tons (Mt) in 2005, CH4 emissions grow to nearly 700 Mt in 2100 (Figure 2.2), primarily
driven by agricultural growth in East Asia and Africa. In the No Mitigation scenario, N2O
emissions initially increase from 10 Mt in 2005 to 17.8 Mt in 2060, but are then followed by a
slight decrease in emissions to 17 Mt in 2100. Increases in CO2 emissions are largely attributed
to the fossil fuel industry during the twenty-first century, with some land-use changes offsetting
the increase. Agricultural emissions of CO2 are minuscule compared to the energy and industrial
sectors. By 2100, total CO2 emissions are about 60 Gigatons (Gt) per year, nearly doubling
from 2005.

The No Mitigation scenario is comparable to the range in emission trajectories of the IPCC
Shared Socioeconomic Pathways (SSPs) (Calvin et al., 2017; Fricko et al., 2017; Fujimori et al.,
2017; Kriegler et al., 2017; van Vuuren et al., 2017). For emissions through the twenty-first
century, the No Mitigation scenario considers CH4 and N2O emissions on the higher end of
the SSP range, while CO2 emissions fall between the mid-to-low end of the SSP range (Figure
2.2). The differences lie within the assumptions of technological growth and regional economic
development.

We evaluate four plausible emission reduction scenarios to assess the potential mitigation of
future climate change with the implementation of best management practices on dairy farms.
The mitigation scenarios are developed as an extension of the results from the Dairy-CAP
project (Veltman et al., 2018). The Dairy-CAP project analyzed emissions from two farm sizes,
a 150-cow farm and 1500-cow farm, and concluded that they are able to reduce emissions of
CH4, N2O, and CO2 by implementing whole-farm BMP strategies.

Because the EPPA model output aggregates agricultural emissions, we estimate dairy
emissions for CH4 and N2O by applying fractional contributions of dairy to total agricultural
emissions for each region in EPPA (see Figure 2.1). Without specific details of future dairy
systems (e.g., regional effects or improved mitigation strategies), this makes the assumption
that the fraction of dairy emissions for all agricultural emissions remains constant over time.
However, the method does allow for fluctuations in future dairy emissions as the projection in
total agricultural emissions fluctuates.
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Figure 2.2. Net global emissions of CH4, N2O, CO2 for the No Mitigation scenario (black), low agricultural mitigation (red-orange),
high agricultural mitigation (blue), small (pink) and large (green) dairy farm mitigation. The shaded light gray lines indicate the range
in the IPCC Shared Socioeconomic Pathways (SSP) for the five marker scenarios.
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Using the No Mitigation scenario, we apply percent reductions of CH4, N2O, and CO2 (Table
2.1) to the estimated dairy emissions from 2020 to 2050, with linear interpolation. Whole-farm
BMPs are assumed to be fully implemented on a global scale by 2050 and continue to be
implemented at their full reduction potential through 2100. For CO2, emission reductions are
applied to the whole agricultural sector. All other non-dairy agricultural and non-agricultural
emissions of greenhouse gases and pollutants follow the No Mitigation scenario emissions. We
call the two dairy farm mitigation scenarios Dairy-Low Mitigation (DairyLow) and Dairy-High
Mitigation (DairyHigh) for the large and small farm strategies, respectively. Designing the
two farm emission scenarios recognizes the existing heterogeneity in dairy farms across the
globe, where it is presumed the average farm would most likely fall somewhere between the two
scenarios.

Because we are interested in the potential impact of emission reductions within the whole
agricultural sector, we design an additional two scenarios based on the same percent emission
reduction estimates as the farm strategies. The Agri-Low Mitigation (AgLow) scenario applies
percent emission reductions to the whole agricultural sector as described by the DairyLow
scenario, while the Agri-High Mitigation (AgHigh) applies DairyHigh reductions to the whole
agricultural sector. Emission pathways and non-agricultural emissions remain the same as the
farm mitigation scenarios. With these assumptions, it is important to note that agricultural and
dairy emissions constitute a decreasing share of total anthropogenic emissions as CO2 emissions
from fossil fuels increase unabated in the emission scenarios.

2.3.4 Earth System Modeling

We use the MIT Earth System Model (MESM) to simulate future climate from the emissions
projections. The MESM couples submodels of the atmosphere, ocean, thermodynamic sea-ice,
and terrestrial biosphere, and thus simulates critical feedbacks within the Earth system (Sokolov
et al., 2018). The model is advantageous in its ability to simulate the Earth system response to
imposed climate policy and emission abatement measures, as well as, providing a tool to analyze
uncertainties intrinsic to the climate system and emission scenarios (Reilly et al., 2012; Gurgel
et al., 2011).

The MESM includes a two-dimensional zonally-averaged atmospheric dynamics and chemistry
submodel with a statistical dynamical description of the atmosphere (Sokolov et al., 2005).
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The detail in carbon cycle dynamics and atmospheric chemistry makes the model ideal for
the application of testing reductions in anthropogenic emissions. Atmospheric composition is
determined by solving the continuity equations in mass conservative flux form for 33 chemical
species, along with 41 gas-phase and 12 heterogeneous reactions (Wang et al., 1998; Sokolov
and Stone, 1998). For long-lived species, concentrations are affected by transport, surface
deposition, and production and loss by chemical reactions. As a result, the MESM accounts
for time-evolving and temperature dependent chemical feedbacks that extend the lifetime and
loss rate of atmospheric species. One example is the inclusion of the impacts of CH4 and N2O
on both the production of tropospheric water vapor and the depletion of tropospheric ozone.
However, atmospheric chemistry is turned off in the stratosphere and stratospheric ozone is
prescribed beyond the 150 mb level.

The terrestrial submodel consists of a full representation of the carbon cycle, with the
inclusion of natural CH4 and N2O fluxes (Sokolov et al., 2008). A mixed layer anomaly diffusing
ocean model completes the carbon cycle through explicit parameterization of mixed layer
biogeochemistry and simulation of carbon and heat uptake.

Climate model parameters that set the equilibrium climate sensitivity (3.30 °C), square
root of the average diffusion coefficient of heat anomalies into the ocean below the mixed-layer
(4.41 cm2 s−1), and net anthropogenic aerosol forcing (−0.25 W m−2) account for the uncertainty
in future climate system behavior. We select values for the three model parameters based on
the greatest likelihood probabilistic estimation that yields model output that best match with
observational records of surface warming and ocean heat content (Libardoni et al., 2018b). The
combination of equilibrium climate sensitivity and rate of ocean heat uptake sets the transient
climate sensitivity of the model run (1.75 °C).

Each MESM simulation has two distinct stages. In the first stage, the model is driven with
historical concentrations of relevant greenhouse gases and aerosols from 1861 to 2005. The
climate model parameters remain the same when the model transitions from being concentration-
driven to emission-driven (Sokolov et al., 2018). The second stage uses derived latitudinally
distributed emissions from EPPA to convert greenhouse gases and pollutants into atmospheric
concentrations.
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2.4 Results

Following global implementation in 2020, atmospheric concentrations of mitigated greenhouse
gases decline when compared to the No Mitigation scenario (Figure 2.3). The AgHigh demon-
strates the greatest mitigation potential, having an atmospheric CH4 reduction of over 27%
compared to the No Mitigation scenario in 2100. The AgLow strategy shows a similar decline in
CH4 concentration, declining by 24%. However, the two simulations vary greatly in their N2O
response. N2O shows a drop in concentration by 34% for a AgHigh strategy when compared
with No Mitigation in 2100. In comparison, the AgLow strategy provides about a 3% decline
in mean N2O concentration. Although not as extensive, dairy emission reductions provide a
notable impact on non-CO2 concentrations. Both the DairyLow and DairyHigh simulations
reduce CH4 concentrations by more than 100 ppb in 2100. And, the dairy simulations reduce
N2O concentrations by 1.3 to 3.3 ppb.

However, there are no substantial decreases in CO2 concentration for the mitigation scenarios
despite a 10–20% reduction in agricultural emissions. This is because agricultural CO2 emissions
are minuscule, less than 1%, compared to net anthropogenic CO2 emissions by the end of the
century. As a result, the temperature impact is primarily influenced by non-CO2 emission
reductions.

The reduction in greenhouse gas concentrations generates a change in the projected response
for the global mean temperature relative to the 1861–1880 average for the five emission scenarios
(Figure 2.4). The chaotic nature of the global temperature curves reflects the uncertainty
in internal processes of the climate system and decadal to multi-decadal regional weather
fluctuations. By 2100, the No Mitigation scenario increases to 3.5 °C, well above the 2 °C
temperature target of the Paris Agreement (Meinshausen et al., 2009).

The mitigation scenarios begin to show a deviation in global mean temperature from the
No Mitigation scenario immediately following BMP implementation (Figure 2.4). If the global
agricultural industry could reduce emissions to the level seen by the simulated small and large
farms, global temperature may be reduced by 0.21 °C on average by the end of the century.
Although global emission cuts would be small, dairy farms have the potential to make an
impact on mitigating future warming. We determine that the average 0.03 °C decrease in global
mean temperature results from a 43–53% reduction in CH4 emissions, 4–54% reduction in N2O
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emissions, and 10–20% reduction in CO2 emissions of the global dairy subsector, in which
reductions are guided by findings from BMP implementation in U.S. dairy farms.

To understand the mitigation potential of each greenhouse gas reduced, we simulate the
AgHigh strategy with individual reductions of CH4, CO2, and N2O, and reduction combinations
of the three gases (Figure 2.5). In this case study, only agricultural emissions are reduced. Non-
agricultural emissions follow the No Mitigation scenario. Reducing all three greenhouse gases
has the potential to limit warming by 0.25 °C in the year 2100. However, no significant change
in the global temperature occurs when only CO2 emissions are reduced. As fossil fuel emissions
increase unabated, the proportion of CO2 agricultural emissions to total anthropogenic CO2

emissions becomes minuscule, making the impact of a 20% reduction less apparent. This suggests
that the emission reductions of non-CO2 gases in the agricultural sector have a significant impact
in mitigating projected temperature change.

Simulations of N2O and CH4 agricultural emission reductions show greater promise in limiting
future warming (Figure 2.5). Reductions in N2O and more notably reductions in CH4 decrease
the projected temperature rise by 0.07 °C and 0.22 °C, respectively, in 2100. The substantial
difference results from the larger mitigation in CH4, where early reductions in CH4 result in
a larger decrease in radiative forcing and leads to decreased warming rates. The combined
agricultural reductions in N2O and CH4 are able to reduce the 2100 temperature projection by
0.23 °C, because they contribute 6% of the instantaneous radiative forcing in 2100. We note
that the temperature projections are influenced by internal variability and therefore are not
additive for each combination of greenhouse gas mitigation.
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Figure 2.3. Global mean atmospheric concentrations of CH4, N2O, and CO2 for the No Mitigation scenario (black), low (red-orange)
and high (blue) agricultural mitigation scenarios, and low (green) and high (pink) dairy farm mitigation scenarios. Overlaid in each
panel is the observed concentration (yellow).
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2.5 Discussion and Conclusion

In this study, we focus on how global implementation of BMPs in the agricultural sector can
further reduce non-CO2 greenhouse gas emissions and assist in reaching temperature goals set
by international policy. We have two main advances in this work. First, we use a coupled Earth
system model containing full chemistry and interactive carbon cycle components to project
changes in future greenhouse gas concentrations. Second, the idealized emission reductions
are guided by the results of the coordinated Dairy-CAP project, in which whole-farm emission
reductions were estimated for representative 150-cow and 1500-cow U.S. dairy farms (Veltman
et al., 2018). Using Dairy-CAP results, we apply emission reductions of CH4, N2O, and CO2

across the global dairy subsector.

Based on our simulations, we find that if BMP implementation for the dairy industry is
fully realized by 2050 and sustained, warming in the late century can be reduced on average by
0.03 °C or 1% of total warming when compared to a business as usual emission scenario. We
emphasize that our result could be an underestimate since dairy emissions from the FAOSTAT
lack full life cycle assessment, and only account for a selection of CH4 and N2O dairy practices.
While this may be the case, our results agree with a recent analysis looking at the contribution of
livestock (combined beef, dairy, poultry, etc) to past and future warming (Reisinger and Clark,
2018). Under a low emissions scenario (RCP2.6) with an additional 50% reduction in CH4 and
N2O from livestock, 0.08 °C is reduced by 2100. However, if emissions continue unabated under
a high emissions scenario (RCP8.5), the study found direct livestock non-CO2 emissions alone
could lead to 0.23 °C or 5% of total warming in 2100.

Our results also suggest that immediate action taken across the whole agricultural sector
could potentially reduce future warming 0.21 °C on average or 6% of projected total warming
by the end of the century. We find that reductions in agricultural non-CO2 gases provide the
greatest mitigation impact because their high emission rates and their stronger radiative effect
per molecule is diminished. However, abatement of non-CO2 agricultural greenhouse gases alone
could not reach a 2 °C target. To reach such a temperature target would require supplemental
reductions in CO2 from the fossil fuel sector. Any delay in the onset of implementation or falling
short of full emission reductions would result in higher non-CO2 atmospheric concentrations
and limit the temperature mitigation potential (Luderer et al., 2013). Our study therefore
demonstrates the importance for immediate action across the globe to begin curtailing agricultural
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emissions with new management practices.

Through changes in farm techniques, infrastructure, scale, and efficiency, there are countless
possible ways in which agricultural emissions can be reduced across the globe. We apply
distinct linear emission reductions to the global dairy subsector and aggregated agricultural
sector to address the uncertainty in the future emission pathway. By doing so, this method
accounts for possible technological advances and newly developed BMPs that have yet to be
implemented on the farm scale. It also accounts for potential trade-offs across the globe, where
some industrialized nations may reduce emissions while others increase their emissions.

We acknowledge and account for the fact that not all farms resemble the representative
highly-efficient U.S. dairy farms used to calculate the BMP emission reductions. Using both
a small farm and large farm scenario allows for the true distribution of all farm sizes to fall
somewhere in between the two scenarios. It is well known that the mitigation potential varies
around the globe depending on production volume and emission intensities (Zhang et al., 2017).
High production areas, usually in industrialized countries, have a high mitigation potential and
can begin to reduce emissions from the largest sources of emissions; feed production, manure, and
enteric fermentation (Gerber et al., 2013). Low production regions, such as Sub-Saharan Africa,
are generally characterized by high emission intensities and low mitigation potential. Albeit,
areas such as these are often remote and have financial difficulties adopting new practices. But
if adopted, sustainable agricultural practices could yield substantial improvements in emission
intensities and food security (Lipper et al., 2014).
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Chapter 3 |

Earth system response to impulse
changes in methane

3.1 Abstract

Idealized simulations of pulse-like perturbations are used to understand the Earth system response
and quantify climate feedbacks resulting from additional emissions. With much attention spent
on impulse behavior of carbon dioxide (CO2), a gap exists in the research community on impulse
response behavior of the methane cycle. Our primary focus is to model the Earth system
response to impulse changes in methane emissions under present day concentrations. Depending
on the state of the system and size of the perturbation, nonlinearities that arise within the
system generate perturbations in atmospheric concentration and global mean temperature. In
our simulations, we apply methane pulse emissions of various magnitudes to explore how the
depletion of hydroxyl radical during oxidation leads to an extension of methane’s atmospheric
residence time. We determine that methane’s atmospheric residence time is dependent on the
remaining airborne fraction and the level of atmospheric warming that results following the
pulse emission. An emergent temperature-dependence of atmospheric chemistry and carbon
pools provides insight into future changes in the methane cycle as the global climate is projected
to warm. Our analysis provides a basis for understanding how uncertainties in future methane
and CO2 emissions could influence the Earth system and lead to potential feedbacks that may
further alter the climate.
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3.2 Introduction

Understanding how anthropogenic perturbations of heat-trapping gases are affecting the Earth’s
climate is of utmost importance for the prediction of future climate change. The Earth
system response to perturbations can be explored through idealized impulse response tests
of comprehensive climate models. A typical model scenario is to inject a sizable emission or
atmospheric concentration perturbation and simulate the decay of the perturbation back to a
steady-state (Joos and Bruno, 1996). Impulse simulations are able to uncover chemical and
physical feedbacks that would otherwise be obscured in standard emission scenarios. These
experiments have been particularly useful in modeling the change in atmospheric concentration
of a species and to understand the complex subsystems like the carbon cycle (Gasser et al., 2017;
Zickfeld et al., 2011; Gregory et al., 2009; Hooss et al., 2001). Impulses of carbon dioxide (CO2)
have been extensively studied for Earth System Models (ESMs) and models of intermediate
complexity (EMICs) (Joos et al., 2013). Their results showed complex models are sensitive to
perturbation size, climatic background conditions, and carbon cycle-climate feedbacks. Building
upon their findings, we further explore feedbacks related to methane that arise from impulse
changes to atmospheric chemistry and biogeochemistry in an intermediate-complexity model.

As motivation for our work, few studies examine the model behavior to impulse responses to
non-CO2 gases. Those studies that do provide non-CO2 impulse responses use reduced-form
models that do not simulate feedback processes that can further alter the climate system. Those
studies also are primarily aimed at the calculation of climate metrics that compare radiative
impacts of atmospheric species (Kumari et al., 2019; Persson et al., 2015; Collins et al., 2013;
Prather, 1996), and tend to include limited discussions on the physical foundations and science
behind the metrics. As a result, a gap in the literature exists for assessing non-CO2 impulse
responses, particularly from methane, in comprehensive climate models (Schwarber et al., 2019).
As a reactive short-lived gas, methane emission perturbations influence chemical interactions and
abundances of other atmospheric species. This results in relative climate impact that changes
over time (Myhre et al., 2013).

Because it is computationally expensive to run multiple impulse simulations for long timescale
processes within ESMs, cost-efficient reduced-form models called impulse response functions
(IRFs) emulate the behavior of the comprehensive models. Built as Green’s functions, or sums
of exponential decay functions of differing timescales, an IRF can serve as a substitute for
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subsystem of a fully complex model (Leach et al., 2020; Strassmann and Joos, 2018; Millar et al.,
2017). By definition, impulse response functions are simple formulations that describe the linear
nature of a dynamical subsystem of the Earth to a perturbation (Joos and Bruno, 1996). Taking
this into consideration, IRFs are limited in their ability to only describe one state of the climate
system. Depending on the state of the system emerging nonlinearities could generate very
different climate response outcomes (Gregory et al., 2009; Zickfeld and Herrington, 2015). For
example, the IPCC AR5 impulse response model, developed to replicate a multi-model response
to a 100 Gigaton carbon (GtC) pulse from Joos et al. (2013), greatly overestimates the global
mean temperature response to an even greater instantaneous quadrupling of CO2 (Schwarber
et al., 2019). The poor IRF representation of the complex model behavior is primarily due to
the fact that the IRF is insensitive to the pulse size and background concentration.

For small perturbations, IRFs can approximate some nonlinearities exhibited in complex
climate models, but only in an implicit manner (Hooss et al., 2001). The performance of reduced-
complexity IRF models tend to improve when the carbon cycle-climate feedback is included.
But, there is room for improvement as a pulsed emission can still result in an underestimate of
fractional airborne CO2 even with simplified feedbacks (Schwarber et al., 2019). Therefore, it
is imperative to explore how multiple climate states, indirect effects, and size of the idealized
perturbation lead to nonlinearities that could affect impulse responses.

In this study, we diagnose the Earth system response of an intermediate complexity model to
stylized emission perturbations, thus justifying the need for reduced-form models to incorporate
feedbacks into IRFs. This is highly motivated by the need to understand the uncertainties in
projected model responses due to chemical and physical feedbacks associated with the carbon
cycle. While there are several greenhouse gases and pollutants worth modeling, we focus on
how to characterize the response to pulse emissions of methane. Through impulse tests, we gain
insight into the time-dependence and temperature-dependence of the atmospheric chemistry
that induce some of the emerging nonlinearities of the climate system. Our results analyze the
perturbation’s decay as it depends on the magnitude of the pulse size, saturation of the sinks,
and the increasing longevity of carbon in the atmosphere. We put the impulse response into
perspective by simulating an identical pulse of CO2. By comparing the results from both gases,
we highlight the different radiative efficiencies and timescales that result from the atmospheric
balance of the emission sources and carbon sinks.
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3.3 Methods

3.3.1 MIT Earth System Model Framework

For this research, we use the Massachusetts Institute of Technology (MIT) Earth System Model
(MESM) (Sokolov et al., 2018, 2005) because the model is capable of flexibility in parameter space
and computational speed at handling uncertainty analysis, and can diagnose the model response
to alternative emission scenarios. The MESM links models of zonally-averaged atmospheric
dynamics, ocean, terrestrial biosphere, and thermodynamic sea-ice to understand their evolution
and interactions under different forcing scenarios (Figure 3.1). Being fully coupled, the model
includes simulations of critical feedbacks among its components comparable to those of more
complex models (Brasseur et al., 2016).

The MESM contains carbon cycle dynamics, biogeochemistry, and interactive atmospheric
chemistry; critical components of an ESM that provide an appropriate modeling system to

Figure 3.1. Schematic of the MIT Earth System Model (MESM) of Intermediate Complexity. Figure
taken from Sokolov et al. (2018).
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assess the IRF emulation of the climate system. Primarily, we focus on the components of
the biogeochemistry that control the magnitude and decay rate of the CO2 and CH4 pulses
and how these are closely connected to the climate response. Terrestrial carbon and nitrogen
dynamics determine the carbon storage pool and natural fluxes of CO2, CH4, and N2O (Sokolov
et al., 2008; Schlosser et al., 2007). By including processes such as soil hydraulics, nutrient
cycling, and carbon sequestration, the model includes an ecosystem component that is required
to study the terrestrial carbon cycle. The other distinguishing component of the MESM model
is its interactive atmospheric chemistry. Calculated on a daily timestamp, the atmospheric
composition of climate-relevant gases and aerosols simulate the impact other trace atmospheric
species have on methane’s primary sink, OH (Wang et al., 1998; Sokolov and Stone, 1998).

Both natural and anthropogenic climate forcing agents drive the coupled system. In historical
simulations, the model is first spun up by prescribed changes in greenhouse gases, aerosols,
and solar irradiance from 1861 to 2005. Once the historical simulation is completed, the fully
coupled-carbon chemistry model is initiated at year 2006 and driven by emission projections.

3.3.2 Uncertain Parameter Selection

The MESM was designed to be flexible through its ability to change key climate system properties:
equilibrium climate sensitivity, the rate of ocean heat uptake, and adjustments to forcing efficacy.
Given the model’s computational efficiency, testing multiple combinations of the climate system
parameters and estimating their probability distributions makes the MESM a powerful tool
for uncertainty analysis (Forest, 2002; Forest et al., 2006, 2008; Libardoni and Forest, 2011;
Libardoni et al., 2018a,b, 2019). The selection in parameter values must be chosen so that the
model reproduces observational records, but also allows for spanning parametric uncertainty.

In our work, to obtain a range of climate system responses to the impulse forcings, we
systematically vary the three parameters by drawing from the joint probability distribution of
Libardoni et al. (2019). We sample from the joint distributions using Latin Hypercube Sampling
(LHS) technique. LHS is a convenient sampling method because it samples evenly across all
parametric values and samples more frequently in areas of high probability density. We produce
50 drawings of parameter sets to run a 50 member ensemble of the MESM. Due to one set
of parameters causing a numerical error in the terrestrial ecosystem model of the MESM, our
ensemble is cut down to 49 members for our analysis. Parameter sets are shown in Appendix A.
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3.3.3 Emission Scenario Descriptions

We run two simulations with the same parameter settings. In the first, we run a baseline
scenario. In the second, we add a pulse of emissions for CO2 or CH4. This approach allows us to
estimate the impact of the pulse while the climate is changing similar to the current trajectory.
We conduct impulse tests against a time-changing concentration background since it is a more
realistic scenario that can reveal outcomes that are not evident under steady state conditions
used in prior studies (Joos et al., 2013).

The baseline emission scenario produced by the MIT Economic Projection Policy Analysis
(EPPA) model (Paltsev et al., 2005), which represents climate policies and economic projections
proposed during the 2015 Paris Climate Conference, up until 2100 (Chen et al., 2016). Beyond
2100, annual emissions are held constant at the 2100 rate. To capture some of the long timescale
processes of the carbon cycle, we run the model for several centuries. As stated earlier, 49
ensemble members are run for the baseline scenario and each pulse scenario.
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Figure 3.2. Global annual anthropogenic methane emissions for the baseline emission scenario for
2006-2100.
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Emission pulses occur over the first year of the MESM coupled carbon-chemistry run (i.e.
year 2006), added to the baseline scenario. To better understand the time-evolution of the pulse
response as a function of magnitude, we conduct impulse scenarios for sizes of 0.1, 0.5, 1.0, 5.0,
10.0, and 50.0 Gigatons of carbon (GtC). We use units of GtC to directly compare emissions
of methane and carbon dioxide, where a Gigaton of carbon is equivalent to 1336 Teragrams
of methane (Tg-CH4) and 3.67 Gigatons of CO2 (Gt-CO2). We follow the procedure of Joos
et al. (2013), where the standard size of a CO2 pulse that produces a good signal-to-noise ratio
is 100 GtC. The response from the CO2 pulse is compared with a methane pulse of the same
magnitude. To show impulse behavior, our results take the difference between pulse perturbation
scenario and the baseline scenario.

3.3.3.1 Pulse Size Analogues

To put the pulse sizes into perspective with typical annual anthropogenic emissions of methane,
it is estimated 0.28 GtC yr−1 (378 Tg-CH4 yr−1) was released in 2017 (Saunois et al., 2020).
Including natural emissions, total global methane emissions are estimated at 0.55 GtC yr−1 (745
Tg-CH4 yr−1). This indicates pulse sizes between 0.1 and 0.5 GtC are representative of annual
methane emissions.

A large potential source of carbon emissions could come from a rapid thawing of permafrost.
Surface warming melts ground ice, making the soil more vulnerable to decomposition by
microbes and out-gassing of CO2 and CH4 (Holm et al., 2020; Schuur et al., 2015). Current
estimates of permafrost methane emissions make up a modest portion of the methane budget,
estimated at 0.01–0.03 GtC yr−1 (15–40 Tg-CH4 yr−1) (Kirschke et al., 2013). With the largest
terrestrial organic carbon pool of 1330–1580 GtC (Hugelius et al., 2014), northern permafrost
soils are predicted to release a cumulative 28–113 GtC by 2100 under a high emission scenario,
Representative Concentration Pathway (RCP) 8.5 scenario (Koven et al., 2015). Of the increased
carbon emissions, annual permafrost methane emissions could increase by 35% by the end of
the century, but still equate to far less than wetland and anthropogenic emissions (< 0.04 GtC
yr−1). Given this, our large pulse sizes (10–100 GtC) are analogous to all of the estimated
permafrost emissions released in a single year - a very unlikely scenario. Nevertheless, the large
methane pulses push the MESM to explore nonlinearities and temperature thresholds of the
climate system, as well as, allowing for comparison with 100 GtC carbon dioxide pulses found
in previous studies (Joos et al., 2013).
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3.4 Results

3.4.1 Influence of Methane Pulse Size on Earth System Response

Immediately following the pulse emission year, the level of atmospheric methane concentration
peaks (Figure 3.3). The evolution of the methane pulse response shows a rapid decrease in
concentration over the first several years and thereafter continues with a slow decline to zero.
The pulse size greatly determines the magnitude of the peak concentration and the decay rate;
where larger pulses take longer to decay to zero. A 0.1 GtC methane pulse leads to 46 ppb
rise in atmospheric concentration, whereas a pulse size 1000 times greater rises to 49,921 ppb.
We note that the responses are not directly proportional (i.e. 49,921 is not 1000x46) because
the pulse emissions are spread out over one year, giving the model time to start to decay the
perturbation before the year’s end.
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of atmospheric methane perturbation remaining following the pulse. b) Box-plots of the perturbation
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To better compare the pulse sizes, we show the fraction of atmospheric methane remaining
after the pulse emission (Figure 3.4a). We caution that the 0.1 GtC methane pulse shows
significant noise, as the year to year variability in atmospheric concentration hides the signal of
the pulse. For our analysis, we will focus on the mean response. The ensemble averages of the
0.1, 0.5 and 1.0 GtC methane pulses, show nearly identical evolutionary behavior. Within 18
years of the initial peak perturbation for the ensemble average to remove 63% (i.e. the e-folding
time; amount of time it takes to reach a fraction of 0.36). The average e-folding time increases
for pulse sizes over 1 GtC (Figure 3.4b). A 5 GtC methane pulse takes 20 years and a 50 GtC
pulse takes 33 years to remove 63%, exemplifying the nonlinear response of the methane cycle.
To completely remove the perturbations from the atmosphere, it takes 60–166 years. In other
words, the 0.1–0.5 GtC annual anthropogenic methane emissions we emit this year could linger
in the atmosphere for over 60 years.
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The nonlinear responses to the increasing pulse sizes are directly related to the feedbacks of
the Earth System that affect the oxidation and removal of methane. The chemical oxidation of
CH4 leads to the production of CO2 and ozone (O3) through the reaction with hydroxyl radical
(OH) (Ehhalt, 1974; Ehhalt and Schmidt, 1978). Any variations in tropospheric OH will have a
direct impact on methane levels and methane atmospheric residence time (Prather, 1994). The
net reaction eliminates tropospheric OH, the main driver for methane’s atmospheric sink (Figure
3.5). Because hydroxyl radicals are highly reactive and short lived species, their abundance
promptly falls following the pulse. As their concentrations recover, OH shows an evolution that
mirrors the evolution of the methane perturbation. From this, we see the magnitude of the OH
depletion also shows a nonlinearity, where the peak depletion of the 50 GtC pulse and double its
size (i.e. the 100 GtC pulse) only differ by 11%. Potentially, this could be related to a threshold
limit within the reaction rate calculations of atmospheric chemistry.
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Figure 3.5. Change in tropospheric hydroxyl radicals for several methane pulse sizes. Solid dark lines
are the ensemble means.
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Because OH reacts with several pollutants in the atmosphere, the depletion of OH abundance
leads to a chain reaction in several atmospheric constituents (See Appendix B, Figure B.2). For
one, OH is the primary driver of removing ozone (O3) from the atmosphere. Global ozone levels
increase as the OH abundance decreases (Figure 3.6c). The response time is immediate. Even
for the smallest pulse size, atmospheric ozone increases by 0.2 ppb following a 0.1 GtC methane
pulse. Perturbed ozone levels return to the baseline soon after the methane perturbation is
completely removed.

Through a series of chemical reactions, the carbon molecule from CH4 ends in the production
of a CO2 molecule (Figure 3.6a). Because the chemical production is not immediate, the
rise in atmospheric CO2 occurs more slowly than the response in CH4 or OH. After 13 years
following the methane emission, a 1 GtC methane emission will lead to a peak increase in CO2

concentration by 0.52 ppm. The peak concentration is reached at a later time for larger pulses,
as it takes longer for a larger methane pool to be oxidized into CO2. For roughly 100 years,
CO2 concentrations drop as terrestrial and ocean carbon sinks uptake and store carbon (Figure
3.8). The CO2 response increases again as high global temperatures weaken carbon sinks and
additional background CO2 emissions continue to rise. Effectively, the methane pulse will lead
to an enduring impact on the carbon cycle.

All of the perturbations will lead to a cumulative effect on the global mean surface temperature
(Figure 3.7). Nonetheless, the degree of warming is dependent on the size of the perturbation.
A 0.5 GtC pulse size leads to an average peak warming of 0.03 °C about 7 years following the
methane emission, as it takes time for an initial increase in radiative forcing to heat the surface
layers of the land and ocean (Joos et al., 2013). After another 40 years, global temperatures
return to the baseline. The time it takes to reach the peak temperature increases for larger
pulse sizes. Compared to the 0.5 GtC pulse, the time to reach the peak temperature increases
by 42% for a 5 GtC pulse and by 242% for a 50 GtC methane pulse.

The MESM simulates the feedbacks to the terrestrial and ocean carbon sinks following an
emission perturbation (Figure 3.8). For all pulse sizes, the carbon uptake of the terrestrial
biosphere and ocean surface weaken. For instance, in the three years following a 0.5 GtC methane
pulse, an additional 0.28 GtC of carbon remains in the atmosphere that would otherwise be
absorbed by the land and ocean carbon pools in the baseline scenario. The weakened carbon
pools can be traced back to biogeochemical responses following a release of methane. For one,
O3 that enters the stomata of a plant can damage plant cells and ultimately reduce the species
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Figure 3.7. Global mean surface air temperature change following several pulse perturbations. Shown
are the 49 individual ensemble members and the ensemble mean. Inset: Magnification of smaller pulses.

ability to photosynthesize (Felzer et al., 2005; Norby et al., 2005). In our simulations, the
increase in global tropospheric ozone (Figure 3.6) creates a detrimental effect on photosynthesis
(i.e. carbon fixation) and carbon sequestration. As a result, vegetation absorbs less CO2 than
the baseline scenario. Interestingly, for pulse cases above 0.5 GtC, the terrestrial carbon sink
reverses course and becomes a source of CO2 emissions as the combination of ozone damage and
high temperatures increase plant and soil respiration (See Appendix B, Figure B.3) (Zhuang
et al., 2004).

The oceans remain a sink through the pulse simulations. However, the transient response
shows a weakening of the ocean carbon sink within the first decade following the perturbation
(Figure 3.8b). What drives carbon uptake by the ocean is the partial pressure differences in
CO2 between the atmosphere and the dissolved inorganic carbon just below the ocean surface
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(Friedlingstein et al., 2006). The ratio that measures the ocean’s resistance to CO2 absorption
is the Revelle factor (Revelle and Suess, 1957). The strength of Revelle factor depends on the
ocean’s biogeochemical and thermodynamic responses (Sarmiento et al., 1998). Ocean carbon
uptake is most sensitive to increased sea surface temperature (Joos et al., 1999), as CO2 solubility
has a strong inverse relationship with temperature (Murray and Riley, 1971). In the methane
pulse simulations, an increased sea surface temperature effectively decreases CO2 solubility, thus
showing a weakened uptake when compared to the baseline scenario. Presumably the weakened
uptake is not attributed to changes in atmospheric CO2, as atmospheric CO2 does not greatly
differ from the baseline scenario in the first few years following the pulse (Figure 3.6a).

The MESM also simulates flux changes of natural ecosystems (Figure 3.9). For instance,
wetland microbes react to the increase in temperature by emitting additional methane emissions.
Over 10 years following a 0.5 GtC pulse, an additional 6.3 Tg-CH4 (0.004 GtC) are released from
global wetlands. As for natural N2O emissions, the biogeochemical feedback to the nitrogen
cycle is less evident. Only in large pulse sizes, and consequently high temperature simulations,
increased bacterial denitrification leads to a minuscule increase in nitrogen emissions and N2O
concentration (Figure 3.6b). While this may be the case for the idealized 50 and 100 GtC pulses,
realistic methane emission pulses do not indicate any significant change to the nitrogen cycle.

3.4.2 Methane and Carbon Dioxide Pulse Comparison

Identical 100 GtC emission pulses are separately simulated for CH4 and CO2 (Figure 3.10). By
comparing the two species, we are able to identify the different timescales of the atmospheric
response as they are redistributed by the biogeochemical cycles among the atmosphere, land,
and ocean components. In addition, model results demonstrate how much the gases differ in
their ability to absorb energy, or radiative efficiency. The contribution of the gas to the radiative
forcing depends on the combination of the molecular properties of the gas, the magnitude of
the atmospheric concentration increase, and the species’ residence time. It is important to note
that a 100 GtC emission pulse of CO2 is approximately 10x the global annual fossil emissions
(Friedlingstein et al., 2019), whereas the 100 GtC methane pulse is more than 350x greater than
annual anthropogenic methane emissions (Saunois et al., 2020). As such, the magnitude of the
atmospheric concentration increase is greater for the methane pulse than the CO2 pulse. We
justify the use of 100 GtC pulses in order to demonstrate reliable signal-to-noise from CO2 pulse
and directly compare the same carbon mass flux of the two species.
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Following the pulse perturbation, the atmospheric concentration of both species increases to
a peak perturbation anomaly. The CO2 concentration anomaly after a 100 GtC pulse reaches a
peak 44.9 ppm in the first year (Figure 3.10a), in agreement with the ensemble mean of several
EMICs and ESMs simulated in Joos et al. (2013). Soon after the peak perturbations are reached,
the evolution and decay of the perturbations begin to greatly differ (Figure 3.10b). Initially, the
CO2 perturbation decays at a faster rate than the methane perturbation, where in the first ten
years following the pulse, 25% of the CO2 and 23% of the methane perturbation is removed. This
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may seem counter-intuitive as methane has a shorter residence time than CO2. As demonstrated
from prior results (Figures 3.3 and 3.5), the decay of the methane perturbation depends on
the abundance of tropospheric OH, where higher emission pulses lead to an overabundance of
methane and depletion of OH. The overall effect extends the methane residence time (refer to
Figure 3.4).
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The faster decay of the CO2 is directly related to the ability of the ocean and land sinks
to absorb and store carbon from the atmosphere (Figure 3.11). Most of the initial uptake
occurs through rapid dissolution of the ocean surface (3.2 GtC) and CO2 fertilization of the
land biosphere (1.9 GtC). The rate at which the ocean will uptake carbon depends on the CO2

partial pressures between the ocean surface and atmospheric layer above (Friedlingstein et al.,
2006). On land, the rate of the land uptake is driven by elevated photosynthesis in a higher
CO2 environment (Norby et al., 2005). Increased global temperatures over fifty years (Figure
3.10d) lead to a saturation of the carbon sinks and decline in the uptake efficiency of the land
and ocean, a behavior seen in other EMICs and ESMs (Joos et al., 2013; Zickfeld et al., 2011)).
A sizable fraction (60–65%) of CO2 remains in the atmosphere through the remainder of the
simulation, which is also consistent with earlier model studies (Joos et al., 2013; Eby et al., 2009;
Sarmiento et al., 1992; Maier-Reimer and Hasselmann, 1987). The decay stages are a product
of the many different processes and timescales that remove CO2 from the atmosphere. The long
perturbation tail is an indicator of the slow processes of weathering and deposition, which can
persist longer than 10,000 years (Archer et al., 2009; Eby et al., 2009).

While the methane pulse continues to decay to zero, the fraction of CO2 begins to slowly
increase again at an approximately linear rate after year 2075. By 2200, the CO2 concentration
reaches up to 65% of the perturbed peak. With the already weakened carbon sinks and the rise
in global temperature, background CO2 concentrations from the described emission scenarios
add an additional stress to the carbon sinks. Effectively, the response is unique to the changing
background concentration (Gillett and Matthews, 2010). This behavior is not captured by
impulse-response functions that are used to calculate the the GWP and social cost of carbon
(SCC) since a constant background concentration is often assumed (Aamaas et al., 2013; Joos
et al., 2013).

An instantaneous increase in greenhouse gas concentrations disrupts the Earth’s radiative
energy balance. For a 100 GtC pulse of CO2, there is a 0.6 W m−2 increase in total radiative
forcing (Figure 3.10c). In comparison, the total radiative impact (5.9 W m−2) from a methane
pulse perturbs the radiative efficiency of other trace constituents. Of the total radiative forcing
following the pulse, methane contributes to 68% and another 8% is due to an increase in O3

(See Appendix B, Figure B.1). As the concentration of CH4 quickly dissipates, the net radiative
forcing anomaly decreases exponentially due to an increase in outward longwave radiation. By
2200, the net radiative forcing anomaly resulting from a methane pulse is 0.1 W m−2 (Figure
3.10c) driven primarily by the residual CO2 in the atmosphere following methane oxidation.
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Equal pulse emissions of CO2 and methane have significantly different impacts on the global
mean surface air temperature (GMSAT) because of their differing radiative properties and
atmospheric residence times. A methane pulse size of 100 GtC is shown to reach a peak
temperature anomaly of 1.9 °C after 20 years. The temperature anomaly from the methane
pulse declines from its peak to a near steady state of about 0.42 °C, after all of the methane
is oxidized to CO2. As for the CO2 simulated pulse, the CO2 temperature anomaly peaks at
approximately 0.2 °C, nearly 10% of the peak anomaly seen by the methane pulse. Through the
remainder of the CO2 pulse simulation, the radiative forcing and temperature anomalies show a
long decaying tail, indicating an irreversible temperature impact that lasts for centuries.

3.5 Discussion and Conclusion

Pulse methane emissions of various magnitudes are applied to a business as usual baseline
emission scenario. Increasing the abundance of methane greatly influences atmospheric chemistry
and the concentration of other non-CO2 gases and related aerosols. It is well known that the
chemical oxidation of methane leads to the production of CO2 through a chain reaction with OH.
Still, the net reaction depletes OH. For pulse sizes above 1 GtC, the result has a direct effect on
the residence time of methane and ozone. Even for the smallest pulse sizes, O3 levels increase as
the OH is depleted. The competition for a reaction with OH, extends the perturbation time of
methane so that it takes more than 60 years to be completely removed for an emission pulse
(0.1 GtC) equivalent to half of the annual anthropgogenic CH4 emissions.

There is a delay in atmospheric CO2 levels, as the chain reaction following methane oxidation
takes time. A peak CO2 concentration is reached when all of the methane is oxidized. Ocean and
land sinks operate to remove the perturbed carbon from the atmosphere. While the atmospheric
CO2 abundance begins to drop soon after reaching a peak, it reverses course and rises again
to the point that it surpasses the initial peak response. In this case, the changing background
concentration from the high emission scenario decreases the efficiency of the sinks to uptake
carbon. This is due to the climate-carbon feedback effect where warming climate lowers the
ability of the sinks to hold carbon. By the end of the simulation, more CO2 exists in the
atmosphere than originally was perturbed by the methane pulse, suggesting our annual methane
emissions will have a lasting effect on the carbon cycle so long as we keep emitting more CO2.
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Our study goes further into the impulse response investigation by analyzing the temperature-
induced feedbacks of the biosphere, an area not yet studied in methane impulse response tests.
While no major changes occur in the nitrogen cycle, the methane cycle shows a clear impact on
natural wetland emissions. For every pulse-size case, there was a rise in the wetland methane
emissions as the initial temperature perturbation drives an increase in modeled methanogenesis.
While the emission increase from wetlands is minuscule (6.3 Tg over 10 years) compared to
annual anthropogenic methane emissions (378 Tg yr−1), it does add to the abundance of methane
in the atmosphere and increases the lifetime.

Although methane is relatively short-lived, its warming impact is far greater than CO2 in
the first few centuries and has an even greater indirect impact on a prolonged timescale. The
methane pulse results in a peak GMSAT anomaly nearly 10x greater than the anomaly resulting
from the same sized CO2 pulse. In addition, the thermal inertia of the climate system leads
to a decline in GMSAT much more slowly than the decline in atmospheric concentrations. A
modeled GMSAT anomaly of 0.4 °C and 0.2 °C, for pulses of CH4 and CO2, respectively, remain
for the scope of the study.

We note that the 100 GtC emissions pulse of CO2 is approximately 10x annual anthropogenic
emissions, but is also 350x annual anthropogenic methane emissions. It does suggest that we
should scale down the methane pulse size to 2.8 GtC for an approximately equal comparison in
magnitudes. While this is one type of analysis, we wanted to use the same pulse size in GtC to
have a fair comparison of equal amounts of carbon in the atmosphere and to see where carbon
is exchanged with the reservoirs.

One unique finding is the transient response of the terrestrial and ocean carbon sinks, as
carbon uptake decreases initially for a methane pulse. For five years following the 100 GtC
methane perturbation, a net 4.9 GtC is emitted from the land as methane-induced warming
leads to increased vegetative and soil respiration, and high levels of O3 reduce CO2 fixation.
In comparison, for the same time-horizon and pulse size, a CO2 perturbation results in a
additional uptake of 20.8 GtC compared to the baseline scenario, where 61% is absorbed into
the upper ocean and the other 39% is absorbed by the terrestrial biosphere. These differences in
biogeochemical cycling of carbon reveal that future methane emissions and related temperature
induced increases could create an adverse effect on the carbon cycle, which may lead to a
supplementary weakening of carbon sinks. Therefore, any metric that compares methane
impacts to CO2 climate impacts should incorporate a full representation of the feedbacks that
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affect fundamental atmospheric chemical and biogeochemical processes.

While the primary purpose of the idealized pulse emission experiments was to understand
the feedbacks to the system, these experiments, especially the smaller pulse sizes (0.1–0.5
GtC), can also reveal insight on the climate response of a more realistic emission pathway in
methane. Annually, human activity emits an estimated 0.28 GtC yr−1. Naturally, this annual
estimate is broken down into several tiny pulses spread out across the globe each day of the
year. They are all additive and the cumulative climate impact will be the combined effect,
much like the pulses in our experiments. Using the intermediate complexity model framework,
we are able to capture the daily changes in methane’s budget as small daily emissions alter
the strength of methane’s sink. The model experiments can also capture the change in zonal
mean atmospheric concentration as emissions and important atmospheric species like OH are
not uniformly geographically spread out. And finally, the pulse experiments show that if our
emission trajectory continues its upward trend, leading to higher annual "pulses" that build upon
the previous pulses, methane feedbacks could become more prevalent and expedite unfavorable
climate responses.
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Chapter 4 |

Introducing a methane lifetime con-
centration dependency
and natural emissions model
into the FaIR climate model

4.1 Abstract

Methane feedback mechanisms resulting from interactive chemistry and biospheric emissions
have the potential to intensify climate change impacts and bring us closer to climate tipping
points. Few low-complexity climate models are able to represent feedbacks to the methane cycle.
We demonstrate how to modify the FaIR reduced-complexity model to incorporate methane
feedbacks. Our update to FaIR includes a natural methane emission component dependent on
global mean temperature and an interactive methane lifetime with a positive self-abundance
feedback. We calibrate the newly introduced parameters so that our modified version of FaIR
matches the output of the MESM, which is capable of modeling climate-induced changes to
the methane cycle. The combined methane feedbacks increase total atmospheric methane
concentration and methane lifetime, thus increasing the projected global mean temperature.
Evaluating the modified FaIR model in the context of representative concentration pathways,
we estimate that methane emissions and the addition of methane feedbacks cause global mean
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temperature to increase another 0.43 °C above the projected 4.33 °C temperature anomaly
relative to preindustrial levels for a high emission RCP8.5 scenario in 2100. The projected end
of century temperature anomaly, 1.47 °C, for a low emission RCP2.6 scenario decreases 0.095
°C when reduced methane feedbacks in a cooler low-emission world limit additional natural
emissions and decrease methane lifetime.

4.2 Introduction

Reduced-complexity climate models represent their model physics through parameterizations
and mathematical approximations (Smith et al., 2014). As new insights are made from more
complex models, reduced-complexity models are improved to emulate the new behaviors of the
more complex models. In one such case, modelers have begun introducing climate feedback
mechanisms that have the potential of intensifying natural systems and worsening their climate
impacts (Wolff et al., 2015). Despite ongoing efforts, feedbacks related to the methane cycle are
omitted in many climate models within integrated assessment frameworks (Gasser et al., 2017;
Marten et al., 2015). Two important methane cycle feedbacks include the effect methane has on
its own lifetime and the temperature-induced feedback to natural emissions. We explore these
two feedbacks and their impacts on model projections.

Complex Earth System Models with detailed atmospheric chemistry simulate the methane
lifetime feedback effect. This feature results when variations in the methane sink directly impact
how long methane stays in the atmosphere (Prather, 1994). Methane’s primary atmospheric
sink is the oxidation reaction with tropospheric hydroxyl radical (OH). As methane and other
reactant species accumulate in the atmosphere, OH radicals are suppressed. As a result, the
rate at which methane oxidizes slows down and methane’s residence time increases. Since the
doubling of preindustrial methane concentration, it is estimated that the increasing feedback has
extended methane’s lifetime by 55%, from 5.9 to 9.2 years (Dlugokencky, 2019; Holmes, 2018).

While the lifetime feedback is primarily determined by the methane burden, modelers are
exploring other meteorological variables and trace pollutants that drive changes in methane’s
lifetime. For example, tropospheric ozone and carbon monoxide emissions from biomass burning
weakly interact with methane’s primary sink catalyst, hydroxyl radical, creating a slight
increase methane’s lifetime. (Fry et al., 2012; Dalsøren et al., 2010; Hoor et al., 2009). Other
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meteorological variables that drive atmospheric chemistry such as temperature and humidity are
thought to reduce methane’s lifetime through increased reaction rates with OH (Holmes, 2018;
Ehhalt et al., 2001; Krol and Van Weele, 1997). But when all variables are considered, this
century is projected to see an increase in methane lifetime by about 13%, where the sensitivity is
dominated by methane’s feedback on it’s own OH sink (Holmes et al., 2013). Since the longevity
in lifetime would raise methane’s radiative impact, reduced-form methane cycle models should
include the most significant mechanisms that impact methane’s primary sink.

The second important methane feedback is related to the several natural wetland systems
that are susceptible to the changing climate. Wetlands are the largest source of natural methane
emissions, releasing 150 to 225 Tg-CH4 each year or approximately a third of total global
methane emissions (Saunois et al., 2016). Shifts in temperature, precipitation, and vegetation
processes have the potential to increase methane emissions from wetlands and freshwater systems
(Dean et al., 2018). If natural methane emissions were to increase with the changing climate,
the amplified emissions from these systems would further induce an increase in atmospheric
concentration and lead to a positive climate feedback.

The production of methane in these environments is predominately due to the degradation of
organic matter by methanogen microbes in anaerobic (low-oxygen) conditions (Ferry, 1999). It is
well known that temperature controls the rate of microbiological processes, and the production
and oxidation of methane in wetland environments (Kip et al., 2010; Frenzel and Karofeld, 2000).
With projected warming, rising surface air temperatures will pervade the top soil layers where
the majority of methanotrophs reside, thus increasing the methane emitted from the wet soils.

We introduce these two important methane feedbacks, the chemical feedback on its lifetime
and the wetland emission feedback, into a reduced-complexity climate model, FaIR v1.3 (Finite
Amplitude Impulse Response) (Smith et al., 2018), a modified version of the Intergovernmental
Panel on Climate Change impulse-response model (Rogelj et al., 2018) that accounts for climate-
carbon cycle feedbacks. FaIR does not include climate feedbacks to other important forcing
agents - particularly methane. Using the MIT Earth System Model (MESM) (Sokolov et al.,
2018), we develop a parameterization for methane feedbacks and include this in the FaIR model.
We then test the new FaIR methane module by simulating past concentrations and future
projections of the MESM, a higher complexity model.

Within this paper, we first describe the current model structure of the methane component
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within the FaIR (v1.3). We then provide a brief description of the target data sets, prescribed
emission scenarios, and framework to be parameterized through a calibration process. Our
results assess the parameter optimization and model fit to the target data sets. We briefly
comment on the changes to the FaIR projections in context of climate policy decision-making.

4.3 Current Setup of the FaIR Methane Module

In its current setup, FaIR v1.3 assumes a one-box model for each of the non-CO2 agents (Smith
et al., 2018). The box model converts prescribed annual global emissions into an equivalent
change in the atmospheric molar mixing ratio, δCt. The concentration burden, Ct−1, is reduced
by an exponential decay with a constant decay timescale, τ . We will refer to Eq. 4.1 for the
current setup of the FaIR box-model of the methane cycle. Run on an annual time-step, the
box model calculates the annual methane concentration (in parts per billion; ppb) as a balance
between the sources and sinks.

Ct = Ct−1 +
1

2
(δCt−1 + δCt)− Ct−1

(
1− exp

(
−1

τ

))
(4.1)

Blue = source term. Red = sink term.

The source term takes an average atmospheric molar mixing ratio from the previous and
current time-step emissions. Exogenous emissions are prescribed for both anthropogenic and
natural methane sources. Historic emissions of anthropogenic sources are reconstructed to match
observed atmospheric concentrations starting in 1765. And, future emission scenarios are set up
to follow the extended Representative Concentration Pathway (RCPs) scenarios out to 2500
(Meinshausen et al., 2011b). If desired, the flexibility of FaIR allows the user to provide their
own emission scenario.
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Figure 4.1. Natural emissions of methane used in the FaIR model (red) and present-day emission
estimate from Prather et al. (2012) (black). Figure taken from Smith et al. (2018).

In addition to anthropogenic emissions, FaIR also includes time-varying natural methane
emissions (Figure 4.1). Historic natural emissions are calculated to match observed concentrations
by balancing the atmospheric budget to changes in anthropogenic emissions. This approach
explains the variation of up to 30% seen in Figure 4.1. Hence, they are not based on observations
of natural emissions. Beyond 2005, natural methane emissions are fixed at a constant yearly
rate of 191 Mt-CH4 yr-1, which is slightly below the present-day best estimate, 202 Mt-CH4 yr-1

(Prather et al., 2012). Granted, natural emissions are still highly uncertain and vary between
methods of estimation. For example, uncertainty ranges for top-down methods span 142–208
Mt-CH4 yr-1; and bottom-up methods average even higher, 177–284 Mt-CH4 yr-1 (Kirschke
et al., 2013).

In FaIR v1.3, the total sink of methane is modeled as an exponential decay of the airborne
concentration anomaly (Smith et al., 2018). The atmospheric decay relies on a constant lifetime
of the species, τ . Instead of the 12.4 years referenced in the AR5 (Myhre et al., 2013), FaIR
uses a constant methane lifetime of 9.3 years in order to better agree with calculated changes in
historic natural emissions and to fit RCP projections made by MAGICC6 (Meinshausen et al.,
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2011b). The model developers found that the larger, 12.4 yr lifetime found in the AR5 results
in concentrations too high to match projected RCP concentrations in MAGGIC6.

Based on the current setup of the methane module in FaIR v1.3, we find two areas in need
of improvement:

• Assuming fixed natural methane emissions into the future overlooks the natural changes
in wetland soil respiration to changes in temperature and precipitation.

• Implementing a constant atmospheric lifetime omits any chemical feedbacks methane has
on its own lifetime.

Addressing these two areas, our work improves upon the current FaIR model by first adding a
natural emissions component responding to changes in global temperature, and also adding a
dynamic methane lifetime. Providing additional skill to the FaIR model, we integrate these two
methane feedbacks.

4.4 Methods

4.4.1 Using the MESM Output as Target Calibration Data Sets

We propose altering the methane module of FaIR that calculates the change in methane con-
centration anomaly with a change in emission. The new FaIR methane module will emulate
projected climate variables of the MIT Earth System Model (MESM), including global tempera-
ture, methane concentration and natural wetland emissions. We use a set of model simulations
from MESM to calibrate the methane module.

We follow the standard approach to running the MESM as described in Sokolov et al. (2018)
and develop a set of simulations that provide a set of target data for FaIR to emulate. The
MESM is run in a two-step sequence starting with a historical simulation, which forces the model
with observed greenhouse gas concentrations, tropospheric and stratospheric ozone, aerosols,
and the solar constant from 1861 to 2005. At this stage, the climate system properties including
climate sensitivity, rates of oceanic heat and carbon uptakes, and aerosol forcing are set to be
consistent with available observations of surface air and ocean temperatures. We systematically
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Figure 4.2. A comparison of anthropogenic methane emission scenarios. We calibrate the FaIR model
using the CEDS historical emissions (1861–2005) and the EPPA Outlook scenario (2006–2100).

vary the three parameters (climate sensitivity, rates of oceanic heat and carbon uptakes, and
aerosol forcing) by drawing from the joint probability distribution of Libardoni et al. (2019). We
produce 49 drawings of parameter sets to run a 49 member ensemble of the MESM. Additional
details on the ensemble selection can be found in Chapter 3 and Appendix A.

The second stage uses the full dynamic chemistry version of the MESM, forced with projected
emissions of greenhouse gases and aerosols for an economic growth scenario of the Emissions
Prediction and Policy Analysis Model (EPPA) (Chen et al., 2016; Paltsev et al., 2005). Methane
emissions for the EPPA Outlook scenario fall in between the RCP 8.5, a highly intensive
emission scenario, and the RCP 6.0, a more moderate emission scenario (van Vuuren et al.,
2011b)(Figure 4.2). To keep the emission scenarios between the MESM and FaIR consistent
during the calibration process, we use the EPPA Outlook scenario as input into the FaIR model
for the 2006 – 2100 period. In its default settings, FaIR uses the four RCP projections and
their historical extensions (van Vuuren et al., 2011b; Meinshausen et al., 2011b). This historical
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emissions data set comes from the global, gridded estimates used within the Coupled Model
Intercomparison Project phase 5 (CMIP5) (Lamarque et al., 2010). We update FaIR to run
with the new historical anthropogenic methane emissions used within the CMIP6. Developed
with the Community Emissions Data System (CEDS) (Hoesly et al., 2018), the new historical
emissions data set estimates methane emissions lower and smoother than that of the RCP
extension (Figure 4.2), likely attributed to the drop in agricultural emission estimates.

A integral component of the MESM for this study is its ability to estimate changes in
terrestrial methane emissions. The Natural Ecosystem Model (NEM) of the MESM interacts
with the atmospheric dynamics model to simulate biogeochemical processes that release methane
and nitrous oxide emissions from the terrain (Liu, 1996). More specifically, the methane
emission model simulates methanogenesis dependent on changes to the water table level and
soil temperature for five soil layers on hourly time steps. With a spatial resolution of 1o x 1o

Forested Bog

Non-Forested Bog

Forested Swamp

Non-Forested Swamp

Other Land

Alluvial Formation

Distribution of Wetland Ecosystems

Figure 4.3. Global distribution of wetland ecosystems on a 1o x 1o grid within the Natural Ecosystems
Model of the MESM. Figure taken from Matthews and Fung (1987).
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(Shown in Figure 4.3), a data set of global wetland distribution and inundated areal fraction are
provided to calculate the methane flux distribution over 5,263,000 km2 of wetlands (Matthews
and Fung, 1987). To model local ecological climate changes, wetlands are further divided by
land type based on tropical, temperate, and boreal; forested or non-forested bogs, swamps, and
alluvial floodplains. Schlosser et al. (2007) show that MESM estimates of global annual methane
flux fall near the middle range of current global uncertainty estimates, making the MESM a
reliable tool for our modelling study.

Using the MESM, we estimate changes in future methane emissions from wetland environ-
ments. Because soil properties are coupled with the atmospheric variables of temperature and
precipitation, the MESM captures the growing uncertainty in future projections of wetland
emissions. Figure 4.4 shows simulated MESM global wetland methane emissions for each decade
starting in 2010 through 2100. The distributions encompass the 49 MESM ensemble members.
The 2010 emissions distribution shows a bell-curve with a peak emission just under 210 Mt-CH4

per year. By 2100, the curve shows elongated tails spanning 246 to 288 Mt-CH4 per year.

Ye
ar

Wetland Methane Emissions (Mt-CH  )

Decadal Distribution of Methane Emissions from Wetlands 

4

Figure 4.4. Distribution of wetland methane emissions (Mt-CH4) simulated in the 49 member MESM
ensemble, shown every decade through 2100.
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4.4.2 Alterations to FaIR Methane Module

As discussed earlier, we are improving the FaIR methane module by introducing a natural
wetland emissions component and a new lifetime calculation to emulate the results of the MESM.
Figure 4.5 shows a schematic of the proposed modifications to FaIR model. In the following
sections, we discuss the addition of a natural emissions model that is sensitive to the global
mean temperature projection. We also introduce a dynamic methane lifetime, sensitive to the
atmospheric abundance of methane.

4.4.2.1 Natural Wetlands Methane Emission Model

As the first alteration to the FaIR model, we modify the natural emissions component. In the
current setup, historic natural emissions are calculated to match observed concentrations by
balancing the atmospheric budget to changes in anthropogenic emissions. Currently, the model
assumes future natural emissions are held at a constant 191 Mt-CH4 per year. Since scientific

Figure 4.5. A schematic of the Finite-amplitude Impulse Response (FaIR) model. Shown in yellow are
the methane components modified to add methane feedbacks. Figure adapted from Smith et al. (2018).

69



literature is in agreement that natural wetland emissions are expected to increase with climate
change, assuming constant natural emissions is a great weakness of the current FaIR methane
module.

Our improved approach to modeling natural methane emissions uses an intuitive represen-
tation of the relationship between temperature and rate of microbiological activity. The basis
of this model came from preliminary analysis of MESM output for a 49 member ensemble
(See Figure 4.6). The MESM results indicate a strong linear relationship (R2=99%) between
increasing global mean surface temperature and increasing global wetland methane emissions.
The relationship holds true for the historical period, as well as, projections for a "business as
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Figure 4.6. Mean annual CH4 emissions from wetlands within the MESM model as a linear function
of global mean surface temperature anomaly. The colored scale refers to the modeled year.
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usual" future emission scenario. Methane emissions in the preindustrial period of the MESM
span 172 to 198 Mt-CH4 yr-1, falling within the uncertainty range of previous studies (Paudel
et al., 2016; Houweling et al., 2000).

But, as the global temperature anomaly exceeds 4 °C in the late 21st century, uncertainty
in natural emissions grows and the linear relationship weakens. MESM projections for end
of the century global wetland emissions are 248–283 Mt-CH4 yr-1, a substantial 43% increase
from preindustrial levels. Lacking the rise in future wetland emissions, the former FaIR v1.3
model underestimates a cumulative 3,973 Mt-CH4 of wetland emissions, on average, over the
21st century. Omitting such a large sum of wetland emissions is equivalent to omitting nearly 10
years of anthropogenic methane emissions (assuming 362–378 Mt-CH4 yr-1 from Saunois et al.
(2016)).

The simple linear relationship in Figure 4.6 between natural emissions and global mean
surface temperature is the basis of our FaIR methane module. The new linear term for the
annual global natural methane emissions in the FaIR model is:

Nt = mN ∗ (Tt−1) + bN (4.2)

where Nt is the global wetland emissions in Mt-CH4 per year and Tt−1 is the previous time-step’s
global mean temperature calculated within FaIR. mN is the slope and bN is the intercept of the
linear function. In the following section, we calibrate the FaIR model by adjusting the newly
added parameters, mN and bN , to simulate a time-series which can reproduce the MESM trend.

Looking back at Eq. 4.1 of the FaIR methane box model, we update the methane source
term to include a natural emissions component that depends on annual global mean temperature.
The increase in atmospheric molar mixing ratio, δCt, in year t considers both anthropogenic
and wetland methane emissions (in units Mt-CH4):

δCt =
At +Nt

Ma

wa
wCH4

(4.3)

where At is the anthropogenic emissions of methane each year. Nt is the wetland natural
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emissions of methane per year. Ma is the mass of the atmosphere. wa is the molecular mass of
the atmosphere. And, wCH4 is the molecular mass of methane.

We acknowledge that the rate of natural emissions depends on several ecological and climate
variables beyond just global mean temperature. For one, the amount of precipitation determines
the water-saturation of the wetland soils, which is necessary to create anaerobic conditions for
methanogenesis. With this in mind, we also examine the relationship between global precipitation
and wetland methane emissions in Appendix D. As expected, the MESM results show global
mean precipitation is strongly correlated with wetland methane emissions. While this shows
precipitation may be a good predictor of natural methane emissions and could be used to build
a simple model representation, precipitation is not a variable currently built into the FaIR
model. To maintain the reduced-complexity structure of the FaIR model and to only focus
on modifying the methane module, we do not model FaIR natural emissions as a function of
precipitation. Our modification only models natural emissions to a change in simulated global
mean temperature in FaIR.

4.4.2.2 Methane Lifetime Calculation

After updating the source term of the methane module with a natural emissions calculation,
we next alter the FaIR model sink term by modifying the methane lifetime. In the current
FaIR model, a constant 9.3 years is assigned for the methane lifetime, τ . However, this is
not well representative of atmospheric chemistry that influences the methane sink. Rather,
methane lifetime is a dynamic property that varies due to changes in atmospheric chemistry.
The primary reaction methane has with OH is the dominant loss mechanism in the troposphere.
The net effect suppresses OH concentrations and prolongs the methane lifetime, leading to a
strengthened lifetime feedback that amplifies the methane concentration.

In the MESM, methane lifetime is not a prescribed parameter, but instead, is a property
that emerges from the model chemistry. The MESM contains a gas-phase atmospheric chemistry
component, which includes interactions between tropospheric gases (O3-HOx-NOx-CO-CH4-
CO2) (Crutzen and Zimmermann, 1991). This allows the MESM to simulate the complex
chemical reaction sequence following methane oxidation, as well as, changes in the methane
lifetime feedback to OH concentrations. For our purposes, the MESM only considers the
tropospheric OH sink (it does not model the methane sink to chlorine, soils, and stratosphere).
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Because it would be too complicated to insert the full set of MESM chemical reactions into
the FaIR model, we must find a simpler, intuitive way of adjusting the FaIR methane lifetime.
Further, our modification aims to maintain the box model representation (Eq. 4.1) to preserve
the reduce-complexity structure.

Our approach solves for the methane lifetime in the FaIR budget equation (Eq. 4.1) by
providing all of the other known quantities of the equation with MESM data. That is to say, we
use the MESM concentrations data (Ct), and emissions data (converted to molar mixing ratios;
δCt) to solve for the methane lifetime, τ , at each time-step. In essence, this recalculates the
methane lifetime required to achieve the observed change in methane concentration over the
historical period and future projections produced by the MESM. We do this for each of the 49
MESM ensemble members.

Figure 4.7 shows the resulting time-series for the methane lifetime. The jagged shape reflects
major changes in the historic methane budget, as the lifetime responds to changes in emissions.
Our preindustrial estimates for methane’s lifetime range higher than the original FaIR model
assumption, averaging 9.8 ± 0.2 years before the late 1970s (Figure 4.7). The 1980s and early
1990s are marked by large fluctuations and peaks in methane’s lifetime following volcanic events
such as the eruptions of Mt. St. Helens (1980), El Chichón (1982), and Pinatubo (1991).
During this period, methane’s OH sink weakened due to feedbacks from strong stratospheric
aerosol-induced cooling and reduced humidity, driving OH concentrations down (John et al.,
2012).

The 1980s to 2000s show a decreasing trend in methane lifetime in the MESM (Figure 4.7),
agreeing with the findings of Arora et al. (2018). Interestingly, this trend occurs simultaneously
with the "plateau" period where methane concentrations flattened out before continuing an
upward climb in the mid-2000s. While still under speculation, reconstructions link the concen-
tration plateau to a changing methane sink, in combination with stagnating emissions from oil,
natural gas, and coal (Schaefer et al., 2016). Our analysis indicates that a change in the hydroxyl
radical sink and chemical feedbacks of the MESM may have contributed to the "plateau" period.
As a final check, our present-day (for the year 2000) methane lifetime estimate is 9.5 ± 0.1
years, well within the range of ACCMIP models of 9.7 ± 1.5 years (Naik et al., 2013) and recent
observation-based calculations for 2010, 9.1 ± 0.9 years (Prather et al., 2012).

Using the MESM future emissions projections, we can also predict how methane lifetime may
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Figure 4.7. A time series of the calculated methane lifetime for the default FaIR model (red), the
49 member ensemble of the MESM (gray), and an example of a fitted model for our modified FaIR
lifetime (blue).

evolve over time. The future projections indicate a steep incline in methane lifetime, increasing
from just below 9.0 years to nearly 12.8 years by the end of the century. This demonstrates
the deficiencies in a constant lifetime assumption and highlights the utility of a fully complex
chemistry model for calibration of a reduced-complexity model.

To reiterate, we want an uncomplicated way to predict methane lifetime into the future within
the FaIR reduced-complexity model structure. Our approach is to model methane lifetime as a
function of atmospheric methane abundance. Shown on a log-log plot (Figure 4.8), methane’s
calculated lifetime is strongly correlated with the MESM predicted methane concentration for
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the 2008–2100 period. At higher concentrations, and thus, at higher temperature anomalies,
the lifetime of methane increases - an indication of the weakening OH sink. It also appears
that for a given concentration in Figure 4.8, the corresponding lifetime is shorter for higher
temperatures and vice-versa for lower temperatures, reflecting the reaction rate temperature
effect on methane’s oxidation.

We aspire to find a simple and intuitive model to reflect the variations in the methane
lifetime of Figure 4.7. However, the complex nature of methane’s calculated lifetime calls for a
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piecewise-defined function, dependent on the model year:

τ(t) =


9.8 t ≤ 1981

β0 + β1 ∗ t 1981 ≤ t ≤ 2008

exp[k0 + k1 ∗ log(Ct−1)] 2008 ≤ t

(4.4)

The first and largest subdomain, spanning 1861 – 1981, assumes a constant average value for
methane’s lifetime of 9.8 years. The second subdomain, which corresponds to the "plateau" in
methane concentrations, uses a linear time series regression of the predicted year, t. The third
subdomain through 2100, predicts the lifetime as a function of methane’s atmospheric burden,
Ct−1. Introducing the piecewise-defined function (Eq. 4.4) into the FaIR box model (Eq. 4.1),
changes the constant lifetime term, τ , into a time-dependent lifetime term, τt. It also improves
the model by incorporating lifetime feedback effect on the methane sink.

4.4.3 Model-Fitting and Calibration Procedure

Our edits to the methane module in the FaIR v1.3 model adds six new uncertain parameters,
θ = (mN , bN , β0, β1, k0, k1). The natural emission model linearly dependent on temperature
introduces mN and bN . And, the methane lifetime calculation introduces β0 and β1 for the
stabilization period of the early 2000s, as well as, k0 and k1 for a self-abundance methane
feedback. We use a robust adaptive Metropolis Markov Chain Monte Carlo (MCMC) algorithm
within a Bayesian framework to extract parameter estimates that are consistent with projections
from the MESM. The intent of the calibration procedure is to produce a simulated time-series
for methane concentration in FaIR that best follows the trend in the MESM data. The Bayesian
calibration procedure is described in detail in the Appendix C. Here, we provide a brief overview
of the model-fitting and calibration of uncertain parameters.

4.4.3.1 Fitting FaIR to the MESM Ensemble Data Sets

The purpose of the calibration is to find a set of parameter values, θ, that optimizes the fit
of the FaIR simulated data to an "observation" data set, or target data set, from the MESM.
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The MESM time-series output used to constrain FaIR includes annual global means of (1)
atmospheric methane concentration, (2) methane lifetime, and (3) natural methane emissions
from wetlands over the 1861-2100 period. To account for internal variability not captured by
MESM, we assume a small error term in each data set, by several orders of magnitude smaller.

For the calibration purpose, the methane module is isolated from the remainder of the FaIR
components, that is to say, we are only simulating methane concentration from Eq. 4.1. Since
the natural wetland emissions model requires an exogeneous temperature as an input, we provide
the MESM global mean temperature values.

To span the uncertainty caused by several different climate states, we calibrate the FaIR
methane parameters to each of the 49 ensemble members from the MESM. Effectively, we are
calibrating the uncertain parameters to 49 separate target data sets. This allows us to span
the uncertainty in the parameters and understand their sensitivity to the modeled climate
state. After the 49 separate calibrations are complete, they are then combined to form a single
marginal posterior distribution for each uncertain parameter.

4.4.3.2 Markov Chain Monte Carlo

A powerful sampling procedure in a Bayesian inference is the Markov Chain Monte Carlo
(MCMC) method (Metropolis et al., 1953; Hastings, 1970) MCMC simulates random variables
by drawing samples from a given prior probability distribution. An initial parameter vector
starts a sequence of successive draws dependent on the previous draw (Markov chain), so that
the parameter space is fully explored in small step sizes (Gasparini et al., 1997). If a desired
acceptance criterion is met, the proposed point represents a sample of the posterior distribution.
The chain will conclude by converging around an optimal value.

While there are several variants of the MCMC, we use the Robust Adaptive Metroplis (RAM)
algorithm (Vihola, 2012). The RAM allows for a more efficient way to estimate the target
distribution by updating the proposal distribution with each sampling. We also account for
potential residual autocorrelation in the model error and time-varying heteroskedastic observation
errors, by estimating the residuals with a stationary first-order autoregressive process AR(1)
model (Ruckert et al., 2017). For additional details, see Appendix C.
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The initial guess for the the six new uncertain parameters is based on some previous
knowledge, in this case, the preliminary regression fits for natural wetland emissions (Figure
4.6) and methane lifetime (Figure 4.8). We assume a uniform probability density for the prior
distributions (see Table 4.1). We use 100,000 iterations and remove 10% of the initial "burn-in"
from the starting values of the Markov chain. The burn-in is to ensure that the results are not
dependent on the initial conditions. In addition, we "thin" the sample chains to a 1,000 iteration
segment to produce more independent values for the analysis. A visual inspection of the thinned
chain checks for convergence (See Appendix C, Figure C.1). We also use a statistical check for
convergence of each parameter chain using the Heidelberger and Welch diagnostic (Heidelberger
and Welch, 1981). The diagnostic calculates a test statistic to accept or reject a null hypothesis
that the parameter chain is stabilized. Additional details on checking for convergence are found
in Appendix A.

Once the samples are generated, the "best" estimates for the uncertain parameters can be
determined through attributes like posterior means and maximum likelihood values (Table 4.1).
The posterior distributions can also provide intervals of parameter uncertainty. A strength
of the MCMC is the ability to sample the joint probability distribution of all the uncertain
parameters, reflecting the correlations and relationships between the uncertain parameters.
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Table 4.1. Uncertain methane model parameters and statistical process parameters with their prior distribution assumptions. Maximum
likelihood estimates, means, and 95% confidence intervals are shown for the posterior distributions.

Parameter Symbol Prior Distribution Maximum
Likelihood

Mean 95% CI

Intercept of Natural Emissions bN Uniform(182, 190) 188.01 188.08 [187.38, 188.77]
Slope of Natural Emissions mN Uniform(20, 29) 23.97 23.94 [23.03, 25.00]

Intercept of Time Series Regression β0 Uniform(15, 20) 17.52 17.61 [16.92, 18.31]
Slope of Time Series Regression β1 Uniform(-0.1, 0.0) -0.058 -0.058 [-0.064, -0.053]

Intercept of CH4 Lifetime k0 Uniform(-3, 2) -1.17 -1.20 [-1.35, -1.04]
Slope of CH4 Lifetime k1 Uniform(0, 2) 0.44 0.45 [0.43, 0.47]

Standard Deviation Natural Emissions σN Uniform(0, 5) 3.42 3.45 [3.12, 3.77]
Standard Deviation CH4 Concentration σ[CH4] Uniform(0, 5) 1.97 1.98 [1.82, 2.15]
Standard Deviation CH4 Lifetime στ Uniform(0, 1) 0.145 0.145 [0.133, 0.158]

Autocorrelation Natural Emissions ρN Uniform(-1, 1) 0.122 0.120 [-0.014, 0.254]
Autocorrelation CH4 Concentration ρ[CH4] Uniform(0, 1) 0.990 0.990 [0.973, 0.997]
Autocorrelation CH4 Lifetime ρτ Uniform(0, 1) 0.625 0.625 [0.530, 0.870]
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4.5 Results

Reduced-complexity climate models such as the FaIR model include several parameterized
processes and are typically tuned to replicate the results of higher complexity ESMs. When the
optimal parameter values are found, the model best matches historical records and emulates
future climate projections of more complex model simulations. It is assumed that the optimal
parameter estimate would then improve the reduced-complexity model so it can better represent
the climate system behavior for a specific set of climate variables and predictions. Here, we
analyze the calibrated parameter estimates of the newly developed methane component of the
FaIR model, and evaluate the model performance.

4.5.1 Posterior Parameter Distributions

Our alterations to the methane component of the FaIR v1.3 model results in six new uncertain
parameters, θ = (mN , bN , β0, β1, k0, k1). We take a probabilistic approach using a robust adaptive
Markov Chain Monte Carlo to estimate the uncertain parameters jointly, by running a complete
sampling of the parameter space while spending a majority of the time in high probability
regions. The resulting likelihood function from the calibration incorporates all of the information
obtained from the MESM output for methane concentration, lifetime, and natural methane
emissions. The measure of the likelihood of a given parameter set, when used in the FaIR model,
will yield model output that closely matches the MESM patterns for the same initial inputs.

As discussed in the Methods, we calibrate the uncertain parameters to 49 separate realizations
of the MESM, to span a range in climate states. In effect, each calibration set and corresponding
parameter estimates then match one instance of the climate state. We combine all of the
calibration sets to fully integrate the uncertainty in the parameter estimates that result from
the uncertainty in the climate system. Combining the thinned Markov chain results for each of
the 49 calibrations, we arrive at a total of 49,000 independent parameter set combinations.

We present histogram and density plots of the parameter distributions in Figure 4.9. The
constraints on the parameter distributions are sensitive to the choice in emission scenario and
target calibration data sets. Interestingly, most of the parameters exhibit nearly Gaussian
shapes, with a symmetric unimodal peak. Each has a clear maximum likelihood estimate that is
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Figure 4.9. Histograms and kernel density functions for the six new parameters in the FaIR methane
module. Distribution means and maximum likelihood estimates are represented by black and gray
dashed lines.

approximately equal to their mean value. A list of statistical attributes for the final parameter
distribution are found in Table 4.1. Of the six parameters, the shapes of the methane lifetime
parameters, k0 and k1, appear to have a larger skew toward their tails. This suggests that the
lifetime parameters are most sensitive to the state of the climate.
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4.5.2 Evaluating the New Methane Model Fit

When calibrating and fitting any sort of predictive model to data, it is essential to verify that
the newly calibrated model can represent the target data before deploying it for real-world
applications. A visual examination of the fitted curve is the first first step to evaluate and
assess a model fit. Beyond that, a statistical toolbox of metrics checking for prediction accuracy
and spread of the residuals will also provide an assessment of the fit. Common practice is to
calculate the Pearson correlation coefficient (r2) as a standardized measure of the predictive
accuracy of a model. The Pearson correlation coefficient establishes how well a predicted set of
data from a statistical model matches or correlates to a target data set. We also calculate the
root mean squared error (RMSE) to check the average distance between the predicted values
and actual target values. Additional figures for assessing the model fit are found in Appendix D.

In this study, the FaIR methane model is calibrated to 49 different realizations of the MESM.
It is essential to asses how well the model behaves for each case. From each of the 49 calibration
cases and their Markov chains, the maximum likelihood value is estimated for each of the new
parameters, θ. We then run a 49 member ensemble of the new methane model, plugging in the
maximum likelihood estimates for each parameter specific to the calibration case.

4.5.2.1 Assessment of the Natural Methane Emissions

The first check is to see if the new the natural wetland emissions model in FaIR resembles that
of the MESM. In Figure 4.10, the MESM ensemble range and mean value are plotted with the
natural emissions model in the updated FaIR. It appears that the predictive model is capturing
the pattern of the MESM output. The uncertainty range is small in the historical period and
grows into the future projections, just as the MESM uncertainty tends to grow over time. The
mean ensemble estimate from FaIR follows the mean ensemble estimate of the MESM. However,
the year to year variability is is much greater in the MESM and tends to be smoothed out in
the FaIR model. The smoother year to year variability is constrained by the choice in linear
relationship to the temperature fluctuations.

82



150

200

250

1850 1900 1950 2000 2050 2100

MESM Ensemble
FaIR Updated

FaIR Default v1.3
G

lo
ba

l W
et

la
nd

 E
m

is
si

on
s 

(M
t-C

H
   

yr
   

 )
4

-1

Figure 4.10. Comparisons of global wetland methane emissions. Shown are the default FaIR model
(red), the MESM ensemble target data set (gray) and the updated FaIR model using a temperature-
driven natural emissions model (blue). Displayed are the full ranges for the ensembles and their mean
ensemble estimates.

4.5.2.2 Assessment of the Simulated Methane Concentration

The next check is to see how accurately the updated methane module does at simulating
methane concentration. The atmospheric global mean methane concentration extracted from
the MESM ensemble data set is the target data set. In Figure 4.11, the updates for each
component of methane model are compared against the MESM ensemble and observations.
Derived observational data sets of global atmospheric methane concentrations from Mauna Loa
and Law Dome ice cores are plotted as a reference for the historical period.

We run the default FaIR v1.3 model, as well as, the updated methane module with a new
natural emissions model (with the defaulted constant lifetime), the updated module with a new
lifetime calculation (but no new natural emissions), and the fully updated model, containing the
natural emissions model and lifetime calculation. Each of the FaIR model versions is run using
the same initial conditions, emissions inputs and maximum likelihood estimates for the uncertain
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Figure 4.11. Global mean methane concentration simulated by the FaIR default v1.3 model (red)
and the methane model updates. Model updates include the natural emissions model alone (orange),
concentration-driven lifetime model alone (green), and the two combined to give the fully updated
model (light blue). The MESM 49 member ensemble is shown with its mean response (gray). And
observations from Mauna Loa and Law Dome are shown (purple).

parameters (parameter estimates found in Table 4.1). The "FaIR Updated" ensemble is the same
as that as Figure 4.10, where 49 ensemble members are run with uncertain parameters using
maximum likelihood values determined through each of the 49 calibration processes. The only
change to the default FaIR v1.3 model is the methane emissions input. All of the FaIR model
versions use the Outlook emissions provided by the EPPA model (i.e. the emission scenario
used within the calibration process).
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Exploring one update at a time allows for the isolation of the independent impacts and
combined impacts of including a new natural emissions model and concentration-driven lifetime.
First looking at the default FaIR v1.3 (shown in red in Figure 4.11), the default model poorly
matches the historical observations. This underestimated concentration from the default model
is due to the fact that its concentrations were originally calibrated to match a higher assumed
historic anthropogenic methane emissions (i.e. historic RCP scenario) than that used by
the CEDS historical emissions scenario. But what is notable is the default model greatly
underestimates the projected future methane concentration, falling 903 ppb below the mean
projection of the MESM ensemble in 2100. Clearly, the default model for the methane cycle
requires an update to better match projections of a higher complexity Earth System Model.

The first update explored was replacing the prescribed external natural methane emissions
data set in the default model with a natural wetland emissions model dependent on the global
temperature. Replacing only the natural emissions component of the default model improves
the concentration projections significantly for the historical period (Figure 4.11). The higher
natural methane emissions calculated in the new model raises the total source term of the box
model calculation (Eq. 4.1), allowing for higher methane concentrations. This change alone
does not sufficiently match future methane projections, a change to the lifetime calculation is
the next logical step. However, replacing the constant lifetime assumption in the default model
with a dynamic methane lifetime dependent on atmospheric burden, alone, also does not fully
capture the methane projections. The profile and shape of the curve (green curve in Figure
4.11) resemble that of the MESM, but the magnitude of the concentration still falls below the
target data set for the entirety of the simulation.

Combining both the new natural emissions model and lifetime calculation into the FaIR
methane module provides the best representation of the MESM target data set. Visual inspection
indicates that the updated FaIR model accurately captures the historical observations and future
projection of methane from the MESM. The ensemble of FaIR closely matches the ensemble
uncertainty of the MESM. There are only two periods in which the updated model shows a
deviation from the target data set; in the early 1900s and 2000s where the deviation reaches up to
25 ppb. This deviation is primarily due to the FaIR lifetime not matching the simulated MESM
lifetime. Checking the Pearson correlation coefficient (r2 = 0.999) as a statistical standard, we
concluded that the updated FaIR model can accurately predict the methane concentration from
the prescribed anthropogenic emissions scenario.
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4.5.2.3 Assessment of a Pulse Emission Scenario

The Finite Amplitude Impulse Response Model (FaIR) is designed to compute and represent
the temporal evolution of the warming response to a pulse emission. In its development the
FaIR v1.3 model was calibrated to reproduce the pulse-response behavior following a CO2 pulse
emission of 100 GtC in present-day climate conditions of several ESMs and EMICs (Joos et al.,
2013). Its strength is in its ability to correctly account for the speed and shape in the CO2

concentration, dependent on the background climate state and pulse size. The model has yet to
be explicitly tested in terms of its pulse behavior to other greenhouse gas emissions like methane.

Here, we evaluate the pulse-response behavior of the newly updated methane module to
a methane emission pulse of 1 GtC (1336 Mt-CH4) in modeled year 2006. From Chapter 3,
we learn that a 1 GtC pulse provides a good signal-to-noise ratio. We choose 2006 to be the
pulse year because the MESM switches to a active atmospheric chemistry model and the FaIR
soon switches to a concentration-driven lifetime calculation in 2008. The pulse response is the
difference between the perturbation run and the control run, shown in Figure 4.11. Again, we
test each additional update to the methane model separately and as a joint update. The results
are shown in Figure 4.10. All of the model versions tend to rise to a peak concentration of about
445 ppb following the impulse emission, nearly 30 ppb below that of the target data set from
the MESM. While they use the same emissions, the difference in the peak concentration could
result from the time-step difference, where the FaIR uses a 1 year time-step and the MESM
uses a daily time-step.

The rate at which the peak concentration decays is related to the different representations of
the methane lifetime. The default model and the updated FaIR model with only new natural
emissions use a constant lifetime of 9.3 years. This relatively short lifetime would mean the
sink term of the box model quickly removes the atmospheric burden, this is why the shape of
the decay function shows such a large and rapid decay in Figure 4.12. Updating the model to
include a lifetime dependent on atmospheric burden significantly improves the profile of the pulse
response. The rate of decay mirrors that of the MESM response, but slightly underestimates
the concentration by about 11 ppb on average. The underestimate is directly related to the
lifetime, we see that the calibrated model also underestimates the methane lifetime through the
later half of the century (see Appendix D.2).

86



0

100

200

300

400

500

1850 1900 1950 2000 2050 2100

M
et

ha
ne

 A
no

m
al

y 
fro

m
 c

on
tro

l r
un

 (p
pb

)

MESM Ensemble

Default v1.3
Added Natural Emissions Model
Added Lifetime Model
FaIR Updated (Natural Emissions + Lifetime Models)

FaIR Versions

Figure 4.12. Methane concentration anomaly from a control run for a pulse perturbation experiment
using the FaIR model. Each FaIR model update is shown. The fully updated model with a new natural
emissions and lifetime component is run for a 49 member ensemble (light blue) best calibrated to the
49 member ensemble of the MESM (gray).
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4.5.3 Testing the New Fully Coupled FaIR Model

Thus far, we have shown results of the updated methane module isolated from the full FaIR
model. Turning on all the components of the FaIR model shows the effect and significance of the
methane component changes on the other components. The model updates to the atmospheric
methane burden will then change the radiative budget of the model and the global temperature
response. Here, we run the FaIR model fully coupled with the maximum likelihood parameter
estimates from Table 4.1 for two Representative Concentration Pathways (RCPs).
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Figure 4.13. The global mean temperature anomaly as a difference from the preindustrial for emission
scenarios RCP8.5 and RCP2.6 using the default FaIR v1.3 (red) and the updated FaIR (light blue)
with a new natural emissions model and lifetime calculation, and with all model components turned on.
Shown on the right side are the CMIP5 ranges for the temperature projection in 2100. CMIP5 data
taken from Knutti and Sedláček (2013a).
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Running the updated FaIR model to the defaulted future emission scenarios, RCP2.6
and RCP8.5, shows that the change in the methane cycle structure influences the projected
temperature anomaly (Figure 4.13). For RCP2.6, the lower emissions of other greenhouse
gases reduces the expected temperature anomaly through the end of the century by 0.095 °C.
That reduction in temperature then reduces the amount of wetland emissions released from
the temperature-driven natural emissions model, so that natural emissions remain relatively
steady at 222 Mt-CH4 per year. Also, such a rapid reduction in emissions and a 47% drop in
concentrations reduces the methane lifetime by nearly 24% from 2008 to 2100 (see Appendix
D.5). Neither that short of methane lifetime nor that rapid of a decline in concentration has
been seen in modern history. Modeling studies suggest that during the Last Glacial Maximum,
global methane concentrations dropped about 40% (Valdes et al., 2005) and the lifetime fell
to 7.28 years (Kaplan et al., 2006). A change in natural emissions were the primary drivers of
prehistoric methane fluctuations.

We next run the FaIR model with RCP 8.5, the emission scenario most realistic to the
current anthropogenic emission rate. Running the updated methane module in the FaIR model
with all components to the RCP8.5 scenario results in an even higher temperature anomaly by
the end of the century (Figure 4.13). The global mean temperature anomaly for 2100 increases
by 0.43 °C when switching from the default model to the updated FaIR model. The modeled
natural emissions reach nearly 300 Mt-CH4 per year, a 57% increase from the default model
assumption of present-day emissions (see Appendix D.6). Moreover, methane lifetime increase
exponentially from today’s (2020) 9.0 years to 14.8 years in 2100. This is an indication that the
concentration-driven feedback methane’s oxidation rate will weaken the OH sink and lead to an
extension of lifetime.

4.6 Discussion and Conclusion

We demonstrate that adding methane feedbacks arising from natural wetlands and atmospheric
chemical interactions into the FaIR model will greatly improve its projections of methane
concentration, reproducing the projections of a EMIC. Our modified version of FaIR introduces a
natural wetland methane emissions model with a temperature dependency, reflecting the thermal
feedback on methanogenesis within wetland soils. The modified version also now includes a
dynamic methane lifetime, which will increase the residence time with increasing atmospheric
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abundance of methane. This captures the weakening methane sink as the main oxidant of many
trace-gases, OH, is depleted from the high methane abundance.

Adding the feedbacks of the natural ecosystem and the chemical feedbacks of the OH sink
can greatly alter the interpretations of the RCP scenarios for policy-relevant temperature targets.
Our results from the reduced emission scenario RCP2.6 suggests that a rapid reduction in
methane emissions will lead to a climatic response that lowers the emission rate from wetlands
and will lead to a concurrent increase in the OH sink of methane. Such an effect through the
methane cycle would be beneficial for climate policy targets aiming at a achieving a rapid
decline in the global temperature. Whereas the results from the RCP8.5 suggest that a delay
in reductions or even an expedited increase methane emissions could lead to an even greater
positive feedback response. In this scenario concentrations grow rapidly as a result of an increase
in natural emissions and increasing methane lifetime, taking a longer time to remove methane’s
atmospheric burden. These results indicate that policy makers should be aware of the possible
feedbacks and their potential to disrupt or potentially hinder any mitigation they may suggest.
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Chapter 5 |

Including feedbacks in an updated
calculation of the social cost of
methane

5.1 Abstract

Integrated assessment models (IAMs) are valuable tools that consider the interactions between
socioeconomic systems and the climate system. Decision-makers and policy analysts employ IAMs
to calculate the marginalized monetary cost of climate damages resulting from an incremental
emission of a greenhouse gas. Used within the context of regulating anthropogenic methane
emissions, this metric is called the social cost of methane (SC-CH4). Because several IAMs used
for social cost estimation contain a simplified model structure that prevents the exogeneous
modeling of non-CO2 greenhouse gases, very few estimates of the SC-CH4 exist. For this reason,
IAMs should be updated to better represent changes in atmospheric methane to future emissions
as seen by more comprehensive Earth System Models. We estimate the first SC-CH4 estimates
to include potential feedbacks on the methane cycle. To weigh the value of future benefits and
costs, we vary the discount rate by using 2.5%, 3.0%, and 5.0%. Our expected value for the
SC-CH4 is $1,163/t-CH4 using a constant 3.0% discount rate. This represents a 44% increase
relative to a mean estimate without feedbacks on the methane cycle.
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5.2 Introduction

Developing economically feasible climate policies has become an urgent task because increasing
anthropogenic greenhouse gas emissions could lead to climate-driven consequences that threaten
humanity and the environment (Xu and Ramanathan, 2017; Pearce, 2003; Tol, 2001). To
evaluate climate policies, researchers have developed integrated assessment models (IAMs), to
estimate the interactions between the socioeconomic systems and the Earth system (Weyant,
2017). IAMs are important tools for comparing the trade-offs of proposed policies, as well as,
optimizing a balance between emission reductions and adaptive approaches to cope with climate
impacts (Ferraro et al., 2015; Stern, 2008). IAMs are typically used to answer the question:
How much should we be willing to pay to reduce emissions and avert future climate damages
(Ranson et al., 2016; Greenstone et al., 2013)? The U.S. Government uses a metric called the
"social cost" estimation to value emissions within regulations affecting government agencies and
industries (Metcalf and Stock, 2017; Burtraw et al., 2014; Tol, 2005). Social cost estimates are
also increasingly cited in state mandated regulations (Danner, 2009).

As CO2 remains the most prominent greenhouse gas, research has greatly focused on the
estimation of the Social Cost of Carbon (SCC), a monetary evaluation of climate change damage
associated with an additional unit tonne of CO2 emissions per year ($/tCO2). To be computed
in a transparent manner and reflect the uncertainty in the existing science, SCC has typically
been estimated using an IAM (Tol, 2005). Starting with a socioeconomic scenario for GDP
growth and population, greenhouse gas emissions are projected for a baseline scenario (National
Academies, 2017). That baseline scenario is then compared to a pulsed emission trajectory,
where an additional unit of CO2 is then added to the baseline emission in a single year. Taking
in the two emission pathways, a reduced-complexity climate model within the IAM will estimate
the changes in the climate (atmospheric concentration, temperature, precipitation, sea-level,
etc.) for each time-step and pass along that information to an economic damage function
(Thompson, 2018; Nordhaus, 2017). Damages encompass losses to human health, natural
ecosystems, productivity, and property. Future damages for each incremental year are converted
to present value terms by discounting (Anthoff et al., 2009). The difference in monetary damages
from the baseline and pulsed trajectories is the marginal damage per additional unit of CO2

emission (i.e. the SCC estimate).

92



With multiple modeling components, estimating the SCC possesses many uncertainties;
including the emission scenarios, climate system dynamics, damage estimation and the weight
we put on the time preference or discount rate (Dietz, 2012). As such, producing sound SCC
estimates requires spanning the full range of the IAM parameter space. A formal probabilistic
analysis of the relevant uncertainties (through Monte Carlo simulations) will derive probability
distributions, including upper and lower bounds to a central tendency for the SCC. The standard
approach to decision making under uncertainty utilizes the expected value, assigning subjective
weights to probabilities associated with each state of the world (National Academies, 2017;
Fankhauser, 1994).

Uncertainties will also arise from model choice, as different models treat economic and climate
systems differently. IAMs vary in their computational algorithms, resolution, and design for
specific applications (Rose et al., 2017). Although many IAMs exist and appear to be suitable
for the computation of the SCC, three prominent ones (FUND, DICE, and PAGE) form the
basis of the U.S. Government SCC estimates. They specialize in modeling global aggregate
climate damages through simplified representations of the climate system and economy. The
key differences in structural representations and parameter calibration efforts have led to a wide
range of published SCC estimates, from $0 to over $200 per metric ton of CO2 (in 2007 dollars)
(National Academies, 2017).

While the U.S. Government Interagency Working Group (IWG) released updated values of
the social cost of CO2 in 2017 (National Academies, 2017), it did not provide estimates for the
social cost of other greenhouse gases that would reflect the best available science and treatment
of uncertainty. Although a few estimates of the social cost of methane (SC-CH4) exist in the
literature, we consider four deficiencies in their model structures and assumptions that make
them inadequate for policy design and inconsistent with the methodology used for the social cost
of CO2 (Shindell et al., 2017; Marten et al., 2015; Waldhoff et al., 2014; Marten and Newbold,
2012; Hope, 2006). For one, studies have converted methane into CO2-equivalent values using
the global warming potential (GWP), and then multiplied by the SCC to derive the SC-CH4

(Kumari et al., 2019). This method fails to capture the temporal nature of short-lived greenhouse
gases, like methane, on the temperature response. Second, weighting the GWP over time also
fails to reflect how damages from climate change are likely to increase faster than the rise of the
global mean temperature (Brühl, 1993). Third, several studies of the SC-CH4 omit important
parametric uncertainty analysis, lacking transparency to their central estimates. Finally, others
have not been calibrated to observations of the climate record and have not demonstrated that

93



they can replicate key behavior of comprehensive Earth System Models (National Academies,
2017; Harmsen et al., 2015).

Only a select few studies are consistent with the estimation method of the SCC. The work of
Marten et al. (2015) is recognized by the U.S. Government for estimating the SC-CH4 following
the standard setup as the SCC estimate; with the three standard IAMs, socioeconomic scenarios,
time-horizon, and discount rates (National Academies, 2017). One shortcoming of their study is it
uses a one-box atmospheric gas cycle model for methane concentrations. The lifetime of methane
is assumed to be constant and no feedbacks are considered for natural emissions or the lifetime.
When compared to an analogous projection from the climate model MAGICC (Meinshausen
et al., 2011a), the methane concentration from the box model differs by 15% in the first year
following a pulse emission and the difference in radiative forcing escalates in the subsequent
two decades. The growing difference is largely attributed to the lifetime assumption, whereas
MAGICC takes into account the concentrations of other gases and atmospheric temperature on
methane lifetime.

Here, we provide an improved SC-CH4 estimate that includes feedbacks to the methane
cycle. With a reduced-form model we represent the feedbacks to natural wetland emissions as
the global temperature rises and atmospheric chemistry feedbacks that affect methane’s lifetime.
Our model has been carefully calibrated to reproduce methane concentrations from observations
and a more comprehensive Earth System Model of Intermediate Complexity (see Chapter 4).

We insert our improved methane module into the framework of one of the U.S. Government
IAMs, FUND (Climate Framework for Uncertainty, Negotiation, and Distribution model)
(Anthoff and Tol, 2014). We choose FUND because it is the only U.S. Government IAM that
explicitly models non-CO2 gases. PAGE and DICE account for the impact of all other gases
through an exogenous radiative forcing projection. Computing the social cost of non-CO2 gases
in PAGE and DICE requires a substantial change to the underlying climate models of the
IAMs, making the task inconsistent with SCC estimates used by the U.S. Government (National
Academies, 2017). By sampling the parameter space of the modified FUND methane module,
climate components, and socioeconomic components, we incorporate structural uncertainty
into our probability distributions. Including methane feedbacks in our new SC-CH4 estimate
improves the work of previous estimation studies and begins to fill the gap in the social cost
estimates consistent with the methodology of the SCC.
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5.3 Methods

We calculate the SC-CH4 using an integrated assessment model that can model the marginal
monetized climate damages to a incremental increase in methane emissions. Spanning the
parameter space of the uncertain variables, we present a new probability distribution for the
SC-CH4 that incorporates feedbacks to the methane cycle. In this section, we describe the
integrated assessment model structure of the FUND (Climate Framework for Uncertainty,
Negotiation, and Distribution) (Anthoff and Tol, 2014) and the model modifications to include
feedback mechanisms in the computation of atmospheric methane. We follow this with an
explanation of the social cost of methane calculation and the related uncertainty analysis.

5.3.1 Description of FUND

To calculate the social cost of methane, our study uses version 3.9 of the Climate Framework for
Uncertainty, Negotiation, and Distribution (FUND) (Anthoff and Tol, 2014). As an integrated
assessment model, FUND adopts simplified representations of socioeconomic components, climate
dynamics, and impact analysis. Compared to other IAMs used by the U.S. Government for
decision making, it differs in its more detailed depiction of sectoral and regional economic
impacts, as well as, its endogenous greenhouse gas calculations. Here, we discuss the major
components of the FUND model.

The FUND model runs on yearly time-steps, from 1950 to 3000. It initiates with assumptions
of population, energy use, and emission intensity for 16 major regions of the world. Climate-
induced environmental and societal impacts perturb models of population and economic growth.
Climate change impacts relating heat stress, disease, and storm damage increases the modelled
population mortality rate. And, sea level rise induces a change in regional population through
migration. Other impact categories apply to ecosystems, biodiversity and the benefits of the
landscape to society, where increasing global temperature principally plays a role in loss rate.
Through simplified equations, losses extend further to forestry and agricultural production,
water resources, and loss of dryland and wetland area to rising seas. All impacts are eventually
monetized and aggregated per region. Monetary impacts are larger if the climate conditions
move further away from a defined optimum climate.
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Besides simulating climate damages, FUND allows for the opportunities of adaptation and
mitigation. For example, the agricultural sector can speed up its adaption to counteract the
estimated damage resulting from regional temperature change. Socioeconomic regions can
also reduce their energy use and CO2 emissions through a policy intervention. The emission
reductions could then equate to a monetary cost or savings over time. However, emission
reductions are limited to changes in energy use and technologies, since emissions from land use
change and deforestation are exogenous and cannot be mitigated.

Meant to illustrate the various carbon sinks and corresponding timescales of carbon removal
from the atmosphere, the FaIR carbon cycle is modeled as a five-box model. To model the carbon
sinks, a fraction of annual emissions is allocated to each of the five boxes which contains a unique
decay timescale (Hammitt et al., 1992; Maier-Reimer and Hasselmann, 1987). Furthermore,
anthropogenic emissions of CO2 are determined from a Kaya identity (Kaya, 1989), where
total emissions are expressed by a product of population, gross domestic product (GDP), and
emission and energy intensity of production. Terrestrial biosphere CO2 emissions are modeled
as a function of global mean temperature and remaining stock of potential emissions.

FUND also models changes in atmospheric methane, nitrous oxide, and sulfur hexaflouride
(SF6). CH4 and N2O emissions are exogenous, using a single scenario built into FUND based on
the IS92a scenario of Leggett et al. (1992), and SF6 emissions rise linearly with GDP. Natural
emissions are not considered. Concentrations are modeled using a linear depletion function
(Forster et al., 2007). In this work, we change the concentration calculation for methane, as
discussed in the next section.

The climate dynamics model calculates the radiative forcing from the Third IPCC Assessment
Report (Ramaswamy et al., 2001)) and accounts for the indirect effect of methane on tropospheric
ozone. Further, the radiative forcing causes a change in temperature. Global mean temperature
is calibrated to a 3.0 °C rise in equilibrium temperature for a doubling of CO2, such that the
e-folding time for a climate sensitivity of 3.0 °C is 66 years. For impact analysis, regional
temperatures are derived by a fixed factor that corresponds to the averaged spatial pattern of 14
GCMs (Mendelsohn et al., 2000), and global mean sea level change is estimated by a sensitivity
to global temperature.
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5.3.2 New Atmospheric Methane Component

We improve the FUND methane module by introducing a natural wetland emissions component
and new methane lifetime calculation. As demonstrated in Chapter 4, the new methane module
successfully emulates the results of a higher complexity Earth system model, the MIT Earth
System Model (MESM) (Sokolov et al., 2018), for a given emission scenario and reproduces
observed methane concentrations.

Run on an annual time-step, the new model calculates the annual methane concentration (in
parts per billion; ppb) as a balance between the sources and sinks. Annual global emissions from
anthropogenic (At) and natural sources (Nt) are converted into an equivalent increase in the
atmospheric molar mixing ratio, δCt (1 ppb = 2.8403 Mt-CH4). The concentration burden, Ct−1,
is reduced by an exponential decay with a dynamic timescale dependent on the atmospheric
concentration, τt.

Ct = Ct−1 +
1

2
(δCt−1 + δCt)− Ct−1

(
1− exp

(
−1

τt

))
(5.1)

Our approach is improved by modeling natural emissions linearly with global mean surface
temperature, and by including a relationship between temperature and rate of wetland soil
microbiological activity. The model calibration used the MESM output of global mean tem-
perature output and global mean wetland methane emissions. The linear term for the global
wetland methane emissions, Nt, is:

Nt = mN ∗ (Tt−1) + bN (5.2)

where Nt is in Mt-CH4 yr−1 and Tt−1 is the previous time-step’s global mean temperature. mN

is the slope and bN is the intercept of the linear function.

The second alteration to the methane module is changing the decay function, so that the
methane lifetime parameter takes into account changes in methane abundance to capture the
atmospheric chemistry that leads to fluctuations in OH concentration. As the primary loss
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mechanism, the tropospheric OH term tends to dominate the uncertainty in methane’s lifetime
(Prather et al., 2012). We calibrate the methane lifetime parameters to reproduce the observed
changes in methane concentration over the historical period and future projections produced by
the MESM. The complex nature of methane’s calculated lifetime calls for a piecewise-defined
function approach. From the model initiation until 1981, a constant lifetime is assumed to be 9.8
yr. The second subdomain, which corresponds to the "plateau" in methane concentrations up
until 2008, uses a linear time series regression of the predicted year, t. These two assumptions
accurately reproduce historic observed global mean methane concentrations. For present-day
and future projections of methane emissions, the lifetime is a function of atmospheric methane
concentration. Thus, the new lifetime term (Equation 5.3) improves the model by incorporating
feedback effects on the methane sink with increasing concentrations.

τ(t) =


9.8 t ≤ 1981

β0 + β1 ∗ t 1981 ≤ t ≤ 2008

exp[k0 + k1 ∗ log(Ct−1)] 2008 ≤ t

(5.3)

For additional details on the calibration process and skill of the methane model, see Chapter
4 of this dissertation.

5.3.3 Social Cost of Methane Calculation

The social cost estimate is the monetary measure of the aggregated damage done by a unit-ton
greenhouse gas emission in a given year (National Academies, 2017). Conversely, the estimate
can also represent the value of damages avoided for a unit reduction in emissions. The social
cost is not a stagnant estimate. In principal, it increases over time because future emissions are
expected to grow and produce larger incremental damages, through even greater levels of climate
change. For our analysis, we estimate the net present value of climate change damages between
2020 and 3000 from an additional unit emission of CH4 between 2020 and 2029. Our estimate of
the social cost of methane (SC-CH4) improves upon previous work by using a modified version of
the FUND model, with a new calculation for atmospheric methane concentration that includes
feedback mechanisms.
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Two climate trajectories are used for the estimation of the SC-CH4; a baseline trajectory
that follows a set emission scenario, and a pulse emission trajectory that demonstrates the
perturbation response to one ton of global methane emissions, spread out over 10 years in FUND
(Waldhoff et al., 2014). The response in global temperature and sea level result in monetary
damages. The difference between the two damage trajectories is the annual marginal climate
damages, Dt,x (in 2007 U.S. dollars per year), calculated at each of the 16 geographic regions, x,
per year, t:

Dt,x = Dpulset,x −Dbaselinet,x (5.4)

The marginal damages are discounted back to present-day values using a chosen discount
rate. The discount rate weights how much future costs or benefits are considered to be less
significant than present costs and benefits. This is analogous to the idea that if you become
richer over time, extra costs or benefits have less impact on you than when you were poorer.

The discount rate, r, is inherently related to economic growth, g, as demonstrated by the
Ramsey formula (Ramsey, 1928),

r = δ + η ∗ g (5.5)

where δ is the pure time preference rate, η is the elasticity of marginal utility of consumption, and
g is the economic growth per capita. As discussed in National Academies (2017), δ reduces future
values 0–3% per year, η measures aversion to differences in consumption between individuals
today or generations across time, and g reflects the monetary value of all market goods and
services over the past few decades.

To compare SC-CH4 estimates cited by the U.S. Government (National Academies, 2017),
all of our results assume a constant consumption discount rate, by holding η at zero. Because
the discount rate compounds impacts over time, small differences in the selected discount rate
can have large impacts on the social cost estimate. For this reason, we explore the SC-CH4

estimated using three suggested discount rates used in the estimation of the SCC, 2.5%, 3.0%,
and 5.0% (Marten et al., 2015).
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In FUND, the social cost is first estimated per region, SCx by solving for the discounted
sum of the annual marginal damages, Dt,x, normalized by the pulse emission, ε, for all time
following the pulse emission:

SCx =
1

ε

3000∑
t=2020

Dt,x

(1 + r)t
(5.6)

The 16 regions in FUND are of the United States, Canada, Western Europe, Japan and South
Korea, Australia and New Zealand, Central and Eastern Europe, the Former Soviet Union, the
Middle East, Central America, South America, South Asia, Southeast Asia, China and related
East Asian countries, North Africa, Sub-Saharan Africa, and the small island nations.

The final social cost estimate, SC, is the aggregate of the 16 regional social cost estimates,
SCx.

SC =
16∑
x=1

SCx (5.7)

To review, we estimate the social cost of methane for a 1 t-CH4 emission pulse spread out
over 10 years starting in 2020. The baseline emission trajectory follows the built-in emission
scenario, IS92a. Methane concentrations change using our modified concentrations model which
includes natural wetland emissions and feedbacks on the methane lifetime. Global and regional
temperature, as well as, sea level changes lead to monetized impacts. Climate damages per
region are summed through year 3000 using three different constant discount rate assumptions,
2.5%, 3.0%, and 5.0%. The final SC-CH4 estimate sums all regional social cost estimates. We
further align our SC-CH4 estimates with U.S. Government social cost of CO2 estimates by
expressing the values in 2007 U.S. dollars per ton of methane.
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5.3.4 Uncertainty Estimation

Producing sound estimates of SC-CH4 requires spanning the full range of the FUND parameter
space. We conduct a formal probabilistic analysis through random-sampling Monte Carlo
simulations (Metropolis et al., 1953; Hastings, 1970). The Monte Carlo sampling technique
is a classic procedure of repeating random draws from a defined probability distribution of a
variable. A sufficient number of draws will result in a posterior distribution that reflects the
shape of the prior defined distribution of the random variable.

We perform a Monte Carlo sampling of 10,000 samples on each of the 852 uncertain parameters
of the modified FUND model. A selection of the parameters and their distributions are displayed
in Appendix E. To include the uncertainty in the selection of the discount rate, we repeat the
Monte Carlo sampling for simulations using a constant discounting assumption of 2.5%, 3.0%,
and 5.0%. With 10,000 posterior parameter samples per discount rate yields 30,000 unique
SC-CH4 estimates.

5.4 Results

5.4.1 New Estimates for the Social Cost of Methane

We calculate the new estimates for the social cost of methane with feedbacks under different
discount rate assumptions using version 3.9 of the FUND model. Exploring the parameter
space through a Monte Carlo sampling produced 10,000 unique SC-CH4 estimates for each
of the constant consumption discount rates (2.5%, 3.0%, and 5.0%). We present our SC-CH4

probability distributions with estimates of the expected value, mean estimate, as well as, the
5% , 50%, and 95% predictive confidence bounds (Table 5.1).

Posterior distributions for our SC-CH4 estimates are shown in Figure 5.1. At a high discount
rate of 5.0%, future costs are worth significantly less than present-day costs. This results in
a low-range for the SC-CH4, between $150 and $1,076 (2007 U.S. dollars per t-CH4), with
an expected value of $408. In comparison, a low discount rate of 2.5% produces a higher
expected value of $1,492 and a distribution with a very long tail that extends to a 95% predictive
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Table 5.1. The SC-CH4 estimate for the default model of FUND and the modified version of FUND
that includes methane feedbacks. The rows indicate the SC-CH4 estimate under constant consumption
discounting (2.5%, 3.0%, and 5.0%). Columns indicate the posterior distribution expected value, percent
change of expected value from the updated model to the default model, median, and selected confidence
intervals. All units are in 2007 U.S. dollars per ton of methane ($/t-CH4).

Discount Expected Value Confidence Interval
Model Rate [±% change] Median 5% 50% 95%

Default
FUND

2.5% 1074 999 181 998 2288
3.0% 806 804 182 803 1813
5.0% 360 370 125 370 793

Updated
FUND

2.5% 1492 [+39%] 1520 262 1520 3331
3.0% 1163 [+44%] 1193 253 1193 2624
5.0% 480 [+33%] 497 150 497 1076
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Figure 5.1. Kernel density distributions of the social cost of methane in units of 2007$ per ton of
methane emitted, for constant discount rates of 2.5% (red), 3.0% (purple), and 5.0% (green) using the
updated FUND model containing methane feedbacks.
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confidence interval of $3,331 per ton of methane. Looking more closely at the 3.0% constant
discount rate, the expected value is $1,163. The distribution for the SC-CH4 also contains
a long tail, where 95% of the SC-CH4 estimates fall below $2,624. However, when methane
feedbacks are turned off, the SC-CH4 distribution is shifted to lower values, with a shorter tail
and expected value of $806 (Figure 5.2). Our results indicate that adding methane feedbacks
to the FUND climate model increases the expected value of the social cost of methane by
44%. Further, the 95th percentile, chosen to represent potential higher-than-expected impacts of
methane, is shifted 45% higher when feedbacks are included in the calculation of SC-CH4. In
effect, these results demonstrate that methane feedbacks can lead to extreme levels of climate
change and generate even larger future damages.
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Figure 5.2. A comparison of the SC-CH4 distribution for the default version 3.9 of FUND (teal)
and the modified version containing methane feedbacks (purple) under a 3.0% constant discount rate
assumption. Dashed lines indicate the mean SC-CH4 estimate for each distribution.
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The marginal atmospheric methane concentration and discounted monetary damages (3.0%
discount rate) following a unit ton emission pulse of methane are displayed in Figure 5.3. There
are a few distinct changes in the methane concentration response after updating the methane
cycle in FUND. The peak in atmospheric methane concentration is 14% higher for the updated
model because natural emissions from wetlands increase the overall total emissions. A second
notable difference is the decay rate of the perturbed concentration anomaly. In the default model
without any methane feedbacks, the peak concentration drops 50% over 8 years. Switching
the FUND model to include a dynamic methane lifetime dependent on concentration extends
the lifetime following a unit increase in emission (See Appendix F, Figure F.2). The overall
increased lifetime slows the decay so that half of the perturbed concentration anomaly takes
nearly 13 years to be removed from the atmosphere.

The differences between the default model and modified model with feedbacks are apparent
when examining the response of the monetized marginal damage profile to a one-ton methane
emission pulse (Figure 5.3b). In the default model, annual marginal damages peak around $11,
on average, following nearly a decade after the initial pulse emission. In contrast, the model
with the updated methane component reaches a $15 maximum damage approximately 50 years
following the pulse emission. This is because the damages peak when the temperature response
peaks, indicating the increased methane residence time is prolonging the time it takes for the
atmosphere to reach a maximum temperature following a pulse.

The damage profile shows a stark amount of uncertainty compared to the atmospheric
methane response. For one reason, there are hundreds of uncertain parameters within the
damage component of FUND and only six uncertain parameters in the methane module. Many
of the randomly selected damage parameters could be combined to form unrealistic responses
that may be able to reach a certain numerical threshold, explaining why there are spikes seen
in a few of the damage projections. These large spikes could sum up to sizeable cumulative
damages, producing the long tails seen in the probability distributions (Figure 5.2).

Another interesting feature of the damage profile is that some of the projections fall into
negative damage estimates, where society benefits from increased agricultural production in a
higher temperature world (Diaz and Moore, 2017). While this may be the case for a select few
projections, the majority indicates current methane emissions will lead to losses from future
climate damages that we could pay the price for over 200 years.
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Figure 5.3. Impulse response behavior and uncertainties following a one-ton methane pulse in 2020
using the FUND integrated assessment model. The solid lines indicate the mean response for 500
randomly selected members of the 10,000 model runs. a) Atmospheric methane concentration response
for the default FUND version 3.9 (teal) and modified FUND with methane feedbacks (purple). b)
Predicted discounted climate damage using a 3.0% constant consumption discount rate.
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Figure 5.4. Probability distributions of the social cost of methane for four regions in FUND (2007 U.S.
dollars per ton of methane emitted). The damages are calculated using a 3.0% constant discount rate.

5.4.2 Regional Damages

Compared to other IAMs used for calculating the social cost of methane, FUND contains a
more detailed regional and sectoral impact assessment. FUND predicts climate damages on a
regional scale for 16 different regions of the world. Disaggregating the world into regions gives
insight into the distribution of impacts and where mitigation options might benefit the most.

Damages resulting from anthropogenic methane emissions will be felt globally, but will vary
in intensity from location-to-location. To represent various levels in welfare and disproportionate
costs of future climate impacts, we select four regions of interest; Western Europe, China, the
United States, and Sub-Saharan Africa (Figure 5.4). All regions are expected to experience
some degree of climate damages resulting from methane emissions. Previous analysis suggests
the most important parameters that distinguish regional damages are related to cooling energy,
migration, and agriculture (Anthoff and Tol, 2013). In poorer regions, health parameters linked
to disease become more prevalent.

106



Of the four regions, Sub-Saharan Africa displays the lowest amount of predicted damages,
$81 per ton of methane emitted on average. Annual Sub-Saharan damages remain relatively
stable around $0.75 per year, following an emission pulse (See Appendix F, Figure F.3). In
contrast, China experiences an initial surge in damages immediately after the methane release,
as agricultural impacts are parameterized to escalate more rapidly in large and developing
regions (Tol et al., 2012). The greater population and infrastructure face more risk in damages
in China than in Sub-Saharan Africa.

We determine that some of the highest-emitting countries of all heat-trapping gases, like the
United States and China (Le Quéré et al., 2018), may face the costliest economic impacts. The
United States averages $128 per ton of methane emitted, where cooling energy becomes the
dominate source of future costs (Anthoff and Tol, 2013).

Finally, Western Europe shows the greatest spread in climate damages, where damages of
$175 to $430 are about equally likely to occur. In the FUND model, Western Europe is able
to quickly adapt to climate changes in the early half of the century, where changes in climate
actually end up resulting in benefits to Western Europe (negative marginal damages in Appendix
F, Figure F.3). If Western Europe cannot keep up with adaption, even higher damages can be
felt into the future.

5.4.3 Comparison to Other Social Cost of Methane Estimates

Direct comparison with previous estimates is difficult, given the differences in IAM model
choice and socioeconomic emission scenarios. To make a fair comparison with other studies,
the emission scenario, time horizon, IAM, and choice in discount rate must be the same. The
work referenced by the U.S. Government Interagency Working Group (IWG) on Social Cost of
Greenhouse Gases, Marten et al. (2015), contains the closest comparison. Their results indicated
a mean SC-CH4 between $980 and $1,400 (2007 dollars per ton CH4) using FUND at a 3.0%
constant discount rate. Albeit, their study used four different emission scenarios that spanned
emissions lower and greater than that used within our analysis. Our expected value of $1,163
falls within their estimate, yet, improves upon their work by adding natural methane emissions
and a dynamic lifetime to the atmospheric concentration calculation. This in effect, as we have
shown, increases the overall social cost of methane.
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Because our estimates use the default emission scenario from FUND, it is difficult to directly
compare to estimates using alternative emission scenarios. The choice in emission scenario
would ultimately affect the total radiative forcing and temperature response of the model. The
FUND emission scenario, designed in 1992, is significantly outdated. Further, the five scenarios
used for the SCC are also becoming increasingly outdated and replaced in scientific literature
(National Academies, 2017). To best conform with current literature and climate analyses,
further analysis would benefit from updating the methane emission scenarios to the latest RCP
emission scenarios used within the IPCC Fifth Assessment Report (AR5) (IPCC, 2013). The
only drawback to this suggested methodology would be it removes the integrated nature of the
SC-CH4 estimation, as emissions are prescribed for CO2 rather than being adjusted to changes
in socioeconomic variables built into FUND.

5.5 Conclusion

We utilize the FUND model, a prominent IAM, for the calculation of the social cost of methane.
Our SC-CH4 is the first to include feedbacks to the natural wetland emission rate and to the
methane lifetime. As a potent greenhouse gas, methane will produce a stronger temperature
response with feedbacks included. That temperature response would then equate to greater
climate damages related to agricultural productivity, human health, changes in energy system
costs, and ecosystem destruction. Our expected value for the SC-CH4 is $1,211/t-CH4 under a
constant three percent discount rate. Relative to the expected value without methane feedbacks,
our approach to feedbacks leads to a 44% increase in the SC-CH4. In a high impact scenario
(95% predictive interval), the SC-CH4 reaches $2,624/t-CH4. Our estimates for the SC-CH4 are
21 to 28 times greater than their corresponding social cost of carbon dioxide (SCC) estimates.
This may suggest that mitigating the risks of global warming from methane emissions could
provide additional societal benefits than previously considered.
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Chapter 6 |

Conclusions

Consisting of intricate and interconnected components, the Earth system responds to changes
in physical, chemical, and biological processes. Any small perturbation in one component can
initiate a counter-response or amplification in another component, each of which may have
its own response timescale. While it may be difficult to measure and isolate the changes with
observations alone, climate models have been developed to simulate the best available science.
Their complexities can vary from the most comprehensive and high-resolution to fundamental
formulations and parameterizations. How they simulate changes in the Earth system depends
on their structural complexity and their capability to simulate interactions among subsystems.

For this research, we assess the Earth system response to differences in the structural
complexity of the methane cycle. The methane cycle is a dynamic system sensitive to changes
in emissions coming from human activities and natural ecosystems, as well as, changes to its
primary chemical sink. Perturbations of atmospheric methane can initiate a sequential reaction
of other heat-trapping atmospheric constituents. As a result, methane can create indirect
impacts on the Earth’s radiative budget, which can have consequences for temperature-sensitive
carbon cycle and biogeochemical processes. All of the subsystem responses are additive, so
a modest perturbation in methane can lead to significant changes in several Earth system
components. Conversely, a modest methane emission reduction could subsequently weaken the
strength of positive feedbacks and substantially reduce global temperatures. Understanding the
Earth system response to growing methane perturbations will be useful for emission reduction
strategies, especially in the agricultural sector.
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Using Earth system models of reduced- and intermediate-complexity, we demonstrate how
simplifications of methane dynamics in reduced-complexity models often miss key feedbacks
that amplify changes in the climate to future methane concentrations. Because the reduced-
complexity models do not include dynamical processes, they can only resemble one state of
the climate system. This prohibits their ability to model nonlinearities and feedbacks under
different scenarios. In contrast, intermediate-complexity models contain all implicit processes
of the state-of-the-art models, albeit, at a lower resolution and through parameterization of
climate properties. Their model structure permits the simulation of key modeled feedbacks to the
methane cycle. And, their computational-efficiency allows for simulations to detect the sensitivity
of feedbacks under several different climate states and scenarios. Through impulse response tests,
a intermediate-complexity model can simulate nonlinear responses in the atmospheric chemistry,
methane lifetime, and natural ecosystems that result from changing background conditions and
emission perturbation sizes. By modifying the structure of the reduced-complexity models to
emulate the evolution of methane concentrations and lifetime, reduced-complexity models can
better project future changes to methane emissions.

As reduced-complexity models are often used in the context of integrated assessment models,
their methane model description and complexity can greatly influence modeled economic
impacts. Missing key methane feedbacks will provide poor projections of climate change and
likely underestimate future economic damages that result from the changing climate. This
explains why updating reduced-complexity models to include methane feedback mechanisms
improves their ability to address climate issues.

In summary, this research has contributed to the field of climate modeling by investigating
the impact of the methane cycle on the Earth system response within reduced- and intermediate-
complexity models. The work described in this dissertation made the following contributions
and conclusions:

• Plausible agricultural and dairy emission reductions, especially methane, will help reach
established temperature targets.

• Future methane and carbon dioxide emissions are able to influence the Earth system
response by leading to potential feedbacks in the carbon cycle, atmospheric chemistry, and
biogeochemistry that may further increase atmospheric methane concentrations.

• Incorporating methane feedbacks into an integrated assessment framework increases the
costs of future climate damages to projected methane emissions.
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6.1 Chapter Insights and Conclusions

The investigation in Chapter 2 exemplifies how non-CO2 emission mitigation in the agricultural
sector can assist in reaching temperature targets set by international policy in a warming
world. As the principal contributor to global non-CO2 emissions, the agricultural sector has
the option to move toward low-emission practices that can sustain the increasing demand for
food as the global population grows exponentially. Extensive onsite research and life cycle
assessments of large industrial-sized and small-scale dairy farms have shown that implementation
of appropriate farm management practices can reduce whole-farm greenhouse gas emissions
while simultaneously increasing productivity (Veltman et al., 2018; Hristov et al., 2013; Montes
et al., 2013).

Our publication (Rolph et al., 2019) is the first to assess how effective recommended dairy
farm management practices are at mitigating future warming under plausible future emission
reduction pathways. Dairy and agricultural emissions from the FAO database (FAO, 2018)
are partitioned into 16 world regions to account for localized differences in production and
practices. Our emission scenarios are further informed by life cycle assessments of 150-cow
and 1500-cow farms (Veltman et al., 2018; Alan Rotz et al., 2015). Manipulating a business as
usual emission scenario developed by the MIT Economic Projection Policy Analysis (EPPA)
(Paltsev et al., 2005), we apply emission reductions of CH4, CO2, and N2O across the global
agricultural sector and global dairy subsector. Modeling the plausible scenarios in an Earth
system model of intermediate complexity, the MIT Earth System Model (MESM) (Sokolov
et al., 2018), our results indicate that immediate mitigation from the agricultural sector could,
on average, reduce future warming 0.21 °C, with better dairy farm practices contributing to
14% of the total temperature reduction by the end of the century.

Chapter 2 demonstrates the critical role methane plays in projected global warming, Of the
total temperature reductions associated with decreasing global agricultural emissions, 88% of
the temperature change by the end of the century is due to methane reductions and 12% is
from N2O and CO2 reductions. While methane emission reductions from the agricultural sector
alone cannot stabilize global temperatures to 2 °C above preindustrial levels, it does complement
efforts within other sectors to reduce anthropogenic greenhouse emissions. Possible implications
of our results could incentivize dairy farmers to switch to low-emission practices and technologies
through voluntary action, stringent regulations, or cap-and-trade offset payments (Horowitz and
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Gottlieb, 2010). As our results assume a global effort to methane and greenhouse gas reductions,
it could further revitalize international climate commitments to agricultural emission reductions
(UNFCCC, 2015).

After developing plausible emission reductions from farm-based estimates, we characterize
the distinct impact atmospheric methane has on climate model results in Chapter 3. Here, we
continue to run and evaluate the MESM intermediate complexity climate model. As with any
model, it is necessary to diagnose the MESM model response and evaluate its performance for
appropriate applications, including integrated assessments of climate policy implications and
emission abatement measures (like that of Chapter 2) (Rolph et al., 2019; Reilly et al., 2012;
Gurgel et al., 2011). With well-documented representations of biogeochemistry and atmospheric
chemistry (Sokolov et al., 2018; Schlosser et al., 2007; Wang et al., 1998), the MESM reveals
time-dependent and temperature-dependent characteristics of the methane and carbon cycles
under changing background conditions. In this chapter, we investigate how impulse simulations
are able to uncover chemical and physical feedbacks associated with the carbon cycle that would
otherwise be obscured in standard emission scenarios. As the system responses are additive, the
feedbacks are specific to the climate state and perturbation size. Unable to capture the changes
in the climate state to different perturbation sizes, impulse response function (IRF) models are
too simplistic and miss key feedbacks. A process-based model like the MESM is necessary to
simulate the nonlinearities of the climate system.

Methane pulse emissions of various magnitudes show how increasing abundance of atmospheric
methane greatly influences atmospheric chemical interactions and the concentrations of other
greenhouse gases and related aerosols. As the primary reactant for methane oxidation, OH is
depleted with the overabundance of tropospheric methane and affects the perturbation residence
time of methane and ozone. As a result, even the smallest pulse size (equivalent to half the annual
anthropogenic methane emissions) takes more than 60 years to be completely oxidized to CO2.
Further, the cumulative increased radiative forcing from all of the perturbed atmospheric species
increases the global mean surface air temperature enough to weaken the uptake of the terrestrial
and ocean carbon sinks. We also see the effect increased global ozone concentrations have on
decreasing CO2 fixation of vegetation. Lastly, simulated temperature-induced biogeochemical
feedbacks lead to increased wetland soil methanogenesis and an additional flux of methane
into the atmosphere. As a whole, Chapter 3 demonstrates that the MESM impulse response is
nonlinear due to the selection of the methane perturbation size, changing background atmospheric
composition, and temperature-dependence of the atmospheric, land, and ocean chemistry.
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Linear mathematical formulations that describe the a subsystem response to a infinitesimally
small perturbation (i.e. impulse response functions, IRFs) that stem from pulse tests like
those explored in Chapter 3, can sometimes be used to substitute a component of a fully
complex climate model. One example of a model that incorporates an IRF to portray changes
in atmospheric concentrations is the Finite Amplitude Impulse Response (FaIR) model (Smith
et al., 2018). As a climate model with a reduced-form structure, FaIR can be tuned to emulate
more comprehensive Earth system models (Millar et al., 2017), giving FaIR the upper hand in
computational efficiency and transparency to policy-makers. In one example, FaIR has been
utilized by the Intergovernmental Panel on Climate Change (IPCC) to warn policy-makers of the
mitigation and adaptation needs to limit warming to 1.5 °C above preindustrial temperatures
(Rogelj et al., 2018).

While the FaIR model includes the thermal feedback on CO2 uptake, it omits indirect effects
of non-CO2 gases which lead to climate-carbon feedbacks (as demonstrated in Chapter 3).
Within Chapter 4, we modify the FaIR methane IRF to include methane feedbacks arising from
natural wetlands and atmospheric chemical interactions. By emulating the MESM, the modified
version creates a temperature dependency on natural wetland methane emissions, reflecting
the thermal feedback on methanogenesis within wetland soils. It also captures the weakening
methane sink as the main oxidant of many trace-gases, OH, is depleted through an interactive
methane lifetime with a positive self-abundance feedback.

The new methane IRF of the FaIR model greatly alters the interpretations of the Repre-
sentative Concentration Pathway (RCP) scenarios for policy-relevant temperature targets. For
instance, a rapid reduction in methane emissions seen in RCP2.6 boosts methane oxidation
rates and lowers temperature-dependent wetland emissions, thus rapidly declining projected
global warming. However, the benefits of reduced methane feedbacks reverses in a high emission
world. Increased atmospheric methane drives a positive feedback response leading to a 0.43 °C
rise in global temperatures that could potentially disrupt or hinder mitigation efforts suggested
by policy makers.

In Chapter 5, we study the affect of including feedbacks in the new methane IRF on the
calculation of the social cost of methane (SC-CH4). As a climate metric cited in emission
regulations, the SC-CH4 presents an cumulative monetary estimate of damages to human life,
property, economic productivity, and natural ecosystems from an additional unit CH4 emission
(National Academies, 2017). Very few SC-CH4 methods exist that are consistent with the
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methods directed by the U.S. government for the social cost of CO2. And to our knowledge,
our SC-CH4 estimates are the first to include feedbacks on the methane lifetime and natural
emissions.

We follow the standard approach to estimating the SC-CH4 in an integrated assessment
model, FUND (Anthoff and Tol, 2014). The approach takes two emission pathways, a baseline
scenario and a pulsed emission trajectory, and compares the monetized climate change damages
between the two to estimate the SC-CH4. Uncertainties of the integrated climate-socioeconomic
framework are addressed by performing an extensive Monte Carlo sampling on uncertain model
parameters and interchanging the choice in constant consumption discount rate. By including
methane feedbacks in the FUND concentration calculations, we estimate the expected value of
the probabilistic SC-CH4 to be $1,163 per ton of methane emitted, a 44% increase relative to
an expected value estimate without methane feedbacks. In addition, our updated SC-CH4 is 28
times greater than the corresponding social cost of CO2. Therefore, it may be more economically
beneficial to consider increasing regulations and prices on methane emissions to avoid or mitigate
projected future climate damages.

To conclude this dissertation, we link the first and final research chapters for a full circle
analysis. Initially, we projected that better farm management practices from the dairy sub-
sector and aggregate agricultural sector could potentially reduce 0.9 to 9.6 billion tons of
global methane emissions by the end of the century. Using the newly updated SC-CH4, those
agricultural methane reductions could offset 1.1 to 11.6 trillion dollars in future global damages,
where 27% of the avoided damages would have resulted from methane feedbacks alone. The
conclusions made here testify to the societal benefits of feasible low-emission climate solutions
and further illuminate the need to avoid detrimental feedbacks of catastrophic climate change.
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Appendix A|

MESM Ensemble Parameter Sets

The computational speed of the MIT Earth System Model (MESM) allows for multiple simu-
lations by parameterizing three climate variables; the equilibrium climate sensitivity, effective
diffusivity for ocean heat anomalies, and net aerosol forcing strength. We run a Latin Hypercube
Sampling on the joint probability distribution from Libardoni et al. (2018b) to produce 50 sets
of correlated parameters.

Figure A.1. A 3D image of the joint probability distribution and the 50 parameter sets drawn from a
LHS (white spheres).
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Table A.1. MESM parameter sets for 50 ensemble members. ECS = Equilibrium Climate Sensitivity
(°C), sqrt(KV ) = Effective Diffusivity for Ocean Heat Anomalies (sqrt[cm2 s−1]), and Faer = Net
Aerosol Forcing Strength (Wm−2).

Ensemble sqrt(KV ) ECS Faer Ensemble sqrt(KV ) ECS Faer

1 0.68 2.94 -0.47 26 1.81 4.94 -0.29
2 0.86 2.93 -0.15 27 1.84 2.67 -0.16
3 0.95 2.76 -0.18 28 1.88 3.02 -0.40
4 1.01 3.12 -0.22 29 1.92 3.19 -0.03
5 1.06 3.36 -0.25 30 1.96 3.62 -0.56
6 1.11 2.42 -0.11 31 2.00 3.08 -0.27
7 1.15 3.01 -0.30 32 2.04 2.93 -0.05
8 1.19 3.24 -0.20 33 2.09 4.52 -0.33
9 1.23 2.48 -0.03 34 2.14 2.92 -0.33
10 1.26 3.53 -0.14 35 2.18 4.11 -0.37
11 1.30 3.08 -0.49 36 2.24 3.40 -0.38
12 1.33 3.78 -0.40 37 2.29 3.17 -0.19
13 1.36 3.69 -0.09 38 2.35 2.65 -0.06
14 1.40 2.73 -0.26 39 2.42 2.87 -0.08
15 1.43 2.65 -0.25 40 2.49 3.52 -0.15
16 1.46 3.33 -0.32 41 2.57 2.21 -0.30
17 1.49 3.21 -0.29 42 2.66 4.08 -0.23
18 1.53 2.90 -0.27 43 2.77 3.11 -0.36
19 1.56 3.02 -0.21 44 2.89 2.52 -0.08
20 1.59 3.31 -0.31 45 3.03 3.41 -0.11
21 1.63 3.64 -0.15 46 3.20 2.80 -0.17
22 1.66 4.38 -0.55 47 3.42 4.26 -0.18
23 1.70 2.81 -0.14 48 3.75 2.46 -0.05
24 1.73 3.10 -0.32 49 4.29 3.08 -0.24
25 1.77 4.03 -0.35 50 5.54 4.75 -0.37
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Figure A.3. Scatterplot of the Transient Climate Response (TCR) against the Equilibrium Climate
Sensitivity (ECS) for the MESM 50 member ensemble (blue), CMIP5 models (purple), CMIP6 models
(red), and 1000 member ensemble of Libardoni et al. (2019) (turquoise). A linear regression is fit to
each data set. The legend indicates the number of individual models for each CMIP and number of
MESM ensemble members. Also shown are density plots for TCR and ECS. CMIP model information
obtained from Meehl et al. (2020).
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Appendix B|

Impulse Response: Additional Fig-
ures
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Figure B.1. Greenhouse gas species contribution to the total radiative forcing for CH4, CO2, and O3.
Shown are the fractional contributions for the 100 GtC pulse scenarios of a) methane and b) carbon
dioxide.
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Appendix C|

A Bayesian Calibration of the FaIR
Model

C.1 Accounting for Error Structures

We employ the robust adaptive Metropolis Markov Chain Monte Carlo (MCMC) algorithm
within a Bayesian framework to extract parameter estimates that are consistent with projections
from the MIT Earth System Model (MESM). This procedure assumes that the observational
data set from the MESM, y, consists of the FaIR model prediction of each observation given the
set of parameters, f(θ, t), plus a residual term between the two time-series, Rt.

yt = f(θ, t) +Rt (C.1)

The data-model residual, Rt, stands as a place to describe the unexplained variations in the
observations that are not always well represented in a physical model. We approximate the
data-model residual as a combination of the observational error, εt, and model error, ωt.

Rt = εt + ωt (C.2)
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To avoid the possibility of biased parameter estimates and overconfident model projections
that can result from too simplistic error structures within the statistical model fitting framework
(Ricciuto et al., 2008), we estimate the residuals with a stationary first-order autoregressive
process AR(1) model (Zellner and Tiao, 1964). The AR(1) process accounts for potential residual
autocorrelation in the model error and time-varying heteroskedastic observation errors, thus
better accounting for the uncertainty in the parameter estimates (Ruckert et al., 2017).

In an AR(1) process, the model error will depend on the previous residual term, the autocor-
relation coefficient, ρ and a sequence of continuously independent and identically distributed
stochastic error terms, or white noise δt:

ωt = ρ ∗ ωt−1 + δt (C.3)

where the remaining structural model errors and natural climate variability are captured within δt.
The initial model error, ω0 ∼ N(0, [σ2

AR1/1−ρ2]), comes from a multivariate normal distribution,
described with a variance σ2

AR1 and correlation structure given by a AR(1) parameter, ρ. We
treat ρ and σ2

AR1 as uncertain statistical process parameters estimated during the calibration.

The observation error, εt, are from the MESM data sets for global mean methane concentra-
tion, natural wetland emissions, and methane lifetime. Following that of Ruckert et al. (2017),
the observation errors are treated as uncorrelated with a normal distribution of a mean-zero
and variance, σ2

ε,t.
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C.2 The Robust Adaptive MCMC Algorithm

To assimilate the MESM data into the FaIR model and estimate the joint posterior distribution
of the newly added parameters, we implement a Bayesian inversion technique using a Markov
chain Monte Carlo (MCMC) algorithm (Metropolis et al., 1953; Hastings, 1970). The MCMC
algorithm generates a representative sample of the joint posterior distribution conditional on the
observed data. The most applicable MCMC method is the random walk Metropolis algorithm
that uses an acceptance/rejection rule on a sequence (or Markov chain) of candidate points in
order to converge on a target distribution (Gasparini et al., 1997).

First, an initial guess is made on the value of the uncertain parameter within a prior
distribution based on some previous knowledge. In our procedure, we apply a uniform probability
density function for each prior of the uncertain parameters, meaning any value between the
cut-off values of the distribution are of equal likelihood. A sample candidate point centered on
within its own proposal distribution is drawn from the prior. A list of prior distributions for the
uncertain parameters, θ, and statistical process parameters, σ and ρ, are found in Table 4.1.
The foundation for our priors are based on the preliminary regression fits for natural wetland
emissions (Figure 4.6) and methane lifetime (Figure 4.8).

The candidate point drawn from the prior is either accepted or rejected through the use of
Bayes theorem (Bayes and Price, 1763). The theorem states that the probability of observing
the parameters given the data, π(θ|~y), is proportional to the likelihood of the data given the
parameters, L(~y|θ), times the prior probability distribution of the parameters, π(θ).

π(θ|~y)) ∝ L(~y|θ) · π(θ) (C.4)

If the probability density π of the candidate point is higher than that of the previous chain
element, the candidate point is accepted with the proposed probability density. Otherwise, the
proposed candidate is rejected and a new sample is drawn from the previous chain element.
The chain will move onto the next sample at a predetermined step size. Samples are then
continued to be drawn in sequence where the distribution of the next realization is dependent on
the previous distribution. After several iterations, the chain will converge on the "true" value
of the uncertain parameter. For every segment of the chain, the likelihood of the data given
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proposed parameters must be computed assuming the residuals follow an AR(1). The task can
be computationally consuming for long iterations.

Still, the speed of the convergence can be improved by learning about the properties of the
target distribution amid the sampling. Replacing the constant proposal distribution matrix with
one that learns and adapts to the past allows the algorithm to more efficiently estimate the
shape of the target distribution. We use the Robust Adaptive Metropolis (RAM) algorithm to
update the proposal distribution such that it captures the shape of the target distribution while
attaining a set acceptance rate (Vihola, 2012). If the acceptance probability of the proposal,
αt, is smaller than the desired mean acceptance rate, typically α* = 23.4%, then the proposal
distribution is shrunk. Otherwise the proposal distribution enlarged if the acceptance probability
of the proposal distribution is higher than the targeted acceptance rate, α*. For the RAM
sampler, we use the Klara package within the programming environment of Julia (Papamarkou,
2018).

The adaption technique of the RAM algorithm provides several advantages. It is not
dependent on the model being calibrated, so the likelihood function and chain algorithm is the
same for any number of parameters. Also, the RAM algorithm can handle the realization of
posterior multimodal and heavy-tailed target distributions.
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C.3 Testing for Convergence of an MCMC Chain

C.3.1 Visual Check for Convergence

To know when a physical model is sufficiently calibrated we must diagnose when the MCMC
operation has "converged" onto a posterior distribution; that is to say, the sampling has reached
a well-mixed state and the output can be trusted for analysis. Before testing for convergence,
we subtract the burn-in period to remove the effects of the chosen starting values. For our
application, we remove the first 10% of the 100,000 iteration sampling. We then "thin" the
samples from the posterior, saving every 10th sample. This effectively reduces the autocorrelation
in the sample while reducing the number of samples to 1,000 saved for the analysis.

One quick way to check for convergence is by plotting a time series of the sampler iterations,
i.e. a trace plot. A trace plot is shown for each of our uncertain parameters in the FaIR methane
module in Figure C.1. A converged trace plot will show the chain jumping around an averaged
value. If the MCMC chain becomes stuck or does not fully explore the full parameter space, the
chain has not yet converged and will need to be run for longer iterations.

C.3.2 Heidelberger and Welch Diagnostic

A statistical check for convergence of each parameter chain is the Heidelberger and Welch
diagnostic (Heidelberger and Welch, 1981). The diagnostic calculates a test statistic to accept or
reject a null hypothesis that the parameter chain is stabilized. The test is split into two parts;

1. Checks if the whole chain comes from a stationary distribution, where the starting state
does not matter and will come to a stable state over time. If the test fails, it will remove
the first 10% of the chain and test again. If it fails again, the test will repeat until half of
the chain is removed.

2. If the first part is passed, then a test is done for the mean of the chain. Half of the width
of the 95% confidence interval around the mean must be lower than some tolerance value,
ε = 0.1, to pass.
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Figure C.1. An initial-burned and thinned chain (1,000 iterations) of the uncertain parameters within
the new methane module of FaIR for just one of the 49 member ensemble calibrations. This exemplifies
a visual check for a well mixed sampling and convergence of the Markov chain.
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C.4 Correlations of Uncertain Parameters

We determine whether the multivariate data contains any statistical correlations through a
correlation matrix (Figure C.2). Shown on the matrix is the Pearson correlation coefficient, which
measures the linear correlation between two random variables. We find a strong correlation
between β0 and β1, as well as, k0 and k1. This makes sense because these variables are
parameters within linear relationships and are expected to be strongly correlated. All other
bivariate combinations do not show a correlation.

Another way to visualize the relationships between multivariate data is through parallel
coordinate plots. In these plots, each variable contains its own vertical axis. The "web" that
connects the several axes is for one realization of the Markov chain. One can tune an interactive
graphic to "brush" or highlight a variable set for a range of values. Shown on Figure C.3, we
highlight −1.1 ≤ k0 ≤ −1.0 to visualize a subset of the variable space. Since k0 and k1 are
strongly negatively correlated (ρ = −1.00), we can see how higher values of k0 link to lower
values of k1.
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Figure C.2. A table of correlation coefficients for the uncertain parameters in the new methane module
of FaIR. Also shown are the bivariate scatter plots with a fitted red line. Distributions of each variable
are along the diagonal.
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Parallel Coordinate Plot
β0 k0 k1 mN bN

Figure C.3. A parallel coordinates plot for the uncertain parameters within the new methane module
of FaIR. Each variable is given its own axis. We "brush" or highlight a selection of k0 values to bring
attention to and isolate a section of the plot. The color gradient indicates the MESM ensemble number
that FaIR is calibrated against.
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Appendix D|

Evaluating the FaIR Model Up-
date: Additional Figures

We use the MIT Earth System Model to model changes in natural methane emissions coming
from wetlands. To find a good predictor variable for methane emissions, we evaluate the
relationship between natural emissions and precipitation. Figure D.1 shows the mean annual
methane emissions from the MESM as a linear function of global mean precipitation.

Figures D.2 and D.3 show the elements of the box model referred to in Eq. 4.1. The
FaIR model update is a single run using the maximum likelihood values for the six uncertain
parameters added to the methane module (see Table 4.1). The MESM model run is a single run
that closely resembles the ensemble mean. Both models are run with the 2016 EPPA Outlook
emission scenario for model years 2006 to 2100 (Chen et al., 2017). Prior to 2006, the MESM is
run using prescribed concentrations based on derived observations from NASA GISS (Sokolov
et al., 2018). The FaIR model (Smith et al., 2018) assumes exogenous anthropogenic emissions
from the CEDS emission database (Hoesly et al., 2018) for the historic period.

Additional figures within this Appendix evaluate the FaIR model fit for the RCP2.6 and
RCP8.5 scenarios.
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Appendix E|

Selection of FUND Parameters

Table E.1. A selection of uncertain parameters in FUND. Given are the types of prior distributions and
the shape description from which a Monte Carlo sampling draws. The sections are divided as follows:
climate model parameters, added methane cycle parameters, and socioeconomic impact parameters.

Parameter Distribution Bounds or Shape Description

Climate Sensitivity Gamma α = 6.47, θ = 0.54
Sea Level Sensitivity Gamma α = 6.0, θ = 0.4
Perturbed Methane Emissions Normal µ = 0.0, σ = 6.83
Perturbed Nitrous Oxide Emissions Normal µ = 0.0, σ = 0.0059
Constant Methane Lifetime Triangular low = 8.0, mid = 12.0, high = 16.0
Constant Nitrous Oxide Lifetime Triangular low = 100, mid = 114, high = 170
Box 2 Carbon Dioxide Lifetime Truncated Normal µ = 363.00, σ = 90.75, low = 0.00
Box 3 Carbon Dioxide Lifetime Truncated Normal µ = 74.0, σ = 18.5, low = 0.00
Box 4 Carbon Dioxide Lifetime Truncated Normal µ = 17.0, σ = 4.25, low = 0.00
Box 5 Carbon Dioxide Lifetime Truncated Normal µ = 2.0, σ = 0.5, low = 0.00

Intercept of Natural Emissions Truncated Normal µ = 188.0, σ = 0.4, [186.2, 189.6]
Slope of Natural Emissions Truncated Normal µ = 23.9, σ = 0.6, [22.1, 25.9]
Intercept of Time Series Regression Truncated Normal µ = 17.6, σ = 0.4, [15.7, 19.2]
Slope of Time Series Regression Truncated Normal µ = -0.058, σ = 0.003, [-0.070, -0.044]
Intercept of Methane Lifetime Truncated Normal µ = -1.19, σ = 0.09, [-1.49, -0.81]
Slope of Methane Lifetime Truncated Normal µ = 0.45, σ = 0.01, [0.40, 0.48]

Population Growth Normal µ = 0.0, σ = 0.006
Biodiversity Loss Truncated Normal µ = 0.003 σ = 0.002), low = 0.0
Agricultural Adaptation Time Truncated Normal µ = 10.0 σ = 5.0), low = 1.0
Perturbed Cardiovascular Disease Truncated Normal µ = 0.0259 σ = 0.0096), low = 0.0
Statistical Life Value Truncated Normal µ = 1.0 σ = 0.2, low = 0.0
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Appendix F|

The Social Cost of Methane: Ad-
ditional Figures

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

3% 

5% 

Discount Rate 

Pr
ob

ab
ilit

y

Social Cost of Methane ($/t-CH4)  

2.5% 

FUND Version 
Default 
Update 

Figure F.1. Cumulative distribution function (CDF) showing the probability of the social cost of
methane for three constant discount rates. Dashed lines refer to the default version 3.9 FUND and
straight lines refer to the modified version with methane feedbacks.
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Figure F.2. Marginalized impulse response behavior following a one-ton methane pulse in 2020 using
the modified FUND model with methane feedbacks. The vertical scales are small because of the 1 ton
methane pulse emission. For comparison, annual CH4 emissions are 4.167e+8 tons. The color gradient
shows the equilibrium climate sensitivity (°C). Shown are 500 randomly selected projections from the
10,000 model runs. a) Global mean temperature response, and b) methane lifetime response following
the ten-year pulse perturbation between 2020-2030.
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Figure F.3. Marginal monetary damages following a unit ton methane pulse for a select four of the 16
regions in the FUND model. Damages are calculated using a constant 3% consumption discount rate.
Shown are 500 randomly selected projections from the 10,000 model runs. The bold lines indicates the
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