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Abstract

In this thesis, we study nonparametric identification of first-price auction models

and propose a semi-nonparametric simulated integrated moment estimation method to

recover the underlying value distribution.1

In the first essay, we investigate the nonparametric identification of the first-price

auction model. In most cases in the nonparametric auction literature, the support of the

bidders’ values is assumed to be bounded. We show via an alternative nonparametric

identification proof that the boundedness assumption can be relaxed to the condition

that the value distribution has a finite expectation. In the first instance, we show this for

the case of independent and identical first-price auctions, and then we extend the proof

to the case of first-price auctions with observed auction-specific heterogeneity. Also, we

consider the case where the log of the values is modeled as a median regression model,

and the case where the bidders know ex-ante the actual number of bidders rather than

the number of potential bidders.

In the second essay, we propose a semi-nonparametric simulated integrated mo-

ment (SNP-SIM) to estimate the value distribution of independently repeated identical

first-price auctions. First, we construct an increasing sequence of compact metric spaces

of distribution functions (the sieve), based on the approach in Bierens (2007). Given

a candidate value distribution function in the sieve, we simulate bids according to the

equilibrium bid function involved. We take the difference of the empirical characteristic

1The three essays in this thesis are co-authored with Herman Bierens.
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functions of the actual and simulated bids as the moment function. The objective func-

tion is then the integral of the squared moment function over an interval. Minimizing

this integral to the distribution functions in the sieve then yields a uniformly consistent

semi-nonparametric estimator of the actual value distribution. Also, we propose an in-

tegrated moment test for the validity of the first-price auction model, and a data-driven

method for the choice of the sieve order. Finally, we conduct a few numerical experiments

to check the performance of our approach.

In the third essay, we propose to estimate first-price auction models with observed

auction-specific heterogeneity via a semi-nonparametric simulated integrated conditional

moment (SNP-SICM) method. The auction-specific heterogeneity will be incorporated

via a median regression model for the log values with unknown error distribution. The

latter distribution will be modeled semi-nonparametrically using orthonormal Legendre

polynomials, similar to the approach in Bierens (2007). Given a parametric specification

of the median function, the semi-nonparametric conditional value distribution involved

can be estimated consistently by minimizing the integrated square distance between the

empirical characteristic functions of the actual bids and the simulated bids, together

with the covariates, via an integrated conditional moment criterion. This approach

yields as a by-product an integrated conditional moment test for the validity of the

model. Moreover, we apply the SNP-SICM estimation method to the US timber auction

data and test the validity of the first-price auction model for this data.
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Chapter 1

Identification of First-Price Auction

Models with Unbounded Values and

Observed Auction-Specific Heterogeneity

1.1 Introduction

In this paper we show the nonparametric identification of first-price sealed bid

auction models under mild conditions, where the values of the potential bidders are inde-

pendent and private and bidders are ex-ante identical, possibly conditional on observed

auction specific covariates. This is known as the Independent Private Values (IPV) par-

adigm. Moreover, we assume risk neutrality. Furthermore, we assume that the bids are

unsealed after the auction, and are therefore ex-post observable. In the sequel we call

this type of auctions shortly “first-price auctions”. Three situations will be investigated

in the paper. The first one is the (not very realistic) case in which there are independent

and identical auctions with the same known number of potential bidders. The second is

the more realistic case where auction-specific characteristics are observed and the num-

ber of potential bidders and the reservation price are allowed to change. The third is

the case where the reservation price is binding and the bidders know ex-ante the actual

number of bidders rather than the number of potential bidders.

There are two seminal papers on the identification of first-price auction models,

namely Donald and Paarsch (1996) and Guerre, Perrigne and Vuong (2000). Of course,
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parametric identification had been developed earlier. In particular, Laffont, Ossard and

Vuong (1995) specify the conditional distribution of the log of the private values as

normal with conditional mean a linear function of covariates.

Donald and Paarsch (1996) show the nonparametric identification of first-price

auctions under the assumption that the support of the distribution F (v) of the values is

a known bounded interval [v, v], i.e., F (v) is absolutely continuous with density f such

that f(v) > 0 on (v, v), and F (v) = 0, F (v) = 1. They identify the value distribution

and the risk aversion parameter using the family of hyperbolic absolute risk aversion

(HARA) utility functions. Particularly they identify the distribution F (v) using a fixed

upper bound.

As is well-known1, the symmetric Nash equilibrium bid function of first-price

auctions without binding reservation price takes the form

b = β (v) = v − 1

F (v)I−1

∫ v

v
F (x)I−1dx, (1.1)

where I is the number of potential bidders, F (v) is the value distribution and v is the

lower bound of its support. In first-price auctions under the symmetric IPV paradigm,

the existence and uniqueness of this symmetric Nash equilibrium is guaranteed by the

finite expectation condition
∫∞
v

vdF (v) < ∞, which in its turn is guaranteed by the

bounded support assumption. The latter implies of course that the bids are also bounded,

with lower bound b = β(v) = v and upper bound b = β (v) .

1See for example Krishna (2002).
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However, unlike Donald and Paarsch (1996), Guerre, Perrigne and Vuong (2000)

use the inverse bid function

v = β−1(b) = b +
1

I − 1
Λ(b)
λ(b)

where Λ(b) is the distribution function of the bids and λ(b) is the corresponding den-

sity. Since the bids are observable, the bids distribution Λ(b) and its density λ(b) may

be considered given, because they can be estimated nonparametrically. Therefore, the

private values can be recovered from the bids and their distribution. Note that they do

not use the boundedness of values in their identification proof even though they denote

the support of the values by [v, v]. Thus, their identification proof is still valid if v = ∞.

The nonparametric approach of Guerre, Perrigne and Vuong (2000) has been

extended by Athey and Haile (2002, 2006a-b) to more general auction models. See Mil-

grom and Weber (1982) for the latter. Li, Perrigne and Vuong (2000) have extended the

nonparametric approach to the conditionally independent private value (CIPV) model,

under the assumption that each private value is the product of an idiosyncratic com-

ponent and a common component. Li and Perrigne (2003) study first-price auctions

with random reservation price and show the nonparametric identification of this model.

Campo et al. (2002) consider the case of risk averse bidders.

It is frequently assumed in the nonparametric auction literature that the value

distribution has a known bounded support. In this paper, we show via an alternative

nonparametric identification proof that this assumption is superfluous at least for first-

price auctions with independent private value, provided that the value distribution has
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a finite expectation. In the first instance we show this, in Section 2, for the case of

independent and identical first-price auctions, and then we extend the proof in Section 3

to the case of first price auctions with observed auction-specific heterogeneity. Also, we

consider the case where the log of the values is modeled as a median regression model

The standard assumption of first-price auction models is that the number of po-

tential bidders is ex-ante known to the bidders and ex-post to the econometrician as well.

The latter is often not the case in practice if the reservation price is binding. Therefore,

in Section 4, we consider the case where the bidders know ex-ante the actual number of

bidders, i.e., the number of bidders with a value larger than the reservation price, rather

than the number of potential bidders. Finally, in Section 5, we will sketch how we plan to

use these results in our research on semi-nonparametric estimation of the (conditional)

value distribution of first-price auctions.

1.2 Independent identical first-price auctions

The case where identical first-price auctions are repeated independently is of lim-

ited practical interest, but we will consider this case here to illustrate the main ideas

behind our alternative identification proof. The more realistic case of first-price auctions

with observed auction-specific heterogeneity will be considered in the next section.

1.2.1 The bid function

Suppose there are I ex-ante identical bidders and there is an indivisible object to

sell. Assume that bidders are risk-neutral. Bidders’ values are assumed to be indepen-

dent and private. Moreover, the bidders’ values V follow a distribution F (v) which is
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absolutely continuous. Then, given the seller’s reservation price p0 which is announced

in advance, the equilibrium bid of a bidder with value v is2

β(v) = v − 1

F (v)I−1

∫ v

max(p0,v)
F (x)I−1dx, v > max(p0, v), (1.2)

where I is the number of potential bidders, which is assumed to be known, and

v = inf
F (v)>0

v (1.3)

is the lower bound of the support of the private values distribution F . See Riley and

Samuelson (1981) or Krishna (2002) for the derivation of (1.2).

We do not restrict v to be positive valued, nor do we assume that v is known.

If v > 0 and the seller sets the reserve price p0 below v, so that p0 is non-binding, or

if there is no reservation price (p0 = 0), every potential bidder will enter the auction.

This case is observable because then the number of bids equals the number I of potential

bidders.

On the other hand, if the reservation price p0 is binding, p0 > v, only potential

bidders with value V > p0 will enter the auction and make their bids. This case is

observable because then the actual number of bids, I∗, is less than the number I of

potential bidders.

2See the Appendix for the derivation of the similar expression (1.16).
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Note that in the case of a binding reservation price p0, (1.2) can be written as

β (v) = v − v − p0
F (v)I−1 +

1

F (v)I−1

∫ v

p0

(
1− F (x)I−1

)
dx

=
vF (v)I−1 − v + p0

F (v)I−1 +
1

F (v)I−1

∫ v

p0

(
1− F (x)I−1

)
dx

=
p0

F (v)I−1 +

∫ v
p0

(
1− F (x)I−1

)
dx− v

(
1− F (v)I−1

)

F (v)I−1

=

∫ v
p0

(
1− F (x)I−1 − d

dx

(
x

(
1− F (x)I−1

)))
dx

F (v)I−1

+
p0 − p0(1− F (p0)I−1)

F (v)I−1

= (I − 1)

∫ v
p0

xF (x)I−2F ′(x)dx

F (v)I−1 + p0
F (p0)I−1

F (v)I−1 .

Consequently,

lim
v→∞β (v) = (I − 1)

∫ ∞
p0

xF (x)I−2F ′(x)dx + p0F (p0)I−1

≤ (I − 1)
∫ ∞
0

xF ′(x)dx + p0 = (I − 1)E[V ] + p0, (1.4)

lim
v→∞β (v) ≥ (I − 1)

(
E[V ]−

∫ p0

0
xF ′(x)dx

)
.F (M)I−2 + p0F (p0)I−1 for M > p0.

This proves that:

Lemma 1. If the value distribution F (v) is absolutely continuous, with density f(v),

then limv→∞ β (v) < ∞ if and only if
∫∞
0 vf(v)dv < ∞. 3

3Note that Lemma 1 also follows from equation (6) in Li and Vuong (1997).
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Moreover, under the conditions of Lemma 1 the expected revenue of the seller, I
∫∞
p0

β (v)

f(v)dv, is finite too. Therefore, our identification analysis will be conducted under the

conditions of Lemma 1:

Assumption 1. The value distribution is absolutely continuous, with finite expected

value.

1.2.2 Non-binding reservation price

In an auction with a non-binding reservation price, we may without loss of gen-

erality assume that the seller sets p0 = 0 so that the bid function (1.2) becomes (1.1).

The problem is that this bid function depends on v, which is unknown. However, if we

replace the nonrandom argument v in (1.1) with a random drawing V from F (v) we do

not need to bother about v, because then

β (V ) = V − 1

F (V )I−1

∫ V

v
F (x)I−1dx = V − 1

F (V )I−1

∫ V

0
F (x)I−1dx

a.s.4, due to the fact P [V > v] = 1 and thus P [F (V ) > 0] = 1

Now suppose that there exist two distinct value distribution F∗ (v) different from

F (v) such that, with V a random drawing from F (v) and V∗ a random drawing from

4a.s. stands for almost surely, or equivalently, with probability 1.
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F∗ (v) , such that

β∗(V∗) = V∗ −
1

F∗(V∗)I−1

∫ V∗
0

F∗(x)I−1dx

has the same distribution as β (V ). In other words, F (v) and F∗ (v) are observationally

equivalent (see Roehrig 1988). We will show that if F (v) and F∗ (v) are observation-

ally equivalent then they are identical: F (v) = F∗ (v) on (0,∞), provided that both

distributions are absolutely continuous with connected support:

Assumption 2. In first-price sealed bid auctions, the value distributions are confined

to the class Faccs of absolutely continuous distributions with connected supports.

Connectedness of the support of F (v) means that the support {v ∈ (0,∞) : F ′(v) > 0}

takes the form of an interval.

Note that we do not assume that the supports of F (v) and F∗ (v) are equal, but

only that they are connected.

The main reason for this assumption is the following well-known result, which

follows trivially from the fact that each F is strictly monotonic and therefore invertible

on its support.

Lemma 2. Let V be a random drawing from an absolutely continuous distribution F

with connected support . Then U = F (V ) has a uniform [0, 1] distribution, and there

exists an inverse function F−1 on [0, 1] such that V = F−1 (U) a.s.
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Under Assumption 2 it follows from Lemma 2 that U = F (V ) and U∗ = F∗ (V∗) are

uniformly [0, 1] distributed, so that

B = ϕ (U) = F−1 (U)− 1

UI−1

∫ F−1(U1)

0
F (x)I−1dx

and

B∗ = ϕ∗ (U∗) = F−1
∗ (U∗)−

1

UI−1
∗

∫ F−1
∗ (U∗)

0
F∗(x)I−1dx

have the same distribution:

P [B ≤ b] = P [B∗ ≤ b] = Λ (b) , (1.5)

say.

Since ϕ(u) is monotonic increasing and therefore invertible on (0, 1), it follows

from (1.5) that for all b in the support of Λ (b) ,

ϕ−1(b) = P [U ≤ ϕ−1(b)] = P [ϕ(U) ≤ b]

= P [B ≤ b] = P [B∗ ≤ b]

= P [ϕ∗(U∗) ≤ b] = P [U∗ ≤ ϕ−1
∗ (b)] = ϕ−1

∗ (b).

Hence, ϕ(u) = ϕ∗(u) a.e.5 on (0, 1) and thus by continuity,

5a.e. stands for almost everywhere, which means that the property holds except perhaps on
a set with zero Lebesgue measure.
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F−1 (u)− 1

uI−1

∫ F−1(u)

0
F (x)I−1dx = ϕ(u)

= ϕ∗(u) = F−1
∗ (u)− 1

uI−1

∫ F−1
∗ (u)

0
F∗(x)I−1dx

exactly on (0, 1). Multiplying both sides of this equation by uI−1 yields

uI−1F−1 (u)−
∫ F−1(u)

0
F (x)I−1dx = uI−1F−1

∗ (u)−
∫ F−1

∗ (u)

0
F∗(x)I−1dx

and then taking the derivative to u ∈ (0, 1) yields

(I − 1)uI−2F−1(u) + uI−1dF−1(u)
du

− (F (F−1(u)))I−1dF−1(u)
du

= (I − 1)uI−2F−1
∗ (u) + uI−1dF−1

∗ (u)

du
− (F∗(F

−1
∗ (u)))I−1dF−1

∗ (u)

du
,

so that F−1(u) = F−1
∗ (u) for all u ∈ (0, 1). Consequently, F (v) and F∗(v) are equal on

a common support and therefore F (v) = F∗(v) on [0,∞).

1.2.3 Binding reservation price

In the binding reservation price case some bidders’ values are above p0 while

some bidders’ values are below p0. The former bidders submit their bids according to

the equilibrium bid function

β(v) = v − 1

F (v)I−1

∫ v

p0

F (x)I−1dx, v > p0, (1.6)
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whereas the latter bidders do not submit any bid. In the latter case we may as-

sume without loss of generality that these potential bidders submit zero bids. Af-

ter the auction, the econometrician can observe the number of actual bids, I∗, and

the number I − I∗ of zero bids. The number I − I∗ has a Bin(I, F (p0)) distribu-

tion, hence E
[(

I − I∗
)
/I

]
= F (p0) . In L repeated identical auctions, where for each

auction ` the number of actual bidders is I∗
`
, F (p0) can be estimated consistently by

(1/L)
∑L

j=1

(
I − I∗

`

)
/I. Therefore,

α = F (p0)

is nonparametrically identified and may be taken as given.6

Now consider the conditional distribution

F (v) = P [V ≤ v|V > p0] =
P [p0 < V ≤ v]

P [V > p0]
(1.7)

=
F (v)− F (p0)

1− F (p0)
=

F (v)− α

1− α
if v ≥ p0,

F (v) = 0 if v < p0.

Then

F (v) = α + (1− α) F (v) for v ≥ p0 (1.8)

6Instead of assuming that the number of potential bidders I is known, Guerre, Perrigne and
Vuong (2000) identify the binomial distribution parameters I and 1−F (p0) from the distribution
of the actual bids. Given these parameters, F (v) is then identified on [p0, v].
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Substituting (1.8) in (1.6) yields

β(v) = F−1 (α + (1− α) F (v))− 1

(α + (1− α) F (v))I−1

×
∫ F−1(α+(1−α)F (v))

p0

(α + (1− α) F (x))I−1 dx, v > p0.

Given that F satisfies Assumption 2, it follows that F also satisfies the conditions

in Assumption 2, hence F is invertible on its support, with inverse denoted by F−1 (.) .

It follows therefore from Lemma 2 that for a random drawing V from F , U = F (V ) has a

uniform [0, 1] distribution, and hence the bids B, including the zero bids, are distributed

according to

B ∼
(

F−1 (α + (1− α) U)− 1

(α + (1− α)U)I−1 (1.9)

×
∫ F−1(α+(1−α)U)

p0

(α + (1− α) F (x))I−1 dx

)
.D

where U is distributed uniform [0, 1], and

D = 1 (V > p0) , V ∼ F (v) (1.10)

where 1 (.) is the indicator function7, with distribution P [D = 0] = α, P [D = 1] = 1−α.

Since U was actually drawn conditionally on the event V > p0, it follows that U and D

are independent.

71 (true) = 1, 1 (false) = 0.
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Suppose there exists a distribution F∗ (v) with F∗ (p0) = α and corresponding

conditional distribution function

F ∗(v) =
F∗ (v)− α

1− α
if v ≥ p0, F ∗(v) = 0 if v < p0

such that

B ∼
(

F−1
∗ (α + (1− α)U∗)−

1

(α + (1− α) U∗)I−1 (1.11)

×
∫ F−1

∗ (α+(1−α)U∗)

p0

(α + (1− α) F ∗(x))I−1 dx

)
.D∗,

where U∗ is uniformly [0, 1] distributed, and D∗ = 1 (V∗ > p0) , V∗ ∼ F∗(v), with the

same distribution as (1.10).

Again, U∗ and D∗ are independent. Since D and D∗ have the same distribution,

it suffices to compare the right-hand sides of (1.9) and (1.11) conditional on D = 1 and

D∗ = 1, respectively. Then similar to the non-binding reservation price case we must

have that for all u ∈ (0, 1) ,

F−1 (α + (1− α)u)

− 1

(α + (1− α) u)I−1

∫ F−1(α+(1−α)u)

p0

(α + (1− α) F (x))I−1 dx

= F−1
∗ (α + (1− α) u)

− 1

(α + (1− α) u)I−1

∫ F−1
∗ (α+(1−α)u)

p0

(α + (1− α) F ∗(x))I−1 dx,
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hence, by change of variables, for all u ∈ (α, 1) ,

uI−1F−1 (u)−
∫ F−1(u)

p0

(α + (1− α) F (x))I−1 dx

= uI−1F−1
∗ (u)−

∫ F−1
∗ (u)

p0

(α + (1− α)F ∗(x))I−1 dx .

Taking the derivative to u ∈ (α, 1) it follows that

(I − 1)uI−2F−1 (u) + uI−1dF−1 (u)
du

−
(
α + (1− α) F

(
F−1 (u)

))I−1 dF−1 (u)
du

= (I − 1)uI−2F−1
∗ (u) + uI−1dF−1

∗ (u)

du

−
(
α + (1− α) F ∗

(
F−1
∗ (u)

))I−1 dF−1
∗ (u)

du
,

hence F−1 (u) = F−1
∗ (u) on (α, 1) and thus F (v) = F∗(v) on [p0,∞).

1.3 First-price auctions with observed auction-specific heterogeneity

Let X be the vector of auction-specific characteristics for an auctioned item,

with support SX. The number of potential bidders of an auction with characteristics

X = x ∈ SX is a known function I(x) of x, but we maintain the assumption that ex-

ante I(x) is known to the potential bidders and ex-post to the econometrician. The same

applies to the reservation price p0(x). The conditional value distribution in each auction
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with characteristics X = x ∈ SX is denoted by

F (v|x) = P [V ≤ v|X = x] ,

which is known to each potential bidder. The values themselves are independent within

and across auctions, conditional on X.

Since the non-binding reservation price case follows directly from the binding case

by setting p0 = 0, we will focus only on the binding reservation price case. In that case

the conditional equilibrium bid function for the actual bids is

β (v|X) = v − 1

F (v|X)I(X)−1

∫ v

p0(X)
F (y|X)I(X)−1dy, v > p0 (X) .

Note that Assumption 1 implies that E[V |X] < ∞ a.s., so that under Assumption

1, limv→∞ β (v|X) < ∞ a.s.

1.3.1 Nonparametric identification

In each auction with characteristics X and reservation price p0(X) the number

of potential bidders I(X) minus the number of actual bidders I∗(X) has a conditional

Bin(I(X), F (p0(X)|X)) distribution, hence

E

[
I(X)− I∗(X)

I(X)

∣∣∣∣ X

]
= F (p0(X)|X)
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which can be consistently estimated by nonparametric kernel regression, given a random

sample of auctions.8 Therefore,

α (X) = F (p0(X)|X)

is nonparametrically identified and may be taken as given. Interpreting the non-bids as

zero bids, the bids in this auction are distributed as

B ∼
(

V − 1

F (V |X)I(X)−1

∫ V

p0(X)
F (y|X)I(X)−1dy

)
1 (V > p0 (X)) ,

where 1 (.) is the indicator function.

Similar to (1.7), let

F (v|X) =
F (v|X)− α (x)

1− α (x)
if v ≥ p0 (X) , F (v|X) = 0 if v < p0 (X)

so that

F (v|X) = α (X) + (1− α (X))F (v|X). (1.12)

Moreover, let V be a random drawing from F (v|X), conditional on X, and let U =

F (V |X). In order to conclude that U has a uniform [0, 1] distribution we need to gener-

alize Assumption 2 to:

8Guerre, Perrigne and Vuong (2000) assume that the number of potential bidders is an un-
known constant I when there are heterogenous auctioned objects if the reservation price is bind-
ing. They identify the pair of binomial distribution parameters (I, 1− F (p0|X)) using a distrib-
ution of actual bids given X. The uniqueness of the pair (I, 1−F (p0|X)) gives the identification
of F (v|X) on [p0(X), v(X)].
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Assumption 3. In a first-price sealed bid auction with auction-specific covariates X,

the conditional value distribution given X is confined to the class Faccs (X) of absolutely

continuous conditional distributions with connected supports.

Note that in this case the endpoints of the support may be (Borel measurable) functions

of X.

Now Lemma 2 can be generalized to:

Lemma 3. Conditional on X, let V be a random drawing from a conditional distribution

F (.|X) ∈ Faccs (X) . Then U = F (V |X) has a uniform [0, 1] distribution, and U and X

are independent. Moreover, for each point x in the support of X there exists an inverse

function F−1(.|x) on [0, 1] such that V = F−1 (U |X) a.s.

Proof : Appendix.

Similar to (1.9) we now have that the conditional distribution of the bids (includ-

ing the zero bids) is

B|X ∼
(

F−1(α (X) + (1− α (X))U |X)− 1

UI(X)−1

×
∫ F−1(α(X)+(1−α(X))U |X)

p0(X)
F (y|X)I(X)−1dy

)
.D,

where U is uniformly [0, 1] distributed, independently of X, and D = 1(V > p0(X)). Note

that U is independent of D as well, because U was actually drawn conditionally on X and
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the event V > p0 (X) . Now by the same argument as in the case without covariates it

follows straightforwardly that conditional on X, F (v|X) is nonparametrically identified

on [p0 (X) ,∞).

1.3.2 Semi-nonparametric identification

In order to put some structure on F (v|X), we will now assume that

ln V = γ (X) + ε, (1.13)

where

Assumption 4. The random variable ε in (1.13) is independent of X, and its distrib-

ution is absolutely continuous with connected support.

The reason for considering this case and Assumption 4 will be given at the end of this

subsection.

To pin down the location of γ (X) we will impose a quantile restriction on the

distribution of ε, for example that the median of ε is zero. Moreover, to ensure that

E[V |X] = exp (γ (X))E [exp (ε)] < ∞ we need to require that E [exp (ε)] < ∞:

Assumption 5. The median of ε in (1.13) is zero: P (ε ≤ 0) = 1/2, and E [exp (ε)] <

∞.



19

Thus γ (X) is now the conditional median of lnV.

It follows from (1.13) that

F (v|X) = P [V ≤ v|X] = P [exp (ε) ≤ v exp (−γ (X)) |X] (1.14)

= P [exp (− exp (ε)) ≥ exp (−v exp (−γ (X))) |X]

= P [1− exp (− exp (ε)) ≤ 1− exp (−v exp (−γ (X))) |X]

= H (1− exp (−v exp (−γ (X)))) ,

where H(·) is a distribution of 1− exp (−v exp (−γ (X))), i.e.,

H (u) = P [1− exp (− exp (ε)) ≤ u] = P [exp (− exp (ε)) ≥ 1− u]

= P [ε ≤ ln (ln (1/ (1− u)))]

which is a distribution function on (0, 1). Note that H (u) satisfies the quantile restriction

H
(
1− e−1

)
= 1/2. (1.15)

The question now arises whether γ (X) and H (u) are nonparametrically iden-

tified. It suffices to establish the uniqueness of γ (X) only, because F (v|X) is non-

parametrically identified on [p0 (X) ,∞) , so that given γ (X) , H (u) is identified on

[1− exp (−p0 (X) exp (−γ (X))) , 1] .
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The immediate proof for the uniqueness of γ(X) is to note that γ(X) is the

conditional median of log V given X as P [log v ≤ γ(X)|X] = P [ε ≤ 0] = 1/2.9 Thus,

γ(X) is identified from the distribution of log V given X. The identification of γ(X)

implies that

H∗(u) = H(u) for u ∈ [1− exp(−p0 exp(−γ(x)), 1].

The reason for considering the case (1.13) is that the distribution function H(u)

can be easily estimated semi-nonparametrically using orthonormal Legendre polynomials

on the unit interval. See Bierens (2007). Given H and a parametric specification of

γ (X) , for example let γ (X) be a linear function of X, F (v|X) can be determined via

(1.14). Moreover, the conditional median of the computed function F (v|X) can then be

compared with the parametric specification, on the basis of which a test can be developed

for the validity of the parametric specification of the median function. This is left for

future research.

1.4 The case where the actual number of bidders is known to the

bidders

The nonparametric identification of the first-price auction model with binding

reservation price p0 depends crucially on the assumption that the number of potential

bidders I is known to the bidders as well as to the econometrician. But usually the

econometrician only observes the actual number of bids I∗.

9A formal proof of the nonparametric identification of γ(X) will be given in section 1.6.2.
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To get around that problem, assume that, instead of the number of potential

bidders I, the actual number of bidders I∗ ≥ 2 is ex-ante known to all the bidders.

Moreover, assume that a binding reservation price p0 is set in advance by the seller.

Then it can be shown10 that the equilibrium bid function in this case becomes

β (v) = v − 1

F (v)I∗−1

∫ v

p0

F (x)I∗−1dx, (1.16)

where F (v) is defined in (1.7).

Similarly, in the presence of auction-specific covariates X the conditional equilib-

rium bid function becomes

β (v|X) = v − 1

F (v|X)I∗(X)−1

∫ v

p0(X)
F (y|X)I∗(X)−1dy

where

F (v|X) =
F (v|X)− α(X)

1− α(X)

with

α(X) = F (p0(X)|X) .

We will now set forth conditions under which F (v|X) and α(X) are identified.

If we use for F (v|X) the semi-nonparametric specification (1.14) with parame-

trized median function exp(γ (X, θ0)), then

F (v|X) = H (1− exp (−v exp (−γ (X, θ0))))

10See section 1.6.3.
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= 1−H0 (exp (−v exp (−γ (X, θ0))))

where

H0 (u) = 1−H (1− u) ,

so that

α(X) = 1−H0 (exp (−p0(X) exp (−γ (X, θ0)))) .

Note that H0 (u) satisfies the quantile restriction

H0

(
e−1

)
= 1/2. (1.17)

Hence

F (v|X) = 1− H0 (exp (−v exp (−γ (X, θ0))))
H0 (exp (−p0(X) exp (−γ (X, θ0))))

, v ≥ p0(X)

Since F (v|X) is nonparametrically identified on [p0(X),∞) , it follows that for

given θ0, H0(u) is identified on [0, exp (−p0(X) exp (−γ (X, θ0)))] .

Now suppose that there exists a parameter vector θ1 6= θ0 and a distribution

function H1 on [0,1] such that

F (v|X) = 1− H1 (exp (−v exp (−γ (X, θ1))))
H1 (exp (−p0(X) exp (−γ (X, θ1))))

, v ≥ p0(X)

Then for all v ≥ p0(X),

H1 (exp (−v exp (−γ (X, θ1))))
H0 (exp (−v exp (−γ (X, θ0))))

=
H1 (exp (−p0(X) exp (−γ (X, θ1))))
H0 (exp (−p0(X) exp (−γ (X, θ0))))
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Since the right-hand side does not depend on v, it follows that the derivative of the left

hand side to v > p0(X) is zero, which implies (after some rearrangements) that

h1 (exp (−v exp (−γ (X, θ1))))
h0 (exp (−v exp (−γ (X, θ0))))

(1.18)

× exp (−v (exp (−γ (X, θ1))− exp (−γ (X, θ0))))

=
H1 (exp (−v exp (−γ (X, θ1))))
H0 (exp (−v exp (−γ (X, θ0))))

× exp (−γ (X, θ0))
exp (−γ (X, θ1))

=
H1 (exp (−p0(X) exp (−γ (X, θ1))))
H0 (exp (−p0(X) exp (−γ (X, θ0))))

× exp (−γ (X, θ0))
exp (−γ (X, θ1))

,

where h1 and h0 are the densities of H1 and H0, respectively.

Next, impose the condition

h1(0) = h0 (0) = 1 (1.19)

and take the limit of (1.18) for v →∞. Then

lim
v→∞ exp (−v (exp (−γ (X, θ1))− exp (−γ (X, θ0))))

=





∞ if γ (X, θ1) > γ (X, θ0)

0 if γ (X, θ1) < γ (X, θ0)

1 if γ (X, θ1) = γ (X, θ0)

=
H1 (exp (−v exp (−γ (X, θ1))))
H0 (exp (−v exp (−γ (X, θ0))))

× exp (−γ (X, θ0))
exp (−γ (X, θ1))
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=
H1 (exp (−p0(X) exp (−γ (X, θ1))))
H0 (exp (−p0(X) exp (−γ (X, θ0))))

× exp (−γ (X, θ0))
exp (−γ (X, θ1))

.

Clearly, only the option

γ (X, θ1) = γ (X, θ0) (1.20)

is possible, which implies that

H1(u) = H0 (u) on [0, exp (−p0(X) exp (−γ (X, θ0)))] . (1.21)

The condition (1.19) can be implemented similar to the condition h0(1) = 1 in

Bierens (2007) and Bierens and Carvalho (2006). Of course, we should also impose

the quantile restriction (1.17). Moreover, under Assumption 1 in Bierens and Carvalho

(2006), (1.21) implies that H1(u) = H0 (u) on [0, 1] , so that H0 (u) is identified on

[0, 1]. Finally, we need some obvious regularity conditions on the distribution of X and

the functional form of γ (x, θ) such that (1.20) implies θ1 = θ0.

1.5 Concluding remarks

In this chapter we have proved, without using the usual condition that the value

distribution has known bounded support, the non-parametric and semi-nonparametric

identification of various first-price auction models with and without binding a reservation

price. These results, in particular the results in Sections 1.3.2 and 1.4, are the basis for

our continuing research on the semi-nonparametric estimation of these models via semi-

nonparametric modeling of density and distribution functions on the unit interval, along
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the lines in Bierens (2007) and Bierens and Carvalho (2007). See also Chen (2006) for

a review of semi-nonparametric modeling and estimation. In particular, we will propose

to estimate these models semi-nonparametrically via a simulated integrated conditional

moment criterion, similar to the integrated conditional moment test statistic proposed

by Bierens (1982) and Bierens and Ploberger (1997). In our case, the moment function

is the distance between the empirical characteristic function of the observed bids and the

empirical characteristic function of the corresponding simulated bids generated by the

equilibrium bid function for a semi-nonparametric specification of the value distribution.
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1.6 Proofs

1.6.1 Proof of Lemma 2

Let (v (X) , v (X)) (or its closure) be the support of F (.|X). Since F (v|X) is

strictly monotonic increasing on (v (X) , v (X)) , it is invertible: For each x in the support

of X and each u ∈ (0, 1) there exists a unique v ∈ (v (x) , v (x)) such that F (v|x) =

u, hence there exists a conditional distribution function F−1 (u|x) on [0, 1] such that

F (v|x) = u ∈ (0, 1) implies v = F−1 (u|x) ∈ (v (x) , v (x)) . Then

P [U ≤ u|X] = P [F (V |X) ≤ u|X] = P
[
V ≤ F−1 (u|X) |X

]

= F (F−1 (u|X) |X) = u.

Since the right-hand side does not depend on X, U and X are independent, and therefore

P [U ≤ u] = u. Q.E.D.

1.6.2 Identification of γ(X)

To identify γ(X), note that Assumption 5 implies that H (u) is absolutely con-

tinuous with connected support, say (u, u) ⊂ [0, 1]. Then it follows from Lemma 1 that

H is invertible on (u, u) , with inverse H−1. Consequently, it follows from (1.14) that

1− exp (−v exp (−γ (X))) = H−1 (F (v|X)) , hence

v = exp (γ (X)) ln
(
1/

(
1−H−1 (F (v|X))

))
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= exp (γ (X)) ln
(
1/

(
1−H−1 (α (X) + (1− α (X))F (v|X))

))
,

where the latter follows from (1.12). Next, let V be a random drawing from F (v|X) .

Then it follows from Lemma 2 that U = F (V |X) is uniformly [0, 1] distributed, and is

independent of X, hence

V = exp (γ (X)) ln
(
1/

(
1−H−1 (α (X) + (1− α (X))U)

))

Suppose there exists an alternative median function γ∗ (X) and an alternative distribu-

tion function H∗ with inverse H−1
∗ for which

V = exp (γ∗ (X)) ln
(
1/

(
1−H−1

∗ (α (X) + (1− α (X))U)
))

Then for arbitrary u ∈ (0, 1).

exp (γ∗ (X)− γ (X)) =
ln

(
1/

(
1−H−1 (α (X) + (1− α (X))u)

))

ln
(
1/

(
1−H−1

∗ (α (X) + (1− α (X))u)
))

Since the left-hand side of this equation does not depend on u, the derivative of the

right-hand side to u is zero, hence

ln
(
1−H−1[α(X) + (1− α(X))u]

)

ln
(
1−H−1

∗ [α(X) + (1− α(X))u]
) = C(X),
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for example, and thus γ∗ (X) = γ (X) + ln(C(X)). But γ∗ (X) and γ (X) are both

conditional medians of lnV, which is only possible if ln(C(X)) = 0 a.s.:

γ∗ (X) = γ (X) .

This implies that

H∗(u) = H(u) for u ∈ [1− exp(−p0 exp(−γ(x)), 1].

Q.E.D.

1.6.3 Proof of (1.16)

Let β (v) be the strictly monotonic increasing equilibrium bid function involved,

and let b be the bid of bidder 1, which corresponds to an x such that b = β(x). Given

the value V1 = v of bidder 1, the expected value for bidder 1 of the object to be

auctioned off is v times the probability that he wins the object. The latter is the

case if his bid β (x) is the highest bid, which by the monotonicity of β (v) is the case

if x > V 2 = max
{

V2, ..., VI∗
}

. The probability of this event, conditional on V 2 =

min
{

V2, ..., VI∗
}

> p0, is G(x) = F (x)I∗−1, where F (x) is defined by (1.7), hence the

expected value is vG(x).

Given the bid b = β(x), let p(x) be the expected price to pay to the seller. At

this point we do not assume yet that p(x) equals β(x) times the probability of winning

the auction. Then the expected net gain for bidder 1 is π (v, x) = vG(x) − p(x), which
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is maximal if x is chosen such that

0 = ∂π (v, x) /∂x = vG′(x)− p′(x) (1.22)

In order that the bid b = β(x) is an equilibrium bid, the solution of (1.22) must be x = v,

hence

p′(v) = vG′(v). (1.23)

Using the conditions G′(v) = 0, π (v, v) = 0 for v < p0, and p(v) = 0 at v = p0, the

solution of the differential equation (1.23) is p(v) =
∫ v
p0

xG′(x)dx = vG(v)−∫ v
p0

G(x)dx.

For the equilibrium bid function β (v) , p(v) is equal to β (v) times the probability G(v)

of winning the auction: p(v) = β (v) G(v) = vG(v)− ∫ v
p0

G(x)dx, hence

β (v) = v − 1
G(v)

∫ v

p0

G(x)dx = v − 1

F (v)I∗−1

∫ v

p0

F (x)I∗−1dx.

Q.E.D.
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Chapter 2

Semi-Nonparametric Simulated Integrated Moments

Estimation of Independently and Identically Repeated

First-Price Auctions

2.1 Introduction

As Laffont and Vuong (1993) point out, the distribution of bids determines the

structural elements of auction models, provided identification is achieved. In the first-

price auction model with symmetric independent private values, the structural element

of interest is the value distribution. Much research has been done on the identification

and the estimation of the value distribution. Donald and Paarsch (1996) apply ML esti-

mation to first-price auctions and Dutch auctions. They use a parametric specification

for the value distribution to implement ML estimation. In particular, they assume in a

numerical example that the value distribution is a uniform distribution on the interval

[0, v] where v = exp(θ0 + θ1Z), with Z being an auction-specific covariate vector. Since,

in this case, the support of the bid distribution involved depends on parameters, the stan-

dard consistency proof of ML estimators no longer applies. Another difficulty with ML

estimation is that the equilibrium bid function is highly non-linear in the value and its

distribution, which makes the implementation computationally challenging. The same

applies to descending price (Dutch) auctions, because they are strategically equivalent
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to first-price auctions. Because of the difficulty of ML estimation of first-price auc-

tion models, Laffont and Vuong (1993) suggest a Simulated Non-Linear Least Squares

(SNLLS) estimation and a Simulated Method of Moment (SMM) estimation for a de-

scending price auction model with symmetric independent private values. Their SNLLS

approach requires replacing the expectation of the winning bid with a simulated one.

They also suggest that the expectation of higher moments of the winning bid can be

used for SMM estimation if the expectation of the winning bids itself is not sufficient

to identify all parameters. Both SNLLS and SMM approaches require a parametric

specification for the value distribution. Laffont, Ossard and Vuong (1995) apply the

SNLLS approach suggested by Laffont and Vuong (1993) to the eggplant auction, which

is a descending price auction. They specify a log-normal value distribution conditional

on covariates. Li (2005) considers first-price auctions with entry and binding reserve

price. This auction consists of two stages. In the first stage, the potential bidder decides

whether he or she enters the auction, with payment of entry cost. In the second stage,

the bidder learns his or her value and then decides to bid according to the equilibrium

bid function, which is the same function as in the first-price auction model. Li (2005)

proposes a SMM approach to estimate the entry probability and the parameters of the

value distribution. One of the conditional moments is a function of the upper bound of

the bid support, which can be computed via the simulation approach in Laffont, Ossard

and Vuong (1995). The other moment conditions are related to the number of active

bidders, i.e., potential bidders who decides to participate in the auction.
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Guerre, Perrigne and Vuong (2000) show the nonparametric identification1 of

value distributions with bounded support [v, v], v < ∞, and propose an indirect non-

parametric kernel estimation approach. Their approach is based on the inverse bid

function v = b + (I − 1)−1 Λ(b)/λ(b), where I is the number of potential bidders, v is

a private value, b is a corresponding bid, Λ is the distribution function of bids and λ

is the associated density function. The latter two functions are estimated via nonpara-

metric kernel methods, as Λ̂(b) and λ̂(b), respectively. Using the pseudo-private values

ṽ = b + (I − 1)−1 Λ̂(b)/λ̂(b), the density of the private value distribution can now be es-

timated by kernel density estimation. However, the ratio Λ̂(b)/λ̂(b) may be an unreliable

estimate of Λ(b)/λ(b) near the boundary of the support of λ(b). To solve this problem,

Guerre, Perrigne and Vuong use a trimming procedure which amounts to discarding

pseudo-private values ṽ corresponding to bids b that are too close to the boundary of

the (known) support of the bid distribution.

In Chapter 1, we have shown that the nonparametric identification of first-price

auction models carries over to value distributions with support (0,∞) or smaller, as long

as the values have a finite expectation and their distribution is absolutely continuous.

To estimate these more general value distributions semi-nonparametrically, we propose

in this paper a direct Semi-Nonparametric Simulated Integrated Moment (SNP-SIM)

estimation approach as an alternative to the two-step nonparametric kernel estimation

approach of Guerre, Perrigne and Vuong (2000) for independently repeated identical

first-price auctions. Admittedly, this type of repeated auction is rare in practice. The

1For general nonparametric identification results of first-price auctions models with symmetric
independent private values, see Guerre, Perrigne and Vuong (1995) or Athey and Haile (2005).
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reason for considering this case is to lay the groundwork for the more realistic case

of first-price auctions with auction-specific covariates, number of potential bidders and

reservation prices, like the well-known US Forest Service timber auctions.

Our SNP-SIM methodology is different from the SMM approach of Laffont and

Vuong (1993) and Li (2005) in that the latter two approaches require parametric spec-

ification of the value distribution while ours does not. Moreover, our approach uses an

infinite number of moment conditions while Laffont and Vuong (1993) and Li (2005) use

a finite number of moment conditions.

First, based on the approach in Bierens (2007), we construct an increasing se-

quence Fn (the sieve2) of compact metric spaces of absolutely continuous distribution

functions F (v) on (0,∞), where the distribution functions in each space Fn can be

represented by functions of Legendre polynomials of order n.

Given a distribution function F ∈ Fn, we simulate bids according to the equi-

librium bid function involved. Motivated by the well-known fact that distributions are

equal if and only if their characteristic functions are identical, we take the difference of

the empirical characteristic functions of the actual and simulated bids as the moment

function. Since the actual and simulated bids are bounded random variables, and char-

acteristic functions of bounded random variables coincide everywhere if and only if they

coincide on an arbitrary interval around zero, we take the integral of the squared mo-

ment function over such an interval as our objective function, similar to the Integrated

Conditional Moment (ICM) test statistic of Bierens and Ploberger (1997). Minimizing

this objective function to the distribution functions in Fn and letting n increase with

2See Shen(1997) and Chen (2004).



34

the sample size N then yield a uniformly consistent SNP sieve estimator of the actual

value distribution. This approach yields as by-products an Integrated Moment (IM) test

of the validity of the first-price auction model, together with an information criterion

similar to the information criteria of Hannan-Quinn (1979) and Schwarz (1978) for like-

lihood models, which can be used to estimate the sieve order n consistently if it is finite,

and otherwise yields a data-driven sequence nN for which the SNP sieve estimator is

uniformly consistent as well. Finally, we conduct a few numerical experiments to check

the performance of our SNP-SIM approach.

Throughout this paper we confine our analysis to first-price sealed bid auctions

where values are independent, private and bidders are symmetric and risk-neutral.

The paper is organized as follows. In section 2 we introduce our SNP-SIM es-

timation methodology and show how to draw simulated values from a candidate value

distribution and its associated bid distribution. In section 3 we show how to construct a

metric space F and corresponding sieve Fn of absolutely continuous distribution func-

tions on (0,∞), and in section 4, we show the uniform strong consistency of the SNP-

SIM estimator. In section 5, we propose a consistent integrated moment (IM) test of

the validity of the first-price auction model with symmetric independent values and risk

neutrality. In section 6, we show the performance of our proposed SNP-SIM estimation

and testing approach via a few numerical experiments. In the concluding remarks, we

suggest directions for further research.

Throughout the paper, we denote random variables in upper-case and non-random

variables in lower-case. The indicator function is denoted by I(·).3 Almost sure (a.s.)

3I(True) = 1, I(False) = 0.
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convergence is denoted by Xn → X a.s.4 Similarly, convergence in probability will

be denoted by Xn →p X or p limn→∞Xn = X, and Xn →d X indicates that Xn

converges in distribution to X. In the case that Xn and X are random functions we use

the notation Xn ⇒ X to indicate that Xn (·) converges weakly to X (·) . See for example

Billingsley (1999) for the meaning of the notion of weak convergence.

2.2 Semi-Nonparametric Simulated Integrated Moment Estimation of

First-Price Auctions

2.2.1 Data-Generating Process

As is well-known, the equilibrium bid function of first-price sealed bid auctions

where values are independent, private and bidders are symmetric and risk-neutral takes

the form

β (v|F ) = v − 1

F (v)I−1

∫ v

p0

F (x)I−1dx for v > p0, (2.1)

if the reservation price p0 is binding, and

β (v|F ) = v − 1

F (v)I−1

∫ v

0
F (x)I−1dx for v > v, (2.2)

if the reservation price p0 is non-binding, where F (v) is the value distribution, v ≥ 0

is the lower bound of its support, I ≥ 2 is the number of potential bidders, and p0 is

the reservation price. See for example Riley and Samuelson (1981) or Krishna (2002).

Note that the equilibrium bid is different depending on whether the seller’s reservation

4This means that P [limn→∞Xn = X] = 1.
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price is binding, p0 > v, or not. If p0 is binding, only potential bidders whose values

are greater than p0 participate in the auction, and issue a bid B > p0. For notational

convenience we will assume that the other potential bidders issue a zero bid: B = 0.

Note that (2.1) can be written as

β (v|F ) = v − v − p0
F (v)I−1

∫ 1

0
F (p0 + u(v − p0))I−1 du for v > p0, (2.3)

by substituting x = p0 + u(v − p0) in the integral in (2.1), and similarly, (2.2) can be

written as

β (v|F ) = v − v

F (v)I−1

∫ 1

0
F (u.v)I−1 du for v > v, (2.4)

In this paper we will consider the case where this auction is repeated indepen-

dently L times, with the same value distribution F0(v), the same fixed number of po-

tential bidders I, and the same reservation price p0. Thus, we observe N = I × L bids

Bj generated independently according to

Bj =





β(Vj |F0) if Vj > p0,

0 if Vj ≤ p0,

, j = 1, 2, ...., N = I × L, (2.5)

in the case of a binding reservation price p0, or

Bj = β(Vj |F0), j = 1, 2, ...., N = I × L, (2.6)
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in the case of a non-binding reservation price, where the values Vj are independent

random drawings from the unknown true value distribution F0(v). The asymptotic results

will be derived for L →∞, under the assumption that

Assumption 1. The true value distribution F0(v) is absolutely continuous with density

f0(v) and finite expectation,
∫∞
0 vf0(v)dv < ∞.

2.2.2 Identification

It has been shown in Chapter 1 that under Assumption 1 and the additional

condition that the support of f0(v) is connected, the value distribution F0(v) is identified

on (p0,∞) from the distribution of the bids Bj , and that these bids are bounded random

variables:

P [Bj ≤ b0] = 1 (2.7)

where

b0 = sup
v>0

β(v|F0) = (I − 1)
∫ ∞
p0

xF0(x)I−2f0(x)dx + p0F0(p0)I−1 (2.8)

= (I − 1)
∫ ∞
0

xF0(x)I−2f0(x)dx +
∫ p0

0
F0(x)I−1dx

≤ (I − 1)
∫ ∞
0

xf0(x)dx + p0



38

The significance of (2.7) is that the bid distribution Λ0(b) = P [Bj ≤ b] is then completely

determined by the shape of its characteristic function ϕ(t),

ϕ(t) = E
[
exp(i.t.Bj)

]
=

∫ ∞
0

exp (i.t.b) dΛ0(b), i =
√−1, (2.9)

in an arbitrary neighborhood of t = 0. More formally:

Lemma 1. Let B be a bounded random variable with distribution function Λ0(b) and

characteristic function ϕ(t). Let ψ (t) be the characteristic function of a distribution

function Λ(b). Then Λ(b) = Λ0(b) for all b ∈ R if and only if for an arbitrary κ > 0,

ϕ(t) = ψ (t) for all t ∈ (−κ, κ) .

This is a well-known result5, which is based on the fact that due to the boundedness

condition ϕ(t) can be written as ϕ(t) =
∑∞

m=0
im

m! t
mE

[
Bm]

, hence ϕ(t) = ψ (t) on

(−κ, κ) implies that i−m dmψ (t) / (dt)m
∣∣
t=0 = i−m dmϕ (t) / (dt)m

∣∣
t=0 = E

[
Bm]

for

m = 0, 1, 2, ....., so that ψ(t) = ϕ(t) =
∑∞

m=0
im

m! t
mE

[
Bm]

for all t ∈ R. As is well-

known, the latter implies that the two distributions involved are identical.

Note that we do not need to assume from the outset that Λ(b) is a distribution

function of a bounded random variable. The condition ϕ(t) = ψ (t) on (−κ, κ) automat-

ically implies boundedness of this distribution.

The connected support condition in Chapter 1 guarantees that F0 is invertible,

i.e., for each u ∈ (0, 1) there exists a unique v such that F0(v) = u, so that with U

5Usually stated for moment generating functions rather than characteristic functions.
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a random drawing from the uniform [0, 1] distribution, V = F−1
0 (U) has distribution

F0(v). This well-known result was used in Chapter 1 to prove the identification of F0(v).

However, invertibility of F0(v) on its support is not necessary for identification, and

neither is absolute continuity, due to the following lemma:

Lemma 2. Let F (v) be a continuous distribution function. If V is a random drawing

from F (v) then F (V ) is uniformly [0, 1] distributed. Moreover, given a random drawing

U from the uniform [0, 1] distribution, the solution V of F (V ) = U is almost surely

unique, and P [V ≤ v] = F (v).

Proof : Section 2.9.1.

Consequently, the identification of F0 does not hinge on the connected support condition;

only continuity matters!

2.2.3 Simulated Integrated Moment using Empirical Characteristic Func-

tions

Let F be a potential candidate (henceforth called a candidate value distribution)

for the true value distribution F0, and let
{

Ṽj

}N

j=1
be a random sample drawn from F .6

6The method for generating these simulated values will be addressed below.
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Next, generate simulated bids B̃j similar to (2.5):

B̃j =





β(Ṽj |F ) if Ṽj > p0,

0 if Ṽj ≤ p0,

, j = 1, 2, ...., N = I × L, (2.10)

Let

Ψ̂(t|F ) = ϕ̂(t)− ψ̂(t|F ), t ∈ R, (2.11)

where

ϕ̂(t) =
1
N

N∑

j=1
exp(i.t.Bj) (2.12)

is the empirical characteristic function of the actual bids and

ψ̂(t|F ) =
1
N

N∑

j=1
exp(i.t.B̃j) (2.13)

=
1
N

N∑

j=1
exp(i.t.β(Ṽj |F ))I

(
Ṽj > p0

)
+

1
N

N∑

j=1
I

(
Ṽj ≤ p0

)

is the empirical characteristic function of the simulated bids.

By the strong law of large numbers for i.i.d. random variables,

Ψ̂(t|F ) → Ψ(t|F ) a.s., pointwise in t and F (2.14)

where

Ψ(t|F ) = ϕ(t)− ψ(t|F )
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with ϕ(t) defined by (2.9) and

ψ(t|F ) = E
[
exp(i.t.B̃j)

]
=

∫ ∞
p0

exp (i.t.β(v|F )) dF (v) + F (p0) (2.15)

the characteristic function of the simulated bids distribution.

Since by Lemma 1, F ≡ F0 if and only if Ψ(t|F ) = 0 for all t in an arbitrary

interval (−κ, κ) , κ > 0, and Ψ(t|F ) is continuous in t, it follows that F ≡ F0 if and only

if

Q(F ) =
1
2κ

∫ κ

−κ
|Ψ(t|F )|2 dt (2.16)

is equal to zero. Moreover, it follows from the bounded convergence theorem and (2.14)

that

Q̂(F ) =
1
2κ

∫ κ

−κ

∣∣∣Ψ̂(t|F )
∣∣∣2 dt (2.17)

converges a.s. to Q(F ), pointwise in F. However, we will set forth conditions such that

Q(F ) is continuous in F , and Q̂(F ) → Q(F ) a.s. uniformly on a compact space of

distribution functions F containing the true value distribution F0. Therefore, F0 can be

estimated consistently by minimizing Q̂(F ) to F, in some way to be discussed below.

Note that the objective function Q̂(F ) has a closed form expression in terms of

the actual bids Bj and the simulated bids B̃j :

Q̂(F ) =
2

N2

N−1∑

j1=1

N∑

j2=j1+1

sin
(
κ.(Bj1

−Bj2
)
)

κ.(Bj1
−Bj2

)
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+
2

N2

N−1∑

j1=1

N∑

j2=j1+1

sin
(
κ.(B̃j1

− B̃j2
)
)

κ.(B̃j1
− B̃j2

)

− 2
N2

N∑

j1=1

N∑

j2=1

sin
(
κ.(Bj1

− B̃j2
)
)

κ.(Bj1
− B̃j2

)
. (2.18)

See section 2.9.2 for the derivation.

2.2.4 Representation of the Value Distribution by a Distribution on the

Unit Interval

Any absolutely continuous distribution function F (v) can be expressed as

F (v) = H(G(v)), (2.19)

where G(v) is a given absolutely continuous distribution function with connected sup-

port7 containing the support of F , and H is an absolutely continuous distribution func-

tion on the unit interval, namely H(u) = F
(
G−1(u)

)
. The density f(v) of F (v) then

takes the form

f(v) = h(G(v))g(v), (2.20)

where g(v) is the density of G(v) and h(u) is the density of H(u), i.e.,

H(u) =
∫ u

0
h(x)dx. (2.21)

7So that G(v) is invertible: v = G−1(u), u ∈ [0, 1], with support (v, v), where v =
limu↓0 G−1(u) and v = limu↑1 G−1(u).
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Therefore, we can estimate f and F by estimating h given G.

In our case, where F (v) is candidate value distribution, it is advisable to choose for

G a distribution function with support (0,∞), for example the exponential or log-normal

distribution, because in general the support of F (v) is unknown.

2.2.5 Generation of Simulated Values and Bids

For SNP-SIM estimation we need to generate simulated bids from a candidate

value distribution F. This can be done in two steps. First, we draw simulated values

Ṽ from the density f of F, using an accept-reject method, and then we obtain the

corresponding simulated bids by plugging the simulated values in the bid function β(v|F ),

where the integral involved is computed numerically or by Monte Carlo integration.

The following lemma states the well-known8 accept-reject random drawing method.

Lemma 3. Let f(·) be a density function from which we want to draw a random variable

X, and let g(·) be a density function from which it is easy to draw a random variable

X0. The result of the proposed accept-reject method below (steps 1 − 4) then generates

X.

Step 1: Find a constant c ≥ 1 such that f(x) ≤ cg(x) for all x.

Step 2: Draw an X0 from g(x).

Step 3: Draw a U from the uniform distribution on [0, 1].

Step 4: If U ≤ c−1f(X0)/g(X0) then set X = X0, else redo steps 2− 4.9

8See, for example, Devroye (1986) or Rubinstein (1981).
9It is important to restart from step 2, because X0 and U need to be mutually independent.
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Proof : Section 2.9.3.

This method can be used to generate random drawings Ṽ from densities of the

form f(v) = h(G(v))g(v), where G(v) is the distribution function corresponding to g(x)

for which the inverse G−1 can be computed, and h(u) is a continuous density on the

unit interval. Step 1 can be conducted by computing

c = sup
0≤u≤1

h(u), (2.22)

for example by grid search, and step 2 can be done by setting X0 = G−1 (U0) , where U0

is a random drawing from the uniform [0, 1] distribution. The uniform random variable

U in step 3 has to be drawn independently of U0, so that X0 and U are independent.

Then step 4 yields a random drawing Ṽ from the distribution function F (v) of f(v).

In other words, draw independently a sequence Uk of uniformly [0, 1] distributed

random variables, let

Xk = G−1 (
U2k−1

)
I


U2k ≤

f
(
G−1 (

U2k−1
))

c.g
(
G−1 (

U2k−1
))


 .I




k−1∑

m=1
Xm = 0


 (2.23)

so that Xk > 0 for only one k, say k̃, and set Ṽ = X
k̃
.

Observe from the proof of Lemma 3 in section 2.9.3 that the accept-reject method

does not require that the support of f is connected, nor that the expectation of f is finite.
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Given the random drawings Ṽj , j = 1, ..., N, from a candidate value distribution

F (v), the corresponding simulated bids are

B̃j =

(
Ṽj −

Ṽj − p0

F (Ṽj)
I−1

∫ 1

0
F

(
p0 + u(Ṽj − p0)

)I−1
du

)
.I

(
Ṽj > p0

)
(2.24)

if the reservation price p0 is binding, and

B̃j = Ṽj −
Ṽj

F (Ṽj)
I−1

∫ 1

0
F

(
u.Ṽj

)I−1
du (2.25)

if the reservation price p0 is non-binding. See (2.3) and (2.4). The integral involved

can be computed numerically or via Monte Carlo integration. However, the asymptotic

theory in this paper will be based on the assumption that this integral is computed

exactly.

To guarantee the smoothness of the empirical characteristic function ψ̂(t|F ) of the

simulated bids B̃j in F, for each candidate value distribution F the random drawings Ṽj,

j = 1, ..., N, from F should be based on a common sequence {Uk}∞k=1 of independent

and uniformly [0, 1] distributed random variables in (2.23), by generating this sequence

numerically from the same seed.

In view of Lemma 2, an alternative way to generate simulated values Ṽj is the

following:
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Assumption 2. Given a sequence Ũ1, ..., ŨN , ... of independent random drawings from

the uniform [0, 1] distribution, for each candidate value distribution F the corresponding

simulated values Ṽ1, ..., ṼN are generated by solving Ũj = F (Ṽj) for j = 1, ...., N .

Since any distribution function F (v) with support contained in the support of a distrib-

ution function G can be written as F (v) = H(G(v)), where H is a distribution function

on [0, 1], the procedure in Assumption 2 can be conducted in the following way. For each

Ũj find first a Uj such that H(Uj) = Ũj , and then let Ṽj = G−1(Uj). This Uj can be

computed iteratively as follows. Starting from the initial interval I0 = (a0, b0] = (0, 1],

let for n = 1, 2, .....,

In = (an, bn] =





(
an−1, an−1 + (bn−1 − an−1)/2

]
if H

(
(bn−1 − an−1)/2

) ≥ Ũj ,

(
(bn−1 − an−1)/2, bn−1

]
if H

(
(bn−1 − an−1)/2

)
< Ũj ,

(2.26)

until bn − an < ε for some a priori chosen small ε > 0. Then Uj ≈ an + (bn − an)/2.

Admittedly, this procedure is more computationally intensive than the accept-

reject method, because for the latter we only need to compute the upper bound (2.22)

once for each h, whereas in the former case we have to do the iteration (2.26) for each

Ũj . Nevertheless, for the reason given in the next subsection our preferred method is the

one in Assumption 2.
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2.2.6 Continuity of the Simulated Values and Bids in the Candidate Value

Distribution

The simulation procedure in Assumption 2 has the advantage that it is easier to

prove that the simulated values and bids involved are continuous in F , in the following

sense:

Lemma 4. Let Fn and F be candidate value distributions such that

lim
n→∞ sup

v>0
|Fn(v)− F (v)| = 0 (2.27)

For a given random drawing Ũ from the uniform [0, 1] distribution, let Ṽn and Ṽ be the

solutions of Fn

(
Ṽn

)
= Ũ and F

(
Ṽ

)
= Ũ , respectively. Then conditional on Ũ ,

lim
n→∞ Ṽn = Ṽ . (2.28)

The simulated bids corresponding to Fn and F are, respectively,

B̃n =
(

Ṽn −
(
Ṽn − p0

)
Ũ1−I

∫ 1

0
Fn

(
p0 + u

(
Ṽn − p0

))I−1
du

)
.I

(
Ũ > Fn (p0)

)

B̃ =
(

Ṽ −
(
Ṽ − p0

)
Ũ1−I

∫ 1

0
F

(
p0 + u

(
Ṽ − p0

))I−1
du

)
.I

(
Ũ > F (p0)

)

if the reservation price p0 is binding, and

B̃n = Ṽn.

(
1− Ũ1−I

∫ 1

0
Fn

(
u.Ṽn

)I−1
du

)
,
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B̃ = Ṽ .

(
1− Ũ1−I

∫ 1

0
F

(
u.Ṽ

)I−1
du

)
,

if the reservation price p0 is non-binding. Then conditional on Ũ ,

lim
n→∞ B̃n = B̃. (2.29)

Proof : Section 2.9.4.

Note that the bids B̃n and B̃ in Lemma 4 are functions of Ũ and Fn and F ,

respectively:

B̃n = η
(
Fn, Ũ

)
, B̃ = η

(
F, Ũ

)
, (2.30)

say, where η (F, u) is continuous in F , in the sense that (2.27) implies that

lim
n→∞ η (Fn, u) = η (F, u) a.e. in u ∈ [0, 1] (2.31)

Consequently, under Assumption 2 the empirical characteristic function of the simulated

bids can be written as

ψ̂ (t|F ) =
1
N

N∑

j=1
exp

(
i.t.η

(
F, Ũj

))
(2.32)

which for given t is an average of almost surely continuous functions of F . The latter plays

a crucial role in the proof that pointwise in t, ψ̂ (t|F ) → ψ (t|F ) a.s., uniformly on a metric
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space of distribution functions F endowed with the sup metric supv>0 |F1(v)− F2(v)| .

See Theorem 1 below. Therefore, the asymptotic results in this paper will be based

on the condition that the simulated values are generated according to the procedure in

Assumption 2.

2.3 Semi-Nonparametric Density and Distribution Functions

2.3.1 Legendre Polynomials

In this subsection, we show how to approximate any density function h(u) on the

unit interval arbitrary close by using orthonormal Legendre polynomials.

Legendre polynomials of order n ≥ 2 on the unit interval [0, 1] can be constructed

recursively by

ρn(u) =
√

2n− 1
√

2n + 1
n

(2u− 1)ρn−1(u)− (n− 1)
√

2n + 1
n
√

2n− 3
ρn−2(u)

starting from

ρ0(u) = 1, ρ1(u) =
√

3(2u− 1).

They are orthonormal, in the sense that

∫ 1

0
ρm(u)ρk(u)du =





1 for m = k

0 otherwise
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2.3.2 Compact Spaces of Density and Distribution Functions

Theorem 1 in Bierens (2007) states that the Legendre polynomials ρk(u) form a

complete orthonormal basis for the Hilbert space L2
B

(0, 1) of square-integrable Borel mea-

surable real functions on [0, 1], endowed with the inner product 〈f, g〉 =
∫ 1
0 f(u)g(u)du

and associated norm ||f ||
2

=
√
〈f, f〉 and metric ||f −g||

2
. Hence, any square-integrable

Borel measurable real function q(u) on [0, 1] can be represented as q(u) =
∑∞

k=0 γkρk(u)

a.e. on [0, 1] where the γk’s are the Fourier coefficients: γk =
∫ 1
0 ρk(u)q(u)du, satisfy-

ing
∑∞

k=0 γ2
k

< ∞. Therefore, every density function h(u) on [0, 1] can be written as

h(u) = q(u)2 where q(u) ∈ L2
B

(0, 1), with
∫ 1
0 q(u)2du =

∑∞
k=0 γ2

k
= 1.

Without loss of generality we may assume that γ0 ∈ (0, 1), because given h(u) we

may assume that q(u) =
√

h(u). Therefore, the restriction
∑∞

k=0 γ2
k

= 1 can be imposed

by reparameterizing the γk’s as

γ0 =
1√

1 +
∑∞

k=1 δ2
k

, γk =
δk√

1 +
∑∞

k=1 δ2
k

for k = 1, 2, 3, . . .

Thus, any density function h(u) on [0, 1] can be represented as

h(u) =
(1 +

∑∞
k=1 δkρk(u))2

1 +
∑∞

k=1 δ2
k

, where
∞∑

k=1
δ2
k

< ∞, (2.33)

and therefore any absolutely continuous distribution function H(u) on [0, 1] takes the

form (2.21), where h(u) is of the form (2.33).

The standard consistency proof for parameter estimators of nonlinear parametric

models requires that the parameters are confined to a compact subset of a Euclidean



51

space. Since, indirectly, the density h in (2.20) plays the role of unknown parameter, we

will first construct a compact metric space of densities on the unit interval. This can be

done by imposing restrictions on the parameters δk in (2.33), as follows.

Lemma 5. Let D be the space of density function h(u) on [0, 1] of the form (2.33),

where the parameters δk are restricted by the inequality

|δk| ≤ c
(
1 +

√
k ln k

)−1
, k = 1, 2, 3, .... (2.34)

for an a priori chosen constant c > 0. If we endow D with the L1 metric

||h1 − h2||1 =
∫ 1

0
|h1(u)− h2(u)| du, (2.35)

then D is a compact metric space. Consequently, the corresponding space of absolutely

continuous distribution functions on [0, 1],

H =
{

H(u) =
∫ u

0
h(x)dx, h ∈ D

}
,

endowed with the “sup” metric sup0≤u≤1 |H1(u)−H2(u)| , is a compact metric space

as well.

Proof : Bierens (2007).
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Actually, the L1 metric (2.35) is applicable to H as well. Endowing H with the

L1 metric has the advantage that then the two spaces D and H are in essence identical.

To construct compact spaces of densities and distribution functions on (0,∞),

Assumption 3. Choose an absolutely continuous distribution function G(v) with den-

sity g(v), finite expectation
∫∞
0 vg(v)dv < ∞, and support (0,∞), as initial guess of the

true value distribution.

Then it follows straightforwardly from Lemma 5 that:

Lemma 6. With G(v) and g(v) as in Assumption 3, the space

D(G) = {f(v) = h(G(v))g(v), h ∈ D} (2.36)

of densities on (0,∞), endowed with the L1 metric

||f1 − f2|| =
∫ ∞
0

|f1(v)− f2(v)| dv. (2.37)

is a compact metric space. Moreover, the corresponding space

F(G) =
{

F (v) =
∫ v

0
f(x)dx, f ∈ D(G)

}
(2.38)
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of absolutely continuous distribution functions on (0,∞), endowed with the sup metric

||F1 − F2|| = sup
v>0

|F (v)− F (v)| ,

is a compact metric space as well.

Now F(G) is the “parameter” space of candidate value distributions F (v), pro-

vided that:

Assumption 4. The constant c > 0 in (2.34) is chosen so large that the density f0(v)

of the true value distribution F0(v) is contained in D(G).

Note that not all the densities in D(G) will have finite expectations. The reason is that it

is always possible to select a sequence fn ∈ D(G) with finite expectations such that for a

density f ∈ D(G) with infinite expectation, limn→∞
∫∞
0 |fn(v)− f(v)| dv = 0. However,

this is of no consequence, as long as the true value distribution F0 has finite expectation,

and Assumption 4 holds, because then the true bid distribution Λ0(b) has bounded

support, so that Lemma 1 is applicable10 for all bid distributions Λ(b) corresponding to

an F ∈ F(G).

10Recall that Lemma 1 does not require that the other bid distribution Λ(b) has bounded
support.
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2.3.3 The Sieve Spaces

For a density function h(u) in (2.33) and its associated parameter sequence

{δk}∞k=1, let

hn(u) = h(u|δn) =
(1 +

∑n
k=1 δkρk(u))2

1 +
∑n

k=1 δ2
k

, where δn = (δ1, . . . , δn)′, (2.39)

be the n-th order truncation of h(u). The case n = 0 corresponds to the uniform density:

h0(u) = 1.

Following Gallant and Nychka (1987) we will call this truncated density a SNP density

function. It has been shown by Bierens (2007) that

lim
n→∞

∫ 1

0
|hn(u)− h(u)| du = 0. (2.40)

Thus, defining the space of n-th order truncations of h(u) by

Dn =

{
hn(u) =

(1 +
∑n

k=1 δkρk(u))2

1 +
∑n

k=1 δ2
k

, |δk| ≤ c
(
1 +

√
k ln k

)−1
for k ≥ 1.

}
, (2.41)

it follows that for each h ∈ D there exists a sequence hn ∈ Dn of SNP densities such

that (2.40) holds. Consequently, defining

Hn =
{

Hn(u) =
∫ u

0
hn(v)du, hn ∈ Dn

}
(2.42)
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it follows that for each distribution function H ∈ H there exists a sequence of SNP

distribution functions Hn ∈ Hn such that

lim
n→∞ sup

0≤u≤1
|Hn(u)−H(u)| = 0. (2.43)

Note that the distribution functions Hn(u) can easily be computed as an quadratic form

in δn = (δ1, . . . , δn)′, using the approach in Bierens (2007).

The densities hn ∈ Dn will be used to construct densities fn(v) = hn(G(v))g(v)

of candidate value distributions, where G(v) and its density g(v) are chosen in advance

according to Assumption 3. The latter implies that

∫ ∞
0

vfn(v)dv =
∫ ∞
0

vhn(G(v))g(v)dv ≤ sup
0≤u≤1

hn(u)
∫ ∞
0

vg(v)dv < ∞

because each hn(u) ∈ Dn is a squared polynomial of order n, with bounded coefficients,

and therefore is bounded itself:

hn = sup
hn∈Dn

sup
0≤u≤1

hn(u) < ∞,

although it is possible that limn→∞ hn = ∞.

Similar to (2.36) and (2.38), define the increasing sets

Dn(G) = {fn(v) = hn(G(v))g(v), hn ∈ Dn} , (2.44)

Fn(G) = {Fn(v) = Hn(G(v)), Hn ∈ Hn} . (2.45)
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Then

Lemma 7. Choose G as in Assumption 3. Then all the densities fn ∈ Dn(G) have

finite expectation. Moreover, for each density f ∈ D(G) there exists a sequence of

densities fn ∈ Dn(G) such that limn→∞
∫∞
0 |fn(v)− f(v)| dv = 0, and for each distri-

bution function F ∈ F(G) there exists a sequence of distribution functions Fn ∈ Fn(G)

such that limn→∞ supv>0 |Fn(v)− F (v)| ≤ limn→∞
∫∞
0 |fn(v)− f(v)| dv = 0. Conse-

quently,
⋃∞

n=0Dn(G) is dense in D(G), and
⋃∞

n=0Fn(G) is dense in F(G).

The latter means thatD(G) is the closure of
⋃∞

n=0Dn(G), denoted byD(G) =
⋃∞

n=0Dn(G),

and similar, F(G) =
⋃∞

n=0Fn(G).

The sequence of spaces Fn(G) now forms the sieve. Since the distribution func-

tions in Fn(G) are parametric, with parameters δn = (δ1, . . . , δn)′, the computation

of F̂n = arg minF∈Fn(G) Q̂(F ) is feasible. In particular, F̂n can be computed via the

simplex method of Nelder and Mead (1965).

2.4 Strong Consistency

2.4.1 General Almost Sure Convergence Results

To prove strong consistency of semi-nonparametric sieve estimators of non-Euclidean

parameters, we need to generalize the standard consistency proof for parametric estima-

tors to the non-Euclidean case. The uniform strong law of large numbers plays a key-role

in proving consistency of parameter estimators. Therefore, we first generalize Jennrich’s
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(1969) uniform strong law of large numbers to random functions on compact metric

spaces:

Theorem 1. Let Θ be a compact metric space, and let Ψj(θ), j = 1, 2, ..., N, .... be

a sequence of real valued almost surely continuous i.i.d. random functions on Θ. If in

addition

E

[
sup
θ∈Θ

|Ψ1(θ)|
]

< ∞ (2.46)

then

sup
θ∈Θ

∣∣∣∣∣∣
1
N

N∑

j=1
Ψj(θ)−Ψ(θ)

∣∣∣∣∣∣
→ 0 (2.47)

a.s., where Ψ(θ) = E [Ψ1(θ)] . 11 This result carries over to complex-valued random

functions Ψj(θ) if the conditions involved hold for Re
[
Ψj(θ)

]
and Im

[
Ψj(θ)

]
.

Proof : Section 2.9.5.

We need this result to prove that for fixed t the empirical characteristic function

ψ̂(t|F ) of the simulated bids converges a.s. to the actual characteristic function ψ(t|F )

of the simulated bids, uniformly on the space F(G).

Note that by the standard strong law of large numbers the empirical charac-

teristic function ϕ̂(t) of the actual bids converges a.s. to the characteristic function

ϕ(t) of the bid distribution. Then it follows from the bounded convergence theorem

11Note that Ψ(θ) is continuous.
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that supF∈Θ

∣∣∣Q̂(F )−Q(F )
∣∣∣ → 0 a.s. Using the fact that by Lemma 1, Q(F ) =

Q(F0) if and only if F = F0, the strong consistency of the (infeasible) estimator F̂ =

arg minF∈Θ Q̂(F ) follows then from Theorem 2 below, which is a generalization of a

standard consistency result for parametric estimators. See Jennrich (1969).

Theorem 2. Let Q̂N (θ) be a sequence of real valued random functions on a com-

pact metric space Θ with metric ρ(θ1, θ2), such that supθ∈Θ

∣∣∣Q̂N (θ)−Q(θ)
∣∣∣ → 0 a.s.,

where Q(θ) is a continuous real function on Θ. Let θ̂N = arg minθ∈Θ Q̂N (θ) and

θ0 = arg minθ∈Θ Q(θ). Then for N →∞,

Q(θ̂N ) → Q(θ0) a.s. (2.48)

If θ0 is unique then (2.48) implies ρ(θ̂N , θ0) → 0 a.s.

Proof : Section 2.9.6.

Since in our case the parameter space Θ is a compact metric space of functions,

the estimator θ̂N cannot be computed in practice. The following sieve estimation result

provides the solution to this problem:

Theorem 3. Let the conditions of Theorem 2 be satisfied, including the uniqueness of

θ0. Let {Θn}∞n=0 be an increasing sequence of compact subspaces of Θ for which the
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computation of

θ̃n,N = arg min
θ∈Θn

Q̂N (θ)

is feasible. Suppose that for each θ ∈ Θ there exists a sequence θn ∈ Θn such that

limn→∞ ρ(θn, θ) = 0. Let nN be an arbitrary subsequence of n satisfying limN→∞ nN =

∞, and denote the sieve estimator involved by θ̃N = θ̃nN ,N . Then ρ(θ̃N , θ0) → 0 a.s.

Proof : Section 2.9.7.

2.4.2 Uniform Strong Consistency of the SNP-SIM Estimator of the Value

Distribution

Given Assumption 2, the conditions of Theorem 1 are satisfied for the empirical

characteristic function of the simulated bids in the form (2.32), for fixed t: The function

Ψj(θ) in Theorem 1 takes the form

Ψj(θ) = exp
(
i.t.η

(
F, Ũj

))
, θ = F,

which by (2.31) is a.s. continuous on F(G) (= Θ in Theorem 1). The limit function

involved,

E [Ψ1(θ)] =
∫ 1

0
exp (i.t.η (F, u)) du = ψ(t|F ), θ = F,
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is of course continuous on F(G) as well. Thus, it follows from Theorem 1 that

sup
F∈F(G)

∣∣∣ψ̂(t|F )− ψ(t|F )
∣∣∣ → 0 a.s., pointwise in t.

Moreover, by the standard strong law of large numbers,

ϕ̂(t) → ϕ(t) a.s., pointwise in t.

It follows now from the bounded convergence theorem that

sup
F∈F(G)

∣∣∣Q̂(F )−Q(F )
∣∣∣ → 0 a.s.

Furthermore, it follows from Lemma 1 that Q(F ) = Q(F0) (= 0) if and only if F = F0.

Thus, all the conditions of Theorem 2 are satisfied: Denoting F̂ = arg minF∈F(G) Q̂(F )

with corresponding density f̂ , we have
∫∞
0

∣∣∣f̂(v)− f0(v)
∣∣∣ dv → 0 a.s., and therefore

supv>0

∣∣∣F̂ (v)− F0(v)
∣∣∣ → 0 a.s.

Of course, F̂ cannot be computed in practice. However, due to the results of

Lemma 7, Theorem 3 is applicable:

Theorem 4. Let nN be an arbitrary subsequence of n such that limN→∞ nN = ∞,

and let

F̃ = arg min
F∈FnN

(G)
Q̂(F ).

Then under Assumptions 1-4, supv>0

∣∣∣F̃ (v)− F0(v)
∣∣∣ → 0 a.s.
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2.5 An Integrated Moment Test of the Validity of the First-Price Auc-

tion Model

2.5.1 The Test

If the IPV and/or the risk neutrality assumptions do not hold, the bid functions

(2.1) and (2.2) no longer apply to the actual bids. Since the simulated bids are derived

from these bid functions, we then have

Q̂(F̃ ) → inf
F∈F(G)

Q(F ) > 0 a.s., (2.49)

where F̃ is the sieve estimator. This suggests to use Q̂(F̃ ) as a basis for a consistent IM

test of the null hypothesis that

H0: the actual bids come from a first-price sealed bid auction where values are indepen-

dent, private and bidders are symmetric and risk-neutral,

against the general alternative that

H1: the null hypothesis H0 is false.

The Integrated Moment (IM) test we will propose is based on the fact that similar

to the results in Bierens (1990) and Bierens and Ploberger (1997) for the Integrated

Conditional Moment (ICM) test,



62

Theorem 5. Under H0,

ŴN (.) =
√

N
(
ψ̂(.|F0)− ϕ̂(.)

)
⇒ W (.)

on [−κ, κ], where W (t) is a complex-valued zero-mean Gaussian process on [−κ, κ] with

covariance function

Γ(t1, t2) = E
[
ŴN (t1)ŴN (t2)

]
.

Hence12

N.Q̂(F0) =
1
2κ

∫ κ

−κ

∣∣∣ŴN (t)
∣∣∣2 dt →d

1
2κ

∫ κ

−κ
|W (t)|2 dt.

Note that this result does not imply that N .Q̂(F̃ ) →d
1
2κ

∫ κ

−κ
|W (t)|2 dt, because

this requires that
√

N
(
ψ̂(t|F̃ )− ψ̂(t|F0)

)
→d 0, which in its turn requires that the

subsequence nN in Theorem 4 is chosen such that supv>0

∣∣∣F̃ (v)− F0(v)
∣∣∣ = op

(
1/
√

N
)

,

together with some further conditions.13 However, if

Assumption 5. The true value distribution F0 is of the SNP type itself : F0 ∈

∪∞
n=1Fn (G) ,

12By the continuous mapping theorem.
13The latter is a conjecture based in the proof of Lemma 4.
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then there exists a smallest natural number n0 such that F0 ∈ Fn0
(G) , so that

N.Q̂(F̃ ) ≤ N.Q̂(F0) for nN ≥ n0.

This suggests that upper bounds of the critical values of the test can be based on the

limiting distribution of N.Q̂(F0). The consistency of this IM tests then follows from

(2.49).

The proof that (2.49) holds under H1 follows straightforwardly from the proof of

Theorem 3. The result under H0 follows from the fact that

Lemma 8. The process ŴN (.) is tight14 on [−κ, κ].

Proof : Section 2.9.8.

2.5.2 Bootstrap Critical Values

The function ŴN (t) =
√

N
(
ψ̂(t|F0)− ϕ̂(t)

)
takes the form

ŴN (t) =
1√
N

N∑

j=1

(
exp

(
i.t.B̂j

)
− exp

(
i.t.Bj

))

where the B̂j ’s are the simulated bids corresponding to the true value distribution F0,

and the Bj ’s are the actual bids. Thus, the B̂j ’s are independent of the Bj ’s, but come

from the same distribution. The problem in approximating the limiting process W (t) is

14See Billingsley (1999) for the definition of tightness.
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two-fold, namely that we cannot increase N →∞ because the Bj ’s are only observable

for j = 1, ..., N , and F0 is unknown. To overcome these problems, generate for large

M simulated bids B̃j , j = 1, 2, ....., 2.M, from the bid distribution corresponding to the

sieve estimator F̃ of F0, according to the approach in Assumption 2. Thus, draw Ũj ,

j = 1, 2, ....., 2.M, independently from the uniform [0, 1] distribution, and generate the

corresponding simulated bids B̃j as in Lemma 4. Denote

W̃M

(
t|F̃

)
=

1√
M

M∑

j=1
exp

(
i.t.B̃j

)
− 1√

M

2M∑

j=M+1
exp

(
i.t.B̃j

)

=
1√
M

M∑

j=1
exp

(
i.t.η

(
F̃ , Ũj

))
− 1√

M

2M∑

j=M+1
exp

(
i.t.η

(
F̃ , Ũj

))
.

where η(F, u) is (implicitly) defined by (2.30). Then similar to Lemma 8, W̃M

(
t|F̃

)
is

tight on [−κ, κ], conditional on F̃ . Hence for M →∞,

W̃M

(
.|F̃

)
⇒ W

(
.|F̃

)
on [−κ, κ], conditional on F̃

where W
(
.|F̃

)
is a complex-valued zero-mean Gaussian process with conditional covari-

ance function

Γ̃(t1, t2|F̃ ) = E

[
W̃M

(
t1|F̃

)
W̃M

(
t2|F̃

)∣∣∣∣ F̃

]

Lemma 9. Under H0 and the conditions of Theorem 4,

sup
(t1,t2)∈[−κ,κ]×[−κ,κ]

∣∣∣Γ̃(t1, t2|F̃ )− Γ (t1, t2)
∣∣∣ → 0 a.s. (2.50)
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as N →∞, and consequently

1
2κ

∫ κ

−κ

∣∣∣W
(
t|F̃

)∣∣∣2 dt →d
1
2κ

∫ κ

−κ
|W (t)|2 dt. (2.51)

Hence, for M →∞ first, and then N →∞,

1
2κ

∫ κ

−κ

∣∣∣W̃M

(
t|F̃

)∣∣∣2 dt →d
1
2κ

∫ κ

−κ
|W (t)|2 dt. (2.52)

Proof : Section 2.9.9.

Therefore, bootstrap critical values of 1
2κ

∫ κ

−κ
|W (t)|2 dt can be computed as follows.

First, choose a large M , say M = 1000. Next, generate T̃k = 1
2κ

∫ κ

−κ

∣∣∣W̃M

(
t|F̃

)∣∣∣2 dt

independently for k = 1, ..., K, say K = 500, and sort the statistics T̃k in increasing

order. The α× 100% bootstrap critical value is then T̃(1−α)K .

2.5.3 Critical Values Based on a Further Upper Bound

It has been shown by Bierens and Ploberger (1997) that

1
2κ

∫ κ

−κ
|W (t)|2 dt

1
2κ

∫ κ

−κ
Γ(t, t)dt

≤ sup
1
m

m∑

k=1
ε2
j

= T ,
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say, where the εj ’s are independently N(0, 1) distributed. Therefore, with Γ̂(t, t) a

consistent estimator of Γ(t, t), we have

T̃ =
N.Q̂(F̃ )

1
2κ

∫ κ

−κ
Γ̂(t, t)dt

≤ N.Q̂(F0)
1
2κ

∫ κ

−κ
Γ̂(t, t)dt

→d

1
2κ

∫ κ

−κ
|W (t)|2 dt

1
2κ

∫ κ

−κ
Γ(t, t)dt

≤ T .

The 5% and 10% critical values based on T are 4.26 and 3.23, respectively.

As to the choice of Γ̂(t, t), note that

Lemma 10. Γ(t, t) = 2 − 2|ϕ(t)|2, where ϕ(t) is the characteristic function of the

actual bid distribution. Let ϕ̂(t) be the empirical characteristic function involved. Then

Γ̂(t, t) = 2− 2|ϕ̂(t)|2 → Γ(t, t) a.s., pointwise in t.

Proof : Section 2.9.10.

2.6 Determination of the Sieve Order Via an Information Criterion

Recall that under Assumption 5 there exists a smallest natural number n0 such

that F0 ∈ Fn0
(G) . The question now arises how to estimate n0 consistently.

For nested likelihood models this can be done via information criteria, for example

the Hannan-Quinn (1979) or Schwarz (1978) information criteria. These information

criteria are of the form

CN (n) =
−2
N

ln (LN (n)) + n.
φ(N)

N
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where LN (n) is the maximum likelihood of a models with n parameters, with φ(N) =

ln (N) for the Schwarz criterion and φ(N) = 2. ln(ln(N)) for the Hannan-Quinn criterion.

Then for 2 ≤ n ≤ n0,

p lim
N→∞

(CN (n)− CN (n− 1)) = p lim
N→∞

2
N

ln (LN (n− 1))− p lim
N→∞

2
N

ln (LN (n))

< 0

whereas for n > n0, −2 (ln (LN (n0))− ln (LN (n))) →d χ2
n−n0

, hence

p lim
N→∞

N

φ(N)
(CN (n)− CN (n0)) = n− n0

The latter result only hinges on −2 (ln (LN (n0))− ln (LN (n))) = Op(1).

Since under Assumption 5,

N


 inf

F∈Fn(G)
Q̂(F )− inf

F∈Fn0
(G)

Q̂(F )


 = Op(1) if n > n0,

whereas for 2 ≤ n ≤ n0,

p lim
N→∞

(
inf

F∈Fn(G)
Q̂(F )− inf

F∈Fn−1(G)
Q̂(F )

)
< 0

it seems that in our case we may replace −2
N ln (LN (n)) by infF∈Fn(G) Q̂(F ):

ĈN (n) = inf
F∈Fn(G)

Q̂(F ) + n.
φ(N)

N
,
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and estimate n0 by n̂N = arg min ĈN (n). Asymptotically that will work: limN→∞

P [n̂N = n0] = 1. However, in practice it will not, due to the fact that Q̂(F ) is bounded:

supF Q̂(F ) ≤ 4, and that infF∈Fn(G) Q̂(F ) will be close to zero if n < n0 but not too

far away from n0, so that in small samples the penalty term n.φ(N)/N may dominate

infF∈Fn(G) Q̂(F ) too much. Therefore, we propose the following modification of ĈN (n):

C̃N (n) = inf
F∈Fn(G)

Q̂(F ) + Φ(n).
φ(N)

N
, (2.53)

φ(N) = o(N), lim
N→∞

φ(N) = ∞.

where Φ(n) is an increasing but bounded function of n. For example, let for some

α ∈ (0, 1),

Φ(n) = 1− (n + 1)−α.

Then similar to the Hannan-Quinn and Schwarz information criteria we have:

Theorem 6. Let ñN = max
s.t. C̃N (n)≤C̃N (n−1) n and F̃ = arg minF∈FenN

(G) Q̂(F ).

Under Assumption 5, limN→∞ P [ñN = n0] = 1, hence

sup
v>0

∣∣∣F̃ (v)− F0(v)
∣∣∣ → 0 a.s.

If Assumption 5 is not true then p limN→∞ ñN = ∞, hence

p lim
N→∞

sup
v>0

∣∣∣F̃ (v)− F0(v)
∣∣∣ = 0.
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Proof : Section 2.9.11.

2.7 Some Numerical Experiments

In this section we check the performance of the IM test of the validity of the

first-price auction model, and the fit of SNP-SIM density estimator with estimated the

truncation order ñN , via a few numerical experiments. In all experiments we use the

exponential distribution

G(v) = 1− exp(−v/3), g(v) =
1
3

exp(−v/3) (2.54)

as the initial guess for the value distribution, and the truncation order ñN is determined

via the approach in Theorem 6, with information criterion

C̃N (n) = inf
F∈Fn(G)

Q̂(F ) +
(
1− (n + 1)−1/3

) log10(log10(N))
N

.

The 5% and 10% bootstrap critical values of the IM test will be based on K = 500

bootstrap samples.

2.7.1 The IM Test

In this subsection, we check the performance of the IM test by two numerical

examples. The first is the case where then null hypothesis that the observed bids can be

rationalized by the first-price sealed bid auction model with independent private values

(IPV) is false, and the second case is where this null hypothesis is true. In both cases we
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have generated bids from 500 identical and independent auctions, each with two sealed

bids and no reservation price. In both cases the true value distribution is exponential,

although different from the initial guess (2.54), namely

F0(v) = 1− exp(−v), f0(v) = exp(−v).

In the first case the observed bids come from a second price auction with IPV

and two symmetric, risk-neutral bidders. As is well known, in a second price auction, it

is a weakly dominant strategy to bid the true value. See Krishna (2002). Therefore, the

actual bids are drawn directly from the value distribution F0(v). As to the results, the

estimate of the truncation order is ñN = 4, and the value of the corresponding IM test

statistic is T̃ = 3.0531. The 5% and 10% bootstrap critical values are T̃0.95K = 1.1882

and T̃0.90K = 0.9447, respectively.15 Consequently, the null hypothesis is firmly rejected

at the 5% significance level, as expected.

The second example is a first-price auction with risk-averse bidders. Again, we

have generated bids from 500 auctions, where each auction has two risk-averse bidders,

with utility function U(x) = x1/2. In this case the equilibrium bid function has a closed

form. See example 4.1 in Krishna (2002).16 But, as it is pointed out in Krishna (2002),

a first-price auction with two risk-bidders and value distribution F0(v) is observationally

15Thus, under the null hypothesis, P (T̃ ≥ T̃0.95) = 0.05 and P (T̃ ≥ T̃0.90) = 0.1.
16Note that if the number of risk-averse bidders is greater than two the equilibrium bid function

no longer has a closed form.
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equivalent to a first-price auction with two risk-averse neutral bidders with value distri-

bution F0(v)2.17 Therefore, in this case we may expect that our IM test will not reject

the null hypothesis. The IM test statistic now takes the value T̃ = 0.0004, with 5%

and 10% bootstrap critical values T̃0.95K = 0.3630 and T̃0.90K = 0.2661, respectively,

based on the estimated truncation order ñN = 2. Thus, the (true) null hypothesis is not

rejected, which is the anticipated result.

2.7.2 The Fit

In the previous experiments the estimated truncation orders ñN = 4 and ñN = 2

are small, so the question arises whether for such a small truncation order the value

density can be adequately approximated. In this section we check this for three cases.

In each case we generate independently 200 auctions without a reservation price, where

each auction consists of 5 bids whose private values come from a chi-square distribution,

so in each case we have 1000 i.i.d. sample bids. The three cases only differ with respect

to the degrees of freedom r of the chi-square distribution, namely r = 3, 4, 5, respectively.

In these cases the true value densities f0(v) are quite different from the density

g(v) of the initial guess (2.54), in particular the left tails, as shown in Figure 2.1:

Thus, the SNP density hn(u) needs to convert the exponential density g(v) into an

approximation fn(v) = hn (G(v)) g(v) of a χ2
r

density, so that hn(u) needs to bend

down the left tail of g(v) towards zero. This seems challenging. However, it appears that

the SNP density hn(u) has no problem doing that, even for small values of n.

17This holds when the utility function is a constant relative risk aversion (CRRA) utility
function, U(x) = xα with 0 < α < 1 and U(0) = 0. See example 4.1 in Krishna (2002).
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Fig. 2.1. g(v) = exp(−v/3)/3 compared with the χ2
r

densities for r = 3, 4, 5

First, the estimated truncation orders are small: See Table 2.1 below.

To see whether these truncation orders are too small or not, we compare in Figures

2.2-2.4 the SNP sieve density estimators fñN
(v) = hñN

(G(v)) g(v) with the true χ2
r

value densities f0(v) for r = 3, 4, 5.

These figures show that our SNP-SIM estimation approach works remarkably well, cer-

tainly in view of the bad choice of the initial guess g(v) for f0(v) (see Figure 2.1) and the

small truncation orders. On the other hand, it seems from Figure 2.3 that the truncation

order ñN = 2 is somewhat too small, as the fit of fñN
(v) for ñN = 4 in Figures 2.2 and

2.4 looks better than in Figure 2.3.
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Table 2.1.
Estimated Truncation Orders

r 3 4 5
ñN 4 2 4

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

True
Estimate

Fig. 2.2. fñN
(v) (dashed curve) compared with the true χ2

3 density f0(v)

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25
True
Estimate

Fig. 2.3. fñN
(v) (dashed curve) compared with the true χ2

4 density f0(v)
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Fig. 2.4. fñN
(v) (dashed curve) compared with the true χ2

5 density f0(v)

2.8 Concluding Remarks

In this chapter we have proposed a SNP-SIM method to estimate the value dis-

tribution of the first-price auction, based on the identification results in Chapter 1. Our

SNP-SIM estimation method differs fundamentally from the nonparametric estimation

approaches in the literature in that we estimate the value distribution directly, whereas

in the nonparametric auction literature, the value distribution is estimated indirectly

via kernel estimation of the inverse bid function. For general nonparametric approaches,

see Athey and Haile (2005). Another novelty of our approach is that it yields, as a

by-products an integrated moment test for the validity of the first-price auction model.

The approach in this paper can be extended to Dutch auctions and auctions with

auction-specific heterogeneity. This will be left for future research.
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2.9 Proofs

2.9.1 Proof of Lemma 2

Let F be continuous distribution function with support contained in (v, v), where

v = arg minF (v)>0 v and v = arg maxF (v)<1 v. Suppose that F is invertible on (v, v),

i.e., for each u ∈ (0, 1) there exists a unique v ∈ (v, v) such that u = F (v). It is a

standard textbook exercise to verify that then for a random drawing V from F,

F (V ) ∼ Uniform[0, 1]. (2.55)

If F is not invertible then there exists a u ∈ (0, 1) such that F (v) = u for more

than one v ∈ (v, v). In particular, for such a u let

v1 (u) = inf
u=F (v)

v, v2 (u) = sup
u=F (v)

v. (2.56)

Note that by the continuity of F (v), F (v1 (u)) = F (v2 (u)) = u, hence F (v) = u

for all v ∈ [v1 (u) , v2 (u)]. Moreover, F (v) < u for v ∈ (v, v1 (u)) and F (v) > u for

v ∈ (v2 (u) , v). Then for such a u,

P [F (V ) ≤ u] = E [I (F (V ) ≤ u)]

=
∫ v1(u)

v
I (F (v) ≤ u) f (v) dv +

∫ v2(u)

v1(u)
I (F (v) ≤ u) f (v) dv

+
∫ v

v2(u)
I (F (v) ≤ u) f (v) dv
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=
∫ v1(u)

v
f (v) dv +

∫ v2(u)

v1(u)
f (v) dv = F (v2 (u)) = u

Since this result also holds if v1 (u) = v2 (u) , it follows that for all u ∈ (0, 1) ,

P [F (V ) ≤ u] = u.

Thus, the only requirement for (2.55) is that F is continuous.

To prove that, with U a random drawing from the uniform [0, 1] distribution,

the solution V of U = F (V ) is a.s. unique, it suffices to prove that the set S =

{u ∈ (0, 1) : v1 (u) < v2 (u)} has Lebesgue measure zero. The latter follows from the fact

that for any pair u1, u2 ∈ S, u1 6= u2, the intervals (v1 (u1) , v2 (u1)) and (v1 (u2) , v2 (u2))

are disjoint, which implies that S is countable because any collection of disjoint open

intervals is countable.

Finally, P [V ≤ v] = F (v) follows trivially from

P [V ≤ v] = P [F (V ) ≤ F (v)] = P [U ≤ F (v)] = F (v) .

Q.E.D.

2.9.2 Derivation of (2.18)

Note that
∣∣∣Ψ̂(t|F )

∣∣∣2 = Ψ̂(t|F )Ψ̂(t|F ), where Ψ̂(t|F ) = Ψ̂(−t|F ) = ϕ̂(−t) −

ψ̂(−t|F ) is the complex-conjugate of Ψ̂(t|F ) = ϕ̂(t)− ψ̂(t|F ). Then it follows from (2.12)

and (2.13) that
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Q̂(F ) =
1
2κ

∫ κ

−κ
Ψ̂(t|F )Ψ̂(t|F )dt

=
1
2κ

∫ κ

−κ


 1

N

N∑

j=1
exp(i.t.Bj)−

1
N

N∑

j=1
exp(i.t.B̃j)




×

 1

N

N∑

j=1
exp(−i.t.Bj)−

1
N

N∑

j=1
exp(−i.t.B̃j)


 dt

=
1

N2

N∑

j1=1

N∑

j2=1

1
2κ

∫ κ

−κ
exp(i.t.(Bj1

−Bj2
))dt

− 1
N2

N∑

j1=1

N∑

j2=1

1
2κ

∫ κ

−κ
exp(i.t.(Bj1

− B̃j2
))dt

− 1
N2

N∑

j1=1

N∑

j2=1

1
2κ

∫ κ

−κ
exp(i.t.(B̃j1

−Bj2
))dt

+
1

N2

N∑

j1=1

N∑

j2=1

1
2κ

∫ κ

−κ
exp(i.t.(B̃j1

− B̃j2
))dt

=
2

N2

N−1∑

j1=1

N∑

j2=j1+1

sin
(
κ.(Bj1

−Bj2
)
)

κ.(Bj1
−Bj2

)

+
2

N2

N−1∑

j1=1

N∑

j2=j1+1

sin
(
κ.(B̃j1

− B̃j2
)
)

κ.(B̃j1
− B̃j2

)

− 2
N2

N∑

j1=1

N∑

j2=1

sin
(
κ.(Bj1

− B̃j2
)
)

κ.(Bj1
− B̃j2

)
.
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Q.E.D.

2.9.3 Proof of Lemma 3

Since X = X0 conditional on U ≤ c−1f(X0)/g(X0), and U and X0 are independent, we

have

P [X ≤ a] = P
[
X0 ≤ a

∣∣∣U ≤ c−1f(X0)/g(X0)
]

=
P [X0 ≤ a, U ≤ c−1f(X0)/g(X0)]

P [U ≤ c−1f(X0)/g(X0)]

=
E

(
E

[
I(X0 ≤ a)I

(
U ≤ c−1f(X0)/g(X0)

)∣∣∣X0

])

E
(
E

[
I
(
U ≤ c−1f(X0)/g(X0)

)∣∣∣X0

])

=
E [I(X0 ≤ a) (f(X0)/g(X0))]

E [f(X0)/g(X0)]

=

∫ a
−∞ f(x)dx∫∞
−∞ f(x)dx

= F (a)

Q.E.D.

2.9.4 Proof of Lemma 4

We only consider the binding reservation price case. First, we show that

lim
n→∞ B̃n = 0 if and only if B̃ = 0, (2.57)
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as follows. Suppose that B̃ = 0 and B̃n > p0, so that F (p0) ≤ Ũ < Fn (p0) . Then

it follows from (2.27) that there exists an n0(Ũ) depending on Ũ such that for all n ≥

n0(Ũ),

I
(
F (p0) ≤ Ũ < Fn (p0)

)
= 0

Thus, if B̃ = 0 then limn→∞ B̃n = 0. Similarly, limn→∞ B̃n = 0 only if B̃ = 0.

Next we show that (2.28) is true, by contradiction. Suppose that lim supn→∞ Ṽn >

Ṽ . Then there exists a subsequence nm and an ε > 0 such that for all m, Ṽnm
> Ṽ + ε.

But then by (2.27)

Ũ = Fnm

(
Ṽnm

)
≥ Fnm

(
Ṽ + ε

)
> Fnm

(
Ṽ

)
→ F

(
Ṽ

)
= Ũ

which is impossible. Thus, lim supn→∞ Ṽn ≤ Ṽ . Similarly, it follows that lim infn→∞

Ṽn ≥ Ṽ . Thus (2.28) is true.

Finally, it follows straightforwardly from (2.27) and (2.28) that

lim
n→∞

∫ 1

0
Fn

(
p0 + u(Ṽn − p0)

)I−1
du =

∫ 1

0
F

(
p0 + u(Ṽ − p0)

)I−1
du. (2.58)

The result (2.29) now follows from (2.57), (2.28) and (2.58). Q.E.D.

2.9.5 Proof of Theorem 1

Originally this uniform strong law was derived by Jennrich (1969, Theorem 2)

for the case that Θ is a compact subset of a Euclidean space and Ψj(θ) = Ψ(Xj , θ),
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where Xj is an i.i.d. sequence of random vectors in a Euclidean space with support X ,

Ψ(x, θ) is Borel measurable in x for each θ ∈ Θ, and Ψ(x, θ) is continuous in θ for each

x ∈ X . However, it is not hard to verify from the more detailed proof in Bierens (2004,

Appendix to Chapter 6) of Jennrich’s result that this law carries over to a.s. continuous

random functions on a compact metric space Θ with metric ρ(θ1, θ2), provided that for

each θ0 ∈ Θ and arbitrary δ > 0, supθ∈Θ,ρ(θ,θ0)≤δ Ψj(θ) and infθ∈Θ,ρ(θ,θ0)≤δ Ψj(θ)

are measurable, because then by the a.s. continuity condition,

lim
δ↓0

(
E

[
sup

θ∈Θ,ρ(θ,θ0)≤δ
Ψj(θ)

]
− E

[
inf

θ∈Θ,ρ(θ,θ0)≤δ
Ψj(θ)

])
= 0,

lim
δ↓0

(
sup

θ∈Θ,ρ(θ,θ0)≤δ
E

[
Ψj(θ)

]
− inf

θ∈Θ,ρ(θ,θ0)≤δ
E

[
Ψj(θ)

])
= 0,

where the expectations are well-defined. These results play a key-role in the proof.

To prove the measurability of supθ∈Θ,ρ(θ,θ0)≤δ Ψj(θ) and infθ∈Θ,ρ(θ,θ0)≤δ Ψj(θ)

along the lines of the proof of Lemma 2 of Jennrich(1969), we first establish the existence

of an increasing sequence of finite subsets Θn of Θ which is dense in Θ, i.e., Θ is the

closure of
⋃∞

n=1Θn. These sets Θn can be constructed as follows. For each θ ∈ Θ and n,

let Un (θ) = {θ∗ ∈ Θ : ρ (θ, θ∗) < 1/n} . Then
⋃

θ∈Θ Un (θ) is a open covering of Θ hence

by the definition of compactness there exists a finite set Θn =
{

θ1,n, ...., θMn,n

}
such

that Θ ⊂ ⋃
θ∈Θn

Un(θ). To show that
⋃∞

n=1Θn is dense in Θ, pick an arbitrary θ ∈ Θ,

and observe that for each n there exists an θn ∈ Θn such that ρ (θ, θn) < 1/n. Therefore,

for each θ ∈ Θ there exists a sequence {θn} in
⋃∞

n=1Θn such that limn→∞ ρ (θ, θn) ,
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hence
⋃∞

n=1Θn is dense in Θ. Consequently

sup
θ∈Θ

Ψ1(θ) = lim sup
n→∞

sup
θ∈Θn

Ψ1(θ) = lim sup
n→∞

max
θ∈Θn

Ψ1(θ).

Since Θn is finite, maxθ∈Θn
Ψ1(θ) is measurable, hence supθ∈Θ Ψ1(θ) is measurable.

The same holds for the “inf” case, and for supθ∈Θ,ρ(θ,θ0)≤δ Ψj(θ) and infθ∈Θ,ρ(θ,θ0)≤δ

Ψj(θ), because the sets {θ ∈ Θ, ρ (θ, θ0) ≤ δ} are compact. Q.E.D.

2.9.6 Proof of Theorem 2

The key of the proof of Theorem 2 is the easy inequality

0 ≤ Q
(
θ̂N

)
−Q (θ0) ≤ Q

(
θ̂N

)
− Q̂N

(
θ̂N

)
+ Q̂N (θ0)−Q (θ0)

≤ 2 sup
θ∈Θ

∣∣∣Q̂N (θ)−Q(θ)
∣∣∣ ,

so that

Q
(
θ̂N

)
→ Q (θ0) a.s. (2.59)

The rest of the proof is now similar to the case where Θ is a compact subset of a Euclid-

ean space:18 Since
{

θ̂N

}
is an infinite sequence in a compact space Θ, it has at least

one limit point θ∗, say, and all the limit points are contained in Θ. But (2.59) implies

that all the limit points θ∗ of
{

θ̂N

}
are equal to θ0, a.s., which proves the theorem.Q.E.D.

18See Jennrich (1969) or the proof of Theorem 6.14 in Bierens (2004, p. 174).
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2.9.7 Proof of Theorem 3

It suffices to show that Q(θ̃N ) → Q(θ0) a.s., because then the rest of the proof is

the same as for Theorem 2.

We can choose a sequence θn ∈ Θn such that

lim
n→∞ ρ(θn, θ0). (2.60)

Then

0 ≤ Q(θ̃N )−Q(θ0) = Q(θ̃N )− Q̂N (θ̃N ) + Q̂N (θ̃N )−Q(θ0)

≤ sup
θ∈ΘnN

∣∣∣Q̂N (θ)−Q(θ)
∣∣∣ + Q̂N (θnN

)−Q(θnN
) + Q(θnN

)−Q(θ0)

≤ 2 sup
θ∈ΘnN

∣∣∣Q̂N (θ)−Q(θ)
∣∣∣ + Q(θnN

)−Q(θ0)

≤ 2 sup
θ∈Θ

∣∣∣Q̂N (θ)−Q(θ)
∣∣∣ + Q(θnN

)−Q(θ0) → 0 a.s.

because supθ∈Θ

∣∣∣Q̂N (θ)−Q(θ)
∣∣∣ → 0 a.s. by the conditions of Theorem 2, and

limN→∞Q(θnN
) = Q(θ0) by (2.60) and the continuity of Q(θ) on Θ. Q.E.D.
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2.9.8 Proof of Lemma 8

Similar to the proof of Lemma 4 in Bierens (1990), we need to show that the

following two conditions hold:

(i) For each δ > 0 and an arbitrary t0 ∈ [−κ, κ], there exists an ε such that

sup
N

P
(
ŴN (t0) > ε

)
≤ δ

(ii) For each δ > 0 and ε > 0, there exists an ξ > 0 such that for t1, t2 ∈ [−κ, κ] ,

sup
N

P

(
sup

|t1−t2|<ξ
|ŴN (t1)− ŴN (t2)| ≥ ε

)
≤ δ.

Condition (i) follows from the fact that for arbitrary t ∈ [−κ, κ],

(
Re

[
ŴN (t)

]
, Im

[
ŴN (t)

])′

converges in distribution to a bivariate normal distribution. Condition (ii) follows from

Chebishev’s inequality:

P

(
sup

|t1−t2|<ξ
|ŴN (t1)− ŴN (t2)| ≥ ε

)
≤

E

[
sup

|t1−t2|<ξ
|ŴN (t1)− ŴN (t2)|

]

|ε|

≤ 2.ξE [|B1|] /|ε| = δ
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and the fact that E [|B1|] < ∞, where the last inequality follows from

E

[
sup

|t1−t2|<ξ
|ŴN (t1)− ŴN (t2)|

]

≤ 1
N

N∑

j=1
E

[
sup

|t1−t2|<ξ

∣∣∣
(
exp

(
i.t1Bj

)
− exp

(
i.t1B̂j

))
−

(
exp

(
i.t2Bj

)
− exp

(
i.t2B̂j

))∣∣∣
]

≤ E

[
sup

|t1−t2|<ξ
|exp (i.t1B1)− exp (i.t2B1)|

]
+ E

[
sup

|t1−t2|<ξ

∣∣∣exp
(
i.t1B̂1

)
− exp

(
i.t2B̂1

)∣∣∣
]

= 2.E

[
sup

|t1−t2|<ξ
|exp (i.t1B1)− exp (i.t2B1)|

]
≤ 2.ξE [|B1|]

Q.E.D.

2.9.9 Proof of Lemma 9

Part (2.50) of Lemma 9 follows from

Γ̃(t1, t2|F̃ ) = (2.61)

E





 1√

M

M∑

j=1

(
exp

(
i.t1.η

(
F̃ , Ũj

))
− exp

(
i.t1.η

(
F̃ , Ũj+M

)))



×

 1√

M

M∑

j=1

(
exp

(
−i.t2.η

(
F̃ , Ũj

))
− exp

(
−i.t2.η

(
F̃ , Ũj+M

)))



∣∣∣∣∣∣
F̃




=
1
M

M∑

j=1
E

[(
exp

(
i.t1.η

(
F̃ , Ũj

))
− exp

(
i.t1.η

(
F̃ , Ũj+M

)))

×
(
exp

(
−i.t2.η

(
F̃ , Ũj

))
− exp

(
−i.t2.η

(
F̃ , Ũj+M

)))∣∣∣ F̃
]

= 2
∫ 1

0
exp

(
i. (t1 − t2) .η

(
F̃ , u

))
du
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− 2
∫ 1

0
exp

(
i.t1.η

(
F̃ , u

))
du

∫ 1

0
exp

(
−i.t2.η

(
F̃ , u

))
du

= 2.

∫ 1

0
cos

(
(t1 − t2) .η

(
F̃ , u

))
du + 2.i.

∫ 1

0
sin

(
(t1 − t2) .η

(
F̃ , u

))
du

− 2
(∫ 1

0
cos

(
t1.η

(
F̃ , u

))
du + i.

∫ 1

0
sin

(
t1.η

(
F̃ , u

))
du

)

×
(∫ 1

0
cos

(
t2.η

(
F̃ , u

))
du− i.

∫ 1

0
sin

(
t2.η

(
F̃ , u

))
du

)
,

the fact that similar to (2.31), η
(
F̃ , u

)
→ η (F0, u) a.s., (a.e.) pointwise in u ∈ [0, 1],

and the bounded convergence theorem. The results (2.51) and (2.52) follow now from

the continuous mapping theorem and the fact that zero-mean Gaussian processes are

completely determined by their covariance functions. Q.E.D.

2.9.10 Proof of Lemma 10

Similar to (2.61) it follows that

Γ(t, t) = 2− 2 (E [cos (t.B1)] + i.E [sin (t.B1)])

× (E [cos (t.B1)]− i.E [sin (t.B1)])

= 2− 2 (E [cos (t.B1)])2 − 2 (E [sin (t.B1)])2

= 2− 2 |ϕ (t)|2

where ϕ (t) is the characteristic function of B1. Therefore, Γ̂(t, t) = 2 − 2 |ϕ̂ (t)|2 is a

consistent estimator of Γ(t, t). Q.E.D.
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2.9.11 Proof of Theorem 6

The event ñN = n0 is equivalent to

max
1≤n≤n0

(
C̃N (n)− C̃N (n− 1)

)
≤ 0 and C̃N (n0 + 1)− C̃N (n0) > 0.

so that

P [ñN 6= n0] ≤ P

[
max

1≤n≤n0

(
C̃N (n)− C̃N (n− 1)

)
> 0

]
(2.62)

+ P
[
C̃N (n0 + 1)− C̃N (n0) ≤ 0

]

For fixed n ≤ n0,

C̃N (n)− C̃N (n− 1) → inf
F∈Fn(G)

Q(F )− inf
F∈Fn−1(G)

Q(F ) ≤ 0 a.s.

hence

lim
N→∞

P

[
max

1≤n≤n0

(
C̃N (n)− C̃N (n− 1)

)
> 0

]
= 0. (2.63)

For n = n0 + 1,

∣∣∣N
(
C̃N (n0 + 1)− C̃N (n0)

)
− φ(N) (Φ(n0 + 1)− Φ(n0))

∣∣∣

= N


 inf

F∈Fn0
(G)

Q̂(F )− inf
F∈Fn0+1(G)

Q̂(F )




≤ N


 inf

F∈Fn0
(G)

Q̂(F ) + inf
F∈Fn0+1(G)

Q̂(F )


 ≤ 2.N.Q̂(F0)
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so that with probability 1,

N

φ(N)

(
C̃N (n0 + 1)− C̃N (n0)

)
≥ Φ(n0 + 1)− Φ(n0)− 2.

N.Q̂(F0)
φ(N)

Therefore,

lim
N→∞

P
[
C̃N (n0 + 1)− C̃N (n0) ≤ 0

]

≤ lim
N→∞

P

[
N.Q̂(F0)

φ(N)
≥ 1

2
(Φ(n0 + 1)− Φ(n0))

]
= 0 (2.64)

because N.Q̂(F0)/φ(N) = Op (1/φ(N)) = op(1). It follows now from (2.62), (2.63) and

(2.64) that limN→∞ P [ñN = n0] = 1.

In the case n0 = ∞ it follows from (2.63) that for any n ≥ 1, limN→∞ P [ñN ≥ n]

= 1, which implies that p limN→∞ ñN = ∞. Since for each n we can choose an Fn ∈

Fn(G) such that limn→∞ supv>0 |Fn (v)− F0 (v)| = 0, it follows that for this sequence

Fn, p limN→∞ supv>0

∣∣∣FñN
(v)− F0 (v)

∣∣∣ = 0. Hence

p lim
N→∞

Q
(
FñN

)
= Q (F0)

The result in Theorem 6 for the case n0 = ∞ now follows from the proof of Theorem 3,

adapted to the “plim” case. Q.E.D.
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Chapter 3

Semi-Nonparametric Simulated Integrated Conditional

Moments Estimation of First-Price Auctions

with Auction-Specific Heterogeneity

3.1 Introduction

In many repeated auctions, the objects to be auctioned off are different across

auctions. Consequently, the value distributions are different across auctions. However,

if we observe the auction-specific characteristics in the form of covariates, and the value

distributions conditional on these covariates have the same functional form, the con-

ditional bid distribution given the auction-specific covariates will be the same for all

auctions. Then the question of how to incorporate the observable characteristics into

the auction model arises. Laffont, Ossard and Vuong (1995) incorporate covariates in

the value distribution by specifying a linear regression model for the log of values with

zero-mean normal errors. Donald and Paarsch (1996) parameterize the upper bound

of the values as a function of covariates. Li (2005) specifies the value distribution as

the exponential distribution with a mean of a linear function of covariates. Guerre,

Perrigne and Vuong (2000) propose a two-stage nonparametric kernel density estimation

approach. In the first stage the bid distribution and density conditional on the covariates

are estimated nonparametrically, which are then used in inverse form to generate values
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given the actual bids and the covariates. The generated values are then used to estimate

the conditional value distribution nonparametrically.

In this chapter, we propose an alternative semi-nonparametric approach to esti-

mating first-price auction models with observed auction-specific heterogeneity and pri-

vate, symmetric and independent values conditional on the auction specific covariates.1

This approach extends the semi-nonparametric simulated integrated moments estima-

tion (SNP-SIM) method of Chapter 2 to the heterogenous first-price auction model with

observable auction-specific covariates. We consider a first-price auction model where the

log value takes the form of a median regression model conditional on covariates, with

unknown error distribution. The latter distribution is modeled semi-nonparametrically

using orthonormal Legendre polynomials, similar to the approach in Bierens (2007).

Given a parametric specification of the median function, we generate for each auction

artificial bids conditional on the auction-specific covariates. Next, we take the difference

of the empirical characteristic functions of the actual bids and the simulated bids, both

jointly with the covariates, as the moment conditions. Integrating the squared differ-

ence of these empirical characteristic functions yields an integrated conditional moment

(ICM) objective function, similar to the ICM test statistic proposed by Bierens (1982)

and Bierens and Ploberger (1997). Minimizing this ICM objective function to the median

regression parameters and the corresponding semi-nonparametric error distribution via

a sieve method then yields a consistent estimator of the conditional value distribution.

Similar to Chapter 2 we propose a data-driven sieve order selection procedure based on

an information criterion. Moreover, the minimum value of the ICM objective function

1Thus, asymmetry and risk-aversion is beyond the scope of this paper.
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can be used as a test statistic of a consistent ICM test for the validity of the model,

similar to Bierens (1990) and Bierens and Ploberger (1997).

The parametric specification of the median regression function of the log values

is a matter of convenience rather than a necessity. In Chapter 1, it has been have shown

that this median regression function is nonparametrically identified, provided that the

errors of the model are independent of the covariates. Therefore, it is possible in principle

to estimate the median regression function semi-nonparametrically as well.

Throughout the paper, we denote random variables in upper-case and non-random

variables in lower-case. The indicator function is denoted by I(·).2 Almost sure (a.s.)

convergence is denoted by Xn → X a.s.3 Similarly, convergence in probability will

be denoted by Xn →p X or p limn→∞Xn = X, and Xn →d X indicates that Xn

converges in distribution to X. In the case that Xn and X are random functions we use

the notation Xn ⇒ X to indicate that Xn (·) converges weakly to X (·) . See for example

Billingsley (1999) for the meaning of the notion of weak convergence.

3.2 Model and Data-Generating Process

3.2.1 The Equilibrium Bid Function

Given a vector X of auction-specific characteristics, let F (v|X) be the conditional

distribution of the private value V that each potential bidder has for the object to be

auctioned off, and let

v(X) = inf
F (v|X)>0

v

2I(True) = 1, I(False) = 0.
3This means that P [limn→∞Xn = X] = 1.
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be the lower bound of the support of F (v|X). We do not restrict v(X) to be positive.4

As is well-known, the equilibrium bid function of first-price sealed bid auctions where

values are independent and private, and bidders are symmetric and risk-neutral, takes

the form

β (v|X) = v − 1

F (v|X)I(X)−1

∫ v

max(p0(X),v(X))
F (y|X)I(X)−1dy (3.1)

for v > max (p0 (X) , v(X)) ,

where I(X) ≥ 2 is the number of potential bidder5 and p0(X) is the seller’s reservation

price. This is a unique symmetric Nash equilibrium for an actual bidder, i.e., a potential

bidder whose private value V is greater or equal to the reservation price p0(X). See

for example Riley and Samuelson (1981) or Krishna (2002). Note that we allow the

number of potential bidders and the reservation price to depend on the auction-specific

characteristics. We will assume that p0(X) and I(X) are observed. Since we condition

on X, we therefore do not need to bother about the functional form of p0(X) and I(X).

Note that in the binding reservation price case, p0 (X) > v(X), the equilibrium

bid function (3.1) can also be written as

β (v|X) = v − v − p0 (X)

F (v|X)I(X)−1

∫ 1

0
F (p0 (X) + u(v − p0 (X))|X)I(X)−1 du, (3.2)

v > p0 (X) .

4In the empirical auction literature it is usually assumed that the value distribution F (v)
has bounded support [v, v] , with v > 0, v < ∞. However, for our approach we only need the
condition that the expectation of the values is finite. See Chapter 1 and Chapter 2.

5Which is assumed to be known to each potential bidder as well to the econometrician.
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Only those potential bidders whose private values V are greater or equal to the reserva-

tion price p0 (X) will issue a bid B = β (V |X) . However, since the number of potential

bidders I(X) in each auction is considered to be known, we may without loss of generality

assume that the non-bidders issue a zero bid:

B =





β (V |X) if V ≥ p0 (X) ,

0 if V < p0 (X) .

Note that the number of zero bids has a Binomial (I (X) , F (p0 (X) |X)) distribution,

conditional on X.

If the reservation price is not binding, that is, p0 (X) ≤ v(X) or equivalently,

F (p0 (X) |X) = 0, the equilibrium bid function simplifies to

β (v|X) = v − 1

F (v|X)I(X)−1

∫ v

0
F (y|X)I(X)−1dy (3.3)

= v − v

F (v|X)I(X)−1

∫ 1

0
F (u.v|X)I(X)−1 du, v > v(X)

In this case each potential bidder with private value V will issue a bid B = β (V |X) .

3.2.2 Data-Generating Process

As argued before, we may without loss of generality assume that the potential

bidders with a lower value than the reservation price issue a zero bid. Thus, for each

auction ` = 1, ..., L which auction-specific covariates X` we observe I` = I (X`) bids
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(including zero bids)

B`,j =





β0(V`,j |X`) if V`,j ≥ p0 (X`)

0 if V`,j < p0 (X`)

, j = 1, ..., I`, (3.4)

where the values V`,j , j = 1, ..., I` are independent random drawings from the true value

distribution F0(v|X`), and β0(v|X`) is the corresponding true bid function. Conditional

on X` the bids B`,j , j = 1, ..., I` are independent.

We will also assume that the auctions themselves are independent. In particular,

Assumption 1. The covariate vectors X` are independently and identically distributed

as X ∈ X ⊂ Rd, where X is the support of X,

so that all the bids B`,j are independently distributed.

3.2.3 Conditional Boundedness of the Bids

It has been shown in Lemma 1 of Chapter 1, that if the value distribution is

absolutely continuous then the support of the bid distribution is bounded if and only

if the value distribution has a finite expectation. This result carries over to our case,

conditional on X:
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Lemma 1. If conditional on the vector X of the auction-specific covariates the value

distribution F0(v|X) is absolutely continuous then supv>0 β0 (v|X) < ∞ if and only if

∫∞
0 vdF0(v|X) < ∞.

Proof : Section 3.10.1.

The conditional boundedness of the actual bids is crucial for our approach, be-

cause the conditional bid distribution Λ0(b|X) has then finite conditional moments

∫∞
0 bndΛ0(b|X) of any order n. As is well-known, this implies that Λ0(b|X) is com-

pletely identified by the shape of its conditional characteristic function

ϕ0(t|X) =
∫ ∞
0

exp (i.t.b) dΛ0(b|X), i =
√−1, (3.5)

in an arbitrary neighborhood of t = 0.

3.2.4 The conditional value distribution

To incorporate auction-specific heterogeneity in the conditional value distribution

we need to put some structure on F (v|X). We will do that by assuming that

Assumption 2. There exists a function γ (X) such that

ln V = γ (X) + ε, (3.6)
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where V is a random drawing from the true conditional value distribution F0(v|X).

The random variable ε in (3.6) is independent of X, and its distribution is absolutely

continuous.

Then

F0(v|X) = P [V ≤ v|X]

= P [exp(γ(X) + ε) ≤ v|X]

= P [exp(ε) ≤ v exp(−γ(X))|X]

= Γ (v exp(−γ(X))) (3.7)

for example, where Γ is the distribution of exp(ε): Γ(x) = P [exp(ε) ≤ x].

Since without loss of generality we may add a constant to γ(X) and subtract

this constant from ε, we need to pin down the location of ε. For example, assume that

E[ε] = 0, or that the median of ε is zero, P [ε ≤ 0] = 0.5. Moreover it follows from

Chapter 1 that a necessary condition for the nonparametric identification of the first-

price auction model is that E[V |X] = exp (γ (X))E [exp (ε)] < ∞, so that we need to

require that E [exp (ε)] < ∞. However, the latter condition does not guarantee that E[ε]

is finite; it is possible that E[ε] = −∞ whereas E [exp (ε)] < ∞.6 Therefore we assume

that

6For example, let ε = min (Z1, Z2/|Z3|) , where Z1, Z2 and Z3 are independent N(0, 1)
distributed. Note that Z2/|Z3| is standard Cauchy distributed.
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Assumption 3. E [exp (ε)] < ∞, and the median of ε in (3.6) is zero.

Thus exp (γ (X)) is now the conditional median of V given X.

It follows trivially that

Lemma 2. Under Assumptions 2 and 3 the true conditional value distribution F0(v|X)

is absolutely continuous with density f0(v|X) and finite expectation
∫

vf0(v|X)dv < ∞.

Given the median function γ (X) , F0(v|X) is now determined by the distribution

function Γ(x) = P [exp(ε) ≤ x]:

F0(v|X) = Γ (v exp (−γ (X)))

Since by Assumption 2, Γ(x) is absolutely continuous, it follows that, given an

a priori chosen absolutely continuous distribution function G(x) with support (0,∞),

there exists an absolutely continuous distribution function H0(u) on [0, 1] such that

Γ(x) = H0 (G(x)) , namely H0 (u) = Γ(G−1(u)). Then

F0(v|X) = H0 (G (v. exp (−γ (X))))

For example, if we choose for G(x) the standard exponential distribution

G(x) = 1− exp(−x), x ≥ 0, (3.8)
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then

F0(v|X) = H0 (1− exp(−v exp(−γ(X)))) (3.9)

= H0(G(v|X)) (3.10)

where

G(v|X) = 1− exp(−v exp(−γ(X))). (3.11)

We may consider G(v|X) as an initial guess for F (v|X), which is right if H0(u) is

the uniform [0, 1] distribution: H0(u) = u, and if wrong we can correct that by estimating

H0(u) semi-nonparametrically, similar to the approach in Bierens (2007).

The median restriction F0 (exp (γ(X)) |X) = 1/2 can be implemented by imposing

the quantile restriction

H0 (G (1)) = 1/2. (3.12)

If the reservation price is non-binding, this quantile restriction identifies γ(X) nonpara-

metrically because then F0(v|X) is completely identified by the conditional distribution

of the bids. See Chapter 1. In the binding reservation price case F0(v|X) is only identified

on (p0(X),∞). However, if P [p0(X) < exp (γ(X))] = 1 then γ(X) is also nonparamet-

rically identified. Thus, in principle, it is possible to estimate γ(X) nonparametrically.

Nevertheless, we will use a parametric specification for γ(X), for example the linear

specification γ(X) =
(
1, X ′) θ = γ0 (X, θ) , say. Thus,
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Assumption 4. Given an a priori chosen absolutely continuous distribution function G

with density g and support (0,∞), the true conditional value distribution F0(v|X) and

its density f0(v|X) take the forms

F0(v|X) = H0 (G (v exp (−γ0 (X, θ0)))) , (3.13)

f0(v|X) = h0 (G (v exp (−γ0 (X, θ0)))) g (v exp (−γ0 (X, θ0)))

× exp (−γ0 (X, θ0)) , θ0 ∈ Θ, (3.14)

respectively, where

• γ0 (x, θ) with (x, θ) ∈ X×Θ is a parametric specification of the conditional median

γ(X) of ln(V ), satisfying P [γ(X) = γ0 (X, θ0)] = 1.

• Θ ⊂ Rp is a given compact parameter space for θ containing θ0.

• For each x ∈ X, γ0 (x, θ) is continuous on Θ, and for each θ ∈ Θ, γ0 (x, θ) is Borel

measurable on X,

• θ0 is unique: P [γ(X) = γ0 (X, θ)] < 1 for all θ = Θ\ {θ0} .

• H0 is an absolutely continuous distribution function on [0, 1] with density h0, sat-

isfying the quantile restriction (3.12).
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3.3 Simulated Integrated Conditional Moments Sieve Estimation

3.3.1 Characteristic Functions as Moment Conditions

Recall that, since by Lemmas 1-2 the bids B`,j are bounded random variables,

the actual conditional bid distribution

Λ0 (b|X`) = P
[
B`,j ≤ b|X`

]

is completely identified by the shape if its conditional characteristic function

ϕ0 (t|X`) = E


 1

I`

I∑̀

j=1
exp

(
i.t.B`,j

)
∣∣∣∣∣∣
X`




=
∫ ∞
p0(X`)

exp (i.t.β0(v|X`)) dF0 (v|X`) + F0 (p0 (X`) |X`)

in an arbitrary neighborhood of t = 0.

Let F (v|X) be a potential candidate (henceforth called a candidate conditional

value distribution) for the true conditional value distribution F0(v|X). Similar to As-

sumption 4 we assume that

Assumption 5. The candidate conditional value distributions take the form

F (v|X, H, θ) = H (G (v exp(−γ0 (X, θ))) , (H, θ) ∈ H ×Θ, (3.15)

where
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• G, γ0 (x, θ) , Θ are the same as in Assumption 4.

• H is a compact metric space of absolutely continuous distribution functions H on

[0, 1] endowed with the sup metric

‖H1 −H2‖ = sup
0≤u≤1

|H1 (u)−H2 (u)| ,

containing H0.

• Each H ∈ H satisfies the quantile restriction

H (G(1)) = 1/2. (3.16)

For each auction `, draw a random sample Ṽ`,1, ..., Ṽ`,I`
from F (v|X`, H, θ),7 and

generate simulated bids B̃`,j similar to (3.4) by:

B̃`,j =





β(Ṽ`,j |X`) if Ṽ`,j ≥ p0 (X`)

0 if Ṽ`,j < p0 (X`)

, j = 1, ..., I`. (3.17)

Then

ϕ (t|X`,H, θ) = E


 1

I`

I∑̀

j=1
exp

(
i.t.B̃`,j

)
∣∣∣∣∣∣
X`




7The method for generating these simulated values will be discussed in the next section.



101

=
∫ ∞
p0(X`)

exp (i.t.β(v|X`)) dF (v|X`,H, θ) + F (p0 (X`) |X`,H, θ)

is the conditional characteristic function of B̃`,j , which depend on (H, θ) ∈ H × Θ via

(3.15).

Lemma 3. Let Assumptions 1-5 hold. Then ‖H −H0‖ = 0 and θ = θ0 if and only if

ϕ (t|X, H, θ) = ϕ0 (t|X) a.s. for all t in an arbitrary open interval.

Proof : Section 3.10.2.

The next result is a straightforward corollary of Theorem 1 in Bierens and Ploberger

(1997):

Lemma 4. Let Φ : Rd→ Rd be a bounded one-to-one mapping. Suppose that for some

(possibly random) t ∈ R, P [ϕ (t|X, H, θ) = ϕ0 (t|X)] < 1. Then, the set
{

ς ∈ Rd : E
[
(ϕ (t|X,H, θ)− ϕ0 (t|X)) exp

(
i.ς ′Φ(X)

)]
= 0

}

has Lebesgue measure zero and is nowhere dense in Rd.

Of course, if X is already bounded we may choose for Φ the identity matrix Id.

3.3.2 Simulated Integrated Conditional Moments Estimation

Denote

Q (H, θ) =
1

µ (Ξ)

∫

Ξ
|ψ (ξ|H, θ)|2 dξ, (3.18)
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where

ψ (ξ|H, θ) = E
[
(ϕ (t|X, H, θ)− ϕ0 (t|X)) exp

(
i.ς ′Φ(X)

)]
,

ξ =
(

t

ς

)
∈ Ξ ⊂ Rd+1, µ (Ξ) =

∫

Ξ
1.dξ > 0.

with Ξ ⊂ Rd+1 a set with positive Lebesgue measure µ (Ξ) . Then Lemmas 3 and 4 imply

that

(H0, θ0) = arg min
(H,θ)∈H×Θ

Q (H, θ) is unique.

This suggests to estimate (H0, θ0) by the simulated integrated conditional moments

method:
(
Ĥ, θ̂

)
= arg min

(H,θ)∈H×Θ
Q̂ (H, θ) . (3.19)

where

Q̂ (H, θ) =
1

µ (Ξ)

∫

Ξ

∣∣∣ψ̂ (ξ|H, θ)
∣∣∣2 dξ (3.20)

with

ψ̂ (ξ|H, θ) =
1
L

L∑

`=1
(ϕ̃` (t|H, θ)− ϕ̂` (t)) exp

(
i.ς ′Φ(X`)

)
,

ϕ̂` (t) =
1
I`

I∑̀

j=1
exp

(
i.t.B`,j

)
,

ϕ̃` (t|H, θ) =
1
I`

I∑̀

j=1
exp

(
i.t.B̃`,j

)
.
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Note that if we choose

Ξ = [−κ, κ]d+1 for a κ > 0, (3.21)

the function Q̂ (H, θ) has a closed form. See Chapter 2.

Of course, the estimator (3.19) is not feasible because the metric space H is

infinite-dimensional. Therefore, the actual estimation will be done by sieve estimation,

discussed in the next subsection.

3.3.3 Sieve Estimation

The idea of sieve estimation8 is to construct an increasing sequence of subspaces

Hn of H such that the computation of the sieve estimator

(
H̃n, θ̃n

)
= arg min

(H,θ)∈Hn×Θ
Q̂ (h, θ) . (3.22)

is feasible, and with n = nL →∞ as L →∞,
(
H̃nL

, θ̃nL

)
is strongly consistent.

The latter can be shown by proving that the conditions (3.23), (3.24) and (3.25)

in the following theorem hold:

Theorem 1. Let nL be an arbitrary subsequence of L such that limL→∞ nL = ∞.

Under Assumptions 1-5 and the conditions

Q (H, θ) is continuous on H×Θ, (3.23)

8See for example Chen (2004) and the references therein.
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P

[
lim

L→∞
sup

(H,θ)∈H×Θ

∣∣∣Q̂ (H, θ)−Q (H, θ)
∣∣∣ = 0

]
= 1, (3.24)

{Hn}∞n=1 is dense in H, (3.25)

the sieve estimator
(
H̃nL

, θ̃nL

)
is strongly consistent :

sup
0≤u≤1

∣∣∣H̃nL
(u)−H0(u)

∣∣∣ → 0 a.s., θ̃nL
→ θ0 a.s.

Proof : Theorem 4 in Chapter 2.

Note that condition (3.25) means that H = ∪∞
n=1Hn, where the bar indicates the

closure. This condition holds if for each H ∈ H there exists a sequence of distribution

functions Hn ∈ Hn such that

lim
n→∞ sup

0≤u≤1
|Hn (u)−H (u)| = 0. (3.26)

3.4 Continuity of Q (H, θ)

3.4.1 Generation of Simulated Values and Bids

There are various ways to generate random drawing Ṽ`,j from a candidate value

distribution F (v|X`,H, θ). A convenient way is the well-known accept-reject method.

See, for example, Devroye (1986) and Rubinstein (1981). However, it is difficult to prove
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that then condition (3.23) holds. Following the approach in Chapter 2, we will therefore

assume that the random drawing Ṽ`,j are generated as follows.

Assumption 6. For ` = 1, ...., L, draw a random sample Ũ`,1, ..., Ũ`,I`
from the uni-

form [0, 1] distribution, and compute for each candidate value distribution F (v|X`,H, θ)

defined in Assumption 5,

Ṽ`,j = exp (γ0 (X, θ)) .G−1
(
H−1

(
Ũ`,j

))
. (3.27)

Then it follows from (3.15) that Ũ`,j = F
(
Ṽ`,j |X`,H, θ

)
, which implies that Ṽ`,j is

a random drawing from F (v|X`,H, θ). The computation of H−1
(
Ũ`,j

)
can be done

numerically, and G can be chosen such that G−1 has a closed form.

3.4.2 Continuity of the Simulated Values and Bids

The simulation procedure in Assumption 6 has the advantage that it is easier to

prove that the simulated values and bids involved are continuous in H and θ, in the

following sense:

Lemma 5. Let F (v|X, Hn, θn) and F (v|X, H, θ) be candidate value distributions con-

ditional on X such that

lim
n→∞ sup

0≤u≤1
|Hn (u)−H (u)| = 0, lim

n→∞ θn = θ. (3.28)
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For a given random drawing Ũ from the uniform [0, 1] distribution, let Ṽn and Ṽ be the

solutions of F
(
Ṽn|X,Hn, θn

)
= Ũ and F

(
Ṽ |X, H, θ

)
= Ũ , respectively. Then under

Assumptions 1-5,

P
[

lim
n→∞ Ṽn = Ṽ

]
= 1 (3.29)

Consequently, the corresponding simulated bids B̃n and B̃ satisfy

P
[

lim
n→∞ B̃n = B̃

]
= 1 (3.30)

as well.

Proof : Section 3.10.3.

The results of Lemma 5 now imply that:

Theorem 2. Under Assumptions 1-6 the conditions (3.23) and (3.24) in Theorem 1

hold.

Proof : The continuity condition (3.23) follows straightforwardly from Lemma 5,

and condition (3.24) is not too hard to verify from Lemma 5 and Theorem 1 in Chapter

2. Q.E.D.
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3.5 The Compact Metric Space H and its Sieve Spaces

3.5.1 The Space H

It has been shown by Bierens (2007) that any density function h(u) on [0, 1] can

be written as

h(u) =
(1 +

∑∞
k=1 δkρk(u))2

1 +
∑∞

k=1 δ2
k

a.e. on [0, 1] (3.31)

where
∑∞

k=1 δ2
k

< ∞ and the ρk(u)’s are orthonormal Legendre polynomials of order k.

These polynomials can be constructed recursively by the three-term recursive relation

ρk(u) =
√

2k − 1
√

2k + 1
n

(2u− 1)ρk−1(u)− (k − 1)
√

2k + 1
k
√

2k − 3
ρk−2(u)

for k ≥ 2, starting from ρ0(u) = 1, ρ1(u) =
√

3(2u− 1).

The standard consistency proof for parameter estimators of nonlinear parametric

models requires that the parameters are confined to a compact subset of a Euclidean

space. Since the distribution H in (3.18) plays the role of unknown parameter, we need

to construct a compact metric space of distributions on the unit interval. This can be

done by imposing restrictions on the parameters δk in (3.31), as follows.

Theorem 3. Let D be the space of density function h(u) on [0, 1] of the form (3.31),

where the parameters δk are restricted by the inequality

|δk| ≤ c
(
1 +

√
k ln k

)−1
, k = 1, 2, 3, .... (3.32)
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for an a priori chosen constant c > 0. If we endow D with the L1 metric

||h1 − h2||1 =
∫ 1

0
|h1(u)− h2(u)| du, (3.33)

then D is a compact metric space. Consequently, the corresponding space of absolutely

continuous distribution functions on [0, 1],

H =
{

H(u) =
∫ u

0
h(x)dx, h ∈ D

}
,

endowed with the “sup” metric sup0≤u≤1 |H1(u)−H2(u)| , is a compact metric space

as well.

Proof : Bierens (2007).

Of course, we need to assume that

Assumption 7. The constant c in (3.32) is chosen so large that h0 ∈ D, so that

H0 ∈ H.
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3.5.2 The Sieve Spaces Hn

For a density function h(u) in (3.31) and its associated parameter sequence

{δk}∞k=1, let

hn(u) = h(u|δn) =
(1 +

∑n
k=1 δkρk(u))2

1 +
∑n

k=1 δ2
k

, δn = (δ1, . . . , δn)′, (3.34)

be the n-th order truncation of h(u). The case n = 0 corresponds to the uniform density:

h0(u) = 1. Following Gallant and Nychka (1987) we will call this truncated density a

SNP density function.

It has been shown by Bierens (2007) that

lim
n→∞

∫ 1

0
|hn(u)− h(u)| du = 0. (3.35)

Therefore,

Theorem 4. Let Dn be the space of all densities of the type (3.34), subject to the same

restrictions on the δk’s as in Theorem 3. Then {Dn}∞n=1 is dense in D. Consequently,

defining

Hn =
{

Hn(u) =
∫ u

0
hn(v)du, hn ∈ Dn

}
(3.36)

it follows that {Hn}∞n=1 is dense in H.

Note that the distribution functions Hn(u) can be computed by the method pro-

posed in Bierens (2007).
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Since the density functions in Dn and distributions functions in Hn are paramet-

ric, with parameters δn = (δ1, . . . , δn)′, the computation of the sieve estimator (3.22) is

feasible. In particular, the parameter vector δ̃n for which h̃n (u) = h
(
u|δ̃n

)
, together

with θ̃n, can be computed via the simplex method of Nelder and Mead (1965), penalized

for violations of the restrictions (3.32) and the quantile restriction (3.16).

3.5.3 Strong Consistency of the Sieve Estimator

Summarizing, we have shown that

Theorem 5. Under Assumptions 1-7 all the conditions of Theorem 1 hold, so that the

sieve estimator
(
H̃nL

, θ̃nL

)
is strongly consistent.

3.6 An ICM Test of the Validity of First-Price Auction Models with

Heterogeneity

If the assumptions of symmetric independent private values with risk neutral

bidders do not hold, the bid functions (3.1) and (3.3) no longer apply to the actual bids.

The same applies if the functional form of the median function γ0 (X, θ) is misspecified.

If so,

Q̂
(
H̃nL

, θ̃nL

)
→ inf

(H,θ)∈H×Θ
Q(H, θ) > 0 a.s., (3.37)
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This suggests to use Q̂
(
H̃nL

, θ̃nL

)
as a basis for a consistent ICM test of the null

hypothesis that

H0: the actual bids come from a first-price sealed bid auctions with auction-specific

heterogeneity where values are symmetric, independent, private and bidders are risk-

neutral, and the functional specification of the median function γ0 (X, θ) is correct,

against the general alternative that

H1: the null hypothesis H0 is false.

The ICM test we will propose is based on the fact that similar to the results in

Bierens (1990) and Bierens and Ploberger (1997), the following results hold:

Theorem 6. Let Ξ ⊂ Rd+1 be compact. Under H0,

ŴL(.) =
1√
L

L∑

`=1
(ϕ̃(.|H0, θ0)− ϕ̂(.)) exp

(
i.ς ′Φ(X`)

)
⇒ W (.)

on Ξ, hence9

L.Q̂(H0, θ0) =
1

µ (Ξ)

∫

Ξ

∣∣∣ŴL(ξ)
∣∣∣2 dξ →d

1
µ (Ξ)

∫

Ξ
|W (ξ)|2 dξ,

9By the continuous mapping theorem.
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where W (ζ) is a complex-valued zero-mean Gaussian process on Ξ with covariance func-

tion Γ(ξ1, ξ2) = E
[
ŴL(ξ1)ŴL(ξ2)

]
. Under H1, (3.37) holds.

Proof : Similar to Theorem 5 in Chapter 2.

Note that the result in Theorem 6 does not imply that

L.Q̂
(
H̃nL

, θ̃nL

)
→d

1
µ (Ξ)

∫

Ξ
|W (ξ)|2 dξ.

However, if

Assumption 8. The distribution H0 is of the SNP type itself : H0 ∈
⋃∞

n=0Hn,

then for L →∞,

L.Q̂
(
H̃nL

, θ̃nL

)
≤ L.Q̂(H0, θ0)

so that upper bounds of the critical values of the test can be based on the limiting

distribution of the upper bound L.Q̂(H0, θ0). These critical values can be derived by a

bootstrap approach, similar to Chapter 2.

3.7 Determination of the Sieve Order via an Information Criterion

Under Assumption 8 there exists a smallest natural number n0 such that H0 ∈

Hn0
. Similar to Chapter 2 we propose to estimate n0 by minimizing a criterion function
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of the type

C̃L(n) = inf
(H,θ)∈Hn×Θ

Q̂(H, θ) + Φ(n).
φ(L)

L
, (3.38)

φ(L) = o(L), lim
L→∞

φ(L) = ∞.

where Φ(n) is an increasing but bounded function of n. For example, let for some

α ∈ (0, 1),

Φ(n) = 1− (n + 1)−α.

Then similar to the Hannan-Quinn and Schwarz information criteria we have:

Theorem 7. Let ñL = max
s.t. C̃L(n)≤C̃L(n−1) n and

(
H̃, θ̃

)
= arg min

(H,θ)∈FenL
×Θ

Q̂(H, θ).

Under Assumption 8, limL→∞ P [ñL = n0] = 1, hence

sup
0≤u≤1

∣∣∣H̃ (u)−H0(u)
∣∣∣ → 0 a.s. and θ̃ → θ0 a.s.

If Assumption 8 is not true then p limL→∞ ñL = ∞, hence

p lim
L→∞

sup
0≤u≤1

∣∣∣H̃ (u)−H0(u)
∣∣∣ = 0 and p lim

L→∞
θ̃ = θ0.
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Proof : Theorem 6 in Chapter 2.

3.8 An Application of SNP-SICM Estimation to the USFS Timber

Auctions

For the application, we use the USFS timber auction data for region 9. Region 9

covers Illinois, Indiana, Maine, Michigan, Minnesota, Missouri, New Hampshire, Ohio,

Pennsylvania, Vermont, West Virginia and Wisconsin.10The time horizon of the data is

1982-1993.11 The data set consists of 949 auctions and 3238 bids.12 As covariates, we

use the fraction of saw timbers and the log of acres. Depending on future products, the

timbers are mainly classified into two types of timbers: saw timbers and pulp timbers.

The latter are used to make paper while the former are made into products which

are necessary for general constructions, houses and furniture. These volume estimates

depending on future products are the main characteristics in timber auctions. One

interesting thing in USFS timber auctions is that the reservation price is known to be

non-binding. For details, see Baldwin, Marshall and Richard (1997).13

The objective function used in the application is

Q̂(H, θ) =
1

L2

L∑

`1=1

L∑

`2=1

1
I`1

I`2

I`1∑

j1=1

I`2∑

j2=1





Πd

m=1

sin
((

X∗
`1,m

−X∗
`2,m

))

(
X∗

`1,m
−X∗

`2,m

)




10The data are available at http://www.econ.yale.edu/˜pah29/timber/timber.htm.
11There were some policy changes during 1979-1981. To take it into account, we selected the

data after 1981. For more details of policy changes, see Haile (2001).
12Sales which are related to the salvage, SBA set aside and road construction are excluded.
13They raise some reasons why the reservation price in timber auctions is not binding. One

reason they quoted is that the advertised rate for the timber species is low unrealistically.
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Table 3.1. Summary Statistics
variable min max average standard deviation
bid (unit: million dollars) 0.13 36.40 3.14 4.09
fraction of saw timbers 0.00 1.00 0.60 0.38
log acres of a timber lot 0.69 8.42 5.19 1.17




sin
((

B∗
`1,j1

−B∗
`2,j2

))

(
B∗

`1,j1
−B∗

`2,j2

) −
sin

((
B∗

`1,j1
− B̃∗

`2,j2

))

(
B∗

`1,j1
− B̃∗

`2,j2

) −
sin

((
B̃∗

`1,j1
−B∗

`2,j2

))

(
B̃∗

`1,j1
−B∗

`2,j2

)

+
sin

((
B̃∗

`1,j1
− B̃∗

`2,j2

))

(
B̃∗

`1,j1
− B̃∗

`2,j2

)





 (3.39)

where X` is a covariate vector in auction ` and X`,m is an mth element in X`. Note that

bids and covariates are normalized by the sample mean and sample standard deviation.

In this application, we use candidate conditional value distributions of the form

F (v|X) = H (1− exp (−v exp (−(θ0 + θ1X1 + θ2X2)))) .

Moreover, in the information criterion we have chosen α = 1/4 and φ(L) = log10(log10 L).

3.8.1 Preliminary Estimation Results

To save computation time, we only have used data of 100 randomly chosen auc-

tions out of 949 auctions. The penalty L(H(1− exp(−1))− 0.5)2 has been added to the

objective function (3.39) to enforce the quantile restriction (3.16). Our information cri-

terion function selected sieve order ñL = 2. The estimated conditional median function
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is

γ(X, θ̃) = −1.75− 0.63X1 + 0.58X2

where X1 is the fraction of saw timbers and X2 is the log of acres of a timber lot.

The estimated SNP density and the estimated conditional density function of the value

at the sample mean of covariates X are plotted below. The value at the average of

covariates is shown to have a right skewed density.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4
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1.6

1.8

2

Fig. 3.1. Estimated SNP density ĥ2(u)
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Fig. 3.2. Estimated conditional value density f̂2(v|X) for X = average of X ′
`
s

3.8.1.1 ICM Test

Next we have conducted the ICM test. Based on estimation results
(
H̃nL

, θ̃nL

)
,

we can generate L auctions 2M times independently via random drawings of simulated

values from a distribution estimator F̃ (v|X) = H̃nL

(
1− exp

(
−v exp

(
−γ

(
X, θ̃nL

))))
.

Two consecutive auctions constitute one simulated empirical process W̃m(.), m = 1, ..., M,

where

W̃m(ξ) =
1√
L

L∑

`=1


 1

I`

I∑̀

j=1
exp

(
i.t.B̃`,j,2m−1

)
− 1

I`

I∑̀

j=1
exp

(
i.t.B̃`,j,2m

)

 exp

(
i.ς ′Φ (X`)

)
.
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By computing T̃m = 1
µ(Ξ)

∫
Ξ

∣∣∣W̃m(ξ)
∣∣∣2 dξ and sorting them increasing order,

we can determine the α × 100% bootstrap value T̃(1−α)M . By comparing our original

statistic T̂ = 1
µ(Ξ)

∫
Ξ

∣∣∣ŴL(ξ)
∣∣∣2 dξ with T̃(1−α)M , we can test the null hypothesis.

The ICM test statistic takes the value T̂ = 0.121. The 10% and 5% bootstrap

critical values are T̃0.90M = 0.133, T̃0.95M = 0.1822 respectively, where M = 100.

Therefore, the null hypothesis is not rejected at the 10% significance level.

3.8.1.2 Conditional Expectation of the Value given the Covariates

Given that the model is correct, we can compute the conditional expectation of

the value on the basis of the estimated conditional value distribution F0(v|X) as follows.

First, note that

E [V |X]

=
∫ ∞
0

vf0(v|X)dv

=
∫ ∞
0

vh0 (1− exp (−v exp (−γ0(X, θ)))) exp (−v exp (−γ0(X, θ))) exp (−γ0(X, θ)) dv

= exp (γ0(X, θ))
∫ 1

0
ln

(
1

1− u

)
h0 (u) du

The last equation can be obtained by letting u = 1−exp (−v exp (−γ0(X, θ))) . Plugging

in the estimates of γ0(X, θ) and h0(u), then yields the estimated conditional expectation:

Ê [V |X] = 1.286× exp(−1.75− 0.63X1 + 0.58X2).
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3.9 Concluding Remarks

In this chapter we have proposed a semi-nonparametric simulated integrated

conditional moments estimation method for first-price auctions with observed auction-

specific heterogeneity, and applied it to USFS timber auction data for region 9. In

particular, we use the variation of the auction-specific characteristics to infer the condi-

tional value distribution. This application is preliminary. We plan to extend this analysis

by including more regions and more detailed covariates. Moreover, we also need to derive

the asymptotic normality of median regression coefficients.
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3.10 Proofs

3.10.1 Proof of Lemma 1

It follows from (3.1) and integration by parts that for v →∞,

β0 (v|X) → max (p0 (X) , v(X))F0(max (p0 (X) , v(X)) |X)I(X)−1

+ (I (X)− 1)
∫ ∞
max(p0(X),v(X))

vF0(v|X)I(X)−2dF (v|X)

The integral involved is bounded from above by
∫∞
0 vdF0(v|X) and bounded from below

by
(∫∞

0 vdF0(v|X)− ∫ M
0 ydF0(y|X)

)
.F0(M |X)I(X)−2, for any M > max (p0 (X) , v(X)) .

Q.E.D.

3.10.2 Proof of Lemma 3

First, let the arbitrary open interval involved be (−κ, κ) for some κ > 0. Since

conditional on X`, ϕ0 (t|X`) is the characteristic function of a bounded random variable

B`,1 we can write

ϕ0 (t|X`) = E
[
exp

(
i.t.B`,1

)
|X`

]
=

∞∑

m=0

imtm

m!
E

[
Bm

`,1|X`

]
.

Recall that ϕ (t|X`,H, θ) is the conditional characteristic function of the simulated bid

B̃`,1. Then the equality ϕ (t|X`, h, θ) = ϕ0 (t|X`) a.s. for all t ∈ (−κ, κ) implies that

∂mϕ (t|X`,H, θ) / (∂t)m
∣∣
t=0 = ∂mϕ0 (t|X`) (∂t)m

∣∣
t=0

= imE
[
Bm

`,1|X`

]
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a.s. for all m ≥ 0, which in its turn implies that E
[
B̃m

`,1|X`

]
= E

[
Bm

`,1|X`

]
a.s. for all

m ≥ 0, so that

ϕ0 (t|X`) = ϕ (t|X`, H, θ) =
∞∑

m=0

imtm

m!
E

[
Bm

`,1|X`

]

for all t ∈ R.

Next, suppose that ϕ (t|X`,H, θ) = ϕ0 (t|X`) a.s. for all t ∈ (t∗ − κ, t∗ + κ) ,

where t∗ ∈ R and κ > 0 are arbitrary. Then by the same argument as for the case

t∗ = 0,

ϕ0 (t|X`) = ϕ (t|X`, H, θ) =
∞∑

m=0

im (t− t∗)m
m!

E
[
exp

(
i.t∗B`,1

)
Bm

`,1|X`

]

for all t ∈ R. The result involved now follows straightforwardly from the well-known fact

that distributions are equal if and only if their characteristic functions are equal. Q.E.D.

3.10.3 Proof of Lemma 5

It follows from (3.27) that

Ṽn = − exp (γ0 (X, θn)) .G−1
(
H−1

n

(
Ũ

))
,

Ṽ = − exp (γ0 (X, θ)) .G−1
(
H−1

(
Ũ

))

Let Un = H−1
n

(
Ũ

)
and U = H−1

(
Ũ

)
,so that

Hn (Un) = H(U) = Ũ . (3.40)
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Since by (3.28),

|Hn (Un)−H(Un)| → 0 a.s.

it follows from (3.40) that H(Un) → H(U) a.s., which by the continuity of H(u) implies

that Un → U a.s., hence

G−1
(
H−1

n

(
Ũ

))
→ G−1

(
H−1

(
Ũ

))
a.s. (3.41)

Moreover, it follows trivially from (3.28) and the continuity of γ0 (X, θ) that

exp (γ0 (X, θn)) → exp (γ0 (X, θ)) a.s. (3.42)

The result (3.29) now follows from (3.41) and (3.42).

It follows from (3.2) and (3.3) that the simulated bids B̃n and B̃ can be generated

by, respectively,

B̃n = I
(
Ũ > F (p0(X)|X, Hn, θn)

)
.
[
Ṽn −

(
Ṽn − p0(X)

)
Ũ1−I(X)

×
∫ 1

0
F

(
p0(X) + u

(
Ṽn − p0(X)

)
|X, Hn, θn

)I(X)−1
du

]

B̃ = I
(
Ũ > F (p0(X)|X, H, θ)

) [
Ṽ −

(
Ṽ − p0(X)

)
Ũ1−I(X) .

×
∫ 1

0
F

(
p0(X) + u

(
Ṽ − p0(X)

)
|X, H, θ

)I(X)−1
du

]

in the binding reservation price case, and by

B̃n = Ṽn.

(
1− Ũ1−I

∫ 1

0
F

(
u.Ṽn|X, Hn, θn

)I(X)−1
du

)
,
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B̃ = Ṽ .

(
1− Ũ1−I

∫ 1

0
F

(
u.Ṽ |X, H, θ

)I(X)−1
du

)
,

in the non-binding case. Moreover, it follows straightforwardly from (3.28) and (3.29)

that

F (p0(X)|X,Hn, θn) → F (p0(X)|X, H, θ) a.s.

and pointwise in u ∈ [0, 1],

F
(
p0(X) + u

(
Ṽn − p0(X)

)
|X, Hn, θn

)

→ F
(
p0(X) + u

(
Ṽ − p0(X)

)
|X,H, θ

)
a.s.

so that (3.30) follows from the bounded convergence theorem. Q.E.D.
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