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Abstract
Deep learning and artificial intelligence methods have revolutionized computational analyt-
ics by helping solve complex problems in many application domains, including healthcare
and medicine. Deep learning methods comprise of multiple linear or nonlinear layers,
enabling them to learn sophisticated features and subtle patterns from high-dimensional
input data. However, typical deep neural network methods are often considered black-box
models as they do not provide adequate insights into interpreting their predictions. This
has posed challenges to the successful implementation of deep learning models in practice,
especially in healthcare, where transparency and interpretability of models are critical to
their application in practice.

This dissertation uses natural language processing, audio processing, and computer
vision techniques along with deep learning to develop accurate and interpretable methods
to detect chronic and infectious diseases. Three specific research topics are considered.
The first research topic focuses on detecting the onset of Alzheimer’s disease using
transcript of interviews of individuals who were asked to describe a picture. We developed
a hierarchical recurrent neural network (RNN) model for natural language processing using
a novel attention over self-attention mechanism to model the temporal dependencies of
longitudinal data. We demonstrate the interpretability of the model with the importance
score of words, sentences, and transcripts extracted from the three-level neural network
model.

The second problem we address seeks to eliminate the need for transcribing interviews
by developing an end-to-end interpretable deep learning model for detecting Alzheimer’s
disease using raw audio interviews of patients. Our methods using both the text and
the audio models achieve new benchmark accuracy performances compared to previous
works. These artificial intelligence models can help diagnose Alzheimer’s disease in a
non-invasive and affordable manner, improve patient outcomes, and contain cost.

Third, we focused on detecting the Coronavirus Disease 2019 (COVID-19) from
chest X-ray and Computed Tomography images. A novel hierarchical attention neural
network model is developed to classify chest radiography images as belonging to a person
with either COVID-19, other infections, or no pneumonia. The model’s hierarchical
structure captures the dependency of features and improves model performance while the
attention mechanism makes the model interpretable and transparent. This model can be
used in conjunction with or instead of laboratory testing (e.g., where laboratory testing
is unavailable) to detect and isolate individuals with COVID-19 and prevent onward
transmission to the general population and healthcare workers.

This dissertation effectively illustrates the use of deep learning methods in textual,
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audio and visual data in medical informatics. Future work in this domain needs to focus
on building integrated techniques and platforms to address the integration of the three
modalities in specific problem scenarios.
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Chapter 1 |
Introduction

The emergence of artificial intelligence (AI) and specifically deep neural networks (deep
learning [4]) has become a powerful tool for solving complex problems in computational
analytics. Deep learning typically uses a large number of parameters that perform very
well when trained on a large amount of data. With advances in hardware resources such
as graphics processing unit (GPU), deep learning has performed better than traditional
machine learning methods [5–8].

Deep neural networks comprise of multiple layers of non-linear transformations, which
ultimately can learn complex features from big and high-dimensional input data. However,
the high-level abstraction of features makes it hard to interpret the deep neural networks.
These complex models are mostly considered as black-box models. In order to obtain both
patients’ and clinicians’ trust and ensure patient safety, we need interpretable AI models
especially in the domain of healthcare. Therefore, the impressive predictive performance
of deep learning models cannot compensate for their black-box nature for applying in the
healthcare domain. The best predictive model is the one that is interpretable without
sacrificing its prediction performance to be actively implemented in everyday clinical
practice.

Motivated by the success of deep neural network language models in modeling
acoustic signals [9], we propose interpretable models to model clinical natural texts.
Unlike traditional machine learning approaches, in which feature engineering is required
as a preliminary step, deep learning methods learn useful features directly from the
data without any feature engineering interventions. Additionally they are more accurate
in comparison to traditional machine learning approaches in computer vision, natural
language processing (NLP), and acoustic modeling [5–8].

We propose multiple interpretable deep learning models to detect Alzheimer’s disease
as a chronic disease from patients’ interview transcripts and their corresponding audio
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recordings, and COVID-19 as an infectious disease from patients’ chest X-ray images.
In other words, we develop specific deep learning models to solve healthcare-related
problems using natural language processing, audio processing, and image processing. We
discuss the research problems addressed in this dissertation below.

Alzheimer’s disease: Alzheimer’s disease (AD) has been known in the past century
as the primary cause of dementia, consequently leading to death [10]. Research is still
ongoing in AD prevention, progression, and treatment. Early detection of Alzheimer’s is
vital to preventing, controlling, and stopping the disease. The symptoms of AD differ
from person to person. In its early stages, memory-related neurons are damaged, which
causes mild memory loss, specifically in remembering recently learned information for
most affected individuals. As the disease progresses, the symptoms gradually worsen
such that patients lose their ability to carry on daily-life activities and conversations. In
the final stage of AD, patients are more vulnerable to infections due to loss of mobility.
Lung infection (pneumonia) is the leading cause of death for people with Alzheimer’s
disease.

Alzheimer’s disease is the sixth leading cause of death in the United States. Depending
on the patient’s age and other comorbidities, the survival rate varies from 4 to 20 years
after the early detection of symptoms. Alzheimer’s is typically diagnosed through
extensive tests and cognitive tools [11–14]. The degeneration of brain cells can be
reflected in a variety of ways in brain scans. However, diagnosis of Alzheimer’s disease
based only on these scans can lead to mistakes (both false positives and false negatives)
because it is often not straightforward to distinguish normal age-related changes in
the brain from the abnormal AD-related ones. Therefore, more accurate and reliable
diagnosis methods are critical to improving patient outcomes.

Manual diagnosis of Alzheimer’s disease is not only error-prone but is also time-
consuming. Conducting diagnostic tests and neuropsychological examinations for patients
and interpretation of the results by physicians may take several days or weeks [15]. The
time required to diagnose AD manually is highly dependent on the physician’s experience
and knowledge [16–18]. Automatic mathematical tools and algorithms that can detect
AD efficiently and accurately are, therefore, precious.

We propose deep learning-based predictive models to diagnose AD in its early stages
using patients’ speech transcriptions. Previous works on automatic AD detection mainly
focused on extracting linguistic features from verbal utterances of healthy and AD
subjects. Natural language processing (NLP) techniques are used primarily to extract
lexical features from text and combined with machine learning algorithms to identify
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probable AD subjects from healthy individuals [19].
In this dissertation, we combine NLP and various deep learning models to detect the

onset of Alzheimer’s disease based on the text in longitudinal patient interviews, and
audio data without the need for invasive or expensive diagnostic methods. We directly
apply a well-known deep learning algorithm, the long short term memory networks
(LSTM) [20], to effectively capture both long and short term dependencies of words
within interview transcripts. We first present six deep neural models based on the
long short term memory (LSTM) method, which is designed for long sequences. An
important advantage of deep learning is that we do not need to design features very
carefully; deep learning algorithms can learn representations, which will then be used for
the classification task. Unlike the previous works, we do not need the initial phase of
careful feature engineering, which includes finding appropriate lexical features. Instead,
we directly feed our model with speech transcriptions. The deep learning models learn
representations of the features on their own. The first two models we present are LSTM
and bidirectional LSTM (BLSTM). We incorporate an attention layer to both LSTM
and BLSTM models to develop new learning methods. Then, we apply our methods
on the same dataset as the study by Orimaye, et al., [19] to classify, and discuss the
similarities and differences between our results.

To compare our results with the ground truth models, we also implement traditional
machine-learning algorithms on the same dataset, including support vector machine
(SVM) and random forest (RF), with the same evaluation method. We then try to
explain the prediction of these models along with deep neural-based models with the
help of local interpretable model-agnostic explanations (LIME) [21].

Due to the blackbox nature of LSTM, it was not possible to gain insights within each
transcript to see which words or phrases are the most indicators of memory loss. Next,
we proposed novel interpretable hierarchical recurrent neural network (RNN) models and
combined it with natural language processing (NLP) to detect the onset of Alzheimer’s
disease (AD) based on longitudinal patient interview data. The goal is to make the black
box neural network model interpretable using an attention mechanism. We evaluate the
attention scores our model gives to transcripts, sentences, and words to shed light on
how the neural network model made predictions. This hierarchical model is described in
detail in Chapter2.

Although we developed a novel interpretable model to detect the onset of AD using
patients’ transcripts, the input data needs an expert who can transcribe the audio
recordings to the specific text format, which can encode the patients’ disfluencies during
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their speech. The transcribing task is time-consuming and labor-expensive. Motivated
by this limitation, for the next project, we aimed to develop an interpretable model for
patients’ audio interviews. The model can be fed directly with raw audio recordings. It
will indicate to clinicians not only whether the patient has Alzheimer’s disease but also
which parts of their audio interview have the signs of memory loss. In this project, we
first implemented the current end-to-end audio models on our Alzheimer’s audio dataset.
Then, we developed a three level hierarchical model with the help of transfer learning
and attention mechanism to make the audio model interpretable. The performance of
our audio model beats works on the same Alzheimer’s audio dataset. In addition, the
model is successful to capture patients language disfluencies which are primary indicator
of cognitive impairment due to Alzheimer’s disease. This interpretable audio model is
described in detail in Chapter 3.

COVID-19: The Coronavirus (SARS-CoV-2) which has led to COVID-19 pandemic
in late 2019 motivated us to develop an interpretable model to detect COVID-19 from
patients’ X-ray images and CT scans. The best way to control transmissions and flatten
the curve is to test as many people as possible to prevent further transmission of the
virus by quickly identifying and isolating the infected individuals. However, since the
current PCR testing kits are limited and have a low sensitivity of 70%, we aimed to
develop a computational method that can detect not only COVID-19 patients from other
infections and normal individuals but also it can recognize the specific regions of the
lung that are affected by the virus. The proposed interpretable model is described in
more detail in Chapter 4.

In summary, in an effort to develop interpretable models in computational healthcare,
we have covered all three main types of input data which are text, audio and image and
proposed interpretable models which have demonstrated both good predictive performance
and interpretibility capability (Figure 1.1). This is extremely valuable in healthcare
where the transparency of predictive models can play an important role in real world
clinical application. The conclusions and future works of this dissertation are discussed
in more detail in Chapter 5.

We have divided our research problem into four sub-problems. The first sub-problem
is to develop sequence-based deep learning models to predict the onset of Alzheimer’s
disease based on the most recent visit of patients. Developing an interpretable deep
neural network to consider the longitudinal Alzheimer’s data is the second sub-problem.
The third sub-problem discusses developing an end-to-end deep audio model that takes
patients’ raw audio speech and tells which parts of audio have memory loss issues. The
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Figure 1.1: Interpretability of predictive models in all three types of medical data

fourth sub-problem focuses on developing an interpretable model based on deep neural
networks to detect COVID-19 using patients’ chest X-ray images and CT scans.

1.1 Specific Research Questions and Objectives
Deep learning-based models in natural language processing, signal processing, and
computer vision have outperformed the traditional machine learning algorithms combined
with feature engineering. This dissertation seeks to apply deep learning-based techniques
to real-world health data to detect chronic and infectious diseases more efficiently.

This dissertation focuses on the following research questions in chronic disease man-
agement:

• Which type of automated methods will be useful to to detect the onset of Alzheimer’s
disease based on the patient transcripts?

• How to design an interpretable learning structure to model the temporal dependen-
cies of longitudinal patient transcripts?

• How to design an interpretable model to detect the onset of Alzheimer’s disease
using only the audio recordings as inputs?

• How to develop an interpretable model to detect COVID-19 using patients’ chest
X-ray images and CT scans as inputs?
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To answer these research questions, we have defined the following project objectives:
Objective 1: To explore different deep learning techniques and how they can be applied

to textual data. The goal is to explore the state-of-the-art deep learning techniques
and move away from the traditional machine learning algorithms that require feature
engineering.

Objective 2: To propose and justify a hierarchical deep neural network structure for
longitudinal transcripts of Alzheimer’s disease to capture the hierarchical dependencies
between words, sentences, and longitudinal interview transcripts. To the best of our
knowledge, we are the first to implement an attention mechanism to determine the
memory loss indicators in words, sentences, and transcripts.

Objective 3: To construct an interpretable hierarchical model using the patients’ audio
interviews which can detect the signs of memory loss using patients’ raw speech.

Objective 4: To develop a new predictive model to detect the COVID-19 from chest
X-ray images which can indicates the subtle signs of infected parts of the patients’ lung.

This dissertation’s overarching goal is to develop interpretable predictive models on
three main medical data modalities, including text, audio, and image, to detect chronic
and infectious diseases.

1.2 Contributions
Below, We explain the main contributions of this dissertation.

• Achieving a new benchmark accuracy score to predict the onset of Alzheimer’s
disease based on textual data;

• Identifying main indicators of memory loss in patients’ textual data at both
sentence-level and word-level;

• Achieving a new benchmark accuracy score to detect Alzheimer’s disease using the
raw audio interviews of patients;

• Identifying the indicators of memory loss in patients audio speech by developing a
novel hierarchical deep audio model; and

• Developing a hierarchical model to detect COVID-19, which not only achieves
a new benchmark accuracy score but also can capture the affected areas of the
patient’s lung very well.
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In summary, we develop interpretable models in this dissertation. These models not
only describe the relationships between their input and output but also the knowledge
extracted from our models aligns very well with the physician’s medical knowledge. In
the following chapters, we explain these interpretable models and their applicability in
the medical domain.

This dissertation is organized as follows. Chapter 2 describes the predictive and
interpretable models to detect the onset of Alzheimer’s disease from patients’ textual
interview data. Chapter 3 explains how we designed the mechanism of our interpretable
audio model to detect Alzheimer’s disease using patitents’ audio interview data. We also
developed an interpretable model on medical images to detect COVID-19 patients from
other viral/bacterial infections and normal subjects. This model is illustrated thoroughly
in chapter 4. Finally, we wrapped up the results of this dissertation with conclusion and
future works in Chapter 5.
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Chapter 2 |
Detection of Alzheimer’s Using
Natural Language Processing

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder in which cognitive
abilities (including memory and language) and executive function deteriorate gradually. In
the past century, AD has been known as the primary cause of dementia [22], consequently
leading to death [10]. Alzheimer’s disease is the sixth leading cause of death in the
United States. James et al. [23] found that AD may cause 500,000 annual deaths in the
United States, with the mortality rate five or six times higher than official estimates.
AD is typically diagnosed through extensive tests and cognitive tools [11]. To diagnose
AD, imaging methods, such as positron emission tomography (PET) scan and magnetic
resonance imaging (MRI), and invasive methods, such as cerebrospinal fluid analysis, are
employed. The degeneration of brain cells can be reflected in a variety of ways in brain
scans. However, a diagnosis of AD based only on these scans can lead to mistakes (both
false positives and false negatives) because we cannot often easily distinguish between
normal age-related changes in the brain and abnormal AD-related ones. We need for
more accurate and reliable diagnostic methods to improve patient outcomes [24].

Attempts to develop neuropsychological tests using a series of cognitive tests containing
a set of questions and images have been made to detect the early signs of AD with various
accuracy levels [25]. These attempts produced screening tools, such as the Mini-Mental
State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). They
consist of questions and cognitive examinations to assess patients’ cognitive abilities.
However, the quality of the assessment depends on the physicians’ experience and ability
to distinguish between different categories of the disease [26]. Sometimes physicians
need to combine MMSE with other cognitive tests, which makes it cumbersome and
complicated to diagnose AD [27]. The National Institute on Aging and the Alzheimer’s
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Association have called for better approaches to diagnose AD in a non-invasive way [28].
It is estimated that early detection of Alzheimer’s disease, even partially, can result
in a significant $7 trillion cost saving compared to the status quo [29]. Automatic
mathematical tools and algorithms that can detect AD early and accurately are therefore
extremely valuable.

Speech is a valuable source of clinical information, which has been proven to be a
reliable indicator of cognitive status [30]. The nerve cells that control cognitive ability and
speech processing gradually deteriorate in individuals with AD [31]. Thus, the linguistic
deficit captured by verbal utterances can be an indicator of Alzheimer’s disease [32].
In recent years, artificial intelligence (AI) has been widely used to build prediction
models with relatively high accuracy by capturing non-linear and complex patterns in the
data [33–35]. Lately, AI methods have been proposed to detect AD by combining signal
processing, machine learning, and natural language processing (NLP), which employed
either recorded narrative speech [36], or recorded scene descriptions [32]. This fact
motivated us to implement deep learning techniques to improve text-based AD diagnosis.

2.1 Related Works
Previous works to detect the early onset of AD using language as their input data are
mainly dependent on extracting linguistic features from transcripts [19]. The main
problems with feature-based methods are not only that the quality of prediction is
highly dependent on the quality of features but also some intricate features may not
recognizable by existing methods [4]. In addition, language evolution may also affect
linguistic features’ extraction methods. Recently, deep learning models has beaten other
feature-based machine learning methods in speech recognition [8, 37, 38] and achieved
promising results for various tasks in natural language processing including sentiment
analysis [39] and natural language understanding [40].

Several studies used lexical features to detect AD from Dementiabank dataset [19,41].
Wankerl et al. [42] proposed statistical approaches toward detecting AD using n-gram
models. They evaluated their approach on DementiaBank dataset and achieved an
accuracy 77.1%. Orimaye et al. proposed deep language models using decomposed
higher-order n-grams N dimensional vectors as discrete inputs on the Dementiabank
dataset [43]. Their experimental results show that deep neural networks sufficiently learn
linguistic markers with reasonable accuracy on this small AD clinical dataset (area under
ROC curve for their best model is 83%). These models, however, are not interpretable,
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and do not provide insight into linguistic deficits that can indicate the onset of AD.
Clinicians are hesitant to incorporate non-interpretable models into clinical practice.
Karlekar et al. applied three neural models based on convolutional neural network
(CNNs), long short term memory recurrent neural networks (LSTM-RNNs), and their
combination to distinguish patients with AD from control patients based on documents
in Dementiabank [44]. Their best model without feature engineering was the combined
CNN-RNN model, which achieved an accuracy of 84.9%. More recently, Chen et al. [45]
proposed a network based on attention mechanism by combining CNN and GRU modules
to capture linguistic deficits of AD patients from DementiaBank dataset. They the
cross-validation accuracy of 97% in detecting AD subjects from control subjects. Fritch
et al. [46] improved the statistical approach proposed by Wankerl et al. [42] by proposing
a neural language model based on LSTM cells and evaluating perplexity of their model.
They obtained an accuarcy of 85.6% for the binary classification involved in identifying
AD individuals from normal ones. Pan et al. [47] proposed a hierarchical attention-
based neural0-network models that can capture the dependencies of the components
within transcriptions. They used automatic speech recognition (ASR) to automatically
transcribe and segment data. They achieved an F-score of 84.43% on manual and
automatic transcripts from the DementiaBank dataset. Chien et al. [48] proposed a
convolutional recurrent neural network model (CRNN) and obtained a performance
of 83.8% in terms of the area under the receiver operating characteristic curve. Kong
et al. [49] applied hierarchical attention (HAN) network to the DementiaBank dataset
without extra feature engineering. Combining with demographic feature (age),they
achieved an accuracy of 86.9%.

In this dissertation, we develop a novel three-level attention-based RNN model
that does not require feature-engineering, is interpretable, and achieves an outstanding
accuracy.

2.1.1 Main Contributions

The contributions of this work are four folds: (1) We developed a new three-level
hierarchical structure to capture the hierarchical dependencies between words, sentences,
and longitudinal interview transcripts to detect the onset of Alzheimer’s disease; (2) To
the best of our knowledge, we are the first to develop an attention over self-attention
(AoS) mechanism that can prevent information loss by considering the relation of words,
sentences, and transcripts within the sequence, and to demonstrate its implementation to
confront a pressing healthcare problem; (3) Our model is interpretable, which addresses
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a common shortcoming of black-box neural network models and provides valuable
insight into language deficit that heralds the onset of Alzheimer’s disease; (4) Numerical
experiments on the DementiaBank dataset with data augmentation indicate that our
novel AoS model achieves a high accuracy (mean cross-validation accuracy=98%) and
outperforms other models of similar nature (that do not need feature engineering)
developed on the same dataset.

2.2 Supervised Text-based Sequence Classification
Sequence classification is the task of assigning labels to the sequence of inputs over space
or time. The challenging part of this task is that the text inputs vary in length and
sequence dependencies exist between text symbols. Recently, deep learning approaches
have been leveraged for text-based sequence classification. Convolutional neural networks
(CNN) have been applied for semantic modeling of sentences [50,51]. Recurrent neural
networks (RNN) have been widely used to model sequences. Since documents are
sequences of sentences and sentences are the sequence of words, RNN architectures can
be employed to solve sentiment classification tasks [52, 53].

The main drawback of RNN is the vanishing/exploding gradient problem while
working with long sequences, which means that the gradients can get very small or very
large [54]. Long short term memory networks (LSTM) are developed by modifying the
RNN network architecture to overcome the RNN limitations. LSTM models have been
proven to be effective in capturing long-term dependencies [20].

These neural network language models have the following in common [34]:

• The models use a dictionary for word encodings as their inputs;

• The softmax activation function is applied to have normalized probability values in
the output vector; and

• Cross entropy is used as the loss function for training.

In this work, we demonstrate that LSTM-based models can accurately distinguish
probable AD subjects from healthy individuals.
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2.3 Word Embeddings
Word embedding is a method in natural language processing that maps words and phrases
from the set of vocabulary to vectors of real numbers. This method captures the context
of words such that the words with similar or close semantic meanings have close vector
representations. Word embedding converts words to the features so they can be fed to
our neural networks.

2.3.1 One-hot-encoding

The most straightforward method to convert a word to a vector is called one-hot-encoding.
Let N be the total number of unique words in our training dataset. We establish an order
from zero to N for all words. The vector for the i-th word is defined as all zeros except
for a 1 in the position i. Although this method is simple and easy to use, its performance
is highly dependent on the size of the encoded vector. For instance, if we have 1 million
words in our vocabulary, the dimension of its corresponding one-hot-encoded vector will
be 1 million. However, his method does not capture the semantics of words as accurately
as other recent methods. In 2013, the word2vec method was proposed for efficient word
representation in vector space and changed the text vectorization field [37].

2.3.2 Word2vec

Word2vec is a technique to produce fixed-size vectors to represent words using surrounding
words of that word such that the words that have close semantic meaning have close
vectors. The idea of Word2vec comes from the intuition of how humans can understand
the meaning of words by their adjacent words. For instance, consider the following
sentence:

"I like eating X."
We may not know what X is, but we know that X is something that we can eat and

is likely delicious. The human brain comes to this conclusion using the nearby words of
"like" and "eating." Word2vec can generate word embeddings with two methods using
neural networks: Skip Gram and Common Bag Of Words (CBOW).

CBOW model: The continuous bag-of-word model takes the word’s context and
predicts the word corresponding to the context. In our previous example, consider the
input word "eating"; the goal is to predict "X." By feeding a neural network with the
one-hot-encoding of the input word, we can learn the representation of the target word.
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Figure 2.1 demonstrates the network structure for CBOW Model [55].

Figure 2.1: The continuous bag-of-word model

In this figure, the input is a one-hot-encoded vector of size N , and the output is the
result of the hidden layer of size V and the softmax activation function. Given enough
data, Word2vec can learn the meaning of words based on past appearances.

Skip-gram model: The Skip-gram model architecture is designed to predict the
context words (surrounding words) given the target word (center word). In fact, Skip-
gram is the reverse function of the CBOW model [55] (Figure 2.2). There is one hidden
layer of size V which computes the dot product between the weight matrix and the
input vector of size N . The output layer computed the dot product between the hidden
layer and the output layer. Then, the Softmax function will be applied to obtain the
probability of the words of the target context.

2.3.3 GloVe

GloVe (Global Vectors) [56] is another word embedding method designed based on the
matrix factorization technique [57]. GloVe creates a matrix that counts the frequency of
co-occurrence of words within some contexts. Then, the feature embedding of words is
obtained by converting the initial matrix of (words x context) to a lower-dimensional
matrix using the factorization method [56]. The resulting word representations perform
very well on word analogy tasks [58].
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Figure 2.2: The Skip-gram model

2.3.4 ELMO

ELMO (Embeddings from Language Models) [59] is a deep contextualized word repre-
sentations, which is different from traditional word embedding representations such as
Word2vec and GloVe. Depending on the context containing the word, ELMO generates
different word embedding vectors. The word representations are transferred from the
internal states of a pre-trained deep bidirectional language model (biLM). ELMO has
proved its performance in various NLP tasks, including sentiment analysis [59].

2.3.5 Transformers

Transformer models including BERT [60] and GPT-2 [61] are the most recent word em-
bedding approaches. The main advantage of transformers is that they are not sequentially
designed like ELMO. Transformer models are built using the attention mechanism [62],
which enables them to process all the words of a sequence in parallel. Vaswani et al. [62]
explained the internal mechanism of transformers using the attention mechanism.
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2.4 Prediction models to detect Alzheimer’s disease

2.4.1 Dataset

To evaluate our models, we use the DementiaBank clinical dataset. Data were collected
longitudinally by the University of Pittsburgh School of Medicine for the study of com-
munication in dementia. The dataset contains transcripts of the participants’ interviews
with possible Alzheimer’s disease (AD) and other related dementia. Participants were
asked to describe everything happening in a Cookie-Theft picture (Figure 2.3). The
descriptions were then used to detect language disorders due to AD. The audios of
participants’ interviews were transcribed to Codes for the Human Analysis of Transcripts
(CHAT) format. The CHAT transcription format is a tool that helps automatically
transcribe audio files.

Figure 2.3: Sample interview and the Boston Cookie-theft picture (from the Dementia-
Bank dataset [1]), designed to elicit language deficit that contributes to the diagnosis of
AD.

Table 2.1 presents some CHAT disfluency transcription codes from the CHILDES
manual that can be helpful for our analysis [63]. The DementiaBank dataset contains 99
healthy subjects and 169 probable AD subjects. In this initial phase, we include the 99
healthy subjects as well as the first 99 AD subjects so that we have a balanced dataset.
In order to directly compare our results with Orimaye et al. [19], we choose the dataset
for this experiment in the same way as Orimaye et al. did. So, we only use the last visit
transcripts of both healthy and probable AD subjects.

15



Table 2.1: CHAT disfluency codes

Disfluency Code
whole word repetition follow word with [/]
multiple whole word repetition [x ‘number of repetitions’]
phrase repetition <> [/]
word revision [//]
phrase revision <> [//]
pause (.) or (..) or (...)
filled pause &-
unintelligible words xxx

2.4.2 Data Pre-processing

We removed the interviewer questions as well as the initial information of each text
document. We trained our models on the interviewees’ textual description of the Cookie-
Theft picture.

2.4.3 Classification Models

2.4.3.1 Deep Learning Models

Recurrent neural networks (RNN): Traditional deep neural networks cannot capture
the dependencies of sequential data, e.g., words of a sentence or scenes of a movie [].
Derived from deep neural networks, recurrent neural networks (RNN) [] are designed
in a recurring fashion, in which the hidden states have all the previous information of
the input sequences. This feature makes them suitable for many applications, such as
natural language processing. The basic structure of an RNN is shown in Figure 2.4.

Figure 2.4: The unfolded structure of RNN

The unfolded RNN structure shows the sequential nature of the network. The length
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of the network depends only on the length of the sequence. For instance, there will be
ten states for a sentence with ten words. The basic functions that define figure 2.4 are as
follows:

ht = σ(Whxxt +Whhht−1 + bh) (2.1)

ot = Wohht + bo (2.2)

In the above equations, xt is the input at time step t. ht is the hidden state at time
step t. σ is a non-linear function. Whx is the matrix of weights between the input and
hidden layer, and Whh is the matrix of weights between adjacent hidden layers. The
vectors bh and bo are biases of the network. The final output (label) of the network is
computed as:

yt = softmax(ot) (2.3)

Depending on the task, we may get the output at each time step from the network
(sequence to sequence) or the final label (sentiment analysis).

Unlike the traditional neural networks that compute different parameters for each
hidden layer, RNN shares the parameters of U , W and V across all time steps. This
feature significantly reduces the number of parameters compared to a traditional neural
network.

Learning long-range dependencies across many time steps can lead to the vanishing
or exploding gradients [33,54]. Depending on whether the weight matrix between hidden
statesWhh < 1 orWhh > 1 and the type of activation function (logistic, sigmoid, or ReLU)
the vanishing or exploding of gradients may occur. Pascanu, Mikolov, and Bengio [64]
provide a more detailed mathematical explanation about the specific conditions under
which this problem happens in an RNN.

Long Short Term Memory networks (LSTMs): LSTMs overcome the issue of
vanishing gradients in recurrent neural networks [54]. In this type of network, the hidden
nodes in an RNN are replaced with memory cells to capture long term dependencies
of a sequence [54]. The term "Long-Short-Term-Memory" comes from the idea that
LSTMs can capture both long-term memory (by learning weights similar to RNNs) and
short-term memory (using its novel internal activation gates).

The internal structure of an LSTM consists of the input gate it, forget gate ft, output
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gate ot, and cell activation vectors ct. These gates are computed as the functions of the
input xt and previous hidden state ht−1 in the following equations:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2.4)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2.5)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (2.6)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (2.7)

ht = ot tanh(ct) (2.8)

where, σ is the logistic sigmoid function.
The recurrent layer consists of the input, output, and forget gates, which play critical

roles in remembering or forgetting information within the LSTM network.
Bidirectional RNN: In addition to LSTM, which only keeps track of past informa-

tion, Bidirectional RNN (BRNN) [65] is one of the most widely used RNN derivatives to
model sequences. The BRNN structure is constructed based on two layers of hidden nodes
such that both are connected to input and output. The first hidden layer has recurrent
connections to the past time while the second layer captures the future dependencies.
Figure 2.5 illustrates the structure of a BRNN in detail.

Figure 2.5: The Bidirectional RNN (BRNN) structure

Given a fixed sequence length, the structure of a BRNN is formulated as follows:

hf
(t) = σ(Whf xx

(t) +Whf hf
hf

(t−1) + bhf
) (2.9)
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hb
(t) = σ(Whbxx

(t) +Whbhb
hb

(t+1) + bhb
) (2.10)

y(t) = softmax(Wyhf
hf

(t) +Wyhb
hb

(t) + by) (2.11)

where, hf
(t) and hb

(t) are parameters for hidden layers of forward and backward networks,
respectively.

Attention Bidirectional LSTM: Attention-based neural networks have been per-
forming well in speech recognition and machine translation [6, 66]. In this work, we
implement an attention layer right after the BLSTM layer (Figure 2.6) to make a weighted
sum of BLSTM output vector (H) that is used to produce the sentence representation
(r) as follows:

M = tanh(H) (2.12)

α = softmax(wTM) (2.13)

r = HαT (2.14)

where w is a BLSTM-trained weight vector, and T indicates the transpose of the vector.
Attention helps the network recognize which parts of the sequence play an important role
in text classification. Figure 2.6 demonstrates the structure of Attention Bidirectional
LSTM.

In all models, we used deep LSTM-based structures that receive the input as text
and return a binary output of 0-1 to classify healthy and probable AD subjects. The
first step of our procedure is to break each interview transcripts into tokens and obtain
100-dimensional word embeddings by using the pre-trained GloVe model [56]. The
word embedding vectors are considered as the features of input transcripts without
any additional efforts on lexical feature extraction and fed directly into the document
composition of the LSTM network. Technically, we add an embedding layer to encode
text documents to real-valued vectors. Also, we truncated and padded input sequences to
equalize the length of the input vectors. we chose the average of 250 words per transcript.

We incorporated two LSTM (BLSTM) layers with the dimensions of 64 and 32 units
in all models. The batch size is 32, and we trained our LSTM based models for ten
epochs with the validation set as 10% of the training set. The drop out rate is 0.25 in all
our experiments.

We then apply the softmax function in the last layer to generate the conditional
probabilities for each category of the binary classification. In other words, using the
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Figure 2.6: Attention Bidirectional LSTM structure

softmax function in the outer layer of the neural network uses a multinomial distribution,
which returns the probability of the class cj as follows:

P (cj|xj) = exp(zj)∑n
k=1 exp(zk) (2.15)

where zj is the output of the neural network for the class label j before applying the
softmax function and n is the total number of classes. The loss function is defined as the
binary cross-entropy between the actual distribution of text samples and their predicted
distribution. We use the well-known ADAM optimizer inside the body of the LSTM
network [67].

2.4.3.2 Traditional Machine Learning Models

To compare the performance of our deep learning models with the ground truth, we have
implemented two models of traditional machine learning algorithms, including support
vector machine (SVM) and random forest (RF). To extract the numerical features from
the text transcriptions, we used the well-known TF-IDF [68] (term frequency-inverse
document frequency) vectorizer, which measures the importance of each word to a
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transcript in a corpus for both unigrams and bigrams.

2.4.4 Experiments

The performance of algorithms in predicting the onset of AD was evaluated using a cross-
validation technique. We segmented our balanced dataset including 99 healthy and 99
probable AD subjects into 11 folds in which 18 interview transcripts (9 transcripts for each
class of AD and healthy) exist for testing and the remaining of 180 interview transcripts
for training and validation. The classification results are measured using ‘accuracy,’ which
is a standard metric to measure the overall textual classification performance [69, 70].
We conducted extensive experiments to find out the best network architecture, which
resulted in the highest accuracy. The ultimate evaluation metric is measured using the
average accuracy among 11-fold cross-validations.

2.4.5 Results

Table 2.2 compares the results of the proposed six different classification algorithms
including LSTM, BLSTM, attention-based LSTM (Att-LSTM), attention-based BLSTM
(Att-BLSTM), SVM and RF. The results are reported in terms of accuracy for each fold
and the average accuracy among 11 folds. Our results demonstrate that the attention
bidirectional LSTM (Att-BLSTM) algorithm achieves the highest mean accuracy of
94.4%.We also represent the summary of the Table 2.2 in Figure 2.7. The figure illustrates
the Box and Whisker plot for 11-fold cross-validation. Whiskers extend to data points
that are less than 1.5 x The interquartile range (IQR) away from 1st/3rd quartile. As
the figure shows, Attention-BLSTM outperforms the other algorithms by 4% or more.

Compared to other related works, Karlekar et al. (2018) [44] implemented the CNN-
LSTM with an accuracy of 84.9% with the same untagged dataset as ours. They also
achieved an accuracy of 91.1% with POS-tagged data. Orimaye et al. (2016) [71] attained
the accuracy of 87.5% with only 38 transcripts using deep neural networks. We achieved
a high accuracy performance of 94.4% using the same dataset as Orimaye et al. [71] did.
However, our model is not interpretable (black-box). Thus, there is a need to develop
both accurate and interpretable models that can provide meaningful insights within the
data. In the next section, we propose interpretable deep learning model to detect AD.
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Table 2.2: Accuracy for 11-fold cross validation

Fold LSTM BLSTM Att-LSTM Att-BLSTM SVM RF
1 55.6% 61.1% 77.8% 88.9% 88.9% 88.9%
2 61.1% 72.2% 55.6% 77.8% 66.7% 88.9%
3 94.4% 100% 100% 94.4% 77.8% 77.8%
4 100% 100% 88.3% 100% 83.3% 78.9%
5 100% 100% 94.4% 100% 88.9% 88.3%
6 100% 100% 100% 100% 83.3% 88.9%
7 100% 100% 100% 100% 77.8% 77.8%
8 100% 100% 100% 100% 72.2% 77.8%
9 100% 100% 100% 100% 83.3% 77.8%
10 94.4% 94.4% 88.9% 88.9% 72.2% 72.2%
11 83.3% 72.2% 88.9% 88.9% 83.3% 61.1%

Average 89.9% 90.9% 89.9% 94.4% 79.8% 80.3%

Figure 2.7: 11-fold cross validation accuracy result

2.4.6 Local Interpretable Model-Agnostic Explanations (LIME)

Explaining predictions is necessary to attract users’ trust and encourage them to apply
these techniques effectively. Understanding the rationale behind the black box model
predictions can help users to trust them. Ribeiro et al. [21] proposed a method called
LIME, which provides insights into the neighborhoods of a single sample.

LIME is model-agnostic, which means that it can be applied to interpret any machine
learning algorithm. It uncovers model behavior by perturbing the input and learns the
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relationship between input and output, which is understandable to humans. This method
provides local interpretability to understand which features play important roles in the
final prediction. This section provides the local interpretable model-agnostic explanations
(LIME) for two models, including SVM and LSTM.

To extract insights from our models, we choose two positive (AD subject) and negative
(healthy subject) samples and investigate the effect of the most important words in the
final prediction for these samples. Figures 2.8 and 2.9 represent the most important words
to predict a healthy interview transcript for SVM and LSTM algorithms, respectively.
The blue color represents the words that can be indicators of a healthy sample, and
orange represents the indicators of memory loss. SVM (Figure 2.8) fails to predict the
healthy interview transcript with the prediction probability of 51%, while LSTM correctly
predicts the same healthy sample with the prediction probability of 61%.

Figure 2.8: SVM text weights for a false positive predicted sample

Also, we present the LIME implementation for a probable AD subject as well. Figures
2.10 and 2.11 represent the most important words for AD prediction using SVM and
LSTM, respectively. Again, the LSTM algorithm performs well in terms of prediction
with a high prediction probability of 84% (Figure 2.11), while SVM falsely predicts the
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Figure 2.9: LSTM text weights for a true negative predicted sample

AD sample as a healthy one with a probability of 84%.
LIME works reasonably stable when it is used to explain linear classification models;

However, they may fall to capture the importance of features for more complex models
(i.e., a neural network classifier) [72]. Figure 2.11 confirms that LIME could not obtain the
most relevant words that are indicators of AD and memory loss issues. Thus, we design
a powerful interpretable model to capture the global importance of words, sentences, and
transcripts in a hierarchical structure using attention mechanism, which performs very
well based on our results for the same DementiaBank dataset.
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Figure 2.10: SVM text weights for top words in a false negative predicted sample

Figure 2.11: LSTM text weights for top words in a true positive predicted sample
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2.5 An Interpretable Hierarchical Attention Model
In this section, we combine NLP and hierarchical deep learning models to detect the onset
of Alzheimer’s disease in patients based on the longitudinal patient interview data from
the DementiaBank dataset [1]. These patients were asked to describe a Cookie-Theft
picture (Figure 2.3). We propose a three-level hierarchical recurrent neural network with
an attention mechanism to develop a powerful and interpretable model that can explain
the most important lexical memory-related patterns without the need for any feature
engineering.

Our interpretable deep neural network model can help diagnose Alzheimer’s disease
with high accuracy, obviating the need for expensive imaging tools and invasive methods.
While we prove our system’s efficacy for Alzheimer’s disease, we believe that this type
of modeling framework can also be employed to detect other degenerative neurological
disorders.

2.5.1 Related Works

In recent years, extracting meaningful insights from black-box deep neural networks
has attracted many researchers. For sequential input data, which we consider in this
study, researchers have proposed interpretable RNN-based structures for disease diagnosis
and prediction [73–75]. They achieved promising results by implementing an attention
mechanism to discover where the model concentrates on (attention weights) when making
predictions. Ma et al. proposed a diagnostic model based on various attention mechanisms
(the Dipole model). The attention layer of their model explains the importance of the
RNN model’s hidden states as their corresponding attention weights [76]. Sha and Wang
proposed a gated recurrent unit (GRU) RNN-based hierarchical attention (GRNN-HA)
model. The GRNN-HA model is quite similar to the Dipole model, except that it has
a hierarchical structure in which the bi-directional RNN (BRNN) and the attention
mechanism in the lower layer encode every medical event within a visit. In the upper
layer, the BRNN and the attention mechanism capture the dependencies among the
sequence of medical visits [75]. Choi et al. proposed the Reverse Time Attention model
(RETAIN), which processes the input in reverse-time order unlike the BRNN structure
in the Dipole and the GRNN-HA models [73]. In this section, we extend the theory of
interpretable deep neural models by developing novel hierarchical attention over self-
attention (AoS) mechanism that sheds light on the importance of each word, sentence,
and document in making predictions (Section 2.5.2). The main advantage of our AoS
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model is that it prevents loss of information by considering the relation of components
(words, sentences, and documents) within the sequence. Numerical results demonstrate
that our new AoS model surpasses the regular hierarchical attention-based neural model
in terms of accuracy and achieves a new benchmark accuracy for detecting the onset of
Alzheimer’s using longitudinal interview transcripts.

2.5.2 Methods

In this section, we first describe the components of our models. Then, we explain how we
incorporated them in a three-level hierarchical structure to capture both the sequential
dependencies and the importance of elements at each level.

2.5.2.1 Basic Components of the Model

We begin by presenting the basic model components:

• Word Embedding Layer: A word embedding layer maps each word from the
vocabulary set to a high-dimensional vector space using a pre-trained word embed-
ding model. This method captures the context of words such that the words with
similar or close semantic meanings have close vector representations. In this study,
we used the pre-trained word vectors, GloVe, to obtain the vector representation
for each word [56].

• Contextual Embedding Layer: Chung et al. [77] found that Gated Recurrent
Unit (GRU) [78] cells outperform LSTM cells when working with small datasets.
Since our DementaBank dataset is relatively small, we used a GRU-based recurrent
neural network (RNN) layer [78] on top of the component embeddings from previous
layers to capture the temporal dependencies within every component categories
(words, sentences, and transcripts) at each level.

We placed a GRU in both forward and backward directions (i.e., bidirectional) to
capture more information from both past and future utterances, then concatenated
the outputs of the two GRUs. Therefore, if the input vector has d dimension, the
output of this layer will be 2d-dimensional.
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2.5.2.2 Attention over Self-Attention Mechanism (AoS)

Suppose we have a sentence (S) constructed from a sequence of n word embedding
representation vectors (vi).

V = (v1, v2, ..., vn) (2.16)

where (vi) is a u dimensional word embedding for the i-th word in the sentence. In the
first layer, a bidirectional GRU is applied to encode the embedding representations as
E1 = (e1

1, e
1
2, .., e

1
n). Then, the self-attention structure is employed to extract different

aspects of the sequence into a vector representation. The self-attention mechanism takes
the vector of input (E), and output the vector of weights as α [79]:

α = Softmax(w2 tanh (W1(E1)T )) (2.17)

Here, W1 is the weight matrix with the shape of d− by−2u (u is the GRU dimension),
which is going to be learned in our model. w2 is a vector of parameters with size d (d is
a hyperparameter).

In the second layer, each component is concatenated with the self attentive represen-
tation in order to keep the relation information [80].

êt = Σn
j=1α

t
je

1
j (2.18)

e2
t = [vt, êt] (2.19)

Each e2
t captures the relationship between vt and other words in the sentence.

We then apply an attention layer on top of the vector representation E2 = (e2
1, e

2
2, ..., e

2
n)

to capture the global attention scores (β) of each component (word).

β = Softmax(wT
3 tanhE2) (2.20)

Here, w3 is the trained weight vector that is going to be learned in this network.
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2.5.2.3 Three-level Hierarchical Attention over Self-attention Network

In this section, we first extend the two-level structure of Yang et al. [81] by developing a
three-level hierarchical attention mechanism that considers the dependencies between
words, sentences, and documents for longitudinal interview transcripts of patients. Then,
we propose a novel attention over self-attention (AoS) mechanism to capture the impor-
tance of the components constructing the three levels (words, sentences, and documents)
of our algorithm.

Recall that our goal is to detect the onset of Alzheimer’s disease for each participant
of the study using interview transcripts. Suppose that each participant has a sequence
of at most N transcripts ti such that each transcript contains L sentences. We denote
each sentence as sij , which represents the jth sentence in the ith transcript of this patient.
Each sentence sij contains T words such that wijk represents the kth word in the jth

sentence of the ith transcript. In the first level of our algorithm, we use GloVe to obtain
a low dimensional representation vector for each word, wijk as follows:

x1
ijk = Wembwijk + bemb, k ∈ [1, T ], (2.21)

where Wemb is the embedding matrix obtained through the pre-trained GloVe embedding.
Then we encode each word with GRU-BRNN as hijk and its hidden representation

uijk as follows:

h1
ijk = [−−−→GRU(x1

ijk);←−−−GRU(x1
ijk′)], k ∈ [1, T ], k′ ∈ [T, 1], (2.22)

u1
ijk = tanh(W 1

wh
1
ijk + b1

w), k ∈ [1, T ]. (2.23)

The self-attention weights are computed as follows:

α1
ijk = Softmax(u1

ijk
T
u1

w), k ∈ [1, T ]. (2.24)

The last step in this encoding level is to encode each sentence as a weighted sum of
hijk with the attention scores,

s1
ij = Σkα

1
ijkh

1
ijk, k ∈ [1, T ]. (2.25)
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Then, we concatenate the calculated sentence embedding sij with the word embedding
in order to avoid information loss.

x2
ijk = [s1

ij, x
1
ijk]. (2.26)

Since we aim to determine the contribution of each word within each transcript to
the overall prediction, we applied a global attention layer on top of the concatenated
vector representations (x2

ijk) from the self-attention layer to obtain the attention scores
α2

ijk for each word wijk in this level.

α2
ijk = Softmax(wT

w tanh(x2
ijk)), k ∈ [1, T ], (2.27)

Here, ww is the trained weight vector and its superscript, T , indicates the transpose
of the vector. The attention helps the network to recognize which parts of the sequence
play an important role (importance score) in text classification. We use those importance
scores to interpret our classification model.

The last step in this level is to encode each sentence as a weighted sum of h2
ijk with

the attention scores,

s2
ij = Σkα

2
ijkx

2
ijk, k ∈ [1, T ]. (2.28)

In the second level of this structure, we encode each sentence representation obtained
from the first level s2

ij applying GRU-BRNN to incorporate both future and past infor-
mation within a transcript. Then, we calculate the sentence-level attention α1

ij with the
sentence-level context vector u1

s as follows:

h1
ij = [−−−→GRU(s2

ij);
←−−−GRU(s2

ij′)], j ∈ [1, L], j′ ∈ [L, 1], (2.29)

u1
ij = tanh(W 1

s h
1
ij + b1

s), j ∈ [1, L], (2.30)

α1
ij = Softmax(u1

ij
T
u1

s), j ∈ [1, L], (2.31)

t1i = Σjα
1
ijh

1
ij, j ∈ [1, L]. (2.32)

We again concatenate the calculated transcript encoding ti with the sentence encoding
obtained from previous level (s2

ij) to maintain the relation of each sentence within the
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transcript.

s3
ij = [t1i , s2

ij], j ∈ [1, L]. (2.33)

Next, we compute the global attention score for each sentence within each document
via the following equation:

α2
ij = Softmax(wT

s tanh(s3
ij)), j ∈ [1, L]. (2.34)

As the last step in this level, we compute the transcript representation with the
extracted attention scores as follows:

t2i = Σjα
2
ijs

3
ij, j ∈ [1, L]. (2.35)

In the third level, we repeat the same process for the transcript representation t2i

computed from the second level to determine the attention score for each transcript in
our longitudinal dataset as follows:

h1
i = [−−−→GRU(t2i );←−−−GRU(t2i′)], i ∈ [1, N ], i′ ∈ [N, 1], (2.36)

u1
i = tanh(W 1

t h
1
i + b1

t ), i ∈ [1, N ], (2.37)

αi = Softmax(u1
i

T
u1

t ), i ∈ [1, N ], (2.38)

p1 = Σiα
1
ih

1
i . (2.39)

The representation vector for each patient is obtained as:

t3i = [p1, t2i ], i ∈ [1, N ]. (2.40)

Then, we apply the global attention mechanism on top of each transcript encoding as
follows:

α2
i = Softmax(wT

t tanh(t3i ), i ∈ [1, N ]. (2.41)
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We obtain the patient representation via:

p2 = Σiα
2
i t

3
i , i ∈ [1, N ]. (2.42)

Finally, we use p2 obtained from the last level to build a binary classifier as:

g = σ(Wyp
2 + by) (2.43)

The architecture of this algorithm is illustrated in Figure 2.12.

2.5.3 Experiments

2.5.3.1 Dataset

We use the same DementiaBank clinical dataset [1] (Section 2.4.1). However, we consider
the whole longitudinal data from DementiaBank including 99 healthy subjects and 169
subjects with probable AD, with annual follow-up visits up to 5 years (i.e., a maximum
of 5 visits per individual). The distribution of visits for participants of this study is
shown in Table 2.3.

Table 2.3: Distribution of visits per individual type

Visit AD Healthy
1 99 99
2 60 74
3 24 45
4 11 17
5 3 8

2.5.3.2 Model Configuration and Training

In our model, first, we broke down each transcript into sentences and tokens. Then, we set
aside one-tenth of the training set for validation and obtained the 100-dimensional word
embeddings by using the pre-trained GloVe model [56] on both training and validation
sets.
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Figure 2.12: Hierarchical attention over self-attention (AoS) structure

The word, sentence, and transcript context vectors were set to have a dimension of 100
and were initialized at random. We set the GRU dimension to 50 for all word, sentence,
and transcript levels; hence, the bidirectional GRU has 100 dimensions. For model
training, we used a mini-batch size of 10 subjects with the same number of transcripts of
five per patient and the same number of 25 sentences per transcript. For those subjects
who did not have five visits, we filled the corresponding visit representation vectors with
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‘nan’ so that the embedding matrix gives a big negative number to every element of these
vectors.

We used the Adaptive Subgradient (Adagrad) optimizer to train the hierarchical model
with an initial momentum parameter of 0.1. We also used ‘categorical cross entropy’ as
the loss function given our goal of binary classification (AD or healthy subjects). Finally,
we evaluated our model using the ‘accuracy’ metric.

2.5.4 Results

To evaluate our model, we conducted three sets of validation experiments. In the first
set, we used the balanced dataset from 99 healthy subjects and the first 99 probable AD
subjects to provide the same validation setting as Orimaye et al. [19, 43]. We performed
10-fold stratified cross-validation. In each fold, we divided the dataset into 90% (training)
and 10% (testing). The validation set was 10% of the training set. Each subject had
multiple interview transcripts. We used stratified cross-validation to ensure that each set
contains the same ratio of healthy to AD subjects. To evaluate the effect of the GloVe
embedding dimension on our model’s final performance, we also have tested different
GloVe word embeddings using dimensions of 100, 200, and 300. In addition, we compared
the performance of our AoS deep neural network model against simpler models, including
Support Vector Machine (SVM) and Random Forest (RF). We extracted natural language
features based on unigrams and bi-grams of the transcripts. Then, we fed those extracted
features into the SVM and RF algorithms.

Table 2.4 shows the results of 10 fold stratified cross-validations for the balanced
dataset that consists of 99 healthy and 99 AD subjects. We can see that our three-level
hierarchical AoS deep neural network model achieved the best mean accuracy of 0.96 with
a standard deviation (SD) of (0.06) across 10-fold cross-validation using a 300-dimensional
GloVe word embedding.

Also, the mean (SD) accuracy for SVM was 0.77 (0.09) and for RF was 0.80 (0.10),
lower than that of our AoS model, which was 0.96 (0.06) (Table 2.4).

In our second set of experiments, we further investigated the performance of our
proposed AoS model on the whole unbalanced DementiaBank dataset, including 169
probable AD subjects and 99 healthy subjects. Tables 2.5, 2.6 and 2.7 present the
results of 10 fold stratified cross-validation method using 100, 200 and 300 dimensional
GloVe embeddings, respectively. We can see that the best mean accuracy result for
an unbalanced DementiaBank dataset is 0.96, which is obtained using 300-dimensional
GloVe embedding.
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Table 2.4: Testing accuracy scores for 10-fold sratified cross-validation using balanced
dataset (99 AD- 99 healthy)

Fold AoS
(GloVe 100)

AoS
(GloVe 200)

AoS
(GloVe 300)

SVM RF

1 0.75 0.80 0.80 0.85 0.90
2 0.95 0.90 1.00 0.80 0.85
3 1.00 0.95 1.00 0.80 0.80
4 1.00 1.00 1.00 0.75 0.80
5 1.00 0.95 1.00 0.95 0.95
6 0.95 0.90 0.95 0.70 0.75
7 0.95 0.95 1.00 0.75 0.75
8 0.85 0.95 0.95 0.75 0.85
9 0.95 0.95 0.95 0.60 0.60
10 0.95 0.95 1.00 0.72 0.78
Mean 0.93 0.93 0.96 0.77 0.80
SD 0.08 0.05 0.06 0.09 0.10

Table 2.5: Results for 10-fold sratified cross-validation using unbalanced dataset: GloVe
100 (169 AD- 99 healthy)

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.74 0.86 0.71 0.77 0.86
2 0.96 1.00 0.94 0.97 0.99
3 0.96 1.00 0.94 0.97 0.99
4 0.96 1.00 0.94 0.97 0.99
5 0.93 0.94 0.94 0.94 0.96
6 0.96 1.00 0.94 0.97 0.98
7 0.96 1.00 0.94 0.97 0.98
8 0.96 0.94 1.00 0.97 1.00
9 0.96 0.94 1.00 0.97 0.90
10 0.92 0.94 0.94 0.94 0.99

Mean 0.93 0.96 0.93 0.94 0.96
SD 0.07 0.05 0.08 0.06 0.05

To improve the performance of our model, we got help from text augmentation
techniques. In our third sets of experiments, we applied the recent easy data augmentation
(EDA) technique on DementiaBank dataset which proved to boost text classification
performance [82]. EDA uses four operations of synonym replacement, random insertion,
random swap, and random deletion to augment the text data.
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Table 2.6: Results for 10-fold sratified cross-validation using unbalanced dataset: GloVe
200 (169 AD- 99 healthy)

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.74 0.92 0.65 0.76 0.86
2 0.96 0.94 1.00 0.97 1.00
3 0.96 0.94 1.00 0.97 0.99
4 0.93 1.00 0.88 0.94 0.99
5 0.96 1.00 0.94 0.97 0.96
6 0.96 1.00 0.94 0.97 1.00
7 1.00 1.00 1.00 1.00 1.00
8 0.96 0.94 1.00 0.97 0.90
9 0.96 0.94 1.00 0.97 0.99
10 1.00 1.00 1.00 1.00 1.00

mean 0.94 0.97 0.94 0.95 0.97
SD 0.07 0.03 0.11 0.07 0.05

Table 2.7: Results for 10-fold sratified cross-validation using unbalanced dataset: GloVe
300 (169 AD- 99 healthy)

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.78 0.87 0.76 0.81 0.90
2 1.00 1.00 1.00 1.00 1.00
3 0.93 0.89 1.00 0.94 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 0.96 1.00 0.94 0.97 1.00
7 0.96 1.00 0.94 0.97 1.00
8 1.00 1.00 1.00 1.00 1.00
9 0.96 0.94 1.00 0.97 0.99
10 1.00 1.00 1.00 1.00 1.00

mean 0.96 0.97 0.96 0.97 0.99
SD 0.07 0.05 0.07 0.06 0.03

We augmented the DementiaBank dataset using EDA [82] to build a balanced dataset.
We performed one augmentation for the AD group and two augmentations for a healthy
group with a changing rate of 10% (α = 0.1). We used the augmentation output of 338
healthy and 338 AD subjects to evaluate our AoS model’s performance. Tables 2.8, 2.9 and
2.10 present the result of 10 fold cross-validation for 100, 200 and 300-dimensional GloVe
embedding using augmented DementiaBank dataset. We can see that the mean accuracy
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has improved to 0.98, which is a new benchmark for non-feature-engineering-based models
developed on the DementiaBank dataset.

Table 2.8: Results for 10-fold sratified cross-validation using augmented balanced dataset:
GloVe 100 (338 AD- 338 healthy)

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.88 0.88 0.88 0.88 0.96
2 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00
4 0.99 1.00 0.97 0.99 1.00
5 1.00 1.00 1.00 1.00 1.00
6 0.99 1.00 0.97 0.99 1.00
7 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00
10 0.99 1.00 0.97 0.98 1.00

Mean 0.98 0.99 0.98 0.98 1.00
SD 0.04 0.04 0.04 0.04 0.01

Table 2.9: Results for 10-fold sratified cross-validation using augmented balanced dataset:
GloVe 200 (338 AD- 338 healthy)

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.81 0.80 0.82 0.81 0.90
2 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00
10 0.99 1.00 0.97 0.98 1.00

Mean 0.98 0.98 0.98 0.98 0.99
SD 0.06 0.06 0.06 0.06 0.03

To evaluate the interpretability of the model, we extracted attention scores on the
three levels (transcripts, sentences, and words). On the transcript level, the model gave
different attention score patterns to the transcripts of healthy subjects compared to the
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Table 2.10: Results for 10-fold sratified cross-validation using augmented balanced dataset:
GloVe 300 (338 AD- 338 healthy)

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.78 0.88 0.65 0.75 0.91
2 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00
10 0.97 1.00 0.94 0.97 1.00

Mean 0.97 0.99 0.96 0.97 0.99
SD 0.07 0.04 0.11 0.08 0.03

transcripts of individuals with Alzheimer’s disease. Figure 2.13 depicts the attention score
for the five transcripts for both healthy subjects and those with AD. In this boxplot, the
middle line represents the median; the lower and upper hinges correspond to the 25th and
75th percentiles (i.e., the first and the third quartiles), respectively. The whiskers extend
to 1.5 times the inter-quartile range (IQR) from the hinge. Figure 2.13 suggests that for
healthy subjects, the model paid more attention to the earlier transcripts, whereas all
transcripts were of roughly the same importance for individuals with AD. For healthy
subjects, the median attention score for transcript 1 was 0.34 and for transcript 5 was
0.07. On the other hand, for individuals with AD, the median attention scores for
transcripts 1 and 5 were 0.20 and 0.18, respectively. Note that, compared to healthy
subjects, individuals with AD received lower median attention scores on the first two
transcripts and higher median scores on transcripts 3 to 5.
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Figure 2.13: Boxplot for transcript-level attention scores

In the sentence level, the model automatically recognizes those sentences that can
help to distinguish subjects with AD from healthy individuals. Tables 2.11a and 2.11b
present ten sentences of each healthy and AD individuals that had the highest attention
scores within the transcript with the highest attention score.

At the word level, we decided to provide example interview transcripts for a healthy
subject and an individual with AD (Figure 2.14). In this figure, we have highlighted
the words [83] that received a high attention score (> 0.08) in dark color and those that
received a medium attention score (0.04−0.08) in a light color. Words with a low attention
score (< 0.04) were not highlighted in Figure 2.14. This type of analysis can help inform
the words that most notably indicate the onset of AD and is of paramount importance
to the interpretability of the neural network model. The codes for all experiments are
available online at: https://github.com/marynik66/AD-NLP
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’the woman is washing dishes ’ she’s wearing an apron ’water is pouring
out of the sink ’ ’the boy is taking cookies from the cookie jar ’ ’and his
sister or young girl is asking for some for her ’ ’the lid is off the cookie
jar ’ ’the cupboard door is open ’ ’he is on a three legged stool which
is falling uh which is tilted ’ ’there are curtains in the kitchen ’ there’s
a tree outside the window ’there are shrubs ’ there’s a walk ’there are
two cups on the uh sink counter ’ there’s a plate there ’and as i said the
water is overflowing ’ ’it is already on the floor ’ ’there are cupboards
above the kitchen counter and below ’ ’and the window is above the
kitchen sink ’ ’and the mother has a short sleeve dress on has short hair
and is drying the dishes by hand ’ ’curtains on the window that you can
see outside the window to the other side of the house gram ’ ’you can
see the grass ’ ’you can see the handles on the cupboards ’ ’anything
else exc ’

(a) A healthy individual
it’s a picture of a kitchen there’s a child reaching on in s r a cookie jar ’
um a male a boy reaching into a cookie jar gram ’ he’s falling ’the stool
is falling ’ uh his uh uh a a female youngster maybe sister is reaching up
and she’s got a finger to her lip ’the uh mother is at the sink washing
a dish ’ ’the water is spilling over from the sink ’ ’the window is open
looking out onto uh shrubbery and a path to another house ’ ’there are
two di uh two dishes three dishes sitting on the side of the uh on the
si cou sink counter ’ ’and there are a number of uh cabinets uh in the
picture uh on the sink counter as it stretches around ’ and there’s the
uh cabinets above where the boy is reaching in ’mother is washing a
dish ’ ’she is dressed in a um oh d dress and it appears she has an apron
and a towel in her hand ’ as she’s washing she’s one of her feet is uh
obviously in the water the other is somewhat obliterated ’the children
are wearing um completely outfitted ’ ’the girl with uh sandals of some
kind and the boy it looks like maybe tennis shoes ’ ’ xxx exc ’

(b) An individual with AD

Figure 2.14: Sample transcripts for a healthy individual and an individual with
Alzheimer’s disease. Words with high attention score are highlighted in dark blue
(healthy) and dark red (AD) and those that received medium attention score are high-
lighted in light color.
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(a) A healthy individual

(b) An individual with AD

Figure 2.15: Word cloud with attention score >0.03

2.5.5 Discussion

In this study, we developed a new three-level hierarchical recurrent neural network (RNN)
model and combined it with natural language processing (NLP) to detect the onset of
Alzheimer’s disease (AD) based on longitudinal patient interview data. We made the
black box neural network model interpretable using novel attention over the self-attention
(AoS) mechanism. The primary advantage of our AoS model compared to the traditional
attention models is that it can prevent information loss by considering the relation of
words, sentences, and transcripts within the sequence.

We tried several experiment settings combined with GloVe embedding dimensions
(100, 200, 300) and different input data structure (Table 2.13). The hierarchical AoS
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model using augmented DementiaBank dataset (AoS-Aug) obtained an overall accuracy
of 98%, higher than other similar models developed on the same dataset (Table 2.12).
Since our results of using GloVe embedding are very promising (accuracy=98%), we
haven’t tried other state of the art word embedding methods such as ELMO [59] and
BERT [60].

One reason for this outstanding performance is that the AoS model is able to capture
the semantic meaning of the words as it can incorporate the relation of the components.
We evaluated the attention scores our model gave to transcripts, sentences, and words to
shed light on how the neural network model made predictions.

Table 2.12: Comparison of AD detection methods on the interview transcripts of Demen-
tiaBank

Model Accuracy Precision Recall F1 AUC

Wankerl et al. [42] 0.77 - - - -
Fritsch et al. [46] 0.86 - - - -
Chen et al. [45] 0.97 - - - -
Pan et al. [47] - 0.84 0.85 0.84 -
Fraser et al. [32] 0.82 - - - -
Kong et al. [49] 0.87 0.86 0.90 0.88 -
Orimaye et al. [43] - - - - 0.83
Karlekar et al. [44] 0.91 - - - -
Orimaye et al. [19] - - - - 0.93

AoS-Aug (Ours) 0.98 0.99 0.98 0.98 1.00

Among the maximum of five visits each person could have, the model gave higher
attention scores to the earlier visits (Figure 2.13) for healthy subjects and relatively
stable scores to the transcripts of individuals with Alzheimer’s disease. This can be
explained with the degree of language deficit related to AD individuals. If a patient
suffers from AD, not only does he/she not remember the same picture the following year,
the language deficit may have also been exacerbated due to progression of AD, thus
making the later visits as important as the early visits in terms of importance in detecting
the disease. On the other hand, for healthy individuals, since they can remember the
same picture in the following visits, those visits provide little additional information to
the model. So, the model gives lower attention scores to later visits.

At the sentence level, we explored the sentences with the highest attention score
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(S_Score) in the transcript with the highest attention score (T_score) for healthy and
AD individuals (Tables 2.11a and 2.11b). Unlike the sentences in Table 2.11a, those in
Table 2.11b are affected by language deficit, which implies that those individuals may
have suffered from memory loss and AD. Also, the sentences in Table 2.11b have more of
CHAT disfluency codes (such as those summarized in Table 2.1), which correspond to
word repetition, word revision, phrase revision, filled pause, and pause disfluencies.

Finally, at the word level, we can see that the transcript sample of the individual with
AD (Figure 2.14(b)) contains particular words that may suggest memory loss, such as
‘uh’, ‘um’, ‘oh’, ‘exc’, ‘maybe’, and ‘xxx’ (unintelligible words), as well as some irrelevant
words to the picture (e.g., youngster) (Figure 2.15).

Although our numerical results are promising, they are limited by the size of our
dataset. While DementiaBank is one of the best publicly available datasets of its kind, it
is a relatively small dataset. Deep learning methods train better on large amounts of data.
However, it is common in healthcare to work on smaller datasets, given the complexity of
obtaining patient-level data. While we conducted cross-validation to address this issue,
further validation of our method on larger datasets is needed to evaluate the performance
of our deep learning model.

In summary, we developed unique hierarchical attention over self-attention (AoS)
deep recurrent neural network model and demonstrated an important application of it
to detect the onset of Alzheimer’s disease using longitudinal interview data. We have
demonstrated that by employing deep learning, we can unlock the patterns within the
natural text that signal memory loss due to Alzheimer’s disease. Furthermore, we have
illustrated that a three-level AoS mechanism on words, sentences, and transcripts can
shed light on how the model comes up with the predictions. This is extremely valuable,
in particular for healthcare applications, as transparency of a predictive model is key to
its adaptability to everyday clinical practice.

’
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Table 2.11: Top 10 sentences with highest attention scores within the transcript with
highest attention

(a) Healthy individuals

No. Sentence S_Score* T_Score**

1 &uh the mother’s drying dishes but the water is overflowing onto the
floor.

0.13 0.41

2 the wind is blowing the curtains . 0.12 0.40
3 the mother is drying dishes and has the water turned on . 0.12 0.41
4 mother is drying dishes and the tap water is overflowing the sink and

running on the floor.
0.12 0.41

5 &uh the mother is drying the dishes as the sink faucet has filled the
sink bowl and is running over onto the floor.

0.11 0.54

6 mother [//] the reason the water’s flowing out over the sink is because
the water is running furiously &um and I’m looking out through the
window.

0.11 0.42

7 at the point she’s drying dishes <the water> [//] perhaps from the
noise the water is spilling over the sink and onto the floor.

0.11 0.76

8 the mother’s spilling the water and also drying the dishes. 0.11 0.77
9 ’the boy is reaching for cookies and the stool is falling over. 0.11 0.37
10 the mother’s drying the dishes, frowning but not turning off the

faucet.
0.11 0.64

* Sentence attention score
** Transcript attention score

(b) AD individuals

No. Sentence S_Score* T_Score**

1 and she’s havin(g) problems because the sink’s running over and she’s
standing in a puddle of water, some empty dishes on the counter.

0.10 0.31

2 she’s drying [//] washing and drying dishes. 0.10 0.47
3 the tea cloth is drying the dishes. 0.10 0.58
4 well he’s reachin(g) for the cookie &=laughs but he’s handing the

cookie to her", ’in the [/] the meantime the stool is falling over.
0.10 0.27

5 and mama’s drying the dishes as usual for mamas (.) 0.10 0.25
6 &hm &hm (..) I don’t see much more than that other than the kid’s

falling off of a stool.
0.10 0.27

7 and the [//] I guess it’s the mother is drying dishes . 0.09 0.47
8 but the water is &flow still flowing . 0.09 0.40
9 <and the mother is> [//] well she’s spilling her water which is not

very good but she’s doing [//] washing dishes and drying them.
0.08 0.21

10 the water is overflowing from the faucet into the sink onto the floor,
<while she wipes> [//] &uh while she dries &uh a dish.

0.07 0.49

* Sentence attention score
** Transcript attention score
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Chapter 3 |
Detection of Alzheimer’s Using
Audio Processing

3.1 Introduction
Language impairment happens early in Alzheimer’s disease years prior to the major
symptoms of AD [84]. In fact, AD deteriorates neurons and their connections in regions
of the brain that are involved in memory and language [85]. Recent studies have identified
certain vocal features that may signal the early signs of Alzheimer’s disease [86, 87].
Meilan et al. [87] found acoustic speech parameters that are indicators of AD early stages
and their relation with linguistic deficit of AD patients. Their study justifies the need
for developing an acoustic diagnostic test for AD which can ultimately lead to saving
costs (i.e, time, resources) for both patients and healthcare providers.

Several studies have attempted to develop tools for automatic detection of AD with
linguistic information [32, 42, 45]. However, they are not able to achieve the same
performance level in other languages. On the other hand, preparing linguistic datasets
often needs extra tasks such as transcribing the audio recordings, which is labor expensive
and time-consuming.

Furthermore, the voice of AD patients contains valuable information and clues of
degenerative cognitive ability [88] that textual transcripts may not be able to capture.
Muscle weakness caused by brain problems due to dementia changes a person’s vocal cord
or throat, ultimately leading to weak, hoarse, scratchy voice as the disease progresses [89].

For these reasons, we focus on non-linguistic approaches to detect Alzheimer’s disease
automatically using only the audio recordings of patients. Since deep neural networks
have been successful in speech recognition and linguistic tasks [90,91], we aim to develop
and employ several deep neural network architectures to detect the onset of AD.
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3.2 Related Works
A number of studies attempted to automatically detect Alzheimer’s disease using linguistic
information [32, 42, 45]. However, linguistic models are hard to be applied in different
languages. Some studies used both linguistic and acoustic features of patients’ speech to
detect the onset of AD ( [19,92–94]). Roark et al. [95] derived markers from both the
audio and transcript of a spoken narrative recall task to detect mild cognitive impairment
(MCI) automatically. Chakraborty et al. [96] investigated different types of acoustic
features and feature selection rules to identify the dementia stage. They achieved an
accuracy of 82% using score-level fusion. Recently, Warnita et al. [97] developed a deep
learning model to detect Alzheimer’s disease using gated convolutional neural networks by
extracting acoustic features from patients’ audio recordings. They achieved an accuracy
of 73.1% using a 10-fold cross-validation approach. Liu et al. [98] proposed a simulation
model that collects new speech dataset for Alzheimer’s disease. They used different
machine learning models for their experiments, and show that a model based on logistic
regression obtained the best performance.

We focus on a non-linguistic approach by developing end-to-end deep neural networks
using only speech audio of the patients without any preprocessing requirement such as
feature engineering.

Recently, developing very deep convolutional neural networks (CNNs) such as Alexnet
[5], Resnet [99], VGG [100] with the presence of large image datasets (e.g, ImageNet [101])
has significantly improved the performance of image classification tasks. In recent years,
the application of CNNs has been extended to automatic audio processing tasks like
environmental sound classification [100,102,103], music genre classification [104] and music
tagging [105]. The common method for automatic audio classification is to transform
the audio waveforms into two-dimensional spectro-temporal representations, which are
then used as inputs to two-dimensional convolutional neural networks (2D CNN) for
supervised classification [106,107]. The spectrograms are two-dimensional representations
of audio waveforms that shrink the high dimensionality of the original audio waveforms.
Mel-frequency cepstral coefficients (MFCC) are power spectrograms that frequently use
representations for audio speech emotion recognition and classification [106]. Early works
on audio classification tasks generally extract MFCC features and use a classification
algorithm, such as support vector machine (SVM), for classification [108]. The emergence
of big audio training datasets made it possible to train deep CNNs similar to image
classification [106].
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3.2.1 One-Dimensional CNN

A one-dimensional CNN (1D CNN) can directly model audio waveforms in time frame-
works. 1D CNN structure is mainly used to develop end-to-end learning methods without
feature engineering on raw audio waveforms [99, 109]. Zeghidour et al. [110] proposed an
end-to-end 1D CNN architecture using raw waveforms, which learns features by trainable
filterbanks instead of regular Mel-filterbanks. Dai et al. [2] proposed very deep 1D CNN
models with raw audio waveforms as their inputs, which achieved the best accuracy of
72% on the UrbanSound8k dataset. Recently, Abdoli et al. [3] proposed an end-to-end
1D CNN architecture for environmental sound classification. They achieved a higher
accuracy level of 89% using Gammaton filterbanks.

3.2.2 Transfer Learning

Transfer learning is a method that can transfer the knowledge (trained weights) obtained
from a reasonably large training dataset to a problem with smaller training data [111].
The main idea behind this method is that the initial layers in deep neural networks are
learning the generic characteristic of data, which can be transferred to a similar dataset
and learning more specific features in the deeper layers which are not transferable to the
new problem.

3.2.3 Our Work

In this chapter, we have employed several architectures based on deep neural networks.
First, we tried the end-to-end one-dimensional convolutional neural networks with the
whole interview audio length as its input. We then improved the performance of the same
model by segmenting the audio interview into two seconds’ and five-seconds’ waveforms.

Finally, we propose a novel interpretable audio recognition model based on audio
transfer learning. Our model detects Alzheimer’s disease with an outstanding prediction
performance and recognizes the memory loss and language changes over the course of the
disease. In this novel model, the raw audio waveforms of individuals’ interviews are used
without any extra hand-crafted preprocessing methods, which can facilitate the audio
recognition problem.
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3.2.4 Main Contributions

This chapter’s main contributions are as follows: (1) we developed a new hierarchical deep
model using transfer learning to predict the onset of AD using the raw audio interviews
of patients. (2) We achieved the highest accuracy of 90% compared to similar works on
the same dataset (Warnita et al. [97]). (3) Our model is interpretable, which can capture
the cognition deficiencies in patients’ speech very well.

3.3 Dataset
In this study, we used the audio sets of Pitt Corpus [1] in the DementiaBank dataset,
where patients were asked to describe incidents happening in a picture, namely, the
Cookie Theft Picture of the Boston Diagnostic Aphasia Examination. Pitt Corpus
contains both text and audio of narrative speech from 169 AD subjects and 99 healthy
subjects. Data were collected longitudinally, every year with at most five subsequent
years. There are 309 AD interview visits for probable AD subjects and 243 visits for
healthy individuals that are collected from multiple visits.

In the first phase of this analysis, we are using the total patients visits without
considering the dependencies of annual visits (309 AD and 243 healthy audio interview
visits). In the second phase, however, we consider longitudinal visits for each individual
(169 AD and 99 healthy audio interview visits) and develop an interpretable hierarchical
audio model using longitudinal data.

3.4 Methods

3.4.1 1D Convolutional Neural Networks using Raw Audio Dataset

Dai et al. [2] proposed a very deep one-dimensional convolutional neural network (CNN)
using the raw audio waveforms as the input to their networks (Figure3.1). They proposed
five CNN structures that vary in depth and weight layers. The main idea to develop such
deep models with fewer parameters in each layer is to use very small receptive fields for
all the layers except the first one. Depending on the sampling rate of audio waveforms
(e.g., 8000Hz), the audio input may have a large number of samples, making the learning
layer-expensive to start with small receptive fields in the first convolution layer. Dai et
al. [2] chose the size of the receptive in the first layer such that it can cover 10-millisecond
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duration — the same window size as the audio MFCC feature extracting methods.
They used the UrbanSound8k dataset to classify ten urban environmental sounds [112].

The dataset contains 8732 audio recordings with a maximum length of four seconds. They
have normalized and down-sampled the audio waveforms to 8 kHz using as the input
to their designed CNN structures (32000 samples per 4-second audio waveform). The
highest accuracy level they achieved was 71.8% for their deep model with 18 convolution
layers.

Figure 3.1: Audio classification using Dai et al. [2] model

We start our experiments using the M5 model from Dai et al. [2] which has a small
network (five convolution layers) to evaluate the performance of the 1D CNN on our
Alzheimer’s audio recordings. The details of convolutional layers of this model are
presented in Table 3.1. To replicate the same structure, we down-sampled our interview
audio recordings (DementiaBank) from 22050 to 8000 samples per second. Then, we
truncated and padded all audio waveforms to 90 seconds long (90× 8 = 720000 samples
per audio). Compared to Dai et al.’s implementation [2], where they used 4-second audio
wavelengths, our input contains audio recordings of waveforms with 90 seconds length.
We employed the M5 model with the entire audio recordings from the DementiaBank
dataset (309 AD and 243 healthy audio recordings).

We implemented an 11-fold stratified cross-validation to evaluate the performance of
M5 model. In each fold, we trained on 450 (or 451) visits, validated on 51 visits, and
tested on the remaining visits. The batch size was 20, and the number of epochs was 10.
The results of our implementation are presented in Table 3.2.
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Table 3.1: 1D CNN structure [2]. Input dimension: (720000,1)

Layer Kernel size Stride Dimension
Conv1 80 4 128
Maxpool1 4 - 128
Conv2 3 1 128
Maxpool2 4 - 128
Conv3 3 1 256
Maxpool3 4 - 256
Conv4 3 1 512
Maxpool4 4 - 512
Conv5 3 1 512
Global average pooling 1 - 512

Table 3.2: Testing accuracy for 11-fold cross-validation on 90-second audio waveframes

Fold Accuracy

1 0.59
2 0.59
3 0.56
4 0.70
5 0.64
6 0.78
7 0.44
8 0.76
9 0.78
10 0.56
11 0.44

Mean 0.62

According to Table 3.2, the mean accuracy result among the 11 folds is 62%. Since the
wavelength of our audio inputs is pretty large (90 seconds) for the M5 structure, which
was initially implemented on smaller input wavelengths (4 seconds), we now improve
the accuracy of the M5 model by segmenting the audio recordings into smaller audio
waveforms. Section 3.4.2 illustrates the proposed method.
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3.4.2 1D CNN on Small Audio Frames

Motivated by the approach taken by Abdoli et al. [3], we extended the 1D CNN imple-
mentation on the small audio waveforms. We first split the 90-second audio recordings
into disjoint frames with different lengths of 0.5, 1, 2, 3, and 5 seconds for all 309 AD and
243 healthy audio recordings. To maximize the use of audio information, we conducted
a separate experiment by segmenting the audio waveforms in a way that successive
audio frames are overlapped with a fixed percentage of the frame length (Figure 3.2).
Using these overlapped frames increases the number of input frames for 1D CNN. In
this experiment, we split all the audio waveforms of both AD and healthy subjects into
2-second wavelength frames, considering one second overlapped length.

We labeled all the AD audio frames as one and healthy ones as zero. We evaluated
the performance of M5 model on these small audio waveframes with different lengths
using 11-fold stratified cross-validation. In each fold, we used 10% of data for testing
and 90% for training/validation. The validation set was 10% of the training/validation
set. Since we have an unbalanced dataset, the stratified cross-validation ensures that
each fold has the same proportion of each class. The batch size was 32, and the number
of epochs was 10. Table 3.3 waves summarizes the 11-fold cross-validation results on the
test set.

Figure 3.2: Audio frames aggregation [3]
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In Table 3.3 we can see that the average accuracy level among 11 folds for the dataset
with 2-second disjoint waveforms has the highest value (0.63). Thus, using overlapped
audio frames (2-sec(1-sec)) helped to improve the performance of the M5 model.

Table 3.3: Testing accuracy for 11-fold cross-validation on different audio frame lengths

Fold 0.5-sec 1-sec 2-sec 3-sec 5-sec 2-sec (1-sec)

1 0.52 0.51 0.51 0.44 0.57 0.48
2 0.54 0.56 0.51 0.49 0.47 0.52
3 0.52 0.55 0.53 0.56 0.51 0.56
4 0.51 0.53 0.62 0.58 0.43 0.56
5 0.52 0.62 0.58 0.64 0.49 0.50
6 0.56 0.59 0.50 0.54 0.63 0.71
7 0.54 0.72 0.55 0.58 0.71 0.65
8 0.62 0.64 0.77 0.66 0.51 0.70
9 0.64 0.67 0.79 0.79 0.82 0.83
10 0.65 0.66 0.72 0.66 0.57 0.83
11 0.69 0.72 0.83 0.76 0.74 0.83

Mean 0.57 0.62 0.63 0.61 0.59 0.65

3.4.3 Aggregation of audio frames

Since each visit’s audio recording V is divided into N waveforms, V1, V2, ..., VN , we need
to have an aggregation method to obtain the final classification result for each V from
1D CNN prediction of its constructing waveforms (Figure 3.2). To achieve the final
prediction for each audio recording V , we conducted the thresholding rule such that the
average of predictions as labeled “1” (or AD) should be greater or equal to the threshold
value. This thresholding rule is denoted as the following equations:

y = 1
N

Σjpj, j ∈ [1, N ], (3.1)

y ≥ T. (3.2)

where pj is the 1D CNN prediction for the j = 1, ..., N frame of the audio recording V
and N is the number of frames constructing V . T is the predefined threshold value.
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We employed 11-fold cross-validation to evaluate the result of aggregating the 1D
CNN prediction outcomes on small audio frames. The thresholding value (T ) was varied
from 0.1 to 0.9 in 0.1 increments. Table 3.4 reports the mean results of 11-fold cross-
validation for the overall prediction value of each audio interview recording at different
frame lengths using the thresholding rule.

We can see that T ≥ 0.7 gives the best accuracy results for all experiments with dif-
ferent frame lengths. The experiments with the 2-second frame with 1-second overlapped
frames achieved the highest mean accuracy of 71% at a threshold of 0.7. Furthermore,
the 2-second disjoint frames achieved a mean accuracy close to that (67%). These results
indicate that the frames shorter than 2 seconds cannot capture the disfluencies in the
speech of patients with AD adequately. Also, if we increase the frame size from 2 seconds
to 3 seconds or more, the total number of frames will decrease, which may impact the
model’s performance due to the reduced number of frames.

Table 3.4: Results for mean of 11-fold cross validation using varying threshold values

Frame Length T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9
0.5-sec 0.57 0.57 0.58 0.57 0.57 0.56 0.59 0.63 0.59
1-sec 0.57 0.57 0.59 0.62 0.61 0.62 0.65 0.68 0.68
2-sec 0.58 0.60 0.64 0.65 0.66 0.66 0.67 0.65 0.61
3-sec 0.57 0.58 0.61 0.61 0.63 0.64 0.65 0.62 0.59
5-sec 0.56 0.58 0.59 0.60 0.61 0.62 0.63 0.59 0.54
2-sec(1-sec) 0.61 0.66 0.68 0.67 0.67 0.69 0.71 0.69 0.61

Due to the small size of Alzheimer’s dataset in Dementiabank, we are motivated to
get help from transfer learning methods that are trained on the larger image or audio
datasets. Transfer learning models can ultimately improve deep neural networks using
limited data. We employ the audio-based transfer learning approach [106], which is
pre-trained on a large audio dataset by using the raw audio frames and extracting the
mel-spectrogram features [113].

3.4.4 VGGish Transfer Learning

To overcome the small size of our dataset, we applied transfer learning using a pre-trained
VGGish model [106], which is trained on the Audioset dataset [113]. The VGGish
model is trained on 2 million human-labeled 10-second YouTube-8M and published by
Google [106].
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We used VGGish to generate audio feature embeddings from audio recordings. First,
the raw audio recordings are resampled to 16 kHz mono, and a spectrogram is generated
using the Short-Time Fourier Transform with a window size of 25 ms, a window hop of
10 ms, and a periodic Hann window. This spectrogram is used to compute a log mel
spectrogram with 64 mel bins covering the range 125-7500 Hz. The final audio features
contain 64 mel bands and 96 frames of 10 ms each. The log mel spectrogram tensors are
fed to the VGGish model as inputs. The output of the VGGish model is 128-dimensional
feature vector for every 1 second time bin (Figure 3.3).

(a) Audio wave

(b) Mel-frequency cepstral coefficients (MFCCs)

(c) VGGish feature embedding

Figure 3.3: An example of 5 second frame of Dementiabank audio wave and its corre-
sponding MFCC and trained VGGish feature embedding (sampling frequency=22050)

Once audio features are extracted using a pre-trained Vggish model, we can use a
classifier to detect the onset of AD using only the audio recordings of subjects (Figure
3.4).

This section proposes a novel interpretable hierarchical deep neural network model
for the Alzheimer’s audio classification problem. Our model not only achieves a new
benchmark accuracy performance for detecting AD but can also tell clinicians which
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Figure 3.4: VGGish transfer learning feature extracting mechanism

parts of the audio contain signals of memory loss and linguistic deficit due to Alzheimer’s
disease.

To compare the performance of our hierarchical deep neural network model with other
models, we first implemented the deep neural network models including bidirectional
gated recurrent neural networks (BGRU), attention-based bidirectional gated recurrent
neural networks and the support vector machine (SVM) on the audio feature embeddings
obtained from VGGish transfer learning model.

3.4.5 Bidirectional GRU Using VGGish Feature Embeddings

We fed the outputs of VGGish embeddings to bidirectional GRU (BGRU) to take
advantage of the presence of both past and future information in an audio recording. We
set one BGRU layer with a size of 50. The batch size is set to 32. The last layer is set to
have two classes with the Softmax activation function. Table 3.5 presents the results for
11-fold cross validation using BGRU.

3.4.6 Attention based Bidirectional GRU Using VGGish Feature Em-
beddings

We incorporated the attention layer just after the BGRU structure to consider the
importance of audio sequence components for the sake of interpretability and better
prediction outcomes. Table 3.6 presents the results for 11-fold cross validation using
Attention based BGRU.
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Table 3.5: 11 fold cross-validation using Bidirectional GRU

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.54 0.64 0.29 0.40 0.54
2 0.52 0.58 0.29 0.39 0.65
3 0.65 0.67 0.67 0.67 0.72
4 0.57 0.60 0.50 0.55 0.69
5 0.72 0.75 0.65 0.70 0.75
6 0.82 0.89 0.74 0.81 0.93
7 0.87 0.84 0.91 0.87 0.94
8 0.93 0.92 0.96 0.94 0.99
9 0.91 0.88 0.96 0.92 0.98
10 0.87 0.81 0.96 0.88 0.96
11 0.84 0.81 0.91 0.86 0.96

Mean 0.75 0.76 0.71 0.72 0.83

Table 3.6: 11-fold cross validation results using Attention based Bidirectional GRU

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.50 0.52 0.58 0.55 0.62
2 0.65 0.70 0.58 0.64 0.66
3 0.63 0.63 0.71 0.67 0.75
4 0.76 0.81 0.71 0.76 0.85
5 0.83 0.89 0.74 0.81 0.87
6 0.96 0.96 0.96 0.96 0.98
7 1.00 1.00 1.00 1.00 1.00
8 0.98 1.00 0.96 0.98 0.98
9 0.96 0.96 0.96 0.96 1.00
10 0.98 0.96 1.00 0.98 1.00
11 0.98 0.96 1.00 0.98 0.97

Mean 0.84 0.85 0.84 0.84 0.88

3.4.7 Support Vector Machine (SVM) Using VGGish Feature Em-
beddings

To compare the deep learning models with traditional machine learning algorithms,
we decided to employ a linear Support Vector Machine(SVM) algorithm on VGGish
pre-trained audio embeddings to test whether the prediction can have better performance.
The results for 11-fold cross validation using SVM are in Table 3.7.
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Table 3.7: 11-fold cross validation results using SVM

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.63 0.77 0.42 0.54 0.64
2 0.50 0.53 0.42 0.47 0.50
3 0.48 0.50 0.33 0.40 0.48
4 0.65 0.79 0.46 0.58 0.66
5 0.54 0.56 0.43 0.49 0.54
6 0.71 0.75 0.65 0.70 0.71
7 0.76 0.73 0.83 0.78 0.75
8 0.71 0.68 0.83 0.75 0.71
9 0.53 0.53 0.70 0.60 0.53
10 0.51 0.52 0.48 0.50 0.51
11 0.60 0.59 0.70 0.64 0.60

Mean 0.60 0.63 0.57 0.58 0.60

3.4.8 Hierarchical Deep Audio Model

The VGGish transfer learning model outputs 128-dimensional feature embedding for
every second of input audio waveforms. To capture the dependencies between waveforms,
we employed a Gated Recurrent Unit (GRU)-based recurrent neural network (RNN)
layer [78]. Since we have access to both past and future audio waveforms, we used
bidirectional GRU (BGRU) to capture more information and obtain better accuracy
performance. Figure 3.5 demonstrates how longitudinal input raw audio recordings go
through the VGGish model to extract audio embeddings for the proposed hierarchical
structure.

To recognize which parts of the audio plays an important role in the final classification,
we used the attention layer right after the BGRU layer. Attention-based neural networks
have been performing well in speech recognition and machine translation [6, 66].

The attention layer makes a weighted sum of BGRU output vector (H) that is used
to produce the audio encoding representation (r) as follows:

M = tanh(H) (3.3)

α = softmax(wTM) (3.4)

r = HαT (3.5)

where w is a BGRU-trained weight vector, and T indicates the transpose of the
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Figure 3.5: VGGish transfer learning on longitudinal audio inputs

vector.
The first level of our hierarchical model captures the dependencies between one-second

audio waveforms to build five-second audio encodings. The second level models the
dependencies between five-second audio encodings obtained from the previous level,
making the entire audio encoding. Finally, the dependencies between subsequent audio
interviews for each patient are captured in the third level.

The final goal is to detect the onset of Alzheimer’s disease for each individual using
audio interview recordings. Suppose that each individual has a sequence of at most L
follow-up interview visits vi such that each audio interview length is L seconds. We
segment each audio interview visit vi into audio chunks as eij, which represents the
jth audio chunk in the ith visit for this patient. Each chunk eij has the length of T ,
which means that it contains T one-second audio chunks such that cijk represents the
kth one-second audio chunk in the jth audio chunk (eij) in the ith audio interview visit.

Each level of our three level hierarchical deep audio model is illustrated in details as
follows.
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3.4.8.1 First Level

In the first level of our algorithm, We use VGGish to obtain a 128-dimensional feature
embedding vector for every one-second audio chunk, cijk, via

xijk = W(V GGish)cijk + b(V GGish), k ∈ [1, T ], (3.6)

Then we encode each audio chunk with length T using GRU-BRNN as hijk and its
hidden representation uijk as follows:

hijk = [−−−→GRU(xijk);←−−−GRU(xijk′)], k ∈ [1, T ], k′ ∈ [T, 1], (3.7)

uijk = tanh(Wwhijk + bw), k ∈ [1, T ]. (3.8)

The attention weights are computed as:

αijk = Softmax(uijk
Tuc), k ∈ [1, T ]. (3.9)

The last step in this encoding level is to encode each sentence as a weighted sum of
hijk with the attention scores,

eij = Σkαijkhijk, k ∈ [1, T ]. (3.10)

Figure 3.6 illustrates the layers for the first level of our hierarchical algorithm.

3.4.8.2 Second Level

In the second level of this structure, we encode each visit representation using eij obtained
from the first level applying GRU-BRNN to incorporate both future and past information
within a transcript. Then, we calculate the attention scores for the components of this
level αij with the context vector ue as follows:

hij = [−−−→GRU(eij);
←−−−GRU(eij′)], j ∈ [1, L], j′ ∈ [L, 1], (3.11)

uij = tanh(Wehij + be), j ∈ [1, L], (3.12)
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Figure 3.6: First level layers

αij = Softmax(uij
Tue), j ∈ [1, L], (3.13)

vi = Σjαijhij, j ∈ [1, L]. (3.14)

Figure 3.7 represents the components of the second level.

3.4.8.3 Third Level

In the third level, we repeat the same process for the patient representation P , which
is going to be computed by vi obtained from the second level (Figure 3.8). This level
determines the attention scores for each visit in Dementiabank longitudinal dataset as:

hi = [−−−→GRU(vi);
←−−−GRU(vi′)], i ∈ [1, N ], i′ ∈ [N, 1], (3.15)

ui = tanh(Wvhi + bv), i ∈ [1, N ], (3.16)

αi = Softmax(ui
Tuv), i ∈ [1, N ]. (3.17)

(3.18)

We obtain the patient representation via:

P = Σiαihi.i ∈ [1, N ]. (3.19)
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Figure 3.7: Second level layers

Finally, we use P obtained from the last level to build a binary classifier as:

d = σ(WdP + bd) (3.20)

Figure 3.9 demonstrates how these three levels interacts with each other in a hierar-
chical structure.

3.5 Experiments
We developed an interpretable hierarchical deep audio model to detect the onset of
Alzheimer’s disease. Since our input data contains variable-length audio recordings, we
need to transform data such that each audio recording has the same length. Thus, We
truncated and padded each audio interview recordings to 120 seconds. We applied both
truncating and padding zeroes at the end of one-dimensional audio tensors. Furthermore,
we divided each audio input of length 120 seconds to 24 audio chunks of length five
seconds.

Initially, we broke down each audio recording into one-second chunks and applied
VGGish transfer learning to obtain 128-dimensional audio feature embedding representa-
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Figure 3.8: Third level layers

tions. Then, we encode five-second audio chunks and the whole visit (120 seconds) audio
recording subsequently.

We set the GRU dimension to 50 for all three levels so that the bidirectional GRU
will have 100 dimensions. The batch size is set to 10 patients with the same number of
five visits per patient and 24 audio chunks of length 5 seconds per visit. The number of
epochs is 20.

We applied the Adaptive Subgradient (Adagrad) optimizer to train the hierarchical
model. Since we have the binary classification in the final level (AD or healthy subjects),
We used ‘categorical cross-entropy’ as the loss function with the ‘accuracy’ as our
performance metric.

3.6 Results
The Dementiabank dataset contains 99 healthy subjects and 169 subjects with probable
Alzheimer’s disease. Each subject has at most five annual follow-up visits. So, to evaluate
our model, we conducted 11-fold stratified cross-validation. In each fold, we randomly
split the input data to the training set and testing sets with a ratio of 9:1, respectively.
The validation set is 10% of the training set. All training, validation, and testing sets
are disjoint in each fold. The stratified cross-validation ensures the same ratio of healthy
to AD subjects in each fold. Table 3.8 presents the results for 11-fold cross validation
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Figure 3.9: Hierarchical deep audio model

using our hierarchical deep audio model.
Our three-level hierarchical deep audio model achieves a mean accuracy of 90% ranging

from 76% to 100% across 11-folds cross-validation to detect AD using patients’ raw
interview audio recordings, which is a new benchmark accuracy for audio classification
task on the DementiaBank dataset. The mean precision, recall and F1 score across 11
folds are 93%, 92% and 92%, respectively.

To evaluate our hierarchical model on balanced input data, we augmented audio data
by adding the random noise to the original audio recordings with the noise factor of
0.005. The audio augmentation technique was applied to both AD and healthy subjects
to create a balanced dataset such that we could obtain 198 subjects for each AD and
healthy category.

We applied 11-fold cross validation with the same experiment settings as the initial
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Table 3.8: 11-fold cross validation results using hierarchical deep audio model

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.76 0.78 0.88 0.82 0.80
2 0.80 0.87 0.81 0.84 0.89
3 0.87 1.00 0.81 0.90 0.99
4 0.92 0.89 1.00 0.94 0.92
5 1.00 1.00 1.00 1.00 1.00
6 0.91 0.88 1.00 0.94 0.90
7 0.91 0.88 1.00 0.94 0.98
8 1.00 1.00 1.00 1.00 1.00
9 0.95 1.00 0.93 0.97 0.98
10 0.91 0.93 0.93 0.93 0.93
11 0.88 1.00 0.80 0.89 0.96

Mean 0.90 0.93 0.92 0.92 0.94

unbalanced experiment (Section 3.5). Table 3.9 presents the results using augmented
audio data. The mean accuracy, precision, recall and F1 score across 11 folds are 90%,
93%, 87% and 90%, respectively.

Table 3.9: 11-fold cross validation results using augmented balanced data

Fold Accuracy Precision Recall F1 ROC-AUC
1 0.67 0.71 0.56 0.63 0.76
2 0.83 0.83 0.83 0.83 0.89
3 0.94 0.94 0.94 0.94 0.94
4 0.89 0.94 0.83 0.88 0.91
5 0.89 0.94 0.83 0.88 0.94
6 0.89 0.89 0.89 0.89 0.95
7 0.94 1.00 0.89 0.94 1.00
8 0.94 1.00 0.89 0.94 0.99
9 0.97 0.95 1.00 0.97 1.00
10 1.00 1.00 1.00 1.00 1.00
11 0.97 1.00 0.94 0.97 1.00

Mean 0.90 0.93 0.87 0.90 0.94

Figure 3.10 shows the confusion matrix for our hierarchical deep audio model for
both unbalanced (a) and augmented balanced (b) input data. It is clear from Figure 3.10
(a) that only 13 probable AD patients are miss-classified as healthy (false-negative) and
only 13 health subjects are miss-classified as probable AD (false-positive). Furthermore,
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(a) Unbalanced data (b) Balanced data (Augmented)

Figure 3.10: Confusion matrix for classification of AD and Healthy subject using our
hierarchical deep model

Figure 3.10 (b) shows that our model performs reasonably robust again when using
balanced data. We have 25 probable AD patients that falsely predicted as healthy and
13 healthy samples that falsely predicted as AD.

We also evaluated the performance of our hierarchical deep audio model against
three models, including non-hierarchical deep neural networks: bidirectional GRU and
attention based bidirectional GRU ; and non-deep learning method including Support
Vector Machine (SVM). The first step of extracting feature embeddings using the VGGish
transfer learning method is the same for all these three models. However, in order to
evaluate the impact of hierarchical models, we fed these models with the full pool of
patients’ visits regardless of the visit time, which includes 309 audio recordings for AD
subjects, and 243 audio recordings for healthy subjects. The mean accuracy for SVM was
60% and for bidirectional GRU and attention-based bidirectional GRU were 79% and
83%, respectively (Table 3.10). Not only is the prediction performance of non-hierarchical
models lower than that of our novel hierarchical deep audio model, which was 90%, but
also those models are black boxes and cannot provide any insights within the model.

Table 3.10: Testing accuracy results for different models

Model 1D-CNN-
Raw Audio

SVM-
VGGish

BGRU-
VGGish

Attention-
BGRU-VGGish

Hierarchcal
Model

Accuracy 71% 60% 79% 83% 90%
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To show the interpretability of our model, we presented five samples of the patient’s
visits (Figures 3.11, 3.12, 3.13,3.14, 3.15). In each sample, the whole audio waveform
and its corresponding attention scores are depicted as plots. The plot of attention
score shows how our model gives different attention scores to different parts of the
interview audio recording. We listened to the audio recordings to extract those parts
of dialogue with high attention scores. Each audio interview transcript is presented in
each figure, and those parts with higher attention scores are highlighted with yellow and
red colors. Red highlight signals those parts with the highest attention scores (peaks
in the attention plot) and yellow highlights related to those interview parts with lower
attention scores compared to the red highlight. We can see that all these highlighted
parts are the signals of disfluencies and memory loss in patients’ speech, and our model
can automatically capture those parts very well. The implementation codes are available
online at: https://github.com/marynik66/AD-Audio

3.7 Discussion
In this study, we developed an interpretable three-level hierarchical deep audio model to
detect the onset of Alzheimer’s using raw audio interviews of patients in their annual
follow-up visits. Our hierarchical deep audio model achieved the mean accuracy of 90%
across 11-fold cross-validation on Dementiabank audio dataset, which is a new benchmark
performance compared to similar works ( [114]).

We explored our model interpretability by providing interview samples where the
parts of speech with high attention scores were highlighted. The highlighted speech of
interview transcripts in figures 3.11, 3.12, 3.13, 3.14 and 3.15 show more of Alzheimer’s
disfluency codes (Table 2.1). For example, we can see that the red highlighted sentences
in figure 3.14 is “&plat <off the> [/] &uh off the &uh &sh &pl chair” which has
the most pauses including “uh”,“sh” as well as phrase revision “off the”. This approves
that our model can capture those disfluencies very accurately.

Our model also compensates the small size of the Dementiabank dataset by the
VGGish transfer learning method, which is trained on two million 10-second YouTube-
8M. Transfer learning makes our model more applicable in real healthcare problems
where collecting datasets is a challenging step towards developing automatic learning
models.

To conclude, we have developed an interpretable deep audio model to predict
Alzheimer’s disease’s onset. The results of our experiments showed an outstanding

67



accuracy performance (90%). It can also tell clinicians the exact parts of patients’
interview audio that are affected more by memory loss issues. Our model’s transparency
is crucial for clinicians to trust and apply automatic predictive tools in practice.

(a) Audio wave

(b) Attention score

(c) Interview transcript

Figure 3.11: First visit (first year)
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(a) Audio wave

(b) Attention Score

3
(c) Interview transcript

Figure 3.12: Second visit (second year)
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(a) Audio wave

(b) Attention Score

(c) Interview transcript

Figure 3.13: Third visit (third year)
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(a) Audio wave

(b) Attention Score

(c) Interview transcript

Figure 3.14: Fourth visit (fourth year)
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(a) Audio wave

(b) Attention Score

(c) Interview transcript

Figure 3.15: Fifth visit (fifth year)
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Chapter 4 |
Detection of COVID-19 from Chest
Radiography Images

4.1 Introduction
The outbreak of the novel coronavirus known as Severe Acute Respiratory Syndrome
CoronaVirus 2 (SARS-CoV-2) started in Wuhan, China, in December 2019 and rapidly
spread worldwide. As the number of people with Coronavirus Disease 2019 (COVID-19)
escalates in the United States and around the world, reducing the number of transmissions
from infected individuals to the general population and healthcare workers becomes
increasingly important and challenging.

Although about eight in ten people who contract the SARS-CoV-2 virus remain
asymptomatic or develop only mild to moderate symptoms [115–118], others may develop
life-threatening conditions, such as dyspnea, pneumonia, or severe acute respiratory
syndrome, which require hospital or ICU care with supplemental oxygen or mechanical
ventilation [119, 120]. The rapid spread of COVID-19 is, in part, due to the lack of
sufficient testing and isolation of positive cases, which subsequently leads to community
transmission from undiagnosed cases. Even where testing is available, the long wait for
the test results, which is about 12-13 days in some cases due to the short supplies of
laboratories for RT-PCR testing and the surge in the number of cases, makes the tests’
utility marginal [121]. This rapid spread may result in overwhelming and collapsing
healthcare systems, even in developed countries, due to the surge in demand for hospital
and ICU care [122].

To control the transmissions and flatten the curve, we must use a widely-available, fast,
and accurate COVID-19 detection method, and immediately isolate diagnosed cases until
they are no longer infectious. The current gold standard screening method for COVID-19
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is the direct detection of SARS-CoV-2 RNA by reverse transcription-polymerase chain
reaction (RT-PCR) test [123]. Several RT-PCR assays are used in the U.S. and around
the world. Each has different performance characteristics and turnaround times (ranging
from minutes to several hours) and requires different specimen types [124]. The sensitivity
of RT-PCR testing is widely variable. Depending on the assay, the type and quality
of the specimen obtained, the stage of the disease, and the duration of infection, the
sensitivity can vary between 32% to 73% [125–127]. Therefore, there is an immediate
need for accessible, rapid, and accurate testing tools to help combat the spread of the
SARS-CoV-2 virus.

Medical imaging modalities such as Chest X-ray (CXR) and Computed Tomography
(CT) can be used as an alternative to RT-PCR testing to detect characteristic symptoms
of COVID-19 in patients’ chest images [128, 129]. Detecting COVID-19 from chest
radiography images has shown promising results and higher sensitivity compared to
RT-PCR testing [130]. Moreover, CT images of patients with COVID-19 may show
abnormalities before the patient develops symptoms and before the detection of viral
RNA from upper respiratory specimens [131, 132]. Even in asymptomatic cases with
negative nucleic acid testing, CT images have proven definite features in screening and
detecting COVID-19 patients [133].

Although radiologists can successfully distinguish COVID-19 from viral pneumonia
using chest CT images with moderate to high accuracy [134], working with a high
workload of images in emergencies like the COVID-19 pandemic leads to more fatigue
and can affect human diagnostic performance [135].

Artificial intelligence (AI) methods have recently proved a huge impact in medical data
analysis by automatically extracting rich features from multi-modal medical data [136].
In this context, artificial intelligence (AI) methods can be leveraged to automatically
analyze medical images for subtle signs of SARS-CoV-2 infection and detect COVID-19
rapidly and accurately. However, the success of AI models highly relies on the availability
of input data. Although many patients are infected by COVID-19, publicly available
COVID-19 datasets with chest images are difficult to obtain due to patients’ privacy
issues. Therefore, we first describe the publicly available COVID-19 image datasets.
Then, we review on the deep learning-based AI models developed to detect COVID-19
infection using those available datasets.
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4.2 Dataset Description
To detect COVID-19 using AI models, we used two modalities of chest radiography
images, including X-ray images and CT slices. These images are mainly extracted from
five major data sources as follows:

• Novel Corona Virus 2019 Dataset (S1): Joseph Paul Cohen and Paul Mor-
rison and Lan Dao [137] have built an open public dataset which comprised of
chest X-ray and CT images of patients diagnosed with COVID-19, Middle East
respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS) and
Acute respiratory distress syndrome (ARDS). This dataset is collected indirectly
from publications, hospitals and clinicians as well as directly from other public
sub-datasets including:

– https://radiopaedia.org/ (license CC BY-NC-SA)

– https://www.sirm.org/category/senza-categoria/COVID-19/

– https://www.eurorad.org/ (license CC BY-NC-SA)

– https://coronacases.org/ (preferred for CT scans, license Apache 2.0)

The details of dataset annotation are described in their Github repository: https:
//github.com/ieee8023/COVID-chestxray-dataset This dataset is This dataset
is continuously updated and as of 1st August 2020, there were 475 chest X-rays
and 59 CT images of confirmed COVID-19 cases. In this dataset, metadata is
not complete for all patients. The average age is 56± 2, and the number of male
patients was approximately twice more than female patients (326 vs. 174) for those
images with demographic information.

• Chest X-ray Images (pneumonia) Dataset (S2): Chest X-ray images from
other infections (viral/bacterial) have been collected in Kaggle [138]. This dataset
contains 3949 images from patients with other viral/bacterial infections as well as
1583 images from individuals with no pneumonia (i.e., normal). This dataset is
collected from pediatric patients ages one to five years old from Guangzhou Women
and Children’s Medical Center, Guangzhou.

• COVID-19 Radiography Dataset (S3): Chowdhury et al. [139] developed the
dataset of COVID-19 X-ray images from different sources including the Italian
Society of Medical and Interventional Radiology (SIRM) COVID-19 dataset [140],
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Novel Corona Virus 2019 Dataset [137] and images from 43 different publications.
The distributions of images for each category are as follows: 219 COVID-19 positive
images, 1341 normal images, and 1345 viral pneumonia images.

• SARS-CoV-2 CT-scan Dataset (S4): Soares et al. [141] collected a public
SARS-CoV-2 CT scan dataset from real patients in hospitals from Sao Paulo,
Brazil. This dataset contains 1252 CT scans for COVID-19 and 1230 CT scans for
patients not infected by COVID-19 (non-COVID19).

• COVID-CT Dataset (S5): Zhao et al. [142] developed a COVID-19 dataset
based on the chest CT images of patients. They collected CT images from COVID19-
related papers (i.e, medRxiv, JAMA, Lancet, etc) from January 19th to March
25th. This dataset comprised of 349 COVID-19 patients and 397 not infected
patients (non-COVID19).

4.3 Related works
Motivated by the need for a fast testing tool to detect COVID-19, several automatic
detection models using deep learning models with radiography images as their input
have been developed recently. Narin et al. [143] proposed three different convolutional
neural network models to detect COVID-19 patients from healthy individuals (binary
classification). They used chest X-ray images of 50 COVID-19 patients from S1 [137]
and 50 normal chest X-ray images from S2 [144]. They obtained the highest accuracy of
98% compared to their other two models.

Ozturk et al. [145] developed a model called DarkCOVIDNet for COVID-19 detection
in a binary classification (COVID vs. No-Findings) and multi-class classification (COVID
vs. No-Findings vs. Pneumonia). They obtained X-ray images of COVID-19 patients
from S1 [137] and images of Normal pneumonia patients from [146]. They achieved
an accuracy performance of 98.08% for binary classification and 87.02% for multi-class
classification.

Wang et al. [147] proposed a model called COVID-Net, which is tailored to detect
COVID-19 using S1 [137] which is publicly available. They obtained an overall accuracy
of 92.6% in a multi-class classification setting with 87.1 %, 90.0 %, and 97.0% sensitivity
for COVID-19, NonCOVID-19, and normal subjects, respectively.

Yang et al. [148] built a new CT dataset, “COVID-CT-Dataset” (S5), which is publicly
available. Using this dataset, they developed an AI model using multi-task learning and
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contrastive self-supervised learning to detect COVID-19 and achieved the best accuracy
performance of 89.1%.

Chowdhury et al. [139] collected a new X-ray dataset that is mainly created from
public open-sourced datasets [139]. This dataset contains 423 COVID-19, 1485 viral
pneumonia, and 1579 normal chest X-ray images. They also implemented different
transfer learning methods and obtained the best classification accuracy of 97.94% using
DenseNet201.

Soares et al. [141] built a large CT dataset called “SARS-CoV-2 CT-scan dataset”
collected from different hospitals in Sao Paulo, Brazil. This dataset is made of 1252 CT
scans belongs to COVID-19 patients, and 1230 CT scans belong to patients not identified
with COVID-19 infection. Using this dataset, they developed the classification model of
xDNN, which achieved an accuracy of 97.38% in the binary classification of COVID-19
vs. Non-COVID19 groups.

Tabik et al. [149], built a new database called COVIDGR-1.0, which contains all
images from patients with all levels of severity, from Normal with positive RT-PCR, Mild,
Moderate to Severe. They propose a COVID Smart Data based Network (COVID-SDNet)
approach, which achieves an accuracy of 97.37% ± 1.86%, 88.14%±2.02%, 66.5%±8.04%
in severe, moderate and mild COVID severity levels. This dataset can help to detect
different severity levels of COVID-19 using Chest X-ray (CXR) images.

Karim et al. [150] proposed an explainable deep learning-based model called Deep-
COVIDExplainer using CXR images. They obtained chest X-ray images from S1 [137],
Ozturk et al. [145] and Wang et al. [147]. They obtained promising results in detecting
COVID-19 with positive predictive value (PPV) of 91.6%, 92.45%, 96.12%, precision,
recall, and F1 score of 94.6%, 94.3%, and 94.6% for normal, pneumonia, and COVID-19
patients, respectively. More recently, numerous studies has focused on developing deep
learning-based models to detect COVID-19 using chest X-ray images [128,151–154]. Li
et al. [154] proposed a deep learning-based model called COVNet to detect COVID-19
using chest CT. COVNet can successfully detect COVID-19 from community-acquired
pneumonia and Non-pneumonia classes. They used private CT images dataset, which
was collected from six hospitals between August 2016 and February 2020. The model
achieved a sensitivity of 89.8% and a specificity of 95.8% in detecting COVID-19.

Butt et al. [155] employed two CNN three-dimensional classification models on a
private dataset. They obtained an accuracy of 86.7% to detect COVID-19 from normal
patients. Apostolopoulos et al. [156] applied different transfer learning methods using
public available X-ray images including S1 [137]. They achieved the best accuracy,
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sensitivity, and specificity of 96.78%, 98.66%, and 96.46%, respectively.
Zhang et al. [157] propose a model called the confidence-aware anomaly detection

(CAAD), which detects anomalies that exist on chest images. They obtained an AUC of
83.61% and a sensitivity of 71.70% using the X-COVID dataset, which comprised 106
confirmed COVID-19 cases and 107 normal controls. Wang et al. [158] applied AI models
to detect COVID-19 using 453 CT images of COVID-19 patients from a private dataset.
They achieved an accuracy of 73.1% with a specificity of 67% and a sensitivity of 74%.

Zheng et al. [159] proposed a weakly-supervised deep learning algorithm for lung
segmentation using CT chest images collected from a single hospital of 313 confirmed
COVID-19 patients and 229 patients without COVID-19. They proposed an end-to-end
deep learning model which is called DeCoVNet. This model obtained the best accuracy
of 90.8% without annotation of of pulmonary lesions in CT volumes.

Song et al. [160] proposed a deep learning-based model that can identify the COVID-
19 infected patients and bacteria pneumonia-infected patients with a sensitivity of 0.96
using chest CT images collected from hospitals in China. Their model is also able to
localize the main lesion features of CT images. Ardakani et al. [161] used ten well-known
convolutional neural networks to detect COVID-19 from the non-COVID19 group. The
ResNet-101 model obtained a sensitivity of 100%, a specificity of 99.02%, and an accuracy
of 99.51%. They retrospectively collected chest CT images of patients from September
2019 to December 2019.

Minaee et al. [162] prepared a dataset using publicly available X-ray datasets which
contains 184 COVID-19 samples and 5000 samples without COVID-19. They trained
several convolutional neural networks, including ResNet18, ResNet50, SqueezeNet, and
DenseNet-121 and achieved a sensitivity rate of 98% and a specificity rate of around 90%.
Kumar et al. [163] proposed a prediction method that extracts deep features from X-ray
images using ResNet152. Their dataset includes 62 images for COVID-19 patients, 1341
images for Normal patients and 1345 images for other Pneumonia patients. They used
Random Forest and XGBoost for final classification of COVID-19, Normal and other
Pneumonia using extracted deep features and achieved an accuracy of 97%.

Bullock et al. [164] provide a comprehensive review of recent studies based on Artificial
Intelligence methods on different aspects of the COVID-19 crisis, including molecular,
clinical, and societal applications. They also present a review on datasets, tools, and
resources required to develop AI models to detect COVID-19.

In this study, we develop a new deep learning model to automatically detect COVID-
19 using chest X-ray and CT scan images. We refer to this model as Artificial Intelligence
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for Detection of COVID-19 (AIDCOV). AIDCOV employs a novel hierarchical attention
structure, which can tell clinicians the specific locations of the lung affected by the
SARS-CoV-2 infection rapidly and with high sensitivity and specificity.

4.4 Methods
AIDCOV includes a novel two-level hierarchical attention structure for classification of
chest radiography images into one of the three classes: COVID-19 viral infection, other
viral/bacterial infection (i.e., non-COVID19 infection), or normal (i.e., no infection).
This hierarchical structure enables the model to capture the dependency of features
extracted from chest images via a pre-trained network (e.g., VGG-16) in both horizontal
and vertical directions and helps improve model performance. The attention mechanism
makes the black-box deep neural network model interpretable such that the model can
designate the specific locations of patients’ lungs that manifest subtle signs of infection.
AIDCOV is an end-to-end deep neural network model, which does not require any feature
engineering.

4.4.1 Transfer Learning

Deep neural network models often include hundreds of thousands of hyperparameters,
and thus they need to be trained on very large datasets. Transfer learning is a technique
that allows training deep neural network models on small datasets by taking a pre-trained
deep neural network model and repurposing it for a different task. We leverage the
powerful idea of transfer learning by employing VGG-16 [100], a pre-trained convolutional
neural network that is trained on a dataset of more than 15 million images [5]. VGG-16
has shown promising performance for medical image analysis [165–167]. VGG-16 has 13
convolutional layers, 5 pooling layers, and 3 fully connected layers. We removed the 3
fully connected layers and replaced them with our novel hierarchical attention structure.
While the early layers of VGG-16 learn low-level features of the image, our hierarchical
attention model learns subtle signs of COVID-19 and other viral/bacterial infections and
determines the final classification. Section 4.4.2 illustrates this process in details.
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Figure 4.1: Low-dimensional feature extraction using the pre-trained VGG-16 model.
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4.4.2 Two-level Hierarchical Deep Neural Network Model for Image
Classification

In this section, we describe our novel hierarchical attention structure for image classifica-
tion, which considers the dependencies of feature components in both horizontal (width)
and vertical (height) directions.

Step 1: Resizing the image. First, we need to resize input chest radiography
images to the format that is compatible with the pre-trained VGG-16 model. We resized
all the input images to size 160× 160× 3.

Step 2: Feature extraction. We use VGG-16 to obtain a low-dimensional feature
representation vector for each resized image (Figure 4.1).

In general, if the input image is of size (A, B, 3), the output of the VGG-16 model
will be a tensor of size (A/32,B/32, 512). In our case, since the input image is of size
(160,160,3), the output of the model is of size (5, 5, 512). We show this output by X,
which is obtained as follows:

X = WV GGC + bV GG, (4.1)

where C is the resized radiography image, and WV GG and bV GG are the trained weight
and bias matrices obtained from the pre-trained VGG-16 model.

As mentioned above, X is the output of size (5, 5, 512). We refer to each (1, 1, 512)
block of X as xij, where i ∈ [1, 5] and j ∈ [1, 5] (Figure 4.2).

Step 3: Horizontal feature encoding. Next, for each level of i ∈ [1, 5], we encode
the output block along the x axis (i.e., horizontally). To do so, we apply a GRU-BRNN
on xi1, ..., xi5 for each level of i to incorporate horizontal dependencies (in both forward
and backward directions) within each row of an image. Thus, we have:

hij = [−−−→GRU(xij);
←−−−GRU(xij′)], j ∈ [1, 5], j′ ∈ [5, 1], (4.2)

uij = tanh(Wihij + bi), j ∈ [1, 5], (4.3)

where hij is the output of the GRU-BRNN and uij is its hidden representation. Wi and
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Figure 4.2: The output block of size 5× 5× 512.

bi are the weight matix and bias vector for each row of the xij block learned through
training. Since we aim to determine the contribution of each xij block within each row
(horizontal level) to the overall prediction, we applied an attention layer on top of the
hidden representations uij to obtain the attention scores αij by learning the row context
vector ui,

αij = Softmax(uij
Tui), j ∈ [1, 5]. (4.4)

(4.5)

Finally, we encode each ŷi block as a weighted sum of hij and the attention scores
αij (Figure 4.3),

ŷi = Σjαijhij. (4.6)

(4.7)

Step 4: Vertical feature encoding. In this step, we encode the representations ŷi

computed from the previous step along the y axis (i.e., vertically). We further determine
the attention scores αi for each ŷi block as follows.

hi = [−−−→GRU(ŷi);
←−−−GRU(ŷi′)], i ∈ [1, 5], i′ ∈ [5, 1], (4.8)

ui = tanh(Whi + b), (4.9)
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Figure 4.3: Encoding feature outputs in both x and y axis

αi = Softmax(ui
Tu), (4.10)

I = Σiαihi, (4.11)

where hi capture the dependencies of ŷi blocks using GRU-BRNN and ui is its hidden
representation obtained through training of W and b parameters. The attention weights
αi for ŷi are computed using ui and the trained context vector of u. The image encoding
is the weighted sum of hi encodings and attention scores αi. Finally, we use the image
encoding I to build a multi-class classifier as follows:

p = σ(WII + bI) (4.12)

Figure 4.4 shows the hierarchical encoding network of Steps 3 and 4 described above.
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Figure 4.4: The hierarchical attention structure for image encoding.

4.4.3 Datasets

In our study, we leverage datasets from these five major data sources to build five different
datasets (Table 4.1). Dataset-1 is the public dataset built by combining Novel Corona
Virus 2019 Dataset [137] and Chest X-ray Images (pneumonia) dataset [138]. This
dataset contains chest X-ray images of 475 COVID-19 patients as reported by Cohen
et al. [137]. The other two categories of this dataset, including 3949 other infections
(non-COVID19) and 1583 normal images, comes from Moony et al. [138]. Dataset-2
developed by Chowdhury et al. [139] and includes chest X-ray images from 219 COVID-19,
1341 normal and 1345 non-COVID19 images. Dataset-2 comes from SARS-CoV-2 CT
scan dataset [141] containing 1252 COVID-19 CT images and 1229 non-COVID19 CT
images.

Dataset-3 is based on CT images collected by Soares et al. [141]. This dataset contains
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1252 and 1229 CT images for COVID-19 and non-COVID19 patients, respectively.
Dataset-4 originates from the COVID-CT dataset [142], which includes 349 CT images

of COVID-19 patients and 397 CT images of not infected patients. Dataset-5 is built
using 59 CT images from Novel Corona Virus 2019 Dataset [137] and 1252 CT images
from SARS-CoV-2 CT scan dataset [141]. Table 4.1 illustrates the components of our
five datasets. This study was exempt from institutional review board (IRB) review since
it used publicly available, de-identified data.

Table 4.1: Publicly available datasets

Dataset Sources Type Task Type Categories No.Images
Dataset-1 [137], [138] X-ray 3-class COVID-19 475

Normal 1583
Non-COVID19 3949

Dataset-2 [139] X-ray 3-class COVID-19 219
Normal 1341
Non-COVID19 1345

Dataset-3 [141] CT 2-class COVID-19 1252
Non-COVID-19 1229

Dataset-4 [148] CT 2-class COVID-19 349
Non-COVID-19 397

Dataset-5 [137], [141] CT 2-class COVID-19 1311
Non-COVID-19 1229

4.4.4 Data Augmentation

Due to the limited number of COVID-19 images in our datasets, different image augmen-
tation methods have been applied to increase COVID-19 images. Shorten et al. [168]
provide a comprehensive review of image augmentation techniques. In this work, we
applied a random rotation operation with the rotation range of 50 degrees. Also, we
randomly flipped both vertically and horizontally. Horizontal and vertical shift augmen-
tation was conducted with a range of 0.2. Random zoom augmentation has also been
applied with a range value of 0.1. Wang and Perez [169] proved the effectiveness of data
augmentation methods using a small subset of the ImageNet [101] dataset.
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4.4.5 Implementation Details

We set the GRU dimension to 50 for both horizontal (Step 3) and vertical (Step 4)
encoding levels. So, the bidirectional GRU has 100 dimensions. We used a mini-batch
size of 20 images and trained on 20 epochs.

We used ‘categorical cross-entropy’ as our loss function to classify chest radiography
images into one of the three classes (COVID-19, other infection, or normal). We employed
the Adaptive Subgradient (Adagrad) as the optimizer.

To evaluate the model’s performance in each experiment, we conducted 10-fold
stratified cross-validation such that in each fold, the dataset is randomly divided into a
training set and a testing set with the ratio of 9:1, respectively. The validation dataset
is set as 10% of the training dataset. In each fold, the training, validation, and testing
datasets are completely disjoint sets. The model is trained on the training set, validated
on the validation set, and finally tested on an independent test set.

4.4.6 Experiments

Two different modalities of the dataset, including X-ray and CT images, were studied
in this work. Thus, we split the experiments into two main categories. The first
set of experiments was conducted using datasets that mainly included X-ray images.
These experiments are multi-class such that the goal is to distinguish between three
classes of patients including COVID-19, non-COVID19, and Normal. The second set
of experiments was conducted on CT datasets and employ binary classifiers that try
to distinguish COVID-19 CT images from non-COVID-19 CT images. Tables 4.2 and
4.3 presents both set of the experiments designed in this study. The details of these
experiments are as follows:

• Experiment1-1: This experiment is designed on X-ray images using Dataset-1,
which contains 475 COVID-19, 1583 Normal, and 3949 non-COVID-19 images.
Since this dataset is unbalanced, we conducted 10-fold stratified cross-validation,
which ensures the same ratio of subjects of each class in each fold.

• Experiment1-2: To design a more reliable experiment, we made Dataset-1 bal-
anced using data augmentation for COVID-19 X-ray images and increased the
number of images from 475 to 1583 (over-sampling). We used all the data from
Normal class (1583), and we picked 1583 images out of 3949 images randomly from
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the non-COVID-19 category. Thus, the resulted balanced dataset contains 1583
X-ray images for each category.

• Experiment1-3: In this experiment, we built a balanced dataset using under-
sampling. We kept all the images in our minority class which is COVID-19 with
475 X-ray images. We then chose the first 475 images of other two classes.

• Experiment1-4: This experiment was designed for implementation on Dataset-2
specifically. This unbalanced dataset contains 219 X-ray images from COVID-19
class, 1351 Normal images, and 1345 non-COVID-19 images. To validate our results,
we employed 10-fold stratified cross-validation.

• Experiment1-5: We designed this experiment to implement our model on a
balanced dataset that originated from Dataset-2. To build a balanced dataset, we
used under-sampling with the first 219 images for each category.

• Experiment1-6: This experiment is designed to implement our model on a larger
balanced dataset. We leveraged data augmentation to increase the number of
COVID-19 images from 219 to 1345 images. We picked the first 1345 images for
non-COVID-19 category to have a balanced dataset which contains 1345 images
for each class.

• Experiment2-1: This experiment was designed to evaluate the performance of our
model on unbalanced CT images using Dataset-5. We conducted 10-fold stratified
cross-validation to validate the results.

• Experiment2-2: This experiment is designed to implement our model on a
different unbalanced CT dataset (Dataset-3). We used 10-fold stratified cross-
validation for final evaluation.

• Experiment2-3: In this experiment, we made Dataset-3 balanced by reducing
the number of COVID-19 images to the same number of images for non-COVID-19
(1229 images for each class).

• Experiment2-4: This experiment is designed to evaluate the model performance
on a different small dataset, which includes 349 COVID-19 images and 397 non-
COVID-19 images. The results are validated using a 10-fold stratified cross-
validation.
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Table 4.2: First set of experiments using X-ray images

Exp. Task type Modality Design Number of Samples Dataset
1-1 3-class X-ray Unbalanced COVID19: 475 Dataset-1

Normal: 1583
Non-COVID19: 3949

1-2 3-class X-ray Balanced
(Augmented)

COVID19: 1583 Dataset-1
Normal: 1583
Non-COVID19: 1583

1-3 3-class X-ray Balanced COVID19: 475 Dataset-1
Normal: 475
Non-COVID19: 475

1-4 3-class X-ray Unbalanced COVID19: 219 Dataset-2
Normal: 1351
Non-COVID19: 1345

1-5 3-class X-ray Balanced COVID19: 219 Dataset-2
Normal: 219
Non-COVID19: 219

1-6 3-class X-ray Balanced
(Augmented)

COVID19: 1345 Dataset-2
Normal: 1345
Non-COVID19: 1345

4.4.7 Comparison with Simpler Structures

To better evaluate the value of our novel hierarchical attention structure, we developed
two related but simpler deep learning models. In one model, we removed the attention
mechanism from our base model, i.e., we fed the feature representations obtained from
VGG-16 to the hierarchical structure of Figure 4.4 without the attention layers. In another
model, we replaced the whole hierarchical attention network with a fully connected
network.
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Table 4.3: Second set of experiments using CT scans

Exp. Task type Modality Design Number of Samples Dataset
2-1 2-class CT Unbalanced COVID19: 1318 Dataset-5

Non-COVID19: 1229

2-2 2-class CT Unbalanced COVID19: 1259 Dataset-3
Non-COVID19: 1229

2-3 2-class CT Balanced COVID19: 1229 Dataset-3
Non-COVID19: 1229

2-4 2-class CT Unbalanced COVID19: 349 Dataset-4
Non-COVID19: 397

4.5 Results

4.5.1 Model Performance

We conduct ten experiments using two different input data modalities, including CT and X-
ray images (Tables 4.2 and 4.3 and). The model demonstrated outstanding performance in
detecting COVID-19 for both modalities of data. The first six experiments are focused on
datasets with X-ray images as their input. We first start with a large unbalanced dataset
(Dataset-1) and evaluated our model using stratified cross-validation. In experiment 1-1,
AIDCOV achieved a mean cross-validation accuracy of 98.4% across the 10 folds (Table
4.5). The hierarchical attention model had a sensitivity (true positive rate) of 99.8%, a
specificity (true negative rate) of 100%, and an F1-Score of 99.8% for detecting COVID-
19 from chest radiography images (Table 4.5). AIDCOV also demonstrated promising
performance for correctly classifying non-COVID19 chest images. The model had a
sensitivity (specificity) of 98.6% (98.1%) for detecting other viral/bacterial infections and
a sensitivity (specificity) of 97.5% (98.7%) for normal chest radiography images. The
F1-Score for other infections and normal images were 98.8% and 96.9%, respectively.

We also got help from data augmentation techniques in image processing and created
balanced input data in experiment 1-2 (over-sampling). The results in Table 4.5 demon-
strates that our model detects COVID-19 patients with a sensitivity of 100%. The mean
overall accuracy across ten folds is 98.9%. In our third experiment, we created a balanced
dataset by reducing the number of samples of our two larger classes (under-sampling).
The results show that our model can successfully detect COVID-19 patients again with a
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sensitivity of 100%. The mean accuracy of 10 folds is 99.6%.
Experiments 1-4 to 1-6 are implemented on our second dataset (Dataset-2). Ex-

periment 4 conducted on the original unbalances dataset. We have balanced the input
data in experiments 1-5 and 1-6 by reducing and augmenting each class’s images. Our
results (Table 4.6) show that AIDCOV achieves the mean accuracy (sensitivity) of 98.6%
(99.2%), 98.6% (98.8%) and 99.2% (100%) in experiments 1-4, 1-5 and 1-6, respectively.

The second set of experiments includes binary classifications that have been con-
ducted on CT images. Table 4.4 presents the results of four experiments in terms of
accuracy, sensitivity, specificity, and F1-Score for each class. Experiments 2-1 and 2-2
are implemented on large unbalanced CT datasets (Dataset-5 and Dataset-3). AIDCOV
model achieved the overall mean accuracy of 98.7% and 98.8% on experiments 2-1 and
2-2, respectively. In addition, the model detects COVID-19 patients with a sensitivity of
99% and 99.4% for those experiments.

We balanced the large CT dataset using an under-sampling approach to examine our
model’s performance on a balanced dataset. The results of experiment 2-3 demonstrate
that the AIDCOV model can successfully detect COVID-19 with an accuracy and
sensitivity of 99.3% and 99.4% (Table4.4). Finally, we conducted our model on a smaller
CT dataset (Dataset-4).

Table 4.4: CT Results

Exp. Fold Acc. COVID-19 Non-COVID19
Sens. Spec. F1. Sens. Spec. F1.

2-1 1 92.9 94.3 91.6 92.8 91.6 94.3 93.0
2 98.4 99.2 97.6 98.5 97.6 99.2 98.4
3 98.4 98.6 98.3 98.6 98.3 98.6 98.3
4 100 100 100 100 100 100 100
5 98.4 98.6 98.2 98.6 98.2 98.6 98.2
6 99.6 100 99.2 99.6 99.2 100 99.6
7 99.6 99.3 100 99.6 100 99.3 99.6
8 99.6 100 99.2 99.6 99.2 100 99.6
9 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100
Mean 98.7 99.0 98.4 98.7 98.4 99.0 98.7

2-2 1 94.4 98.4 90.2 94.7 90.2 98.4 94.1
2 96.8 98.4 95.2 96.8 95.2 98.4 96.7
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Table 4.4: CT Results

Exp. Fold Acc. COVID-19 Non-COVID19
Sens. Spec. F1. Sens. Spec. F1.

3 98.8 100 97.5 98.9 97.5 100 98.7
4 99.6 100 99.2 99.6 99.2 100 99.6
5 99.6 99.3 100 99.6 100 99.3 99.6
6 100 100 100 100 100 100 100
7 99.2 98.3 100 99.2 100 98.3 99.2
8 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100
Mean 98.8 99.4 98.2 98.9 98.2 99.4 98.8

2-3 1 95.9 95.3 96.6 96.0 96.6 95.3 95.8
2 98.4 100 96.9 98.3 96.9 100 98.4
3 99.6 99.2 100 99.6 100 99.2 99.6
4 99.2 100 98.5 99.1 98.5 100 99.2
5 99.6 99.3 100 99.6 100 99.3 99.5
6 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100
Mean 99.3 99.4 99.2 99.3 99.2 99.4 99.3

2-4 1 78.7 77.4 79.5 75.0 79.5 77.4 81.4
2 94.7 93.9 95.2 93.9 95.2 93.9 95.2
3 96.0 97.3 94.7 96.0 94.7 97.3 96.0
4 97.3 97.4 97.3 97.4 97.3 97.4 97.3
5 98.7 97.0 100 98.5 100 97.0 98.8
6 97.3 94.3 100 97.1 100 94.3 97.6
7 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100
Mean 96.3 95.7 96.7 95.8 96.7 95.7 96.6
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The results in Table 4.4 presents the overall accuracy and sensitivity of 96.3% and
95.7%, respectively. These results suggest that AIDCOV performs well in detecting
COVID-19, other viral/bacterial infections, and normal cases based on the chest radiog-
raphy images.

4.5.2 The Value of Hierarchical Attention Structure

Using the first dataset (Dataset-1), the hierarchical model (without the attention layers)
and the fully connected structure had lower accuracy levels than the hierarchical attention
model. The hierarchical (no attention) model had an overall cross-validation accuracy
of 97.5%, slightly lower than the hierarchical attention model. The sensitivity of this
model to detect COVID-19 from chest radiography images was 99.3%, similar to the
hierarchical attention model. The model with a fully connected structure had the poorest
performance among the three models and resulted in an overall cross-validation accuracy
of 96.0% when tested on our dataset. This model had a sensitivity of 93.3% in detecting
COVID-19.

These results highlight the value of our novel hierarchical structure, which can capture
the dependency of all feature representation blocks (obtained from the VGG-16) in
both horizontal and vertical directions and improve model performance. The attention
mechanism in our hierarchical attention model also helps with the interpretability and
transparency of the model predictions.

Figure 4.5: Average attention score for different zones of the lung for each image class

4.5.3 Interpretability

The strengths of AIDCOV are not limited to its superior sensitivity, specificity, and PPV
in detecting COVID-19 and other infections. To gain deeper insights into how the model
makes its predictions and identify the areas of the lung affected by the infection, we
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extracted attention scores for each image. Figure 4.5 illustrates the areas of the chest
radiography images for each type (COVID-19, other infections, and normal) that the
model paid more attention to based on the final attention scores averaged over all images
of that type. We also provide the box plot of horizontal attention scores in Figure 4.6.
The numbers 1 to 5 in the horizontal axis of all three boxplots represent the y blocks. The
number “1” presents the upper, and the number “5” represents the lowest parts of the
image, respectively. We see that in both Figures 4.5 and 4.6 the model identified signs of
SARS-CoV-2 infection mostly in the lower zone and other infections around the middle
zone of the lung. Since the model determines the attention scores relatively, the normal
radiography images had the highest attention score on the very top level corresponding to
the upper zone of the lung. In other words, since the lower and middle zones of the lung
contain signs of COVID-19 and other infections and, therefore, dominate the attention
scores for these zones, the normal images receive lower attention scores for the middle
and lower zones and higher attention scores for the upper zone of the lung.

(a) COVID-19 CXRs (b) Non-COVID19 CXRs (c) Normal CXRs

Figure 4.6: Horizontal attention scores boxplots

Moreover, AIDCOV can identify the specific blocks within each individual’s chest
image that may include subtle signs of infection via the attention scores of both encoding
levels (i.e., horizontal and vertical). To better illustrate the model’s interpretability,
we included the chest images of 6 patients with COVID-19 in Figures 4.7 and 4.8. We
indicated the attention scores for each zone of the lung and each block of the image.
Given that there are five zones in each image, we highlighted the zones that received an
attention score of 0.2 or higher. Then, within those zones, we highlighted the blocks that
received an attention score greater than or equal to 0.2.

In Figure 4.7, the first patient (Panels A and B) was admitted to the hospital with
fever, shortness of breath (dyspnea), and low oxygen saturation. Radiological worsening
with changes within the lower lobes was noted on her chest Xray. Our model correctly
gave a higher attention score to the lower zone of the lung and identified the specific
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areas of the lower zone that demonstrated signs of SARS-CoV-2 infection.
The second patient (Panels C and D) in Figure 4.7 came to the hospital with suspected

pneumonia. The radiographic investigation indicated abnormalities in the middle part of
the right lung. As seen in Figure 4.7.C and 4.7.D, our model correctly identified these
abnormalities in the middle zone of the right lung. (Note that the right lung appears on
the left side of the radiography image.)

Figure 4.7: Attention scores for different zones of the lung (horizontal level) and different
blocks of the image for 3 patients with COVID-19. Signs of COVID-19 were detected
in the lower zone for Patient 1 (A-B), middle zone for Patient 2 (C-D), and lower and
middle zones for Patient 3 (E-F).

The chest X-ray image of the third patient (Panels E and F) in Figure 4.7 indicated
small consolidation in the right upper lobe and ground-glass opacities in both lower lobes.
Our deep learning model correctly identified the middle and the lower zones as the areas
with abnormalities (Figure 4.7.E). It further pointed to the right lung (that appears on
the left side of Figure 4.7.F) and the lower zone of both lungs.

We have provided five more instances of COVID-19 chest X-ray images with their
horizontal and vertical attention scores (Figures 4.10 and 4.11). The clinical notes of these
images are presented in the caption. We can see that all the result of the interpretability
of our model confirms their corresponding clinical notes.
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We present chest CT images of three more patients in Figure 4.8. In CT images,
ground-glass opacities (GGOs) are one of the main signs of the COVID-19 infections
in patients’ chest images [170–172]. Basically, GGOs are the transparent lighter (grey
color) pattern within chest CT images where the lung’s underlying structures are still
visible. In Figure 4.8, panels H and I belong to the first patient; Panels J and K belong
to the second patient, and Panels L and M are related to the third patient. We can see
that the AIDCOV model can automatically localize the GGOs in all of these CT images
(Figure 4.8). AIDCOV allocates higher attention scores to those infected regions in both
horizontal and vertical levels. These scores can help radiologists to accelerate COVID-19
diagnosis. We made our code available at: https://github.com/marynik66/COVID-19

Figure 4.8: Attention scores for abnormalities in chest CT images (horizontal level) and
different blocks of the image for 3 patients with COVID-19.

4.6 Discussion
In this study, we introduced AIDCOV, an artificial intelligence model for the detection
of COVID-19 from chest radiography images. The model performs multi-class prediction,
i.e., it labels each image as belonging to a person with either COVID-19, other infections,
or no pneumonia (i.e., normal). AIDCOV leverages VGG-16 to obtain a low-dimensional
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feature representation for each image. It then encodes the features along the horizontal
(width) and vertical (height) directions using a novel two-level hierarchical attention
structure. This allows the model to capture the horizontal and vertical dependencies of
the features, which is ignored in a fully connected network. The attention mechanism
further helps make the model interpretable and gives transparency to model predictions.

We trained and tested AIDCOV on publicly available datasets (Table 4.1). We
designed six different experiments on both X-ray and CT modalities (Tables 4.2 and 4.3
). Using the first unbalanced dataset (Dataset-1), We demonstrated that the model has
an overall accuracy of 98.4% across the ten folds of cross-validation. AIDCOV showed
excellent sensitivity (99.8%), specificity (100%) in detecting COVID-19 from chest X-ray
images. Our model proved a better performance when implemented on a balanced dataset.
The results of experiment 1-3 demonstrated outstanding accuracy (sensitivity) of 99.6%
(100%) (Table 4.5).

In addition, the AIDCOV model kept its superior performance when it was run on
CT images as the input. Our model obtained an accuracy (sensitivity) of 99.3% (99.4%)
using Dataset-3 which is a large balanced CT dataset (Experiment 2-2) (Table 4.4).
We observed that our model obtained an accuracy (sensitivity) of 96.3% (95.7%) when
implemented on Dataset-4 (Experiment 2-4). The model does not perform as accurate
in the other three experiments (Experiment 2-1, 2-2, and 2-3). This can be due to the
lower quality of CT images of input data. Since Dataset-4 is extracted from CT images
presented in preprint manuscripts, the quality of CT images may be diminished.

(a) Experiment 1-1 (X-ray images) (b) Experiment 2-2 (CT scans)

Figure 4.9: Confusion matrix

Figure 4.9 represents the confusion matrix for experiments 1-1 and 2-2. In the
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three-class problem using X-ray images (Figure 4.9(a)), it is clear that our model miss-
classified only one COVID-19 image out of 475 images as normal. Using CT images in a
binary classification, our model miss-classified 22 COVID-19 CT scans as non-COVID19
class. The high sensitivity and specificity of our model are critical in practice since
a false negative result can lead to not isolating an individual with COVID-19, which
can subsequently result in many transmissions from that person to others, including
to the healthcare workers. Transmission from patients to healthcare workers results in
undermining the healthcare capacity. In China, about 5%, and in Italy, about 10% of
infections were among the healthcare workers [173]. Thus, leveraging chest radiographs in
hospitals to identify patients with COVID-19 and using appropriate personal protective
equipment (PPE) when providing care to these patients can be beneficial.

To better assess the value of our hierarchical attention structure, we developed two
simpler models. In one model, we kept the hierarchical structure but removed the
attention mechanism from it. In another model, we replaced the whole hierarchical
attention structure with a fully connected network. The model with a fully connected
network had the poorest performance among the three models and achieved an accuracy
of 96.0%. The hierarchical model without attention had an accuracy of 97.5%, which
is only slightly below our hierarchical attention model’s accuracy. However, the main
advantage of including an attention mechanism is making the model interpretable and
providing transparency to model predictions.

Using an analysis of the attention scores that AIDCOV gave to COVID-19, other
infections, and normal samples, we demonstrated that the model identified signs of
SARS-CoV-2 infection, on average, in the lower and middle zones of the lung more
frequently. This is consistent with findings from radiology reports, which indicate that
abnormalities due to SARS-CoV-2 infection are more commonly found in inferior and
middle lobes of the lung, corresponding to the lower and middle zones of the chest
radiography images [174–178]. Furthermore, our hierarchical attention model divides
each image into 25 blocks (5× 5) and provides the attention score for each block. This
can shed light on particular regions within each radiography image that may contain
subtle signs of infection and makes the model more transparent and trustable.

Currently, the primary screening tool to detect COVID-19 is reverse transcription-
polymerase chain reaction (RT-PCR), which is a laboratory test to detect viral nucleic
acid [123]. However, not only the capacity for RT-PCR testing is limited (both in the U.S.
and in many other countries), but also the result return time can range between several
minutes to hours [124]. More importantly, the RT-PCT test has a sensitivity of around
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70%, which can be even lower depending on the assay, type and quality of the specimen,
and the disease stage [125–127, 179, 180]. That is, about three in ten individuals with
COVID-19 receive a false-negative test result. In this context, AIDCOV provides an
accurate and fast alternative to RT-PCR testing that can quickly detect COVID-19 from
chest radiography images or can be additionally used to augment the RT-PCR tests.
Moreover, given that RT-PCR testing kits are in short supply in many resource-limited
settings, using chest Xray and CT scan images, which are generally more available around
the world, as a screening tool for COVID-19 may be worth considering. We demonstrated
that our model is a viable alternative to RT-PCR testing when symptoms are visible in
the lungs, and it can be used to detect and quarantine infected individuals and stop the
spread of the SARS-CoV-2 virus.

A number of other artificial intelligence models to detect COVID-19 from chest radiog-
raphy images have also been developed recently (Table 4.7). Li et al. developed COVNet,
a neural network model to detect COVID-19 and community-acquired pneumonia from
CT images [154]. COVNet demonstrated a sensitivity of 90.0% and a specificity of 96.0%
in detecting COVID-19. It also achieved a sensitivity and specificity of 86.9% and 92.3%,
respectively, in detecting community-acquired pneumonia from CT images. Wang et al.
developed COVID-Net using a deep convolutional neural network structure designed for
detecting COVID-19 and other infections from chest X-ray images [147]. COVID-Net
reports a sensitivity of 91.0% and a positive predictive value (PPV) of 98.9% in detecting
COVID-19. The sensitivity and PPV of COVID-Net in detecting other infections were
94.0% and 91.3%, respectively. Zhang et al. developed a deep learning model to detect
COVID-19 from chest X-ray images [157]. Their model had a sensitivity (specificity) of
71.7% (73.8%). Table 4.7 presents the performance of other state-of-the-art studies with
the characteristics of their datasets to detect COVID-19 using AI-based models. The
comparison of results in Table 4.7 confirms that AIDCOV outperforms other models in
terms of overall accuracy, sensitivity, and specificity using similar datasets.

Our study has a number of limitations and, therefore, our results should be interpreted
with caution. First, as was the case with the other related studies, our dataset was
limited in size and had only 475 X-ray and 1311 CT images of individuals with COVID-19.
Further validation on datasets with a larger number of chest radiography images from
patients with COVID-19 would be valuable. Second, chest X-ray images may not show
signs of SARS-CoV-2 infections in the early stages of illness. Abnormalities are more
likely to develop over the course of the disease [183, 184]. However, some preliminary
data suggest that abnormalities may show in CT images in the presymptomatic stage
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Table 4.7: Results comparison with state-of-the-art studies

Study Modality COVID19 Normal Other Acc.% Sens.% Spec.%

Wang et al. [147] X-ray 358 8066 5538 93.3 91.0 -
Chowdhury et al. [139] X-ray 219 1341 1345 97.9 97.9 98.8
Apostolopoulos et al. [156] X-ray 224 700 504 93.5 92.8 98.7
Sethy et al. [181] X-ray 25 25 - 95.4 97.3 93.5
Zhang et al. [157] X-ray 106 107 - 72.7 71.7 73.8
Hemdan et al. [182] X-ray 25 25 - 90.0 100 -
Narin et al. [143] X-ray 50 50 - 98.0 96.0 100
Ozturk et al. [145] X-ray 125 500 500 87.0 85.3 92.1
Kumar et al. [163] X-ray 62 1341 1345 97.7% 97.7% 98.8%
Yang et al. [148] CT 349 - 397 89.1 - -
Soares et al. [141] CT 1252 - 1229 97.4 95.5 -
Song et al. [160] CT 777 708 - 86.0 96.0 -
Zheng et al. [159] CT 313 229 - 90.8 - -
Wang et al. [158] CT 195 258 - 82.9 81.0 84.0
Ardakani et al. [161] CT 510 510 - 99.5 100 99.0
Li et al. [154] CT 1296 1735 1325 - 90.0 96.0
Butt et al. [155] CT 357 1353 - 86.7 - -
Our model X-ray 475 1583 3949 98.4 99.8 100
Our model X-ray 475 475 475 99.6 100 99.8
Our model CT 1259 - 1229 98.8 99.4 98.2
Our model CT 1229 - 1229 99.3 99.4 99.2

and prior to the detection of viral RNA from upper respiratory specimens [131,132]. Our
dataset does not include information on time since symptom onset or the disease stage
at the time the image was taken; thus, we could not assess our model’s accuracy based
on these factors. Using chest X-ray to detect COVID-19 is currently not being used as
the first modality of testing perhaps due to its higher cost compared to RT-PCR testing.
However, we showed that a higher sensitivity and specificity can be achieved a very if we
use AIDCOV on chest images.

In conclusion, AIDCOV demonstrated high sensitivity, specificity, and positive pre-
dictive value in detecting COVID-19 from chest X-ray and CT images. Given that
radiography is widely available in many countries around the world, AIDCOV can be
used in conjunction with or instead of RT-PCR testing (e.g., where RT-PCR testing is
unavailable) to find individuals infected with the SARS-CoV-2 virus, isolate them, and
prevent the spread of COVID-19.
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Original CXR Attention score for each “y"

Original CXR Attention score for each “x"

Figure 4.10: The radiographic investigation demonstrates the presence of an increase in
the peribroncovascular interstitial plot with associated parenchymal thickenings especially
in the basal and lateral subpleural site at the level of the middle-upper field
of the right lung.
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Original CXR Attention score for each “y"

Original CXR Attention score for each “x"

Figure 4.11: Small consolidation in right upper lobe and ground-glass opacities
in both lower lobes were observed on high-resolution computed tomography scan
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Chapter 5 |
Conclusion and Future works

In this dissertation, we developed interpretable deep learning methods to detect chronic
and infectious diseases. We studied three specific problems in healthcare. In the first
problem, we studied the detection of Alzheimer’s disease using interview transcripts of
patients. In this study, we developed an interpretable hierarchical deep learning model
to detect the onset of Alzheimer’s disease from interview transcripts of individuals who
were asked to describe a picture. We demonstrated the interpretability of the model with
the importance score of words, sentences, and transcripts extracted from our three-level
hierarchical model. In the second problem, we studied the detection of Alzheimer’s
disease using raw audio interviews of patients. Since linguistic deficits are the first signs
of cognitive decline in AD patients, speech analysis can help with the early detection
of Alzheimer’s, which will lead to better management of the disease. In this study, we
developed a hierarchical deep audio model to detect the onset of Alzheimer’s. Our deep
hierarchical model is interpretable such that it signals the signs of memory loss in patients’
speech very accurately. In the third problem, we studied the detection of COVID-19
using chest radiography images. As the Coronavirus Disease 2019 (COVID-19) pandemic
continues to grow globally, testing to detect COVID-19 and isolating individuals who
test positive remains to be the primary strategy for preventing community spread of
the disease. The current gold standard method of testing for COVID-19 is the reverse
transcription-polymerase chain reaction (RT-PCR) test. However, the RT-PCR test has
an imperfect sensitivity (around 70%), is time-consuming and labor-intensive, and is
in short supply, particularly in resource-limited countries. Therefore, automatic and
accurate detection of COVID-19 using medical imaging modalities such as chest X-ray
and Computed Tomography (CT), which are more widely available and accessible, can be
beneficial. We develop a novel hierarchical attention neural network model to classify chest
radiography images as belonging to a person with either COVID-19, other infections,
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or no pneumonia (i.e., normal). We refer to this model as Artificial Intelligence for
Detection of COVID-19 (AIDCOV). The hierarchical structure in AIDCOV captures the
dependency of features and improves model performance while the attention mechanism
makes the model interpretable and transparent. AIDCOV can be used in conjunction
with or instead of RT-PCR testing (where RT-PCR testing is unavailable) to identify
and isolate individuals with COVID-19 and prevent onward transmission to the general
population and healthcare workers.

Three main modalities of medical data, including text, audio, and image, were
considered in the deep learning models. We demonstrated that using attention mechanism
combined with hierarchical architecture can be used across different modalities. Our
models demonstrated excellent performance for both prediction and interpretability
capability. Our interpretable deep learning models can be extended to other types of
medical data. Our hierarchical deep audio model can be applied in signal processing,
including to study electroencephalogram (EEG) and electrocardiogram (ECG) data. Our
AIDCOV structures can be used for other types of medical images, including pathology
CT scans and brain scans, to detect anomalies. Moreover, our interpretable text model
can extract useful information from electronic health records (EHRs). In the future, we
aim to combine different data modalities to investigate how it can improve the prediction
results. For instance, we can combine text and audio interviews to detect the onset of
Alzheimer’s disease. We also aim to use the recent word embedding tools, including the
pre-training of deep Bidirectional Transformers for Language Understanding (BERT) [60],
to investigate how they can improve the model prediction performance. Last but not
least, we hope to build a mobile app to detect AD’s onset using audio recordings of
patients in a real-time manner. Such an app can help improve the detection of AD such
that susceptible individuals can see their primary doctors for further experiments and
start AD treatment earlier before the cognitive decline worsens.
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