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ABSTRACT 

Statistical learning (machine learning) and big data are among the most rapidly 

growing fields in the 21st century. Big-data based technologies emerge fast to provide 

business insight, push the boundaries of traditional communication, support informed 

decisions, and improve healthcare services. Statistical models are developed, revised, and 

applied every day to cope with the challenges big data brings.  

In the big data era, well-developed statistical models are crucial to meeting the 

needs involved in studying transportation systems and the associated management 

challenges that accompany vehicular traffic operations. Modern traffic management 

emphasizes smart signal controls, automated driving, tolling, congestion relief, and 

emergency support during critical events of a public health and/or security nature. These 

traffic management tasks are intrinsically dynamic. In the field of transportation research, 

statistical learning methods are being increasingly applied to aid traffic management and 

forecasting. However, existing application of statistical learning to transportation 

modeling neither overcomes the need to mathematically articulate models nor resolves 

the curse of dimensionality that plagues all large-scale models. Rather, these studies 

provide alternative ways to make predictions based on already established models; those 

alternatives reduce the burden of finding new solutions when fundamental parameters 

change or data is insufficient. In this dissertation, we conduct original statistical learning 

studies on some of the most difficult traffic modeling problems with the aim of enhancing 

both computational efficiency and analytical simplicity. We present surrogate models, 

coupled to established traffic assignment and path finding procedures, that provide a 
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family of new statistics-assisted dynamic transportation modeling methods. The new 

framework that incorporates statistical models into DTA constitutes a paradigm shift. By 

taking a statistics-oriented direction, existing dynamic traffic assignment (DTA) models 

can be upgraded following our new framework without fundamental difficulty. This 

includes dynamic network loading (DNL), dynamic user equilibrium (DUE), and bi-level 

models for transportation network design and control.  

DTA models rely on a network performance module known as dynamic network 

loading (DNL), which expresses flow propagation, flow conservation, and travel delay on 

a network level. DNL determines the so-called network delay operator, which maps a set 

of path departure rates to a set of path travel times or costs (delays). It is well known that 

the delay operator is not available in closed form and has undesirable properties that 

severely complicate DTA analysis and computation, such as discontinuity, non-

differentiability, nonmonotonicity, and computational inefficiency. Given the theoretical 

and computational limitations of the conventional way of exploring the delay operator, 

we first propose a fresh take on this classic problem from the novel perspective of 

statistical metamodeling. Development of a DNL metamodel is the main focus of the first 

part of this dissertation, and the core technique on which the subsequent studies are built. 

In the DNL metamodeling part, our goal is to provide a class of surrogate DNL models 

that approximate the exact ones, with considerable benefits, including closed-form 

representation, improved regularity, and superior computational efficiency, at the expense 

of minor yet controllable approximation errors. Successful metamodeling of the DNL 

submodel opens a pathway to a family of new network performance models with a level 

of tractability not generally seen in conventional DNL; the result is a tool for improving 
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the analytical and computational experience associated with various classes of dynamic 

transportation problems. Any model that involves evaluating travel time on a network 

whose agents behave in an intrinsically dynamic way would benefit from the paradigm 

presented in this dissertation. Furthermore, we propose to apply our DNL metamodel to a 

group of classical dynamic transportation problems that require a delay operator, taking 

advantage of the closed form representation and analytical properties of the metamodel 

over conventional non-closed form DNL procedures. These applications include the 

reformulation of an approximate DUE with a closed-form delay operator and bi-level 

optimization problems with DUE embedded in its lower level. 

We also introduce network aggregation through clustering and provide alternative 

covariance functions. These developments enable several extensions on the statistical 

metamodeling framework to help it accommodate a wider range of traffic models, 

including large-scale network models and bi-level DTA. Moreover, these extensions still 

enjoy all the desirable properties of the original model. We provide in-depth discussions 

on the implications of these properties in DTA research. 

This dissertation contains eight chapters. In Chapter 1-3 we review dynamic 

transportation models and Kriging/metamodeling. In Chapter 4 we present the novel 

approach to build surrogate models for DNL using statistical metamodeling. Chapter 5 

contains extensions of the notions of a distance metric, covariance function and modeling 

framework. Chapter 6 and Chapter 7 discusses applications to large-scale networks and 

bi-level problems. In the final chapter, we summarize the new statistical models 

presented for handling the challenges brought by big data in conjunction with DTA and 

suggest future research directions.   
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Chapter 1 
 

Dynamic transportation models 

In this chapter we discuss models of Dynamic Traffic Assignment (DTA), Dynamic User 

Equilibrium (DUE), and Dynamic Network Loading (DNL) in transportation modeling.1 

Modern transportation models largely take the dynamic view compared to a static one, 

considering that static models are criticized for its over simplification of the road network traffic 

system which is, in nature, dynamic in time. Therefore, we will only work on the dynamic models 

in this proposed dissertation study, with necessary review on basic concepts that originate from 

their static counterpart. 

In the related literature, the frequently discussed dynamic transportation models include 

but are not limited to dynamic traffic assignment, dynamic freight transportation problems, 

dynamic network design. Some models combine multi-layers of dynamic transportation 

problems. In this dissertation, we focus on the DTA and dynamic network design problem (bi-

level problems). Among dynamic transportation models, these are the most frequently visited and 

mostly emphasized.  

A dynamic traffic assignment describes traffic flow on a network that changes over time. 

The DTA models are of primary focus of this dissertation. Specifically, when we look into the 

individuals of travelers on a traffic network they can be viewed as independent players in a Nash 

Game. Nash Game is a concept named after the mathematician John Forbes Nash Jr. A Nash 

Game is defined as a non-cooperative game where each user has independent set of strategy, and 

 
1 Some of the content presented in this chapter were previously presented in Song et al. (2018). 
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the payoff function of each user is depending on everyone’s choices. We will in detail introduce 

the DUE model which base on this Nash-like Game view of traffic assignment. 

In literature, developed DTA models follows inspiration from Wardrop through his paper 

(Wardrop, 1952) in 1952 on dynamic extensions of User Equilibrium (UE) and System Optimal 

(SO). In 1993, Friesz et al. (1993) introduced the variational inequality representation of the DUE 

problem, which brings revolution in the computation and analysis of DUE. 

Dynamic Traffic Assignment (DTA) 

This section introduces the history of static and DTA models. Traffic assignment is the 

behavior-based allocation of origin and destination-specific, forecasted travel demands to the arcs 

of a real physical road network (Friesz and Bernstein, 2015). Intrinsically, traffic assignment 

modeling is a descriptive modeling. It is fundamentally a problem of route choice. DTA is a 

family of assignment models that includes notions of DUE and dynamic system optimal. To date, 

there have been many papers and a few books that contain summaries of DTA research published. 

To provide the background context for this dissertation, we present the following significant 

review articles for DTA and specific areas of DTA topics. These articles also present the 

intellectual history of DNL, dynamic system optimal (DSO), and DUE. They are (Han et al., 

2019; Friesz et al., 2018) the following:  

1. Cascetta and Cantarella (1993). Puts forward a general framework for dynamic 

simulation in transportation networks. It presents the models and algorithms for both 

within day and day-to-day DTA. The framework it puts forward covers static models 

as a particular case, and it is universal enough so as to encompass a large number of 

existing DTA models. 
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2. Ran and Boyce (1996a): Contains a discussion of DTA from the perspective of 

intelligent transportation system. 

3. Peeta and Ziliaskopoulos (2001). Takes large numbers of DTA formulation and 

solutions into consideration, including those on the basis of the forms of 

mathematical programming, variational inequalities, optimal control, and simulation. 

Their papers record the main DTA approaches by publication for future reference, 

generalize the understanding of DTA at that time, review the previous literature, and 

formulate a hypothesis about the future of the discipline. 

4. Boyce et al. (2001). Contains discussion on analytical models of the DTA problem. 

Takes a limited subset of so-called analytical formulations of the DTA problem, with 

a focus on the authors’ experience with variational inequalities. It identifies the 

solution algorithms and computational issues which need to be further studied. 

5. Szeto and Lo (2005a). A DTA review that emphasizes the fidelity and accuracy of 

DTA models for online network planning, policy evaluations, and real-time 

operation and management. Summaries and analyzes DTA formulations. It also 

makes a comparison with the application of DTA formulations concerning their use 

to traffic flow theory and suggests future research directions. 

6. Szeto and Lo (2005b). Focuses on properties of DTA with physical queues. Only 

focuses on the literature which deals with physical queues, and recommends 

spillback models rather than point-queue concepts for DTA. Compares the 

characteristics of physical-queue DTA with point-queue DTA, stressing the first-in-

first-out (FIFO) 2queue discipline and queue spillback, as well as the causal 

relationship and travel-time-link-w consistency. 

 
2 FIFO: first-in-first-out rule, which assume that travelers enter the network early also exit early. 
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7. Mun (2007). Contains a review of traffic performance models for DTA, and 

analyzes the advantages and disadvantages of existing models. It identifies the 

requirements for traffic performance models and discusses different forms of 

existing traffic performance models for DTA. The weaknesses of nonlinear travel-

time models may make them inappropriate for the analysis of time-varying 

transportation networks, and the linear type travel-time models also show some 

limitations. Therefore, it can be seen that there exists a dilemma, and the settlement 

of it is key to the theoretical coherence and credibility of DTA modeling. 

8. Rakha and Tawk (2009). Traffic networks: dynamic traffic routing, assignment, and 

assessment. Presents dynamic travel behaviors and relevant models. It is argued that 

such behavioral models are vital to DTA Modeling. It also speculates what kind of 

models will be needed in the future and their fundamental properties.  

9. Viti and Tampere (2010). Discusses real time applications and realistic user behavior 

on networks. Conjectures future directions of model building and their essential 

properties needed. This paper contains a selected collection of refereed papers from 

the DTA modeling. 

10. Jeihani (2010). In this paper the authors review the DTA models included in some 

famous computer packages. It presents demand estimation, supply presentation, 

methods for computing dynamic user equilibria, and convergence mainly focusing 

on TRANSIMS, which reckons second by-second movements of individual travelers 

while employing parallel processing and cellular automata representations. It finds 

that TRANSIMS can deal with some existing problems in dynamic traffic 

assignment models, but it cannot overcome the problems of existence, stability, 

uniqueness and other important qualitative properties. 

11. Chiu et al. (2011): Presents a primer on simulation-based DTA modeling. 
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12. Szeto and Wong (2012). Dynamic traffic assignment: model classifications and 

recent advances in travel choice principles. Pays attention to the principle of travel 

choice and the categorization of DTA models. Discusses the connotations of the so-

called travel choice principle for existence and uniqueness of DTA solutions. The 

nonlinear complementarity, variational inequality, mathematical programming, and 

fixed-point model formulations are used to expound the relationship between the 

travel choice principle and traffic flow exploiting. 

13. Garavello et al. (2016): Reviews the traffic flow modeling aspect of DTA, namely 

the hydrodynamic models for vehicular traffic and their network extensions. 

14. Wang et al. (2018): Reviews relevant DTA literature concerning environmental 

sustainability. 

Wardrop’s first and second principle 

In 1952, the British transport analyst Wardrop proposed two principles that are later 

referred to as Wardrop’s first and second principle (Wardrop, 1952). These two principles 

provide the foundation of the static traffic assignment theories for road networks. In Wardrop’s 

First Principle, also called user optimal principle, travelers are assumed to act like Nash players 

who want to minimize their own disutility (the travel cost) non-cooperatively by adjusting their 

route choice, and the traffic system reaches UE when no traveler can achieve a lower perceived 

travel cost by unilaterally changing his/her route. Wardrop’s Second Principle, also named system 

optimal principle, assumes traveler to behave cooperatively, and the traffic systems is said to 

reach SO when the total travel time of all travelers is minimized. UE is believed to be a more 

appropriate modeling framework than SO for road passenger network without central control, and 

the SO principle is most frequently addressed in problems that involve centralized control, such 
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as freight transport problems while being relatively less relevant to road passenger network. 

Proposed study in this dissertation primarily concerns UE and its extensions. 

Static assignment models and dynamic extensions 

From 1950s to 1980s, much research effort has been put to the development of static 

network equilibrium transportation models, analysis and algorithms (Dafermos, 1980, 1982a, 

1982b, 1983; Evans, 1976; Friesz, 1983). A static user equilibrium is defined as follows. 

Definition 1.1. (Static user equilibrium) a flow pattern (𝑓𝑓,𝑢𝑢) is a static user equilibrium 

when it satisfies 

ℎ𝑝𝑝�𝐶𝐶𝑝𝑝(ℎ) − 𝑢𝑢𝑖𝑖𝑖𝑖� = 0  ∀�𝑖𝑖, 𝑗𝑗,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖�, 

𝐶𝐶𝑝𝑝(ℎ)− 𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0  ∀�𝑖𝑖, 𝑗𝑗,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖�, 

� ℎ𝑝𝑝
𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖

− 𝑇𝑇𝑖𝑖𝑖𝑖(𝑢𝑢) = 0 ∀(𝑖𝑖, 𝑗𝑗), 

𝑓𝑓𝑎𝑎 −�𝛿𝛿𝑎𝑎𝑝𝑝ℎ𝑝𝑝
𝒫𝒫

= 0 ∀𝑎𝑎, 

ℎ ≥ 0, 

𝑢𝑢 ≥ 0. 

Regard the conditions listed above, 𝑇𝑇𝑖𝑖𝑖𝑖 denotes the demand for transportation between 

origin 𝑖𝑖 and destination 𝑗𝑗; 𝑓𝑓𝑎𝑎 denotes traffic flow on arc 𝑎𝑎; 𝑓𝑓 =  (. . . .𝑓𝑓𝑎𝑎 , . . . ) denotes the vector of 

all arc flows; ℎ𝑝𝑝 is the flow on path 𝑝𝑝; 𝛿𝛿𝑎𝑎𝑝𝑝 is defined to be 1 if arc 𝑎𝑎 belongs to path 𝑝𝑝 and 0 

otherwise; and the average cost of transportation on path 𝑝𝑝 is denoted by 𝐶𝐶𝑝𝑝(ℎ).  

In the definition of static user equilibrium, the first two equations in the conditions for 

(𝑓𝑓,𝑢𝑢) are equivalent to Wardrop’s First Principle (Wardrop, 1952). Dafermos (1982a) discussed 

static version of assignment and showed that the static user equilibrium conditions are completely 



7 
 

 

equivalent to a Variational Inequality (VI) problem, which provide the foundation of using the VI 

to formulate traffic assignments in dynamic form. The VI formulation of a static UE is as follows 

(Dafermos 1982a; Friesz, 1983) 

𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 (𝑓𝑓∗,𝑇𝑇∗) ∈ Ω, 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 

𝑠𝑠(𝑓𝑓∗)(𝑓𝑓 − 𝑓𝑓∗) − 𝜃𝜃(𝑇𝑇∗)(𝑇𝑇 − 𝑇𝑇∗) ≥ 0 

∀(𝐹𝐹,𝑇𝑇) ∈ Ω 

where 

𝜃𝜃(𝑇𝑇) = (… ,𝜃𝜃𝑖𝑖𝑖𝑖(𝑇𝑇), … ) 

𝜃𝜃𝑖𝑖𝑖𝑖(𝑇𝑇) 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 𝑡𝑡𝑖𝑖𝑎𝑎𝑛𝑛𝑠𝑠𝑝𝑝𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 𝑓𝑓𝑒𝑒𝑑𝑑𝑎𝑎𝑛𝑛𝑓𝑓 𝑓𝑓𝑢𝑢𝑛𝑛𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 𝑓𝑓𝑡𝑡𝑖𝑖 𝑂𝑂𝑂𝑂 𝑝𝑝𝑎𝑎𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) and 

Ω = �(𝑓𝑓,𝑇𝑇): � ℎ𝑝𝑝 − 𝑇𝑇𝑖𝑖𝑖𝑖 = 0
𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖

 ∀(𝑖𝑖, 𝑗𝑗);𝑓𝑓𝑎𝑎 −�𝛿𝛿𝑎𝑎𝑝𝑝ℎ𝑝𝑝 = 0
𝒫𝒫

  ∀𝑎𝑎;  ℎ ≥ 0;𝑇𝑇 ≥ 0�. 

Dafermos’s work shows that the static user equilibrium can be formulated as an VI. This 

important development directly inspired researchers to a new direction that powerful theorems for 

VIs may be employed for solving the assignment problems and to establish the qualitative 

properties of a user equilibrium. Friesz (1983) provides a succinct review of key developments of 

traffic assignment and equilibrium in the aforementioned three decades. The review visited static 

transportation network equilibrium modeling and the related fields of network design and 

network aggregation. Friesz (1983) points out that the static (or steady state) network equilibrium 

studied and applied in transportation practices were unrealistic in several respect, and the 

foremost one is the absence of dynamic considerations. Several improvements in fundamental 

levels and model construction were identified to enhance the predictive capability of a 

transportation assignment model. Nevertheless, static user equilibrium provides solid foundation 

and largely influences the later developments of the dynamic models which is widely accepted 

today.  
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Merchant and Nemhauser (1978a) and Merchant and Nemhauser (1978b) was among the 

earliest attempt to extend static SO problem to dynamic version and formulate it as a 

mathematical program. They propose a discrete-time link performance model based on a link exit 

function (Han, 2013). The model is named after the authors as the M-N model. The M-N model 

assumes a functional relationship between the exit flow on a link and the number of vehicles 

present on the link (i.e. the link occupancy). The M-N model also uses a static link performance 

function to represent the travel cost as a function of link occupancy (Han, 2013). The publication 

of M-N model inspired and is followed by several in-depth studies of DTA problems in Carey 

(1986, 1987); Friesz et al. (1989) and Wie et al. (1995) (Han, 2013). 

Dynamic traffic assignment (DTA) 

DTA is the descriptive modeling of time-varying flows on traffic networks consistent 

with traffic flow theory and travel choice principles. DTA models describe and predict departure 

rates, departure times, and route choices of travelers over a given time horizon (Song et al., 

2018). Analytical DTA models consist of two main components: (i) the mathematical expression 

of trip assignment such as the dynamic extension of the Wardrop’s principles (Wardrop, 1952); 

(ii) the network performance model, which captures the relationships among link entry flow, link 

exit flow, junction flow, link delay, and path delay. The latter is usually referred to as DNL. The 

DNL problem gives rise to the delay operator, which is interpreted as a mapping from the set of 

path departure rates to the set of path travel times. Such delay operators will be one of the main 

focus of this dissertation, although other notions of the delay operators, often going by different 

names, have been invoked in a variety of different contexts (Gentile et al., 2007; Jang et al., 2005; 

Lo and Szeto, 2002b; Perakis and Roels, 2006; Ukkusuri et al., 2012). 
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In this field, much intellectual energy has been devoted to the DUE problem, which is a 

Nash-like non-cooperative differential game wherein agents minimize their effective travel delay 

through route selection and departure time choice for any given trip purpose. Some literature also 

conceptualizes and model DSO traffic assignment for traffic networks, where a centralized 

agency optimizes total system cost/time by all travelers. 

The DNL subproblem is interpreted as a mapping from the set of path departure rates to 

the set of path travel times. Being an integral part of a complete mathematical formulation of 

DTA problems, the delay operator plays a fundamental role and affects the analytical properties 

of the DTA models in many different ways. Therefore, a great amount of literature has been 

published on modeling and computational methods for the DNL subproblem itself. A detailed 

introduction on DNL is given in the Dynamic Network Loading (DNL) section in this Chapter. 

In the following 3 sections, we introduce the basic concepts and briefly review relevant 

literature of DUE, DSO, and DNL, respectively. In next chapter, we will introduce and review the 

DUE model in more details. 

The DUE model assumes each user simultaneously makes two decisions: route choice 

and departure time choice. The origin and destination are determined and pre-assumed by the set 

of OD pairs. For models with elastic demand, total demand on a network is a variable. For other 

instances, the demand is assumed to be a constant. When each user chooses both departure time 

and route to take, the decision is a very flexible one. Overall traffic status by this setting is 

expected to have more complexity and of high non-linearity. Gridlocks, traffic jams, and 

spillback are expected phenomenon when flow grows high. Mathematically, this means increased 

complexity and challenges in tractability. 



10 
 

 

Dynamic User Equilibrium (DUE) 

Dynamic user equilibrium (DUE) on a traffic network describes that route flow reaches 

equilibrium while each traveler makes their independent travel decision to optimize travel cost. 

The DUE model employs the scheme of non-cooperative game theory. DUE problems have been 

studied within the broader context of DTA, which is viewed as the modeling of time-varying 

flows on traffic networks consistent with established travel demand and traffic flow theory (Han 

et al., 2019). DTA models, from the early 1990s onward, have been greatly influenced by 

Wardrop’s principles (Wardrop, 1952, Han et al., 2019).  

The generalization from the static user equilibrium to the dynamic setting has been 

difficult in many aspects. Dynamic user equilibrium and its network performance aspect needs to 

be considered mathematically in infinite dimensional settings. Especially, network performance 

model in dynamic settings need to capture dynamic traffic flow phenomenon such as shockwaves 

and it was adding to the complexity of developing a convincing assignment model. Only with a 

realistic performance module that captures dynamic flows can the model properly predict traffic 

flows on the network in a dynamic way. Difficulties in the formulation is foremost, and these 

non-trivial aspects of the model follow immediately of the idea to take dynamic considerations in 

UE and SO. These extensions attracted many researchers to work on and the development was 

not immediate.  

For user equilibrium traffic assignment, multiple formulations were developed based on a 

spam of mathematical methods: nonlinear complementarity problem, optimal control theory, etc. 

The successful generation of static to dynamic UE was achieved in the work by Friesz et al. 

(1993) by using VI formulation. The generation included route and departure time choice for each 

user on the network, and formulate the entire model in dynamic settings. 
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To date, there are multiple means formulating dynamic user equilibrium. Some of the 

formulation methods are (Han, 2013) 

• a variational inequality (Friesz et al., 1993; Smith and Wisten, 1994, 1995) 

• an evolution equation in an appropriate function space (Mounce, 2006; Smith and 

Wisten, 1995) 

• a nonlinear complementarity problem (Wie et al., 2002; Han et al., 2011) 

• a differential variational inequality (DVI) (Friesz et al., 2001, 2011, 2013b; Friesz 

and Mookherjee, 2006); and 

• a differential complementarity system (Pang et al., 2011). 

Dynamic System Optimal (DSO) 

Another important class of dynamic transportation model is the DSO assignment model. 

DSO is viewed as an extension of Wardrop’s Second Principle, also familiar from traditional, 

static traffic assignment for traffic networks. DSO seeks system-wide minimization of travel costs 

incurred by travelers, subject to the constraints of travel demand, link dynamics, flow propagation 

and travel delay (Han, 2013). 

DSO problems enjoy the benefit of having a well-defined objective function. It can be 

minimizing total system cost or time. Hence, it is usually more amenable to analysis (Nie, 2011). 

Merchant and Nemhauser (1978a, b) initiated their DSO studies by presenting the mathematical 

formulation of the DSO problem in discrete time. This model is known as the M-N model. In 

later years, DSO studies built on and extend the work done by Merchant and Nemhauser. Birge 

and Ho (1993) extend the M-N model to a stochastic case, Ziliaskopoulos (2000) introduce a 

linear programming formulation for single destination DSO problem. Friesz et al. (1989) 

reformulated the M-N model as a continuous optimal control problem and interpreted the first-
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order condition using a so-called instantaneous path marginal cost. Entering 1990s, Wie et al., 

(1994) proposed an iterative solution method for the continuous model. Nie (2011) summarizes 

more recent development in the DSO studies. 

Solution of DSO problems has been used as a benchmark to support evaluating the 

benefits of several categories of policies and strategies. Some of them are the following: 

• Investment decisions: network expansion (Waller, 2000; Karoonsoontawong and 

Waller, 2010) 

• Traffic management policies: congestion pricing and information provision (May 

and Milne, 2000; Shen and Zhang, 2009) 

• Operational strategies: signal control and ramp metering (Muñoz and Laval, 2006) 

• Evacuation planning: large-scale evacuation planning (Sattayhatewa and Ran 

(2000); Jha et al., (2004); Han et al., (2005); Chiu et al., (2005); Sbayti and 

Mahmassani (2006); Liu et al., (2006); Shen et al., (2007)) 

Dynamic Network Loading (DNL) 

In DTA modeling, the DNL subproblem is identifying how to describe and predict the 

spatio-temporal evolution of traffic flows and congestion on a network that is consistent with 

established route-and-departure-time choices of drivers. This is done by introducing appropriate 

dynamics to flow propagation, flow conservation, and travel delays on a network level. Any DNL 

must be consistent with the established path departure rates and link delay model, and is usually 

performed under the FIFO rule. As aforementioned, the DNL subproblem defines the network 

delay operator. A delay operator maps a set of path departure rates to a set of path travel times. 

Rigorous definitions of delay operator are given in Chapter 4. Existing DNL models developed in 

literature include: 
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• the link delay model (Friesz et al., 1993); 

• the Vickrey model (Vickrey, 1969); 

• the Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 

1956); 

• the cell transmission model (Daganzo, 1994, 1995); 

• the link transmission (double-queue) model (Yperman et al., 2005; Han et al., 2015c); 

and 

• point-queue model (Han et al., 2013a, b)3. 

Although there have been many different models for DNL subproblem, LWR is believed 

to be the only proper basis for DNL modeling because it properly captures shockwave 

propagation (Han, 2013). Because of its attractive feature, the LWR model has enjoyed lots of 

scholarly attention on its formulation, solution and extension for supporting dynamic assignment 

models (Blimer, 2007; Raadsen et al. 2016; Lo and Szeto, 2002a). The LWR model describes the 

spatial-temporal evolution of vehicle density on each link of the network using a scalar 

conservation law. It is well-established that a full LWR-based network model requires boundary 

conditions on both ends of the link, which account for the propagation of upstream/downstream 

information (Han, 2013). It follows from this structure that we require one LWR model for each 

link of the network along with boundary conditions that describe what must be done when flows 

of vehicle meet. Thus, we have a system of simultaneous partial differential equations and 

boundary conditions to solve. Such DNL models are intrinsically difficult to solve, making 

statistical learning an attractive alternative.  

 
3 In some transportation articles the term “point-queue” refers to completely different algorithms. Here we are 

referring to the point-queue DNL model in the cited literature specifically. 
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Being an integral part of a complete mathematical formulation of DTA problems, the 

delay operator plays a fundamental role and affects the analytical properties of the DTA models 

in many different ways. For instance, the existence of DUE4, which is the most widely studied 

form of DTA problems, depends on the continuity of the delay operators (Han et al., 2013c; 

Smith and Wisten, 1995; Zhu and Marcotte, 2000). The uniqueness of DUE5 is guaranteed by the 

monotonicity of the delay operator (Mounce and Smith, 2007). Looking at the computational 

point of view, all computational procedures for DUE problems rely on certain versions of 

continuity and monotonicity to converge (Friesz et al., 2011; Han et al., 2015; Long et al., 2013; 

Mounce, 2006; Szeto and Lo, 2004). Moreover, differentiability is typically required for the delay 

operator for problems such as sensitivity analysis (Chung et al., 2014; Yang and Bell, 2007) and 

mathematical programs with equilibrium constraints (Yang et al., 2007). 

Studies of the DNL models date back to the 1990s with a significant number of 

publications (Friesz et al., 2013a; Lo and Szeto, 2002b; Szeto, 2003; Szeto and Lo, 2004; 

Ukkusuri et al., 2012). Among these advancements some have focused on capturing realistic 

network congestion effects such as the formation, propagation and dissipation of queues and 

spillbacks (Nie and Zhang, 2010; Han et al., 2015b) while others have managed to reduce the 

complexity of the network dynamics and improve the computational efficiency (Yperman et al., 

2005; Gentile et al., 2007). 

• Limitations of traditional DNL problems 

For large-scale networks, and sophisticated traffic models that capture phenomena such 

as shock waves and car spillback, it has been recognized in studies that the DNL models are 

 
4 The existence and uniqueness of DUE refers to the existence and uniqueness of the equilibrium, 

respectively.  

5 See footnote above. 
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rather complicated, and the corresponding delay operators enjoy very few analytical properties 

essential for the analysis and computation of DTA models. For example, DNL with physical-

queue models such as the Lighthill–Whitham–Richards model, cell transmission model, and link 

transmission model is found to yield discontinuities in the delay operator for general networks 

(Szeto, 2003; Han et al., 2015b). As a result, the delay operator is non-differentiable. 

The nonmonotonicity of the delay operators on networks has been reported in the 

literature (Mounce and Smith, 2007) and is the major hurdle to computing DUE solutions with 

convergence guarantee. Due to aforementioned nature, it is not surprising to conclude that the 

delay operator is generally not available in closed form. Numerical evaluation via the DNL 

procedure is the most commonly adopted. Such a procedure is based on a series of link, node, and 

path dynamic models that typically involve solving ordinary or partial differential equations 

(Friesz et al., 2013a; Gentile et al., 2007; Lo and Szeto, 2002b; Perakis and Roels, 2006; Szeto 

and Lo, 2004; Yperman et al., 2005). 

Expressing the complete DNL model analytically and embedding it into certain math 

programming formulation is therefore an onerous task, and could severely complicate the DTA 

computational procedures (Friesz et al., 2013a; Szeto and Lo, 2004; Ukkusuri et al., 2012). 

Moreover, conventional DNL procedures tend to be computationally demanding, and can scale 

badly as the network size increases. It is expected to be computational tractable for models to be 

practical. A computational tractable model can be solved by off-shelf commercial solvers easily. 

These limitations of traditional DNL models is identified and motivates our alternative approach 

by statistical metamodeling. 
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Motivation and goal of our proposed study 

Given the aforementioned theoretical and computational limitations of the conventional 

way of exploring the delay operator, we first propose a fresh take on this classic problem from the 

novel perspective of statistical metamodeling. Development of a DNL metamodel is the main 

focus of the first part of this dissertation, and the core technique on which the subsequent studies 

are built. In the DNL metamodeling part, our goal is to provide a class of surrogate DNL models 

that approximate the exact ones, with considerable benefits including closed-form representation, 

improved regularity, and superior computational efficiency, at the expense of minor yet 

controllable approximation errors. Successful metamodeling of the DNL submodel will open a 

pathway to a family of new network performance models with tractability barely seen in existing 

ones, and provide a means of improving the analytical and computational method for various 

classes of dynamic transportation problems. Any model that involves evaluating travel time on a 

network of dynamic settings would benefit from doing so. We propose to apply the developed 

DNL metamodel to a group of classical dynamic transportation problems where delay operator is 

required, taking advantage of the close form representation and analytical properties of the 

metamodel over conventional non-close form DNL procedures. These applications include the 

reformulation of an approximate DUE with a closed-form delay operator and bi-level 

optimization problems with embedded DUE as lower levels. 

To better explain our approach, we start from a review on DUE, Kriging, and statistical 

learning in the next section, followed by introduction of the specific metamodeling method we 

choose to use. 

 

Literature Metamodel Application Underlying model Object of surrogate model 
Ciuffo et al. 
(2013) 

Ordinary Kriging Sensitivity 
Analysis  

Mesoscopic 
simulation 
(AIMSUN) 

Network-wide density, 
average flow, average delay, 
average travel time 
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Table 1-1 Statistical learning applied to transportation models in literature 

With regard to the table above these are the abbreviations that we use: RBF: radial basis 

function; ARIMA: autoregressive integrated moving Average; NN: neural networks; MPEC: 

mathematical programming with equilibrium constraints; ABM: agent-based model. AIMSUN, 

DynasT and DTAlite are names of the software used in conducting dynamic traffic assignment 

and simulation. 

Networks 

In our dissertation, we provide numerical examples in five regular-size scenarios on three 

networks with number of paths range from 24–501. A large-scale problem with number of paths 

reaching 250,000 is visited for design of large-scale numerical study. 

Figure 1-1 shows traffic network of Nguyen.  

Figure 1-2 shows the network of Sioux Falls. 

Zhang et al. 
(2014) 

Stochastic Kriging Active traffic 
management 

Simulation-based 
DTA(DynasT) 

Network average trip time 

Chen et al. 
(2015) 

Universal Kriging Bi-level 
network design 

Simulation-based 
DUE (DTAlite) 

Network average travel time 

Chen et al. 
(2014) 

Polynomial, 
Gaussian RBF, 
Kriging 

Bi-level road 
pricing 

Static MPEC, 
AIMSUN simulation 

Network average travel time 

Idé and Kato 
(2009) 

Ordinary Kriging Travel-time 
estimation 

Agent-based 
simulation (ABM) 

Path travel time 

Xie et al. (2010) Universal Kriging Short-term 
traffic flow 
forecast 

Empirical data Link traffic volume 

Sun and Xu 
(2011) 

Mixtures of 
Gaussian 
processes 

Short-term 
traffic flow 
prediction 

Empirical data Link traffic volume 

Chan et al. 
(2012) 

Neural networks Short-term 
traffic speed 
forecast 

Empirical data Link traffic volume 

Wang and Shi 
(2013) 

Hybrid Support 
Vector Machine 

Short-term 
traffic speed 
forecast 

Empirical data Link traffic speed 

Ye et al. 2012 Hybrid ARIMA 
and NN 

Short-term 
traffic speed 
forecast 

Empirical data Road segment traffic speed 
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Figure 1-3 shows the network of Chicago Sketch. 

These networks will be discussed as example to present the idea of our model. 

 

 
Figure 1-1 Network of Nguyen  
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Figure 1-2 Network of Sioux Falls. 
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Figure 1-3 Network of Chicago Sketch  
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Notations 

We introduce a few notations and terminologies for the ease of presentation as follows. 

Chapter 26 

𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ) Delays on path p  

Ψ𝑝𝑝(𝑡𝑡,ℎ) Effective delay on path p 

ℎ Departure rates 

ℎ∗ Equilibrium departure rates 

𝑄𝑄𝑖𝑖𝑖𝑖 Demand on OD pair (𝑖𝑖, 𝑗𝑗)  

𝒲𝒲 Set of OD pairs 

𝑝𝑝 Path 

ℎ𝑝𝑝 Departure rates on path p 

𝑡𝑡 Time 

𝑡𝑡0 Starting time 

𝑡𝑡𝑓𝑓 Ending time 

𝒫𝒫 Set of paths 

𝑛𝑛 Number of time intervals 

Chapter 4 

Ψ Delay operator 

𝒉𝒉 Finite dimensional counterpart of ℎ 

𝒉𝒉∗ Finite dimensional counterpart of ℎ∗ 

𝐼𝐼𝑖𝑖 Interval 𝑖𝑖 of the time horizon 

 
6 Some of the notation introduced in Chapter 2 is used throughout the rest of the dissertation. 



22 
 

 

𝑖𝑖 Time index 

𝑤𝑤 Parameter in distance metric 

𝑓𝑓 “Distance” in Kriging 

𝜃𝜃 Parameter in Kriging 

Φ Close form delay operator (equivalent to Ψ� ) 

Ψ�  Delay operator estimated by Kriging 

𝛿𝛿𝑝𝑝𝑝𝑝 Similarity between path p and path q 

(𝑖𝑖, 𝑠𝑠) Origin–Destination (OD) pair  

Λ Feasible region for departure rates in 

continuous-time DUE 

∙ Inner product 

⊗ Kronecker product 

ℝ Set of all real numbers  

𝒞𝒞 Covariance function 

Σ Covariance matrix 

Chapter 5 

𝜌𝜌𝑝𝑝𝑝𝑝 Shared-Link Similarity 

𝜏𝜏𝑝𝑝𝑝𝑝 Delay Similarity (DS) 

�̃�𝜏𝑝𝑝𝑝𝑝 Effective Delay Similarity (EDS) 

𝑌𝑌(𝑠𝑠;  𝑡𝑡) spatio-temporal random process 

Chapter 6 

𝐺𝐺 Number of aggregated paths 

𝑔𝑔 Aggregated path 
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𝒢𝒢 Set of all aggregated paths 

Θ𝑔𝑔 delay on aggregated paths 𝑔𝑔 

Chapter 7 

𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ) True/exact delay operator  

𝑂𝑂�𝑝𝑝(𝑡𝑡,ℎ) Metamodel (approximate delay operator) 

Ψ�𝑝𝑝(𝑡𝑡,ℎ) Surrogate/approximate effective delay 

operator 
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Chapter 2 
 

Dynamic User Equilibrium (DUE) 

The open-loop type of DUE, which is one type of DTA, is one of the most studied 

problems in modern traffic modeling. DUE is viewed by many scholars as a natural extension of 

Wardrop’s first principle, which is used in traditional static traffic assignment for traffic 

networks. A traffic system is said to have reached dynamic user equilibrium (DUE) when unit 

travel costs, including early and late arrival penalties, are identical for all route- and departure-

time choices selected by travelers between a given origin–destination (OD) pair (Han, 2013). 

That is to say, no traveler can reduce his or her travel cost by univariately change his or her travel 

decisions. DUE is a natural extension of the static user equilibrium model in which time is 

incorporated. Extensive literature on the DUE problem has been published. Two main variants of 

the DUE have been defined and studied in the related literature: the route-choice-only model 

(Friesz et al., 1989; Merchant and Nemhauser, 1978a, b; Mounce, 2006; Smith and Wisten, 1995; 

Zhu and Marcotte, 2000) and the simultaneous route and departure time choice model (Friesz et 

al., 1993, 2001, 2011, 2013a; Ran and Boyce, 1996; Wie et al., 2002). 

A DUE model usually has five essential components (Peeta and Ziliaskopoulos, 2001): 

1. a model of path delay, 

2. flow dynamics, 

3. flow propagation constraints, 

4. a route- and departure-time choice model, and 

5. a model of demand growth (evolution). 

The DUE model seeks to mathematically describe and predict equilibrium route flow in a 

traffic system. Items 1, 2, and 3 are usually combined and referred to as the dynamic network 
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loading (DNL) subproblem, corresponding to Component (ii) of a DTA model7. The DNL 

subproblem will be introduce in detail in Chapter 4. Item 4 mathematically articulates the notion 

of DUE in computable form. It is the actual traffic assignment aspect of DUE modeling, 

corresponding to Component (i) in a DTA model. Item 5, the model of demand growth, occurs on 

a day-to-day time scale and allows travel demand to be updated. 

DUE is conventionally studied as an open-loop, non-atomic Nash-like game (Friesz et al. 

1993). The notion of open loop refers to the assumption that the travelers’ route choices do not 

change in response to dynamic network conditions after they leave the origin. The non-atomic 

nature refers to the prevailing technique of flow-based modeling, instead of treating the traffic as 

individual vehicles. This is done in contrast to agent-based modeling (Balmer et al., 2004; Cetin 

et al., 2003; Shang et al., 2017, Han et al., 2019). 

We introduced the Nash-like game concept to dynamic transportation models. Some 

formulation methods of a Nash-like DUE problem are listed below: 

1. Variational inequalities (Friesz et al., 1993, 2013; Han et al., 2013b, 2015a, b; Smith 

and Wisten, 1994, 1995); 

2. Nonlinear complementarity problems (Han et al., 2011; Pang et al., 2011; Ukkusuri et 

al., 2012; Wie et al., 2002); 

3. Differential variational inequalities (Friesz and Meimand, 2014; Friesz and 

Mookherjee, 2006; Han et al., 2015a); 

4. Differential complementarity systems (Ban et al., 2012); 

5. Fixed-point problems in Hilbert spaces (Friesz et al., 2011; Han et al., 2015b); and 

6. Stationary points of evolutionary dynamics (Mounce, 2006; Smith and Wisten, 1995). 

 
7 The two components in a DTA model are introduced in Chapter 1. 
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Most published mathematical formulations express an open-loop version of a dynamic 

notion of user equilibrium based on some type of generalization of Wardrop's first principle. 

(Friesz et al., 2018) There are many ways the DUE can be formulated. In this dissertation, we 

emphasize the VI formulation that was first introduced by Friesz et al. (1993) and subsequently 

widely used for DUE expressions. We adopt the VI formulation to discuss DUE and bi-level 

problems in subsequent chapters. The full VI formulation is presented in detail in the next 

section. 

Over the past two decades, there have been many efforts to develop a theoretically-sound 

formulation of DUE that also has a canonical form that is acceptable to scholars and practitioners 

alike. Some models treat both route choice and departure time choice as fundamental decisions, 

while others are concerned with either departure time choice or route choice, but not both. (Friesz 

et al. 2018) Therefore, analytical DUE models developed involve the use of two varieties of user 

choice strategies: 

• Route-Choice (RC) DUE 

• Simultaneous Route-and-Departure-Time (SRDT) choice DUE 

Details of these two types of DUE are introduced in subsequent sections of this Chapter. 

In addition, it is to be emphasize again that dynamic user equilibrium (DUE) require some 

form of DNL or network performance model be carried out to determine the effective path delay. 

Since DNL remains to be the non-replaceable fundamental-level aspect of DUE, any analytical 

properties DNL does not enjoy are posing barriers in dynamic user equilibrium advances. Although 

some network performance models are extensively studied, many are not close-form and 

differentiable. In other word, in a DUE model, the analytical properties in the fundamental levels 

(e.g. the DNL model) are determining the properties and barriers in of the entire model.  
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Mathematical formulation of Dynamic User Equilibrium (DUE) 

There are a few different ways a DUE may be formulated. Although some formulations 

are equivalent, it must be emphasized that all are not equivalent. (Friesz et al. 2018) In this 

subsection, we define the SRDT choice DUE and present its mathematical formulation. As 

introduced in the beginning of Chapter 2, a traffic system is said to have reached DUE when the 

experienced travel cost is identical for all the route- and departure-time choices selected by 

travelers between a given OD pair. The experienced travel cost includes travel-time and early/late 

arrival penalties, and is modeled by the effective delay operator. 

 We first define the effective delay operator for the SRDT choice DUE. We consider a 

fixed time horizon �𝑡𝑡0, 𝑡𝑡𝑓𝑓� ∈ ℝ. Because of the involvement of departure time choice, in this 

section, we distinguish between the delay operator and effective delay operator. We recall that the 

path delay operator provides the time to traverse any path (𝑝𝑝) with any given departure time t, 

given a set of path departure rates, denoted by ℎ(·) = ℎ𝑝𝑝(·): 𝑝𝑝 ∈ 𝒫𝒫. In this chapter, the delay 

operator is denoted by 

𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ) ∀ 𝑝𝑝 ∈ 𝒫𝒫,∀ 𝑡𝑡 ∈  [𝑡𝑡0, 𝑡𝑡𝑓𝑓 ] 

where 𝒫𝒫 is the set of paths used by travelers, t denotes the departure time, and h is a vector of 

departure rates. We stipulate that any path departure rate ℎ𝑝𝑝(·) is nonnegative and square-

integrable with respect to time 𝑡𝑡, and thus we have ℎ𝑝𝑝(·) ∈  𝐿𝐿+2 �𝑡𝑡0, 𝑡𝑡𝑓𝑓 �.8 Therefore, we have ℎ ∈

(𝐿𝐿+2 �𝑡𝑡0, 𝑡𝑡𝑓𝑓 �)|𝒫𝒫|.9 

 
8 𝐿𝐿+2 �𝑡𝑡0, 𝑡𝑡𝑓𝑓� is the space of square-integrable functions defined on the interval [𝑡𝑡0, 𝑡𝑡𝑓𝑓], and the subscript ‘+’ 

indicates non-negativity. 

9 (𝐿𝐿+2 �𝑡𝑡0, 𝑡𝑡𝑓𝑓�)|𝒫𝒫| is the |𝒫𝒫|-fold product of the space 𝐿𝐿+2 �𝑡𝑡0, 𝑡𝑡𝑓𝑓� 
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 The effective delay operator is then defined as a mapping between the set of path 

departure rates ℎ and the set of experienced path travel times: 

Ψ𝑝𝑝(𝑡𝑡,ℎ) ≐ 𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ) +ℱ(𝑡𝑡+𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ) − 𝑇𝑇𝐴𝐴) 

where 𝑇𝑇𝐴𝐴 is the predetermined target arrival time, and ℱ(·) is the penalty function each traveler is 

subjected to, associated with early or late arrival. Ψ𝑝𝑝(𝑡𝑡,ℎ) can be interpreted as the perceived 

travel cost of travelers, in a dynamic setting, when he or she departs at time t and takes path p. 

The perceived travel cost includes the travel time, as given by the delay operator 𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ), which 

is similarly defined in the RC DUE, and an additional arrival time penalty term, which describes 

the cost a traveler endures when he or she arrives too early or too late from his or her planned 

arrival time. 

 For the formulation of SRDT choice DUE, we introduced the following constraints on ℎ, 

usually know as demand satisfaction constraints or flow conservation constraints. 

 
� � ℎ𝑝𝑝(𝑡𝑡)𝑓𝑓𝑡𝑡 = 𝑄𝑄𝑟𝑟𝑟𝑟    ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲

𝑡𝑡𝑓𝑓

𝑡𝑡0𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟

 
(2.1) 

 

where W is the set of all OD pairs in the network, and 𝒫𝒫𝑟𝑟𝑟𝑟 is the set of paths connecting the OD 

pair (𝑖𝑖, 𝑠𝑠) ∈ 𝑊𝑊. 𝑄𝑄𝑟𝑟𝑟𝑟 is the fixed total travel demand for OD pair (𝑖𝑖, 𝑠𝑠), given a priori.  

 With the formulation and notation introduced, we have the set of feasible solutions for 

the DUE problem: 

Λ = �ℎ ∈ �𝐿𝐿+2 �𝑡𝑡0, 𝑡𝑡𝑓𝑓��
|𝒫𝒫|

∶ � � ℎ𝑝𝑝(𝑡𝑡)𝑓𝑓𝑡𝑡 = 𝑄𝑄𝑟𝑟𝑟𝑟   ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲
𝑡𝑡𝑓𝑓

𝑡𝑡0𝑃𝑃∈𝒫𝒫𝑟𝑟𝑟𝑟

� 

Remark 2.1. There are two issues that we would like to clarify: (1) The SRDT DNL defined in 

this section is different from the RC DNL defined in Chapter 4, only regarding constraints on the 

vector of departures ℎ. Therefore, we can define the finite dimensional counterpart with flexible 
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temporal granularity for the SRDT DNL in a similar way, which is omitted here. (2) In SRDT 

setting, the effective delay operator is introduced. However, the metamodeling will still be 

performed on the delay operator. Because the difference between the delay operator and the 

effective delay operator is the arrival penalty term, which usually can be computed fast and does 

not need to be involved in metamodeling. This is implying that the metamodeling task for both 

types of model (with and without departure time choice) are identical except for having different 

sampling regions, which can be adapted by using well designed sampling method. 

Continuous-time SRDT DUE 

Now, we are ready to mathematically formulate the continuous-time SRDT DUE. The 

notion and formulation are first introduced by (Friesz et al., 1993), who provide a definition 

tantamount to the following: 

Definition 2.1. (Dynamic user equilibrium) A vector of departure rates ℎ∗ ∈ Λ is a DUE 

if 

ℎ𝑝𝑝∗ (𝑡𝑡) > 0,𝑝𝑝 ∈  𝒫𝒫 𝑟𝑟𝑟𝑟 ⇒ 𝛹𝛹𝑝𝑝(𝑡𝑡,ℎ∗) =  𝑖𝑖𝑟𝑟𝑟𝑟  ∈  ℝ++ ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲 

The VI representation is presently the primary mathematical form employed for both 

route choice and SRDT choice DUE. The DUE defined in the equation above can be reformulated 

by a VI (Friesz et al., 1993) as follows: 

 𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 ℎ∗ ∈ Λ 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡

�� Ψp(𝑡𝑡,ℎ∗) �ℎ𝑝𝑝(𝑡𝑡) − ℎ𝑝𝑝∗ (𝑡𝑡)� 𝑓𝑓𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0𝑝𝑝∈𝒫𝒫

≥ 0

∀ ℎ ∈ Λ ⎭
⎪
⎬

⎪
⎫
𝑉𝑉𝐼𝐼�Ψ,Λ, �𝑡𝑡0, 𝑡𝑡𝑓𝑓��                      (2.2) 

We induced a generalized form or inner product ∙, which is defined as (Han et al. 2019) 

〈𝑓𝑓,𝑔𝑔〉 ≐ �� 𝑓𝑓𝑝𝑝(𝑡𝑡)𝑔𝑔𝑝𝑝(𝑡𝑡)𝑓𝑓𝑡𝑡     
𝑓𝑓𝑓𝑓

𝑡𝑡0
∀𝑓𝑓,𝑔𝑔 ∈ �𝐿𝐿2�𝑡𝑡0, 𝑡𝑡𝑓𝑓��

|𝒫𝒫|

𝑝𝑝∈𝒫𝒫
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This enables us to formulate DUE as 

〈Ψ(ℎ∗),ℎ − ℎ∗〉 ≥ 0    ∀ℎ ∈ Λ 

This is one version of the continuous time model presented in Friesz et al. (1993) and 

modified by various authors including Wie et al. (1995b), Friesz et al. (2011), Friesz et al. (2013), 

Han et al. (2013c), and Han et al. (2015b). Some other researchers, including Ran et al. (1993), 

Ran and Boyce (1996a), Ran and Boyce (1996b), Ran et al. (1996), also worked on continuous 

time DUE and created a family of DUE models sharing a common foundation. This is based on 

an equivalent optimal control formulation, which is used for showing the best responses of 

generic travelers constitutes a DUE flow pattern. These models replace the traditionally viewed 

unit effective travel delay operator, but embedded the notion of network loading within their 

DUE model. Such approach relies on very specific arc entrance and exit flow functions, as well as 

novel flow propagation constraints that are quite different than the continuous time physical 

identities used by Friesz et al. (2001), Perakis and Roels (2006), Kachani and Perakis (2006), and 

Kachani and Perakis (2009) (Friesz et al. 2018). 

DUE in discrete time 

DUE model can be presented in discrete time. This reformulation provide convenience 

for analytical solution schemes that are designed for finite dimensional models. Merchant and 

Nemhauser (1978a, b) set the stage for future work on DUE by using a discrete-time dynamic 

programming approach, solely with DSO traffic flow. Subsequent discrete-time DUE models 

include those by Drissi-Katouni and Hameda-Benchekroun (1992), Wie et al. (1995b), Huang and 

Lam (2002), and Nahapetyan and Lawphongpanich (2007). More recently Lo and Szeto (2002b) 

and Lo and Szeto (2004) have also made significant contributions to discrete-time DUE modeling 

with embedded CTM to accomplish DNL. In particular, their work confirms that LWR-based 
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DNL could be integrated with pure dynamic user equilibrium and, thereby, launched many 

investigations into LWR-based DNL/DUE. The authors cited for their work on discrete-time 

DUE used a variety of formulations including mixed integer linear programming, nonlinear 

programming, dynamic programming, optimal control theory, complementarity, and variational 

inequalities. In some instances, they were merely on departure time choice and in other instances 

on SRDT choice. 

We may give the following discrete-time statement of DUE: 

ℎ𝑝𝑝∗ (𝑡𝑡𝑘𝑘) > 0,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖 ⇒ Ψ𝑝𝑝(𝑡𝑡𝑘𝑘,ℎ∗) = 𝑖𝑖𝑖𝑖𝑖𝑖    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲
𝑖𝑖𝑖𝑖𝑖𝑖 = min

𝑘𝑘,𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖
Ψ𝑝𝑝(𝑡𝑡𝑘𝑘,ℎ∗)  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲

� �ℎ𝑝𝑝∗ (𝑡𝑡𝑘𝑘) ∙ Δ𝑡𝑡 = 𝑄𝑄𝑖𝑖𝑖𝑖    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲
𝑁𝑁

𝑘𝑘=1𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖
h∗ ≥ 0

𝛹𝛹(𝑡𝑡,ℎ∗) = 𝑎𝑎𝑖𝑖𝑔𝑔𝑂𝑂𝑎𝑎𝐿𝐿 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

This discrete model retains all the properties of the original model. 

Classifying DUE models 

Route-choice (RC) only DUE  

The RC model assume that the department time of each user is fixed. The user chooses 

route to take on. In contrast, with simultaneous route-and-departure-time setting, OD pairs are 

given.  

Han et al. (2019) summarizes articles that addresses route choice DUE in recent two 

decades. These articles are: Bliemer and Bovy (2003); Chen and Hsueh (1998); Lo and Szeto 

(2002b); Long et al. (2013); Ran and Boyce (1996b); Tong and Wong (2000); Varia and Dhingra 

(2004); Zhu and Marcotte (2000). 
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Simultaneous route-and-departure-time (SRDT) choice DUE 

Simultaneous route-and-departure and RC-time model is a major type of user choices 

model in DTA. The simultaneous route-and-departure-time (SRDT) choice DUE assumes each 

user to make simultaneously two decisions: on route and on departure time. The origin and 

destination are determined and pre-assumed by the set of introductions on simultaneous departure 

and RC model. 

 Challenges of the model is two-fold: modeling user behavior in time realistically, and 

assembling user’s departure time choice with the entire model within the DUE framework. In 

introducing departure time choice, the model become deferent because now users’ departure 

enjoy flexibility in time. This is also considered more realistic in describing road traffic. At the 

same time, when each user chooses both departure time and route to take, the decision is a 

dynamic one. Overall traffic status by this setting is expected to have more complexity and of 

high non-linearity. Gridlocks, traffic jams are integral to the definition of a dynamic user 

equilibrium and have to date been mainly expressed as variational inequalities, quasi-variational 

inequalities or complementarity problems. These expressions include discrete and continuous 

time. According to the summary in Han et al. 2019, SRDT choice DUE is discussed in the 

following works. (Friesz et al. 1993, 2001, 2011, 2013; Han et al. 2013b, 2015a, b; Huang and 

Lam 2002; Nie and Zhang 2010; Szeto and Lo 2004; Ukkusuri et al. 2012; Wie 2002). Emerging 

literature on DVI still to be exploited for modeling and computation. 

Bounded rationality 

We follow Friesz et al. (2018) for a discussion on bounded rationality. It is commonly 

known that bounded rationality plays an important role in modeling dynamic user equilibria 
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(Mahmassani and Chang, 1987; Mahmassani and Liu,1999). In recent two decades, some articles, 

include but not limited to: Mahmassani et al. 2005, Szeto and Lo 2006, Guo and Liu 2011, Get 

and Zhou 2012, Wu et al. 2013, Di et al. 2013, and Han et al. 2015b have analyzed bounded 

rationality for an array of timescales and notions of dynamic adjustment processes. The presence 

and style of expressing bounded rationality constitutes an additional consideration in classifying 

DUE models. 

Elastic demand 

Elastic demand has long been embraced as a critical component of all general static 

traffic assignment. For models with elastic demand, total demand on a network is a variable.  

The discussion on elastic travel demand is important. Friesz et al. (1993) describe in 

prose how to extend the results for fixed trip tables to a new formulation employing inverse 

demand functions, in applying elastic travel demand models within a DUE modeling framework. 

Contribution to the study of DUE and DUE-like models and algorithms follows in subsequent 

years, including: Ran and Boyce (1996a), Cantarella (1997), Yang and Huang (1997), Yang and 

Meng (1998), Wie et al. (2002), Bliemer and Bovy (2003), Szeto and Lo (2004), and Bellei et al. 

(2005, 2006), and Han et al. (2011). The technical details of the model presented by Friesz et al. 

(1993) is first carried out by Friesz and Meimand (2014). Han et al. (2015a) extended the analysis 

into the dynamic and elastic demand dynamic user equilibrium (E-DUE) using functional 

analysis. The analytical properties and convergence of algorithms are also addressed in Han et al. 

(2015a). 
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Instantaneous/reactive DUE 

Instantaneous or reactive DUE has been implemented in a number of analytical and 

simulation-based DUE models. These models, aside from a certain behavioral foundation, were 

mostly driven by the desire to avoid path enumeration and/or iterative computational procedure 

(especially given the high cost of implementing DNL procedures, e.g., microsimulation 

modeling). Some scholars who discuss these approaches include Li et al. (2000), Kuwahara and 

Akamatsu (1997), and Han (2003) (Friesz et al. 2018). 

More recently Ma et al (2012a) have introduced a continuous-time model of so-called 

instantaneous dynamic user equilibrium that considers departure time choice but not simultaneous 

departure time and route choice. Moreover, the Ma et al (2012b) model employs a Vickrey-type 

DNL submodel. As we have commented previously, Vickrey-type network loading brings with its 

limitations on behavior, and does not reside at the current DNL research frontier. The Ma et al 

(2012b) instantaneous perspective ignores the critical notion of route choice and, as such, its 

solutions arguably do not constitute a user equilibrium. In fact, the Ma et al (2012b) instantaneous 

perspective has more in common with the early DTA literature on timing departure decisions 

(such as Friesz et al, 1989) than it does with the widely adopted notion of SRDT DUE. In 

subsequent papers Ban et al (2012b) and Ban et al (2014) do consider SRDT DUE but again 

through the prism of Vickrey-type DNL, preventing them from achieving the generality found in 

Friesz el (2013), Han et al (2015a) and Han et al (2015b) who use LWR-based DNL in 

conjunction with SRDT DUE. 
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Computation of DUE 

Various solution schemes have been proposed for use in finding a solution to the DUE 

problem discussed in the previous subsection. Han et al. (2019) presented a table of 

computational algorithms developed for DUE. One of the frequently-employed methods is the 

fixed-point method. The fixed-point method is based on the differential variational inequality 

reformulation of DUE. The DVI formalism of DUE is derived by expressing the VI as a fictitious 

optimal control problem and then applying the minimum principle (Friesz et al., 2013a). Because 

we have limited concerning space, we do not include details about the reformulation and 

derivation of DVI. Friesz et al. (2013a) presents a detailed discussion of the DVI and the fixed-

point method. The fixed-point method is elementary and attractive from coding point of view. It 

has been used successfully in several studies (Han et al. 2019). 

 Some other methods to solve the DUE problem include 

• Conjugate gradient projection method (Lee et al. 2003) 

• Nonlinear complementarity problem by successive linearization with Lemke’s LCP 

algorithm (the PATH package) 

• Gap function (Friesz et al. 2010) 

In next subsection, we follow Han et al. (2015d) for the description of the fixed-point 

method. 

Fixed-point computational scheme 

Fixed-point method 

Step 0 Identify an initial feasible point ℎ0 ∈ Λ. Set the iteration counter 𝑘𝑘 = 0. Let 𝛼𝛼 > 0 

be a fixed constant. 
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Step 1 Solve the DNL subproblem with path departure rates given by ℎ𝑘𝑘, and obtain the 

path travel cost Ψ𝑝𝑝�𝑡𝑡, ℎ𝑘𝑘�,∀ 𝑝𝑝 ∈ 𝒫𝒫,∀ 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓]. 

Step 2 For each (𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲, solve the following algebraic equation for 𝜇𝜇𝑟𝑟𝑟𝑟, using root 

search algorithms. 

� � �ℎ𝑝𝑝𝑘𝑘(𝑡𝑡) − 𝛼𝛼Ψ𝑝𝑝�𝑡𝑡,ℎ𝑘𝑘� + 𝜇𝜇𝑟𝑟𝑟𝑟�+𝑓𝑓𝑡𝑡 = 𝑄𝑄𝑟𝑟𝑟𝑟
𝑡𝑡𝑓𝑓

𝑡𝑡0𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟

 

 Then update the next iterate ℎ𝑘𝑘+1(∙) = �ℎ𝑝𝑝𝑘𝑘+1(∙):𝑝𝑝 ∈ 𝒫𝒫� where 

ℎ𝑝𝑝𝑘𝑘+1(𝑡𝑡) = �ℎ𝑝𝑝𝑘𝑘(𝑡𝑡) − 𝛼𝛼Ψ𝑝𝑝�𝑡𝑡, ℎ𝑘𝑘� + 𝜇𝜇𝑟𝑟𝑟𝑟�+     ∀𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟,   (𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲 

where [𝑥𝑥]+ ≐ max{0,𝑥𝑥}. 

Step 3 Terminate the algorithm with output ℎ∗ ≈ ℎ𝑘𝑘 if 

�ℎ𝑘𝑘+1 − ℎ𝑘𝑘�𝐿𝐿2 �ℎ𝑘𝑘�𝐿𝐿2� ≤ 𝜖𝜖  

where 𝜖𝜖 ∈ ℝ++ is a prescribed termination threshold, and the norm ‖∙‖𝐿𝐿2 is defined 

as 

‖ℎ‖𝐿𝐿2 = ��� �ℎ𝑝𝑝(𝑡𝑡)�
2
𝑓𝑓𝑡𝑡

𝑡𝑡𝑓𝑓

𝑡𝑡0𝑝𝑝∈𝒫𝒫

�

1/2

 

Otherwise, set 𝑘𝑘 = 𝑘𝑘 + 1 and repeat Step 1 through Step 3. 

DTA simulation 

Many of the early DTA simulation models take time-dependent OD matrices as inputs 

and equilibrate time-dependent route shows using a static traffic assignment for each given time 

step of a DTA (Peeta and Ziliaskopoulos 2001). Such crude models do not account for the 

formation of demand and usually restrict themselves to route choice. That is to say, they offer no 

behavioral basis for departure time choice (Nagel and Flötteröd, 2012) and ignore the necessity of 
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simultaneous route choice and departure-time choice that ensures the intrinsic consistency needed 

to identify DUE solutions. Modern DTA simulation and computer packages provide new 

resources for DTA research.  

TRANSIMS is a package that estimates second-by-second movements of individual 

travelers while exploiting parallel processing and cellular automata representations. Jeihani 

(2010) reviews selected well-known computer packages including TRANSIMS. Using 

TRANSIMS is observed to address some of the existing problems in DTA models. (Friesz et al. 

2018). 

Agent-based simulation (ABS) is another simulation choice alternative to regular DTA 

simulation. Rules, equations, and inequalities are used to capture the behavior of individual road 

network users. ABS has made great progress in recent years and become a largely accepted tool 

for capturing DSO and DUE flow patterns. Successful ABS models offer researchers a 

convincing way to represent behavioral subtleties. As pointed out by Nagel and Flötteröd (2012), 

ABS has the particular property of directly representing the feedback from changing network 

conditions to user decisions. Also, it is worth pointing out that ABS explicitly model departure 

time choice, mode choice, and activity choice of users. In other word, the user behaviors are 

explicit. ABS models may be crafted to include the implications of constraints intrinsic to 

differential algebraic equation (DAE) systems used for DNL modeling (Friesz et al. 2018). 

Other important simulation packages include: 1) DYNA-SMART: a discrete time 

mesoscopic simulation model for transportation systems. It is designed to model traffic pattern 

and evaluate overall network performance under real-time information systems10; and MATSIM: 

development of this package is started by a team led by Kai Nagel that does microscopic traffic 

 
10 This brief introduction follows its website http://www.its.uci.edu/ctss/sim_models/dynasmart.html. For 

more information on this package, the readers are referred to the webpage. 

http://www.its.uci.edu/ctss/sim_models/dynasmart.html
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simulation. MATSim is an activity-based, extendable, multi-agent simulation framework 

implemented in Java. It is open-source. The framework is designed for large-scale scenarios. This 

means all models’ features are stripped down to efficiently handle the targeted functionality. For 

the network loading simulation, MATSim implemented a queue-based model and omit very 

complex and computationally expensive car-following behavior (Horn et al. 2016, Axhausen et 

al. 2016). 
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Chapter 3 
 

Kriging/Metamodeling 

History of Kriging 

Statistical learning (machine learning) has enjoyed increasing popularity in academia, 

industry, and social media in recent years. In this dissertation, we utilize Kriging, a statistical 

learning method that originates with gold mining in South Africa. Developed in 1960s by Krige, 

the method grows beyond its original application field, and becomes popular in computer 

experiments in 1990s when the calculation power of computers had its significant growth. In the 

entire pool of all machine learning methods, Kriging enjoys unique quality of flexibility and 

accuracy that is not shared with other popular machine learning method, which is discussed in 

subsequent sections. 

Kriging involves the idea of modeling a target model or operator by a realization of a 

random process. Statistical and analytical nature of the ensemble11 of the realizations is the 

foundation of the flexibility and modeling strength it provided. Here by “ensemble”, we are 

referring to the large set of (equivalent) realizations from a random process. Kriging models a 

target mapping by one realization from the ensemble of a Gaussian process. Due to the use of 

realizations of Gaussian process, which are highly flexible, Kriging is significant in being 

sufficiently flexible to create metamodel for non-differentiable, nonlinear models. The procedure 

of using Kriging to model a target function to a smooth “surface” is called response surface 

methodology. 

 
11 The word ensemble may refer to a concept in physics that has now been widely adopted in other fields. 

Here we use the word in the context of discussing within the statistics field. 
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Categories of metamodeling 

Gaussian process 

In this section, we start with a definition of Gaussian process follows Fang et al. (2005): 

Definition 3.1 (Gaussian process) A stochastic process {𝑋𝑋(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇} indexed by t is said 

to be a Gaussian process if any of its finite dimensional marginal distribution is a normal 

distribution, i.e., if for any finite set �𝑡𝑡1, … , 𝑡𝑡𝑝𝑝�, (𝑋𝑋(𝑡𝑡1),· · · ,𝑋𝑋(𝑡𝑡𝑝𝑝)) has an 𝑝𝑝-dimensional normal 

distribution.  

We denote the mean, variance, and covariance functions by 𝜇𝜇(𝑡𝑡) = 𝐸𝐸{𝑌𝑌(𝑡𝑡)},𝜎𝜎2(𝑡𝑡) =

𝑉𝑉𝑎𝑎𝑖𝑖{𝑌𝑌(𝑡𝑡)}, and 𝜎𝜎(𝑡𝑡1, 𝑡𝑡2) = 𝐶𝐶𝑡𝑡𝑖𝑖�𝑋𝑋(𝑡𝑡1),𝑋𝑋(𝑡𝑡2)� for any 𝑡𝑡1, 𝑡𝑡2 ∈ 𝑇𝑇. A Gaussian process 

{𝑋𝑋(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇} indexed by t is said to be stationary if its 𝜇𝜇(𝑡𝑡) and 𝜎𝜎2(𝑡𝑡) are constant (independent 

of the index t), and its 𝐶𝐶𝑡𝑡𝑖𝑖�𝑋𝑋(𝑡𝑡1),𝑋𝑋(𝑡𝑡2)� depends only on |𝑡𝑡𝑖𝑖1 − 𝑡𝑡𝑖𝑖2|, 𝑖𝑖 = 1, … ,𝑝𝑝, where 𝑡𝑡𝑖𝑖 =

�𝑡𝑡1𝑖𝑖, … , 𝑡𝑡𝑝𝑝𝑖𝑖�, 𝑗𝑗 = 1,2. 

In our study, Kriging is one of the main metamodeling methods we use. Kriging 

considers the observed input-output functional relationship as a realization of a Gaussian Random 

Field (GRF), and the resulting predictor corresponds to the mean of the posterior predictive 

density of the function approximation. It is to be noted that Kriging does not assume that the 

target model follows Gaussian distribution in any sense. Also, Kriging does not require any 

distribution assumptions on the model to be learned. Taking the advantages of the properties of a 

GRF enhance the model by allowing us to obtain a posterior distribution which we can use to 

predict. The mean of this distribution coincides with the kriging predictor, and the variance 

expression fully characterizes the posterior distribution. This variance is shown in Figure 3-1 as 

the "width" of the confidence band (represented by grey shadowed area). 
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Figure 3-1 Illustration of Kriging 

 The confidence bands in Figure 3-1 is drawn according to the variance of the predictor 

from the posterior distribution induced by GRF. The shape of the confidence band illustrates a very 

important property of Kriging: its predictions on the samples (points in the training dataset) are 

exact. This directly makes the variance goes to zero at the sample points represented in green circles. 

When the original model to be learned is very expensive or time consuming, as it is in our case, 

this property is preferable in the sense that the metamodel exactly mimics the original model where 

original model had already been evaluated. The importance of this property on our developed 

metamodeling scheme will be furtherly discussed in Chapter 4. 

Kriging 

There are several categories of Kriging to satisfy a range of modeling needs. An integral 

piece of the model is the covariance function selected. In this section, we discuss spatio Kriging 
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to illustrate the idea. Discussion on covariance functions of spatio-temporal is separately given in 

subsequent section. 

To determine spatio covariance function 𝐶𝐶(∙), Kriging assumes that 𝑌𝑌(𝑥𝑥) satisfies 

second-order stationary, which means that its expectation and variance do not depend on actual 

locations, but only on the distance 𝑓𝑓 between 𝑥𝑥 + 𝑓𝑓 and 𝑥𝑥 (Cressie 1993): 

𝐸𝐸[𝑌𝑌(𝑥𝑥 + 𝑓𝑓) − 𝑌𝑌(𝑥𝑥)] = 0    ∀𝑓𝑓 ∈ ℝ,𝑥𝑥 ∈ ℝ2 

𝑉𝑉𝑎𝑎𝑖𝑖[𝑌𝑌(𝑥𝑥 + 𝑓𝑓),𝑌𝑌(𝑥𝑥)] = 𝐶𝐶(𝑓𝑓)    ∀𝑓𝑓 ∈ ℝ,𝑥𝑥 ∈ ℝ2 

These equations are defined on the two-dimensional input space, but can be extended to 

accommodate 𝑥𝑥 ∈ ℝ𝑛𝑛 without difficulty. Because the variance of 𝑌𝑌∗ must be nonnegative, it can 

be concluded from definition of Kriging that (Cressie 1993; Curriero 2006; Zou et al. 2012) 

𝑉𝑉𝑎𝑎𝑖𝑖(𝑌𝑌∗) = ��𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖𝐶𝐶(ℎ) ≥ 0
𝑖𝑖𝑖𝑖

 

This is called conditional positive-definite, which is of vital importance in determining 

the validity of the spatial covariance function. A large body of researchers proposes various valid 

spatial covariance functions, including exponential, Gaussian, spherical, and Matern (e.g., Cressie 

1993, Diggle and Ribeiro 2007). All these classical spatial covariance functions are based on 

Euclidean distance. 

Tradition metric, however, can be invalid in modeling special problems where the 

variable carries similarity on a non-Euclidean space (Zou et al., 2012). Therefore, Kriging based 

on the Euclidean distance metric may not be directly achieved, and a new distance metric or a 

new covariance function form should be proposed to solve problems having this nature. (Zou et 

al., 2012). 

The following figure shows how Kriging learns a mapping from X to Y: 

 
X Kriging/surrogate model Y
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Figure 3-2 Illustration of Kriging on an 𝑋𝑋 → 𝑌𝑌 mapping 

 The following sections respectively introduce common categories of Kriging. 

Ordinary Kriging 

Ordinary Kriging is the most commonly used Kriging model in practice (Fang et al., 

2005). The model looks like follows: 

𝑦𝑦(𝒙𝒙) = 𝜇𝜇 + 𝑧𝑧(𝒙𝒙) 

Ordinary Kriging uses weighted averages of the sample data to generate the 

interpolations. In the equation above, 𝜇𝜇 is a constant mean and 𝑧𝑧(𝑥𝑥) is a zero-mean Gaussian 

random process. For a two-dimensional spatial data, assume that sample data {𝑌𝑌(𝑥𝑥𝑖𝑖): 𝑥𝑥𝑖𝑖  ∈  ℝ2} 

are collected at sites 𝑖𝑖 =  1, 2, . . . ,𝑛𝑛 with locations 𝑥𝑥𝑖𝑖, then the unknown value 𝑌𝑌∗ in location 𝑥𝑥∗ 

can be described by a linear combination of Y(𝑥𝑥𝑖𝑖): (Zou et al., 2012) 

𝑌𝑌∗(𝑥𝑥∗)  = �𝜆𝜆𝑖𝑖𝑌𝑌(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

It is to be noted that Ordinary Kriging assumes no distribution. The prediction 𝑌𝑌∗(𝑥𝑥∗) 

Kriging obtains should be seen as a point estimator. It is not a random variable following any 

assumed distribution, since no distribution is assumed. Kriging on higher dimensional space 

follows same structure of generating the interpolation (metamodel predictions) by linear 

combination of the sample observations. 

Universal Kriging 

The model of Universal Kriging is given as follows 
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𝑦𝑦(𝑥𝑥) = �𝛽𝛽𝑖𝑖𝐵𝐵𝑖𝑖(𝑥𝑥) + 𝑧𝑧(𝑥𝑥)
𝐿𝐿

𝑖𝑖=0

 

𝑖𝑖(𝜽𝜽;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) = 𝐶𝐶𝑡𝑡𝑖𝑖𝑖𝑖(𝑧𝑧(𝒙𝒙𝟏𝟏), 𝑧𝑧(𝒙𝒙𝟐𝟐)) 

where z(x) is a Gaussian process with zero mean, variance 𝜎𝜎2, and correlation function 

𝑖𝑖(𝜽𝜽;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐). 

Spatio-temporal Kriging 

Spatial temporal statistical model tries to model how current process values evolves from 

the past process values in a spatial process. The book by Cressie and Wikle (2011) provide a clear 

and comprehensive introduction on this area of research methods. To introduce this approach, we 

consider a spatio-temporal random process 𝑌𝑌(𝑠𝑠;  𝑡𝑡), 𝑠𝑠 ∈  𝑂𝑂𝑟𝑟, 𝑡𝑡 ∈  𝑂𝑂𝑡𝑡 that evolves through the 

spatio-temporal index set 𝑂𝑂𝑟𝑟  × 𝑂𝑂𝑡𝑡 following (Cressie and Wikle, 2011): 

𝑌𝑌(𝑠𝑠; 𝑡𝑡)  = 𝜇𝜇(𝑠𝑠; 𝑡𝑡) + 𝛽𝛽(𝑠𝑠) + 𝛾𝛾(𝑡𝑡) + 𝜅𝜅(𝑠𝑠; 𝑡𝑡) + 𝛿𝛿(𝑠𝑠; 𝑡𝑡), 𝑠𝑠 ∈ 𝑂𝑂𝑟𝑟, 𝑡𝑡 ∈ 𝑂𝑂𝑡𝑡 

where 𝜇𝜇(𝑠𝑠;  𝑡𝑡) is a deterministic mean, 𝛽𝛽(𝑠𝑠) is a mean-zero random effect representing the 

location-specific variability common to all times, 𝛾𝛾(𝑡𝑡) is a mean-zero random effect representing 

time-specific variability common to all locations, 𝜅𝜅(𝑠𝑠;  𝑡𝑡) is a mean-zero random effect capturing 

the spatio-temporal interaction not found in the deterministic mean 𝜇𝜇(𝑠𝑠;  𝑡𝑡), and 𝛿𝛿(𝑠𝑠;  𝑡𝑡) is a 

mean-zero random effect modeling the white noise. The random effects are assumed to be 

mutually statistically independent. For some cases, the noise (or nugget) can be removed. In the 

next few subsections, we discuss theoretical properties of spatio-temporal Kriging. 
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Other metamodeling methods 

Neural Networks (NN) 

The term Neural Network has evolved to encompass a large class of models and learning 

methods in the last decade and it has become one of the most well-known-to-public statistical 

learning method (Hassoun (1995), Bishop (1995), Haykin (1998), Fang et al. (2005) and Hagan et 

al. (1996)). Here, we see “learning” as parameter estimation. Neural Networks are computer 

models inspired by biological structure of human brain to mimic highly intelligent cognitive 

functions. Neural networks in statistical metamodeling composed of simple elements (artificial 

neurons) operating in parallel based on a network function that is determined largely by the 

connections between elements (Fang et al .2005). We can train a Neural Network to perform a 

particular function by adjusting the values of the weights on the connections (i.e., parameters) 

between elements (the neurons). The input-output mapping can be viewed as a non-parametric 

regression computation (Fang et al .2005). 

Radial basis function 

Radial basis function (RBF) methods are techniques for exact interpolation of data in 

multi-dimensional space (Powell 1987). The RBF maps the inputs to the outputs using a linear 

combination of the basis functions (Fang et al. 2005). A number of modifications to the exact 

interpolation have been proposed (Moody and Darken (1989), Bishop (1995), Fang et al. 2005). 
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When Gaussian basis functions are chosen, the RBF model is closely related to the Gaussian 

Kriging model (Li and Sudjianto 2005, Fang et al. 2005).12 

Other metamodeling methods includes support vector machines, smoothing splines and 

local polynomial regression are beyond the scope of this dissertation. Interested readers are 

recommended to consult the book by Fang et al. (2005) for references. 

Metamodel Properties 

Separability 

Definition 3.2.(Cressie 2011) A random process 𝑌𝑌(·; ·) is said to have a separable spatio-

temporal covariance function if for all 𝒔𝒔,𝒙𝒙 ∈ ℝ𝑑𝑑 , 𝑡𝑡, 𝑖𝑖 ∈ ℝ we obtain 

 𝑠𝑠𝑡𝑡𝑖𝑖(𝑌𝑌(𝒔𝒔; 𝑡𝑡),𝑌𝑌(𝒙𝒙; 𝑖𝑖)) = 𝐶𝐶(𝑟𝑟)(𝒔𝒔,𝒙𝒙) ∙ 𝐶𝐶(𝑡𝑡)(𝑡𝑡, 𝑖𝑖) (3.1) 

where 𝐶𝐶(𝑟𝑟) and 𝐶𝐶(𝑡𝑡) are spatial and temporal covariance functions, respectively. As a 

consequence of Equation (3.1), a simple class of spatio-temporal covariance functions is given by 

the product of individual spatial and temporal covariance functions. 

 
12 A Gaussian process with radial basis covariance is identical to an RBF model. Interested reader are referred 

to Cressie (2006) for more details. 
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Stationarity in space or time 

Definition 3.3. We say that 𝑓𝑓 is a stationary spatio-temporal covariance function on 

ℝ𝑑𝑑 × ℝ, if it satisfies nonnegative-definite13 requirement and can be written as 

𝑓𝑓�(𝒔𝒔; 𝑡𝑡), (𝒙𝒙; 𝑖𝑖)� = 𝐶𝐶(𝒔𝒔 − 𝒙𝒙; 𝑡𝑡 − 𝑖𝑖),     𝑠𝑠, 𝑥𝑥 ∈ ℝ𝑑𝑑  𝑡𝑡, 𝑖𝑖 ∈ ℝ 

If a random process 𝑌𝑌(·; ·) has a constant expectation and a stationary covariance 

function, 𝐶𝐶𝑌𝑌(ℎ;  𝜏𝜏), then it is said to be second-order (or weakly) stationary. 

When 𝐶𝐶(𝑟𝑟) and 𝐶𝐶(𝑡𝑡) are, respectively spatially and temporally stationary, then the 

covariance function (3.1) becomes (Cressie, 2011) 

𝐶𝐶(ℎ; 𝜏𝜏) = 𝐶𝐶(𝑟𝑟)(ℎ) ∙ 𝐶𝐶(𝑡𝑡)(𝜏𝜏),   ℎ ∈ ℝ𝑑𝑑 , 𝜏𝜏 ∈ ℝ 

The concept of strong stationarity corresponds to the equivalence of the two probability 

measures defining the random processes 𝑌𝑌(·; ·) and 𝑌𝑌(· + ℎ; ∙ + 𝜏𝜏), respectively, for all ℎ ∈ ℝ𝑑𝑑 

and all 𝜏𝜏 ∈ ℝ. 

Fully symmetry 

Definition 3.4.(Cressie, 2011) A random process 𝑌𝑌(·; ·) is said to have a fully symmetric 

spatio-temporal covariance function if 

𝑠𝑠𝑡𝑡𝑖𝑖�𝑌𝑌(𝑠𝑠; 𝑡𝑡),𝑌𝑌(𝑥𝑥; 𝑖𝑖)� = 𝑠𝑠𝑡𝑡𝑖𝑖(𝑌𝑌(𝑠𝑠; 𝑖𝑖),𝑌𝑌(𝑥𝑥; 𝑡𝑡)) 

 
13 A covariance function is a nonnegative-definite function, and vice versa. See Cressie (2011) for the 

definition of nonnegative-definite function {𝑓𝑓(𝑢𝑢, 𝑖𝑖) ∶ 𝑢𝑢,𝑖𝑖 ∈  𝑂𝑂} defined on 𝑂𝑂 × 𝑂𝑂 
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Metamodeling on Dynamic Network Loading (DNL) 

In this dissertation, we employ Kriging method onto metamodeling the dynamic network 

loading (DNL) problem. We recall the ordinary Kriging model: 

𝑌𝑌 = 𝜇𝜇 + 𝜖𝜖(𝑥𝑥) 

The model is built as follows 

Ψ(𝒉𝒉) = 𝜇𝜇 + 𝜖𝜖(𝒉𝒉) 

in which definition of the terms are: 

Ψ: 𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑑𝑑𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓 𝑓𝑓𝑒𝑒𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠 

𝒉𝒉:𝑓𝑓𝑒𝑒𝑝𝑝𝑎𝑎𝑖𝑖𝑡𝑡𝑢𝑢𝑖𝑖𝑒𝑒 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠 

𝜖𝜖: 𝑧𝑧𝑒𝑒𝑖𝑖𝑡𝑡 − 𝑑𝑑𝑒𝑒𝑎𝑎𝑛𝑛 𝐺𝐺𝑎𝑎𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 𝑝𝑝𝑖𝑖𝑡𝑡𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 

 

where 𝒉𝒉 is an n × |𝒫𝒫|-dimensional vector. This framework follows general concept of 

metamodeling. By slight modification it can reflect the framework of metamodeling by other 

comparing methods. The only change needs to be made is to replace “meta-model by Kriging” 

component with a different metamodel component. Kriging enjoys high and resilient smoothness 

against practical non-smoothness when gridlock, spillback, and jams appears. Kriging on DNL is 

the foundation of our proposed extensions in Chapter 5, and bi-level problems in Chapter 7. The 

study including numerical tests on this approach is discussed in full details in Chapter 4.  

 

 
Figure 3-3 Metamodeling on delay operator 
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Chapter 4 
 

Statistical metamodeling on DNL 

This chapter contains a discussion of statistical metamodeling applied to the dynamic 

network loading (DNL) aspect of DUE.14 

Metamodeling is the process of building a “model of models,” i.e., a surrogate 

approximation of the exact models/processes to improve the computation efficiency or gain better 

analytical properties (Wang and Shan, 2007). Specifically, we treat the delay operator as a highly 

nonlinear mapping from the set of path departure rates to the set of path travel times, and interpret 

and approximate its inherent input-output mechanism using Kriging. Kriging considers the 

observed ℎ −Ψ functional relationship as a realization of a GRF, and the resulting estimation 

corresponds to the posterior predictive density of the function approximation. The proposed 

framework is general enough to handle a wide range of DNL models with different traffic flow 

dynamics (i.e., it is a “model of DNL models”). Each output of this metamodel is an approximate 

DNL model with closed-form expression and superior regularity and computational efficiency. 

• Kriging on DNL 

Statistical/machine learning algorithms learn from and make predictions based on data, 

sometimes without exploration of the behavioral foundations and plausibility of the learning 

processes on which they are based. However, this is not the case in our proposed Kriging 

framework. Firstly, instead of making unstructured interpretations of the input-output 

mechanisms, the proposed approach utilizes information about the network structure, path, and 

time to identify parts of the input variables that are likely to be correlated, and defines the 

correlation functions accordingly. Secondly, although the path delay operators may be 

 
14 Some of the content in this section was previous presented in the article Song et al. (2018). 
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discontinuous, it is understood that the congestion effect, observed at some point in the spatio-

temporal domain, tend to progress in a continuous way in space and time due to the finite 

propagation speeds of traffic characteristics (e.g., kinematic waves). The potential discontinuity 

of path delay operators may be dealt with in Kriging by making appropriate regions of the spatio-

temporal surface very steep yet smooth. 

There is a large and rapidly growing literature on machine learning methods (Hastie et 

al., 2009; James et al., 2013; Murphy, 2012). Among the many choices of statistical/machine 

learning techniques that can be used for metamodeling, Kriging is the only technique that has all 

the following three properties: 

• It is an exact interpolator. This means that when approximating a function 𝑌𝑌(𝑥𝑥) with a 

metamodel 𝑌𝑌�(𝑥𝑥) at a data point 𝑥𝑥 used to fit the model (a point in the training dataset), 𝑌𝑌�(𝑥𝑥) = 

𝑌𝑌(𝑥𝑥) (i.e., the prediction error at 𝑥𝑥 is zero). This is an important property in metamodeling if 

running the original model to be approximated is very expensive or time consuming. It is, 

therefore, convenient that the metamodel exactly mimics the original model in instances in which 

the original model had already been ran. This property is not shared by other popular techniques 

such as support vector regression (SVR), NN, or Random Forest (RF); 

• It provides a predictor that is closed-form and analytic. This is a property shared by 

Kriging and SVRs, but not by NNs or RFs. A closed-form Kriging predictor has a number of 

advantages in DTA applications as we discuss in both Chapter 3 and the last section of this 

Chapter; 

• It provides a closed-form, analytical expression of the prediction error variance (or 

standard error). This property is exclusive to Kriging thanks to the interpretation of its predictor 

as the mean of the predictive posterior density of a Gaussian process (or GRF). The underlying 

Gaussianity assumption is used only if prediction intervals are desired, in which case Kriging 

provides minimum mean square error predictions (Santner et al., 2013). If the Gaussianity 
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assumption does not hold, then the Kriging predictor can be shown to be the best linear unbiased 

predictor (Santner et al., 2013). 

It is worth mentioning here that there is an expression for variance of the posterior in 

Kriging. This variance could be used to determine how "narrow" the predictions will get as the 

size of training set increases, and deduce an error bound on the accuracy of the predictions and 

give references to support evaluation and prediction of surrogate model performances. This 

property is also not shared by many other metamodeling methods. Kriging is very promising in 

the group of machine learning methods. Judging by the result in our examples, Kriging performs 

great on transportation models given. For a spectrum of complex original problem, Kriging 

reduce its formulation to a conceptually simple one. 

To the best of our knowledge, Kriging has not been used to model DNL before in 

literature. We are the first explorer to pursue the direction. 

Metamodeling in DNL 

Dynamic network loading and the delay operator 

The notion of DNL varies in context and application in the literature. In this section we 

articulate the delay operator that this study addresses using precise mathematical languages while 

referring the reader to a number of other papers that discuss the DNL procedures as well as their 

numerical implementations in a wider spectrum (Friesz et al., 2013a; Gentile et al., 2007; Han et 

al., 2015b; Huang and Lam, 2002; Ukkusuri et al., 2012). However, we note that there is no 

fundamental difficulty to apply the proposed metamodeling framework to other types of DNL 

models and, in general, traffic network performance models. 
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Delay operator as an infinite-dimensional mapping 

We consider a general network with a time horizon [𝑡𝑡0, 𝑡𝑡𝑓𝑓]. Let 𝒫𝒫 be the set of all paths 

employed by travelers. For each 𝑝𝑝 ∈ 𝒫𝒫, we define its path departure rate ℎ𝑝𝑝(·) as a function of 

departure time t. Then we let ℎ(·) = ℎ𝑝𝑝(·): 𝑝𝑝 ∈ 𝒫𝒫 be the vector of path departure rates. The 

following constraints on the departure rates are commonly employed for RC DUE problems 

(Smith and Wisten, 1995; Zhu and Marcotte, 2000): 

 Σ𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟  ℎ𝑝𝑝(𝑡𝑡) =  𝑅𝑅𝑟𝑟𝑟𝑟(𝑡𝑡)         ∀𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓�,   ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲  

where 𝒲𝒲 is the set of OD pairs, 𝒫𝒫𝑟𝑟𝑟𝑟 is the set of paths that connect OD pair (𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲. 𝑅𝑅𝑟𝑟𝑟𝑟(𝑡𝑡) is 

the time-varying departure rate between OD pair (𝑖𝑖, 𝑠𝑠) (over all possible paths), and is given a 

priori. This constraint is commonly employed for RC DUE. We note that this is different from the 

constraints presented in formula (2.1). The fundamental difference is that in RC DUE, the 

departure rate between a given OD pair is fixed for each time instance, i.e., the travelers only 

decide about the route to take, but not when to go. In SRDT choice DUE, only the total demand 

between an OD pair is fixed, aligned with the assumption that travelers make both route-and-

departure-time choice. 

Therefore, the set of feasible path departure rates can be defined as 

 
Λ = �ℎ(∙):  ℎ𝑝𝑝(𝑡𝑡) ≥ 0,   � ℎ𝑝𝑝(𝑡𝑡) = 𝑅𝑅𝑟𝑟𝑟𝑟(𝑡𝑡)         ∀𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓�,   ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲

𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟

� 
(4.1) 

The delay operator is a mapping that relates the set of path departure rates ℎ to the set of 

path travel times Ψ: 

Ψ(ℎ) ≐ �Ψ𝑝𝑝(𝑡𝑡;ℎ):   𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓�,𝑝𝑝 ∈ 𝒫𝒫�      ℎ ∈ Λ 

where each Ψ𝑝𝑝(𝑡𝑡;  ℎ) denotes the path travel-time experienced by drivers departing at 

time t and following path p, when the path departure rates of the entire network are given by ℎ. In 
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summary, we define the delay operator, which is viewed as an infinite-dimensional mapping, as 

follows. 

Definition 4.1. (Infinite-dimensional delay operator) Given a road network and the 

feasible path flow set (4.1), a delay operator is a mapping from the set of path departure rates ℎ ∈

Λ to the set of path travel times Ψ(ℎ). 

Remark 4.1. There are many different ways to perform the DNL procedure to evaluate 

the delay operator, including those mentioned in Chapter 1. Each way can be seen as a DNL 

model and hence there are many different DNL models. We propose one metamodel that can be 

applied to these individual DNL models by following the same procedure, which is to be 

elaborated in the sections below. 

 

Figure 4-1 Illustration of the DNL model 

Delay operator as a finite dimensional mapping 

To apply the Kriging technique and facilitate numerical implementation, we need to 

define the delay operator in a finite dimensional space. To this end, we let n be an arbitrary 

positive integer, and partition the time horizon [𝑡𝑡0, 𝑡𝑡𝑓𝑓] into n equal sub-intervals, denoted 𝐼𝐼𝑖𝑖, 𝑖𝑖 =

 1, . . . ,𝑛𝑛. We define the discrete path departure rate to be an n-dimensional vector 𝒉𝒉𝑝𝑝 ∈  ℝ+
𝑛𝑛 , and 

the entire vector of path departure rates to be a n × |𝒫𝒫|-dimensional vector 𝒉𝒉 = �𝒉𝒉𝑝𝑝: 𝑝𝑝 ∈ 𝒫𝒫� ∈

ℝ+
𝑛𝑛×|𝒫𝒫|. To be clearer on variable dimensionality, starting from this section, vectors are written in 

bold and numbers/scalars are written in non-bold styles. 
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We then define the corresponding continuous-time path departure rates as follows: 

ℎ(·) = ℎ𝑝𝑝(·): 𝑝𝑝 ∈  𝒫𝒫 such that ℎ𝑝𝑝(𝑡𝑡) ≡ 𝒉𝒉𝑝𝑝,𝑖𝑖 𝑡𝑡 ∈ 𝐼𝐼𝑖𝑖,∀1 < 𝑖𝑖 < 𝑛𝑛,∀𝑝𝑝 ∈ 𝒫𝒫 

ℎ can be viewed as the continuous-time counterpart of 𝒉𝒉. We then construct the mapping 𝚿𝚿 as 

follows: 

𝚿𝚿(𝒉𝒉) = �𝚿𝚿𝑝𝑝,𝑖𝑖(𝒉𝒉):    𝑝𝑝 ∈ 𝒫𝒫,    𝑖𝑖 =  1, . . . ,𝑛𝑛� ∈  ℝ𝑛𝑛×|𝒫𝒫|  

where 

𝚿𝚿𝒑𝒑,𝒊𝒊(𝒉𝒉)  ≐
1

|𝐼𝐼𝑖𝑖|
�Ψ𝑝𝑝
𝐼𝐼𝑖𝑖

(𝑡𝑡;  ℎ)𝑓𝑓𝑡𝑡 

can be interpreted as the average OD departure rate during the 𝑖𝑖 − 𝑡𝑡ℎ time interval. 

Definition 4.2 (Finite dimensional delay operator) Given a network and the feasible path flow set 

(4.1), a delay operator Ψ is a mapping from the set of discrete path departure rates ℎ to the set of 

discrete path travel times Ψ(ℎ). As such, 𝚿𝚿 is a mapping between two subsets of the Euclidean 

space ℝ𝑛𝑛×|𝒫𝒫|, and is viewed as the discrete counterpart of the delay operator Ψ. 

Remark 4.2. The operator Ψ should not be confused with the delay operators with 

numerical discretization, such as those based on DNL performed via the cell transmission model 

or the link transmission model. Here, the selection of n is arbitrary, not constrained by the 

network or the time horizon, nor by the numerical discretization scheme (e.g. the Courant-

Friedrichs-Lewy condition). The introduction of ℎ and Ψ enables us to effectively trade temporal 

granularity for dimensionality. Moreover, a coarse time grid (small n) also makes sense in 

practice: in an actual network the average path departure rates or path travel times may not vary 

much over a time period (e.g. 30 min) that is significantly longer than a typical time step in 

numerical computations (e.g. 5s, 1 min). Thus, the delay operator with a small n is useful for 

provide average travel times within, say, 30 min. 
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Figure 4-2 Illustration of the mapping from ℎ𝑝𝑝 to 𝛹𝛹𝑝𝑝 when 𝑛𝑛 =  8, which defines the finite 

dimensional operator Ψ 

The procedure above defines the delay operator in a finite dimensional setting, where the 

vector of path departure rates is represented by the vector h and the corresponding vector of path 

travel times is Ψ(ℎ). This process is graphically illustrated in Figure 3-1. The definition of allows 

us to apply Kriging techniques in the finite dimensional space ℝ𝑛𝑛×|𝒫𝒫|. 

Methodology-metamodel and experimental design 

We propose the learning method based on Kriging and make statistical assumptions on 

the underlying delay operator Ψ to enable the analysis based in GRF. Based on the 

interdependency across all paths and time steps. In particular, the delays for a set of departure 
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choice pairs (𝑝𝑝, 𝑖𝑖) can be considered as a realization of a Gaussian process, with the dissimilarity 

between any two such pairs defined as a vector of aggregated differences in the path departure 

rates, which we will introduce in detail in subsequent sections. We apply the Ordinary Kriging 

model, which is the most commonly used Kriging model in practice (Fang et al., 2005). For any 

vector of path departure rates 𝒉𝒉 ∈  ℝ+
𝑛𝑛×|𝒫𝒫|, we assume that the mapping 𝚿𝚿 can be approximated 

by a realization of the random process: 

𝚿𝚿�𝑝𝑝,𝑖𝑖(𝒉𝒉) =  𝜇𝜇𝑝𝑝,𝑖𝑖 + 𝜀𝜀𝑝𝑝,𝑖𝑖(𝒉𝒉)       ∀(𝑝𝑝, 𝑖𝑖),   ∀𝒉𝒉 ∈  ℝ𝑛𝑛×|𝒫𝒫| 

For each pair (𝑝𝑝, 𝑖𝑖), 𝜇𝜇𝑝𝑝,𝑖𝑖 is the deterministic mean, ε𝑝𝑝,𝑖𝑖(·) is a Gaussian process with zero 

mean and covariance as follows: 

𝑠𝑠𝑡𝑡𝑖𝑖 �𝜀𝜀𝑝𝑝,𝑖𝑖(𝒉𝒉1), 𝜀𝜀𝑝𝑝,𝑖𝑖(𝒉𝒉2)� = 𝒞𝒞𝑝𝑝,𝑖𝑖�𝒉𝒉1,𝒉𝒉2;𝜽𝜽𝑝𝑝,𝑖𝑖�       ∀(𝑝𝑝, 𝑖𝑖) 

where 𝜽𝜽𝑝𝑝,𝑖𝑖 is some vector of parameters to be estimated later. We further assume the stationary 

property. That is 

 𝒞𝒞𝑝𝑝,𝑖𝑖(𝒉𝒉1,𝒉𝒉2;𝜽𝜽𝑝𝑝,𝑖𝑖)  =  �̃�𝒞𝑝𝑝,𝑖𝑖(𝒅𝒅𝒊𝒊(𝒉𝒉1,𝒉𝒉2);𝜽𝜽𝑝𝑝,𝑖𝑖) (4.2) 

where 𝒅𝒅𝑖𝑖(𝒉𝒉1,𝒉𝒉2) is some dissimilarity indicator between 𝒉𝒉1 and 𝒉𝒉2.  

Remark 4.3. The stationarity is a common assumption made to characterize the class of 

GRFs (Gaussian processes) we are considering. Without it, the statistical inference about the 

underlying probability law would be almost impossible based on a single realization of the field 

(Cressie and Wikle, 2011; Fang et al., 2005). Assuming stationarity means that the probabilistic 

structure of the random process looks similar in different areas of the experimental region 

(Santner et al., 2013). However, this is not a strong assumption because the GRF remains 

sufficiently flexible through anisotropic variance function and unknown parameters. 

It is crucial to determine an appropriate form of the similarity function for the statistical 

model to perform properly. Here, we propose a dissimilarity function that uses different kernels 
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for different paths and time intervals. We first use 𝛿𝛿𝑝𝑝𝑝𝑝 defined below to indicate the proximity or 

similarity between an arbitrary pair of paths 𝑝𝑝 and 𝑞𝑞: 

 
𝛿𝛿𝑝𝑝𝑝𝑝 =

 # 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓 𝑑𝑑𝑖𝑖𝑛𝑛𝑘𝑘𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑞𝑞
𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑔𝑔𝑒𝑒 # 𝑡𝑡𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓 𝑑𝑑𝑖𝑖𝑛𝑛𝑘𝑘𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑎𝑎𝑑𝑑𝑑𝑑 𝑝𝑝𝑎𝑎𝑡𝑡ℎ𝑠𝑠 𝑞𝑞 ′ ∈  𝑃𝑃

 
(4.3) 

which gives rise to the proximity matrix {𝛿𝛿𝑝𝑝𝑝𝑝} 𝑤𝑤ℎ𝑒𝑒𝑖𝑖𝑒𝑒 𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫. 

Remark 4.4. The similarity indicator 𝛿𝛿𝑝𝑝𝑝𝑝 encapsulate information about the network 

structure into the Kriging framework. There are a number of other choices for the distance 

measure (e.g., the portion of overlapping sections), and link/path characteristics, such as free-flow 

travel time and capacity. In Chapter 5, we will present extensions on distance measure/function. 

Further study should compare these different measures concerning the performance of their 

respective Kriging predictors. 

We denote 𝑖𝑖 to be the time interval for which the delay needs to be estimated. Next, we 

define 

 𝒅𝒅𝑝𝑝,𝑖𝑖(𝒉𝒉1 ,𝒉𝒉2) =  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫� ∈  ℝ|𝒫𝒫|    ∀ 𝑝𝑝 ∈ 𝒫𝒫, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 (4.4) 

where 𝒉𝒉𝑝𝑝1  – 𝒉𝒉𝑝𝑝2 ≐ (𝒉𝒉𝑝𝑝,𝑖𝑖
1  – 𝒉𝒉𝑝𝑝,𝑖𝑖

2 : 𝑖𝑖 =  1, . . . ,𝑛𝑛) ∈  ℝ𝑛𝑛, and the operation ∘ represents 

component-wise multiplication. The parameter 𝑤𝑤𝑖𝑖 ∈  ℝ𝑛𝑛 is defined as 

 𝑤𝑤𝑖𝑖 = �𝑤𝑤1𝑖𝑖 , . . . ,𝑤𝑤𝑛𝑛𝑖𝑖 �      where     𝑤𝑤𝑖𝑖𝑖𝑖= 1 if 𝑗𝑗 ≤ 𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖 =  0 if 𝑗𝑗 >  𝑖𝑖. (4.5) 

We name 𝒅𝒅 defined in (4.4) shared-link distance. This is a customized non-Euclidean 

distance for the Kriging metamodel we build. There are a number of extensions on distance 

function 𝑓𝑓 to suit wilder scope of use on this metamodeling frameworks. These extensions are 

given in Chapter 5. Remark 4.5 provides a detailed discussion that breaks down the terms of 𝑓𝑓 in 

(4.4) to show the meaning of our customization on distance function aspect of Kriging 

metamodel. For clarification, we present an example for construction of vector 𝑤𝑤. When 𝑛𝑛 = 10, 

we have for example 𝑖𝑖 = 4 and 𝑖𝑖 = 7: 
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𝑤𝑤4 = (1,1,1,1,0,0,0,0,0,0) 

𝑤𝑤7 = (1,1,1,1,1,1,1,0,0,0) 

Remark 4.5. The similarity indicator 𝛿𝛿𝑝𝑝𝑝𝑝 accounts for the topological configuration of 

any two paths in the network and, therefore, reflects the potential influences of one another using 

spatial information. On the contrary, 𝑤𝑤𝑖𝑖𝑖𝑖 accounts for the temporal correlation between the 

departure rates in two distinct time intervals. The way in which we define 𝑤𝑤𝑖𝑖𝑖𝑖 implies the 

assumption that the departure rates at a later time are not considered in defining the dissimilarity 

at an earlier time. Note that this assumption is not entirely realistic as the departure flow along 

certain path can indeed affect drivers departing at an earlier time along some other path, but here, 

we choose (4.5) to balance between sophistication of the model and mathematical simplicity as 

well as dimensionality. Building on this, the distance function 𝒅𝒅𝑝𝑝,𝑖𝑖(·,·) assesses the ‘distance’ 

between two feasible path flows comprehensively in both spatial and temporal dimensions. 

We apply exponential covariance function defined as follows, which is the same with all 

paths 𝑝𝑝, but different for each time instance 𝑖𝑖 for which delay is estimated: 

 �̃�𝐶𝑝𝑝,𝑖𝑖�𝒅𝒅𝒊𝒊(𝒉𝒉1,𝒉𝒉2);𝜽𝜽𝑝𝑝,𝑖𝑖� = 𝜎𝜎𝑝𝑝,𝑖𝑖
2 𝑒𝑒𝑥𝑥𝑝𝑝 (−𝒅𝒅𝑝𝑝,𝑖𝑖

𝑇𝑇 ∙ 𝜽𝜽𝑝𝑝,𝑖𝑖) (4.6) 

where 𝜽𝜽𝑝𝑝,𝑖𝑖 =  �𝜃𝜃1
𝑝𝑝,𝑖𝑖 ,𝜃𝜃2

𝑝𝑝,𝑖𝑖, . . . ,𝜃𝜃|𝒫𝒫|
𝑝𝑝,𝑖𝑖�

𝑇𝑇
∈  ℝ|𝒫𝒫|, and 𝜎𝜎𝑝𝑝,𝑖𝑖 is the variance of the response Ψ�𝑝𝑝,𝑖𝑖 at the 

sampled data points. 

Training and predicting procedures 

We consider a set of training data (ℎ𝑘𝑘: 𝑘𝑘 =  1, . . . ,𝐾𝐾) and (𝛹𝛹𝑘𝑘(ℎ): 𝑘𝑘 =  1, . . . ,𝐾𝐾). We 

will state how such a set of training data should be generated, namely the design of experiments 

in next section. Given this data, we first learn the parameters in the covariance function through 
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maximum likelihood estimation (MLE) based on the assumed Gaussian process. Let 𝜃𝜃𝑝𝑝,𝑖𝑖 be the 

parameters in the covariance function, which is to be learned. The MLE of 𝜃𝜃𝑝𝑝,𝑖𝑖 is given by: 

 
𝜃𝜃�𝑝𝑝,𝑖𝑖 = argmin

𝑥𝑥
�𝐾𝐾 log𝜎𝜎�𝑝𝑝,𝑖𝑖

2 (𝑥𝑥) + log �� (𝑥𝑥)
𝑝𝑝,𝑖𝑖

�� 
(4.7) 

 
𝜎𝜎�𝑝𝑝,𝑖𝑖
2 (𝑥𝑥) =

1
𝐾𝐾 �

𝜙𝜙𝑝𝑝,𝑖𝑖 − �̂�𝜇𝑝𝑝,𝑖𝑖(𝑥𝑥) ∙ 𝟏𝟏�𝑇𝑇 �� (𝑥𝑥)
𝑝𝑝,𝑖𝑖

�
−1

�𝜙𝜙𝑝𝑝,𝑖𝑖 − �̂�𝜇𝑝𝑝,𝑖𝑖(𝑥𝑥) ∙ 𝟏𝟏� 
(4.8) 

 
�̂�𝜇𝑝𝑝,𝑖𝑖(𝑥𝑥) =

𝟏𝟏𝑇𝑇�∑ (𝑥𝑥)𝑝𝑝,𝑖𝑖 �−1𝜙𝜙𝑝𝑝,𝑖𝑖

𝟏𝟏𝑇𝑇�∑ (𝑥𝑥)𝑝𝑝,𝑖𝑖 �
−1𝟏𝟏

 
(4.9) 

 � (𝑥𝑥)
𝑝𝑝,𝑖𝑖

= �𝒞𝒞𝑝𝑝,𝑖𝑖(𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘;𝑥𝑥)�
𝑖𝑖,𝑘𝑘=1,…,𝐾𝐾

∈ ℝ𝐾𝐾×𝐾𝐾 (4.10) 

 𝜙𝜙𝑝𝑝,𝑖𝑖 = �𝚿𝚿𝑝𝑝,𝑖𝑖(𝐡𝐡1), … ,𝚿𝚿𝑝𝑝,𝑖𝑖(𝐡𝐡K) �𝑇𝑇 ∈ ℝ𝐾𝐾 (4.11) 

and 1 is the K × 1 column vector consisting of one’s. The best linear unbiased predictor (BLUP) 

from ordinary Kriging yields the following estimates for a given vector 𝒉𝒉𝟎𝟎 of path departure rates: 

 
Ψ𝑝𝑝,𝑖𝑖(ℎ0) ≈ �̂�𝜇𝑝𝑝,𝑖𝑖�𝜃𝜃�𝑝𝑝,𝑖𝑖� + 𝑠𝑠𝑝𝑝,𝑖𝑖

𝑇𝑇 ∙ �� (𝜃𝜃�𝑝𝑝,𝑖𝑖)
𝑝𝑝,𝑖𝑖

�
−1

�𝜙𝜙𝑝𝑝,𝑖𝑖 − �̂�𝜇𝑝𝑝,𝑖𝑖�𝜃𝜃�𝑝𝑝,𝑖𝑖� ∙ 𝟏𝟏�    ∀(𝑝𝑝, 𝑖𝑖)  
(4.12) 

where 𝑠𝑠𝑝𝑝,𝑖𝑖  = (𝒞𝒞𝑝𝑝,𝑖𝑖(𝒉𝒉0,𝒉𝒉1;𝜃𝜃�p,i), . . . ,𝒞𝒞𝑝𝑝,𝑖𝑖�𝒉𝒉0 ,𝒉𝒉𝐾𝐾;𝜃𝜃�p,i�)𝑇𝑇, and each 𝒞𝒞𝑝𝑝,𝑖𝑖(𝒉𝒉0,𝒉𝒉1;𝜃𝜃�p,i) is given by 

Equations (4.2)-(4.6). Under the assumed gaussian errors in Gaussian processes, the BLUP is 

equivalent to minimum mean square error predictor (MMSE). 

Experimental design of training dataset 

It is well agreed that in computer code metamodeling with high-dimensional input, the 

quality and performance of the metamodel built strongly depends on the DOE (point location and 

density) (Viana et al., 2010). Our approach is developed from the standard Latin Hypercube 

sampling method (Fang et al., 2005), which tries to uniformly sample the feasible region of 
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departure rates. Recall that the feasible region derived from flow conservation constraints of an 

RC choice DUE is 

 
Λ = �ℎ(∙):  ℎ𝑝𝑝(𝑡𝑡) ≥ 0,   � ℎ𝑝𝑝(𝑡𝑡) = 𝑅𝑅𝑟𝑟𝑟𝑟(𝑡𝑡)         ∀𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓�,   ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲

𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟

� 
 

This feasible region is simplex-like in functional space, because the summation of 

departure rates ℎ𝑝𝑝(𝑡𝑡) on all paths between a given OD pair (𝑖𝑖, 𝑠𝑠) is given a priori by function 

𝑅𝑅𝑟𝑟𝑟𝑟(𝑡𝑡). The feasible region on its finite dimensional counterpart is 

 𝚲𝚲 = �𝒉𝒉(∙):  𝒉𝒉𝑝𝑝 ≥ 0,   Σ𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟  ℎ𝑝𝑝,𝑖𝑖 =  𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖     ∀ 𝑖𝑖 =  1, . . . ,𝑛𝑛,    ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲 �  

where 𝑅𝑅𝑟𝑟𝑟𝑟  = �𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖 : 𝑖𝑖 =  1, . . . ,𝑛𝑛�. 

 We can see that the feasible region of our finite DNL model is also simplex-like in vector 

space. We have for each time interval 𝑖𝑖, the summation of departure rates ℎ𝑝𝑝,𝑖𝑖 on all paths 

between a given OD pair (𝑖𝑖, 𝑠𝑠) is given a priori by 𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖 .  This feature is inherited from its 

continuous counterpart (continuous time DNL of the RC DUE model). 

 We note that our experimental region can be scaled to a simplex, and the original Latin 

Hypercube sampling is designed for general experimental region, with generation scheme given 

for sampling on the unit cube. To obtain better sampling efficiency and quality, we transfer the 

design that is uniform on unit cube to the simplex-like feasible region uniformly. There has 

literature published on mixture design (Ning et al., 2011; Fang and Wang, 1993; Wang and Fang, 

1996). For example, transfer methods are proposed for transferring a design on unit cube to 

design on simplex by (Fang and Wang, 1993). In our study, we have a space-filling design by 

which we revised the standard LHS to samples uniformly on a medium to high-dimensional 

simplex.  
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A space-filling experimental design 

Certain methodology in experimental design should be applied to generate training data 

for our problem. The goal of experimental design is to uniformly sample the input variables from 

their respective domains. In this section we discuss in detail our space-filling experimental 

design. 

The uniformity of a design or sampling strategy can be measured by many different 

criteria including mean square error, discrepancy, and so forth. For our specific problem, we 

apply a space-filling sampling strategy adapted from Latin Hypercube Design (LHD) (McKay et 

al., 1979; Tang, 2008; Fang et al., 2005; Santner et al., 2013) The advantage of LHS-based 

sampling, compared to simple random sampling or Monte Carlo sampling, is that it has a smaller 

variance of the sample mean and lower discrepancy, which means better uniformity in the 

experimental region (Fang et al., 2005; McKay et al., 1979). 

Our procedure is to systematically generate the training data on a simplex induced by 

some flow conservation constraints, which is aligned with the RC DUE framework. Specifically, 

given the OD departure rate vector 𝑅𝑅𝑟𝑟𝑟𝑟  = �𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖 : 𝑖𝑖 =  1, . . . ,𝑛𝑛� for each OD pair (𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲, we 

recall the following constraints for path-specific departure rates ℎ𝑝𝑝: 

Σ𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟  ℎ𝑝𝑝,𝑖𝑖 =  𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖     ∀ 𝑖𝑖 =  1, . . . ,𝑛𝑛,    ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲                                (4.13) 

We see that such constraints are decoupled for different time intervals 𝑖𝑖 and different OD 

pairs (𝑖𝑖, 𝑠𝑠). Taking advantage of such a time-independency, we employ the Latin Hypercube 

Sampling method following Fang et al., (2005) and Santner et al., (2013). 

We begin with the following definition of Latin Hypercube Design (LHD): 

Definition 4.1. (Fang et al., 2005) An LHD design with M runs and N input variables, 

denoted by LHD (M, N), is a M × N matrix. In such a matrix, each column is a random 

permutation of {1, 2,· · ·,𝑀𝑀}. The following algorithm, based on the LHD and (Fang et al., 2005), 



62 
 

 

summarizes the procedure employed to generate the training data uniformly within the simplex 

expressed in Equation (4.13). 

Algorithm 1: LHD-based training data generation for OD pair (r, s) and time 

interval 𝑖𝑖 

Step 1 For integers {1,…,K} where K is the prescribed number of samples, 

independently generate |𝒫𝒫𝑟𝑟𝑟𝑟| number of random permutations: �𝜋𝜋𝑝𝑝(1), … ,𝜋𝜋𝑝𝑝(𝐾𝐾)� for 𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟. 

These permutations constitute an LHD (K, |𝒫𝒫𝑟𝑟𝑟𝑟|). 

Step 2 Generate 𝐾𝐾 × |𝒫𝒫𝑟𝑟𝑟𝑟| i.i.d. uniformly distributed variables �𝑈𝑈𝑘𝑘
𝑝𝑝:𝑘𝑘 = 1, … ,𝐾𝐾,𝑝𝑝 ∈

𝒫𝒫𝑟𝑟𝑟𝑟� between 0 and 1 and let 

𝜆𝜆𝑘𝑘
𝑝𝑝 =

𝜋𝜋𝑝𝑝(𝑘𝑘)
𝐾𝐾

−
𝑈𝑈𝑘𝑘
𝑝𝑝

𝐾𝐾
     𝑘𝑘 = 1, … ,𝐾𝐾,    𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟 

Step 3 For each 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾, the departure rates at time interval i are assigned as: 

ℎ𝑝𝑝,𝑖𝑖
𝑘𝑘 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖

λk
𝑝𝑝

∑ 𝜆𝜆𝑘𝑘
𝑝𝑝|𝒫𝒫𝑟𝑟𝑟𝑟|

𝑝𝑝=1

      𝑝𝑝 ∈ 𝒫𝒫 

Adaptive sampling of the experimental domain 

The LHD-based algorithm presented above tends to sample the training dataset uniformly 

from the simplex structure (4.13). However, when the response surface is sufficiently irregular 

such uniform sampling strategy may not be ideal. To further improve the performance of the 

training phase, we apply an adaptive sampling procedure to iteratively update the training set 

until a target error rate is achieved. 

This will result in a better exploration of the experimental domain especially in areas 

where the response surface has low regularity. The procedure is as follows. 

Algorithm 2 Iterative update of the training set 
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Step 1 Fix integers 0<M<K, 𝛿𝛿 > 0, and error threshold 𝜖𝜖 > 0. Generate an initial training 

set 𝒯𝒯0 of size K based on Algorithm 1. Select a target error threshold 𝜀𝜀. Set the iteration counter 

𝑗𝑗 = 0. 

Step 2 Train the model using training set 𝒯𝒯𝑖𝑖. Generate a uniformly sampled testing dataset 

𝑆𝑆𝑖𝑖 of size M using Algorithm 1. 

Step 3 Test the trained model using the testing dataset 𝑆𝑆𝑖𝑖. Find the subset ℰ𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖 that 

contains testing data points with errors above 𝜀𝜀. 

Step 4 If �ℇ𝑖𝑖� ≤ 𝛿𝛿, stop and output 𝒯𝒯𝑖𝑖. Otherwise, update training set as 𝒯𝒯𝑖𝑖+1 = 𝒯𝒯𝑖𝑖⋃ℰ𝑖𝑖. Set 

𝑗𝑗 = 𝑗𝑗 + 1 and go to Step 2. 

Improvement in experimental design and sampling 

An effective experimental design, in our problem, is significant in the following aspects: 

• results in better model fit quality and lower prediction error 

• reduces the number of training data required for a satisfying model performance 

• reduces computational effort in training data generation effort and model training time 

Also, we have been discussing experimental design/training set generation approaches for 

general use of the learned DNL metamodel. For a specialized use of DNL metamodel, e.g., for 

faster DUE computations, it is possible that more information can be obtained for the region of 

interest within the entire design region. Instead of trying to fit the entire region, sequential 

sampling approaches can be applied to explore the experimental region in an adaptive way (Chen 

et al., 2014; Jones et al., 1998). This will significantly improve the efficiency of the model fitting 

in both time and memory consumption, especially when working with large-scale problems. In 

summary, our effort to improve the sampling process are to employ state-of-art algorithms based 
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on Latin Hypercube sampling, sampling on simplex and mixture design, and sequential 

experiments. 

Numerical studies 

In this section, the goal is to numerically evaluate the performance of the surrogate DNL 

models obtained from the proposed metamodeling with Kriging. We are evaluating 

approximation accuracy and computational efficiency. For the conventional and exact DNL 

model used in generating both the training and testing datasets, we employ the discretized 

Lighthill–Whitham–Richards network model equivalent to the link transmission model (Yperman 

et al., 2005). The detailed DNL procedure based on this model is presented in Han et al. (2016a). 

The link transmission model is among the most efficient computational algorithms for 

propagating flow and congestion on a network level, and captures realistic phenomena such as 

physical queues and spillback. For the training phase of Kriging, we adapt the well-known DACE 

Matlab toolbox (Lophaven et al., 2002) by incorporating the customized distance and correlation 

functions defined in Equations (4.4) and (4.6). The MLE (Equation (4.7)) is performed with an 

iterative pattern search algorithm. Moreover, the generation of the training data follows 

algorithms 1 and 2. 

Test scenarios 

We test the performance of the Kriging approach based on five network scenarios: (1) 

The 19-arc network with 4 OD pairs and 24 paths, which is studied in Nguyen (1984) and Nie 

and Zhang (2010) and hereafter referred to as the Nguyen network; and (2) The Sioux Falls 

network (Friesz et al., 2011; Suwansirikul et al., 1987) with 60, 119, 201, and 501 paths, 
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respectively. The Nguyen network and the Sioux Falls network are shown in Fig. 1-1 and Fig. 1-

2. The time horizon of all DNL models is [0, 5] (in hours). Two values n = 5 and n = 10 are 

considered where n is the number of time intervals used in the construction of the finite 

dimensional delay operator. 

To evaluate the accuracy of the surrogate delay operators obtained from Kriging, testing 

data sets that contains path departure rates not used to fit the model are calculated and collected 

for each surrogate delay operator. Specifically, for each network scenario, 100 testing data points 

are randomly generated over the entire feasible region. To separate testing data from the training 

data to get the most reliable testing result, all testing data points are newly and separately 

generated in the testing phase and no training data is re-used in testing. 

For the testing dataset, we compare outputs (i.e., predicted path travel times) from the 

surrogate model with those from the exact delay operator Φ. We denote one testing data as ℎ0. 

The prediction error corresponding to one testing data ℎ0 is calculated as the prediction error, and 

speed-up index for one instance of prediction is defined as the ratio between the computational 

time of the exact delay operator Φ and the prediction time of Φ (not including training time). 

These two criteria are defined as follows: 

𝑃𝑃𝑖𝑖𝑒𝑒𝑓𝑓𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 𝐸𝐸𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 =  ∥𝛷𝛷(ℎ0)−𝛹𝛹(ℎ0)∥2
‖𝛹𝛹(ℎ0) ‖2

 × 100%. 

𝑆𝑆𝑝𝑝𝑒𝑒𝑒𝑒𝑓𝑓 − 𝑢𝑢𝑝𝑝 𝑖𝑖𝑛𝑛𝑓𝑓𝑒𝑒𝑥𝑥 =
computational time of the exact delay operator 𝚿𝚿 

prediction time of 𝚿𝚿�
 

Over the newly generated 100 testing data, the prediction errors and speed-up indices are 

averaged for presentation in Table 4-1. It is to be noted that the prediction time of 𝚿𝚿�  does not 

include training time. The larger the speed-up index, the more computationally efficient our 

surrogate model is compared to the conventional DNL. 
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Test results for the Kriging-based delay operator 

The performance of the Kriging-based delay operators Φ is summarized in Table 4-1 

where, for each test scenario, a smaller and a larger dataset are used to train Φ. It can be seen that 

the accuracy of the approximate DNL models increases at some expense of decreased efficiency 

when the training dataset becomes larger. Such a trend is further illustrated in Fig. 4-3 for the 

Nguyen network and Fig. 4-5 for the Sioux Falls network (with 119 paths), where results based 

on a wider range of training dataset sizes are available. It is also clear from Table 4-1 and Fig. 4-4 

and Fig. 4-6 that the surrogate DNL models yield accurate prediction of the path travel times, 

with errors typically below 8% for the Nguyen network and, interestingly, below 3.4% for the 

Sioux Falls networks. The lower errors for larger networks are likely to be caused by the selection 

of training data; that is, algorithms 1 and 2 sample the design domain more exhaustively for the 

Sioux Falls networks than the Nguyen network. The excellent prediction errors is reasonably 

explained by the adaptive sampling and the space filling generation of training set we particularly 

designed for the DNL. Based on the structure of the original model and characteristic of Kriging, 

another possible contributing factor to the low error is the flow conservation constraints of the 

DNL, which makes the problem a constrained one. Because all dynamic traffic assignment 

models assume a constrained feasible region, this contributing factor is certainly to be retained 

and effective should other types of the DNL model is learned. Also, one can adaptively reduce the 

training datasets for the Sioux Falls networks to gain more computational efficiency in the 

training phase without significantly increasing the errors. This highlights the robustness of the 

Kriging method with flexible trade-offs between model accuracy and complexity. 

The surrogate DNL models yield significant computational savings compared to the exact 

DNL models, with speed-ups ranging from 9 to 455 (times faster). This far superior 

computational efficiency is achieved at only very minor prediction error, showing a very effective 



67 
 

 

tradeoff between model accuracy and complexity. In addition, the results for the Sioux Falls 

network with 501 paths shows that the proposed metamodeling methodology is capable of 

handling large-scale and high-dimensional problems. 

In Fig. 4-4 and Fig. 4-6, for some example paths, we show the exact and predicted path 

delays on the Nguyen network and the Sioux Falls network. It is clearly seen that the surrogate 

DNL models approximate the exact ones quite well, with errors similar to those shown in Table 

4-1. The situations on the other paths are similar and are not shown exhaustively here. 

 

Table 4-1 Performances of the surrogate delay operator Φ: the prediction errors and speed-up 

indices are averaged over 100 randomly sampled testing data 
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Figure 4-3 Prediction trend of Nguyen network: prediction errors and training time as size of 

training dataset increases 

 

Figure 4-4 The Nguyen network: comparison of exact and predicted path delays on example 

paths. 
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Figure 4-5 Prediction trend of Sioux Falls network: prediction errors and training time as size of 

training dataset increases 
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Figure 4-6 Sioux Falls network with 501 paths: comparison of exact and predicted path delays on 

example paths 

Comparison to Neural Networks 

A comparison of metamodeling performances between Kriging and neural networks 

(NN) is conducted. The test scenario involves the Nguyen network and n = 5. Both Kriging and 

the NNs are fitted using the same set of training datasets, with sizes ranging from 100 to 880. 

Afterwards, their prediction performances are compared using the same test data consisting of 

100 randomly generated samples. The NN has two layers and is trained with the Levenberg–

Marquardt algorithm. We use Matlab’s R2016 Neural Networks toolbox for this task. Fig. 4-7 

(left) shows the average prediction error provided by each method on the testing dataset. The bars 

denote two standard deviations from the prediction means. The overlap of the prediction intervals 
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indicates that differences in prediction error between the two methods are not statistically 

significant. Fig. 4-7 (right) shows the training times to build the surrogate models. Again, no 

significant different is found between the computational efforts required as a function of the size 

of the training dataset. Based on the preliminary comparison on this test case, we can see that for 

about the same computational training time, Kriging and NN metamodels perform similarly. As 

mentioned before, Kriging has two main advantages which justify its use: it provides closed-

form, analytic expressions for the predictions and it is an exact interpolator, which means that 

predictions at the trained data points are not smoothed but are identical to the observed (i.e., the 

prediction error for the training dataset is zero). These are not properties shared by NNs.  

 

Figure 4-7 Comparison of Kriging and NN on the Nguyen network: the vertical bars denote two 

standard deviations from the prediction means 

Mathematical properties 

The proposed metamodeling framework is applicable to a wide range of DNL models 

with a variety of link dynamics, junction models, and path delay models. It underpins a new 

generation of network performance models that can serve as efficient and tractable alternatives to 

the otherwise exact models, and their reliability can be improved with in-depth analysis of the 

covariance functions, parameters, and methods that generate training data (Li and Sudjianto, 
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2005). The computational efficiency of the DNL models resulting from the metamodeling 

approach based on Kriging, which is demonstrated in the numerical studies section, could 

significantly speed up DTA computations for large-scale networks. Moreover, the corresponding 

delay operators have closed-form expressions, which is potentially beneficial for DTA modeling, 

and this section will explore these opportunities. Throughout this section, we use Φ: ℝn×|𝒫𝒫|  →

 ℝn×|𝒫𝒫|: to denote the surrogate delay operator obtained from Kriging. 

Closed-form expression of the delay operator 𝚽𝚽 

Given a training dataset consisting of K samples, the predictor, expressed in Equation 

(4.12), can be written in a concise form as: 

𝚽𝚽𝑝𝑝,𝑖𝑖�𝒉𝒉𝟎𝟎� = 𝑋𝑋𝑝𝑝,𝑖𝑖 + 𝑠𝑠𝑝𝑝,𝑖𝑖(𝒉𝒉0)𝑇𝑇 ∙ 𝑌𝑌𝑝𝑝,𝑖𝑖                                            (4.14) 

where ℎ0 is the input path flow vector. Both 𝑋𝑋𝑝𝑝,𝑖𝑖 ∈ ℝ and 𝑌𝑌𝑝𝑝,𝑖𝑖  =  (𝑌𝑌𝑘𝑘
𝑝𝑝,𝑖𝑖: 𝑘𝑘 =

 1 . . . ,𝐾𝐾)  ∈  ℝ𝐾𝐾 only depend on the training data and thus can be treated as constant once the 

training phase is finished. Moreover, the expression for 𝑠𝑠𝑝𝑝,𝑖𝑖 (𝒉𝒉0) is given by Equations (4.2)-

(4.6): 

𝑠𝑠𝑝𝑝,𝑖𝑖(𝒉𝒉0) = 𝜎𝜎𝑝𝑝,𝑖𝑖
2 �𝑒𝑒𝑥𝑥𝑝𝑝�−𝒅𝒅𝑝𝑝,𝑖𝑖(𝒉𝒉0,𝒉𝒉1)𝑇𝑇 ∙ 𝜽𝜽𝑝𝑝,𝑖𝑖�, … , 𝑒𝑒𝑥𝑥𝑝𝑝�−𝒅𝒅𝑝𝑝,𝑖𝑖(𝒉𝒉0,𝒉𝒉𝐾𝐾)𝑇𝑇 ∙ 𝜽𝜽𝑝𝑝,𝑖𝑖��         (4.15) 

𝑠𝑠𝑝𝑝,𝑖𝑖(𝒉𝒉0) ∈ ℝ𝐾𝐾 . 

Recall that 

𝒅𝒅𝑝𝑝,𝑖𝑖�𝒉𝒉0 ,𝒉𝒉𝑘𝑘� =  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝0   − 𝒉𝒉𝑝𝑝𝑘𝑘) �
2
2 ∶  𝑞𝑞 ∈ 𝒫𝒫�  ∈  ℝ|𝒫𝒫|         𝑘𝑘 = 1, … ,𝐾𝐾     (4.16) 

and 𝑤𝑤𝑖𝑖  ∈ ℝ𝑛𝑛 is such that 𝑤𝑤𝑖𝑖  =  (𝑤𝑤1𝑖𝑖  , . . . ,𝑤𝑤𝑛𝑛𝑖𝑖  ) where 𝑤𝑤𝑖𝑖𝑖𝑖  =  1 if 𝑗𝑗 ≤ 𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖  =

 0 𝑖𝑖𝑓𝑓 𝑗𝑗 >  𝑖𝑖.Based on (4.14)-(4.16), it is easy to derive the following closed-form expression:  
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𝚽𝚽𝑝𝑝,𝑖𝑖�𝒉𝒉𝟎𝟎� = 𝑋𝑋𝑝𝑝,𝑖𝑖 + 𝜎𝜎𝑝𝑝,𝑖𝑖
2 ∑ 𝑌𝑌𝑘𝑘

𝑝𝑝,𝑖𝑖𝑒𝑒𝑥𝑥𝑝𝑝 �−∑ 𝛿𝛿𝑝𝑝𝑝𝑝𝜃𝜃𝑝𝑝
𝑝𝑝,𝑖𝑖 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝒉𝒉𝑝𝑝,𝑖𝑖

0 − 𝒉𝒉𝑝𝑝,𝑖𝑖
𝑘𝑘 �

2𝑛𝑛
𝑖𝑖=1𝑝𝑝∈𝒫𝒫 �𝐾𝐾

𝑘𝑘=1     (4.17) 

∀ 𝑝𝑝 ∈  𝒫𝒫, 𝑖𝑖 =  1 , . . . ,𝑛𝑛.  

Here, 𝒉𝒉𝑝𝑝,𝑖𝑖
0 ′s are input variables of the delay operator; 𝑋𝑋𝑝𝑝,𝑖𝑖 ,𝜎𝜎𝑝𝑝,𝑖𝑖 ,𝑌𝑌𝑘𝑘

𝑝𝑝,𝑖𝑖′𝑠𝑠,𝜃𝜃𝑝𝑝
𝑝𝑝,𝑖𝑖′𝑠𝑠 and 𝒉𝒉𝑝𝑝,𝑖𝑖

𝑘𝑘 ′𝑠𝑠 

are all treated as constants in the prediction of path delays. 

Analytical properties of the surrogate delay operator 𝚽𝚽 

Continuity and smoothness 

The delay operator expressed in Equation (4.17) is continuous and smooth (i.e., infinitely 

differentiable) because it involves only elementary summation, multiplication, and exponential 

operations. Unlike conventional DNL models for which the discontinuity may fail when spillback 

occurs (we refer the reader to Szeto (2003) and Han et al. (2016a) for some examples), the 

continuity and smoothness of the proposed surrogate delay operator Φ will always hold 

regardless of the underlying link, junction, or network flow dynamics. The continuity of Φ can be 

used to prove the existence of solutions to DTA problems when the DNL problem is replaced 

with the approximate surrogate model we have presented so far. 

Differentiability and Lipchitz continuity 

We can also easily differentiate the delay operator and obtain its Jacobian matrix as 

follows. Recall that the surrogate delay operator is a mapping from the n ×|𝒫𝒫| -dimensional 

Euclidean space into itself: 

𝚽𝚽(𝒉𝒉0) = �𝚽𝚽𝑝𝑝,𝑖𝑖(𝒉𝒉0):  ∀(𝑝𝑝, 𝑖𝑖)�  



74 
 

 

Therefore, individual entries of the Jacobian matrix can be calculated as: 

𝜕𝜕𝚽𝚽p,i

𝜕𝜕(𝒉𝒉𝑝𝑝0 , 𝑗𝑗)
= −2𝜎𝜎𝑝𝑝,𝑖𝑖

2 𝛿𝛿𝑝𝑝𝑝𝑝𝜃𝜃𝑝𝑝
𝑝𝑝,𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 � 𝑌𝑌𝑘𝑘

𝑝𝑝,𝑖𝑖exp �−�𝛿𝛿𝑝𝑝𝑝𝑝�
𝑝𝑝�∈𝒫𝒫

𝜃𝜃𝑝𝑝�
𝑝𝑝,𝑖𝑖�𝑤𝑤�̂�𝚥

𝑖𝑖
𝑛𝑛

�̂�𝚥=1

�ℎ𝑝𝑝�,�̂�𝚥
0 − ℎ𝑝𝑝�,�̂�𝚥

𝑘𝑘 �
2
�

𝐾𝐾

𝑘𝑘=1

�ℎ𝑝𝑝,𝑖𝑖
0 − ℎ𝑝𝑝,𝑖𝑖

0 � 

(4.18) 

Due to the finite dimensional nature of this problem, it can be easily shown that the 

partial derivatives (4.18) are uniformly bounded. Therefore, the delay operator Φ is in fact 

Lipschitz continuous. The differentiability and closed-form Jacobian of the delay operator Φ will 

have a number of important applications including, but not limited to, the following. 

• All gradient-based methods can directly benefit from the explicit Jacobian of the delay 

operator. These include single- level problems (e.g., DUE, DSO), and bi-level problems (e.g., 

dynamic mathematical program with equilibrium constraints) that can be reduced to single-level 

problems (e.g., via the KKT conditions). All these problems can be directly solved by commercial 

solvers such as GAMS (e.g., see Friesz et al., 2007). 

• The explicit differentiation of the delay operator also facilitates sensitivity analysis of 

dynamic network traffic equilibria (Chung et al., 2014), and benefits network design heuristics 

based on it. For example, the heuristic network design based on sensitivity analysis from 

Suwansirikul et al. (1987) can be adapted to treat dynamic traffic networks. 

Generalized monotonicity 

Generalized monotonicity, such as monotonicity, strong monotonicity, pseudo-

monotonicity, quasi-monotonicity, and dual solvability, is necessary for the convergence of 

computational algorithms for DUE problems (see Han et al., 2015 for an overview of these 

notions). However, conventional DNL models do not allow insights regarding generalized 

monotonicity for general networks due to the lack of analytical representations of the delay 
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operators. With the closed-form expression of the delay operator Φ, it is possible to conduct 

rigorous analysis regarding monotonicity. We take (strong) monotonicity as an example. An 

operator Φ is said to be (strongly) monotone if 

〈Φ(𝐡𝐡1) −Φ(𝐡𝐡2),    𝒉𝒉1 − 𝒉𝒉2〉 ≥ 0   (≥ λ‖𝒉𝒉1 − 𝒉𝒉2‖2 𝑓𝑓𝑡𝑡𝑖𝑖 𝑠𝑠𝑡𝑡𝑑𝑑𝑒𝑒 𝜆𝜆 > 0)  ∀𝒉𝒉1,𝒉𝒉2 ∈ Λ 

 (4.19)  

Although it is not likely that the operator Φ satisfies these conditions in its entire domain, 

its closed-form expression enables us to identify regions where it is strongly monotone. For 

instance, thanks to the closed-form representation of Φ the left-hand side of Equation (4.19) can 

be also expressed in closed form, making it sufficient to solve an algebraic equation to identify 

the strongly monotone region of Φ. In addition, due to the closed-form expression and 

differentiability, methods based on first-order expansion of Φ can be similarly applied, enabling 

drawing insights into its generalized monotonicity. The closed-form expressions of Φ and its 

Jacobian allow us to inspect, in a quantitative way, a wide spectrum of convergence conditions 

proposed in the literature (Han and Lo, 2002; Konnov, 2003; Long et al., 2013), and to devise 

tailored numerical schemes that take advantage of such information, which is unavailable through 

conventional DNL models. This approach holds much promise in tackling the convergence 

challenges that have stymied researchers for decades, and will be pursued in a future study as it is 

out of the scope of this dissertation.  
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Chapter 5 
 

Extensions: Distance metrics, covariances, and spatio-temporal Kriging 

This chapter provides a discussion on various distance metrics and covariance functions 

in Kriging, including their similarities, differences, pros, and cons in the practical modeling of 

real-world traffic problem. By providing alternatives, we expand the practical use of the Kriging 

model into wider range of dynamic transportation models. 

Distance metrics 

Distance metric plays very important roles in the proper functioning of the statistical 

metamodel. A well-defined distance metric also provides sufficient flexibility for addressing 

complex problem with realistic factors of variety of categories and data structure to be 

considered. Euclidean distance is the widest used distance, but metrics may not be limited to be 

Euclidean. For many statistical learning objects, observations are related in feature that are not 

defined on Euclidean space. Non-Euclidean distance are usually proposed for the purpose of 

customize the distance measuring method to better reflect these features in the surrogate model. 

For Kriging models, various non-Euclidean distance metrics are applied in many fields such as 

water distance (Rathbun 1998, Lønd and Høst 2003), geodesic distance (Tenenbaum et al. 2000, 

Banerjee 2005), stream network distance (Peterson et al. 2007), landscape distance (Lyon et al. 

2010), and wireless sensor network distance (Umer et al. 2010). 

The following table list selected articles that use or discuss non-Euclidean distance 

metric. 

Literature Model Distance metric Covariance Function 
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Zou et al. 2011 local universal 

Kriging 

approximate road 

network distance 

(ARND) 

Exponential/classic 

Rathbun 1998 Universal Kriging Euclidean distance and 

water distance 

Exponential and 

spherical 

Lønd and Høst 2003 spatial random field water distance Gaussian 

Banerjee 2005 spatial regression geodetic distance Exponential and 

Matérn 

Peterson et al. 2007 N/A hydrologic distance 

(stream network 

distance) 

moving average 

autocovariance and 

exponential 

covariance 

Lyon et al. 2010 Ordinary Kriging 

and Kriging with 

external drift 

landscape distance exponential 

Umer et al. 2010 Kriging wireless sensor network 

distance 

spherical, Gaussian 

and exponential 

Table 5-1 Studies that discuss or apply non-Euclidean distance metric 

 There are two ways to move forward from development of a customized distance metric 

toward a full model with covariance function. Some studies use isometric embedding in 

mathematics, which means only to use transformation of the spatial coordinates, and adopting the 

classical spatial covariance function (e.g., Zou et al., 2012); Another approach is to apply kernel 

convolution or the moving average function, and deduce a new “customized” covariance 

function. 
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We propose in this chapter a generalized form of distance metric that extent the scope of 

the model developed in Chapter 4, providing increased flexibility, broadened horizon of usage 

and limit-expanding solutions to computationally expensive models that need special skills in 

addressing beyond scope of the standard version. 

The similarity between two paths is defined as 

𝛿𝛿𝑝𝑝𝑝𝑝 ∈  ℝ     ∀ 𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫 

𝒫𝒫 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝑡𝑡𝑓𝑓 𝑝𝑝𝑎𝑎𝑡𝑡ℎ𝑠𝑠 

Based on the path similarities, we recall the distance metric defined in previous chapter 

as 

𝒅𝒅𝑝𝑝,𝑖𝑖 =  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�  ∈  ℝ|𝒫𝒫|          ∀ 𝑝𝑝 ∈ 𝒫𝒫, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 

Regular similarity for Kriging 

𝛿𝛿𝑝𝑝𝑝𝑝 = 𝜌𝜌𝑝𝑝𝑝𝑝 =
# 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓 𝑑𝑑𝑖𝑖𝑛𝑛𝑘𝑘𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑞𝑞

𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑔𝑔𝑒𝑒 # 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑎𝑎𝑖𝑖𝑒𝑒 𝑑𝑑𝑖𝑖𝑛𝑛𝑘𝑘𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑎𝑎𝑑𝑑𝑑𝑑 𝑝𝑝𝑎𝑎𝑡𝑡ℎ𝑠𝑠 𝑞𝑞′ ∈ 𝒫𝒫
 

We call 𝜌𝜌𝑝𝑝𝑝𝑝 Shared-Link Similarity (SLS). 

The regular similarity for network paths account for similarity induce by sharing links 

and segments (consecutive links) in common. The idea is intuitive because paths that shares 

common segments will share flows at any time, any location on the segment. Therefore, a natural 

layer of correlation between delays on both paths is underlying following the identified similarity 

between construction of both paths. We also note that for a complex network, paths that does not 

share links directly can also be correlated in delays through a media path that share links with 

both, or through passing through a common area of interacting traffic. These “second degree” 

similarity can be accounted by more general form of similarity introduced in following sections. 
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Revised similarity for Kriging 

𝛿𝛿𝑝𝑝𝑝𝑝 = 𝜆𝜆𝜌𝜌𝑝𝑝𝑝𝑝 + (1 − 𝜆𝜆)𝜏𝜏𝑝𝑝𝑝𝑝 

Where 𝜌𝜌𝑝𝑝𝑝𝑝 = 𝑆𝑆𝐿𝐿𝑆𝑆 of p and q. 

𝜏𝜏𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑏𝑏𝑠𝑠𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑒𝑒 𝑖𝑖𝑎𝑎𝑑𝑑𝑢𝑢𝑒𝑒 𝑡𝑡𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑓𝑓𝑒𝑒𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠 𝑡𝑡𝑛𝑛 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑞𝑞 

We define 𝜏𝜏𝑝𝑝𝑝𝑝 as Delay Similarity (DS) 

Note that 𝜏𝜏𝑝𝑝𝑝𝑝 → 0 as the system goes to UE. Therefore, we have 

𝛿𝛿 → 𝛿𝛿𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟 as the system goes to UE. 

A natural extension of 𝜏𝜏 is the Effective Delay Similarity (EDS), defined as �̃�𝜏 

�̃�𝜏 = 𝜏𝜏 + 𝑎𝑎𝑏𝑏𝑠𝑠𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑒𝑒 𝑖𝑖𝑎𝑎𝑑𝑑𝑢𝑢𝑒𝑒 𝑡𝑡𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 ℱ 𝑡𝑡𝑛𝑛 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑞𝑞 

Note that both DS and EDS is not static over the network, but are dynamic variables that 

defined on time and the delay Ψ. This will add one more layer of complexity to the model in 

computation efficiency. To have the Kriging method trainable offline, we recommend an 

approximation or prediction to the DS and EDS to be applied, rather than regenerated each 

iteration. 

DS and EDS are designed for DUE models and bi-level models that have an equilibrium 

lower level (e.g. an MPEC). Modification in adding a term that represent similarity in user’s 

payoffs reflect the Nash-like game nature of traffic equilibrium models. In a DUE computation, 

only evaluations of dynamic network loading (DNL) that is along the path (iterations) toward 

equilibrium is of interest. In the entire feasible region defined in for departure rates, training more 

intensely in areas that is closer to the equilibrium than in areas far way will be beneficial. 

Comparing to training blindly in all areas, avoid areas that is never visited during the DUE 

computation is more strategic and efficient. DS and EDS are new distance metrics that can benefit 

from the convergence of DUE computation, during which the absolute value of differences 

between any pair of paths reduces to zero as the systems converges to equilibrium.  
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SLS similarity with higher degree 

We noticed that the SLS introduced in the above section accounted for two paths that 

directly share links. We now extend the concept to higher degree of link similarity that account 

for two paths that does not share links directly, but are correlated through intermediate paths. 

Definition 5.1 SLS with degree is similarity between two paths on a network. Define a 

SLS degree as the minimum number of paths in between from one path to another, where each 

pair of paths has at least one shared link. This means that any two paths with a SLS of degree k 

will have paths with SLS of 𝑘𝑘 − 1,𝑘𝑘 − 2, … 1 in between. Denote the degree of SLS using Roman 

Numerals. For example, an SLS of degree 6 is denoted by 𝜌𝜌𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉 . 

SLS with degree describe path correlations with better hierarchy. It distinguishes levels 

of similarities between different degrees of link-sharing or path overlapping. It reflects the 

characteristic of paths correlations on a traffic network “flow on all paths are related to each 

other, but the paths that are connected through less intermediates are likely to be more related”. 

Affine similarity metric 

 This metric works for model with m attributes. It is defined as follows 

𝛿𝛿𝑝𝑝𝑝𝑝 = ∑𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 

∑𝑠𝑠𝑖𝑖 = 1 

𝑖𝑖 = 1 …𝑑𝑑 

where 𝛿𝛿𝑝𝑝𝑝𝑝  is a linear and convex combination with m criteria terms that describes a weighted 

sum of differences between path 𝑝𝑝 and path 𝑞𝑞. We name this similarity Affine Similarity (AS). 

AS can take a special form of 

𝛿𝛿𝑝𝑝𝑝𝑝 = 𝜆𝜆𝜌𝜌𝑝𝑝𝑝𝑝 + (1 − 𝜇𝜇 − 𝜆𝜆)𝜏𝜏𝑝𝑝𝑝𝑝 + 𝜇𝜇𝑎𝑎𝑝𝑝𝑝𝑝 
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That includes both 𝜌𝜌 and 𝜏𝜏 when 𝑎𝑎1 = 𝜌𝜌 and 𝑎𝑎2 = 𝜏𝜏. 

AS extends path similarity into a form that can include any number of attributes that 

reflect the shared criteria between two paths. These criteria can be topological or non-topological. 

This form presents the most flexible framework that one can include any specific criteria that 

needs taken into account. The criteria can be topological, environmental, or network economical. 

The criteria will be predefined when the model is built. Examples of terms in the metric are 

degree of closeness, differences in tolls, road capacity, speed limits, number of shared 

intersections, road preferences, and possibility of congestion. A reasonable inclusion of the 

affecting criteria will properly address the important effects that have an influence on the 

modeling, and speed up the learning process with better structure of surrogate model. 

As discussed in chapter 4, when we replace distance metric 𝑓𝑓 with customized distance 

metric in ordinary Kriging. Metamodel with customized distance with have a different form of 

BLUP of the parameter 𝜃𝜃. Mathematical derivation is not included in this dissertation. 

Benefit of new distance metrics 

It is worth investigating the effect of distance metric replacement on metamodel. In our 

approach, upgraded distance metrics with alternative similarities do not affect the validity of 

metamodel. The prediction accuracy Kriging model enjoys is expected to be furtherly improved 

on customized similarity function.  

The speed of solving solution relies on the starting point of 𝜃𝜃 and mathematical 

complexity of the model. Because all similarities we proposed are linear, the superior speed we 

observed is expected to be maintained. Additional terms added may affect the computational 

speed in modeling-training. Model training can be done offline. This disadvantage is also offset 
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by the benefits a well-customized distance function brings. The prediction accuracy Kriging 

model enjoys will not be decreased nor sensitive to the choice of a similarity function.  

Validity 

 Validity of a distance determines the scope of its proper use. The proper perform of the 

Kriging method depends on careful choice of distance metric. Distance metric 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) defined 

in (4.4) is a valid metric measure or a valid metric when it satisfies (1)-(3) among the following 

requirements, and is a translation invariant metric when it satisfy (4). A distance metric is a valid 

pseudo-metric under relaxed conditions from the metric requirements. A detailed proof is 

provided in the appendix for validity. 

1. 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) = 𝑓𝑓(𝑥𝑥2,𝑥𝑥1) 

2. 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) ≥ 0 𝑎𝑎𝑛𝑛𝑓𝑓 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) = 0 𝑖𝑖𝑓𝑓𝑓𝑓 𝑥𝑥1 = 𝑥𝑥2  

3. 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) ≤ 𝑓𝑓(𝑥𝑥1, 𝑥𝑥3) + 𝑓𝑓(𝑥𝑥3, 𝑥𝑥2) 

4. 𝑓𝑓(𝑥𝑥1 + 𝛼𝛼, 𝑥𝑥2 + 𝛼𝛼) = 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) 

∀ 𝑥𝑥1,𝑥𝑥2 𝑖𝑖𝑛𝑛 𝑓𝑓𝑡𝑡𝑑𝑑𝑎𝑎𝑖𝑖𝑛𝑛 𝑡𝑡𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑒𝑒𝑡𝑡𝑖𝑖𝑖𝑖𝑠𝑠 

 In summary of the proof, the distance metric defined in Equation (4.4) satisfies pseudo-

metric requirements and enjoys mathematical properties of a pseudo-metric. For certain networks, 

it satisfies all requirements and is a valid distance metric mathematically. The detailed proof and 

discussion on validity of our proposed distance metric based on proposed similarity between 

paths is given in appendix A.  

 In addition, we need to have a valid covariance function using the distance metric 

defined. A valid covariance function is a positive definite function. This means a covariance 

function is valid when it satisfies 
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� 𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘𝒞𝒞(ℎ𝑖𝑖,ℎ𝑘𝑘) > 0
𝑛𝑛

𝑖𝑖,𝑘𝑘=1

 ∀𝑎𝑎𝑖𝑖,𝑎𝑎𝑘𝑘 ∈ ℝ  ∀ℎ𝑖𝑖,ℎ𝑘𝑘 ∈ Λ 

A proof of positive definiteness of covariance function defined on our proposed distance metrics 

is given in appendix B.  

Remark 5.1: It is to be noted that the distance discussed here is a distance metric in the 

space of input variable Λ. In our metamodel, the input variable is ℎ ∈ ℝ𝑛𝑛×|𝒫𝒫|. Therefore, the 

distance metric 𝑓𝑓 should satisfy symmetric requirement on vector space ℝ𝑛𝑛×|𝒫𝒫|. We require that 

the distance metric is symmetric on any pair of input ℎ1 and ℎ2. This symmetric property of the 

distance metric is not defined based on the space of all paths. Hence, it should not be confused 

with being symmetric on any pair of paths 𝑝𝑝 and 𝑞𝑞, which is not true here. 

 Transportation network is usually defined as a directed graph (Miller and Shaw 2001), 

which is used to reflect driving direction of streets. It is worth noting for clarity that directed road 

network distance is asymmetric and distinctly violates (1) and is therefore not a valid distance 

metric. Distance metric in our proposed method is a different concept. The experiment we 

constructed is essentially a computer experiment that is conducted on a vector space. When 

discussing the validity of distance, we need to emphasize about the space we are discussing upon. 

Remark 5.1 addresses symmetric issue of distance metric in terms of distinguishing between set 

of paths and the space on which the distance of our model defines on.  

Covariance functions 

In Kriging, covariance function is a nonincreasing function, which reflects the 

characteristic of spatial data: ‘everything is related to everything else, but things near are more 

related than things distant’ (Tobler 1970). The relationship between data samples in a Kriging 

model is reflected and described by the covariance functions. 
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In the model presented in chapter 4, the covariance between two input, ℎ1 and ℎ2 in the 

ordinary Kriging for all (𝑝𝑝, 𝑖𝑖) is defined as 

𝒞𝒞(𝑓𝑓(ℎ1,ℎ2),𝜃𝜃) = 𝜎𝜎2exp (−𝑓𝑓(ℎ1,ℎ2)𝑇𝑇 ∙ 𝜃𝜃) 

After simplifying in notations, we neglect the subscript and superscript (𝑝𝑝, 𝑖𝑖) in our 

subsequent discussion. The result works for all (𝑝𝑝, 𝑖𝑖). We denote here 

𝒞𝒞(𝑓𝑓,𝜃𝜃) = 𝜎𝜎2 exp(−𝑓𝑓𝑇𝑇 ∙ 𝜃𝜃) 

where 𝑓𝑓 is defined in (4.4) and 

𝜃𝜃 ∈ ℝ|𝒫𝒫| 

𝑓𝑓 ∈ ℝ|𝒫𝒫| 

𝒞𝒞 ∈ ℝ 

In our proposed metamodeling in Chapter 4, covariance takes an exponential form in 

ordinary Kriging. Covariance functions are required to satisfy the following property: the 

covariance matrix needs to be positive definite by inputting the covariance. The exponential 

family is commonly used as kernel functions. 

We provide some alternatives in the following sections. 

• Kernel function 

 In ordinary Kriging, we use an exponential function as the kernel function, but in realistic 

scenarios we may need alternative forms of kernel functions to suit the need of the target model. 

To deal with this challenge, we can change the kernel function in the Kriging settings. 

In this session, we discuss alternative kernel functions to apply on the Kriging frameworks, and 

present the output model in both exponential and non-exponential forms. In the following, two 

classes (the polynomial kernel and triangular kernel) are discussed. 

1. Polynomial kernel 

𝑠𝑠𝑡𝑡𝑖𝑖(𝑓𝑓) = 𝜎𝜎2 ∗ 𝜃𝜃𝑎𝑎(1 − 𝑓𝑓)−𝛼𝛼 
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2. Triangular kernel 

Triangular kernel is a special form of polynomial kernel. The kernel function takes the 

following form: 

𝑠𝑠𝑡𝑡𝑖𝑖(𝑓𝑓) =

⎩
⎨

⎧𝜎𝜎2 ∗ 𝜃𝜃(1 − 𝑓𝑓),         𝑓𝑓 ∈ [0,
𝜎𝜎2

𝜃𝜃
]

0,                     𝑓𝑓 ∈ [
𝜎𝜎2

𝜃𝜃
,∞]

 

Spatio-temporal Kriging 

 We recall the spatio-temporal random process 𝑌𝑌(𝑠𝑠;  𝑡𝑡), 𝑠𝑠 ∈  𝑂𝑂𝑟𝑟, 𝑡𝑡 ∈  𝑂𝑂𝑡𝑡 that evolves 

through the spatio-temporal index set 𝑂𝑂𝑟𝑟  × 𝑂𝑂𝑡𝑡 following (Cressie and Wikle, 2011): 

𝑌𝑌(𝑠𝑠; 𝑡𝑡)  = 𝜇𝜇(𝑠𝑠; 𝑡𝑡) + 𝛽𝛽(𝑠𝑠) + 𝛾𝛾(𝑡𝑡) + 𝜅𝜅(𝑠𝑠; 𝑡𝑡) + 𝛿𝛿(𝑠𝑠; 𝑡𝑡),       𝑠𝑠 ∈ 𝑂𝑂𝑟𝑟, 𝑡𝑡 ∈ 𝑂𝑂𝑡𝑡                  (5.1) 

Because our DNL problem is deterministic, we propose to drop the white noise term in (5.1) and 

apply the ordinary Kriging framework (assuming a deterministic mean 𝜇𝜇). We assume that the 

delay operator can be approximated by a realization of the spatio-temporal random process as 

follows. 

Ψ�𝑝𝑝(𝒉𝒉;  𝑡𝑡) = 𝜇𝜇𝑝𝑝 + 𝛽𝛽𝑝𝑝(𝒉𝒉) + 𝛾𝛾𝑝𝑝(𝑡𝑡) + 𝜅𝜅𝑝𝑝(𝒉𝒉; 𝑡𝑡)  𝑡𝑡 ∈  [𝑡𝑡0, 𝑡𝑡𝑓𝑓],      𝒉𝒉 ∈ ℝ+
𝑛𝑛×|𝒫𝒫| 

for each path 𝑝𝑝 ∈ 𝒫𝒫. In the model, 𝛽𝛽𝑝𝑝(𝒉𝒉), 𝛾𝛾𝑝𝑝(𝑡𝑡), and 𝜅𝜅𝑝𝑝(𝒉𝒉; 𝑡𝑡) have zero mean and the following 

covariance functions respectively for all 𝑝𝑝. 

𝑠𝑠𝑡𝑡𝑖𝑖(𝛽𝛽𝑝𝑝(ℎ1),𝛽𝛽𝑝𝑝(ℎ2)) =  𝐶𝐶𝑝𝑝
𝛽𝛽(ℎ1,ℎ2;𝜃𝜃𝛽𝛽,𝑝𝑝)  =  �̃�𝐶𝑝𝑝

𝛽𝛽(𝑓𝑓(ℎ1,ℎ2);𝜃𝜃𝛽𝛽,𝑝𝑝) 

𝑠𝑠𝑡𝑡𝑖𝑖 �𝛾𝛾𝑝𝑝(𝑡𝑡1), 𝛾𝛾𝑝𝑝(𝑡𝑡2)� =  𝐶𝐶𝑝𝑝
𝛾𝛾(𝑡𝑡1, 𝑡𝑡2;𝜃𝜃𝛾𝛾,𝑝𝑝) =  �̃�𝐶𝑝𝑝

𝛾𝛾(𝑡𝑡1  −  𝑡𝑡2;𝜃𝜃𝛾𝛾,𝑝𝑝) 

𝑠𝑠𝑡𝑡𝑖𝑖 �𝜅𝜅𝑝𝑝(ℎ1; 𝑡𝑡1), 𝜅𝜅𝑝𝑝(ℎ2;  𝑡𝑡2)� =  𝐶𝐶𝑝𝑝𝜅𝜅(ℎ1,ℎ2;  𝑡𝑡1, 𝑡𝑡2;𝜃𝜃𝑝𝑝)     

=  �̃�𝐶𝑝𝑝
𝜅𝜅,𝑟𝑟(𝑓𝑓(ℎ1,ℎ2);𝜃𝜃𝜅𝜅,𝑟𝑟,𝑝𝑝) ∙ �̃�𝐶𝑝𝑝

𝑘𝑘,𝑡𝑡(𝑡𝑡1  −  𝑡𝑡2;𝜃𝜃𝜅𝜅,𝑡𝑡,𝑝𝑝) 
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In these covariance functions we have again assumed stationarity. We have developed a 

network structure customized distance metric for ℎ in Equation (4.4), and we can still apply the 

same form of covariance function in Equation (4.6) for 𝑠𝑠𝑡𝑡𝑖𝑖 ( 𝛽𝛽𝑝𝑝(ℎ1),𝛽𝛽𝑝𝑝(ℎ2)). A number of 

temporal covariance functions has been developed in literature (see a summary in Cressie and 

Wikle, (2011)). For the spatio-temporal covariance function (Cressie and Wikle, 2011), we have 

assumed separability. Separability enables the spatio-temporal covariance matrix in the predictor 

to be computed as Σ𝑝𝑝 =  Σ𝑝𝑝
(s) ⊗Σ𝑝𝑝

(t),and the inverse of the matrix as �Σ𝑝𝑝�
−1  =  �Σ𝑝𝑝

(𝑟𝑟) �
−1
⊗

�Σp
(t) �

−1
, where ⊗ denotes the Kronecker product. In addition, to capture the temporal 

evolvement of the traffic flow and travel time, by employing this approach, we reduced the 

number of models to fit from 𝑛𝑛 ×  |𝒫𝒫| to |𝒫𝒫|. Meanwhile, each of the model fitting process has 

increased complexity, induced by parameter estimation in additional covariance functions. Also, 

as we are considering the delay on each path Ψ�𝑝𝑝(𝒉𝒉;  𝑡𝑡) instead of the delay on each path-time pair 

(𝑝𝑝, 𝑖𝑖) as we did in the current approach, the number of training data (assumes that we are using 

the same number of runs of the DNL model as training data) will increase from K to K × n, where 

n is the time dimension (e.g., the number of time interval). When solving increasingly large-scale 

problem, the overall influence of model fitting complexity on the metamodeling computational 

efficiency is still to be seen. This problem may also alleviate by the dimension reduction 

approach introduced in the following chapter. 
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Chapter 6 
 

Large-scale transportation networks 

In this chapter we focus on large-scale transportation networks. Existing articles handle 

challenges brought by expanding scale of traffic network in different ways. Attacking a large-

scale network using brutal force is usually unrealistic. For the same reason, aggregation, 

decomposition, other techniques are created to either reduce the network to a tractable scale, or 

simplify the modeling based on assumptions. In this chapter, we create a new version of network 

aggregation that solves large-scale network model. 

Dimension reduction and improvement in model training speed 

It is observed in the primary numerical examples that increase in size of network have a 

significant influence on the training time. Training time of the 501-paths Sioux Falls network is 

over a week. Although model training can be done offline, and is a reasonable investment on 

studying a large network considering the complexity of the delay operator, it is preferred in both 

analytical ease and practice to have better training efficiency and model simplicity when the 

network size grows very large. Possible approaches to reduce the model training time include 

employing better MLE algorithm and apply parallel computing, which requires access to great 

computational power. 

In this section, we discuss another approach which tries to address the problem by 

reducing the dimension of the proposed Kriging metamodeling procedures. Currently the most 

time-consuming part of the model training is the computation of MLE (Equation (4.7)). An 

iterative pattern search algorithm is applied, which requires iteratively search and update each 

component of the parameter 𝜃𝜃𝑝𝑝,𝑖𝑖 ∈ ℝ|𝒫𝒫|. The dimension of 𝜃𝜃𝑝𝑝,𝑖𝑖, which equals the number of 
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paths in the network, significantly affect the speed of the algorithm and tractability of the model. 

To reduce the effect of network size |𝒫𝒫| on the training speed and tractability, we proposed to 

redefine the distance metric of the Kriging model between two input departure rates ℎ1 and ℎ2. 

We start from partition the set of paths 𝒫𝒫 into G groups, denoted by 1, . . . ,𝐺𝐺,15 based on 

similarities between paths. Paths that are more similar to each other will be assigned to the same 

group. We have 

𝒫𝒫 = Γ1 ∪  Γ2 ∪ · · ·∪ Γ𝐺𝐺 

 ℎ𝑔𝑔𝑖𝑖  = �𝑤𝑤𝑖𝑖 �ℎ𝑝𝑝𝑖𝑖1
1  − ℎ𝑝𝑝𝑖𝑖1

2  �� ×· · ·× �𝑤𝑤𝑖𝑖  �ℎ𝑝𝑝𝑖𝑖𝑗𝑗
1  − ℎ𝑝𝑝𝑖𝑖𝑗𝑗

2 ��    ∀𝑔𝑔 =  1, . . . ,𝐺𝐺 

where 

𝛤𝛤𝑔𝑔  =  {𝑝𝑝𝑖𝑖1, . . . ,𝑝𝑝𝑖𝑖𝑟𝑟} 

The new distance metric is then defined as follows 

𝑓𝑓𝑖𝑖(ℎ1,ℎ2) = ���ℎ𝑔𝑔
𝑖𝑖,1 − ℎ𝑔𝑔

𝑖𝑖,2��
2

2
:𝑔𝑔 ∈ 𝒢𝒢� ∈ ℝ𝐺𝐺                                   (6.1) 

Comparing to the originally defined distance metric, this new definition reduces the 

dimension of 𝑓𝑓𝑖𝑖 from number of paths |𝒫𝒫| to number of path groups G. By reducing the number 

of components in the parameter, model flexibility is reduced. It is possible that the performance 

will suffer. However, we expect the scarifies will be low because as the number of components in 

the Kriging method grows to a very large number compared to the number of training data 

available, the MLE will be difficult to solve. This approach allows studying and flexibility in 

handling the tradeoff between training speed and model precision. 

 
15 Note that G: number of aggregated paths should not be confused with 𝒢𝒢: set of all aggregated paths. The 

relationship between the two notion is |𝒢𝒢| = 𝐺𝐺 
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Clustering 

Clustering is an important task in pattern recognition for data analysis. Various clustering 

techniques emerges in recent years in literature. The goal of clustering is to partition a set of 

examples into disjoint clusters based on some notion of (dis)similarity, such that related examples 

belong to the same cluster while unrelated examples belong to different clusters (Huang et al. 

2014). Despite its apparent simplicity, it is not always clear how to select “related” examples 

because there are many possible ways of defining the similarity of examples for a given task, e.g., 

by using different similarity measures or distance metrics. 

It is well known that using the Euclidean distance metric may not be a wise choice for a 

given task because it simply ignores the correlations between features, which usually contain 

useful discriminative information (Nguyen et al. 2016). In previous sections, we also discussed 

why Euclidean distance is replaced when we apply Kriging to the dynamic network loading 

(DNL) procedure. In principle, depending on the application domain, one wishes to learn a 

distance metric that satisfies some specific requirements. In our study, we have our defined 

dissimilarity on the domain of paths and extended distance metrics setup for the clustering tasks 

on domain of departure rates. 

The following clustering methods are commonly seen in the literature: 

• K-means 

• Dbscan 

• Support vector machine 

• Random forest 

• Other clustering methods 

Two references to the clustering technique are the books by Alpaydin (2020) and Bishop 

(2006).  
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 K-means clustering is one of the most popular and most efficient techniques for general 

clustering tasks. Typical applications include classification (Weinberger and Saul 2009; Faraki et 

al., 2018; Goldberger et al., 2005; Nguyen et al. 2018), regression(Nguyen et al., 2016), 

clustering(Jia et al. 2016; Wu et al. 2012; Bilenko et al. 2004; Yin et al. 2010), ranking(Lim and 

Lanckriet 2014), and kernel learning (Jain et al. 2012). In the next section, we will present how 

K-means can be used on extending the existing metamodeling approach to solve large-scale 

networks. 

Framework of network aggregation 

Path aggregation 

Network aggregation can be seen in literature dating back to 1979 while early approach 

(Barton and Hearn, 1979) propose to aggregate links to form a reduce (sub)network in assisting 

network flow computation. Friesz (1985) provides a discussion on network aggregation 

emphasizing its application and opportunity found in the field of network equilibrium and 

network design. 

To handle larger networks and dynamic versions, path clustering is a promising approach. 

Paths of similarities can be clustered based on features that induces sparsity in travel time and 

aggregated to form groups of paths that represents user choices.  

In Chapter 5, we discuss several alternative choices of distance metrics in detail. They are 

recalled here to support our aggregation approach introduced in subsequent sections.



 
 

 

Creation of path groups 

We define the similarity between path p and path q in this session as 

𝛿𝛿𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑢𝑢𝑑𝑑𝑏𝑏𝑒𝑒𝑖𝑖 𝑡𝑡𝑓𝑓 𝑑𝑑𝑖𝑖𝑛𝑛𝑘𝑘𝑠𝑠 𝑠𝑠ℎ𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓 𝑏𝑏𝑦𝑦 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑞𝑞 

Define the similarity of a group of paths G as 

𝑠𝑠𝐺𝐺 = 𝑛𝑛𝑢𝑢𝑑𝑑𝑏𝑏𝑒𝑒𝑖𝑖 𝑡𝑡𝑓𝑓 𝑑𝑑𝑖𝑖𝑛𝑛𝑘𝑘𝑠𝑠 𝑠𝑠ℎ𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓 𝑏𝑏𝑦𝑦 𝑎𝑎𝑑𝑑𝑑𝑑 𝑝𝑝𝑎𝑎𝑡𝑡ℎ𝑠𝑠 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑖𝑖𝑡𝑡𝑢𝑢𝑝𝑝 𝐺𝐺 

Aggregated path 

To ease with conducting the learning method in a network with reduced dimension, we 

introduce a new type of path here. 

Definition 6.1. (aggregated path) An aggregated path is defined based on a set of real 

paths in a network that shares a large number of links, or in other words, have high similarity. 

The (conceptual) aggregate path represents a group of paths to be considered as one choice for an 

individual traveler/user that has an expected travel time with some uncertainty brought by the 

differences in unshared links. 

The uncertainty can be controlled and neglected when the paths are skillfully grouped, 

without harming the validity of the overall model. 

We illustrate the idea of conceptual path using an example as follows: 

Suppose we have a network of five paths: path #1, #2 and #3 go through a shared link 𝑎𝑎; 

paths #4 and #5 go through another shared link 𝑏𝑏. Then we have: 
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Path Link Shared link User’s perceived 

choice 

Aggregated 

path 

𝑝𝑝1 a, e 

a Choice 1 𝑔𝑔1 𝑝𝑝2 a, f 

𝑝𝑝3 a, g 

𝑝𝑝4 c, b 
b Choice 2 𝑔𝑔2 

𝑝𝑝5 d, b 

Table 6-1 Path aggregation illustrative example: path information  

 

 

 

 

 

Figure 6-1 Path aggregation illustrative example: network 

Explanation on intuition of the “aggregated path” is as follows: in real-world scenarios, 

the (conceptual) aggregated path usually complies with user’s perceived choice: e.g. a choice 

between “going through highway” concept or “going through city-center” concept. Each choice 

not necessarily contains only one path, but more. Then during the decision-making process, each 

user does not necessarily choose among all possible paths, but among aggregated groups of paths 

that differs in important segment. The users could perceive shared links as crucial to determine 

the best choice. For example, a traveler that goes from west side of city Beijing to east side could 

face more than 20 possible distinct paths, but only two groups of choices: through highway, or 

through city center. This concept can be easily extended to other big cities around the world. In 

example illustrated in Table 6-1, aggregated path 𝑔𝑔1 include 3 paths and 𝑔𝑔2 include 2 paths. In 

real world large-scale network, it is reasonable to expect that through proper aggregation, each 

Destination 

e 

Origin 

a 

b 

c d f g 



93 

 

aggregated path could include several to hundreds of real paths that distinguish themselves 

between each other only in segments that connects the shared links. This feature is the core to 

boost tractability. 

Definition 6.2. (aggregated path flow) Denote 𝑔𝑔 as an aggregate path on a set of paths 

{𝑝𝑝1,𝑝𝑝2, …𝑝𝑝𝑚𝑚}on a network. Then we have ℎ𝑔𝑔 = ∑ ℎ𝑔𝑔𝑔𝑔∈𝒢𝒢 . In this equation, ℎ𝑔𝑔 is the aggregate 

path flow. Notation 𝑔𝑔 represent both the “aggregated path flow” and the set of paths that is 

assigned to this aggregated flow. 

The concept of path aggregation can be easily extended to “origin-destination” 

aggregation, where similar origins and destinations are aggregated to become aggregated origin 

and aggregated destination, respectively. In modeling based on the network, aggregated origins 

and destinations are considered instead. The idea is shown by an illustrative example network in 

the last section of this chapter. 

Path aggregation would be relevant when working with large-scale network and networks 

with clear major-minor road structures. Computation on large-scale networks is difficult by 

traditional methods when original network is directly used. Dimension of path flow ℎ will be 

huge, which directly challenge the computational limitations (software-specific limitation of 

variable dimension, computer memory capacities). Analytical methods for DTA also can scale 

badly and suffers from curse of dimensionality in scenarios of very large scale. By aggregating, 

the dimensionality issue can be reasonably overcome. For networks with a major-minor road 

structure, aggregation can provide a balancing between spatio (topological) simplicity and model 

accuracy. When properly aggregated, patterns in minor roads will be described in more simple 

way, and better granularity can be given to the major road that have significant influence on 

entire road network.  
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Framework and formulation of aggregation 

We propose the following framework on aggregation path on the large-scale network 

• Construction of the reduced network is to be noted in the following items: 

1. The aggregation paths will construct a “reduced network” from the original network. 

2. The aggregation paths will be the paths that the path based surrogate DNL model 

formulates on. 

3. Upper-level DUE can be either based on the reduced network or on the original 

network, with an accommodation of the path aggregation on delay operator. In 

reduced network, aggregated paths are treated as normal paths in formulation. 

4. Aggregated path departure rates and delays are generated (averaged) over represented 

paths on the network and the result is considered to be a reduced-scale counterpart of 

the original one. 

5. The aggregation paths need proper choice methodology: K-means clustering, ad hoc 

clustering, other aggregation methods. 

6. There needs to be a linked way between the path and aggregated paths that allocates 

DUE onto the large-scale network through aggregation. If stochastic Kriging is used, 

then we can take advantage of the stochasticity of surrogate model and define the 

output of original paths based on distribution/likelihood from an interval with mean 

and variance. If ordinary Kriging is used, then the reverse from reduced network to 

full network is based on the transition from the delays of the reduced network to its 

large-scale counterpart. 

7. Discussion on bound and error estimation (error rate). 

• Delay operator on aggregated paths 
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Define Θ𝑔𝑔 as delay on aggregated paths 𝑔𝑔, and Θ is the delay operator defined on the reduced 

network. 𝒽𝒽𝑔𝑔 is the reduced-scale counterpart of ℎ. Moreover, Θ is the reduced-scale 

counterpart of Ψ. 

• Formulation of DUE on the reduced network based on aggregated path 

Aggregation DUE of infinite dimension can be formulated by variational inequality (VI) 

as follows: 

 𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 𝒽𝒽∗ ∈ ℒ 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡

�� Θ𝑔𝑔(𝑡𝑡,𝒽𝒽∗)  �𝒽𝒽𝑔𝑔(𝑡𝑡) −𝒽𝒽𝑔𝑔∗ (𝑡𝑡)� 𝑓𝑓𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0𝑔𝑔∈𝒢𝒢

≥ 0

∀ 𝒽𝒽 ∈ ℒ ⎭
⎪
⎬

⎪
⎫
𝑉𝑉𝐼𝐼�Θ,ℒ, �𝑡𝑡0, 𝑡𝑡𝑓𝑓�� 

where we have 

𝒽𝒽 = �𝒽𝒽𝑔𝑔:𝑔𝑔 ∈ 𝒢𝒢� 𝑓𝑓𝑒𝑒𝑝𝑝𝑎𝑎𝑖𝑖𝑡𝑡𝑢𝑢𝑖𝑖𝑒𝑒 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠 𝑡𝑡𝑛𝑛 𝑎𝑎𝑔𝑔𝑔𝑔𝑖𝑖𝑎𝑎𝑔𝑔𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓 𝑝𝑝𝑎𝑎𝑡𝑡ℎ𝑠𝑠 𝑔𝑔 ∈ 𝒢𝒢 

Θ = �Θ𝑔𝑔:𝑔𝑔 ∈ 𝒢𝒢�𝑓𝑓𝑒𝑒𝑑𝑑𝑎𝑎𝑦𝑦 𝑡𝑡𝑝𝑝𝑒𝑒𝑖𝑖𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖 𝑡𝑡𝑛𝑛 𝑎𝑎𝑔𝑔𝑔𝑔𝑖𝑖𝑒𝑒𝑔𝑔𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑔𝑔 ∈ 𝒢𝒢 

ℒ: set of all feasible aggregated departure rates 

where ℒ is the set of all feasible aggregated paths flows. The constraint follows 

aggregated flow conservation is given as: 

Define 𝓱𝓱 as the finite dimensional departure rates on aggregated paths. Define 𝒢𝒢𝑟𝑟𝑟𝑟 as the 

set of aggregated paths between OD pair (𝑖𝑖, 𝑠𝑠). Given the OD departure rate vector 𝑅𝑅𝑟𝑟𝑟𝑟  =

�𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖 : 𝑖𝑖 =  1, . . . . . . , ,𝑛𝑛�for each OD pair (𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲, we have the following constraints for finite 

dimensional aggregated path-specific departure rates 𝓱𝓱𝑔𝑔: 

Σ𝑔𝑔∈𝒢𝒢𝑟𝑟𝑟𝑟   𝓱𝓱𝑔𝑔,𝑖𝑖 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑖𝑖  ∀ 𝑖𝑖 =  1, . . . ,𝑛𝑛,∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲                                     (6.2) 

Same as the de-aggregated (original) network, we see that such constraints are decoupled 

for different time intervals i and different OD pairs (𝑖𝑖, 𝑠𝑠). Therefore, the validity of the DUE 

analytical properties and solution procedures still hold. 

Proof is trivial. 
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• Formulation of the DUE on original network based on path aggregation in delay operator 

 𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 ℎ∗ ∈ Λ 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡

�� Ψ𝑔𝑔(𝑡𝑡, ℎ∗)��ℎ𝑝𝑝(𝑡𝑡) − ℎ𝑝𝑝∗ (𝑡𝑡)�
𝑝𝑝∈𝑔𝑔

 𝑓𝑓𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0𝑝𝑝∈𝒫𝒫

≥ 0

∀ ℎ ∈ Λ ⎭
⎪
⎬

⎪
⎫
𝑉𝑉𝐼𝐼�Ψ,Λ, �𝑡𝑡0, 𝑡𝑡𝑓𝑓�� 

where we have 

ℎ = (ℎ𝑝𝑝:𝑝𝑝 ∈ 𝒫𝒫) 

Algorithms of aggregation 

This section introduces the algorithms for aggregating path on an arbitrary network. 

Number of aggregated paths (number of groups of paths) to be created can be predefined. This is 

useful in the cases that there is a target number of aggregated path (target size of the reduced 

network through aggregation). Alternatives are also given for cases such pre-definition is not 

needed. 

Algorithm 1 A heuristic of path aggregation based on SLS 

Suppose group 𝒫𝒫 is the set of paths of an OD pair 

1. Find matrix A of similarity 

2. Starting from the smallest entries, which is number of links k any two paths shares, 

and group the paths that shares them into separate groups 

3. Subtract k from all positive entries in matrix A 

4. Go back to Step 2, until all entries in A are zero. 
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Algorithm 2 Grouping into predefined number of groups m 

1. Find matrix A of similarity 

2. Find the smallest m entries, and find the paths associates with the entries into m 

groups. Find the largest similarity k among the selected m entries. 

3. Subtract k from all positive entries in matrix A 

4. Go back to Step 2, until all entries in A are zero. 

Algorithm based on K-means 

K-means is a clustering method that can provide clusters based on similarities between 

items in a set. K-means algorithms interactively update the mean value and clustered items 

around the mean. 

1.update mean value of path similarity 

2.update clustered paths 

3.check—go back to 1 if stopping criteria is not met 

4. return clusters 

K-means work with a “distance” between observations defined. In transportation network 

aggregation, observations are paths. The “distance” between any pair of paths 𝑝𝑝 and 𝑞𝑞 can be 

evaluated by the similarities defined in Chapter 5: SLS, DS, EDS (if applicable) and AS.  

Comparison to support decision making between the three algorithms can be conduct on 

the following criteria: aggregation rate/efficiency and computational complexity. 
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Aggregation rate 

For a large-scale network, define aggregation rate as the dissimilarity level between each 

two paths that are grouped into an aggregate path set. 

Under the definition of a similarity matrix, the aggregation rate equals the smallest 

similarity between all paths in a path group. 

The higher the aggregation rate is, the lower the dimension of the aggregated network is. 

We must make a tradeoff between dimension reduction and aggregation. Based on the definition 

of aggregation rate, we can control the degree of dimension reduction to best handle the large-

scale network with least loss of accuracy during the reduction process. 

Network aggregation by link 

There are other types of aggregation schemes developed for handling large-scale 

networks discussed in the related literature. Barton and Hearn (1979) develops a decomposition 

method based on separable network structure and apply optimization problem on subnetwork and 

major network separately. The aggregation is conducted link-based and the reduced network is 

computed as a subproblem. 
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Numerical study framework 

Picture of the network 

The figure below shows a network that consist of a highway connecting two blocks of 

origins and destinations located on notes of lattice shaped road network. For ease of reference, we 

name this network Single Highway network. 

Figure 6-2 Single Highway network 

Number of paths 196 

Number of aggregated paths 16 

Number of OD pairs 16 

Table 6-2 Single Highway network data 

The example is designed to show that path aggregation works on scenarios where the 

concept of some feasible path can be extracted by the crucial link it uses, in this example, the 

“highway” that connect all pairs of origins and destinations. All choices of paths only diverse 

from each other by choice of path within the lattice blocks from the origins to the highway 

entrance bridge, and from the highway exit bridge to the destinations. If the flows within the 

lattice structured subnetwork are not significantly changing, then these choices can actually be 

ignored in large-scale network calculation. 

In this example, the rate of aggregation is 

Number of paths
Number of aggregated paths

= 12.25 

highway 

origins destinations 
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Chicago sketch 

This example is proposed to be revised for future research. 

In this section, we test our proposed dimension reduction method in a real-world-scale 

Chicago Sketch testing network and apply the Kriging-based metamodeling method. The number 

of paths in the testing network is increased to 250,000. The result justifies the ability and potential 

of our proposed method in handling very large-scale problems efficiently. 

We first employ the dimension reduction method discussed in previous Chapter 5 to 

reduce the dimension to a more tractable level. 

In the Chicago Sketch network, we have a following data 

Number of OD pairs 86,179 

Number of paths 250,000 

Average number of paths per 

OD pair 

2.9 

Table 6-3 Chicago Sketch network data 

Chicago sketch has large number of OD pairs. In such cases, aggregating path will not be 

sufficient in reducing the network and improve tractability. To apply aggregation, the following 

decisions needs to be made to input into the aggregation algorithm: 

• rate of path aggregation 

• aggregation of OD pairs 

Aggregation of OD pairs can be similarity deduced from the path aggregating algorithms. 

The detail is beyond the scope of this dissertation and is not discussed here in detail. In our design 

of numerical example, we include path aggregation to illustrate our proposed method. 

We propose the following procedures to handle Chicago Sketch path aggregation for 

dynamic transportation models: 
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• finding distribution of path similarity 

• decide the aggregation rate 

• select aggregation algorithm 

• conduct path aggregation 

• transform the original problem (e.g., DUE, DNL) into its aggregated counterpart 

• solve the aggregated problem 

• interpret the result on either the aggregated or original problem via transformation 

The numerical tests are beyond the scope of this dissertation and proposed to be done in 

future studies. 
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Chapter 7 
 

Bi-level problems and MPEC 

Introduction of bi-level problems 

Bi-level models are an important technique of describing and analyzing dynamic 

transportation problems. 

Categories of bi-level models: 

• Network design problem 

• Signal control 

• Network capacity 

• Tolling 

Many bi-level problems are addressed in the form of a hierarchical optimization model or 

mathematical programming problem with equilibrium constraints (MPEC). Due to its multi-layer 

hierarchy, these problems are recognized as one of the most difficult and challenging problems in 

transportation systems management (Koh, 2007). 

A hybrid model for dynamic user equilibrium (DUE) computation 

 In this section we propose a study on incorporating the dynamic network loading (DNL) 

metamodel to traditional DUE solution scheme to gain better computational efficiency with low 

loss of accuracy. Among different notions of DUE developed in the literature, we choose to start 

from the predictive continuous-time DUE, with SRDT choice (Friesz et al., 1993, 2011, 2013a). 

Because the concept of an embedded DNL procedure in all DUE problems is similar, the 

proposed framework can be extended to be applied to other types of DUE.  
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 The formulation of DUE follows the one introduced in Chapter 2. 

 To facilitate further discussion on applying the DNL metamodel for SRDT DUE, we 

define the surrogate/approximate effective delay operator as follows: 

Ψ�𝑝𝑝(𝑡𝑡,ℎ) ≐  𝑂𝑂�𝑝𝑝(𝑡𝑡,ℎ) + ℱ(𝑡𝑡 + 𝑂𝑂�𝑝𝑝(𝑡𝑡,ℎ) − 𝑇𝑇𝐴𝐴) 

where 𝑂𝑂�𝑝𝑝(𝑡𝑡,ℎ) is the metamodel, or approximate delay operator, for the true/exact delay operator 

𝑂𝑂𝑝𝑝(𝑡𝑡,ℎ) learned by Kriging. 

Fixed-point method with DNL metamodel 

The fixed-point method introduced in Chapter 2 involves evaluation of the effective delay 

operator Ψ𝑝𝑝(𝑡𝑡,ℎ𝑘𝑘) for a vector of path delay ℎ𝑘𝑘 in each iteration, which is one of the most time-

consuming parts of the entire algorithm. A faster metamodel of the delay operator will 

significantly improve the computational efficiency of the problem. The computational 

improvement will be more significant considering that DUE is also widely used as a lower-level 

problem in many bi-level problems, where DUE solutions are usual computed multiple times to 

find an upper-level optimum. 

The metamodeling presented in Chapter 4 is performed on finite dimensional counterpart 

of the infinite-dimensional delay operator. To apply our surrogate effective delay operator Ψ�(ℎ), 

we need to firstly define the approximate DUE with flexible temporal granularity (TG-DUE). We 

use the same notations as defined in Chapter 4. 

Definition 7.1. (Dynamic user equilibrium with temporal granularity 𝑛𝑛 (TG-DUE(n)) A 

vector of departure rates ℎ∗ ∈ Λ is a dynamic user equilibrium with temporal granularity 𝑛𝑛 if: 

𝒉𝒉∗ ∈ ℝ𝑛𝑛×|𝒫𝒫| is the finite n-dimensional counterpart of ℎ∗  

𝚿𝚿(𝐡𝐡∗) is the finite n-dimensional counterpart of Ψp�𝑡𝑡,ℎ
∗�, and they satisfy 
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𝒉𝒉𝑝𝑝,𝑖𝑖
∗ > 0,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟      ⇒      𝜳𝜳𝑝𝑝,𝑖𝑖(𝒉𝒉∗) =  𝑖𝑖𝑟𝑟𝑟𝑟  ∈  ℝ++  

∀𝑖𝑖 = 1, … ,𝑛𝑛      ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲 

We denote the dynamic user equilibrium defined this way by TG−DUE (Ψ,Λ, [𝑡𝑡0, 𝑡𝑡𝑓𝑓],𝑛𝑛). 

For computation of the TG-DUE, we believe that a similar iterative solution method can 

be developed inspired by the iterative solution schemes for the original DUE problem, such as the 

fixed-point method. The solution method will still involve evaluation of the delay operator in 

each iteration. Assuming that we have successfully built the approximate surrogate Ψ�(ℎ) from 

the metamodeling method in Chapter 2, there are several ways to employ the metamodel into the 

solution scheme of DUE: (1) to replace the effective delay operator by the surrogate model for all 

iterations in fixed-point method; and (2) to replace the effective delay operator by the surrogate 

model for some iterations, selected systematically. For the first look, approach (1) will gain the 

maximum computational saving for DUE computation. However, the error induced by using the 

surrogate model will possibly direct the solution trajectory away from the exact one, and results 

in more iterations than its original needed. Approach (2) tries to achieve best performance by 

keeping a balance between computational improvement and influence of approximation error to 

the trajectory, both brought by the surrogate model. 

We note that similar approach as the second one can be extended to apply to any iterative 

solution schemes of DUE. For example, the proximal point method (PPM) developed by 

(Rockafellar, 1976) has also been applied to solving equilibrium problems with generalized 

monotonic operators. PPM evaluates the operator in each iteration. We propose to name any DUE 

computation method using both the exact delay operator/DNL procedures and the DNL 

metamodel a hybrid DUE solution scheme. 

Future work in this approach includes (1) provide more rigorous definition and 

reformulation for the TG-DUE problem and study its properties; (2) develop one or more 

algorithms based on fixed-point or other existing DUE solution schemes; (3) develop a hybrid 
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DUE solution scheme based on the metamodel and items (1) & (2); (4) present numerical 

examples, compare DUE solution computed based on the surrogate delay operator with the exact 

DUE solution and discuss the findings. 

Application of DNL metamodel on bi-level traffic models 

 Bi-level models are frequently discussed in dynamic traffic designs and managements. 

This class of problem assumes that travelers are responsive to the design or management of the 

network (e.g. tolls, signals, road conditions, speed limits) when each of them tries to minimize 

their perceived travel cost non-cooperatively. The notion of bi-level optimization models is 

closely related to Stackelberg games, where the central control authority of the upper level is the 

Stackelberg leader, and the travelers who respond to the leaders’ decisions are Stackelberg 

followers. 

 These problems are typically modeled as mathematical program with equilibrium 

constraints (MPEC). The optimization framework has two levels: the upper-level optimizes 

system performance by searching for optimal traffic management actions, and the lower-level 

describes a traffic equilibrium model where travelers make adaptive travel choices as a result of 

the upper level decisions. Examples of bi-level optimization in transportation include studies on 

optimizing traffic signal control (Han et al., 2015d; Abdelfatah and Mahmassani, 1998; Ukkusuri 

et al., 2012; Chen and Ben-Akiva, 1998) and congestion pricing (Friesz et al., 2013b, 2007; 

Hearn and Yildirim, 2002) based on lower-level equilibrium traffic flow. 

 A common approach to compute an MPEC is to formulate the bi-level program into a 

mathematical program with complementarity constraints (MPCC), which reduces the problem 

into a single level. This approach relies on a complementarity system reformulation to the 
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variational inequality to represent the MPEC in a form of a “standard” nonlinear program. 

Limited by space, the formulation is not presented here. 

 In this section, we proposed to apply our DNL metamodel in MPEC solution scheme. We 

firstly introduce the formulation of MPEC using a bi-level signal control problem, following the 

assumptions and settings in (Han et al., 2015d), and then provide description and discussion on 

our proposed ideas. 

A bi-level signal control problem 

 Following Han et al., (2015d), we consider an upper-level problem with decision 

variables as signal green splits, and lower-level problem as a DUE. We denote by the vector 𝜂𝜂(t) 

the possibly time-varying signal green splits associated with the entire network. We note that the 

signal decisions 𝜂𝜂(𝑡𝑡) are embedded within the DNL subproblem of the lower-level DUE model. 

The dependence of the DNL procedure on these signal splits is indicated in the following 

notation: 

Ψ(𝑡𝑡,ℎ; 𝜂𝜂) =  �Ψ𝑝𝑝(𝑡𝑡,ℎ; 𝜂𝜂),𝑝𝑝 ∈ 𝒫𝒫�       𝜂𝜂(𝑡𝑡) ∈  𝑌𝑌 

where Y denotes the set of feasible signal splits. 

 Using variational inequality formulation for the DUE presented above, we can formulate 

the lower-level DUE problem with a given signal timing 𝜂𝜂(𝑡𝑡) as follows: 

 𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 ℎ∗ ∈ Λ 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡
∑ ∫ Ψp(𝑡𝑡,ℎ∗; 𝜂𝜂) �ℎ𝑝𝑝(𝑡𝑡) − ℎ𝑝𝑝∗ (𝑡𝑡)� 𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡0𝑝𝑝∈𝒫𝒫 ≥ 0
∀ ℎ ∈ Λ

�𝑉𝑉𝐼𝐼�Ψ,Λ, 𝜂𝜂, �𝑡𝑡0, 𝑡𝑡𝑓𝑓��             (7.1) 

where Λ is the feasible region for ℎ, defined as 

 
Λ = �ℎ(∙):  ℎ𝑝𝑝(𝑡𝑡) ≥ 0,   � ℎ𝑝𝑝(𝑡𝑡) = 𝑅𝑅𝑟𝑟𝑟𝑟(𝑡𝑡)         ∀𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓�,   ∀(𝑖𝑖, 𝑠𝑠) ∈ 𝒲𝒲

𝑝𝑝∈𝒫𝒫𝑟𝑟𝑟𝑟

� 
(7.2) 
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 The upper-level objective is to minimize the total travel costs on the entire network, by 

finding a set of optimal signal controls 𝜂𝜂(𝑡𝑡). The upper-level’s objective function is formulated as 

follows: 

min
𝜂𝜂(𝑡𝑡)∈𝑌𝑌

�� Ψp
𝑡𝑡𝑓𝑓

𝑡𝑡0
(𝑡𝑡,ℎ∗; 𝜂𝜂)ℎ𝑝𝑝∗ (𝑡𝑡)𝑓𝑓𝑡𝑡

𝑝𝑝∈𝒫𝒫

 

where ℎ∗ is the solution to the lower-level DUE problem, formulated as a VI, in (7.1). 

Therefore, we have the following MPEC formulation for the entire bi-level dynamic signal 

control problem: 

min
𝜂𝜂(𝑡𝑡)

�� Ψp
𝑡𝑡𝑓𝑓

𝑡𝑡0
(𝑡𝑡,ℎ∗; 𝜂𝜂)ℎ𝑝𝑝∗ (𝑡𝑡)𝑓𝑓𝑡𝑡

𝑝𝑝∈𝒫𝒫

 

𝑠𝑠𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡 �
�� Ψp

𝑡𝑡𝑓𝑓

𝑡𝑡0
(𝑡𝑡, ℎ∗;𝜂𝜂)(ℎ𝑝𝑝(𝑡𝑡) − ℎ𝑝𝑝∗ (𝑡𝑡)) 𝑓𝑓𝑡𝑡 ≥ 0      ∀ℎ ∈ Λ

𝑝𝑝∈𝒫𝒫
ℎ∗ ∈ Λ, 𝜂𝜂(𝑡𝑡) ∈ 𝑌𝑌

 

The MPEC problem is a very difficult problem to solve because it is non-convex, has a semi-

infinite constraint (the VI), and there is very little regularity for the delay operator Ψp(𝑡𝑡,ℎ∗; 𝜂𝜂) 

regarding its arguments and parameters. Having the delay operator metamodeling framework, we 

proposed the following approaches: 

1. Develop DNL metamodel for the delay operator with dependency on signal control 

parameters and obtain the closed-form approximate delay operator Ψ�𝑝𝑝 (𝑡𝑡, ℎ∗;𝜂𝜂) 

2. Define and reformulate the MPEC problem with TG-DUE as the lower-level problem 

3. Apply the closed-form Ψ�𝑝𝑝 (𝑡𝑡,ℎ∗; 𝜂𝜂) into analytical investigation and efficient calculation 

of MPEC problems. This includes two possible approaches: 

  (a) Replace the original non-closed form delay operator with closed form 

Ψ�𝑝𝑝 (𝑡𝑡,ℎ∗; 𝜂𝜂) in all mathematical formulations. Because the Ψ�𝑝𝑝 (𝑡𝑡,ℎ∗; 𝜂𝜂) enjoys many 

analytical properties, such as continuity and differentiability that the original delay 



108 

 

operator does not, we can (1) perform analytical investigations that would not be possible 

before, and (2) reformulate the MPEC into MPCC and solve the single-level problem by 

existing algorithms/commercial software. 

  (b) Apply heuristic methods to solve the formulated MPEC and use the hybrid 

DUE solution scheme discussed in the section about the fixed-point method with DNL 

metamodel to improve the solution efficiency of the entire problem. Because all heuristic 

methods that tries to optimize the upper-level variables will need to repeatedly compute 

lower-level DUE solutions, the computational saving of using the metamodel will be even 

more significant.
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Chapter 8 
 

Discussion 

In this dissertation we discuss an interdisciplinary research that studies statistical learning 

on dynamic transportation models. In the previous chapters, we introduced models based on 

Kriging, NNs, Neural, and clustering on single-level and bi-level DTAs. In this chapter we will 

discuss work that has been presented, application of the developed method, significance, 

limitations, and directions of future work. 

This dissertation contains three main parts. We started from the most general categories 

of dynamic transportation models and discuss the dynamic structure and modeling approaches 

developed in the literature for the DTA branch in depth. Among all dynamic models the author of 

this dissertation reviewed in detail the DTA in particular. This review can be found in Chapters 1 

and 2. Through this branch of research, we identified the dynamic network loading (DNL) 

submodel as a breakthrough point of applying statistical learning to dynamic transportation 

models. The second and third part of the dissertation discussed this novel scheme of 

metamodeling applied on the DNL submodel and extensions, including extending the distance 

metric and extending the scale onto large-scale (real-world size) networks. Why we choosing 

Kriging and how we applied it are discussed in depth in Chapter 3 and Chapter 4. 

In Chapter 4, this dissertation proposed a novel metamodeling approach based on 

statistical learning for a class of DNL models. The goal was to provide a class of surrogate DNL 

models that approximated the exact ones, with considerable benefits including closed-form 

representation, improved regularity, and superior computational efficiency, at the expense of 

minor, yet controllable approximation errors. To achieve this, we employed the Kriging method 

to interpret and approximate the inherent input-output mechanism of the delay operator. This 
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method considers the observed functional relationship as a realization of a GRF, and the Kriging 

estimate corresponds to the posterior predictive density of the function approximation. 

Within the framework of metamodeling, we first articulated the precise definition of 

delay operators in continuous time and then defined its discrete counterpart in finite dimensional 

spaces. Then we implemented statistical learning methodology by utilizing the network structure 

and path information to perform Kriging on a non-conventional space with network- specific 

distance metric. Training of the model parameters was formulated as an MLE based on the 

Gaussian process, and it yielded a closed-form predictor. Following this, a way to systematically 

generate training data based on LHD was proposed and complemented by a second one based on 

a heuristic and adaptive approach. This metamodeling approach produced, as its output, a family 

of surrogate DNL models that approximated the exact ones. Compared to the delay operators 

obtained from conventional DNL procedures, the proposed ones enjoy much-improved analytical 

properties that benefited DTA analysis and computation significantly; these included closed-form 

expression, (Lipschitz) continuity, differentiability, and closed-form expression for the Jacobians. 

These advantages are partially discussed in this chapter, and further applications are proposed in 

future studies. On the computational side, it was shown in our numerical study that the surrogate 

DNL models have far-superior computational efficiencies and were 9 to 455 times faster than 

conventional ones. Moreover, the approximation errors remained low (less than 8%) throughout 

our numerical experiment. 

The occurrence of vehicle spillback may cause the delay operator to be discontinuous 

(Song et al., 2018; Han et al., 2016a; Szeto, 2003). Such a fact did not render our metamodel 

ineffective, because Kriging is a highly flexible metamodeling method, in that it can fit 

functions/mappings with different degrees of smoothness including discontinuities. However, the 

discontinuity in the delay operator could affect the error estimate of the Kriging method. Further 

study is needed to distinguish the performance of Kriging by different regularities of the delay 
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operator (i.e., the spillback versus non-spillback cases). The proposed statistical metamodeling 

approach opened the pathway to a family of new network performance models with tractability 

barely seen in existing ones. 

We noted that there are many other advanced experimental design methods that could 

potentially further improve the performance of our metamodels. These include the penalty 

method for solving the likelihood maximization problem (Li and Sudjianto, 2005) and dimension 

reduction techniques based on the clustering of the paths. 

Chapter 5 develops dimension reduction techniques and extends the distance metric, 

which was crucial in determining the proper function of the Kriging metamodel into multiple 

categories and forms to enable an increased range of problems to be eligible for use. Moreover, 

the large-scale methods proposed and articulated were brand new in the area of statistical large-

scale modeling of DUE. DUE models, as widely found, are not tractable because the problem 

grows with network size. The explosion of number of paths and OD pairs and the correlation 

made the problem non-trivial. These problems were from real-world size networks and closely 

linked to practical problem solving. They were also difficult to describe using linear and tractable 

methods, losing details if they are reduced too much and over-fitting if they are approximated 

using inappropriately-simple models. In Chapter 6, we presented in particular the concept of 

dimension reduction rate to devise the proper choice of reducing the level from the original 

network to the one that is being modeled. The process held the model in an appropriate level of 

details while it sufficiently reduced the computational burden to a tractable degree. 

In Chapter 6 and 7 the author explores the impact of our proposed study on DTA by 

• extending the method to large-scale networks through network aggregation 

• incorporating the surrogate DNL models into the computation of DUE and DSO 

problems; and 
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• devising gradient-based methods for solving bi-level problems on large-scale 

networks 

With the presented framework, proposed future research includes testing the possibility 

of incorporating real-world measurements into the delay operator through the opened path that 

links statistical learning with dynamic transportation models. 

Significance 

Metamodeling provided a new perspective in how transportation problems can benefit 

from the latest developments of statistical learning. Statistical learning, which has widely-

recognized advantages, can help the transportation model in overcoming the curse of 

dimensionality and reduce the obstacles obstacle large network analysis imposed by 

computational cost. The proposed method smoothed the mathematical formulation of traditionally 

non-smooth and non-differentiable operator. 

Large amount of literature showed transportation problems can be solved mathematically 

when properly reformulated and expressed. The real-world transportation systems continue to 

evolve and attract scientists’ interest with its dynamic nature and increasing complexity, 

especially in economically fast-developing regions. Layers of socio-economic meanings, factors 

of environmental influences, and big data supported technology are emerging in modern 

transportation systems. The design and management of modern networks is becoming 

increasingly advanced and data supported. With the thriving of smart phone applications and big 

data behind the flow of users on any road, we are better positioned than any time in the history to 

study the mystery of modern networks. Meanwhile, traditional issues, such as traffic jams and 

bottlenecks, are never completely eliminated in most of the modern networks and are expanding 
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beyond the traditional scope, now to be seen in both large cities and small towns increasingly. 

This phenomenon poses a great challenge to the experts who wish to improve it. 

In this dissertation, we built a new pathway from the transportation networks to statistical 

learning. The challenging network research in shown to benefit highly from the new models 

developed from powerful statistical learning tools. Without the condition of degree of 

differentiability and analytical properties, multiple types of DNL submodel of multiple kinds and 

a wide range of scales, either existing or forthcoming, can be freely modeled by the developed 

Kriging model with reasonable error and high tractability. 

In this dissertation, we propose a new method for tackling this important and difficult 

issue by providing a class of surrogate DNL models based on a statistical learning method known 

as Kriging. This work forms concrete foundation of our proposed family of modeling techniques. 

We present a metamodeling framework that systematically approximates DNL models and is 

flexible in the sense that it enables the modeler to make trade-offs between model granularity, 

complexity, and accuracy. It is shown that such surrogate DNL models yield highly accurate 

approximations (with error rates below 8%) and superior computational efficiency (9 to 455 times 

faster than conventional DNL procedures, such as those based on the link transmission model). 

Furtherly, we presented that the developed DNL surrogate model can smoothly replace traditional 

ones in a typical DUE formulation and enable the formulation to enjoy closed-form analytical 

delay operators and much better analytical properties: Lipschitz continuity, infinitely 

differentiability and closed-form Jacobians. 
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Summary 

This dissertation consisted of eight chapters, discussing interdisciplinary research 

between two main fields: dynamic transportation models and statistical learning. The dissertation 

described and discussed comprehensively projects of this doctoral study. 

We started with a comprehensive introduction to the two main areas of interest in this 

dissertation: dynamic transportation models, and statistical learning. Building linkage between the 

two fields yielded our new interdisciplinary study that absorbed the advantages and strengths of 

both fields. The mathematical formulation and properties of DTA models were presented in detail 

and discussed, and the platform of metamodeling that facilitates a new way of modeling the 

problem was built systematically. The literature review on dynamic transportation models, 

elaborated on DTA specifically. Following that, we introduced statistical learning and 

metamodeling concepts. The connection between the two fields was built on the project of 

applying Kriging onto DNL metamodeling in Chapter 3. One sentence here to explain the 

connection.  

• Statistical metamodeling of DNL 

Statistical metamodeling of the DNL connect statistical learning to dynamic 

transportation models. We use Kriging to provide surrogate DNL model that works for analytical 

DUE and bi-level DTA. We have utilized advanced experimental design for training and testing 

process. Result shows significantly improve in computational efficiency and model tractability. 

Kriging is an exact interpolation method and flexible statistical learning tool in practice. These 

features are clearly reflected in the positive result in numerical examples, promising its value in 

furtherly pushing boundaries of DTA modeling and computations. Through our work, available 

classes of DNL models are extended from non-close form to close form ones. Future directions 
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include testing and investigating the analytical advances it brings to DUE computation and DTA 

studies.  

• Distance metrics 

Distance metrics is of great importance in determining how the Kriging model will 

perform. In this dissertation, we extended the distance metric from Euclidean distance in 

Ordinary Kriging to non-Euclidean metrics to account for the network structure imposed cross-

paths effects and interactions. The introduction of non-Euclidean metrics into the metamodeling 

framework facilitated the use of Kriging and all distance based statistical learning methods 

(including some popular clustering algorithms) on problems and cases where the input is 

correlated by non-Euclidean (dis)similarities. The Kriging method was proven effective by 

numerical experiments in replacing the traditional DNL models for improved computational 

efficiency with a very small error rate. A direction worth investigating is whether the defined 

distance in our model is a valid metric. We have provided proof and discussion on the validity of 

the distance we developed. 

• Large-scale network 

To deal with the challenges brought by the high dimensionality, we developed a 

dimension reduction scheme to reduce computational burdens that analyzing large-scale networks 

brought. Path aggregation, reduced network, and a new framework for DUE on a large-scale 

network with aggregated DNL was presented and discussed. The framework has inherited the 

analytical form and properties of the standard VI formulation of a continuous-time DUE problem, 

enabling the application of algorithms with a differential delay operation on large-scale networks. 

This approach expanded the scope of use of the statistical learning-based approach. New testing 

networks of more than 250,000 paths are proposed/forthcoming in future research. 

• Applications 

We discuss two categories of applications 
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1. application of DNL metamodel/surrogate model to DUE problem; 

2. application of DNL metamodel/surrogate model to bi-level dynamic transportation 

problems. 

In conclusion, our study contributes to the DNL and DTA research both analytically and 

computationally. The proposed and studied scheme forms a brand-new approach of working with 

the challenges dynamic transportation models bring. Numerical studies show promising 

computational advances compared to the traditional procedures, and discussion on analytical 

features of the method that we propose is promising. Our approaches involved concepts and 

techniques in multiple areas of scientific research, including mathematical programming, 

statistical learning, and metamodeling, DTA, and differential games. 

Future directions of this research would first include research on in-depth interpretation 

on traffic pattern identification Kriging metamodel enables. On the traffic management side, 

quantitative insights can be draw from the learned surrogate model and evaluation of a traffic 

management scheme based on surrogate model are promising directions. 
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Appendix A 
 

Mathematical proof on validity of distance metric 

A distance metric 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) is a valid metric measure if it satisfies 

1. Symmetry: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥2, 𝑥𝑥1) 

2. Positivity: 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) ≥ 0 

3. Non-degeneracy: 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) = 0 𝑖𝑖𝑓𝑓 𝑎𝑎𝑛𝑛𝑓𝑓 𝑡𝑡𝑛𝑛𝑑𝑑𝑦𝑦 𝑖𝑖𝑓𝑓 𝑥𝑥1 = 𝑥𝑥2 

4. Triangle inequality: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) ≤ 𝑓𝑓(𝑥𝑥1,𝑥𝑥3) + 𝑓𝑓(𝑥𝑥3,𝑥𝑥2) 

Additionally, the distance metric 𝑓𝑓(𝑥𝑥1,𝑥𝑥2) is translation invariant if it satisfies 𝑓𝑓(𝑥𝑥1 +

𝛼𝛼, 𝑥𝑥2 + 𝛼𝛼) = 𝑓𝑓(𝑥𝑥1,𝑥𝑥2). A distance metric 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) is a pseudo-metric if requirements 1 and 2 

are satisfied and requirement 3 is partially satisfied (the “if” is satisfied) 

The proof validity of our proposed distance metric based on proposed similarity between 

paths is given here. 

Propose distance metric for all 𝑝𝑝 ∈ 𝒫𝒫, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 as follows 

𝒅𝒅𝑝𝑝,𝑖𝑖 =  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�  ∈  ℝ|𝒫𝒫| 

In the following proof, we neglect all subscript (𝑝𝑝, 𝑖𝑖) of 𝑓𝑓 for notation simplicity. This 

does not influence the mathematical validity of the proof. 

𝑓𝑓(ℎ1 ,ℎ2) =  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈  𝒫𝒫� 

𝑓𝑓(ℎ1 ,ℎ2) ∈  ℝ|𝒫𝒫| 

1. Symmetry 

𝑓𝑓(ℎ1,ℎ2) = �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� 

𝑓𝑓(ℎ2,ℎ1) = �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝2   − ℎ𝑝𝑝1  �
2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� 

Because 
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� ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2 = � ℎ𝑝𝑝2   − ℎ𝑝𝑝1  �

2
2  ∀ 𝑞𝑞 ∈ 𝒫𝒫 

We have 

𝑓𝑓(ℎ1,ℎ2) = 𝑓𝑓(ℎ2,ℎ1) 

2. Positivity 

𝑓𝑓(ℎ1 ,ℎ2) =  �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� 

We have 

𝛿𝛿𝑝𝑝𝑝𝑝 ≥ 0 𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒𝑓𝑓 𝑡𝑡𝑛𝑛 𝑓𝑓𝑒𝑒𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 

�ℎ𝑝𝑝1   − ℎ𝑝𝑝2�2
2 ≥ 0 𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒𝑓𝑓 𝑡𝑡𝑛𝑛 𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝𝑒𝑒𝑖𝑖𝑡𝑡𝑦𝑦 𝑡𝑡𝑓𝑓 𝑛𝑛𝑡𝑡𝑖𝑖𝑑𝑑 

Therefore 

𝑓𝑓(ℎ1 ,ℎ2) ≥ 0 

3. Positive definiteness 

The positive definiteness depends on 𝛿𝛿𝑝𝑝𝑝𝑝. In this proof, we assume that the set of paths on 

the network fulfills 𝛿𝛿𝑝𝑝𝑝𝑝 ≠ 0: 

Proof of “if” 

Suppose ℎ1 = ℎ2 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑤𝑤𝑒𝑒 ℎ𝑎𝑎𝑖𝑖𝑒𝑒 ℎ𝑝𝑝1 = ℎ𝑝𝑝2 ∀ 𝑞𝑞 ∈ 𝑃𝑃 

Therefore 

||ℎ𝑝𝑝1 − ℎ𝑝𝑝2||22 = 0 ∀𝑞𝑞 ∈ 𝑃𝑃 

Then we have 

𝑓𝑓(ℎ1 ,ℎ2) = 𝟎𝟎 

Proof of “only if” 

Suppose  

𝑓𝑓(ℎ1 ,ℎ2) = 𝟎𝟎 

Then we have 
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𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2 = 0      ∀ 𝑞𝑞 ∈  𝑃𝑃 

𝛿𝛿𝑝𝑝𝑝𝑝 ⊥  � ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2   ∀𝑞𝑞 ∈ 𝒫𝒫  

If 𝛿𝛿𝑝𝑝𝑝𝑝 is non-zero in all entries, we will have� ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2 = 0   ∀ 𝑞𝑞 ∈ 𝑃𝑃 

Therefore, based on the property of norm, we have 

ℎ𝑝𝑝1 = ℎ𝑝𝑝2    ∀ 𝑞𝑞 ∈ 𝑃𝑃 

We have 

ℎ1 = ℎ2 

Under the condition: 𝛿𝛿𝑝𝑝𝑝𝑝 ≠ 0 ∀𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫, the distance metric is valid. 

We note that 𝛿𝛿𝑝𝑝𝑝𝑝 ≠ 0 may not hold for all networks. In those cases, the validity can be 

ensured by simply introducing a very small positive parameter 𝜖𝜖 added to the original 𝛿𝛿𝑝𝑝𝑝𝑝 

definition. For example, the definition of 𝛿𝛿𝑝𝑝𝑝𝑝 can be revised as 

𝛿𝛿𝑝𝑝𝑝𝑝 = �Σ𝑠𝑠𝑎𝑎,   𝑖𝑖𝑓𝑓 𝑠𝑠𝑎𝑎 ≠ 0 𝑓𝑓𝑡𝑡𝑖𝑖 𝑝𝑝 𝑎𝑎𝑛𝑛𝑓𝑓 𝑞𝑞
𝜖𝜖 𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑖𝑖𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 

here 𝜖𝜖 is a very small positive number. 

 In the case that 𝛿𝛿𝑝𝑝𝑝𝑝 is given as its original form, which is nonnegative and not adjusted 

with the above method, the distance metric we propose is a valid pseudo-metric. This result 

holds for any network and all 𝛿𝛿𝑝𝑝𝑝𝑝. In some networks cases that the network structure 

satisfies 𝛿𝛿𝑝𝑝𝑝𝑝 > 0 requirements, this distance metric is also a valid metric measure. 

4. Triangle inequality 

𝑓𝑓(ℎ1,ℎ2) =  �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �
2
2 ∶  𝑞𝑞 ∈ 𝒫𝒫� 

𝑓𝑓(ℎ1,ℎ3) =  �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1   − ℎ𝑝𝑝3 �
2
2 ∶  𝑞𝑞 ∈ 𝒫𝒫� 

𝑓𝑓(ℎ3,ℎ2) =  �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝3   − ℎ𝑝𝑝2 �
2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� 

𝑓𝑓(ℎ1,ℎ3) + 𝑓𝑓(ℎ3,ℎ2) = �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1   − ℎ𝑝𝑝3 �
2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� + �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝3   − ℎ𝑝𝑝2 �

2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� 
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= �𝛿𝛿𝑝𝑝𝑝𝑝(� ℎ𝑝𝑝1   − ℎ𝑝𝑝3 �
2
2 + � ℎ𝑝𝑝3   − ℎ𝑝𝑝2 �

2
2) ∶  𝑞𝑞 ∈  𝒫𝒫� 

Because we have the following: 

� ℎ𝑝𝑝1 − ℎ𝑝𝑝2 �
2
2 = � ℎ𝑝𝑝1 − ℎ𝑝𝑝3 + ℎ𝑝𝑝3 − ℎ𝑝𝑝2 �

2
2 ≤ � ℎ𝑝𝑝1 − ℎ𝑝𝑝3 �

2
2 + � ℎ𝑝𝑝3 − ℎ𝑝𝑝2 �

2
2 

5. Translation invariance 

We have 

𝑓𝑓(ℎ1 + 𝛼𝛼,ℎ2 + 𝛼𝛼) =  �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1 + 𝛼𝛼  − ℎ𝑝𝑝2 + 𝛼𝛼�
2
2 ∶  𝑞𝑞 ∈  𝒫𝒫� 

Because 

� ℎ𝑝𝑝1 + 𝛼𝛼  − ℎ𝑝𝑝2 + 𝛼𝛼�
2
2 = � ℎ𝑝𝑝1   − ℎ𝑝𝑝2 �

2
2 

We have 

𝑓𝑓(ℎ1 + 𝛼𝛼,ℎ2 + 𝛼𝛼) = �𝛿𝛿𝑝𝑝𝑝𝑝� ℎ𝑝𝑝1 − ℎ𝑝𝑝2 �
2
2 ∶  𝑞𝑞 ∈ 𝒫𝒫� = 𝑓𝑓(ℎ1,ℎ2) 

With the complete proof containing items 1 to 5, we verify that the proposed metric is valid 

under the requirements over all paths and time in all OD pairs. 
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Appendix B 
 

Mathematical proof on validity of covariance function 

 A valid covariance function is a positive definite function, and vice versa. In this 

appendix we give a brief proof that our (newly) customized distance metric does not change the 

validity (the positive definiteness) of the covariance function. For each pair of (𝑝𝑝, 𝑖𝑖), the distance 

metric is 

𝒅𝒅𝑝𝑝,𝑖𝑖 =  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�  ∈  ℝ|𝒫𝒫|.                        (A.1) 

and the covariance function is  

𝒞𝒞(𝒅𝒅(𝒉𝒉1,𝒉𝒉2),𝜃𝜃) = 𝜎𝜎2 exp�−𝒅𝒅𝑝𝑝,𝑖𝑖(𝒉𝒉1,𝒉𝒉2)𝑇𝑇 ∙ 𝜃𝜃�

= 𝜎𝜎2 exp �−  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇
∙ 𝜃𝜃�. 

 Our metamodeling direction is fundamentally based on the newly developed distance 

metric (A.1). We note that change in the distance metric will change the underlying space the 

covariance function is defined on. It is the point why we are having this proof, because changing 

in the underlying space will possibly affect the property of the covariance function. In this proof, 

we are going to show that the exponential form of covariance remains to be valid, when distance 

is changed to (A.1).  

 It is to be noted that the model is extended in Chapter 5. In this proof we take all the 

proposed extensions on distance metric into consideration. We recall that 𝛿𝛿𝑝𝑝𝑝𝑝 is a scalar that 

indicates the similarity between two paths 𝑝𝑝 and 𝑞𝑞. The following proof only uses the property 

that 𝛿𝛿𝑝𝑝𝑝𝑝 is a scalar, and therefore it is applicable for any generalized form of path similarity. 

 Denote 𝒅𝒅𝐸𝐸 as the Euclidean distance. We have 

𝒅𝒅𝐸𝐸(𝒉𝒉1,𝒉𝒉2) = �� (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫� 

 Consider the (standard) exponential covariance function with Euclidean distance 
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𝒞𝒞𝐸𝐸(𝒅𝒅𝑬𝑬(𝒉𝒉1,𝒉𝒉2),𝜃𝜃) = 𝜎𝜎2 exp(−𝒅𝒅𝐸𝐸 ∙ 𝜃𝜃) = 𝜎𝜎2exp (−  �� (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇
∙ 𝜃𝜃) 

 The exponential covariance function is among the most common form of covariance 

function used in Kriging, and it is verified to be positive definite when Euclidean distance is used. 

This means on the entire vector space of the input departure rates, 𝒞𝒞𝐸𝐸(𝒅𝒅𝑬𝑬(𝒉𝒉1,𝒉𝒉2),𝜃𝜃) is a valid 

covariance function, i.e. 

∑ 𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘𝜎𝜎2 exp�−  �� (𝒉𝒉𝑝𝑝
𝑖𝑖    − 𝒉𝒉𝑝𝑝𝑘𝑘) �

2

2
: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇
∙ 𝜃𝜃� > 0𝑛𝑛

𝑖𝑖,𝑘𝑘=1  ∀𝑎𝑎𝑖𝑖,𝑎𝑎𝑘𝑘 ∈ ℝ  ∀𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘 ∈ ℝ+
𝑛𝑛×|𝑃𝑃|     

(A.2) 

This is the positive definiteness of a valid covariance function. Recall that the vector of departure 

rates is defined as 

𝒉𝒉 = (𝒉𝒉𝑝𝑝: 𝑝𝑝 ∈ 𝒫𝒫) ∈ ℝ+
𝑛𝑛×|𝑃𝑃| 

For each pair of (𝑝𝑝, 𝑖𝑖), our proposed covariance function for the metamodel is 

𝒞𝒞(𝒅𝒅(𝒉𝒉1,𝒉𝒉2),𝜃𝜃) = 𝜎𝜎2 exp�−𝒅𝒅𝑝𝑝,𝑖𝑖(𝒉𝒉1,𝒉𝒉2)𝑇𝑇 ∙ 𝜃𝜃�

= 𝜎𝜎2exp (−  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇
∙ 𝜃𝜃) 

This covariance function uses our newly developed distance function. We then observe that the 

change in distance function can be equivalently represented by a modification on the inputs. Let 

𝒉𝒉𝑝𝑝 = �𝛿𝛿𝑝𝑝𝑝𝑝 𝑤𝑤𝑖𝑖 ∘ 𝒉𝒉𝑝𝑝                                                      (A.3) 

and 

𝒉𝒉� = �𝒉𝒉𝑝𝑝: 𝑝𝑝 ∈ 𝒫𝒫�. 

Using 𝒉𝒉�, our proposed covariance function can be rewritten. We have 

𝒞𝒞(𝒅𝒅(𝒉𝒉1,𝒉𝒉2),𝜃𝜃) = 𝜎𝜎2exp (−  �𝛿𝛿𝑝𝑝𝑝𝑝� 𝑤𝑤𝑖𝑖 ∘ (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2
2: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇
∙ 𝜃𝜃) 



123 

 

𝜎𝜎2 exp�−  ���𝛿𝛿𝑝𝑝𝑝𝑝  𝑤𝑤𝑖𝑖 ∘ 𝒉𝒉𝑝𝑝1  −�𝛿𝛿𝑝𝑝𝑝𝑝  𝑤𝑤𝑖𝑖 ∘ 𝒉𝒉𝑝𝑝2) �
2

2
: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇

∙ 𝜃𝜃�

= 𝜎𝜎2exp (−  �� (𝒉𝒉𝑝𝑝1    − 𝒉𝒉𝑝𝑝2) �
2

2
: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇
∙ 𝜃𝜃) 

By rewriting the covariance, we just need to prove that 

� 𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘𝜎𝜎2exp (−  �� (𝒉𝒉𝑝𝑝
𝑖𝑖    − 𝒉𝒉𝑝𝑝𝑘𝑘) �

2

2
: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇

∙ 𝜃𝜃) > 0
𝑛𝑛

𝑖𝑖,𝑘𝑘=1

 ∀𝑎𝑎𝑖𝑖,𝑎𝑎𝑘𝑘 ∈ ℝ  ∀  𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘 ∈ ℝ+
𝑛𝑛×|𝑃𝑃|    

(A.4) 

to prove that the proposed covariance function is valid. The remaining of the appendix proves the 

property shown in (A.4). We start from the relationship between 𝒉𝒉𝑝𝑝 and 𝒉𝒉𝑝𝑝. Because (A.3) only 

involves elementary multiplications on vectors and scalars, we have 

𝒉𝒉𝑖𝑖 ,𝒉𝒉𝑘𝑘 ∈ ℝ+
𝑛𝑛×|𝑃𝑃|      ∀𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘 ∈ ℝ+

𝑛𝑛×|𝑃𝑃| 

We note that the property in (A.1) is satisfied for any choice of vector pair that is in the vector 

space ℝ+
𝑛𝑛×|𝑃𝑃|. Since 𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘 ∈ ℝ+

𝑛𝑛×|𝑃𝑃|, we can derive that (A.2) is satisfied for all or all 𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘. 

Plugging in any 𝒉𝒉𝑖𝑖 ,𝒉𝒉𝑘𝑘 ∈ ℝ+
𝑛𝑛×|𝑃𝑃| into (A.2), we will have 

� 𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘𝜎𝜎2exp (−  �� (𝒉𝒉𝑝𝑝
𝑖𝑖    − 𝒉𝒉𝑝𝑝𝑘𝑘) �

2

2
: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇

∙ 𝜃𝜃) > 0
𝑛𝑛

𝑖𝑖,𝑘𝑘=1

 ∀𝑎𝑎𝑖𝑖,𝑎𝑎𝑘𝑘 ∈ ℝ    

This can be directly rewritten as  

� 𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘𝜎𝜎2exp (−  �� (𝒉𝒉𝑝𝑝
𝑖𝑖    − 𝒉𝒉𝑝𝑝𝑘𝑘) �

2

2
: 𝑞𝑞 ∈ 𝒫𝒫�

𝑇𝑇

∙ 𝜃𝜃) > 0
𝑛𝑛

𝑖𝑖,𝑘𝑘=1

 ∀𝑎𝑎𝑖𝑖,𝑎𝑎𝑘𝑘 ∈ ℝ ∀ 𝒉𝒉𝑖𝑖,𝒉𝒉𝑘𝑘 ∈ ℝ+
𝑛𝑛×|𝑃𝑃|   

 This is the positive definiteness property, and it shows that the covariance function we 

use is valid. With the proof, we verify that the covariance function used is valid, in particular 

when the customized distance metric (A.1) is used. The result hold for both standard and 

extended model over all paths and time in all OD pairs. 
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