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Abstract

The objective of this thesis is to examine human anthropometric and preferential variability
and investigates a number of methods that have been developed to accommodate this variability
within vehicle packaging. Multiple simulation approaches are described and analyzed to show the
strengths and weaknesses each demonstrates in its ability to predict population accommodation.
Building on previous research, a study on the driving environment of bus operators was carried
out, allowing the effect of an operator’s physical dimension, postural preference, and workstation
geometry to be evaluated simultaneously. A population of virtual U.S. bus drivers, constructed
from anthropometric surveys and workforce surveys, is applied in a cascade prediction model that
locates the reference points in a bus cab and primary and secondary body landmarks of a driver
within an existing or theoretical future vehicle package. This research led to the development
of a web application tool and an Excel spreadsheet to assist industry users to assess spatial
accommodation and driving safety of current buses and to help package future buses.
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Chapter 1 |
Introduction

The success of design intended for human use is determined by a wide range of factors, such as
safety, aesthetics, effectiveness, portability, cost, and many more. Although one factor may be
the driving force for a specific design, the impact of each factor requires a significant amount of
research and is its own field of study [25]. Through theoretical analysis and practical experiment,
researchers explore how each factor contributes to the overall outcome. As many industries
become more agile and transparent, companies are constantly evolving as well to meet shifting
needs. Among these are user-centric elements, such as human variability.

1.1 Design for Human Variability
Design for Human Variability (DfHV) considers the inherent variability within the target user
population and during the creation of designed artifacts. Humans are different in various ways.
Some learn through observing others; some learn through hands-on experience. Some prefer to
read in order to receive information; some prefer to listen instead. This variability is to some
extent determined when one is born, but they can be shaped by external influences, including
but not limited to cultural background, family atmosphere, and religion [26]. Because of these
differences, humans react differently. Besides cognitive capability, humans also vary in physical
capability. Some are stronger; some are more flexible. Some have perfect vision; some are good
at balancing. Such characteristics, as well as sex, race, or age, can dramatically impact how
humans act, react, and interact [27].

While developing a solution, it is critical to clearly define the user population and understand
its characteristics of said population because this knowledge will serve as a foundation through-
out the design development cycle and provide bases for any pivotal design decisions [28]. In the
past, many techniques have been developed to gain a fuller understanding of the users, such as
constructing personas [29]. Personas are imaginary user profiles that outline the demographics,
behavioral observations, pain points, and motivations of a target population [30]. They represent
the majority of the population, and their use is comparable to the manikin approach in anthro-
pometry studies, which will be explicitly discussed in Chapter 2. Establishment of detailed user
profiles gives designers and engineers critical guidelines to develop user-centered solutions that
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can better accommodate the variability of this population.

1.2 Anthropometry
Anthropometry, one of the major fields of research in human variability, is a systematic and
statistical study of measurements and proportions of the human body. A combination of these
measurements and proportions describes the size and shape of a human body, which makes indi-
viduals unique [31]. There are many ways to categorize anthropometric variables. One common
way is to distinguish them as length-related variables, such as stature, trochanter height (leg
length), and hand length, and width-related variables, such as hip breadth, calf circumference,
and chest breadth. Intuitively, taller people are also expected to be wider than their shorter
counter parts. Such inference is usually true; however, there are exceptions due to human vari-
ability. For instance, width of a human body is not only an indicator of its size, but can also
be a measure of obesity. In this case, body width is independent of body length. Therefore, it
requires careful considerations to choose the most appropriate anthropometric indicators while
making design decisions.

Anthropometry is commonly considered in industrial practice. For instance, anthropometry-
focused concepts can be found in vehicle packaging, furniture designs, sport equipment innova-
tion, clothing design, and many more. The expectation of such studies is to achieve a greater
outcome while minimizing cost so that the final product is effective, yet efficient. A poorly
designed product can cause discomfort and dissatisfaction in users and result in a decrease in
productivity [32]. In certain circumstances, it can even put users in life-threatening danger.
Thus, designers must diligently study the anthropometry of a target populations and use the
associated artifacts to guide their designs.

1.3 Accommodation
A good design should accommodate its users so they are able to perform all the required tasks
without encountering any limitations [3]. When a user is accommodated, they will feel safe and
comfortable while doing physical tasks, which can increases their productivity. In contrast, when
a user is disaccommodated, their job satisfaction level is generally low, and the likelihood of
safety hazards increases largely [33]. In many cases, companies and designers invest additional
resources to achieve a better accommodation level. In reality, however, perfect accommodation
usually does not exist. When designing for a large audience, it usually costs a tremendous
amount of resources to accommodate the users with extreme body dimensions, and as a result,
companies tend to target the majority of the users, rather than all the users. This topic will be
further discussed in a later section.

Although most existing designs are not expected to accommodate every user within the target
population, there are times when it is necessary. In competitive indoor and outdoor activities,
sports equipment is frequently custom made for best performance [34]. For instance, NBA players
are known for their elite performance on a basketball court. Competing with other extraordinary
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athletes, it is a significant advantage to jump a little higher or change direction a little faster.
This pursuit for excellence inspires top shoe companies, such as Nike and Under Armour, to take
3D scan of professional athletes’ feet and analyze the loading condition on their shoes in order
to design shoes specific to the athlete that enhance their in-game performance [35–37].

Customized designs can sometimes maximize the performance of a product, but they usually
raise the cost significantly as well. They not only require more design considerations, but also
bring challenges to the manufacturing process [34]. For instance, many plastic products are
formed through injection molding, which is a process of melting and injecting molten material
in a mold to form parts. Due to the dimensional precision of the molds, they are expensive to
produce. With machine testing and labor cost, it is difficult to justify the cost when only a small
quantity of parts are needed [38]. Alternatively, additive manufacturing saves cost on tooling,
but it requires additional research and time. Because of its layered nature, it may sometimes
lead to structural failures [39].

1.4 Body Dimensions
Human bodies vary significantly in size and shape, which creates a difficulty in providing uni-
versally functional solutions for a population. One of the common approaches to resolve this
issue is to create various sizes of a product, and to let users or retailers determine which size is
most suitable for each consumer. Shoes are a great example of this strategy [40]. In the U.S.,
shoe sizes are typically designed by an increment of 0.5 or 1. With help from the elasticity of
the materials, this increment is small enough to accommodate most of the users [41]. One of
the greatest advantages of this approach is its simplicity; however, it is not suitable when users
desire different sizes. Another approach is to accommodate such variability is to implement ad-
justability in product dimensions. For instance, a belt allows the user to adjust the tightness of
it around the waist. Instead of having to purchase belts of various sizes, the user only needs an
adjustable one [42]. However, the major disadvantage of adjustable components is the increase in
complexity of a system, which can cause a higher failure rate [43]. In the meantime, an adjustable
product frequently involves more part count, which is often a root cause of higher cost [33].

Analysis of anthropometric data has shown that many anthropometric measurements can be
approximated as normal distributions, especially length-related ones, with the majority of the
data clustering in the middle and the extremity of the data spreading at the tails [2]. In product
design, it is neither economical nor realistic to accommodate 100% of the user population due to
the large spread of body dimensions. Thus, a design usually aims to accommodate a proportion
of the user population [32]. In practice, a target percentage of accommodation is pre-selected,
90% for instance, and serves as an assessment goal for the final product. Sometimes for those
who are disaccommodated, they can sometimes still achieve compromised comfort by adjusting
their posture.

In other cases, however, disaccommodation may lead to safety hazards. Such phenomenon
exists throughout the world, but it is more common in developing countries because resources
are more limited. Agriculture plays an important role in northern China’s economy, and large
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machines are used to reduce the amount of manual work [44]. If a worker has a difficulty in
operating these machines due to physical limitations, the probability of an injury is much higher.
In fact, a study observes a 13.1% prevalence of machinery-related injuries from the surveyed
agricultural workers [44]. A similar point can be made in vehicle interior design. Failure to reach
or disability to see can cause serious car accidents [17]. Therefore, designers and engineers must
ethically investigate the consequences of disaccommodation before making design decisions.

1.5 Postural Preference
Human interaction is not only impacted by the physical dimensions of the human body, but also
by a user’s postural preference. Postural preference is unique and can be dramatically different
from individual to individual [45]. For instance, the purpose of a chair is to provide a sturdy
seating surface that supports the user. However, the action of sitting is very complex. Given
a standard chair, some like to lean backward, some like to cross their legs. Some prefer to sit
high, some never utilize the armrests [46]. Assessment of success is no longer limited to the
fundamental purpose of a chair, but rather the capability to accommodate various postures of as
many users as possible to provide the most comfort.

Collecting data on postural preference can be a costly process because it requires user’s
participation which involves experiment design, user testing, data collection, and user feedback.
In many cases, the size of a testing group is critical to coming up with an unbiased solution. With
a small testing group, extreme behaviors are sometimes magnified and can be over-analyzed which
can lead to biases [47]. The testing group must also represent the actual user population in specific
demographic descriptors, such as male-female ratio, age, ethnicity composition, etc. Thus, doing
market research in preparation for any postural experiment is an essential step [28,48].

Occasionally, postural preference can be transferable across products when the two products
are used in a similar way, but careful consideration needs to be given to the risk of oversimplifying
the problem [49]. For example, ice skates and running shoes are comparable in shape and are
worn similarly, but they serve different purposes. Ice skates must be stiff enough to protect users
from twisting their ankles, but running shoes need to be able to provide shock absorption and
comfort, which is why new products usually need to run their own user interaction experiment.
Unlike interaction preference, physical dimensions of a human body only need to be measured
once. These dimensions can be simulated in space using software to display results in dimensional
fitting [50], which will be further discussed later.

1.6 Vehicle Packaging
The knowledge of spatial dimension and postural preference is useful in many fields of design,
especially vehicle packaging. As Roe has defined, vehicle packaging is a subject that studies a
vehicle’s interior spacing and components layout with the purpose of providing safety, spatial
accommodation, and comfort to drivers and passengers [2]. Among all the components inside of
a vehicle, two are the most critical in this thesis, steering wheel and driver’s seat, because they
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determine the driver’s capability to operate the vehicle [14]. By the definition of accommoda-
tion, drivers must be able to adjust these two components without encountering any limitations
to comfortably turn the steering wheel and step on the accelerator pedal or the brake pedal.
One other consideration is driving safety [3]. While operating a vehicle, drivers must maintain
awareness of the surrounding traffic to make proper decisions as well [18].

1.7 Research Overview
This thesis examines the essence of human variability and presents a number of methods that
have been developed to accommodate such variability, and this knowledge will serve as the
basis of vehicle packaging. The goal of this thesis is to investigate bus cab spatial layouts and
to simultaneously consider the effect of bus driver’s body dimension and postural preference.
Following which, the outcomes of this research is to assess existing bus packages for spatial
accommodation and driving safety through simulation, and eventually provides recommendations
for future designs through software tools.
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Chapter 2 |
Literature Review

Human variability exists in various forms. Such variability is responsible for a broad spectrum
of user responses to one solution, and it multiplies the ambiguity in the design process [51]. In
some cases, users give dissimilar or even conflicting feedback which pulls the design in opposite
directions [48]. In vehicle packaging, for instance, drivers vary in body dimensions and have
different driving postures. The ideal situation is to design a vehicle package that allows all of
them to safely and comfortably perform all the driving tasks without encountering any limitation;
however, such high expectation of accommodation requires large adjustment ranges which are not
always achievable due to cost, safety, and the desire to reduce vehicle size [3]. While packaging
a vehicle, all these factors must be considered, and compromises always need to be made to find
the best possible solution based on the above considerations and accommodation possibilities.

This chapter introduces the concept of vehicle packaging and reviews design objectives that
are used to measure success. It also presents a number of approaches that have been developed
to design for human variability and discusses the advantages and disadvantages of each.

2.1 Vehicle Packaging
Vehicle packaging is the act of designing the interior layout of a vehicle with the goal of achieving
a certain level of accommodation [2]. It involves a broad range of design considerations that
determine whether the fundamental driving components, such as the pedals and the steering
wheel, are within reach [3]. Further design considerations include button controls, digital displays,
and other elements with which the driver interacts. In the automotive industry, designing for
vehicle interior layout is one of the first steps, following the body exterior contour design and
window openings design [3]. Besides spatial fitting, safety-related vision requirements are also
crucial factors to provide accommodation and comfort for drivers [2].

The transportation industry has been evolving, and this trend is not slowing down. Other
than daily commute, the demand of vehicles for other uses has increased greatly and the variety
of vehicle class divisions has also multiplied [52]. Besides typical four-door sedans, vehicles
of different shapes are developed to suit societal needs. Categorizing by interior volume and
gross weight, the three major classes are: car class (various sizes of compacts, sedans, and
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wagons), SUV (various sizes of crossovers and SUVs, and minivan), and trucks (mid/full-size
regular/extended/crew) [53].

Although vehicles are different from each other, they all share a similar shape and similar
design objectives. While designing the frame, a number of concerns need to be considered. For
instance, one of the most important consideration is the field of view. The upper-daylight-opening
(UDLO) is a line in the Y-direction (see reference system in Figure 2.1), where the top of the
windshield meets the car frame. This line limits the angle that drivers can looking upward. For
different categories of vehicles, the up-vision requirements are different. Meanwhile, drivers must
also maintain sufficient down-vision. Depending on driver’s eye location, the down-vision can be
limited by either the hood point (a line in Y-direction that represents the tip of the hood) or
the cowl point (a line in Y-direction where the bottom of the windshield meets the hood) [54].
Commonly, these points are all measured from ground in the Z-direction and from Accelerator
Heel Point (AHP) in the X-direction (Figure 2.4). Although vehicle packaging is a design task
in 3D, only the X-Z plane is studied in this thesis because the adjustable components of interest
in this thesis, such as the steering wheel and the seat, are designed on the center line on the
driver’s side. The design goals in the Y-direction are different and can be their own study.

Figure 2.1. 3D Reference System for Vehicle Packaging [1]
.

In order to properly and efficiently design a vehicle package, understanding human anthropo-
metric variability is key. In general, there are two categories of data to describe it: conventional
static measurements and functional task-oriented measurements. Conventional static measure-
ments are measured when subjects are in standardized and rigid positions, which typically involve
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lengths, widths, circumferences, and so forth (Figure 2.2). They are the fundamental descriptors
of a driver’s size and shape, and they do not change due to driver’s posture, unlike the func-
tional task-oriented measurements. These descriptors compose the basis of driver-vehicle spatial
fitting [2].

Figure 2.2. Conventional Static Anthropometric Measurements [2]
.

Another category of data used in vehicle packaging is functional task-oriented measurements.
They are usually measured when drivers are in motion (Figure 2.3). These measurements indicate
driver’s capability of performing certain tasks, and they can vary among drivers even among those
with similar body dimensions. Sometimes, one’s ability to reach can compensate for their body
dimensions. Vehicle packaging is a complex tasks. A cab needs to designed in a way such that
drivers not only need to fit in a cab, but also being able to perform functional tasks, such as
turning the steering wheel.

One of the most important reference points is the Accelerator Heel Point (AHP). It is the
intersection between the accelerator and the floor. As mentioned earlier, components of vehicle
frame geometry (roof, UDLO, cowl point, hood point, etc.) are measured from the ground in
Z-direction and from the AHP in X-direction. This reference system works for these components,
but it is unsuitable for the interior components, such as the seat and the steering wheel, because
there is not a direct way of measuring them from the ground. The difficulty of measuring interior
components from the ground causes inaccuracy in these measurements, which should be avoided.
Instead, these interior components are measured from the AHP, since the AHP is a fixed distance
from the ground [1]. In vehicle packaging research, AHP is commonly referenced as the origin of
the system, so this thesis will remain consistent with this convention for the interior components.
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Figure 2.3. Functional Task-oriented Anthropometric Measurements [2]
.

While designing the interior layout of a vehicle, it is important to understand each component
and its contribution to the overall accommodation. In most vehicles, the steering wheels can tilt
about a pivot point, and some can telescope in and out (Figure 2.4). Ideally, a driver’s preferred
steering wheel location should fall within the adjustment envelope. In that case, that aspect of
driver preference is consider to be accommodated. If the preferred location lays outside of the
envelope, the location preference is not accommodated, and the driver would compromise by
adjusting the steering wheel center to the nearest point on the envelope. Although the driver
cannot obtain the most desirable steering wheel location, they can often achieve moderate comfort
by adjusting the rest of their body to adapt [14].

Another adjustable component is the seat. Most seats can move in the fore-aft direction. For
large vehicles, such as trucks and buses, the seat can also move vertically as well. The adjustment
envelope is the shape of a rectangle (Figure 2.4), and the goal is to design a seat adjustment
envelope to accommodate the majority of the drivers. If a driver’s preferred seat position lays
outside of the envelope, they will adjust the seat to the nearest point on the envelope, similar to
the steering wheel adjustment [7].

Once the locations of the most critical components, steering wheel and seat, are determined,
an assessment on eye location can be conducted. Although eye location is rarely a concern of
spatial fitting, it is an important consideration in vehicle packaging because it determines driver’s
field of view, which is directly related to driving safety [3]. In the past, researchers have found
success in estimating drivers’ eye locations as an elliptical model [54], which can be a useful tool
to assess vehicle layout reference points, such as cowl point, hood point, and UDLO.

In this thesis, eye locations will be explicitly studied, together with steering wheel locations
and seat locations.
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Figure 2.4. Dimensions and Reference Points Used in Vehicle Packaging [3]
.

In vehicle packaging, the results of accommodation are usually expressed as a percentage. An
accommodation rate can be defined as the proportion of the driver population who is able to
meet the spatial fitting requirements and safety requirements [2]. For instance, a seat adjustment
envelope can be designed to accommodate 95% of the population, and it implies that 95% of
the drivers can move the seat to their desired location without encountering any limits while
5% of them cannot. The assessment of one objective is intuitive, but the design task becomes
challenging when more than one component can be adjusted. Therefore, it is important to first
distinguish a multivariate problem from a univariate problem [55].

2.2 Univariate and Multivariate
Univariate analysis is a method that analyzes one design objective at a time. It is known to be
simple and cost-effective when the design requirements are within its capabilities. A univariate
approach analyzes the data that have been collected, describes them without relating other
factors, and makes a conclusion of some sort [56]. By directly conducting a univariate analysis
without introducing other concerns, a quick and accurate solution can sometimes be reached.

In existing ergonomics practices, the univariate approach can commonly be found in a number
of forms. One of the common forms is the estimation of human body. In an univariate approach,
body dimensions are assumed to be proportional. By using survey data of U.S. population, a
set of proportionality constants can be found to relate a segment of human body to another
segment (Figure 2.5). They approximate the length or weight of any body segment of a person
by multiplying the proportionality constant by the length or weight of a known segment [4]. This
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estimation shows a simply way of generating body dimensions of unknown body segments, and
it is reliable to a certain extent.

Figure 2.5. Absolute and Relative Lengths of Body Segments (top left) Absolute and Relative Weights
of Body Segments (bottom left) and Segment Lengths and Body Mass Distribution Representation
(right) [4]

.

Although the estimation of proportional body segments has been widely used, unfortunately,
it loses its accuracy in high fidelity designs. A group of researchers used 3D scanning to show
that human bodies vary in size and shape (Figure 2.6), and this variability is significant. In fact,
it is impossible to find two human bodies that have identical dimensions on every measure [5].
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Figure 2.6. Visual Representation of Human Varying in Size and Shape [5]
.

Besides human anthropometry studies, the univariate approach can also be found in assessing
a design. For instance, while designing a ring, the most critical aspect is the circumference which
must provide a comfortable fit to the ring finger. Although other finger-related parameters, such
as finger length, exist, the impact is minimal. In this context, a low-cost univariate analysis is
more desirable because there is only one design objective to be assessed. When there are more
than one design objective, these objectives can be assessed individually. In a study conducted
on tractor seats in 2008, several anthropometric measurements, such as popliteal height and hip
breadth, were investigated for their contributions to a number of seat-related designs, such as
seat height and pan length (Figure 2.7). This study took a univariate approached by separately
assessing each characteristic of a tractor seat. At the end of their research, design recommen-
dations were provided to achieve 95% accommodation on each measure individually, wishing
the overall accommodation level would be 95%. However, the underlying relationships between
different measures remain undiscovered. Being accommodated on one design objective does not
guarantee accommodation on another design objective. Were to follow these recomendations
in producing an actual tractor seat, the overall accommodation would be much lower than the
expected 95% [57].
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Figure 2.7. Tractor Seat Design in 3D (a) Side View (b) Plane View [5]
.

Due to these limitations of the univariate analysis, a multivariate approach is frequently used
for these multi-objective design cases. Through multivariate analysis, designers can investigate
the accommodation level of a combination of design objectives, which further discovers the un-
derlying relationships between the different objectives [58]. For example, in the tractor seat study
above, seat height and pan length are two of the design objectives. A multivariate analysis indi-
cate what percentage of users were accommodated on each design variable individually and what
percentage were accommodated on both. The estimated overall accommodation level would be
much more accurate.

As previously discussed, vehicle packaging is a multi-objective task. A number of factors need
to be considered simultaneously in order to come up with a desirable design. Thus, a multivariate
approach is most appropriate and will be used in this thesis.
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2.3 Manikin Approach
The variability in human anthropometry is a difficult subject because human bodies vary in
size and shape. However, the randomness in most length or width related measures follow a
distribution, so statistical tools, such as percentiles, are frequently used. To explain, given a
group of people ordered from least to greatest by stature, the 5th percentile is that surpassed by
95% of the group and the 95th percentile is that surpassed by 5% of the group (Figure 2.8). By
using percentiles, one can estimate the proportion of a group who meet certain requirement, and
further determine design limits [6].
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Figure 2.8. Frequency Distribution of Standing Height by Percentile (Top) and Pictorial Representation
of Standing Height by Percentile (Down) [6]

.

A direct way to apply percentiles is through manikins. Each manikin is built to a unique
combination of body dimensions that are suitable for the design project, and it is used to predict
human interaction in real life. In order to detect design limits, boundary manikins are frequently
used to represent the extremes of the population. A design that can accommodate the extremes
is expected to accommodate those with less extreme body dimensions. In many cases, a small
female and a large male are used to approximate the extremities of people. For instance, a 2.5th

percentile female manikin and a 97.5th percentile male manikin are frequently used to assess a 95%
accommodation level, assuming female and male body dimensions are approximately normally

15



distributed and male bodies are bigger than female bodies.
A Gaussian distribution, also known as a normal distribution, contains higher frequency data

in the middle and low frequency data at the tails. Providing the same amount of adjustment,
more people from the middle can be accommodated by from the tails, which is why it is more
cost-effective to design for the central range. Sometimes, when a distribution is skewed, a lower
range (i.e. 0th-95th percentile) or an upper range (i.e. 95th-100th percentile) is selected. To
demonstrate, the following univariate analysis (Figure 2.9) describes the central location and the
travel range of a car seat in fore-aft direction and the associated percentile accommodation [2].
Between 10th percentile and 90th percentile, a near-linear relationship between seat adjustment
range and the corresponding accommodation level can be observed. However, a much larger
adjustment range is needed to accommodate the tails (below 5th percentile or above 95th per-
centile).

Figure 2.9. Percentile Model of Seat Fore-Aft position with Respect to Ball of Foot [2]
.

The manikin approach is relatively easy to understand and is easier. to implement, but it
has certain limitations as well. One of those limitations is the reliability of manikins. During
the approach, each manikin is a percentile model and represents one user with extreme body
dimension. Intuitively, a 90th percentile manikin is expected to be composed of 90th percentile
body segments, but in reality these segments would add up to be much taller. By accommo-
dating this 90th percentile manikin, designers assume those with less extreme body dimensions
are also accommodated. However, such assumption has major flaws especially in complex design
problems. A design that accommodates the users with extreme body dimensions will not nec-
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essarily accommodate all the users between the extremes, and an nth percentile individual does
not exist [59].

In the past, the manikin approach has been applied in various design fields. For instance, a
systematic ergonomics study using manikins was conducted on industrial workstation design in
1996 [60]. Another study was conducted on the optimization of viewing angle for touch-screen
displays using a similar approach in 1998 [61]. Manikins have also been used in the automotive
industry as early as 1962. Since the late 1950s when the Society of Automotive Engineers (SAE)
first proposed the concept of applying standardized procedures and tools in vehicle packaging, the
SAE composed J826 that introduced a two-dimensional H-point template to estimate packaging
profile and a three-dimensional H-point machine device for defining and measuring occupant
seating accommodations (Figure 2.10). This H-point machine, one of the first uses of manikins
in the automotive industry, defines the location of the H-point which is specific to a seat [7].

Figure 2.10. 2D H-Point Template (left) and 3D H-Point Machine (right) [7]
.

The manikin approach, or the percentile model, is one of the most commonly used approaches
in ergonomic design, and it studies the distribution aspect of anthropometric measurements. The
investigation of how an individual relates to a population is its core concept. An nth percentile
measurement represents precisely n% of the population is more extreme [62]. This simple and
intuitive approach remains reliable for most univariate problems. In many design practices, by
designing for both the lower extreme user and the upper extreme user, designers assume all
the users in the middle are accommodated. This assumption is valid in simple design cases;
however, it loses its validity while assessing a full body that consists of multiple measurements.
As discussed earlier in the chapter, an nth percentile user does not exist due to human variability.
There are countless measurements to define a human body, and it is impossible to find one person
that is nth percentile on every single measurement [63].

Manikins are frequently used in vehicle packaging to simulate how an actual user would
interact with the main components in a vehicle based on body anthropometry. It is a simple
and visual way to assess multivariate accommodate, but it has major flaws. Specifically, driving
posture plays a critical role in vehicle packaging, but it is not considered in the manikin approach
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[64]. In practice, designers often posture the manikins manually based on either personal intuition
or a standardized procedure, which poorly quantifies the postural variability. In order to solve
this bias, several methods with a focus on posturing were developed.

2.4 Population Model Approach
The manikin approach provides a visual and intuitive way to estimate user interaction under the
assumptions as mentioned in the previous section, and it cannot provide knowledge on human
posturing. The population model approach, on the other hand, directly investigates the inter-
action between users and a design. It first identifies a sample group, then it conducts a human
interaction experiment for this group and establishes a model based on the results. This model
will then be applied to the user population so that a certain percentage of the population can be
accommodated [64].

Dissimilar to the manikin approach, which simulates a percentile-based user who frequently
represents an extremity, the population model approach targets the actual users. In order to
lower the cost of the design, a sample group, rather than the entire population, is commonly
selected for an experiment or a focus study. Although there are advantages in reducing the size
of the sample group, the group size must be relatively large to ensure that it can adequately
represent the target user. Certain traits could be magnified when the group size is small, which
could lead to biases. In addition, a random sampling method must be utilized as well. Such
effort is essential to the validity of the results [2].

During the experimental study with the sample group, participants are frequently invited to
interact with a robust prototype that provides excessive range of adjustment, and their responses
are then recorded and analyzed. Due to the interactive nature of the population model and its use
of prototypes, it is frequently used in the product design field. For instance, a research group used
a 3D laser scanner to measure standoff distance between the head and the backface of the helmet
of a representative sample group of 30 participants. This information was then utilized to guide
future ballistic helmet design [65]. Similarly, a study was conducted using a population model
approach to determine the optimal grip span with respect to hand anthropometry. During the
process, a total of 12 participants were invited to interact with the hand-grip device (Figure ?? [8].

Figure 2.11. Apparatus Setup for Grip Span Measurement [8]
.
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In order to study postural preferences through a population model approach, participation
from a large number of randomly sampled drivers is required. While each participant is in a
testing environment, a tracking system can be used to continuously monitor the location of all
the critical body landmarks. The relative spatial locations of these landmarks shows the subject’s
body configuration which indicates their postural preference, and the absolute spatial locations
determine whether the subject is accommodated by the vehicle layout or not.

The population model has been applied in the automotive industry, and there are many
examples. In a study published by the UMTRI in 2017, a statistical body shape model was
used for seated vehicle occupants to study their driving preference. This reliable model used in
this research was established from 147 participants. The data of various seating postures was
captured with a laser scanner together with manually-measured body landmarks(Figure 2.12) [9].
There are many more applications of the population model approach in the SAE as it serves as
one of the fundamentals concepts in the SAE International recommended practices [66].

Figure 2.12. Laser Scan of Vehicle Occupant’s Normal Driving Posture [9]
.

2.5 Hybrid Approach
Even though the population model approach shows improvement from the manikin approach by
considering postural preferences, it still has several limitations that cannot be ignored. The most
important one being that the population model can only be applied to one single design case.
Since the sample group is selected from the user population, this model is limited to that user
population and can only be applied in an identical design case, which rarely happens in real life.
Even when designing the same product but for a slightly different user population, the entire
process will need to be re-done. An adequately large sample group needs to be sampled randomly,
and participants will need to participate in the accommodation experiment individually, after
which, data will be analyzed. The process of creating a valid model this way is time-consuming
and costly. It would be more efficient to be able to utilize the previous efforts.

In order to conquer the issues with the population model, a hybrid approach was devel-
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oped. The hybrid approach merges the strengths of the postural preference model and the
anthropometry-configurable manikins [64]. The goal is to confidently apply the same model to
a different user population, so a quantitative relationship must be found that relates the desired
outcome to anthropometric measurements. These anthropometric measurements serve as pre-
dictors of the model. While applying the model to a different user population, anthropometric
measurements can be modified to best match the new user population, and the results from the
hybrid model will adjusted accordingly.

By diligently collecting data and interpreting the underlying relationships, researchers have
found success in the hybrid model. For example, a group of researchers used an adjustable bicycle
simulator to assess comfort level on bicycles and validate commercial bicycle accommodation. To
do so, they performed correlation analysis on preferred bicycle dimensions and body anthropo-
metric measurements, and found that saddle-pedal distance is strongly related to crotch height
(Figure 2.13) [10]. A similar approach, relating outcome variables with anthropometric measure-
ments, can also be found in Yakao’s study on evaluation of cylindrical objects, which examines
handle diameter and hand length [67].

Figure 2.13. Configurable Bike Apparatus (left) and Correlation Between Saddle-pedal Distance and
Crotch Height [10]

.

2.5.1 Virtual Fitting

For the population model approach and the hybrid approach discussed previously, the reliability
of result decreases with the number of participants. Although more participants generally produce
more accurate results, they raise the cost significantly as well. The same is true for the percentile
approach; in order to better represent the actual population, a large number of manikins with
various anthropometric dimensions can be made to represent a variety of user groups. In contrast
to boundary manikins, these manikins provide necessary variability in body size and shape.
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However, the process of producing these manikins is time-consuming and costly, and this effort is
not reusable when designing for a different user population. In order to mitigate this issue, Digital
Human Models (DHM), such as RAMSIS, were developed in the 1990s to virtually represent
humans as an improvement to the manikin approach. Since then, DHM has been increasingly
used for vehicle packaging and other ergonomics design [12].

Since the initial creation of DHM, it has been widely used for task performance simulation.
One of the advantages is that it facilitates a quicker design process [50]. With the development
of computers, DHM becomes an essential part of product design and provides insights for prod-
uct usability [68]. Instead of competing on money investment, companies shift their focus to
engineering research and computing power. The figure below shows the DHMs generated in four
different software tools (Figure 2.14):

Figure 2.14. Digital Human Models of Jack (a), RAMSIS (b), HumanCAD (c), and 3DSSPP (d) [11]
.

The virtual fitting method not only justifies the cost-effectiveness of using it for vehicle pack-
aging, but also produces more accurate results because of its multivariate nature. Designers can
visually assess the fit of all interior components and make appropriate adjustments to improve
overall accommodation (Figure 2.15). With the help of software, virtual fitting can be performed
repetitively with various body anthropometry which makes it an appealing method in vehicle
packaging. The method is especially useful for Class B vehicles, such as trucks and buses be-
cause they usually involve more design considerations besides spatial fitting due to the driving
tasks. For instance, Class B vehicles commonly use height-adjustable seats so that drivers can
maintain adequate vision of the surroundings [69].
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Figure 2.15. Digital Human Model Used in Vehicle Packaging (RAMSIS) [12]
.

Another significant advantage of applying the virtual fitting method in vehicle packaging is
its seamless adaptability to the hybrid model. As discussed earlier, the manikin approach does
not usually have a scientific way of posturing the manikins. Commonly, the designers manually
posture the manikins which introduces bias. Using a hybrid approach can effectively resolve
this issue. The hybrid approach establishes a model relating driver anthropometry to their body
landmark locations in space. By creating a large number of virtual driver profiles and feeding their
body anthropometric data into the hybrid model, designers can accurately and quantitatively
simulate how each of the drivers would posture themselves in a cab. It allows the designers to
visually assess the accommodation level of any vehicle layout (Figure 2.16) [3].
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Figure 2.16. Preferred and Censored Seat Locations of Virtual Truck Drivers [3]
.

2.5.2 Cascade Prediction Model

The Society of Automotive Engineers (SAE) is an organization of professional engineers, aiming
to come up with standards and conduct research to bring safe and innovative design to the
world. In the past several decades, many SAE J-tools have been developed and heavily used
for vehicle packaging in the automotive industry. For instance, SAE J1517 examines driver seat
position, SAE J941 investigates driver eye position, and SAE J1052 specifically studies driver
head location (Figure 2.17). These SAE J-tools provide thorough guidelines on each of the
components individually. Due to the lack of coherency and its univariate nature, the results can
sometimes be less accurate than expected.
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Figure 2.17. SAE Recommended Vehicle Packaging Component Layout Side View [13]
.

In the early 2000s, a Cascade Prediction Model (CPM) was developed. From analyzing
drivers’ postures captured with a sonic digitizer, researchers found that drivers frequently react to
the surroundings by moving their limbs while maintaining their torso position still. Since locating
the torso is a crucial step that lays the foundation of limb posturing, CPM puts great emphasis
on the prediction of hip and eye locations, which are recognized to be the most important
measurements in vehicle packaging. Hip location is critical for seat position design and lower
limb posturing, while eye location is a direct assessment of driver’s vision [70]. With these two
critical body landmarks created from the models of experimental data, researchers can establish
sub-models and apply inverse kinematics to predict the secondary body landmarks, such as
shoulder location, elbow location, and knee location [14].

Even though CPM is relatively recent compared to other vehicle packaging methods, such
as the manikin approach, it is proven to be reliable. In a study conducted by the University
of Michigan Transportation Research Institute (UMTRI), a group of researchers aimed to esti-
mate driver postures with CPM and compare them to laboratory observations. A total of 63
participants were studied in a laboratory setting to create the CPM while being given 27 vehicle
package and seat conditions. The results were found matching with the observed postures of
24 participants from an earlier in-vehicle study. The differences in mean locations of eye and
hip were within a few millimeters, and the differences in standard deviation were comparable as
well. Although these differences can derive from vehicle layout anthropometric variability, CPM
is proven to be an accurate and reliable tool for vehicle packaging [14].
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Chapter 3 |
Methods

The objective of this thesis is to study driving postures of U.S. bus operators and make design
recommendations regarding bus cab layout. The previous chapter presented a number of ways
to conduct vehicle packaging that have been developed in the past. There are advantages and
disadvantages associated with each one, and one method may be more suitable than others for
a specific study. While deciding on which method to use, many factors need to be considered
regarding existing research, cost investment, fidelity of results, and more. An appropriate ap-
proach should be able to provide results of good enough fidelity within a reasonable budget and
meet the project expectations.

Besides selecting an appropriate model, another great challenge is to understand the bus op-
erator population as a whole because the work-associated requirements and other considerations
make the demographics of U.S. bus operators unique from the general population. The differences
can be reflected in descriptors, such as gender ratio, ethnicity composition, and age distribution.
In design for human variability, this information is critical to defining the design boundaries and
recognizing the actual drivers because it is of interest to design for their characteristics. With-
out clearly defining the population, drivers will be unsatisfied and the manufacturing cost will
increase as well.

The first half of this chapter will explicitly discuss the approach to be used in this thesis and
present the models to be applied to predict driver’s posture. The second half of this chapter will
present the demographics of the U.S. bus drivers.

3.1 Model Selection
Vehicle packaging is a subject that studies spatial definition of components, and any design
recommendation is made based on driver sitting or driving behavior. These behaviors are a
compound result of the body dimensions and postural preferences. While using an existing
model to conduct vehicle packaging, the accuracy in body landmark prediction is a concern.
The goal of packaging interior components is for the interior components to provide enough
adjustment in order to accommodate a large fraction of drivers.

This thesis aims to provide a toolkit so that the industry users can accurately predict spatial
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locations of U.S. bus operators and properly design a bus cab to ensure that a large number of U.S.
bus operators are capable of reaching the steering wheel and the pedals without any difficulties,
and can maintain adequate vision to be alert of the surroundings. To ensure the achievement of
meaningful results, it is important to use a model that can accurately predict sitting and driving
behaviors given driver anthropometry. The model to be used must also have been verified with
experimental data because it is expected to be able to produce accurate results in a consistent
manner. From this standpoint, a modern approach, such as cascade modeling, appears to be
favorable because of its multivariate nature and its accuracy in successfully predicting driver’s
postures, although percentile-based or population-based approaches can also provide high enough
fidelity when used properly.

Besides accuracy of driving posture prediction, another objective of this thesis is to deliver a
toolkit to industry users. Using numbers and tables is a great way to display results, but it lacks
the strengths of visuals. As researchers have shown, the usage of visuals increases an individual’s
patience in learning and understanding [71]. Additionally, 83% on average of what a person
learns is through the sense of sight [72]. Therefore, it would significantly reduce the learning
curve associated with this new toolkit to include a visual representation of the accommodation
results. To be specific, the toolkit should clearly and accurately identify the critical landmarks
(preferred steering wheel location, H-point location, and eye location), and display the rest of the
landmarks (shoulder location, elbow location, knee location, and ankle location) with moderate
accuracy.

The past automotive industry approaches seem incapable of delivering the desired outcomes.
As mentioned previously, industry users currently rely heavily on the SAE J tools and conduct
mostly univariate analyse by designing interior components independently. They can provide
sufficient knowledge on how people react to each design objective and estimate how a driver’s
interaction varies within a certain population, but they cannot provide a coherent understanding
of how individuals adapt to several spatial requirements simultaneously. The correlation between
the requirements is disjointed, especially from an individual level. More importantly, the SAE
J-tools are incapable of predicting postural adjustments due to disaccommodation.

Current industry standards describe driver posture by estimating the distribution of the pre-
ferred locations of each landmark, such as steering wheel, H-point, and eye location. Assuming
the distributions are normally distributed, they can be represented with mean and standard
deviation. The advantage of such an approach is that distributions are continuous. Without
needing an infinite number of drivers, it produces results of infinite resolution. The disadvan-
tages are apparent as well. The main issue is the model cannot adjust accordingly based on
bus geometric constraints, because the underlying relationship between meeting multiple design
objectives remains uncertain. While designing an adjustment envelope of steering wheel, for
instance, a high accommodation rate is desired, but disaccommodated drivers are expected as
well. When a driver’s preferred steering wheel location is not in the adjustment envelope, they
will move the steering wheel to the nearest point on the envelope and adjust the rest of the body
to accommodate this change (Figure 3.1).
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Figure 3.1. Disaccommodated Steering Wheel Locaion Being Adjusted to the Nearest Point on the
Envelope [14]

.

The purpose of a new design is to minimize these required changes to a driver’s preferred
posture. In order to visually reflect how adjusting one landmark can impact the location of other
landmarks for every virtual bus operator, it is important to approach vehicle packing from an
individual level.

Overall, the most appropriate model needs to be able to accomplish the following three ob-
jectives: a) predict locations of critical landmarks with high accuracy, b) assess design objectives
using a multivariate approach, and c) use visuals to present packaging results. Considering all
the available approaches as discussed in Chapter 2, the first two needs can be met by using a
Cascade Modeling approach, and data visualization can be achieved through Virtual Fitting.

3.2 Cascade Model for Buses
Previous research has laid a foundation in Class-B vehicle packaging, and a Cascade model for
buses and trucks was developed in 2005. Its core concepts can be summaried in a flowchart
(Figure 3.2). In this section, the cascading procedure of driving posture prediction will be
detailed.
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Figure 3.2. Schematic Diagram of Cascade Model

3.2.1 Steering Wheel Location

In posture prediction, locating a preferred steering wheel location is one of the first steps. Most
vehicles now include adjustable steering wheels. Due to the spatial demand of the operator
cabs among large vehicles, especially buses and trucks, steering wheels need to provide suitable
adjustment ranges in order for drivers to maintain sufficient vision while driving. Commonly,
there are two modes of adjustments: tilting and telescoping. Tilting is when a steering wheel
rotates about its pivot point, located underneath the steering wheel. Telescoping is when a
steering wheel moves parallel to the shaft (Figure 3.3). With the two modes of adjustments, the
steering wheel can move in both X- and Z- directions.
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Figure 3.3. Steering Wheel Schematic Diagram in Class B Vehicles [15]
.

Drivers tend to place the steering wheel at the most comfortable location for them to perform
normal driving tasks. These preferred steering wheel locations vary from person to person, which
makes it challenging to comprehend and predict driver preference. In an attempt to understand
such variability, a laboratory study has been conducted to investigate preferred steering wheel
location for vehicle operators. Participants were asked to sit in a simulated cab and adjust the
floor height and the pedals in the X- (fore-aft) and Z- (vertical) direction [14]. Instead of the
steering wheel, the origin of the cab (AHP) was adjusted because steering wheels were fixed in
space in the experiment setup. It allowed the relative location between the steering wheel and the
pedals to vary based on driver preference. After each driver adjusted to their preferred posture,
data was collected [14].

The preferred steering wheel location data (measured from the AHP) indicated that the
vertical location of the steering wheel is negatively impacted by its horizontal location, and a
near-linear relationship was discovered. The average ratio (Mean) was calculated to be -0.559
with a standard deviation (S.D.) of 0.305 [14]. In other words, the vertical location is expected to
decrease by an average of 0.559 millimeters as the steering wheel travels back horizontally every
1 millimeter. And, 67% of the drivers will likely choose a ratio between -0.864*(Mean – S.D.)
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and -0.254*(Mean + S.D.).

SWprefZ − 0.559 ∗ SWprefX (3.1)

Researchers have also discovered the variance of the ratio was derived from driver’s preference,
and it was independent of driver anthropometry [14]. However, the preferred total height of the
steering wheel is strongly dependent on the driver’s vertical size. Stature is known to be the
most common way to describe a person’s size, and is frequently used in vehicle packaging as a
predictor. The preferred vertical location is found to be:

SWprefZ@175(mm) = 524 + 0.1613 ∗ Stature, R2 = 0.32, RMSE = 23.4 (3.2)

when the horizontal location is at 175 mm with respect to the AHP. The horizontal location
of 175 mm does not hold actual meaning, and is chosen merely for mathematical convenience. In
fact, any horizontal location can be chosen because the preferred vertical locations move along
a slope of 0.559, as mentioned before. These preferred vertical locations can be found by using
the equation below:

SWprefZ(mm) = 524 + 0.1613 ∗ Stature− 0.559 ∗ (x− 175) (3.3)

This line represents the steering wheel preferred vertical locations. Based on their stature,
each driver has their unique preferred steering wheel vertical height line 3.4.

Figure 3.4. Steering Wheel Preferred Line Given Driver’s Stature [14]
.

One preference line is not enough to locate a preferred steering wheel location in a 2D space
because there are two Degrees of Freedom (DoF). Instead, a minimum of two lines are needed.
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Besides steering wheel vertical height, human variability can also be reflected in the steering
wheel tilt angle [14]. Rotating the steering wheel about the pivot point not only allows drivers
to control the face angle of the steering wheel so that it is easier to grab, but also enables the
steering wheel to move in the horizontal direction to adapt fore-aft preference. By drawing
a line connecting the steering wheel pivot of rotation and the center of the steering wheel, a
driver’s preferred tilt angle can be found. With these two lines, one can find the intersection that
represents the driver’s preferred steering wheel location [14].

For a properly designed vehicle, the majority of the preferred steering wheel locations should
be accommodated. In fact, the adjustment envelope should be selected after the preferred loca-
tions are found. Once the envelope is determined, it can then be used to locate the fore-aft and
vertical locations of center of steering wheel with respect to AHP, which are to be used as inputs
for the rest of the posture prediction (Figure 3.5) [14]. If the preferred location lies outside of
the adjustment envelope, the nearest point to the envelope is used to proceed in the process.
Specifically, two measures need to be assessed: tilt angle and telescope distance. Both of them
need to be within the vehicle adjustment range. If one exceeds that range, the most extreme
location within the range will be selected.

Figure 3.5. L11: fore-aft location of center of steering wheel with respect to AHP; H17: vertical location
of center of steering wheel with respect to AHP [1]

.

This model provides a mathematical understanding of how drivers would adjust the steering
wheel to a preferred location based on their body dimensions and their driving preference. It was
developed using laboratory data and has been verified in the field. This model can accurately
predict driver’s preferred steering wheel location, which lays a solid foundation for upcoming
posture studies.
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3.2.2 H-point Location

The seat is another adjustable component inside a vehicle. The location of a seat is arguably
the most important measure because it has the largest impact on a driver’s position in a cab.
One of the design concerns of seat location is that drivers must be able to comfortably reach
the pedals with their feet. The capability of doing so is a fundamental requirement of vehicle
packaging and is an indicator of spatial fitting. Another concern of locating driver’s H-point is
to provide reasonable relative location between the hand grip and the torso. Similar to reaching
the pedals with the driver’s feet, reaching the steering wheel with the driver’s hands is equally
important. Once the steering wheel location and the seat location are chosen, driver eye location
will be assessed for safety considerations. A more detailed discussion on driver field of view will
be presented in the next section.

The cascade model used for some of the posture prediction was developed based on linear
regression, which are in the form of constant coefficients multiplying predictors, as shown below.

y = c0 + c1 ∗ x1 + c2 ∗ x2... (3.4)

Y represents the dependent variable, which is the variable of interest. The independent
variables (x1, x2, ...) are predictors [73]. In vehicle packaging, two kinds of predictors are
common: Driver anthropometry describes size and shape, and plays a major role in spatial
fitting, which mostly determines body landmark location. Meanwhile, vehicle geometry can also
contribute to the effect because drivers commonly adjust their posture in order to adapt to
the vehicle interior component layout. By taking these two predictors into account, one can
accurately predict the average location of a desired landmark.

This linear regression is useful for predicting driver’s average behavior; however, it is insuffi-
cient in expressing their individual preference. In order to do so, an error term is introduced [73].
The error term E(0, SD) is perceived as a randomly generated number from a Gaussian distri-
bution. This distribution has a mean of zero and a standard deviation of SD. By scientifically
studying the size of the error and augmenting this error to the linear regression, a complete
spectrum of driver preference can be captured through this model.

y = c0 + c1 ∗ x1 + c2 ∗ x2... + E(0, SD) (3.5)

As discussed in Chapter 2, an H-point is a fixed point of a car seat near the driver’s hip. Unlike
a hip point that moves with driver’s posture, an H-point is a characteristic of a seat. Given an
H-point location with respect to the AHP, one can accurately locate the seat. While performing
vehicle packaging, one of the objectives is to design a proper seat adjustment envelope. Thus,
the H-point, instead of the hip point, is commonly used.

Instead of measuring H-point location using outdated methods, such as an H-point machine or
2D H-point template as introduced in SAE J826 [7], researchers have created a linear regression
model that can predict H-point location with high accuracy [14]. One of the factors that lead
to its success is that it uses a stepwise approach in an iterative manner [74]. For instance, there
are a number of anthropometric measurements that can describe the length of a human body,
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including stature, leg length, arm length, erect sitting height, acromial height, and many others.
They can all serve as indicators of body length. This introduces more than needed predictors,
and can actually lead to more errors because certain body characteristics are over-analyzed. A
stepwise approach carries out an automatic process of choosing predictors to fit regression models.
During each step, one predictor is analyzed for adding or subtracting from the current list of
predictors.

Through an iterative stepwise approach, two predictors regarding vehicle geometry (fore-aft
and vertical locations of center of steering wheel with respect to AHP) and five predictors re-
garding anthropometric measurements (stature, erect sitting height, ratio of erect sitting height
to stature, difference between stature and erect sitting height, and natural log of BMI) were iden-
tified [14]. As discussed previously, anthropometric measurements are approximately normally
distributed, so each measurement of a population can be represented with a mean and a standard
deviation. Besides the variation in driver’s posture as represented in the error (E) term in the
linear regression, the variation in human body size and shape is the other main consideration in
design for human variability.

The stepwise regression results indicate that the horizontal location of H-point is largely
dependent on the horizontal and vertical location of the steering wheel, which is a sign of drivers
adjusting their seating to adapt to vehicle interior components. This is the reason that steering
wheel location is predicted first and is used as inputs for seat location prediction, although drivers
usually adjust both of them simultaneously in an iterative manner. Driver’s functional leg length
is estimated by taking the difference between stature and erect sitting height, which is named
Diff. A positive coefficient shows that drivers with longer legs tend to adjust the seats backward.
BMI (body mass index) is the other predictor that indicates body width. Usually, a wider driver
would need more space to operate a vehicle. The purpose of using natural log is to normalize
the BMI measurements of the population. The standard deviation of the error term is 37.7mm,
which represents driver’s postural preference [14].

HX(mm) = −53.6 + 0.6081 ∗ SWpivotX − 0.3343 ∗ SWpivotZ

+ 0.6394*Diff + 89.07*Ln(BMI) + E(0,37.7) (3.6)

Unlike the horizontal location which uses four predictors, the vertical location of H-point is
dependent solely on the vertical location of the steering wheel. Anthropometric measurements
regarding body length or width had an ignorable affect. The standard deviation of driver’s
preferred seat vertical location is 22.9mm, which is smaller than horizontal [14].

HZ = −200.3 + 0.8545 ∗ SWpivotZ + E(0, 22.9) (3.7)

While designing a seat adjustment envelope for driver’s preferred seat location, it is impossible
to accommodate 100% of the driver population. In fact, the accommodation goal is commonly
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set at 95% or lower for economic reasons. When a driver’s preferred seat location lies within
the adjustment envelope, the cascade model proceeds to the next step. If it is outside of the
adjustment envelope, the driver will move the seat to the nearest point on the envelope and
adjust their posture to fit inside of a cab.

3.2.3 Eye Location

The Cascade Model received its name from its cascading nature; a sequence of actions need to
take place in order to achieve the desired goal. The first step is to predict drivers preferred
steering wheel location. Following steering wheel, seat location prediction can be predicted. The
Cascade Model can then proceed to driver’s eye location prediction. In vehicle packaging, the
location of the eye center is represented by the Eye Point (Figure 3.6). Generally, the rotation
range is known to be 45° upward, 65° downward, and 30° left and right (Figure 3.7), but for
comfort, a 15° turn in all four directions is known as easy eye rotation [17]. In SAE J1050, the
Eye Point is defined in 3D space while the left eye and the right eye to be 65 mm apart [17].
Since this thesis studies vehicle packaging in the 2D X-Z plane, only one Eye Point is used which
lies on the X-Z plane.

Figure 3.6. Three Dimensional Eyellipse (Left and Right) [16]
.
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Figure 3.7. Two Dimensional Eyellipse with Range of Vision [17]
.

In the referenced Cascade Model, the Eye Point was studied in a similar manner through
laboratory data as the H-point, and the same set of predictors are used as well. Both steering
wheel location and seat location are predicted from the AHP, the origin of vehicle interior com-
ponent packaging, because it is most convenient and is also the convention. However, the Eye
Point location developed in this model is expressed differently. Due to the limited movement
of the driver’s neck during driving, the driver’s head and driver’s torso are relatively static. In
other words, the driver’s Eye Point is largely dependent on the seat location, and therefore, Eye
Points are expressed in terms of H-point [14].

In the horizontal direction, the Eye Point is found to be a function of three predictors:
horizontal location of the steering wheel, the ratio of sitting height to stature, and BMI. The
standard deviation of driver postural preference is estimated to be 41.0 mm. In the vertical
direction, the Eye Point is a function of only one predictor, erect sitting height, and has an error
term of 22.3 mm [14]. See formulation below:

EyeX = −334.0 + 0.0809 ∗ SWpivotX + 1142 ∗Ratio− 87.98 ∗ Ln(BMI) + E(0, 41.0) (3.8)

EyeZ = −47.3 + 0.7812 ∗ SittingHeight + E(0, 22.3) (3.9)

Driving requires a number of actions that involve the steering wheel, foot pedals, shifter stick,
buttons, and other interior components. They are essential to operating a vehicle as desired, but
the ability to see outside of the vehicle is even more important because driver’s sight is the main
source of information upon which they make decisions. The central vision field, straight through
the front windshield, allows drivers to see cars, pedestrians, traffic lights, or signs in the front.
Besides central vision, peripheral vision is also important because it captures any cars that are
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passing. The quality of driver’s vision can directly impact driver’s safety and performance [75].
Since this thesis is conducted only in the X-Z plane, only central vision is considered.

A driver’s central vision in two dimensions is bounded by the driver’s ability to look upward
and the ability to look downward. An upward vision angle is measured from the horizontal plane
to the highest angle the driver can see, and a downward vision angle is measured to the lowest
angle. The sum of the two angles makes up the driver’s central vision. In most vehicles, the
upvision angle is limited by the UDLO, where the top of the windshield meets the frame of the
vehicle. An adequate upward vision angle permits the driver to read road signs, respond to
traffic lights, and see traffic on uneven roads. According to the American Public Transportation
Association (APTA) bus design guideline, the windshield must ensure a minimum of 14° upward
vision angle [18].

Besides regulations on upward vision angle, there are requirements on downward vision angle
as well because drivers must be able to see traffic near them. But more importantly, because buses
are designed to be more elevated from the ground than other vehicles, it is challenging for drivers
to see immediately in front of the bus. This issue is especially profound in urban areas where
traffic is a primary concern. As will be discussed in a later section, education transportation is
one of the main ways buses are utilized, where picking up and dropping off children is the most
essential part of the job. Bus drivers must be able to maintain adequate downward vision to
ensure clearance in front of the bus. Thus, the APTA requires all bus drivers to detect a 3.5-
feet-high object from 2.0-feet in front of the bus (Figure 3.8). The above upward and downward
vision regulations agree with SAE practice [17], and they are used as design guidelines in this
thesis.
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Figure 3.8. Bus Driver Downward Vision Requirement: Must See 2.0-feet Object in 3.5-feet [18]
.

Upward vision is usually defined by the location of the UDLO, but downward vision requires
more considerations. Depending on the geometric layout, a few interior components could be the
limiting factor. Aiming to meet the downward vision requirement, the most common consider-
ation is the location of the cowl point, where the bottom of the windshield meets the body of
the bus. If it was designed to be above the line connecting the driver’s Eye Point and the tip
of the 3.5-feet object, the requirement would be unmet. Besides the cowl point, some buses are
equipped with a hood. The hood point, which represents the highest point on the front end of the
hood, can also be a limiting factor. Another candidate is the dashboard. As more functionalities
are added to buses, the dashboard is growing bigger to fit an increased number of buttons and
screens. As designers assess a bus package, all the potential obstacles needs to be considered in
order to ensure a safe downward vision angle.

37



3.2.4 Secondary Body Landmarks

The purpose of vehicle packaging is to apply an understanding of driver behavior inside of a
vehicle and make design decisions on the layout of the interior components to best accommodate
them. In this thesis, most of the essential components in the X-Z plane are included: steering
wheel, seat, and vision-related components. They are assessed with driver’s preferred steering
wheel location, H-point, and Eye Point. With the knowledge provided above, one can successfully
package many elements of a bus layout. As discussed in the beginning of this chapter, besides
accurately predicting drive postures, virtually presenting these postures is significantly useful for
industry users. Therefore, this section will briefly discuss how secondary body landmarks (hip
point, shoulder point, grip point, elbow point, ankle point, and knee point) are predicted.

In the study of biomechanics, a human body can be presented using body landmarks. To
properly configure a human body in a vehicle package model, it is much more comprehensive
to describe and define each driver by the make-up of their body landmarks as joints and links
than to use only height (Figure 3.9) [19, 22, 76]. This approach not only gives us visual repre-
sentation of the drivers, but works seamlessly with the Cascade model. As a continuation of the
Cascade model, the next step is to use reverse kinematics to estimate the locations of other body
landmarks, which is useful to assess accommodation and visualize the driver.

Figure 3.9. Biomechanical Model and Markers location for the Inverse Kinematics Configuration [19]
.

In previous sections, linear models of finding the preferred H-point were presented. The
H-point is a fixed location of a seat and does not move relatively to the seat based on driver
preference. A hip point, however, is the joint center of a driver’s hip (Figure 3.10). It is a
commonly used body landmark while configuring driver posture, because it is not only a main
part of one’s torso, but also the axis of one’s lower body.
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Figure 3.10. Sideview Schematic of A Driver Kinematic Model, Showing Hip Point [20]
.

Although the hip point is different from the H-point, it can be estimated using linear re-
gression. Researchers have found that the offset vector from the H-point to the hip point is a
function of driver’s body dimensions [14]. Specifically, the horizontal offset distance is negatively
proportional to driver’s BMI, and the vertical offset distance is positively proportional to both
driver’s BMI and erect sitting height. By adding these offset distances to the H-point location,
the hip point location can be found. Since the following body landmarks are mainly used for
visualization and have minimal impact on vehicle interior layout, simple linear regression models
are used without variance. Hip point location are shown below:

HipX = 90.2− 5.27 ∗BMI + HX (3.10)

HipZ = −109.9 + 1.51 ∗BMI + 0.0813 ∗ SittingHeight + HZ (3.11)

For consistency of terminology in this thesis, shoulder joint center, elbow joint center, and
knee joint center are referred to as shoulder point, elbow point, and knee point. Once the hip
point is located, the next nearby joint center can be predicted, which is the shoulder joint center.
While driving, the shoulder point and the hip point together represent driver’s torso. Commonly,
drivers lean their torso against the back of the seat to reduce stress. Taking this slouching factor
into consideration, researchers have found the distance between the hip point and the shoulder
point to be a function of driver’s erect sitting height. As the formulation indicates, the distance is
solely impacted by the driver’s length. However, the angle between the two is largely dependent
on the driver’s width. The formulation below shows how this angle can be predicted, with the
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angle being measured from the vertical direction:

HipShoulderDist = 0.49 ∗ SittingHeight (3.12)

HipShoulderAngle = −25.1 + 0.297 ∗BMI + 67.6 ∗Ratio (3.13)

With the distance and angle between the two points, the X- and Z- offsets can be calculated
using trigonometry. The location of shoulder point can be obtained by augmenting the offsets to
the hip location, as shown below:

ShoulderX = HipX + HipShoulderDist ∗ sin(HipShoulderAngle) (3.14)

ShoulderZ = HipZ + HipShoulderDist ∗ cos(HipShoulderAngle) (3.15)

After successfully configuring the driver’s torso, predicting the driver’s limbs is the next
step. Starting with the upper body, it can be modeled as a combination of three joints (grip
center, elbow joint center, and shoulder joint center) and two links (forearm and upper arm).
Through laboratory observation and road driving verification, researchers found that driver hand
placement varies tremendously while driving. DUsing a large number of photos collected by
three independent observers, researchers discovered several positions where drivers place their
hands [21]. Interestingly, the driver’s left hand tends to be placed higher than the right hand.
This is because some drivers utilize the left door panel to rest their elbow. Thus, the right hand
position more accurately represents a normal driving posture. Data shows that the majority of
drivers (78% of male and 70 % of female) tend to place their hands at Position 0 (Figure 3.11),
which is estimated to be 3/4 of the steering wheel in the X-Z plane [77]. This finding agrees with
what has been used in other vehicle packaging studies [78], so this thesis will be consistent with
previous studies.

Figure 3.11. Common Hand Placement on A Steering Wheel [21]
.

The next step is locating the center of the steering wheel. In addition, the preferred steering
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wheel angle was also calculated through the process, which was measured from the vertical
direction by convention. This angle is the same as the angle formed between the wheel face and
the horizontal direction. Knowing the steering wheel diameter (SWD), once again, the X- and
Z- offsets can be found using trigonometry and can then be added to the steering wheel location,
which indicates the driver’s grip point.

GripX = SWX + SWdiameter/4 ∗ cos(SWangle) (3.16)

GripZ = SWZ − SWdiameter/4 ∗ sin(SWangle) (3.17)

The grip point, the shoulder point, and the elbow point form a triangle (Figure 3.12). With
two of the vertices and one side being known, the third vertex can be positioned by knowing the
lengths of the other two sides. One of the sides is the upper arm length, which is measured from
the shoulder center joint to the elbow center joint, and this length can be estimated using the
Acromial Radial Length from an anthropometry database, such as the US Army Anthropometric
Survey (ANSUR II) [23] which will be discussed in a later section. In the survey, distances are
measured from landmarks to landmarks, such as the acromion and the radiale. Although these
landmarks are different from the joint centers, researchers have quantified the offset between
them. For instance, the offset between the acromion and the shoulder joint center is found to
be 34.5 mm, and the offset between the radiale and the elbow joint center is found to be 34.5
mm [79]. Likewise, the length between the elbow joint center and the grip center can also be
estimated to represent forearm length. After knowing both upper arm length and forearm length,
the elbow joint center can be estimated.

Figure 3.12. Representations of Upper Limb Modeled As Links and Joints [22]
.
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Due to the similarities between the upper limbs and the lower limbs, the same procedure
of study can also be applied to lower body configuration. Instead of the grip point, an ankle
joint center is used. Relative to the AHP, researchers estimated the ankle to be 32 mm in
the X-direction and 128 mm in the Z-direction [78]. Besides the ankle point, leg lengths are
needed as well. One of them is the thigh length, which represents the distance between the hip
joint center and the knee joint center. The other one is the shank length, which represents the
distance between the knee joint center and the ankle joint center. After knowing the lengths
and the locations of two vertices, the third vertex can be configured using the fundamentals of
trigonometry, which represents the knee joint center.

3.2.5 Estimation of Accommodation

The Cascade Model used in this thesis advocates the principle of letting information flow down
from experts through layers of customized treatment to obtain desired outcomes [80]. In vehicle
packaging, the Cascade Model applies a similar concept. Driver’s anthropometric dimensions
and vehicle geometry are the high-level data. With these data, preferred steering wheel location
is predicted. Using it as an input, preferred seat location is then predicted. Although these
two steps usually take place iteratively in a laboratory setting or in real life, a sequential order
of the two steps are carried out in vehicle packaging because the model was developed based
on final locations of these reference points. From here, Eye point is predicted, and field of
vision is assessed. Once these primary locations are predicted, secondary body landmarks can
be estimated afterwards, starting with hip point and the shoulder point. Following which, grip
point, ankle point, elbow point, and knee point can be calculated.

Throughout the process of cascade posture prediction, a total of four design objectives were
assessed. They are (in order of prediction):

• Steering wheel adjustment envelope accommodation
• Seat adjustment envelope accommodation
• Upward vision (minimum of 14°)
• Downward vision must (see a 1067 mm object 610 mm in front of vehicle)

The multivariate approach of assessing the accommodation condition of each driver is a sig-
nificant component of this thesis. With a large population of drivers as inputs, it provides high
resolution and allows designers to study bus drivers individually. For each driver, designers
can directly assess how they are accommodated on each of the four objectives. It facilitates on
understanding of the underlying relationship between the objectives. While calculating over-
all accommodation, which is the proportion of drivers who have met all four design objectives,
an accurate result can be given. Otherwise, assumptions would need to be made on who is
disaccommodated on more than one design objective.

As researchers have stated, anthropometric accommodation is described as the proportion of
the intended users who are within the range of desired objectives [81]. Frequently, a percentile
method is only suitable for univariate accommodation models. With multiple objectives, adding
and subtracting cannot accurately combine accommodation results [82].
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One common approach to assess multivariate accommodation is through the intersections of
sets because of the comparable nature of the two mechanism [83]. While performing set inter-
section, set correlation is considered. For a pair of positively related variables, the intersection
can be calculated as:

P (A ∩B) = rAB ∗ (SDA ∗ SDB) + P (A)P (B) (3.18)

where rAB is the correlation between the two variables, and SDA and SDB are the standard
deviations. For negatively related (disjoint) variables, the correlation is zero, which simplifies the
calculation to:

P (A ∩B) = P (A) ∗ P (B) (3.19)

Intersection of sets is a well-known method and has been validated with simulation data [83].
However, the effort of studying variable correlations is costly. Since this thesis conducts design
assessments for each individual in the population, a sequence of "True/False" indicators can be
assigned to them instead. To explain, the outcome of assessing each design objective is either
True or False. For such binary assessment, an indicator function assigns a value of 0 or 1 to each
event based on the accommodation condition [83]. In this thesis, a total of four design objectives
are being assessed, so each virtual driver will be assigned four binary digits to indicate their
accommodation. For instance, if the indicator functions generate 1-1-1-1 for a driver, the driver
is expected to be accommodated on all four objectives. Similarly, a 1-1-1-0 indicates that the
driver failed the downward vision requirement (the 4th test) but is accommodated on all others.

3.3 Bus Driver Population
The Cascade Model used in this thesis passes information through a sequence of models. The
outputs from the previous model become the input to the next model. In order to improve the
reliability of the final results, one can not only choose the most appropriate model, but also
increase the fidelity of the source data, which is driver’s anthropometry. Therefore, the rest of
the chapter will explicitly discuss the U.S. bus driver population and the available information
that can be utilized in this thesis.

3.3.1 Anthropometric Database

Conventionally, military studies have been the main source where anthropometric data can be
found and used in industrial applications. Due to its large quantity of measurements and rigorous
methodology, the 1988 United States Army Anthropometry Survey (ANSUR) has been arguably
the most frequently used anthropometric database. ANSUR reported 132 directly measured
dimensions and derived an additional 60 dimensions from each of the 3,982 U.S. military personnel
(1,774 men and 2,208 women). It also included the demographic information, such as age and
ethnicity, to make it possible to sample from the most appropriate population [84]. However,
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they do not represent the general U.S. civilian population, especially dimensional extremities.
For instance, obesity is under-presented in the military. Because of military’s strict selection
requirements, ANSUR data reflect a young, healthy, and athletic population. If a design for
the civilian population uses ANSUR data to simulate user interaction, the result will not be
reliable [85].

Over time, army leaders noticed secular trends in increased body size and felt the need to carry
out a follow up study. They used a broader sampling strategy and with the addition of whole-body
scans. In ANSUR II they collected measurements from a total of 6,068 participants (4,082 men
and 1,986 women) and found that weight, circumferences and breadths had all increased. They
found that the variation in these measurements had increased as well (Figure 3.13). ANSUR II
replaced ANSUR and was made available publicly in 2017 [23]. Even though it is not an accurate
approximation of the U.S. civilian population, it still contains useful information and can be used
in the early phases of research.

Figure 3.13. Examples of How Anthropometric Data Being Collected in ANSUR II [23]
.

The results from ANSUR II reflected that secular trends over the previous thirty years are
noticeable and significant. Unlike ANSUR and ANSUR II, the National Health and Nutrition Ex-
amination Survey (NHANES) is conducted continuously in the U.S. since 1999 [86]. This periodic
sampling methodology makes it a suitable tool to analyze secular trends. The most important
observation is that mean stature and weight both have been increasing, especially weight, which
agrees with ANSUR II [87]. One of the biggest advantages of NHANES is the oversampling
strategy. By oversampling the tails of the anthropometric distribution, the underrepresented
groups are included at a higher frequency, which ensures plenty of data to be revealed regarding
these groups. Thus, each measured individual has an associated weight that indicates the size of
the population they represent. Since the objective of NHANES is to monitor U.S. civilian health
condition, NHANES is capable of representing U.S. civilian population, which is the biggest ad-
vantage of using this database. In the 1980s, University of Michigan Transportation Research
Institute designed dummies of various sizes by combining NHANES anthropometric data and
stereo-photogrammetry. This knowledge was then applied in automobile design [88–90]. One
distinct disadvantage of the NHANES data is that it only collects a limited number of measure-
ments, such as stature, mass, and BMI. However, researchers can sometimes make predictions
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on the desired body dimensions by establishing relationships between known measurements and
unknown measurements.

All the anthropometry data resources discussed above have strengths and weaknesses, which
is expected. In order to make them useful, it is important to build a deep understanding of the
desired user population and discover the characteristics of this population. Following that, any
of the anthropometry data resource can be modified accordingly, using a method to be discussed
later, to match these characteristics. Once a U.S. bus driver anthropometry data is generated,
it can be applied to the Cascade model.

3.3.2 Bus Driver Demographics

The main four types of bus drivers in the United States are school bus drivers, local transit bus
drivers, intercity bus drivers, and charter bus drivers. Data from the Bureau of Labor Statistics
show that in 2018, among all 681,400 bus driver jobs, 497,500 (73.0%) of them were provided by
schools and special clients. Transit and intercity bus held about 183,800 (27.0%) jobs (Table 3.1).
Many bus drivers operate through heavy traffic or bad weather, and sometimes deal with unruly
passengers. Because of the road hazards and mental stress, bus drivers have one of the highest
rates of injuries and illnesses of all occupations [91]. Unlike many other jobs, bus drivers have
a spatially limited workstation. While driving, they frequently maintain a driving posture for
hours before taking a break. Thus, a well-designed bus cab can significantly improve the working
conditions for a bus driver.

While designing a bus cab, proper driver demographics must be defined. Otherwise, the final
design would be inappropriate and ineffective. In 1987, a study on urban transit buses used in
Hong Kong discovered that many buses were designed based on European anthropometric data
and were built in the United Kingdom, which were not suitable for the Cantonese workforce [92].
This study showed that the designs for one ethnic group do not accommodate another ethnic
group. This fact raises the challenge in the U.S. because the U.S. workforce has become more
diverse not only in ethnic composition, but also in gender composition, age, and other aspects.
In the next few sections, a study on bus driver demographics is conducted with the aim of
understanding the driver population and providing important design guidelines.

Table 3.1. Industry Composition of U.S. Bus Drivers 2018

Type Count Total Percentage

School and Client 497500 681400 73.01%

Intercity and Transit 183800 681400 26.97%

Others 100 681400 0.015%
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3.3.3 Gender Composition

In the past several decades, many occupations were dominated by either male or female. It was
true especially before World War II. For instance, the secretary workforce was limited to females,
and the commercial driver workforce was limited to males [93]. However, the demographics have
shifted in the U.S. significantly in recent years. In 2020, the U.S. Department of Labor published
that women comprised 47% of the total U.S. labor force [94]. Such trend can also be found in
the commercial driver workforce where males drivers were most prevalent for decades.

According to the American Community Survey (ACS) provided by the Census Bureau, the
male and female ratio of commercial driver workforce has been consistent over the past few years
(2014-2017), with males and females taking up 54.7% and 45.3% of the workforce, respectively
[95]. As the years go by, a small fluctuation is observed in the total number of drivers and the
gender composition, but overall they remain about the same (Table 3.2). Thus, this ratio should
be used as default for driver demographics, posture prediction, and accommodation assessment.
However, this ratio only represents the national average, and it could vary in different regions
or due to specific driving responsibilities. In order to maintain reliability of the bus design,
industry designers must conduct driver demographics study and modify the male-to-female ratio
to best represent the driver population. Gender summary table is presented below. More detailed
information on gender composition can be found in Appendix C.

3.3.4 Race and Ethnicity

The U.S. is the third largest country in the world by population, and it is known for its diversity.
As of 2018, the white population constituted the majority with 76.4%, which had been slowly but
steadily decreasing in the previous eight years, and the black or African American population
stood as second with 13.4% [96]. Unsurprisingly, such ethnic composition is reflected in the
employment market. In 2018, the white and black population took up 73.6% and 12.0% of the
total employments in the U.S., respectively, which matches closely with the ethnic composition
in the society.

Similar to most of the occupations, ethnic diversity can be found in the bus driver workforce.

Table 3.2. U.S. Bus Driver Gender Composition 2014 - 2017

Year Male Female Total Male Ratio Female Ratio

2014 401946 331576 733522 54.8% 45.2%

2015 424168 347898 772066 54.9% 45.1%

2016 406475 333660 740135 54.9% 45.1%

2017 393972 334603 728575 54.1% 45.9%

Average 1626561 1347737 2974298 54.7% 45.3%

46



ACS showed that the workforce consists of 62.9% white drivers, 27.7% black drivers, 2.2% Asian
drivers, and 7.2% other drivers in 2017. Clearly, white drivers represent the majority of the
workforce, followed by black drivers. While comparing the ethnic composition in the bus driver
workforce to that of the U.S. workforce, the white population (62.9%) and the black population
(27.7%) dominated with a total of 90.6% of the workforce, which is expected. Not only in
2017, this dominance can also be found in previous years as well (Table 3.3). Detailed data of
ethinic composition in the bus driver workforce and the entire U.S. job market from 2014 to
2017 consecutively, can be found in Appendix C. The percentage of white bus drivers fluctuated
between 62.0% and 64.4%, and the percentage of black bus drivers fluctuated between 27.0% and
28.0% within these four years. This fact indicates that white and black dominance is likely to
continue for the next several years, and thus should be used as default values in bus packaging
unless designing for a target user group.

Besides the ethnic dominance, an interesting observation is that the bus driving industry
is more common in some ethnic group than others. To explain, 12.0% of the U.S. workforce
was constituted by black employees in 2017, but 27.7% of the bus drivers were black. Using
ethnic composition in the general society as a reference, there were proportionally more black
drivers than white drivers or Asian drivers by a large margin. Not only in 2017, this phenomenon
exists in previous four years as well, as shown in Appendix C. This is strong evidence that the
proportion of black bus drivers in the workforce is about twice of the proportion of black people
in the society. Even though the previous observation shows that ethnic diversity in bus drivers
mostly match with the ethnic diversity in the general society, proper adjustments still need to
be made to certain ethnic groups for more accurate simulation results. This topic will be further
discussed.

3.3.5 Age

Besides male-to-female ratio and ethnic composition, age is another important descriptor of the
U.S. bus driver demographics. In the U.S., most states require their bus drives to be at least
18 years old and those who drive across states to be 21 years of age or older. By enforcing a
minimum age requirement, these states expect their bus drivers to be physical capable for the

Table 3.3. U.S. Bus Driver Ethnicity Composition 2014 - 2017

Year White Black Asian Other

2014 64.4% 27.0% 1.9% 6.7%

2015 63.1% 27.5% 2.3% 7.1%

2016 62.0% 28.0% 2.5% 7.5%

2017 62.9% 27.7% 2.2% 7.2%

Average 63.1% 27.6% 2.2% 7.1%
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job. Since people age differently, a maximum age limit does not exist. Instead, interstate bus
drivers must successfully finish a physical exam every two years, per federal regulations [95].

As discussed previously, gender composition varies in bus driver workforce with males con-
stituting 54% of the workforce while females constituting 46%. Surprisingly, data analysts have
discovered a noticeable age difference in the two genders as well. According to the ACS, with 95%
level of confidence, the average age is 54.5± 0.60 for male bus driver and 49.7± 0.58 for female
bus drivers in 2017 (Table 3.4). This made up an age difference of 4.8 years. In the previous
three years, 2014 to 2016, a similar age difference was noticeable at 4.6, 4.1 and 4.8, respectively.
This trend is plotted in the average age chart in Appendix C. Such consistent trend indicates
that a 4-to 5-year age difference describes the bus driver demographics, and it will likely last for
the next several years without any major age requirements.

The age distribution charts from 2014 to 2017, which are shown in Appendix C, not only
indicate an age difference between the two genders, but also visually showed how age impacts
the bus driver workforce. One of the observations is that the age distribution is skewed left.
In other words, the number of drivers gradually increase with age until it reaches the average
age. Once past the average age, the number of drivers decrease with age at a faster rate. This
observation is likely to be the result of a combination of experience requirement and physical
capabilities. Another observation is that the majority of the bus driver workforce is between 45
and 70 years of age for males and between 40 and 65 years of age for females. In general, male
drivers are older than female drivers. Thus, designers must make proper adjustments while using
any of the anthropometry database to represent the bus drivers to best represent the bus driver
demographics.

Table 3.4. U.S. Bus Driver Age Distribution 2014 - 2017

Year/Gender 30 or lower 30 to 40 40 to 50 50 to 60 60 to 70 70 or older

2014/Male 6.8% 10.0% 17.8% 30.7% 25.9% 8.9%

2014/Female 5.7% 15.4% 29.5% 34.2% 13.4% 1.7%

2015/Male 7.1% 10.2% 19.3% 28.7% 25.4% 9.3%

2015/Female 6.8% 13.9% 29.3% 32.2% 16.0% 1.9%

2016/Male 7.2% 10.8% 17.5% 28.3% 26.8% 9.5%

2016/Female 7.3% 16.3% 26.8% 32.8% 14.8% 2.1%

2017/Male 6.5% 10.5% 17.8% 27.9% 27.6% 9.8%

2017/Female 6.5% 16.8% 26.5% 31.6% 15.9% 2.8%

Male Average 6.9% 10.4% 18.1% 28.9% 26.4% 9.4%

Female Average 6.6% 15.6% 28.5% 32.7% 15.0% 2.1%
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3.3.6 Weighted Population Approach

In the previous sections, descriptors (gender ratio, ethnic composition, and age distribution)
regarding bus driver demographics was drawn from the ACS. Clearly, many similarities exist
between the U.S. bus driver population and the U.S. civilian population, but there are noticeable
differences as well regarding gender ratio, ethnicity composition, and age distribution. One of
the solutions to address this issue is to start over and conduct a new survey that is specifically
designed for the U.S. bus driver population. This solution is intuitive and direct, but the disad-
vantages outweigh the advantages. In order to capture the majority of the characteristics of the
desired demographics without biases, the sample size must be large enough so that the data is
reliable. In addition, the participants must be recruited from all over the nation to avoid regional
bias. After collecting the data from this large sample group, it would be equally challenging to
sync and analyze the data. Because of these reasons, the new survey solution is not suitable for
this research due to its costly and time-consuming nature.

As discussed previously, many surveys, such as ANSUR I, ANSUR II, and NHANES, have
already been conducted to gather detailed anthropometric data from the military population
and the civilian population, so it will be much more efficient to modify these databases that are
available, to make them represent the target population. Fortunately, researchers have studied
this subject and have come up with a number of methods. Among all of them, Down-sampling
and Weighting are the most effective.

Down-sampling is the easier method of the two. Given an unmodified database, designers can
down-sample it by constructing a sub-database whose composition matches the characteristics
of the target population. The core idea is to eliminate the data that is not desired, and to
only keep the useful data for further studies. This method is simple and intuitive, but it has
its limitations. One of the associated weaknesses is that the down-sampling wastes a lot of
information. Depending on how well the unmodified database matches the target population,
a significant amount of data can be lost [97]. Without adequate data, there is high risk of
introducing bias. Another challenge is the difficulty in maintaining flexibility in its data. As
mentioned earlier, industry users may need to adjust the driver demographics to suit a specific
need. Once the database is down-sampled, the change is irreversible. There may not be enough
data to produce accurate results for a specific driver group. For the reasoning above, down-
sampling is not suitable for this thesis.

Unlike down-sampling truncating the database, the weighting method utilizes all the data
under the assumption that each individual is randomly selected. The weighting method assigns a
sampling weight to each person, which indicates the proportion of the target population who have
a similar characteristics [97]. In other words, the weighting method manipulates the demographic
composition of the database by modifying how much each person matters. Designers are usually
responsible for adjusting the weights. For example, if a database contains 500 males an 100
females, designers can make this 5:1 male-to-female ratio behave as 1:1 by assigning a weight of
1 to all males and assigning a weight of 5 to all females. The weighting method is a common
method of modifying a database to meet the requirements. An example can be found in the
National Automotive Sampling System (NASS) where they modified a civilian database into a
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desired vehicle crash population using the weighting approach [98].

50



Chapter 4 |
Results

When packaging a bus, several design parameters need to be considered. This thesis exclusively
discusses driver’s accommodation in the X-Z plane and explicitly addresses the concerns regarding
spatial fitting of components and driver’s vision safety. In order to provide meaningful feedback
to the automobile industry users, the following design parameters are being assessed:

• Steering wheel pivot location
• Steering wheel tilt angle adjustment
• Steering wheel telescope distance adjustment
• Steering wheel diameter
• Seat fore-aft adjustment
• Seat vertical adjustment
• Upper Daylight Opening (UDLO) location
• Cowl point location
• Tip of dashboard location
• Tip of front bumper location
• Accelerator Heel Point (AHP) location

While packaging a bus, the industry users must carefully design the above parameters to
ensure the majority of the driver population are accommodation on all four design objectives, as
discussed in Chapter 3.

Apart from bus geometry, driver population profile is also a critical contributor to the success
of a design because a bus package made for one population may not suit for another population.
In fact, the wrong match could cause driver’s fatigue and other safety hazards [99]. As previously
mentioned, the U.S. is known for its diversified population, and this diversity is reflected in the
bus driver workforce. To fulfill the purpose of representing the U.S. bus drivers, this chapter
utilizes a 55:45 male-to-female ratio.

This chapter will present the outcomes of the Cascade Model by visually showing the predicted
reference points and body landmarks in a virtual bus cab. It is important to be aware that the
location of these points are dependent on bus cab geometry. The virtual bus cab shown in this
chapter only serves the purpose of visual representation and can be altered to meet specific needs
of the industry user.
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4.1 Steering Wheel
Steering wheel location prediction is the first step of Cascade Modeling, and it will become the
input for the following steps. Each preferred location is described with an angle and a distance
from the pivot. With a total of 1000 virtual drivers, 1000 steering wheel locations are generated,
and they form an annular fan-shaped cluster of points where purple represents male and gold
represents female (Figure 4.1).

Figure 4.1. Steering Wheel Preferred Location of Both Males and Females

Through calculation, the preferred steering wheel locations of male are found to be farther
away from the pivot than of female by 20 mm on average, which is expected given that male
drivers are generally taller than female drivers. It is a reflection of drivers’ body dimensions. In
the meantime, the steering wheel tilt angles are almost identical between the two genders. This
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outcome indicates that driver’s postural preference is independent of gender when controlled for
stature.

In some cases, a large enough adjustment envelope may be constructed to accommodate all
the virtual drivers, but for the purpose of demonstration, a smaller adjustment envelope is chosen,
and the disaccommodated drivers are marked in red (Figure 4.2). Similar to how steering wheel
locations are described, the adjustment is provided through a combination of telescoping and
tilting about the pivot point.

Figure 4.2. Disaccommidated Steering Wheel Location of Both Males and Females

For this specific bus layout, the pivot of the steering wheel is at (20 mm, 500 mm) with respect
to the AHP. It has a telescoping range of 275 mm to 385 mm and a tilt angle of 20° to 50° from
the vertical direction. Among the 1000 virtual drivers, a total of 100 were disaccommodated
with 52 of them being male and 48 being female, which means 89.6% and 90.4% accommodation
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rate for male and female, respectively. Considering gender ratio, the total accommodation is
90.0%. When a driver is disaccommodated, they would adjust the steering wheel to the nearest
point on the envelope and adjust the rest of their body to adapt to the change. After applying
such adjustment to all 100 disaccommodated drivers, the following steering wheel locations are
achieved (Figure 4.3):

Figure 4.3. Steering Wheel Adjusted Location of Both Males and Females

4.2 H-point
Once the steering wheel locations are predicted and adjusted, the Cascade Model can proceed to
seat position. Again, 1000 preferred seat locations are generated, and the cluster of these points
is ellipse-shaped. Due to the variation in average size across gender, the preferred seat locations
of male drivers are expected to be further away from the AHP, and such expectation is supported
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by data. On average, male drivers move the seat 54 mm more in the X-direction and 15 mm
more in the Z-direction than female drivers (Figure 4.4):

Figure 4.4. H-point Preferred Location of Both Males and Females

In this thesis, a limited adjustment range of the seat, 500 mm to 700 mm in the X-direction and
400 mm to 530 mm in Z-direction, is used to demonstrate disaccommodation. This adjustment
envelope leads to a 90.6% accommodation rate for male drivers and a 96.6% for female drivers,
with a combined rate of 93.6%. Among all the disaccommodated drivers, 47 of them are male,
and 17 of them are female. The disaccommodated drivers are shown in red (Figure 4.5).
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Figure 4.5. Disaccommodated H-point Location of Both Males and Females

Similar to disaccommodated steering wheel locations, disaccommodated seat locations are
moved to the nearest point on the envelope, and the drivers are expected to adjust their posture
to adapt this change. Although such adjustment is not ideal, it takes place frequently in people’s
daily lives and the discomfort is rarely noticeable. The effect of driver self-adjustment is shown
(in Figure 4.6).
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Figure 4.6. H-point Adjusted Location of Both Males and Females

4.3 Eye Point
After having both steering wheel locations and seat locations successfully predicted, eye locations
can be found using both as inputs. For both male and female, the clusters of points are both
ellipse-shaped. Similar to seat position, male drivers’ eye locations are farther away from the
AHP than female drivers’ eye location, by an average of 49 mm and 66 mm in the X- and Z-
direction, respectively (Figure 4.7).
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Figure 4.7. Eye Location of Both Males and Females

As mentioned in Chapter 3, one of the safety requirements is that drivers must be able to see
14° above the horizontal plane, and the UDLO is usually the limiting factor. Due to the large
size of most buses, the UDLO is usually very high, and the upward vision requirement is never
a concern. In this thesis, the UDLO is significantly lowered comparing to other transit buses
in order to demonstrate the contrary situation. For this specific bus layout, 95.4% of the male
drivers and 100% of the female drivers, 97.7% combined, meet the upward vision requirement.
Disaccommodated drivers are shown in red (in Figure 4.8).
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Figure 4.8. Upward Vision Assessment for Both Males and Females

Besides a 14° upward vision angle, the APTA requires all bus drivers to be able to see a 3.5-ft
tall object 2.0-ft in front of the bus to ensure road safety. In the picture below, the vertical line
in maroon represents the object. When a driver looks downward, two components could block
their vision: the cowl point and the tip of the dashboard. Depending on driver eye location,
either one could be the limiting factor. Only when neither of them blocks driver vision, is the
requirement met. Given the location of these components (Figure 4.9), 100% of the male drivers
and 96.4% of the female drivers are accommodated on this requirement, which makes a 98.2%
combined accommodation.
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Figure 4.9. Downward Vision Assessment for Both Males and Females

4.4 Overall Accommodation
Steering wheel location, seat location, and eye location are the three primary considerations in
vehicle packaging, and these locations are used to assess all four requirements regarding spatial
fit and vision safety (steering wheel, seat, up vision, and down vision). Through previous efforts,
the accommodation rate of each requirement can be calculated, but it is of interest to study the
overall accommodation. As discussed in Chapter 3, this thesis applies indicator functions to each
virtual driver to gain a thorough understanding of what limitations they are encountering, and
from there, the overall accommodation rate can be calculated for the 1000 drivers (Table 4.1).

As shown in the accommodation table above, the difference between male drivers and female
drivers is noticeable. In general, male drivers tend to sit farther back and higher with respect to
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the AHP. This observation is expected because of the variation in body size across gender. In
this thesis, a small bus with limited adjustment ranges is used in order to effectively illustrate
disaccommodation. With this specific layout, a combined population of 83.8% is accommodated;
however, the accommodation rate can improve dramatically by 1) raising the UDLO, 2) lowering
the cowl point and the dashboard, and 3) increasing the adjustment ranges of the steering wheel
and the seat.

4.5 Other Body Landmarks
The results produced from the Cascade Model demonstrate its usefulness while packaging a bus
as the model delivers instantaneous and quantitative feedback for a design. This thesis aims
to establish a bridge between bus layout and accommodation so that designers can effectively
make proper changes to their current bus designs, which will ultimately improve drivers’ overall
well-being.

Besides an accurate and reliable model to predict drivers’ interaction with the vehicle, another
goal of this thesis is to provide visualization to the industry users to make vehicle packaging a
more intuitive process. Specifically, a full body kinematics diagram that represents a human figure
would be beneficial. In order to do so, more body landmarks need to be predicted to indicate
the location of body joints. The first step is to locate shoulder joints using linear regressions so
driver’s torso can be oriented (Figure 4.10).

Table 4.1. Univariate and Multivariate Accommodation Rates of 1000 Virtual Bus Drivers
Gender Steering Wheel Seat (H-point) Up Vision Down Vision Overall

Male 89.6% 90.6% 95.4% 100.0% 80.6%

Female 90.4% 96.6% 100.0% 96.4% 97.0%

Combined 90.0% 93.6% 97.7% 98.2% 83.8%
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Figure 4.10. Male and Female Driver Shoulder Joint Location Prediction

A normal driving posture is when a driver is operating a vehicle without taking additional
actions, such as spinning the steering wheel or braking. While drivers are maintaining a normal
driving posture, their hands are expected to be placed at the lower quarter of the steering
wheel. With hand location, shoulder location, and body dimensions being known, driver’s upper
limbs can be configured using inverse kinematics. Similarly, driver’s foot tends to gently tap
on the accelerator pedal while driving, so their ankle joint is relatively static to the AHP. With
information on their leg lengths, driver’s lower limbs can also be configured (Figure 4.11)
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Figure 4.11. Male and Female Driver Elbow Joint and Knee Joint Configuration

4.6 "Average" Driver
In Chapter 2, a detailed discussion on the percentile model is carried out, and it is obvious that
the percentile approach was incapable of consistently producing accurate posture prediction. One
of the arguments being that an n-th percentile person does not exist due to human variability.
In spite of that weaknesses, the model can be utilized as a visualization tool to show driving
postures because an nth percentile person can certainly exist in a virtual world. The green lines
represent an "average" male driver with average body dimensions throughout, and the orange
lines represent an "average" female (Figure 4.12).
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Figure 4.12. "Average" Male Driver and Female Driver

Although these two body configurations are great visual tools to describe the average driving
posture, they cannot represent actual drivers since an n-th percentile person does not exist in
the real world. In order to demonstrate this, 500 virtual male drivers are used, and a male
driver, who is 50th percentile in stature, is configured and plotted against the "average" male
driver (Figure 4.13). Clearly, the two drivers have significantly different postures, and it would
be inaccurate to assume a driver with 50th percentile stature would be 50th percentile on other
body dimensions. In fact, this is never true.
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Figure 4.13. Male Driver with 50th Percentile Stature vs. "Average" Male Driver

4.7 RULA
This thesis dedicates a large amount of effort into driver’s posture prediction and configuration
of each driver’s posture as joints and links. With this effort, it is of interest to utilize this
information to investigate into their musculoskeletal health because bus drivers are known for
their critical work environment. As discussed in Chapter 3, they operate the vehicle within a
spatial-limited workstation and are expected to maintain the same posture for hours. Under such
circumstance, they are likely to develop fatigue and musculoskeletal symptoms, which not only
deteriorate driver’s health but also increase the likelihood of an accident. In fact, this is one of
the reasons bus drivers leave the bus transportation industry [100].

Aiming to quantitatively study driver’s posture-related fatigue, a Rapid Upper Limb Assess-
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ment (RULA) is used. RULA is a method of estimating the risks of upper limb fatigue and
disorders through work-related postures. It receives inputs such as body angles and force re-
quirements to predict individual worker’s ergonomic risk factor [101]. In recent years, RULA
has been widely used for assembly workers who repetitively perform certain tasks, and RULA’s
success has proved itself to be a valuable tool to evaluate workers’ risk factors [102]. Although
RULA puts a great emphasis on the upper limb, factors such as leg support and torso angle are
also considered, which makes it a suitable method to assess bus drivers’ work conditions. The
RULA worksheet is shown (in Figure 4.14).

Figure 4.14. RULA Worksheet Example [24]

After carefully estimating the force loads in the upper body and the lower body while driving
with a normal posture, a RULA is carried out for each driver. The final score of RULA, indicating
the ergonomics risk factor, is the outcome of the assessment. Given in a scale of 1 to 7, the
associated actions to be taken are shown as following:

• 1-2: acceptable posture
• 3-4: further investigation, change may be needed
• 5-6: further investigation, change soon
• 7: investigate and implement change

The results show that all 1000 virtual drivers scored a 3, which indicates that their driving
postures put them at low ergonomics risk, and the need for a posture change is minimal. Although
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drivers may experience discomfort at times, especially when driving for too long, ergonomics risk
is not likely to become a major concern. In addition, drivers’ postures vary from each other,
but the variation is not large enough to dramatically impact drivers’ ergonomics risk factors.
Therefore, it is unnecessary to repetitively conduct RULA for each virtual driver after conducting
it once.
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Chapter 5 |
Discussion and Software Tools

This thesis aims to provide increased understanding of anthropometric variability of U.S. bus
drivers and their postural preferences while driving. In order to achieve this, a cascade approach
is utilized with linear regression models that have been verified in the past for posture prediction.
Using this method, a total of 1000 virtual drivers are successfully postured in a given bus cab.
Based on the accommodation conditions shown in the model, proper design recommendations can
be made. In this chapter, the recommendations will be discussed. Following which, an overview
of the Cascade Model and its software applications will be presented.

5.1 Observation and Reflection
As discussed previously, the driver’s body landmarks and vehicle interior components, such as
the steering wheel and the seat, are all measured from the AHP. Intuitively, smaller drivers tend
to posture themselves closer to the AHP for comfort and task-oriented considerations as a result
of body dimensions. However, this observation is not always true due to human variability.
Variability comes from two sources: body dimensions and postural preferences. As research has
shown, an nth percentile person, who has all nth percentile body dimensions, does not exist. In
fact, people vary tremendously from each other, and anthropometric variability and preference
are expected to contribute largely to the final driving posture of a driver. Even among people
with similar body dimensions, a large degree of variation still exists, as shown in the “average”-
male and 50th-percentile-stature-male comparison in Chapter 4. This observation indicates that
human variability in preference plays a critical role in how drivers posture themselves in a bus,
which is evidence that Percentile Model is incapable of producing reliable results.

Although there has been a lot of literature on the H-point and the eyellipse, research on
steering wheel location is very limited. In small vehicles, steering wheels have only one mode
of adjustment (tilting), and the drivers are expected to achieve a comfortable driving posture
by moving the seat. In the case of buses and most other large vehicles however, the steering
wheels are designed to move in two dimensions by implementing telescoping mechanisms due to
their vertical spacing. In the Cascade Model developed for buses and trucks, the steering wheel
location prediction is the first step, and it serves as an input for seat location prediction and

68



eye location prediction. Therefore, it is critical to select a proper pivot location and provide
an adequate adjustment range for the steering wheel. It not only improves driver’s hand grip
comfort, but also makes it easier to accommodate the preferred seat location and eye location.

In this thesis, a spatially limited bus cab is chosen on purpose to demonstrate disaccommo-
dated conditions. The cab layout accommodates the majority of the preferred body configura-
tions, which are the centers of the cluster of points, as shown in Chapter 4. In other words, for
each body landmark, being indicated as a cluster of points, the highest frequency of occurrence
is at the center. As extending outward, the frequency of occurrence decreases. The farther
the distance, the larger the decrease. Previously, researchers have found that body dimensions
can be approximated as Gaussian distributions. Since driver’s posture is predicted using linear
regression models with variance, it is implied that driver’s posture is also normally distributed.

5.2 Cascade Model Overview
This thesis utilizes estimated anthropometry of U.S. bus drivers. This data passes through a
sequence of posture prediction models and becomes an invaluable part of representing preferred
driving posture. Two critical design concerns, spatial fitting and driving safety, are analyzed
for accommodation during each step of the prediction process. Spatial fitting is usually limited
by the adjustment envelope, and drivers can sometimes compromise on a less desirable posture
and achieve comfort by adjusting the rest of their bodies to adapt. Driving safety is assessed by
a driver’s ability to maintain adequate vision during driving in two dimensions. The outcomes
of the analysis indicate the overall quality of a bus package, and they recommend directions to
improve the design.

The posture prediction models are carried out in a cascading manner such that the output
of the previous step becomes the input of the next step. Starting with steering wheel location
prediction, the cascading process then directs its focus to seat location and eye location, which
are the critical reference points in vehicle packaging. Following that, other body landmarks
can be configured, such as shoulder joint, elbow joint, knee joint, and ankle joint. A schematic
diagram of the cascading approach is shown (in Figure 5.1):
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Figure 5.1. Schematic Diagram of Cascade Model

5.3 Applications
The objective of this thesis is to investigate the effect of human variability in the vehicle packaging
subject, and deliver software tools to design interior bus layouts for U.S. bus drivers. The goals
are met by applying the fundamental principles of cascading throughout this research, utilizing
the linear regression with variance to predict landmark locations for each virtual driver, and
using reverse kinematics to configure body posture. The outcomes of the research are delivered
in two forms: a web application using R Shiny and an Excel spreadsheet.

These software tools are to be used by automobile industry users who are in positions of pack-
aging buses. Due to the complexity of the subject and the learning curve of using a new tool,
an intuitive software tool with visuals is highly desirable. Within the tool, users are given the
access to change the bus geometry, adjustment range of the components, and driver demograph-
ics. The tool automatically performs posture prediction for each virtual driver and assesses the
design. Results are presented in two forms: one is a table that summarizes the accommodation
rates of each of the four design objectives (steering wheel location, seat location, upward vision,
and downward vision), together with the overall accommodation rate. The other is a pictorial
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representation of the bus layout and the body landmarks. It allows users to visually see how the
drivers are accommodated so they can make proper adjustments to the design.

In the Excel spreadsheet and the web application, the inputs are used to construct a frontal
layout of a bus, a seat track adjustment envelope, and a steering wheel adjustment envelope
(Figure 5.2) and (Figure 5.6). The table outputs that display univariate and multivariate accom-
modation rates are shown (in Figure 5.3 and Figure 5.7), and the pictorial outputs are shown (in
Figure 5.4 and Figure 5.5).

Figure 5.2. Bus Packaging Software Tool - Excel Input Box

Figure 5.3. Bus Packaging Software Tool - Excel Output Table
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Figure 5.4. Bus Packaging Software Tool - Excel Output Picture
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Figure 5.5. Bus Packaging Software Tool - R Shiny Output Picture

Figure 5.6. Bus Packaging Software Tool - R Shiny Input Box
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Figure 5.7. Bus Packaging Software Tool - R Shiny Output Table

5.4 Limitation and Future Work
This thesis primarily studies bus driver’s posture and uses it to assess bus packages in the X-Z
plane because most of the packaging components are designed to be only adjustable in this plane.
For example, the steering wheel and the seat are two of the most important design considerations
while packaging a bus. They are fixed in the Y-direction but are adjustable in the X-Z plane.
By default, they are expected to reside in the center plane on the driver’s side so the distance
from the driver’s left hand to the components is the same as from their right hand. In addition
to spatial fitting, a driver’s central vision is also mainly determined in the X-Z plane due to the
windshield setup. By analyzing the two-dimensional accommodation, the majority of the design
questions can be answered. The software presented in thesis is able to consistently provide
accurate and reliable results. However, with additional time and resource, a three-dimensional
analysis can be performed by augmenting the spatial fitting assessment and the vision safety
assessment in the Y-direction. For instance, the A-pillar creates a blind spot behind it while
driving. By knowing driver’s eye point in three dimensions, designers can identify the effective
range of driver’s peripheral vision make design the A-pillar accordingly. With a three-dimensional
analysis, parameters such as seat width can also be assessed.

Through the effort of this thesis, a web application tool and an Excel spreadsheet are de-
veloped to assist industry users to package a bus. The output summary table quantitatively
estimates the percentage of people to be accommodated, and the graphic indicates how to mod-
ify the bus layout to improve the accommodation rate. Currently, users are responsible to make
the modifications which may introduce bias, since people all interpret pictorial results differently.
In addition, an iterative process of finding a desired overall accommodation rate is expected due
to the multivariate nature of this subject. For instance, if a user wants to improve the accommo-
dation rate of the upward vision, they can raise the ceiling or lower the seat adjustment envelope.
It will be the user’s decision to do one of the two or both. In order to minimize this ambiguity,
future research can investigate into the cost factors of the components to be packaged so the de-
sign decisions can be logically made. Once the cost factors are quantitatively studied, an overall
cost calculation method can be developed and utilized as an objective function in an optimization
study. By setting a target overall accommodation rate and an objective of minimizing cost, the
"best" vehicle layout can be found.
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Appendix A|
Data Processing in Excel

Figure A.1. Virtual U.S. Bus Driver Body Dimensions
.
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Figure A.2. Virtual U.S. Bus Driver Primary Reference Points
.

Figure A.3. Virtual U.S. Bus Driver Secondary Body Landmarks
.
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Figure A.4. Virtual U.S. Bus Driver Accommodation Assessment
.
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Appendix B|
Web Application Visualization

B.1 Data Input: Bus Package and Drive Demographics

Figure B.1. Bus Seat Design
.

78



Figure B.2. Bus Layout Design
.
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Figure B.3. Bus Steering Wheel Design
.

Figure B.4. U.S. Bus Driver Demographics
.
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B.2 Data Output: Table Summary and Visualization

Figure B.5. Accommodation Summary Table

Figure B.6. Design Visualization
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Appendix C|
U.S. Bus Driver Demographics

C.1 Bus Driver Demographics: Gender

Figure C.1. U.S. Bus Driver: Male and Female Ratio (2014 2017)
.
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C.2 Bus Driver Demographics: Ethnicity

Figure C.2. U.S. Bus Driver: Ethnicity Diversity (2017)
.

Figure C.3. U.S. Bus Driver: Ethnicity Diversity (2016)
.
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Figure C.4. U.S. Bus Driver: Ethnicity Diversity (2015)
.

Figure C.5. U.S. Bus Driver: Ethnicity Diversity (2014)
.
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C.3 Bus Driver Demographics: Age

Figure C.6. U.S. Bus Driver: Male and Female Age Distribution (2017)
.

Figure C.7. U.S. Bus Driver: Male and Female Age Distribution (2016)
.
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Figure C.8. U.S. Bus Driver: Male and Female Age Distribution (2015)
.

Figure C.9. U.S. Bus Driver: Male and Female Age Distribution (2014)
.
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