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Abstract

Computer model calibration is a major component in projecting sea level rise and
developing coastal flood-risk management strategies. Hierarchical spatial mod-
els have been used extensively to model spatially dependent observations across
many fields such as climate science, ecology, public health, and epidemiology. The
computational methods presented here have wide ranging applications in environ-
mental sciences such as quantifying uncertainties in future sea level rise which are
then used to formulate coastal risk management policies, and providing researchers
from various fields with a fast and readily extendable approach to fit complex
hierarchical spatial models of their choice. My dissertation research focuses on
developing statistical and computational methods to address pressing issues in
the environmental sciences. My contributions are as follows: (1) a fast particle-
based approach for calibrating a three-dimensional Antarctic ice sheet model. I
developed a sequential Monte Carlo method that leverages the massive paralleliza-
tion inherent to modern high-performance computing systems; (2) an efficient and
extendable approach for fitting high-dimensional hierarchical spatial models. I pro-
pose a discretized and dimension-reduced representation of the underlying spatial
random field using empirical basis functions on a triangular mesh; and (3) a com-
putationally efficient method for modeling high-dimensional zero-inflated spatial
observations.
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Chapter 1
Introduction

Complex computer models play an increasingly important role in the environmen-

tal sciences. For example, state-of-the-art Antarctic ice sheet computer models

(Pollard and DeConto, 2012a), or simulators, help us understand the ice dynamics

and long-term behavior of ice sheets. Antarctic ice sheet models play an prominent

role in projecting sea level rise, which is critically tied to the sustainability of highly

populated metropolitan areas, resource allocation and management, and risks to

life and property due to flood hazards. In the environmental sciences, recent data

collection initiatives have lead to increasingly sophisticated and high-dimensional

spatial datasets. For example, state government agencies conduct large-scale field

surveys (Maryland’s Mapping and GIS Data Portal, 2018) at carefully sampled

locations to monitor watershed resources. In addition, satellites traverse the globe

measuring air pollution in the form of remotely-sensed aerosol optical depth (AOD)

and collect massive amounts of spatially-indexed data at high-resolutions (Murray

et al., 2019).

These recent advances in scientific modeling and data collection uncovered novel

challenges pertaining to data storage, computationally intensive computer model

simulations, projections with deep uncertainties, and increasingly complex spatial

models. These challenges provide exciting research opportunities that lie in the in-

tersection of statistics, environmental sciences, and computation. My dissertation

focuses on developing computationally efficient statistical methods to address two

key scientific problems: (1) incorporating information from various data sets to

tune, or “calibrate,” complex computer models to enable a better understanding
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of the past, present, and future of the climate system; and (2) developing fast al-

gorithms to model complex spatial datasets from the environmental sciences. The

methods developed here have potentially far reaching applications across many

disciplines.

My dissertation research consists of three projects:

1. Fast Particle-based Approach for Computer Model Calibration:

Complex ice sheet computer models play a prominent role in climate sci-

ence, particularly in projecting future sea level rise and informing coastal

flood-risk management strategies. These models require parameters that

are calibrated, or tuned, based on observations and prior knowledge. For

many computer models, existing calibration methods are either computa-

tionally prohibitive or largely underestimate parametric uncertainty. I pro-

pose a sequential Monte Carlo-based calibration method that provides good

approximations with shorter calibration wall times. This enables important

computer model experiments that have been computationally infeasible using

current calibration approaches.

2. Projection-based Intrinsic Conditional Autoregression (PICAR):

High-dimensional hierarchical spatial models are widely used across many

disciplines, for instance, species abundance in ecology, ice presence in glaciol-

ogy, geo-referenced survey responses in public health studies, and crime inci-

dence in urban areas. Examples of these models include spatial generalized

linear mixed models (SGLMMs), spatially varying coefficient models, spa-

tial ordinal response models, and two-part models for zero-inflated spatial

data. The high-dimensional observations pose computational challenges for

model fitting such as costly matrix operations and slow mixing Markov Chain

Monte Carlo algorithms (MCMC). I propose a projection-based intrinsic con-

ditional autoregression (PICAR) approach to reduce the dimensions and also

de-correlate the spatial random effects.

3. High-dimensional Zero-inflated Spatial Models: Zero-inflated spatial

observations are spatially dependent data containing a large proportion of

zeros. These types of data are prevalent across many disciplines such as cli-

mate science, ecology, infectious disease modeling, criminology, and health
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and human services. Traditional spatial models may not be suitable for

modeling zero-inflated spatial data due to the excess zeros and high levels

of over/underdispersion. Moreover, fitting high-dimensional spatial models

can be computationally prohibitive. Here, I propose a computationally ef-

ficient method for fitting high-dimensional zero-inflated spatial models. In

addition, I provide practical guidelines for selecting the appropriate class of

zero-inflated models as well as demonstrate this approach of simulated and

real-world examples.

In the remainder of this chapter, I provide an overview of the main areas of

focus along with a brief literature review.

1.1 Fast Computer Model Calibration

In this section, I introduce the scientific motivation and general framework behind

computer model calibration. I also provide a brief review of existing methods

and propose the basis for my fast particle-based approach for calibrating complex

computer models.

1.1.1 Scientific Motivation

Substantial mass loss of the Antarctic ice sheet poses considerable challenges to

coastal-flood risk management. Sound coastal flood-risk management strategies

rely on sea level projections as well as quantifying their associated uncertainties.

The Antarctic ice sheet remains the single largest source of uncertainty for future

sea level rise (DeConto and Pollard, 2016). Geological records suggest that ice

sheets can substantially drive global sea level rise (Deschamps et al., 2012) pos-

sibly as high as 58 m (Fretwell et al., 2012). Nearly eight percent of the current

global population is threatened by a five meter rise in sea level (Nicholls et al.,

2008) and 13 percent of the global urban population is threatened by a rise of ten

meters (McGranahan et al., 2007). However, sea level rise projections are based

on deeply uncertain projections of the Antarctic ice sheet’s mass loss (Le Bars

et al., 2017; Wong et al., 2017; Le Cozannet et al., 2017). Therefore, quantifying

and characterizing the long-term behavior of the Antarctic ice sheet is central to
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designing coastal risk management strategies (cf. Garner and Keller, 2018; Sriver

et al., 2018; Oppenheimer and Alley, 2016).

Ice sheet computer models are deterministic mathematical models that simulate

dynamical ice processes such as the long-term mass loss. However, ice sheet models

rely on poorly constrained parameters, and recent studies show that this parametric

uncertainty results in highly uncertain projections of sea level change (Stone et al.,

2010; Applegate et al., 2012; Fitzgerald et al., 2012; Collins, 2007), which inevitably

affects climate risk decision-making (O’Neill et al., 2006; Hannart et al., 2013).

Recent studies have addressed this parametric uncertainty via calibration studies

using modern observations, but these are either limited to simple ice sheet models

(Ruckert et al., 2017; Fuller et al., 2017) or a small number of model parameters

(Chang et al., 2016b; Edwards et al., 2019; Schlegel et al., 2018). In Chapter 2, I

propose a particle-based approach to calibrate the Pennsylvania State University

three-dimensional Antarctic ice sheet model (PSU3D-ICE) (Pollard and DeConto,

2012a); thereby characterizing and quantifying key deep uncertainties surrounding

sea level projections.

1.1.2 Overview of Calibration

Computer models are deterministic mathematical models that output simulations

of real-world physical processes. The underlying mathematical models are com-

prised of complex systems of differential equations, which are constructed based

on scientific understandings of the physical processes. Direct experimentation us-

ing real world processes may be impractical (e.g. climate processes), so computer

models provide a more viable and cheaper alternative to generate realizations.

Computer models have been used to model dynamic processes across many disci-

plines including weather forecasting, glaciology, ecology, epidemiology, industrial

engineering, sociology, and economics.

Two major components of computer models are the model outputs and the

model input parameters. The model outputs may be a scalar value, time series, or

a spatial field, particularly in the environmental sciences. The model inputs are a

collection of parameters required to run the computer model. The computer mod-

els considered here are deterministic, meaning that running the computer model
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with same input parameters will always generate the same output. In this disser-

tation, the computer models are treated as “black-box” models where the internal

mathematical models are not manipulated.

In order to accurately represent the physical processes, the model input param-

eters must be calibrated, or “tuned,” by comparing the generated model outputs to

the observations. In the past, calibration consisted of ‘plug-in’ approaches to select

the input parameter set whose corresponding model outputs best fit the observed

data. However, ’plug-in’ methods may inaccurately represent the system of inter-

est as they ignore various sources of uncertainties (e.g., parametric, observational

errors, and systematic model-observation discrepancies) (Kennedy and O’Hagan,

2001). In this section, I introduce the Bayesian calibration framework (Kennedy

and O’Hagan, 2001) designed to characterize and quantify the numerous sources

of uncertainty and provide a brief review of existing calibration methods.

1.1.2.1 General Framework

In computer model calibration, key computer model parameters are inferred by

comparing the computer model output and observational data (cf. Kennedy and

O’Hagan, 2001; Bayarri et al., 2007). Moreover, calibration also accounts for im-

portant sources of uncertainty such as the model-observation discrepancy and ob-

servational error (Kennedy and O’Hagan, 2001; Bayarri et al., 2007; Brynjarsdottir

and O’Hagan, 2014). Model-observation discrepancy is the systematic difference

between the observations and model outputs attributed to the computer model’s

misrepresentation of the physical processes. The observational errors represent the

non-systematic measurement errors.

Kennedy and O’Hagan (2001) presents the general Bayesian framework for

computer model calibration. The unknown input parameters θ are represented as

random variables with prior distribution p(θ), and the posterior distribution π(θ|Z)

is obtained by assimilating the observed data Z. Ultimately, π(θ|Z) characterizes

the parametric uncertainty in calibration problems.

Here, I introduce the Bayesian calibration framework for a generic computer

model whose output is a spatial random field. Let Y (s, θ) be the computer model

output at the spatial location s ∈ S ⊆ R2 and the parameter setting θ ∈ Θ ⊆
Rd. S is the spatial domain of the process, and Θ is the parameter space of
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the computer model with integer d being the number of input parameters. Y =

(Y (s1, θi), ..., Y (sn, θi))
T is the computer model output at parameter setting θi and

spatial locations (s1, ..., sn). Z = (Z(s1), ..., Z(sn))T is the observed spatial process

at locations (s1, ..., sn).

The observational data Z is modeled as:

Z = Y (θ) + δ + ε, (1.1)

where ε ∼ N(0, σ2
ε ) are the independently and identically distributed observational

errors, and δ is the systemic data-model discrepancy term. The discrepancy term

δ is generally modeled as a zero-mean Gaussian process, where δ ∼ N(0,Σδ(ξδ)).

Σδ(ξδ) is the spatial covariance matrix between spatial points s1, ..., sn with co-

variance parameters ξδ. Prior distributions are chosen for the model parameters,

θ, and observational error variance, σ2
ε . On the other hand, informative priors are

necessary for the discrepancy term’s covariance parameters ξδ. Then, θ, σ2, and ξδ

are inferred by sampling from the posterior distribution, π(θ, σ2
ε , ξδ|Z), via Markov

Chain Monte Carlo (MCMC).

The hierarchical framework for computer model calibration is as follows:

Data Model: Z|θθθ, δ ∼ N (Y (θθθ) + δ, σ2
ε I),

Process Model: δ|ξδ ∼ N (0,Σδ(ξδ)),

Parameter Model: θθθ ∼ p(θθθ), ξδ ∼ p(ξδ), σ2
ε ∼ p(σ2

ε )

(1.2)

The observation-model discrepancy term δ represents the systematic differences

between the model outputs and observations. The discrepancy term characterizes

model inadequacy, or the systematic difference between the mode output and ob-

servations. To illustrate, even if the computer model were run at the best possi-

ble input parameter settings, there would inevitably be a difference between the

computer model output and the actual observations. This can be attributed to

incomplete specifications of processes or model inadequacy (Higdon et al., 2008).

This discrepancy term is essential for parameter calibration (Bhat et al., 2010;

Bayarri et al., 2007) and ignoring it may yield biased and overconfident estimates

and projections (Brynjarsdottir and O’Hagan, 2014).
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1.1.3 Existing Calibration Methods

The Bayesian calibration approach can be computationally prohibitive for complex

computer models. Depending on the complexity of the physical processes, a single

evaluation of the computer model may incur high computational costs (e.g., long

model run times and use of multiple processors). Under the Bayesian calibration

framework, computer models must be run repeatedly at various parameter (input)

settings to accurately assess the underlying uncertainties (parameter and discrep-

ancy). Often, the computer model is too expensive to be embedded in the resulting

MCMC algorithm as it requires repeated computer model evaluations.

1.1.3.1 Emulation-Calibration

To counteract this challenge, emulation-calibration calibration approaches (Sacks

et al., 1989) have been developed where surrogate models or ’emulators’ replace the

more expensive expensive computer model. The surrogate models are a compu-

tationally efficient approximation of the expensive original computer model. The

two most common surrogate modeling approaches are Gaussian process emulation

(Sacks et al., 1989; Currin et al., 1991) and polynomial chaos expansions(Ghanem

and Spanos, 1991; Xiu and Karniadakis, 2002). Other surrogate modeling tech-

niques include machine learning methods using support vector machines (Ciccazzo

et al., 2014; Pruett and Hester, 2016) and neural networks (Eason and Cremaschi,

2014; Gorissen et al., 2009).

For emulation-calibration approaches, the computer model output Y (θ) is re-

placed with the surrogate model output η(θ) for input parameter θ. Calibration

proceeds similarly to the original case. Here, the observational data Z is modeled

as follows,

Z = η(θ) + δ + ε, (1.3)

where ε and δ are the observational errors and model discrepancy term, respec-

tively. The Bayesian hierarchical framework is similar to Equation 1.2; however,

the computer model output Y (θ) is replaced by the emulator output η(θ).
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Data Model: Z|θθθ, δ ∼ N (η(θθθ) + δ, σ2
ε I),

Process Model: δ|ξδ ∼ N (0,Σδ(ξδ)),

Parameter Model: θθθ ∼ p(θθθ), ξδ ∼ p(ξδ), σ2
ε ∼ p(σ2

ε )

(1.4)

Gaussian Process Emulators

Gaussian process emulation (Sacks et al., 1989; Currin et al., 1991) is a surrogate

modeling approach popular within the statistics community. Here, the surrogate

model output, or emulator, is treated as a realization from a stochastic process.

Let Y = {Y (θ1), ..., Y (θp)} be a collection of model runs evaluated at p design

points θ1, ..., θp. Guassian process emulators interpolate the model outputs via a

Gaussian process in the parameter space Θ. The emulator is constructed as:

Y ∼ N (Xβ,Σ(ξ)),

where X is a p × b matrix of covariates and Σ(ξ) is the p × p covariance matrix.

The covariate matrix X may include functions of the input parameters θ or set

to be 0. The covariance matrix is defined as Σ(ξ)ij = C(θi, θj; ξ), where C(·) is

a covariance function (e.g., the Matérn class). The Gaussian process emulator is

constructed by estimating parameters β and ξ. This framework assumes that the

model output at untried settings Y (θ∗) is normally distributed when conditioned

on Y. The emulator interpolates the model output Y (θ∗) at unknown settings θ∗

such that the emulator output η(θ∗) = E[Y (θ)∗|Y] or the predictive process of Y .

To illustrate, suppose the joint distribution of Y (θ∗) and Y is:[
Y (θ∗)

Y

]
∼ N

([
0

0

]
,

[
Σ11(ξ) Σ12(ξ)

Σ21(ξ) Σ22(ξ)

])
,

, where Σ22(ξ) is the covariance matrix of the simulator output run at the initial

settings, Σ11(ξ) is the covariance matrix of the simulator output at the untried

setting θ∗, and Σ12(ξ) and Σ21(ξ) are the cross-covariance between the computer

model runs at the untried settings and the untried settings. Then, the emulator

output at the untried input settings η(θ∗) is the conditional mean of Y (θ)∗ given
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Y:

η(θ∗) = Σ12(ξ)Σ
−1
22 (ξ)Y

Polynomial Chaos Expansions

Polynomial chaos expansions (Ghanem and Spanos, 1991; Xiu and Karniadakis,

2002) is another widely used surrogate modeling approach stemming from the

applied mathematics community. Here, the surrogate model output is generated

using a series expansion of orthogonal polynomial basis functions. Similar to the

Gaussian process emulation approach, there exists a training set of model outputs

Y = {Y (θ1), ..., Y (θp)} evaluated at p design points θ1, ..., θp. Suppose the vector

of model parameters θθθ ∈ Rd has a given probability density function fθθθ(θ) =∏d
i=1 fθi(θi), where fθi(θi) denotes the marginal probability density function of

input θi with support Θi. For the calibration framework in Equation 1.2, fθi(θi) is

the prior distribution p(θi).

Assuming that the computer model output Y (θ) has finite variance Var[Y (θ)] <

∞, Y (θ) can be approximated as a series expansion of polynomial basis functions

(polynomial chaos expansion):

Y (θ) ≈
m∑
i=1

aiψi(θ),

where ψi(θ), i = 1, ...,m are the orthogonal polynomial basis functions and a =

{a1, ..., am} are the basis coefficients. The orthogonal polynomial basis functions

ΨΨΨ = {ψ1(θ), ..., ψm(θ)} are constructed based on the probability distribution of the

model input parameters fθθθ(θ) (Table 1.1.3.1). For example, a set of model input

parameters θ whose marginal distributions (prior distributions) are uniform (e.g.,

fθ(θ) ∼ Unif(a, b) and θ ∈ (a, b)) would correspond to orthogonal polynomial basis

functions ΨΨΨ from the Lengendre polynomial family.

Polynomial weights a can be estimated by least-squares regression (Isukapalli

et al., 1998; Berveiller et al., 2006), where the response variables are the model

outputs Y (θ) and the covariates are the polynomial basis functions ψ(θ) from

the training set. The polynomial weights a can be represented as the numerical

solution of an integral (Eldred et al., 2008), which typically does not have an
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Table 1.1. Orthogonal polynomial families based on dsitribution of model input pa-
rameters. Adapted from Owen (2017).

Input/Parameter Input/Parameter
Type Distribution fθθθ(θ) Polynomial Family Support

Continuous
Gaussian Hermite (−∞,∞)
Gamma Laguerre (0,∞)

Beta Jacobi (a, b)
Uniform Legendre (a, b)

Discrete
Poisson Charlier {0, 1, ...}

Binomial Krawtchouk {0, 1, ..., N}
Negative binomial Meixner {0, 1, ..., N}
Hypergeometric Hahn {0, 1, ..., N}

analytical solution. Hence, Monte Carlo sampling methods (Ghiocel and Ghanem,

2002; Reagana et al., 2003) and quadrature methods (Le Maıtre et al., 2002; Eldred

et al., 2008) have been used for numerical integration. The surrogate model output

at the untried input settings η(θ∗) is a linear combination of the polynomial basis

functions using the estimated basis coefficients â:

η(θ∗) =
m∑
i=1

âiψi(θ
∗)

Limitations

Though Gaussian process emulators and polynomial chaos expansions are widely

used surrogate models, both methods have their strengths and weaknesses. In

cases with large training samples, fitting the Gaussian process emulator can be

computationally expensive (Owen, 2017; O’Hagan, 2013) as it involves repeatedly

evaluating a high-dimensional multivariate normal likelihood function. Construct-

ing polynomial chaos expansions tend to be computationally efficient since: (1) a

finite collection of polynomial basis functions are selected a priori; (2) basis coef-

ficients are readily estimated using regression or spectral projection; and (3) the

surrogate model output (interpolation) is represented as a linear combination of

the basis functions and coefficients. On the other hand, Gaussian processes emula-

tors tend to be more flexible than polynomial chaos expansions and may be better

suited for computer models displaying non-linear behavior (Owen, 2017). While

polynomial chaos expansions only provide the surrogate model output, Gaussian
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process emulators generate both the model output as well as the approximation un-

certainty of the output. Moreover, Gaussian process emulators can quantify model

fidelity (Owen, 2017; O’Hagan, 2013) by using the information in the covariance

function.

Both surrogate modeling approaches suffer from model infidelity where the

surrogate model output η(θ) may poorly approximate the true computer model

output Y (θ). In general, these surrogate models are trained using a limited num-

ber of computer model runs (Sacks et al., 1989). Dense sampling schemes, such as

full factorial or fractional factorial designs, may help capture higher order interac-

tions; however, running the computer model at each of the design points is costly.

Space-filling designs such as the Latin Hypercube Design (McKay et al., 2000;

Steinberg and Lin, 2006; Stein, 1987) or adaptive experimental designs (Chang

et al., 2016a; Gramacy and Apley, 2015; Urban and Fricker, 2010; Queipo et al.,

2005) use fewer design points, but may possibly generate low-fidelity surrogate

models by ignoring higher order interactions among inputs (Liu and Guillas, 2017).

Some studies have employed emulation-calibration methods (Sansó et al., 2008; Liu

et al., 2009a; Bhat et al., 2010) to calibrate computer models with long run times,

but these approaches are applicable to only a small number of parameters. For

computer models with longer run times and a large number of model parameters,

emulation-calibration can be computationally prohibitive because building an ac-

curate emulator requires a large training data set (Bastos and O’Hagan, 2009;

Maniyar et al., 2007).

1.1.3.2 Particle-based Approaches

The limitations of existing calibration methods motivate the development of new

calibration approaches for complex computer models with a moderate model run

times (6 seconds to 15 minutes) and a moderate number of input parameters (5-

20). The long single model run times prohibit calibration under the Kennedy and

O’Hagan (2001) framework and the large number of model parameters presents

challenges for emulation-calibration methods. Examples of such computer mod-

els include a coarser resolution Antarctic ice sheet model (Pollard and DeConto,

2012a), single column atmospheric models (Bony and Emanuel, 2001; Dal Gesso

and Neggers, 2018; Gettelman et al., 2019), hydrological soil moisture models
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(Sorooshian et al., 1993; Liang et al., 1994), simplified earth systems models

(Monier et al., 2013), and integrated multi-Sector models for human and earth

dynamics (Kim et al., 2006).

Sequential Monte Carlo (SMC), or particle-based, approaches (Del Moral et al.,

2006; Doucet et al., 2000; Liu and West, 2001; Chopin, 2002; Crisan and Doucet,

2000) have gained wide practical use in uncertainty quantification (cf. Kantas et al.,

2015; Papaioannou et al., 2016; Kalyanaraman et al., 2016; Jeremiah et al., 2011;

Morzfeld et al., 2018; Higdon et al., 2008). In the model calibration context, SMC

approaches approximate the posterior distribution π(θ|Z) (Equation 1.2) using a

weighed set of samples from a different distribution that may be easier to draw

sample from. Since much of the SMC operations are embarrassingly parallel, these

methods are well-suited for modern high-performance computing systems. By

leveraging massive parallelization across multiple processors, particle-based ap-

proaches can drastically reduce calibration walltimes (Kalyanaraman et al., 2016).

Sequential Monte Carlo algorithms use sampling-importance-resampling (Gor-

don et al., 1993; Doucet et al., 2001), a popular method to approximate a tar-

get distribution π(θ) using particles, or samples, from an importance distribu-

tion q(θ). Sampling-importance-resampling generates an empirical distribution

using weighted samples from q(θ), where the weights are calculated using impor-

tance sampling. Importance sampling is a general technique used to estimate

µ = Eπ
[
g(θ)

]
where g(θ) is a function of θ. Given q(θ) > 0 whenever g(θ)π(θ) >

0, ∀θ ∈ Θ, it follows that Eπ
[
g(θ)

]
= Eq

[
g(θ)w(θ)

]
, where w(θ) = π(θ)

q(θ)
is the

importance weight and
∑N

i=1w(θi) = 1. Here, µ̂n = 1
n

∑N
i=1 g(θi)w(θi) is the im-

portance sampling estimator and µ̂n → µ with probability 1 by the strong law

of large numbers. Next, sampling-importance-sampling approximates the target

distribution π(θ) using the empirical distribution of the samples π̂(θ), and their

corresponding normalized weights w̃(θi)’s:

π(θ) ≈ π̂(θ) =
N∑
i=1

w̃(θi)δ(θi),

where δ(θi) is the Dirac measure that puts unit mass at θi and
∑N

i=1 w̃(θi) = 1.

Poor choices of q(θ) may yield inaccurate approximations of the target distri-

bution (Doucet et al., 2000) due to weight degeneracy and sample impoverishment.
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Mixture approximations (Gordon et al., 1993) or kernel smoothing methods (Liu

and West, 2001) have been used to mutate or rejuvenate the replicated particles.

However, these methods may not scale well to high-dimensional target distributions

(Doucet et al., 2000). Adaptive tempering schedules and mutation stages (Jasra

et al., 2011) using the Metropolis-Hastings transition kernel (Gilks and Berzuini,

2001), genetic algorithms (Zhu et al., 2018) or different transition kernels, K(·)
(Papaioannou et al., 2016; Murray et al., 2016) have been implemented to address

these challenges.

In Chapter 2, I propose a fast particle-based calibration approach designed

for computer models with moderate model run times (6 seconds to 15 minutes)

and moderate number of input parameters (5-20), namely the Pennsylvania State

University three-dimensional Antarctic Ice Sheet Model. This approach reduces

calibration wall times by (1) parallelizing the bulk of computer model runs; (2)

imposing stopping rules within the algorithm; and (3) applying adaptive sam-

pling techniques to limit expensive model evaluations. Within the context of

sea level projections, this method better characterizes parametric and projection

uncertainty than existing approaches. In addition, the particle-based approach

enables important computer model experiments that were once computationally

prohibitive.

1.2 Hierarchical Spatial Models

Advances in computing and spatial data collection have enabled researchers to

construct increasingly complex spatial models to represent various environmen-

tal processes. These models may use multiple data sources, account for various

sources of uncertainties or errors, and include more than one layer of latent, or

hidden, spatial processes. Bayesian hierarchical spatial models are a popular class

of spatial models that provide a flexible framework designed to account for these

complex features. This class of models are commonly used to model complex spa-

tial observations across many fields; for example, species abundance in ecology,

ice presence in glaciology, geo-referenced survey responses in public health studies,

and crime incidence in urban areas.

Bayesian hierarchical spatial models are characterized by a hierarchy of condi-



14

tional distributions often broken up into three component models (Berliner, 1996;

Gelfand et al., 2003) - data, process, and parameter models. The overall structure

is as follows:

Data Model: Data | Process, Parameters

Process Model: Process | Parameters

Parameter Model: Parameters and Hyper-parameters

(1.5)

In the first stage, the data model is the probability distribution of the observa-

tions conditioned on the underlying spatial processes and model parameters. Here,

the data likelihood function usually serves as the data model. In the second stage,

the process model represents the underlying, often latent, spatial processes. The

process model typically consists of high-dimensional multivariate probability dis-

tributions and in some cases, nested layers of sub-processes. Finally, the third stage

includes the prior distributions of the model parameters and their corresponding

hyper-parameters.

1.2.1 Hierarchical Modeling Framework

Let Z(s) denote the observed data at location s in a spatial domain D ⊂ Rd where

d is generally 2 or 3. Z(s) is defined as:

Z(s) = X(s)β + w(s) + ε(s), for s ∈ D, (1.6)

where X(s) is a set of k covariates associated with location s and β is a k-

dimensional vector of coefficients. The micro-scale measurement errors or nugget

are modeled as an uncorrelated Gaussian process with zero mean and variance τ 2

where ε(s) ∼ N(0, τ 2) for all s ∈ D.

Spatial dependence is introduced by modeling the spatial random effects W =

{w(s) : s ∈ D} as a stationary zero-mean Gaussian process with a positive def-

inite covariance function C(·). For a finite set of locations s = (s1, ..., sn), the

spatial random effects W are distributed as a multivariate normal distribution

W|Θ ∼ N(0, C(Θ)) with covariance function parameters Θ and the covariance

matrix C(Θ) where C(Θ)ij = Cov(w(si), w(sj)). The Matérn covariance function
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is a widely used class of stationary and isotropic covariance functions (Stein, 2012)

with parameters Θ = (σ2, φ, ν) such that:

C(si, sj) = σ2 1

Γ(ν)2ν−1

(√
(2ν)

h

φ

)ν
Kν

(√
(2ν)

h

φ

)
,

where R(φ) is the correlation matrix, h = ||si − sj|| is the Euclidean distance

between locations si and sj, σ
2 > 0 is the partial sill or scale parameter of the

process, and φ > 0 is the range parameter for spatial dependence. Kν(·) is the

modified Bessel function of the second kind where the smoothness parameter ν is

commonly fixed prior to model fitting.

For Gaussian observations, hierarchical spatial models may be broadly de-

scribed as (cf. Wikle et al., 1998):

Data Model: Z(s)|β,W, τ 2 ∼ N(X(s)β + w(s), τ 2)

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ), W = {w(s1), ..., w(sn)}

Parameter Model: β ∼ p(β), φ ∼ p(φ), σ2 ∼ p(σ2), τ 2 ∼ p(τ 2)

(1.7)

Generalized Linear Spatial Models

Non-Gaussian spatial observations are typically modeled using spatial general-

ized linear mixed models (SGLMMs) (Diggle et al., 1998, Haran, 2011). Let

{Z(s) : s ∈ D} be a non-Gaussian spatial random field. Assuming Z(s) are con-

ditionally independent given the latent random spatial field W, the conditional

mean E[Z(s)|β,W, ε(s)] can be modeled through a linear predictor η(s):

η(s) = g{E[Z(s)|β,W], ε(s)} = X(s)β + w(s) + ε(s),

where g(·) is a known link function. Binary and count observations are two common

types of non-Gaussian spatial data, and these can be modeled using the binary

SGLMM with logit link and the Poisson SGLMM with log link, respectively. The
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general hierarchical framework for spatial generalized linear mixed models is:

Data Model: Z(s)|η(s) ∼ f(η(s))

η(s) = g(E[Z(s)|β,W), ε(s)]) = X(s)β + w(s) + ε(s)

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ), W = {w(s1), ..., w(sn)}

ε(s)|τ 2 ∼ N(0, τ 2)

Parameter Model: β ∼ p(β), φ ∼ p(φ), σ2 ∼ p(σ2), τ 2 ∼ p(τ 2)

Other examples of hierarchical spatial models include spatially varying coef-

ficient processes (Gelfand et al., 2003; Mu et al., 2018), covariate measurement

error models (Xia and Carlin, 1998; Bernadinelli et al., 1997; Muff et al., 2015),

and co-regionalization models for multivariate responses (Banerjee et al., 2014).

1.2.2 Zero-Inflated Spatial Models

Zero-inflated spatial data are spatially dependent observations characterized by

an excess of zeros. Observations can be discrete counts or semi-continuous, where

the non-zero values are positive real numbers. Zero-inflated spatial observations

are commonly encountered in many fields; for instance, counts of harbor seals on

glacial ice (Hoef and Jansen, 2007), annual mental health expenditures among US

federal employees Neelon et al. (2011), and the number of torrential rainfall events

in a region of interestLee and Kim (2017). Standard probability distributions are

not sensible for modeling zero-inflated data (cf. Agarwal et al., 2002; Rathbun and

Fei, 2006; Lambert, 1992a) as they are unable to account for the large proportion

of zeros. Moreover, poor model choice may lead to over- or under-dispersion, where

the observed variance is higher or lower, respectively, than the variance of the fitted

model.

Two-part models (Mullahy, 1986; Lambert, 1992b) have commonly been used

to model zero-inflated spatial data (Agarwal et al., 2002; Hoef and Jansen, 2007;

Olsen and Schafer, 2001, .cf). These models generally include two spatial processes:

(1) the occurrence process O(s), that specifies the structural zero and non-zero

locations; and (2) the prevalence process P (s) that generates positive values (and

zeros in some cases) for the non-zero locations. Note that both processes model
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spatial dependencies among the observation locations.

Let Z(s) be a zero-inflated observation for spatial location s ⊂ D within the

spatial domain D ∈ R2. The observation Z(s) are generated as follows:

Z(s) =

{
0 if O(s) = 0

P (s) if O(s) = 1.
, (1.8)

where O(s) and P (s) are the spatial occurrence and prevalence processes, re-

spectively. The occurrence process is specified as O(s) ∼ Bern(π(s)) with spa-

tially varying probabilities π(s) ∈ (0, 1). The prevalence process is modeled as

P (s) ∼ f(θ(s)) where f(θ(s)) is a discrete or continuous probability distribution

with spatially varying model parameters θ(s). In fact, two-part models are identi-

fied by the choice of f(·).
Two-part models for zero-inflated observations typically fall into two classes:

1. Hurdle Models: The occurrence process O(s) determines the zero-valued

locations. The prevalence process P (s) generates the positive values at the

non-zero locations. In the discrete case, f(·) is a zero-truncated distribution

such as the zero-truncated Poisson or the zero-truncated negative binomial

distribution. For semi-continuous observations, f(·) is a probability distri-

bution with positive support such as a log-normal or gamma distribution.

2. Mixture Models: Both the occurrence O(s) and prevalence processes P (s)

determine the zero-valued locations. The occurrence process identifies the

structural zero-valued locations. The prevalence process P (s) generates val-

ues for the structural non-zero-values locations. Here, the prevalence process

P (s) generates both zeros and positive values for the non-zero-values loca-

tions. In the discrete case, f(·) is a non-degenerate distribution such as

the Poisson or Negative-Binomial distribution. For semi-continuous observa-

tions, f(·) can be a censored model such as a Tobit Type I.

Both processes, O(s) and P (s), are modeled as spatial generalized linear mixed

models (SGLMMs) with the appropriate link functions. The occurrence process

O(s) is modeled as a Bernouilli random variable with either a probit or a logit

link function. O(s) can also be modeled using a latent probit process (Albert and
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Chib, 1993; De Oliveira, 2000), which provides simple full conditional distributions

for the random effects. The linear predictor is defined as ηoηoηo = Xβoβoβo + Wo + εo,

where Wo ∼ N (0, σ2
oRφo) and εo ∼ N (0, τ 2o I). Model fitting entails estimating

the parameters βo, φo, σ
2
o , τ

2
o as well as the spatial random effects Wo.

The prevalence process P (s) follows a specific probability distribution based

on the observation type (counts vs. semi-continuous) and structural assumptions.

For HURDLE models, a zero-truncated distribution (e.g., zero-truncated Pois-

son, zero-truncated negative binomial, lognormal, or gamma) is a sensible choice

for f(·). Mixture models utilize a distribution with non-negative support (e.g.,

Poisson, negative binomial, or Tobit model). Similar to the occurrence process,

the prevalence process P (s) is also modeled as an SGLMM with linear predictor

ηpηpηp = Xβpβpβp + Wp + εp, where Wp ∼ N (0, σ2
pRφp) and εp ∼ N (0, τ 2pI). Here, the

parameters βp, φpσ
2
p, τ

2
p and spatial random effects Wp must be estimated. To

complete the Bayesian hierarchical framework, prior distributions are specified for

the model parameters.

The Bayesian hierarchical framework for two-part models is as follows:

Data Model: Z|O(s), P (s) ∼ f̃Z
(
z;O(s), P (s)

)
Process Model: O(s)|π(s) ∼ Bern(π(s))

P (s)|θ(s) ∼ f(θ(s))

Sub-process Model 1: π(s)|ηo(s) = g−1o (ηo(s))

(Occurrence) ηo(s)|βo,Wo(s), εo(s) = X(s)βo +Wo(s) + εo(s)

Wo = {Wo(s1), ...,Wo(sn)}

Wo|φo, σ2
o ∼ N (000, σ2

oRφo),

ε(s)|τ 2o ∼ N (000, τ 2o )

Sub-process Model 2: θ(s)|ηp(s) = g−1p (ηp(s))

(Prevalence) ηp(s)|βp,Wp(s), εp(s) = X(s)βp +Wp(s) + εp(s)

Wp = {Wp(s1), ...,Wp(sn)}

Wp|φp, σ2
p ∼ N (000, σ2

pRφp)

ε(s)|τ 2p ∼ N (000, τ 2p )

Parameter Model: Priors for βo, φo, σ
2
o , τ

2
o , βp, φp, σ

2
p, and τ 2p
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where f̃Z
(
z;O(s), P (s)

)
is the likelihood function of spatial two-part model. Based

on Equation 4.3, f̃Z
(
z;O(s), P (s)

)
is defined as:

f̃Z
(
z;O(s), P (s)

)
=

{
π(s) + (1− π(s))× f(0; θ(s)), if z = 0

(1− π(s))× f(z; θ(s)), if z > 0.
, (1.9)

The literature presents alternative distributions for f(·), which can yield richer

and more flexible two-part models. For count data, past studies have used the

Poisson, negative binomial, zero-truncated Poisson (Lambert, 1992a), translated

Poisson (Hoef and Jansen, 2007), zero-truncated negative binomial (Mwalili et al.,

2008), generalized Poisson (Gschlößl and Czado, 2008), and binomial distributions

(Hall, 2000). In the semi-continuous case, the lognormal distribution may not be

appropriate due to the lack of symmetry or fatter tails of the log of the observations.

Past studies have used skewed distributions (Dreassi et al., 2014; Liu et al., 2016),

t-distributions to model heavy tailed behavior (Neelon et al., 2015), or modeled

the prevalence process using scale mixtures of normal distributions (Fruhwirth-

Schnatter and Pyne, 2010).

There exists many promising areas of future research for two-part spatial mod-

els. For instance, neglecting the cross-correlation between spatial processes can

potentially lead to biased inferences (Su et al., 2009). To counteract this, the la-

tent spatial processes, Wo and Wp, can be modeled jointly (Recta et al., 2012;

Oliver, 2003; Neelon et al., 2011; Su et al., 2009); however, this may incur addi-

tional computational costs due to large matrix operations (Neelon et al., 2016b).

Another open area of research addresses selecting the appropriate type of two-part

model (HURDLE or mixture). Past studies (Hu et al., 2011; Wilson, 2015; Xu

et al., 2015) have examined the goodness-of-fit between hurdle and mixture mod-

els using likelihood ratio tests, AIC, BIC, DIC, or the Vuong test statistic (Vuong,

1989).

However, there is a dearth of research addressing the computational challenges

inherent to modeling large zero-inflated spatial data, particularly cases with high-

dimensional and heavily correlated latent spatial random effects. One study (Wang

et al., 2014) models the presence and abundance of Atlantic cod in 1325 locations

along the Gulf of Maine using predictive processes (Banerjee et al., 2008). Other
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studies provide methods to facilitate posterior sampling by representing the latent

spatial processes as scale mixtures of normal distributions via dirichlet processes

(Neelon et al., 2018) or through Pólya-Gamma mixtures (Neelon et al., 2019).

1.2.3 Basis Representation of Spatial Random Fields

Hierarchical spatial models are subject to computational challenges borne out of

the heavily correlated and high-dimensional spatial random effects W. Model

fitting typically requires a costly evaluation of an n−dimensional multivariate nor-

mal likelihood function (O(n3)) at each iteration of the MCMC algorithm. In

addition, heavily correlated spatial random effects often leads to poor mixing in

MCMC algorithms (cf. Christensen et al., 2006; Haran et al., 2003). In the liter-

ature, basis representation approaches (Cressie and Wikle, 2015, cf.) have been

used to address these challenges. In this framework, the spatial random effects

W = (W (s1),W (s2), ...,W (sn)) as a linear combination of basis functions:

W ≈ Φδ , δ ∼ N (0,Σδ(ξ)),

where Φ is an n × p basis function matrix where each column denotes a basis

function, δ ∈ Rp are the basis coefficients, and Σδ(ξ) is the p×p covariance matrix

for the coefficients with covariance parameter ξ. Under this setting, the basis

functions are a collection of distinct spatial patterns used to construct the latent

spatial random field. Basis representation approaches can reduce computational

costs by bypassing large matrix operations such as matrix inversions (Banerjee

et al., 2008; Higdon, 1998), reducing the dimensionality of latent spatial random

effects (Guan and Haran, 2018; Hughes and Haran, 2013), inducing sparse matrix

operations via localized basis functions (Katzfuss, 2017; Nychka et al., 2015; Cressie

and Johannesson, 2008; Lindgren et al., 2011), and reducing correlation among the

latent spatial random field (Christensen et al., 2006).

Spatial basis functions readily extends to the Bayesian hierarchical framework.

To illustrate, basis functions can be embedded into the Bayesian hierarchical frame-
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work for Gaussian spatial data (Equation 1.7) as so:

Data Model: Z(s)|β,W, τ 2 ∼ N(X(s)β + w(s), τ 2)

Process Model: W ≈ Φδ, W = {w(s1), ..., w(sn)}

δ ∼ N (0,Σδ(ξ))

Parameter Model: β ∼ p(β), ξ ∼ p(ξ), τ 2 ∼ p(τ 2)

Selecting the appropriate set of basis functions ΦΦΦ remains an open area of re-

search. In the literature, there exists a wide array of spatial basis functions such as:

(1) bi-square (radial) basis functions (Cressie and Johannesson, 2008) with varying

resolutions (Katzfuss, 2017; Nychka et al., 2015); (2) empirical orthogonal func-

tions (Cressie and Wikle, 2015), or spatial representations of principal component

analysis; (3) predictive process basis functions (Banerjee et al., 2008); (4) Moran’s

basis functions for spatial eigenfiltering (Hughes and Haran, 2013; Griffith, 2003);

(5) piecewise Linear functions on a triangulation of the spatial domain (Lindgren

et al., 2011); (6) square roots of the correlation matrix of the spatial random effects

via cholesky factorization Christensen et al. (2006) or approximate eigendecompo-

sitions (Banerjee et al., 2013; Guan and Haran, 2018); (7) W-wavelets(Shi and

Cressie, 2007) and multiresolution wavelet basis functions (Nychka et al., 2002);

(8) Fourier basis functions composed of sine and cosine curves (Royle and Wikle,

2005); and (9) Gaussian kernel basis functions (Higdon, 1998). These methods

tend to be computationally efficient as they bypass large matrix operations and in

some cases de-correlate and reduce the dimensions of the spatial random effects

W.

Many of these basis functions (radial, Fourier, wavelets, Gaussian kernels) rely

on an overcomplete set of basis functions where the number of basis functions are

much larger than the number of observations. Consequently, this can potentially

increase computational costs and the selection of the resolutions are important.

Low rank methods, such as predictive processes or random projections, still require

large matrix operations, albeit smaller than the gold standard.

In Chapter 3, I propose a fast and extendable approach to fit hierarchical

spatial models. This approach approximates a continuous spatial process using

a discretized Gauss-Markov random field and a data-driven set of basis func-
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tions. I addresses the high-dimensionality of the spatial random effects by using

a projection-based intrinsic autoregression approach which simultaneously reduces

the dimensions and de-correlates the spatial random effects. Moreover, I provide

an automated heuristic to select the appropriate number of basis functions. In

Chapter 4, I extend the PICAR approach to zero-inflated spatial models to ad-

dress key computational challenges and also provide practical guidelines for model

selection.

1.3 Summary of Contributions

This dissertation makes the following contributions:

• I provide a fast particle-based approach for calibrating complex computer

models, namely the Pennsylvania 3D Antarctic Ice Sheet model (PSU3D-

ICE). This novel calibration method is designed to calibrate complex com-

puter models with moderate single model run times (5 seconds to 15 min-

utes) and a moderate number of model parameters (5 to 15). This work is

co-authored by Murali Haran, Rob Fuller, David Pollard, and Klaus Keller,

and the corresponding manuscript has been accepted for publication by the

Annals of Applied Statistics.

• I conduct a formal investigation of how the choice of calibration methods

impacts sea level rise projections. I compare three calibration approaches

for the PSU3D-ICE Antarctic ice sheet model: (1) particle-based approach

with 11 parameters; (2) emulation-calibration with three parameters; and

(3) emulation-calibration with 11 parameters. I find that (2) and (3) either

drastically underestimates the tail-area risk for sea level rise projections or

provides highly inaccurate projections.

• I developed a computationally efficient and extendable method (PICAR) to

fit high-dimensional hierarchical spatial models. This approach discretizes

the continuous latent spatial random field and employs a basis representation

the underlying spatial process. The method is scalable to high-dimensional

datasets and extends to a wide array of spatial hierarchical spatial models

(e.g. spatial generalized linear mixed models, spatially varying coefficients
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models, spatial ordered categorical models). Moreover, PICAR is readily

extendable to popular programming platforms such as stan and nimble.

This manuscript is co-authored with Murali Haran and is under revision.

• I propose a scalable method for modeling high-dimensional zero-inflated spa-

tial observations. This approach extends the PICAR representation of latent

spatial processes to zero-inflated spatial models. I demonstrate this compu-

tationally efficient approach on several simulated and real-world datasets. A

manuscript based on this work (co-authored with Murali Haran) is currently

in preparation.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. In Chapter 2, I describe

the challenges in projecting the long-term behavior of the Antarctic ice sheet and

its effect on global sea level rise. Next, I present a fast particle-based approach for

calibrating a state-of-the-art three-dimensional computer model of the Antarctic

ice sheet (PSU3D-ICE). In Chapter 3, I provide an overview of hierarchical spatial

models as well as a discussion of the associated computational challenges. Then,

I propose an extendable projection intrinsic conditional autoregression (PICAR)

approach for fitting hierarchical spatial models and demonstrate this method on

simulated and real-data examples. In Chapter 4, I introduce spatial two-part

models for zero-inflated spatial data and discuss the underlying inferential and

computational challenges. Then, I propose a computationally efficient approach

for fitting high-dimensional zero-inflated spatial observations. Finally, in Chapter

5, I summarize my contributions and discuss avenues for future research.



Chapter 2
A Fast Particle-Based Approach for

Calibrating a 3-D Model of the

Antarctic Ice Sheet

In this section, I present a fast particle-based approach for computer model cali-

bration with applications to a 3-D Model of the Antarctic Ice Sheet. I propose a

sequential Monte Carlo-based calibration method that drastically reduces calibra-

tion wall times while still preserving close approximations. This method enables

important computer experiments, which were computationally infeasible under ex-

isting approaches. This chapter is published as a manuscript (Lee et al., 2020).

All authors co-designed the overall study. BSL and MH formulated the statisti-

cal method. BSL wrote the computer code for calibration, designed the Pliocene

window analysis, and wrote the first draft of the manuscript. RF integrated the

calibration method into the Cheyenne high performance computing system. MH

edited the text. KK designed the comparative methods analysis and edited the

text. DP provided code and data for the 80 km resolution PSU3D-ICE model,

designed the prior sensitivity study, and edited the text.
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2.1 Introduction

How much will the Antarctic ice sheet contribute to future sea level rise? The geo-

logical records suggest that ice sheets can quickly contribute considerable amounts

to global sea level rise (Deschamps et al., 2012), in some cases up to 58 m (Fretwell

et al., 2012). Projections of future sea level rise depend on deeply uncertain pro-

jections of the Antarctic ice sheet’s (AIS) mass loss (Le Bars et al., 2017; Wong

et al., 2017; Le Cozannet et al., 2017). Close to eight percent of the current global

population is threatened by a five meter rise in sea level (Nicholls et al., 2008) and

13 percent of the global urban population is threatened by a ten meter sea level rise

(McGranahan et al., 2007). Quantifying and characterizing the long-term behavior

of the Antarctic ice sheet is hence a key input to the design of coastal risk man-

agement strategies (cf. Garner and Keller, 2018; Sriver et al., 2018; Oppenheimer

and Alley, 2016).

Ice sheet models rely on poorly constrained parameters, and recent studies

show that uncertainty in model parameters results in highly uncertain projections

of sea level change (Stone et al., 2010; Applegate et al., 2012; Fitzgerald et al.,

2012; Collins, 2007); thereby affecting climate risk decision-making (O’Neill et al.,

2006; Hannart et al., 2013). Recent studies have addressed parametric uncertainty

via calibration studies using modern observations, but these are either limited to

simple ice sheet models (Ruckert et al., 2017; Fuller et al., 2017) or a small number

of model parameters (Chang et al., 2016b; Edwards et al., 2019; Schlegel et al.,

2018). Numeric solvers have been used to infer the field of basal sliding parameters

from satellite observations (Isaac et al., 2015b,a).

Ice sheet models vary in complexity, and the key drivers of computational

cost are the spatial and temporal resolutions. Simpler models (cf. Shaffer, 2014;

Bakker et al., 2016) have short computer model run times on the order of a few

seconds, but they may oversimplify or even exclude important physical processes.

More complex models (cf. DeConto and Pollard, 2016; Larour et al., 2012; Greve,

1997; Rutt et al., 2009) can better represent key ice dynamics and typically run

at higher spatio-temporal resolutions. However, they require longer model run

times. Here, we use a relatively complex ice sheet model, the Pennsylvania State

University 3D ice sheet model (PSU3D-ICE) (Pollard and DeConto, 2012a), but
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with considerably coarser resolution than in previous work, so that each set of

simulations for this study takes on the order of 10 to 15 minutes of wall time.

Past studies calibrate simpler models with many model parameters via Markov

Chain Monte Carlo (MCMC) (cf. Ruckert et al., 2017; Bakker et al., 2016; Petra

et al., 2014); these approaches are effective in the context of computationally very

inexpensive models (model run times of a few seconds), and hence do not extend

to the kind of models we consider in this manuscript. Some studies have employed

emulation-calibration methods (Sansó et al., 2008; Liu et al., 2009a; Bhat et al.,

2010) to calibrate computer models with long run times, but these approaches are

applicable to only a small number of parameters. For computer models with longer

run times and a large number of model parameters, emulation-calibration can be

computationally prohibitive because building an accurate emulator requires a very

large set of training data (Bastos and O’Hagan, 2009; Maniyar et al., 2007).

We propose calibrating an ice sheet model which (1) accounts for important

physical processes; (2) includes several key parameters to analyze and quantify

parametric uncertainty; and (3) expands the calibration dataset to the Pliocene.

For this study, the Antarctic ice sheet model runs at a spatial resolution of 80 km

and temporal resolution of eight years, which is a compromise between preserving

reasonable accuracy of physical simulations versus maintaining a feasible model run

time. We estimate that current rigorous methods for calibrating this model via

Markov chain Monte Carlo would take roughly on the order of years of wall time.

We investigate methods for calibration that are amenable to heavy parallelization

and computationally efficient, thereby reducing the computational wall time from

years to hours. We find that these methods are broadly applicable to computer

models with a moderate model run time (6 seconds to 15 minutes) and a moderate

number of model parameters (5 to 20), based on available computing resources.

While this does not cover more complex models or larger number of parameters,

our methods are applicable to many scientifically important and policy-relevant

computer models.

Studying the Antarctic ice sheet’s future behavior motivates the need for a

computationally efficient approach for computer model calibration. We turn to

sequential Monte Carlo methods (cf. Doucet et al., 2000; Del Moral et al., 2006;

Chopin, 2002), building upon particle-based methods for computer model calibra-
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tion (Higdon et al., 2008; Kalyanaraman et al., 2016). Our approach builds upon an

adaptive tempering schedule and an adaptive mutation stage (Jasra et al., 2011),

which have been used for Bayesian variable selection (Schäfer and Chopin, 2013),

Bayesian model comparison (Zhou et al., 2016), and estimating initial conditions

of the Navier-Stokes system of equations (Kantas et al., 2014; Llopis et al., 2018).

By using massive parallelization in a high performance computing environment,

we obtain a dramatic speed-up over current MCMC-based calibration methods,

roughly reducing wall time by a factor of 3000. We also limit expensive computer

model runs by imposing stopping rules and adaptive sampling techniques. We

provide practical guidelines designed to: (1) reduce total wall time; (2) limit the

number of expensive computer model runs; and (3) simplify implementation for the

user. Our computationally efficient calibration approach is readily applicable to

many computer models for which rigorous calibration may be currently infeasible.

We note that we focus on a ‘static’ system where all observations are avail-

able at once; hence, there is only one posterior distribution of interest, which we

approximate using our particle-based approach. The PSU3D-ICE model is dissipa-

tive where it evolves to a single constant steady state for a given set of parameter

values and external forcing (Willems, 1972). Unlike choatic systems such as global

weather models, “microscopic” changes in the initial states do not change the re-

sults; in other words, there is no “butterfly effect” (Lorenz, 1972). We use our

approach to calibrate the PSU3D-ICE model (DeConto and Pollard, 2016) using

paleoclimate data and modern observational records. Previous work focuses on

calibrating the PSU3D-ICE model using fewer parameters (Chang et al., 2016b;

Edwards et al., 2019) or surrogate models using limited training data (Chang et al.,

2016a). Using our new method, we show that the information regarding the extent

of the Antarctic ice sheet in the Pliocene era strongly influences parametric and

projection uncertainty. We find that using improved geological data and analysis

to characterize the Antarctic ice sheet’s contribution to sea level rise in the Pliocene

can bring about considerably sharper sea level projections for future centuries.

The paper is structured as follows. In Section 2.2, we provide an overview of the

ice sheet model (PSU3D-ICE). In Section 2.3, we describe the model calibration

framework and discuss challenges with current calibration methods. We propose

our fast particle-based approach for computer model calibration in Section 2.4. In
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Section 2.5, we demonstrate the application of our method to a simulated example.

In Section 2.6 we apply our method to the PSU3D-ICE model and report our

scientific conclusions. We end with caveats and directions for future research in

Section 2.7.

2.2 Description of computer model and data

In this section, we provide background information for the PSU3D-ICE Antarctic

ice sheet model (DeConto and Pollard, 2016) as well as the paleoclimate records

and modern observations used to calibrate the model.

2.2.1 The PSU3D-ICE model

The PSU3D-ICE model simulates the long-term dynamics of continental ice sheets.

It has previously been applied to past and future variations of the Antarctic ice

sheet (Pollard and DeConto, 2009, 2012a; Pollard et al., 2015, 2016, 2017). Slow

ice deformation under its own weight is modeled by scaled dynamical equations

for internal shear, horizontal stretching, and basal sliding. Other variables and

processes include internal ice temperatures, bedrock deformation beneath the ice

load, surface snowfall and melting, oceanic melting beneath floating ice shelves, and

calving of ice into the ocean (Pollard and DeConto, 2012a). A recently proposed

mechanism called Marine Ice Cliff Instability (MICI) that can drastically attack

ice in marine basins, involving hydrofracturing due to surface liquid water and

structural failure of tall ice cliffs, is included here (Pollard et al., 2015; DeConto and

Pollard, 2016). Note that this mechanism has recently been questioned (Edwards

et al., 2019; Golledge et al., 2019).

For the simulations in this study, a polar stereographic grid spanning Antarc-

tica is used with a horizontal resolution of 80 kilometers (km), which yields a

model run time of approximately 10 to 15 minutes for each set of past and future

simulations described below. This is a considerably coarser spatial resolution than

previous continental-scale applications, which have used resolutions of 10 to 40 km.

However, sensitivity tests with the model show reasonable independence of results

with model resolution, due to the grid-independent parameterization of important
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sub-grid processes such as grounding-line flux and cliff failure (Pollard et al., 2015).

Those tests and the reasonable agreement in additional limited offline tests at 80

km vs. finer resolutions indicate that the coarser resolution is adequate for this

study.

We evaluate the PSU3D-ICE model over three separate time periods. As in

previous ensemble work with this model (Chang et al., 2016a,b; Pollard et al.,

2016; DeConto and Pollard, 2016), the time periods are selected to include major

ice-sheet variations that stringently test the model and have at least some paleo

data to provide useful quantitative constraints. The three time periods are: (1) a

single episode of high sea level rise during the warm mid-Pliocene (which extended

roughly from 3.2 to 2.6 million years before present); (2) the Last Interglacial

period around 125,000 to 115,000 years ago, at the start of the last Pleistocene

glacial-interglacial cycle when global climate was slightly warmer than today, the

major Northern Hemispheric ice sheets were most recently absent prior to the

modern interglacial period, Greenland was smaller, and the West Antarctic ice

sheet may have undergone major collapse; and (3) the last deglacial period from

the Last Glacial Maximum about 20,000 years ago to the present, and then 5,000

years into a warmer future. In Figure 2.1, we present 1500 model simulations from

the PSU3D-ICE model for all three time periods as well as projections until year

2500. We describe the three model simulations below.

To represent a single high sea level episode during the warm mid-Pliocene era

(roughly 3.2 to 2.6 million years before present), we initialize the ice sheet model to

modern conditions and run the model forward for 5,000 years. As described in pre-

vious Pliocene applications (Pollard et al., 2015, 2017), atmospheric climatic forc-

ing is provided by the RegCM3 regional climate model (Pal et al., 2007) adapted

for polar regions, driven by the GENESIS v3 global climate model (Alder et al.,

2011). The atmospheric carbon dioxide concentration is set to at 400 parts per

million by volume (ppmv), and a warm austral summer orbit is specified. We use

oceanic temperatures from the modern World Ocean Atlas database (Levitus et al.,

2012), with a +2 ◦C uniform perturbation added to represent mid-Pliocene ocean

warming. Atmospheric monthly cycles of surface air temperature and precipitation

are used to compute melting and annual mass balance on the ice-sheet surface, and

oceanic temperatures are used to compute basal melting under floating ice shelves
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Figure 2.1. Time series of 1500 simulated model output from the PSU3D-ICE model
where each model run corresponds to a line. Data are generated using 1500 parameter
sets from the prior distribution. The y-axis denotes the Antarctic ice sheet’s contribution
to sea level change in meters (m). We approximate the present as year 1950. Model
simulations that have a non-zero likelihood are denoted by black lines and runs that have
a zero likelihood are displayed in light gray. (Top left) Model output for the Pliocene era
model run where the x-axis denotes years after initialization. (Top right) Model output
for the Last Interglacial Age where the x-axis denotes years before the present. (Bottom
left) Model output for the Last Glacial Maximum where the x-axis denotes years before
the present. (Bottom right) Model projections for 2000-2500 where the x-axis represents
years.

(Pollard et al., 2015).

For the Last Interglacial (LIG), we initialize the ice sheet model to modern

conditions and run the model from 130,000 to 120,000 years before present (130

ka to 120 ka). As described in DeConto and Pollard (2016), LIG climates are

specified as uniform perturbations to modern climatology (Le Brocq et al. (2010)

for atmosphere, and Levitus et al. (2012) for ocean). The atmospheric and ocean

temperature perturbations vary step-wise in time. From 130 ka to 125 ka, they are

+1.97◦C and +1.70◦C respectively. From 125 ka to 120 ka, they are +1.41◦C and

+1.51◦C respectively.
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The Last Glacial Maximum, modern, and future eras are simulated in one con-

tinuous run, over the last 40,000 years through the last deglacial period to modern,

and extended 5,000 years into the future. As described in Pollard et al. (2016),

the model is initialized appropriately at 40 ka (40,000 years Before Present or BP,

relative to 1950 AD) from a previous long-term run. Atmospheric forcing is sup-

plied using a modern climatological Antarctic dataset (Le Brocq et al., 2010), with

uniform cooling perturbations applied proportional to a deep sea-core δ18O record

(Pollard and DeConto, 2009, 2012a). Oceanic forcing is supplied from a coupled

Atmosphere-Ocean General Circulation Model (AOGCM) simulation of the last

20,000 years (Liu et al., 2009b). After reaching present day, each run is extended

for 5,000 years with atmospheric and oceanic forcing as described in DeConto and

Pollard (2016), for the Representative Concentration Pathway (RCP) 8.5 scenario

of future greenhouse gas emissions and concentrations (Meinshausen et al., 2011),

often called ‘business as usual’. Atmospheric temperatures and precipitation are

obtained by appropriately weighting previously saved simulations of the RegCM3

regional climate model for particular carbon dioxide levels, and oceanic temper-

atures are supplied from an archived transient NCAR global model simulation

(Shields and Kiehl, 2016).

After each model run, we extract the pertinent model output, specifically the

Antarctic ice sheet’s contribution to sea level change (m), total ice volume (km3),

and total grounded ice area (km2). We then compare this to the correspond-

ing paleo- or modern observational records. In this study, we examine 11 model

parameters considered to be important in modeling the behavior of the Antarc-

tic ice sheet - OCFACMULT, OCFACMULTASE, CRHSHELF, CRHFAC, EN-

HANCESHEET, ENHANCESHELF, FACEME-LTRATE, TAUASTH, CLIFFV-

MAX, CALVLIQ, and CALVNICK. Detailed descriptions of each parameter are

provided in the Supplement (Lee et al., 2019).

We note that this is a much larger number of parameters than typically con-

sidered for models with such detailed dynamics. The ice sheet model has many

more parameters than the 11 chosen here. The values for many of them are reason-

ably well established in the glaciological literature, resulting from published work

over the last several decades applying similar models to the Antarctic ice sheet.

Those parameters mostly involve terrestrial processes (i.e., where ice is grounded
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on bedrock) that are constrained directly or indirectly by observational data of the

modern ice sheet, and/or laboratory ice physics, such as the rheology of ice, ice

streaming vs. shearing flow, basal sliding coefficients, and modern ice distribution

and thicknesses. The 11 parameters chosen here can have large effects on the re-

sults, but are not well constrained by modern observations because they apply to

processes (1) that have occurred in the past and expected in the future, but are not

active today, or (2) are undergoing rapid change in recent decades. Examples of (1)

are basal sliding coefficients for bedrock in modern ocean regions where grounded

ice advanced during past glacial maxima, and the timescale of bedrock rebound

under varying ice loads. Examples of (2) are coefficients for oceanic melting at the

base of floating ice shelves, and oceanic melting at vertical ice fronts. A subset

of these parameters have been used in more limited ensembles with this model

(Chang et al., 2016b,a; Pollard et al., 2016, 2017), but here the 11 parameters

constitute the bulk of important yet relatively unconstrained parameters in the

model.

2.2.2 Paleoclimate records and modern observations

For the paleoclimate records, we use the Antarctic ice sheet’s contribution to sea

level change in the following eras: Pliocene (∼2.6-3.2 million years before present);

the Last Interglacial Age (∼125,000 to 115,000 years before present); and the Last

Glacial Maximum (∼20,000 years before present). We specify the Antarctic ice

sheet’s contribution to sea level change in terms of global mean sea level equivalents

(SLE) relative to the modern ice sheet, thereby correctly allowing for marine ice

grounded below sea level. The base units are meters (m). We adopt the following

ranges for the paleoclimate records, which account for considerable uncertainty in

published estimates (cf. Kopp et al., 2009; Dutton et al., 2015): (1) 5 m to 25 m

for the Pliocene (Naish et al., 2009; Rovere et al., 2014; Cook et al., 2013); (2) 3.5

m to 7.5 m for the Last Interglacial Age (Fuller et al., 2017; DeConto and Pollard,

2016); and (3) -5 m to -15 m for the Last Glacial Maximum (Ruckert et al., 2017;

Pollard et al., 2016).

Modern observations include total volume and grounded area of the Antarc-

tic ice sheet, as well as ten spatial locations that currently have ice present.
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Units for total volume and total grounded ice area are cubic kilometers (km3)

and square kilometers (km2) respectively. Observations come from the Bedmap2

dataset (Fretwell et al., 2012), which provide the most recent gridded maps of ice

surface elevation, bedrock elevation, and ice thickness. The Bedmap2 maps are

generated using multiple sources, including satellite altimetry, airborne and ground

radar surveys, and seismic sounding.

2.3 Model calibration framework

In this section, we describe the general computer model calibration framework.

In computer model calibration, key computer model parameters are estimated by

comparing the computer model output and observational data (cf. Chang et al.,

2016a; Kennedy and O’Hagan, 2001; Bayarri et al., 2007; Bhat et al., 2010).

Calibration methods also account for key sources of uncertainty such as model-

observation discrepancy and observational error (Kennedy and O’Hagan, 2001;

Bayarri et al., 2007; Brynjarsdottir and O’Hagan, 2014). We describe a model for

output in the form of spatial data as this directly relates to our simulated data

example in Section 2.5; a time series version of this applies to the PSU3D-ICE

model in Section 2.6.

Let Y (s, θ) be the computer model output at the spatial location s ∈ S ⊆ R2

and the parameter setting θ ∈ Θ ⊆ Rd. S is the spatial domain of the process, and

Θ is the parameter space of the computer model with integer d being the number

of input parameters. Y = (Y (s1, θi), ..., Y (sn, θi))
T is the computer model output

at parameter setting θi and spatial locations (s1, ..., sn). Z = (Z(s1), ..., Z(sn))T is

the observed spatial process at locations (s1, ..., sn).

We model the observational data Z as follows,

Z = Y (θ) + δ + ε, (2.1)

where ε ∼ N(0, σ2
ε ) is independently and identically distributed observational error,

and δ is a systemic data-model discrepancy term. The discrepancy δ is modeled

as a zero-mean Gaussian process, where δ ∼ N(0,Σδ(ξδ)). This discrepancy term

is essential for parameter calibration (Bhat et al., 2010; Bayarri et al., 2007) and
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ignoring it may yield biased and overconfident estimates and projections (Bryn-

jarsdottir and O’Hagan, 2014). Σδ(ξδ) is the spatial covariance matrix between

spatial points s1, ..., sn with covariance parameters ξδ. We set standard prior dis-

tributions for the model parameters, θ, and observational error variance, σ2
ε . On

the other hand, informative priors are necessary for the discrepancy term’s covari-

ance parameters ξδ. Then, we infer θ, σ2, and ξδ by sampling from the posterior

distribution, π(θ, σ2
ε , ξδ|Z), via Markov Chain Monte Carlo (MCMC).

Challenges with computer Model Calibration

We focus on a specific class of computer models, characterized by (1) a moderate

run time (6 seconds to 15 minutes); and (2) moderately large parameter space (5

to 20 parameters). The modified PSU3D-ICE Antarctic ice sheet model (Section

2.2) fits the specifications for this class of computer models. Several other im-

portant models that can potentially be modified to fit within this class are single

column atmospheric models (Bony and Emanuel, 2001; Dal Gesso and Neggers,

2018; Gettelman et al., 2019), hydrological soil moisture models (Sorooshian et al.,

1993; Liang et al., 1994), simplified earth systems models (Monier et al., 2013),

and integrated multi-Sector models for human and earth dynamics (Kim et al.,

2006).

The calibration framework requires running the computer model once for each

iteration of the MCMC algorithm. Subject to overall calibration wall times,

MCMC-based calibration methods are well suited to computer models that run

very quickly, typically under 6 seconds per model run. The PSU3D-ICE model

takes approximately 10 to 15 minutes per run on a single 2.3-GHz Intel Xeon

E5-2697V4 (Broadwell) processor. We estimate that a standard MCMC-based

calibration approach for this would take on the order of 2.9 years to approximate

the posterior distribution π(θ|Z).

Surrogate methods such as Gaussian process-based emulators are well suited

to computer models with long run times. A good design is important for building

accurate surrogates. Dense sampling schemes, such as full factorial or fractional

factorial designs, capture higher order interactions; however, running the computer

model at each of the design points is costly. Space-filling designs such as the Latin
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Hypercube Design (McKay et al., 2000; Steinberg and Lin, 2006; Stein, 1987) or

adaptive experimental designs (Chang et al., 2016a; Gramacy and Apley, 2015;

Urban and Fricker, 2010; Queipo et al., 2005) use fewer design points, but may

possibly generate low-fidelity surrogate models by ignoring higher order interac-

tions among inputs (Liu and Guillas, 2017). Since the PSU3D-ICE model exhibits

non-linear dependencies among input parameters (Pollard and DeConto, 2012a),

we would be limited to 6 or fewer parameters using standard emulation-calibration

techniques (with our available computing resources).

2.4 Fast particle-based calibration

In this section, we present a fast particle-based method to calibrate computers

models with moderate model run time (6 seconds to 15 minutes) and a moderate

number of model parameters (5 to 20). We begin with a description of a sequential

sampling-importance-resampling algorithm. Then, we present modifications to the

algorithm designed to improve computational efficiency. We examine advantages

and limitations of our approach. Finally, we discuss tuning mechanisms for our

method and provide practical guidelines.

2.4.1 Sequential sampling-importance-resampling

with mutation

We propose a series of sampling-importance-resampling with mutation operations,

which includes evolving importance and target distributions. The objective is

to efficiently approximate a target distribution using a swarm of evolving parti-

cles. Our approach falls under the umbrella of Sequential Monte Carlo algorithms

(Del Moral et al., 2006; Doucet et al., 2000; Liu and West, 2001), which have gained

wide practical use (cf. Kantas et al., 2015; Papaioannou et al., 2016; Kalyanaraman

et al., 2016; Jeremiah et al., 2011; Morzfeld et al., 2018). In particular, we build

upon the Iterated Batch Importance Sampling (IBIS) (Chopin, 2002; Crisan and

Doucet, 2000) method.
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Sampling-importance-resampling

Sampling-Importance-Resampling (Gordon et al., 1993; Doucet et al., 2001) is a

sampling method used to approximate a target distribution π(θ) using samples

from an importance distribution q(θ). Suppose we want to estimate µ = Eπ
[
g(θ)

]
.

Given q(θ) > 0 whenever g(θ)π(θ) > 0, ∀θ ∈ Θ, we observe that Eπ
[
g(θ)

]
=

Eq

[
g(θ)w(θ)

]
, where w(θ) = π(θ)

q(θ)
is the importance weight and

∑N
i=1w(θi) = 1.

The importance sampling estimator is µ̂n = 1
n

∑N
i=1 g(θi)w(θi) and µ̂n → µ with

probability 1 by the strong law of large numbers. For target distributions with

an unknown normalizing constant, such as the posterior distribution of the model

calibration parameters π(θ|Z), the importance weights w(θi), must be normalized.

Sampling-importance-resampling extends the ideas of importance sampling to

generate an approximation of a target distribution via samples from an importance

distribution and corresponding importance weights (Gordon et al., 1993). The tar-

get distribution π(θ), is approximated by the empirical distribution of the samples

π̂(θ), and their corresponding normalized weights w̃(θi)’s:

π(θ) ≈ π̂(θ) =
N∑
i=1

w̃(θi)δ(θi),

where δ(θi) is the Dirac measure that puts unit mass at θi and
∑N

i=1 w̃(θi) = 1.

Poor choices of importance distributions may yield inaccurate approximations

of the target distribution (Doucet et al., 2000) due to weight degeneracy and sample

impoverishment. As a result, the bulk of the resampled particles, θi, do not reside

in the high-probability regions of π(θ). Weight degeneracy occurs when almost all

of the samples drawn the importance function have near-zero importance weights

leaving just a few samples with any significant weights. Multinomial resampling

using the normalized importance weights w̃(θi) can combat weight degeneracy by

eliminating the particles with very small important weights and replicating those

with higher weights (Gordon et al., 1993; Doucet et al., 2000). After re-sampling,

we reset all of the importance weights w(θi) to 1/N and replace the weighted

empirical distribution π̂(θ) with an unweighted empirical distribution π̈(θ):

π̈(θ) =
1

N

N∑
i=1

Niδ(θi),



37

where Ni is the number of replicates corresponding to particle θi and
∑N

i=1Ni =

N .

Weight degeneracy can lead to sample impoverishment where a small subset of

particles θi’s are heavily replicated in the re-sampling step; hence, few unique par-

ticle remain. The unweighted/re-sampled empirical distribution π̈(θ) may poorly

approximate the true target distribution π(θ). To alleviate sample impoverish-

ment, mixture approximations (Gordon et al., 1993) or kernel smoothing methods

(Liu and West, 2001) can mutate or rejuvenate the replicated particles. However,

these methods may not scale well to high-dimensional target distributions (Doucet

et al., 2000).

An alternative method mutates the replicated particles with samples from

K(θ
(t−1)
i ), the Metropolis-Hastings transition kernel (Gilks and Berzuini, 2001),

whose stationary distribution is also the target distribution π(θ). Here we run J

Metropolis-Hastings updates for each particle θi, for i = 1, ..., N . Other mutation

schemes use genetic algorithms (Zhu et al., 2018) or different transition kernels,

K(·) (Papaioannou et al., 2016; Murray et al., 2016). The length of the Markov

chain, J , will be short and dependent on computing resources. We set the jth sam-

ple drawn via MCMC as the mutated particle θ̃i. Since θ̃i ∼ π(θ), the resulting

empirical distribution π̃(θ) approximates the target distribution π(θ):

π(θ) ≈ π̃(θ) =
N∑
i=1

θ̃iδ(θ̃i).

Even with the mutation step, sampling-importance-resampling may incur large

computational costs. Poor choices of importance distributions may result in ex-

treme sample impoverishment, due to the large discrepancy between the impor-

tance and target distribution. Here, the mutation stage typically requires very long

(and costly) chains of the Metropolis-Hastings algorithm to move the particles into

the high-probability regions of the target distribution (Li et al., 2014).

Sequential sampling-importance-resampling

Our fast particle-based approach addresses the limitations noted above. We pro-

pose a series of intermediate posterior distributions πt(θ|Z), for t = 1, ..., T which

will act as importance and target distributions. Existing methods use intermediate
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posterior distributions for parameter estimation of static systems (Chopin, 2002;

Papaioannou et al., 2016; Nguyen, 2014), uncertainty quantification for chemical

processes (Kalyanaraman et al., 2016), and calculating maximum-likelihood esti-

mates for hierarchical systems (Lele et al., 2007).

Intermediate posterior distributions can be generated using likelihood temper-

ing (Chopin, 2002; Neal, 2001; Liang and Wong, 2001). For each intermediate

posterior distribution πt(θ|Z), the likelihood component is a fractional power of

the original likelihood p(Z|θ). The tth intermediate posterior distribution, πt(θ),

is generated as follows:

πt(θ|Z) ∝ p(Z|θ)γtp(θ), (2.2)

where γt’s are determined according to a schedule where γ0 = 0 < γ1 < · · · < γT =

1.

For cycle t = 1, we set the importance distribution to be the prior distribution

p(θ), and the target distribution to be the first intermediate posterior distribution,

π1(θ|Z). For cycle t, the importance distribution is πt−1(θ|Z) and the target dis-

tribution is πt(θ|Z). Note that the likelihood incorporation schedule need not be

uniform. For instance, more of the likelihood can be incorporated into the earlier

intermediate posterior distributions.

Finally, we mutate the particles via short runs of the Metropolis-Hastings algo-

rithm, where the stationary distribution is πt(θ), the tth intermediate posterior dis-

tribution. Note that the importance and target distributions are consecutive (tth

and t + 1th) intermediate posterior distributions, so there is considerable overlap

between the high-probability regions of the two distributions. Convergence results

for this family of Sequential Monte Carlo algorithms are provided in Crisan and

Doucet (2000), Beskos et al. (2016), and Giraud et al. (2017).

2.4.2 Stopping criterion

We present a stopping rule that controls the number of Metropolis-Hastings up-

dates within the mutation step. This provides an automatic heuristic determining

when to stop the mutation stage, and it can also eliminate unnecessary computer

model runs. The stopping rule is based on the Bhattacharyya distance (Bhat-
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tacharyya, 1946), DB(p, q), which measures the similarity between two distribu-

tions, p(θ) and q(θ). We first evaluate the stopping criterion after 2k Metropolis-

Hastings updates; if the criterion is not met, then we re-evaluate after k subsequent

updates.

Consider θi,kt , the ith particle, or parameter setting, after the kth mutation

step of the Metropolis-Hastings algorithm during cycle number t. Let θkt =

{θ1,kt , ..., θn,kt } denote the set of parameters θi,kt ’s. Let h(θi,kt ) be the target metric

of interest evaluated at parameter setting θi,kt , in this case, the Antarctic ice sheet

contribution to sea level change in 2100. Let h(θkt ) = {h(θ1,kt ), ..., h(θn,kt )} denote

the set of target metrics h(θi,kt )’s.

At mutation update 2k, we partition the range spanned by two sets of target

metric samples – h(θkt ) and h(θ2kt ) – into m non-overlapping blocks of equal width.

Then, we compute the real-valued Bhattacharyya distance DB(h(θkt ),h(θ2kt )) =

− ln
(∑n

i=1

√
piqi

)
where pi and qi are the proportion of samples, from h(θkt ) and

h(θ2kt ) respectively, that lie within the ith partition. The mutation step proceeds

until DB(h(θk), h(θ2k)) < εB, the stopping criterion. If the stopping criterion is

not fulfilled, we run k additional Metropolis-Hastings updates and evaluate the

stopping criterion at iterations 3k and 2k. We repeat this until the stopping

criterion is met. We obtain the threshold εBD through a Monte Carlo simulation

run prior to the calibration study. Section 2.4.4 discusses tuning for k, εB, and m.

2.4.3 Adaptive incorporation schedule

In Equation 2.2, we introduce a standard incorporation schedule γ = (γ0, ..., γT ).

In the standard implementation, the user must select the total number of sampling-

importance-resampling cycles (T) and the likelihood incorporation increments γt

for t = (0, ..., T ). Past research proposed novel methods to adaptive choose the

incorporation schedule, γt, yet maintain a constant number of cycles, T (Nguyen,

2014; Kalyanaraman et al., 2016). Here, we introduce an adaptive incorpora-

tion schedule that automatically determines both the total number of sampling-

importance-resampling cycles, T , and incorporation schedule,γ. Introducing the

adaptive incorporation schedule into the particle-based calibration framework pro-

vides computational and practical benefits by (1) reducing the number of computer
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model evaluations; (2) decreasing the overall calibration wall times; and (3) sim-

plifying implementation for the user.

The adaptive incorporation schedule proceeds as follows. On initialization, we

set the initial incorporation increment γ0 to 0. We draw the initial set of particles

θ0 from π0(θ|Z) ∝ L(θ|Z)0p(θ) = p(θ), the prior distribution of model parameters.

For cycle t = 1, 2, 3, ..., we calculate the full likelihood L(θ
(i)
t−1|Z) for i = 1, ..., N

where θ
(i)
t−1 denotes the parameter samples from the previous cycle t − 1. For

computational efficiency, we reuse the likelihood evaluations from the previous

cycle. Next, we find the optimal γt that returns an effective sample size (ESS) of

ESSthresh or a sample size closest to ESSthresh:

γt = argminγ{(ESSγ − ESSthresh)2}
, where γ ∈ (γmin, 1 − γt−1), γmin is a previously set minimum incorporation

value, ESSγ =
∑N

i=1
1

w
(i)2
t

, and w
(i)
t ∝ L(θ

(i)
t |Z)γ. Note that we can lower com-

putational costs by evaluating the full likelihood L(θ
(i)
0 |Z) only once before the

optimization.

We stop the scheduling algorithm when
∑t

i=1 γt = 1. This occurs when the

entire likelihood has been incorporated, and the target distribution has evolved to

the full posterior distribution π(θ|Z). Note at each cycle t, we set the incorporation

increment (γt) to be between γmin and 1 −
∑t

i=1 γt. In Section 2.4.4, we describe

how to set the minimum incorporation increment γmin and the threshold effective

sample size, ESSthresh.

Adaptive likelihood incorporation schedule

1. Initialization: At t = 0, set γ0 = 0.

2. When t > 0 and
∑t−1

i=1 γi < 1

• Compute L(θ
(i)
t−1|Z) for i = 1, ..., N

• Set γt = argminγ{(ESSγ − ESSthresh)
2}, where ESSγ =

∑N
i=1

1

w
(i)2
t

,

w
(i)
t ∝ L(θ

(i)
t |Z)γ, and γ ∈ (γmin, 1− γt−1).

• γmin is a predetermined minimum incorporation value

3. When t > 0 and
∑t−1

i=1 γi = 1: Stop Calibration
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Algorithm 1: Fast Particle-based Calibration

Data: Z
Initialization:
Draw θ

(i)
0 ∼ p(θ) for particles i = 1, ..., N .

Set w
(i)
0 = 1/N , γ0 = 0, and K;

for cycles t = 1, ...., T do
1. Compute full likelihood:
Calculate L(θ

(i)
t−1|Z) for i = 1, ..., N ;

2. Select optimal likelihood incorporation increment γt:
Set γt = argminγ{(ESSγt − ESSthresh)2}, where

γ ∈ (0.1, 1−
∑t−1

i=1 γt−1)

Note: ESSγt =
∑N

i=1
1

w
(i)2
t

and w
(i)
t ∝ L(θ

(i)
t |Z)γt ;

3. Compute importance weights:
w

(i)
t ∝ w

(i)
t−1 × L(θ

(i)
t |Z)γt ;

4. Re-sample particles:
Draw θ

(i)
t from {θ(1)t−1, ..., θ

(N)
t−1} with probabilities ∝ {w(1)

t , ..., w
(N)
t };

5. Set intermediate posterior distribution:
Set πt(θ|Z) ∝ L(θi|Z)γ̃π(θ), where γ̃ =

∑t
j=1 γj;

6. Mutation:
Using each particle (θ

(1)
t , ..., θ

(N)
t ) as the initial value, run N chains of

an MCMC algorithm with target distribution πt(θ|Z) for 2K
iterations

7. Check stopping criterion:
Compute δB = DB(h(θKt ), h(θ2Kt ));
if δB < εB then

Set θ
(i)
t = θ

(i),2K
t ;

else
Run K additional updates and re-evaluate stopping criterion
Continue until stopping criterion is met

8. Stop when full likelihood is incorporated;

if
∑N

i=1 γt = 1 then
End Algorithm;

else

Reset weights: w
(i)
t = 1/N for particles i = 1, ..., N ;

Set t=t+1 and return to Step 1;
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2.4.4 Tuning the algorithm

Much of the algorithm above is automated. However, the user needs to choose: (1)

the total number of particles, N ; (2) the number of Metropolis-Hastings updates

run before checking the stopping criterion, K; (3) the minimum incorporation γmin;

and (4) the effective sample size threshold ESSthresh. (1) and (2) should be set

based on the amount of available computational resources, but our simulation study

results favor having more particles N than longer Metropolis-Hastings updates K.

We chose 2015 particles, which requires 56 nodes with 36 processors per node;

thereby leaving one processor to execute master tasks. We set the reference length

k for the Metropolis-Hastings updates to be 7. Based on simulation experiments,

the empirical distribution of particles stabilize after 10 to 15 updates. In this

study, we set the floor for the incorporation increment, γmin to be 0.1 so that at

each cycle, the weights for the importance sampling step is at least L(θ|Z)0.1.

The automated likelihood tempering schedule (Section 2.4.3) ensures that the

effective sample size (ESS) of the final particles does not fall below a pre-determined

threshold ESSthresh. For moderate-dimensional parameter spaces (5-20), the effec-

tive sample size is important as it is an indicator of the discrepancy between the

true target distribution and the particle-based empirical distribution (cf. Doucet

et al., 2001; Gordon et al., 1993). A low ESS suggests that only a few particles

have any significant weight, and it is often indicative of weight degeneracy and a

poor approximation of the target distribution (Kong, 1992). A suitable ESS can

be obtained by minimizing ρ, the second moment of the Radon-Nikodym deriva-

tive between the target and the proposal distribution (Whiteley et al., 2016; Kong,

1992), generating more sophisticated proposal distributions via implicit sampling

(Morzfeld et al., 2015), and examining distances between target and proposal dis-

tributions within an intrinsic dimension (Agapiou et al., 2017). Other research

(Martino et al., 2017) point to alternative definitions of the ESS than the tradi-

tional method based on the variance of the weights (Liu and Chen, 1998). In this

study, we utilize the common definition of ESS (Kong, 1992), which is based on

the variance of the importance weights, and we set ESSthresh = N
2

, which is the

typical threshold used by many sequential Monte Carlo methods (Del Moral et al.,

2006) prior to resampling.

We obtain εBD as follows. Prior to running the calibration algorithm, we ob-
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tained samples of a target metric (Antarctic Ice Sheet contribution to sea level rise

in 2100) from an initial survey of computer model runs. Let µ and σ2 denote the

sample mean and variance of the target metric mentioned above. We generate a

collection of B samples of size n, denoted as x = {x1, ..., xB}. Here, xb ∼ N (µ, σ2),

with µ and σ2 previously defined. Let xbase ∼ N (µ, σ2) be a baseline sample for

calculating the Bhattacharrya distance. We calculate DB(xb, xbase) for b = 1, ..., B,

and set εBD to be the 0.975 quantile. In this study, we chose B = 1000 and the

number of partitions m = 200.

We calibrate the PSU3D-ICE model using Cheyenne (Computational and In-

formation Systems Laboratory, 2017), a 5.34-petaflops high performance computer

operated by the National Center for Atmospheric Research (NCAR). Parallelized

operations, such as calculating importance weights and mutation, proceed via mes-

sage passing interface (MPI). To limit communication costs, we build the ice sheet

model and load the relevant datasets separately on each processor.

2.4.5 Computational advantages and limitations

We take advantage of the embarrassingly parallel nature of the importance sam-

pling and mutation steps to reduce wall time. In our approach, the Metropolis-

Hastings updates in the mutation stage are the primary drivers of computational

cost. To address this cost, we propose an automated stopping rule for the mutation

stage. We also introduce an adaptive likelihood incorporation schedule that au-

tomatically selects an efficient number of sampling-importance-resampling cycles.

The stopping rule and adaptive likelihood incorporation schedule simplifies imple-

mentation for the user (due to automation) and reduces the number of computer

model runs needed for calibration.

Our approach is a viable alternative to existing calibration methods, which

may be computationally infeasible. MCMC-based calibration methods using the

computer model is computationally prohibitive due to the sequential nature of

MCMC algorithms. Emulation-calibration methods, while efficient for expensive

computer models, do not easily scale to problems with many parameters (say

more than five or six for this model). Also, multiple-try MCMC methods (Liu

et al., 2000), a mixture of importance sampling and MCMC, may incur large
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costs because several parallel processes must be initialized and terminated at each

iteration of the MCMC chain. Multiple-try MCMC may experience slow mixing,

especially when the Markov chain moves to the low-probability regions of the target

distribution distribution (Martino, 2018).

While our method has many computationally advantages, we note that the

heavy parallelization in our approach requires access to and the ability to work with

high performance computing resources. Given our current computing resources,

our method is ideally suited to models that run between six seconds and 15 minutes.

For models with longer run times, the computational costs remain prohibitive.

MCMC algorithms may be feasible and simpler to implement for models with

shorter run times. As is the case with parallel computing methods, communication

costs must be small relative to the computer model run times; otherwise we would

not reap the benefits of our approach.

2.5 Simulated example and results

In this section, we calibrate a simple computer model using three different methods.

We simulate a data set of size n = 300 where the spatial locations si for i = 1, ..., n

are in the unit domain [0, 1]2. We generate the data via a modified version of

the computer model presented in Bayarri et al. (2007). We construct a simple

computer model as follows:

Y (si, θ) = 5× exp{−θ(lati × loni)},

where Y (si, θ) is a real-valued computer model output at model parameter setting θ

and at a spatial location specified by lati and loni, which represent the latitude and

longitude of the ith location. The true process includes a data-model discrepancy

term δ(si) , which is defined as δ(si) = −1.5× (lati × loni), and iid observational

error εi ∼ N (0, σ2
ε ). For this example, we set θ = 1.7 and σ2

ε = 0.5. To generate

the observational data, Z(si), we combine the computer model output Y (si, θ),

the data-model discrepancy, δ(si), and the observational error, εi, as follows:

Z(si) = Y (si, θ) + δ(si) + εi.
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We model the observations as

Z(si) = 5× exp{−θ(lati × loni)}+ δ(si) + εi,

where εi ∼ N (0, σ2
ε ) are the iid observational errors. Since the actual form of

the discrepancy term is unknown, we model the discrepancy δ(si), as a zero-mean

Gaussian process, δ(s) ∼ GP(0,Σδ(ξδ)), where ξδ is a vector containing the co-

variance parameters. To allow for some roughness of the process between spatial

locations we choose an exponential covariance function Σδ(ξδ) = σ2
δ exp

(
− |si−sj |

φδ

)
with ξδ = (φδ, σ

2
δ ). To complete the Bayesian framework, we use the prior distri-

butions: θ ∼ N (0, 100), σ2
ε ∼ IG(2, 2), φδ ∼ U(0.01, 1.5), and σ2

δ ∼ IG(2, 2).

We compare results from three calibration methods: (1) MCMC-based, (2)

standard particle-based, and (3) adaptive particle-based. In the MCMC-based

method, we generated 100, 000 samples from π(θ, φδ, σ
2
δ , σ

2
ε |Z) via the Metropolis-

Hastings algorithm. Next, the standard and adaptive particle-based calibration

methods use N = 2000 particles to approximate π(θ, φδ, σ
2
δ , σ

2
ε |Z). For the stan-

dard particle-based method, we set the total number of cycles to be 10, and es-

tablish a uniform likelihood incorporation γ = (γ1, ..., γ10), where γt = 0.1 for

t = 1, ..., 10. We run K = 100 Metropolis-Hastings updates for each mutation cy-

cle. In the adaptive particle-based calibration approach, our algorithm automati-

cally chose four cycles with a likelihood incorporation schedule γ = (γ1, γ2, γ3, γ4) =

(0.100, 0.148, 0.2743, 0.4777) using the adaptive likelihood incorporation schedule.

For each mutation step, we run batches of K = 5 Metropolis-Hastings updates

until the stopping criterion is met.

All three methods yield comparable calibration results (see Table 2.1); however,

our adaptive particle-based approach exhibits a considerable speedup in computa-

tion. For the model parameter, θ, calibration via MCMC (the ”gold standard”)

provides estimate θ̂mcmc = 2.04 and 95% credible interval bounds (1.06, 3.17).

Similarly, the standard particle-based approach generates estimate θ̂std = 2.04

with 95% credible interval bounds (1.03, 3.11) and the adaptive particle-based ap-

proach yields estimate θ̂adapt = 2.04 with 95% credible interval bounds (1.05, 3.14).

The adaptive particle-based approach has considerably shorter wall times due to

fewer computer model evaluations. To illustrate, the adaptive approach requires

just 10× 4 = 40 sequential computer model runs, as opposed to 10× 200 = 2000
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runs for the standard particle-based approach and 100, 000 for the MCMC-based

approach.

Table 2.1. Simulated example calibration results for three calibration methods: (1)
Adaptive particle-based; (2) Standard particle-based; and (3) MCMC with full model.
All three approaches yield comparative results.

θ φδ σ2
δ σ2

ε

Adaptive Particle (Est) 2.04 1.22 0.78 0.44
Adaptive Particle (95% CI) (1.05,3.14) (0.83,1.50) (0.36,1.32) (0.36,0.52)

Standard Particle (Est) 2.04 1.22 0.80 0.44
Standard Particle (95% CI) (1.03,3.11) (0.81,1.50) (0.32,1.33) (0.35,0.51)

MCMC-Based (Est) 2.04 1.21 0.79 0.44
MCMC-Based (95% CI) (1.06,3.17) (0.80,1.50) (0.34,1.33) (0.36,0.52)

2.6 Application to the PSU3D-ICE model

Here we provide specifics for calibrating the PSU3D-ICE model and discuss how our

method provides key computational benefits over existing calibration approaches.

We also summarize results from a comparative analysis of three calibration meth-

ods within the context of the PSU3D-ICE model. The efficiency of our compu-

tational approach allows us to study the effect of observations from the Pliocene

on parameter calibration and projections of sea level rise and also enables us to

conduct a prior sensitivity analysis.

2.6.1 Calibrating PSU3D-ICE

We calibrate 11 model parameters using both paleoclimate records and modern

observations from satellite imagery (Section 2.2). For the paleoclimate records,

modern volume, and modern grounded ice area, we use independent truncated

normal distributions. The upper and lower ranges for the truncated normal like-

lihood functions are based on domain area expertise and past studies (Section

2.2.2).

We calibrate the PSU3D-ICE model using five observations: (1) Zplio, the

Antarctic ice sheet’s contribution to sea level change (m) in the Pliocene; (2)

Zlig, contribution in the Last Interglacial Age (m); (3) Zlgm, contribution in the
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Last Glacial Maximum (m); (4) Zvol, the Antarctic ice sheet’s total ice volume in

the modern era (km3) ; and (5) Zarea, total grounded ice area in the modern era

(km2). We also use observations of ice occurrence taken at 10 strategic point in

the Antarctic Ice Sheet. Here, Zspat = (Zspat,1, ..., Zspat,10). All ten locations have

ice presence; so, Zspat,i = 1 for locations i = 1, ..., 10.

Likelihood

For the observational dataset,

Z = (Zplio, Zlig, Zlgm, Zvol, Zarea, Zspat,1, ..., Zspat,10), we define a likelihood function

using truncated normal distributions and indicator functions. For the modern

volume, modern total grounded area, and paleoclimate records, we use independent

truncated normal distributions as the observational model. TN(µ, σ2, α, β) denotes

a truncated normal distributions with the mean (µ), variance (σ2), upper bound

(α), and lower bound (β).

Zplio ∼ T N (µ = Y (θ)plio, σ
2 = 302, α = Y (θ)plio − 10, β = Y (θ)plio + 10)

Zlig ∼ T N (µ = Y (θ)lig, σ
2 = 102, α = Y (θ)lig − 2, β = Y (θ)lig + 2)

Zlgm ∼ T N (µ = Y (θ)lgm, σ
2 = 202, α = Y (θ)lgm − 5, β = Y (θ)lig + 5)

Zvol ∼ T N (µ = Y (θ)vol, σ
2 = 1.6×1015, α = Y (θ)vol−2.5×1015, β = Y (θ)vol+2.5×1015)

Zarea ∼ T N (µ = Y (θ)ar, σ
2 = 0.6×1012, α = Y (θ)ar−1.5×1012, β = Y (θ)ar+1.5×1012)

The second set of observations are binary occurrences of ice at 10 strategically

placed points on the Antarctic ice sheet (Lee et al., 2019). For these observations,

we use indicator functions as the observational model as follows:

Zspat ∼
10∏
i=1

I(Y (θ)spat,i = Zspat,i),

where Y (θ)spat,i denotes the model spatial output for a model run using parameters

θ.
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Priors

We set the prior distributions for the 11 model parameters based on expert knowl-

edge. Five model parameters - CALVNICK, TAUASTH, CALVLIQ, CLIFFV-

MAX, FACEMELTRATE - have uniform prior distributions. Here, θ ∼ U(α, β),

where α and β denote the upper and lower bounds of the uniform distribution.

The prior distributions are as follows:

• θCALV NICK ∼ U(0, 2)

• θTAUASTH ∼ U(1000, 5000)

• θCALV LIQ ∼ U(0, 200)

• θCLIFFVMAX ∼ U(0, 12000)

• θFACEMELTRATE ∼ U(0, 20)

Six parameters - OCFACMULT, OCFACMULTASE, CRHSHELF,

ENHANCESHEET, ENHANCESHELF, CRHFAC - have log-uniform prior distri-

butions. Here, θ ∼ LU(base, α, β), which implies logbase(θ) ∼ U(α, β) where α

and β denote the upper and lower bounds of the uniform distribution. The prior

distributions are as follows:

• log10(θOCFACMULT ) ∼ U(−0.5, 0.5)

• log10(θOCFACMULTASE) ∼ U(0, 1)

• log10(θCRHSHELF ) ∼ U(−7,−4)

• log10(θENHANCESHEET ) ∼ U(−1, 1)

• log0.3(θENHANCESHELF ) ∼ U(−1, 1)

• log10(θCRHFAC) ∼ U(−2, 2)

We can estimate the data-model discrepancy as an additive model bias, α ∈ R,

such that our observational model (2.1) is modified to be Z = Y (θ) + α + ε.

For observations that are discontinuous in time, past ice sheet calibration studies

(Edwards et al., 2019; Williamson et al., 2013; Ruckert et al., 2017) model the dis-

crepancy term as a tolerance to the observation measurement error, which follows

the zero-mean Gaussian process framework provided in Kennedy and O’Hagan

(2001). For the PSU3D-ICE model, we find that calibration with and without the

discrepancy term yields very similar results.
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2.6.2 Computational benefits of our approach

Our adaptive particle-based approach greatly reduces calibration wall times com-

pared to using an all-at-once random-walk Metropolis-Hastings algorithm as in

past ice-sheet calibration studies (cf. Ruckert et al., 2017; Bakker et al., 2016; Pe-

tra et al., 2014). Our fast calibration approach had a total wall-time of ∼ 6.5

hours and evolved 2015 particles for an effective sample size (ESS) of 1533. For

the MCMC-based calibration approach, it would be computationally prohibitive

to generate a large enough sample with a similar ESS. Instead, we estimate the

time to generate an ESS of 1533. We ran the Metropolis-Hastings algorithm for 12

days to generate 1500 samples. We calculated the effective sample size per hour

(Jones et al., 2006) for each model parameter and then project the time required

to obtain an ESS of 1533, the ESS from the particle-based approach. It would

require 12 to 18 months running the Metropolis-Hastings algorithm to generate

the same ESS as our particle-based approach.

The computing times are based on the PSU3D-ICE model run at 80 km spatial

resolution and an adaptive temporal resolution with a baseline timestep of 8 years.

Run times are for the NCAR Cheyenne HPC system with 2.3-GHz Intel Xeon

E5-2697V4 Broadwell processors. Note that in practice, computation times for the

particle-based methods can be slightly higher due to initialization and communi-

cations costs inherent to parallelized computing. Reduction of initialization and

communication costs is an active area of research with novel methods in develop-

ment (Ballard et al., 2016; Fan et al., 2018). Note that the computation times for

the MCMC-based approach are quite optimistic as we initialized the Markov chain

and set the proposal distribution using all samples generated from our particle-

based approach. In general, MCMC algorithms would not have access to these

particles, and would therefore likely require even more iterations of the MCMC

algorithm to achieve the desired ESS.

2.6.3 Comparisons to other calibration approaches

We conduct a comparative study between our particle-based calibration approach

and competing emulation-calibration methods (see Supplement (Lee et al., 2019)

for details). We calibrate the PSU3D-ICE model using three methods:
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1. A low-dimensional emulation-calibration approach: This approach varies

only three parameters – OCFACMULT, CALVLIQ and CLIFFVMAX – and

fixes the remaining eight parameters at scientifically justified values provided

by our expert on ice sheets (DP). We include this approach because reduc-

ing the number of parameters is a common way to address computational

challenges associated with calibration with long model run times (e.g. Ed-

wards et al., 2019; Chang et al., 2014; Sacks et al., 1989). We chose these

three parameters because they are considered to be important in modeling

the long-term evolution of the Antarctic ice sheet (Edwards et al., 2019; De-

Conto and Pollard, 2016). We train a Gaussian process emulator using 512

design points and use the squared exponential covariance function to repre-

sent the dependence between the design points. For the experimental design,

we use a full factorial design with eight equally spaced points for each model

parameter.

2. A high-dimensional emulation-calibration approach: We calibrate all 11 se-

lected parameters of the PSU3D-ICE model. We train a Gaussian process

emulator using 512 design points generated via Latin Hypercube Design

(LHC). Similar to the low-dimensional case, we use an exponential covari-

ance function to model the dependence between design points. Emulation

and calibration details are provided in the Supplement (Lee et al., 2019).

3. Our particle-based approach: We use our heavily parallelized particle-based

approach to calibrate all 11 selected parameters.

For the first method, we find that by fixing eight of eleven parameters, we

greatly constrain the parameter space and thereby underestimate the parametric

uncertainty underlying the ice sheet model. Projections for the Antarctic sea level

contribution in 2100-2500 are much lower and overconfident compared to those

from our particle-based approach (Figure 2.3). For the second method, the limited

amount of design points (training data) generates an inaccurate surrogate model

as shown by the large out-of-sample cross-validated mean squared prediction error

(Supplement (Lee et al., 2019)). This calls into question the parameter estimates

as well as the resulting projections. As shown in Figure 2.2, the second approach

produces extremely sharp posterior distributions for two key model parameters,
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CLIFFVMAX and TAUASTH, which is inconsistent with the parameter estimates

from the particle-based approach.
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Figure 2.2. Posterior densities of model parameters using the adaptive particle-based
approach (solid line), emulation calibration with three parameters (dashed line), and
emulation calibration with 11 parameters (dotted line). Three-parameter emulation-
calibration experiment use model parameters OCFACMULT, CALVLIQ, and CLIFFV-
MAX. The 11-parameter emulation-calibration experiment include all model parameters.
Shaded panels denote parameters used in the three-parameter emulation-calibration ex-
periment.

Figure 2.4 compares the posterior densities of projections and hindcasts for the

three-parameter emulation-calibration approach and our 11-parameter particle-

based method. Note that the three-parameter emulation-calibration approach

(striped blue shading) underestimates the tail-area risk, or the 99-th% quantile,

for sea level projections compared to our approach (striped red shading). By cal-

ibrating more parameters, we can expect the tail-area risk to increase by a factor

of 74 in 2100 and 65 in 2300.
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Figure 2.3. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s con-
tribution to sea level change in 2100, 2300, and 2500 using the adaptive particle-based
approach (solid line), emulation calibration with three parameters (dashed line), and
emulation calibration with 11 parameters (dotted line). (Bottom Panel) Empirical sur-
vival functions of the projected Antarctic ice sheet’s contribution to sea level change in
2100, 2300, and 2500 using the adaptive particle-based approach (solid line), emulation
calibration with three parameters (dashed line), and emulation calibration with 11 pa-
rameters (dotted line). Three-parameter emulation results in sharper densities centered
on distinctively lower point estimates. The 11-parameter emulation-calibration approach
results in highly uncertain projections.

The three-parameter emulation calibration required 1.5 minutes to fit the Gaus-

sian process emulator using 12 processors on the Cheyenne HPC system and ∼1.5

hours to generate 500k samples via MCMC from the posterior distribution. The

11-parameter emulation calibration required 10 minutes to fit the emulator us-

ing 12 processors on the Cheyenne HPC system and ∼1.5 hours to generate 500k

samples via MCMC from the posterior distribution.
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2.6.4 The effect of deep time observations on projections

Calibration can be improved by considering an important source of uncertainty,

the state of the Antarctic ice sheet during the Pliocene era (Dolan et al., 2018;

Salzmann et al., 2013; Dutton et al., 2015). There is some evidence that the

Antarctic ice sheet experienced fluctuations in volume during the Pliocene era

(Naish et al., 2009). Other studies suggest that at peak warming episodes during

the Pliocene era, the Antarctic ice sheet had a lower volume, contributing to higher

sea level rise (Cook et al., 2014; Dolan et al., 2011; Dowsett and Cronin, 1990;

Pollard and DeConto, 2009; Pollard et al., 2015; De Boer et al., 2014). However, the

maximum Antarctic ice retreat and sea level rise contribution during the Pliocene

remains largely uncertain (Dutton et al., 2015; Rovere et al., 2014).

We examine whether the width of the Pliocene observation windows (5 m to

25 m, 5 m to 10 m, 10 m to 25 m) has an influence on sea level projections and

parameter estimation. (See Supplement (Lee et al., 2019) for details on how these

windows affect the likelihood function.) Our results demonstrate that information

regarding the nature of the Antarctic ice sheet during the Pliocene era has a

strong influence on sea level projections. Figure 2.5 illustrates how the posterior

densities for two key model parameters (CALVLIQ and CLIFFVMAX) differ under

the three Pliocene windows. Both parameters influence ice dynamics inherent to

marine cliff instability (MICI) – hydrofracturing due to surface melt (CALVLIQ)

and structural failure of tall ice cliffs (CLIFFVMAX). As shown in Figure 2.6,

increasing the Pliocene window from the range 5 m to 10 m to the range 10 m

to 25 m requires more aggressive MICI (larger values of these parameters); hence

resulting in higher projections of sea level rise (e.g. exceeding 3 m in 2300). If we

are very uncertain about the Pliocene (represented by a very large window of 5 m

to 25 m), the resulting sea level projections in 2300 also become highly uncertain

(95% credible interval of 1.2 m to 12.4 m), compared to projections from narrower

windows of 5 m to 10 m (95% credible interval of 1.2 m to 11.5 m) or 10 m to 25

m (95% credible interval of 3.0 m to 12.9 m). The experiments using low (5 m to

10 m) and high (10 m to 25 m) Pliocene windows utilized subsets of the samples

generated from the main calibration, and the corresponding sub-samples had an

effective sample size (ESS) of 891 and 642, respectively.
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2.6.5 Sensitivity to model parameter priors

Calibration results may exhibit sensitivity to the choice of the model parameters’

prior distributions (cf. Jackson et al., 2015; Reese et al., 2004), especially for sparse

observational records. This constitutes an important source of second-order, or

deep uncertainty, an important factor in the design of risk management strategies

(Keller and McInerney, 2008). To examine prior sensitivity, we calibrate the ice

sheet model using two sets of prior distributions which are in the form of uniform

or log-uniform distributions. One set of priors has a much wider range (large

difference between upper and lower bounds) than the other. The much wider ranges

represent physically possible parameter values that do not violate any fundamental

physical laws, and the narrower ranges represent values that yield reasonable model

behavior found in many years of unstructured tuning by the model developers

(Pollard and DeConto, 2012a). We provide additional details in the Supplement

(Lee et al., 2019).

The choice of prior distributions has a notable effect on parameter estimates

(Figure 2.7) and sea level projections (Figure 2.8 and Table 2.2). Note that con-

straining the model parameters a priori may underestimate sea level projections.

However, overly wide prior distributions may permit physically unrealistic out-

comes. Hence, it is important to carefully construct prior distributions based on

domain area expertise, as we have in this manuscript. In particular, changing the

prior on the parameter CLIFFVMAX – wastage rate for unstable marine ice cliffs

– can have a strong impact on projections. For a prior range of 0 km/year to 12

km/year, the 95% credible interval for the Antarctic ice sheet’s contribution to sea

level rise in 2300 is 1.2 m to 12.4 m. A wider prior range of 0 km/year- to 600

km/year results in considerably higher projection uncertainty denoted by a 95%

credible interval of 0.7 m to 21.0 m. For the experiment using the wide priors, our

particle-based calibration approach utilized 2015 particles to obtain an effective

sample size (ESS) of 1583.

Table 2.2. Antarctic ice sheet’s projected contribution to sea level change in 2100-2500
after calibration using narrow and wide prior distributions.

Prior Year 2100 Year 2200 Year 2300 Year 2400
Narrow 0.4 (-0.3, 1) 3.8 (0.1, 6.7) 7.9 (1.2, 12.4) 10.6 (2.5, 15.5)
Wide 1.8 (-0.4, 5.5) 10 (-0.2, 19.5) 13.9 (0.7, 21) 15.5 (1.8, 21.8)
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The wider range for CLIFFVMAX explores a fundamental uncertainty in MICI

– the rate at which very tall ice cliffs will disintegrate back into the ice sheet

interior. If grounding lines retreat into the interior of deep Antarctic basins, the

exposed ice cliffs will be taller than any observed today, and the wastage velocities

(CLIFFVMAX) could conceivably be much greater than the approximately 12

km per year observed today at the ice fronts of major Greenland glaciers (which

might not even be approximate analogs for MICI, being driven instead mainly by

buoyant calving; Murray et al. (2015)). The bimodal character of the posterior

densities in the top panels of Figure 2.8 for 2300 and 2500 are due to the very large

CLIFFVMAX range. The upper peak centered on around 20 m is produced by

CLIFFVMAX values of approximately 100 km per year and above, which produce

collapse of almost all marine ice in both East and West Antarctica. The lower

peak centered on around 5 m occurs for many lower CLIFFVMAX values, for

which the more vulnerable West Antarctic ice sheet collapses, but marine basins

in East Antarctica do not retreat.

2.7 Discussion

2.7.1 Summary

We present a novel particle-based approach to calibrate the 80 km resolution

PSU3D-ICE model. We show that our approach provides good approximations

and drastically reduces overall calibration wall times by heavily parallelizing the

sequential Monte Carlo algorithm, and carefully tuning the algorithm to drastically

reduce the number of sequential model evaluations. Our algorithm is applicable

to a broad class of models that have a moderate run time (given our computing

resources, between a few seconds and several minutes) and a moderate number of

model parameters (in our case between 5 and 20).

We use this new method to assess the impacts of neglecting parametric uncer-

tainties on sea level projections. Emulation-calibration methods using fewer pa-

rameters yield lower and more overconfident projections of sea level rise than using

more parameters through the particle-based calibration approach. This method

includes the recent study of Edwards et al. (2019), who found that the important
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mechanism of marine ice cliff instability (MICI) is not necessary to capture past

variations. In this case, future sea level projections are considerably lower. In

contrast, our new approach that accounts for more parametric uncertainties sug-

gests that MICI may still be important and future sea level projections may be

much higher, especially considering potential Pliocene windows. Using emulation-

calibration in a high-dimensional parameter space induces considerable emulator-

model discrepancy and can result in large projection uncertainties. Our method

utilizes the actual ice sheet model; thereby preserving the highly non-linear ice

dynamics as well as the complex interactions between model parameters. This

has clear policy-relevant implications because projections from ice sheet models

inform economic and engineering assessments (cf. Sriver et al., 2018; Diaz and

Keller, 2016; Johnson et al., 2013).

Our approach enables calibration experiments that were computationally pro-

hibitive using current calibration methods. First, assuming different ranges of

Pliocene era sea level constraints (low vs. high) results in markedly different char-

acterizations of parametric uncertainty and projections of sea level rise over the

next five centuries. These results suggest that improved geological data from the

Pliocene can help better quantify the model parameters central to marine ice cliff

instability (MICI) and improve sea level projections. Second, calibration results

are highly sensitive to the choice of prior distributions. Over-constraining the prior

distributions (in particular by not allowing very fast cliff disintegration rates), we

can mischaracterize parametric uncertainty and drastically underestimate future

sea level changes.

2.7.2 Caveats

Our conclusions are subject to the usual caveats that also point to promising and

policy relevant research directions. Key methodological caveats include that our

calibration approach may not scale well to computer models with long model run

times (> 15 minutes), high-dimensional input spaces (> 20 parameters), or a com-

bination of both. For high-dimensional input spaces, our approach would require

(1) a large number of particles to sensibly approximate the target distribution; (2)

longer mutation stages to move the particles into the high-probability regions; and
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(3) prohibitively large amount of computational resources to implement our ap-

proach. Our approach may not be suitable for computer models that use multiple

processors for a single model run. Selecting an appropriate number of particles

remains an open question. Past theoretical work (Crisan and Doucet, 2000) state

that using more particles yields better approximations of the target distributions.

Here, we set the total particle count with respect to the available resources.

A number of caveats apply to our scientific findings. Using the PSU3D-ICE

model at a coarser resolution than previous studies (DeConto and Pollard, 2016;

Chang et al., 2016a,b; Pollard et al., 2016) is admittedly a compromise between

physical fidelity and run-time feasibility. At coarser resolutions, complex ice pro-

cesses may not properly coalesce due to the spatial constraints. However, through

a simulated example, we found that a single model run at high-resolution (40km)

ran nearly eight times longer than one at at coarser resolution (80km). Replicating

this calibration study at sharper spatial resolutions (40 km to 10 km) is a natural

and worthwhile extension of this study. Promising avenues for future work would

include incorporating parallel MCMC approaches such as Multiple-Try Metropo-

lis (Liu et al., 2000) or “emcee” samplers (Goodman and Weare, 2010) to reduce

computer model runs in the mutation stage. Finally, the likelihood functions for

the paleoclimate records may heavily influence calibration results. We have shown

how the choice of expert priors influence calibration, but the influence of likelihood

functions remains unexamined.

Acknowledgements

We would like to thank Don Richards, Daniel Gilford, Bob Kopp, Kelsey Ruck-

ert, Vivek Srikrishnans, Robert Ceres, Kristina Rolph, Mahkameh Zarekarizi, and

Casey Hegelson for useful discussions. This work was partially supported by the

U.S. Department of Energy, Office of Science, Biological and Environmental Re-

search Program, Earth and Environmental Systems Modeling, MultiSector Dynam-

ics, Contract No. DE-SC0016162 and by the National Science Foundation through

the Network for Sustainable Climate Risk Management (SCRiM) under NSF co-

operative agreement GEO-1240507. This study was also co-supported by the Penn

State Center for CLimate Risk Management. We would like to acknowledge high-



58

performance computing support from Cheyenne (doi:10.5065/D6RX99HX) pro-

vided by NCAR’s Computational and Information Systems Laboratory, sponsored

by the National Science Foundation. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the Department of Energy, the National Science

Foundation, or other funding entities. Any errors and opinions are, of course,

those of the authors. We are not aware of any real or perceived conflicts of interest

for any authors.



59

Tail area risk increases
  by a factor of 65

Year 2300

All 11 Parameters
Subset of 
3 Parameters

0.8 4.6 8.4 12.1 15.9
Antarctic Ice Sheet Contribution to Sea Level Rise (m)

Projections

Tail area risk increases
  by a factor of 74

Year 2100

−0.3 0.3 0.9 1.5 2
Antarctic Ice Sheet Contribution to Sea Level Rise (m)

ConstraintsLast Glacial 
Maximum

Observation 
Window

−15 −12.5 −10 −7.5 −5
Antarctic Ice Sheet Contribution to Sea Level Rise (m)

Last 
Interglacial

3.5 4.5 5.5 6.5 7.5
Antarctic Ice Sheet Contribution to Sea Level Rise (m)

Pliocene

5 10 15 20 25
Antarctic Ice Sheet Contribution to Sea Level Rise (m)

Figure 2.4. Antarctic ice Sheet contribution to sea level rise in the Pliocene (bottom
panel), Last Interglacial Age (fourth panel), Last Glacial Maximum (third panel), 2100
(second panel), and 2300 (first panel). Red shading denotes the posterior densities for
each time period and projections after calibrating 11 parameters using our fast particle-
based approach. Blue shading denotes the posterior densities after calibrating three
parameters using emulation-calibration. The light gray shading represents the observa-
tional constraints for the Last Glacial Maximum, Last Interglacial Age, and Pliocene.
The striped red and striped blue shading represents the 99%th percent quantile for the
11-parameter approach and three-parameter approach, respectively.
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Figure 2.5. Posterior densities of model parameters for calibration using a wide Pliocene
window of 5 m to 25 m (solid line), low window of 5 m to 10 m (dashed line), and a high
window of 10 m to 25 m (dotted line). There is noticeable change in the densities for
three model parameters - CALVNICK, CALVLIQ, and CLIFFVMAX.
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Figure 2.6. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s con-
tribution to sea level change in 2100, 2300, and 2500 for calibration using a wide Pliocene
window of 5 m to 25 m (solid line), low window of 5 m to 10 m (dashed line), and a
high window of 10 m to 25 m (dotted line). (Bottom Panel) Empirical survival function
of the projected Antarctic ice sheet’s contribution to sea level change in 2100, 2300,
and 2500 for calibration using a wide Pliocene window of 5 m to 25 m (solid line), low
window of 5 m to 10 m (dashed line), and a high window of 10 m to 25 m (dotted line).
constraining the Pliocene windows yield sharper projections of sea level rise. The higher
window results in considerably higher projections than the lower window.
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Figure 2.7. Posterior densities of model parameters using expert prior distributions
(solid lines) and wider expert prior distributions (dashed lines). The dissimilarity of
posterior distributions indicate that calibration results are highly sensitive to the choice
of prior distributions.
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Figure 2.8. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s contri-
bution to sea level change in 2100, 2300, and 2500 using expert prior distributions (solid
lines) and wider expert prior distributions (dashed lines). (Bottom Panel) Empirical
survival function of the projected Antarctic ice sheet’s contribution to sea level change
in 2100, 2300, and 2500 using expert prior distributions (solid lines) and wider expert
prior distributions (dashed lines). For wide prior distributions, projections for future sea
level rise is higher and more uncertain, and there exists bi-modality in the projections’
posterior predictive distribution.



Chapter 3
PICAR: An Efficient Extendable

Approach for Fitting Hierarchical

Spatial Models

In this section, I present a projection intrinsic conditional autoregression (PICAR)

approach for fitting high-dimensional hierarchical spatial models. This approach is:

(1) easily automated; (2) readily extendable to user-specified hierarchical spatial

models; and (3) scales well to higher dimensional hierarchical spatial models than

is typical of existing methods. The associated manuscript (Lee and Haran, 2019) is

currently under review. BSL and MH co-designed the overall study and formulated

the statistical method. BSL wrote the computer code and wrote the first draft of

the manuscript. MH edited the text.

3.1 Introduction

Hierarchical spatial models are commonly used to model spatial observations across

many fields, for example species abundance in ecology, ice presence in glaciology,

geo-referenced survey responses in public health studies, and crime incidence in

urban areas. A quick search suggests that hierarchical spatial models are featured

in thousands of research papers published annually. An important class of hier-

archical spatial models is the spatial generalized linear mixed model (SGLMM).
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These are flexible models for both point referenced and areal data, where Gaussian

random fields are used to model the spatial dependence across locations (Diggle

et al., 1998) . Other examples of hierarchical spatial models include spatially

varying coefficient processes (Gelfand et al., 2003; Mu et al., 2018), covariate mea-

surement error models (Xia and Carlin, 1998; Bernadinelli et al., 1997; Muff et al.,

2015), and co-regionalization models for multivariate responses (Banerjee et al.,

2014). Hierarchical spatial models pose considerable computational challenges due

to the large number of highly correlated spatial random effects thereby resulting in

both slow mixing in Markov Chain Monte Carlo (MCMC) algorithms and costly

operations involving large matrices.

In this manuscript, we provide a computationally efficient approach for fitting

high-dimensional hierarchical spatial models by decorrelating and reducing the

dimensions of the spatial random effects. What sets our projection-based intrinsic

conditional autoregression (PICAR) approach apart from existing methods is: (i)

our approach to dimension reduction and decorrelation of the random effects is

automated; (ii) our approach is easily extendable, that is, it can be easily integrated

into a hierarchical modeling scenario using implementations like the probabilistic

programming language stan (Carpenter et al., 2017); and (iii) our method scales

well to higher dimensional hierarchical spatial models than is typical of existing

methods. A major advantage of PICAR is that in addition to providing an efficient

estimation approach for large datasets, it is easy for non-experts to specify general

hierarchical spatial models of their choice in this framework.

Many innovative computational methods have been developed to model high-

dimensional spatial data in recent years (cf. Cressie and Johannesson, 2008; Baner-

jee et al., 2008; Higdon, 1998; Nychka et al., 2015; Lindgren et al., 2011; Katzfuss,

2017; Datta et al., 2016). Comprehensive studies such as Heaton et al. (2019),

Bradley et al. (2016), and Sun et al. (2012) examine several of these methods

within the context of modeling high-dimensional spatial data. However, these

methods primarily focus on linear spatial models with Gaussian observations. A

notable exception is the predictive process approach (Banerjee et al., 2008), which

easily applies to hierarchical spatial models including SGLMMs. This approach

is flexible and efficient, though it requires a careful selection of reference knots

which in essence specify a basis (though, see Guhaniyogi et al. (2011) for a point
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process-based approach to mitigate some of these challenges). Our approach for

selecting a set of basis functions is, in contrast, completely automated and based

on the particular spatial data set. For PICAR, the MCMC algorithms mix faster

because we use a set of low-dimensional and decorrelated spatial random effects;

the predictive process approach random effects tend to be highly dependent. Also,

the predictive process requires additional expenses in updating the basis functions

at each iteration of the algorithm (roughly O(np2 + p3), where p is the number of

knots and n is the number of data points); in PICAR, this calculation is avoided

and corresponding calculations are linear in p.

Bradley et al. (2019) provides a promising new approach that uses the basis rep-

resentation while also exploiting conjugate distributions. Computation efficiency

comes from the low-dimensional basis representation of the spatial random field.

In addition, the conjugate distributions simplify the construction of conditional

updates for the MCMC algorithm. However, the full conditional distributions may

be difficult to construct as they require computing many matrices, vectors, and

constants. There are also open questions regarding the mixing of the resulting

Gibbs samplers.

Guan and Haran (2018) use approximate eigendecomposition methods to auto-

matically generate low-rank basis functions; however, the basis functions must be

generated iteratively, which adds to the cost of the algorithm. Furthermore, the

target distribution changes with each iteration of the algorithm, which prevents the

resulting Markov chain from having the theoretical properties assumed in standard

MCMC. Data augmentation (Albert and Chib, 1993) has been used to generate

Gibbs sampling schemes for the spatial random effects, but this still require costly

matrix operations on dense covariance matrices. INLA (Rue et al., 2009; Lindgren

et al., 2011) provides a numerical approximation of the posterior distribution. This

is an important contribution to computing for hierarchical spatial modeling as it is

a very efficient approach and has gained great popularity in recent years. However,

while this approach is applicable to a wide array of useful models, it is not easily

extendable by non-experts to user-specified hierarchical spatial models. Users can

essentially only fit the models that are available to them in their publicly available

code. Our approach, in contrast, is easily adaptable to user-specified hierarchical

spatial models, as we later demonstrate with our examples in stan.
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Our method addresses computational challenges by representing the spatial

random effects with empirical basis functions. Various basis representations have

been directly or indirectly used to model spatial data, for instance in the predictive

process approach (Banerjee et al., 2008), random projections (Guan and Haran,

2018, 2019; Banerjee et al., 2013; Park and Haran, 2019), Moran’s basis for areal

models (Hughes and Haran, 2013), stochastic partial differential equations (Lind-

gren et al., 2011), kernel convolutions (Higdon, 1998), eigenvector spatial filtering

(Griffith, 2003), and multi-resolution basis functions (Nychka et al., 2015; Katz-

fuss, 2017), among others. We utilize a non-parametric set of basis functions based

on the Moran’s I statistic and piece-wise linear basis functions. To our knowledge,

this is the first approach that readily lends itself to user-specified hierarchical spa-

tial models while also remaining computationally efficient for large datasets. We

demonstrate the applicability of PICAR via simulation studies as well as high-

dimensional datasets from a forest resource management study and a watershed

water quality assessment.

The rest of the paper is organized as follows. In Section 3.2, we describe hier-

archical spatial models and discuss their computational challenges. In Section 3.3,

we describe our PICAR approach in detail. In Section 3.4, we present simulated

examples for: (i) a spatial model for binary observations; (ii) a spatially varying

coefficient model for count observations, implemented in PICAR using stan; and

(iii) a model for ordered categorical spatial data that cannot be fit using existing

publicly available code but can be easily fit using PICAR. In Section 3.5 we ap-

ply PICAR to two large spatial datasets: occurrence of a parasitic species of dwarf

mistletoe in Minnesota and water quality ratings in Maryland watersheds. Finally,

we provide a summary and directions for future research in Section 3.6.

3.2 Hierarchical Spatial Models

We begin by describing a general framework for hierarchical spatial models and

provide several examples that will be explored in depth via simulation studies. We

also provide a general discussion of the computational challenges for fitting these

models.
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3.2.1 Model Specification

Let Z(s) denote a spatial process at location s in a spatial domain D ⊂ Rd where

d is typically 2 or 3. We define Z(s) as:

Z(s) = X(s)β + w(s) + ε(s), for s ∈ D, (3.1)

where X(s) is a set of k covariates associated with location s and β is a k-

dimensional vector of coefficients. The micro-scale measurement errors or nugget

are modeled as an uncorrelated Gaussian process with zero mean and variance τ 2

where ε(s) ∼ N(0, τ 2) for all s ∈ D.

We impose spatial dependence by modeling the spatial random effects W =

{w(s) : s ∈ D} as a stationary zero-mean Gaussian process with a positive definite

covariance function C(·). For a finite set of locations s = (s1, ..., sn), the spatial

random effects W are distributed as a multivariate normal distribution W|Θ ∼
N(0, C(Θ)) with covariance function parameters Θ and the covariance matrix C(Θ)

where C(Θ)ij = cov(w(si), w(sj)). The Matérn covariance function is a widely used

class of stationary and isotropic covariance functions (Stein, 2012) with parameters

Θ = (σ2, φ, ν) such that:

C(si, sj) = σ2 1

Γ(ν)2ν−1

(√
(2ν)

h

φ

)ν
Kν

(√
(2ν)

h

φ

)
,

where R(φ) is the correlation matrix, h = ||si − sj|| is the Euclidean distance

between locations si and sj, σ
2 > 0 is the partial sill or scale parameter of the

process, and φ > 0 is the range parameter for spatial dependence. Kν(·) is the

modified Bessel function of the second kind where the smoothness parameter ν is

commonly fixed prior to model fitting.

Hierarchical spatial models may be broadly described as (cf. Wikle et al., 1998):

Data Model: Z(s)|β,W, τ 2 ∼ N(X(s)β + w(s), τ 2)

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ)

Parameter Model: β ∼ p(β), φ ∼ p(φ), σ2 ∼ p(σ2), τ 2 ∼ p(τ 2)
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3.2.2 Examples of Hierarchical Spatial Models

Here we provide examples of hierarchical spatial models. The first is the class

of spatial generalized linear mixed models for non-Gaussian data, the second is a

spatially varying coefficient model, and the third is a cumulative-logit model for

ordered categorical data.

Spatial Generalized Linear Mixed Models

Non-Gaussian spatial observations are typically modeled using spatial generalized

linear mixed models (SGLMMs) (Diggle et al., 1998). Let {Z(s) : s ∈ D} be a

non-Gaussian spatial random field. Assuming Z(s) are conditionally independent

given the latent random spatial field W, the conditional mean E[Z(s)|β,W, ε(s)]

can be modeled through a linear predictor η(s):

η(s) = g{E[Z(s)|β,W], ε(s)} = X(s)β + w(s) + ε(s),

where g(·) is a known link function. Binary and count observations are two common

types of non-Gaussian spatial data, and these can be modeled using the binary

SGLMM with logit link and the Poisson SGLMM with log link, respectively.

The general Bayesian hierarchical framework for non-Gaussian spatial observa-

tions is:

Data Model: Z(s)|η(s) ∼ f(η(s))

η(s) = g(E[Z(s)|β,W), ε(s)]) = X(s)β + w(s) + ε(s)

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ)

ε(s)|τ 2 ∼ N(0, τ 2)

Parameter Model: β ∼ p(β), φ ∼ p(φ), σ2 ∼ p(σ2), τ 2 ∼ p(τ 2)

Spatially Varying Coefficient Models

Spatially varying coefficient models (Gelfand et al., 2003) consider cases where the

fixed effects β in Equation 3.1 vary across space. For the case with a single predictor

X(s), the data model is Z(s) = β0 +β1X(s) +β1(s)X(s) +w(s) + ε(s), where β0 is

the intercept, β1 is the fixed effect, β1(s) is the spatially varying coefficient term,

and w(s) and ε(s) are the same as in Equation 3.1. Here, B = (β1(s1), ..., β1(sn))
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is the n-dimensional vector of spatially varying coefficients, and B ∼ N(0, σ2
βRφβ)

where σ2
β is the partial sill and φβ is the range parameter for the spatial random

process B.

For cases with k predictors, we have the following hierarchical spatial model:

Data Model: Z(s)|η(s) ∼ f(η(s))

η(s) = X(s)β +X(s)β(s) + w(s) + ε(s)

Process Model: (W,B)T |φ,T ∼ N (0, Rφ ⊗T)

ε(s)|τ 2 ∼ N(0, τ 2)

Parameter Model: β ∼ π(β), τ 2 ∼ π(τ 2), φ ∼ π(φ), T ∼ π(T)

where β is the k-dimensional vector of the fixed effects, β(s) = (β1(s), ..., βk(s))

is a k-dimensional vector of the spatially varying coefficients for location s, B =

(β(s1), ..., β(sn)) is the nk-dimensional vector of all spatially varying coefficients,

W = (W (s1), ...,W (sn)) is the n-dimensional vector of the spatial random effects,

Rφ and τ 2 are the correlation matrix and nugget variance described in Section

3.2.1, and T is a (k + 1)× (k + 1) positive definite matrix.

Cumulative-Logit Models for Ordinal Spatial Data

Ordered categorical (ordinal) data are categorical responses with a natural or-

dering, and commonly used in survey questionnaires, patient responses in clinical

trials, and quality assurance ratings for industrial processes. (Higgs and Hoeting,

2010; Schliep and Hoeting, 2013) develop a hierarchical spatial model for ordinal

data. In this study, we examine the proportional-odds cumulative logit model

(Agresti, 2010) for ordered categorical data. Let Z(s) be the observations at loca-

tion s ∈ D with J ordered categories. Note that each ordered category corresponds

to a probability π(s) = {π1(s), π2(s), ..., πJ(s)} , where πi(s) = Pr(Z(s) = i)

for i = 1, ..., J . Here, we consider J − 1 cumulative probabilities denoted as

γj(s) = P (Z(s) ≤ j) = π1(s) + ...+ πj(s). The cumulative logit is defined as:

log

(
P (Z(s) ≤ j)

1− P (Z(s) ≤ j)

)
= log

(
γj(s)

1− γj(s)

)
= θj −X(s)β − w(s)− ε(s),
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where θj is the intercept or “cutoff” for the j-th category, X(s), β, w(s) and ε(s)

are the same as in Equation 3.1. The model for the cumulative probabilities γj is:

γj(s) = P (Z(s) ≤ j) =
exp{θj − (X(s)β + w(s) + ε(s))}

1 + exp{θj − (X(s)β + w(s) + ε(s))}
.

Consequently, the probabilities for the individual J categories are:

P (Z(s) = j) =


γ1(s), j = 1

γj(s)− γj−1(s), 2 ≤ j ≤ J − 1

1− γJ−1(s), j = J

To avoid identifiability issues, we typically fix the first cutoff to be θ1 = 0

(Johnson and Albert, 2006). Note that the θj’s are constrained by the ordering θj >

θk for j > k. Through a transformation (Higgs and Hoeting, 2010; Albert and Chib,

1997), we can generate unconstrained cutoff parameters α = (α1, α2, ..., αJ−1),

where α1 = −∞, α2 = log(θ2), and αj = log(θj − θj−1) for j = 3, ..., J − 1.

The inverse transformation is θj =
∑J−1

i=1 exp{αi}. The hierarchical spatial model

framework is as follows:

Data Model: Z(s)|γ(s) ∼ f(γ(s))

γj(s)|β, θ,W, ε(s) =
exp{θj − (X(s)β + w(s) + ε(s))}

1 + exp{θj − (X(s)β + w(s) + ε(s))}

θj |α =
J−1∑
i=1

exp{αi}

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ)

ε(s)|τ2 ∼ N(0, τ2)

Parameter Model: α ∼ p(α), β ∼ p(β), φ ∼ p(φ),

σ2 ∼ p(σ2), τ2 ∼ p(τ2)

3.2.3 Model Fitting and Computational Challenges

In hierarchical spatial models, computational challenges are rooted in the dimen-

sionality and correlation of the spatial random effects W. Hierarchical spatial

models typically require a costly evaluation of an n−dimensional multivariate nor-

mal likelihood function (O(n3)) at each iteration of the MCMC algorithm. More-

over, highly correlated spatial random effects can lead to poor mixing in MCMC
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algorithms (cf. Christensen et al., 2006; Haran et al., 2003).

There is a large literature on addressing computational challenges in spatial

models though the vast majority of methods are focused on linear Gaussian spatial

models where the latent spatial variables do not need to be integrated out. Popu-

lar approaches include low-rank approximations (Cressie and Johannesson, 2008;

Banerjee et al., 2008), compact support or covariance tapering (Furrer et al., 2006;

Stein, 2013), multiresolution approaches (Nychka et al., 2015; Katzfuss, 2017), and

sparse representations of the n× n precision matrix via spatial partial differential

equations (Lindgren et al., 2011) or nearest-neighbor Gaussian processes (Datta

et al., 2016). These typically focus on the marginal distribution of the spatial ob-

servations Z = (Z(s1, ..., Z(sn)), where Z|β, σ2, φ, τ 2 ∼ N (Xβ,Σ(σ2, φ, τ 2)). Since

these methods are built on integrating out the spatial random effects in closed

form, they are not easily extended to more complex hierarchical spatial models.

For hierarchical spatial models with non-Gaussian observations, Sengupta and

Cressie (2013) and Sengupta et al. (2016) extend fixed-rank kriging (Cressie and Jo-

hannesson, 2008) to non-Gaussian satellite imagery by: (1) representing the spatial

random effects using bi-square basis functions; (2) estimating the model parame-

ters via the expectation-maximation (EM) algorithm; and (3) embedding Laplace

approximations in the E-step to improve computational efficiency. The predictive

process approach (Banerjee et al., 2008) also implement a basis representation of

the spatial random effects W (s) ∈ Rn. Prior to model fitting, m reference loca-

tions or knots s∗ = {s∗1, s∗1, ..., s∗m} are selected where m� n. Predictive processes

approximates the spatial random effects such that W (s) ≈ C(s, s∗)C∗−1W (s∗),

where W (s∗) are the realizations of the Gaussian random field at knot locations

s∗, C∗ = C(s∗, s∗) represents the m ×m covariance matrix corresponding to the

knots, and C(s, s∗) denotes the cross-covariance between the observed locations

(s) and the knot locations (s∗). Knots can be selected using an adaptive approach

based on point processes (Guhaniyogi et al., 2011). Note that the computational

speedup comes from utilizing a lower-dimensional set of spatial random effects

W (s∗) and an m × m covariance matrix. However, predictive process must con-

struct the basis functions matrix C(s, s∗)C∗−1 at each iteration of the algorithm,

which incurs a cost of roughly O(m3 + nm2).

Guan and Haran (2018) use random projections to generate approximate eigen-
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vector basis functions. These basis functions are linked to the Matérn class class

of covariance functions, and the dominant computational cost is driven by large

matrix-to-matrix multiplications, which can be easily parallelized. The spatial

random effects are reparameterized and approximated as W (s) ≈ ŨmD̃
1/2
m δ, where

Ũm and D̃m are the first m approximate eigencomponents of the covariance ma-

trix σ2Rφ for SGLMMs and δ are the m-dimensional reparamterized spatial ran-

dom effects. While this approach bypasses knot selection, it still requires re-

peated constructions of the approximate eigenvector basis functions with a cost

of O(m3 + nm2).

Re-parameterization approaches (Christensen et al., 2006; Haran et al., 2003;

Guan and Haran, 2018) decorrelate the spatial random effects, which often results

in faster mixing MCMC algorithms. However, these techniques can be very expen-

sive when data are on the order of thousands of data points since the reparameter-

ization step itself can be expensive. Data augmentation approaches (De Oliveira,

2000; Albert and Chib, 1993) apply to some classes of hierarchical models, result-

ing in a Gibbs sampler for the spatial random effects, but this still requires large

matrix operations on dense covariance matrices, and does not necessarily address

mixing issues in the resulting MCMC algorithm.

3.3 PICAR Approach

In this section, we present our projection-based intrinsic conditional autoregression

(PICAR) approach that is designed to efficiently fit hierarchical spatial models. In

this framework, we represent spatial random effects W = (W (s1), ...,W (sn)) as a

linear combination of basis functions:

W ≈ Φδ , δ ∼ N (0,Σδ),

where Φ is an n × p basis function matrix where each column denotes a basis

function, δ ∈ Rp are the re-parameterized spatial random effects (or basis coef-

ficients), and Σδ is the p × p covariance matrix for the weights. Basis functions

can be interpreted as a set of distinct spatial patterns that can be used to con-

struct a spatial random field, along with their coefficients. Basis representation
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has been a popular approach to model spatial data (cf. Cressie and Johannesson,

2008; Banerjee et al., 2008; Hughes and Haran, 2013; Lindgren et al., 2011; Rue

et al., 2009; Christensen et al., 2006; Haran et al., 2003; Griffith, 2003; Higdon,

1998; Nychka et al., 2015). Examples of basis functions include splines, wavelets,

empirical orthogonal functions, combinations of sines and cosines, piece-wise lin-

ear functions, and many others. Basis representations tend to be computationally

efficient as they help bypass large matrix operations, reduce the dimensions of the

spatial random effects, and as in our case, decorrelate the spatial random effects

W.

3.3.1 PICAR Approach

The Projection-based intrinsic conditional auto-regression (PICAR) approach can

be outlined as follows:

1. Generate a triangular mesh on the spatial domain D ⊂ R2.

2. Construct a spatial field on the mesh vertices using non-parametric basis

functions.

3. Interpolate onto the observation locations using piece-wise linear basis func-

tions.

We provide details for each step below.

Mesh Construction

Prior to fitting the model, we generate a mesh enveloping the observed spatial

locations via Delaunay Triangulation (Hjelle and Dæhlen, 2006). Here, we divide

the spatial domain D into a collection of non-intersecting irregular triangles. The

triangles can share a common edge, corner (i.e. nodes or vertices), or both. The

mesh generates a latent undirected graph G = {V,E}, where V = {1, 2, ...,m}
are the mesh vertices and E are the edges. Each edge E is represented as a pair

(i, j) denoting the connection between i and j. The graph G is characterized by its

weights matrix N, an m×m matrix where Nii = 0 and Nij = 1 when mesh node i

is connected to node j and Nij = 0 otherwise. The triangular mesh is built using



75

the R-INLA package (Lindgren et al., 2015). Guidelines for mesh construction

are provided in Lindgren et al. (2015), and details pertaining to algorithms for

Delaunay triangulation can be found in Hjelle and Dæhlen (2006).

Moran’s Basis Functions

We generate a spatial random field on the set of mesh vertices V of graph G using

the Moran’s basis functions (Hughes and Haran, 2013; Griffith, 2003). Griffith

(2003) proposes an augmented spatial generalized linear mixed model using a sub-

set of eigenvectors of the Moran’s operator (I− 11′/m)W(I− 11′/m), where I is

the identity matrix and 1 is a vector of 1’s. Note that this operator is a component

of the Moran’s I statistic:

I(A) =
m

1′W1

Z′(I− 11′/m)W(I− 11′/m)Z

Z′(I− 11′/m)Z
,

a diagnostic of spatial dependence (Moran, 1950) used for areal spatial data. Values

of the Moran’s I above − 1
m−1 indicate positive spatial autocorrelation and values

below − 1
m−1 indicate negative spatial autocorrelation (Griffith, 2003). Positive

eigencomponents of the Moran’s operator correspond to varying magnitudes and

patterns of positive spatial dependence, or clustering. For the triangular mesh,

the positive eigenvectors represent the patterns of spatial dependence among the

mesh nodes, and their corresponding eigenvalues denote the magnitude of spatial

dependence. Figure 3.1 illustrates the first 25 eigenvectors of the Moran’s operator.

We construct the Moran’s basis function matrix M ∈ Rm×p, by selecting the

first p eigenvectors of the Moran’s operator where p � m. In Section 3.3.3, we

provide an automated heuristic for selecting a suitable rank p. We can generate

a spatial random field on the mesh vertices by taking linear combinations of the

Moran’s basis functions (contained in matrix M) and their corresponding weights

δ ∈ Rp. In Section 3.3.2, we provide a general framework for estimating δ in

hierarchical spatial models.

Piece-wise Linear Basis Functions

To complete the PICAR approach, we introduce a set of piece-wise linear basis

functions (Brenner and Scott, 2007) to interpolate points within the triangular
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Figure 3.1. The leading 25 eigenvectors of the Moran’s operator generated on the
triangular mesh. The distinct spatial patterns construct the latent spatial random field
for hierarchical spatial models.

mesh (i.e. the undirected graph G = (V,E)). We construct a spatial random field

on the mesh nodes W̃ = (W (v1), ...,W (vm)) where vi ∈ V and then project, or

interpolate, onto the observed locations W = (W (s1), ...,W (sn)) where si ∈ D.

The latent spatial random field W can be represented as W = AW̃, where A is

an n×m projector matrix containing the piece-wise linear basis functions.

The rows of A correspond to an observation location si ∈ D, and the columns

correspond to a mesh node vi ∈ V . The ith row of A contains the weights to

linearly interpolate W (si). To illustrate, when the observation location si is wholly

contained within one of the mesh triangles, there will be three non-zero values in

the ith row of the projector matrix A, each corresponding to a mesh node vj ∈ V .

When the observation location lies on an edge between two mesh nodes, there will

be two non-zero values in the corresponding row of A. Finally, there will only be

one non-zero value in the corresponding row when the observation location and

mesh node share the same location. In practice, we use an n×m projector matrix
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A for fitting the hierarchical spatial model. For model validation and prediction,

we generate an nCV × m projector matrix ACV that interpolates onto the nCV

validation locations.

In Figure 3.2, we demonstrate how the piece-wise linear basis functions can

interpolate an observation location that is wholly contained in a triangle. Here,

point D is the observation location, points A, B, and C are the triangle vertices,

and π1, π2, and π3 are the weights, where
∑3

i πi = 1. π1 is the proportion of the area

of the triangle opposite of vertex A to the entire triangle. The same holds for values

π2 and π3 with corresponding vertices B and C, respectively. We interpolate point

D as the weighted mean of the three triangle vertices where D ≈ π1A+π2B+π3C.

Figure 3.2. Diagram of the piece-wise linear basis functions. Point D is the observa-
tion location, points A, B, and C are the triangle vertices, and π1, π2, and π3 are the
corresponding weights. The weights π1, π2, and π3 correspond to the proportion of the
area of the specified triangle to the area of the larger triangle. We interpolate point D
by taking the weighted mean of the three triangle vertices where D ≈ π1A+ π2B + π3C

3.3.2 Bayesian Hierarchical Spatial Model using PICAR

In the previous section, we introduced three major components of the PICAR

approach: (1) the Moran’s basis function matrix M ∈ Rm×p; (2) the projector

matrix A ∈ Rn×m; and (3) the corresponding weights δ ∈ Rp. Given a set of

weights δ and the Moran’s basis functions M, we can build a spatial random field

on the triangular mesh nodes v ∈ V as W̃ = Mδ, where W̃ = (W (v1), ...,W (vm))

for vi ∈ V . Next, we linearly interpolate the latent spatial random field at the
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observation locations as W = AW̃ = AMδ, where W = (W (s1), ...,W (sn)) for

si ∈ D, the spatial domain. An overview of these operations is provided in Figure

3.3.

𝛿"

	𝛿#

	𝛿"$

	𝛿"#

M𝛿 AM𝛿

Idea:	
• Imposes	a	latent	spatial	field	
on	mesh	nodes.	

• Constructs	latent	field	using	
Moran’s	basis	functions	(M)		
+	Weights (𝜹).	

Idea:	
• Projects	latent	field	from	
mesh	nodes	onto	
observation	locations.	

• Uses	Piecewise	Linear	
Basis	functions	(A).

M 𝛿
Moran’s	
Basis

Coefficients/
Weights

Figure 3.3. Diagram of the basis functions within the PICAR framework. The Moran’s
basis functions (left) represent distinct spatial patterns, and the coefficients (δ) denote
the associated weights. The operation Mδ constructs a latent field on the mesh nodes.
The operation AMδ projects the mesh nodes onto the observation locations and gener-
ates a spatial random field.

The PICAR approach can be embedded into the hierarchical spatial model

framework:

Data Model: Z(s)|η(s) ∼ f(η(s)),

η(s) = g(E[Z(s)|β, δ]) = X(s)β + [AMδ](s),

Process Model: δ|τ ∼ N (0, τ−1(M′QM)−1),

Parameter Model: β ∼ N(µβ,Σβ), τ ∼ G(ατ , βτ ),

where A is the projector matrix, M is the Moran’s basis functions matrix, δ are

the basis coefficients, Q is the prior precision matrix for the mesh vertices, τ is the

precision parameter, and ατ , βτ , µβ, and Σβ are the hyperparameters.

By default, we set Q to be the precision matrix of an intrinsic conditional

auto-regressive model (ICAR) fit on the mesh vertices V . Here, Q = (diag(N1)−
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N), where N is the adjacency or weight matrix from Section 3.3.1 and 1 is m-

dimensional vector of 1s. Since Q is not positive definite, this framework cannot be

used within the likelihood function; however, it can be set as the prior distribution

for the spatial random effects as part of the Bayesian hierarchical spatial model

(Besag et al., 1991). We introduce alternative precision matrices in Section 3.3.3

and provide a comparative analysis across matrices in Section 3.4.

3.3.3 Automating PICAR

The traditional hierarchical spatial model (Section 3.2.1) assumes that the true

latent spatial random field W = {W (s1),W (s2), ...,W (sn)} is a Gaussian process

such that W ∼ N(0, σ2Rφ) with partial sill σ2 and correlation matrix Rφ. On the

other hand, the PICAR approach considers the latent spatial random field following

a basis representation such that W ≈ AMδ, where δ ∼ N(0, τ−1(M′QM)−1), M

is the m× p Moran’s basis function matrix, and A is the n×m projector matrix.

An alternative formulation of the latent spatial random field is

W ∼ N(0, τ−1AM(M′QM)−1M′A′)

Our objective is to accurately represent the true latent state using PICAR’s

basis representation. To that end, we can tune the rank of the Moran’s operator

rank(M) and the prior precision matrix Q of the mesh vertices.

The following automated heuristic selects an appropriate rank for the Moran’s

basis. First, we generate a set P consisting of h equally spaced points within

the interval [2, P ] where P is the maximum rank and h is the interval resolution

(h = P − 1 by default). Here, P < m and both P and h are chosen by the

user. For each p ∈ P , we construct an n× (k+ p) matrix of augmented covariates

X̃ = [X AMp] where X ∈ Rn×k is the original covariate matrix, A ∈ Rn×m is the

projector matrix, and Mp ∈ Rm×p are the leading p eigenvectors of the Moran’s

operator. Next, we use maximum likelihood approaches to fit the appropriate

generalized linear model (GLM) for the response type (e.g. binary, count, or

ordered categorical). Finally, we select the rank p that yields the lowest out-

of-sample cross-validated mean squared prediction error (CVMSPE). Figure 3.4

illustrates the automated heuristic for a binary dataset (n=1000). Note that rank
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p = 62 results in the lowest CVMSPE.

Figure 3.4. Cross-validated mean squared prediction error (CVMSPE) for ranks 1-200
using the automated heuristic. The vertical red line denotes the chosen rank (p = 68)
with lowest CVMPSE.

Next, we provide some choices for Q, the prior precision matrix for the mesh

vertices W̃. By default (Section 3.3.1), we set Q to be the precision matrix of

an intrinsic conditional auto-regressive model (ICAR). Similarly, we could set Q

as the precision matrix of a conditional auto-regressive model (CAR). Here, Q =

(N1 − ρN), where N is the adjacency matrix and ρ ∈ (0, 1) is a predetermined

correlation coefficient. It is possible to estimate ρ as a model parameter, but

doing so requires an eigendecomposition of the Moran’s operator (O(m3)) at each

iteration of the MCMC algorithm, which can negate the computational gains of

the PICAR approach. Another alternative is setting Q = I, where the mesh nodes

W̃ and re-parameterized spatial random effects δ are uncorrelated.



81

3.3.4 Computational Gains

The PICAR approach requires shorter computational times per iteration as well

as fewer iterations for the Markov chain to converge. The computational speedup

results from bypassing expensive matrix operations (e.g. Cholesky decomposition)

and by decorrelating and reducing the dimensions of the spatial random effects.

The computational cost is dominated by the matrix-vector multiplication AMδ,

where AM is the n × p basis function matrix constructed prior to model fitting

and δ are reparameterized spatial random effects (basis coefficients). The PICAR

approach has a computational complexity of O(np) as opposed to O(n3) for the

full hierarchical spatial model. Figure 3.5 illustrates the computational speedup

offered by the PICAR approach. As we increase the dimensionality of the observa-

tions n, the full hierarchical model quickly becomes computationally prohibitive.

On the other hand, we can model the data using PICAR approach within the order

of minutes. The computation times are based on a single 2.2 GHz Intel Xeon E5-

2650v4 processor. All the code was run on the Pennsylvania State University Insti-

tute for CyberScience-Advanced CyberInfrastructure (ICS-ACI) high-performance

computing infrastructure.

We examine mixing in MCMC algorithms within the context of spatial general-

ized linear mixed models (SGLMMs). Here, the PICAR approach generates a faster

mixing MCMC algorithm than the re-parameterization method (Rep-SGLMM)

(Christensen et al., 2006), an approach designed to improve mixing for SGLMMs.

This is corroborated by the larger effective sample size per second (ES/sec), the

rate at which independent samples are generated by the MCMC algorithm. Larger

values of ES/sec indicates faster mixing. In the binary simulated example (Section

3.4.1), the effective samples per second value for the PICAR approach is roughly

345 times larger than the Rep-SGLMM approach. Additional details on the com-

parative study are provided in Section 3.4.1.

We also show how to implement the PICAR approach in the stan programming

language (Carpenter et al., 2017). stan provides a full Bayesian statistical inference

via the No U-Turn Sampler (Hoffman and Gelman, 2014) and Hamiltonian Monte

Carlo (Neal, 2011). Once the model is specified, stan automatically generates

a fast mixing MCMC algorithm. stan’s MCMC algorithm tends to be slower

per iteration, but this balanced by the fast mixing (and low autocorrelation) of
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Figure 3.5. Computational time for 105 iterations versus sample size (n) for the full
spatial generalized linear mixed model (SGLMM) and the PICAR approach with Moran’s
rank p = 50.

the resulting Markov chain. In Section 3.4.2, we use the R package rStan (Stan

Development Team, 2019), in conjunction with the PICAR approach, to fit a

spatially-varying coefficients model (Section 3.2.2).

For PICAR, the two major computational bottlenecks are constructing the

Moran’s operator (Section 3.3.1) and computing its eigencomponents. The Moran’s

operator requires the matrix operation (I− 11′/m)W(I− 11′/m) and 2m3 −m2

floating point operations (FLOPs), which may be computationally prohibitive for

large datasets. We reduce computational costs by leveraging the embarrassingly

parallel operations as well the sparsity of the weights matrix N. We use the sparse

matrix R package Matrix (Bates and Maechler, 2019) to reduce costs for the

operation Σ = (I− 11′/m)N. Then, we partition the resulting matrix Σ into K

mutually exclusive 1
K
× n sub-matrices Σk for k = 1, ..., K. By parallelizing across
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K processors, we can quickly construct the partial Moran’s Operator MOk =

Σk(I − 11′/m) for k = 1, ..., K. Finally, we generate the full Moran’s Operator by

combining the MOk’s as so MO =


MO1

...

MOK

.

We can compute the k eigencomponents of the Moran’s Operator using a partial

eigendecomposition approach such as the Implicitly Restarted Arnoldi Method

(Lehoucq et al., 1998) from RSpectra package (Qiu and Mei, 2019). Since the

PICAR approach typically selects a rank(M) � n, there is no need to perform a

full eigendecomposition of the Moran’s Operator M.

3.4 Simulation Study

We demonstrate the application of PICAR to several hierarchical spatial models:

1. Binary data: We chose this example because it is computationally feasible

to fit the full spatial model (”gold standard”) for comparison. We find that

our approach is computationally efficient and provides comparable results to

the gold standard.

2. Poisson data with spatially varying coefficients: With this example

we show how PICAR can be easily extended to user-specified models, for

instance by using simple code in the probabilistic programming language

stan.

3. Ordered categorical data: We show how our approach efficiently fits a

model for which there is no publicly available software.

For each data type, we generate 100 spatial datasets with locations on the unit

domain [0, 1]2. Each dataset consists of 1, 400 locations randomly chosen on the

spatial domain. We use 1, 000 observations to fit the hierarchical spatial model

and reserve 400 observations for validation. We chose n = 1, 000 so that we could

compare against a gold standard method (below) for which higher dimensions

can be computationally prohibitive. We compare PICAR’s performance across

varying ranks of the Moran’s operator p = {10, 50, 75, 100, 200} as well as the
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three different precision matrices (Independent, ICAR, and CAR) introduced in

Section 3.3.3. The CAR precision matrix uses a correlation parameter ρ = 0.5.

In the second comparison (precision matrices), we use the automated heuristic

(Section 3.3.3) to select the rank. We compare PICAR’s inference and prediction

performance against a gold standard approach that uses MCMC based on the

reparameterization in Christensen et al. (2006) which provides improved mixing

over default MCMC algorithms.

3.4.1 Binary Data

All 100 datasets share common regression coefficients β = (1, 1)T , and the random

effects (w(s)’s) are generated using the Matérn covariance function with ν = 2.5,

σ2 = 1, and φ = 0.2. The covariance function has the form (cf. Rasmussen and

Williams, 2006)

C(h) = σ2
(

1 +

√
5|h|
φ

+
5|h|2

3φ2

)
exp

(
−
√

5|h|
φ

)
,

where |h| is the Euclidean distance between locations.

For the PICAR approach, the triangular mesh consists of m = 1, 649 ver-

tices. We use a vague multivariate normal prior for the regression coefficients

β ∼ N(0, 100I). As in Hughes and Haran (2013), we chose a gamma prior for

τ ∼ G(0.5, 2000). Here, we follow the prior belief that the covariates can suffi-

ciently explain the data because large values for τ implies small variances for the

random effects. For the binary and count data, we use Gibbs updates for τ and

random-walk Metropolis-Hastings updates for β with proposal β(i+1) ∼ N(β(i), V̂),

where V̂ is the asymptotic covariance matrix from fitting the classical generalized

linear model. Finally, we update the reparameterized random effects δ using an

all-at-once Metropolis-Hastings update with a multivariate normal proposal cen-

tered at the parameters of the previous iterations as in Guan and Haran (2018).

For the PICAR approach, we ran 300, 000 iterations of the MCMC algorithm.

We model spatial binary observations generated via the logit-link function

logit(p) = log{ p
1−p}. We select one sample (from the 100 generated samples)

as the dataset for the comparative analysis. When comparing across ranks, we
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use the precision matrix from the ICAR model Q = (W1−W). We examine the

out-of-sample cross-validated mean squared prediction error (CVMSPE):

CVMSPE =
1

nCV

nCV∑
i=1

(Y ∗i − Ŷ ∗i )2,

where nCV = 400, Y ∗i ’s denote the i-th value in the validation sample, and Ŷ ∗i ’s

are the predicted values at the i-th location.

Choice of Rank and Precision Matrix

Table 3.1 presents the parameter estimates, prediction results, and computational

times for each rank p of the Moran’s Operator. Results suggest that the rank is

a key driver for predictive performance and parameter estimation. The PICAR

approach is not sensitive to the chosen precision matrix Q, as the results are similar

across precision matrices (Table 3.2). The PICAR approach improves mixing in

the MCMC algorithm as shown by the larger effective samples per second (ES/sec)

compared to the gold standard approach. For model parameters β1 and β2, PICAR

yields an ES/sec of 29.4 and 40.2 respectively and the gold standard returns an

ES/sec 0.19 and 0.29 respectively. For the random effects W, the average ES/sec

is 5.8 for the PICAR approach and 0.016 for the gold standard, an improvement

by a factor of roughly 345.

Rank β1 (95% CI) β2 (95% CI) CVMPSE Time (min)

10 1.04 (0.77,1.31) 0.91 (0.64,1.16) 0.3 9.73
22 1.09 (0.82,1.37) 0.93 (0.67,1.2) 0.27 10.73
50 1.12 (0.83,1.41) 0.95 (0.67,1.23) 0.28 11.14
75 1.14 (0.85,1.44) 0.98 (0.69,1.26) 0.28 11.62
100 1.2 (0.9,1.5) 1 (0.71,1.29) 0.29 12.28
200 1.34 (1.01,1.66) 0.99 (0.69,1.31) 0.32 15.13
Gold Standard 1.03 (0.77,1.3) 0.89 (0.63,1.16) 0.29 3624.43

Table 3.1. Simulated example with binary spatial observations. Parameter estimation,
prediction, and model fitting time results across Moran’s basis ranks. Bold font denotes
the rank chosen by the automated heuristic.

Note that the PICAR approach is computationally efficient, and it also out-

performs the gold standard approach in prediction. This is consistent with results

from another basis representation approach, the latent conjugate model (Bradley
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Precision
Matrix β1 (95% CI) β2 (95% CI) CVMPSE Time (min)
Ind 1.07 (0.8,1.34) 0.92 (0.65,1.18) 0.28 9.53
ICAR 1.09 (0.82,1.37) 0.93 (0.67,1.2) 0.27 10.73
CAR 1.05 (0.79,1.33) 0.91 (0.65,1.18) 0.27 10.38
Gold Standard 1.03 (0.77,1.3) 0.89 (0.63,1.16) 0.29 3624.43

Table 3.2. Simulated example with binary spatial observations. Parameter estimation,
prediction, and model fitting time results across precision matrices.

et al., 2019), which also outperforms the full SGLMM in computational cost and

predictive ability. This may be attributed to the flexibility of PICAR’s basis rep-

resentation of the latent spatial field.

Simulation Study

We examine boxplots for the parameter estimates of β1 and β2 across the 100 sam-

ples (Supplement). The point estimates from the PICAR approach are distributed

narrowly around the true values. The distribution of the point estimates remain

similar across the choice of precision matrix Q. The coverage proportions (0.89 for

β1, 0.91 for β2) are close to but lower than the nominal coverage value (0.95).

3.4.2 Poisson Data with Spatially Varying Coefficients

In this section, we incorporate the PICAR approach to the spatially varying co-

efficients model using the stan programming language (Carpenter et al., 2017),

a popular computing framework for Bayesian inference. As in the binary exam-

ple, we generate n = 1, 400 observations using the specified model parameters

β, φ, σ2. We assign one set of spatially varying coefficients β1(s) corresponding to

the first covariate X1. W = (w(s1), ..., w(sn)) are the spatial random effects and

B = (β1(s1), ..., β1(sn)) is the n-dimensional vector of the spatially varying coeffi-

cients for each location si ∈ D. Here, (W,B)T ∼ N (0,N (0, Rφ⊗T)), where Rφ is

the correlation function from the binary case and T =

[
1.0 0.3

0.3 0.2

]
. In the PICAR

framework, we approximate the spatial processes B and W as B ≈ [AMδβ](s) and

W ≈ [AMδw](s), where A is the n×m projector matrix, M is the m× p Moran’s

basis function matrix, and δβ and δw are the corresponding basis coefficients. Note
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that we are modeling both spatial process B and W as independent spatial pro-

cesses with no cross-correlations. Extensions to multivariate models are promising

avenues for future research. The PICAR specification of this hierarchical model is

as follows:

Data Model: Z(s)|η(s) ∼ f(η(s)),

η(s) = X(s)β +X1(s)[AMδβ](s) + [AMδw](s),

Process Model: δβ ∼ N (0, τ−1β (M′QβM)−1),

δw ∼ N (0, τ−1w (M′QwM)−1),

Parameter Model: τβ ∼ G(ατ1, βτ1), τw ∼ G(ατ2, βτ2), β ∼ N(µβ,Σβ),

where X1 is the first column of the n × 2 design matrix X. Qβ and Qw are the

m × m precision matrix for the mesh vertices and τβ and τw are the precision

parameters. ατ1, βτ1, ατ2, βτ2, µβ, and Σβ are the hyperparameters. Note that the

p−dimensional vectors δβ and δw replace the n-dimensional vectors β(s) and w(s)

in the traditional spatially varying coefficients model (Section 3.2.2).

Results

We compare PICAR’s performance across varying ranks for the Moran’s operator.

Similar to the binary case, the chosen rank of the Moran’s operator drives predic-

tive performance and parameter estimation (Table 3.3). Here, we achieve a low

CVMSPE using the rank selected via the automated heuristic (p = 63). Model

fitting times increase with respect to the chosen rank of the Moran’s operator.

Using stan, we obtained an effective sample size of ∼ 5, 000 for all parameters,

random effects w(s), and the spatially varying coefficients β(s).

3.4.3 Ordered Categorical Data

We use the PICAR approach to model ordered categorical data. For the simulation

study, we generate 100 samples of ordered categorical spatial observations using

the spatial cumulative-logit model from Section 3.2.2. Similar to the binary case,

we select one sample to be the focus of our comparative analysis. The true cut-off

parameters (Section 3.2.2) are θ1 = 0, θ2 = 1 and θ2 = 2. To avoid identifiability
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Rank β1 (95% CI) β2 (95% CI) CVMPSE Time (min)
10 0.92 (0.81,1.02) 0.94 (0.85,1.03) 3.59 0.52
50 0.77 (0.54,1.01) 0.99 (0.89,1.09) 2.30 7.68
63 0.77 (0.48,1.06) 1.02 (0.9,1.12) 2.31 13.15
75 0.86 (0.55,1.16) 1.03 (0.93,1.14) 2.68 22.07
100 0.95 (0.55,1.33) 1.06 (0.94,1.17) 2.82 46.55
200 1.07 (0.7,1.49) 1.07 (0.95,1.19) 3.80 226.49

Table 3.3. Simulated example with spatially varying coefficients. Model fit using stan

programming language. Parameter estimation, prediction, and model fitting time re-
sults across Moran’s basis ranks. Bold font denotes the rank chosen by the automated
heuristic.

issues in model fitting, we fix the first cutoff θ1 = 0. We also reparameterize

the cut-off parameters into α1 and α2 as described in Section 3.2.2. To assess

predictive performance, we examine the out-of-sample misprediction rate (MPR),

or the proportion of incorrect predictions, and the loss function is:

MPR =
1

nCV

nCV∑
i=1

I(Y ∗i 6=Ŷ ∗i )
,

where Ŷ ∗ are the predicted values and Y ∗ are the true values at the validation

locations.

The automated heuristic chose a rank of p = 23, which yields comparable pa-

rameter estimation and predictive ability to the gold standard (see Supplement

for details). While predictive ability does not vary considerably across rank, the

chosen rank is important for parameter estimation. The PICAR approach is not

sensitive to the chosen precision matrix Q, as the inferential and predictive per-

formances do not vary across precision matrices. Similar to the binary case, we

observe faster mixing with the PICAR approach compared to the gold standard.

For model parameters β1 and β2, the PICAR approach exhibits an ES/sec of 30.7

and 30.4 respectively and the gold standard yields an ES/sec 0.034 and 0.034 re-

spectively. For the random effects, the PICAR approach has an average ES/sec of

4.4 and 0.002 for the gold standard, an improvement by a factor of approximately

1, 487.

For the simulation study, we examine boxplots for the parameter estimates for

β1, β2, α1, and α2 across all 100 samples. In Figure 3.6, we see that the parameter



89

estimates are centered around the true parameter values. Similar to the binary

case, our coverage proportions are very close (0.91 for β1, 0.92 for β2, 0.93 for α1,

0.88 for α2), but slightly lower than the nominal coverage (0.95).

Figure 3.6. Ordinal data simulation study: distribution of posterior mean estimates for
parameters β1 (top left) β2 (top right), α1 (bottom left), and α2 (bottom right) for three
different precision matrices - Independent (red), ICAR (green), and CAR with φ = 0.5
(blue). The red horizontal line denotes the true parameter values. The automated
heuristic selects the appropriate rank p of the Moran’s operator M. Note that the
default precision matrix for the PICAR approach is the ICAR precision matrix (green).
Distributions are similar across precision matrices.

3.5 Real Data Examples

Through the following applications, we demonstrate how the PICAR approach

readily scales up to higher-dimensional spatial datasets:

1. Parasitic infestation of dwarf mistletoe: We model n = 22, 888 bi-

nary spatial observations in around 4 hours, while this is computationally
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prohibitive under the traditional hierarchical modeling framework.

2. Volunteer-driven watershed quality surveys: We fit a hierarchical spa-

tial model to n = 5, 561 ordered categorical spatial observations within 35

minutes. Fitting the full model is too expensive, and there are no publicly

available approaches for fitting this model efficiently.

3.5.1 Binary Data: Parasitic Infestation of Dwarf Mistle-

toe

In Minnesota, the eastern spruce dwarf mistletoe (Arceuthobium pusillum) are a

parasitic species that affect the longevity and quality of its host, the black spruce

(Picea mariana) (Geils and Hawksworth, 2002). This infestation has economic

ramifications because the black spruce are valuable resources used to produce high

quality paper. We use a dataset from Hanks et al. (2011) originally obtained

from the Minnesota Department of Natural Resources (DNR) forest inventory.

The response is a binary incidence of dwarf mistletoe at n = 25, 431 black spruce

stands (i.e. location hosting the black spruce samples). We randomly sample

22, 888 observations to fit our model and reserve 2, 543 observations for validation.

Covariates include the: (1) average age of trees in the stand (2) basal area per

acre of trees in the stand; (3) average canopy height; and (4) volume of the stand

in cords, a unit of measurement. We fit a hierarchical spatial model, specifically

the SGLMM with a logit link function, using the PICAR approach. We construct

a triangular mesh with m = 32, 611 mesh vertices, and the automated heuristic

(Section 3.3.3) chose a rank of p = 520 for the Moran’s basis functions matrix.

The PICAR approach required around 4 hours to fit the model. Specifically,

it took 2 hours to run 105 iterations of the MCMC algorithm, 10 minutes to

generate the Moran’s operator (Section 3.3.1) via parallel computing across 100

processors, and 1.7 hours to calculate the first 1, 000 eigencomponents using the

Spectra C++ library. Comparison with the full SGLMM is infeasible as fitting

the full SGLMM (Section 3.2.1) to this dataset is computationally prohibitive. The

posterior predictive map displays similar spatial patterns between the predicted

and true values for the validation sample (Figure 3.7).
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Figure 3.7. Observed (left) and predicted (right) dwarf mistletoe presence and absence
at the validation sample locations. Red points denote the presence of dwarf mistletoe
and blue points denote absence.

3.5.2 Ordered Categorical Data: MD Stream Waders

Beginning as a pilot program in 2000, the Maryland Stream Waders (MSW) pro-

gram is a statewide volunteer stream monitoring program managed by the Mary-

land Department of Natural Resources’ (DNR) and the Monitoring and Non-Tidal

Assessment Division (MANTA). The MSW program was designed to supplement

the data from the Maryland Biological Stream Survey (MBSS) by increasing the

density of sampling sites for use in stream and watershed assessments. To illus-

trate, the MBSS samples are collected at the watershed level (around 70 square

miles), while the MSW samples at a smaller scale subwatersheds level (around 8

square miles each). For the samples collected at each site, the DNR laboratory

calculated an Benthic Index of Biotic Integrity (BIBI) was calculated (on a 1 to

5 scale). Each site was rated either Good (BIBI 4-5), Fair (BIBI 3-3.9), or Poor

(BIBI 1-2.9) (Stribling et al., 1998).
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A total of 6, 951 samples were collected within a 17-year time period (2000-

2017) at irregular sampling locations (Maryland’s Mapping and GIS Data Portal,

2018). We fit the model using 5, 561 randomly selected observations and validate

the model with the remaining 1, 390 samples. We model the observations using

the spatial cumulative-logit models (Section 3.2.2) with just an intercept term.

We generated a mesh with m = 8, 810 nodes and the automated heuristic chose a

rank of p = 653. The time to fit the spatial cumulative-logit model via PICAR is

around 35 minutes. We estimate fitting the full hierarchical spatial model would

require months to provide similarly accurate inference.

3.6 Discussion

In this study, we propose a fast extendable projection-based approach (PICAR)

for modeling a wide range of hierarchical spatial models. In cases where it is

possible to fit the full hierarchical spatial model, we show that our approach yields

comparable results in terms of both inference and prediction. We also provide

a variety of other examples that illustrate the flexibility of the PICAR approach

as well as the ease with which non-experts can specify and efficiently fit their

own hierarchical spatial models. We show that our approach is computationally

efficient, scales up to higher dimensions, automated, and extendable to a variety

of hierarchical spatial models. We provide an example of a hierarchical spatial

model (ordinal spatial data) that cannot be fit using existing publicly available

code but can be easily fit using PICAR. Moreover, we show that our approach

is amenable to implementation in a programming language for Bayesian inference

(stan). As shown in our real-data applications, our approach scales well to higher

dimensions. Where other approaches may be computationally infeasible, we can

fit a high-dimensional hierarchical spatial model within hours.

The computational complexity for the PICAR approach is driven by matrix-

vector multiplications, which can be readily parallelized. With efficient paral-

lelization methods, we expect our approach to scale up to hundreds of thousands

of data points. Even though an eigendecomposition is only carried out once in our

approach, methods such as Nyström method (Williams and Seeger, 2001) or ran-

dom projections (Banerjee et al., 2013; Guan and Haran, 2018) can further reduce
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costs via an approximate eigendecomposition of the Moran’s operator. There may

be other methods to improve our automated heuristic for rank selection such as

implementing a screening process for the relevant basis functions via a variable se-

lection approach like LASSO (Tibshirani, 1994). Extending the PICAR approach

to spatio-temporal or multivariate spatial processes as well as computer model cal-

ibration with non-Gaussian model outputs may provide fruitful avenues for future

research.
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Chapter 4
Modeling and Computation for

High-dimensional Zero-Inflated

Spatial Data

In this section, I discuss modeling approaches for zero-inflated spatial data and pro-

pose a computationally efficient method for fitting high-dimensional zero-inflated

spatial models. First, I introduce the general framework for spatial two-part mod-

els, a popular model for zero-inflated spatial observations. Next, I propose a com-

putationally efficient approach for fitting high-dimensional two-part models using

the PICAR approach (Chapter 3). Finally, I demonstrate the proposed approach

on multiple simulated examples as well as a high-dimensional species abundance

dataset. This chapter is currently in preparation for submission.

4.1 Introduction

Zero-inflated spatial data are spatially dependent observations characterized by an

excess of zeros. Observations can be discrete counts or semi-continuous, where the

non-zero values are positive real numbers. Zero-inflated spatial data are common

in many disciplines; for example, counts of harbor seals on glacial ice (Hoef and

Jansen, 2007), annual mental health expenditures among US federal employees

Neelon et al. (2011), and the number of torrential rainfall events in a region of
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interest Lee and Kim (2017). Standard probability distributions are not sensible

for modeling zero-inflated data (cf. Agarwal et al., 2002; Rathbun and Fei, 2006;

Lambert, 1992a) as they are unable to account for the large proportion of zeros.

Moreover, poor model choice may lead to over- or under-dispersion, where the

observed variance is higher or lower, respectively, than the variance of the fitted

model.

Two-part models (Mullahy, 1986; Lambert, 1992b) are typically used to model

zero-inflated spatial observations (Agarwal et al., 2002; Hoef and Jansen, 2007;

Olsen and Schafer, 2001, .cf). Two-part models consist of two processes, the oc-

currence and prevalence processes. The occurrence process dictates whether a zero

or non-zero value is observed at a particular location, and the prevalence process

determines the value of non-zero observations (exceptions may apply). The oc-

currence and prevalence processes are typically modeled using spatial generalized

linear mixed models (SGLMMs). For high-dimensional data, fitting SGLMMs can

be computationally burdensome due to arge matrix operations and slow mixing

Markov Chain Monte Carlo (MCMC) algorithms.

Past studies propose novel modeling approaches for zero-inflated spatial data,

but these methods may not scale well to larger datasets. Two-part models have

been fit using Guass-Hermite quadrature (Min and Agresti, 2005), expectation-

maximization (Lambert, 1992b; Roeder et al., 1999), restricted maximum quasi-

likelihoods (Kim et al., 2012), or Monte Carlo maximum likelihood methods (Lya-

shevska et al., 2016). However, such approximations do not scale well with high-

dimensional spatial random effects. In the Bayesian framework, the literature

focuses on improving the sophistication of zero-inflated spatial models. Studies

have modeled spatio-temporal dependence (Fernandes et al., 2009; Neelon et al.,

2016a; Arcuti et al., 2016), addressed overdispersion (Gschlößl and Czado, 2008;

Lee et al., 2016), used skewed distributions (Dreassi et al., 2014; Liu et al., 2016),

used t-distributions to model heavy tailed behavior (Neelon et al., 2015), and mod-

eled prevalence with scale mixtures of normal distributions (Fruhwirth-Schnatter

and Pyne, 2010) or Student-t processes (Bopp et al., 2020). However, there is a

dearth of research on addressing computational issues with large zero-inflated spa-

tial datasets, namely the high-dimensional correlated spatial random effects and

slow mixing of MCMC algorithms. Wang et al. (2014) models the presence and
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abundance of Atlantic cod in 1325 locations along the Gulf of Maine using predic-

tive processes (Banerjee et al., 2008). Another study facilitates posterior sampling

for zero-inflated negative binomial distributions (ZINB) by using latent variables

that are represented as scale mixtures of normal distributions (Neelon et al., 2018).

In this study, we introduce a computationally efficient approach for fitting a

broad range of two-part models to high-dimensional zero-inflated spatial observa-

tions. We use the projection-based intrinsic conditional autoregression (PICAR)

approach (Lee and Haran, 2019) to reducing the dimensions of and correlation be-

tween the spatial random effects in two-part spatial models. The PICAR method

represents the spatial random effects with empirical basis functions. Various ba-

sis representations have been directly or indirectly used to model spatial data,

for instance in the predictive process approach (Banerjee et al., 2008), random

projections (Guan and Haran, 2018, 2019; Banerjee et al., 2013; Park and Haran,

2019), Moran’s basis for areal models (Hughes and Haran, 2013), stochastic partial

differential equations (Lindgren et al., 2011), kernel convolutions (Higdon, 1998),

eigenvector spatial filtering (Griffith, 2003), and multi-resolution basis functions

(Nychka et al., 2015; Katzfuss, 2017), among others. We utilize a non-parametric

set of basis functions based on the Moran’s I statistic and piece-wise linear basis

functions. To our knowledge, this is the first approach that readily lends itself

to user-specified spatial two-part models for zero-inflated spatial data while also

reducing computational costs for large datasets. We demonstrate the applicability

of PICAR via simulation studies as well as an species abundance dataset of benthic

invertebrates.

In section 4.2, we introduce the two-part modeling framework for zero-inflated

data. In section 4.3, we provide an overview of spatial two-part models and ex-

amine the associated modeling and computational challenges. Then, in section

4.4, we propose a computationally efficient approach to fit high-dimensional spa-

tial two-part models. We also outline the tuning mechanisms and computational

advantages of our approach. We demonstrate the proposed approach using four

simulated examples generated from popular spatial two-part models (section 4.5)

as well as a high-dimensional ecological dataset (section 4.6). Finally, a brief sum-

mary and directions for future research are provided in Section 4.7.
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4.2 Two-part Models For Zero-inflated Data

In this section, we introduce the “two-part” modeling framework for zero-inflated

data. Two-part models (Mullahy, 1986; Lambert, 1992b) are a popular class of

models for modeling zero-inflated data. These models are comprised of two random

variables: (1) the occurrence random variable O, which specifies the structural zero

and non-zeros cases; and (2) the prevalence random variable P that generates the

positive values for the structural non-zero cases. For special cases, the prevalence

random variable P can also generate zeros. In two-part models, the zero-inflated

observation Z is generated as follows:

Z =

{
0 if O = 0

P if O = 1.
, (4.1)

where O and P are the latent occurrence and prevalence random variables, respec-

tively. In the univariate case, the occurrence variable O ∈ {0, 1} is modeled as a

Bernoulli random variable with probability π ∈ (0, 1) (i.e., O ∼ Bern(π)). The

prevalence variable is distributed as P ∼ f(θ) where f(θ) is a discrete probability

mass function or continuous probability density function with prevalence model

parameter θ.

Two-part models for zero-inflated data typically fall into two classes:

1. Hurdle Models: The occurrence random variable O solely specifies the

zero-valued observations. The prevalence random variable P generates pos-

itive values for the non-zero-valued observations. In the discrete case, f(·)
is a zero-truncated distribution such as the zero-truncated Poisson or the

zero-truncated negative binomial distribution. For semi-continuous observa-

tions, f(·) is a probability density function with positive support such as a

log-normal or gamma distribution.

2. Mixture Models: Both the occurrence O and prevalence random variables

P specify the zero-valued observations. The occurrence random variable

identifies the structural zero-valued observations. The prevalence random

variable P generates both zeros and positive values for structural non-zero-

valued observations. In the discrete case, f(·) is a non-degenerate distribution
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such as the Poisson or Negative-Binomial distribution. For semi-continuous

observations, f(·) can be a censored model such as a Tobit Type I.

For the univariate case, the likelihood function f̃Z
(
z;O,P

)
for two-part models

is as follows:

f̃Z
(
z;O,P

)
=

{
π + (1− π)× f(0; θ), if z = 0

(1− π)× f(z; θ), if z > 0.
, (4.2)

For two part models, the expectation is defined as E[Z|π, θ] = πEf [Z|θ] and

the variance is V ar[Z|π, θ] = π(1 − π)Ef [Z|θ]2 + πV arf [Z|θ] where Ef [Z|θ] and

V arf [Z|θ] denote the expectation and variance of a random variable with proba-

bility distribution f(·|θ).
Alternative distributions for f(·) can result in richer and more flexible two-

part models. For count data, examples include the Poisson, negative binomial,

zero-truncated Poisson (Lambert, 1992a), translated Poisson (Hoef and Jansen,

2007), zero-truncated negative binomial (Mwalili et al., 2008), generalized Poisson

(Gschlößl and Czado, 2008), and binomial distributions (Hall, 2000). In the semi-

continuous case, the lognormal distribution may not be appropriate due to the lack

of symmetry or fatter tails exhibited by the observations. Past studies have used

skewed distributions (Dreassi et al., 2014; Liu et al., 2016), t-distributions to model

heavy tailed behavior (Neelon et al., 2015), or modeled the prevalence process using

scale mixtures of normal distributions (Fruhwirth-Schnatter and Pyne, 2010).

For independently and identically distributed observations Z = {Z1, ..., Zn},
statistical inference consists of estimating model parameters π and θ by maximiz-

ing the joint likelihood function f̃Z
(
z;O,P

)
=
∏n

i=1 f̃Z
(
zi;O,P

)
. Bayesian hierar-

chical models are well-suited for two-part models because two-part models have a

natural hierarchical structure, as shown by the data-generating model (Equation

4.1) and latent random variables (O and P ). The Bayesian hierarchical framework
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for two-part models is as follows:

Data Model: Z|O,P ∼ f̃Z
(
z;O,P

)
Process Model: O|π ∼ Bern(π)

P |θ ∼ f(θ)

Parameter Model: Priors for π and θ

4.3 Spatial Two-part Models

In this section, we discuss the two-part modeling framework for zero-inflated spatial

data. Then, we present an overview of the modeling and computational challenges

associated with fitting these models. Past research have extended two-part models

to spatially dependent zero-inflated observations (Hoef and Jansen, 2007; Neelon

et al., 2016a; Wang et al., 2014, cf.). Spatial two-part models have a similar

modeling framework to the univariate case in Section 4.2; however, we allow the

occurrence O and prevalence P random variables to vary in space. Here, we model

occurrence and prevalence as spatial random processes O(s) and P (s).

Let Z(s) be a zero-inflated observation for spatial location s ⊂ D within the

spatial domain D ∈ R2. The observation Z(s) are generated as follows:

Z(s) =

{
0 if O(s) = 0

P (s) if O(s) = 1.
, (4.3)

where O(s) and P (s) are the spatial occurrence and prevalence processes, re-

spectively. The occurrence process is specified as O(s) ∼ Bern(π(s)) with spa-

tially varying probabilities π(s) ∈ (0, 1). The prevalence process is modeled as

P (s) ∼ f(θ(s)) where f(θ(s)) is a discrete or continuous probability distribution

with spatially varying model parameters θ(s).

4.3.1 Spatial Generalized Linear Mixed Models

In the literature, particular focus has been placed on modeling the spatially-

dependent occurrence O(s) and prevalence P (s) processes using spatial generalized

linear mixed models (SGLMM)(cf. Agarwal et al., 2002; Rathbun and Fei, 2006;
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Neelon et al., 2013; Recta et al., 2012). Spatial generalized linear mixed models

are a popular choice for modeling non-Gaussian spatially dependent observations

(Diggle et al., 1998).

Non-Gaussian spatial observations are typically modeled using spatial general-

ized linear mixed models (SGLMMs) (Diggle et al., 1998). Let {Z(s) : s ∈ D} be a

non-Gaussian spatial random field. Assuming Z(s) are conditionally independent

given the latent random spatial field W, the conditional mean E[Z(s)|β,W, ε(s)]

can be modeled through a linear predictor η(s):

η(s) = g{E[Z(s)|β,W], ε(s)} = X(s)β + w(s) + ε(s),

where g(·) is a known link function. Binary and count observations are two common

types of non-Gaussian spatial data, and these can be modeled using the binary

SGLMM with logit link and the Poisson SGLMM with log link, respectively. X(s)

is a set of k covariates associated with location s and β is a k-dimensional vector

of coefficients. The micro-scale measurement errors or nugget are modeled as

an uncorrelated Gaussian process with zero mean and variance τ 2 where ε(s) ∼
N(0, τ 2) for all s ∈ D.

We impose spatial dependence by modeling the spatial random effects W =

{w(s) : s ∈ D} as a stationary zero-mean Gaussian process with a positive definite

covariance function C(·). For a finite set of locations s = (s1, ..., sn), the spatial

random effects W are distributed as a multivariate normal distribution W|Θ ∼
N(0, C(Θ)) with covariance function parameters Θ and the covariance matrix C(Θ)

where C(Θ)ij = cov(w(si), w(sj)). The Matérn covariance function is a widely used

class of stationary and isotropic covariance functions (Stein, 2012) with parameters

Θ = (σ2, φ, ν) such that:

C(si, sj) = σ2 1

Γ(ν)2ν−1

(√
(2ν)

h

φ

)ν
Kν

(√
(2ν)

h

φ

)
,

where R(φ) is the correlation matrix, h = ||si − sj|| is the Euclidean distance

between locations si and sj, σ
2 > 0 is the partial sill or scale parameter of the

process, and φ > 0 is the range parameter for spatial dependence. Kν(·) is the

modified Bessel function of the second kind where the smoothness parameter ν is

commonly fixed prior to model fitting.
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The Bayesian hierarchical framework for spatial generalized linear mixed mod-

els (SGLMMs) is:

Data Model: Z(s)|η(s) ∼ f(η(s))

η(s) = g(E[Z(s)|β,W), ε(s)]) = X(s)β + w(s) + ε(s)

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ)

ε(s)|τ 2 ∼ N(0, τ 2)

Parameter Model: β ∼ p(β), φ ∼ p(φ), σ2 ∼ p(σ2), τ 2 ∼ p(τ 2)

4.3.2 Modeling Framework: HURDLE and Mixture Mod-

els

In this section, we outline the genreal modeling framework for spatial two-part

models. Both processes, O(s) and P (s), are modeled as spatial generalized linear

mixed models (SGLMMs) with the appropriate link functions. The occurrence

process O(s) is modeled as a Bernouilli random variable with either a probit or

a logit link function. The linear predictor is defined as ηoηoηo = Xβoβoβo + Wo + εo,

where Wo ∼ N (0, σ2
oRφo) and εo ∼ N (0, τ 2o I). Model fitting entails estimating

the parameters βo, φo, σ
2
o , τ

2
o as well as the spatial random effects Wo.

The prevalence process P (s) follows a specific probability distribution based

on the observation type (counts vs. semi-continuous) and structural assumptions.

For HURDLE models, a zero-truncated distribution (e.g., zero-truncated Pois-

son, zero-truncated negative binomial, lognormal, or gamma) is a sensible choice

for f(·). Mixture models utilize a distribution with non-negative support (e.g.,

Poisson, negative binomial, or Tobit model). Similar to the occurrence process,

the prevalence process P (s) is also modeled as an SGLMM with linear predictor

ηpηpηp = Xβpβpβp + Wp + εp, where Wp ∼ N (0, σ2
pRφp) and εp ∼ N (0, τ 2pI). Here, the

parameters βp, φpσ
2
p, τ

2
p and spatial random effects Wp must be estimated. To

complete the Bayesian hierarchical framework, prior distributions are specified for

the model parameters.
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The Bayesian hierarchical framework for two-part models is as follows:

Data Model: Z|O(s), P (s) ∼ f̃Z
(
z;O(s), P (s)

)
Process Model: O(s)|π(s) ∼ Bern(π(s))

P (s)|θ(s) ∼ f(θ(s))

Sub-process Model 1: π(s)|ηo(s) = g−1o (ηo(s))

(Occurrence) ηo(s)|βo,Wo(s), εo(s) = X(s)βo +Wo(s) + εo(s)

Wo = {Wo(s1), ...,Wo(sn)}

Wo|φo, σ2
o ∼ N (000, σ2

oRφo),

ε(s)|τ 2o ∼ N (000, τ 2o )

Sub-process Model 2: θ(s)|ηp(s) = g−1p (ηp(s))

(Prevalence) ηp(s)|βp,Wp(s), εp(s) = X(s)βp +Wp(s) + εp(s)

Wp = {Wp(s1), ...,Wp(sn)}

Wp|φp, σ2
p ∼ N (000, σ2

pRφp)

ε(s)|τ 2p ∼ N (000, τ 2p )

Parameter Model: Priors for βo, φo, σ
2
o , τ

2
o , βp, φp, σ

2
p, and τ 2p

where f̃Z
(
z;O(s), P (s)

)
is the likelihood function of spatial two-part model. Based

on Equation 4.3, f̃Z
(
z;O(s), P (s)

)
is defined as:

f̃Z
(
z;O(s), P (s)

)
=

{
π(s) + (1− π(s))× f(0; θ(s)), if z = 0

(1− π(s))× f(z; θ(s)), if z > 0.
, (4.4)

Similar to the univariate case, spatial two-part models typically fall into two

classes - HURDLE and mixture models. The key difference between these two

classes is the choice of f(·|θ(s)), the distribution used to model the prevalence

process P (s). Here, we describe four popular two-part spatial models.

HURDLE Model for Spatial Count Data

First, the HURDLE Poisson model is appropriate for zero-inflated count data

where only the occurrence process O(s) generates zeros. Here, the distribution

for the prevalence process P (s) is a zero-truncated distribution such as a zero-
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truncated Poisson distribution (i.e. f(·|θ(s)) = θ(s)ze−θ(s)

z!(1−e−θ(s))). The associated likeli-

hood function is:

f̃Z
(
z;O(s), P (s)

)
=

{
π(s), if z = 0

(1− π(s))× θ(s)ze−θ(s)

z!(1−e−θ(s)) , if z > 0.
. (4.5)

Note that the prevalence process can be modeled using other zero-truncated dis-

crete probability distributions such as the zero-truncated Negative binomial or a

translated Poisson distribution (Hoef and Jansen, 2007).

HURDLE Model for Spatial Semi-continuous Data

The HURDLE lognormal model is appropriate for zero-inflated semi-continuous

data where only the occurrence process O(s) generates zeros. Here, the distribu-

tion for the prevalence process P (s) is a multivariate lognormal distribution. The

associated likelihood function is:

f̃Z
(
z;O(s), P (s)

)
=

{
π(s), if z = 0

(1− π(s))× LN(z; θ(s)), if z > 0,
. (4.6)

where LN(z; θ(s)) = 1

z
√
2πτ2

exp
(
− (ln z−µ(s))2

2τ2

)
is the probability density function

of a lognormal distribution with parameters θ(s) = {µ(s), τ 2}.

Mixture Model for Spatial Count Data

The zero-inflated Poisson (ZIP) model is popular choice for modeling zero-inflated

count data where both the occurrence O(s) and prevalence processes P (s) generate

zeros. The distribution for the prevalence process P (s) is a Poisson distribution

(i.e. f(·|θ(s)) = θ(s)ze−θ(s)

z!
). The likelihood function is:

f̃Z
(
z;O(s), P (s)

)
=

{
π(s) + (1− π(s))× e−θ(s), if z = 0

(1− π(s))× θ(s)ze−θ(s)

z!(1−e−θ(s)) , if z > 0.
. (4.7)

Mixture Model for Spatial Semi-continuous Data

The zero-inflated Tobit (ZIT) model is an extension of mixture models for zero-

inflated semi-continuous data. Similar to the ZIP model, both the occurrence O(s)
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Table 4.1. Spatial two-part models broken down by class and observation type.
Class Data Type Occurrence O(s) Prevalence P (s)

HURDLE
Discrete

Bernouilli Zero-Truncated Poisson
Bernouilli Zero-Truncated Neg. Binomial

Continuous
Bernouilli Lognormal
Bernouilli Log skew-normal

Mixture
Discrete

Bernouilli Poisson
Bernouilli Negative Binomial

Continuous Bernouilli Tobit Model

and prevalence processes P (s) generate zeros. The distribution for the prevalence

process P (s) is a Tobit model. The Tobit model generates censored observation

Z(s) ∈ {0,R+} as:

Z(s) =

{
Z∗(s), if Z∗(s) > γ

0, if Z∗(s) ≤ γ
, (4.8)

where γ is a threshold and Z∗(s) is a latent random variable such that Z∗(s) ∼
N (µ(s), τ 2(s)). For the case where γ = 0, the Tobit model provides the following

likelihood fZ
(
z; θ(s)

)
:

fZ
(
z; θ(s)

)
=

{
Φ(µ(s)

τ(s)
), if z = 0

φ( z−µ(s)
τ(s)

), if z > 0.
, (4.9)

where Φ(·) is the standard normal cumulative distribution function and φ(·) is

the standard normal probability density function. Model parameters are θ(s) =

{µ(s), τ 2}. Consequently, the likelihood function for the zero-inflated Tobit (ZIT)

model is:

f̃Z
(
z;O(s), P (s)

)
=

{
π(s) + (1− π(s))× Φ(µ(s)

τ(s)
), if z = 0

(1− π(s))× φ( z−µ(s)
τ(s)

), if z > 0.
, (4.10)

In Table 4.3.2, we outline the various two-part models for zero-inflated spatial

data and provide details regarding the spatial processes.
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4.3.3 Modeling and computational challenges

The occurrence and prevalence processes are modeled using spatial generalized lin-

ear mixed models (SGLMMs). Fitting SGLMMs to high-dimensional observations

can be computationally costly due to large matrix operations and slow mixing

random effects (Haran, 2011). SGLMMs typically require a costly evaluation of

an n−dimensional multivariate normal likelihood function (O(n3)) at each itera-

tion of the MCMC algorithm. Moreover, highly correlated spatial random effects

can lead to poor mixing in MCMC algorithms (cf. Christensen et al., 2006; Haran

et al., 2003).

Frequentist methods have been proposed for zero-inflated observations. These

methods use two-stage procedures for Guass-Hermite quadrature (Min and Agresti,

2005), expectation-maximization (Lambert, 1992b; Roeder et al., 1999), or re-

stricted maximum quasi-likelihoods (Kim et al., 2012). However, such approxi-

mations do not scale well with high-dimensional random effects. One study pro-

poses a novel Markov Chain Maximum Likelihood (MCML) approach for modeling

large zero-inflated spatial count data (Lyashevska et al., 2016), but this remains

computationally demanding as it requires parallelized operations across multiple

processors.

In the Bayesian framework, the literature focuses on improving the sophis-

tication of zero-inflated spatial models. Studies have modeling spatio-temporal

dependence (Fernandes et al., 2009; Neelon et al., 2016a; Arcuti et al., 2016), ad-

dressed overdispersion (Gschlößl and Czado, 2008; Lee et al., 2016), used skewed

distributions (Dreassi et al., 2014; Liu et al., 2016), used t-distributions to model

heavy tailed behavior (Neelon et al., 2015), and modeled prevalence with scale

mixtures of normal distributions (Fruhwirth-Schnatter and Pyne, 2010). However,

there is a dearth of research on addressing computational issues with large zero-

inflated spatial datasets, namely the high-dimensional correlated spatial random

effects and slow mixing of MCMC algorithms. For example, one study (Wang

et al., 2014) models the presence and abundance of Atlantic cod in 1325 locations

along the Gulf of Maine using predictive processes (Banerjee et al., 2008). Other

studies provide methods to facilitate posterior sampling by representing the latent

spatial processes as scale mixtures of normal distributions via dirichlet processes

(Neelon et al., 2018) or through Pólya-Gamma mixtures (Neelon et al., 2019).
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4.4 Computationally efficient zero-inflated spa-

tial models

In this section, I we propose a computationally efficient approach for fitting two-

part models for high-dimensional zero-inflated spatial data. Our method extends

the projection-based intrinsic conditional autoregression (PICAR) framework to

two=part models by imposing a non-parametric basis representation of the un-

derlying spatial occurrence O(s) and prevalence P (s) processes. We present the

hierarchical modeling framework and also provide practical guidelines for selecting

tuning parameters. Finally, we examine the computational benefits afforded by

the PICAR approach.

4.4.1 Projection Intrinsic Autoregression (PICAR)

We introduce a projection-based intrinsic conditional autoregression (PICAR) ap-

proach that is designed to efficiently fit hierarchical spatial models. In this frame-

work, we represent spatial random effects W = (W (s1), ...,W (sn)) as a linear

combination of basis functions:

W ≈ Φδ , δ ∼ N (0,Σδ),

where Φ is an n × p basis function matrix where each column denotes a basis

function, δ ∈ Rp are the re-parameterized spatial random effects (or basis coef-

ficients), and Σδ is the p × p covariance matrix for the weights. Basis functions

can be interpreted as a set of distinct spatial patterns that can be used to con-

struct a spatial random field, along with their coefficients. Basis representation

has been a popular approach to model spatial data (cf. Cressie and Johannesson,

2008; Banerjee et al., 2008; Hughes and Haran, 2013; Lindgren et al., 2011; Rue

et al., 2009; Christensen et al., 2006; Haran et al., 2003; Griffith, 2003; Higdon,

1998; Nychka et al., 2015). Examples of basis functions include splines, wavelets,

empirical orthogonal functions, combinations of sines and cosines, piece-wise lin-

ear functions, and many others. Basis representations tend to be computationally

efficient as they help bypass large matrix operations, reduce the dimensions of the

spatial random effects, and as in our case, decorrelate the spatial random effects
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W.

The Projection-based intrinsic conditional auto-regression (PICAR) approach

consists of three components: (1) generate a triangular mesh on the spatial domain

D ⊂ R2; (2) construct a spatial field on the mesh vertices using non-parametric

basis functions; (3) interpolate onto the observation locations using piece-wise

linear basis functions. We provide additional details for each component.

Mesh Construction

Prior to fitting the model, we generate a mesh enveloping the observed spatial

locations via Delaunay Triangulation (Hjelle and Dæhlen, 2006). Here, we divide

the spatial domain D into a collection of non-intersecting irregular triangles. The

triangles can share a common edge, corner (i.e. nodes or vertices), or both. The

mesh generates a latent undirected graph G = {V,E}, where V = {1, 2, ...,m}
are the mesh vertices and E are the edges. Each edge E is represented as a pair

(i, j) denoting the connection between i and j. The graph G is characterized by its

weights matrix N, an m×m matrix where Nii = 0 and Nij = 1 when mesh node i

is connected to node j and Nij = 0 otherwise. The triangular mesh is built using

the R-INLA package (Lindgren et al., 2015). Guidelines for mesh construction

are provided in Lindgren et al. (2015), and details pertaining to algorithms for

Delaunay triangulation can be found in Hjelle and Dæhlen (2006).

Moran’s Basis Functions

We generate a spatial random field on the set of mesh vertices V of graph G using

the Moran’s basis functions (Hughes and Haran, 2013; Griffith, 2003). Griffith

(2003) propose an augmented spatial generalized linear mixed model using a subset

of eigenvectors of the Moran’s operator (I− 11′/m)W(I− 11′/m), where I is the

identity matrix and 1 is a vector of 1’s. Note that this operator is a component of

the Moran’s I statistic:

I(A) =
m

1′W1

Z′(I− 11′/m)W(I− 11′/m)Z

Z′(I− 11′/m)Z
,

a diagnostic of spatial dependence (Moran, 1950) used for areal spatial data. Values

of the Moran’s I above − 1
m−1 indicate positive spatial autocorrelation and values
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below − 1
m−1 indicate negative spatial autocorrelation (Griffith, 2003). Positive

eigencomponents of the Moran’s operator correspond to varying magnitudes and

patterns of positive spatial dependence, or clustering. For the triangular mesh,

the positive eigenvectors represent the patterns of spatial dependence among the

mesh nodes, and their corresponding eigenvalues denote the magnitude of spatial

dependence.

We construct the Moran’s basis function matrix M ∈ Rm×p, by selecting the

first p eigenvectors of the Moran’s operator where p � m. Rank selection for

p proceeds via an automated heuristic (Lee and Haran, 2019) based on out-of-

sample cross-validation. A spatial random field can be constructed through a

linear combinations of the Moran’s basis functions (contained in matrix M) and

their corresponding weights δ ∈ Rp.

Piece-wise Linear Basis Functions

To complete the PICAR approach, we introduce a set of piece-wise linear basis

functions (Brenner and Scott, 2007) to interpolate points within the triangular

mesh (i.e. the undirected graph G = (V,E)). We construct a spatial random field

on the mesh nodes W̃ = (W (v1), ...,W (vm)) where vi ∈ V and then project, or

interpolate, onto the observed locations W = (W (s1), ...,W (sn)) where si ∈ D.

The latent spatial random field W can be represented as W = AW̃, where A is

an n×m projector matrix containing the piece-wise linear basis functions.

The rows of A correspond to an observation location si ∈ D, and the columns

correspond to a mesh node vi ∈ V . The ith row of A contains the weights to

linearly interpolate W (si). To illustrate, when the observation location si is wholly

contained within one of the mesh triangles, there will be three non-zero values in

the ith row of the projector matrix A, each corresponding to a mesh node vj ∈ V .

When the observation location lies on an edge between two mesh nodes, there will

be two non-zero values in the corresponding row of A. Finally, there will only be

one non-zero value in the corresponding row when the observation location and

mesh node share the same location. In practice, we use an n×m projector matrix

A for fitting the hierarchical spatial model. For model validation and prediction,

we generate an nCV × m projector matrix ACV that interpolates onto the nCV

validation locations.
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PICAR Representation of Spatial Generalized Linear Mixed models

(SGLMMs)

In the previous section, we introduced three major components of the PICAR

approach: (1) the Moran’s basis function matrix M ∈ Rm×p; (2) the projector

matrix A ∈ Rn×m; and (3) the corresponding weights δ ∈ Rp. Given a set of

weights δ and the Moran’s basis functions M, we can build a spatial random field

on the triangular mesh nodes v ∈ V as W̃ = Mδ, where W̃ = (W (v1), ...,W (vm))

for vi ∈ V . Next, we linearly interpolate the latent spatial random field at the

observation locations as W = AW̃ = AMδ, where W = (W (s1), ...,W (sn)) for

si ∈ D, the spatial domain.

The PICAR approach can be embedded into the SGLMM modeling framework:

Data Model: Z(s)|η(s) ∼ f(η(s)),

η(s) = g(E[Z(s)|β, δ]) = X(s)β + [AMδ](s),

Process Model: δ|τ ∼ N (0, τ−1(M′QM)−1),

Parameter Model: β ∼ N(µβ,Σβ), τ ∼ G(ατ , βτ ),

where A is the projector matrix, M is the Moran’s basis functions matrix, δ are

the basis coefficients, Q is the prior precision matrix for the mesh vertices, τ is the

precision parameter, and ατ , βτ , µβ, and Σβ are the hyperparameters.

By default, we set Q to be the precision matrix of an intrinsic conditional

auto-regressive model (ICAR) fit on the mesh vertices V . Here, Q = (diag(N1)−
N), where N is the adjacency or weight matrix from Section 3.3.1 and 1 is m-

dimensional vector of 1s. Since Q is not positive definite, this framework cannot be

used within the likelihood function; however, it can be set as the prior distribution

for the spatial random effects as part of the Bayesian hierarchical spatial model

(Besag et al., 1991). Alternative options for Q and a comparative analysis can be

found in Lee and Haran (2019).

4.4.2 PICAR Approach for Zero-inflated Spatial Data

The PICAR approach for fitting spatial generalized linear mixed models readily

extends to the spatial two-part modeling framework (Equation 4.3.2). Here, we
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replace the existing latent spatial random process (Wo and Wp) with the PICAR

representation Wo ≈ AoMoδo and Wp ≈ ApMpδp. Here, Ao is a n×m projector

matrix, Mo is a m × po matrix of Moran’s basis functions, δo is a po-dimensional

vector of basis coefficients for the occurrence process. Similarly, Ap is a np × m
projector matrix, Mp is a m × pp matrix of Moran’s basis functions, and δp is a

pp-dimensional vector of basis coefficients for the prevalence process. The general

hierarchical framework for the PICAR representation of two-part models is as

follows:

Data Model: Z|O(s), P (s) ∼ f̃Z
(
z;O(s), P (s)

)
Process Model: O(s)|π(s) ∼ Bern(π(s))

P (s)|θ(s) ∼ f(θ(s))

Sub-process Model 1: π(s)|ηo(s) = g−1o (ηo(s))

(Occurrence) ηo(s)|βo, δo(s), εo(s) = X(s)βo + AoMoδo + εo(s)

δo|τo ∼ N (000, τ−1o (M′
oQoMo)

−1),

εo(s)|τ 2εo ∼ N (0, τ 2εo)

Sub-process Model 2: θ(s)|ηp(s) = g−1p (ηp(s))

(Prevalence) ηp(s)|βp,Wp(s), εp(s) = X(s)βp + ApMpδp + εp(s)

δp|τp ∼ N (000, τ−1p (M′
pQpMp)

−1),

εp(s)|τ 2εp ∼ N (0, τ 2εp)

Parameter Model: Priors for βo, τo, τ
2
εo , βp, τp, and τ 2εp ,

where f̃Z
(
z;O(s), P (s)

)
is the likelihood function of the zero-inflated data from

Equation 4.4. The new components of the PICAR representation are projector

matrices Ao and Ap, the Moran’s basis functions matrices Mo and Mp, the basis

coefficients δo and δp, and the precision parameters τo and τp. The m ×m prior

precision matrix for the mesh vertices Q is typically fixed prior to model fitting.

Additional details are provided in the following section. Similar to the general

framework from section 4.3.2, the data likelihood function f̃Z
(
z;O(s), P (s)

)
spec-

ifies the type of two-part models such as hurdle models (Equations 4.5 and 4.6 )

and mixture models (Equations 4.7 and 4.10).



111

4.4.3 Tuning Mechanisms

The occurrence O(s) and prevalence P (s) process models are based on spatial

generalized linear mixed model (Section 4.3.1). The general SGLMM framework

assumes that the true latent spatial random field W = {W (s1),W (s2), ...,W (sn)}
is a Gaussian process such that W ∼ N(0, σ2Rφ) with partial sill σ2 and correlation

matrix Rφ. On the other hand, the PICAR approach considers the latent spatial

random field following a basis representation such that W ≈ AMδ, where δ ∼
N(0, τ−1(M′QM)−1), M is the m× p Moran’s basis function matrix, and A is the

n ×m projector matrix. An alternative formulation of the latent spatial random

field is

W ∼ N(0, τ−1AM(M′QM)−1M′A′).

The PICAR approach approximates the covariance matrix σ2Rφ such that σ2Rφ ≈
τ−1AM(M′QM)−1M′A′. We proceed by tuning the rank of the Moran’s operator

rank(M) and the prior precision matrix Q of the mesh vertices.

The following automated heuristic selects the appropriate ranks po and pp for

the Moran’s basis function matrices for both processes, Mo and Mp. First, we

generate two augmented datasets - Z∗o and Z∗p- using the original zero-inflated

spatial dataset Z. The first dataset is generated as:

Z∗o (s) =

{
0, if Z(s) = 0

1, if Z(s) > 0.
, (4.11)

The second dataset Z∗p ∈ Rnp is the collection of all observations such that

Z(s) > 0 and np corresponds to the sample size of Z∗p. Next, we generate a set

P consisting of h equally spaced points within the interval [2, P ] where P is the

maximum rank and h is the interval resolution (h = P − 1 by default). Here,

P < m and both P and h are chosen by the user.

For the augmented dataset Z∗o(s), we proceed in the following way. For each p ∈
P , we construct an n× (k+ p) matrix of augmented covariates X̃o = [X AoMp]

where X ∈ Rn×k is the original covariate matrix, A ∈ Rn×m is the projector matrix,

and Mp ∈ Rm×p are the leading p eigenvectors of the Moran’s operator. Next, we

use maximum likelihood approaches to fit the appropriate generalized linear model

(GLM) for binary responses, typically with a logit link function. Finally, we set
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po to be the rank p that yields the lowest out-of-sample cross-validated root mean

squared prediction error (CVRMSPE).

We implement a similar procedure for the second augmented dataset Z∗p ∈ Rnp .

For each p ∈ P , we construct an np × (k + p) matrix of augmented covariates

X̃p = [Xp ApMp] where Xp ∈ Rnp×k is the matrix of covariates, Anp ∈ Rnp×m

is the projector matrix, and Mp ∈ Rm×p are the leading p eigenvectors of the

Moran’s operator. Note that the rows of Xp and Ap correspond to the np ob-

servations with positive values. Next, we use maximum likelihood approaches to

fit the appropriate generalized linear model (GLM) for positive responses. For

count data, the likelihood function is a zero-truncated Poisson distribution. For

semi-continuous data in the HURDLE model framework, we employ a lognormal

distribution as the likelihood function. For semi-continuous data in the mixture

model framework, we simply fit the traditional linear model. Then, we set pp to be

the rank p that yields the lowest out-of-sample cross-validated root mean squared

prediction error (CVMSPE).

Figure 4.1. Cross-validated mean squared prediction error (CVMSPE) by ranks 1-
50 using the automated heuristic for the occurrence (left) and prevalence (right) pro-
cesses. The vertical red lines denote the chosen ranks (po = 8 and po = 19) with lowest
CVMPSE.

Figure 4.1 demonstrates the automated heuristic for a spatial hurdle count

model for a simulated zero-inflated spatial dataset from a HURDLE count model.
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Note that ranks po = 8 and pp = 19 results in the lowest CVMSPE for the occur-

rence and prevalence components.

Next, we provide some choices for Q, the prior precision matrix for the mesh

vertices W̃. By default (Section 3.3.1), we set Q to be the precision matrix of

an intrinsic conditional auto-regressive model (ICAR). Similarly, we could set Q

as the precision matrix of a conditional auto-regressive model (CAR). Here, Q =

(N1 − ρN), where N is the adjacency matrix and ρ ∈ (0, 1) is a predetermined

correlation coefficient. It is possible to estimate ρ as a model parameter, but

doing so requires an eigendecomposition of the Moran’s operator (O(m3)) at each

iteration of the MCMC algorithm, which can negate the computational gains of

the PICAR approach. Another alternative is setting Q = I, where the mesh nodes

W̃ and re-parameterized spatial random effects δ are uncorrelated.

4.4.4 Computational Advantages

The PICAR approach requires shorter computational times per iteration as well

as fewer iterations for the Markov chain to converge. The computational speedup

results from bypassing expensive matrix operations (e.g. Cholesky decomposition)

and by decorrelating and reducing the dimensions of the spatial random effects.

The computational cost is dominated by the matrix-vector multiplication AMδ,

where AM is the n × p basis function matrix constructed prior to model fitting

and δ are reparameterized spatial random effects (basis coefficients). The PICAR

approach has a computational complexity of O(np) as opposed to O(n3) for the

full hierarchical spatial model.

We examine mixing in MCMC algorithms within the context of spatial gen-

eralized linear mixed models (SGLMMs). Here, the PICAR approach generates

a faster mixing MCMC algorithm than fitting the full two-part model using the

reparameterization method (gold standard) (Christensen et al., 2006). Note that

this reparameterization approach is designed to improve mixing for in MCMC

algorithms. This is corroborated by the larger effective sample size per second

(ES/sec), the rate at which independent samples are generated by the MCMC

algorithm. Larger values of ES/sec indicates faster mixing. In the simulated ex-

amples (Section 4.5), the PICAR approach returns a larger ES/sec than the gold
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standard across all model parameters and spatial random effects. Additional de-

tails are provided in Section 4.5.

For PICAR, the two major computational bottlenecks are constructing the

Moran’s operator (Section 4.4.1) and computing its eigencomponents. The Moran’s

operator requires the matrix operation (I− 11′/m)W(I− 11′/m) and 2m3 −m2

floating point operations (FLOPs), which may be computationally prohibitive for

large datasets. We reduce computational costs by leveraging the embarrassingly

parallel operations as well the sparsity of the weights matrix N. We use the sparse

matrix R package Matrix (Bates and Maechler, 2019) to reduce costs for the

operation Σ = (I− 11′/m)N. Then, we partition the resulting matrix Σ into K

mutually exclusive 1
K
× n sub-matrices Σk for k = 1, ..., K. By parallelizing across

K processors, we can quickly construct the partial Moran’s Operator MOk =

Σk(I − 11′/m) for k = 1, ..., K. Finally, we generate the full Moran’s Operator by

combining the MOk’s as so MO =


MO1

...

MOK

.

We can compute the k eigencomponents of the Moran’s Operator using a partial

eigendecomposition approach such as the Implicitly Restarted Arnoldi Method

(Lehoucq et al., 1998) from RSpectra package (Qiu and Mei, 2019). Since the

PICAR approach typically selects a rank(M) � n, there is no need to perform a

full eigendecomposition of the Moran’s Operator M.

4.5 Simulated Examples

We demonstrate our approach on simulated datasets generated from the following

two-part models:

1. Hurdle Model with Count Data: The occurrence process O(s) solely

generates zero-values. The prevalence process P (s) generates positive counts

from a zero-truncated Poisson distribution.

2. Hurdle Model with Semi-continuous Data: The occurrence process

O(s) solely generates zero-values. The prevalence process P (s) generates

positive continuous values from a lognormal distribution.
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3. Mixture Model with Count Data: The occurrence O(s) and prevalence

P (s) processes both generate zero-values. The prevalence process P (s) gen-

erates counts from a Poisson distribution.

4. Mixture Model with Semi-continuous Data: The occurrence O(s) and

prevalence P (s) processes both generate zero-values. The prevalence process

P (s) generates counts from a Tobit model.

For each zero-inflated spatial model, we generate a dataset with locations on

the unit domain [0, 1]2. Each dataset consists of 700 locations randomly chosen on

the spatial domain. We use 500 observations to fit the hierarchical spatial model

and reserve 200 observations for validation. We chose n = 500 so that we could

compare against a gold standard method (below) for which higher dimensions

can be computationally prohibitive. Each dataset includes a randomly generated

matrix of covariates X. For the PICAR approach, rank selection proceeds via the

automated heuristic presented in Section 4.4.3. We set the precision matrix of the

occurrence process Qo to be an no × no identity matrix and the precision matrix

of the prevalence process Qp to be an np × np identity matrix.

We compare our PICAR-based approach to fitting the full two-part model (gold

standard). We fit the full two-part model using the reparameterization approach

from Christensen et al. (2006), which is designed to improve mixing over default

MCMC algorithms. Christensen et al. (2006) reparameterize the latent spatial

process as Wo = Loγo and Wp = Lpγo where Lo and Lp are the lower triangular

matrices obtained through the Cholesky decomposition of the corresponding co-

variance matrices (i.e., Co(h;σ2
o , φo) = LoL

′
o and Cp(h;σ2

p, φp) = LpL
′
p). Next, γo

and γp are reparameterized spatial random effects for the occurrence and preva-

lence processes, respectively. Additional details are provided in the appendix.

We examine the out-of-sample cross-validated root mean squared prediction

error (CVRMSPE):

CVRMSPE =

√√√√ 1

nCV

nCV∑
i=1

(Y ∗i − Ŷ ∗i )2,

where nCV = 200, Y ∗i ’s denote the i-th value in the validation sample, and Ŷ ∗i ’s



116

are the predicted values at the i-th location.

4.5.1 HURDLE Model for Spatial Count Data

In the first example, we simulate a zero-inflated spatial count dataset from a spatial

hurdle model for count data. For both the occurrence O(s) and prevalence P (s)

processes, βo = βp = (1, 1)T , and the random effects (Wo and Wp) are generated

using the Matérn covariance function with ν = 2.5, σ2 = 1, and φ = 0.2. The

covariance function has the form (cf. Rasmussen and Williams, 2006)

C(h) = σ2
(

1 +

√
5|h|
φ

+
5|h|2

3φ2

)
exp

(
−
√

5|h|
φ

)
,

where |h| is the Euclidean distance between locations. The data likelihood function

follows Equation 4.5. The distribution for the prevalence process f(·|θ(s)) is a zero-

Truncated Poisson distribution such that f(·|θ(s)) = θ(s)ze−θ(s)

z!(1−e−θ(s)) . The occurrence

process O(s) is modeled as a spatial generalized linear mixed model (SGLMM)

with a logit-link function logit(π(s)) = log{ π(s)
1−π(s)}. The prevalence process is also

modeled as an SGLMM with a log-link function.

In the PICAR approach, we place a vague multivariate normal prior for the

regression coefficients where βo ∼ N(0, 100I) and βp ∼ N(0, 100I). As in Hughes

and Haran (2013), we chose a gamma prior for the precision parameters τo ∼
G(0.5, 2000) and τp ∼ G(0.5, 2000). For the binary and count data, we use Gibbs

updates for τo and τp and random-walk Metropolis-Hastings updates for βo and βp.

Finally, we update the basis coefficients δo and δp using an all-at-once Metropolis-

Hastings update with a multivariate normal proposal centered at the parameters

of the previous iterations as in Guan and Haran (2018). For the PICAR approach,

we ran 100, 000 iterations of the MCMC algorithm. The MCMC algorithm is

implemented using the programming language nimble (de Valpine et al., 2017).

The PICAR approach generates a triangular mesh with of m = 528 vertices.

For the Moran’s basis functions matrices, the automated heuristic selected ranks

po = 8 and pp = 19 for the occurrence and prevalence processes, respectively.

Table 4.2 presents the parameter estimates, prediction results, and computational

times for each simulated example. The PICAR approach provides similar point
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and interval estimates to the gold standard method, as evidenced by the reported

posterior means and the 95% credible intervals for regression parameters β1o, β2o,

β1p, and β1p. Prediction results for both methods are similar where the PICAR ap-

proach yields a cross-validated root mean squared error (CVRMSPE) of 1.52 com-

pared to a CVRMSPE of 1.68 for the gold standard. For this example, the PICAR

approach outperforms the gold standard method in predictive ability, which is con-

sistent with results from a past study that employs basis representations of spatial

latent fields (Bradley et al., 2019). Moreover, the PICAR approach has a model

fitting wall time of 1.2 minutes as opposed to 11.2 hours for the gold standard.

We also consider mixing in MCMC algorithms by examining the effective sam-

ple size per second (ES/sec), or the rate at which independent samples are gener-

ated by the MCMC algorithm. Here, larger values of ES/sec indicates faster mix-

ing. The PICAR approach generates a faster mixing MCMC algorithm than the

reparameterization method (Rep-SGLMM) (Christensen et al., 2006), an approach

designed to improve mixing for SGLMMs. For model parameters β1o, β2o, β1p, and

β1p, PICAR yields an ES/sec of 218.89, 214.15, 44.00, and 43.83, respectively. The

gold standard returns an ES/sec 0.66, 0.63, 0.26, and 0.25, respectively. For the

spatial random effects Wo(s) and Wp(s), the median ES/sec is 53.09 and 28.70

for the PICAR approach and 0.71 and 0.40 for the gold standard, an improvement

by a factor of roughly 74.3 and 72.5. The computation times are based on a single

2.2 GHz Intel Xeon E5-2650v4 processor. All the code was run on the Pennsyl-

vania State University Institute for CyberScience-Advanced CyberInfrastructure

(ICS-ACI) high-performance computing infrastructure.

Example Method β1o β2o RMPSE Time

HURDLE Count Gold 1 (0.61,1.38) 1.19 (0.8,1.57) 1.68 11.2 hr
HURDLE Count PICAR 1.02 (0.64,1.41) 1.27 (0.89,1.67) 1.52 1.2 min

HURDLE Semi Gold 1.19 (0.77,1.64) 1.48 (1.06,1.92) 2.03 11.0 hr
HURDLE Semi PICAR 1.1 (0.7,1.51) 1.49 (1.09,1.9) 2.01 1.2 min

Mix Count Gold 1.25 (0.69,1.84) 0.85 (0.26,1.42) 1.66 14.5 hr
Mix Count PICAR 1.48 (0.81,2.18) 0.95 (0.29,1.58) 1.77 1.6 min

Mix Semi Gold 2.46 (1.38,3.55) 2.27 (1.17,3.38) 0.49 14.9 hr
Mix Semi PICAR 1.12 (-0.94,3.1) 0.41 (-1.84,2.51) 0.52 3.5 min

Table 4.2. Inference, prediction, and computational results for simulated examples.
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4.5.2 HURDLE Model for Spatial Semi-continuous Data

Next, we simulate a zero-inflated spatial semi-continuous dataset using a spatial

hurdle model for semi-continuous data. The data is generated using the same

specifications as in the HURDLE count case. However, the distribution for the

prevalence process f(z|θ(s)) is a lognormal distribution such that f(z|θ(s)) =
1

z
√
2πτ2

exp
(
− (ln z−µ(s))2

2τ2

)
with parameters θ(s) = {µ(s), τ 2}. We define µ(s) =

X(s)βp + W (s) and set the true value for τ 2 = 0.1. The data likelihood function

follows Equation 4.6. The occurrence process is modeled similar to the HURDLE

count case, while the prevalence process adheres to a SGLMM with a lognormal

likelihood function and a link function g(·) = exp(X(s)βp + W (s) + τ 2/2). We

follow the specifications for model fitting as outlined in the HURDLE count case;

however, we also estimate the variance of the lognormal distribution τ 2 and set

prior distribution τ 2 ∼ IG(2, 2).

In the PICAR approach, the triangular mesh consists of m = 531 vertices. For

the Moran’s basis functions matrices, the automated heuristic selected ranks po = 5

and pp = 39 for the occurrence and prevalence processes, respectively. The PICAR

approach provides similar point and interval estimates to the gold standard method

as shown in Table 4.2. Prediction results for both methods are similar where the

PICAR approach yields a cross-validated root mean squared error (CVRMSPE)

of 2.01 compared to a CVRMSPE of 2.03 for the gold standard.

Moreover, the PICAR approach has a model fitting wall time of 1.2 minutes as

opposed to 11.0 hours for the gold standard. Furthermore, the PICAR approach

exhibits faster mixing than the gold standard as shown by the larger effective

samples per second (ES/sec). For model parameters β1o, β2o, β1p, β1p, and τ 2

PICAR yields an ES/sec of 213.54, 223.32, 516.04, 76.83, and 26.18 and the gold

standard returns an ES/sec of 0.44, 0.57, 1.52, 1.38, and 0.94, respectively. For

the spatial random effects Wo(s) and Wp(s), the median ES/sec is 70.7 and 21.5

for the PICAR approach and 0.64 and 1.49 for the gold standard, an improvement

by a factor of roughly 110.2 and 14.4.
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4.5.3 Mixture Model for Spatial Count Data

The next dataset comes from a popular spatial mixture model for count data, the

zero-inflated Poisson (ZIP) model. The model parameters follow those from the

previous cases. For the ZIP model, the distribution for the prevalence process

f(z|θ(s)) is a Poisson distribution such that f(z|θ(s)) = θ(s)ze−θ(s)

z!
with rate pa-

rameter θ(s). The data likelihood function follows Equation 4.7. The occurrence

process is modeled as in the previous cases, and the prevalence process is modeled

as an SGLMM with a log link function g(θ) = log(θ(s)). Model fitting for both

the PICAR and gold standard cases area similar to the previous two cases.

The PICAR approach generates a triangular mesh with of m = 526 vertices.

For the Moran’s basis functions matrices, the automated heuristic selected ranks

po = 13 and pp = 6 for the occurrence and prevalence processes, respectively.

The PICAR approach provides similar point and interval estimates to the gold

standard method as shown in Table 4.2. Prediction results for both methods are

similar where the PICAR approach yields a cross-validated root mean squared error

(CVRMSPE) of 1.77 compared to a CVRMSPE of 1.66 for the gold standard.

However, the PICAR approach has a model fitting wall time of 1.6 minutes as

opposed to 14.5 hours for the gold standard. Furthermore, the PICAR approach

exhibits faster mixing than the gold standard as shown by the larger effective

samples per second (ES/sec). For model parameters β1o, β2o, β1p, and β1p, PICAR

yields an ES/sec of 51.26, 60.98, 25.38, and 30.93, respectively. The gold standard

returns an ES/sec 0.14, 0.11, 0.05, and 0.05, respectively. For the spatial random

effects Wo(s) and Wp(s), the median ES/sec is 21.9 and 22.5 for the PICAR

approach and 0.09 and 0.10 for the gold standard, an improvement by a factor of

roughly 234.1 and 225.8.

4.5.4 Mixture Model for Spatial Semi-continuous Data

Finally, we examine a zero-inflated spatial semi-continuous dataset generated using

a spatial mixture model for semi-continuous data. Here, the distribution for the

prevalence process f(z|θ(s)) is the Tobit model from Equation 4.9 with parameters

θ(s) = {µ(s), τ 2}. We define µ(s) = X(s)βp + W (s) and set the true value for

τ 2 = 0.1. The data likelihood function follows Equation 4.10. We model the
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occurrence process O(s) similar to the previous cases. The prevalence process

P (s) is modeled according to an SGLMM driven by a Tobit model. We follow the

specifications for model fitting as outlined in the HURDLE count case; however,

we also estimate the variance of the Tobit model τ 2 and set prior distribution

τ 2 ∼ IG(2, 2).

For the PICAR approach, the triangular mesh includes m = 531 vertices.

For the Moran’s basis functions matrices, the automated heuristic selected ranks

po = 10 and pp = 36 for the occurrence and prevalence processes, respectively.

As shown in Table 4.2, Prediction results for both methods are similar where the

PICAR approach yields a cross-validated root mean squared error (CVRMSPE)

of 0.52 compared to a CVRMSPE of 0.49 for the gold standard. The PICAR

approach has a model fitting wall time of 3.5 minutes as opposed to 14.9 hours for

the gold standard. Similar to the previous cases, the PICAR approach exhibits

faster mixing than the gold standard as shown by the larger effective samples per

second (ES/sec). For model parameters β1o, β2o, β1p, and β1p PICAR yields an

ES/sec of 21.99, 14.96, 17.05, 14.88, and 13.63 and the gold standard returns an

ES/sec 0.08, 0.07, 0.08, 0.05, and 0.06, respectively. For the spatial random effects

Wo(s) and Wp(s), the median ES/sec is 13.1 and 12.5 for the PICAR approach

and 0.09 and 0.07 for the gold standard, an improvement by a factor of roughly

144.7 and 177.7.

4.6 Application: Abundance of Bivalve Species

in the Dutch Wadden Sea

We showcase the scalability of our method by modeling a high-dimensional ecolog-

ical dataset. The region of interest is the Dutch Wadden sea, a protected ecological

habitat made up of sand barriers, salt marshes, mudflats, and gullies (Compton

et al., 2013; Lyashevska et al., 2016). The Dutch Wadden sea is a famous stopover

site for shorebirds (Lyashevska et al., 2016), particularly due to the presence of the

Baltic tellin (Macoma balthica), a species of benthic invertebrates. Here, we exam-

ine spatial abundance data of the Macoma balthica species from Lyashevska et al.

(2016) originally obtained from the synoptic intertidal benthic surveys (SIBES)
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monitoring program (Compton et al., 2013; Bijleveld et al., 2012). The observa-

tions consist of counts of the Baltic tellin (Macoma balthica) species sampled at

n = 4, 029 locations. Here, 65.9% of the locations have zero-counts. The occur-

rence (presence vs. absence) and prevalence (values of positive counts) maps are

provided in Figure 4.6.

Figure 4.2. Maps of occurrence (left) and prevalence (right) of the Baltic tellin (Macoma
balthica) species. For the occurrence map, the blue points denote the presence and the
red points denote absence of the bivalve species. The prevalence map displays counts at
the locations with positive counts.

We randomly select 3, 220 observations to fit our model and hold out 2, 543

observations for validation. Covariates include environmental variables that affect

the abundance of the Macoma balthica species such as: (1) median grain size of the

sediments; (2) silt content of the sediments; and (3) altitude. Using the PICAR

approach, we fit the HURDLE count model and the zero-inflated Poisson model

(mixture). We construct a triangular mesh with m = 5, 560 mesh vertices, and the

automated heuristic (Section 4.4.3) chose ranks po = 70 for the occurrence process

O(s) and pp = 10 for the prevalence process P (s).

We employ similar model specifications and prior distributions as in the simu-

lated examples (Section 4.5), and we run the MCMC algorithms for 100, 000 itera-

tions. Wall times for the PICAR approach were 10.3 minutes to fit the HURDLE
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count model and 17.0 minutes to fit the zero-inflated Poisson (mixture) model.

Comparisons to the gold standard approach (Christensen et al., 2006) are com-

putationally prohibitive due to the long wall times associated with the MCMC

algorithms. For instance, the gold standard approach for a HURDLE count model

would require 5.6 months to run the same number of iterations of the MCMC

algorithm as our method. Similarly, the zero-inflated Poisson (mixture) model

version would need 12.35 months to do the same. We present the inference and

prediction results in Table 4.6. Despite having a longer model fitting wall time,

the zero-inflated Poisson (mixture) model exhibits better predictive ability over the

HURDLE count model as evidenced by the lower root mean squared prediction

error.

Estimate (95% CI) Estimate (95% CI)
Process Covariate HURDLE Model ZIP Model

Occurrence Median grain size -0.02 (-0.22 , 0.19) -0.14 (-0.39 , 0.11)
Occurrence Silt content 0.16 (-0.02 , 0.34) -0.04 (-0.26 , 0.16)
Occurrence Altitude 0.49 (0.4 , 0.59) 0.45 (0.34 , 0.57)
Prevalence Median grain size 0.28 (0.19 , 0.36) 0.27 (0.18 , 0.35)
Prevalence Silt content 0.68 (0.61 , 0.75) 0.68 (0.61 , 0.75)
Prevalence Altitude 0.27 (0.24 , 0.31) 0.27 (0.23 , 0.3)

RMSPE 4.6 4.4
Wall Time 10.3 min 17.0 min

Table 4.3. Real Data Example: Inference and prediction results for the PICAR repre-
sentation of the HURDLE count and zero-inflated Poisson (mixture) models. We pro-
vide the parameter estimates and 95% credible intervals for the regression coefficients
corresponding to the three covariates (mean grain size, silt content, and altitude) and
two processes (occurrence and prevalence). This includes prediction results (root mean
squared prediction error) and model fitting wall times.

4.7 Discussion

In this study, we present a computationally efficient approach to model high-

dimensional zero-inflated spatial observations. We modify the spatial two-part

modeling framework by using a PICAR representation of latent spatial processes

(occurrence O(s) and prevalence P (s)). Our approach dramatically reduces model-

fitting wall times while preserving inferential and predictive ability. We show that
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our approach is computationally efficient, scales up to higher dimensions, auto-

mated, and extends to a variety of spatial two-part models for zero-inflated data.

Moreover, our method can be readily implemented in a programming language for

Markov chain Monte Carlo algorithms such as nimble. As shown in the simulated

examples, our approach yields comparable results to the gold standard in both

inference and prediction, but incurs a fraction of the computational costs. By

drastically reducing computational cost, we are able to model high-dimensional

spatial datasets such as the Macome balthica species abundance data within the

order of minutes, as opposed to months for existing models.

Our method is subject to the following caveats. In this study, we focus on four

commonly used two-part models. A natural extension would consider complex two-

part models such as HURDLE models with skewed distributions (Dreassi et al.,

2014; Liu et al., 2016), t-distributions to model heavy tailed behavior (Neelon et al.,

2015), or scale mixtures of normal distributions (Fruhwirth-Schnatter and Pyne,

2010). Another avenue for future research would be to extend the PICAR approach

to cases where there is correlation between the occurrence and prevalence processes

(Recta et al., 2012). Finally, our approach does not provide an procedure for

choosing between HURDLE and mixture models prior to model-fitting. Developing

a pre-model-fitting test or automated heuristic would be a promising area of future

research.



Chapter 5
Discussion and Future Work

My dissertation focuses on developing computationally efficient statistical methods

for calibrating complex computer models and fitting high-dimensional hierarchical

spatial models. The proposed methods address two key scientific problems: (1)

incorporating information from various data sets to tune, or “calibrate” complex

computer models to enable a better understanding of the past, present, and the

future of the climate; and (2) developing fast algorithms to model complex spatial

datasets from the environmental sciences. I apply these novel methods to real

world examples in the environmental sciences such as ice sheet model calibration,

ecological data analysis, and public health studies.

5.1 Summary and Contributions

In Chapter 2, I present a fast particle-based approach for calibrating complex com-

puter models, namely a three-dimensional Antarctic ice sheet model. Complex ice

sheet computer models play a prominent role in climate science, particularly in pro-

jecting future climate. These models require parameters that are calibrated based

on observations and prior knowledge. As the number of parameters to be calibrated

and as model complexity increases, current calibration methods either become

computationally prohibitive or largely underestimate parametric uncertainty. Our

approach employs a sequential Monte Carlo method that takes advantage of the

massive parallelization afforded by modern high performance computing systems.

The drastic reduction in computational times enables us to provide new insights
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into important scientific questions, for example, the impact of Pliocene era data

and prior parameter information on sea level projections. These studies would be

computationally prohibitive with other computational approaches for calibration

such as Markov chain Monte Carlo or emulation-based methods. I also find con-

siderable differences in the distributions of sea level projections when we account

for a larger number of uncertain parameters. This work provides a promising step

forward towards improving the uncertainty quantification of complex, computa-

tionally intensive, and decision-relevant models.

In Chapter 3, I introduce a projection intrinsic conditional autoregression

(PICAR) approach for modeling high-dimensional hierarchical spatial models. Hi-

erarchical spatial models are commonly used across many fields such as ecology,

glaciology, public health studies and criminology. However, these models pose con-

siderable computational challenges due to the large number of highly correlated

spatial random effects, which results in slow mixing Markov Chain Monte Carlo

(MCMC) algorithms and expensive large matrix operations. I propose a computa-

tionally efficient approach for fitting high-dimensional hierarchical spatial models

by de-correlating and reducing the dimensions of the spatial random effects. The

major advantage of our method is that it is easily accessible for non-experts to

specify general hierarchical spatial models of their choice and also provides an effi-

cient estimation approach even for large datasets. More specifically, our approach:

(i) automatically implements dimension reduction and decorrelation of the random

effects; (ii) can be easily integrated into a hierarchical modeling scenario, as shown

by our implementation in the language Stan and NIMBLE; and (iii) our method

scales well to higher dimensional hierarchical spatial models. I demonstrate the

PICAR approach on several simulated examples as well as two high-dimensional

real-world spatial datasets.

In Chapter 4, I present a fast computational approach for modeling high-

dimensional zero-inflated spatial data. Zero-inflated spatial data are common in

many fields such as the climate sciences, ecology, public health, and epidemiology.

Two-part models are commonly used to model zero-inflated spatial observations.

However, fitting two-part models to large datasets can be computationally burden-

some due to the high number of correlated spatial random effects. I modify the

spatial two-part modeling framework by using a PICAR representation of latent
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spatial processes (occurrence O(s) and prevalence P (s)). This approach is compu-

tationally efficient, extends to a variety of spatial two-part models, and is readily

implemented in a programming language for Markov chain Monte Carlo algorithms

such as nimble. I demonstrate this approach on simulated and real-world datasets

to showcase its computational efficiency and predictive ability.

In summary, the computational methods presented in this dissertation allows

researchers to perform tasks that were previously infeasible such as calibrating

a class of computer models and model certain types of high-dimensional spatial

data. The particle-based calibration approach enables computer experiments that

were computationally prohibitive. The PICAR approach models high-dimensional

spatial data faster than gold standard approaches, but preserves inferential and

predictive ability. This approach applies to a wide array of spatial models (e.g.

spatially varying coefficients, ordinal spatial data, and zero-inflated models). More-

over, this approach can be readily incorporated into inference for a large number

of user-specified hierarchical spatial models.

5.2 Caveats and Potential Improvements

There are several important caveats related to the computational methods devel-

oped in this dissertation. The fast particle-based approach introduced in Chapter

2 is designed for a specific class of computer models with moderate single mode

run times (5 seconds - 15 minutes) and moderate number of model parameters (5

- 20). The particle-based approach may not be appropriate for computer models

with long model run times (> 15 minutes). Since this approach relies on massive

parallelization (2000+ cores), even small increases in model run times can lead

to a dramatic rise in computational costs. For these computer models, one may

consider parallel MCMC algorithms where the fast mixing yields shorter mutation

stages (fewer sequential model runs). Examples include multiple-try Metropolis

(Martino, 2018; Liu et al., 2000) or ensemble Markov chain Monte Carlo (Neal,

2011). High-dimensional input spaces (> 20 parameters) may also be problematic

because the particle-based approach would require: (1) a large number of parti-

cles to sensibly approximate the target distribution; (2) longer mutation stages to

move the particles into the high-probability regions; and (3) a massive allocation
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computational resources. Past theoretical work (Crisan and Doucet, 2000) state

that using more particles yields better approximations of the target distributions.

In Lee et al. (2020), we chose the number of particles based on the available com-

putational resources. Subsequent research would focus on selecting the optimal

number of particles for particle-based calibration.

A number of caveats apply to our scientific findings. The PSU3D-ICE model

runs at a coarser resolution than previous studies (DeConto and Pollard, 2016;

Chang et al., 2016a,b; Pollard et al., 2016), which is a compromise between physical

fidelity and run-time feasibility. At coarser resolutions, complex ice processes may

not properly coalesce due to the spatial constraints. Replicating this calibration

study at sharper spatial resolutions (40 km to 10 km) would be a fruitful extension

of this study. Here, we would need to develop novel methods to further reduce

sequential model evaluations in the mutation stage. Promising avenues for future

work would include incorporating parallel MCMC approaches such as Multiple-

Try Metropolis (Liu et al., 2000) or “emcee” samplers (Goodman and Weare,

2010), which enables faster mixing Markov chains and shorter mutation stages.

Finally, the likelihood functions for the paleoclimate records may heavily influence

calibration results. We have shown how the choice of expert priors influence sea

level rise rojections, but the influence of likelihood functions remains an open area

of research.

In Chapter 3, I present a computationally efficient approach for fitting high-

dimensional hierarchical spatial models. The PICAR approach is subject to com-

putational challenges for fitting hierarchical spatial models with a massive number

of spatial random effects 100k+. The dominating computational costs comes from

an expensive eigendecomposition of the Moran’s operator and repeated matrix-

vector multiplications within the MCMC algorithm. Approximate eigendecom-

position approaches such such as Nyström method (Williams and Seeger, 2001)

or random projections (Banerjee et al., 2013; Guan and Haran, 2018) can allevi-

ate some of these computational demands. Moreover, the repeated matrix-vector

multiplications can be parallelized across multiple cores; thereby permitting the

PICAR approach to scale up ultra-high-dimensional hierarchical spatial models.

Another interesting possibility is incorporating the Moran’s basis function into

the latent conjugate multivariate (LCM) model framework (Bradley et al., 2019),
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which could help bypass expensive Metropolis-Hastings updates. These caveats

also extend to the PICAR representation of two-part models in Chapter 4

In Chapter 4, I focus on a subset of two-part models for zero-inflated spatial

data. The proposed method does not explicitly consider the many other sophisti-

cated two-part models such as HURDLE models with skewed distributions (Dreassi

et al., 2014; Liu et al., 2016), t-distributions to model heavy tailed behavior (Neelon

et al., 2015), or scale mixtures of normal distributions (Fruhwirth-Schnatter and

Pyne, 2010). Another avenue for future research would be to extend the PICAR

approach to cases where there is correlation between the occurrence and prevalence

processes (Recta et al., 2012). Finally, our approach does not provide an proce-

dure for choosing between HURDLE and mixture models prior to model-fitting.

Developing a test or automated heuristic that proceeds before model-fitting would

be a promising area of research.

5.3 Avenues for Future Research

Directions for future research stem from many of the caveats listed above. Here, I

present five promising avenues for future research.

5.3.1 Computer Model Calibration for High-dimensional

Spatial Binary Outputs

Recent calibration studies (Chang et al., 2016a,b) provide sharp sea level projec-

tions by assimilating high-dimensional non-Gaussian spatial observations of the

Antarctic ice sheet (Fretwell et al., 2012). The higher resolution (40 km) PSU3D-

ICE model generates a spatial field n = 19600 of binary (ice vs. no ice) outputs.

The particle-based approach from Chapter 2 is not computationally feasible for

this setting.

I propose using low-dimensional mismatch statistics obtained from the high-

dimensional spatial model outputs and observations. My objective is to distill the

discrepancy between the model output and observations into a single mismatch

statistic. Summary statistics have been used in many Approximate Bayesian Com-

putation (ABC) algorithms (Joyce and Marjoram, 2008; Wegmann et al., 2009;
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Drovandi et al., 2011) and have also been used to build Gaussian process emula-

tors for gravity models in epidemiology (Jandarov et al., 2014).

One example is a summary statistic that captures the spatial mismatch of the

perimeter locations. Based on exploratory analysis, the PSU3D-ICE model consis-

tently models ice presence in locations near the center of the ice sheet, independent

of parameter settings. However, there is much more variability around the edge of

the ice sheet. Consider mismatch locations, or knots, sice ⊂ Sice and snone ⊂ Snone
where Sice is the collection of m spatial points that lie 100 km inside the Antarctic

ice sheet perimeter and Snone is the collection of m spatial points that lie 100 km

outside the perimeter. Let S = Sice ∪ Snone, which contains 2m spatial points.

The observations Z(s) are defined as:

Z(s) =

{
1 if s ∈ Sice
0 if s ∈ Snone

,

Figure 5.1. Map of the Antarctic ice sheet with mismatch locations, or knots. Blue
triangles denote the locations with ice and lie 100 km inside the Antarctic ice sheet
perimeter. Red triangles denote the locations without ice and lie 100 km outside the
perimeter.

Consider the mismatch statistic Z̃(s) =
∑
S I{Z(s) = Y (s|θ)}, where Z(s) is

the observation at location s and Y (s|θ) is the ice sheet model output at location

s generated using parameter setting θ. This mismatch statistic represents the

amount of spatial mismatch between the model output and observations around

the edge of the ice sheet.
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In a very simple case, Z̃(s) has the following hierarchical structure:

Z̃(s) ∼ Bin(2m, p)

p ∼ Beta(α, β),
(5.1)

where α and β are hyperparameters for the prior Beta distribution. Note that

by setting the prior distribution for p to be Beta(10, 1), the model will heavily

favor perfect matches between the model output and observations. Setting the

prior to be Beta(1, 1), a uniform prior on the unit scale, allows more flexibility for

the spatial match. In this example, I fix the total number of trials to be 2m.

5.3.2 Parallel MCMC approaches for Model Calibration

High-resolution ( 40 km or 20 km ) ice sheet models incur heavy computational

costs during the mutation stage of the particle-based algorithm due to their long

model run times. In the mutation stage, adding a second layer of paralellization

would reduce the number of sequential model runs. The idea is to propose multiple

candidates for each particle, as opposed to one candidate in the particle-based

approach. Then, fewer mutation updates should be necessary per iteration of

the algorithm. The new approach would build upon parallelized Markov chain

Monte Carlo methods, such as multiple-try Metropolis (Martino, 2018; Liu et al.,

2000), locally weighted Markov chain Monte Carlo (Bernton et al., 2015), and

ensemble Markov chain Monte Carlo (Neal, 2011). Note that adding a second

layer of parallelization requires complex code development and coordination within

the high performance computing system. Another viable option is to reduce the

number of mutation updates is to resample particles from the entire mutation

sampling paths (Nguyen, 2014; Del Moral et al., 2006; Gramacy et al., 2010);

thereby providing a larger pool for resampling.

5.3.3 Extensions to Non-stationary and Spatio-temporal

Models

Many applications address spatial data with non-stationary latent spatial processes

or spatial processes that also exhibit temporal dependence. Developing computa-
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tionally efficient approaches for these types of models has been an active area of

research. Extending the PICAR approach to non-stationary hierarchical models or

spatio-temporal hierarchical models would be challenging problem and potentially

a useful contribution to the literature.

Non-stationary Hierarchical Spatial Models

In this dissertation, I focus on spatial models that assume the latent spatial random

processes are weakly stationary, or the correlation between locations is a function

of distance. On the other hand, non-stationary spatial processes are characterized

by spatial dependence structures that tend to vary as a function of distances. Past

studies have examined non-stationary spatial models using process convolutions

(Higdon et al., 1999), non-stationary covariance functions (Paciorek and Schervish,

2006), averaging (smoothing) locally stationary processes (Fuentes, 2001; Nychka

et al., 2018), and mapping locations to a deformed space where stationarity exists

(Schmidt and O’Hagan, 2003). As sample size increases, existing approaches face

considerable computational challenges due to the high-dimensional and heavily

correlated spatial random effects.

I plan on extending the PICAR representation of latent spatial processes to

non-stationary hierarchical spatial models. This includes spatial generalized linear

mixed models as well as other complex spatial models with multiple latent pro-

cesses. The objective is to develop a computationally efficient basis representation

approach that scales up to high-dimensional non-stationary hierarchical spatial

models.

One possible method would build upon the approach presented in Nychka

et al. (2018). First, I plan on dividing the spatial domain into smaller overlap-

ping regions. For each region, I would assign a localized set of Moran’s basis

functions Mi for regions i = 1, ..., N . Here, the basis functions will have 0’s for

locations outside the corresponding regions. In addition, I will specify a global

set of Moran’s basis functions Mg. The combined set of Moran’s basis functions

Mtot = [M1, ...,MN ,Mg] will be incorporated into the general hierarchical spatial

modeling framework. While this proposed approach is shares similarities to the

method from Nychka et al. (2018), my approach bypasses knot selection for the

radial basis functions and uses the PICAR representation of the spatial random
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field.

Spatio-temporal Models

Modern data collection initiatives have led to larger and more complex spatio-

temporal datasets. Modeling high-dimensional spatio-temporal data faces consid-

erable modeling and computational challenges. As the spatial or temporal resolu-

tion increases, storage and matrix operations of the resulting covariance matrices

become computationally costly. These computational challenges affect models with

non-separable spatio-temporal covariance structures, where the spatio-temporal co-

variance functions cannot be represented as a Kronecker product of the separate

spatial and temporal covariance functions.

Past studies employ spatio-temporal basis functions (Wikle et al., 2019; Bryn-

jarsdóttir and Berliner, 2014, cf.) which help circumvent the prohibitively large

matrix operations. One promising avenue would use tensor products of spatial and

temporal basis functions to represent the underlying spatio-temporal processes.

However, constructing spatio-temporal basis functions is non-trivial as there are

numerous spatial basis functions (see point below) and temporal basis functions.

For future studies, I aim to construct computationally efficient spatio-temporal

basis functions with a focus on selecting the appropriate spatial and temporal

components.

5.3.4 A Comparative Study: Basis Functions for Spatial

Non-Gaussian Data

Though basis representation methods have been widely used, the choice of basis

functions are often left to the user. Examples of spatial basis functions include (1)

bi-square (radial) basis functions (Cressie and Johannesson, 2008) with varying

resolutions (Katzfuss, 2017; Nychka et al., 2015); (2) empirical orthogonal func-

tions (Cressie and Wikle, 2015), or spatial representations of principal component

analysis; (3) predictive process basis functions (Banerjee et al., 2008); (4) Moran’s

basis functions for spatial eigenfiltering (Hughes and Haran, 2013; Griffith, 2003);

(5) piecewise Linear functions on a triangulation of the spatial domain (Lindgren

et al., 2011); (6) square roots of the correlation matrix of the spatial random
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effects via cholesky factorization Christensen et al. (2006) or approximate eigen-

decompositions (Banerjee et al., 2013; Guan and Haran, 2018); (7) W-wavelets

(Shi and Cressie, 2007) and multiresolution wavelet basis functions (Nychka et al.,

2002); (8) Fourier basis functions composed of sine and cosine curves (Royle and

Wikle, 2005); and (9) Gaussian kernel basis functions (Higdon, 1998). Heaton

et al. (2019), Bradley et al. (2016), and Sun et al. (2012) compare a subset of

these basis functions (along with other fast modeling approaches). However, these

studies primarily focus on linear spatial models with Gaussian observations.

I propose a comparative study among spatial basis functions within the con-

text of modeling non-Gaussian spatial observations. The goal is to provide clear

guidelines for choosing the appropriate spatial basis functions depending on the

observed data. A possible simulation study would examine non-Gaussian spatial

datasets generated under the following scenarios:

• Smoothness of the latent random field: Vary the smoothness of the

underlying spatial random field. For the Matérn class, the smoothness pa-

rameter would vary such that ν = 0.5 (exponential), ν = 2.5, and ν = ∞
(squared exponential).

• Range of spatial correlation: Vary the range of correlation in the latent

spatial random field. For the Matérn class, the spatial range parameter

φ would be based on the maximum distance between the locations. One

example would set φ to be 25%, 50%, and 75% of the maximum distance

between locations.

• Signal-to-noise ratio: For the Matérn class, vary Ratio = σ2/τ 2, the ratio

of the partial sill parameter σ2 and nugget parameter τ 2 of the spatial random

field. Higher ratios yield latent processes with less micro-scale variation

(less noise), and lower ratios generate fields with higher micro-scale variation

(more noise).

• Sample Size: Fit SGLMMs to small, moderate, and large samples. This

scenario is designed to test the computational efficiency of each basis repre-

sentation approach.
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Using the various basis functions, a spatial generalized linear mixed model

(SGLMM) would be fit on each simulated dataset. Metrics of interest include: (1)

predictive ability, such as out-of-sample root mean squared prediction error; (2)

point and interval estimates for model parameters; (3) model-fitting wall times;

and (4) effective samples per second. In addition, it is important to assess the

difficulty and computational costs of constructing the spatial basis functions. These

are non-trivial fixed costs that may dissuade users from using certain spatial basis

functions. For instance, radial basis functions (Cressie and Johannesson, 2008;

Katzfuss, 2017; Nychka et al., 2015) require careful selection of knots. Spatial

eigenfiltering approaches (Hughes and Haran, 2013; Griffith, 2003) require a costly

eigendecomposition performed prior to model fitting, and may require careful rank

selection.

5.3.5 Mixed Spatial Basis Functions

Past studies have considered a mixture of basis functions; however, these basis

functions typically come from the same class (e.g. radial, wavelets, empirical or-

thogonal functions, eigenvectors). Examples include Katzfuss (2017) and Nychka

et al. (2015), which employ radial basis functions at varying resolutions and knot

locations. However, there has not been much research on mixing basis functions

across classes.

I propose a variable selection approach to choose the appropriate subset of basis

functions from a larger pool of basis functions. The larger pool consists of spatial

basis functions from the various classes (see previous point). As pool of basis

functions increases, it is computationally prohibitive to examine the 2N subsets of

basis functions, where N is the total size of the pool.

One potential approach would be to apply a variable selection approach like

LASSO (Tibshirani, 1994) or use Bayesian variable selection approaches like the

spike-and-slab prior distributions Mitchell and Beauchamp (1988); George and

McCulloch (1993); Ishwaran et al. (2005) on the basis coefficients. The potential

contributions are two-fold. First, the chosen basis functions can be comprised of a

mixture of smooth and rough processes; hence, better representing the underlying

spatial processes than a single class of basis functions. To illustrate, the resulting
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basis functions may consist of spatial patterns (e.g. empirical orthogonal functions,

spatial eigenfiltering, or reparameterization approaches) and radial basis functions

at finer resolutions. Second, variable selection can automatically determine the

rank of the basis functions matrix. This would be a considerable improvement

over the automated rank selection heuristic presented in sections 2.4.4 and 3.3.3.



Appendix A
Particle-Based Approach for

Computer Model Calibration

A.1 Parameter Descriptions

We calibrate 11 model parameters of the PSU3D-ICE model. The parameter

descriptions are as follows:

1. OCFACMULT: A dimensionless coefficient multiplying the rate of sub-

oceanic melting or freezing calculated at the base of floating ice shelves (Pol-

lard et al., 2016; Pollard and DeConto, 2012a). It corresponds to parameter

κ in equation 17 of Pollard and DeConto (2012a). The calculation of sub-

ice-shelf melt rate primarily depends on the temperature of nearby oceanic

water at 400 m beneath sea level (Pollard and DeConto, 2012a).

2. OCFACMULTASE: A dimensionless coefficient that modifies the sub-

oceanic ice shelf melting or freezing rate in the Amundsen Sea Embayment

of the West Antarctic Ice Sheet (Chang et al., 2016a). Oceanic melting may

occur at a different rate here due to stronger regional circulation (Jacobs

et al., 2011).

3. CRHSHELF: A dimensionless multiplier applied uniformly to basal sliding

coefficients for continental shelf areas (modern ocean areas). It multiplies the

basal sliding coefficients C ′ in equation 10 of Pollard and DeConto (2012a),
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which have units of m year−1 Pa−2.

4. CRHFAC: A dimensionless multiplier applied uniformly to basal sliding

coefficients for areas with modern grounded ice and was calculated previously

using a simple inverse method(Pollard and DeConto, 2012b). It multiplies the

basal sliding coefficients C ′ in equation 10 of Pollard and DeConto (2012a),

which have units of m year−1 Pa−2.

5. ENHANCESHEET: A dimensionless coefficient multiplying the rheologic

coefficient in the calculation of the viscous vertical-shearing deformation of

ice. This calculation uses the shallow ice approximation (SIA), usually the

dominant mode of flow for grounded ice. It corresponds to E in equation 16

of Pollard and DeConto (2012a).

6. ENHANCESHELF: A dimensionless coefficient multiplying the rheologic

coefficient in the calculation of the viscous horizontal-stretching deformation

of ice. This calculation uses the shallow shelf approximation (SSA), usually

the dominant mode of flow for floating ice. It corresponds to E in equation

16 of Pollard and DeConto (2012a).

7. FACEMELTRATE: A dimensionless coefficient multiplying the melt rate

of vertical ice cliffs in contact with warm ocean water at the edges of ice

shelve (Pollard and DeConto, 2012a).

8. TAUASTH: The e-folding time, for local asthenospheric relaxation towards

isostatic equilibrium, in the calculation of bedrock response to varying ice

loading and unloading. Units are in years, and it corresponds to τ in equation

33 of Pollard and DeConto (2012a).

9. CLIFFVMAX: The maximum erosional retreat rate for unstable marine

ice cliffs exceeding approximately 100 meters in sub-aerial height (Pollard

et al., 2015). This is the horizontal material velocity of cliff wastage into

the upstream solid ice, in the parameterization of marine ice cliff instability

(MICI). Units are in meters per year.

10. CALVLIQ: Scaling depth for the deepening of surface crevasses by hy-

drofracturing due to surface melt and rainfall. Its units are meters of crevasse
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depth and is the crevasse deepening produced by a surface melt plus rainfall

rate of 1 meter per year. It corresponds to the constant 100 in equation B.6

of Pollard and DeConto (2012a).

11. CALVNICK : A dimensionless coefficient multiplying the combined total

depth of crevasses in the calving parameterization. This depth is compared to

the actual ice-shelf thickness in the model’s calving parameterization (Pollard

et al., 2015; Nick et al., 2010). It multiplies the parameter r in equation B.7

of Pollard and DeConto (2012a).

A.2 Simulated Example

We provide additional details pertaining to the simulation study using N = 2000

particles from Section 5. Maps of the model outputs and observations are provided

in Figure A.2. The simulated calibration experiment went through four sampling-

importance-resampling cycles with corresponding incorporation increments γ =

{0.100, 0.15, 0.27, 0.47}. Our adaptive likelihood incorporation schedule chose four

sampling-importance-resampling cycles. In the first cycle, our algorithm chose

a incorporation increment γ1 = 0.1, which yields an effective sample size (ESS)

of 169.5. In the second cycle, the algorithm chose an incorporation increment

γ2 = 0.15 with a corresponding ESS of 1000. For the third cycle, the selected

incorporation increment is γ3 = 0.27 with a corresponding ESS of 1000. In the

fourth and final cycle, we use an incorporation increment of γ4 = 0.47 with a

corresponding ESS of 1143. Figure A.3 shows the chosen incorporation increments

and corresponding ESS for each cycle. Figure A.4 displays posterior parameter

densities after each cycle.

In the mutation stage, we chose the baseline number of Metropolis-Hastings up-

dates to be 10 updates. Our algorithm determined that the empirical distribution

of our stopping metric, model parameter θ, stabilizes after 20 total iterations. The

stopping criterion is met once the Batthacharyya distance of the empirical samples

at the 20-th mutation update and the 10-th update is less than a pre-determined

threshold.
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A.3 Emulation-Calibration Details

We provide additional details regarding the comparative analysis performed in Sec-

tion 5.3. Available paleoclimate and observational data include the Antarctic ice

sheet’s contribution to sea level change in the (1) Pliocene era; (2) Last Interglacial

Age; (3) Last Glacial Maximum; (4) the total volume of the Antarctic ice sheet

in the modern era; and (5) total grounded area of the Antarctic ice sheet in the

modern era. For the comparison study, we omit the binary observations (ice vs.

no ice) obtained at the 10 strategic locations (Manuscript Section 6.1). We use

the same prior distributions for our model parameters as provided in Section 6.1

of the manuscript.

For the three-parameter emulation-calibration example, we select OCFAC-

MULT, CALVLIQ, and CLIFFVMAX as the calibration parameters and fix the re-

maining eight parameters. To train the Gaussian process emulator, we use PSU3D-

ICE output obtained at 512 different input parameter settings. We generate the

input parameter settings using a full factorial design, which includes eight discrete

levels for each model parameter. The eight levels span the uniform prior distri-

bution ranges as provided in Section 6.1 of the manuscript. We fit a separate

Gaussian process for each modern and paleo-climate observational record (5 to-

tal); in addition, we fit a Gaussian process for the Antarctic ice sheet contribution

to sea level change in 2100, 2200, 2300, 2400, and 2500. Each Gaussian pro-

cess has the form Y (θ) ∼ GP(µ(θ; β0; β), C(θ, θ′;σ2, φ)), where the mean function

µ(θ; β0; β) = β0 + βθ includes an intercept and a linear trend. We use a squared

exponential covariance function, C(θ, θ′;σ2, φ) = σ2
∏p

i=1 exp{− (θi−θ′i)2
φi
}, where

θ ∈ Rp φ = (φ1, ..., φp). We estimate the Gaussian process parameters, (β, σ2, φ),

through maximum likelihood estimation. we fit the Gaussian process emulator

using the mlegp R package (Dancik and Dorman, 2008). The 3-parameter Gaus-

sian process emulator has a low out-of-sample cross validated root mean squared

prediction error as shown in Table A.3.

In the 11-parameter emulation-calibration study, we implement a two-part

emulation-calibration method using all model parameters. We run the PSU3D-

ICE model at 512 input parameter settings chosen through a Latin Hypercube

Design (LHC). The LHC samples span the ranges of the prior distributions pro-
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vided in Section 6.1 of the manuscript. Similar to the three-parameter case, we fit a

Gaussian process emulator via maximum likelihood estimation. The 11-parameter

Gaussian process emulator has a high out-of-sample cross validated root mean

squared prediction error, as shown in Table A.3. This can be attributed to the

low-fidelity emulator trained using a small number of design points (512) to explore

an 11-dimensional parameter space.

3 Parameter Emulator 11 Parameter Emulator
RMSE RMSE

Pliocene 0.20 1.08
Last Interglacial 0.15 0.87

Last Glacial Maximum 0.02 6.18
Modern SLE 0.25 7.02

Modern Volume 0.18 3.73
Year 2100 0.27 5.71
Year 2200 0.37 6.40
Year 2300 0.23 1.92
Year 2400 0.26 0.87
Year 2500 0.23 0.82

Table A.1. Out-of-sample cross validated root mean squared prediction error (RMSE)
for a Gaussian process emulator with 3 parameters and 11 parameters. The three-
parameter emulator exhibits low RMSE across all observations and projections. The 11-
parameter emulator has a high RMSE, which is indicative of a low-fidelity, or inaccurate,
surrogate model.

A.4 Prior Sensitivity Analysis

We conduct a prior sensitivity analysis using two sets of prior distributions provided

by domain experts. The first set of prior distributions are from the main calibration

experiment in Section 6.1 of the manuscript. The second set of prior distributions

includes extended ranges for the model parameters. Note that we change the

prior distribution for model parameters – CALVNICK, TAUASTH, CALVLIQ,

CLIFFVMAX, FACEMELTRATE – from a uniform distribution to a log-uniform

distribution. The second set of prior distributions are:

• log10(θOCFACMULT ) ∼ U(−2, 2)

• log10(θOCFACMULTASE) ∼ U(−1.5, 2.5)
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• log10(θCALV NICK) ∼ U(−2, 2)

• log10(θCRHSHELF ) ∼ U(−9.5,−1.5)

• log10(θCALV LIQ) ∼ U(1, 3)

• log10(θFACEMELTRATE) ∼ U(−1, 3)

• log10(θENHANCESHEET ) ∼ U(−2, 2)

• log10(θCRHFAC) ∼ U(−3, 3)

• log3(θTAUASTH) ∼ U(2, 4)

• log6(θCLIFFVMAX) ∼ U(0, 5)

• log0.3(θENHANCESHELF ) ∼ U(−2, 2)

A.5 Toy Example Comparative Study

One major contribution of this study is reducing the number of sequential like-

lihood evaluations. Each likelihood evaluation requires a computer model runs,

which are the dominant costs of our approach. We introduce an adaptive likeli-

hood incorporation schedule which is automated. In a standard implementation of

the particle-based method, we must set the total number of sampling-importance-

resampling cycles and the total number of mutation runs per cycle. Here, we

compare results from a standard implementation to those using our fast adaptive

method. In the standard implementation, we set the total number of cycles to be

6 and the total number of Metropolis-Hastings updates (for the mutation stage) to

be 45. These chosen values are based on the available computing resources, namely

a 12-hour walltime limit for each mutation cycle. In this comparison study, we use

the five modern and paleoclimate records as observations; spatial constraints are

omitted.

Upon examining the standard implementation, we observe that the distribu-

tion of the particles do not change after 10 Metropolis-Hastings updates of the

mutation stage. Therefore, the remaining 35 Metropolis-Hastings updates are re-

dundant. Moreover, the posterior densities of the model parameters (Figure A.8),
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observational records (Figure A.9), and sea level projections (Figure A.10) for both

methods (standard vs. adaptive) are very much similar.

A.6 Fundamental Equations for the PSU3D-ICE

Model

In the main paper, the ice-sheet model is treated as a ’black box’ within our cali-

bration framework. To provide an overall picture of the physical ice-sheet model,

we presents its main equations. In a sense, they are its most fundamental partial

and ordinary differential equations used to time-step the state of the ice sheet for-

ward in time. Other equations, mostly parameterizations of local processes, are

also used but are not as fundamental in the sense mentioned above.

The basic aspects of continental ice sheets and models are as follows. Ice cover

on continental scales forms a dome, several kilometers thick in central regions

and sloping downward to its margins at much lower elevations. Thickening due

to annual snowfall (which compacts to ice) in interior regions is balanced by ice

velocities towards the margins, as the ice deforms slowly under its own weight.

Ice is lost mostly near the margins by surface melt, basal melt, oceanic melt,

and calving of marginal vertical ice faces. If the ice reaches the ocean, it can flow

across the grounding line (where the bed is below sea level and ice becomes afloat),

and form floating ice shelves with thicknesses of 100’s m and extents of 100’s km.

Horizontal ice velocities are ∼1 to 10 meters/years in much of the central interior,

increasing to ∼100’s to ∼1000 meters/year in marginal ice streams and shelves

(Rignot et al., 2011).

Numerical ice-sheet models predict the time-evolving ice thicknesses and tem-

perature distributions, changing due to velocity advection and the local accumu-

lation and ablation processes mentioned above. Ice flow is treated as a non-linear

viscous fluid using scaled (simplified) equations, separately for horizontal stretch-

ing and for the vertical shear of horizontal velocities. Slow depression and rebound

of the bedrock beneath the changing ice load is also modeled, as this affects ice

surface elevations and ocean depths at grounding lines. These basic aspects are

common to many large-scale ice-sheet models, and are described in detail in Pol-



143

lard and DeConto (2012a) and Pollard et al. (2015).

I. Ice Thickness

∂h

∂t
+
∂(ūh)

∂x
+
∂(v̄h)

∂y
= SMB− BMB−OMB− CMB− FMB,

where h is ice thickness, ū is the mean horizontal ice velocity in the x direction, v̄

is the mean horizontal ice velocity in the y direction, SMB is the surface mass bal-

ance, BMB is the basal melting (if grounded), OMB is the oceanic sub-ice melting

or freezing (if floating), CMB is the calving loss (floating edge), and FMB is the

face melt loss (floating or tidewater vertical face).

II. Velocity Stretching:

∂

∂x

[ h

Aσn−1

(
2
∂ū

∂x
+
∂v̄

∂y

)]
+
∂

∂y

[ h

2Aσn−1

(∂ū
∂y

+
∂v̄

∂x

)]
= ρigh

∂hs
∂x

+
1

C ′1/m
1

|ub|1−
1
m

ub,

(A.1)
∂

∂y

[ h

Aσn−1

(
2
∂v̄

∂y
+
∂ū

∂x

)]
+

∂

∂x

[ h

2Aσn−1

(∂ū
∂y

+
∂v̄

∂x

)]
= ρigh

∂hs
∂y

+
1

C ′1/m
1

|vb|1−
1
m

vb,

(A.2)

where ū = ūi+ub and v̄ = v̄i+vb. Here, ūi is mean horizontal velocity from vertical

shearing, and ub is basal sliding velocity in the x direction. Similarly, v̄i is mean

horizontal velocity from vertical shearing, and vb is basal sliding velocity in the

y direction. ui is the horizontal velocity in the x direction from vertical shearing

(i.e., minus its value at the base), and vi is the horizontal velocity in the y direction

from vertical shearing. A is the ice rheological coefficient, σ is the effective stress

(second invariant of the stress tensor), n = 3 is the ice rheological exponent, and

g is gravitational acceleration. C ′ is the basal sliding coefficient between bed and

ice and m is the basal sliding exponent. hs is ice surface elevation, where

hs =

{
h+ hb , if grounded

(pw−pi
pi

)h , if floating,

where hb is the bedrock elevation, ρw is the ocean water density, and ρi is ice density.
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III. Velocity Shearing:

∂ui
∂z

= −2Aσn−1
(
ρigh

∂hs
∂x
− Lx

)
×
(hs − z

h

)
,

∂vi
∂z

= −2Aσn−1
(
ρigh

∂hs
∂y
− Ly

)
×
(hs − z

h

)
,

where z is the vertical elevation, Lx is the left hand side of Equation A.1, and Ly

is the left hand side of Equation A.2.

IV. Temperature:

The prognostic equation for internal ice temperatures T is

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

1

ρici

∂

∂z

(k∂T
∂z

)
+

Q

ρici
,

where u = ub + ui(z), v = vb + vi(z), and w is deduced from continuity. k is the

ice thermal conductivity, Q is internal deformational heating, and ci is the specific

heat of ice.

V. Bedrock Elevation:

The rate of change of bedrock elevation is given by:

∂hb
∂t

= −1

τ
(hb − heqb + wb),

where heqb is its equilibrium value and τ = 3000 years is the asthenospheric isostatic

relation time scale. The downward deflection of the fully relaxed response (as if

the asthenosphere had no lag), wb, is given by:

D∇4wb + ρbgwb = q,

whereD is the flexural rigidity of the lithosphere, ρb is the bedrock (asthenospheric)

density, and the applied load q is:

q = ρig(h− heq) + ρwg(hw − heqw ),

where hw is ocean column thickness, heqw is ocean column thickness in the equilib-
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rium state, and heq is ice thickness in the equilibrium state.

Months
OCFACMULT 15.3

OCFACMULTASE 15.0
CALVNICK 15.2
CRHSHELF 15.1

TAUASTH 16.3
CALVLIQ 14.6

CLIFFVMAX 18.5
FACEMELTRATE 14.6
ENHANCESHEET 13.8
ENHANCESHELF 12.6

crhfac 16.5

Table A.2. Estimated time to obtain the desired effective sample size of 1533 using the
all-at-once random walk Metropolis-Hastings algorithm. Note that the particle-based
approach utilized 2015 particles with an ESS of 1533.
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Figure A.1. Modern observations of ice presence obtained via the Bedmap2 project.
The blue dots indicate locations where there is confirmed ice presence.
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Figure A.2. (Top left) Map of the model output from the toy example. (Top right)
Map of the systematic and also spatially correlated data-model discrepancy. (Bottom
left) Map of the sum of the model output and discrepancy. (Bottom right) Map of the
observations, which is the sum of the model output, discrepancy, and iid observational
error.
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Figure A.3. Incorporation increment γt selection for the simulated example. Each panel
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Figure A.4. Posterior densities for the simulated example after each cycle. Each row
corresponds to a cycle, and each column corresponds to a model parameter. The blue
lines represent the density of the posterior samples from the particle-based approach, and
the red lines denote the density of the posterior samples obtained form MCMC (gold
standard). Note that the particle-based approach provides a good approximation to the
MCMC-based approach. However, the particle-based approach requires just 80 model
evaluations as opposed to 100k for the MCMC-based approach.
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Figure A.5. Posterior densities of observational records using expert prior distributions
(solid black lines) and wider expert prior distributions (dashed red lines). Wider expert
priors result in a bi-modal distribution for the AIS contribution to sea level rise in the
Pliocene and lower modern volume, both in point estimate and 95% credible intervals.
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Figure A.6. Posterior densities of observational records using the wider expert prior
distributions. The posterior densities are split for values of CLIFFVMAX less than 12
km per year (black lines) and greater than 12 km per year (red lines). Higher values
of CLIFFVMAX results in higher values (point estimates and 95% credible intervals) of
the Antarctic ice sheet’s contribution to sea level rise in the Pliocene and lower modern
volume.
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Figure A.7. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s
contribution to sea level change in 2100, 2300, and 2500 using the wider expert prior
distributions. The posterior densities are split for values of CLIFFVMAX less than 12
km per year (black lines) and greater than 12 km per year (red lines). (Bottom Panel)
Empirical survival function of the projected Antarctic ice sheet’s contribution to sea
level change in 2100, 2300, and 2500 for higher CLIFFVMAX values (solid black lines)
and lower CLIFFVMAX values (red lines). Larger values of CLIFFVMAX results in
considerably higher projections of future sea level rise, both in point estimates and 95%
credible intervals.
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Figure A.8. Posterior densities of model parameters using adaptive particle-based
approach (solid black lines) and the standard particle-based approach (dashed red lines).
The adaptive particle-based approach goes through 4 cycles and runs 14 updates in the
mutation stage with a total calibration wall time of 6.5 hours. The standard particle-
based approach goes through 10 cycles and runs 45 updates in the mutation stage with a
total calibration wall time of 127 hours (5.3 days). Posterior densities for both methods
are comparable.
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Figure A.9. Posterior densities of observations using the adaptive particle-based ap-
proach (solid black lines) and the standard approach (dashed red lines). The adaptive
particle-based approach goes through 4 cycles and runs 14 updates in the mutation stage
with a total calibration wall time of 6.5 hours. The standard particle-based approach
goes through 10 cycles and runs 45 updates in the mutation stage with a total calibration
wall time of 127 hours (5.3 days). Posterior densities for both methods are comparable.
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Figure A.10. Posterior densities of projections using adaptive particle-based approach
(solid black lines) and the standard approach (dashed red lines). The adaptive particle-
based approach goes through 4 cycles and runs 14 updates in the mutation stage with
a total calibration wall time of 6.5 hours. The standard particle-based approach goes
through 10 cycles and runs 45 updates in the mutation stage with a total calibration
wall time of 127 hours (5.3 days). Posterior densities for both methods are comparable.



Appendix B
PICAR: Projection Intrinsic

Conditional AutoRegression

B.1 Examples of Hierarchical Spatial Models

Here we provide two examples of hierarchical spatial models. The first is a spatially

varying coefficient model and the second is a cumulative-logit model for ordered

categorical data.

Spatially Varying Coefficient Models

Spatially varying coefficient models (Gelfand et al., 2003) consider cases where the

fixed effects β vary across space. For the case with a single predictor X(s), the

data model is Z(s) = β0 + β1X(s) + β1(s)X(s) + w(s) + ε(s), where β0 is the

intercept, β1 is the fixed effect, β1(s) is the spatially varying coefficient term, and

w(s) and ε(s) are the spatial random effects and micro-scale measurement errors,

respectively. Here, B = (β1(s1), ..., β1(sn)) is the n-dimensional vector of spatially

varying coefficients, and B ∼ N(0, σ2
βRφβ) where σ2

β is the partial sill and φβ is the

range parameter for the spatial random process B.
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For cases with k predictors, we have the following hierarchical spatial model:

Data Model: Z(s)|η(s) ∼ f(η(s))

η(s) = X(s)β +X(s)β(s) + w(s) + ε(s)

Process Model: (W,B)T |φ,T ∼ N (0, Rφ ⊗T)

ε(s)|τ 2 ∼ N(0, τ 2)

Parameter Model: β ∼ π(β), τ 2 ∼ π(τ 2), φ ∼ π(φ), T ∼ π(T)

where β is the k-dimensional vector of the fixed effects, β(s) = (β1(s), ..., βk(s))

is a k-dimensional vector of the spatially varying coefficients for location s, B =

(β(s1), ..., β(sn)) is the nk-dimensional vector of all spatially varying coefficients,

W = (W (s1), ...,W (sn)) is the n-dimensional vector of the spatial random effects,

Rφ and τ 2 are the correlation matrix and nugget variance, and T is a (k+1)×(k+1)

positive definite matrix.

Cumulative-Logit Models for Ordinal Spatial Data

Ordered categorical (ordinal) data are categorical responses with a natural or-

dering, and commonly used in survey questionnaires, patient responses in clinical

trials, and quality assurance ratings for industrial processes. (Higgs and Hoeting,

2010; Schliep and Hoeting, 2013) develop a hierarchical spatial model for ordinal

data. In this study, we examine the proportional-odds cumulative logit model

(Agresti, 2010) for ordered categorical data. Let Z(s) be the observations at loca-

tion s ∈ D with J ordered categories. Note that each ordered category corresponds

to a probability π(s) = {π1(s), π2(s), ..., πJ(s)} , where πi(s) = Pr(Z(s) = i)

for i = 1, ..., J . Here, we consider J − 1 cumulative probabilities denoted as

γj(s) = P (Z(s) ≤ j) = π1(s) + ...+ πj(s). The cumulative logit is defined as:

log

(
P (Z(s) ≤ j)

1− P (Z(s) ≤ j)

)
= log

(
γj(s)

1− γj(s)

)
= θj −X(s)β − w(s)− ε(s),

where θj is the intercept or “cutoff” for the j-th category, X(s), β, w(s) and ε(s)

are the spatial random effects and micro-scale measurement errors. The model for
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the cumulative probabilities γj is:

γj(s) = P (Z(s) ≤ j) =
exp{θj − (X(s)β + w(s) + ε(s))}

1 + exp{θj − (X(s)β + w(s) + ε(s))}
.

Consequently, the probabilities for the individual J categories are:

P (Z(s) = j) =


γ1(s), j = 1

γj(s)− γj−1(s), 2 ≤ j ≤ J − 1

1− γJ−1(s), j = J

To avoid identifiability issues, we typically fix the first cutoff to be θ1 = 0

(Johnson and Albert, 2006). Note that the θj’s are constrained by the ordering θj >

θk for j > k. Through a transformation (Higgs and Hoeting, 2010; Albert and Chib,

1997), we can generate unconstrained cutoff parameters α = (α1, α2, ..., αJ−1),

where α1 = −∞, α2 = log(θ2), and αj = log(θj − θj−1) for j = 3, ..., J − 1.

The inverse transformation is θj =
∑J−1

i=1 exp{αi}. The hierarchical spatial model

framework is as follows:

Data Model: Z(s)|γ(s) ∼ f(γ(s))

γj(s)|β, θ,W, ε(s) =
exp{θj − (X(s)β + w(s) + ε(s))}

1 + exp{θj − (X(s)β + w(s) + ε(s))}

θj |α =

J−1∑
i=1

exp{αi}

Process Model: W|φ, σ2 ∼ N(0, σ2Rφ)

ε(s)|τ2 ∼ N(0, τ2)

Parameter Model: α ∼ p(α), β ∼ p(β), φ ∼ p(φ), σ2 ∼ p(σ2), τ2 ∼ p(τ2)

β1 β2
Independent 0.88 0.93

ICAR 0.89 0.91
CAR 0.88 0.95

Table B.1. Binary data simulation study: Coverage probabilities for 100 simulated
samples. Columns correspond to the regression coefficients. Rows correspond to the
type of precision matrix.
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Figure B.1. Triangular Mesh for data in simulation studies. Black points denote the
vertices, or nodes, of the triangular mesh. Blue points represent the observation locations
used to fit the hierarchical spatial models, and the red points denote the observations
locations for the validation sample.

B.2 Simulation study with spatial count obser-

vations

We conduct a simulation study using spatial count observations using 100 samples.

The regression coefficients and the latent spatial random field are generated in the

same way as the binary case. The observations come from a spatial generalized

linear mixed model (SGLMM) with a Poisson data model and a log link function.

Mesh construction and model fitting details follow closely to the binary case. We

select one sample (from the 100 generated samples) as the dataset for the com-

parative analysis. When comparing across ranks, we elect to use the precision

matrix from the ICAR model Q = (diag(W1)−W). We also compare inferential

and predictive performance across the three different precision matrices as in the

binary case.
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Figure B.2. Binary data simulation study: distribution of posterior mean estimates
for parameters β1 (left) and β2 (right) for three different precision matrices - Indepen-
dent (red), ICAR (green), and CAR with φ = 0.5 (blue). The suitable rank p of the
Moran’s operator M chosen using the automated heuristic. Distributions are similar
across precision matrices.

Results indicate that the choice of rank (for the Moran’s operator) is a key

driver for accurate parameter estimation and prediction as noted in Table B.2. As

in the binary case, the choice of precision matrices does not influence inference or

prediction as shown in Table B.3. Coverage probabilities (Table B.4) align with the

nominal coverage (95%). The PICAR approach improves mixing in the MCMC

algorithm as shown by the larger effective samples per second (ESS/sec) compared

to the gold standard approach. For model parameters β1 and β2, PICAR yields

an ESS/sec of 6.4 and 7.2 respectively and the gold standard returns an ESS/sec

0.09 and 0.09 respectively. For the random effects W, the average ESS/sec is 1.8

for the PICAR approach and 0.018 for the gold standard, an improvement by a

factor of roughly 101.
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Rank β1 (95% CI) β2 (95% CI) CVMPSE Time (min)

10 1.09 (0.99,1.19) 1.01 (0.92,1.11) 1.96 8.84
50 1.05 (0.95,1.15) 1.02 (0.92,1.12) 1.74 9.87
62 1.04 (0.94,1.14) 0.99 (0.89,1.09) 1.57 10.65
75 1.03 (0.93,1.14) 0.99 (0.89,1.09) 1.66 10.39
100 1.05 (0.95,1.16) 0.98 (0.88,1.09) 1.71 11.07
200 1.08 (0.97,1.19) 0.98 (0.87,1.1) 1.81 13.49
Gold Standard 1.07 (0.97,1.17) 1.01 (0.91,1.12) 1.66 3803.84

Table B.2. Simulated example with count spatial observations. Parameter estimation,
prediction, and model fitting time results across Moran’s basis ranks. Bold font denotes
the rank chosen by the automated heuristic.

Precision
Matrix β1 (95% CI) β2 (95% CI) CVMPSE Time (min)
Ind 1.04 (0.94,1.14) 0.99 (0.89,1.09) 1.56 10.92
ICAR 1.04 (0.94,1.14) 0.99 (0.89,1.09) 1.57 10.65
CAR 1.04 (0.94,1.15) 0.99 (0.89,1.09) 1.57 10.17
Gold Standard 1.07 (0.97,1.17) 1.01 (0.91,1.12) 1.66 3803.84

Table B.3. Simulated example with count spatial observations. Parameter estimation,
prediction, and model fitting time results across precision matrices.

β1 β2
Independent 0.95 0.97

ICAR 0.95 0.96
CAR 0.95 0.95

Table B.4. Poisson data simulation study: Coverage probabilities for 100 simulated
samples. Columns correspond to the regression coefficients. Rows correspond to the
type of precision matrix.
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Figure B.3. Poisson data simulation study: distribution of posterior mean estimates
for parameters β1 (left) and β2 (right) for three different precision matrices - Indepen-
dent (red), ICAR (green), and CAR with φ = 0.5 (blue). The suitable rank p of the
Moran’s operator M chosen using the automated heuristic. Distributions are similar
across precision matrices.
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β1 β2 α1 α2

Independent 0.92 0.94 0.93 0.90
ICAR 0.91 0.92 0.93 0.88
CAR 0.93 0.96 0.93 0.94

Table B.7. Ordered categorical data simulation study: Coverage probabilities for 100
simulated samples. Columns correspond to the regression coefficients. Rows correspond
to the type of precision matrix.

Covariate Estimate 95% CI
Age 0.0008 (-0.0041,0.0034)

Basal Area -0.0045 (-0.007,-0.0026)
Height 0.0203 (0.0157,0.0236)

Volume -0.0026 (-0.0034,-0.0017)
tau 0.0040 (0.0021,0.0094)

Table B.8. Inference results for the mistletoe data. Rows correspond to the predictor
variables and columns include the parameter estimates and 95% credible intervals
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Figure B.4. The left panel shows the BIBI index at the prediction locations and the
right panel shows the predicted BIBI index. Black, red, and green points indicate low,
medium and high levels of BIBI respectively.
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Monte Carlo methods for spatial generalized linear mixed models. Journal of
Computational and Graphical Statistics, 15(1):1–17.

Ciccazzo, A., Di Pillo, G., and Latorre, V. (2014). Support vector machines for
surrogate modeling of electronic circuits. Neural Computing and Applications,
24(1):69–76.

Collins, M. (2007). Ensembles and probabilities: A new era in the prediction of cli-
mate change. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 365(1857):1957–1970.

Compton, T. J., Holthuijsen, S., Koolhaas, A., Dekinga, A., ten Horn, J., Smith,
J., Galama, Y., Brugge, M., van der Wal, D., van der Meer, J., et al. (2013).
Distinctly variable mudscapes: distribution gradients of intertidal macrofauna
across the dutch wadden sea. Journal of Sea Research, 82:103–116.

Computational and Information Systems Laboratory (2017). Cheyenne: HPE/SGI
ICE XA System (University Community Computing). Boulder, CO: National
Center for Atmospheric Research. doi:10.5065/D6RX99HX.

Cook, C., Hill, D., van de Flierdt, T., Williams, T., Hemming, S., Dolan, A.,
Pierce, E., Escutia, C., Harwood, D., Cortese, G., et al. (2014). Sea surface
temperature control on the distribution of far-traveled Southern Ocean ice-rafted
detritus during the Pliocene. Paleoceanography, 29(6):533–548.

Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi,
M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim, B.-K., McKay,
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