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Abstract
Laser powder bed fusion (LPBF) is a technique of additive manufacturing (AM) that is

often used to construct a metal object layer-by-layer. The quality of AM builds depends

to a great extent on the minimization of different defects such as porosity and cracks

that could occur by process deviation during printing operation. Therefore, there is

a need to develop new analytical methods and tools to equip the LPBF process with

the inspection frameworks that assess the process condition and monitor the porosity

defect in real-time. Advanced sensing is recently integrated with the AM machines to

cope with process complexity and improve information visibility. This opportunity lays

the foundation for online monitoring and assessment of the in-process build layer. This

study presents a hybrid deep neural network structure with two types of input data to

monitor the process parameters that result in porosity defect in cylinders’ layers. Results

demonstrate that statistical features extracted by wavelet transform and texture analysis

along with original powder bed images, assist the model to reach a robust performance.

In order to illustrate the fidelity of the proposed model, the capability of the main

pipeline is examined and compared with different machine learning models. Eventually,

the proposed framework identified the process conditions with an F-score of 97.14%. This

salient flaw detection ability is conducive to repair the defect in real-time and assure the

quality of the final part before the completion of the process.
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Chapter 1 |

Introduction

The latest industrial revolution, known as industry 4.0, is offering new solutions to

enable global enterprises to move toward bringing automation as well as data-driven

intelligence into production processes [1,2]. Among the nine main technologies defined in

industry 4.0 [3], additive manufacturing (AM) is one of the widely growing approaches

that fabricates a customized 3D object, layer by layer [4]. This technology provides the

flexibility of producing 3D components with complex geometry from their CAD model [5].

This, offers new potential for building customized devices in a short period of time.

Laser powder bed fusion (LPBF), also known as selective laser sintering (SLS), is

a technique of AM that constructs an object by employing a laser beam as an energy

source to fuse certain regions of a powder material which has been already applied to a

build plate. Then, the build plate is lowered and the process is repeated to build the

next layer upon the previous one. This operation continues until the complete object is

printed [6]. Fig. 1.1 shows the schematic diagram of the LPBF process. The laser with

the power in the range of 200 W to 400 W, scans the powder bed with linear scan speed

in the order of 200 mm/s – 2000 mm/s. In addition, the laser spot size is in a range of

50 µm – 100 µm in diameter. LBPF has gained attention due to its capability to build

objects with complex geometry.

However, the performance of the printer is highly dependent on process parameters
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Figure 1.1. The schematic diagram of LPBF process.

since a small deviation in these elements can lead to the appearance of different defects

on the part. Among various defects, porosity is one of the major flaws that reduce

the quality of the final object. Three parameters including hatch spacing, laser print

velocity, and laser power are known as the main causes for emerging porosity [7]. These

parameters together establish the energy density measure [8] which has a direct effect on

part quality. If the energy density grows excessively, the powder material is vaporized,

whereas insufficient energy density leads to large and misshaped pores. These defects can

change the functionality of the build. Therefore, the LPBF process is urgently needed

to be integrated with the inspection frameworks that assess the process condition and

monitor the porosity defect in real-time.

This study aims to present a hybrid model to monitor the corresponding parameters

of the porosity defect in AM objects in real-time and assess the quality of final build.

Here, convolutional neural networks, wavelet transform and texture analysis are the key

instruments to extract the salient features from these layerwise images with minimum

loss of information [9, 10]. Experimental results showed that combining these entries

with powder bed images is conducive to generating a higher fidelity model compared to
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traditional models.

The remainder of this thesis is organized as follows:

Chapter. 2 presents a literature review of previous studies on sensing methods and

AM process monitoring models.

Chapter. 3 elaborates on research methodology and proposed model for defect in-

spection. Here, we discuss the data prepossessing steps as well as proposed model

architecture.

Chapter. 4 illustrates and analyzes the results obtained after implementing the hybrid

model on the layerwise image of the LPBF process and makes a performance comparison

between the proposed model and traditional models.

Chapter. 5 summarizes this research and concludes the study.

Chapter. 6 discusses the future work.
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Chapter 2 |

Literature Review

In this chapter a literature review of different sensing and data gathering methods in

manufacturing systems and previous researches focused on AM process quality inspection

will be presented.

2.1 Data gathering in manufacturing

Comprehensive reviews of LBPF process monitoring using different process signatures are

discussed in Ref. [11, 12]. Advanced sensing technologies, create new grounds for further

studies to explore rich information in the manufacturing process such as acoustic signals,

melt pool pictures, powder bed images, and temperature distribution [13]. Cerniglia

et al. [14] conducted a numerical analysis to show the capability of ultrasonic sensors

for identifying porosity defects during the LPBF process. Rieder et al. [15] utilized the

same tool to perform the in-process measurement of residual stress in a single layer and

track the build status. Zhao et al. [16] utilized the high-speed X-ray images as well

as diffraction techniques to gather quantitative details about different phenomena that

appear during the LPBF process such as rapid solidification and powder ejection which

can result in different defects in a layer and affect the quality of the entire object. Craeghs

et al. [17, 18] devised the optical-based approaches for tracking the thermal behavior at
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the melt pool. Among different types of sensors, the application of optical cameras is

significantly growing in recent studies because they are capable of realizing the precise,

real-time and cost-effective monitoring.

2.2 Process monitoring in Additive Manufacturing

To analyze the build quality and control of the manufacturing process, scientists have

been exploring different data-driven and statistical solutions in recent years. Seifi et

al. [19] performed a layerwise quality control in order to detect the healthy and unhealthy

melt pools and conduct the online prediction of defect distribution in the printed layer.

Yao et al. [20] utilized the constrained Markov decision process framework to model the

variation of flaws in AM build and predict the evolving dynamics of defect state from

one layer to the next layer. Imani et al. [21] performed multifractal analysis on layerwise

images to define new features for capturing defect patterns and assess the build quality.

Khanzadeh et al. [22] captured the thermal profile of melt pool and compared the ability

of different machine learning algorithms in anomaly detection for AM parts.

Deep learning is a subset of machine learning methods in which we use sets of deep

neural network (DNN) to build the predictive models. In the past few years, promising

results have proved the capability of the DNN-based solutions to establish the AM process

monitoring methods [23]. Wang et al. [24] discussed the application of different types

of deep learning frameworks in developing diagnostics and predictive analytics models

for AM process. Among them, the convolutional neural network (CNN) has progressed

significantly in creating image-guided defect inspections frameworks [25]. Zhang et al. [26]

developed a system that employs CNN to identify the level of quality PBF. Shevchik

et al. [27] collected acoustic signals in the manufacturing process and performed the

wavelet analysis on initial signals to create a new representation of data in time-frequency

domain. Then, the CNN is utilized as a classifier to monitor the quality in real-time.
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Scimeand and Beuth [28] collected the layerwise images and leveraged the AlexNet CNN

to create the autonomous anomaly detection model for AM process.

2.3 Contribution

As it is mentioned above, in the machine learning approaches, AM defects are identified

by statistical features extracted manually from original images. The selection of these

features relies on researchers’ experience and requires domain knowledge. Therefore,

the performance of the traditional machine learning model is highly dependant on the

effectiveness of handpicked extracted features, and missing one crucial feature can affect

the model accuracy.

On the other hand, DNN approaches automatically capture key features of interests

from input data and construct the final feature map. However, there are some obstacles

that hinder these models from learning higher-level features and thus decrease the final

detection performance. First, DNN needs lots of data to be trained. But, in the AM

field, it is often hard to prepare huge data. Particularly, obtaining sufficient data for all

classes of defect and condition is difficult, as it is expensive to reproduce the AM build.

This creates an imbalanced dataset which leads to an overfitting problem. Moreover,

CNN models utilized the pooling layer to downsample the feature map. This process

can cause loss of information, particularly in complex surfaces and low contrast images

of AM parts. Therefore, this work aims to address these challenges. To the best of our

knowledge, it is the first of its kind where the original layerwise image is integrated with

its statistical feature to achieve a hybrid input DNN-based process monitoring system.
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Chapter 3 |

Research Methodology

This chapter presents the new pipeline for real-time AM process condition monitoring.

Here, setting of sensing system and machine setup under which the input data gathered

are considered. Next, we provide the detail of wavelet transform and texture analysis

methods which are used to extract statistical features from build images. Finally, the

structure of proposed DNN model is defined.

3.1 Data Acquisition

This research is aimed at developing a model to perform AM process monitoring and

defect detection. Therefore, we need to establish a mechanism to analyze the image

data as well as extract salient statistical features. The image dataset is prepared by

conducting the laser powder bed fusion AM process that receives Titanium alloy and

ASTM B348 Grade 23 Ti-6Al-4V powder material to print a cylinder that consists of 348

layers and has a length of 25 mm and diameter of 20 mm. Three main parameters are

defined before operating the 3D printer machine including Hatching Space (Lh), laser

print velocity(Lv) and laser power(Lp). The initial values of this settings are selected

as Lh0 = 0.12 mm, Lv0 = 1250 mm/s, and Lp0 = 340 W. In the experiment, hatching

space and laser print velocity are increased by 25 percent and 50 percent of their initial
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values and laser powder is decreased by 25 percent and 50 percent of its initial value.

These parameters shape the energy density measure, i.e., Andrew number which can be

stated as,

EA = Lp

Lh× Lv
J/(mm2)S (3.1)

Imani et al. [29] conducted the porosity analysis on XCT scans images to illustrate

that the variations of process influence the size and number of pores presented on the

layer’s surface. As the Andrew number increases, the number of pores decreases, thus,

the quality of the printed layer and the final build is improved. This concept enables

us to label the collected data based on the energy density under which the object is

printed. To acquire images of layers produced in different process conditions, cylinders

are printed through using 7 different selections of machine settings which result in 5

distinct Andrew numbers. Table. 3.1 shows process conditions and final energy densities

under which objects are printed. During the process, the layer-by-layer bed images are

captured just after laser exposure by a digital single-lens reflex camera (DSLR, Nikon

D800E) whose shutter is controlled by a proximity sensor to monitor the location of

the re-coater blade. Multiple flash modules are embedded in different spots of the build

chamber. Fig. 3.1 illustrates the imaging system’s setup. The layewise images of LBPF

process are captured under five different light scheme.Fig. 3.2 represents sample of parts

printed under these flash settings. In this work, the cylinder’s images taken in light

scheme shown in in 3.2(a) are analyzed.

As a result, considering five classes of process condition, 3132 layerwise images are

collected. To obtain non-image input features of the hybrid model, we utilize wavelet

transform and texture analysis which will be elaborated in the subsequent sections.
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Figure 3.1. The Setup of optical imaging system in the LPBF machine to capture in-process
layerwise images.

Figure 3.2. Image of powder bed in different light scheme
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3.2 Wavelet Transform

Wavelet transform is one of the powerful tools in signal and image processing that

analyze data to provide some insights about the temporal and spatial information [30,31].

Wavelet analysis generates new components named wavelet decomposition coefficients

through the multi-resolution analysis. The wavelet function processes a signal at different

resolutions in order to define the time-scale mapping which is useful for capturing low

frequencies in large windows while localizing sharp fluctuations in small windows.

There are two main types of wavelets, i.e. Continues Wavelet Transform (CWT)

and Discrete Wavelet Transform (DWT) [32]. CWT generates correlated wavelets that

result in redundant information. In contrast, by applying DWT, we can achieve mutually

orthogonal wavelets. Therefore, we choose DWT to produces a compact set of features.

Hereafter, a basic wavelet called as mother wavelet should be selected among a variety

of selections. Among different wavelets, Haar wavelet is chosen because it is the only

wavelet which is compactly supported, orthogonal and has symmetry [33]. Moreover, it

is computationally efficient. Haar is powerful for detecting sudden changes, while other

wavelets are more useful for image and texture smoothing. In eq. (3.2), W(α,β) represents

the continuous wavelet transform of signal x(t).

W(α,β) =
∫ +∞

−∞
x(t) 1
|α| 12

ψ∗(t− β
α

)dt (3.2)

During the wavelet transform process, mother wavelet ψ∗(t) is scaled by parameter α

and translated by parameter β. Constant 1
|α|

1
2
is used for energy normalization. Here,

the input signal x is the 2-dimensional powder bed image. Now, if we confine these two

values to the discrete domain such that α and β can only be increased in the power of

two and integer steps respectively, we attain the discrete version of the wavelet transform
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Table 3.1. The energy density (EA) computed by different selection of laser parameters.

Process Condition

(P, H, V) [W, mm, mm/sec] EA [J.mm 2] Andrew’s number Class

P0, H0, V0 (340, 0.12, 1250) 2.27 A
P0, H0,V0+25% (170, 0.12, 1562) 1.81 B
P0, H+25%, V0 (170, 0.15, 1250) 1.81 B
P-25%, H0, V0 (255, 0.12, 1250) 1.70 C
P0, H+50%, V0 (170, 0.18, 1250) 1.51 D
P0, H0,V0+50% (170, 0.12, 1875) 1.51 D
P-50%, H0, V0 (170, 0.12, 1250) 1.13 E

that is expressed as,

Ai,k =
∑
n

x[n]Gi[n− 2ik] (3.3)

Bi,k =
∑
n

x[n]Hi[n− 2ik] (3.4)

where G is a function that represents the high pass filter (wavelet filter) that is useful for

localizing high frequencies in signal and capturing sharp edges. It will be multiplied by

the input signal to create a coefficient of detail components that is shown by A. H denotes

a function for the low pass filter (scaling filter), which creates a down-sampled version of

the powder bed image and generates the coefficient of approximation component which

is referred by B. These two steps together shape a complete process of single-level one

dimensional DWT. As we are dealing with the image data here, the 1D DWT operates

on the rows and columns of images separately. Consequently, each powder bed image is

decomposed into four sub-bands. Fig. 3.3 illustrates the schematic diagram of single-level

2D DWT. LH, HL and HH are detail coefficients that localized horizontal, vertical and

diagonal features of the image respectively. LL is the approximation coefficient and

comprises the compressed version of the image.
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Figure 3.3. The Schematic Diagram of single-level two-dimensional DWT. To implement the
2D DWT function on an image, the 1D DWT is applied along the rows and columns of the
image respectively to produce four sub-bands.

3.3 Texture Analysis

In this section, we propose to identify the textures of different regions in wavelet by

using Shannon’s entropy which first introduced by Claude Shannon in 1948 [34]. The

entropy concept is used to measure the information contains in the signal. Data with

more information (uncertainty) give a higher entropy. Hence, in 2D wavelet coefficients,

higher entropy represents a greater difference among regions in terms of pixel intensity.

Entropy can be expressed as,

E(x) = −
n∑
i=1

Pi log2 Pi (3.5)

where

Pi = γi
Γ (3.6)

Here, Pi is the marginal distribution of gray values in the 2D wavelet. In eq. (3.6),
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number of pixels with gray level i denoted by γi and Γ refers to the total number of pixels.

As the transformed wavelets are 8-bit images, the range of gray-level resolution could

be a value between 0 to 255. Mean and standard deviation of wavelet coefficients, are

representative measures for noise effect and sharp variations respectively [35]. These two

statistics are extracted from decomposition coefficients to finalize the feature database.

In eq. (3.7) and eq. (3.8), p and q are used to refer to the wavelet’s row size and column

size respectively and gv(m,n) represents the gray value of a pixel located in coordination

gv(m,n) in wavelet.

Mean = 1
pq

∑
(m,n)

gv(m,n) (3.7)

STD =

√√√√√ 1
pq − 1

∑
(m,n)

gv(m,n)− 1
pq − 1

∑
(m,n)

gv(m,n)
2

(3.8)

3.4 The hybrid Model Architecture for the Analysis of

Build Interactions

The DNN models are created by embedding multiple hierarchical hidden layers between

input and output layers. The algorithm designs the feature extraction tool to learn and

retain the underlying architecture in each class of data and retain them for creating the

final feature map. As shown in Fig. 3.4, the proposed model is hybrid as it encompasses

two parallel DNNs and utilizes hybrid inputs.

In the initial network, we adopt the transfer learning to utilize a pre-defined configu-

ration that is liable to devise a feature map through processing the original layerwise

images. VGG-16 structure [36] is selected based on its robust performance compared to

other image classification models. The input layer of VGG-16 CNN originally accepts
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Figure 3.4. The hybrid model pipeline. Each cylinder’s image is passed through the first branch
of hybrid model which consists of VGG 16 structure followed by dense layers. Simultaneously,
statistical features obtained by performing texture analysis on wavelet coefficients are fed to
the second branch that includes the MLP layers. Then, two generated feature maps will be
merged together and traverse the fully connected layers for predictive modeling. BN: Batch
Normalization.

color images with a size of 224 × pixels × 224 pixels × 3 pixels. Here, as the captured

images are 1-channeled, we need to repeat and stack gray-scale images along the third

axes to make the input compatible with model structure. Once the data inserted into

the network, mathematical operations are applied sequentially in hidden layers to create

feature maps that are often non-trivial and cannot be explained by human. The learning

process begins with a convolution layers which consists of multiple kernels(filters). Then,

each weight of kernels is assigned to a pixel of input image and weighted sums are

calculated. Next, the weighted sum will be added to a bias value and passed through the

14



Figure 3.5. Distribution of images by classes of process condition

activation function. The convolution function is given in eq. (3.9).

Y L
e,r = Θ

(
K∑
k=1

V∑
v=1

Y
(L−1)

(e−k+K,r−v+V ) ∗W
L
k,v + bL

)
(3.9)

where, Y L
e,r shows the calculated feature map of Lth layer created in the size of e × r, bL

represents the bias, Θ is a non-linear activation function, * denotes the convolutional

operator and WL
k,v shows the weight with the position (k,v) in feature map of Lth

convolution layer. This weight will be multiplied by the pixel located in coordination

(e-k+K , r-v+V) in calculated feature map of (L-1)th layer shown by Y
(L−1)

(e−k+K,r−v+V ).

Next, based on a predefined stride size, the convolution kernel moves to the next position

and convolution operation is performed. This process is then repeated and operated

on full depth of the given layer. The width and height of feature map generated by

15



convolution operation can be determined as follows:

Z0 = Z − ζ + 2υ
S

(3.10)

where Z0 represents the output layer height (or width), Z denotes the input layer height

(or width), ζ is the height (width) of the kernel, υ is the padding size and S is the

stride size of the kernel in the height (width) direction. Also, the depth of the output

feature map is equal to the number of kernels. To fine tune the model and impart the

non-linearity, the rectified linear unit (ReLU) is selected as the activation function [37].

The Relu function with input feature map σ is given in eq. (3.11). In addition, the Max

Pooling layer is embedded throughout the model to downsample the size of data and

reduce the training time. This operator only passes the maximum value of the given

window on to the next layer. VGG 16 makes use of window size of 3 pixels × 3 pixels

with the stride of two in all Max Pooling layers. The top layers used in the pre-trained

structure of VGG-16 will be replaced by two new fully connected (FCN).

ReLU(σ) = max(0, σ) (3.11)

In another separate branch of hybrid model, statistical features obtained from the

texture analysis step, will traverse the multilayer perceptron (MLP) neural network to

generate the second feature map and boost the VGG-16 branch. Hereafter, two feature

maps are merged together to design a unit that will be flattened and followed by the

4 fully connected layers. In addition, The batch normalization and dropout layers are

embedded in the model to accelerate the learning procedure and tackle the overfitting

problem [38,39].

For the learning phase, the softmax activation function is added to estimate the

probability of each label using output of final FCN layer. The output of softmax layer

is the 1×c vector where c is the number of class labels. The sum of values in this
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Table 3.2. Model training parameters

Parameter Value

Final layer activation function Softmax
Optimizer RMSprop
Learning Rate 0.001
Number of epoch 300
Early stopping patience 20

vector is unity. Then the parameters of the network, i.e, weights in convolution kernels

and the bias values, are updated by minimizing the cross-entropy loss function with

back-propagation algorithm [40]. The equation of Softmax and Cross-entropy functions

are as follows:

f(δ) = eδi∑C
i e

δi
(3.12)

CE = −
C∑
i

ti log(f(δ)i) (3.13)

where, δi is the ith value in output vector of last FCN layer, f(δ) is the softmax score,sti

denotes the ground truth of class i and CE represent the cross-entropy cost function.

During the model training phase, the RMSProp method is employed to optimize the

variables.The learning rate is ι = 0.001 and batch size n=64 is selected. the maximum

number of epochs is limited to 300. However, the early stopping technique [41] is utilized

to compare the performance of model in different epochs and terminate the training

process earlier if the model does not show any more capacity to decrease the test loss

after 20 consecutive epochs. For example, if the model obtains the test loss value of

0.5 in the 10th epoch and cannot reduce this loss before the 30th epoch, the learning

process will be ended. The network architecture is implemented with TensorFlow [42].

The training parameters are summarized in Table. 3.2,
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As shown in Fig. 3.5, the number of available data among different classes are

imbalanced. This can lead to considerable bias to large classes and increases the error

of the final trained model. To address this issue, different weights are defined for each

class. We incorporate the weights of each class into the loss function. In fact, these

weights which are inversely proportional to the size of the class, will be multiplied by

the loss value of the corresponding class. It will force the learning process to impose

more penalty on false prediction when the true label belongs to the classes with less data.

These weights can be computed as:

φ(i) = T

C × Ti
(3.14)

where φ(i) denotes the weights of the ith class, T is the total number of samples, Ti is

the number of samples in class i and C in the number of classes. Note that, test and

validation samples are not considered for calculating class weights.
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Experimental Design and Results

Thus far, we designed a framework to extract meaningful statistical features and classify

the build-image with regard to the condition process. In this chapter, we represent the

result of feature analysis steps. Different classifiers with different entry are utilized to

detect the process condition. Considering different evaluation metrics, the classification

performance of all models are assessed and compared with the result of proposed hybrid

model.

4.1 Feature analysis of Powder bed Images

Fig. 4.1 illustrates sample images of the cylinder’s layer printed under different process

conditions with different energy densities. These images are used as the first input to

the proposed model. Then, the single-level DWT of these images creates four wavelet

sub-bands. Fig. 4.2 depicts wavelet decomposition coefficients extracted from a captured

powder bed image. In the next step, each wavelet sub-image underwent through the

texture analysis process and 3 features including mean, standard deviation and entropy

are obtained per each sub-band.

As a result, for each image, we generate 12 statistical features. This statistical

data will be leveraged to be the second input to the model. In fact, by concatenating
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Figure 4.1. Samples of a single cylinder’s layer (10th layer) that built under different process
conditions.

additional information to image data. we expect the model to gain higher detection

power by considering a broader range of information.

4.2 Online monitoring of Process variations

After processing input layerwise images using wavelet transformation and texture analysis,

non-image statistical data are inserted to the MLP branch and the underlying features

of image data will be retained by CNN branch. Then, the model starts to optimize

hyperparameters. To evaluate the performance of trained models, three metrics of F-score,

Precision, Recall and are reported using. In addition, the confusion matrix is prepared

to provide more detail about the number of correct and incorrect predictions made by

the trained model.

Precision = TP

TP + FP
(4.1)
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Figure 4.2. An Example of wavelet decomposition coefficient of the layerwise image. (a)
Approximation detail (LL); (b) Horizontal detail (LH); (c) Vertical Detail (HL); (d) Diagonal
detail (HH).

Recall = TP

TP + FN
(4.2)

Accuracy = TP + TN

TP + FN + FP + TN
(4.3)

F − score = 2
1

Precision
+ 1

Recall

(4.4)

where TP denotes the true positive, FP is false positive, FN is false negative and TN

is true positive. We can calculate these values for each class of quality condition. For

example, considering class E, recall refers to the percentage of objects in class E which
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have been correctly detected by model as having quality condition E. Precision value

indicates what percentage of objects that are classified by model as class E, have had

this quality condition as ground truth.

The accuracy metrics is also used to show the model performance on train and test

data in each epoch. However, the overall classification result will be reported by f-score

since it is capable to examine the validity of the model when the data set in imbalanced.

In better words, the high F-score demonstrates not only the appropriate classification

power of the predictive model, but also the equal level of attention to all class labels. The

hybrid model pipeline is assessed and compared by different machine learning models

under various configurations. We utilized SVM, k-nearest neighbors and logistic regression

(with statistical features extracted by wavelet transform and texture analysis) as well as

VGG-16 (with powder bed image data) as benchmark models. Moreover, the performance

of the hybrid model with different statistical features is examined.

To perform a fair comparison, the final outputs of all models are compared using

6-fold cross-validation and the average results are reported. Table. 4.1 displays the ability

of different models in identifying process conditions. When entropy value, mean and

standard deviation extracted by wavelet transformation are utilized as non-image inputs,

the model yields 97.14% F-score. Among Machine learning models, logistics regression

demonstrated the highest result with an f-score of 89.75%. Training a hybrid model with

different statistical inputs, the detection performance decreased to 90.43%. Moreover,

When the MLP branch removed from the hybrid model, the f-score decreased to 92.58%.

Considering these results, it is proven that the MLP branch with a suitable selection of

statistical input can provide informative details to empower the CNN branch. Also, this

hybrid model can successfully outperform previous machine learning solutions.

Fig. 4.3 and Fig. 4.4 represents the effect of early stopping method during the training

process of proposed hybrid model. As it is demonstrated for each fold, the models starts
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Figure 4.3. Change in loss value of train and test data during the training process of proposed
hybrid model. To prevent overfitting, the early stopping method is applied to monitor the
learning process and terminate the learning process if no improvement appears in test loss
reduction after 20 consecutive epochs.
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Figure 4.4. Change in accuracy value of train and test data during training process of proposed
hybrid model.
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Table 4.1. The process condition detection result achieved by various classifiers with different
inputs

Model 1 Model Input F-Score

Hybrid Model Image, entropy, mean, std of wavelet 97.14%
Hybrid model Image, mean, std of image multi-fractal, spectral graph 90.43%
VGG 16 Image 93.51%
K-nearest Neighbor entropy, mean, std of wavelet 87.57%
SVM entropy, mean, std of wavelet 84.71%
Logistics regression entropy, mean, std of wavelet 89.75%

with sharp improvement in accuracy and reduced the great amount of train and test

loss value. However, as the model comes closer to loss value of 0, reduction in loss value

becomes difficult. As result, when the model reach to its highest capacity(i.e, the lowest

loss value and the highest accuracy level), the overfitting problem appears. Here, by

using early stopping, when the model couldn’t decrease the test loss value after 20 epochs,

the learning process was stopped to prevent the generalization error.

Fig. 4.5 illustrates six confusion matrices obtained in different folds of test data during

the cross-validation process. Various sizes of data have been distributed throughout the

class labels in each fold and the differences between majority and minority classes shows

that the data is imbalanced. However, the class weight technique has demonstrated its

power to compensate for this gap and provide the appropriate number of true positive

Table 4.2. The classification result obtained by proposed hybrid model and with test data in
different folds of cross-validation technique

Fold number F-score Precision Recall Loss

1 97% 97% 97.45% 0.0976
2 96% 96% 97.72% 0.1165
3 97% 97% 97.30% 0.0954
4 97% 96% 96.91% 0.1072
5 97% 97% 97.30% 0.0660
6 96% 97% 97.10% 0.0924

25



Figure 4.5. Confusion Matrix obtained by using the proposed hybrid model on the test
data set. Diagonal parts in all confusion matrices comprise more concentration of data which
represents the appropriate detection power of the model for all classes.
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for all classes. It is worth noting that the concentration appears on the diagonal of all 6

folds, indicates that the final model performed the classification task with little bias to

majority classes. These results, proved the strong potential of proposed hybrid model to

monitor the AM and help mitigate defects in the process.
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Conclusion

This study sets forth a novel hybrid model with two heterogeneous inputs for inspection

of LPBF process condition and established a new ground for the characterization of

porosity defects. The method can be integrated with LBPF machine to monitor the 3D

printing process. To this end, two parallel networks were merged together to form a single

classification framework. The first network employs CNN and accepts the image dataset,

whereas the second branch utilizes MLP and receives the non-image input of statistical

features. In our experiments, a cylindrical build was produced under different process

conditions and powder bed images are captured. Then, the wavelet-based features

of images are extracted. It is demonstrated that wavelet decomposition coefficients

effectively represent original images as they can capture different frequencies in an image

with minimum loss of information. This fundamental property became even more useful

when an additional texture analysis was performed on the wavelet coefficients to prepare

the statistical features of the model.

Finally, the proposed framework achieved the F-score of 97.14% that is significantly

higher than the state-of-the-art approaches. The results demonstrated the capability of

the final architecture to address the imbalanced class difficulty and make an unbiased

decision. In addition, the integration of statistical features with the powder bed image

data played a paramount role to build a reliable framework to assess the build quality
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during the process and provided an opportunity to make required adjustments for quality

improvements in AM processes.
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Future Work

In this work we employed different approaches to improve the performance of proposed

model. However, the size and structure of accessible data is a significant factor that

can affect the reliability of a data-driven model. It worth nothing that by preparing a

larger dataset of AM objects, the proposed hybrid model can achieve a higher fidelity.

Besides, In future studies, to empower the classification pipeline, it would be interesting

to investigate new ways to conduct more repetition of production process to gather more

data of sequential layers. Then, it might be possible to assess the capacity of Recurrent

Neural Network (RNN) classifier in process inspection task and consider previous layer’s

condition to make a final decision about current layer.
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