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ABSTRACT 

 

Mechanics of cell-substrate interactions has recently emerged one of the most exciting topics to 

study, propelled by the discovery of unusual fundamental physical phenomena such as durotaxis 

and newly developed experimental techniques such as Traction-force-microscopy (TFM). The 

intensive interest on the mechanics of cell-substrate interactions arises also because of the 

decisive role that forces play in well-known biological processes such as proliferation, durotaxis, 

and metastasis. The discovery of the novel importance of cell-substrate interactions has inspired 

an endeavor that leads to the establishment of new physical theories. Such monumental pushes, 

however, still have some flaws based on the assumptions and simplifications and require a 

deeper physical understanding and more detailed modeling on the mechanism of cell-substrate 

interactions. 

 

This dissertation contributes to the mechanics of cell-substrate interactions and mainly focuses 

on the establishment of physical models based on formulating the free energy of cell-substrate 

interactions. As a living cell adheres to a substrate, it will contract, pull the substrate, and 

generate external tensions. The Rho and Ca pathways control the stress-dependent myosin motor 

recruitment and binding with the cytoskeleton. The stress fiber network applies tensile forces on 

the ligand-receptor complex, which facilitates the aggregation of the complex and forms the 

focal adhesions. The focal adhesions then transmit more tensions between the cell and the 

substrate, enabling more and more myosin motor activation and stress fiber assembly. This 

positive feedback loop is the mechanism of cell-substrate interaction. 
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Enormous efforts have been undertaken in computationally modeling cell-substrate interactions. 

Formal models proposed on cell-substrate interactions are either too simplified which fail to 

capture the essential details or too complicated which are difficult to implement. To achieve both 

physical accuracy and computational efficiency, this dissertation aims to develop new models to 

predict the focal adhesion formation, the traction force generation, and the stress fiber assembly 

in cell-substrate interactions. In particular, the free energy is written as a functional of the 

cellular displacement, the integrin density and myosin motor density. The equilibrium is 

achieved by finding the minimum of the functional. For the time-dependent evolution of stress 

fiber assembly, a phase-field method is applied to trace the morphology of stress fibers at any 

given time. To deal with the irregular shapes of cells, the finite element method is used to solve 

the equations. A commercial package named COMSOL is used as the major computing tool in 

this dissertation. 

 

The new models enable the prediction of the traction forces, the formation of focal adhesions and 

stress fibers; and they replicate a range of interesting phenomena observed in experiment, 

typically inaccessible to previous models and experiments. For arbitrary-shaped single cells on 

homogeneous substrate, our model is able to predict the profile of the traction force and the focal 

adhesion, which are determined by the geometry of the cells. We find that the intracellular 

tension is highly dependent on the shape of the patterned cell on glass and governs the number of 

the nanoparticle uptake. For strip-like cells on alternatively coated gels, our model suggests that 

the interfacial tension play an important role in a variety of interesting phenomena such as dorsal 

stress fiber bending and dorsal stress fiber formation failure. For cohesive cell colonies, a variety 

of experimental observations, such as the size effect and the stiffness effect, are replicated by our 



 
 

v 

model. We also conclude that the metastasis is governed by the intercellular tension from the 

model. These findings show not only the effectiveness of the new model, but also the possible 

guidance that the model can offer to the further study on cell-substrate interactions. 
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Chapter 1  

Introduction 

1.1. Background 

 

Cellular mechanotransduction  

It is well-known that cells can interact with substrate through the process called 

mechanotransduction in which mechanical stimuli is translated into biochemical signals, 

enabling cells to adapt to the substrate it adheres on [1]. A variety of behaviors in cell-substrate 

interactions, such as adhesion, migration, growth, proliferation, and cancer metastasis, are 

mediated by the mechanotransduction [2-5], which is critical for multicellular tissues to maintain 

integrity and homeostasis. Enormous efforts have been devoted to study cellular 

mechanotransduction. It is clear that adherent cells must attach to a substrate for survival and 

growth. Once they attach to the substrate, they establish contractility and homeostasis by either 

pulling the substrate to generate extracellular traction forces, or by pulling neighboring cells to 

generate intercellular forces. Both forces will then be transmitted into cells to generate 

intracellular tensions to help cells stay in a uniform tension state. The cellular contractility is 

generated by the activation of myosin motors. Myosin motors are usually free diffusive inside 

cells and can aggregate and bind to stress fibers when they feel the stress-activated signaling 

molecules. They pull the stress fibers and stress fibers assemble into the cytoskeletons which are 
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the main structures inside cells to sustain intracellular forces. The force transmission between 

cells and substrates mainly relies on cell-substrate adhesions which include four types based on 

the size, the shape, and the location [6, 7]. Although there are distinct differences among them, 

these structures undergo dynamic changes and can evolve from one type to another [6]. Amongst 

those four, focal adhesions (FAs) are the largest ones and hence are the main structure that 

transmit forces from substrate to cells. They are mainly consisted of dynamic protein complexes, 

such as the integrin-ligand complexes, which connect the extracellular matrix to the 

cytoskeleton. Integrin, a transmembrane receptor binding with both the substrate and cellular 

actin filaments via adapter proteins, is considered as the major mechanosensors among proteins 

in focal adhesions (including integrins, talin, paxillin and signaling molecules such as focal 

adhesion kinase). Focal adhesions are bridges that enable the transmission of mechanical forces 

and regulatory signals between the substrate and the cell. Its formation and maturation can be 

modulated and promoted by external mechanical forces [8, 9]. Cell-cell adhesions, like cell-

matrix adhesions, are in responsible for signal transmission between neighboring cells, and also 

play an important role in cell-substrate interactions. They are categorized into adherent junctions, 

tight junctions, and gap junctions; and are mediated by cadherins, occludins, and connexins, 

respectively [10-11]. The cadherin-mediated adherent junction is the one responsible for 

transmitting mechanical signals among the three since they are directly connected to the actin 

filaments. They too can affect the cell-substrate interactions. 

Traction force microscopy  

The traction forces are the forces that a cell exerts onto the substrate. Traction forces quantify the 

intensity of cell-substrate interactions. As traction forces modulate many biological processes 
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such as formation of FAs, migration, differentiation, metastasis and angiogenesis, the 

measurements of traction forces have drawn intensive research interest in the biomechanical 

field. A methodology called the traction force microscopy (TFM) has been developed to measure 

the traction force [12-13]. Different from the traction force, the intercellular and intracellular 

forces within multicellular structures are difficult to be directly measured but can be calculated 

from the traction force map by performing force equilibrium. In this case, these forces are 

characterized by stress tensors.  

 The principle of TFM is quite straightforward and simple. Firstly, one need to deliver 

fluorescent beads into the substrate with a proper depth: neither too deep nor too shallow to be 

devoured by cells. Then one could culture cells on substrate. Cells will deform the substrate, and 

so will the beads displace. At this time one can take a picture of the current position of the beads 

and then wash away the cells. The beads return to their original positions and another picture can 

be taken now. By comparing the different location of the beads in the two pictures, one is able to 

find the displacement of the beads, i.e., the displacement of the substrate at those particular 

locations. Reconstructing the force field from the displacement field is solving an inverse 

elasticity problem. For substrate, whose thickness is much larger than the displacement caused 

by the cell traction force, it can be considered as an elastic half-space medium bounded by an 

infinite plane. The analytic solution of displacements on the free surface due to the point forces 

has been derived by L. D. Landan and E. M. Lifshitz [14]. It is known as Boussinesq solution 

given by the convolution between green’s function and point forces: 

𝑢<(𝑥, 𝑦) = ∬𝐺<D(𝑥 − 𝑥′, 𝑦 − 𝑦′) 𝑓D(𝑥′, 𝑦′)𝑑𝑥′𝑦′，  (1-1) 
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where subscript i, j take the values 1 and 2, ui (x, y) is the i-th component of displacement at the 

point (x,y),  fj(x',y') is the j-th component of point force at the point (x',y'), and Gij(x−x',y−y') is 

the green’s function. The green’s function is expressed as: 

𝐺(𝑥 − 𝑥′, 𝑦 − 𝑦′) = +IJ
KLMN

O
(1 − 𝜈)𝑟R + 𝜈𝑟TR				𝜈𝑟T𝑟V
𝜈𝑟T𝑟V				(1 − 𝜈)𝑟R + 𝜈𝑟VR	

W,  (1-2) 

Where 𝑟T = 𝑥 − 𝑥′, 𝑟V = 𝑦 − 𝑦′, 𝑟 = X𝑟TR + 𝑟VR , 𝜈 is Poisson’s ratio of the elastic substrate and 

E is its Young’s modulus. The complex convolution equation (1-1) can be converted into a 

simple multiplication by Fourier transform (FT). In the Fourier space, the equation (1-1) can be 

written as: 

𝑢Y<Z = {𝐺\<D𝑓]Z}Z,     (1-3) 

Where k is the mode in the frequency domain, 𝐮̀ is the displacement in the Fourier space, 𝐆b is the 

green’s function in the Fourier space and 𝐟] is the force in the Fourier space. The green’s function 

in Fourier space is expressed as: 

𝐺\Z =
R(+IJ)
LZN

O
(1 − 𝜈)𝑘R + 𝜈𝑘VR				𝜈𝑘T𝑘V
𝜈𝑘T𝑘V				(1 − 𝜈)𝑘R + 𝜈𝑘TR	

W,   (1-4) 

Where 𝑘T and 𝑘V are the components of the wave vector k, 𝑘 = X𝑘TR + 𝑘VR. Then the traction 

force in Fourier space would be: 

𝑓]<Z = {𝐺\<De+𝑢YD}Z,     (1-5) 
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By applying the inverse Fourier transform on equation (1-5), one can get the traction forces in 

real space.  

As the limitation of 2D TFM, it is assumed that the displacement perpendicular to substrate 

surface is zero. If the vertical component of traction force is notable and the resulting vertical 

displacement is not negligible, TFM does not work. That is because PIV analysis only enables 

the displacement measurement in one plane.  

 

1.2.  Motivation 

Although TFM proves itself to be an effective method to get the traction forces in two-

dimensional cell-substrate interactions, it still suffers from some flaws. Firstly, such experiments 

take a lot of time on preparing samples [15-17]. Researchers would spend a large amount of 

energy on carefully delivering the beads into a proper depth in gels. Secondly, since the accuracy 

of TFM mostly relies on the accuracy of the displacement one measures, if the substrate is very 

rigid, such as PDMS, the measured displacement will be so small that it loses quite a lot of 

accuracy [15-17]. Therefore, the situations require people to come up with a physical model 

which is easy to perform on computers to predict the traction force profiles by giving the 

geometry and the constitutive law of the cells. Enormous efforts have been made to develop 

models to simulate the cell-substrate interactions and try to predict the traction force landscape. 

A simple model is proposed by Mertz, A.F. et al at very first [18-20]. The model considers a cell 

as a thin elactic sheet and the focal adhsions as uniformly distributed linear springs. The stress 

equlibrium in the cell sheet is written as: 
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∇ ∙ 𝛔 − i𝐮
j
= 𝟎,    (1-1) 

where 𝛔 is the stress tensor in the cell; 𝐮 is the displacemnet vector in the cell; Y is the effective 

stength of the focal adhesion and is assumed to be uniform on the whole cell sheet; h is the 

thickness of the cell sheet. The traction force equals to: 𝐓 = 𝑌𝐮. The model successfully captures 

the deacy of the traction force from the priphery to the centroid in a circular cohesive cell colony. 

The model is then used to study a cell adhering on substrate with different thicknesses. Oakes, 

P.W. et al further introduces the line tension acting on cell boundaries and successfully replicates 

the traction profile of NIH 3T3 fibroblasts [21]. However, since the assumption of uniformly 

distibuted focal adhesion is used, the model fails to capture the external-force-mediated focal 

adhesion formation and hence loses the essential details in cell-substrate interactions. Besides, 

the contractility of cells on gels with different stiffness is assumed to be unchanged, which is 

also contradictory to experimental observtions. Another model proposed by Deshpande V.S. et 

al. has been looking into the great details in cell-substrate interactions [22-23]. The stress fiber in 

the cell is modeled as a piece of viscoelastic material whose constitutive law is a function of the 

activation level 𝜂 of stress fibers. The constitutive law trise to capture the formation and 

dissociation of stress fibers, as well as the associated generation of tensions and contractilities. 

The variable 𝜂 is defined as the ratio of the concentration of the polymerized actin and 

phosphorylated myosin within a stress fiber bundle to the maximum concentrations permitted by 

the biochemistry. The evolution of 𝜂 is described by the following kinetic equation: 

𝜂̇ = (1 − 𝜂) pZ
/q
r
− (1 − s

st
)𝜂 Z

/u
r

,    (1-2) 

where C is a biomechanical impulse that triggers the signaling cascade in the cell, which can be 

thought as the concentration of Ca+. The parmamters 𝜃, 𝑘/', 𝑘/w and 𝜎x denote for the decay 
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constant, the rate of stress fiber association and dessociation, and the isometric stress, 

respectively. The tension inside the stress fiber is denoted by 𝜎, which is: 

s
st
=

⎩
⎪
⎨

⎪
⎧ 0,																	 }̇

}̇t
< − �

	Z/�
,			

1 + Z/�
�
� }̇
}̇t
� ,				− �

	Z/�
≤ 	 }̇

}̇t
≤ 0,

1,																										 }̇
}̇t
> 0.

    (1-3) 

where 𝜀 is the strain in the stress fiber; 𝑘/� and  𝜀ẋ are the rate sensitivity coeffeicent and stress 

fiber shortening rate, respectively. The total active stress tensor is derived by summing the 

tensions in the stress fibers in all directions together. As we can see, this model looks into the 

great details of the physics in stress fibers. However, the kinetics in Equation (1-2) is not derived 

from a free energy functional, instead, it is derived phenologically. Moreover, the disribution of 

stress fibers with rescpect to diffrerent orientations needs to be measured at the very first stage. 

Therefore, their study is restricted to one-dimensinal cells and two-dimensional cells with very 

regular shapes. Instead of simulating the biomechanics in each single stress fiber, Shenoy V. et 

al. propose a chemo-mechanical free-energy-based approach to durotaxis and extracellular 

stiffness-dependent contraction and polarization of cells [24]. The one-dimesional-case free 

energy density 𝑈(𝜌, 𝜀) of the cell consists of three parts: the mechanical energy in the cell (the 

first two terms),the chemical energy of myosin motors (the next two terms), and the motor-work 

(the last term): 

𝑈(𝜌, 𝜀) = �
R
𝜀R − ∫ 𝜎d𝜀}

x + �
R
(𝜌 − 𝜌x)R − 𝛼 ∫ 𝜎d𝜌�

x + 𝜌𝜀,   (1-4) 

where 𝜌, 𝜀, and 𝜎 are the density of motors, the strain, and the stress,respectively. The motor 

density in the absence of stress is the quiescent value: 𝜌x. The simple expression of the free 

energy can be easily extened to higher-dimesional cases and the constitutive law for the three-

dimesional case is: 
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𝜎<D = (𝜌̅x + 𝐾�𝜀ZZ)𝛿<D + 2𝜇̅𝜀<̃D,   (1-5) 

where 𝜀ZZ and 𝜀<̃D are the volumetric part and deviatoric part of the strain, respectively. The 

parameter 𝜌̅x, 𝐾�, and 𝜇̅ are the effective contractilty, the effective bulk modulus, and the 

effective shear modulus, respectively. Although this model is easy to apply and successfully 

predicts a few biomechanical phenomena, it still suffers from some flaws. For instance,the part 

of the chemical energy, especially the third term in Equation (1-4) does not strictly follow 

thernodynamic laws. Additionally, this model cannot predict the assembly and disassmbly of 

focal adhesions, instead, the model has to assume the focal adhesion distribution to simulate cell-

substrate interactions. The review on the previous work motivtes us to develop new models that 

can capture the major biomechanics in cell-substrate interactions, such as tranction force 

generation and transmission, and myosin motor evolution without the models being too 

complicated. 

In this dissertation, we propose two new models to study cell-substrate interactions, both derived 

from the free energies of the systems. In the first model, we mainly focus on the focal adhesion 

fomation as focal adhesions are the keys that determine the traction force profile. The cell 

membrane are categrized into three phases: a phase that the integrins are freely-diffusive, a phase 

that the integrins bind with ligands, and a vacancy phase. The three phases undergo dynamic 

changes and can evlove into one another. A free energy functional on the concentration of the 

different types of integrins is construted based on thermodynamics. The cell contractility is 

considered as a changing parameter versus subtrate stiffness. Edge effect is taken into account by 

considering the line energy on cell boundaries. We apply this model to circular NIH 3T3 

fibroblasts to reveal the substrate stiffness depenedent contractility. We then apply the model to 

SaOS-2 cells on deformable substrate with irregular shapes to show the geometry regulated 
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traction forces. We also adopt this model to predict the traction force and focal adhesion 

distribution of cells patterned on glass and reveal the correlation between the intracellular tension 

and nanoparticle uptake to show the advantage of our model compared with TFM. Finally, we 

apply the model on multicellular structures and investigate the correlation between traction 

forces and metastasis. In the second model, we focus on the myosin motor evolution and stress 

fiber assembly. To fullfill this purpose, we introduce a new variable that characterizes the 

concentration of myosin motors. A new energy functional is then formulated. The new variable 

is modeled as a phase-field order parameter and the phase-field method is used to study the 

evolution of myosin motors. The density of the actin filaments and the directions of stress fibers 

are characterized by the magnitude and the direction of the first principal stress. We first use the 

model to replicate previous conclusions to validate its correctness. We then apply the model to 

predict the acting node formation in strip-shape cells adhereing on substrate with alternatively 

coated surface to reveal the vital role played by interfacial tensions in cell-substrat interactions. 

The simulation results not only advance the fundmental understandings on cell-substrate 

interactions, but also offer new pathways and tools in further study. 

 

1.3. Outline 

In this dissertation, two  models have been proposed to study cell-substrate interactions and a 

varaity of cases have been investigated. In chapter 2, the first model is introduced, as well as the 

parameter settings. In chapter 3, we apply the model to single cells and cohesive colonies. We 

simulate the traction force profile, the focal adhesion distribution and the intracellular tension in 

single cells. For the cohesive colonies, the size effect and stiffness effect are discussed. The 
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traction force driven colony dispersion is also studied. In chapter 4, the second model is 

introduced. Knot-like stress fiber assembly is studied on alternatively coated substrate and the 

importance of interfacial tension is addressed. In chapter 5, we summarize our work and arrive at 

the conclusions. 
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. Chapter 2  

A thermodynamic model for cellular force generation and transmission of 
single cells and multicellular structures 

 

2.1. Introduction 

As a basic unit of living lives, cells are able to consume nutrition from its surroundings and convert 

it into energy for their proliferation, migration, and other biological activities [25-27]. Unlike 

traditional materials, cells are alive. They can actively probe and sense physical cues from the 

surroundings and respond them by triggering a cascade of a series of biochemical signals [28, 29]. 

Usually, living cells attach to something in order to maintain the homeostasis. The cell-substrate 

interactions include both the chemical ones and mechanical ones and they are usually coupled. 

Among these interactions, the traction forces that a cell exerted on the substrate are of great 

importance and draw an intensive research interest from the biomechanical field [30-32]. It is 

found that the traction forces can mediate a lot of biological process such as cell migration, 

differentiation, and cancer metastasis [32]. Therefore, it is worth looking into the mechanism of 

the traction force generation and transmission of cells. 

 

In this chapter, we develop a molecularly based thermodynamic model that simultaneously 

incorporates the elastic, edge, and interfacial effects in single cells. We formulate the free energy 

functional associated with the receptors. We also take strain energy in the cell and the substrate, 
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and the line energy on the cell boundary into account. The chemical equilibrium for receptors, the 

stress equilibrium for cells and substrates, along with the boundary conditions are derived by 

making the variations on the free energy functional. Next, we extend the thermodynamic model 

from single cells to multicellular structures. At last, we discuss the way to implement the model in 

COMSOL. 

 

2.2. Equations 

 

Fig. 2.1. Schematics of cellular force generation mediated by focal adhesion formation through 

integrin clustering. (a) Randomly distributed, freely diffusive integrins (red dots) on the cell 

membrane. (b) Focal adhesion formation through integrin clustering upon cell-substrate 

interactions. (c) The molecular structure of the focal adhesion. 

 

Upon a contractile cell seeding on a hydrogel coated with fibronectins, the mechanosensory 

integrin receptors on the cell membrane probe the local mechanical cues and respond by emanating 

a series of outside-in biochemical signals. The signals activate the actomyosin motors to contract, 

and subsequently cause cytoskeletal remodeling, stress fiber formation, and cell spreading [33]. 
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The contractile force is transmitted to the integrin receptors, resulting in integrin clustering [34-

36] and focal adhesion maturation [37]. The focal adhesions, the cytoskeleton, and the cell 

contractile machinery thus form a structural network and a positive feedback loop that regulate 

cellular force generation and transmission [38, 39]. The focal adhesion points transmit mechanical 

forces between the cell and the hydrogel, causing both to elastically deform. The out-of-plane 

displacement is generally small compared to the in-plane displacement. We denote the 2D in-plane 

displacement fields of the cell and the hydrogel by 𝐮(𝐱) and 𝐮�(𝐱) at a point 𝐱, respectively. Then 

Δ𝐮 ≡ 𝐮� − 𝐮 characterizes the relative displacement at the cell-substrate interface. In the case that 

a ligand-receptor pair exists at 𝐱,	Δ𝐮  is the stretch in the ligand-receptor bond. A microstructure-

based description is adopted here to simulate the formation of focal adhesion points through 

integrin clustering. The integrins on the cell membrane are then categorized into three phases: a 

freely diffusive phase with a density 𝜙' (number per unit area), a bound phase to the ligands on 

the substrate with a density of 𝜙w, and a vacancy phase of density 𝜙�. The conservation of the total 

integrins in a cell holds in the static state, which is: ∫ (𝜙w + 𝜙')dΩ� = 𝜙xΩ

 

with 𝜙x  being a 

constant for a cell that covers an area of Ω. The three phases occupy all the sites on the cell 

membrane, satisfying the local conservation: 𝜙' + 𝜙w + 𝜙� = 1. The mixture of the three phases 

brings an ideal entropy of mixing on the cell membrane, while the mismatch between different 

phases lead to gradient energies to the total chemical energy. In each focal adhesion point, the 

receptor-ligand pair is modeled as a linear spring with a spring constant k, the conjugate stretching 

force in the pair 𝐅 = 𝑘Δ𝐮, and the stretching energy +
R
𝑘(Δ𝐮)R. By forming each ligand-receptor 

pair, a certain amount of energy 𝛾 = 𝐅 ⋅ Δ𝐮 is released from the cell to stabilize the adhesion, 

which is an analogy to the pressure-volume term in the thermodynamics of gases. Amongst the 

three phases, only the bound phase 𝜙w is able to generate and transmit forces between the cell and 
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the substrate, therefore the traction force generated by the receptor-ligand pair and transmitted to 

the substrate is 𝐓 = 𝑛8𝜙w𝐅, where  𝑛8 is the lattice site per unit area on the cell membrane. With 

the assumptions made above, the free energy of the cell membrane is written as: 

𝑊(𝜙'; 𝜙w; 𝜙�; 𝐮; 𝐮�) = ∫ 𝑛8(𝜇'x𝜙' + 𝜇wx𝜙w + 𝜇�x𝜙�)dΩ�
																																			+ ∫ 𝑛8[𝜙wln𝜙w + 𝜙'ln𝜙' + 𝜙�ln𝜙�]dΩ�

																																			+ +
R ∫ [𝛽w(∇𝜙w)

R + 𝛽'(∇𝜙')R + 𝛽�(∇𝜙�)R]dΩ�

																																			+ +
R ∫ 𝑛8𝜙w𝑘|Δ𝐮|RdΩ� − ∫ 𝑛8𝜙w𝛾dΩ	�

, (2-1) 

where 𝜇'x, 𝜇wx, and 𝜇�x are the reference chemical potentials of the unbound and bound receptors, 

and vacuums, respectively; 𝛽w, 𝛽' and 𝛽� are the gradient energy coefficients with respect to the 

three phases. The free energy consists of five parts: the chemical energy in the reference 

configuration, the entropic energy of three-phase-mixture, the gradient energies, the stretch energy 

stored in receptor-ligand bonds, and the energy released from the formation of receptor-ligand 

bond. All terms are in the unit of 𝑘§𝑇. By using the local conservation of the three phases, the 

gradient term in Eq. (1) can be rewritten as +
R
[(𝛽w + 𝛽�)(∇𝜙w)R + (𝛽' + 𝛽�)(∇𝜙')R +

2𝛽�(∇𝜙w)(∇𝜙')]. For simplicity, we assume the isotropy of the gradient energy coefficient, 

leaving 𝛽w = 𝛽' ≡ 𝛽𝑛8 and 𝛽� = 0. The total Gibbs free energy is then given as: 

 Πª𝜙w; 𝜙'; 𝜙�; 𝐮; 𝐮�« = 𝑊ª𝜙'; 𝜙w; 𝜙�; Δ𝐮« +
j
R ∫ 𝛔¬8: 𝜀¬8	d� Ω + ∫ Γdℓ¯� + +

R ∫ 𝝈�¬8: 𝛆²¬8d𝑉´ , (2-2) 

where the first term is described by Equation (2-1). The second term is the elastic strain energy of 

the two-dimensional isotropic, elastic cell sheet with a thickness h, Young’s modulus E and 

Poisson’s ratio n. We model the intracellular contraction by an active stress 𝜎µ within the sheet, 

resembling the thermal cooling force and leading to the contractile thermal strain −(1 − 𝜈)𝜎µ/𝐸 

in plane stress condition. Therefore, the elastic strain 𝛆¬8  equals to [∇𝐮 + (∇𝐮)·]/2 + [(1 −
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𝜈)𝜎µ/𝐸]𝐈, where 𝐈 is the identity tensor. By applying the Hooke’s Law of plane stress, the elastic 

stress in the cell is then written as: 

 
𝜎<D¬8 =

L
+eJ¹

[𝜈	𝛿<D𝑢Z,Z +
+eJ
R
(𝑢<,D + 𝑢D,<)] + 𝜎µ𝛿<D, (2-3) 

The third term in Equation (2-2) is the line energy on the boundary of the cell sheet, where Γ is the 

line tension. The last term is the strain energy stored in the substrate. Now recall the constraint that 

the total number of integrins in the cell should be conserved, one then would write down the 

Lagrangian as:  

 𝐿ª𝜙w; 𝜙'; 𝜙�; 𝐮; 𝐮�; 𝜆« = Πª𝜙w; 𝜙'; 𝜙�; 𝐮; 𝐮�« + 𝜆[∫ (𝜙w + 𝜙')dΩ� − 𝜙xΩ], (2-4) 

where 𝜆  is the Lagrangian multiplier and is a constant. By noticing 𝜙' + 𝜙w + 𝜙� = 1 , we 

minimize the free energy functional (2-4) with respect to its independent variables 𝜙' and 𝜙w. It 

yields the partition of the receptors in the cell: 

 −𝛽	∇R𝜙' + ln[𝜙' (1 − 𝜙' − 𝜙w)⁄ ] + 𝜇'x − 𝜇�x + 𝜆 = 0, (2-5.1) 

 −𝛽	∇R𝜙w + ln[𝜙w (1 − 𝜙' − 𝜙w)⁄ ] + 𝜇wx − 𝜇�x +
+
R
𝑘(Δ𝐮)R − 𝛾 + 𝜆 = 0, (2-5.2) 

The boundary conditions are assumed for simplicity:  

 ∇𝜙' ⋅ 𝐧 = 0, (2-6.1) 

 ∇𝜙w ⋅ 𝐧 = 0, (2-6.2) 

where n is the outer unit normal of the cell boundary. We further let Δ𝜇x = 𝜇wx − 𝜇'x , and 

𝜆¾ = 𝜇'x − 𝜇�x + 𝜆. One shall notice that 𝛾 = 𝑘(Δ𝐮)R, therefore the above two equations can be 

simplified as: 
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 −𝛽	∇R𝜙' + ln¿𝜙' ª1 − 𝜙' − 𝜙w«⁄ À + 𝜆′ = 0, (2-7.1) 

 −𝛽	∇R𝜙w + ln[𝜙w ª1 − 𝜙' − 𝜙w«⁄ ] + Δ𝜇x − +
R
𝛾 + 𝜆′ = 0. (2-7.2) 

Using Equation (2-7.2) to subtract Equation (2-7.1), we can get the partition of the receptors in the 

cell: 

 lnª𝜙w 𝜙'⁄ « − 𝛽	∇Rª𝜙w − 𝜙'« = 𝛾 2⁄ + Δ𝜇x. (2-8)  

Equation (2-8) tells that once the system reaches its equilibrium, the chemical potential of 𝜙' and 

𝜙w should be equal. Moreover, 𝜙w increases with 𝛾 = 𝐅 ⋅ Δ𝐮, indicating that the formation of focal 

adhesion actively responds to the mechanical force and traction forces promote the focal adhesion 

formation. 

 

Minimizing the free energy functional with respect to the cell displacement field 𝐮 gives rise to 

the mechanical equilibrium in the cell sheet. 

 ∇ ⋅ 𝛔¬8 + 𝑌Δ𝐮/ℎ = 0  in Ω, (2-9) 

where 𝑌 = 𝑛8𝑘𝜙w is the effective focal adhesion strength, characterizing the coupling between the 

cell and the substrate. The traction force sustained in the focal adhesion points and transmitted to 

both the monolayer and the substrate is denoted by the term 𝑌Δ𝐮, which is averaged along the cell 

thickness and treated as a body force due to the two-dimensional landscape of the cell sheet. The 

cell is subjected to the traction boundary condition at its boundary:
  

 
𝛔¬8 ⋅ 𝐧 = − ÂÃ

j
𝐧,

 
(2-10) 

where 𝜅 is the curvature of the cell boundary.  Similarly, the substrate satisfies the mechanical 

equilibrium (∇ ⋅ 𝜎²¬8 = 0) and surface traction boundary condition (𝐓 = 𝑌Δ𝐮), and is modeled as 

elastic half space with a Young’s modulus 𝐸"and Poisson’s ratio 𝜐². The solution to the mechanical 

equilibrium in the substrate can be solved from the Cerruti problem: 
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 𝐮� = ∫ +IJ�
KL"MN

O
(1 − 𝜈̂)𝑟R + 𝜈̂𝑟TR				𝜈̂𝑟T𝑟V
𝜈̂𝑟T𝑟V				(1 − 𝜈̂)𝑟R + 𝜈̂𝑟VR	

W� Ç
−𝑌Δ𝐮T
−𝑌Δ𝐮V

È dΩ, (2-11) 

where  𝑟T = 𝑥 − 𝑥′, 𝑟V = 𝑦 − 𝑦′, 𝑟 = X𝑟TR + 𝑟VR. By substituting Equation (2-8) into (2-10), one 

can get the displacement in the substrate expressed by the displacement in the cell: 

 𝐮� = ∫ +IJ�
KL"MN

O
(1 − 𝜈̂)𝑟R + 𝜈̂𝑟TR				𝜈̂𝑟T𝑟V
𝜈̂𝑟T𝑟V				(1 − 𝜈̂)𝑟R + 𝜈̂𝑟VR	

W� O
ℎ(𝜎¬8)TT,T + ℎ(𝜎¬8)TV,V
ℎ(𝜎¬8)TV,T + ℎ(𝜎¬8)VV,V

W dΩ. (2-12) 

Equations (2-5) to (2-12) manifest highly nonlinear coupling between the cell and the substrate, 

for which analytical solution is not available. We implement the model into the finite element 

method, which simultaneously yields the focal adhesion distribution, the traction force landscape, 

and the cell body stress profile.  

 

 

Fig. 2.2. Schematics of force generation mediated by focal adhesion formation through integrin 

clustering in a multicellular monolayer. (a) Randomly distributed, freely diffusive integrins (red 

dots) on cell membrane. (b) Focal adhesion formation through integrin clustering upon cell-

substrate interactions. (c) Molecular structure of the focal adhesions. 
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The model can be extended to HCT-8 epithelial cell colonies (a colony consists of hundreds of 

cells packed together through cell-cell adhesion.), as an example of cohesive multicellular 

monolayers. They are seeded onto polyacrylamide (PAA) gels in vitro. They proliferate and 

aggregate to form cohesive multicellular monolayers of different sizes and morphologies (Fig. 2.2). 

Once they sense mechanical cues from substrate through integrin receptors, the myosin motors are 

activated, and the cellular contractility will increase, and in-turn facilitates the integrin clustering 

to promote focal adhesion formation and cytoskeletal assembly. The contractility will then help 

generate the traction force and intercellular tension. Same with the single cell case, the integrin 

receptors on the cell colony membrane are categorized into three distinct phases: a freely diffusive 

phase with a density of 𝜙<,' , a bound phase to the ligands on the substrate with a density of 𝜙<,w, 

and a vacancy phase with density 𝜙<,� for the i-th cell in the colony. Conservation of the total 

number of the receptors on the membrane with respect to the i-th cell leads to the equation: 

∫ (𝜙<,w + 𝜙<,')dΩ<�É
= 𝜙Ê,xΩ<, with 𝜙Ê,x  being a constant for the i-th cell that covers an area of Ω<. 

The summation of the three phases conserves point-wisely on the cell membrane: 𝜙<,' + 𝜙<,w + 

𝜙<,� = 1.The energy associated with receptors is rewritten with respect to the i-th cell: 

𝑊Ë<(𝜙<,'; 𝜙<,w; 𝜙<,�; 𝐮; 𝐮�) = ∫ 𝑛8(𝜇<,'x 𝜙<,' + 𝜇<,wx 𝜙<,w + 𝜇<,�x 𝜙<,�)dΩ<�É
																																			+ ∫ 𝑛8[𝜙<,wln𝜙<,w + 𝜙<,'ln𝜙<,' + 𝜙<,�ln𝜙<,�]dΩ<�É

																																			+ +
R ∫ [𝛽<,w(∇𝜙<,w)R + 𝛽<,'(∇𝜙<,')R + 𝛽<,�(∇𝜙<,�)R]dΩ<�É

																																			+ +
R ∫ 𝑛8𝜙<,w𝑘|Δ𝐮|RdΩ<�É

− ∫ 𝑛8𝜙<,w𝛾dΩ<	�É

. (2-13) 

The free energy functional of the cohesive monolayer takes the following form: 

Π(𝜙w; 𝐮; 𝐮�) = ∑ 𝑊Ë<ª𝜙<,'; 𝜙<,w; 𝜙<,�; Δ𝐮«Í
< + j

R ∫ 𝜎¬8: 𝛆¬8	d� Ω + ∫ Γdℓ¯� + +
R ∫ 𝝈�¬8: 𝛆²¬8d𝑉´ , (2-14) 

where the first term is the summation of the free energies associated with the receptors of all the 

constituent cells, and the next three terms are constructed on the continuum level without 
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differentiating individual cells. The constitutive law for cells and substrate takes the same form 

with the single cell case. Now recall the constraint that the total number of integrins in each cell 

should be conserved, one then would write down the Lagrangian as:  

 𝐿(𝜙w; 𝐮; 𝐮�; 𝜆) = Π(𝜙w; 𝐮; 𝐮�) + ∑ 𝜆<[∫ (𝜙<,w + 𝜙<,')dΩ<�É
− 𝜙<,xΩ<]Í

< , (2-15) 

where 𝜆 = 𝜆< is the Lagrangian multiplier for the i-th cell. Minimizing the free energy functional 

with respect to its independent variables yields the partition of the receptors in each cell: 

 −𝛽	∇R𝜙<,' + ln[𝜙<,' ª1 − 𝜙<,' − 𝜙<,w«⁄ ] + 𝜆<′ = 0 in the i-th cell, (2-16.1) 

 −𝛽	∇R𝜙<,w + ln[𝜙<,w (1 − 𝜙<,' − 𝜙<,w)⁄ ] + Δ𝜇x − +
R
𝛾 + 𝜆<′ = 0 in the i-th cell, (2-16.2) 

where Δ𝜇x = 𝜇<,wx − 𝜇<,'x , 𝜆<′ = 𝜇<,'x − 𝜇<,�x + 𝜆< ,and 	𝛾 = 𝑘(Δ𝐮)R . The boundary conditions are 

assumed for simplicity:  

 ∇𝜙<,' ⋅ 𝐧< = 0 on the boundary of the i-th cell, (2-17.1) 

 ∇𝜙<,w ⋅ 𝐧< = 0 on the boundary of the i-th cell, (2-17.2) 

where 𝐧< is the outer unit normal of the boundary of the i-th cell. We note that the expression of 

the stress equilibrium and the corresponding boundary condition of the cohesive monolayer remain 

unchanged, so do the stress equilibrium and the surface boundary condition of the substrate. 

 

 

2.3. Numerical implementation 

Apply weak form in COMSOL 
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Due to the nonlinearity of the system and the irregular geometry of the cells, we apply finite 

elements method to solve the equations. Firstly, we write Equation (2-5~7) and Equation (2-9~10) 

into the weak form: 

 ∫ 𝛽(∇𝜙') ⋅ (∇𝜙\')� + {ln[𝜙' ª1 − 𝜙' − 𝜙w«⁄ ] + 𝜆′}𝜙\'dΩ − ∫ 𝜙\'∇𝜙' ⋅ 𝐧d𝑙¯� = 0,(2-20.1) 

∫ 𝛽(∇𝜙w) ⋅ (∇𝜙\w)� + {ln[𝜙w ª1 − 𝜙' − 𝜙w«⁄ ] + Δ𝜇x − +
R
𝛾 + 𝜆′}𝜙\wdΩ − ∫ 𝜙\w∇𝜙w ⋅ 𝐧d𝑙¯� = 0, 

 (2-20.2) 

 ∫ [𝛔¬8 ⋅ (∇𝐮̀)ÏVÐ − 𝑌Δ𝐮 ⋅ 𝐮̀/ℎ]dΩ� − ∫ (−Γ𝜅/ℎ𝐮̀ ⋅ 𝐧)dℓ¯� = 0, (2-20.3) 

where “~” means the test functions, and 𝜆′ is obtained by solving ∫ (𝜙w + 𝜙')dΩ� = 𝜙xΩ. We 

implement Equation (2.3) and (2-12) ~ (2-13) into the commercial package COMSOL. For cell 

colonies, Equation (2-20.1) and (2-20.2) should be applied for each cell inside the colonies. A 

ten-node cubic triangle element is used to generate the mesh. For single cells, the mesh size is 

1~2µm. The number of elements is in the order of 103; the total number of the degree of the 

freedom is in the order of 104. For cell colonies, the mesh size is around 2.5~10µm, as the 

radius of the colony increases from 50µm to 200µm. The number of elements is still in the order 

of 103; the total number of the degree of the freedom is in the order of 104. We use default 

settings in the solver to solve the equations along with boundary conditions in a fully coupled 

manner. Parallel computing is used for 20 CPUs. The total solution time takes about 3~4 hours. 

. 

Parameter settings and validations 
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In this section, we will discuss how we choose parameters which make sense in physics for our 

model. Firstly, we assume that the parameters in our model are mainly cell-type dependent, 

meaning the same kind of cell or cell colonies shares roughly the same parameters. Next, since 

some of the parameters are difficult to measure by experiment, we will firstly give the order of 

the magnitude of the parameter. The exact values of the parameters are then determined by 

matching our prediction on the traction force landscape with the experiment results of real cells. 

The parameters used for the single cells and cohesive colonies in Chapter 3 are listed in 

Appendix A.  

 

Firstly, we determine the material parameters and the geometry parameters for the cells. For 

Young’s modulus and Poisson’s ratios of cells, previous studies show that they are usually in the 

range of 10Ó~10ÔPa and 0.4~0.5, respectively [18-20, 40]. Therefore, we set the Young’s 

modulus for NIH 3T3 cells and SaOS-2 cells to be about 5kPa. While for HCT-8 colonies, the 

Young’s modulus is around 10kPa. The thicknesses of the cell sheet and the HCT-8 are directly 

measured from the experiment. For NIH 3T3 cells and SaOS-2 cells, it is about 3~4µm, while 

for HCT-8 colony, the average thickness is about 12.5µm. 

 

Next, we determine the parameters associated with the receptors. The cell membrane is mainly 

made by lipids, where the integrin receptors only take a small portion of it. The portion of the 

freely diffusive integrins and bound ones should not exceed 10e+, therefore we have 𝜙x ≤ 0.1. 

As a result of it, the portion of the vacancy is about 10+ times of the integrins. And in the 

reference configuration where there is zero displacement, the partition of different phases 
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follows Õu
Õq
~𝑒e×Øt/ZÙ·. By noticing that  Õu

Õq
~10eR in the reference configuration, the values of 

Δ𝜇x should be about a few 𝑘§𝑇s [23]. We then notice that the stretch |Δ𝐮| in the ligand-receptor 

bond for small deformation model is about a few microns and the stretching energy in it is 

around 10x~10+𝑘§𝑇 [41]. Therefore, the spring constant 𝑘 can be roughly determined. The 

lattice number 𝑛8 is around 10Ú~10ÛµmeR so that the effective coupling strength Y is in the 

order of magnitude of 10ÜN/mÓ. The coefficient of the gradient energy 𝛽 is determined to make 

the interfaces of different phases to be diffusive. The line tensions for single cells are determined 

by matching the predicted traction force with the experimental results with respect to cells in 

different morphologies, and we note that based on previous studies, the line tensions for single 

cells should be in the order of 10eÜ~10eÞJ/m [42]. The line tension for HCT-8 colonies are 

determined by matching the predicted traction force with the experimental results with respect to 

patterned circular colonies of different sizes based on previous work.  

 

All the above-mentioned parameters that cannot be measured directly from experiments or be 

found from previous studies are validated by matching the predictions with the experiments for 

cells and colonies as many as possible. For patterned NIH 3T3 cells, we simulated around 15 

cells in total; for irregular-shaped SaOS-2 cells, we simulated around 10 cells in total; for 

patterned and non-patterned HCT-8 colonies, we simulated around 50 in total. Part of the 

simulation results will be presented in the next chapter. We address here: due to the limit in the 

number of the experimental samples, this is the best we can do to validate the correctness of our 

parameters currently. In the future work, we will apply this model to predict the traction forces 

for about 10R cells and colonies. These results will be the samples of the new machine learning 
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approach to predict traction forces of cells and cell colonies. The validation of the current 

parameter settings also will be fully conducted. 

 

 

2.4. Conclusion and summary 

A thermodynamic model considering both the force equilibrium in cells and substrate and the 

chemical equilibrium in integrin partition has been developed in this chapter. The free energy 

functional is formulated with respect to the displacement in the cell and the substrate, and the 

density of free and bound integrins. By applying the variational theorem, we obtain the governing 

equations and boundary conditions. To solve the boundary value problem, we rewrite the 

governing equations and boundary conditions in the weak form and implement them in COMSOL. 

The parameters should be calibrated by matching the predicted results with experiment 

measurements. 
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Chapter 3  

Applications of the thermodynamic model to single cells and cohesive 

monolayers 

3.1. Introduction 

In this chapter, we apply our model developed in Chapter 2 to predict the force generation and 

transmission, and the focal adhesion formation for single cells and cohesive colonies. We first 

present the substrate stiffness dependent active contractility for NIH 3T3 cells and HCT-8 colonies. 

We then examine the geometry regulated traction force landscape and the focal adhesion profile 

for single SaOS-2 cells, and the geometry regulated cellular stress landscape for cells patterned on 

glass. Next, we predict the reciprocal cell-matrix coupling, the colony size and gel stiffness 

dependent traction force maps in HCT-8 colonies. At last, the traction force mediated metastatic-

like dispersion are presented to show the wide application of our model. 
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3.2. Intracellular contractility depends on substrate stiffness 

 

Fig. 3.1. Average substrate traction stress, as measured experimentally (black squares) and 

predicted active stress by data matching (magenta triangles), versus substrate shear elastic 

modulus. Error bars represent standard error of the mean. Experimental data are from [21]. The 

model parameters are listed in Table. A.1 in Appendix A. 
	

A contractile cell can sense the substrate stiffness and respond by modulating its contractility and 

cytoskeletal remodeling [43]. Here, a substrate-stiffness-dependent parameter, called the active 

stress 𝜎µ, is adopted to measure the cellular contractility. To determine how the value of active 

stress varies with respect to the substrate stiffness, we apply our model to simulate the traction 

force landscapes of the patterned circular NIH 3T3 cells from previous studies [21]. The model 

parameters for NIH 3T3 cells can be found in Table A.1 in Appendix A. By matching the simulated 

average traction forces with the experiment measurements, we can determine the active stress 𝜎µ 

corresponding to the hydrogel stiffness. Our data matching shows that the active stress firstly 

increases with the hydrogel shear elastic modulus from 2.8kPa to 8.6kPa, manifesting a positive 

feedback in mechanical sensing and force generation in contractile cells. The active stress then 
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saturates when the hydrogel shear elastic modulus reaches 16kPa. After the saturation point, the 

active stress slightly drops for cells on gels with the 30kPa shear modulus. This drop suggests that 

once the substrate stiffness reaches a threshold, the active stress should also saturate around the 

maximum value.  

 

 

Fig. 3.2. Substrate stiffness mediates cell contractility. Active stress versus Young’s modulus of 

substrate 𝐸"  obtained by experimental-numerical matching of the traction forces. The model 

parameters are listed in Table. A.2 in Appendix A. 

 

The substrate-stiffness-dependent contractility also holds for cohesive monolayers. The HCT-8 

monolayers of roughly the same radius R ~150µm are studied on hydrogels with different stiffness. 

The maps of traction force of the colonies are firstly measured by TFM, then the average traction 

force within a 50µm boundary layer is recorded. We also predict the traction force profile by the 

thermodynamic model with assumed active stress and calculate the average traction force within 

the same boundary layer. The model parameters for HCT-8 colonies can be found in Table A.2 in 
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Appendix A. The active stress for different gel stiffness is then determined by matching the 

numerical results with the experimental measurements. The matching results show that the active 

stress monotonically increases with the gel stiffness and nearly stops increasing when the substrate 

Young’s modulus reaches 30kPa [44, 45]. The saturation in the active stress manifests the limit of 

cell internal machinery in driving crosslinking actomyosin motors. 

 

 

3.3. Geometry regulated traction force landscape and focal adhesion 

distribution for single cells 

In this section, we simulate the traction force landscape of the SaOS-2 cells with different 

morphologies seeded on hydrogels. The model parameters for SaOS-2 cells can be found in Table. 

A.1 in Appendix A. Figure 3.3 shows the predicted extracellular tractions for cells with different 

geometries, which are in good comparison with the experimental data. By looking carefully into 

Figure 3.3, one can see that the boundary curvature totally governs the traction force distribution 

for arbitrary shaped cell. At the convex boundaries with positive curvatures, the line tension 

generates an effective inward pressure on the cell, which needs extra traction forces to counter-

balance. Therefore, traction forces concentrate at convex boundaries. While at the concave 

boundaries with negative curvatures, the line tension generates an effective outward pulling force 

on the cell, which negates the cellular contractility. Therefore, traction forces vanish at concave 

boundaries.  
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Fig. 3.3. Traction force is regulated by the cellular geometry. Column A: Phase contrast images of 

SaOS-2 cells on different gel Young’s modulus (from top to bottom: 4kPa, 10kPa and 20kPa, 

respectively; scale bar: 30µm).  Column B1~B2: The traction force profiles of the cells obtained 

from experiments and modeling, respectively. The model parameters are listed in Table. A.1 in 

Appendix A. 

 
We next stain the actin filaments and focal adhesion kinase (FAK) for a single SaOS-2 cell, 

shown in Figure 3.4. One can see that the stress fibers (Fig.3.4 (a)) connect the focal adhesion 

points in Fig. 3.4 (b). In Fig. 3.4 (c), we plot the predicted first principal stress by color contour 

and its directions by arrows. The directions of the first principal stress highly align with the 

stress fibers. In Fig. 3.4. (b), same as traction forces, the focal adhesions concentrate at the 

convex boundaries and vanish at the concave boundaries, which is also predicted by our 

simulation in Fig. 3.4 (d). 
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Fig. 3.4. Focal adhesion (represented as the stained FAK) and stress fiber distribution. (a) 

Stained stress fiber and FAK. (b) Stained FAK. (c) Predicted first principal stress by color 

contour and its direction by arrow. Red means large and blue means small. Stress fiber directions 

align with the maximum principle stress, marked by the semi-transparent circles. (d) Predicted 

focal adhesion distribution. Red means the higher density and blue means lower density. 

 

 

3.4. Geometry regulated nanoparticle uptake of patterned cells on glass 

Cellular uptake of nanoparticles (NPs) has been an extensively studied topic over the last several 

decades because of its application in developing the next-generation medicine that allows early-

stage cancer detection, and simultaneous diagnosis and treatment of pathological conditions [46, 

47]. Enormous efforts have been devoted into this area to improve the targeting efficiency and to 

minimize the toxicity, yet it still remains an imperative challenge to develop  NP-uptake 
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technology with such requirements .It is shown recently that the effect of the surface mechanics 

of cells, such as membrane tensions, should not be neglected in cellular uptake of NPs [48-51]. 

Recently, our group calculate the tensions inside the cohesive monolayers on deformable gels 

with different stiffness by the Monolayer Stress Microscopy (MSM) and then correlate the 

cellular tensions with the number of NP-uptake per unit area [52]. It shows that the uptake of 

NPs decreases as the cellular tension increases. For cells adhering on rigid substrate, such as 

glass and bones, the Traction Force Microscopy (TFM) becomes useless. Our model then 

becomes the ideal tool to predict the intracellular tension and build a correlation between the 

cellular tension and the NP-uptake. 

 

In this section, NIH 3T3 cells are patterned with the same area (~2500	µmR) but with different 

aspect ratios on glass. NPs are delivered into the cells and the numbers are calculated with 

respect to each cell. As shown in Figure 3.5, both the experiment and simulation show that the 

focal adhesions aggregate at the corners of the cells. We also get the cellular stress and traction 

force profile, presented in Figure 3.6. From the simulation, one can see that the magnitude of the 

traction forces remains almost unchanged while the aspect ratio is changing. However, despite 

the unchanged traction forces, the internal stress of the cells increases rapidly as the aspect ratio 

increases from 1.5 to 8. This is a good example that shows the influence of cellular geometry on 

cell internal stress. We then calculate the average internal stress for different aspect ratios and the 

results are listed in Table 2.1 and 2.2. We find that the average internal stress in the central 

region of the cells first decreases as the aspect ratio goes from 1 to 1.5, and then increases as the 

aspect ratio goes from 1.5 to 8. A strong correlation is then revealed between the internal stress 

and the NP-uptake number. As the stress first goes down, the NP-uptake number increases and 
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reaches the maximum when the aspect ratio equals to 1.5. Then the NP-uptake number decreases 

as the aspect ratio continues to increase. We note here, the cell contractility reaches its maximum 

on rigid substrate, therefore, the shape of the cell, instead of substrate stiffness, becomes the key 

factor that determine the value of cellular tension. 

 

 

Fig. 3.5. Top row: focal adhesion distribution versus different aspect ratios predicted by our 

thermodynamic model; bottom row: focal adhesion distribution versus different aspect ratios by 

experiment. Model parameters are listed in Table. A.1 in Appendix A. 
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Fig. 3.6. Predictions made by the thermodynamic model. Top row: internal stress profile versus 

different aspect ratios; middle row: traction force landscape versus different aspect ratios; bottom 

row: focal adhesion distribution versus different aspect ratios. 

 

Average stress (Pa) Aspect Ratio 

715.95 1 

724.36 1.5 

826.81 2 

926.29 4 

1462.9 8 

 

Tab. 2.1. The average internal stress in the whole cell vs. aspect ratio. 
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Average stress (Pa) Aspect Ratio 

746.90 1 

726.09 1.5 

816.25 2 

972.86 4 

1533.9 8 

 

Tab. 2.2. The average internal stress in the central region of the cell (occupies the 1/4 of the total 

area) vs. aspect ratio. 

 

 

3.5. Active, nonlinear cell-matrix coupling of HCT-8 colonies 

Like a thin film shrinking in-plane under thermal cooling, the displacement field led by the 

intracellular contractility in the HCT-8 cell monolayer monotonically decreases in magnitude from 

the periphery to the center, as shown in Figure 3.7. The intracellular contraction generates traction 

forces, which are transmitted onto the substrate by focal adhesions. Since the traction forces are 
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Fig. 3.7. The decay of the magnitude of displacement from the periphery to the centroid of HCT-

8 colony of 186µm in radius, predicted by the models, normalized by the maximum value. 

 

proportional to the displacement, they share the same spatial profile as the displacement field has 

(|𝐓| ~|Δ𝐮|): to be high at the periphery and low at the center of the monolayer. Since |𝐅| is also 

proportional to |Δ𝐮| , the tensions in the ligand-receptor pairs at the periphery of the monolayer 

are relatively higher than those in the centroid. Such high tensions promote integrin clustering 

(increasing  𝜙w) and stabilize focal adhesion points, as indicated by Equation (2-8). The large 𝜙w 

further leads to the large traction forces at the periphery as the traction forces are proportional to 

𝜙w. The traction forces are then transmitted back to the monolayer through the ligand-receptor 

pairs, establishing the cellular stress. As shown in Figure 3.8 (a) and (b), the focal adhesions and 

traction forces of the HCT-8 monolayers co-localize within the periphery whose width is about 

50µm due to such interactive coupling. The results are obtained by both the immunofluorescence 

of the focal adhesion kinase (FAK) and traction force microscopy (TFM), respectively. The 

width that spans roughly 5 HCT-8 cells, which is called the boundary layer. 
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Fig. 3.8. Nonlinear reciprocal cell-matrix coupling. Left: (a) Immunofluorescence staining shows 

localization of focal adhesion kinase (FAK) at the boundary layer of a monolayer. (b) The traction 

force map measured by TFM. (c)-(d) The traction force maps predicted by the previous uniform 

coupling model (c, constant Y) and the current nonlinear coupling model (d, nonlinear Y) model, 

subtracted by the map from TFM in (b). The darker the pixel, the better the agreement of the 

traction force. (e) The decay of the radial component of traction force from the periphery to the 

centroid of HCT-8 colony of 186 µm in radius, shown in (b), predicted by the models and TFM. 

All the results are normalized by the maximum average radial traction forces. 

 

The coupling strength between the monolayer and the substrate, characterized by Y, is also highly 

nonlinear (Figure 3.9), which arises from the nonlinear dependence of 𝜙w on the stretch |Δ𝐮|. This 

conclusion contrasts with the assumption of uniform coupling (constant Y in space) in previous 

models [18-21]. Our theoretical study below on circular shaped monolayer with radius R shows 

that the traction force landscape is governed by the characteristics of monolayer-substrate coupling. 

For uniform coupling, the radial displacement of the circular monolayer decays with a modified 

Bessel function, 𝑢M~𝐼+(𝑟/𝑅), so does the traction force [18]. In contrast, for the nonlinear coupling 

derived here, the decay of the radial displacement can be approximated by the derivative of the 
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Airy function of the second kind, 𝑢M~(â
M
)𝐴R¾ (𝑟/𝑅) , and the traction force by 𝐴R¾ (𝑟/𝑅) . This 

conclusion is derived by assuming focal adhesions are only formed within the boundary layer of a 

characteristic width Δ and the focal adhesion density in the boundary layer is linearly increasing 

in the radial direction. The mechanical equilibrium in the boundary layer therefore requires: 

  𝑟R ¯
¹6ä
¯M¹

+ 𝑟 ¯6ä
¯M
− [1 + åæZÕÉ,tMN(+eç¹)

×Lj
]𝑢M = 0. (3-14) 

By solving the equilibrium equation, one finds that the displacement decays by the derivative of 

Airy function of the 2nd kind: 

  𝑢&~
µ¹è [(

éæêëÉ,t
ìíî )ï/NM]

M
. (3-15) 

The traction force is then approximated as 

  𝑇~ åæZÕÉ,t
×

𝐴R¾ [(
åæZÕÉ,t
Lj×

)+/Ó𝑟]. (3-16) 

This decay is faster than that under uniform coupling, because of the stronger localization of the 

traction forces and focal adhesions inside the boundary layer. The traction force maps of an 

irregularly shape monolayer, predicted by the uniform coupling model and the current nonlinear 

model are presented in Figure 3.8. The difference between the results predicted by the models is 

clearly seen in Figure 3.8 (e). All the data points are measures of the average over the small region 

(𝑟 − 𝛿, 𝑟 + 𝛿), where r is the radial distance from the current location to the colony centroid, and 

𝛿 ≪ 𝑅. The current nonlinear model (solid black line) predicts a faster decay of the traction force 

from the periphery to the centroid of the monolayer than the uniform coupling model (dashed green 

line), which is consistent with the theoretical analysis and has a better agreement with the 

experimental results from TFM (open circles).  
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Fig. 3.9. The distribution of coupling strength from the periphery to the centroid of HCT-8 

colony of 186µm in radius, predicted by the models, normalized by the maximum value. 

 

 

3.6. Intracellular traction and intercellular tension are both gel stiffness and 

colony size dependent 

In this section, we apply our model to simulate the traction force profiles of the monolayers with 

different sizes and on substrates of different stiffness, as shown in Figure. 3.10 (a1) and (a2) for 

the phase contrast images. The traction force map of the colonies is measured by TFM. The 

comparison between TFM and our simulations shows that our model captures the overall traction 

map remarkably well, as shown in Figure. 3.10, (c1) and (c2). Owing to the active cell-substrate 

coupling described above, traction forces are highly localized within the boundary layer, same as 

the localization of the focal adhesions. Arising from the stiffness-dependent cell contractility, the 

model predicts that the traction force is gel stiffness dependent (Figure 3.10, (c1)). The predicted 

average traction forces over the boundary layers of ~50 µm in width are 61.7Pa, 105.3Pa, and 
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138.6Pa for the colonies on 4.5kPa, 20.7kPa, and 47.1kPa gels, respectively. At the periphery of 

the colonies, the traction forces concentrate at the location with high curvature while vanish at the 

location where there is a negative curvature. This is because of the existence of the line tension 

acting on the boundaries of the colonies. Same as the role it plays for single cells, the line tension 

induces an effective inward pressure that requires more traction forces to counterbalance where 

the boundary is convex with positive curvatures. This leads to another conclusion that the traction 

force is also colony size dependent since colonies with different sizes have different overall 

curvatures. And indeed, the model predicts that the traction force is size dependent (Figure 3.10, 

(c2)). Specifically, the average traction forces within the 50µm thick boundary layer are 117.2Pa, 

109.8Pa, and 105.3Pa for 54µm, 107µm 186µm colonies, respectively.  

 

The cellular stress obtained from MSM and the simulation is plotted in Figure 3.10, (d1) and (d2). 

Opposite to the traction force profile, the cellular stress is minimal at the periphery of the cell sheet, 

ramps up over the boundary layer, and finally reaches a uniform tension. This opposite correlation 

arises from the way that how cellular stress is transmitted. At the boundary layer, the cell 

contraction is transmitted through the focal adhesions, where the cellular stress is mostly balanced 

with the traction forces. As the traction forces decay from its maximal to zero, the cellular tension 

increases from its minimal to its maximal. Hence at the interior of the cell sheet, there is no 

extracellular traction generated, cellular stress is mostly transmitted to the neighboring cells 

through cadherin-based cell-cell junctions. As a result of it, the stress/tension at the interior tends 

to be uniform. In conclusion, cellular stress scales with the gel stiffness (Figure 3.10, (d1) and (e1)) 
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and the colony size (Figure. 3.10, (d2) and (e2)) in the similar way with the traction force at the 

boundary layer of the colonies, which is confirmed by both our simulation results and MSM results.  

 

Fig. 3.10. Traction force is both substrate stiffness (Left panel) and colony size (Right panel) 

dependent. (a1-a2): Phase contrast images of HCT-8 cell colonies on different gel stiffness 

(a1,with gel stiffness of 4.5kPa, 20.7kPa and 47.1kPa, respectively; scale bar: 90µm) and with 

different monolayer sizes (a2, scale bar: 45µm) on 20.7kPa gels. (b-c) The traction force profiles 

of the cell colonies obtained by TFM (b1-b2) and modeling (c1-c2), respectively. (d-e) The 

intercellular tension maps of the cell colonies obtained by MSM (d1-d2) and modeling (e1-e2). 

The model parameters are listed in Table. A.2 in Appendix. 
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3.7. Cellular-force threshold exists at pre-dispersion stage for the dispersion 

behavior 

Cancer metastasis is an enormously complicated process which is triggered by vascularization of 

a primary tumor. Cancer cells detach from the primary tumor and enter the blood vessels. They 

travel though blood vessels, extravasate from blood vessels at somewhere, and proliferate into a 

secondary tumor. Tremendous efforts have been carried out to identify possible biochemical 

markers for the onset of metastasis. Recent studies have shown accumulative evidence that the 

onset of cancer metastasis involves with the dynamic generation and transmission of 

intracellular, intercellular, and extracellular forces [53-57]. Recently, our group have reported 

that the cellular force evolution correlates with the metastatic-like dispersion in vitro [58]. The 

dispersion is both gel stiffness and colony size dependent: it occurs for cell colonies on stiff gels 

rather than on soft ones; smaller colonies disperse earlier than larger ones. From both the 

experiments and simulations, we now know that the traction force landscape is colony size and 

gel stiffness dependent (shown in Figure 3.11), indicating a positive correlation between the 

traction force landscape and the dispersion behavior.  

 

Applying the biophysical model in the previous chapter, we generate a traction force phase 

diagram in the parametric space of gel stiffness (2 to 50kPa) and colony size (50 to 250µm 

radius) from which we identify a traction force threshold criterion that separates the cohesive and 

dispersive phenotypes observed in experiments, shown in Figure 3.12.  The symbols “Δ” and 

“◯” represent dispersed and non-dispersed colonies, respectively, based on the experimental 

observations of about 50 colony samples. The contour map stands for the average traction forces 

in the boundary layer whose width is 50µm. From the overlapping simulation results and 
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experimental data, one can identify a contour that roughly separates the “Δ” and “◯”, which is 

represented by the dash line. The force threshold is 𝑇& ≈ 125Pa: a threshold signifies the onset 

of the metastatic-like dispersion a of HCT-8 cell colonies. Once the average traction forces in the 

boundary layer reaches 𝑇&, the dispersion of the cell colonies initiates, otherwise the cell colonies 

remain cohesive. The phase diagram further suggests that at given gel stiffness, smaller colonies 

have a higher metastatic potential; while at a given colony radius, increasing the gel stiffness 

would drive the metastatic phenotypic change. 
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Fig. 3.11. Traction force is both substrate stiffness (Left panel) and colony size (Right panel) 

dependent. (a-b): Phase contrast images of HCT-8 cell colonies on different gel stiffness (a1,with 

gel stiffness of 4.5kPa, 20.7kPa and 47.1kPa, respectively; scale bar: 100µm) and with different 

monolayer sizes (a2, scale bar: 100µm) on 20.7kPa gels. (c-f) The traction force profiles of the 

cell colonies obtained by TFM (c-d) and modeling (e-f), respectively. (g-j) The intercellular 

tension maps of the cell colonies obtained by MSM (g-h) and modeling (i-j). (k) Spatial 

distribution of traction force (solid line) and intercellular tension (dash line), normalized by their 

maxima, respectively. (l) The average traction force at the boundary layer (the summation of 

traction force in the region within 50 mm from colony boundary divided by the area of the 

region). 

 

 

Fig. 3.12. Phase diagram of average traction at the boundary layer in the stiffness-size plane 

computed by the biophysical model, overlapped with the dispersion behavior of many cell 

colonies observed in the experiments. The dashed lines represent constant traction contours in 

the parametric space. A phase boundary of constant traction 125Pa, separating the dispersive and 

cohesive cell colonies, is identified, representing a force-threshold criterion for the malignant 

phenotypic change. 
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3.8. Conclusion and summary 

In this chapter, we apply our thermodynamic model to predict the substrate stiffness dependent 

active contractility for NIH 3T3 cells and HCT-8 colonies. We conclude that cell active stress 

increases as the substrate stiffness increases, and then reaches a maximum value as the substrate 

gets stiff enough. We then predict the geometry regulated traction force landscape and focal 

adhesion profile for single SaOS-2 cells, validated by experiments. The traction forces and the 

focal adhesions co-localize at the convex boundaries and vanish at the concave boundaries. Next, 

we present the geometry regulated cellular tension landscape for cells patterned on glass. In this 

example, we show the advantage of our model compared with TFM. Finally, the reciprocal cell-

matrix coupling, the colony size effect, and the substrate stiffness effect of HCT-8 cell colonies 

are well captured by the model. A traction threshold is identified in the metastatic-like dispersion 

of HCT-8 cell colonies. 
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Chapter 4  

Phase-field model for the prediction of the distribution of myosin motors and 

the morphology of stress fibers 

4.1. Introduction 

In the previous chapters, we developed a microstructure-based thermodynamic model that 

successfully captures the positive feedback mechanical network in traction force generation and 

transmission in single cells and multicellular monolayers. However, this model still has some 

limitations. Firstly, the cell monolayer is assumed to be a piece of thin, homogeneous, and 

isotropic elastic material. Yet a cell itself is a composite structure made by different materials. 

For instance, most matters inside a cell is consisted of liquid, which is highly deformable. The 

actin stress fiber, the most important part to sustain cellular stress, is much stiffer and usually has 

a Young’s modulus in the order of 106Pa [59, 60]. Thus, it is not difficult to infer that the cellular 

modulus is relatively higher at the place where there are more stress fibers. Atomic force 

microscopy (AFM) has shown that the stiffness of the cell varies as the tested location changes, 

which may arise from the heterogenous distribution of stress fibers [61-66]. This draws the 

second limitation of the thermodynamic model: it totally neglects the abundant details of 

microstructure evolution inside the cell. For example, the binding and unbinding of myosin 

motors onto stress fibers at different locations inside a cell define the active contractility profile 

of that cell [67]. A nonuniform active contractility will lead to a different traction force landscape 

comparing with the uniform active contractility assumption. Thirdly, our thermodynamic model 

can only predict the statics of cells, while it cannot tell us how the cells reach it. Lacking kinetic 

details makes our model unable to predict evolutionary processes. A microstructure-based kinetic 
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model needs to be developed to look deeper into the microstructure evolution inside a cell. 

 

In this chapter, we develop a kinetic model to incorporate the elastic and interfacial effect, as 

well as the kinetics of myosin motors. Myosins, a family of motor proteins, contribute to the 

generation of active contractility inside a cell and other motility processes by consuming ATP 

[24]. The myosin motors are originally freely diffusive molecules inside a cell. Once a 

mechanosensitive signaling pathway, such as the Rho-ROCK or the MLCK pathway, is open, the 

myosin motors will respond to it and bind themselves onto the stress fibers and contract them, 

developing intracellular tension inside the fibers and helping them assemble into cytoskeletons 

[68, 69]. The cytoskeletons are connected with focal adhesion points in order to transmit the 

intracellular tensions to substrate. The evolution of myosin motors can be characterized by the 

evolution of a material phase, which couples with the traction force generation and transmission, 

and the elasticity of cell monolayer. Therefore, a phase-field model is proposed in this chapter. 

 

Before moving on to the next section, we would like to give a brief introduction on the phase-

field model (PFM). The PFM is a powerful tool to simulate the coevolution of the 

microstructures at mesoscale. The microstructures in PFM are defined by a series of continuous 

field variables, called the order parameters. These parameters usually range from 0 to 1 or -1 to 

1. The evolution of these variables is depicted by a free energy functional. The energy functional 

with only one phase variable has the simplest form as shown below [70]: 

𝐹 = ∫ [ZR (∇c)
R + 𝐺(c) + 𝑓(c)]dΩ� ,    (4-1) 

where c is the phase variable. The first term in the integral is the gradient energy, where the 

parameter k defines the thickness of the phase boundary. Namely, a small value of k gives a sharp 
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phase boundary, while a large k gives a diffusive phase boundary. The second term is the local 

free-energy density function, usually represented by a double-wall potential or other polynomial. 

The last term contains the energy from all kinds of long-range and short-range interactions, such 

as chemical interactions, elastic interactions, and electrical interactions. The phase variable c can 

be categorized into two kinds: conserved variables and non-conserved variables. The conserved 

variables should satisfy the local conservation condition, whose evolution follows Cahn-Hilliard 

equation. The evolution of the non-conserved variable, on the other hand, follows Allen-Cahn 

equation.  

 

 

4.2. Equations 

We model the cell as a two-dimensional, active, thin elastic layer with a thickness h, occupying an 

area A. The cell actively contracts, enabled by myosin motors pulling the actin filaments. Linking 

the cell and the substrate are the focal adhesion complexes that sustain and transmit traction forces 

𝐓. The free energy of the cell and the focal adhesion is written as: 

  𝐹(𝑐; 𝜌; 𝐮) = ∫ [ZR (∇𝑐)
R + 𝑓&j& (𝑐; 𝐮) + 𝑓¬8(𝑐; 𝐮) + 𝑓&j

� (𝜌; 𝐮)]dAµ + ∫ Γdℓ¯µ ， (4-2)  

where u is the displacement vector; c is the order parameter that characterizes the density of myosin 

motors binding to stress fibers, ranging from 0 to 1; 𝜌 is the focal adhesion concentration;; Γ is the 

line tension acting on the boundary of the cell. The first term in the first integral in Equation (4-2) 

is the gradient energy; the second term is the chemical energy density of the myosin motors; the 

third term is the elastic strain energy density in the cell sheet; the fourth term is the chemical energy 

of the focal adhesions; and the second integral stands for the line energy. Here for simplicity, we 

assume the displacement in the substrate is so small by comparing with that in the cell so the strain 

energy it carries can be neglected. We model the myosin as a material phase which is conserved 
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and can diffuse freely in the cell domain, and use 𝑓&j& (c; 𝐮) to characterize its energy landscape: 

 𝑓&j& (c; 𝐮) = Ω𝑐(1 − 𝑐) + 𝑛𝑅𝑇[𝑐ln𝑐 + (1 − 𝑐)ln(1 − 𝑐)] − 𝛼(𝑐 − 𝑐x)𝜎+. (4-3) 

The first term in Equation (4-3) is the double-well energy function [71], whose profile is controlled 

by the parameter Ω . The second term stands for the mixture entropy of the myosin-motor-rich 

phase and the myosin-motor-free phase, where T is the room temperature; 𝑅  is the ideal gas 

constant, n is a relative density of c. The last term is the binding energy term, same as the adhesion 

energy addressed in focal adhesion formations. Upon a cell attaching to a substrate, a few motor 

proteins “actively” generate contractile strain inside the cell. Once the cell finds that in some 

regions tension can be established in certain directions, more motor proteins will flow to those 

regions because the binding energy between the motor proteins and the actin fibers are lower when 

the fibers are in tension and higher when they are in compression. Here, we hypothesize that the 

myosin motors are mainly attracted by the first principal stress 𝜎+. By using 𝜎+, we note that the 

motor proteins mainly feel the tension in the direction of 𝜎+, in which actin fibers align [72]. The 

parameter 𝑐x  is the reference myosin density, and 𝛼  characterizes the strength of the binding 

between motor proteins and stress fibers. The cell is modeled as a thin linear elastic sheet. The 

elastic strain energy density 𝑓¬8(𝑐, 𝒖) is written as:  

𝑓¬8(𝑐; 𝐮) =
+
R
ℎσ<D¬8(𝑐; 𝐮)𝜀<D¬8(𝑐; 𝐮),    (4-4) 

where h is the cell thickness. The elastic stain tensor 𝜀Z8(𝑐; 𝐮)is: 

ε<D¬8(𝑐; 𝐮) = ε<Dùúù(𝐮) − ε<D& (𝑐; 𝐮) =
+
R
ª𝑢<,D + 𝑢D,<« + (𝜀x + 𝛽𝑐R)𝛿<D,  (4-5) 

where the term in the first term is the total strain, while the second term is the active contractility 

of the cell, resembling a thermal cooling. The small parameter 𝜀x is used as a perturbation and 𝛽 

is a parameter meaning the active strain increased per myosin density squared. The higher-order 

term on c shows that the active contractility is sensitive to myosin motors, that is, only a small 

amount of motors can induce a certain amount of contractility. Based on the previous conclusions, 
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the active contractility is substrate stiffness dependent, hence 𝜀x and 𝛽 are parameters varying with 

the substrate stiffness. By applying Hooke’s law for plane stress, the stress tensor	σ<D¬8(𝑐; 𝐮) is 

written as: 

σ<D¬8(𝑐; 𝐮) =
L(&)
+eJ¹

[𝜈	𝛿<DεZZ¬8 +
(+eJ)
R

(𝜀<D¬8 + 𝜀D<¬8)],   (4-6) 

where Young’s modulus E is assumed linear dependent on c: 𝐸 = 𝐸x + 𝑐𝑘& ,with 𝐸x and 𝑘& being 

constant. As activated myosin motors are bound with stress fibers, the higher density of the motors 

means more stress fibers assembly, making the stiffness larger. The chemical energy of focal 

adhesion 𝑓&j
� (𝜌; 𝐮) equals to: 

𝑓&j
� (𝜌; 𝐮) = 𝑛8(𝜌𝜇x + 𝜌ln𝜌 +

+
R
𝜌𝜁|𝒖|R − 𝜌𝛾),   (4-7) 

where 𝑛8  is the lattice number on cell membrane. The first term is the energy in reference 

configuration, where  𝜇x is the reference chemical potential. The second term is entropy derived 

by the ideal solution of gases. The third term is the elastic stretch energy in the ligand-receptor 

bond. The ligand-receptor bond is modeled as linear springs as what we did in previous chapters. 

The constant 𝜁 is the spring constant; the approximation ∆𝐮 ≈ 𝐮 is used here. Since integrins are 

force-sensitive and force-responsive molecules, they can feel the extracellular tension and 

aggregate in response to the existent of it. The last term adhesion energy takes the form 𝛾~𝜁|𝐮|R. 

We note that the energy of focal adhesion is calculated in the unit of 𝑘§𝑇, like what we did in 

Chapter 2. Since we want to focus on the phase evolution on myosin motors and reduce total the 

computing cost, the evolution of the focal adhesion is not modeled by phase-field method. 

 

The chemical potentials with respect to the myosin and integrin are derived from the partial 

variation of the free energy functional: 

𝜇& = −𝑘∇R𝑐 + Ω(1 − 2𝑐) + 𝑛𝑅𝑇ln &
+e&

+
¯L(&)

¯&ü

R(+eJ¹)
ℎ ý𝜈	𝛿<DεZZ¬8 +

(+eJ)
R

ª𝜀<D¬8 + 𝜀D<¬8«þ 𝜀Z8¬8(𝑐; 𝐮) + 
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     Rsêê&�
+IJ

− 𝛼𝜎+,      (4-8.1) 

𝜇� = 𝑛8(𝜇x + ln𝜌 +
+
R
𝜁|𝒖|R − 𝛾).    (4-8.2) 

As a molecular whose quantity conserves locally, Cahn-Hilliard equation is adopted to characterize 

the kinetics of myosin motor evolution:  

  ¯&
¯ù
= ∇ ⋅ 𝑀∇𝜇&, (4-9) 

where M is the mobility parameter. The boundary condition is assumed to be: 

  ∇𝑐 ⋅ 𝐧 = 0, (4-10.1) 

  ∇𝜇& ⋅ 𝐧 = 0,  (4-10.2) 

where n is the outer unit normal of the cell boundary. Since the focal adhesions can be assembled 

and disassembled, their quantity does not conserve. The kinetics is simply described by Allen-

Cahn equation: 

  ¯�
¯ù
= −𝐿𝜇�, (4-11) 

where L is the mobility parameter. The stress equilibrium equation and its boundary condition are 

derived by minimization the free energy with respect to the displacement u: 

  ∇ ⋅ 𝛔 − 𝜁𝜌𝐮/ℎ = 0 in 𝐴, (4-12) 

  𝛔 ⋅ 𝐧 = − ÂÃ
j
𝐧 on 𝜕𝐴, (4-13) 

where 𝜅 is the curvature n and is the outer unit normal of the cell boundary, respectively. The initial 

conditions for the density of myosin motors and focal adhesions are that they are both uniformly 

distributed within the cell with a value of 𝑐x and 𝜌x, respectively. 

 

 

4.3. Numerical implementation 

Apply weak form in COMSOL 
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Due to the nonlinearity of the system, we apply finite elements method to solve the equations. 

Firstly, we write Equation (4-9) to (4-13) into the weak form: 

 ∫ {𝑘∇𝑐 ⋅ ∇𝑐̃µ + [("'#í(&)
"&

+ "'$æ(&;𝐮)
"&

) − 𝜇&]𝑐̃}dA = 0, (4-14.1) 

 ∫ {𝑘∇𝜇& ⋅ ∇𝜇Y&µ + ¯&
¯ù
𝜇Y&}dA = 0,  (4-14.2) 

 ∫ (𝜇� +µ
¯�
¯ù
)𝜇Y�dA = 0,  (4-14.3) 

 ∫ [𝛔 ⋅ (∇𝐮̀)ÏVÐ + 𝑌𝐮 ⋅ 𝐮̀/ℎ]dAµ − ∫ (−Γ𝜅/ℎ𝐮̀ ⋅ 𝐧)dℓ¯µ = 0, (4-14.4) 

where “~” means test functions. We implement the weak forms into the commercial package 

COMSOL. A ten-node cubic triangle element is used to generate the mesh, which fulfills the 

accuracy of the problem. For single cells, the mesh size is 1~2µm. The number of elements is in 

the order of 103; the total number of the degree of the freedom is in the order of 104. For cell 

colonies, the mesh size is around 2.5~7.5µm, as the radius of the colony increases from 50µm 

to 150µm. The number of elements is still in the order of 103; the total number of the degree of 

the freedom is in the order of 104. We adopt the adaptive time step scheme offered by COMSOL 

for the time integration. To ensure the accuracy of the time integration, the relative tolerance of 

each time step is set to be 10eÔ. We use default settings in the solver to solve the equations along 

with boundary conditions in a fully coupled manner. Parallel computing is used for 20 CPUs. 

Since we do not solve the equilibrium in the substrate in this section, the total solution time 

reduces to about 2~3 hours. 

 

Parameter settings  
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In this section, we will discuss how we choose parameters for our phase-field model. We assume 

that the parameters in our model are mainly cell-type dependent, meaning the same kind of cell 

or cell colonies shares roughly the same parameters, just like what we did in Chapter 2. In this 

section, we firstly give the order of the magnitude of the parameter. The exact values of the 

parameters are determined by matching our prediction on the traction force landscape with the 

experiment results of real cells. The values of parameters used for the single cells and cohesive 

colonies in Section 4.4 are listed in Appendix A. 

 

Firstly, we determine the material parameters and the geometry parameter for the cells. For 

Young’s modulus and Poisson’s ratios of cells, previous studies show that they are usually in the 

range of 10Ó~10ÔPa and 0.4~0.5, respectively  [18-20, 40]. Therefore, we set 𝐸x in the order of 

magnitude of 10ÓPa and 𝑘& in the order of magnitude of 10ÔPa. Since the normalized density of 

myosin motors ranges from 0 to 1, the Young’s modulus E is in the order of magnitude of 

10ÓPa, which conforms with experimental measurements. The parameter 𝜀x and 𝛽 are in the 

order of 10eR and 10e+ so that the deformation is small. The thickness of the cell sheets is 

directly measured from the experiment, which is in the order of 10x~10+µm. 

 

Next, we determine the parameters associated with myosin motors. The relative density n is set 

in the order of 10e+Ümol/µmR so that the lattice number per area of myosin motor is in the order 

of 10Ú/µmR. The double-well energy function coefficient Ω is in the order of 10e+Û~10e+ÚJ/

µmR, so that the double-well energy is in comparable with the entropy. The parameter 𝛼 is in the 

order of 10e&m to ensure the convergence and reasonable predictions. The coefficient of the 
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gradient energy 𝑘 is determined to make the interfaces of different phases to be diffusive. For 

focal adhesions, the parameter 𝑛8, 𝜇x, and  𝜁 are determined in the same way with that in Chapter 

2 and are in the same order of the magnitude. The line tensions used in this chapter is also 

adopted from Chapter 2. 

 

 

4.4 Results and Discussions 

Validation of the model: applying it on single cells and multicellular structures. 

In this section, we apply the phase-field model onto single fibroblasts and cell colonies to 

validate its correctness. We will see that the model can fully replicate results in the previous 

studies. All the model parameters used in this section can be found in Table A.3 in Appendix A. 
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Fig. 4.1. Experimental and simulation results of a single needle-like 3T3 fibroblast: upper left: 

phase contrast of the cell; upper right: TFM results of the cell; bottom left: the concentration 

profile of the myosin motors in the cell; bottom right: the predicted traction force landscape. 

 

We firstly apply our phase-field model to a single needle-like fibroblast. By looking into the 

right column of Figure 4.1, we can see that the traction force predicted by the new kinetic model 

agrees well with the TFM results. That is, most of the traction forces are highly localized at the 

two ends of the cell. The predicted myosin motor density shown in the bottom left has an 

opposite trend to that of the traction forces. It is relatively smaller at the cell ends and then ramps 

up quickly, reaching a uniform value in the rest area of the cell. This is because the flow of the 

myosin motors is controlled by the cellular stress as shown in Equation (4-3), and it is not 

difficult to see that due to the similarity in cell geometries, the landscape of the cellular stress is 

small at the two cell ends and large in the centroid of the cell. 

 

We then apply the model onto cohesive colonies to see whether it can recover size effect and 

stiffness effect. The weak form equations (4.14.1) ~ (4.14.3) are solved with respect to cell 

within the colonies, expect Equation (4.14.4) is solved for the entire colony. As shown in Figure 

4.2, perfectly circular colonies are studied. In Figure 4.2 (a), the traction force landscape of 

colonies with radius of 60µm, 100µm, and 150µm on 40kPa gel (Young’s modulus) are plotted. 

The average traction forces with a 50µm width boundary layers are 188.15Pa, 153.36Pa, and 

138.03Pa, respectively. More cases with different colony radius are studied and the average 

traction forces in boundary layers are calculated. We interpolate the average traction forces with 

respect to the colony radius and plot the interpolated curve in Figure 4.2 (c) left. The result 

successfully recovers the size effect of cohesive colonies: the smaller the size, the larger the 
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average traction forces. We then study colonies with the same radius adhering on substrate with 

different stiffness. Colonies with a 150µm radius are examined; the traction force landscape of 

colonies on 6kPa, 20kPa, and 40kPa gels are plotted in Figure 4.2 (b). The parameters in 

Equation (4-5) are tuned with respect to different gel stiffness, listed in Table A.3 in Appendix. 

By looking into Figure 4.2 (b), one can see that the magnitude of the traction forces dramatically 

increases from left to right as the gel stiffness increases. The average traction force in boundary 

layer reflects the same fact as shown in Figure 4.2 (c) right: the curve is monotonically 

increasing as the gel Young’s modulus increases. Specifically, for colonies on substrate whose 

stiffness is 6kPa, 20kPa, and 40kPa, the average traction force in the 50µm width boundary layer 

is 86.81Pa, 112.41Pa, and 138.03Pa, respectively.  

 

Fig. 4.2. Validation of the size and stiffness effect by the new model. (a) Traction force 

landscapes of cohesive colonies with radius 60µm, 100µm, and 150µm on 40kPa gel. 

(b)Traction force landscapes of colonies with a 150µm radius on substrates with Young’s 
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modulus of 6kPa, 20kPa, and 40kPa. (c)Left: average traction force in boundary layer versus 

colony radius on 20kPa gels; right: average traction force in boundary layer versus gel Young’s 

modulus for colonies with the same radius 

 

We next apply our model to study a previous examined observation: cadherin-based junctions 

regulate cell-matrix traction forces [73]. Within a multicellular structure, the intercellular forces 

are transmitted between cells mainly through cell-cell junctions, which are formed by cadherin-

based molecules [74]. Recent studies have revealed that the cadherin-based junctions play 

important roles in some biophysical processes of cells. For instance, strong cell-cell junctions 

coordinate the mechanical behavior over a large length scale [75]; they also contribute to the 

metastatic potential [76]; they even can affect the surface tension of cellular aggregation, 

spreading and migration [77]. Additionally, cadherin-based cell-cell junctions can pose an 

impact on cell-substrate interactions: experiments show that they are able to rearrange the 

traction forces [78, 79]. Here we adopt a triple-cell colony system and model the cadherin-based 

cell-cell junctions as a series of linear springs with a spring constant 𝑘&, the value of which is 

used to denote the strength of cell-cell junctions. The numerical results are presented in Figure 

4.3 (b) and (c): from the left to the right, the strength of the cadherin-based cell-cell junctions 

monotonically increase. We find that, as the cell-cell junction strength increases, the magnitude 

of the maximal traction force increases from 70Pa to 120Pa, and the traction force gradually 

disappears in the intercellular region and re-localizes at the periphery, which coincides with 

previous studies.  It is clearer to see the phenomena happens by looking into the average traction 

force profile as function of Δ：the distance to the colony centroid, shown in Figure 4.3 (c). The 

average traction force decreases from 40Pa to 0 as the parameter 𝑘& increases. Such phenomenon 

happens because the softer cell-cell junctions can deform more than the stiffer ones. As each cell 
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contracts, more displacement is generated in the soft cell-cell junctions than in the stiff ones. 

Traction forces are going to generate near the cell-cell junctions since they are proportional to 

the displacement (|𝑇|~|𝐮|). In summary, our model captures the spatial re-organization of 

traction force landscape owing to the change of intercellular adhesion strength. For strong cell-

cell interaction (large 𝑘&), the colony behaves cohesive and deform as an entity, with traction 

force only appears at the periphery; for weak cell-cell interaction (small 𝑘&), the cells tend to 

deform individually, with significant traction forces generating near the cell-cell boundaries. 

 

Fig. 4.3. Our model captures cadherin-dependent organization of traction stresses. (a) Schematic 

of planar colony of three cells, the cell-cell junctions are modeled as a series of linear springs. (b) 

The traction force landscape versus different cell-cell junction strength. (c) Spatial profiles of 

average strain traction force as a function of distance, from colony edge for different cell-cell 

junction strength. 

 

Knot-like morphology of stress fibers in strip-like cells on alternatively coated substrate. 

The surface properties of substrate play important roles in cell-substrate interactions: they can 

greatly affect cell migration, differentiation, and growth on substrates [80-82]. Previous studies 
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show that at least four types of surface properties acting upon cell-substrate interactions, 

including the amount of charges on the surface, the wettability of the surface, the presence of the 

chemical functionalities and the adsorption of peptides and proteins of the surface [83]. 

Substrates whose surfaces are heterogeneously coated with a mixture of the above properties 

have been made to obtain desired behaviors of cells [84]. For instance, people have developed 

substrates with heterogeneous polystyrene surfaces composed of oxygen plasma-treated stripes 

(PSox) with a low hydrophobicity separated by non-treated areas (PS) to guide the orientation of 

neural cell growth [85]. In this section, we study the actin node formation and the knot-like stress 

fiber assembly in strip-shape cells patterned on substate whose surface is alternatively coated 

with fibronectin blocks. As shown in Figure 4.4 (a), fibronectins are coated in the adhesion 

blocks represented by blue rectangles, where cell integrins can bind with ligands and transmit 

traction forces. In the gap region represented by blank, the substrate surface is not coated with 

fibronectins, where cell integrins cannot bind with ligands. 

 

Fig 4.4. The knot-like stress fiber formation in strip-shape cells patterned on substate with 

heterogeneous surface. (a) The surface of the substrate is alternatively coated with fibronectin in 
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rectangular blocks (the blue part), while the gap has no fibronectin coated. (b) Stained actins 

show inhomogeneity of actin node formation and stress fiber assembly in a patterned cell. Actin 

nodes form in the non-adhesive patches of the cell and vanish in the non-adhesive patches of the 

cell. 

 

Now we culture the cell onto the substrate and stain its actin filaments. By looking into the 

experimental results shown in Figure 4.4 (b), we can see that the actins only appear and form 

into nodes in the non-adhesive patches of the cell, indicating the active contractility is 

inhomogeneous. We propose that such inhomogeneity is caused by the alternative coating of the 

substrate surface, which brings a difference between the cell-gap interfacial tension and the cell-

adhesion block interfacial tension. Here, we imagine a cell on a substrate whose surface is 

homogeneous and without coating any fibronectin, and we call the energy stored in the cell-

substrate interface as 𝐸x. Now we make the fibronectin coated on some parts of the gel surface to 

form the pattern in Figure 4.4 (a), and call the energy stored in the interface in this configuration 

as 𝐸+. We then define the interfacial energy change between these two configurations, that is 

∆𝐸Ê'( = 𝐸+ − 𝐸x. One can see that ∆𝐸Ê'( arises from two newly created interfaces: the interface 

between the cell and the coated fibronectins, and the interface between the gel and the coated 

fibronectins, as shown in Figure 4.5. Therefore,	∆𝐸Ê'( is written as: 

∆𝐸Ê'( = ∫ Γ&'d�#q
Ω&' + ∫ (Γ(' − Γ&()d�)q

Ω(',  (4-15) 

where Ω&' denotes the interface between the cell and the coated fibronectin, with Γ&' being the 

energy density per unit area stored in the interface;  Ω(' denotes the interface between the gel 

and the fibronectin, with Γ(' being the energy density per unit area stored in it; Γ&( is the energy 

density per unit area stored in the cell-gel interface.  
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Fig 4.5. The illustration of the interfaces after the gel surface is partially coated with fibronectin. 

Here three surface tension: Γ&', Γ&(, and Γ(' form the Neumann triangle.  

 

One should notice that only the variation of first term in in Equation (4-15) with respect to the 

cell displacement leads to a non-zero result (assuming that cell can only displace the substrate 

little and the fibronectin coating is fixed on gel) and it is:  

𝛿∆𝐸Ê'(/𝛿𝐮 = Γ&' ∫ 𝜅+𝐧d�#q
Ω&',   (4-16) 

where 𝜅+ is the first principal curvature of the interface between the cell and the coated 

fibronectin, and 𝐧 is the unit normal of the interface, pointing toward to the substrate. By 

assuming that the curvature is localized near the boundary between the cell-gel interface and the 

cell-fibronectin interface, the tangential component of the right-hand-side of Equation (4-16) 

leads to an effective line force ∆Γ acting on the boundary between the adhesive patch and the 

non-adhesive patch of the cell. This line force ∆Γ compresses the adhesive patches, preventing 

the assembly of actin filaments in this region, while it pulls the non-adhesive patches along the 

cell longitude direction to initiate the actin filaments assembly only in this part of the cell, not 

elsewhere. Meanwhile, the line tension generates effective pulling forces in the cell width 

direction at both sides of the cell. The two forces, together, lead to the focal adhesion formation 

in the corners of the adhesion patches and the traction force generation in the diagonals of the 
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non-adhesive patches. Owing to the traction forces in the diagonal directions, stress fibers 

assemble into the knot-like morphology and the actin node forms in the non-adhesive patches. 

 

 

Fig. 4.6. Physical process happened in the cell on alternatively coated substrate. The purple 

arrows on the top and bottom boundaries of the non-adhesive patch denote for the effective line 

force ∆Γ led by the difference in the interfacial tensions. The purple arrows on the left and right 

boundaries of the non-adhesive patch denote for the effective pulling force led by the line 

tension. Red arrows stand for the traction forces. 

 

We first apply our model to simulate the morphology of stress fibers for cells with different gap 

sizes on substrate with the same stiffness. For simplicity, we only model one period of the long 

strip cell and apply periodic boundary conditions on the top and bottom boundaries. The myosin 

motors and focal adhesions are initially uniformly distributed in the non-adhesive patches and 

the adhesive patches with densities equal to 𝑐x and 𝜌x, respectively. The model parameters can 

be found in Table A.4 in Appendix A. The experimental results on 10.6kPa gel are plotted in 

Figure 4.7 (a), while the simulation results are plotted in Figure 4.7 (b). For the simulation 

results, we plot the magnitude and the direction of the first principal stress by color contours and 
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arrows. They are used to represent the density of actin filaments and the direction of stress fibers, 

respectively [72]. For the gap sizes larger than 4µm, actin mode formations are observed in the 

experiment. Our prediction agrees well with the experiment: for the gap sizes equal to 6, 8, and 

10µm, stress fibers assemble into knot-like configurations in the central region of non-adhesive 

patches. As the gap size decreases to 4µm, the actin node formation fails. Instead, the stress 

fibers tend to align in the cell width direction, shown by the experiment. This is because the flat 

geometry of the gap tends to regulate the traction forces to be parallel to the boundaries between 

the adhesive and non-adhesive patches. Our prediction captures the failure of the actin node 

formation for 4µm gaps as well. For the case where no gap is made on the surface of the 

substrate, the traction forces are localized in the two ends of the cell, thus stress fibers are 

aligned in the longitude direction of the cell. 

 

Fig 4.7. Morphology of stress fibers with respect to different gap size on 10.6kPa gel. (a) 
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Experimental results on stress fiber formation. Pictures have been taken with respect to different 

gap size. Actin fiber is extracted from the pictures for each case and plotted aside. (b) Simulation 

of stress fiber formation denoted by the first principal stress 𝜎+. Colors stand for magnitude of  

𝜎+ and arrows stand for the direction. Red means large and blue means small. 

 

By looking into the magnitudes of the first principal stress 𝜎+ for different gap sizes, one can see 

that they mainly concentrate in the diagonals and the centroids of the non-adhesive patches of the 

cells. As the gap size decreases, the magnitudes of the first principal stress also decreases. For 

the case where there is no gap, a uniform contractility spans over the most part of the cell. 

 

 

Fig. 4.8. The simulation results on the first principal stress (a) and myosin motor density (b) and 

focal adhesion concentration (c) with respect to different gap sizes. Red means large and blue 

means small. 

 

The myosin motor density and the focal adhesion distribution are shown in Figure 4.8 (b) and 

(c), respectively. As one can see, the distribution of myosin motors is totally first-principal-
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stress-controlled. That is, they concentrate at the place where the first principal stress is large. 

The focal adhesions, on the other hand, are highly localized in the four corners of the adhesive 

patch.  

 

We next examine the morphology of stress fibers for a certain gap size with different substrate 

stiffness. As shown in Figure 4.9 (a), experimental results for cells with 4µm gap size, adhering 

on 2.8kPa, 7.4kPa, 10.6kPa, 16.7kPa, and 34.9kPa gels, are plotted. For cells on the substrate 

whose Young’s modulus is smaller than 7.4kPa, the active contractility is small and is 

comparable with the interfacial tension ΔΓ. On one hand, the cellular contractility wants the 

stress fibers to be assembled in the cell width direction due to the flat geometry of the gap. On 

the other hand, the interfacial tension ΔΓ wants to steer the stress fibers to be in the cell longitude 

direction. As a result of the competition between the two factors, the actin nodes form in some 

non-adhesive patches, which is captured by our simulations and experiments. As the gel stiffness 

increases, the active contractility increases, which makes the stress fibers align in the cell width 

direction and actin nodes disappear. For cells on substrate whose Young’s modulus is larger than 

16.7kPa, the cells form long and straight fibers, starting from one end to the other. This is 

because as substrate stiffness increases, the cellular contractility increases, and it eventually 

overwhelms the interfacial tension and hence erases the inhomogeneity in cellular contractility. 

Under this circumstance, the interfacial tension imposes little effect on the cell and the stress 

fibers assemble into the same configuration with the cells on the substrate without gaps.  
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Fig. 4.9. Cells with 4µm gap size on gels with different stiffness. (a) Experimental results on 

stress fiber configuration  2.8kPa, 7.4kPa, 10.6kPa, 16.7kPa, and 34.9kPa gels (b) Predicted 

stress fiber direction, denoted by the direction of the first principal stress 𝜎+, are shown by arrow, 

whose length is proportional to the average of 𝜎+.The color contour map represents the 

magnitude of 𝜎+. 

 

The conclusion is similar for the 10µm gap case. The difference is that on 2.8kPa gel, the cell 

fails to form stress fibers as it cannot establish enough contractility to overcome such a large gap 
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size. By comparing the 2.8kPa results in Figure 4.9 (b) and Figure 4.10 (b), one can see that the 

magnitude of the first principal stress of 10µm gap case is smaller for that of 4µm gap case, 

which agrees with the experimental observations. 

 

 

Fig. 4.10. Cells with 10µm gap size on gels with different stiffness. (a) Experimental results on 

stress fiber configuration  2.8kPa gel, 10.6kPa gels, ands glass (b) Predicted stress fiber 

direction, denoted by the direction of the first principal stress 𝜎+, are shown by arrow, whose 

length is proportional to the average of 𝜎+.The color contour map represents the magnitude of 𝜎+. 

 

Next, we continue using our model to predict the configuration of stress fibers for gap sizes 

equal to 6µm, 8µm, and 10µm. The predictions are plotted in Figure 4.11, where row (a) is for 

cells on 2.8kPa gel; row (b) is for cells on 7.4kPa gel; row (c) is for cells on 10.6kPa gel; row (d) 

is for cells on 16.7kPa gel; row (e) is for cells on glass. For cells on 2.8kPa gel, the cellular 
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contractility is at its minimal, thus stress fiber is hardly formed in this case. As the gel stiffness 

increases to 7.4kPa, stress fibers start to assemble. The tendency of the actin node formation is 

quite clear at this moment. With the gel stiffness continuing increasing, we can see clear knot-

like configurations of stress fiber assembly in the center of the non-adhesive patches, indicating 

that the actin node will form in these cases. And there are more and more stress fibers aligning in 

the cell longitude direction near the top and the bottom of non-adhesive patches as the substrate 

stiffness increases. Such phenomenon is much more obvious for the larger gaps (8µm & 10µm) 

than the smaller ones (6µm). Once the substrate becomes rigid, the increasing cell contractility 

overwhelms the interfacial tension and makes the stress fibers align in the cell longitude 

direction with their density reaching the maximum. By summarizing the results we obtain, we 

conclude that the actin node formation succeeds based on three conditions: firstly, the first 

principal stress should be large enough; secondly, the overall directions of the stress fibers 

should be in a proper range; thirdly, the stress fibers should not align with each other. Hence, we 

define three variables to describe whether the actin node formation succeeds. One is the stress-

related variable: 𝜎/ = ∫ 𝜎+dAµ /∫ dAµ ; the other two are direction-related: 𝑛/ = ∫ n+RdAµ / ∫ dAµ , 

and Δ𝑛 = ∫ (𝑛+R −	𝑛/)RdA/∫ dAµµ , where 𝑛+ is the horizontal-component of the direction of the 

first principle stress. The actin node forms only when 𝜎/ > 𝜎&, 𝑛&8 < 𝑛/ < 𝑛&6, and Δ𝑛 > Δ𝑛&, 

where 𝜎&, 𝑛&+, 𝑛&R, and Δ𝑛& are all threshold values to determine whether an actin node is formed. 

The three phase diagrams on 𝜎/, 𝑛/, and Δ𝑛 in the parametric space of the gel stiffness and the gap 

size are presented in Appendix B. 
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Fig. 4.11. The stress fiber configuration of cells with 6µm, 8µm 10µm gap size on gels with 

different stiffness. (a) 2.8kPa gel; (b) 7.4kPa gel; (c) 10.6kPa gel; (d) 16.7kPa gel; (e) Glass. The 

predicted stress fiber direction is denoted by the direction of the first principal stress 𝜎+, are 

shown by arrow, whose length is proportional to the average of 𝜎+.The color contour map 
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represents the magnitude of 𝜎+, which is used to represent the stress fiber density. 

 

With the predictions we have made, we can obtain a phase diagram on the actin node formation, 

which lives in the parametric space of the gap size and the gel stiffness. The phase boundaries 

are together defined by  𝜎/ = 𝜎&, 𝑛/ = 𝑛&6, 𝑛/ = 𝑛&8 , and Δ𝑛 = Δ𝑛&, where 𝜎& = 70Pa, 𝑛&6 = 0.7,   

𝑛&8 = 0.3, and Δ𝑛& = 0.14. For the gap size smaller than 2.5µm, the knot-like stress fiber 

morphology can hardly form due to the flat geometry of the gap. For cells adhering on gels with 

stiffness larger than 25kPa, the stress fibers align in the longitude direction of the cells because 

of the high contractility. For cells adhering on soft substrate with gap size larger than 6µm, the 

stress fibers fail to form again as there is not enough contractility to bridge such a large non-

adhesive patch inside the cell. 

 

Fig. 4.12. The phase diagram on actin node formation. The horizontal axis is for the gap size, 

while the perpendicular axis is for the gel stiffness. In the green region, actin node is formed, yet 

in the blue region, actin node formation fails. 
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4.5 Conclusion and summary 

In this chapter, we have developed a phase-field model on the kinetics of myosin motors, and we 

also incorporate the evolution of focal adhesions, the elasticity, and the interfacial effect of the 

cell into the model. The equations and boundary conditions are formulated, and then are 

implemented by finite elements method. The model is firstly applied onto single fibroblasts and 

cell colonies to verify its correctness. Its fully replicate results in previous studies, including the 

size and the stiffness effect, as well as the cadherin-based traction forces. Next, we apply the 

model on the simulation of the actin node formation in strip-shape cells patterned on substate 

whose surface is alternatively coated with a fibronectin block. The effect brought by the 

interfacial tension is addressed. The simulation results agree well with experiments. At last, we 

come up with a phase diagram on acting node formation with respect to the substrate stiffness 

and the gap size. 
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Chapter 5  

Conclusions 

In this dissertation, we firstly make a review on previous studies on cell-substrate interactions in 

the Chapter 1. We summarize what has been done by these studies and what needs to be done. 

Based on the summarization, we come up with a thermodynamic model, considering the elastic 

effect, edge effect and chemical effect. We apply this model to study single cells and then extend 

it to multicellular structures. We use this model to predict the active contractility on substrate with 

different stiffness and find the active stress varies with substrate stiffness. We also find our model 

successfully predicting the traction force landscape and the focal adhesion distribution for single 

cells. For cohesive colonies, the model captures the active, nonlinear cell-matrix coupling. It 

predicts monolayer size and substrate stiffness dependent traction force and intercellular tension, 

validated by microscopy and immunofluorescence studies. It is suggested that substrate stiffness 

and colony size can define the efficiency that how cellular tension and cell body stress can be 

generated. For extremely compliant or stiff substrates and extremely small and large size, 

abnormally low or high intercellular tension causes the disruption of stress homeostasis, resulting 

in apoptosis or phenotypic changes, such as metastasis-like cell dispersion.  

 

In chapter 4, a phase-field model incorporating the elastic effect, interfacial effect, and the 

kinetics of myosin motors is established. The correctness of the model is validated by replicating 

results in previous studies, such as the size effect and the stiffness effect of cohesive colonies. 

Strip-like cells on substrate with alternatively coated surface are studied. The model predicts the 

actin node formation and knot-like morphologies of stress fibers in these cells with the proper 
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gap sizes and gel stiffness. The results agree well with experiments. We note that the interfacial 

tension plays an important role in this case. 
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Appendix A 

Model parameters used in the dissertation 
 

We list all the parameters we used in the dissertation in separated tables in this part. 

 

Parameter Physical Meaning SaOS-2 NIH 3T3 

 Yong’s modulus of cell sheet 5 kPa 5.4 kPa 

𝜈 Poisson’s ratio of cell sheet 0.43 0.43 

𝜈̂ Poisson’s ration of Substrate 0.48 0.48 

 
Active stress: strength of cell 

contractility 

290/360/490 Pa 

(4/10/20 kPa gel) 

See Fig. 3.1 

 Line tension 3.67 nN 3.67 nN 

 Thickness of cell sheet 4 µm  3 µm 

 Lattice sites per unit area 78000 µmeR 80500µmeR 

 
Spring constant of a ligand-

receptor bond 
16 k-T/µmR 24 k-T/µmR 

 
Fraction of total receptors in 

i-th cell 
0.04 0.08 

 
Coefficient of the gradient 

energy 

5 × 10Ók-T

∙ µmR 

5 × 10Ók-T ∙ µmR 

∆𝜇x 

Difference of the reference 

chemical potentials of the 

bound and free receptors 

5 k-T 

 

5 k-T 

T Temperature 300 K 300 K 

Tab. A.1. Model parameter used for single SaOs-2 cells and patterned NIH 3T3 cells in Chapter 

2 and 3. 
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Parameter Physical Meaning Numerical Value 

 Yong’s modulus of cell sheet 10 kPa 

𝜈 Poisson’s ratio of cell sheet 0.4 

𝜈̂ Poisson’s ration of Substrate 0.47 

 Active stress: strength of cell contractility 

330/430/530 Pa 

(4.5/20.7/47.1 kPa 

gel) 

 Line tension 2.25/107 N 

 Thickness of cell sheet 12.5 µm  

 Lattice sites per unit area 80500µmeR 

 Spring constant of a ligand-receptor bond 7.5 k-T/µmR 

 Fraction of total receptors in i-th cell 
0.1, with a 2.5% 

standard error 

 Coefficient of the gradient energy 1.6 × 10Ô	k-T ∙ µmR 

∆𝜇x 
Difference of the reference chemical potentials 

of the bound and free receptors 
4.5  k-T 

T Temperature 300 K 

Tab. A.2. Model parameter used for HCT-8 cohesive colonies in Chapter 2 and 3. 

 

 

Parameter Physical Meaning 
NIH 3T3/Non-

cohesive colony 

Cohesive colony 

𝐸x 
Initial Yong’s modulus of cell 

sheet 
1 kPa 5 kPa 

𝜈 Poisson’s ratio of cell sheet 0.43 0.4 

𝑘& 
Strengthening coefficient for 

cell stiffness 
9 kPa 7 kPa 

𝜀x Contractility perturbation 0.05 0.006/0.008/0.01 

E

σ A

Γ

h

nl

k

φi,0

β
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𝛽 
Strengthening coefficient for 

cell contractility 
0.09 0.042/0.056/0.07 

 Thickness of cell sheet 4 µm * 12.5 µm 

 
Lattice sites per unit area for 

focal adhesion 
80500 µmeR 80500	µmeR 

𝜁 
Spring constant of a ligand-

receptor bond 
24 k-T/µmR 9.375 k-T/µmR 

𝜇x 

Chemical potential of 

receptors in the reference 

config. 

5 k-T 4.5 k-T 

𝑘 
Coefficient of the gradient 

energy 
40	nJ ∙ µmR 40	nJ ∙ µmR 

Ω 
Coefficient for double-well 

energy function 

1.05 × 10eÓ	pJ

/µmR 
4.375 × 10eÓ	pJ/µmR 

T Temperature 300 K 300 K 

n 
a relative density of myosin 

motors 
18100 µmeR 18100 µmeR 

𝛼 
Coefficient for tension-

driving myosin flow 
0.8 µm 2.5 µm 

𝑐x Initial myosin density 0.51 0.5 

Γ Line tension 3.67 nN 2.25/107 N 

Tab. A.3. Model parameter used for the validation part of Section 4.4. 

* The thickness of the needle-like NIH 3T3 cell is measured slightly differently from previous 

papers. 

 

Parameter Physical Meaning Patterned strip-like cell 

𝐸x 
Initial Yong’s modulus of cell 

sheet 
1 kPa 

h

nl



 
 

75 

𝜈 Poisson’s ratio of cell sheet 0.43 

𝑘& 
Strengthening coefficient for 

cell stiffness 
24 kPa 

𝜀x Contractility perturbation 0.024/0.032/0.04/0.043/0.05 

𝛽 
Strengthening coefficient for 

cell contractility 
0.144/0.192/0.24/0.252/0.3 

 Thickness of cell sheet 4 µm 

 
Lattice sites per unit area for 

focal adhesion 
2.65 × 10Ú µmeR 

𝜁 
Spring constant of a ligand-

receptor bond 
27.2 k-T/µmR 

𝜇x 

Chemical potential of 

receptors in the reference 

config. 

5 k-T 

𝑘 
Coefficient of the gradient 

energy 
40	nJ ∙ µmR 

Ω 
Coefficient for double-well 

energy function 
1.45 × 10eÓ	pJ/µmR 

T Temperature 300 K 

n 
a relative density of myosin 

motors 
24000 µmeR 

𝛼 
Coefficient for tension-

driving myosin flow 
1.6 µm 

𝑐x Initial myosin density 0.25 

Γ Line tension 30 nN 

𝑀 
Mobility parameter of myosin 

motors 
1.9 ×

10ÚµmÔ

s /pJ 

𝐿 
Mobility parameter of focal 

adhesions 
1.5 × +xN23¹

4
/k-T  

Tab. A.4. Model parameter used for patterned strip-shape cells. 

h

nl
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Appendix B 
Supplementary figures to determine the phase diagram on actin node 

formation 

 
Fig. B.1. The phase diagram on  𝜎/, overlapped with the action node formation of cells observed 

in the experiments. The horizontal axis is for the gap size, while the perpendicular axis is for the 

gel stiffness. A phase boundary of  𝜎/ = 𝜎& = 70Pa is identified by the white dashed line. The 

symbol “◯” stands for the success of actin node formation, while “×” stands for the failure of 

actin node formation. 

 

 

𝜎/ = 𝜎& 

𝑛/ = 𝑛𝑐𝑙  

𝑛/ = 𝑛𝑐𝑢 
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Fig. B.2. The phase diagram on  𝑛/, overlapped with the action node formation of cells observed 

in the experiments. The horizontal axis is for the gap size, while the perpendicular axis is for the 

gel stiffness. Two phase boundaries of   𝑛/ = 𝑛&6 = 0.7, and 𝑛/ = 𝑛&8 = 0.3, are identified by the 

black dashed lines. The symbol “◯” stands for the success of actin node formation, while “×” 

stands for the failure of actin node formation. 

 

 
Fig. B.3. The phase diagram on  ∆𝑛, overlapped with the action node formation of cells observed 

in the experiments. The horizontal axis is for the gap size, while the perpendicular axis is for the 

gel stiffness. The phase boundary of  Δ𝑛 = Δ𝑛& = 0.14 is identified by the black dashed line. 

The symbol “◯” stands for the success of actin node formation, while “×” stands for the failure 

of actin node formation. 

  

Δ𝑛 = Δ𝑛& 
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