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Abstract

Widespread use of portable embedded systems and rapidly shrinking feature sizes

have brought about a large body of research on low power systems design. Embedded

systems realize the convergence of computers, communications, and multimedia into

portable products, therefore, system designers should have better knowledge of power

consumption of the entire system.

This thesis proposes and studies a set of energy evaluation and optimization tech-

niques in architectural and software level for two main components of embedded systems:

memory elements and processing elements.

First, the thesis deals with evaluation and optimization of memory systems. Ap-

plications are increasingly becoming data-intensive as image processing capabilities are

incorporated into portable systems. Since memory accesses consume a significant amount

of power, we propose memory energy models for a representative set of on-chip cache

architectures and evaluate their energy behavior. As a large volume of data needs to be

stored off-chip, we also propose an off-chip memory energy estimation models to enable

the designers to evaluate off-chip energy behavior of individual applications.

Second, the study focuses on the energy evaluation and optimization of processing

elements. Variants of VLIW architectures are increasingly becoming popular for DSP

processors due to their support for wide instruction level parallelism and reduced hard-

ware complexity. An energy simulator for VLIW architectures is developed, which is

built on top of a publicly available compilation toolset. Since the compilation toolset

has a set of state-of-the-art compilation techniques, we evaluate their energy consump-

tion using the energy simulator, varying architectural parameters. Next, we propose

and evaluate a new leakage optimization technique using this toolset. This optimization

technique is important as leakage energy is expected to increase exponentially in the

next decade.

The tools and techniques proposed in this thesis are expected to be useful for

designing energy-efficient embedded systems.
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Chapter 1

INTRODUCTION

With more than 95% of current microprocessors used for battery-powered em-

bedded systems such as cellular phones, personal digital assistants (PDA), and laptop

computers, power dissipation has become a key design metric, since the lifetime of bat-

teries is a decisive pricing factor in the market. The power problem has been aggravated

since portable electronic systems increasingly demand more complex embedded func-

tionalities, which is enabled by die size increase and rapid shrinking of feature sizes.

Excessive heat generated by high clock speed and high density transistors cause relia-

bility problems as well. They require more complicated cooling and packaging. These

reasons drive system designers to consider power as well as performance as one of the

important criteria in embedded systems design.

The power (P) and energy (E) are defined and categorized as follows:

P = Pswitch + Psc + Pleakage

= CLV 2
dd

f0→1 + tscVddIpeakf0→1 + kdesignVddIleakageNtransistor

E = CLV 2
dd

P0→1 + tscVddIpeakP0→1 + kdesignVddIleakageNtransistor/fclock,



2

where P0→1 = f0→1/fclock, CL is the capacitive load of the circuit, Vdd is the supply

voltage, f0→1 is the switching frequency, tsc is the short-circuit time, fclock is the clock

frequency, and Ipeak and Ileakage are the peak current during switching and the leakage

current, respectively. And kdesign and Ntransistor are design specific parameter, and

total number of transistors.

Power is composed of dynamic and static elements. Pswitch and Psc are dynamic;

Pswitch is consumed only when signals transition from 0 to 1, and Psc when either from

0 to 1, or from 1 to 0. Power dissipation may be reduced by reducing any of the

parameters. Dynamic power can be reduced by suppressing unnecessary bit transitions.

Supply voltage reduction has quadratic effect on dynamic power consumption. However,

it might slow down the system since energy is power consumed over time. Thus, the

total energy might not be reduced.

The leakage power, Pleakage, is due to transistor leakage and independent of

the switching activity. Power leaks constantly as long as the system is on, while dy-

namic power consumption varies significantly depending on workload. As the supply

and threshold voltage scales down with technology improvements, it will account for

as much as half of the total power consumption in deep submicron technologies. One

obvious way is to reduce the total number of devices, Ntransistors. This effect can be

achieved by turning off devices when not used. However, this technique itself can incur

extra power consumption and the latency to recover to normal operation mode is not

negligible. To mitigate the latency problem, when the power-gated module is to be used

should be predicted well in advance.
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There are many abstract levels to work toward power reduction. The levels are

not completely disjoint of each other but rather work in conjunction with each other. The

lowest process level and the highest algorithmic level are omitted due to their irrelevance

to this thesis. They are from bottom to top:

• Circuit/Gate Level

This abstract level deals with circuit level techniques. Supply voltage and fre-

quency scaling is the most adopted technique at this level, since it yields consid-

erable savings due to the quadratic dependence of power on supply voltage. The

major problem of this technique is degradation of circuit speed. To overcome this

problem, multiple-voltage and variable voltage techniques have been developed,

where timing-critical modules are powered at high voltage level, while the rest of

the modules is powered at low voltage level. Leakage energy problem is solved

similarly with variable-threshold circuits. Circuits in critical path are maneuvered

to low threshold voltage to speed up, whereas those in non-critical path is operated

at high threshold voltage to reduce leakage.

• Architectural Level

In this level of study, larger blocks such as caches and functional units are the

main subject. In complex digital circuits, not all of the blocks perform meaningful

operations every clock cycle. When a block is identified to be idle, it can be

disabled to prevent useless but power consuming transitions. Circuit techniques

such as clock gating provide ways to apply this technique. To tackle leakage power,

idle blocks can be turned off by power-gating.
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• Software Level

An operation system can achieve major power reduction by performing energy-

aware task scheduling and resource management. Processors these days adopt

multiple power modes which are initiated by operating systems. These are col-

lectively called dynamic power management (DPM). Another important system

component is compilers. Compilers traditionally have been studied to generate ef-

ficient codes in terms of performance. Many of the performance optimization tech-

niques also reduce power consumption. For example, spill code reduction result in

both performance improvement and power reduction. There have been proposed

power optimizing techniques that compromise performance, as well. Power-aware

instruction scheduling technique can increase total number of cycles. However, the

performance degradation has to be limited.

This thesis evaluates various hardware and software optimization techniques in

terms of power to find out power dissipation sources, and proposes power optimization

techniques targeting the main sources of power dissipation in architectural and software

abstract levels.

1.1 Outline of the Thesis

Figure 1.1 shows a typical architectural model of an embedded processor core-

based system, consisting of a processor core, on-chip memory, and off-chip memory [76].

It may also contain other modules such as co-processors and ASIC blocks. Since the entire

system is operated by batteries, power problem should be tackled in every element of
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Off-Chip
Memory

On-Chip
Instruction 
Memory

On-Chip Data Memory

Memory
Scratch-Pad

DCache

Processor 
Core

Fig. 1.1. Architectural diagram of a typical embedded processor-based system [76].

the system. The thesis covers two major components of an embedded system – memory

and datapath (processor core).

Memories are typically in hierarchical structure: registers, on-chip memories such

as caches and scratch-pad memories, and off-chip memories. As applications these days

handle large amounts of data, memory elements play an important role in the design of

embedded systems. It is estimated that up to ten times of energy is consumed by memory

hierarchies [76]. In Chapter 2, multiple access cache architectures are evaluated in terms

of energy, using our proposed energy estimation models [61]. In Chapter 3, a very

popular compiler performance optimization technique targeting reduction of the main

memory latency – loop tiling – is evaluated in terms of energy [52, 51]. Modern off-chip

memories have a few interesting features to satisfy increasing bandwidth requirements,

such as banking and burst access modes. Their energy and performance characteristics

change significantly depending on the types of DRAM operations heavily used to support

the application. In Chapter 4, an estimation model to predict the energy consumed in

off-chip memory accesses for an application is proposed [60]. This estimation model can
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be used to estimate main memory energy as well as performance of various compiler

optimization techniques. As an example, a data layout scheme is evaluated to show its

off-chip memory energy behavior.

Very Long Instruction Word (VLIW) architectures are getting more and more

attention in DSP arena, since they can accommodate many instructions (or operations)

per cycle, which is enabled by transferring complex hardware-propelled functionalities

into software. In Chapter 5, an architectural energy estimation tool is developed, based

on a publicly available VLIW compilation toolset [62]. This enables us to evaluate

many VLIW compilation techniques in terms of both power and performance, varying

architectural parameters such as the number of functional units and their operation

latencies. As technology feature size decreases, leakage power increases dramatically.

Leakage power is expected to take up as much as the dynamic power in submicron

technologies. In Chapter 6, we propose a loop-level compilation optimization technique

to reduce leakage power [63].

The following sections outline the topics in detail.

1.1.1 Evaluation and Optimization of Memory Elements

1.1.1.1 Multiple Access Caches: Energy Implications

On-chip caches have been extensively used to achieve fast memory access latency

and to reduce energy by keeping the number of slower and energy-consuming main

memory access as small as possible and their sizes are becoming larger as transistor

budget increases. There has been much research on circuit design and architectural

techniques [9, 49, 41, 64] to improve memory energy consumptions. Most of them were
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designed originally to improve performance rather than energy consumption. Multiple

access caches were also proposed to improve cache access time. In multiple access caches,

the cache banks are accessed multiple times serially rather than once in parallel as in

set-associative caches, thereby avoiding the selection logic delays. In this part of the

thesis, we propose energy calculation models for these cache architectures and evaluate

their energy implications.

1.1.1.2 Evaluation of Energy Behavior of Iteration Space Tiling

It is widely known now that, in addition to efficient hardware techniques, software

also plays a major role on energy consumption behavior [85, 94]. This is only natural

as the main contributor of overall energy consumption in a given system, namely dy-

namic energy, is mainly determined by the types and frequencies of switching activities

which, in turn, are determined by the software. Consequently, the last couple of years

have witnessed a host of studies in application [4, 85], operating system [72, 85], and

compiler [85, 21, 53] domains that address this growing energy issue. Given a large body

of research in optimizing compilers that target enhancing the performance of a given

piece of code [99], we focus on iteration space tiling, a popular high-level (loop-oriented)

transformation technique used mainly for optimizing data locality. We evaluated it,

with the help of SimplePower [104], from the energy point of view, and investigated

energy-sensitivity of tiling to tile size and input size varying cache configurations.
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1.1.1.3 Estimating Influence of Data Layout Optimizations on SDRAM En-

ergy Consumption

An important problem in extracting maximum benefits from an SDRAM-based

architecture is to exploit data locality at the page granularity. Frequent switches between

data pages (we call this switch of pages “page break”) can increase memory latency

and have an impact on energy consumption. In this part of the thesis, we show that

Presburger arithmetic and Ehrhart polynomials can be used for estimating the number

of page breaks statically (i.e., at compile time). The result shows that the estimated

number of page breaks in SDRAM is close to that obtained by simulation.

We extend the proposed estimation framework to estimate the number of page

breaks for a block-based memory layout and investigate the influence of the layout on

exploiting page-level locality in memory accesses, and its energy implication. The results

obtained using video codes indicate that the proposed memory layouts generate very good

energy results, and our estimation can be very useful.

1.1.2 Energy Evaluation and Optimization of Processing Elements

1.1.2.1 A Framework for Energy Estimation of VLIW Architecture

Lack of fast yet reasonably accurate power estimation tools served as a major ob-

stacle for architectural and software level research. Recently, a number of cycle-accurate

energy simulators have been developed for simple RISC, DSP, and superscalar archi-

tectures [104, 15]. SimplePower [104] is an example of such power estimation tools

developed in our research group. It is transition-sensitive energy simulator for simple
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five-stage pipelined architecture. Wattch [15] is a fast architectural simulator based on

parameterizable power models for superscalar architectures. VLIW architectures are

now becoming popular in embedded systems due to both its architectural simplicity and

enlarged number of instruction level parallelism (ILP) enabled by advancements in com-

piler technology. In this part of the thesis, an energy simulator for Very Long Instruction

Word (VLIW) architectures is presented, which is based on analytical models similar to

Wattch [15].

1.1.2.2 Adapting Instruction Level Parallelism for Optimizing Leakage in

VLIW Architectures

Since dynamic power is approximately proportional to the square of the supply

voltage, the most effective way to reduce power consumption is to lower the supply

voltage. However, scaling the supply voltage will adversely affect the performance of

the system. Since the propagation delay decreases with the reduction of the threshold

voltage, the transistor threshold voltage should also be scaled in order to satisfy the per-

formance requirements. Unfortunately, such scaling leads to an exponential increase in

the subthreshold leakage power, which offsets the power savings achieved from reducing

the supply voltage. Moreover, leakage energy show exponential dependency on tem-

perature. Therefore, leakage energy reduction for functional units is crucial due to the

temperature surge caused by heavy usage of the modules. There exists a great amount

of techniques to reduce leakage energy dissipation from less aggressive techniques such

as input vector control to very aggressive ones such as gating Vdd. More aggressive

techniques show better energy savings, while it takes more cycles to apply them. These
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techniques should be applied carefully so that the energy savings is not overshadowed

by the overheads.

VLIW architectures are greatly dependent on their compilers. For example, map-

ping operations to the corresponding functional unit properly, considering dependencies

(i.e. instruction scheduling), is solely performed by compilers as opposed to superscalar

architectures, where the mapping is done by hardware. Therefore, a compilation al-

gorithm is proposed to make more consecutive empty (unused) functional units while

instruction scheduling is performed, so that more aggressive leakage energy reduction

schemes can be adopted.
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Chapter 2

MULTIPLE ACCESS CACHES:

ENERGY IMPLICATIONS

2.1 Introduction

With the advent of mobile computing, low power system design has become an

important issue. Several hardware-oriented and software-oriented techniques have been

proposed to address this problem by minimizing the energy consumption of the various

system components. Many of these efforts [92, 48, 64] have focused on the memory

subsystem that has been found to be a major energy consumer of the entire system. For

example, on-chip caches of DEC 21164 CPU consume 25% of the total chip power [48].

Multiple access caches have been proposed to address the high access latency

associated with set-associative caches. In multiple access caches, the cache banks are

accessed multiple times serially rather than once in parallel as in set-associative caches,

thereby avoiding the selection logic delays. The energy consumption of one such multiple

access cache, the MRU (Most Recently Used) way-prediction cache, was evaluated by

Inoue et.al. [45]. In their work, the MRU algorithm was used to predict and probe a

way first. If the prediction turns out to fail, all remaining ways are accessed at the same

time in the next cycle. Many other multiple access cache techniques have been proposed
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earlier for performance considerations, such as hash-rehash (HR) caches and column-

associative (CA) caches [8, 55, 19]. To the best of our knowledge, no prior research has

been done on their energy implication.

In this chapter, we compare three multiple access caches – HR caches, CA caches,

and MRU caches – with commonly used set-associative caches and direct-mapped caches

in terms of energy. Further, since system level power optimization depends on both the

hardware components and the software executing on it, we also investigate the influence

of compiler optimizations on the energy-efficiency of these cache architectures. In the

next section, the energy models used for the different cache architectures are presented.

Then, the experimental results are given and discussed in Section 2.3. Finally, we close

with concluding remarks in Section 2.4.

2.2 Cache Energy Models

Associative caches have become commonplace in current processor architectures.

While increasing associativity has been used by many researchers to improve perfor-

mance, it also leads to longer cycle times and more energy consumption. The main

reason for longer access times in associative caches is the additional multiplexing logic

that selects the data from the correct way. Also, associative caches can affect perfor-

mance by hindering speculative dispatch of data [105]. The focus of prior research has

been to address these problems with associative caches by using multiple access caches

[19]. While most of these efforts have investigated the delay aspects, this chapter focuses

on the energy efficiency of these cache architectures.
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In order to perform our energy evaluation, we build upon the memory system

energy model developed in [89] for associative cache architectures. Their model is just

for read accesses. We enhanced their energy model based on 0.8 µm technology to in-

corporate write accesses as well, as shown below:

Energy = Ebus + Ecell + Epad + Emain

Ebus = Eadd bus + Edata bus

Ecell = β ∗ (Word line size) ∗ (Bit line size + 4.8) ∗ (Nhit + 2 ∗ Nmiss)

Epad = Eadd pad + Edata pad

Emain = Em ∗ 8L ∗ Nmiss ∗ (1 + dirty r)

Eadd bus = 0.5e−12 ∗ Pr1 ∗ V 2 ∗ (Nhit + Nmiss) ∗ Wadd

Edata bus = 0.5e−12 ∗ Pr2 ∗ V 2 ∗ (Nhit + Nmiss) ∗ 32

Eadd pad = 20e−12 ∗ Pr3 ∗ V 2 ∗ Nmiss ∗ Wadd

Edata pad = 20e−12 ∗ Pr4 ∗ V 2 ∗ (1 + dirty r) ∗ Nmiss ∗ 64,

and

Word line size = m ∗ (8L + T + St)

Bit line size = C/(m ∗ L)

β = 1.44e− 14, Em = 4.95e− 9,

where C = cache size; L = cache line size; m = set-associativity; T = tag size in bits; St =

number of status bits per block; Nhit = number of hits; Nmiss = number of misses; Wadd = the

width of a address bus; dirty r = percentage of blocks written back into memory on replacement.

In this formulation, Pr1, Pr2, Pr3 and Pr4 are the bit switch rate for add bus, data bus,
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add pad, and data pad, respectively. Pr1 and Pr2 of the data cache are obtained from

the simulator execution (explained in Section 2.3), and other bit switch rates were as-

sumed to be 0.25 as in [89]. V denotes the voltage level and is 3.3 Volts. Em is the

energy consumed by a main memory access [89].

We further developed energy-models for multiple access caches that try to com-

promise between low hit ratio and fast access time by accessing the most probable way

first and then the second way, if the first access probe fails. If the first probe hits, its

access time is the same as that of a direct-mapped cache. It also allows second probe

on a miss to the cache unlike direct-mapped caches. In this chapter, we only consider

multiple access cache structures for two-way associativity.

0

1

2

3

0

1

2

3
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Fig. 2.1. Multiple access caches.

In HR caches [19], the first probe is chosen by a hash function. Hash function

is a direct-mapped lookup, which works the same way as in direct-mapped caches. For

example, in Figure 2.1, the memory address 11001 falls into the cache line 1 of bank 0,
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while the memory address 11101 falls into the cache line 1 of bank 1. We define the bank

to which the direct-cache mapping function of an address maps as its home bank.

In step 1 of Figure 2.1, the cache reference 110 01 falls on cache line 1 of Bank 0

(its home bank). Since the tag bits (i.e., the bits before ) at this location do not match

with the tag bits of the reference, rehashing is performed. In case of the HR variant

of the two-way set-associativity, rehash function results in probing the other bank. If

the rehash succeeds, the two cache lines are swapped, so that the next reference can

potentially hit on its first probe. If the rehash fails as in step 2 of Figure 2.1, the data

from the first probe is moved to the cache line of the other bank as in step 3, and the

data referenced is brought in from main memory to bank 0 as in step 4.

CA caches [8, 19] are almost similar to HR caches except that CA caches can

reduce needless probes by keeping a rehash bit for each cache line. The rehash bit is set

whenever the cache line is moved from its home bank to the other bank. In Figure 2.1,

dashed cache line bits are to keep rehash bits for each cache line in the CA cache. If the

rehash bit of the cache line probed first is set, the second probe will never hit. Thus, for

the example shown in Figure 2.1, the CA cache avoids the second access to the cache

and step 3, saving energy and time.

MRU [55, 19] caches, on the other hand, keep a history bit of the most recently

used way for each cache line and access the appropriate way based on the history bit

value. For example, way 0 is accessed if the corresponding history bit is 0. For a two-way

set-associative cache, only a single bit is required.

To account for the operation of the multiple access caches, we modified the mem-

ory energy models as follows:
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Ecell1 = β∗(Word line size)∗(Bit line size+4.8)∗(Nfhit+4∗Nshit+2∗Nfmiss+4∗Nsmiss)

Ecell2 = β ∗ (Word line size) ∗ (Bit line size + 4.8) ∗ (Nfhit + 2 ∗ Nshit + 3 ∗ Nsmiss)

Word line size = 8L + T + St,

where

Nfhit = number of hits on the first probe

Nshit = number of hits on the second probe

Nfmiss = number of misses identified after first probe

Nsmiss = number of misses identified after second probe.

Here, Ecell1 is energy consumption of HR or CA cache cell accesses and Ecell2 is that

of MRU cache cell accesses. Other equations are the same. Nfhit +Nshit + Nfmiss+

Nsmiss is equal to total number of memory references. In case of HR and MRU caches,

Nfmiss is 0. This is because only the CA cache can identify a miss after the first

probe (Nfmiss ≥ 0) by using the rehash bit. As can be seen above, coefficient m of

Word line size is 1 as in direct-mapped caches, since only one way is accessed at a time

in multiple access caches. A factor of 4 was multiplied to Nshit and Nsmiss, and 2 to

Nfmiss in CA caches. If there is a hit in the second probe, two extra cache accesses are

required to swap the two cache lines in addition to the two probes already done. This

results in four cache accesses for second probe hits (Nshits) and hence the multiplicative

factor 4 in front of the Nshit parameter in Ecell1. A similar situation occurs when both

probes turn out to fail (Nsmiss cases). In CA caches, useless second way probes can

be detected using the rehash bit and no swapping is needed, which accounts for the 2

multiplied to Nfmiss. MRU caches do not require swapping action, so only two accesses
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are required accounting for the multiplicative factor of 2 for Nshit and three accesses,

accounting for the multiplicative factor of 3 for Nsmiss.

2.3 Experiments

In order to evaluate the energy-efficiency of the various multiple access caches

(HR, CA, and MRU), we enhanced the cachesim5 simulator available in Sun’s Shade suite

[26] and interfaced it with the energy models described in the previous section. A split

data and instruction cache, and a block size of 32 bytes were used for all the simulations.

The Mediabench benchmark suite [69], a benchmark for multimedia applications, was

used in this study.

First, we evaluate the energy consumed by the different cache architectures with-

out using any compiler optimizations. This will provide an insight into energy saving

that is inherent to the hardware organizations of these architectures. Then, we introduce

the compiler optimizations and discuss the resulting energy improvements brought about

by different levels of optimizations. Our study investigates the energy influence of these

optimizations considering both instruction and data accesses. We also investigate the

impact of emerging eDRAM technology [75] on the energy consumed in the memory

system.

2.3.1 Evaluation of Different Cache Architectures

Figure 2.2 shows the energy consumption due to data accesses as cache size in-

creases from 8KB to 128KB for selected benchmarks. It can be observed that MRU

caches consume the least energy for all sizes of caches and for all the benchmarks. When
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the cache size is small, most of the energy is consumed by memory accesses in all cache

models, but as the cache size is increased, most of the energy is consumed by cache

accesses. The percentage of memory system energy consumed by the cache cells in the

two-way set-associative cache increases more rapidly than that of the CA cache with

increasing cache sizes. This indicates that the energy saving of multiple access caches

becomes more important when the number of cache misses decreases. As the impact

of larger energy consumption due to cache misses declines with decreasing miss rates,

the total memory system energy saving of the CA cache gets ahead of the two-way set-

associative caches. For example, CA cache in jpeg decoder consumes more energy than

two-way set-associative cache when the cache size is 8KB and 16KB, but consumes less

energy when the cache size grows to 32KB. We observed a similar trend for all the Me-

diabench benchmarks with increasing cache size. However, the cache sizes beyond which

the CA cache performs better is different from benchmark to benchmark. It can also be

observed that the HR caches consume considerably more energy than the other multiple

access caches for some benchmarks. This is due to both the high miss ratio and extra

energy expended for useless second probes and swaps that is avoided by CA caches.
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Fig. 2.2. Energy consumption of data accesses with varying cache sizes (X-axis repre-
sents cache size of 8, 16, 32, 64, and 128KB and Y-axis represents energy consumption
of data accesses in Joules). The cache block size is 32B for all configurations and no
compiler optimization is used.
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2.3.2 Influence of Compiler Optimizations

Optimizations In this section, we evaluate the impact of classical compiler optimiza-

tions on the energy consumption of the cache architectures considered. To accomplish

this, we decided to run the programs in our benchmark suite with different optimization

flags (levels) as explained below:

• O1

With this optimization flag, we try to reduce size and execution time of the resulting code.

The optimizations enabled can be considered collectively as peephole optimizations, where,

at a point in time, a short sequence of target instructions is examined and replaced by a

faster and/or shorter sequence. They include redundant instruction elimination, algebraic

simplifications, and use of machine idioms. On machines that have delay slots, the delayed

branch optimizations are also performed at this level.

• O2

With this flag, in addition to the optimizations listed above, nearly all supported compiler

optimizations that do not involve a space-speed tradeoff are performed. Loop unrolling

and function inlining are not done, for example (as they increase code size). As compared

to O1, this option increases both compilation time and the performance of the gener-

ated code. The optimizations performed include induction variable elimination, local and

global common subexpression elimination, algebraic simplification, copy propagation, con-

stant propagation, loop-invariant optimization, register allocation, basic block merging,

tail recursion elimination, tail call elimination, and complex expression expansion.

• O3

This optimization performs like O2 but, also optimizes references or definitions for external
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variables. Loop unrolling, inlining, and software pipelining are also performed at this level.

Note that, in general, the O3 level may result in increased code size.

Energy consumption of data accesses Figures 2.3 shows the energy consumption

improvement for data accesses when the compiler optimizations explained above are ap-

plied to traditional caches and multiple access caches. A 16KB data cache was used in

this experiment and O1-O0 represents the percentage energy improvement of O1 opti-

mization level over O0, O2-O0 for O2 over O0, O3-O0 for O3 over O0. We note that, for

the benchmarks such as adpcm decoder/encoder, g721 decoder/encoder and mpeg2

decoder/encoder, compiler optimizations reduce energy consumption by about 60 ∼

90%. In these benchmarks, the number of data references reduces dramatically with com-

piler optimization, whereas the number of misses remains almost the same. For example,

the number of two-way set-associative cache data accesses decreased from 6,116,881 to

527,120 when O3 optimization level was applied.

For the benchmarks such as mesa mm/tg (gsm decoder/encoder with HR cache),

energy consumption increased because the number of data references decreased very

slightly, while the number of misses increased with compiler optimizations. For example,

in mesa mm, the number of data references was reduced from 40,800,534 to 37,031,303,

while the number of cache misses increased to 221,686 from 215,910 with O1 optimization.

Further, we observe that for most of the benchmarks, aggressive optimizations

such as O2 and O3 do not significantly reduce energy as compared to the O1 optimization.

From table 2.1.(a), which summarizes the percentage improvement provided by our

optimization levels on the five different cache architectures over all benchmarks, three
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out of five cache architectures, the O2 optimization resulted in the best performance from

the energy perspective.
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Fig. 2.3. Energy improvement (%) in data accesses for different 16KB cache config-
urations (X-axis represents benchmarks and Y-axis represents energy improvement in
percentage). O1-O0 represents the percentage energy improvement of O1 optimization
level over O0, O2-O0 for O2 over O0, O3-O0 for O3 over O0 (from top to bottom: two-way
set-associative cache, direct-mapped cache, CA cache, HR cache, and MRU cache).
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O1 O2 O3 O1 O2 O3

2W 30.72 30.63 30.48 8K 42.67 42.70 44.46
CA 28.86 30.03 29.14 16K 41.43 42.65 42.67
DIR 10.18 21.71 12.38 32K 40.08 40.66 40.94
HR 21.66 9.48 26.75 64K 40.09 40.58 40.79
MRU 29.1 29.29 28.79 128K 40.09 40.66 40.86

(a) (b)

Table 2.1. Average energy improvements (%) for data accesses for all benchmarks
with a 16KB cache size (a) and for instruction accesses with a two-way set-associative
cache (b).

Energy consumption of instruction accesses Figure 2.4 shows the energy con-

sumption improvement due to instruction accesses for selected benchmarks when in-

struction cache sizes are varied. In all the experiments, a two-way set-associative cache

was used. All benchmarks but epic epic and mesa mm/os/tg exhibit energy saving

of up to 90% with compiler optimizations. Aggressive optimizations such as O2 or O3

do not make much difference in terms of energy saving. This saving is mostly caused

by reduced instruction references. For example, the number of instruction references is

reduced from 425,300,599 to 170,198,103 in mpeg2 decoder when O1 optimization level

is used. It must be noted that no benchmark shows any performance degradation (as

opposed to those observed for data accesses). Table 2.1.(b)shows average instruction ac-

cess energy improvement over all benchmarks for each of the cache sizes and optimization

levels.
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2.3.3 Influence of Technology Changes

With improvements in process technology such as the capability to have an em-

bedded DRAM on a chip, the impact of the various cache configuration on the memory

system energy could vary. In order to study this impact, the energy consumption of a

main memory access (Em in the model) was reduced to one-tenth of our initial value for

external memory accesses. This assumption was made based on the energy reductions

observed in embedded DRAM accesses in [75]. We observe that if the embedded DRAM

is exploited, the merit of the two-way set-associative cache is diminished. Figure 2.5

shows the energy consumption of cell accesses and embedded DRAM accesses of each

cache model with varying cache sizes in pegwit decoder. As the cache size increases,

the energy consumption in the embedded DRAM becomes negligible and the cache en-

ergy consumption dominates. This shows that small multiple access caches such as CA

caches between a processor and a large embedded DRAM could save cache energy.
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Fig. 2.5. Energy consumption of the cache (E cell) and the main memory (E main)
for Em = 4.95e-9 (a) and Em = 4.95e-10 (b) in pegwit decoder benchmark (X-axis
represents cache size of 8, 16, 32, 64, and 128KB. For each cache size, five bars represent
two-way set-associative, CA, direct-mapped, HR, and MRU caches in order. Y-axis
represents energy consumption of data accesses in Joules). No compiler optimization is
used.

2.4 Conclusion

Due to their critical role in improving the performance of the memory system,

caches have become an important system component. As a result, different cache archi-

tectures have emerged including multiple access caches whose main purpose is to reduce

the access latencies of associative caches. In this chapter, we investigate three different

multiple access caches from the energy perspective using the Mediabench benchmark

suite. Our results indicate that a memory system with a MRU cache consumes the least

energy among all cache configurations and multiple access caches can save energy when

applications show inherently low cache miss ratio or cache size becomes bigger. Further,

it is observed that the energy reductions obtained by using the multiple access caches can
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become more important as the cost of main memory access is reduced by the emerging

eDRAM technology.

On the software part, our observation is that compiler optimization can signifi-

cantly reduce the memory system energy across all cache architectures, although direct-

mapped caches and HR caches show less energy saving than other cache configurations.

However, the most aggressive optimizations (obtained using O3 optimization level in our

experiments) do not necessarily lead to the most energy efficient code. Thus, software

system designers need to experiment with different optimization levels before deciding

on the most energy efficient solution. We also find that, while the optimizations do not

always reduce the energy consumed by data accesses, the energy consumed by instruction

accesses for the Mediabench benchmark suite is always reduced by optimizations.
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Chapter 3

EVALUATION OF ENERGY BEHAVIOR

OF ITERATION SPACE TILING

3.1 Introduction

Energy consumption has become a critical design concern in recent years, driven

by the proliferation of battery-operated embedded devices. While it is true that careful

hardware design [16, 36] is very effective in reducing the energy consumed by a given

computing system, it is agreed that software can also play a major role [85, 34, 97, 59, 58].

In particular, the application code that runs on an embedded device is the primary factor

that determines the dynamic switching activity, one of the contributors to dynamic power

dissipation.

Given a large body of research in optimizing compilers that target enhancing the

performance of a given piece of code (e.g., see [99] and the references therein), we believe

that the first step in developing energy-aware optimization techniques is to understand

the influence of widely used program transformations on energy consumption. Such

an understanding would serve two main purposes. First, it will allow compiler design-

ers to see whether current performance-oriented optimization techniques are sufficient

for minimizing the energy-consumption, and if not, what additional optimizations are

needed. Second, it will give hardware designers an idea about the influence of widely
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used compiler optimizations on energy-consumption, thereby enabling them to evaluate

and compare different energy-efficient design alternatives with these optimizations.

While it is possible and certainly beneficial to evaluate each and every compiler

optimization from energy perspective, in this chapter, we focus our attention on iter-

ation space (loop) tiling, a popular high-level (loop-oriented) transformation technique

used mainly for optimizing data locality [99, 101, 100, 70, 67, 102].1 This optimization is

important because it is very effective in improving data locality and it is used by many

optimizing compilers from industry and academia. While behavior of tiling from per-

formance perspective has been understood to a large extent and important parameters

that affect its performance have been thoroughly studied and reported, its influence on

system energy is yet to be understood. In particular, its influence on energy consumption

of different system components (e.g., datapath, caches, main memory system, etc.) has

to be explored in detail.

Having identified loop tiling as an important optimization, in this chapter, we

evaluate it, with the help of our cycle-accurate simulator, SimplePower [104, 96], from

the energy point of view considering a number of factors. The scope of our evaluation

includes different tiling styles (strategies), modifying important parameters such as input

size and tile size (blocking factor) and hardware features such as cache configuration.

In addition, we also investigate how tiling performs in conjunction with two recently-

proposed energy-conscious cache architectures, how current trends in memory technology

will affect its effectiveness on different system components, and how it interacts with

1
Loop tiling can also be used for optimizing loop-level parallelism [46, 79].
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other loop-oriented optimizations as far as energy consumption is concerned. Specifically,

in this chapter, we make the following contributions:

• We report the energy consumed for different styles of tiling using a matrix-multiply

code as a running example.

• We investigate energy-sensitivity of tiling to tile size and input size.

• We investigate its energy performance on several cache configurations including a

number of new cache architectures and different technology parameters.

• We evaluate the energy consumption and discuss the results when tiling is accom-

panied by other code optimizations.

Our results show that while tiling reduces the energy spent in main memory

system, it may increase the energy consumed in the datapath and on-chip caches. We

also observed a great variation on energy performance of tiling when tile size is modified;

this shows that determining optimal tile sizes is an important problem for compiler

writers for power-aware embedded systems. Also, tailoring tile size to the input size

generates better energy results than working with a fixed tile size for all inputs.

The remainder of this chapter is organized as follows. In Section 3.2, we re-

view loop tiling briefly and report some performance numbers showing its usefulness in

optimizing data locality. In Section 3.3, we introduce our experimental platform and

experimental methodology. In Section 3.4, we report energy results for different styles

of tiling using a matrix-multiply code as a running example and evaluate the energy

sensitivity of tiling with respect to software and hardware parameters and technological
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trends. In Section 3.5, we discuss related work and conclude the chapter with a summary

in Section 3.6.

3.2 Loop Tiling

Loop tiling (also called blocking) is an essential technique used to improve data

locality. While it can be used to exploit data reuse for any level in a given memory

hierarchy, we focus here on tiling for optimizing cache performance. The idea is that data

structures that are too big to fit in the data cache are divided into smaller pieces (called

blocks or tiles) that fit in the cache. In other words, instead of operating on individual

elements of arrays, tiling performs computation on blocks. Consider the matrix-multiply

code given in Figure 3.1(a). As long as the arrays a, b, and c accessed by this code fit

in cache memory, the performance of this loop nest can be expected to be good. The

problem occurs when the total size of these arrays is larger than the cache capacity. Note

that for computing an element c[i][j], we need the ith row of array a and the jth column

of array b (as shown in Figure 3.1(c)) and for each row of array c, we need to traverse

all elements of array b. Unless we have a very large cache that is able to hold the entire

b array, the elements of this array will be moved back and forth between main memory

and cache. Now let us assume that we tiled this loop (and selected the tile size) as shown

in Figure 3.1(b) such that a block of c is calculated by taking the product of a block-row

of a with a block-column of b. In this case, if we can hold these three blocks in cache at

the same time, for the entire computation of the block of c, we can reuse the elements

in the column-block of b, thereby reducing the memory traffic and improving the cache

locality substantially (Figure 3.1(d)).
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for(i=0;i<n;i++)
for(j=0;j<n;j++)
for(k=0;k<n;k++)

c[i][j]+=a[i][k]*b[k][j];
(a)

for(it=0;it<n;it+=t)
for(jt=0;jt<n;jt+=t)
for(k=0;k<n;k++)
for(i=it;i<min(it+t,n);i++)
for(j=jt;j<min(jt+t,n);j++)

c[i][j]+=a[i][k]*b[k][j];
(b)

array c array a array b

array c array a array b

(c)

(d)

Fig. 3.1. (a) A matrix-multiply code. (b) Tiled version of (a). (c) Access pattern of
the original code. (d) Access pattern of the tiled code.
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One can easily see that the bigger the blocks are, the greater the reduction in

memory traffic but only up to a point. Note that here the three blocks (one from each

array) must fit into cache at the same time, therefore there is an upper bound on how

big the blocks can be. In addition, the blocks should not conflict with themselves or

with one another, that is, different elements of the blocks must not map to the same

cache lines, otherwise they will need to be read multiple times (depending on the extent

of this conflict) from memory during the course of execution. These conflicts can be

reduced or eliminated by appropriate padding of the leading dimension of the arrays

[82], careful alignment (layout) of the array in memory with respect to one another [99],

copying individual blocks to consecutive memory locations [93], further limiting of the

block (tile) size [67], or by using a combination of these. Also, as we make the blocks

larger, we will need more TLB (Translation Look-aside Buffer) entries to map their data.

If the blocks become too large, the TLB can thrash. All these considerations led to a
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large body of research in selecting optimal tile sizes for a given computation and input

size [27, 67, 35, 99].

Figure 3.2 shows how tiling improves performance of our matrix-multiply nest.

The figure gives the data cache miss rates for the untiled version (Figure 3.1(a)) and the

tiled version (Figure 3.1(b)) for two different input sizes (N=50 – 50×50 integer matrices

– and N=100 – 100×100 integer matrices – ) and two different cache configurations (4KB,

1-way and 4KB, 2-way). The results show significant decreases in miss rates when tiling

is used.

3.3 Our Platform and Methodology

The experiments in this chapter were carried out using the SimplePower energy

estimation framework [96, 104]. This framework includes a transition-sensitive, cycle-

accurate datapath energy model that interfaces with analytical and transition-sensitive

energy models for the memory and bus sub-systems, respectively. The datapath is based

on the ISA of the integer subset of the SimpleScalar architecture [17] and the modeling

approach used in this tool has been validated to be accurate (average error rate of

8.98%) using actual current measurements of a commercial DSP architecture [25]. The

memory system of SimplePower can be configured for different cache sizes, block sizes,

associativities, write and replacement policies, number of cache sub-banks, and cache

block buffers. SimplePower uses the on-chip cache energy model proposed in [48] using

0.8µ technology parameters [98] and the off-chip main memory energy per access cost
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based on the Cypress SRAM CY7C1326-133 chip.2 The analytical on-chip cache models

have been found to be within 2% error of measurements from actual designs [48]. The

overall energy consumed by the system is calculated as

Esystem = Edatapath + EIcache + EDcache + Emain memory + Ebuses,

where Edatapath is the energy consumed in the five-stage pipeline processor, EIcache

and EDcache are the energies consumed in the instruction cache (Icache) and data cache

(Dcache), respectively, and are evaluated analytically by summing the energy consumed

in the word lines, bit lines, and address input lines. Emain memory is the energy expended

on main memory accesses and is evaluated using a per memory access energy of Em =

4.95×10−9J, which is representative of current technology. It must be noted that based

on the memory technology (e.g., SRAM, eDRAM, DRAM, etc.), the number of memory

modules used, the low power modes supported by the memory chip, and the memory

bank configuration, the Em value could change. Finally, Ebuses is the energy dissipated

when driving interconnect lines external to the cache toward the datapath side or the

main memory side. In our design, the datapath and instruction and data caches are

assumed to be in a single package and the main memory in a different package. We

input our C codes into this framework to obtain the energy results.

Our experimental methodology is as follows. We first evaluate different tiling

strategies for our matrix-multiply code using two different input sizes to see the energy

2
It must be mentioned that SRAMs and embedded DRAMs (eDRAM) are popular choices as

main memory in many embedded devices.



37

benefits of these strategies on different system components. All the tiled codes in this

chapter are obtained using an extended version of the source-to-source optimization

framework discussed in [50]. Each tiled version is named by using the indices of the

loops that have been tiled. For example, ij denotes a version where only the i and

j loops have been tiled. Unless otherwise stated, in both the tile loops (i.e., the loops

that iterate over tiles) and the element loops (i.e., the loops that iterate over elements

in a given tile), the original order of loops is preserved except that the untiled loop(s)

is (are) placed right after the tile loops and all the element loops are placed into the

innermost positions. Note that the matrix-multiply code is fully permutable [67] and all

styles of tilings are legal from the data dependences perspective. We also believe that the

matrix-multiply code is an interesting case study because (as noted by Lam et al. [67])

locality is carried in three different loops by three different array variables. However,

similar data reuse patterns and energy behaviors can be observed in many codes from

the signal and video processing domains.

We then investigate the energy sensitivity of the tiled codes to the tile size. For

a given input size, we experiment with five different tile sizes; this allows us to capture

the points beyond which reduction in energy is replaced by an increase in energy. Af-

ter experimenting with different input sizes, we modify cache parameters and evaluate

the impact of tiling on two recently-proposed cache architectures (block buffering and

cache sub-banking). Then, we compare the variations (due to tiling) in energy with the

variations in miss rates. After that, we study the interaction of tiling with two other

widely-used loop-based optimizations (loop permutation and loop unrolling) and present

a detailed breakdown of datapath energy. We then measure the influence of tiling on
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the energy consumption considering the current trends in memory technology. Finally,

we measure the energy performance of tiled versions of seven other nested loops.

In all the experiments, our default data cache is 4 KB, one-way associative (direct-

mapped) with a line size of 32 bytes.3 The instruction cache that we simulated has the

same configuration. All the reported energy values in this chapter are in Joules (J).

3.4 Experimental Evaluation

3.4.1 Tiling Strategy

In our first set of experiments, we measure the energy consumed by the matrix-

multiply code, tiled using different strategies. The last two graphs in Figure 3.3 show

the total energy consumption of eight different versions of the matrix-multiply code (one

original and seven tiled) for two different input sizes: N=50 and N=100. We observe

that (for both the input sizes) tiling reduces the overall energy consumption of this code.

In order to further understand the energy behavior of these codes, we break

down the energy consumption into different system components: datapath, data cache,

instruction cache, and main memory. As depicted in the first two graphs in Figure 3.3,

tiling a larger number of loops in general increases the datapath energy consumption. The

reason for this is that loop tiling converts the input code into a more complex code which

involves complicated loop bounds, a larger number of nests, and macro/function calls (for

computing loop upper bounds). All these cause more branch instructions in the resulting

code and more comparison operations that, in turn, increase the switching activity (and

3
Embedded processors typically have much smaller caches than those found in traditional

processors [43].
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energy consumption) in the datapath. For example, when the input size is 50 (100),

tiling only the i loop increases the datapath energy consumption by approximately 10%

(7%).

A similar negative impact of tiling (to a lesser extent) is also observed in the

instruction cache energy consumption. As can be seen from Figure 3.3, when we tile, we

have a higher energy consumption in the instruction cache. This is due to the increased

number of instructions accessed from the cache due to the more complex loop structure

and access pattern. However, in this case, the energy consumption is not that sensitive

to the tiling strategy, mainly because the small size of the matrix-multiply code does

not put much pressure on the instruction cache. We also observe that the number of

data references increase as a result of tiling. This causes an increase in the data cache

energy. We speculate that this behavior is due to the influence of back-end compiler

optimizations when operating on the tiled code.

When we consider the main memory energy, however, the picture totally changes.

For instance, when we tile all three loops, the main memory energy becomes 35.6%

(18.7%) of the energy consumed by the untiled code when the input size is 50 (100).

This is due to reduced number of accesses to the main memory as a result of better

data locality. In the overall energy consumption,4 the main memory energy dominates

and the tiled versions result in significant energy savings. To sum up, we can conclude

that (for this matrix-multiply code) loop tiling increases the energy consumption in dat-

apath, instruction cache, and data cache, but significantly reduces the energy in main

4
It should be noted that, for each code version in Figure 3.3, the total energy is slightly

higher than the sum of datapath, cache, and main memory energies as it also includes the energy
expended on buses.
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memory. Therefore, if one only intends to prolong the battery life, one can apply tiling

aggressively. If, on the other hand, the objective is to limit the energy dissipated within

each package (e.g., the datapath+caches package), one should be more careful as tiling

tends to increase both datapath and cache energies. It should also be mentioned that, in

all the versions experimented with here, tiling improved the performance (by reducing

execution cycles). Hence, it is easy to see that, since there is an increase in the energy

spent (and decrease in execution time) within the package that contains datapath and

caches, tiling causes an increase in average power dissipation for that package.

3.4.2 Sensitivity to the Tile Size

We now investigate the sensitivity of the energy behavior of tiling to the tile size.

While the tile size sensitivity issue has largely been addressed in performance-oriented

studies [67, 27, 35, 70, 83], the studies that look at the problem from energy perspective

are few [90]. The results are given in Figure 3.4 for the input sizes 50 and 100. For each

tiling strategy, we experiment with five different tile sizes (for N=50, the tile sizes are 2,

5, 10, 15, and 25, and for N=100, the tile sizes are 5, 10, 20, 25, and 50, both from left

to right in the graphs for a given tiling strategy). We make several observations from

these figures. First, increasing the tile size reduces the datapath energy and instruction

cache energy. This is because a large tile size (blocking factor) means smaller loop (code)

overhead. However, as in the previous set of experiments, the overall energy behavior is

largely determined by the energy spent in main memory. Since the number of accesses

to the data cache is almost the same for all tile sizes (in a given tiling strategy), there is

little change in data cache energy as we vary the tile size.
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Fig. 3.3. Energy consumptions of different tiling strategies.
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It is also important to see that the energy performance of a given tiling strategy

depends to a large extent on the tile size. For instance, when N is 50 and both j and

k loops are tiled, the overall energy consumption can be as small as 0.064J or as large

as 0.128J depending on the tile size chosen. It can be observed that, for each version of

tiled code, there is a most suitable tile size beyond which the energy consumption starts

to increase. Moreover, the most suitable tile size (from energy point of view) depends on

the tiling style used. For instance, when using the ij version (with N=50), a tile size

of 10 generated the best energy results, whereas with the ik version the most energy

efficient tile size was 5. This is because the low-level code generated for the ij version

is quite different from that of the ik version as far as the memory access patterns are

concerned; therefore, they work best with different tile sizes. Further, for a given version,

the best tile size from energy point of view was different from the best tile size from the

performance (execution cycles) point of view. For example, as far as the execution cycles

are concerned, the best tile size for the ik version was 10 (instead of 5). These results

motivate further research in determining optimal tile size from energy and energy–delay

perspectives.

3.4.3 Sensitivity to the Input Size

In this subsection, we vary the input size (N) and observe the variation in energy

consumption of the untiled code and a specific tiled code in which all three loops in the

nest are tiled (i.e., the ijk version). Specifically, we would like to observe the benefits (if

any) of tailoring the tile size to the input size. The input sizes used are 50, 100, 200, 300,

and 400. For each input size, we experimented with five different tile sizes (5, 10, 15, 20,
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Fig. 3.4. Energy sensitivity of tiling to the tile size (blocking factor).

and 25). The results, given in Table 3.1, show that for each input size there exists a best

tile size from energy point of view. To be specific, the best possible tile sizes (among

the ones we experimented) for input sizes of 50, 100, 200, 300, and 400 are 10, 20, 20,

15, and 25, respectively. Consequently, it may not be a very good idea from energy

point of view to fix the tile size at specific values. While one can develop optimal tile

size detection algorithms (for energy) similar to the algorithms proposed for detecting

best tile sizes for performance (e.g., [27, 67, 100, 35]), this issue is beyond the scope of

this chapter. We also observe from Table 3.1 that the relative contributions of different

system components to the overall energy are relatively stable over different input sizes.

3.4.4 Sensitivity to the Cache Configuration

In this subsection, we evaluate the data cache energy consumption when the

underlying cache configuration is modified. We experiment with different cache sizes and
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tile size
N untiled 5 10 15 20 25

dp 0.006 0.008 0.007 0.007 0.007 0.007
50 ic 0.017 0.019 0.018 0.018 0.018 0.018

dc 0.003 0.004 0.004 0.004 0.004 0.004
mem 0.096 0.038 0.034 0.036 0.035 0.039
dp 0.054 0.063 0.060 0.060 0.059 0.059

100 ic 0.135 0.151 0.146 0.145 0.144 0.143
dc 0.026 0.031 0.029 0.029 0.028 0.028
mem 1.100 0.259 0.210 0.217 0.206 0.277
dp 0.385 0.484 0.467 0.464 0.459 0.460

200 ic 1.078 1.209 1.166 1.156 1.148 1.145
dc 0.213 0.248 0.233 0.229 0.226 0.225
mem 11.003 3.080 2.635 2.683 2.586 3.287
dp 1.388 1.704 1.648 1.642 1.627 1.632

300 ic 3.638 4.080 3.937 3.895 3.875 3.864
dc 0.722 0.836 0.785 0.770 0.763 0.760
mem 42.859 9.448; 8.033 7.618 7.951 9.365
dp 3.166 3.962 3.849 3.826 3.791 3.795

400 ic 8.621 9.671 9.331 9.238 9.185 9.158
dc 1.707 1.982 1.859 1.826 1.808 1.799
mem 96.087 22.324 18.385 18.666 17.984 15.041

Table 3.1. Energy consumption of tiling with different input sizes. dp, ic, dc, and mem

denote the energies spent in datapath, instruction cache, data cache, and main memory,
respectively.
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associativities as well as two energy-efficient cache architectures, namely, block buffering

[92, 49, 41] and sub-banking [92, 49, 41].

In the block buffering scheme, the previously accessed cache line is buffered for

subsequent accesses. If the data within the same cache line is accessed on the next

data request, only the buffer needs to be accessed. This avoids the unnecessary and

more energy consuming access to the entire cache data array. Thus, increasing temporal

locality of the cache line through compiler techniques such as loop tiling can save more

energy. In the cache sub-banking optimization, the data array of the cache is divided into

several sub-banks and only the sub-bank where the desired data is located is accessed.

This optimization reduces the per access energy consumption and is not influenced by

locality optimization techniques. We also evaluate cache configurations that combine

both these optimizations. In such a configuration with block buffering and sub-banking,

each sub-bank has an individual buffer. Here, the scope for exploiting locality is limited

as compared to applying only block buffering as the number of words stored in a buffer

is reduced. However, it provides the additional benefits of sub-banking for each cache

access.

We first focus on traditional cache model and present in Figure 3.5 the energy

consumed only in data cache for different cache sizes and associativities. We experiment

with two different codes (with N=200), the untiled version and a blocked version where

all three loops (i, j, and k) are tiled with a tile size of twenty. Our first observation

is that the data cache energy is not too sensitive to the associativity but, on the other

hand, is very sensitive to the cache size. This is because for a given code, the number

of read accesses to the data cache is constant and, the cache energy per data access is
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higher for a larger cache. Increasing associativity also increases per access cost for cache

(due to increased bit line and word line capacitances), but its effect is found to be less

significant as compared to the increase in bit line capacitance due to increased cache

sizes. As a result, embedded system designers need to determine minimum data cache

size for the set of applications in question if they want to minimize data cache energy.

Another observation is that for all cache sizes and associativities going from the untiled

code to tiled code increases the data cache energy.

We next concentrate on cache line size and vary it between 8 bytes and 64 bytes

for N=200 and T=50. The energy consumption of the ijk version for line sizes of 8,

16, 32, and 64 bytes were 0.226J, 0.226J, 0.226J, and 0.227J, respectively, indicating

that (for this code) the energy consumption in data cache is relatively independent from

the line size. It should also be mentioned that while increases in cache size and degree

of associativity might lead to increases in data cache energy, they generally reduce the

overall memory system energy by reducing the number of accesses to the main memory.

Finally, we focus on block buffering and sub-banking, and in Figure 3.6 give the

data cache energy consumption for different combinations of block buffering (denoted bb)

and sub-banking (denoted sb) for both the untiled and tiled (the ijk version) codes. The

results reveal that for the best energy reduction block buffering and sub-banking should

be used together. When used alone, neither sub-banking nor block buffering is much

effective. The results also show that increasing the number of block buffers does not

bring any benefit (as there is only one reference with temporal locality in the innermost

loop). It should be noted that the energy increase caused by tiling on data cache can

(to some extent) be compensated using a configuration such as bb+sb.
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Fig. 3.5. Impact of cache size and associativity on data cache energy.

3.4.5 Cache Miss Rates vs. Energy

We now investigate the relative variations in miss rate and energy performance

due to tiling. The following three measures are used to capture the correlation between

the miss rates and energy consumption of the unoptimized (original) and optimized

(tiled) codes.

Improvementm =
Miss rate of the original code

Miss rate of the optimized code
,

Improvemente =
Memory energy consumption of the original code

Memory energy consumption of the optimized code
,

Improvementt =
Total energy consumption of the original code

Total energy consumption of the optimized code
.

In the following discussion, we consider four different cache configurations: 1K,

1-way; 2K, 4-way; 4K, 2-way; and 8K, 8-way. Given a cache configuration, Table 3.2

shows how these three measures vary when we move from the original version to an

optimized version.
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Fig. 3.6. Impact of block buffering (bb) and sub-banking (sb) on data cache energy.

We see that in spite of very large reductions in miss rates as a result of tiling,

the reduction in energy consumption is not as high. Nevertheless, it still follows the

miss rate. We also made the same observation in other codes we used. We have found

that Improvemente is smaller than Improvementm by a factor of 2 - 15. Including the

datapath energy makes the situation worse for tiling (from the energy point of view),

as this optimization in general increases the datapath energy consumption. Therefore,

compiler writers for energy aware systems can expect an overall energy reduction as a

result of tiling, but not as much as the reduction in the miss rate. We believe that some

optimizing compilers (e.g., [87]) that estimate the number of data accesses and cache

misses statically at compile time can also be used to estimate an approximate value for

the energy variation. This variation is mainly dependent on the energy cost formulation

parameterized by the number of hits, number of misses, and cache parameters.
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1K, 1-way 2K, 4-way 4K, 2-way 8K, 8-way
Improvement

m
6.21 63.31 20.63 19.50

Improvement
e

2.13 18.77 5.75 2.88

Improvement
t

1.96 9.27 3.08 1.47

Table 3.2. Improvements in miss rate and energy consumption.

3.4.6 Interaction with Other Optimizations

In order to see how loop tiling gets affected by other loop optimizations, we per-

form another set of experiments where we measure the energy consumption of tiling

with linear loop optimization (loop interchange [99] to be specific) and loop unrolling

[99]. Loop interchange modifies the original order of loops to obtain better cache perfor-

mance. In our matrix-multiply code, this optimization converts the original loop order

i, j, k (from outermost to innermost) to i, k, j, thereby obtaining spatial locality for ar-

rays b and c, and temporal locality for array a, all in the innermost loop. We see from

Figure 3.7 that tiling (in general) reduces the overall energy consumption of even this

optimized version of the matrix-multiply nest. Note however that it increases the data-

path energy consumption. Comparing these graphs with those in Figure 3.3, we observe

that interchanged tiled version performs better than the pure tiled version, which sug-

gests that tiling should be applied in general after linear loop transformations for the best

energy results.

The interaction of tiling with loop unrolling is more complex. Loop unrolling

reduces the iteration count by doing more work on a single loop iteration. We see from

Figure 3.7 that untiled loop unrolling may not be a good idea as its energy consumption
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is very high. Applying tiling brings the energy consumption down. Therefore, in cir-

cumstances where loop unrolling must be applied (e.g., to promote register reuse and/or

to improve instruction level parallelism), we suggest to apply tiling as well to keep the

energy consumption under control.
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Fig. 3.7. Interaction of loop tiling with loop interchange and unrolling.

3.4.7 Analysis of Datapath Energy

We next zoom-in on the datapath energy, and investigate the impact of tiling

on different components of the datapath as well as on different stages of the pipeline.

Table 3.3 shows the breakdown of the datapath energy for the matrix-multiply code into

different hardware components. For comparison purposes, we also give the breakdown

for two other optimizations, loop unrolling (denoted u) and linear loop transformation

(denoted l), as well as different combinations of these two optimizations and tiling

(denoted t), using an input parameter of N=100. Each entry in this table gives the
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percentage of the datapath energy expended in the specific component. We see that

(across different versions) the percentages remain relatively stable. However, we note

that all the optimizations increase the (percentage of) energy consumption in functional

units due to more complex loop nest structures that require more computation in the

ALU. The most significant increase occurs with tiling, and it is more than 26%. These

results also tell us that most of the datapath energy is consumed in register files and

pipeline registers, and therefore the hardware designers should focus more on these units.

Table 3.4, on the other hand, gives the energy consumption breakdown across five pipeline

stages (the fetch stage IF, the instruction decode stage ID, the execution stage EXE, the

memory access stage MEM, and the write-back stage WB). The entries under the MEM and IF

stages here do not involve the energy consumed in data and instruction cache memory,

respectively. We observe that most of the energy is spent in the ID, EXE, and WB stages.

Also, the compiler optimizations in general increase the energy consumption in the EXE

stage, since that is where the ALU sits; this increase is between 1% and 8% and also

depends on the program being run.

3.4.8 Sensitivity to Technology Changes

The main memory has been a major performance bottleneck and has attracted a

lot of attention [91, 75, 3]. Changes in process technology have made possible to embed

a DRAM within the same chip as the processor core. Initial results using embedded

DRAM (eDRAM) show an order of magnitude reduction in the energy expended in main

memory [91]. Also, there have been significant changes in the DRAM interfaces [30] that

can potentially reduce the energy consumption. For example, unlike conventional DRAM
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Version Register Pipeline Functional Data-path
File Registers Units Muxes

unoptimized 35.99 36.33 15.76 8.36
l 36.09 34.87 17.34 8.11
u 36.19 36.17 15.98 8.31
t 34.60 33.56 19.93 7.80
l+u 35.87 34.12 18.19 7.93
l+t 35.27 33.74 19.25 8.17
t+u 35.31 35.07 17.89 8.06
t+l+u 35.41 34.15 18.38 7.96

Table 3.3. Datapath energy breakdown (in %s) in hardware components level.

Version IF ID EXE MEM WB

unoptimized 3.33 22.94 33.17 8.70 31.87
l 3.10 23.88 34.20 8.32 30.50
u 3.18 23.93 33.47 8.63 30.78
t 3.25 24.04 35.91 7.95 28.85
l+u 2.97 24.83 34.81 8.13 29.27
l+t 2.95 23.23 35.73 8.07 30.02
t+u 3.15 23.61 34.78 8.34 30.12
t+l+u 2.95 24.63 35.02 8.14 29.26

Table 3.4. Datapath energy breakdown (in %s) in pipeline stage level.
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memory sub-systems that have multiple memory modules that are active for servicing

data requests, the direct RDRAM memory sub-system delivers a full bandwidth with

only one RDRAM module active. Also, based on the particular low power modes that

are supported by the memory chips and based on how effectively they are utilized, the

average per access energy cost for main memory can be reduced by up to two orders of

magnitude [31].

In order to study the influence of changes in Em due to these technology trends,

we experiment with different Em values that range from 4.95 × 10−9 (our default value)

to 2.475 × 10−11. We observe from Figure 3.8 that from Em = 4.95 × 10−9 on, the main

memory energy starts to lose its dominance and instruction cache and datapath energies

constitute the largest percentage. While this is true for both tiled and untiled codes, the

situation in tiled codes is more dramatic as can be seen from the figure. For instance,

when Em = 2.475 × 10−10, N=100, and T=10, the datapath energy is nearly 5.7 times

larger than the main memory energy (which includes the energy spent in both data and

instruction accesses), and the Icache energy is 13.7 times larger than the main memory

energy. With the untiled code, however, these values are 0.98 and 2.43, respectively.

The challenge for future compiler writers for power aware systems then is to use tiling

judiciously so that the energy expended in datapath and on-chip caches can be kept under

control.

3.4.9 Other Codes

In order to increase our confidence in our observations on the matrix-multiply

code, we also performed tiling experiments using several other loop nests that manipulate
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Fig. 3.8. Energy consumption with different Em (J) values.

multi-dimensional arrays. The salient characteristics of these nests are summarized in

Table 3.5. The first four loop nests in this table are from the Spec92/Nasa7 benchmark

suite; syr2k.1 is from Blas; and htribk.2 and qzhes.4 are from the Eispack library.

For each nest, we used several tile sizes, input sizes, and per memory access costs, and

found that the energy behavior of these nests are similar to that of the matrix-multiply.

However, due to lack of space, we report here only the energy break-down of the untiled

and two tiled codes (in a normalized form) using two representative Em values (4.95×10−9

and 2.475×10−11). In Figure 3.9, for each code, the three bars correspond to the untiled,

tiled (ijk,T=5), and tiled (ijk,T=10) versions, respectively, from left to right. Note

that while the main memory energy dominates when Em is 4.95 × 10−9, the instruction

cache and datapath energies dominate when Em is 2.475 × 10−11.
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nest arrays data size tile sizes

btrix.4 two 4-D 21.0 MB 10 and 20
vpenta.3 one 3-D and five 2-D 16.6 MB 20 and 40
cholesky.2 one 3-D 10 MB 10 and 20
emit.4 one 2-D and one 1-D 2.6 MB 50 and 100
htribk.2 three 2-D 72 KB 12 and 24
syr2k.1 three 2-D 84 KB 8 and 16
qzhes.4 one 2-D 160 KB 15 and 30

Table 3.5. Benchmark nests used in the experiments. The number following the name
corresponds to the number of the nest in the respective code.
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3.5 Related Work

Compiler researchers have attacked the locality problem from different perspec-

tives. The works presented in Wolf and Lam [100], Li [70], Coleman and McKinley [27],

Kodukula et al. [65], Lam et al. [67], and Xue and Huang [102], among others, have sug-

gested tiling as a means of improving cache locality. In [100] and [70], the importance of

linear locality optimizations before tiling is emphasized. While all of these studies have

focused on the performance aspect of tiling, in this chapter, we investigate its energy

behavior and show that the energy behavior of tiling may depend on a number of factors

including tile size, input size, cache configuration, and per memory access cost.

Memory optimizations for embedded systems have been partly addressed by

Panda et al. [77] and Shiue and Chakrabarti [90]. Panda et al. [77] used cache size

and processor cycle count as performance metrics and proposed a method for off-chip

data placement. Shiue and Chakrabarti [90] presented a memory exploration strategy

based on three metrics, namely, processor, cycles, cache size, and energy consumption.

They have found that increasing tile size and associativity reduces the number of cycles

but does not necessarily reduce the energy consumption. In comparison, we focus on the

entire system (including datapath and instruction cache) and study the impact of a set

of parameters on the energy behavior of tiling using several tiling strategies. We also

show that datapath energy consumption due to tiling might be more problematic in the

future, considering the current trends in memory technology. The IMEC group [20] was

among the first to work on applying loop transformations to minimize power dissipation

in data dominated embedded applications.
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In this chapter, we utilize the framework that was proposed in [96, 104]. This

framework has been used to investigate the energy influence of a set of high-level compiler

optimizations that include tiling, linear loop transformations, loop unrolling, loop fusion,

and distribution [53]. However, the work in [53] accounts for only the energy consumed

in data accesses and does not investigate tiling in detail. In contrast, our current work

looks at tiling in more detail, investigating different tiling strategies, influence of varying

tile sizes, and the impact of input sizes. Also, in this chapter, we account for the energy

consumed by the entire system including the instruction accesses. While the work in

[52] studies different tiling strategies, this chapter focuses on impact of different tiling

parameters, the performance versus energy consumption impact, and the interaction of

tiling with other high-level optimizations.

The studies of energy consumption in caches are also growing. Bunda et al. [16]

and Furber et al. [37] presented studies of instruction set design and its effects on cache

performance and power consumption. Su and Despain [92] and Burgress et al. [36] also

presented low-power cache design examples. These studies are orthogonal to our work

and the interaction between hardware low power cache design techniques and compiler-

directed optimizations for low energy merits further investigation.

3.6 Conclusion

When loop nest based computations process large amounts of data that do not fit

in cache, tiling is an effective optimization for improving performance. While previous

work on tiling has focused exclusively on its impact on performance (execution cycles), it

is critical to consider its impact on energy as embedded and mobile devices are becoming
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the tools for mainstream computation and start to take the advantage of high-level and

low-level compiler optimizations.

In this chapter, we study the energy behavior of tiling considering both the entire

system and individual components such as datapath, caches, and main memory. Our

results show that the energy performance of tiling is very sensitive to input size and

tile size. In particular, selecting a suitable tile size for a given computation involves

tradeoff between energy and performance. We find that tailoring tile size to the input

size generally results in lower energy consumption than working with a fixed tile size.

Since the best tile sizes from the performance point of view are not necessarily the best

tile sizes from the energy point of view, we suggest experimenting with different tile sizes

to select the most suitable one for a given code, input size, and technology parameters.

Also, given the current trends in memory technology, we expect that the energy increase

in datapath due to tiling will demand challenging tradeoff between prolonging battery

life and limiting energy dissipated within a package.
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Chapter 4

ESTIMATING INFLUENCE OF

DATA LAYOUT OPTIMIZATIONS

ON SDRAM ENERGY CONSUMPTION

4.1 Introduction

The growing speed gap between processors and off-chip memories and the increas-

ing memory bandwidth demand of video processing applications make efficient memory

accesses critical. The power consumption of memory accesses by such applications has

also become a very crucial factor as more and more portable devices support video in

addition to other forms of data. Newer DRAM families such as SDRAMs and RDRAMs

now provide various modes to support the application’s bandwidth requirement (e.g.,

in the burst mode, a burst of data can be accessed in one transaction). The multiple

banked memory architectures make it possible for two consecutive accesses to different

banks be overlapped seamlessly by careful selection of burst size. However, if two suc-

cessive accesses are to two different rows (pages) of the same bank, they are in large

part serialized, thereby increasing memory latency. We refer to this change of pages as

the “page break.” Although the cycle penalty can be hidden by judicious placement of

memory accesses (using, for example, software prefetching) or bank interleaved accesses,

the energy consumption caused by precharge and activation of memory cannot always

be avoided. As an example, for the Micron’s four banked 8MB SDRAM with 32-bit wide
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data output lines, a page activation costs about six times more energy than the data

transfer of one word [1].

In the past, several techniques have been proposed to reduce the number of page

breaks in DRAMs. For example, in [56], new CDFG (control-data flow graph) opera-

tions are defined to enable finer memory access scheduling during high-level synthesis.

Various optimization techniques have also been proposed. Specifically, their array-to-

bank assignment algorithm builds array interference graphs and partitions them so that

arrays which are accessed in parallel are assigned to different banks. They reorder array

references in the code such that same array references are moved close to one another in

a basic block (this enables the scheduler to identify the possibility of invoking the page

or burst mode accesses). Various loop transformations are also applied to take advantage

of SDRAM access modes.

In this part of the thesis, our focus is on an SDRAM-based architecture that ex-

ecutes video processing codes. First, we propose an estimation framework to count the

number of page breaks. While it might be possible to use detailed simulation for small

kernels [57], we believe that a fast estimation technique (which can also be embedded

within an optimizing compiler) can be of great value. We show that Presburger arith-

metic and Ehrhart polynomials can be used for estimating the number of page breaks

statically (i.e., at compile time). The experimental results indicate that the proposed

framework can estimate page breaks very well.

Our second objective is to study the impact of memory layout on energy sav-

ings. Specifically, we propose to use block-based layouts for data arrays instead of more

traditional row-major or column-major layouts. The idea here is to make the memory
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layouts more compatible with the access patterns of video applications and to minimize

the number of page breaks. It should be observed that page breaks can be costly from

both energy and performance perspectives. As compared to previous hardware-based

studies in this direction [57], our approach is purely software-based and does not require

any modification to the memory controller hardware. While block layouts have been

used by prior research in the area of cache locality [24], our work employs them in the

context of SDRAMs.

We also extend the estimation framework for block-based layouts. This is impor-

tant, since it can be defined using different dimension sizes (e.g., 50×50 blocks versus

75×60 blocks). To determine the best sizes, we need to estimate the number of page

breaks incurred by a given size.

The rest of this chapter is organized as follows. In the next section, we provide

background information on operations of SDRAM and on the Polyhedral model. In Sec-

tion 4.3 and Section 4.4, we discuss our approach in detail. In Section 4.5, we introduce

our simulation environment and present experimental data. Finally, we conclude this

chapter in Section 4.6.

4.2 Preliminaries

In this section, we first explain the basic operations of an SDRAM, and then give

background information on the Presburger formulas (which is the cornerstone of our

implementation).
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4.2.1 SDRAM Basics

In our work, we focus on SDRAM, since it is currently the most widely used

DRAM type in embedded video applications. The diagram of a typical SDRAM is

depicted in Figure 4.1. Basic operations in an SDRAM consist of three steps : precharge,

activation, and read/write. A page activation command selects a bank and row address,

and transfers that row’s cell data, which is stored in the array, to the sense amplifiers.

The data stays in the sense amplifiers until a new precharge command is issued to the

same bank, during which a read or a write operation can take place. The memory can

be precharged right after the activation, which is called the closed page policy, or before

the next activation (referred to as the open page policy), depending on the SDRAM

controller policy. We assume open page policy in our work.

In general, in an SDRAM, the memory array is divided into multiple banks (which

share address and data buses) — in Figure 4.1, we have four banks. This allows one

bank to be precharged while the other is being accessed. This hides precharge latency

and effectively allows bandwidth to be increased. SDRAMs incorporate an on-chip burst

counter, which can be used to increment column addresses for very fast burst access. The

burst length and burst type (sequential or interleaved) can be selected by programming

the mode register. It should be noted that one of the most important problems in

making effective use of an SDRAM-based architecture is that of ensuring data reuse.

This is because, if an access pattern frequently changes the pages that it touches, it

incurs extra latency in memory accesses and increases energy consumption. Instead, a

preferable access pattern would exploit data locality at the page granularity. As will
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Fig. 4.1. Diagram of a typical SDRAM. The mode register is used to set the memory
access mode to use. If the burst mode is selected, an entire page is buffered. Whether
such a buffering is beneficial or not depends strongly on the (page-level) data reuse
exhibited by the application.

be discussed in Section 4.4, exploiting data locality is particularly challenging in video

applications, since these applications access data in rectilinear blocks, each of which may

span multiple page boundaries.

4.2.2 The Polyhedral Model

Presburger formulas [66] are those formulas that can be constructed by combining

affine constraints on integer variables with the logical operations ∨ (or), ∧ (and) and !

(not), and the quantifiers ∀ and ∃. It should be noticed that the affine constraints can be

either equality constraints or inequality constraints. For example, {[k]| ∃α such that k =

2α∧ (0 < k < n)} is a Presburger formula that represents all positive even numbers less

than n. There are a number of algorithms for testing the satisfiability of arbitrary Pres-

burger formulas, and the Omega Library [2] is a set of C++ classes for manipulating

Presburger formulas. It is used in many research projects in the area of compilation for

high-performance computers (e.g., data dependence analysis, program transformations,
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detecting redundant synchronization, and code generation). In this work, we employ

Omega Calculator, a user-friendly interface to the Omega Library to formulate the con-

ditions for page breaks. We also make use of Ehrhart polynomials, which permit us to

count the number of integer points contained in a parameterized polyhedron. 1 In our

context, Ehrhart polynomials count the number of page breaks.

4.3 Page Break Estimation Framework

Video applications usually work in blocks; that is, the computation is staged

into portions and each portion operates on a block of data. In a quadtree-structured

motion estimation program, for example, 16 pixels in each of 4×4 block are averaged in

the sub-4 sampling phase for each of the 16×16 macro-blocks [88]. Consequently, the

array data are accessed block-by-block. Consider a typical access scenario illustrated in

Figure 4.2(a). Here, a given two dimensional array is accessed block-by-block. There

can be two types of page breaks (transitions) in such an access. First, in processing a

block, execution may move from one page to another. This is termed as the “intra-block

page break.” In addition, it is also possible to incur a page break when moving from one

block to another. This type of page break is called the “inter-block page break.”

In our work, the number of intra-block and inter-block page breaks is represented

using Presburger formulas [66]. At the high level, our approach builds Presburger formu-

las that represent page breaks (as will be explained shortly), and simplifies them using

the Omega Calculator [2]. After that, the simplified union of the polytope is transformed

1
An “affine half-space” of R

n
is the set of vectors x that satisfy the linear inequality α.x ≤ β for

some vector α and real number β. The intersection of a set of half-spaces is called a “polyhedron.”
A bounded polyhedron is called a “polytope.’[99]
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to a disjoint union of polytope using PolyLib [71]. Then, Ehrhart polynomials count the

number of integer points in the disjoint union of polytope, which gives the number page

breaks. In the following discussion, we give the details of our Presburger formulas for

identifying the page breaks. Before going into details of our formulation, however, we

first present the mathematical representation that we adopt.

We consider the case of references to arrays with affine subscript functions in

nested loops, which are common in video applications. Consider such an access to a

p-dimensional array in an d-deep loop nest. Let l denote the iteration vector (consisting

of loop indices starting from the outermost loop). All values that can be taken on by l

are collectively represented by an iteration space I. Each reference to a p-dimensional

array can be represented as LI + o, where the p× d matrix L is called the access matrix

and the p-element vector o is called the offset vector [100]. To illustrate the concept,

consider a reference to array Y , such as Y [i+1][j −1] in a nest with two loops: i (outer)

and j (inner). In this case, L is a two-by-two identity matrix and o is [1 − 1]T . The

pair (L, o) is also referred to as the index function.

Each array ‘block’ reference Ru in the code is represented using a quadruple

Ru = (Y, Fu, S,B). In this quadruple, Y is the array (referenced) divided into blocks

B, Fu is the index function (an (L, o) pair), and S is the statement that contains the

reference. Array Y is assumed to be of size [0, d0 − 1][0, d1 − 1]. In this work, we restrict

our discussions to two dimensional arrays. In the following, we make several (Presburger

Formula) definitions. In these definitions, |= means “means that”.
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Valid Iteration Point: The predicate l ∈ I indicates the fact that iteration point

l = [l0, . . . , ld−1] belongs to the iteration space, assuming d nested loops.

l ∈ I |=
d−1∧

i=0

(0 ≤ li < ni).

Lexicographical Ordering of Accesses: The predicate (Ru, l) ≺ (Rv,m) describes

the fact that the memory access made by reference Ru at iteration l precedes the memory

access made by Rv at iteration m, or (if l = m) Ru textually precedes Rv in the loop.

(Ru, l) ≺ (Rv,m) |= l ∈ I ∧ m ∈ I ∧

((∃i : 0 ≤ i ≤ d − 1 ∧ li < mi ∧
i−1∧

j=0

lj = mj) ∨

(

d−1∧

j=0

lj = mj ∧ u < v)).

Data Layouts in Memory: For a given array element, we need to determine its

location in memory. If an array, Y , is stored in row-major order, an array element

referred by the index Fu(l), where l is a valid iteration point can be found at:

m = Lx(Fu(l), µx) |= m ≥ 0 ∧

m = µx + (d1i0 + i1).
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For an array stored in column-major order, its array element can be found at:

m = Lx(Fu(l), µx) |= m ≥ 0 ∧

m = µx + (i0 + d0i1).

Here, µx is the starting address (base address) for the array.

Mapping Memory Locations to Memory Banks: We assume a linear mapping of

memory locations to the SDRAM and that the total size of the SDRAM, Stotal = Nrow ∗

Nbank ∗P , where Nrow , Nbank and P represent the number of rows per (SDRAM) bank,

the number of banks, and the size of a page in bytes, respectively. In addition, we assume

that the address space of the SDRAM is [0, Stotal−1]. Based on these, a memory address

m is assigned to row r of bank b, where b∗Nrow ∗P +r∗P ≤ m < b∗Nrow ∗P +(r+1)∗P .

This can be expressed as:

Map(m, b, r) |= 0 ≤ b < Nbank ∧ 0 ≤ r < Nrow ∧

b ∗ Nrow ∗ P + r ∗ P ≤ m < b ∗ Nrow ∗ P + (r + 1) ∗ P.

Page Break Model for Conventional Data Layouts: We define a fetch order

between two elements of the block. Note that the lexicographical order defined earlier is

for blocks. For each block reference, Ru, a fetch order for elements inside the block can
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be defined as:

(ri, rj) |= i, j ∈ BI ∧

i ≺ j ∧

¬(∃k : k ∈ BI ∧ i ≺ k ≺ j).

BI represents the iteration space for the block fetch, [0, 0] to [b0 − 1, b1 − 1]. This order

is independent of loop nests but rather dependent on data layout order. For example,

if the block of data is stored in row-major order, we might as well access each element

row-wise.

An intra-page break occurs between two consecutive fetch elements, ri and rj , in

a block reference, Ru, if they are mapped into two different rows and can be modeled

as:

(ri, rj) ∈ IntraPageBreak(L) |= i, j ∈ BI ∧

ri, rj ∈ Ru ∧

∃b, r : Map(Lx(Fu(l) + i, µx), b, r) ∧

∃r′ : Map(Lx(Fu(l) + j, µx), b, r′) ∧

(r 6= r′).

An inter-page break exists between two blocks, Ru and Rv , if the last element of

Ru is fetched from a different row from that of first element of Rv and can be modeled
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as:

(ri, rj) ∈ InterPageBreak(L) |= i, j ∈ BI ∧

ri ∈ Ru ∧ rj ∈ Rv ∧

¬(∃i′ : ri ≺ r
i′
) ∧

¬(∃j′ : r
j′ ≺ rj) ∧

¬(∃w : Ru ≺ Rw ≺ Rv) ∧

∃b, r : Map(Lx(Fu(lu) + B,µx), b, r) ∧

∃r
′
: Map(Lx(Fv(lv), µx), b, r

′
) ∧

(r 6= r′).

Counting Page Breaks: The total number of page breaks can be obtained by adding

the number of intra-page breaks and inter-page breaks. We use the Omega Calculator

to simplify the formulas above. After simplification, we are left with formulas defining

a union of polytope. The number of integer points in this union is the number of

breaks. PolyLib is used to operate on such unions. We first convert the union into a

disjoint union of polytope, and then use Ehrhart polynomials to count the number of

integer points in each polytope. It might happen that the location of the first block is

dependent on the result of the computation such as motion vectors. It should be observed

that this can be incorporated into our formulas as Presburger formula allow symbolic

representations [66, 2]. The output of the final Ehrhart polynomials is represented in

the form of the motion vectors as free variables. Since the motion vectors have specific
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ranges allowed in the program, the number of page breaks are calculated by averaging

the polynomial over that range, assuming random distribution of motion vectors.

4.4 Blocked Data Layout

4.4.1 Overview

As mentioned earlier, video applications work in blocks. However, such an ac-

cess pattern might be problematic from the SDRAM perspective as illustrated in Fig-

ure 4.2(a). Every block fetch incurs almost three intra-block page breaks, since the

data is stored row-wise. The strategy proposed in this thesis is based on the concept

of “block-based memory layout” (also called the “tile-based layout”). The idea is that

instead of storing the array in row-major (or column-major) order in memory — as is

the method adopted by current languages/compilers, one can store the array in a block-

by-block fashion. Specifically, a given array is divided into “blocks” (“tiles”) of H × V ,

and the elements in each block are stored in consecutive memory locations. It should be

noted that the elements that map to the same block can be stored (within that block)

in row-major or column-major order (or even in more complex storage forms [24]), and

also, the relative storage order of blocks with respect to each other can be row-major or

column-major. This alternative storage strategy is depicted in Figure 4.2(b). It should

be noted that here we have H×V = P, where P is the page size. One good characteristic

of this storage form is that it fits very well to the access pattern in video codes (which is

also block based). For example, if we consider the a×b block in the upper-left portion of

Figure 4.2(b), we see that all data elements accessed are within the same page, meaning
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that the locality at the page-level is exploited fully. It is easy to see in Figure 4.2(b) that

the blocks marked by (1), (2), and (3) span, respectively, 2, 2, and 4 pages. Therefore,

assuming the existence of a local memory (that can keep at least one block of data), we

need to incur only 1, 1, and 3 page breaks, respectively. That is, we can access each

page one-by-one and transfer the required array elements (from that page) to the local

memory before moving to the next page.

It should be noted, however, that determining the most suitable values for H and

V is critical. This is because if these values are not selected carefully, we may incur a

large number of page breaks. A good selection of these values can minimize the number

of the blocks marked (1), (2), and (3) in Figure 4.2(b). The main difficulty here is that,

in general, it is not possible to determine the H and V values by considering only one

nest in the application. Instead, the entire program should be taken into account. Based

on this observation, we propose an estimation strategy that counts the number of page

breaks considering the access pattern exhibited by the entire application. We restrict

our focus to a single array at a time; that is, we do not consider page transitions between

different arrays, since there exist techniques that reduce the number of such transitions

by proper assignment of arrays to memory banks [56].

4.4.2 Page Break Estimation Framework

To estimate page breaks for blocked layout, the two following formulas substitute

the ones defined for conventional layouts. The rest of the formulas hold for blocked

layout, as well.
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Fig. 4.2. (a) Row-major memory layout. (b) Block-based memory layout. Note that
block layout fits very well in the access pattern of video applications (which is also block
based). Such a layout reduces the number of page breaks, thereby reducing energy
consumption.

Data Layouts in Memory: When block memory layout is adopted, this is not

trivial. Let us assume that the array is divided into H × V blocks. Consequently, we

have a total of C0 × C1 blocks, where C0 = dd0/V e and C1 = dd1/He. Then, an array

element referred by the index function Fu(l), where l is a valid iteration point, can be

found at location m = µx + P ∗ C1 ∗ n0 + P ∗ n1 + H ∗ o0 + o1 in the linear memory.

This can be expressed as:

m = Lx(Fu(l), µx) |= ∃n0, n1, o0, o1 :

0 ≤ n0 < C0 ∧ 0 ≤ n1 < C1 ∧

0 ≤ o0 < S0 ∧ 0 ≤ o1 < S1 ∧

Fu(l) = [V,H] ∗ [n0, n1]T + [o0, o1] ∧

m = µx + P ∗ C1 ∗ n0 + P ∗ n1 + H ∗ o0 + o1.
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In this expression, [n0, n1] is the block coordinates for Fu(l), and [o0, o1] is the offset

coordinates within a block. In other words, each array element is identified using a block

coordinate and an offset coordinate.

Page Break Model for Blocked Data Layouts: Let Bsize represent the size of

blocks (= [b0, b1]) for the reference Ru. Our model consists of three formulas to count

two types of intra-page breaks and one type of inter-page breaks.

Type 1 Intra-Page Breaks: Type 1 intra-page breaks can occur two different ways ; case

1 (marked 1 in Figure 4.2 (b)), when the lower left corner of the block, Fu(i) + [b0, 0],

reside in a different page from the upper left corner, Fu(i), and the upper right corner of

the block, Fu(i) + [0, b1], in the same page as the upper left corner, and case 2 (marked

2 in Figure 4.2 (b)), when the lower left corner of the block reside in the same page as

the upper left corner, and the upper right corner of the block in a different page from

the upper left corner. We can write this as follows:

((Ru, i) ∈ IntraPageBreakType1(L)) |= i ∈ I ∧

∃b, r : Map(Lx(Fu(i), µx), b, r) ∧

∃r′ : ((Map(Lx(Fu(i) + [b0, 0], µx), b, r′) ∧

(Map(Lx(Fu(i) + [0, b1], µx), b, r))) ∨

(Map(Lx(Fu(i) + [0, b1], µx), b, r′) ∧

(Map(Lx(Fu(i) + [b0, 0], µx), b, r)))) ∧

(r 6= r′).
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Type 2 Intra-Page Breaks: Type 2 intra-page breaks occur when a block falls on the

four-edged corner as in the block marked (3) in Figure 4.2 (b). We can identify these

types of page breaks by examining if both lower left corner and the upper right corner

reside in two different pages from the upper left corner:

((Ru, i) ∈ IntraPageBreakType2(L)) |= i ∈ I ∧

∃b, r : Map(Lx(Fu(i), µx), b, r) ∧

∃r′, r′′ : (Map(Lx(Fu(i) + [b0, 0], µx), b, r′) ∧

Map(Lx(Fu(i) + [0, b1], µx), b, r′′)) ∧

(r 6= r
′
6= r

′′
).

Inter-Page Breaks: Inter-page breaks occur when an access made by reference Ru

touches a different page from the page accessed by the last element of the preceding

reference, Rv . In mathematical terms:

((Ru, i) ∈ InterPageBreak(L)) |= i ∈ I ∧

∃b, r : Map(Lx(Fu(i)), b, r) ∧

∃j, r′ : j ∈ I ∧ (Rv , j) ≺ (Ru, i) ∧

Map(Ly(Fu(j) + [bv0 + bv1]), b, r′) ∧ (r 6= r′) ∧

¬(∃k,w : (Rv , j) ≺ (Rw, k) ≺ (Ru, i)).

Counting Page Breaks: Type 1 intra-page breaks or inter-page breaks incur only

one page break. In contrast, for a block with type 2 intra-page breaks, three additional
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pages need to be accessed to fetch the complete block. So, we multiply the number

of type 2 intra-page blocks by three. Therefore, the total number of page breaks can

be obtained by adding the number of type 1 intra-page breaks and inter-page breaks,

and three times the number of type 2 intra-page breaks. We use the Omega Calculator

to simplify the formulas above, and Ehrhart polynomials to count the number of page

breaks, as can be found in Section 4.3.

4.4.3 Discussion

In this subsection, we discuss two important issues regarding our approach. First,

it is important to study how the block-based memory layout should be represented. It

should be observed that the address translation from the conventional (row-major) layout

to the block-based layout involves divisions and modulo operations:

• relative address of A[i][j] in row-major layout:

i ∗ N + j

• relative address of A[i][j] in block-based layout:

((j/H) + (i/V ) ∗ n) ∗ P + (i%V ) ∗ H + (j%H).

Since H and V are assumed to be powers of two in this study, all multiplications

(except perhaps the one with n) and divisions can be implemented using shift-left and

shift-right operations. The two modulo operations can be implemented easily as well,

since the results are the shifted values. However, when H and V cannot be expressed as

powers of two, divisions and modulo operations cannot be easily removed. As suggested
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by Anderson et al [10], simple code optimization techniques such as loop invariant re-

moval and induction variable recognition/elimination can move some of the division and

modulo operators out of inner loops, thereby reducing their negative impact. In fact,

as demonstrated in [10], modulo and division operations can be converted into linear

additions (inserting conditional statements when necessary to handle boundary cases).

In [39], the modulo and division overhead can be almost completely removed by their

ADOPT technique, which combines an algebraic transformation exploration approach

to a technique for reducing the piece-wise linear indexing to linear pointer arithmetic.

So we believe that implementing block-based layout in the code does not incur much

overhead.

We now explain how our approach can be embedded within a compilation frame-

work. As pointed out earlier, our approach gives a count of the number of page breaks for

a given H, V and a, b parameters. In order to embed our approach within an optimizing

compiler, two tasks need to be performed. First, assuming that we do not change the

a, b values (though it is also possible to do so), the compiler has to generate a set of

suitable H, V pairs and use our implementation to count the number of page breaks. In

determining such H, V pairs, the compiler can follow different methods. For example,

one simple strategy is to try only pairs H = ai and V = bi, where ai, bi represents

the (block) access pattern in nest i. In this way, we try only m alternatives, where m

being the number of nests in the application, and select the one that generates the min-

imum number of page breaks (considering all the nests). Designing and implementing

more sophisticated strategies for determining suitable H, V pairs to try is in our future

agenda. The second task that needs to be performed is to move the estimation process
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to the compiler. This can be achieved using the Omega Library instead of the Omega

Calculator.

4.5 Experiments

4.5.1 Setup

Memory Reference Log (addr, size, time)

Memory Instrumentation Tool

ATOMIUM 

C code

Total Activation Energy

#. Page Activations
SDRAM Simulator

Power Calculator
SDRAM 
MICRON’s 

Fig. 4.3. Our simulation setup. Simulated results were compared with our estimations.

Figure 4.3 shows our experimental setup. To evaluate the accuracy of our estima-

tions, we compared them to actual simulation results. The simulation results have been

obtained by using the Atomium tool [21]; that is, we fed our benchmarks to the Atomium

tool to generate burst access logs to SDRAMs [21]. Each line of the log is composed of

memory address, size (of request), and time-stamp. This log is run through the SDRAM

simulator that produces the number of memory pages activated by the program [29].

Then the Micron’s Power Calculator is employed to obtain the energy consumption [1].

Page activation energy (E ACT) and standby energy (E STAT) are two major energy
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components in current SDRAMs. In this study, we focus on these components, since the

energy for data transfer remains unchanged regardless of the data layout used. E ACT

includes the energy to precharge and activate a memory page and can be calculated

using:

E ACT = (IDD0-IDD3) * Trc * VDD * clock period * number of activations,

where IDD0 and IDD3 are average activation current and standby current, respectively.

Trc is the minimum time required between two successive row activations to the same

bank. By reducing the number of activations (number of activations), we can reduce

E ACT. On the other hand, E STAT can be calculated as follows:

E STAT = IDD3 * VDD * clock period *total cycles.

Note that minimizing the number of page activations reduces E STAT as it reduces the

total number of cycles (total cycles). The simulated energy numbers have been obtained

by using the framework in Figure 4.3. On the other hand, the estimated energy numbers

have been obtained by first estimating the number of page breaks as explained in this

chapter, and then by feeding this estimation to the two energy equations given above.

For the experiments, we assume four SDRAM banks (each is 2MB) with a 32-bit wide

bus and 1KB pages as the Micron’s model provides. We also assume the existence of

a local memory (for both row-major and tile-based memory layouts). Since our model

works for data dependent blocks as well, we executed our simulations with a selection of

different images.
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4.5.2 Benchmarks

We use three benchmarks to illustrate three representative behaviors: qsdpcm

(a quadtree-structured motion estimation application), phods (a parallel hierarchical

motion estimation application), and edge detect (an edge detection code) [68]. For each

application, we used several sets of the form (block 1, block 2,..., block n, tile shape),

where block i is the access pattern (i.e., the (a,b) block) used in the ith nest of the code,

and tile shape is the H, V pair (i.e., the block dimensions in the tile-based layout). In

qsdpcm, the four sets are considered: set 1 = (16×4, 16×2, 18×15, 18×1, 16×2, 64×16),

set 2 = (16×4, 16×2, 18×15, 18×1, 16×2, 32×32), set 3 = (16×4, 4×8, 18×15, 18×1,

4×8, 64×16), and set 4 = (16×4, 4×8, 18×15, 18×1, 4×8, 32×32). In set 3 and set 4,

we replaced 16×2 blocks by 4×8 blocks. In phods, for each macro-block, x-axis and

y-axis are searched independently to find the best motion vectors for each axis. This

process is repeated for three passes of different granularities (4, 2, and 1) of step sizes.

For the initial step size of 4, there are no motion vectors involved. However, for the

remaining step sizes, the previously calculated motion vectors are used to find a better

match. Accordingly, three sets are chosen: set 1 = (16×4, 16×2, 16×1, 4×16, 2×16,

1×16, 64×16), set 2 = (16×4, 16×2, 16×1, 4×16, 2×16, 1×16, 32×32), and set 3 =

(16×4, 16×2, 16×1, 4×16, 2×16, 1×16, 16×64). We also include a set with row-major

data layout: row-major = (16×4, 16×2, 16×1, 4×16, 2×16, 1×16, row-major layout).

Finally, in the edge detection application, 3×3 sized filters are multiplied with the input

image one after another. Therefore, we choose three sets: set 1 = (3×3, 16×16), set 2
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= (3×3, 32×8), and set 3 = (3×3, 64×4). In this code, every element takes four bytes,

so we have rather smaller tile dimensions compared to the previous two benchmarks.

4.5.3 Results

Figure 4.4 shows the estimated and the simulated number of page breaks for

phods. Our estimation shows very good estimation result for row-major layout. We plan

to conduct more experiments for conventional layouts.

Fig. 4.4. Estimated and simulated number of page breaks for phods .

With an original image size of 176×144 bytes, the improvement with the block-

based layout is not pronounced, since most of the rows of a block are stored in the same

page. PDAs such as PalmPilot these days have 160×160 resolution with 4 bytes per

pixel, which equals to 640×160 bytes. In this case, less than two rows of the image

can be mapped to the same SDRAM page, assuming 1KB page size. We also expect
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the resolution will increase in the near future as RAMs become cheaper and smaller.

Figure 4.5 shows the SDRAM energy consumption for three versions of the qsdpcm

application. For each energy component, the bars in this graph represent 800×640 and

176×144 with row-major data layout (original version), and the block-based (tile-based)

data layout (64×16) in that order. As pointed out earlier, the performance and energy

consumption of the original layout is largely dependent on the image size. In fact, when

the image size is small (176×144), there is little difference with the tile-based layout.

However, the tile-based memory layout shows no difference at all with varying image

sizes. The fact that the results for block-based data layout are not affected by the image

size (i.e., uniformly good performance for different array sizes) is another benefit of this

layout, since the same result is expected without any code change for various image sizes.

Fig. 4.5. SDRAM energy breakdown for three versions of qsdpcm. A tile (block) size of
64×16 was assumed for the block-based code (the last bar for each energy component).
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In Figure 4.6, the estimated (left bars) and the simulated (right bars) energy

consumptions are given for each of our benchmarks. In the first benchmark, qsdpcm,

we can safely conclude that the set 1 is our choice. If we had arbitrarily chosen set 2,

we would have spent more than half of overhead energy compared to the set 1. The

figure also shows that our estimated numbers follow the simulated results very closely,

considering that dynamic references of blocks that are dependent on motion vectors

constitute approximately half the amount of total block references in the driver. In

our second benchmark, phods, the estimations show around 70-80% accuracy compared

with the simulated results. Most of the page breaks here are incurred by dynamic block

accesses. Accesses by step size of 4 are the only static accesses (i.e., no motion vectors

involved) but they are perfectly aligned with the tiles, incurring no intra-page blocks.

And, the number of their inter-block page breaks is negligible. The result obtained by

our formulas is the averaged result over the motion vector range of [-4, 4] for 16×2, and

2×16 blocks, and [-6, 6] for 16×1, and 1×16 blocks. Even though we observe a larger

discrepancy between the estimated and the simulated results than the previous example,

the results show that our estimation gives 32×32 as the best tile size, which is the same

results returned by the simulation. In the last benchmark, edge detect, all references

are static, involving no dynamic vectors. Note that for static block references, we can

obtain exact number of page breaks using our formulas.

Our formulas provide estimation results in constant time regardless of data set

sizes and the images the simulations would run with. On the contrary, simulations would

not be plausible when the data set size is huge, generating prohibitively large memory



83

reference logs, and taking long period of time. Finding proper sample data points would

also be difficult.

phods

edge_detect

qsdpcm

Fig. 4.6. Comparison of the estimated (left bars) and the simulated (right bars) energy
consumption for the three benchmarks, qsdpcm, phods, and edge detect (from left to
right).

4.6 Conclusion

This chapter presents a mathematical formulation, which allows us to count the

number of page breaks for both conventional and block-based data layout, and studies the

impact of block-based memory layout in SDRAM energy consumption. The experimen-

tal results obtained using three benchmark codes indicate that our estimation strategy
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is accurate and block-based memory layouts reduce the number of page breaks signifi-

cantly. Our ongoing work includes embedding our tool within an optimizing compiler

and performing experiments with larger dimensional arrays.
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Chapter 5

A FRAMEWORK FOR ENERGY ESTIMATION

OF VLIW ARCHITECTURES

5.1 Introduction

Energy consumption has become an important issue with the widespread use of

battery operated mobile devices. Very Long Instruction Word (VLIW) architectures

are becoming popular and being adopted in many DSP and embedded architectures

[5]. These architectures are inherently more energy efficient than superscalar architec-

tures due to their simplicity. Instead of relying on complex hardware such as dynamic

dispatchers, VLIW architectures depend on powerful compilation technology. Various

compiler optimizations have been designed to improve the performance of these VLIW

architectures [44, 73]. However, not much effort has been performed at optimizing the

energy consumption of such architectures. In this chapter, we present the design and

use of a framework to enable more research on optimizing energy consumption in VLIW

architectures.

Recently, a number of cycle-accurate energy simulators have been developed for

simple RISC, DSP and superscalar architectures [104, 15]. An instruction level en-

ergy estimation methodology has also been proposed for exploring different architectural
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topologies for VLIW architectures [86]. In contrast, the VLIW energy estimation frame-

work proposed here provides flexibility in studying both software and hardware optimiza-

tions. As our energy estimation framework for VLIW architectures is built on top of the

Trimaran compilation and simulation framework, it has access to various high level and

low level compiler optimizations and can easily permit implementation of new compiler

optimizations. In this work, our emphasis is on the design of this energy simulator and

its use in studying both software and hardware optimizations.

The remainder of this chapter is organized as follows. Section 5.2 summarizes

the Trimaran tool-set and explains our energy simulator. Section 5.3 presents example

usages of our simulator. In this section, a high level compiler optimization technique

(loop tiling) and block formation algorithms are evaluated, illustrating the tradeoff be-

tween energy and performance. Energy impact of predication is also discussed in the

same section. An example of hardware optimization, multiple-banked register files, is

evaluated in terms of energy in Section 5.4. Finally, our conclusions are presented in

Section 5.5.

5.2 Modeling

Trimaran is a compiler infrastructure to provide a vehicle for implementation and

experimentation for state-of-the-art research in compiler techniques for Instruction Level

Parallelism (ILP) [6]. As seen in Figure 5.1, a program written in C flows through IMPACT,

Elcor, and the cycle-level simulator. IMPACT applies machine independent classical op-

timizations and transformations to the source program, whereas Elcor is responsible
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Fig. 5.1. Simulator block diagram.

for machine dependent optimizations and scheduling. The cycle-level simulator gener-

ates run-time informations for profile-driven compilations. The cycle-level simulator was

modified to instrument the access patterns of different components of the architecture.

This profile information was used along with technology dependent energy parameters

to obtain the energy consumption of the architecture. Our VLIW energy estimation

framework is activity-based; that is, energy consumption is based on number of accesses

to the components.

We first enhanced the Trimaran framework (see Figure 5.1) to model the cache by

incorporating the DineroIII cache simulator [7]. The major components modeled in our

energy estimation framework includes the instruction caches, register files, interconnect

structures between register files and the functional units, the functional units, data cache,

and clock circuitry. We briefly describe the energy modeling of these components.

The energy model proposed in [108] is extended to model different types of

memory elements including register files, memory modules and memory conflict buffers

(MCB). MCB [38] is a hardware mechanism enabling data dependence speculation to
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overcome ambiguous memory dependences [11]. The parameters for the models were

extracted from 0.35 µ technology files. It is modeled with a few architectural level pa-

rameters such as the number of read and write ports, number of bits per word, number

of registers, and several other relatively simple technology parameters. Energy cost of

every read and write access is assumed to be independent and, therefore, the total en-

ergy is estimated by multiplying the access energy costs by the number of accesses. This

model used two bit lines per write port, one bit line per read port, and one word line per

every port for the multi-ported memory. Energy for accessing the multiported memory

is obtained by summing the energy consumed in wordlines, bitlines, sense amplifiers and

cache control circuitry.

The instructions were classified into four types based on the unit used to exe-

cute them: integer, floating-point, branch and memory (load/store) instructions. The

energy characterization of the different operations performed was extracted from ac-

tual layouts of corresponding components. Average power consumption values obtained

through HSPICE simulation were used to model the activity based models. This task of

characterizing was made easier as we already had access to several of the layouts from

our prior energy modeling effort for embedded architectures [96]. The load/store func-

tional units are quite different from other functional units and each of them contains a

four entry load/store buffer with 32 bits per entry. In addition to the energy consumed

in accessing the buffers and calculating the address, load instructions also account for

the data cache access energy and the associated clock energy for the cache. When the

load instruction is speculative, MCB write energy is also added. Store instructions are
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also treated similarly and account for data cache write energy and the associated clock

energy. Load verify instructions for speculative loads are not currently supported.

Interconnects between the functional units and register files are modeled as a

multiplexor-based crossbar structure. Clustered and partitioned register file structures

are also modeled as explained later in this chapter. The energy consumption of the

crossbar structure is estimated using the multiplexor energy extracted from the layouts

and wire lengths parameterized based on size of the crossbar (determined by number of

ports and functional units).

Clock energy estimation is based on the clock energy model proposed in [33]. The

clock generation and distribution circuitry model includes the clock energy consumed by

the caches, register files, PLL, clock buffers and wires. It uses analytical models that

accept parameters such as number of memory ports, size of cache, number of registers

and technology parameters.

Clock energy for the PLL, maindriver, and wiring are added in every clock cycle.

Energy costs for instruction cache access and register file precharge energy are also added

in every cycle. For each operation, the register file accessed are monitored. For example,

if the predicate register file is accessed (i.e. predicate instruction), energy cost for the

predicate register file is added. This is done for every source register files accessed and

for destination register files which are not predicated or predicated true. A predicate

squash logic is used in our simulations to prevent instructions with false predicates from

committing [11].
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5.3 Evaluation - Software Optimizations

In this section, we investigate energy implications of software optimizations with

our simulator described in the previous section. We observe if energy consumption figures

show different behavior with those of performance.

5.3.1 High Level Compiler Optimization

In this section, we evaluated high level compiler optimizations in terms of energy

and performance. We used a high-level compilation framework based on loop (iteration

space) and data (array layout) transformations [50]. This framework applies iteration

space tiling and scalar replacement to obtain better temporal and spatial data locality

of an input C code. Five benchmarks were evaluated using our energy simulator. A

general purpose register (GPR) file size of 32 was used. Other parameters such as general

purpose rotating register file size, number of functional units and operation latencies,

etc. were remained unchanged from standard mdes file in Trimaran. 8KB direct-mapped

L1 instruction cache and 8KB/256KB two-way associative L1 and L2 data cache were

used in all experiments, unless stated otherwise. Cache line size was 32B for all the

caches. Inlining and modulo scheduling were activated. Basic block block formation

was also applied. Five benchmarks from Livermore, Perfect Club, Specfp92, and

Specfp95 were evaluated using our energy simulator. Energy estimations of optimized

benchmarks were scaled over unoptimized ones.

Figure 5.2 and Table 5.1 show the energy and performance result, respectively.

btrix and vpenta show favorable results both in terms of energy and performance by
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applying high-level optimizations. Note that total cycles taken is the sum of “non-stall

cycles” and “cache stall cycles” column. The optimized bmcm shows a significant drop

in cache stall cycles. However, the number of non-stall cycles increases significantly due

to more complex loop operations and subscript expressions. It can be observed from

the third column of Table 5.1 that the number of operations generally increase after

the applied optimizations. Since efficient clock gating can make the dynamic energy

consumption in stall cycles negligible, the overall energy consumption of the optimized

code increases in spite of the performance enhancement.

The optimized tomcatv exhibits an interesting behavior. The optimized version

consumes significantly more energy due to the increased pressure on the registers. The

resulting spill code to handle the increased pressure on the registers is observed to account

for 60% of the total operations. When the number of GPR is increased to 128 (see

Table 5.2), the unoptimized tomcatv takes 70% more cycles than the optimized one and

the optimized tomcatv shows less data cache energy consumption because of the reduced

data cache access misses.

Fig. 5.2. Energy distribution of benchmarks without (benchmark un) and with (bench-
mark op) high-level optimizations.
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benchmark non-stall cache stall total
cycles cycles # of ops

adi(un) 251,844 240,296 1,143,978
adi(op) 361,644 288,057 1,203,401
bmcm(un) 5,173,871 3,661,301 13,397,774
bmcm(op) 6,434,728 3,647 16,418,695
btrix(un) 3,129,390 11,021,465 11,316,798
btrix(op) 3,053,636 4,988,746 11,186,953
tomcatv(un) 450,682 1,113,693 1,795,499
tomcatv(op) 3,928,914 256,354 4,968,286
vpenta(un) 13,116,352 43,450,792 33,412,265
vpenta(op) 14,911,759 1,706,425 38,548,300

Table 5.1. Non-stall cycles, cache stall cycles, and total operations taken for unopti-
mized/optimized benchmarks.

5.3.2 Block Formation Algorithms

The VLIW processors suffer from insufficient parallelism to fill the functional

units available. Block formation algorithms such as superblock and hyperblock are pro-

posed [44, 73]. It is shown that significant performance improvement can be obtained

through theses algorithms. We evaluated three block formation algorithms, basic block

(BB), superblock (SB), and hyperblock (HB) to see how these algorithms affect the

system power.

Superblock Frequently executed paths through the code are selected and op-

timized at the expense of the less frequently executed paths [44]. Instead of inserting

bookkeeping instructions where two traces join, part of the trace is duplicated to opti-

mize the original copy. This scheduling scheme provides an easier way to find parallelism
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beyond the basic block boundaries, especially for the control-intensive benchmarks, be-

cause the parallelism within a basic block is very limited.

Hyperblock The idea is to group many basic blocks from different control flow

paths into a single manageable block for compiler optimization and scheduling using

if-conversion [73].

We selected two benchmarks from Spec95Int (129.compress and 130.li), two

benchmarks from Mediabench (adpcmdec, mpeg2dec), and DSPStone benchmarks. For

the sake of clarity, the numbers for the DSPStone benchmarks were averaged. 128 GPR

and 4 integer ALUs were used. Other parameters such as instruction latencies were from

Trimaran’s standard mdes file. In these experiments, the modulo scheduling was used.

Fig 5.3 shows the number of cycles and energy taken for each benchmark. All

values are scaled to those of BB with no modulo scheduling case. For 129.compress,

DSPStone, and mpeg2dec, both energy and performance show similar trend. For 130.li

and adpcmdec, there is an anomaly in the SB case. On close examination, it is observed

that there is a 15% - 40% increase in the number of instructions executed after the SB

formation as compared to the BB. Note that this does not translate to an increase in

the number of cycles as the average ILP is increased. However, the increased number of

instructions executed manifests itself in the form of increased energy. Another trend that

we observed was that SB and HB techniques were not that successful for the DSPStone

benchmarks. These benchmarks are quite small and regular. Hence, they do not gain

from the more powerful block formation techniques.

Figure 5.4 shows the component-wise breakdown of the energy graph in Figure 5.3

for selected benchmarks. It is observed that the data cache and register file energy costs
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increase with SB and HB due to the increased number of instructions executed. However,

the instruction cache clock energy decreases, because of the reduction in the number of

clock cycles caused by increased ILP.

Fig. 5.3. Energy and performance comparison of BB, SB, and HB when modulo schedul-
ing is activated.

5.3.3 Predication

Conditional branches create a control dependency problem limiting the available

ILP. Predicated execution is a mechanism of executing instructions conditionally based

on the value of a boolean source operand, referred to as the predicate [73, 11]. An

instruction is executed only when the predicate has True value. When the predicated

execution support is provided in the architecture, the compiler can eliminate many of the

conditional branches in an application, thereby enabling more efficient form for execution

on a wide-issue processor. A hyperblock is formed by grouping many basic blocks using
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Fig. 5.4. Energy distribution when modulo scheduling is activated. Each bar represents
relative energy cost for register files, ALUs, caches, and clock circuitry from bottom to
top.

predication [73]. Modulo scheduling in Trimaran also utilizes predication in Prolog and

Epilog of iterations [6].

We conducted experiments to see how much of the energy is wasted by predicate

false instructions (instructions with their predicate register value of False). A GPR size

of 128 was assumed and Trimaran’s std parameter file was used. Modulo scheduling

was activated. Table 5.3 shows energy consumed by predicate true and false instructions

of the total energy. In general, predicate false instructions are not a major energy

consumer. The adpcmdec, however, consumes more energy in predicate false instructions

than predicate true instructions when hyperblock formation is used. We also found that

percentage of predicated instructions of the total number of instructions is higher than

that corresponding percentage of the energy consumed by the predicate instructions. For

example, in 129.compress, 20% of the total instructions were predicate true instructions,

whereas their energy consumption was only 11%.
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5.4 Evaluation - Hardware Optimizations

In this section, we show an example of how our tool can be used as an aid in

embedded system design.

5.4.1 Multiple Register Banks

With the increased transistor budget and high ILP enabled, more and more func-

tional units are put into processors. This places an excessive pressure on the register file

as the number of ports and registers within the register file needs to be large enough to

sustain the large number of functional units. This leads to a performance bottleneck. A

solution is to partition the register file into multiple register banks. In [84], a taxonomy

of register architectures across the data-parallel, instruction-level parallel, and memory

hierarchy axes was developed for media processors. They concluded that the most com-

pact of these organizations reduces the register file area, delay, and power dissipation.

A register file architecture composed of multiple banks was proposed in [28]. They

focused on a two level organization, which is called a register file cache among different

multiple-banked organizations. Among the commercial DSP processors, TI C6201 [5]

has two clusters of functional units with their local register files. Two cross paths exist

to access non-local registers.

We consider a register file organization that trades space for improved energy

consumption behavior. Instead of a single monolithic register file for all functional units,

the functional units are partitioned into two parts with their own local register file to

form two clusters. Additionally, both the clusters have access to a common register file
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as shown in Figure 5.5. The common register file is used to store variables that are

accessed by functional units in both the clusters. In contrast, the local register files

are accessible only to the functional units in the cluster. While the number of registers

in the resulting architecture is three times more, the clustered architecture reduces the

complexity of the local register files. The number of ports in the local register files are

reduced by half as compared to that of the single monolithic register file, since local

register files are accessed only by half the number of functional units. The common

register file has the same number of ports as the monolithic register file. As the energy

consumption of the register file is a function of both the number of ports and the number

of registers, the energy cost per access to the local register files is less than that of the

common register file and the original monolithic register file. When most of the accesses

are confined to the local register file, we can anticipate improvements. We modified the

register allocation to exploit the local register file organization.

Figure 5.6 shows the relative energy consumption of the register file architecture

compared to the monolithic register file. Hyperblock and modulo scheduling were acti-

vated and Trimaran’s std parameter set is used. All benchmarks show reduced energy

consumption as compared to a single monolithic register file. In particular, when the

GPR size is 32, it consumes less than half energy than the monolithic register file. It

should be noted, however, that we are trading area for energy because we duplicated

register files into three pieces. The energy saving comes from the reduced number of

read ports (reduced by 4) and write ports (reduced by 2) and less complex interconnects

for the local register files.
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We also tracked the number of registers that are actually utilized in the local

register files and the common register file. We observe that there is scope for reducing

the energy consumption of our clustered architecture further by reducing the sizes of

the local and common register files. For example, 129.compress requires only 58 local

registers and 24 common registers (see the first column in Table 5.4) as opposed to 64

local registers and 32 common registers as used in our current evaluation.

Lcal Register File

Common Register File

Local Register File

Fig. 5.5. The register file architecture evaluated.

5.5 Conclusion

With the proliferation of portable consumer products, energy consumption has

become an important issue. The VLIW architectures are now being used in embedded

processor such as TI ’C6x [5] chips as many compilation techniques have succeeded in

improving ILP to increase their performance. In this chapter, we presented an energy

estimation framework built over the Trimaran compilation tool-set and evaluated the
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Fig. 5.6. Relative energy consumption of register files (including interconnects between
register files and functional units). Each bar represents GPR size of 32, 64 and 128,
respectively.

influence of both architectural and compiler optimizations on energy efficiency using the

proposed framework.
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tomcatv(un) tomcatv(op)

#. cycles stalls total #. cycles stalls total #.
GPR (K) (K) ops (K) (K) (K) ops (K)
32 450 1,113 1,795 3,928 256 4,968
64 438 1,108 1,781 2,274 346 3,583
128 438 1,108 1,781 542 343 1,983

data cache energy (J) data cache energy (J)

32 1.705854e-04 4.111437e-04
64 1.689281e-04 2.821131e-04
128 1.689116e-04 1.219093e-04

#. dcache read accesses #. dcache read accesses
L1/L2/Main (K) L1/L2/Main (K)

32 372 161 18 1252 21 14
64 367 160 18 906 21 14
128 367 160 18 394 21 14

Table 5.2. Performance and energy numbers of unoptimized tomcatv and optimized
tomcatv as GPR size grows.

predicate true (%) predicate false (%)

Benchmark BB SB HB BB SB HB
129.compress 10.99 0.00 5.49 0.65 0.00 2.35
130.li 0.01 0.00 4.30 0.00 0.00 3.15
adpcmdec 0.00 0.00 6.62 0.00 0.00 9.26
DSPStone 54.28 3.57 6.04 1.62 1.63 3.40
mpeg2dec 42.47 0.00 0.54 5.91 0.00 0.57

Table 5.3. Energy (%) of predicate true and false instructions when modulo scheduling
is activated.



101

maximum number of registers
benchmark GPR=32 GPR=64 GPR=128

local com. local com. local com.
reg. reg. reg. reg. reg. reg.

129.

compress 58 24 98 50 165 81
130.li 50 29 85 40 131 64
adpcmdec 18 29 41 40 62 53
mpegdec 50 24 84 51 150 81

Table 5.4. Maximum number of registers used dynamically. Each column represents
number of maximum registers required for local register files and common register file
as depicted in Figure 5.5.
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Chapter 6

ADAPTING INSTRUCTION LEVEL PARALLELISM

FOR OPTIMIZING LEAKAGE

IN VLIW ARCHITECTURES

6.1 Introduction

The continuing quest for faster and more powerful processors has exacerbated

the power problem. With several million transistors switching at very fast clock rates

in current microprocessors, power consumption is considered the primary limiter to de-

signing more powerful computing systems. In addition, the technology trend of smaller

minimum feature sizes and threshold voltages has made the leakage power consumed

by the millions of transistors a major concern. Thus, the need for new features that

limit the power consumption of a processor without an adverse impact on performance

is imperative.

The current approaches to designing energy-efficient systems comprise a wide

spectrum of optimizations spanning circuit design, architectural design, compilation tech-

niques, operating system design, and application tuning [14]. Many researchers have also

looked at the interaction between the optimizations at different levels to maximize the

energy benefits. In this work, we utilize the interaction between the compiler and the

architecture in effecting power control mechanisms that exploit application characteris-

tics. Specifically, our work is based on the observation that there is a wide variation in
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the utilization of the processor resources during different phases of executing an appli-

cation. Many techniques have been proposed recently that adapt the configuration of

processor resources such as the cache and instruction issue queue in consonance with the

changing application requirements [40, 47, 78, 13, 12]. The goal of these techniques is to

transform the processor resources to a minimal configuration from a power consumption

perspective while minimizing any adverse impact on performance.

While most existing techniques focus on runtime monitoring techniques to adapt

the system configuration, we use an adaptation policy determined at compile time and

applied it at run time. This results in eliminating any overhead associated with the

runtime monitoring and control mechanisms. Further, our results show that the compile

time adaptation policy tracks changes effectively. The focus of our work is on exploiting

the idleness in functional units of wide-issue VLIW architectures. The basis of our work

stems from the observation that there is an inherent variation in the maximum number

of instructions that can be executed per cycle when executing an application.

Figure 6.1 shows this variation for one of the applications used in this work. The

degree of this variation depends on both the application characteristics as well as the

processor resources. Whenever fewer instructions are issued in a cycle, many of the

functional units are idle and can be transitioned to a low-power state to conserve energy.

Transitioning to a low-power state can be as simple as clock-gating the inputs of the

unused unit to conserve dynamic energy or more sophisticated such as the supply-gating

of the functional unit to reduce leakage energy consumption. In this work, our focus is on

reducing leakage energy that is projected to become the dominant part of the chip power

budget at high temperatures beyond the 0.1 micron feature sizes [22]. The application of
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the different low-power control mechanisms has different energy reduction potential and

overheads. Typically, the more the energy savings, the more the performance penalty

for recovering from the low-power state to the active state. Thus, a larger duration of

idleness can employ a more energy efficient low power mode.

Fig. 6.1. IPC variation (eflux).

Using the Trimaran simulation framework [6] and a set of array-dominated ap-

plications, we use the compiler to identify the number of functional units to activate

for the different loops in the application. Such array-dominated applications and VLIW

architectures are frequently used in mobile embedded environments. Based on compiler

analysis, we apply leakage control mechanism to the unused units to conserve energy.

Our simulation results show that our technique can reduce up to 38% of the functional

unit leakage energy averaged across a range of system configurations. Our results also

show that our loop based IPC detection strategy gives better energy-delay product than
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finer-granularity (basic block level) and coarser-granularity (whole application level) IPC

detection schemes.

The rest of this chapter is organized as follows. The next section describes related

work. Section 6.3 discusses our approach that adapts the IPC to the needs of a given

application. Section 6.4 presents the experimental results showing the effectiveness of

our approach. Finally, Section 6.5 presents our conclusions.

6.2 Related Work

While leakage reduction of storage structures [103, 54, 107] has been the focus

of bulk of the architectural investigation due to their dominant transistor budget in a

processor, there have been various recent efforts at focusing on mitigating leakage in the

functional units. This trend is because of the following reasons. The leakage current

in the combinational logic circuits employed in functional units is an order of magni-

tude larger than that of logic circuits employed for cache RAM transistors (based on the

model proposed by [18]). In addition, leakage current increases with increase in tem-

perature; and the functional units, due to their heavy usage, have a higher temperature

profile. Thus, the functional units contribute to a noticeable fraction of leakage power

consumption despite their relatively fewer number of transistors. The exact percentage

is difficult to estimate without detailed knowledge of the processor configuration, the

underlying circuit styles and thermal profile. This percentage was around 30% of static

leakage in a target embedded processor configuration with on-chip L1 caches for which

we had access.
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In [105, 81, 106], the slacks are exploited for leakage reduction in functional units.

All these techniques are based on using a compiler to insert instructions to control the

leakage modes using either input vector control or supply gating. While these techniques

exploit existing idleness in the schedule, our approach changes the IPC and attempts to

balance the tradeoff between performance and leakage energy. In addition, in contrast

to these previous efforts, our approach specifically targets loops which serve as natural

boundaries for IPC variation. [32, 95] propose leakage reduction techniques for super-

scalar architectures, whereas our focus is on a VLIW architecture. The technique in [13]

is a micro-architectural level throttling mechanism activated dynamically, in contrast to

our static compiler-based strategy. Note that our strategy is more suitable for a VLIW

architecture as the compiler has the complete schedule.

6.3 IPC Adaptation

In this work, a program is represented using a control-flow graph (CFG). In a

CFG, each node is a basic block (i.e., a sequence of instructions which can be entered

from one point and exited from one point) and a directed edge from a node to another

indicates the possibility of a control flow from the basic block represented by the former

node to the one represented by the latter. Each basic block in the CFG can in turn be

represented using a data-flow graph (DFG). Each node in a DFG is an operation (that

will be executed in a VLIW functional unit) and an edge from one to another indicates

a data dependence between the corresponding operations. We use the term instruction

to refer to a VLIW instruction which might contain a number of operations scheduled

to be executed in the same cycle. Also, we use the term VLIW slot to denote a point in
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the two-dimensional scheduling plane, where the y-axis corresponds to execution cycles

and the x-axis corresponds to the number of functional units.

Not all parts of a given VLIW program can issue the maximum instructions per

cycle. Due to data dependences and other reasons, it is typical that many VLIW cycles

can execute fewer operations than can be accommodated by the physical resources. In

this chapter, we exploit this characteristic and present a compilation strategy that adapts

IPC to the needs of the application being executed.

To demonstrate why such an approach might be successful, let us consider the

DFG shown in Figure 6.2(a) to be scheduled in a VLIW machine with 4 integer ALUs.

Assume that each operation is an integer operation and once scheduled executes in a

single cycle. We observe two things from this DFG. First, its inherent IPC is 2; that

is, at most two instructions can be scheduled in each cycle. Second, if we schedule two

instructions per cycle, we obtain a highly balanced schedule. These two observations

motivate us to use only two integer ALUs in executing this DFG. The remaining two

integer ALUs can be placed into a leakage control mode to save energy. Note that such

a strategy allows us to execute this DFG in an energy-efficient manner without loss of

instruction level parallelism. Although the DFG shown in Figure 6.2(b) does not use all

four integer ALUs in each cycle either, trying to use only two ALUs here would increase

the schedule length, as the inherent IPC in this DFG enables execution of four operations

in some cycles. Consequently, it is not possible to shut off functional units here without

incurring some performance penalty.

In this chapter, we try to save leakage energy by shutting off functional units

when they are not needed. While in principle this idea can be applied to any functional
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unit, in this chapter, we focus on integer ALUs as they are the most frequently exer-

cised functional units in applications that manipulate integer data. Therefore, when we

mention IPC in the remainder of this chapter, we refer to IPC considering only integer

ALUs. So, in this context, if we have k integer ALUs in the architecture, we say that

the maximum IPC is k. If we shut off k′ of these integer ALUs during the execution of

a program region, we say that the maximum IPC in that region is k − k ′.

Our approach is composed of the following three steps which will be detailed in

the remainder of this section:

• Loop identification

• IPC assignment

• Adaptive scheduling

In this work, we explicitly focus on array-intensive applications. In these appli-

cations, bulk of execution time is spent within loops, and a suitable IPC assignment for

basic blocks in the loop can lead to large savings in leakage energy.

(a) (b)

Fig. 6.2. Example DFGs.
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6.3.1 Loop Identification

Our approach takes input a CFG which might come in two different forms. If no

hyperblock formation [73] has been performed on the CFG, it is easy to find the loops

in the code. There are numerous algorithms published on this topic; we refer the reader

to [74] for an in-depth discussion of this subject. If, on the other hand, the hyperblock

formation has been performed on the CFG, we first need to break hyperblocks into basic

blocks and then find the loops in the CFG. Fortunately, Trimaran, our experimental

platform, provides a module to achieve this. In either case, at the end of this step, we

identify all loops in the input CFG.

6.3.2 IPC Assignment

In the second step, we assign an IPC to different program regions. While it

is possible to design a very fine-granular IPC assignment strategy, frequent turning

on/off activities can also consume significant dynamic energy as well as extra execution

cycles. Consequently, we chose to leakage-control ALUs at the loop granularity. More

specifically, for each loop, we assigned a single IPC. Since the number of loops in a given

application is rather limited, such an approach is expected to incur a small energy and

performance overhead in practice.

However, a loop in general might contain multiple basic blocks (e.g., due to con-

ditional control flow within the loop body). Consequently, we need to have a conflict

resolution mechanism when different basic blocks in the loop body demand different

IPCs. We solve this problem by profiling the loop and determining the most frequently

executed basic block. Once this basic block has been determined, we compute an IPC
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(as explained below) which is most suitable for it and use the same IPC for the other

basic blocks in the loop as well.

In selecting an IPC for the most frequently executed basic block, we take the

following approach. First, we determine the critical path in the DFG of the basic block.

The critical path corresponds to the longest dependence chain in the DFG and deter-

mines, in a sense, the minimum achievable execution time (if one does not consider data

speculation). We record the operations in the critical path and (optimistically) assume

that the other operations (i.e., those not on the critical path) exhibit a uniform distribu-

tion along the time slots. Let us consider the following scenario to clarify this concept.

If we have n operations in the DFG and m ≤ n of these are on the critical path, we

(optimistically) assume that data dependences in the DFG would allow execution of ap-

proximately n/m operations per cycle. If this is the case, then an IPC of n/m operations

should be sufficient to maintain the level of parallelism that would be achieved even if

we use all k > n/m functional units in the architecture. To summarize, our approach

determines m and and shuts off k − n/m ALUs.

In cases that there are multiple basic blocks in a given loop with the highest exe-

cution frequency (the same frequency), we select the one with the largest inherent IPC.

In handling a nested loop, our current implementation selects a (potentially) different

IPC for each level. Our experimentation shows that such an approach in general gener-

ates better results than selecting a single IPC for all loops in the nest. Finally, for basic

blocks that are not enclosed by any loop in the CFG, we use the maximum available

IPC supported by the architecture.
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Fig. 6.3. (a) Example CFG fragment. (b) Original and modified schedules.

As an example, let us consider the CFG fragment shown in Figure 6.3.(a). In

this figure, there are three loops (delimited by bold rectangles). The other rectangles

in the figure denote basic blocks. The numbers inside rectangles (without parentheses)

denote the IPCs most suitable for the corresponding basic blocks. Let us first focus

on Loop II, which is expanded to the left hand side. This loop has four basic blocks

and the first and the last basic blocks are executed with the same frequency. Since the

determined IPC of the first basic block is higher, the IPC for the entire loop is set to

2. This value is written inside the block that represents Loop II within Loop I. Let us

assume that using a similar method we determined that the IPC for Loop III should be

3. Now, we concentrate on Loop I. This loop has five blocks and two of them are loops.

In determining the IPC for this loop, we check the execution frequencies of these five

blocks and select the IPC of the most frequently accessed basic block. Assuming that

the execution frequency of Loop III is higher than that of Loop II, we determine the IPC

for Loop I as 3. Note, however, that this IPC does not apply to Loop II as each loop has

its own IPC (determined by considering the basic blocks it contains). The IPC numbers
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determined for each block are written inside parentheses if they are different from the

original ones in the Figure 6.3.(a).

This energy-saving strategy can in general increase execution time as it is not

always possible to find a suitable IPC (lower than the underlying machine can sustain)

for each loop without increasing its schedule length. Increasing the schedule length also

has an impact on energy consumption as all active functional units consume leakage

energy during the extra cycles (coming from the reduced IPC). In order for our strategy

to be beneficial from an energy perspective, this energy increase (due to extra execution

cycles) should not offset the energy gains obtained through shutting off some ALUs. To

illustrate this last point, let us consider Figure 6.3.(b). This figure shows a schematic

description of the original schedule and the modified (optimized) schedule. As compared

to the original schedule, the optimized schedule reduces the width (by restricting the

maximum IPC) and possibly increases the length. Let A denote the total number of

slots for which ALUs remain active in the original schedule but not in the optimized

schedule and let B denote the total number of slots required due to the extra cycles in

the optimized schedule. Let A’ and B’ denote the corresponding leakage energy expended

due to slots in A and B. Clearly, our strategy makes sense if A’ > B’ and the number of

extra cycles (i.e., the performance penalty) is within a tolerable limit. Consequently, in

our evaluations, we need to measure both energy gains and performance impact.

6.3.3 Adaptive Scheduling

After assigning an IPC to each loop, the next step is scheduling the code being

optimized considering these IPCs. Our scheduling strategy is adaptive as it changes the
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maximum IPC during the course of execution. In this step, we traverse the CFG block

by block, and for each block we schedule its operations using the IPC assigned to it.

We also insert functional unit turn on and turn off instructions at the beginning and

end of the associated loop considering its assigned IPC and the available integer ALUs

in the architecture. As compared to dynamic IPC regulation strategies, our approach is

expected to incur much less overhead as IPCs are determined at compile time. The only

runtime overhead is the execution of turn on/off instructions and extra execution cycles

and energy due to increased schedule length. Our scheduling strategy is loop-based,

and schedules each loop separately. In Trimaran, it has been implemented as a pass

between modulo scheduling [80] and acyclic scheduling. More specifically, after modulo

scheduling is run, our adaptive scheduling is activated, and turn on/off instructions are

inserted in the code. Following these, the acyclic scheduling module is run.

6.3.4 Hardware Requirements and ISA Support

As discussed earlier, when we set the IPC to k′, the k − k′ integer ALUs are

shut off (assuming that the machine contains a maximum of k integer ALUs). When

(e.g., in executing the next nest in the code) we increase the IPC from k ′ to k′′ where

k′ < k′′ < k, we need to turn on k′′ − k′ integer ALUs. To support explicit functional

unit turn on and off, all the compiler needs is a sleep signal per integer ALU. Using this

sleep signal, the compiler transitions an integer ALU from the active mode to a leakage

control mode or vice versa. We also assume that this sleep signal is controlled using

special instructions. This can be achieved by augmenting the instruction set architecture

(ISA) of the architecture.
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Three different techniques can be used for runtime leakage control of the functional

units, namely, input vector control (IVC), substrate biasing (SB), and supply gating

(SG) [22]. The effectiveness of these schemes varies based on the functional unit and the

exact implementation mechanism. In all these mechanisms, we assume the availability

of a sleep signal that can be set under the control of the VLIW schedule word to initiate

the low leakage mode transition and the reactivation to the normal active mode.

The goal of the input vector scheme is to find an input to the functional unit that

maximizes the leakage reduction benefit from the transistor stacking effect. According to

this effect, sub-threshold leakage can reduce by a factor of up to 10 when two transistors

in a stack are turned off instead of just one transistor [22]. Once a primary input vector

that minimizes the leakage is found, the input to the functional is forced to this whenever

the sleep signal is asserted. At other times when sleep signal is deactivated, the unit

receives its normal input.

The goal of substrate biasing mechanism is to dynamically modify the threshold

voltage during runtime; a classic example is a technique called standby power reduction

(SPR) or variable threshold CMOS (VTCMOS). In this technique, the threshold voltage

is raised when the sleep is signal is asserted by making the substrate voltage either

higher than Vdd (P devices) or lower than ground (N devices). When the sleep signal

is deactivated, the bias is removed returning the device to a lower threshold voltage to

provide better performance.

The last approach for runtime leakage reduction that we consider is power supply

gating. The basic idea is to shut down the power supply so that idle units do not consume

leakage power. Here the activation of the sleep signal cuts off the power supply rail to
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the functional unit and upon deactivation of the sleep signal, the normal supply voltage

is restored.

All these schemes have the following four phases: sleep activation time (SAT),

settling time (STT), low power time (LPT), and sleep deactivation time (SDT). SAT is

the time required for the sleep signal to propagate and the logic state of the block to

change. STT is the time for the internal node voltages of the functional unit to move

such that the steady state (low leakage current state) is reached – this time is in the

10-100 ns range for both IVC and SG [22], and it depends strongly on temperature and

transistor leakage of the technology. LPT is the time spent in low power mode. And

finally, SDT is the time required to propagate the reactivation signal and for the logic

state of the functional unit to be restored.

In order to model the leakage energy and overheads associated with our scheme,

we have designed different integer ALU components using 0.25 micron technology. The

threshold voltage of the P/N devices used in the simulation was 0.47V/.59V respectively

and a 2.5V supply voltage was used. The average leakage power consumed by the

designs of the three important integer functional unit components adder/subtracter, 8-

bit multiplier, shifter were 93.34nW, 348.4nW and 936nW, respectively. We also model

the leakage in other logic components and multiplexer components.

Next, to incorporate energy savings and overheads associated with the different

schemes, we performed circuit level simulations. First, for IVC, 180 random input pat-

terns were used for each unit to fit a Gaussian distribution of the leakage measurement.

The resulting leakage energy distribution was used to determine the average leakage en-

ergy savings when using the least leakage current producing input. In [42], 59 random
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vectors were shown to provide a 95% confidence of finding the input vector that provides

the least leakage current provided that the input pattern generated a Gaussian distri-

bution of the leakage current. The average percentage leakage energy savings obtained

by IVC across the different functional units was then evaluated and incorporated in the

simulator. An average percentage leakage energy savings using IVC was 70%, ranging

from 98% for a 32-bit logic AND design to 24% for an pass-transistor based XOR design.

The SAT and SDT values in our design require 1 cycle. Further, we include the dynamic

energy overhead associated with switching the inputs using IVC. Note that, since our

control is done at loop level granularity, the impact of this overhead is minimal. For SB,

we used VTCMOS for body bias control, the percentage leakage energy savings across

the different design was 70%. The SAT and SDT values were 40 cycles; these values are

primarily determined by the charge pump used and is modified by appropriately sizing

the driver. The additional energy overhead in this case is the energy consumed by the

charge pump. As mentioned earlier, this overhead is not significant as it is amortized

over the entire loop execution. Finally, in our implementation of SG, we use a Phase

Locked Loop(PLL) connected with a voltage follower as the voltage regulator. The PLL

is shared by all functional units and can regulate the supply voltage level globally while

a voltage follower is assigned to each functional unit and can be controlled locally. Note

that our intent is not on studying supply voltage regulation but on using it to gate power

supply to the functional units. Supply voltage regulation is an orthogonal issue to this

study. The percentage leakage energy saving, SAT, and SDT values for SG are 90%, 50

cycles, and 50 cycles, respectively. The SAT, SDT values, and energy savings extracted
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from the actual circuit simulation were incorporated into the Trimaran simulator to cap-

ture the leakage energy savings as well as the performance penalties associated with the

schemes.

Benchmark Source # of # % of % of
Nests BBs Int Ops BBs

adi Livermore 2 17 72.9 70.1
apsi Perfect Club 3 25 72.1 70.0
bmcm Perfect Club 4 25 62.0 97.6
btrix Spec 7 43 71.5 82.9
eflux Perfect Club 2 43 66.9 95.6
mxm Spec 2 17 61.9 98.5
tomcatv Spec 9 51 68.6 87.0
tsf Perfect Club 4 38 62.1 99.0
vpenta Spec 8 41 66.2 95.4
wss Perfect Club 7 39 66.7 96.3

Table 6.1. Array-intensive benchmark codes used in our experiments.

6.4 Experiments and Results

To test the effectiveness of our IPC detection and adaptive scheduling strategy, we

implemented it using the Trimaran infrastructure [6] and made experiments using several

array-dominated applications. In the Trimaran compiler infrastructure, a program writ-

ten in C flows through IMPACT, Elcor, and the cycle-level simulator. IMPACT applies

machine independent classical optimizations to the source program, whereas Elcor is re-

sponsible for machine dependent optimizations and scheduling. In our implementation,

modifications are performed to the Elcor module. The modified schedule is then fed to
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the cycle-level simulator that is used to quantify our energy savings. All applications

used in this study are also optimized using loop unrolling [74] to increase instruction

level parallelism as much as possible.

Important characteristics of our applications are given in Table 6.1. The third and

fourth columns give the number of nests and number of basic blocks, respectively, for each

application. The fifth column gives the number of integer ALU operations as a fraction of

overall operations in dynamic execution. We see that integer ALU operations dominate

the dynamic operation count and constitute as a good target for leakage optimization.

The last column, on the other hand, shows the percentage of execution time spent in

basic blocks whose DFGs have been used in determining the IPC for the associated loop.

We see that 89.2% of the overall execution time, on the average, is spent on these basic

blocks. Consequently, we can expect large leakage energy benefits if we are able to select

suitable IPCs for these basic blocks.

To evaluate a large number of alternatives, we experimented with different VLIW

configurations by varying the number of functional units. A common characteristic of

these configurations is that they all have a single branch unit, as our experience showed

that increasing the number of branch units did not make any difference in performance

and energy behavior of these benchmarks.

6.4.1 Leakage Energy and Performance Impact of Adaptive IPC

We first give in Figure 6.4 the potential savings when our strategy is employed

for both basic block (BB) and hyperblock (HB) cases (i.e., when the input code to our

optimization module is scheduled using basic blocks and hyperblocks respectively). Ix Ly
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in this figure means that the VLIW architecture considered has a maximum of x integer

ALUs and y load/store units. The potential savings here correspond to the percentage

number of VLIW slots saved; that is, the ratio, (A-B)/(X) as in Figure 6.3.(b), where

X is the number of slots in the original schedule (i.e., the schedule with the maximum

number of integer ALUs) when one considers only integer ALUs. We see from Figure 6.4

that the percentage of slots saved varies between 0.6% (resp. 1%) and 83.5% (resp.

74.7%), depending on the specific configuration used when BB (resp. HB) is employed.

The potential savings with the hyperblock scheduled code is lower as this scheduling

technique utilizes the available VLIW slots more aggressively than basic block scheduling.

Also, as expected, the larger the configuration, the higher the potential savings. In fact,

the best savings occur with I8 L2. However, even with a more modest configuration such

as I4 L1, we achieve 35.8% and 9.3% savings with the basic block and hyperblock cases,

respectively.

To demonstrate the impact of our approach on execution cycles, let us consider

Figure 6.5. Note that our approach can increase execution time in two ways. First, re-

stricting IPC demands extra execution cycles to complete execution. Second, depending

on the leakage control mechanism used, we may incur an extra execution time penalty

whenever we want to reactivate an integer ALU placed into the leakage control mode.

The graphs in Figure 6.5 show the percentage increase in execution cycles using the SG

mechanism. When we consider the basic block scheduling case (the top graph), we see

that the increase in execution cycles is less than 1% for seven out of ten benchmarks.

This result reveals two facts. First, our IPC assignment strategy is very successful in

selecting a suitable IPC for each nest without much impact in execution time. Second,
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the performance penalty due to turn on activities is not very high as these activities may

only occur at loop boundaries. The reason that we incur a large performance penalty

in apsi is the difficulty in assigning IPC for the loops it contains. In this application,

when we focus on the most frequently executed basic block (in selecting an IPC for the

associated nest), we see that there is a large difference between different cycles as far

as the number of parallel operations are concerned. This non-uniformity increases the

overall schedule length, and since such basic blocks are frequently executed, we incur a

significant performance penalty. When considering the hyperblock scheduling case (the

bottom graph), we observe a very small performance penalty due to the fewer opportu-

nities to place functional units into a leakage control mode. In nine of the applications,

the performance penalty is less than 1%.

While the potential savings shown in Figure 6.4 are significant, it is also important

to study the corresponding energy benefits using a specific leakage control mechanism.

Hence, we performed another set of experiments adopting power supply gating (SG) as

our leakage control mechanism. We see from the results illustrated in Figure 6.6 that we

can achieve leakage energy savings of up to 72.4% when basic block scheduling is used.

With hyperblock scheduling, on the other hand, the savings range from 1% to 67.1%.

6.4.2 IPC Comparison

The previous subsection showed that our adaptive IPC approach improves the

energy consumption significantly over a version that uses the maximum IPC supported

by the architecture. To see whether the IPCs selected using our strategy performs well

as compared to other possible IPC selections, we performed another set of experiments
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Fig. 6.4. % saved slots ((A-B)/X). This indicates potential for leakage energy reduction
using leakage control mechanisms.
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Fig. 6.5. % increase in execution cycles.
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Fig. 6.6. % leakage energy improvements in IALUs.
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where we run each application with different IPCs and obtained the energy-delay prod-

ucts (EDPs). The bar with the legend D in Figure 6.7 corresponds to the results from

the IPC determined by our approach for the corresponding benchmark. The other bars

represent the cases where the IPC used is the one determined by our approach plus the

number associated with the bar. All results are for basic block scheduling only and are

normalized with respect to the energy-delay product of the original code without any

IPC control. We see that the IPC that we selected is the best one for most of the bench-

marks. More specifically, the average (across all benchmarks) normalized EDPs for cases

-1, D, 1, 2, 3, and 4 are 66.7%, 49.8%, 55.7%, 65.3%, 75.4%, and 83.6%, respectively. In

general, a smaller IPC (denoted -1) reduces the energy consumption but increases sched-

ule length. eflux and tomcatv experience dramatical increases in EDP as a result of this.

On the other hand, a couple of benchmarks such as bmcm and mxm take advantage of

this smaller IPC. This is because our IPC detection process considers all operations in

the DAG but applies the selected IPC only for integer ALUs. This, in some cases, results

in a larger number of IALUs being activated than necessary. We also see that increasing

IPC beyond the value that we determined increases the EDP significantly. This is due

to two factors. First, increasing IPC also increases the energy consumption. Second, not

many applications take advantage of the increased IPC (mostly due to data and control

dependences).

6.4.3 Granularity Analysis

Our loop-based IPC selection scheme determines a single IPC for each loop in the

code. There are, however, other granularities that we could potentially work with. Two
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Fig. 6.7. Normalized EDP (energy-delay product) with different IPC settings. All values
are normalized with respect to the EDP of the original schedule. The I8 L2 configuration
was used for all cases.

extreme cases would be assigning a single IPC to the whole application and assigning an

IPC per basic block. The advantage of the former strategy is that it does not incur any

SDT penalty as there are no dynamic IPC modulations. The disadvantage is that trying

to come up with a single IPC for the entire program might result in an IPC which might

be suboptimal for some nests. On the other hand, working with basic block granularity

customizes the IPC for each block but might increase the performance penalty (due to

frequent IPC switches during execution).

Table 6.2 gives the leakage energy-delay products for three different cases con-

sidering all the functional units for IPC selection performed at different granularities:

basic block level, loop level, and whole application level. At the block level, it is difficult

to employ a more aggressive leakage control mechanism such as SG due to the larger

overhead of reactivating the unit. Our results show that IVC provides the best choice

at this granularity. For the loop level and whole program level adaptation, we employ
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Granularity LCM I2 L1 I4 L1 I6 L2 I8 L2
block level IVC 102.5 80.0 72.9 65.5
loop level SG 99.1 70.1 59.0 49.9
whole program SG 117.1 97.6 127.0 98.8

Table 6.2. Normalized EDP (energy-delay product) with different IPC selection schemes
(averaged over all applications). All values are normalized with respect to the EDP of
the original schedule. LCM means leakage control mode.

the SG leakage control mechanism. The average (over all configurations) normalized

EDPs for block level, loop level, and whole application level cases are 80.2%, 69.5%,

and 110.1%, respectively. We observe that the loop level granularity of control provides

the best energy-delay results due to a balance between the level of adaptation and the

overhead associated with the use of leakage control mechanisms. Further, we observe

that the IPC setting policy of the whole program is quite stifling due to the coarse-grain

adaptation.

6.4.4 Impact of Leakage Control Mechanism

In this subsection, we evaluate the effectiveness of the loop level IPC selection,

employing different leakage control mechanisms that provide different leakage energy

savings while incurring different SAT and SDT times. In addition to the IVC, SB and

SG mechanisms described earlier, we add an additional (hypothetical) configuration

(denoted NEW) that can reduce all leakage energy while incurring a SAT and SDT

times of 75 cycles. These four schemes correspond to the four bars in Figure 6.8 for

the I4 L1 configuration. We observe that the normalized leakage energy-delay product
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(over all applications) is 78.5%, 79.2%, 70.1% and 65.75% for these four schemes. This

shows that our technique is quite effective when using currently available leakage control

mechanisms.

Fig. 6.8. Normalized EDP (energy-delay product) with different leakage control mech-
anisms. The I4 L1 configuration was used for all cases.

6.5 Conclusions and Ongoing Work

Energy consumption is a major design constraint that requires new optimizations

at the various levels of the system. While many efforts have focused on optimizing

dynamic energy at various levels, optimizing leakage energy is fast becoming important

as threshold voltages continue to become smaller. In this work, we have exploited the

inherent variations in the demand for functional units in an application and have adapted

the number of active functional units to conserve leakage energy. More specifically,

we presented a compiler-based scheme to identify the number of functional units to
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activate for the different loops in the application and applied leakage control mechanism

to the unused units to conserve energy. This scheme has been implemented for a VLIW

architecture in the Trimaran framework along with performance penalties to apply the

leakage control mechanisms, and evaluated using different applications. Our simulation

results show that our technique can reduce up to 38% of the functional unit leakage energy

averaged across a range of system configurations. Our results also show that our loop-

based adaptation strategy gives better energy-delay product than finer-granular (basic

block level) and coarser-granular (whole application level) adaptation schemes, which

balances between the level of adaptation and the overhead associated with the application

of leakage control mechanisms. We also show that our approach is effective when using

currently available leakage control mechanisms. We believe that this work demonstrates

the benefits from exploiting the synergy between application characteristics, machine

architecture and the leakage control circuit primitives in conserving energy.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

With proliferation of portable embedded systems, power dissipation has become

a key design metric. Systems that are powered by lightweight batteries increasingly

demand more complex embedded functionalities. The lifetime of the batteries depends

on average power consumption of the system; therefore, embedded systems designers are

asked to pay close attention to the systems power consumption.

In this thesis, system energy consumption is evaluated using our proposed energy

estimation models, and energy optimization techniques are proposed in architectural and

software levels. The thesis focuses on two main components of the embedded systems:

memory and datapath.

The memory related issues cover energy characteristics of different cache archi-

tectures, a software technique to optimize cache performance – loop-tiling–, and off-chip

memory accesses. More specifically, first, three multiple access cache architectures are

evaluated in terms of energy, using our proposed energy estimation models. The results

show that the energy reductions obtained by using the multiple access caches can be-

come more important as the cost of main memory accesses is reduced by the emerging

eDRAM technology. Second, loop-tiling technique, which has been studied extensively

to reduce memory latency, is evaluted in terms of power to show that the best performing

tile size is different from the minimum energy consuming tile size. Third, an estimation
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model to predict the number of page breaks of an application in SDRAMs is proposed

using Polyhedral modeling technique. This estimation model can be used to estimate

main memory energy consumption of various compiler optimization techniques. As an

example, the blocked data layout scheme is evaluated to show that different block sizes

can lead to very different main memory energy consumptions.

The datapath related issues deal with VLIW architectures, since they are becom-

ing popular in DSP arena from their reduced hardware complexity and support for wider

instruction level parallelism. First, an architectural energy estimation tool is designed,

based on a publicly available VLIW compilation toolset, Trimaran. This enables us to

evaluate a variety of VLIW compilation techniques on a set of different architectural

parameters such as the number of functional units, register file sizes, and operation la-

tencies, in terms of both power and performance. As technology feature size decreases,

the leakage energy consumption increases dramatically. Particularly, leakage energy re-

duction of functional units is crucial due to the temperature surge caused by heavy usage

of the modules. Therefore, second, we present a compiler-based scheme to identify the

number of functional units to activate for different loops in the application and apply

leakage control mechanisms to the unused units to conserve energy. This scheme has

been implemented for a VLIW architecture using the Trimaran framework and evalu-

ated using different applications. Our simulation results show that our technique can

reduce up to 38% of the functional unit leakage energy averaged across a range of system

configurations.

Future work includes:
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• SDRAM energy and performance estimation framework

Foremost, the estimation framework needs to be automated. It should have au-

tomatic data layout transformation step and automatic tile selection mechanism

enabled by incorporation of the Omega library and Polylib. Currently, the frame-

work supports only two dimensional arrays. It has to be extended to incorporate

higher order dimensions. In [23], it was shown that the nonlinear (blocked) data

layout improves the performance of loop tiling largely due to cache conflict miss

reduction. It also showed good cache performance regardless of array sizes. How-

ever, their work did not consider off-chip performance. Our goal is to propose a

loop tile selection algorithm which incorporates SDRAM’s performance and energy

using the proposed estimation framework.

• Trimaran energy simulator

As the ILP increases in VLIW architectures, the register file size increases to sus-

tain the increased ILP. To tackle speed and power problem caused by the the

increased register file size and number of ports, one register file is split into multi-

ple clusters, where each cluster has one local register file with multiple functional

units attached to it. Currently, Trimaran framework does not support clusters.

However, it provides machine description language support. Our future work is to

model clustered architectures with the machine description language and evaluate

its energy consumption. Register file is also a main source of leakage in VLIW

architectures. We plan to work toward this direction to evaluate leakage energy of

the register files, and to selectively turn off register file banks whenever not used.
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The compiler’s register assignment step needs to be studied to prolong and cluster

the turn off period.
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