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Abstract

While virtualization technologies have been widely adopted, virtualizing GPUs remains
challenging. In this thesis, we present a GPU virtualization solution based on API remot-
ing, forwarding API calls from guests to the host for execution. Our proposed solution
provides guest applications with the Vulkan API, which has been increasingly popular
recently, for utilizing GPUs for both rendering and computation. It enables dynamic
resource sharing, and is not bound to specific devices. In addition, no modification on
the guest OS and applications is required. We also propose several custom optimizations,
with the goal of reducing the potential overheads of such a software-based virtualization
layer. Our solution is evaluated on workloads with a wide range of native performance.
The collected experimental results indicate that our solution achieves up to 98% of native
performance on workloads with higher computation load per frame. The results also
show that our solution is satisfactory in a variety of use cases.
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Chapter 1 |
Introduction

Virtualization technologies have enabled fast deployment of software stacks by providing
flexible control of hardware environments [1–3]. When employing virtualization, essential
hardware resources on a host machine, such as CPU, memory, and storage, can all be
shared among several guest virtual machines. We can create virtual machines on demand,
take snapshots of a VM’s execution state, suspend and resume a VM, or port a VM from
one physical machine to another.

While GPUs have been exploited in various applications for accelerating graphics
rendering and computation, it remains challenging to enable VMs to use GPUs. Without
practical GPU virtualization solutions, we can only assign a whole physical GPU to a
VM, which does not allow resource sharing, or resort to pure software rendering, which
does not use the GPU at all, leading to extremely low performance. Thus, this missing
component in virtualization is worth studying.

One major challenge of virtualizing GPUs is that the specifications of hardware
interfaces are not public. Without the knowledge of how to interact with the hardware
interface, it is difficult to manage resource allocation and provide isolation, which are
essential to virtualization. The rapid product release cycles further raise the difficulty.
Developing a new virtualization solution for each and every newly-released physical device
is almost infeasible. On the other hand, though it is possible to move the virtualization
layer toward the software end and prevent interacting directly with the hardware interface,
software solutions usually incur large overheads. Careful design and optimization are
required for satisfactory performance.

In this thesis, we take a software-based approach, called API remoting, to GPU
virtualization. Instead of virtualizing the exact hardware interface of a specific physical
GPU device, we focus on Vulkan [4], a standardized GPU API, through which an
application in a VM can access virtualized GPU resources. Our proposed solution is
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composed of a VAR server (Virtual GPU) and VAR driver (ICD). The VAR server is a
process running in the host OS that can access the physical GPU via the Vulkan API.
The VAR driver, which also provides the Vulkan API, can be loaded by guest applications.
It forwards rendering and computation commands to the VAR server, while handling
presentation commands within the guest.

Despite the existence of API remoting implementations for common GPU APIs such
as OpenGL [5] and CUDA [6], providing virtualized GPU through the Vulkan API is
a topic worth investigating because Vulkan aims at enabling higher performance by
allowing explicit memory management and multi-threading. These features of Vulkan,
however, lead to new challenges as far as GPU virtualization is concerned. Specifically,
we need to synchronize the memory content between the host and the guest, and handle
the commands sent from different application threads appropriately. In this thesis, we
propose and evaluate our solution to these challenges, along with more general GPU
virtualization issues such as communication and remote presentation. By evaluating the
proposed solution, we show its effectiveness and broad applicability.

The main contribution of this work is three-fold. First, we propose a Vulkan API
virtualization solution based on API remoting, which provides a guest OS with all
commonly-used Vulkan APIs. Second, we address the implementation challenges specific
to Vulkan and propose effective solutions, handling communication overhead, memory
mapping, remote presentation and multi-threading. Third, we present detailed experi-
mental results, indicating that our solution achieves satisfactory frame rates in a variety
of workloads, with particularly low overheads when the computation load per frame is
high, leading to up to 98% of native performance.

The rest of the thesis is organized as follows. Chapter 2 provides background on
virtualization and GPUs. Chapter 3 reviews previous approaches to GPU virtualization.
Chapter 4 illustrates the overall architecture of our solution and its major components.
Chapter 5 discusses the major challenges and how we overcome them in our Vulkan
API remoting solution. Chapter 6 evaluates our virtualization solution using various
GPU workloads. Finally, Chapter 7 concludes the thesis with a summary, and points out
potential directions for future work.
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Chapter 2 |
Background

In this chapter, we first give a review of the core concepts in virtualization. We then
introduce GPU and its APIs, through which applications communicate with GPU devices.
Finally, we focus on the Vulkan API and discuss its advantages, demonstrating the need
of an approach for its virtualization.

2.1 Virtualization
Virtualization technology enables running an entire machine, including both its hardware
and software, virtually within a software environment. The machine having direct access
to the real, physical hardware is called the host, in which multiple virtual machines,
or guests can be hosted. A piece of software running in a guest OS has no or minimal
awareness that it is in a virtualized environment. Typically, a hypervisor is installed in
the host, facilitating the management of guests and the communication between the host
and guests.

One of the major motivations for developing and employing virtualization technology
is that it allows resource sharing. Any hardware device, such as a CPU or a disk, has a
baseline power consumption even when being idle. Therefore, better resource utilization
efficiency can be achieved if we can distribute a powerful computation resource or a large
storage to multiple virtual machines. Virtualization enables us to do so while each of
the virtual machines still has the illusion that it is accessing its own private resources.
Virtualization also enables dynamic distribution of the resources. For example, when
there is a burst of demand of a specific web service, to fulfill the need, adding virtual
machines to a cluster is much more easier than adding physical machines. We can also
add more disk space or memory to a specific virtual machine, scaling it up with the
rapidly increasing demand. Similarly, when the demand decreases, resources can be
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released and assigned to other virtual machines.
Another scenario where virtualization may be useful is for packing an entire environ-

ment for running specific programs. Perfect platform independence is difficult to achieve,
and both programmers and application users more or less suffer from setting up the pre-
requisites, including libraries, operating systems, or even hardware, for running a certain
program and getting the expected, previously-observed outcome. With virtualization, we
can turn the entire platform into a virtual machine that can be delivered and ported to
various host platforms. In addition, virtual machines are isolated from each other. As a
result, even if an application “breaks” a guest OS completely, neither the host nor other
guests would be affected. That is, each guest machine is secured even though it shares
the underlying hardware with others. This nice property also leads to the use of virtual
machines as sandboxes.

2.1.1 CPU Virtualization

The typical typology of virtualization is based on how the CPU, the most essential
computational resource, is shared by the host across the guests. In full virtualization,
the complete set of instructions is provided to the guest OS. However, some instructions
are privileged, and cannot be executed from the user space, where a virtual machine
runs. Therefore, the hypervisor is responsible for identifying such privileged instructions
from the guest in advance and convert them into safe instructions that can be executed
in the user space while leading to the equivalent behavior expected by the guest. This
process is called binary translation. Note that, in this kind of virtualization, there is no
need to modify the guest OS.

Full virtualization can be hardware-assisted, in which the CPU provides special
instructions that can be utilized by the hypervisor to enter the vm mode before handing
over control to a guest OS. The CPU is responsible for ensuring that these privileged
instructions are executed safely without interfering other processes in the host OS.
With the elimination of software-based binary translation, this approach boosts the
performance. However, it requires hardware support, which must be developed by CPU
vendors.

In para-virtualization, a guest OS is slightly modified so that whenever a privileged
instruction is to be executed, the OS makes a hypercall to the hypervisor instead. That
is, the guest OS needs to be built with the API provided by the hypervisor. The
hypervisor, which can execute instructions in the privileged mode, handles the requested
instructions for the guest. By doing so, the need of binary translation is also eliminated,
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so para-virtualization also brings performance improvement over pure software-based full
virtualization. More importantly, para-virtualization is a pure software solution that can
be developed without any hardware support.

2.1.2 I/O Device Virtualization

I/O devices exhibit quite different properties from CPUs, thus leading to different
strategies for virtualizing them. First, some devices such as traditional disks and network
cards are slow compared to CPUs. As a result, the virtualization layer usually does not
become a major bottleneck. Second, some I/O devices have a set of essential operations
much smaller than the set of instructions of a CPU. Thus, in some cases, full virtualization
can be realized. The hypervisor emulates a device with exactly the same interface, using
the resource in the host. For example, qemu [7] implements various storage interfaces
such as SATA and SCSI, and network adapters such as rtl8139.

However, implementing the full interface may not be necessary and, more importantly,
sub-optimal in terms of efficiency. Alternatively, a special interface can be implemented –
for example, Virtio [8] is implemented by qemu. Virtio is a layer between the hypervisor
and the guest OS. This generic layer can be specialized into disk, network, or other
interfaces. That is, the hypervisor usually only exposes a virtualized device with a
customized interface to the guest OS. This is similar to para-virtualization in the sense
that the guest does not see exactly the same hardware interface as a physical machine,
but usually modifying the guest OS is not required; instead, only a customized driver is
needed. It is in essence similar to installing a new driver when a new device is attached. In
other cases, difficulty for full virtualization may be experienced. For instance, PCIe SSDs
have very fast performance, and performance may be the bottleneck for full virtualization.
Observing this, mediated pass-through is exploited [9].

Different from most devices, interfaces of GPUs are vendor-specific and proprietary.
A variety of GPU-centric virtualization techniques have been investigated in the past
and we will discuss them in Chapter 3.

2.2 Application Programming Interface for Graphics Pro-
cessing Unit
Given that GPU interfaces and drivers are vendor-dependent and proprietary, applications
utilizing GPUs usually do not interact with GPU hardware interfaces directly. Instead,
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they send commands to GPUs through an API implemented by the library provided
by various vendors. The library knows how to communicate with the driver, and an
application only needs to know how to exploit the API.

Open Graphics Library (OpenGL [5]) has been a widely used API for rendering with
GPUs. Direct3D [10] is a similar API provided by Windows, but it is not cross-platform.
Enabled by a huge number of cores, the computation power of GPUs has also been
utilized to accelerate computation tasks, especially highly parallelizable ones. This usage
scenario is termed as general-purpose computing on GPUs (GPGPU). Currently, Nvidia’s
Compute Unified Device Architecture (CUDA [6]) is the most popular GPGPU API.

The separation of rendering and computation APIs, however, makes it complicated
to develop an application utilizing the GPU for both purposes. Additionally, switching
between API libraries inevitably increases the windows of time during which the appli-
cation is not utilizing the GPU, due to the need of specifying the addresses of data in
both APIs and copying data through CPU memory. This is one of the main reasons that
leads to the proposal of Vulkan, a next generation GPU API, which unifies the interface
for exploiting the computational power of GPUs.

2.3 Vulkan API
Vulkan [4] is a new GPU API proposed in 2016. It is rather low-level compared to previous
APIs, allowing explicit memory management by applications. Because the application
has knowledge about the task to perform and the resulting memory access pattern, it
is expected that it would manage memory in a more efficient way. Vulkan provides
a unified GPU interface for both graphic rendering and general purpose computation.
This leads to a major advantage that when a program utilizes the GPU for both
rendering and computation, there is no need to move data between different libraries. In
addition, Vulkan APIs are thread-safe, allowing one application making multiple API
calls simultaneously. The application thus can potentially take advantage of parallelism
by having multiple threads accessing the GPU at the same time. This, along with other
previously-mentioned characteristics of Vulkan, enables higher performance and flexibility.
As a result, Vulkan has been increasingly popular. Moreover, there have been translation
layers to Vulkan API calls from OpenGL [11] and Direct3D [12] ones, which means that
existing applications can run in an environment with this new API.
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2.3.1 Related Concepts in Vulkan

In this section, we briefly introduce Vulkan concepts that are necessary for understanding
our GPU virtualization solution. Readers interested in more details may refer to Vulkan
reference [13]. In fact, the implementation of our solution does not depends on specific
details of the API. As a result, in the future, if a newer API is proposed, the high-level
framework of our solution can still be adapted easily.

The application can query available devices (GPUs) and create a logical device
(Vulkan context) on a device (GPU). The application requests resource for a logical
device. To do so, it needs to specify details about its tasks, including shader pro-
grams, graphic pipelines, etc. A task is a command buffer. It records a command
buffer by calling vkBeginCommandBuffer, a series of APIs indicating the command, and
vkEndCommandBuffer. It can request the GPU to perform the task by submitting the
command buffer to a queue. Note that the command buffer is executed asynchronously.

An application can allocate GPU-accessible memory by Vulkan API calls. GPU-
accessible memory can be device-only memory or host-visible memory. Device-only
memory can only be accessed by the GPU. It is more efficient for the GPU to access
device-only memory than host-visible memory. An application may transfer the frequently-
used data to device-only memory via a command buffer including commands to transfer
data. Note that applications are responsible for managing the memory by themselves.

Synchronization is necessary among different command buffers or between the CPU
and the GPU. When multiple command buffers are submitted, one may need the data
produced by the other. The CPU may want the computation result or the rendered image.
Semaphores are used for synchronization among commands in different submissions.
Applications can specify for which semaphore to wait and which semaphore to signal
when command buffers are submitted. Also, fences are used for synchronization between
the CPU and the GPU. When command buffers are submitted, a fence may be attached.
The application can then call the API to wait until a fence is reached.

If an application is designed to display a rendered image on the screen, it uses the
VK_KHR_surface extension. This extension includes APIs to manage the resource related
to the presentation and submit the presentation request. We refer to the functions in
this extension as present-related APIs and other functions as non-present-related APIs.
Where the rendered image is displayed on the screen is called a surface. Note that, a
surface may contain multiple images, which are called a swapchain. An application calls
the API to create a surface to display the image and a swapchain of images. It requests
an available image in the swapchain, submits command buffers to render the image, and
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submits the image to the present queue for presentation.

2.3.2 Vulkan Loader

The operating system provides Vulkan API by Vulkan loader. This is a user-space library
lying between the application and the actual GPU driver provided by the vendor. The
actual GPU driver is called an Installable Client Driver (ICD). It exposes the same
Vulkan API and some functions for communication with the loader. The Vulkan loader
loads all ICDs and enumerates available GPUs for the application. A logical device
created by an application is bound to a specific physical GPU. The application calls the
API provided by the loader, and the loader forwards it to the corresponding GPU driver.
This architecture allows applications to dynamically determine which available GPU
device to use at run time. During its execution, an application may switch from using
one device to another.
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Chapter 3 |
Related Works

GPU virtualization solutions can be put on a spectrum from purely hardware-based to
purely software-based. Hardware-based solutions usually achieve the best performance
but allow less flexibility in resource allocation. Also, these solutions are usually bound to
specific physical devices. On the other hand, software-based implementations are more
portable, with less reliance on specific devices. However, the software layer might limit
the performance. Solutions combining hardware- and software-based approaches have
also been proposed, where different trade-off decisions are made to favor performance or
flexibility. No matter which position a solution lies in, the main design choice is which
component(s) along the stack of the physical device, the host, the hypervisor and the
guest, to be tailored to accomplish virtualization.

3.1 Hardware Solution
Virtualization Technology for Directed I/O (VT-d) [14] allows an I/O device to be
passed-through to a virtual machine. VT-d employs an IOMMU, which automatically
translates Guest Physical Address to Host Physical Address for I/O accesses. It works as
if the GPU is attached to the virtual machine. The guest OS loads the original GPU
driver. In this scenario, performance is near native; however, GPUs cannot be shared
among different virtual machines. This solution is popular across cloud providers such as
Amazon Elastic Compute Cloud (EC2). Strictly speaking, VT-d itself is not a complete
virtualization solution. It allows GPU resource to be utilized by virtual machines, but it
does not turn a physical device into a virtualized, shareable resource.

Single Root I/O Virtualization (SR-IOV) [15] is another hardware solution for virtual-
izing I/O devices. An SR-IOV-enabled device serves as several logical devices, including
a Physical Function (PF) and multiple Virtual Functions (VFs), available to the host OS.
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The GPU vendor provides both a PF driver and a VF driver. The host OS loads the
PF driver, and configures how many VFs it needs. Each VF can be passed-through to
a VM. A guest OS loads the VF driver in order to access the GPU. Though this is a
full virtualization solution allowing resource sharing, it relies on vendor support; so, it is
only available in some GPUs. For example, SR-IOV support is provided through AMD
MxGPU [16] and Nvidia GRID [17].

3.2 Mediated Pass-through
Mediated pass-through is a solution with performance close to pass-through that allows
resource sharing. By loading a special piece of software, either in the GPU driver or
the hypervisor, host OS can provide multiple virtual GPUs having the same hardware
interface as the physical GPU. The hypervisor attaches a virtual GPU, which works
exactly the same as the physical GPU does, to a guest. Therefore, it is another way
to achieve full virtualization. The guest can thus use the native GPU driver, while the
resource can be shared among multiple guests. With the help of the special software, the
host OS schedules the resource, fulfilling guest isolation and other security requirements.
Note that, this solution can be regarded as a software solution, while having a strong
reliance on the hardware side. Though hardware support is not required, implementations
are highly dependent on hardware interfaces. Consequently, several solutions have been
proposed for different devices.

gVirt [18] is a mediated pass-through solution based on Intel Processor Graphics
(integrated GPU). The architecture includes a mediator driver in DOM0 (the privileged
virtual machine) and a stub in the Zen hypervisor. Address space translation for memory
access is performed by the stub, while the mediator driver maintains a scheduler that is
responsible for managing GPU context switches. The native GPU driver running in a
guest can access the GPU directly for normal rendering commands. Software intervention
only occurs on privileged operations, so the performance is only slightly lower than that
of pure hardware-based solutions such as VT-d.

GPUvm [19] is a similar solution based on Nvidia’s GPUs and CUDA. Since the
official drivers are proprietary, an open-source GPU driver is adopted by the guest.
Virtualization is provided mainly through special designs implemented in the hypervisor.
More specifically, they made the GPU shareable by handling memory space partitioning
and GPU time scheduling. With an aim to support computationally intensive jobs,
the fairness of scheduling is emphasized to prevent a single VM from occupying all
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the resources throughout large periods of time. However, since the performance of the
open-source driver is limited, the overall performance of this virtualization is limited,
despite the potential of this kind of approaches to exploit device-specific knowledge for
optimization.

Mediated pass-through is a kind of solution that balances hardware-level performance
and software-level configurability. However, this technique relies on the knowledge of
hardware interfaces. Unless the specification of the hardware interface is public (which is
not the case for most GPUs), GPU vendors are much more suited than other researchers
or developers in devising this kind of solutions. That is, if our understanding about the
hardware interface is limited, we are prevented from making full use of the performance
benefits brought about by adopting a more hardware-dependent solution. Also, due
to the necessity for the virtualization solution to interact with the hardware interfaces
directly, it takes substantial amount of effort to support newly released hardware, which
is especially an overwhelming development load given the rapid product release cycles.
Moreover, the dependence on proprietary hardware interfaces and/or drivers makes
these solutions hard to be analyzed and compared with each other on a standardized
basis. It might also be impractical to propose an “improvement” of an existing mediated
pass-through solution, because switching to a newer GPU architecture usually leads to a
much larger performance gain.

3.3 API Remoting
Usually, the application only needs functionalities provided by API, so replicating the
exact hardware interface is not required. API remoting is a type of solution that
allows API functions to be called remotely from a different machine. In the context of
virtualization, the guests are the machines making remote API calls. API remoting is
usually implemented via para-virtualization, with a customized GPU driver loaded by
applications in the guest OS. The host OS provides the API to guests as an interface to
the virtual GPU, allowing them to enjoy the hardware acceleration by the physical GPU.
Typically, a process running in the host OS handles guest API calls and passes them to
the same API provided by the native GPU driver.

The implementation of such a solution is independent of the technical details of the
physical GPU. Instead of trying to understand complex hardware interfaces given the
usual absence of public specifications, a solution based on API remoting only requires the
implementation to follow the API standard. Once the solution is implemented, any GPU
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compatible with the API can be virtualized. Therefore, VMs utilizing GPUs under an
API remoting framework are portable across different physical GPUs. Several solutions
have been proposed for both the rendering API and computation API.

VMGL [20] forwards OpenGL API calls to the host through VNC connection. A
major drawback is that all OpenGL API calls, including those for presentation, are
redirected to the host, so the rendered image is also displayed on the host’s screen. Thus,
it does not work in the cloud environment. AWS Elastic Graphics [21] provides a special
driver, which also forwards OpenGL API calls through TCP/IP. The rendered images
are also transmitted for display, thus solving the remote presentation problem, but with
the drawback of a limited performance, supporting only 25fps at maximum.

VMware [22] adopted a solution which is slightly different from API remoting. More
specifically, SVGA3D, a simplification of Direct3D, was designed. The driver in the guest
OS translates a Direct3D API call to a SVGA3D call and passes the call to its emulated
GPU. The host OS receives such calls from the emulated GPU, and processes them by
either Direct3D or OpenGL.

rCUDA [23] and vCUDA [24] redirect CUDA API calls through TCP/IP and the
hypervisor respectively, allowing CUDA to be used in in-host virtual machines and remote
machines. qCUDA [25] further improves the bandwidth.

Modern GPU architectures allow multiple “contexts” to access one GPU device at the
same time. The functions for creation and management of contexts are provided by the
API to applications. API remoting can thus take advantage of the natural context-level
isolation, which has been originally designed for accommodating multiple applications on
a single machine in a safe fashion. Context-level isolation almost eliminates the need
of additional protection mechanisms, which are emphasized in mediated pass-through
solutions. Security can be achieved by minimal checking of resource ownership. The
simplicity of such an isolation approach also potentially prevents the occurrences of
software bugs.

The main limitation of API remoting is the cost of performance introduced by
a software forwarding layer. However, it is the most flexible type of solution with
respect to hardware variety and evolution. The performance enhancements of a newly-
released GPU can directly be exploited by existing VMs as long as the same API is
followed. Further, given that rendering images takes time (33ms for 30fps), the potential
performance overheads can usually be hidden by pipelining the rendering task and other
tasks. With the use of Vulkan, since command buffers are processed asynchronously,
such pipelining techniques can be more easily exploited by applications having high
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performance requirements. That is, the overheads induced by API remoting can become
a minor issue with more recent applications adopting Vulkan. We will discuss this in
more detail in Section 6.2.2.

3.4 Software Rendering
The GPU API can also be served completely by software, in which case no GPU is used.
For instance, OpenGL is implemented in Mesa 3D Graphics Library [26], and Vulkan
is implemented by Google SwiftShader [27]. This solution has the worst performance,
but it is commonly used in virtualized environment where better GPU virtualization
solutions are not available.
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Chapter 4 |
Overview

We implement VAR, Vulkan API remoting. The overall architecture is shown in Figure
4.1. GPU virtualization is provided under a client-server framework, in which the server
serves as the virtual GPU and the client is a GPU driver. The driver, which is called
VAR driver, is a user-space driver that will be loaded by a Vulkan application in the guest
OS. The virtual GPU, or VAR server, is a process running in the host OS, providing
Vulkan API to applications through the driver. The driver can communicate with the
virtual GPU via TCP/IP or the hypervisor. We discuss the details of communication in
Section 5.1.

The main advantages of API remoting over other GPU virtualization solutions include
shareable device and dynamic allocation. Multiple guests can utilize the same physical
GPU device. We can also dynamically detach a virtual GPU from a guest when it is no
longer needed, and assign it to another newly-created guest, thereby potentially increasing
the utilization of the underlying hardware. API remoting also allows extensions to other
virtualization features such as suspension and taking snapshots because the VAR server
in cooperation with the VAR driver knows the complete state of the virtualized GPU
provided to the guest. More specifically, all non-present-related API calls are sent to the
server (virtual GPU), and all present-related requests are handled within the guest OS.
Therefore, to store a virtual machine state, the only thing we need to save, besides the
guest OS state, is the state of the VAR server. The VAR server may save the context,
including logical device and its resource, and restore it later.

Moreover, API remoting is vendor-independent. As long as the GPU driver provides
the same API to applications, the details of how it communicates with the physical
device does not change how API remoting should be implemented. This offers both
abstraction and transparency, enabling the addition and/or replacement of underlying
physical devices without affecting the entire solution, including the VAR server, the
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Figure 4.1: The Architecture of Vulkan API Remoting (VAR)

hypervisor, and the existing guests.
Last but not least, unlike some previous approaches such as VMGL which shows the

results of a rendering task specified by guest on host’s display, preventing use cases where
the guest has a display different from the host’s, our approach renders images on guest’s
display.
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4.1 VAR Driver (ICD)
To provide access to the virtualized GPU, we implement an ICD, called VAR driver.
An application needs to load VAR driver in order to utilize the Vulkan API provided
through the virtualized GPU. VAR driver is different from other GPU drivers. Drivers
for physical GPUs process Vulkan API calls by native GPU interfaces, while VAR driver
processes Vulkan API calls through VAR server. VAR driver is mainly responsible for
forwarding API requests to VAR server with some work required to be done in the guest.

The APIs provided by Vulkan can be categorized into two types: present-related
APIs and non-present-related APIs. For the present-related APIs, since presenting in the
guest’s display cannot be done outside the guest, it needs to be handled by the driver.
Therefore, VAR driver includes an implementation of these APIs. We elaborate more on
this in Section 5.3. On the other hand, for the non-present-related APIs, VAR driver
forwards the API calls to the virtual GPU. More specifically, it serializes an API call,
including which function is called as well as the parameters, and sends the byte stream
to the virtual GPU via a connection. If the API has any return value, it waits for the
virtual GPU returns, deserializes the return value and sends it to the application. If the
API does not have any return value, it returns immediately.

Since VAR driver provides all commonly-used Vulkan APIs, including the present-
related and non-present-related ones as described above, the application loading it can
utilize the virtual GPU in the same way as using a physical GPU device. In other words,
no modifications on existing applications are needed. We only require a specialized
user-space GPU driver, VAR driver, to be installed in the guest OS. VAR driver, just
like normal ICDs provided by GPU vendors, can be discovered by the Vulkan Loader,
which facilitates applications to load the required driver for any available device. This
solution can be regarded as para-virtualization. It is worth noting that, different from
CPU virtualization, there is no need to pursue full virtualization for GPU. The Vulkan
API already serves as an abstraction layer that hides the details of the GPU interfaces
from different vendors. Typical applications utilize the GPU via the API, instead of
interacting with the vendor-specific interface directly. Therefore, it is unnecessary to
build the full interface of a physical GPU and expose such details to the guest.
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4.2 VAR Server (Virtual GPU)
To provide a virtual GPU to a client application in the guest, VAR server uses the
Vulkan API provided on the host to access the physical GPU. VAR server handles
the non-present-related API calls sent from the driver one by one by deserializing the
request byte stream and calling the corresponding API function with the client-specified
parameters. If the function has a return value, VAR server serializes the return value
and sends the byte stream back to the driver. The present-related APIs are handled
by the driver, so those calls are not sent to VAR server. However, to serve those calls,
VAR driver may need to call some non-present-related APIs, such as vkCreateImage,
which are sent to the server.

Our architecture allows various possibilities for the correspondence between clients
(applications) and servers. One server can provide virtualized GPU access to one
application, one guest, or even multiple guests. Generally, one server per application
is dis-preferred because one server requires one connection accepting API requests. In
addition to the potentially large number of connections, another issue is that a server
needs to be started and listen to a connection before a guest application can make a
request to it. But, we do not know how many applications will be launched before the
guest OS boots.

One server per guest provides the nice property of guest isolation brought by vir-
tualization. Every server can be viewed as a virtual GPU device for a guest. A GPU
error encountered by one guest does not affect any other guests. Dynamically creating a
guest machine equipped with a virtual GPU device is easy to accomplish. To prepare for
booting the guest OS, we simply start a new VAR server, which is ready for accepting a
connection. In our experiments, this one-guest-one-server implementation is adopted.

On the other hand, one server multiple guests, where the server have a centralized
control over multiple virtual GPU devices for multiple guests, allows us to implement
some quality-of-service (QoS) policies. For example, we can prioritize the API requests
from a certain guest, which is equivalent to allocating more GPU computational power to
that guest. However, since different virtual devices are not isolated into different server
processes, more sophisticated error handling needs to be implemented in the server, to
prevent security issues, given the absence of natural protection from interference of other
guests connecting to the same server.
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Chapter 5 |
Challenges and Solutions

The introduction of a virtualization layer between the guest OS and the physical GPU
brings up several challenges in communication and data transfer. Communication
overhead may become performance bottleneck, which is an important factor for making
design choices. The transfer of data and rendered image between host and guest also
needs to be properly handled to achieve the desired GPU features with efficiency. In
addition, to provide multi-threading support as Vulkan does, a special design is needed,
due to the limitation of the communication channel between the host and the guest
provided by the hypervisor. In this chapter, we discuss these challenges and describe
how we overcome them by a custom design in VAR driver and VAR server.

5.1 Communication Overhead
While Vulkan is an asynchronous API, most of its functions have return values indicating
whether they were successful or if not, what errors have occurred. The overhead incurred
by the virtualization layer is one round trip time per API call. Therefore, round trip
time should be minimized, or it will become the bottleneck. TCP/IP connection is not
preferred because its reliability guarantee incurs unnecessary delays. It is to be noted
that TCP/IP was used by VMGL. However, most OpenGL functions do not have any
return values, doing so did not result in high communication cost. For our Vulkan API
remoting, it is better to go through the hypervisor. To make our design simple, we
adopt the virtual serial port in qemu for the connection between the VAR server and
VAR driver. Although it seems that this design choice makes our solution dependent on
qemu, migration to other hypervisors is fairly feasible because most hypervisors provide
similar interfaces.

To set up the virtual GPU before any virtual machine can use it, we need to run
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VAR server, which listens to a socket and waits for incoming connections through which
API requests will be sent. When the virtual machine boots, the hypervisor connects
to the socket listened by the server. The hypervisor exposes a character device to the
guest OS with the help of the virtual serial port driver. Applications in the guest OS can
establish a connection by opening the character device. However, the character device
is a serial port, accepting only one connection at a time; so, it can only support one
application with one thread. We explain how we address this restriction in Section 5.4.

5.2 Memory Mapping
In Vulkan, device memory accessible by both application and GPU can be allocated
through the vkAllocateMemory API. The application needs to map the host-visible
memory to its address space after the allocation by vkMapMemory, and unmap it before
freeing the memory by vkUnmapMemory. When the application in the guest requests
to map the memory, the memory is mapped by VAR server to server’s address space.
However, the application in the guest cannot access the address space of the server,
which is a process in the host OS. Therefore, we allocate a same size of memory in the
application’s address space when the memory is mapped, and synchronize it with the
memory in the server.

When to synchronize the memory is a design choice worth considering. On the one
hand, VAR driver cannot detect modifications from either the GPU or the application.
VAR driver has no host-side information (including memory access by the GPU) as it
runs in the guest. In addition, there is no mechanism for VAR driver, a user-space driver,
to detect the application’s modifications on the allocated memory. On the other hand,
the choice of the unit of synchronization is also a concern. While using larger units such
as hundreds of bytes causes a large fraction of unnecessary data transfers when there are
small but frequent modifications, using smaller units such as several bytes also incurs
large overheads because, each time a synchronization is performed, we need to send not
only the memory content but also some metadata. Given the above considerations, it is
impractical to synchronize the memory whenever it is modified by the application or the
GPU.

As a result, in our design, memory synchronization is triggered only by a few events.
The governing rule is that the latest host-visible memory content only needs to be
transferred between server’s address space and guest’s address space when the memory
written by one side is to be read by the other side. We further assume that the GPU and
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the client do not access the host-visible memory at the same time. This kind of memory
access patterns can cause inconsistencies so are usually avoided by typical applications.
Memory that has not been mapped cannot be accessed by the application, so only
the mapped memory needs to be synchronized. The memory is synchronized to the
application when it is mapped, and to the server when it is unmapped. If the memory is
still mapped when the application submits tasks to the GPU, it is synchronized by the
following rules.

From the server’s perspective, while the application may modify the memory at any
time, we only need to guarantee that the modification is applied to the server before
the GPU accesses the memory. Therefore, we synchronize the modification to the server
whenever a command buffer is submitted, which indicates that the GPU is likely to
access the host-visible memory subsequently.

From the client’s perspective, memory modification made by GPU only needs to
be visible after a requested task is completed. Given that the Vulkan API is asyn-
chronous, the application does not know whether the task is completed until it checks
with the API. Consequently, we only need to synchronize the memory back to the appli-
cation when the synchronization-related APIs are called, including vkDeviceWaitIdle,
vkQueueWaitIdle, and vkWaitFence. The server and the client collaboratively ensure
that host-visible memory mapped in server’s address space and application’s memory are
synchronized before returning these API calls to the application.

Although memory synchronization causes bandwidth consumption and latency, this
approach works well with most applications. For rendering, typically, large data structures
such as object models and texture are not frequently accessed because once loaded, they
can be reused over many frames in a certain scene. The memory required to be mapped
and synchronized frequently contains only matrices for coordinate transformation and
projection from 3D worlds to 2D images. When GPUs are exploited for accelerating
computationally intensive programs, the data transfer time only takes up a small fraction
of the whole span of the computation time. Thus, memory synchronization does not
become a major bottleneck either.

5.3 Display
In the native environment, DRI (Direct Render Infrastructure) allows GPU to put the
rendered image on the screen directly. The image is not sent back to the OS, thus not
costing additional CPU time and bandwidth between CPU and GPU memory. This is an
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efficient way to display locally. However, under a host-guest virtualization architecture,
if we forward all the presentation request through the server to the GPU, the rendered
image will be displayed on host’s screen, instead of guest’s screen. In addition, we target
the cloud environment, where the rendered image should be displayed on the screen of
a remote machine; so, DRI cannot be adopted. Note that this was not a challenge for
VMGL because the main focus was the desktop environment. It is assumed the VNC
client is on the same machine, and as a result, it can still use DRI.

We handle remote displaying as follows. Upon a presentation request, VAR driver
sends a command buffer with a fence to the GPU to copy the image to the host. Then,
VAR server transfers the image to the guest, and the driver sends the image to the
display server. We propose a simple synchronous presentation solution and an improved
asynchronous presentation solution, each corresponding to a different implementation of
the vkQueuePresentKHR API in the driver. It is worth noting that the more sophisticated
goal of displaying remotely, instead of locally, has prevented us from using DRI and thus
resulted in an inherent limitation on the performance of our solution. As a result, our
performance cannot be directly compared to the performance of displaying locally, and
the inherent gap should be considered when interpreting the evaluation results.

5.3.1 Synchronous Presentation

In this solution, the driver creates a command buffer, including the task to copy a
rendered image to memory, when a surface is created. When vkQueuePresentKHR is
called, the driver submits the command buffer with a fence. It then waits for the fence
to be reached and after that, it maps the memory at which the rendered image is located
to guest’s address space. When memory mapping is requested, the rendered image
is synchronized with the guest. Then, it copies the image to the display server. The
main disadvantage of this solution is that, during the rendering and presenting period,
the calling thread in the application is blocked. Therefore, the thread cannot continue
to prepare the next frame and submit any command buffers until the presentation is
completed. Consequently, the GPU will be idle until the image is presented and the
thread submits a new command buffer. We thus improve the efficiency by making the
presentation process asynchronous, which will be elaborated next.
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5.3.2 Asynchronous Presentation

In this asynchronous vkQueuePresentKHR design, the driver creates a dedicated presen-
tation thread to apply the rendered image to the display server. A presentation thread is
created when a surface is created but the application does not have a presentation thread
yet. This thread connects to the server and informs that it is a presentation thread. The
server will notify this thread whenever an image is ready to be presented.

When vkQueuePresentKHR is called, the driver submits the same command buffer
with a fence. It then sends a special command, which is recognizable by the server,
indicating that a frame should be presented when the fence is reached. After doing
so, the driver returns to the calling thread immediately. The rest of the present task
will be handled by the presentation thread. The server maintains a presentation queue,
which contains the fences corresponding to previously-submitted command buffers. Since
there is a connection between the presentation thread and the server, the server can
send the rendered image to the presentation thread when the next fence is reached. The
presentation thread then copies the rendered image to the display server.

After forwarding the command buffer and sending the special command, the calling
thread can prepare the next frame and submit the next command buffer. Since rendering
and presentation do not block the calling thread, the GPU utilization is improved.

Figure 5.1 illustrates the difference between synchronous presentation and asyn-
chronous presentation. In the asynchronous presentation implementation, the perfor-
mance is improved by overlapping the execution of the rendering task and presentation
task. The presentation overhead can almost be hidden when the presentation overhead
is less than the rendering latency.

5.4 Multi-threading
Vulkan supports multi-threading, so an application can have more than one thread
accessing the API at the same time. For each of the threads in the application (including
the presentation thread), VAR driver maintains one connection. When an API is
called, the driver detects whether the calling thread has a connection and automatically
establishes a new connection if necessary. It also registers a function to be called at
thread exit to close the connection.

To allow multiple connections to go through the virtual serial port, we set up one
multiplexer in the guest OS and one between the hypervisor and VAR server. We
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Figure 5.1: The Difference between Synchronous Presentation and Asynchronous Presen-
tation

implemented the multiplexer with system call select, though other implementations
are also possible.

The guest-side multiplexer, whose setup can be included in the installation process
of the driver, opens the virtual serial port character device and listens to a Unix socket
which can accept multiple connections. To create a new connection for an application
thread, the driver connects to that Unix socket. The host-side multiplexer is set up after
the server is started. For each application thread accessing the virtual GPU, there is
a corresponding thread in the server responsible for the requests from that application
thread. The Vulkan API itself supports multi-threading; so, it can accept calls from
multiple threads in the server process. The multiplexer is responsible for passing API
requests sent through the virtual serial port to the corresponding threads in the server.

Both multiplexers maintain the ID for each connection in order to forward the API
calls from an application thread to the correct thread in the server or vice versa. This
enables multiple threads or even multiple applications to access the server. Neither the
driver nor the server is aware of the existence of these multiplexers.

While, through the hypervisor, there is only one connection, this does not prevent
multiple threads from accessing the Vulkan API concurrently. More specifically, although
byte streams are queued for transmission, a thread can make a request while some other
threads are waiting for return values.

The effective bandwidth is limited only when multiple threads attempt to send or
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receive data at the same time. However, the serialized API calls take no more than tens
of bytes, so each of them occupies the connection channel for a very short period. Larger
byte streams are created when there is a need of memory synchronization, including the
transfer of the rendered images. Nevertheless, images are displayed frame by frame, and
thus, it is unlikely that multiple application threads would need to receive images at the
same time. In sum, when using GPU in the virtualization environment we proposed,
application developers do not have to take special care of any implications resulting from
our multiplexing mechanism.
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Chapter 6 |
Evaluation

We focus on evaluating the performance of our virtualization solution based on API
remoting. We report the native performance as the "upper bound". Theoretically, the
hardware-based solutions can reach this performance upper bound. For comparison,
we also report the performance of SwiftShader [27], which is based on pure software
rendering.

6.1 Experimental Environment
All experiments are conducted on a desktop with Intel i5-9400 CPU and B360 chipset.
Two 16GB 2666MHz DDR4 RAM are installed, and we virtualize the integrated GPU.

We evaluate an integrated GPU instead of a discrete GPU on purpose. Our solution
submits the same command buffer to the GPU as in the native environment. The GPU
performs the same task no matter it is in the virtualized environment or not. Only
the communication and presentation overheads, which are not handled by the GPU,
affect the performance. With a less powerful GPU, there will be a wider range of native
performance on different workloads, giving us a higher resolution for observing the
virtualization performance in different situations. Furthermore, since the communication
and presentation overheads are GPU-independent, the result can be applied to other
GPUs.

Both the host and the guest run Linux Ubuntu 20.04 LTS. We use qemu as the
hypervisor with KVM enabled. The desktop environment is Gnome shell and X server,
and the virtual machine has 4 virtual CPUs and a 4GB memory. We use the VMWare
SVGA-II compatible VGA card as qemu’s manual page suggests, which enables us to
perform evaluations with high resolutions. Table 6.1 gives the hardware and software
configuration used in our experimental evaluations.
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Hardware
CPU Intel i5-9400
Chipset Intel B360
GPU Intel UHD Graphics 630
RAM 2×16GB 2666MHz DDR4
Software
OS Ubuntu 20.04 LTS
Hypervisor qemu 4.2.0
Display Server Xorg X Server 1.20.8
Desktop Gnome 3.36.1
Vulkan 1.2.131

Table 6.1: Hardware and Software Configuration

6.2 Benchmarks
We report the performance of our solution on workloads involving both computation
and rendering. The virtualization performance is defined to be the relative performance
in a VM compared to the native performance. We run the benchmarks in the native
environment and in the virtual machine, with both our solution and SwiftShader.

6.2.1 Workloads

Graphic acceleration performance is measured by fps. We evaluate 12 workloads from
Vulkan C++ examples and demos [28], and run each workload for 60 seconds. While all
these workloads involve rendering, they contain a wide range of computation loads. Some
of our workloads render based on the results of computation; so, they have additional
computational load beside the rendering task itself. Table 6.2 lists the selected workloads
and the corresponding abbreviations used in the results presented.

The Vulkan examples are just for demonstration purpose and are not optimized for
performance. One major drawback in programs in the example repository lies in the
sequential workflow of rendering and presentation. A program submits the rendering
command buffer, calls the present function, and then waits until the presentation
task is completed. During the presentation, no command buffer is submitted, and
consequently, the GPU computation power is not fully utilized. However, since Vulkan is
an asynchronous API, a program does not need to be blocked after calling the present
function. It is expected that this advantage of Vulkan will be leveraged by performance-
critical real-world applications. In order to perform more realistic evaluations, we modify
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Workload Abbreviation
Advanced
High dynamic range HDR
Cascaded shadow mapping SMC
Omnidirectional shadow mapping SMO
Performance
Indirect drawing ID
Physically Based Rendering
PBR image based lighting PI
Deferred
Deferred multi sampling DMS
Deferred shading shadow mapping DS
Screen space ambient occlusion SSAO
Compute Shader
GPU particle system CP
N-body simulation CN
Ray tracing CR
Cull and LOD CC

Table 6.2: Selected Workloads

the examples as explained below.

6.2.2 Pipeline-based Optimization

By our modification, a program can submit up to two frames to be rendered by GPU.
While a frame is being rendered, the program submits the command buffer for rendering
the next frame. The GPU starts rendering the next frame as soon as the rendering
task for the previous frame is finished, while the previously-rendered frame is being
presented. By doing so, the utilization of GPU is improved, and the overhead is reduced
to a negligible level if the rendering time per frame is longer than the presentation time
per frame.

6.3 Discussion
The performance of the workloads under different schemes are plotted in Figure 6.1.
Both original workloads and their optimized versions are evaluated in HD resolution and
Full HD resolution. The rightmost ones (AVG and AVG OPT) show the geometric mean
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Figure 6.1: Performance on Workloads in FPS

over all selected workloads. On all workloads, our solution outperforms SwiftShader
significantly. It can be seen that, the performance in the VM ranges from 12% to nearly
full native performance (98%), varying from workload to workload. According to the
results in the native environment, the workloads can be categorized into two types:
low-fps and high-fps. Rendering time per frame is longer for low-fps workloads and
shorter for high-fps ones. In other words, the low-fps workloads refer to those that require
more computation power to render a frame.

For the original versions of the low-fps workloads, the virtualization performance
ranges between 47% and 98%. Communication and presentation overheads account for
the performance drop compared to the native case. The overhead can mostly be hidden
by pipelining. Therefore, the performance is improved by 78%–98% by such optimization.
The benefits of the pipeline-based implementation are more pronounced in the virtualized
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Workload Native 1 VM 2 VMs
SMO 172 65 43
SMO OPT 272 72 41
PI 341 74 47
PI OPT 613 78 48

Table 6.3: Performance for Multiple VMs in FPS per Application

environment, because the presentation takes longer, for the large image to be transmitted
through the hypervisor.

For high-fps workloads, the communication and presentation become the main bot-
tleneck. We can only achieve between 31 and 34 fps for Full HD and 54 to 78 fps for
HD in the VM. The performance gain from the pipeline-based implementation is limited,
primarily because, for each frame, the rendering latency usually is not long enough to
hide the latency induced by communication. Note that the virtualization performance
should not be compared with the native performance directly in this case. Presenting
images on guest’s screen requires rendered images to be transferred from the GPU to
host memory, resulting in the bottleneck at image transfer. This result is satisfactory
in a cloud environment, where the client accesses the virtual machine remotely, since
the screen is streamed to the client through TCP/IP with a much larger communication
overhead.

We further evaluate the high-fps workloads with HD resolution in 2 VMs simultane-
ously. The result in Table 6.3 shows that the total performance is improved since the
GPU utilization is increased. While the program in one VM is not utilizing the GPU
due to presentation latency, the GPU can be utilized by other VMs.

In conclusion, our solution is fairly effective in general. It achieves high virtualization
performance when the computation load per frame is high. Most latency is induced
by computation; so, the low overhead incurred by our solution does not lead to any
performance bottleneck. When the computation load is not heavy, our solution still
provides satisfactory frame rates. In either case, our solution achieves decent results,
indicating that it is a practical option.
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Chapter 7 |
Concluding Remarks and Planned
Future Work

In this thesis, we propose a GPU virtualization solution based on Vulkan API remoting.
Compared to the hardware-based solutions, the advantages of API remoting include
resource allocation flexibility and portability. The implementation is API-specific but
independent of the underlying physical device. Our solution is composed of a VAR server
running on the host and a VAR driver loaded by an application in a guest. Presentation-
related API calls are handled by the driver. All other commands are forwarded to the
host GPU without incurring additional commands (or computational overhead).

While Vulkan improves previous GPU APIs by an asynchronous command processing
model and explicit memory management available to the application, these properties pose
challenges on developing an API remoting solution for it. By addressing communication
overhead, memory mapping, remote presentation and multi-threading, our solution
provides "exactly the same Vulkan API" to a guest application. Experimental results
show that our solution has performance closer to native on heavier workloads and
satisfactory frame rates for others. Since the virtualization overhead mainly arises from
communication and presentation – not taking additional GPU computation power – the
GPU can be fully utilized when being shared among multiple guests. Our solution is
suitable for GPU virtualization in both desktop and cloud environments, with negligible
overheads, especially in the latter because the latency is dominated by streaming rendered
images over a network.

Our current implementation has included commonly-used APIs. In the future, we plan
to complete the whole set of standard Vulkan APIs. In addition, we are also planning to
follow the same paradigm to implement Vulkan extensions such as the ray tracing API.
On the other hand, we would like to extend our support of different display servers, so
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that our solutions can be utilized in other operating systems as well.
Memory synchronization in our solution can be further improved by mapping the

address spaces of VAR server and guest application to shared memory pages. By doing
so, one can allow the application to read the rendered images and send to the display
server in the guest. The major bottleneck of transferring images from the host to the
guest through the hypervisor can be eliminated.

In sum, our virtualization solution already provides fairly comprehensive Vulkan API
support and can serve as the basis for further extensions. With the increasing popularity
of Vulkan, our solution has the potential to be widely deployed. We will make the source
code publicly available.
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