
The Pennsylvania State University

The Graduate School

AUTOMATIC EDL GENERATION FOR INTEL SOFTWARE

GUARD EXTENSIONS

A Thesis in

Computer Science and Engineering

by

Eralp Sahin

c© 2020 Eralp Sahin

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2020

The thesis of Eralp Sahin was reviewed and approved by the following:

Gang Tan

Professor of Computer Science and Engineering

Thesis Advisor

Mahmut Taylan Kandemir

Professor of Computer Science and Engineering

Chitaranjan Das

Department Head and Distinguished Professor

Department Head of Computer Science and Engineering

Abstract

Intel Software Guard Extensions (SGX) is a hardware-assisted Trusted Execution
Environment for desktop and server platforms. SGX increases the security of an
application by isolating a specific part of an application code and memory. This
isolated part is called an enclave. Enclaves are protected from other processors
running at higher privilege levels and the operating system. The interface between
the untrusted zone and the enclave in the application is defined in the Enclave
Definition Language (EDL) file. Converting a conventional application to an SGX
application is a non-trivial process. Programmers need to define the interface
manually in the EDL file. Additionally, SGX creates proxy routines for cross-
domain functions in the application that have different signatures than the original
functions so there needs to be a refactoring of the source code. We developed
a tool to automate and reduce the work needed for defining the interface and
refactoring. Our tool performs a static analysis on the original application to
obtain information about the user-defined types and the pointer parameters of
the cross-domain functions in the application. It generates the EDL file for the
application and refactors the original source code to comply with the proxy routines
generated by SGX.

iii

Table of Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

Chapter 1
Introduction 1
1.1 Problem . 2
1.2 Tool workflow . 2
1.3 Motivation . 4

Chapter 2
Background and Related Work 9
2.1 Intel Software Guard Extensions . 9

2.1.1 Edger8r . 10
2.1.2 Enclave Definition Language 12

2.1.2.1 Attributes . 13
2.1.3 Unsupported Built-in Functions 14

2.2 Program Dependence Graph . 14
2.2.1 Parameter tree . 15

Chapter 3
Code Analysis and Generation 17
3.1 Parameter access analysis . 17
3.2 Heuristics . 18

3.2.1 [string] . 18
3.2.2 [size] . 22

iv

3.2.3 [count] . 25
3.3 EDL Generation . 28
3.4 SGX Code Generation . 29

Chapter 4
Experiments 31

4.1 [string] inference . 31
4.1.1 mini httpd . 32
4.1.2 htpasswd . 33
4.1.3 thttpd . 33

4.2 [size] and [count] inference . 34
4.2.1 mini httpd . 35
4.2.2 htpasswd . 36
4.2.3 thttpd . 36

Chapter 5
Discussion and Future Work 38
5.1 Limitations . 39

Bibliography 40

v

List of Figures

1.1 Workflow . 3
1.2 Example untrusted code . 4
1.3 Example trusted code . 5
1.4 Example EDL . 6
1.5 Example ECALL library header . 6
1.6 Example ECALL library implementation 6
1.7 Example code refactoring . 7

2.1 Example ECALL . 10
2.2 Example untrusted proxy generated by Edger8r 11
2.3 ECALL call and return diagram . 11
2.4 EDL syntax . 12
2.5 Example struct definition and prototype 15
2.6 Example Parameter tree for parameter s 15

3.1 Example code snippet for [string] attribute 21
3.2 Indirect usage of the argument with a string function 21
3.3 Indirect usage of the argument with a string function LLVM IR . . 22
3.4 Usage of memset with size len . 22
3.5 LLVM IR of clear mem function . 25
3.6 Example code snippet for [count] attribute 26
3.7 Function and proxy routine signatures 29
3.8 ECALL wrapper . 29

4.1 Local variables used in string function 32
4.2 Library call represented as instruction node 35
4.3 Direct usage of pointer address . 36

vi

List of Tables

2.1 Unsupported C functions . 14

3.1 [string] attribute functions set . 20
3.2 [sıze] attribute functions set . 23

4.1 Size of the benchmarks . 31
4.2 String attribute results . 31
4.3 Quality of [string] inference . 34
4.4 Size and count attribute results . 34
4.5 Quality of [size] and [count] inference 37

vii

Acknowledgments

I would like to express my gratitude to my advisor Gang Tan who was always
encouraging throughout my studies at the Pennsylvania State University. I would
like to thank the members of my committee for their time and patience. Special
thanks to Yongzhe Huang without whom this work would never be achievable.

viii

Dedication

Lovingly dedicated to my beautiful wife Elif. Thank you for always listening to
me when I talk about my thesis, trying to help and supporting me.

ix

Chapter 1
Introduction

Processing some kind of private information is a common part of modern software

applications. These secret data should be protected from unauthorized access. To

achieve this, security sensitive applications often apply data encryption themselves

on top of operating system’s own security enforcements such as limiting access to

applications and files of other users. These mechanisms fell short of defending

the private information on a computer where malicious parties have administra-

tive privileges since it is possible to gain unauthorized access to an application’s

memory where decrypted secret data live.

Trusted Execution Environment (TEE) aim to solve this security problem by

offering an isolated environment. This isolation can be done on both hardware

and software level. Intel Software Guard Extensions (SGX) is a hardware-assisted

TEE for desktop and server platforms. SGX allows creation of an enclave (trusted

container) and offers a protection from a set of known hardware and software

attacks [1]. Some of these attacks are mentioned in the section 2.1.

An SGX application consists of two parts called trusted and untrusted compo-

nents. The communication between these zones (interface) is defined in an Enclave

Definition Language (EDL) file.

Converting a conventional application to an SGX application is a non-trivial

process. To automate and reduce the programmers work we developed a tool

for automatic EDL file and SGX code generation. The attributes for parameters

of cross boundary functions (ECALLs and OCALLs) in EDL are gathered from

a static code analysis consisting of parameter access analysis from IDL-GEN [2]

2

and some other heuristics. The automation of code refactoring uses information

gathered from the code analysis to refactor and inject necessary code snippet to

the application. The rest of this thesis is organized as follows. Next sections

describe in detail the problem, the motivation, and the system of our tool. Chapter

2 summarizes information about the background and related work of the tool.

Chapter 3 presents the methodology used in the static analysis of the tool. Chapter

4 illustrates results on experimental benchmarks. Chapter 5 discusses limitations

of the heuristics in the static analysis and future work for improvements.

1.1 Problem

A conventional application needs major code refactoring to comply with the re-

quirements of the SGX SDK. In addition to the EDL for the interface, every

ECALL and OCALL in the source code needs to be refactored with additional pa-

rameters for the SGX proxy routines. Moreover, SGX does not support all GCC

built-ins including commonly used functions such as printf and strcpy. In such

cases, the programmer needs to manually refactor the code. Making these addi-

tions and changes in the application code is manual and laborious even though the

information and the necessary work to be done for refactoring can be deduced by

a static analysis.

1.2 Tool workflow

The tool takes an intermediate representation (IR) in the form of LLVM IR for

the trusted and the untrusted components of the application as an input. After

compiling the program through clang resulting IR files can be linked together

with llvm-link in accordance with the separation of the trusted and the untrusted

boundaries. For the analysis we first construct a program dependence graph (PDG)

of the whole application. Analysis of the tool including parameter access analysis

and heuristics uses the PDG for gathering the access information, definitions of

user-defined types, and other information to be used during the EDL generation

for the application. Basics of the enclave development and the EDL are described

in section 2.1 and 2.1.2 respectively. In addition to the EDL file, the tool generates

3

wrapper functions for each ECALL, OCALL, and unsupported functions to comply

with the SGX SDK. Section 2.1.3 has a table consisting of most common functions

in the unsupported functions list. The tool refactors each call sitte for ECALLs

and OCALLs and injects necessary code to the application code such as enclave

initialization. Diagram of the tool is shown in figure 1.1

Figure 1.1. Workflow

4

1.3 Motivation

Following example demonstrates the workflow of the tool. This Example is a

toy C application whose functionality is to get a plaintext from the user and

encrypt the text string according to a key generated using a pseudo random number

generator rand. For the sake of simplicity we can assume the trusted and untrusted

boundaries are separated in such a way that the secret key initialization and the

encryption are supposed to be executed in the enclave. Figure 1.2 shows the

untrusted component of the application and the figure 1.3 shows the enclave of the

application.

i n t main () {
char t ext [1 0 2 4] ;

p r i n t f (” Enter p l a i n t e x t : ”) ;
s can f (”%1023s ” , t ex t) ;

i n i t k e y (s t r l e n (t ext)) ;
char∗ c i p h e r t e x t = encrypt (text , s t r l e n (t ex t)) ;
p r i n t f (” Cipher t ext : ”) ;
f o r (i n t i = 0 ; i < s t r l e n (t ext) ; i++)

p r i n t f (”%x ” , c i p h e r t e x t [i]) ;
r e turn 0 ;

}

Figure 1.2. Example untrusted code

To convert this application into an SGX application, we need to have an EDL

file for the interface between the components. SGX SDK includes a tool called

Edger8r that generates proxy routines for both the untrusted components and

enclaves using the EDL files. Details of Edger8r are described in section 2.1.1.

The generated proxy routines for the ECALLs and the OCALLs have different

signatures than the original functions so there needs to be a refactoring of the code.

We generate the EDL files and a library of functions for the purpose of refactoring

with our tool. Then the SGX code injection module of the tool injects definitions

and initialization code necessary for the SGX SDK and refactors each ECALL and

OCALL site by changing the called functions name to the automatically generated

5

char ∗key ;
void i n i t k e y (i n t sz) {

key = (char ∗) (mal loc (sz)) ;
f o r (i n t i = 0 ; i < sz ; i++) key [i] = rand () % 5 ;

}

char ∗ encrypt (char ∗ p la in t ex t , i n t sz) {
char ∗ c i p h e r t e x t = (char ∗) (mal loc (sz)) ;
f o r (i n t i = 0 ; i < sz ; i++)

c i p h e r t e x t [i] = p l a i n t e x t [i] ˆ key [i] ;
r e turn c i p h e r t e x t ;

}

Figure 1.3. Example trusted code

library of functions.

In our example, the cross boundary functions are encrypt and initkey which

are called from the untrusted component of the application. The tool computes

these imported functions for the untrusted component using the same methodology

used in IDL-GEN. While we do not have any imported functions in enclave in our

example, the tool would collect if there were any. EDL file will be consisted of the

interface specifications for the functions in these two distinct imported functions

lists.

Parameter access analysis is performed on these function lists again similar to

IDL-GEN. A summary of what the analysis results is described in section 3.1. In

addition to the access analysis we analyze the code for static information about

buffer size, user-defined types, and other specific usages of pointers in code.

The EDL file generated for our example is shown in figure 1.4. In the EDL

code, each cross boundary function has an interface specification. For pointer

type parameters the tool generates attributes including the access information and

the size according to the requirements of the SGX SDK. Unsupported.edl is an

SGX library we use for the unsupported built-in functions, sections 2.1.2 and 3.3

discuss the generated EDL code in more detail. In addition to the EDL file, the

tool generates libraries for untrusted components and the enclave composed of

wrapper functions for the cross boundary functions as shown in figure 1.5 and 1.6.

As mentioned before, this step is necessary because in an SGX application, the

6

enc lave {

t ru s t ed {
pub l i c char∗ encrypt ([in , count =1024] char∗ p la in t ex t ,

i n t sz) ;
pub l i c void i n i t k e y (i n t sz) ;

} ;

from ”Unsupported . ed l ” import ∗ ;
untrusted {

} ;
} ;

Figure 1.4. Example EDL

#inc lude ” Enclave u . h”
#inc lude ” s g x u r t s . h”
#inc lude ” s g x u t i l s . h”
extern s g x e n c l a v e i d t g l o b a l e i d ;
char∗ encrypt ECALL (char∗ p la in t ex t , i n t sz) ;
void initkey ECALL (i n t sz) ;

Figure 1.5. Example ECALL library header

#inc lude ” E c a l l s . h”
s g x e n c l a v e i d t g l o b a l e i d = 0 ;
char∗ encrypt ECALL (char∗ p la in t ex t , i n t sz) {

char∗ r e s ;
encrypt (g l o b a l e i d , &res , p l a in t ex t , sz) ;
r e turn r e s ;

}

void initkey ECALL (i n t sz) {
i n i t k e y (g l o b a l e i d , sz) ;

}

Figure 1.6. Example ECALL library implementation

7

untrusted and trusted components call proxy routines of the functions instead of

directly calling the functions and proxy routines have a different signature.

Apart from the EDL file and the libraries for ECALL and OCALL wrapper

functions, the ECALL and OCALL sites in the source code in both untrusted

and trusted zones need to be refactored so that the function calls will call the

wrappers. The result of the refactoring of the untrusted component is shown in

figure 1.7. Since there are no OCALLs, trusted code is not changed other than

adding necessary headers on top.

#inc lude ” E c a l l s . h”
#inc lude ”Unsupported . h”
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>

i n t main () {
i f (i n i t i a l i z e e n c l a v e (& g l o b a l e i d ,

” enc lave . token ” ,
” enc lave . s i gned . so ”) < 0) {

p r i n t f (” Fa i l ed to i n i t i a l i z e enc lave .\n”) ;
r e turn 1 ;

}

char t ext [1 0 2 4] ;

p r i n t f (” Enter p l a i n t e x t : ”) ;
s can f (”%1023s ” , t ex t) ;

initkey ECALL (s t r l e n (t ex t)) ;
char∗ c i p h e r t e x t = encrypt ECALL (text , s t r l e n (t ext)) ;
p r i n t f (” Cipher t ext : ”) ;
f o r (i n t i = 0 ; i < s t r l e n (t ext) ; i++)

p r i n t f (”%x ” , c i p h e r t e x t [i]) ;
r e turn 0 ;

}

Figure 1.7. Example code refactoring

The changes that are made by the tool are (1) necessary headers for the wrapper

library and the unsupported function library; (2) enclave initialization code at the

8

first line in the scope of the function main; (3) function call changes in the source

code so that the wrapper functions will be called instead of the original functions.

Chapter 2
Background and Related Work

2.1 Intel Software Guard Extensions

Intel SGX enables protection of secrets in the application. SGX is a set of CPU in-

structions in the Intel architecture that operates by allocating hardware protected

memory in which both the code and the data can reside. An SGX enabled ap-

plication consists of two main components called trusted (enclave) and untrusted.

The data within the enclave can only be accessed by the code that resides in the

enclave and the code can be invoked from the untrusted components with spe-

cial instructions that SGX provides in Intel architecture. This procedure provides

security properties such as:

• Enclave memory cannot be accessed from outside the enclave regardless of

privelege level and CPU mode.

• Production enclaves cannot be debugged by any kind of debuggers.

• As mentioned before, enclave code cannot be invoked without special instruc-

tions, only way is to call an enclave function ECALL via SGX instruction.

This renders register manipulation and stack manipulation attacks ineffec-

tive.

• Enclave memory is protected by encryption. The encryption key is randomly

generated and stored in the CPU with no access.

10

SGX requiress two logical components in an application, trusted component

resides in the enclave and can access the protected memory. This component is

also called enclave. Untrusted component is the rest of the application including

the operating system.

While it is possible to call an enclave function from the untrusted zone, the

enclave can also invoke a function from the untrusted zone. These functions in

each zone that can be called cross boundary are called ECALL for functions in

enclave and OCALL for functions in untrusted zone. The interface of these calls

should be described in an EDL file in the application.

An enclave needs to be created in the SGX application. sgx_create_enclave

function is provided in SGX to load the enclave using its filename, its configuration

and the user-defined enclave id [3].

2.1.1 Edger8r

Edger8r is a tool in the SGX toolset that generates secure proxy routines to ensure

data marshalling for ECALLs and OCALLs according to the interface specification

in the EDL file [3].

Given an EDL file demo.edl Edger8r generates the following files:

• demo_t.h: Prototypes of ECALLs.

• demo_t.c: Definitions of ECALLs.

• demo_u.h: Prototypes of OCALLs.

• demo_u.c: Definitions of OCALLs.

The generated functions have different signatures than the original ones. Fig-

ures 2.1 and 2.2 show an example for the original function from the enclave and

the untrusted proxy generated for the function by Edger8r.

i n t bar () {
r e turn 42 ;

}

Figure 2.1. Example ECALL

11

s g x s t a t u s t bar (s g x e n c l a v e i d t eid ,
i n t ∗ r e t v a l) {

s g x s t a t u s t s t a tu s ;
ms bar t ms ;
s t a t u s = s g x e c a l l (e id , 0 , &o c a l l t a b l e E n c l a v e , &ms) ;
i f (s t a t u s == SGX SUCCESS && r e t v a l)
∗ r e t v a l = ms . ms re tva l ;

r e turn s t a t u s ;
}

Figure 2.2. Example untrusted proxy generated by Edger8r

In the SGX application the original ECALL function is not accessible out-

side the enclave. Untrusted components only have access to the untrusted proxy

of the ECALL. Edger8r changes the signature of the function. First parameter

sgx_enclave_id_t eid is a unique ID for the enclave which is used as a handle

to an enclave by these proxy functions. Next, the second parameter is used as a

replacement for the return type. In our example, the second parameter is int *

since the function is supposed to return an integer. Edger8r then adds the original

functions parameters in the original order if there are any. The enclave id parame-

ter only exists for ECALLs. Figure 2.3 shows the call and return diagram for when

the untrusted zone calls a function from the enclave called bar.

Figure 2.3. ECALL call and return diagram

The sgx_ecall function call is the bridge between the untrusted zone and the

enclave. First argument is the eid of the enclave. Second parameter is the index

of the ECALL function in the table SGX uses internally. According to the order

in the EDL file of the application, Edger8r assigns indices to functions. In our

example, bar function is the first in the EDL, as a result its index is 0. Third

parameter is a table that stores OCALLs. SGX sends this table to the enclave side

12

to be used when enclave makes an OCALL call. Finally, the last parameter is a

struct used for data marshalling by the SGX. As shown before, the return value is

handled by this struct if there are any.

2.1.2 Enclave Definition Language

Enclave definition language describes the interface between the untrusted zone and

the enclave. As mentioned before, Edger8r uses the information from the EDL files

to create proxy routines. EDL syntax is an extension to standard C/C++ syntax

with additional information about the types, parameters, and the visibility for the

ECALLs and OCALLs. Figure 2.4 shows the syntax and features of EDL.

enc lave {
i n c lude ”mytypes . h” // Inc lude user−de f ined types
s t r u c t myStruct { // Add user−de f ined type d e f i n i t i o n s

i n t data ;
const char∗ t ex t ;

} ;
t ru s t ed { // Optional i f f i l e i s imported in another ed l

pub l i c void some func ([in] s t r u c t myStruct∗ s t) ;
void d u p l i c a t e s t r i n g ([in , s t r i n g] const char∗ s t r1 ,

[in , out , s t r i n g] const char∗ s t r 2) ;

} ;
from ” Library . ed l ” import ∗ ;
untrusted { // Optional

// Allow non−pub l i c ECALLs to be c a l l e d
void o c a l l p r i n t f ([in] s t r u c t myStruct∗ s t)

a l low (d u p l i c a t e s t r i n g) ;
} ;

} ;

Figure 2.4. EDL syntax

Edger8r requires the definitions of user-defined types for generating proxy rou-

tines. EDL can include headers for the user-defined type definitions (structs,

unions, enums, typedefs). Additionally, structs, enums, and unions can also be

defined directly in the EDL file. An EDL file can also be used as a library and

13

be imported from another EDL file to add its functions to an enclave. Figure 2.4

shows the import syntax.

The first ECALL is annotated with the keyword public to enable that ECALL

to be directly called from the untrusted zone. The second ECALL is private and

can only be called from an OCALL by granting permissions explicitly with the

keyword allow. ECALLs define entry points into the enclave while OCALLs define

the transfer of control from the enclave to untrusted zone. An enclave in an SGX

application should have at least one public ECALL.

2.1.2.1 Attributes

Pointer parameters are annotated with attributes in EDL. Specifically for direction

and size information. Following are the attributes defined in EDL:

• [in]: This attribute is used for when the parameter is passed from the caller

to the called function. SGX handles marshalling by creating a pointer in the

called side and copying the buffer pointed by the pointer.

• [out]: This attribute is used for when the parameter is returned from the

called function to the caller.

• [user_check]: In contrast to the direction attributes above, user_check

can be used to trade performance for protection. Using this attribute does

not provide any kind of data marshalling. Additionally, SGX verifies that

the buffer from untrusted zone is pointing to an address in the untrusted

zone and vice versa when used with direction attributes. With user_check

attribute the raw pointer address will be passed and the programmer should

do the bounds checking on the address if needed.

• [size] and [count]: The proxy routines copy the buffer pointed by the

pointer and in order to copy the buffer contents the routine needs to know

how much data needs to be copied. The total number of bytes are cal-

culated by count * size. If size is not specified it is assumed to be

sizeof(pointer type) for pointer types other than void. For this rea-

son it is often used only for void pointers. For void pointers this attribute

is required. If count is not specified it is assumed to be equal to 1. These

14

attributes can have a literal value, such as [in , count=10] and can be

used with a parameter, such as

void foo ([in , s i z e=len] void∗ ptr , s i z e t l en) ;

• [string]: This attribute indicates that a parameter is a NULL terminated

char pointer C string. Proxy routine determines the length of the string

implicitly. [in] attribute is required for this attribute.

• [isptr]: If a pointer type is aliased to a type that does not have an aster-

isk(*) EDL does not recognize the pointer and the parser generates an error.

This attribute explicitly indicates that it is in fact a pointer type.

• [readonly]: Similar to isptr attribute a user-defined type of a pointer to a

const data type should be annotated explicitly with this attribute for EDL.

• [isary]: This attributed is used to indicate that the user-defined parameter

is an array.

2.1.3 Unsupported Built-in Functions

SGX has a special trusted C library that does not contain any function that are

considered insecure [3]. Table 2.1 shows some of the most common functions that

are not supported in enclave. These functions can still be called from the untrusted

zone of the application.

strcat strcpy strdup stpcpy
fprintf printf scanf fscanf
vprintf vsprintf rand exit

Table 2.1. Unsupported C functions

2.2 Program Dependence Graph

Our analysis depends on a program dependence graph (PDG) of the application.

A PDG is a single graph consisting of data dependence graph (DDG) and con-

trol dependence graph (CDG). Since PDG connects the graphs of computationally

15

related parts of the program, many analyses including parameter access analy-

sis and analysis for our heuristics require less time to perform than with other

representations [4].

Nodes in the graph are instruction nodes that represent instructions in the

program. Edges represent data/control dependence and call edges. Our main

focus for our analysis is the data dependence edges. The parameter tree approach

in our PDG construction for representing pointer data that are passed during

function calls obviates the need for global pointer analysis [5].

2.2.1 Parameter tree

We build a formal parameter tree for each parameter of a function. The parameter

tree contains nodes that represent memory regions that can be accessed through the

parameter. Additionally, actual parameter tree is constructed for each argument at

a function call site and connect nodes in an actual tree with corresponding formal

tree nodes.

s t r u c t s t { i n t a , f l o a t b } ;
void foo (s t r u c t s t ∗ s) ;

Figure 2.5. Example struct definition and prototype

Figures 2.5 and 2.6 shows the parameter tree generated for a sample code in

which a struct pointer to a struct with two fields is passed to function foo.

Figure 2.6. Example Parameter tree for parameter s

16

In the parameter tree each node represents a memory region. The final tree

includes node for the pointer to the struct, node for the struct, and one node

for each fields of the struct. Parameter tree simplifies the computation of inter-

procedural data dependence. Intra-procedural analysis for each function can be

composed together using parameter trees to build a PDG for a large program.

Details can be found in the Ptrsplit [5].

Chapter 3
Code Analysis and Generation

The application takes the LLVM IR of the application which is created by linking

the two partitions and performs a static analysis to generate the outputs. First step

of the tool is to construct a PDG of the application. Our tool computes the cross-

domain function sets for both the untrusted zone and the enclave. Afterwards,

parameter access analysis and other heuristics are performed for the functions in

these sets on the PDG. Final step is to generate EDL file and the wrapper libraries

for the application based on the findings in the static analysis.

3.1 Parameter access analysis

We use parameter access analysis on pointer type parameters of cross-domain

function sets. It calculates how and which memory regions in the parameter tree

are used [2]. Using a worklist based approach, for each function in the cross-

domain function set and its call graph we perform an intraprocedural parameter

access analysis and perform an interprocedural parameter access analysis for the

call graph of the function until the analysis reaches a fixpoint. Access analysis

computes a set of access labels (READ — WRITE) for the parameters of a function.

Details can be found in the IDL-GEN [2].

18

3.2 Heuristics

Algorithm 1 represents the overal intraprocedural analysis of our tool. We will

describe the methods we use in the following sections.

Algorithm 1 Intraprocedural access and attribute analysis

Input: arg is an argument, T is the parameter tree

Output: Access and Attribute Map AM

1: AM ← ∅
2: procedure GetIntrAArgInfo(arg, T)

3: for node n in T do

4: AM [n]← ∅
5: IS ← {i | instructions that access n’s memory region}
6: for Instruction inst in IS do

7: if inst is StoreInst and n is destination then

8: AM [n]← AM [n] ∪WRITE

9: else if inst is LoadInst and n is source then

10: AM [n]← AM [n] ∪READ

11: else if inst is CallInst and n is operand then

12: if arg is char∗ then

13: analyzeString(AM,n, arg, inst)

14: else

15: analyzeSize(AM,n, arg, inst)

16: end if

17: end if

18: end for

19: end for

20: analyzeCount(AM, arg,G)

21: end procedure

3.2.1 [string]

EDL syntax has a special attribute for NULL terminated char pointer C strings.

During the deep copy of the contents of the pointer the size of the data is calculated

19

by the proxy routine instead of relying on [size] and [count] attributes. We

inspect the call instructions during the parameter access analysis for parameters

of char pointer type. We compare the called function name against a combination

of a pre populated set of function names and the functions in the application that

our tool already analyzed. Table 3.1 shows our pre populated string function set.

If a parameter of a function is detected to be a NULL terminated char pointer C

string, similar to access analysis this information is used in the interprocedural

parameter access analysis.

Algorithm 2 String attribute

Input: arg is an argument, n is a parameter tree node, callInst is the in-

struction in which arg used as an operand

Output: Access and Attribute Map AM

1: procedure analyzeString(AM,n, arg, callInst)

2: func← callee in inst

3: num← operand number in inst

4: if func in ReadStrSet and num is ReadStrSet[func] then

5: AM [n]← AM [n] ∪ STRING

6: end if

7: if func in WriteStrSet and num is WriteStrSet[func] then

8: AM [n]← AM [n] ∪ STRING ∪WRITE

9: end if

10: if func in G and corresponding param in func is STRING then

11: AM [n]← AM [n] ∪ STRING

12: end if

13: if func in printfFormatSet and num corresponds to %s then

14: AM [n]← AM [n] ∪ STRING

15: end if

16: if arg is STRING and corresponding param in func is char∗ then

17: n′ ← parameter tree node of param

18: AM [n′]← AM [n′] ∪ STRING

19: end if

20: end procedure

20

[string] [in] [string] [out]

strlen strnlen - -
strcmp strncmp sprintf snprintf
strcoll strtok - -
strchr strrchr - -

strpbrk strspn - -
strcspn strstr - -
strdup strndup - -
strcat strncat strcat strncat
strcpy strncpy strcpy strncpy
open fopen - -

strftime vsnprintf strftime vsnprintf

Table 3.1. [string] attribute functions set

According to the SGX specifications, pointer parameters with [string] at-

tribute are required to also have the [in] direction attribute. Our algorithm adds

the label STRING which implicitly means [in, string] attributes. Our algorithm

also adds WRITE label to arguments that are used with functions in WriteStrSet.

In this case, [in, out, string] attributes would be generated for the argument

in the EDL file.

Our tool presumes the parameter is a NULL terminated char pointer C string

if it is used as an argument to a function from the table above. According to

the index of the argument in the call instruction we infer whether the string is

read or written. For example, our tool sets [out] attribute to the first argument

in a strcat call and [in] attribute to the second argument. For printf style

function calls, our tool parses format strings if they are literal values. We can

also detect that a char pointer is a string if we know that it is used with the %s

specifier. Algorithm 2 presents the cases where we detect [string] attribute. The

ReadStrSet is the set of functions on the left side of the table 3.1 and WriteStrSet

is the right side.

Figure 3.1 demonstrates an example for the algorithm. We have two functions

foo and bar with two char pointer parameters. We can assume foo is the root

ECALL for simplicity.

When our tool analyzes foo, it infers that buf1 is a string by finding the strlen

in the ReadStrSet. Since our tool obtained that buf1 is a string, corresponding

21

void foo (char∗ buf1 , char∗ buf2) {
s i z e t s i z e = s t r l e n (buf1) ;
bar (buf1 , buf2) ;

}

void bar (char∗ buf3 , char∗ buf4) {
s t r c a t (buf4 , ” ! ”) ;

}

Figure 3.1. Example code snippet for [string] attribute

parameters in all the functions in foo’s transitive closure that gets the buf1 as

an argument are also inferred to be a string. This is handled on line 16 in the

algorithm. The buf3 parameter is an example to this in our case.

For the parameter buf2, only usage is a bar call and our tool have not analyzed

that function yet. When intraprocedural analysis analyzes bar, it infers that buf4

is a string since the function is in the WriteStrSet and buf4 is the first parameter.

Handled on the line 7 in the algorithm, we add the label WRITE to the map of the

argument. Our tool annotates this parameter with [in, out, string] attribute.

At this point, when buf2 is analyzed again, the tool can infer that it is a string

because bar is in our constructed PDG and the corresponding parameter (buf4)

is a string.

void foo (const char∗ s t r 1) {
. . .
const char∗ s t r 2 = s t r 1 ;
s t r l e n (s t r 2) ;
. . .

}

Figure 3.2. Indirect usage of the argument with a string function

We are analyzing direct usages of parameters in the function and do not track

the local variables. While it is possible to track all the variables related to the

parameter such as assignment to new local variables, this increases the complexity

of the PDG analysis because the parameter is only indirectly connected to the

values of the variables it is assigned to in our constructed PDG. Figure 3.2 a code

snippet and 3.3 the LLVM IR of the code show an example for this case where our

22

tool cannot infer [string] correctly.

. . .
%4 = load i 8 ∗ , i 8 ∗∗ %2, a l i g n 8 , ! dbg !18
s t o r e i 8 ∗ %4, i 8 ∗∗ %3, a l i g n 8 , ! dbg !17
%5 = load i 8 ∗ , i 8 ∗∗ %3, a l i g n 8 , ! dbg !19
%6 = c a l l i 64 @str l en (i 8 ∗ %5) , ! dbg !20
. . .

Figure 3.3. Indirect usage of the argument with a string function LLVM IR

Our PDG has an edge from %4 to store instruction and we should analyze the

store instruction to infer %5 is in fact related to %4. This process increases the

complexity of the PDG analysis.

3.2.2 [size]

Our tool uses a similar approach for the [size] attribute. As we mentioned before,

this attribute is often used only for void pointer types since it is required. [count]

attribute can still be used together with [size] for void pointers. We use a set of

functions specific to void pointers that we can detect the size from. For example

our tool recognizes the size for the ptr parameter in the ECALL shown in figure

3.4 from the memset call.

void clear mem (void ∗ ptr , s i z e t l en) {
memset (ptr , 0 , l en) ;

}

Figure 3.4. Usage of memset with size len

It is trivial to extract the size information from the third argument of the

memset call if it is a literal value. For the other case where the size is sent as a

parameter we make use of the PDG to analyze all parameters of the function to

deduce that the second parameter of clear_mem is the size of the pointer. Our

tool assigns the [out, size=len] attribute to the ptr parameter for the figure

3.4. Algorithm 3 presents this process. Table 3.2 shows our pre populated function

set. The ReadVoidSet is the set of functions on the left side of the table 3.2 and

WriteVoidSet is the right side.

23

[in] [out]

memcpy memmove memcpy memmove
memchr memrchr memset -
memcmp write - read

Table 3.2. [sıze] attribute functions set

Similar to [string] attribute we infer whether the argument is read or written

according to the index. For example first and second argument of memcpy call

should be annotated with [out] and [in] attributes respectively.

For a pointer parameter that is used in a call instruction, our tool first checks

the read and write pre populated sets to find the called function. If it finds in any

of the sets the index of the parameter in the instruction and the value from the

pre populated set is compared. If they also match, our tool assigns either [in] or

[our] attribute to the node of the parameter.

Additionally, we analyze the size operand of the function. For example, third

argument of a memset call is used to obtain how much data in the buffer is filled.

We presume that this is the total size of the buffer. If the third argument is a

literal value, our tool uses literal value with the [size] attribute. Otherwise, it

tries to relate any of the parameters of the function with the size argument of the

call instruction. We analyze the PDG for the read dependencies of the parameters

and if any is related to the size argument of the function call, our tool annotates

the [size] attribute with that parameters name. This method falls short when a

local variable is used with the arguments value indirectly similar to the weakness

we mentioned in the [string] section. Figure 3.5 shows the LLVM IR of the

clear_mem function from the figure 3.4.

24

Algorithm 3 Size attribute

Input: arg is an argument, n is a parameter tree node, callInst is the in-

struction in which arg used as an operand

Output: Access and Attribute Map AM

1: procedure analyzeSize(AM,n, arg, callInst)

2: func← callee in inst

3: num← operand number in inst

4: if func in ReadV oidSet and num is ReadV oidSet[func] then

5: AM [n]← AM [n] ∪READ

6: end if

7: if func in WriteV oidSet and num is WriteV oidSet[func] then

8: AM [n]← AM [n] ∪WRITE

9: end if

10: if func in WriteV oidSet or ReadV oidSet then

11: sizeOp← size operand of callInst

12: if sizeOp is literal then

13: AM [n]← AM [n] ∪ [size =value of sizeOp]

14: else

15: caller ←function of arg

16: for parameter param in caller function’s parameter list do

17: DS ← { dep | READ dependency list of param in PDG }
18: for dependency dep in DS do

19: if dep is sizeOp then

20: AM [n]← AM [n] ∪ [size = param]

21: end if

22: end for

23: end for

24: end if

25: end if

26: end procedure

Analyzing all parameters in the clear_mem function, our tool finds that the

dependency list of %4 which corresponds to len parameter includes %6 which is the

25

third argument of memset call. In this case, we annotate the size attribute with

the parameter name.

d e f i n e void @clear mem (i 8 ∗ , i 64) #0 ! dbg !49 {
. . .

%4 = a l l o c a i64 , a l i g n 8
. . .

%6 = load i64 , i 64 ∗ %4, a l i g n 8 , ! dbg !63
c a l l void @memset(i 8 ∗ a l i g n 1 %5, i 8 0 , i 64 %6)
r e t void , ! dbg !65

}

Figure 3.5. LLVM IR of clear mem function

3.2.3 [count]

Finally the [count] attribute is also used for determining how much data needs

to be deep copied in the proxy routines. While [size] is determined by the SGX

automatically for pointer types other than void pointers, if [count] attribute is

not specified it is assumed to be 1. Our tool analyzes call instructions to malloc in

the application and occurences of getelementptr (GEP) instructions to extract

the buffer size information. The syntax of a sample GEP instruction from LLVM

IR is shown below.

<result> = getelementptr inbounds <ty>, <ty>* <ptrval>, [inrange]

<ty> <idx>*

%16 = getelementptr inbounds [1024 x i8], [1024 x i8]* %3, i64 0,

i64 0, !dbg !53

For statically defined arrays, the [count] can be obtained from the GEP in-

struction alone, using the type information in the instruction. In this case, the

attribute value will be a literal and we don’t need to analyze the PDG further for

the parameters of the function. Our tool can obtain [count] information if the

malloc argument is a literal or it is a variable and is sent to the cross-domain

function with the pointer.

26

Other cases such as variable argument in malloc not sent to the cross-domain

function and malloc call inside the cross-domain function instead of its caller are

not analyzed and we cannot infer the [count] in this case. Algorithm 4 presents

the method our tool uses for static arrays and malloc function calls.

Figure 3.6 is an example to demonstrate how the algorithm works for different

cases with the [count] attribute.

void foo (i n t ∗ a) {
. . .

}
void bar (i n t ∗ b , i n t count) {

. . .
}
i n t main () {

i n t ∗ ptr = (i n t ∗) mal loc (1 0 2 4) ;
i n t b u f f e r [1 0 2 4] ;
i n t n = 512 ;
i n t ∗ ptr2 = (i n t ∗) mal loc (n) ;

foo (ptr) ; // Pointer
foo (b u f f e r) ; // S t a t i c array

bar (ptr2 , n) ;
}

Figure 3.6. Example code snippet for [count] attribute

The algorithm analyzes all the callers of the cross-domain function for obtaining

[count] attribute of the arg parameter. Focusing on foo and int* a the algorithm

will inspect the main function. Inside the main it inspects each function call

instruction in the main function. If the call instruction is calling foo and the

argument corresponding to int* a is a result of a GEP instruction, we analyze

the type information inside the GEP instruction to infer that it is a static array

and the size of the array.

27

Algorithm 4 Count attribute

Input: arg is a parameter, func is the function, G is a PDG

Output: Access and Attribute Map AM

1: procedure analyzeCount(AM, arg,G)

2: CS ← { caller | caller functions of func in G }
3: for Function caller in CS do

4: callSet← { callInst | call instructions in caller }
5: for Call instruction callInst in callSet do

6: callee← called function in callInst

7: if callee is func then

8: op← operand corresponding to arg in callInst

9: if op is GEP then

10: AM [arg]← AM [arg] ∪ [count =value of op]

11: end if

12: else

13: for Malloc call mallocCall in callSet do

14: res← result of the mallocCall

15: if arg is dependent of res then

16: mallocArg ← argument in mallocCall

17: if mallocArg is literal then

18: AM [arg]← AM [arg] ∪ [count =value of mallocArg]

19: AM [arg]← AM [arg] ∪ [size =1]

20: else if mallocArg is an operand in callInst then

21: param ← name of the parameter corresponding to

mallocArg

22: AM [arg]← AM [arg] ∪ [count =param]

23: AM [arg]← AM [arg] ∪ [size =1]

24: end if

25: end if

26: end for

27: end if

28: end for

29: end for

30: end procedure

28

During the intraprocedural analysis of the int* b parameter in bar function,

our tool will not be able to find the count from a GEP instruction. It will analyze all

the malloc calls in the callers of bar which is only main. Checking the dependencies

of the results of malloc calls, if int* b is a dependent of a result, we use the

argument in the malloc call to infer the count. For the function bar it is not a

literal, it is a variable that is also used as an argument in the bar function call. In

this case, our tool annotates the [count] attribute with that parameters name.

For total amount of bytes calculation SGX multiplies [count] with [size]

and uses sizeof(pointer type) for unspecified sizes, the total amount of bytes

would be incorrect if we only annotate [count] for the cases we use malloc calls.

malloc(n) allocates only n many bytes, for this reason we explicitly assign [size]

attribute to 1 to result in the correct amount of bytes.

3.3 EDL Generation

EDL files must have at least one public (root) ECALL if they are not a library

EDL. The tool computes the transitive closure of the main function that does not

expand into enclave functions. When a call to an enclave function is seen, our

tool adds the function to the closure but does not expand into that function. This

results in a transitive closure that consists of only untrusted functions and the root

ECALLs.

A private ECALL can only be called from an OCALL if the OCALL has ex-

plicit permission granted with the allow syntax in the EDL. The tool checks the

OCALLs transitive closure similar to the procedure above to determine which

ECALLs should be allowed explicitly. If an ECALL is in the OCALLs untrusted

transitive closure and the ECALL is not a public ECALL, permission to invoke

the ECALL is granted to the OCALL.

Edger8r requires the user-defined type definitions in the EDL file. EDL sup-

ports definitions of structs, enums, and unions but does not support typedef

syntax. Using DICompositeType metadata in LLVM IR our tool generates defi-

nitions of the composite types in the EDL including nested composite types. For

typedef types we make use of the include statements supported in EDL.

29

3.4 SGX Code Generation

Since the Edger8r tool creates a proxy routine with a different signature for a

function, the application needs refactoring. Our tool generates and injects this

necessary code into the application. Figure 3.7 shows the signature of a simple

ECALL function and the signature of the proxy routine created by Edger8r for the

function.

// S ignature o f the func t i on in o r i g i n a l a p p l i c a t i o n
char ∗ encrypt (char ∗ p la in t ex t , i n t sz) ;

// S ignature o f the proxy rou t in e f o r untrusted domain
s g x s t a t u s t encrypt (s g x e n c l a v e i d t eid ,

char ∗∗ r e tva l ,
char∗ p la in t ex t ,
i n t sz) ;

Figure 3.7. Function and proxy routine signatures

In the figure above, the return type is changed and two additional parameters

are added to the function. Our tool creates a wrapper function by adding an

_ECALL or _OCALL suffix to the function name. Figure 3.8 shows the wrapper

function generated by our tool.

char∗ encrypt ECALL (char∗ p la in t ex t , i n t sz) {
char∗ r e s ;
encrypt (g l o b a l e i d , &res , p l a in t ex t , sz) ;
r e turn r e s ;

}

Figure 3.8. ECALL wrapper

For ECALLs in the application our tool generates a library of wrapper func-

tions in files Ecalls.h and Ecalls.cpp. Similarly for OCALLs our tool generates

Ocalls.h and Ocalls.cpp. Our tool inspects the source code and changes the

code by injecting necessary suffix to ECALLs and OCALLs to use these wrappers

instead of the original functions. This automates the conversion from a regular

function call to an SGX ECALL or OCALL.

30

We are using our Sample SGX project1 configured to simulation mode together

with this tool. Sample project is already structured for the outputs of this tool and

includes a library of OCALLs for built-in functions that are unsupported in SGX.

For example, while printf is unsupported in the enclave side, it is implemented

as an OCALL in our library to eliminate unnecessary refactoring of the original

application.

Finally as mentioned before, an SGX application first needs to create an enclave

using functions provided by the SGX SDK. This creation can be done at the

beginning of the main function. During the SGX code generation phase, our tool

injects a code that includes a call to a custom function that handles enclave creation

in our sample project.

1https://github.com/eralpsahin/sample-sgx

Chapter 4
Experiments

Our tool requires a separation boundary in the application. For experimental

purposes we assume each function is a cross-domain function and generate the

interface specifications for each function in the application. We evaluated the tool

on the thttpd, htpasswd, and mini_httpd.

Table 4.1 presents the size of each benchmark.

Application lines of code function count parameter count pointer parameters

thttpd 7041 144 266 172
mini httpd 3331 72 99 67
htpasswd 171 8 15 10

Table 4.1. Size of the benchmarks

4.1 [string] inference

Table 4.2 shows the number of char pointers and number of string attributes our

tool finds.

Application char* parameters [string] [user check]

thttpd 59 39 6
mini httpd 44 33 4
htpasswd 7 2 0

Table 4.2. String attribute results

32

As shown by the data, our inference of [string] attribute is possibly not

complete. We will discuss the results for each application.

4.1.1 mini httpd

Our heuristics and parameter access analysis do not find any information for 4

char pointers resulting in [user_check] attribute for those parameters.

Upon inspecting the mini_httpd source manually, we see that [user_check]

cases can be inferred as [string] if we do a full PDG analysis. Also, we gather

the following information for the remaining 7 char pointer parameters that our

tool inferred direction attributes but did not infer [string];

• Out of 7, 1 buffers size is inferred with [size] attribute and it is not a C

string.

• Out of remaining 6, 4 of the char buffers’ contents are either directly or

indirectly checked against null termination in a flow such as a loop. Our tool

was able to infer [count] attribute for 2 of those 4. We are including these

in the false negative set since even though we inferred the [count], they are

strings. Additionally, remaining 2 parameters could be inferred with a full

PDG analysis because arguments to the functions were also used with string

functions but since we are not analyzing local variables of functions and uses

of null termination our tool did not infer [string]. Figure 4.1 demonstrates

the case where full PDG analysis would improve our inference.

void foo (char∗ ptr1 , char∗ ptr2) {
. . .

}
i n t main () {

char l [2 5 6] ;
char w[2 5 6] ;
s t r cpy (l ,w) ;
foo (l , w) ;

}

Figure 4.1. Local variables used in string function

33

In total, there are 10 char pointer parameters that are in fact C strings but

our tool did not infer. Our false-negative rate is 10 out of 44.

4.1.2 htpasswd

The htpasswd is a small application with only 7 char pointers. Our tool infers

[string] for 2 of the char pointers. After manually investigating, it is clear that

out of the remaining 5, 4 of them are also used as C strings and a full PDG analysis

could make the correct inference, similar to the example in figure 4.1. Our tool

infers [count] for those 5 char pointers from the static array size analysis.

In total, there are 4 char pointer parameters out of 7 that are in fact C strings

but our tool did not infer. Our false-negative rate is 4 out of 7.

4.1.3 thttpd

We first analyze the char pointer parameters with [user_check] attribute. We see

that all 6 parameters are C strings. Full PDG analysis including local variables

would improve our inference results. Out of 59 char pointers, our tool infers

[string] for 39 and use [user_check] for 6, we will analyze the remaining 14

parameters.

• Out of 14, 12 char pointer parameters are C strings and could be inferred

with a full PDG analysis.

• Our tool was able to infer [count] for the remaining 2 from static array

information. They are in fact C strings and should be inferred as such.

In total, there are 20 char pointer parameters out of 59 that are in fact C

strings but our tool did not infer. Our false-negative rate is 20 out of 59.

34

Table 4.3 shows the quality of our [string] inference.

False negative here is the number of char pointer parameters that are in fact

C strings that our tool misses. False-negative rate is the number of false negative

cases over all char pointer parameters. False positive is the number of char pointer

parameters that our tool misclassifies as strings. In our experiments we did not

encounter a false positive.

Application False Negative False Positive

thttpd 34% 0
mini httpd 23% 0
htpasswd 57% 0

Table 4.3. Quality of [string] inference

4.2 [size] and [count] inference

Excluding the char pointers that are inferred as or were supposed to be inferred

as [string], pointer parameters used with direction attribute should have [size]

or [count] attributes. Ideally every pointer parameter should have direction at-

tributes for data marshalling, but there are cases where we cannot find any access

information. Our tool uses [user_check] for the parameters that it cannot find

access information. For some cases [user_check] attribute is used correctly such

as when passing a function pointer from the untrusted zone to an OCALL through

an ECALL. The raw address is needed in this case and ECALL will have no access

information for the pointer other than sending it to an OCALL. Since there will

be no access information, our tool annotates the parameter with [user_check]

in this case. The results of the buffer size inference we make on those parameters

with [count] and [size] are shown in table 4.4.

Application non string pointers [count] [size] [user check]

thttpd 113 6 4 17
mini httpd 24 0 4 7
htpasswd 4 1 0 3

Table 4.4. Size and count attribute results

35

4.2.1 mini httpd

Out of 67 pointer parameters 43 of them are NULL terminated C strings and there

are 24 pointer parameters that either require size attributes along with direction

attributes or a [user_check] attribute. Our tool was able to infer [size] for 4

parameters and was not able to infer access information for 7 parameters.

The remaining 13 are pointer parameters that we inferred direction attribute

but could not infer [size] or [count] attributes.

[user_check] attribute is used for pointers with no access information. Since

we do not compute PDG for library function calls and instead represent them as

regular instruction nodes, we don’t infer access information for such cases. As

a result we cannot infer size attributes. Figure 4.2 demonstrates an example.

modf function modifies the second parameter. int* intpart parameter should

have [out] attribute. But since we represent library calls as instruction nodes

instead of constructing PDG of them, our tool annotates the parameter only with

[user_check] attribute.

void modfWrapper (double∗ i n t p a r t) {
. . .
double f r a c t p a r t = modf (value , i n t p a r t) ;
. . .

}

Figure 4.2. Library call represented as instruction node

We gather the following information by our inspection;

• Out of 7 [user_check] attributes 2 are union pointers and no size attribute

is needed. Remaining 5 need size attributes if they were to used with a

direction attribute.

• Out of 13 pointer parameters with either [in] or [out] attribute 11 of them

are pointer to variables or structs and not buffers which SGX assumes to

have count of 1. Our inspection shows that the count is in fact 1.

• Last 2 of the pointers’ sizes are handled with realloc in their transitive

closure which we do not analyze for currently.

36

In total there are 7 pointer parameters that are in fact buffers and need size

attributes if they are used with a direction attribute but our tool did not infer.

Our false-negative rate is 7 out of 24.

4.2.2 htpasswd

There are only 4 non string pointer parameters and 3 of them are FILE pointers

with [user_check] attribute and not buffers. Our tool infers the [count] of the

remaining pointer parameter from static array size analysis. Our false-negative

rate is 0 out of 7.

4.2.3 thttpd

There are 113 non string pointers, our tool infers [count] for 6 and [size] for

4 of these parameters. 17 of them are annotated with [user_check] because our

tool was not able to infer access information.

• 9 pointer parameters out of 17 [user_check] are pointers to variables or

structs and not buffers.

• The address in 2 pointer parameters out of 17 [user_check] are used directly

in the function. Figure 4.3 demonstrates an example for this usage. If used

with direction attribute, addr would be a deep copy and would not store the

same address.

• Remaining 6 out of 17 [user_check] need size attributes if they were to

used with a direction attribute.

void foo (void ∗ addr) {
. . .
void ∗ ptr = (void ∗) r e a l l o c (addr , 1 0) ;
. . .

}

Figure 4.3. Direct usage of pointer address

There are 86 pointer parameters that our tool inferred direction attribute but

could not infer [size] or [count] attributes.

37

• Out of 86 pointer parameters with either [in] or [out] attribute 84 of them

are pointer to variables or structs and not buffers which SGX assumes to

have count of 1. Our inspection shows that the count is in fact 1.

• Remaining 2 pointer parameters are buffers that are used with our pre pop-

ulated [size] function set. Our tool was unable to infer the size because

instead of using directly, some kind of arithmetic calculation was used and

our tool does not analyze this case. Such as

read(..., (void*) buf + nread, nbytes - nread);

In total, our tool was unable to infer size attributes for 8 pointer parameters

out of 113 that need these attributes. Our false-negative rate is 8 out of 113.

Table 4.5 shows the quality of our size attributes inference.

For the [count] attribute our tool inferred instead of [string], we have 2 false

positives out of 67 pointer parameters we analyzed in mini_httpd, 5 false positives

out of 7 pointer parameters we analyzed in htpasswd, and 2 false positives out of

172 pointer parameters we analyzed in thttpd.

Application False Negative False Positive

thttpd 07% 1%
mini httpd 29% 3%
htpasswd 0 71%

Table 4.5. Quality of [size] and [count] inference

Chapter 5
Discussion and Future Work

In this thesis we have presented a tool for for Intel SGX that can generate EDL

files and automate the code refactoring needed to convert regular C application to

an SGX application.

We have implemented heuristics using static analysis for [string], [count],

and [size] attributes. We demonstrated the workflow of the tool from the inputs

to the outputs. While the performance is not the main concern, since we often an-

alyze the whole applications PDG for the heuristics, the performance deteriorates

as we construct more PDGs. One of the possible future work is to optimize the

PDG construction.

In our experiments we presented the cases our tool handles and for which cases

it falls short. Our tool does not analyze the content access for pointers which would

reveal that they are NULL terminated C strings for some cases in our experiments.

Combined with adding more functions in our pre populated lists, adding access

analysis on PDG would improve our results. Additionally, we only analyze malloc

function calls and static arrays for [count] attribute. Covering other allocation

techniques in our static analysis increases the precision of our heuristics. Finally,

our results show that full PDG analysis for each and every local variable in the

application would further improve our inference quality.

39

5.1 Limitations

SGX incurs several limitations in C/C++ application such as the unsupported

library functions we mentioned earlier. While we handle these functions with our

library of wrappers, there are also some structures and types that are unsupported

such as FILE pointer. Our tool does not automatically convert these into SGX_FILE

secure type introduced in SGX. More detail about unsupported libraries keywords

and functions can be found in [3].

Bibliography

[1] Costan, V. and S. Devadas (2016) “Intel SGX Explained.” IACR Cryptology
ePrint Archive, 2016(086), pp. 1–118.

[2] Huang, Y. (2019) “Automatic IDL Generation for Privilege Separation,” .

[3] Intel, R. (2016), “Software Guard Extensions SDK Developer Reference for
Linux* OS,” .

[4] Ferrante, J., K. J. Ottenstein, and J. D. Warren (1987) “The pro-
gram dependence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3), pp. 319–349.

[5] Liu, S., G. Tan, and T. Jaeger (2017) “PtrSplit: Supporting general
pointers in automatic program partitioning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2359–
2371.

