
The Pennsylvania State University

The Graduate School

DECENTRALIZED ALGORITHMS FOR SEARCH AND ROUTING

IN LARGE-SCALE NETWORKS

A Thesis in

Industrial Engineering and Operations Research

by

Hari Prasad Thadakamalla

c© 2007 Hari Prasad Thadakamalla

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2007



The thesis of Hari Prasad Thadakamalla was reviewed and approved∗ by the fol-

lowing:

Soundar R.T. Kumara

Allen E. Pearce/Allen M. Pearce Professor of Industrial Engineering

Thesis Co-advisor, Co-chair of Committee
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Abstract

During the past decade, advances in technology and science have led to many
large-scale distributed systems which can be characterized as networks. Some ex-
amples include the World Wide Web, the Internet, the power grid, wireless sensor
networks, and military (net-centric) logistics. The scale of the size of these net-
works is substantially different from the networks considered in traditional graph
theory. Further, these networks do not have any pre-specified structure/order or
any design principles. Hence, the problems posed in such networks are very novel.
Recent years has witnessed an explosion of interest across different disciplines, in
understanding and characterizing such large-scale networks, which led to develop-
ment of a new field called “Network science”. This activity was mainly triggered
by significant findings in real-world networks which led to a revival of network
modeling and gave rise to many path breaking results. Until now, a major part
of this research was focused on modeling and characterizing the behavior of the
networks. However, the ultimate goal of modeling these networks is to understand
and optimize the dynamical processes taking place in the network.

Search and routing is one of the most important and prevalent process in many
real-world networks. Many times one needs to transport raw material/computer
files/messages from one node to another using the edges of the network. In tra-
ditional graph theory, there do exist abundant number of algorithms that can
compute the optimal paths in the network. However, these algorithms assume
that global information of the network is available, i.e. how each and every node
is connected in the network is known. But in some scenarios, it is not possible
to have access to global information of the network and we need to have decen-
tralized algorithms that can navigate through the network by using only local
information. In this dissertation, we address an important process of search and
routing in large-scale networks. This forms the core problem of this thesis. Ex-
amples include routing of sensor data in wireless sensor networks, locating data
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files in peer-to-peer networks, connecting relief workers in a disaster scenario, and
finding information in distributed databases. Decentralized search and routing
in networks is broadly classified into two types of networks, namely, non-spatial
networks and spatial networks.

In non-spatial networks, we study trade-offs presented by local search algo-
rithms in networks which are heterogeneous in edge weights and node degree. We
demonstrate that search based on a network measure, local betweenness centrality
(LBC), utilizes the heterogeneity of both node degrees and edge weights to perform
the best in scale-free weighted networks. We show that the performance of LBC
search is similar to BC search, which utilizes the maximum information about a
neighbor. Further, we demonstrate that the search based on LBC is universal and
performs well in a large class of complex networks. We also test the algorithms on
the peer-to-peer network, Gnutella, and discuss the results obtained.

In spatial networks, we consider a family of parameterized spatial network mod-
els that are heterogenous in node degree. We investigate several algorithms and
illustrate that some of these algorithms exploit the heterogeneity in the network
to find short paths by using only local information. In addition, we demonstrate
that the spatial network model belongs to a class of searchable networks for a wide
range of parameter space. Further, we test these algorithms on the U.S. airline
network which belongs to this class of networks and demonstrate that searchability
is a generic property of the U.S. airline network. These results provide insights on
designing the structure of distributed networks that need effective decentralized
search algorithms.
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CHAPTER

ONE

Introduction

In the past few years, there have been many path-breaking results in different areas

of science and technology, especially in the graph theory [10, 14]. These advances

in technology have revolutionized many existing engineering systems and also led

to a vast number of possibilities which were not feasible earlier. At the same time,

these advances have increased the complexity and scale of the system tremendously

which give rise to many new challenges for Operations Research (OR) community

[63, 144]. For example, the advances in micro-electro-mechanical systems (MEMS)

technology, communications, and processing capabilities have enabled manufactur-

ing tiny and low cost sensors which can sense remote or dangerous locations that

were inaccessible earlier [10]. A large number of such tiny sensors which are capa-

ble of sensing, communicating and data processing coordinate amongst themselves

forming a wireless sensor network (WSN) to achieve a larger sensing task. The

sheer number of these tiny sensors and unpredicted dynamics in the network would

give rise to many unique challenges in the design of unattended WSNs. Tools and

techniques developed in the past are insufficient to deal with the complexity in

these systems [122]. We need radically new approaches to address and control

many of these new emerging systems. In this dissertation, we try to address these

new challenges by utilizing significant advances made during recent years in the

new field of “Network Science” [128].

Graph theory has been a powerful analytical tool for understanding and solving
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various problems in OR. The study on graphs (or networks) traces back to the

solution of the Königsberg bridge problem by Euler in 1735. It was the first

mathematical proof in graph theory. Later, in the twentieth century, graph theory

has developed into a substantial area of study which is applied to solve various

problems in engineering and several other disciplines [7]. Euler’s great insight

lay in representing the Königsberg bridge problem as a graph problem with a

set of vertices and edges. Though Euler’s representation laid the foundation to

graph theory, the size of many networks make them computationally difficult to

be analyzed using the traditional exhaustive methods of graph theory. In the

last few years there has been an intense amount of activity in understanding and

characterizing large-scale complex systems represented as networks, which led to

development of a new field called “Network science” [128].

1.1 Engineering systems as networks

Many complex engineering systems can be characterized as networks. The individ-

ual entities or components can be represented as nodes and interactions between

them as edges. For example, sensor networks where sensors can be considered as

nodes and connected by an edge if there is a direct communication channel between

them. Characterizing them as networks helped researchers to develop various tech-

niques and models in understanding and predicting the behavior of these complex

systems [14, 33, 56, 122]. Other examples include:

• World Wide Web: It can be viewed as a network where web pages are the

nodes and hyperlinks connecting one webpage to another are the directed

edges. The World Wide Web is currently the largest network for which

topological information is available. It had approximately one billion nodes

at the end of 1999 [103] and is continuously growing at an exponential rate.

A recent study [77] estimated the size to be 11.5 billion nodes as of January

2005.

• Internet : The Internet is a network of computers and telecommunication

devices connected by wired or wireless links. The topology of the Internet is
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studied at two different levels [64]. At the router level, each router is rep-

resented as a node and physical connections between them as edges. At the

domain level, each domain (autonomous system, Internet Service Provider)

is represented as a node and inter-domain connections by edges. The number

of nodes, approximately, at the router level were 150, 000 in 2000 [71] and at

the domain level were 4000 in 1999 [64].

• Market graph: Recently, Boginski et al. [34, 35] represented the stock market

data as a network where the stocks are nodes and two nodes are connected

by an edge if their correlation coefficient calculated over a period of time

exceeds certain threshold value. The network had 6556 nodes and 27, 885

edges for the U.S. stock data during the period 2000-2002 [35].

• Phone call network : The phone numbers are the nodes and every completed

phone call is an edge directed from the receiver to the caller. Abello et al.

[3] constructed a phone call network from the long distance telephone calls

made during a single day which had 53, 767, 087 nodes and over 170 million

edges.

• Power grid network : Generators, transformers, and substations are the nodes

and high-voltage transmission lines are the edges. The power grid network of

the western United States had 4941 nodes in 1998 [169]. The North American

power grid consisted of 14, 099 nodes and 19, 657 edges [12] in 2005.

• Airline network : Nodes are the airports and an edge between two airports

represent the presence of a direct flight connection [32, 76]. Barthelemy et al.

[32] have analyzed the International Air Transportation Association database

to form the world-wide airport network. The resulting network consisted of

3880 nodes and 18810 edges in 2002.

• Scientific collaboration networks: Scientists are represented as nodes and

two nodes are connected if the two scientists have written an article to-

gether. Newman [119, 120] studied networks constructed from four different

databases spanning biomedical research, high-energy physics, computer sci-

ence and physics. On of these networks formed from Medline database for

the period from 1961 to 2001 had 1, 520, 251 nodes and 2, 163, 923 edges.
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• Movie actor collaboration network : Another well studied network is the

movie actor collaboration network, formed from the Internet Movie Database

[1], which contains all the movies and their casts from 1890s. Here again,

the actors are represented as nodes and two nodes are connected by an edge

if the two actors have performed together in a movie. This is a continuously

growing network with 225, 226 nodes and 13, 738, 786 edges in 1998 [169].

The above are only a few examples of complex networks pervasive in the real

world [14, 33, 56, 122]. The size of these networks is substantially larger from

the networks considered in traditional graph theory. Further, these networks do

not have any pre-specified structure/order or any design principles. To differen-

tiate these networks from regular graphs they are often called as complex net-

works. These networks are often characterized by diverse behaviors that emerge

as a result of non-linear spatio-temporal interactions among a large number of

components [144]. Typical behaviors include self-similarity, infinite susceptibility,

self-organization, and emergence. The problems posed in such networks are of-

ten novel. Tools and techniques developed in the field of traditional graph theory

involved studies that looked at networks of tens or hundreds or in extreme cases

thousands of nodes and focused on regular graphs. The substantial growth in size

of many such networks (see figure 1.1) and lack of any order in the network neces-

sitates a different approach for analysis and design. The new methodology applied

for analyzing complex networks is similar to the statistical physics approach to

complex phenomena.

During the last few years there has been a tremendous amount of research ac-

tivity dedicated to the study of these complex networks. This activity was mainly

triggered by significant findings in real-world networks which are elaborated in

chapter 2. There was a revival of network modeling that gave rise to many path

breaking results [14, 33, 56, 122] and provoked vivid interest across different disci-

plines of the scientific community. Prominent models include small-world networks

by Watts and Strogatz [169] and scale-free networks by Barabási and Albert [26]

and scale-free networks. Until now, as a first step, a major part of this research was

focused on modeling and characterizing the behavior of the networks. However,

the ultimate goal of modeling these networks is to understand and optimize the

dynamical processes taking place in the network. This dissertation focusses on an
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Figure 1.1. Pictorial description of the change in scale in the size of the networks found
in many engineering systems. This change in size and lack of any order in the network
necessitates a change in the analytical approach.

important process of search and routing in these large-scale networks.

1.2 Search and routing in networks

Search and routing is one of the most important and prevalent process in many

real-world networks. In many networks, one needs to route raw material/computer

files/messages from one node to another along the edges of the network. Most

of the times it is important that the paths used for routing are optimal with

respect to resources such as time and cost. Some examples include transporting

raw material/finished products from one node to another in supply chain networks;

traveling from one place to another using the road network; searching for a person

in a social network; routing files from one computer to another in the Internet;

searching for a web page on the WWW; traveling from one place to another using

the airline network. Finding optimal paths in the networks can be approached in

different ways depending upon availability of information. If the information on

how each and every node is connected in the network is known, one could use an

abundant number of algorithms available in literature for calculating the optimal

paths [7, 48]. For instance, one could use breadth first search (BFS) algorithm if

all the edges in the network have equal edge weights or use Dijkstra’s algorithm if

the network has unequal non-negative edge weights. Consider the networks shown

in figure 1.2(a) and 1.2(b). The objective is for node 1 to send a message to node
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Figure 1.2. Illustration for different ways of routing message from node 1 to node 30.
(a) In this case, each node has global connectivity information about the whole network.
Hence, node 1 calculates the optimal path and send the message through this path. (b)
In this case, each node has only information about its neighbors (as shown by the dotted
curve). Using this local information, node 1 tries to send the message to node 30. The
path obtained is longer than the optimal path.

30 in the least number of hops. In the network shown in figure 1.2(a), each node

has global connectivity information about the network. In such a case, node 1 can

calculate the optimal path using traditional algorithms [7] and send the message

through this path (1 - 3 - 12 - 30, depicted by the dotted line). However, in some

scenarios, it is not possible to have access to the global information of the network

and hence need decentralized algorithms that can navigate through the network

by using only local information. This forms the core problem of this dissertation.

1.2.1 Problem definition: Decentralized search and rout-

ing

Decentralized search and routing is the process in which a node tries to find a

network path to a target node using only local information. By local information,

we mean that each node has information only about its first, or perhaps second

neighbors and it is not aware of nodes at a larger distance and how they are

connected in the network. Consider the network shown in figure 1.2 (b), in which

each node knows only about its immediate neighbors. Node 1, based on some

search algorithm, chooses to send the message to one of its neighbors: in this
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case, node 4. Similarly, node 4 also has only local information, and uses the same

search algorithm to send the message to node 13. This process continues until the

message reaches the target node. We can clearly see that the search path obtained

(1 - 4 - 13 - 28 - 23 - 30) is not optimal. However, given that we have only local

information available, the research problem in this dissertation is to design optimal

search and routing algorithms in different kind of networks. Further, we study

how the structure of the network influences the quality of the paths found using

local information. The performance of the decentralized algorithms highly depends

on the structure of the networks [6, 95, 156, 157, 168]. In some networks, the

algorithms can find the paths with lengths in the order of the shortest paths found

using global information (the paths with lengths in the order of shortest paths are

termed as ’short paths’). These networks which can inherently accommodate local

search are called searchable networks.

Decentralized search is an intriguing and relatively little studied problem that

has many practical applications. In many networks, information such as data files

and sensor data is distributed and stored at the nodes of a network. In addition, the

nodes have only limited or local information about the network. Examples include

routing of sensor data in wireless sensor networks [10, 142], locating data files in

peer-to-peer networks [91, 175], and finding information in distributed databases

[42]. The importance of search efficiency becomes even more imminent in the case

of ad-hoc networks, where the networks are decentralized and distributed, and real

time search is required to find the target node. Figure 1.3 provides the pictorial

description of the thesis structure and presents the salient points. As shown in

this figure, we broadly formulate the decentralized search problem in two types

of networks, namely, non-spatial networks and spatial networks. In non-spatial

networks, the global position of a node cannot be quantified and it is difficult to

know whether a step in the search process is towards the target node or away from

the target node. This makes the local search process even more difficult. Whereas

in the spatial networks, the global position of the target node can be quantified

and each node has this information. This information will guide the search process

in reaching the target node quicker.
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Complex networks

World Wide Web

The Internet

Market graph

Phone call network

Movie actor 
collaboration network

Power grid network
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Scientific collaboration 
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Metabolic network
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Search and Routing

in networks

Non-spatial networks Spatial networks

World Wide Web
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Distributed databases

The Internet

Road networks
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peer network)
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Algorithm design and 
performance testing on 
real-world networks

Embedding non-
spatial networks 
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Figure 1.3. Pictorial description of the structure of this dissertation. Firstly, we present
an overview of Network Science and then introduce the problem of search and routing
in networks. The problem is broadly classified into search in non-spatial networks and
search in spatial networks. Later, we present several algorithms for these two problems
and test them on real-world networks. We discuss embedding non-spatial networks in a
metric space as a part of future work.
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1.2.2 Research challenges, objectives, and methodology

Finding short paths in the network using local information alone could be chal-

lenging and may be not feasible in many networks. Due to limited information,

the algorithms may not be able to choose the edges that lead to the optimal

paths. In 1960’s, Milgram [111] conducted an experiment to demonstrate that

short chains of acquaintances exist between any two people in the social networks.

Later, Kleinberg [95] made the even more striking observation that people are

able to find these short paths using local information alone. Even though it was

demonstrated that short paths can be found using local information, many models

in literature do not explain this phenomenon. Kleinberg [95] and later Watts et

al. [168] argued that the emergence of such a phenomenon requires special topo-

logical features. Independently, they proposed different models that explain this

phenomenon. Unfortunately, the model proposed by Watts et al. is specific to

social networks and the model given by Kleinberg represents only a small subset

of complex networks. It is not completely clear how the structure of the network

influence the performance of the search algorithms. The objective of this thesis

is to design and investigate decentralized algorithms in different networks broadly

classified as non-spatial and spatial networks.

In non-spatial networks, since the position of the target node cannot be quan-

tified and is unknown, it is extremely difficult to find short paths using local infor-

mation. In such networks, Adamic et al. [6] demonstrated that high-degree search

is more efficient than random-walk search, especially, in the networks with power-

law degree distribution. In a random-walk search, the node that has the message

passes it to a randomly chosen neighbor, and the process continues until it reaches

the target node. Whereas, in a high-degree search, the node that has the message

passes it to the neighbor with highest degree. However, they assume that the edges

in the network are equivalent which does not hold in many real-world networks. In

fact, many researchers pointed out that edge-weights have significant influence on

many processes in the network [17, 24, 28, 76, 100, 137, 139]. Our objective is to

design algorithms that considers the edge-weights and perform better in weighted

complex networks. We define a local measure, local betweenness centrality, that

considers both the edge-weights and the degree of the neighbors. This measure

is adapted from the definition of betweenness centrality [122] and gives the most
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central neighbor in the local neighborhood. We consider an algorithm based on

this measure and investigate its performance by extensive simulation.

For spatial networks, we consider a family of parameterized spatial network

models that are heterogenous in node degree. Many real-world networks such as

the Internet [173] and the worldwide airline network [73], can be described by this

family of spatial network models. Our objective is to design decentralized search

algorithms for this type of network model and demonstrate that this simple model

defines a class of searchable networks. We propose several algorithms that consider

the heterogeneity in the network and the direction of travel. We investigate their

performance for a large range of parameter space in the network model. The

following section summarizes the results obtained for these two problems.

1.2.3 Summary of results

For non-spatial networks, we proposed a decentralized search algorithm based on a

new local measure called local betweenness centrality. We studied complex trade-

offs presented by efficient decentralized search and showed that heterogeneity in

edge weights has a huge impact on the search process. Moreover, the impact of

edge weights on the performance of the search algorithms increases as the het-

erogeneity of the edge weights increases. We also demonstrated that the search

strategy based on LBC utilizes the heterogeneity in both the node degree and edge

weight to perform the best in power-law weighted networks. We observed that the

performance of LBC search is similar to BC search, which utilizes the maximum

information about a neighbor. Further, we observed that the exponent for the

scaling of LBC search with network size decreases as the heterogeneity in edge

weights increase. Whereas, the exponent for scaling of high degree search remains

the same. This implies that the LBC search exploits low weight edges for nav-

igation. Furthermore, we demonstrated that in unweighted power-law networks,

the neighbor with the highest degree is usually the same as the neighbor with

the highest LBC. Hence, our proposed search strategy based on LBC is universal

and is efficient in a larger class of complex networks. However, when tested in

a peer-to-peer network, Gnutella, the results were not consistent with the results

obtained from simulations. The reasons for this behavior are not completely clear
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and we discuss some possibilities in the future work section.

For spatial networks, we proposed several search algorithms that combine the

direction of travel and the degree of the neighbor and illustrated that some of these

algorithms exploit the heterogeneity in the network to find short paths by using

only local information. In addition, we demonstrated that the spatial network

model belongs to a class of searchable networks for a wide range of parameter space.

Further, we tested these algorithms on the U.S. airline network which belongs to

this class of networks and demonstrated that searchability is a generic property of

the U.S. airline network. In addition, the spatial network model and the airline

network are searchable for a wide range of search algorithms. We demonstrated

that direction plays the most important role in efficient search, and even slight

blending of direction with degree is sufficient to drastically improve the efficiency

of the search algorithms. Hence, searchability is a property of the network rather

than of the functional forms used for the search algorithm. As conjectured by oth-

ers [6, 98], the results presented in this thesis support the hypothesis that many

real-world networks evolve to inherently facilitate decentralized search. These re-

sults provide insights on designing the structure of distributed networks that need

effective decentralized search algorithms.

1.3 Thesis outline

The outline of the thesis is as follows. Chapter 2 introduces the new direction

of inter-disciplinary research, Network Science, and discusses significant results

in the literature. Firstly, we introduce different statistical properties that are

prominently used for characterizing large-scale networks. We also present the

empirical results obtained for many real complex networks that initiated a revival

of network modeling. In section 2.2, we summarize different evolutionary models

proposed to explain the properties of real networks. In particular, we discuss

Erdős-Rényi random graphs, small-world networks, and scale-free networks. In

section 2.3, we discuss the dynamical processes in networks by concentrating on

network resilience because of its high relevance to engineering systems and discuss

a few other topics briefly. Section 2.4, we discusses the literature on decentralized

search in networks which is the primary focus of this thesis.
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In chapter 3, we present the problem of decentralized search and routing in

large-scale networks. We formulate two research problems and discuss the applica-

tions of these problems. In chapter 4, we give the details of the methodology and

results obtained for search in non-spatial networks. We present several algorithms

and analyze the performance of these algorithms for different types of networks.

Further, we present the results obtained for the peer-to-peer network, Gnutella.

In chapter 5, we present the results obtained for the decentralized search prob-

lem in spatial networks. We present several algorithms and illustrate that some of

these algorithms exploit the heterogeneity in the network to find short paths by

using only local information. Further, we test these algorithms on the U.S. airline

network which belongs to this class of networks and demonstrate that searcha-

bility is a generic property of the U.S. airline network. Finally in chapter 6, we

conclude and summarize the results obtained in this thesis. Further, we present

the uniqueness of this thesis and discuss potential directions for the future work.



CHAPTER

TWO

Network Science and Optimization -

An overview

Many complex distributed systems across different disciples such as communica-

tions, sociology, and biology can be characterized as networks, and this in turn

allows for understanding their structure, modeling and predicting their behaviors.

As discussed in the previous chapter, tools and techniques developed in the field

of traditional graph theory focused on regular graphs and involved studies that

looked at networks of tens or hundreds or in extreme cases thousands of nodes.

For example, consider the problem of finding the shortest route between two ge-

ographical points. The problem can be modeled as a shortest path problem on

a network, where different geographical points are represented as nodes and they

are connected by an edge if there exists a direct path between the two nodes. The

weights on the edges represent the distance between the two nodes (see figure 2.1).

Let the network be G(V, E) where V is the set of all nodes, E is the set of edges

(i, j) connecting the nodes and w is a function such that wij is the weight of the

edge (i, j). The shortest path problem from node s to node t can be formulated

as follows.

minimize
∑

(i,j)∈ξ

wijxij
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Figure 2.1. Illustration of a typical optimization problem in OR. The objective is to
find the shortest path from node 10 to node 30. The values on the edges represent the
distance between two nodes. Here we use the exact distances between different nodes to
calculate the shortest path 10 - 1 - 3 - 12 - 30.

subject to
∑

{j|(i,j)∈ξ}

xij −
∑

{j|(j,i)∈ξ}

xji =















1 if i = s;

−1 if i = t;

0 otherwise.

xij ≥ 0, ∀(i, j) ∈ ξ.

where xij = 1 or 0 depending on whether the edge from node i to node j belongs

to the optimal path or not respectively. Many algorithms have been proposed to

solve the shortest path problem [7]. Using one such popular algorithm (Dijkstra’s

algorithm [7]), we find the shortest path from node 10 to node 30 as (10 - 1 - 3 -

12 - 30, see figure 2.1). Note that this is a typical instance of the problems solved

using the traditional graph theory. However, the problems posed in the complex

networks discussed in chapter 1 are very different. This may be due to the size of

network or lack of information about the network. The new methodology applied

for analyzing complex networks is similar to the statistical physics approach to

complex phenomena.

The study of large-scale complex systems has always been an active research

area in various branches of science, especially in the physical sciences. Some ex-

amples are: ferromagnetic properties of materials, statistical description of gases,

diffusion, formation of crystals etc. For instance, let us consider a box containing

one mole (6.022 ∗ 1023) of gas atoms as our system of analysis (see figure 2.2 (a)).

If we characterize the system with the microscopic properties of the individual
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Figure 2.2. Illustration of the analogy between a box of gas atoms and complex net-
works. (a) A mole of gas atoms (6.022 ∗ 1023 atoms) in a box. (b) An example of a
large-scale network. For analysis, we need to represent both the systems using statistical
properties.

particles such as their position and velocity, then it would be next to impossible

to analyze the system. Rather, physicists use statistical mechanics to character-

ize the system and calculate macroscopic properties such as temperature, pressure

etc. Similarly, in networks such as the Internet and WWW, the number of nodes

is extremely large and these networks do not have any pre-specified order. Hence,

we have to characterize the network using macroscopic properties (such as degree

distribution, edge-weight distribution etc), rather than the properties of individual

entities in the network (such as the neighbors of a given node, the weights on the

edges connecting this node to its neighbors etc) (see figure 2.2 (b)). Now let us

consider the shortest path problem in such networks (for instance, WWW). We

rarely require specific shortest path solutions such as from node A to node B (from

webpage A to webpage B). Rather it is useful if we know the average distance

(number of hops) taken from any node to any other node (any webpage to any

other webpage) to understand dynamical processes (such as search in WWW).

This new approach for understanding networked systems provides new techniques

as well as challenges for solving conceptual and practical problems in this field.

Furthermore, this approach has become feasible and received a considerable boost

by the availability of computers and communication networks which have made

the gathering and analysis of large-scale data sets possible.

During the last few years there has been a tremendous amount of research
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activity dedicated to the study of these complex networks. This activity was mainly

triggered by significant findings in real-world networks which we will elaborate later

in this chapter. There was a revival of network modeling which gave rise to many

path breaking results [14, 33, 56, 122] and provoked vivid interest across different

disciplines of the scientific community. Until now, a major part of this research was

focused on modeling and understanding the behavior of the networks. However,

the ultimate goal of modeling these networks is to understand and optimize the

dynamical processes taking place in the network. In this chapter, we introduce

this new direction of inter-disciplinary research (Network Science) and discuss

significant results in the literature.

2.1 Statistical properties of complex networks

In this section, we explain some of the statistical properties which are prominently

used in the literature. These statistical properties help in classifying different kinds

of networks. We discuss the definitions and present the empirical findings for many

real-world networks.

2.1.1 Average path length and the small-world effect

Let G(V, E) be a network where V is the collection of entities (or nodes) and E is

the set of arcs (or edges) connecting them. A path between two nodes u and v in

the network G is a sequence [u = u1, u2, ..., un = v] , where u′
is are the nodes in G

and there exists an edge from ui−1 to ui in G for all i. The path length is defined

as sum of the weights on the edges along the path. If all the edges are equivalent

in the network, then the path length is equal to the number of edges (or hops)

along the path. The average path length (l) of a connected network is the average

of the shortest paths from each node to every other node in a network. It is given

by

l ≡ 〈d(u, w)〉 =
1

N(N − 1)

∑

u∈V

∑

u 6=w∈ V

d(u, w),

where, N is the number of nodes in the network and d(u, w) is the shortest path

between u and w. Table 5.1 show the values of l for many different networks. Note
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Table 2.1. Average path length of many real networks. Note that despite the large size
of the network (w.r.t. the number of nodes), the average path length is very small.

Network Size (number of nodes) Average path length
WWW [39] 2 × 108 16
Internet, router level [71] 150,000 11
Internet, domain level [64] 4,000 4
Movie actors [169] 212,250 4.54
Electronic circuits [84] 24,097 11.05
Peer-to-peer network [145] 880 4.28

that despite the large size of the network (w.r.t. the number of nodes), the average

path length is small. This implies that any node can reach any other node in the

network in a relatively small number of steps. This characteristic phenomenon,

that most pairs of nodes are connected by a short path through the network, is

called the small-world effect.

The existence of the small-world effect was first demonstrated by the famous

experiment conducted by Stanley Milgram in the 1960s [111] which led to the

popular concept of six degrees of separation. In this experiment, Milgram randomly

selected individuals from Wichita, Kansas and Omaha, Nebraska to pass on a letter

to one of their acquaintances by mail. These letters had to finally reach a specific

person in Boston, Massachusetts; the name and profession of the target was given

to the participants. The participants were asked to send the letter to one of their

acquaintances whom they judged to be closer (than themselves) to the target.

Anyone who received the letter subsequently would be given the same information

and asked to do the same until it reached the target person. Over many trials,

the average length of these acquaintance chains for the letters that reached the

targeted node was found to be approximately 6. That is, there is an acquaintance

path of an average length 6 in the social network of people in the United States.

We will discuss another interesting and even more surprising observation from this

experiment in section 2.4. Currently, Dodds et al. are carrying out an Internet-

based study to verify this phenomenon, and initial findings are published in [54].

Mathematically, a network is considered to be small-world if the average path

length scales logarithmically or slower with the number of nodes N (∼ logN). For

example, say the number of nodes in the network, N , increases from 103 to 106, then
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average path length will increase approximately from 3 to 6. This phenomenon

has critical implications on the dynamic processes taking place in the network. For

example, if we consider the spread of information, computer viruses, or contagious

diseases across a network, the small-world phenomenon implies that within a few

steps it could spread to a large fraction of most of the real networks.

2.1.2 Clustering coefficient

The clustering coefficient characterizes the local transitivity and order in the neigh-

borhood of a node. It is measured in terms of number of triangles (3-cliques)

present in the network. Consider a node i which is connected to ki other nodes.

The number of possible edges between these ki neighbors that form a triangle is

ki(ki−1)/2. The clustering coefficient of a node i is the ratio of the number of edges

Ei that actually exist between these ki nodes and the total number ki(ki − 1)/2

possible, i.e.

Ci =
2Ei

ki(ki − 1)

The clustering coefficient of the whole network (C) is then the average of C ′
is over

all the nodes in the network i.e. C = 1
n

∑

i Ci (see figure 2.3). The clustering

coefficient is high for many real networks [14, 122]. In other words, in many

networks if node A is connected to node B and node C, then there is a high

probability that node B and node C are also connected. With respect to social

networks, this means that it is highly likely that two friends of a person are also

friends, a feature analyzed in detail in the so called theory of balance [47].

2.1.3 Degree distribution

The degree of a node is the number of edges incident on it. In a directed network, a

node has both an in-degree (number of incoming edges) and an out-degree (number

of outgoing edges). The degree distribution of the network is the function pk, where

pk is the probability that a randomly selected node has degree k. Here again, a

directed graph has both in-degree and out-degree distributions. It was found that

most of the real networks including the World Wide Web [5, 15, 102], the Internet

[64], metabolic networks [87], phone call networks [3, 8], scientific collaboration
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Figure 2.3. Calculating the clustering coefficient of a node and the network. For
example, node 1 has degree 5 and the number of edges between the neighbors is 3.
Hence, the clustering coefficient for node 1 is 3/10. The clustering coefficient of the entire
network is the average of the clustering coefficients at each individual nodes (109/180).

networks [27, 119], and movie actor collaboration networks [13, 20, 26] follow a

power-law degree distribution (p(k) ∼ k−γ), indicating that the topology of the

network is very heterogeneous, with a high fraction of small-degree nodes and few

large degree nodes. These networks having power-law degree distributions are

popularly known as scale-free networks. These networks were called as scale-free

networks because of the lack of a characteristic degree and the broad tail of the

degree distribution. Figure 2.4 shows the empirical results for the Internet at the

router level and co-authorship network of high-energy physicists. The following

are the expected values and variances of the node degree in scale-free networks,

E[k] =







finite if γ > 2;

∞ otherwise.
V [k] =







finite if γ > 3;

∞ otherwise.

where γ is the power-law exponent. Note that the variance of the node degree is

infinite when γ < 3 and the mean is infinite when γ < 2. The power-law exponent

(γ) of most of the networks lie between 2.1 and 3.0 which implies that there is high

heterogeneity with respect to node degree. This phenomenon in real networks is

critical because it was shown that the heterogeneity has a demonstrably large

impact on the network properties and processes such as network resilience [12, 16],

network navigation, local search [6, 156, 157], and epidemiological processes [132,

133, 134, 135, 136]. Later in this chapter, we will discuss the impact of the this

heterogeneity in detail.
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Figure 2.4. The degree distribution of real networks. (a) Internet at the router level.
Data courtesy of Ramesh Govindan [71]. (b) Co-authorship network of high-energy
physicists, after Newman [119].

2.1.4 Betweenness centrality

Betweenness centrality (BC) of a node is the fraction of shortest paths going

through the node. The BC of a node i is given by

BC(i) =
∑

s 6=n 6=t

σst(i)

σst
,

where σst is the total number of shortest paths from node s to t and σst(i) is the

number of these shortest paths passing through node i. If the BC of a node is

high, it implies that this node is central and many shortest paths pass through

this node. BC was first introduced in the context of social networks [164], and

has been recently adopted by Goh et al. [69] as a proxy for the load (li) at a

node i with respect to transport dynamics in a network. For example, consider the

transportation of data packets in the Internet along the shortest paths. If many

shortest paths pass through a node then the load on that node would be high.

Goh et al. have shown numerically that the load (or BC) distribution follows a

power-law, PL(l) ∼ l−δ with exponent δ ≈ 2.2 and is insensitive to the detail of

the scale-free network as long as the degree exponent (γ) lies between 2.1 and 3.0.

They further showed that there exists a scaling relation l ∼ k(γ−1)/(δ−1) between



21

Figure 2.5. Illustration of a network with community structure. Communities are
defined as a group of nodes in the network that have higher density of edges within the
group than between groups. In the above network, group of nodes enclosed with in a
dotted loop is a community.

the load and the degree of a node when 2 < γ ≤ 3. Later in this chapter, we

discuss how this property can be utilized for local search in complex networks.

Many other centrality measures exists in literature and a detailed review of these

measures can be found in [99].

2.1.5 Modularity and community structures

Many real networks are found to exhibit a community structure (also called mod-

ular structure). That is, groups of nodes in the network have high density of edges

within the group and lower density between the groups (see figure 2.5). This prop-

erty was first proposed in the social networks [164] where people may divide into

groups based on interests, age, profession etc. Similar community structures are

observed in many networks which reflects the division of nodes into groups based

on the node properties [122]. For example, in the WWW it reflects the subject

matter or themes of the pages, in citation networks it reflects the area of research,

in cellular and metabolic networks it may reflect functional groups [82, 143].

In many ways, community detection is similar to a traditional graph partition-

ing problem (GPP). In GPP the objective is to divide the nodes of the network

into k disjoint sets of specified sizes, such that, the number of edges between these
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sets is minimum. This problem is NP-complete [68] and several heuristic meth-

ods [80, 93, 140] have been proposed to decrease the computation time. GPP

arises in many important engineering problems which include mapping of paral-

lel computations, laying out of circuits (VLSI design) and the ordering of sparse

matrix computations [80]. Here, the number of partitions to be made is specified

and the size of each partition is restricted. For example, in mapping of parallel

computations, the tasks have to be divided between a specified number of proces-

sors such that the communication between the processors is minimized and the

loads on the processors are balanced. However, in real networks, we do not have

any a priori knowledge about the number of communities into which we should

divide and about the size of the communities. The goal is to find the naturally

existing communities in the real networks rather than dividing the network into

a pre-specified number of groups. Since we do not know the exact partitions of

a network, it is difficult to evaluate the goodness of a given partition. Moreover,

there is no unique definition of a community due to the ambiguity of how dense a

group should be to form a community. Many possible definitions exist in literature

[66, 124, 130, 141, 164]. A simple definition given in [66, 141] considers a subgraph

as a community if each node in the subgraph has more connections within the

community than with the rest of the graph. Newman and Girvan [124] have pro-

posed another measure which calculates the fraction of links within the community

minus the expected value of the same quantity in a randomized counterpart of the

network. The higher this difference, the stronger is the community structure. It

is important to note that in spite of this ambiguity, the presence of community

structures is a common phenomenon across many real networks. Algorithms for

detecting these communities are briefly discussed in section 2.3.2.

2.1.6 Network resilience

The ability of a network to withstand removal of nodes/edges in a network is

called network resilience or robustness. In general, the removal of nodes and edges

disrupts the paths between nodes and can increase the distances and thus mak-

ing the communication between nodes harder. In more severe cases, an initially

connected network can break down into isolated components that cannot communi-
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Figure 2.6. Effects of removing a node or an edge in the network. Observe that as we
remove more nodes and edges, the network disintegrates into small components/clusters.

cate anymore. Figure 2.6 shows the effect of removal of nodes/edges on a network.

Observe that as we remove more nodes and edges, the network disintegrates into

many components. There are different ways of removing nodes and edges to test

the robustness of a network. For example, one can remove nodes at random with

uniform probability or by selectively targeting certain classes of nodes, such as

nodes with high degree. Usually, the removal of nodes at random is termed as

random failures and the removal of nodes with higher degree is termed as targeted

attacks; other removal strategies are discussed in detail in [83]. Similarly there are

several ways of measuring the degradation of the network performance after the

removal. One simple way to measure it is to calculate the decrease in size of the

largest connected component in the network. A connected component is a part of

the network in which a path exists between any two nodes in that component and

the largest connected component is the largest among the connected components.

The lesser the decrease in the size of the largest connected component, the better

the robustness of the network. In figure 2.6, the size of the largest connected com-

ponent decreases from 13 to 9 and then to 5. Another way to measure robustness

is to calculate the increase of the average path length in the largest connected

component. Malfunctioning of nodes/edges eliminates some existing paths and

generally increases the distance between the remaining nodes. Again, the lesser

the increase, the better the robustness of the network. We discuss more about

network resilience and robustness with respect to optimization in section 2.3.1.
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2.2 Modeling of complex networks

In this section, we give a brief summary of different models for complex networks.

Most of the modeling efforts focused on understanding the underlying process

involved during the network evolution and capture the above-mentioned properties

of real networks. In specific, we concentrate on three prominent models, namely,

the Erdős-Rényi random graph model, the Watts-Strogatz small-world network

model, and the Barabási-Albert scale-free network model.

2.2.1 Random graphs

One of the earliest theoretical models for complex networks was given by Erdős

and Rényi [60, 61, 62] in the 1950s and 1960s. They proposed uniform random

graphs for modeling complex networks with no obvious pattern or structure. The

following is the evolutionary model given by Erdős and Rényi:

• Start with a set of N isolated nodes

• Connect each pair of nodes with a connection probability p

Figure 2.7 illustrates two realizations for Erdős-Rényi random graph model (ER

random graphs) for different connection probabilities. Erdős and Rényi have shown

that at pc ≃ 1/N , the ER random graph abruptly changes its topology from a loose

collection of small clusters to one which has giant connected component. Figure

2.8 shows the change in size of the largest connected component in the network as

the value of p increases, for N = 1000. We observe that there exists a threshold

pc = 0.001 such that when p < pc, the network is composed of small isolated

clusters and when p > pc a giant component suddenly appears. This phenomenon

is similar to the percolation transition, a topic well-studied both in mathematics

and statistical mechanics [14].

In a ER random graph, the mean number of neighbors at a distance (number

of hops) d from a node is approximately < k >d, where < k > is the average

degree of the network. To cover all the nodes in the network, the distance (l)

should be such that < k >l∼ N . Thus, the average path length is given by

l = log N
log <k>

, which scales logarithmically with the number of nodes N . This is only

an approximate argument for illustration, a rigorous proof can be found in [36].
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Figure 2.7. An Erdős-Rényi random graph that starts with N = 20 isolated nodes and
connects any two nodes with a probability p. As the value of p increases the number of
edges in the network increase.
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Figure 2.8. Illustration of percolation transition for the size of the largest connected
component in Erdős-Rényi random graph model. Note that there exists pc = 0.001 such
that when p < pc, the network is composed of small isolated clusters and when p > pc a
giant component suddenly appears.

Hence, ER random graphs are small world. The clustering coefficient of the ER

random graphs is found to be low. If we consider a node and its neighbors in a

ER random graph then the probability that two of these neighbors are connected

is equal to p (the probability that two randomly chosen neighbors are connected).

Hence, the clustering coefficient of an ER random graph is p = <k>
N

which is small

for large sparse networks. Now, let us calculate the degree distribution of the ER
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random graphs. The total number of edges in the network is a random variable

with an expected value of pN(N − 1)/2 and the number of edges incident on a

node (the node degree) follows a binomial distribution with parameters N − 1 and

p,

p(ki = k) = Ck
N−1p

k(1 − p)N−1−k.

This implies that in the limit of large N , the probability that a given node has

degree k approaches a Poisson distribution, p(k) = <k>ke−<k>

k!
. Hence, ER random

graphs are statistically homogenous in node degree as the majority of the nodes

have a degree close to the average, and significantly small and large node degrees

are exponentially rare.

ER random graphs were used to model complex networks for a long time [36].

The model was intuitive and analytically tractable; moreover the average path

length of real networks is close to the average path length of an ER random graph

of the same size [14]. However, recent studies on the topologies of diverse large-scale

networks found in nature indicated that they have significantly different properties

from ER random graphs [14, 33, 56, 122]. It has been found [169] that the aver-

age clustering coefficient of real networks is significantly larger than the average

clustering coefficient of ER random graphs with the same number of nodes and

edges, indicating a far more ordered structure in real networks. Moreover, the

degree distribution of many large-scale networks are found to follow a power-law

p(k) ∼ k−γ. Figure 2.9 compares two networks with Poisson and power-law degree

distributions. We observe that there is a remarkable difference between these net-

works. The network with Poisson degree distribution is more homogenous in node

degree, whereas the network with power-law distribution is highly heterogenous.

These discoveries along with others related to the mixing patterns of complex net-

works [14, 33, 56, 122] initiated a revival of network modeling in the past few

years.

Non-uniform random graphs are also studied [8, 9, 44, 112, 117, 125] to mimic

the properties of real-world networks, in specific, power-law degree distribution.

Typically, these models specify either a degree sequence, which is a set of N values

of the degrees ki of nodes i = 1, 2, ..., N or a degree distribution p(k). If a degree

distribution is specified then the sequence is formed by generating N random

values from this distribution. This can be thought as giving each node i in the
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Figure 2.9. Comparison of networks with Poisson and power-law degree distribution
of the same size. Note that the network with Poisson distribution is homogenous in
node degree. Most of the nodes in the network have same degree which is close to the
average degree of the network. However, the network with power-law degree distribution
is highly heterogenous in node degree. There are few nodes with large degree and many
nodes with a small degree

network ki “stubs” sticking out of it and then pairs of these stubs are connected

randomly to form complete edges [125]. Molloy and Reed [112] have proved that

for a random graph with a degree distribution p(k), a giant connected component

emerges almost surely when
∑

k≥1 k(k − 2)p(k) > 0, provided that the maximum

degree is less than N1/4. Later, Aiello et al. [8, 9] introduced a two-parameter

random graph model P (α, γ) for power-law graphs with exponent γ described as

follows: Let nk be the number of nodes with degree k, such that nk and k satisfy

log nk = α − γ log k. The total number of nodes in the network can be computed,

noting that the maximum degree of a node in the network is eα/γ . Using the results

from Molloy and Reed [112], they showed that there is almost surely a unique giant

connected component if γ < γ0 = 3.47875.... Whereas, there is no giant connected

component almost surely when γ > γ0.
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Newman et al. [125] have developed a general approach to random graphs by

using a generating function formalism [170]. The generating function for the degree

distribution pk is given by G0(x) =
∑∞

k=0 pkx
k. This function captures all the

information present in the original distribution since pk = 1
k!

dkG0

dxk |x=0. The average

degree of a randomly chosen node would be < k >=
∑

k kp(k) = G
′

0(1). Further,

this formulation helps in calculating other properties of the network [125]. For

instance, we can approximately calculate the relation for the average path length

of the network. Let us consider the degree of the node reached by following a

randomly chosen edge. If the degree of this node is k then we are k times more

likely to reach this node than a node of degree 1. Thus the degree distribution

of the node arrived by a randomly chosen edge is given by kpk and not pk. In

addition, the distribution of number of edges from this node (one less than the

degree) qk, is
(k+1)pk+1

P

k
kpk

=
(k+1)pk+1

<k>
. Thus, the generating function for qk is given

by G1(x) =
P∞

k=0
(k+1)pk+1xk

k
=

G
′

0
(x)

G
′

0
(1)

. Note that the distribution of the number of

first neighbors of a randomly chosen node (degree of a node) is G0(x). Hence, the

distribution of number of second neighbors from the same randomly chosen node

would be G0(G1(x)) =
∑

k pk[G1(x)]k. Here, the probability that any of the second

neighbors is connected to first neighbors or to one another scales as N−1 and can be

neglected in the limit of large N. This implies that the average number of second

neighbors is given by [ ∂
∂x

G0(G1(x))]x=1 = G′
0(1)G′

1(1). Extending this method

of calculating the average number of nearest neighbors, we find that the average

number of mth neighbors zm, is [G′
1(1)]m−1G′

0(1) = [z2

z1
]m−1z1. Now, let us start

from a node and find the number of first neighbors, second, third ... mth neighbors.

Assuming that all the nodes in the network can be reached within l steps, we have

1+
∑l

m=1 zm = N . As for most graphs N ≫ z1 and z2 ≫ z1, we obtain the average

path length of the network l = N/z1

z2/z1
+ 1. The generating function formalism can

further be extended to include other features such as directed graphs, bipartite

graphs and degree correlations [122].

Another class of random graphs which are especially popular in modeling

social networks is Exponential Random Graphs Models (ERGMs) or p∗ models

[21, 67, 81, 155, 165]. The ERGM consists of a family of possible networks of N

nodes in which each network G appears with probability P (G) = 1
Z

exp(−
∑

i θiǫi),

where the function Z is, Z =
∑

G exp(−
∑

i θiǫi). This is similar to the Boltzmann
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ensemble of statistical mechanics with Z as the partition function [122]. Here, {ǫi}
is the set of observable’s or measurable properties of the network such as num-

ber of nodes with certain degree, number of triangles etc. {θi} are adjustable set

of parameters for the model. The ensemble average of a property ǫi is given as

〈ǫi〉 =
∑

G ǫi(G)P (G) = 1
Z
ǫi exp(−∑

i θiǫi) = ∂f
∂θi

. The major advantage of these

models is that they can represent any kind of structural tendencies such as dyad

and triangle formations. A detailed review of the parameter estimation techniques

can be found in [21, 153]. Once the parameters {θi} are specified, the networks

can be generated by using Gibbs or Metropolis-Hastings sampling methods [153].

2.2.2 Small-world networks

Watts and Strogatz [169] presented a small-world network model to explain the

existence of high clustering and small average path length simultaneously in many

real networks, especially, social networks. They argued that most of the real

networks are neither completely regular nor completely random, but lie somewhere

between these two extremes. The Watts-Strogatz model starts with a regular

lattice on N nodes and each edge is rewired with certain probability p. The

following is the algorithm for the model,

• Start with a regular ring lattice on N nodes where each node is connected

to its first k neighbors.

• Randomly rewire each edge with a probability p such that one end remains

the same and the other end is chosen uniformly at random. The other end

is chosen without allowing multiple edges (more than one edge joining a pair

of nodes) and loops (edges joining a node to itself).

The resulting network is a regular network when p = 0 and a random graph

when p = 1, since all the edges are rewired (see figure 2.10). The above model

is inspired from social networks where people are friends with their immediate

neighbors such as neighbors on the street, colleagues at work etc (the connections

in the regular lattice). Also, each person has a few friends who are a long way

away (long-range connections attained by random rewiring). Later, Newman [118]

proposed a similar model where instead of edge rewiring, new edges are introduced
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Figure 2.10. Illustration of the random rewiring process for the Watts-Strogatz model.
This model interpolates between a regular ring lattice and a random network, without
changing the number of vertices (N = 20) or edges (E = 40) in the graph. When p

= 0 the graph is regular (each node has 4 edges), as p increases, the graph becomes
increasingly disordered until p = 1, all the edges are rewired randomly. After Watts and
Strogatz, 1998 [169].

with probability p. The clustering coefficient of the Watts-Strogatz model and the

Newman model are

CWS =
3(k − 1)

2(2k − 1)
(1 − p)3 CN =

3(k − 1)

2(2k − 1) + 4kp(p + 2)

respectively. This class of networks displays a high degree of clustering coefficient

for small values of p since we start with a regular lattice. Also, for small values

of p the average path length falls rapidly due to the few long-range connections.

This co-existence of high clustering coefficient and small average path length is in

excellent agreement with the characteristics of many real networks [118, 169]. The

degree distribution of both models depends on the parameter p, evolving from a

univalued peak corresponding to the initial degree k to a somewhat broader but

still peaked distribution. Thus, small-world models are even more homogeneous

than random graphs, which is not the case with real networks.

2.2.3 Scale-free networks

As mentioned earlier, many real networks including the World Wide Web [5, 15,

102], the Internet [64], peer-to-peer networks [145], metabolic networks [87], phone
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call networks [3, 8] and movie actor collaboration networks [13, 20, 26] are scale-

free, that is, their degree distribution follows a power-law, p(k) ∼ k−γ . Barabási

and Albert [26] addressed the origin of this power-law degree distribution in many

real networks. They argued that a static random graph or Watts-Strogatz model

fails to capture two important features of large-scale networks: their constant

growth and the inherent selectivity in edge creation. Complex networks like the

World-Wide Web, collaboration networks and even biological networks are growing

continuously by the creation of new web pages, start of new researchers and by

gene duplication and evolution. Moreover, unlike random networks where each

node has the same probability of acquiring a new edge, new nodes entering the

network do not connect uniformly to existing nodes, but attach preferentially to

nodes of higher degree. This reasoning led them to define the following model,

• Growth: Start with small number of connected nodes say m0 and assume

that every time a node enters the system, m edges are pointing from it,

where m < m0.

• Preferential Attachment: Every time a new node enters the system, each

edge of the newly entered node preferentially attaches to a already existing

node i with degree ki with the following probability,

Πi =
ki

∑

j kj

It was shown that such a mechanism leads to a network with power-law degree

distribution p(k) = k−γ with exponent γ = 3. These networks were called as scale-

free networks because of the lack of a characteristic degree and the broad tail of

the degree distribution. The average path length of this network scales as log(N)
log(log(N))

and thus displays small world property. The clustering coefficient of a scale-free

network is approximately C ∼ (log N)2

N
, which is a slower decay than C =< k > N−1

decay observed in random graphs [37]. In the years following the proposal of the

first scale-free model a large number of more refined models have been introduced,

leading to a well-developed theory of evolving networks [14, 33, 56, 122]. The

basic properties of most of these networks are similar to the three most prominent

networks found in literature (see figure 2.11).
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Figure 2.11. Comparison of properties between random, small-world and scale-free
networks

2.3 Dynamical processes in large-scale networks

The models discussed in section 2.2 are focused on explaining the evolution and

growth process of many large real networks. They mainly concentrate on statis-

tical properties of real networks and network modeling. But the ultimate goal in

studying and modeling the structure of complex networks is to understand and op-

timize the processes taking place on these networks. For example, one would like

to understand how the structure of the Internet affects its survivability against

random failures or intentional attacks, how the structure of the WWW helps in

efficient surfing or search on the web, how the structure of social networks affects

the spread of viruses or diseases, etc. In other words, to design rules for optimiza-

tion, one has to understand the interactions between the structure of the network

and the processes taking place on the network. These principles will certainly help

in redesigning or restructuring the existing networks and perhaps even help in de-

signing a network from scratch. In the past few years, there has been tremendous
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amount of effort by the research communities of different disciplines to understand

the processes taking place on networks [14, 33, 56, 122]. In this section, we discuss

a few dynamic processes and mainly concentrate on network resilience because

of its high relevance to engineering systems. In the next section, we discuss the

literature on decentralized search in networks which is the primary focus of this

thesis.

2.3.1 Network resilience to node failures

All real networks are regularly subject to node/edge failures either due to normal

malfunctions (random failures) or intentional attacks (targeted attacks) [12, 16].

Hence, it is extremely important for the network to be robust against such failures

for proper functioning. Albert et al. [16] demonstrated that the topological struc-

ture of the network plays a major role in its response to node/edge removal. They

showed that most of the real networks are extremely resilient to random failures.

On the other hand, they are very sensitive to targeted attacks. They attribute this

behavior to the fact that most of these networks are scale-free networks, which

are highly heterogenous in node degree. Since a large fraction of nodes have small

degree, random failures do not have any effect on the structure of the network.

On the other hand, the removal of a few highly connected nodes that maintain the

connectivity of the network, drastically changes the topology of the network. For

example, consider the Internet: despite frequent router problems in the network,

we rarely experience global effects. However, if a few critical nodes in the Internet

are removed then it would lead to a devastating effect. Figure 2.12 shows the de-

crease in the size of the largest connected component for both scale-free networks

and ER graphs, due to random failures and targeted attacks. ER graphs are ho-

mogenous in node degree, that is all the nodes in the network have approximately

the same degree. Hence, they behave almost similarly for both random failures

and targeted attacks (see figure 2.12(a)). In contrast, for scale-free networks, the

size of the largest connected component decreases slowly for random failures and

drastically for targeted attacks (see figure 2.12(b)).

Ideally, we would like to have a network which is as resilient as scale-free net-

works to random failures and as resilient as random graphs to targeted attacks.
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Figure 2.12. The size of the largest connected component as the percentage number of
nodes (p) removed from the networks due to random failures (⋄) and targeted attacks
(△). (a) ER graph with number of nodes (N) = 10,000 and mean degree < k > = 4; (b)
Scale-free networks generated by Barabási-Albert model with N = 10,000 and < k > =
4. The behavior with respective to random failures and targeted attacks is similar for
random graphs. Scale-free networks are highly sensitive to targeted attacks and robust
to random failures.

To determine the feasibility of modeling such a network, Valente et al. [160] and

Paul et al. [138] have studied the following optimization problem: “What is the

optimal degree distribution of a network of N nodes that maximizes the robustness

of the network to both random failures and targeted attacks with the constraint that

the number of edges remain the same?”

Note that we can always improve the robustness by increasing the number of

edges in the network (for instance, a completely connected network will be the most

robust network for both random failures and targeted attacks). Hence the problem

has a constraint on the number of edges. In [160], Valente et al. showed that the

optimal network configuration is very different from both scale-free networks and

random graphs. They showed that the optimal networks that maximize robustness

for both random failures and targeted attacks have at most three distinct node

degrees and hence the degree distribution is three-peaked. Similar results were
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demonstrated by Paul et al. in [138]. Paul et al. showed that the optimal network

design is one in which all the nodes in the network except one have the same degree,

k1 (which is close to the average degree), and one node has a very large degree,

k2 ∼ N2/3, where N is the number of nodes. However, these optimal networks

may not be practically feasible because of the requirement that each node has a

limited repertoire of degrees.

Many different evolutionary algorithms have also been proposed to design an

optimal network configuration that is robust to both random failures and targeted

attacks [49, 85, 150, 158, 161]. In particular, we [158] considered two other mea-

sures, responsiveness and flexibility along with robustness for random failures and

targeted attacks, specifically for supply-chain networks. We defined responsiveness

as the ability of network to provide timely services with effective navigation and

measure it in terms of average path length of the network. The lower the average

path length, the better is the responsiveness of the network. Flexibility is the abil-

ity of the network to have alternate paths for dynamic rerouting. Good clustering

properties ensure the presence of alternate paths, and the flexibility of a network

is measured in terms of the clustering coefficient. We designed a parameterized

evolutionary algorithm for supply-chain networks and analyzed the performance

with respect to these three measures. Through simulation we have shown that

there exist trade-offs between these measures and proposed different ways to im-

prove these properties. However, it is still unclear as to what would be the optimal

configuration of such survivable networks. The research question would be “what

is the optimal configuration of a network of N nodes that maximizes the robust-

ness to random failures, targeted attacks, flexibility, and responsiveness, with the

constraint that the number of edges remain the same?”

Until now, we have focussed on the effects of node removal on the static prop-

erties of a network. However, in many real networks, the removal of nodes will

also have dynamic effects on the network as it leads to avalanches of breakdowns

also called cascading failures. For instance, in a power transmission grid, the re-

moval of nodes (power stations) changes the balance of flows and leads to a global

redistribution of loads over all the network. In some cases, this may not be toler-

ated and might trigger a cascade of overload failures [94], as happened on August

10th 1996 in 11 US states and two Canadian provinces [148]. Models of cascades
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of irreversible [116] or reversible [50] overload failures have demonstrated that re-

moval of even a small fraction of highly loaded nodes can trigger global cascades if

the load distribution of the nodes is heterogenous. Hence, cascade-based attacks

can be much more destructive than any other strategies considered in [16, 83].

Later, in [115], Motter showed that a defence strategy based on a selective further

removal of nodes and edges, right after the initial attack or failure, can drasti-

cally reduce the size of the cascade. Other studies on cascading failures include

[41, 113, 114, 163, 166].

2.3.2 Detecting community structures

As mentioned earlier, community structures are typically found in many real net-

works. Finding these communities is extremely helpful in understanding the struc-

ture and function of the network. Sometimes the statistical properties of the

community alone may be very different from the whole network and hence these

may be critical in understanding the dynamics in the community. The following

are some of the examples:

• The World Wide Web: Identification of communities in the web is helpful for

implementation of search engines, content filtering, automatic classification,

automatic realization of ontologies and focussed crawlers [19, 66].

• Social networks: Community structures are a typical feature of a social net-

work. The behavior of an individual is highly influenced by the community

he/she belongs. Communities often have their own norms, subcultures which

are an important source of a person’s identity [124, 164].

• Biological networks : Community structures are found in cellular [82, 146],

metabolic [143] and genetic networks [171]. Identifying them helps in finding

the functional modules which correspond to specific biological functions.

Algorithmically, the community detection problem is the same as the cluster

analysis problem studied extensively by the OR community, computer scientists,

statisticians, and mathematicians [78]. One of the major classes of algorithms for

clustering is hierarchical algorithms which fall into two broad types, agglomerative

and divisive. In an agglomerative method, an empty network (n nodes with no
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edges) is considered and edges are added based on some similarity measure between

nodes (for example, similarity based on the number of common neighbors) starting

with the edge between the pairs with highest similarity. This procedure can be

stopped at any step and the distinct components of the network are taken to be

the communities. On the other hand, in divisive methods edges are removed from

the network based on certain measure (for example, the edge with the highest

betweenness centrality [124]). As this process continues the network disintegrates

into different communities. Recently, many such algorithms are proposed and

applied to complex networks [33, 51]. A comprehensive list of algorithms to identify

community structures in complex networks can be found in [51] where Danon et

al. have compared them in terms of sensitivity and computational cost.

Another interesting problem in community detection is to find a clique of max-

imum cardinality in the network. A clique is a complete subgraph in the network.

In the network G(V, E), let G(S) denote the subgraph induced by a subset S ⊆ V .

A network G(V, E) is complete if each node in the network is connected to every

other node, i.e. ∀i, j ∈ V, {i, j} ∈ E. A clique C is a subset of V such that the in-

duced graph G(C) is complete. The maximum clique problem has many practical

applications in coding theory, computer vision, project selection, economics and

integration of genome mapping data [40, 79, 131]. For instance, in [35], Boginski

et al. solve this problem for finding the maximal independent set in the market

graph which can form a base for forming a diversified portfolio. The maximum

clique problem is known to be NP-hard [68] and details on various algorithms and

heuristics can be found in [88, 131]. Further, if the network size is large, then

the data may not fit completely inside the computer’s internal memory. Then we

need to use external memory algorithms and data structures [4] for solving the

optimization problems in such networks. These algorithms use slower external

memory (such as disks) and the resulting communication between internal mem-

ory and external memory can be a major performance bottleneck. In [3], using

external memory algorithms, Abello et al proposed decomposition schemes that

make large sparse graphs suitable for processing by graph optimization algorithms.
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2.3.3 Spreading processes

Diffusion of an infectious disease, computer virus or information on a network

constitute examples of spreading processes. In particular, the spread of infectious

diseases in a population is called epidemic spreading. The study of epidemiologi-

cal modeling has been an active research area for a long time and is heavily used

in planning and implementing various prevention and control programs [53]. Re-

cently, there has been a burst of activities on understanding the effects of the net-

work properties on the rate and dynamics of disease propagation [14, 33, 56, 122].

Most of the earlier methods used the homogenous mixing hypothesis [22], which

implies that the individuals who are in contact with susceptible individuals are

uniformly distributed throughout the entire population. However, recent findings

(section 2.1) such as heterogeneities in node degree, presence of high clustering

coefficients, and community structures indicate that this assumption is far from

reality. Later, many models have been proposed [14, 33, 46, 56, 122, 133, 136]

which consider these properties of the network. In particular, many researchers

have shown that incorporating these properties in the model radically changes the

results previously established for random graphs. Other spreading processes which

are of interest include spread of computer viruses [25, 108, 123], data dissemination

on the Internet [92, 162], and strategies for marketing campaigns [104].

2.3.4 Congestion

Transport of packets or materials ranging from packet transfer in the Internet to

the mass transfer in chemical reactions in cell is one of the fundamental processes

occurring on many real networks. Due to limitations in resources (bandwidth),

increase in number of packets (packet generation rate) may lead to overload at the

node and unusually long delivery times, in other words, congestion in networks.

Considering a basic model, Ohira and Sawatari [127] have shown that there exists

a phase transition from a free flow to a congested phase as a function of the packet

generation rate. This critical rate is commonly called “congestion threshold” and

the higher the threshold, the better is the network performance with respect to

congestion.

Many studies have shown that an important role is played by the topology and
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routing algorithms in the congestion of networks [43, 52, 58, 59, 74, 75, 152, 154,

159]. Toroczkai et al. [159] have shown that on large networks on which flows are

influenced by gradients of a scalar distributed on the nodes, scale-free topologies

are less prone to congestion than random graphs. Routing algorithms also influ-

ence congestion at nodes. For example, in scale-free networks, if the packets are

routed through the shortest paths then most of the packets pass through the hubs

and hence causing higher loads on the hubs [69]. Singh and Gupte [152] discuss

strategies to manipulate hub capacity and hub connections to relieve congestion in

the network. Similarly many congestion-aware routing algorithms [43, 58, 59, 154]

have been proposed to improve the performance. Sreenivasan et al. [154] intro-

duced a novel static routing protocol which is superior to shortest path routing

under intense packet generation rates. They propose a mechanism in which packets

are routed through hub avoidance paths unless the hubs are required to establish

the route. Sometimes when global information is not available, routing is done

using local search algorithms. Congestion due to such local search algorithms and

optimal network configurations are studied in [23].

2.4 Decentralized search in networks

One of the important research problems that has many applications in engineering

systems is decentralized search in networks. Decentralized search is the process, in

which a node tries to find a network path to a target node using only local infor-

mation. Local information implies that each node has information only about its

first, or perhaps second neighbors and it is not aware of nodes at a larger distance

and how they are connected in the network. Let us suppose some required infor-

mation such as computer files or sensor data is stored at the nodes of a distributed

network or database. Then, in order to quickly determine the location of particular

information, one should have efficient local (decentralized) search algorithms. Ex-

amples include routing of sensor data in wireless sensor networks [10, 142], locating

data files in peer-to-peer networks [91, 175], and finding information in distributed

databases [42].

Decentralized search in networks can be formulated in two types of networks. In

the first type of network, the global position of a node cannot be quantified and it is
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difficult to know whether a step in the search process is towards the target node or

away from the target node. This makes the local search process even more difficult.

One such kind of network is the peer-to-peer network, Gnutella [91], where the

network structure is such that one may know very little information about the

location of the target node. Here, when a user is searching for a file he/she does

not know the global position of the node that has the file. Further, when the user

sends a request to one of its neighbors, it is difficult to find out whether this step is

towards the target node or away from it. Whereas in the second type of network,

the global position of the target node can be quantified and each node has this

information. This information will guide the search process in reaching the target

node. For example, if we look at the network considered in Milgram’s experiment

each person has the geographical and professional information about the target

node. All the intermediary people (or nodes) use this information as a guide for

passing the messages. For lack of more suitable name, we call the networks of the

first type as non-spatial networks and the second type as spatial networks.

2.4.1 Search in non-spatial networks

The traditional search methods in non-spatial networks are broadcasting or ran-

dom walk. In broadcasting, each node sends the message to all its neighbors. The

neighbors in turn broadcast the message to all their neighbors, and the process con-

tinues. Effectively, all the nodes in the network would have received the message at

least once or maybe more. This could have devastating effects on the performance

of the network. A hint on the potential damages of broadcasting can be viewed by

looking at the Taylorsville NC, elementary school project [167]. Sixth-grade stu-

dents and their teacher sent out a sweet email to all the people they knew. They

requested the recipients to forward the email to everyone they know and notify the

students by email so that they could plot their locations on a map. A few weeks

later, the project had to be canceled because they had received about 450,000 re-

sponses from all over the world [167]. A good way to avoid such a huge exchange

of messages is by doing a walk. In a walk, each node sends the message to one of

its neighbors until it reaches the target node. The neighbor can be chosen in dif-

ferent ways depending on the algorithm. If the neighbor is chosen randomly with
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equal probability then it is called random search, while in a high degree search the

highest degree neighbor is chosen. Adamic et al. [6] have demonstrated that high

degree search is more efficient than random search in networks with a power-law

degree distribution (scale-free networks). High degree search sends the message

to a more connected neighbor that has higher probability of reaching the target

node and thus exploiting the presence of heterogeneity in node degree to perform

better. They showed that the number of steps (s) required for the random search

until the whole graph is revealed is s ∼ N3(1−2/γ) and for the high-degree search

it is s ∼ N (2−4/γ). Clearly, for γ > 2.0, the number of steps taken by high-degree

search scales with a smaller exponent than the random walk search. Since most

real networks have power-law degree distribution with exponent (γ) between 2.1

and 3.0, high-degree search would be more effective in these networks.

However, these algorithms assume that the edges in the network are equiva-

lent. But, the assumption of equal edge weights (which may represent the cost,

bandwidth, distance, or power consumption associated with the process described

by the edge) usually does not hold in real-world networks. Many researchers

[17, 28, 29, 38, 70, 72, 76, 100, 120, 126, 137, 139, 174], have pointed out that

it is incomplete to assume that all the edges are equivalent. These studies have

shown that heterogeneity is prevalent in the capacity and strength of the inter-

connections and is critical in most real-world networks. For instance, sociologists

have shown that the weak links that people have outside their close circle of friends

play a key role in keeping the social system together [72, 120]. The Internet traffic

[137] or the number of passengers in the airline network [24, 28, 76] are critical

dynamical quantities that can be represented by using weighted edges. Similarly,

the diversity of the predator-prey interactions and of metabolic reactions is con-

sidered as a crucial component of ecosystems and metabolic networks respectively

[17, 100, 139]. Thus it is incomplete to represent real-world systems with equal

interaction strengths between different pairs of nodes.

Further, the search strategies proposed for un-weighted networks may no longer

be optimal in weighted networks. The total path length (p) in a weighted network

for the path 1− 2− 3...−n, is given by p =
∑n

i=1 wi,i+1, where wi.i+1 is the weight

on the edge from node i to node i+1. Even though we can find a path with smaller

number of hops, the total path length may be high if the weights on these edges
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are different. Although, Goh et al [70] and Braunstein et. al. [38] have studied

the optimal distance in weighted complex networks, they assumed that each node

has the knowledge of the entire network. Braunstein et. al. considered two cases,

namely, weak disorder and strong disorder for shortest paths. If the selection of a

path is controlled by the sum of the edges (in case of costs) it corresponds to weak

disorder. In some cases the edge with the maximum weight in the path can be the

bottle-neck (in case of communication networks). If the selection of the path is

controlled by minimizing the maximum weighted edge in the path, it corresponds

to strong disorder. Braunstein has shown that in the case of strong disorder the

optimal distance scales as N1/3 in Erdos-Renyi and Watts-Strogatz networks. For

scale-free networks he has shown that optimal distance (in strong disorder) scales

as N1/3 for τ > 4 and as N
τ−3

τ−1 for 3 < τ < 4. Thus the small-world property

is destroyed in the case of strong disorder if we introduce non-uniform weights to

the edges. On the other hand, he has shown that in the case of weak disorder the

small-world property is still preserved. Although it was shown that short paths

exist, the question of weather the nodes can find these shorts paths using just the

local information in weighted complex networks, is still unanswered. One of the

problems we focus on is to obtain efficient algorithms for local search in weighted

networks. In the next two chapters, we describe the research problem and give the

details of the proposed methodology and results obtained.

2.4.2 Search in spatial networks

In spatial networks the nodes are embedded in a metric space and they are con-

nected based on the metric distance. Here, the global position of the target node

in the space can guide the search process to reach the target node more quickly.

The problem of local search in spatial networks goes back to the famous exper-

iment by Stanley Milgram [111] (discussed in section 2.1) illustrating the short

distances in social networks. Another important observation of the experiment,

which is even more surprising, is the ability of these nodes to find these short

paths using just the local information. As pointed out by Kleinberg [95, 96, 97],

this is not a trivial statement because most of the time, people have only local

information in the network. That is the information about their immediate friends
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or perhaps their friends’ friends. They do not have the global information about

the acquaintances of all people in the network. Even in Milgram’s experiment, the

people to whom he gave the letters have only local information about the entire

social network. Still, from the results of the experiment, we can see that arbitrary

pairs of strangers are able to find short chains of acquaintances between them by

using only local information. Many models have been proposed to explain the

existence of such short paths [14, 33, 56, 118, 122, 169]. However, these mod-

els are not sufficient to explain the second phenomenon. The observations from

Milgram’s experiment suggest that there is something more embedded in the un-

derlying social network that guides the message implicitly from the source to the

target. Such networks which are inherently easy to search are called searchable

networks. Mathematically, a network is searchable if the length of the search path

obtained scales logarithmically with the number of nodes N (∼ logN) or lesser.

Kleinberg demonstrated that the emergence of such a phenomenon requires spe-

cial topological features [95, 96, 97]. Considering a family of grid-based models

that generalize the Watts-Strogatz [169] model, he showed that only one particu-

lar model among this infinite family can support efficient decentralized algorithms.

He considered the network on a two dimensional lattice where two nodes (say u

and v) are connected with a probability proportional to [d(u, v)]−r. d(u, v) is the

number of lattice steps separating the nodes u and v. If u is at (i, j) and v is at

(k, l) then [d(u, v)] = |k − i| + |l − j|. The geographical interpretation of this is

that the persons who stay closer on the grid are more probable to know each other

than those who live far apart. He showed that for a particular value of r i.e. when

r = 2, a simple greedy search, where the node passes the message to the neighbor

closest to the target node based on the grid distance, is able to give short paths, i.e.

the delivery time is bounded by a polynomial in log N . For any other values of r,

the delivery time increases asymptotically in polynomial degree. He also extended

this model to d-dimensional lattice, where greedy search find short paths if and

only if r = d. He further extended this model to hierarchical networks [97], where,

again, the network was proven to be searchable only for a specific parameter value.

Unfortunately, the models given by Kleinberg represent only a very small subset

of complex networks. Independently, Watts et al. presented another model based

upon plausible hierarchical social structures [168], to explain the phenomena ob-
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served in Milgram’s experiment. The networks were shown to be searchable by

a greedy search algorithm for a wide range of parameter space. Other works on

decentralized search include [23, 98, 107, 109, 149, 151, 175]. Simsek and Jensen

[151] use homophily between nodes and degree disparity in the network to design

a better algorithm for finding the target node. However, finding an optimal way

to combine location and degree information is yet to be investigated (see [98] for

a review). Another interesting problem studied by Clauset and Moore [45], and

by Sandberg [149], is the question of how real-world networks evolve to become

searchable. They propose a simple feedback mechanism where the nodes continu-

ously conduct decentralized searches, and in the process partially rewire the edges

to form a searchable network.

In this thesis, we consider search in a family of parameterized spatial network

models that are heterogenous in node degree. In this model, nodes are placed in

an n-dimensional space and are connected, based on preferential attachment and

geographical constraints, to form spatial scale-free networks. Preferential attach-

ment to high degree nodes is believed to be responsible for the emergence of the

power-law degree distribution observed in many real-world networks [26], and ge-

ographical constraints account for the fact that nodes tend to connect to nodes

that are nearby. Many real-world networks such as the Internet [173] and the

worldwide airline network [73], can be described by this family of spatial network

models. Our objective is to design decentralized search algorithms for this type of

network model and demonstrate that this simple model defines a class of searchable

networks. In the next chapter, we describe the research problem in more detail.



CHAPTER

THREE

Problem description: Decentralized

search in networks

In this thesis, we address the problem of decentralized search and routing in large-

scale networks. We broadly divide the problem into

• Search in non-spatial networks

• Search in spatial networks

In the following pages, we describe the process of decentralized search and routing

and present the details of the research problems.

Search and routing is one of the most important and prevalent processes in

many real-world networks. Many a time one needs to transport raw material/computer

files/messages from one node to another using the edges of the network. Further,

it is critical that the paths used are optimal with respect to resources such as time

and cost. Some examples include:

• The Internet : Millions of files/packets are routed everyday from one com-

puter/server to another in the Internet. Due to limited availability of re-

sources such as bandwidth, it is extremely important that they are routed

using optimal paths.
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• Supply-chain network : Supply chains involve complex webs of interactions

and transportation of raw material/finished goods among suppliers, manufac-

turers, distributors, third-party logistics providers, retailers, and customers.

• Social networks: Search for a specific person using the social acquaintance

network as in Milgram’s experiment [111].

• The WWW : Search for certain information in the World Wide Web. One

could search either by using search engines or by navigating one page to

another using the hyperlinks on the current page.

• Airline networks: Traveling from one place to another using the U.S. airline

network. One can obtain a choice of itineraries from the closest airport at

the departure location to the closest airport at the destination location using

various sources such as travel agents, airline offices or the World Wide Web.

• Sensor networks: Sending information from the sensor node to the sink node.

It is critical to route the message along the path that consumes the least

energy due to limited battery power in the sensors.

• Peer-to-peer networks: Search and routing of data files between the nodes in

the peer-to-peer network.

• Road networks : Finding shortest path with respect to time taken or distance

traveled from one place to another using the road network. Many services

such as Google Maps or MapQuest provide the directions for the shortest

path with respect to time or distance.

The problem of search and routing in networks can be approached in different

ways depending upon the available information. If the global information of the

network is available, i.e. how each and every node is connected in the network is

known, one could use abundant number of algorithms available in literature for

calculating the optimal paths [7, 48]. For example, one could use breadth first

search (BFS) algorithm if all the edges in the network have equal edge weights or

use Dijkstra’s algorithm if the network has unequal non-negative edge weights.
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3.1 Decentralized search

In some scenarios the node may not able to have access to the global information

of the network as given below:

• Social networks: As observed in Milgram’s experiment [111], people have in-

formation only about their immediate friends or perhaps their friends’ friends.

They do not have the global information about the acquaintances of all peo-

ple in the network.

• Decentralized networks: Here, the nodes have limited access and can commu-

nicate only with the neighboring nodes. This may be either due to security

or privacy reasons. One such example is the peer-to-peer network Gnutella

[91], where the network structure is such that one may know very little infor-

mation about the location of the target node. Here, when a user is searching

for a file he/she does not know the global position of the node that has the

file.

• Dynamic (ad-hoc) and distributed networks: The structure of the network is

dynamic where nodes may go up/down and the weights on the edges change

continuously. One such example is wireless sensor networks. Due to severe

constraints on the battery power and bandwidth availability, it is not possible

to update the configuration of the network at each node at regular intervals.

These particular type of large-scale distributed networks with limited infor-

mation are becoming more prevalent due to advances made in different areas of

engineering, especially in peer-to-peer networks and sensor networks technology. In

such scenarios we need to have decentralized algorithms that can navigate through

the network by using only local information. Here using local information would

mean that a node has the information only about its neighbors and may be its

neighbors’ neighbors.

As discussed in chapter 2 this problem can be broadly classified to two types

of networks. In the first type of network, the global position of a node cannot

be quantified and it is difficult to know whether a step in the search process is

towards the target node or away from the target node. Whereas in the second

type of network, the global position of the target node can be quantified and
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each node has this information. This information will guide the search process in

reaching the target node. For lack of more suitable name, we call the networks of

the first type as non-spatial networks and the second type as spatial networks.

3.2 Search in non-spatial networks

A simple algorithm in non-spatial networks is random search. In random search,

a neighbor is chosen randomly with equal probability until it reaches the target

node. Another algorithm is high-degree search, where a neighbor with the highest

degree is chosen. Adamic et al. [6] have demonstrated that high degree search is

more efficient than random search in networks with a power-law degree distribution

(scale-free networks). High degree search sends the message to a more connected

neighbor that has higher probability of reaching the target node and thus exploiting

the presence of heterogeneity in node degree to perform better. However, they

assume that the edges in the network are equivalent which does not hold in many

real-world networks [17, 28, 29, 38, 70, 72, 76, 100, 120, 126, 137, 139, 174]. In this

thesis, we address the following problem of search in weighted complex networks.

3.2.1 Non-spatial network

Consider a network G(N, E) on N nodes with a set of E edges and has the following

properties:

1. Its node degree distribution follows a power-law in with exponent varying

from 2.0 to 3.0. Although we discuss the search algorithms for networks

with Poisson degree distribution (ER random graphs), we concentrate more

on power-law networks since most of the real world networks are found to

exhibit this behavior [14, 33, 56, 122].

2. It has non-uniformly distributed weights on the edges. Here the weights sig-

nify the cost/time taken to pass the message/query. Hence, smaller weights

correspond to shorter/better paths. We consider different distributions like

Beta, uniform, exponential and power-law.
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3. It is unstructured and decentralized. That is, each node has information

only about its first and second neighbors and no global information about

the target is available. Also, the nodes can communicate only with their

immediate neighbors.

4. The topology is dynamic (ad-hoc) while still maintaining its statistical prop-

erties.

Here, each node has information about the first and second neighbors and the

weights of the edges connecting them. The position of the target node is unknown.

The research problem is to design efficient search algorithms using this information

in the above mentioned networks.

3.3 Search in spatial networks

We consider search in a family of parameterized spatial network models that are

heterogenous in node degree. In this model, nodes are placed in an n-dimensional

space and are connected, based on preferential attachment and geographical con-

straints, to form spatial scale-free networks (see figure 3.1). Preferential attach-

ment to high degree nodes is believed to be responsible for the emergence of the

power-law degree distribution observed in many real-world networks [26], and geo-

graphical constraints account for the fact that nodes tend to connect to nodes that

are nearby. Many real-world networks such as the Internet [173] and the worldwide

airline network [73], can be described by this family of spatial network models.

Our objective is to design decentralized search algorithms for this type of net-

work model and demonstrate that this simple model defines a class of searchable

networks. Each node has information about the position of the target node, the

position of its neighbors, and the degree of its neighbors. Using this information,

the start node, and consecutively each node receiving the message, passes the mes-

sage to one of its neighbors based on the search algorithm until it reaches the

target node. The following section gives the details of the network model.
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Figure 3.1. Illustration of a spatial network in two-dimensional space. Nodes are
placed in an 2-dimensional space and are connected, based on preferential attachment
and geographical constraints, to form spatial scale-free network

3.3.1 Spatial network model

The spatial network model we consider incorporates both preferential attachment

and geographical constraints. At each step during the evolution of the spatial

network model one of the following occurs [55]:

• with probability p, a new edge is created between two existing nodes in the

network;

• with probability 1−p, a new node is added and connected to m existing nodes

in the network, with the constraint that multiple edges are not formed.

In both cases, the degrees of the nodes and the distances between them are

considered when forming a new edge. In the first case, two nodes i and j are

selected according to

Πij ∝
kikj

F (dij)
,

where ki is the degree of node i, dij is the Euclidian distance between node i and

node j and F (dij) is an increasing function of dij. A new node i is uniformly and

randomly placed in an n-dimensional space and is connected to a pre-existing node

j with probability

Πj ∝
kj

F (dij)
.
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The above process is simulated until the number of nodes in the network is N .

Let the network generated be G(N, p, m, F, n). Here, the preferential attachment

mechanism leads to a power-law degree distribution where the exponent can be

tuned by changing the value of p [55] (see figure 5.2(a)). F (d) controls the trun-

cation of the power-law decay, and if F (d) increases rapidly, then the power-law

decay regime can disappear altogether [31]. Two widely-used functions for F (d)

are dr [173] and exp(d/dchar) [31].

3.4 Sensor networks and other applications

In this section, we discuss some of the applications where the above two problems

are applicable. Recent advances in technology have enabled the development of

low-cost, low-power sensor nodes that are small in size and can communicate only

with in short distances [10]. These tiny sensors, which are capable of sensing,

communicating and data processing has led to the idea of sensor networks. Sensor

networks consist of large number of tiny sensors that coordinate amongst them-

selves to achieve a larger sensing task. Hundreds to several thousands of nodes are

deployed within a small area, which is called sensor field (see figure 3.2).

The main task of a sensor node in a sensor field is to detect events, perform local

data processing and then transmit the data. Due to severe hardware constraints

(battery power and scope of transmission), these sensors can communicate only

with sensors within their vicinity. Also, the nodes can switch between active and

inactive states at random times which is a main source of uncontrolled dynamics

in the topology of the network. This is due to exhaustion of the power and being

charged by renewable sources. Several aspects of these sensor networks lead to

many design challenges, which are different from the ones posed by the conventional

networks. Further, the sheer number of these tiny sensors would present unique

challenges in the design of unattended autonomous sensor networks [63]. These

challenges demand design and operation techniques which are different from the

ones used for conventional network applications. One of the challenges is the need

for decentralized routing algorithms which are extremely energy-efficient.

The sensor nodes are usually scattered in the sensor field. Each of these sensor

nodes has to route the information collected by it to the sink node and then to
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Figure 3.2. Sensor field

the end users (see figure 3.2). The sink may route back to the end user using

the Internet or a satellite. The conventional way to route or search in the above

mentioned scenario is to broadcast the information to all the neighbors (as shown

in the figure 3.3) or send the message to a randomly selected neighbor [101]. But

we clearly see that this is not an efficient way, especially when the nodes operate

under severe power constraints. One of the major drawback of classical flooding or

broadcasting is implosion. During flooding, a node always sends the message to all

the neighbors irrespective of whether or not the neighbor has already received the

message which will lead to many redundant transmission. For example in network

shown in figure 3.4, node 1 starts broadcasting the message to all its neighbors. In

the next step, node 2 and node 3 sends the message to all its neighbors except to

node 1. Hence, node 4 receives two copies of the same data. Also, whenever data

reaches a high degree node, then more copies of the same data are transmitted in

the network.

Many decentralized routing algorithms have been proposed in the literature

which perform better than flooding [10, 11]. However, none of these algorithms

try to exploit the structural properties of the network. Most of the algorithms

in wireless sensor networks literature find a path to the target node either by
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Figure 3.3. Broadcasting in a complex network. Node 4 broadcasts the message to all
the neighbors and then all the neighbors do the same. The broadcasted edges are shown
as dotted lines. In figure we show only one of the node 4’s neighbor 13 broadcasting for
clarity. We clearly see that this search algorithm is inefficient.
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Figure 3.4. Implosion in classical flooding. In this network, node 1 starts broadcasting
the message to all its neighbors. Then, in classical flooding node 2 and node 3 sends the
message to all its neighbors except to node 1. Hence, two copies of the same data have
been received to node 4.
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broadcasting or random walk and then concentrate on efficient routing of the data

from start node to the end node [10, 86]. As we will see in next two chapters,

the properties of the networks have significant effect on the search process. Hence,

the algorithms in wireless sensor networks literature could be integrated with the

results obtained from the above two problems for better performance.

Another important application of decentralized search is peer-to-peer networks

such as Gnutella. Gnutella [91] is a decentralized and unstructured peer-to-peer

network used for sharing information between different users. It does not have

any centralized server which will index all the users (represented as nodes) and

files available. Each node is connected to few other nodes and has information

about the files available with the neighbors. If the files are not available with the

neighbors, they are searched by sending a query to the neighboring nodes. In this

network, a user (represented as a node) can join any part of the network in real

time and leave the network at anytime. Hence, Gnutella is an instance of a large-

scale network with uncontrolled dynamics. When a new node joins the network it

brings some amount of network capacity (in terms of files shared) with it. When

it leaves the network, the nodes that are connected to the departing node clean

up the memories to remove the information about the departing node. Currently,

the search queries are broadcasted to all the neighbors, which is inefficient with

respect to the amount of bandwidth consumed. The results from problem 1 would

help in optimal usage of available bandwidth and to decrease congestion in the

network. Similarly, decentralized search algorithms are required in many other

networks where information is distributed and availability is constrained.

In the next chapter, we discuss the methodology for search in non-spatial net-

works and present the findings. In chapter 5, we study the decentralized search

for spatial networks and summarize the findings.
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FOUR

Search in non-spatial networks

We simulated and analyzed many search algorithms to study the complex tradeoffs

presented by efficient local search in weighted complex networks. Among the search

algorithms employed is a novel algorithm based on the local betweenness centrality

(LBC) of nodes. Betweenness centrality (also called load), first developed in the

context of social networks [164], has been recently adapted to optimal transport in

weighted complex networks by Goh et al. [70]. To determine a node’s betweenness

as defined by Goh et al., one would need to have the knowledge of the entire

network. Here we define a local-parameter called local betweenness centrality

(LBC) which only uses information on the first and second neighbors of a node, is

discussed in detail in the next section. Later, we define a search algorithm based

on this local parameter and show that it utilizes both the heterogeneity in node

degree and edge weights to perform the best in large class of networks.

4.1 Local betweenness centrality

We assume that each node in the network has information about its first and second

neighbors. For calculating the LBC of the neighbors of a given node we consider

the local network formed by that node (which we will call the root node), its first

and second neighbors. Then, the betweenness centrality, defined as the fraction of

shortest paths going through a node [122], is calculated for the first neighbors in
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this local network. Let L(i) be the LBC of a neighbor node i in the local network.

Then L(i) is given by

L(i) =
∑

s6=n6=t

s,t ∈ local network

σst(i)

σst

,

where σst is the total number of shortest paths (the path over which the sum of

weights is minimum) from node s to t. σst(i) is the number of these shortest paths

passing through i. If the LBC of a node is high, it implies that this node is central

in the local network. Intuitively, we can see that the LBC of a neighbor depends

on both its degree and the weight of the edge connecting it to the root node. For

example, let us consider the networks in figure 4.1(a) and figure 4.1(b). Suppose

that these are the local networks of node 1. In the network in Figure 1(a), node

2 has the highest degree among the neighbors of node 1 (i.e. nodes 2, 3, 4 and

5). All the shortest paths from the neighbors of node 2 (6, 7, 8 and 9) to other

nodes have to pass through node 2. Hence, we see that higher degree for a node

definitely helps in obtaining a higher LBC.
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(a) LBC: 2 à 76.0, 3 à 42.0, 4 à 42.0, 5 à 0.0

(b) LBC: 2 à 76.0, 3 à 92.0, 4 à 42.0, 5 à 0.0

Figure 4.1. (a) In this configuration, neighbor node 2 has a higher LBC than other
neighbors 3, 4 and 5. This depicts why higher degree for a node helps in obtaining higher
LBC. (b) However, in this configuration the LBC of the neighbor node 3 is higher than
neighbors 2, 4 and 5. This is due to the fact that the edge connecting 1 and 2 has a
larger weight. These two configurations show that the LBC of a neighbor depends both
on the edge weight and the node degree. In both cases, edge-weights other than those
shown in the figure are 1.

Now consider a similar local network but with a higher weight on the edge from
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2 to 1 as shown in figure 4.1(b). In this network all the shortest paths through

node 2 will also pass through node 3 (2-3-1) instead of going directly from node 2

to node 1. Hence, the LBC of the neighbor node 3 will be higher than neighbor

2. Thus we clearly see that the LBCs of the neighbors of node 1 depend on both

the neighbors’ degrees and the weights on the edges connecting them. Note that a

neighbor having the highest degree or the smallest weight on the edge connecting

it to root node does not necessarily imply that it will have the highest LBC.

4.2 Different search algorithms

In un-weighted scale-free networks, Adamic et. al. [6] have shown that high degree

search is efficient. Thus one expects that in weighted power-law networks, an

efficient search algorithm should consider both the edge weights and node degree.

We investigated the following set of search algorithms given in the order of the

amount of information required..

1. Choose a neighbor randomly : Here, a node tries to reach the target by passing

the message/query to a randomly selected neighbor.

2. Choose the neighbor with smallest edge weight : Here, a node passes the mes-

sage along the edge with minimum weight. The idea behind this algorithm is

that by choosing a neighbor with minimum edge weight the expected distance

traveled would be less.

3. Choose the best-connected neighbor : Here a node passes the message to the

neighbor which has the highest degree. The idea here is that by choosing

a neighbor which is well-connected, there is a higher probability of reaching

the target node. Note that this algorithm takes the least number of hops to

reach the target [6].

4. Choose the neighbor with the smallest average weight : Here a node passes

the message to the neighbor which has the smallest average weight. The

average weight of a node is the average weight of the edges incident on that

node. The idea here is similar to the second algorithm. Instead of passing
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the message greedily along the least weighted edge, the algorithm passes to

the node that has the minimum average weight.

5. Choose the neighbor with the highest LBC : Here a node passes the message

to the neighbor which has the highest LBC. A neighbor with highest LBC

would imply that many shortest paths in the local network pass through this

neighbor and the node is central in the local network. Thus, by passing the

message to this neighbor, the probability of reaching the target node quicker

is higher.

Note that the algorithm which depends on LBC utilizes slightly more informa-

tion than algorithm 4, namely the edge weights between second neighbors, but it is

considerably more informative, it reflects the heterogeneities in both edge weights

and node degree. Thus we expect that this search will perform better than the

others, that is, it will give smaller path lengths than the others.

4.3 Simulation and Analysis

Simulations on a random network with a Poisson and power-law degree distribu-

tions were used for comparing the search algorithms. For homogeneous networks

we used Poisson random network model given by Erdos-Renyi [60]. We considered

a network on N nodes where two nodes are connected with a connection probabil-

ity p. For power-law networks, we considered different values of degree exponent

τ ranging from 2.0 to 3.0 and a degree range of 2 < k < m ∼ N1/τ and generated

the network using the method given by Newman [117]. Once the network was

generated, we extracted the largest connected component, shown to always exist

for 2 < τ < 3.48 [8] and in ER networks for p > 1
N

[36]. We did our analysis

on this largest connected component that contains the majority of the nodes after

verifying that the degree distribution of this largest connected component is nearly

the same as in the original graph. The weights on the edges were generated from

different distributions like Beta, uniform, exponential and power-law. We consid-

ered these distributions in the increasing order of their variances to understand

how the heterogeneity in edge weights affects different search algorithms.
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Further, we randomly chose K pairs (source and target) of nodes. The source,

and consecutively each node receiving the message, sends the message to one of

its neighbor depending on the search algorithm. The search continues until the

message reaches the node whose neighbor is the target node. In order to avoid

passing the message to a neighbor that has already received it, a list li of all the

neighbors that received the message is maintained at each node i. During the

search process, if node i passes the message to its neighbor j, which does not have

any more neighbors that are not in the list lj, then the message is routed back to

the node i. This particular neighbor j is marked to note that this node cannot

pass the message any further. The average path distance was calculated for each

algorithm from the paths obtained for these K pairs. We repeated this simulation

for 10 to 50 instances of the Poisson and power-law networks depending on the

size of the network.

For the initial step, we used ER random graphs to compare different search

algorithms. The weights on the edges were generated from an exponential dis-

tribution with mean 5 and variance 25. Table 4.1 compares the performance of

each algorithm for the networks of size 500, 1000, 1500 and 2000 nodes. We took

the connection probability to be p = .004 and hence a giant connected component

always exists [36]. From Table 4.1, it is evident that the algorithm which passes

the message to the neighbor with the least edge weight is better than all the other

algorithms in homogeneous networks. Remarkably, an algorithm that needs less

information than other algorithms (3, 4 and 5), performed best, while high degree

search and LBC did not perform well since the network is highly homogenous in

node degree.

However, if we decrease the heterogeneity in edge weights (use a distribution

with lesser variance), we observe that high LBC search performs best (see the col-

umn with Beta distribution in the Table 4.2). In conclusion, when the heterogene-

ity of edge weights is high compared to the relative homogeneity of node degrees,

the search algorithms which are purely based on edge weights would perform bet-

ter. However, as the heterogeneity of the edge weights decrease the importance of

edge weights decreases and algorithms which consider both edge weights and node

degree perform better.

Next we investigated the algorithms on power-law networks. Figure 4.2 shows
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Table 4.1. Comparison of search algorithms in a Poisson random network. The edge
weights were generated randomly from an exponential distribution with mean 5 and
variance 25. The values in the table are the average path distances obtained for each
search algorithm in these networks. The algorithm which passes the message to the
neighbor with the least edge weight performs the best.

Search algorithm 500 nodes 1000 nodes 1500 nodes 2000 nodes

Random walk 1256.3 2507.4 3814.9 5069.5
Minimum edge weight 597.6 1155.7 1815.5 2411.2
Highest degree 979.7 1923.0 2989.2 3996.2
Minimum average node weight 832.1 1652.7 2540.5 3368.6
Highest LBC 864.7 1800.7 2825.3 3820.9

Table 4.2. Comparison of search algorithms in a Poisson random network with 2000
nodes. The table gives results for different edge weight distributions. The mean for all the
distributions is 5 and variance is σ2. The values in the table are the average path lengths
obtained for each search algorithm in these networks. When the weight heterogeneity
is high, the minimum edge weight search algorithm was the best. However, when the
heterogeneity of edge weights is low, then LBC performs better.

Beta Uniform Exp. Power-law
Search algorithm σ2 = 2.3 σ2 = 8.3 σ2 = 25 σ2 = 4653.8
Random walk 1271.91 1284.9 1253.68 1479.32
Minimum edge weight 1017.74 767.405 577.83 562.39
Highest degree 994.64 1014.05 961.5 1182.18
Minimum average node weight 1124.48 954.295 826.325 732.93
Highest LBC 980.65 968.775 900.365 908.48

the scaling of different algorithms for power-law networks with exponent 2.1.

As conjectured, the search algorithm that uses the information about both the

edge weights and nodes’ degrees (the high LBC search) performed better than the

others. A similar phenomenon was observed for different exponents of the power-

law network (see Table 4.3). Except for the power-law exponent 2.9, the high LBC

search was consistently better than others.

We observe that as the heterogeneity in the node degree decreases (i.e. as

power-law exponent increases), the difference between the high LBC search and

other algorithms decreases. When the exponent is 2.9, the performance of LBC,

minimum edge weight and high degree searches were almost the same. Note that
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Figure 4.2. Scaling for search algorithms in power-law networks with exponent 2.1. The
edge weights are generated from an exponential distribution with mean 10 and variance
100. The symbols represent random walk (◦) and search algorithms based on minimum
edge weight (�), high degree (⋄), minimum average node weight (△) and high LBC (∗).

Table 4.3. Comparison of search algorithms in power-law network on 2000 nodes with
different power-law exponents. The edge weights are generated from an exponential
distribution with mean 5 and variance 25. The values in the table are the average path
lengths obtained for each search algorithm in these networks. LBC search, which reflects
both the heterogeneities in edge weights and node degree, performed the best for all
power-law exponents. The systematic increase in all path lengths with the increase of
the power-law exponent τ is due to the fact that the average degree of the network
decreases with τ .

power-law exponent = 2.1 2.3 2.5 2.7 2.9
Search algorithm
Random walk 1108.70 1760.58 2713.11 3894.91 4769.75
Minimum edge weight 318.95 745.41 1539.23 2732.01 3789.56
Highest degree 375.83 761.45 1519.74 2693.62 3739.61
Minimum average node weight 605.41 1065.34 1870.43 3042.27 3936.03
Highest LBC 298.06 707.25 1490.48 2667.74 3751.53
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when the network becomes homogeneous in node degree the minimum edge weight

search performed better than high LBC search (Table 4.1). This implies that

similar to high degree search [6], the effectiveness of high LBC search also depends

on the heterogeneity in node degree.

Table 4.4 shows the performance of all the algorithms on a power-law network

(exponent 2.1) with different edge weight distributions. The percentage values in

the brackets show by how much the average distance for that search is higher than

the average distance obtained by the high LBC search. As in random graphs,

we observe that the impact of edge weights on search algorithms increases as the

heterogeneity of the edge weights increase. For instance, when the variance (het-

erogeneity) of edge weights is small, high degree search is better than the minimum

edge weight search. On the other hand, when the variance (heterogeneity) of edge-

weights is high, the minimum edge weight algorithm is better than high degree

search. A. In each case, the high LBC search which considers both edge weights

and node degree always out-performed the other algorithms. Thus, it is clear that

in power-law networks, irrespective of the edge weight distribution and the power-

law exponent, high LBC search always performs better than the other algorithms

(Tables 4.3 and 4.4). Also, note that the minimum average node weight algorithm

uses only slightly less information than LBC search. However, LBC search con-

sistently and significantly outperforms it (see tables 4.1, 4.2, 4.3, and 4.4). This

implies that LBC search uses the information correctly.

4.3.1 Comparison of high degree search and high LBC search

Figure 4.3 gives a pictorial comparison of the behavior of high degree and high

LBC search as the heterogeneity of the edge weights increase (based on the results

shown in Table 4.4). Further, figure 4.4 plots the scaling of the high degree and

high LBC algorithms with network size for different heterogeneities in edge-weights.

We notice that the scaling of high-degree search is same irrespective of the edge-

weight distribution. Whereas, the scaling of LBC search decreases as the the

heterogeneity in edge-weight increases. This implies that when the heterogeneity

in edge-weights is high, the LBC search utilizes low weight edges for navigation.

Since many studies [17, 18, 28, 29, 30, 38, 57, 65, 70, 72, 76, 89, 100, 105, 106, 120,
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Table 4.4. Comparison of different search algorithms in power-law networks with ex-
ponent 2.1 and 2000 nodes with different edge weight distributions. The mean for all
the edge weight distributions is 5 and the variance is σ2. The values in the table are
the average distances obtained for each search algorithm in these networks. The values
in the brackets show the relative difference between average distance for each algorithm
with respect to the average distance obtained by the LBC algorithm. LBC search, which
reflects both the heterogeneities in edge weights and node degree, performed the best for
all edge weight distributions.

Beta Uniform Exp. Power-law
Search algorithm σ2 = 2.3 σ2 = 8.3 σ2 = 25 σ2 = 4653.8

Random walk
1107.71 1097.72 1108.70 1011.21
(202%) (241%) (272%) (344%)

Minimum edge weight
704.47 414.71 318.95 358.54
(92%) (29%) (7%) (44%)

Highest degree
379.98 368.43 375.83 466.18
(4%) (14%) (26%) (59%)

Minimum average node weight
1228.68 788.15 605.41 466.18
(235%) (145%) (103%) (88%)

Highest LBC 366.26 322.30 298.06 247.77

126, 129, 137, 139, 174], have shown that there exists large heterogeneity in the

capacity and strengths of the interconnections in the real networks, it is important

that local search is based on LBC rather than high degree as shown by Adamic et.

al. [6].

Note that LBC has been adopted from the definition of betweenness centrality

(BC) which requires the global knowledge of the network. BC is defined as the

fraction of shortest paths among all nodes in the network that pass through a

given node and measures how central the node is for optimal transport in complex

networks In un-weighted scale-free networks there exists a scaling relation between

node betweenness centrality and degree, BC kη[69]. This implies that the higher

the degree, the higher is the BC of the node. This may be the reason why high

degree search is optimal in un-weighted scale-free networks (as shown by Adamic

et al [6]). However, Goh et. al. [70] have shown that no scaling relation exists

between node degree and betweenness centrality in weighted complex networks. It

will be interesting to assess the relationship between local and global betweenness

centrality in our future work.
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Figure 4.3. The pictorial comparison of the behavior of high degree and high LBC
search as the heterogeneity of edge weights increases in power-law networks. Note that
average distances are normalized with respect to high LBC search.

4.3.2 LBC on un-weighted networks

In this section, we demonstrate that the neighbor with the highest LBC is same

as the neighbor with the highest degree in un-weighted networks. Hence, high

LBC search would be same as high degree search in un-weighted networks. In

un-weighted networks, there is a scaling relation between the BC of a node and

its degree, as BC ∼ kη [69]. However, this does not imply that in an un-weighted

local network the neighbor with highest LBC is the same as the neighbor with the

highest degree. Here we show that in most cases the highest degree and the highest

LBC neighbors coincide. First, let us consider a tree-like local network without

any loops similar to the network configuration shown in figure 4.5(a).

In a local network, there are three types of nodes, namely, root node, first

neighbors and second neighbors. Let the degree of the root node be d and the

degree of the neighbors be k1, k2, k3...kd. The number of nodes (n) in the local

network is n = 1 +
∑d

j=1 kj (one root node, d first neighbors and
∑d

j=1(kj − 1)

second neighbors). In a tree network there is a single shortest path between any

pair of nodes s and t, thus σst(i) is either zero or one. Then the LBC of a first
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Figure 4.4. Scaling of high degree and high LBC search with network size for different
heterogeneities in edge weights. The filled symbols represent LBC search for different
edge weight distributions, namely, beta (�), uniform (�), exponential (N), and power-
law (•). The unfilled symbols represent high degree search for beta (∗), uniform (◦),
exponential (+), and power-law (⋄). Notice that the scaling of high-degree search is
same irrespective of the edge-weight distribution. Whereas, the scaling of LBC search
decreases as the the heterogeneity in edge-weight increases. This implies that when
the heterogeneity in edge-weights is high, the LBC search utilizes low weight edges for
navigation.

neighbor i is given by

L(i) = (ki − 1)(n − 2) + (ki − 1)(n − ki),

where ki is the degree of the neighbor. The first term is due to the shortest paths

from ki − 1 neighbors (j) of node i to n − 2 remaining nodes (other than node i

and the neighbor j) in the network. The second term is due to the shortest paths

from n − ki nodes (other than ki − 1 neighbors and node i) to ki − 1 neighbors of

node i. Note that we chose not to explicitly take into account of the symmetry of

distance in undirected networks and count the s-t and t-s paths separately. L(i)

is an increasing function if ki < n − 1
2
, a condition that is always satisfied since

n = 1+
∑d

j=1 kj . This implies that in a local network with tree-like structure, the
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Figure 4.5. (a) A configuration of a local network with a tree like structure. In such
local networks, the neighbor with the highest degree has the highest LBC. (b) A local
network with an edge between two first neighbors. Here again the neighbor with the
highest degree has the highest LBC. (c) A local network with an edge between a first
neighbor and a second neighbor. Although there is change in LBCs of neighbors, the
order remains the same.

neighbor with highest degree has the highest LBC. We extend the above result for

other configurations of the local network by considering different possible cases.

The possible edges other than the edges present in a tree-like local network

are an edge between two first neighbors, an edge between a first neighbor and a

second neighbor and an edge between two second neighbors. We show that adding

any of these two types of edges to a local network with a tree-like structure will

not affect the rank order of the neighbors’ LBCs. As shown in figure 4.5(b), an

edge among two first neighbors changes the LBC of the root node but not that
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of the neighbors. Figure 4.5(c) shows a configuration of a local network with an

edge added between a first and a second neighbor. Now, there is a small change

in the LBCs of the neighbors (nodes 2 and 3) which are connected to a common

second neighbor (node 9). Since node 9 is now shared by neighbors 2 and 3, the

LBC contributed by node 9 is divided between these two neighbors. The LBC of

such a neighbor i is

L(i) = (ki − 2)(n − 2) + (ki − 2)(n − ki) + (n − kj − 1),

where ki is the degree of the neighbor i and kj is the degree of the neighbor with

which node i has a common second neighbor.. The decrease in the LBC of neighbor

i is (n − ki + kj − 1). If there are two neighbors with the same degree (one with

a common second neighbor and another without any) then the neighbor without

any common second neighbors will have higher LBC. Another possible change of

order with respect to LBC would be with a neighbor l of degree kl = ki − 1 (if it

exists). However, L(i) − L(l) = (n − ki − kj + 1) is always greater than 0, since

n = 1 +
∑d

j=1 kj. Thus the only scenario under which the order of neighbors with

respect to LBC is different than their order with respect to degree when adding an

edge between first and second neighbors is if that creates two first neighbors with

the same degree. A similar argument leads to an identical conclusion in the case

of adding an edge between two second neighbors as well.

The above discussion suggests that the highest degree neighbor is always the

same as the highest LBC neighbor. This is not true in few peculiar instances

of local networks. For example, consider the network shown in figure 4.6 which

has several edges between the first and second neighbors. We see that the highest

degree neighbor is not the same as the highest LBC neighbor. In this local network,

the highest degree first neighbor (node 2), participates in several four-node circuits

that include the root node. Thus, there are multiple shortest paths starting from

second-neighbor nodes on these cycles (nodes 6, 7, 9, 10) and the contributions

to node 2’s LBC from the paths that pass through it are smaller than unity,

consequently the LBC of node 2 will be relatively small. This may be one of the

reasons why the highest-degree neighbor node 2 is not the highest LBC neighbor.

We feel that this happens only in some special instances of local networks. From
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Figure 4.6. An instance of a local network where the order of neighbors with respect
to LBC is not same as the order with respect to node degree.

about 50,000 simulations across different types of power-law networks we found

that in 99.63 % of cases the highest degree neighbor is the same as the highest

LBC neighbor. Hence, we can conclude that in un-weighted networks the neighbor

with highest LBC is usually identical to the neighbor with the highest degree.

4.3.3 Optimal neighborhood length for LBC search

In this section, we investigate the effect on the performance of the LBC search,

of computing the most central neighbor (Highest LBC neighbor) within a larger

local neighborhood. Previously, we calculated the highest LBC neighbor in the

local network of neighborhood length 2 (i.e. in the local network consisting of

first neighbors and second neighbors). Intuitively, one may feel that if we com-

pute the most central in a larger neighborhood, the performance of the search

algorithm may improve. Figure 4.7 shows the local networks formed for different

neighborhood lengths. If we consider the whole network for computing the LBC
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Figure 4.7. Illustration of a network with neighborhood depths of different length. The
inner most circle consists of the local network of neighborhood depth 1. Similarly, the
next circles show the local networks of depth 2 and 3 respectively. The network in the
outer most circle is whole network used for calculating the BC of neighbors.

then it would be same as BC, which gives most central neighbor with respect to

the global information of the network. We simulated the LBC search algorithm

for different neighborhood lengths and denote it as high LBCi search, where i is

the neighborhood length. If we consider the whole network for calculating the

most central neighbor then we call it as high BC search. Table 4.5 compares the

results obtained for LBC search with different neighborhood lengths. We observe

that LBC1 performs similar to the random walk search. This is not surprising

because if we consider the local network of neighborhood 1, the LBC value for

all the neighbors is the same and hence one of the neighbors is chosen randomly.

Surprisingly, on the other hand, we notice that the performance of LBC2, LBC3,

and BC is similar. This implies that LBC2 search tends to choose the highest BC

neighbor even though it is computed using the local network with neighborhood

length of 2. This observation strengthens our claim in section 4.3.1 that there ex-

ists a positive scaling relationship between local and global betweenness centrality.

Further, it demonstrates that LBC search performs as well as BC based search

which considers the maximum information available about a nodes first neighbors.
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Table 4.5. Comparison of different search algorithms in power-law networks of size
1000 nodes for different edge weight distributions. The mean for all the edge weight
distributions is 5 and the variance is σ2. LBCi denotes the LBC search algorithm with
highest LBC neighbor calculated based on the local networks of depth i. The BC search
sends the message to the most central (highest BC) neighbor. The values in the table are
the average distances obtained for each search algorithm in these networks. We observe
that LBC1 performs similar to the random walk search. On the other hand, we notice
that the performance of LBC2, LBC3, and BC is similar.

Beta Uniform Exp. Power-law
Search algorithm σ2 = 2.3 σ2 = 8.3 σ2 = 25 σ2 = 4653.8
Random walk 732.8 726.2 725.5 747.7
LBC1 722.5 688.2 666.1 608.2
LBC2 275.5 247.4 231.6 195.4
LBC3 269.7 243.4 228.1 188.0
BC 269.6 240.6 228.9 196.1

4.4 Search in Gnutella

As discussed earlier in section 3.4, Gnutella is a decentralized and unstructured

peer-to-peer network used for sharing information between different users. It does

not have any centralized server which will index all the users (represented as nodes)

and files available. Each node is connected to few other nodes and has information

about the files available with the neighbors. If the files are not available with

the neighbors, they are searched by sending a query to the neighboring nodes.

We obtained the data of Gnutella from Lada Adamic [6] which consists of 574

nodes and 832 edges. The degree distribution of the network follows a power-law

p(k) ∼ k−γ with exponent γ = 2.4 ± 0.1 (see figure 4.8). We use this network

to investigate the performance of the search algorithms on a real-world network.

However, the information regarding the edge-weights of the Gnutella network is not

available. Hence, we again generate the edge-weights from different distributions

like Beta, uniform, exponential and power-law.

Table 4.6 compares the performance of the search algorithms on Gnutella with

different edge-weight distributions. Surprisingly, we notice that minimum edge

weight algorithm performs the best except for Beta distribution. The performance

of high degree search is similar to LBC search. However, if we simulate the search

algorithms on a random network with same numbers of nodes, edges, and power-
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Figure 4.8. Cumulative degree distribution of the Gnutella network. It follows a power-
law with exponent 2.4.

law exponent, we find that LBC search performs the best (see table 4.7). It is not

clear why the results obtained for Gnutella are not consistent with the simulation

results. The root cause must be a network feature not incorporated in the degree

distribution, probably related to degree-degree correlations or the over-expression

of network motifs. Further discussion of this unexpected behavior is detailed in

the section on future work.
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Table 4.6. Comparison of different search algorithms in the Gnutella network of size
574 with different edge weight distributions. The mean for all the edge weight distri-
butions is 5 and the variance is σ2. The values in the table are the average distances
obtained for each search algorithm in these networks. The values in the brackets show
the relative difference between average distance for each algorithm with respect to the
average distance obtained by the LBC algorithm. Unlike the power-law random net-
works, the difference between the LBC search and high degree search is not substantial.
Also, surprisingly minimum edge weight search performed well, especially for power-law
edge weight distributions

Beta Uniform Exp. Power-law
Search algorithm σ2 = 2.3 σ2 = 8.3 σ2 = 25 σ2 = 4653.8

Random walk
825.79 836.90 816.81 821.92
(40%) (38%) (43%) (46%)

Minimum edge weight
707.38 601.38 543.83 507.81
(20%) (-1%) (-5%) (-10%)

Highest degree
614.73 624.26 604.23 583.67
(4%) (3%) (6%) (4%)

Minimum average node weight
803.00 674.05 588.35 531.71
(36%) (11%) (3%) (-5%)

Highest LBC 590.95 605.13 571.73 561.79

Table 4.7. Comparison of different search algorithms in power-law networks with expo-
nent, number of nodes, and number of edges same as Gnutella network for different edge
weight distributions. The mean for all the edge weight distributions is 5 and the variance
is σ2. The values in the table are the average distances obtained for each search algo-
rithm in these networks. The values in the brackets show the relative difference between
average distance for each algorithm with respect to the average distance obtained by the
LBC algorithm. LBC search, which reflects both the heterogeneities in edge weights and
node degree, performed the best for all edge weight distributions.

Beta Uniform Exp. Power-law
Search algorithm σ2 = 2.3 σ2 = 8.3 σ2 = 25 σ2 = 4653.8

Random walk
511.87 514.80 507.30 324.14
(110%) (136%) (139%) (348%)

Minimum edge weight
396.43 286.73 243.33 99.85
(63%) (32%) (15%) (38%)

Highest degree
245.61 234.91 236.42 90.11
(1%) (8%) (11%) (24%)

Minimum average node weight
535.19 408.03 335.99 137.17
(120%) (87%) (58%) (89%)

Highest LBC 243.67 217.75 212.16 72.41



CHAPTER

FIVE

Search in spatial networks

In this chapter, we study the decentralized search problem in a family of param-

eterized spatial network models that are heterogenous in node degree. We inves-

tigate several algorithms and illustrate that some of these algorithms exploit the

heterogeneity in the network to find short paths by using only local information.

In addition, we demonstrate that the spatial network model belongs to a class of

searchable networks for a wide range of parameter space. Further in section 5.3, we

test these algorithms on the U.S. airline network which belongs to this class of net-

works and demonstrate that searchability is a generic property of the U.S. airline

network. These results provide insights on designing the structure of distributed

networks that need effective decentralized search algorithms.

5.1 Decentralized algorithms

A simple search algorithm in spatial networks is greedy search, where each node

passes the message to the neighbor closest to the target node. Let di be the distance

to the target node from each neighbor i (see figure 5.1(a)) and let ki be the degree of

the neighbor i. Greedy search chooses the neighbor with the smallest di. This will

ensure that the message is always going to the neighbor closest to the target node.

However, greedy search may not be optimal in spatial scale-free networks that

have high heterogeneity in node degree. Adamic et al. [6] and Thadakamalla et al.
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Figure 5.1. (a) Illustration of a spatial network. di is the distance to the target
node from each neighbor i and ki is the degree of the neighbor i. (b) Illustration for
demonstrating that sometimes it is better to choose a neighbor with higher degree i.e.,
node 2 over node 1, even if we are going away from the target. This will give higher
probability of taking a longer step in the next iteration.

[156] have shown that search algorithms that utilize the heterogeneities present in

the network perform substantially better than those that do not. Indeed, choosing

a neighbor with higher degree, even by going away from the target node, gives

a higher probability of taking a longer step in the next iteration. For instance,

in figure 5.1(b), it is better to choose node 2 instead of node 1 since node 2 can

take a longer step towards the target node in the next iteration. In the following

paragraph, we show that the expected distance a neighbor can take in the next

iteration is a strictly increasing function of its degree.

We define the length of an edge as the Euclidian distance between the two nodes

connected by the edge. Let P (X) be the probability distribution of edge lengths.

Let Yk = Max{X1, X2, X3, · · · , Xk}, where X1, X2, X3, · · · , Xk are independent

and identically distributed (i.i.d.) random variables with distribution function
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P (X). The cumulative distribution function of Yk is

P [Yk ≤ y] =
k

∏

i=1

P [Xi ≤ y] = [P (X1 ≤ y)]k

This implies

E(Yk) =

∫ ∞

0

(1 − [P (X1 ≤ y)]k)dy.

Since P (X1 ≤ y) ≤ 1 ∀y,

[P (X1 ≤ y)]k1 ≤ [P (X1 ≤ y)]k2 if k1 ≥ k2,

implying that

E(Yk1
) ≤ E(Yk2

) ∀y if k1 ≤ k2

Similarly, we can show that if P (X) is not a delta function then

E(Yk1
) < E(Yk2

) if k1 < k2.

Now consider two neighbors n1 and n2 with degree k1 and k2. The expected

distance the neighbors n1 and n2 can take in the next iteration irrespective of

the direction is given by E[Yk1−1] and E[Yk2−1] respectively. This implies that

E[Yk1−1] > E[Yk2−1] if k1 > k2. Here, we approximate that X1, X2, X3, · · · , Xk

are independent which is valid when the number of edges is large. Hence, if we

choose a neighbor with higher degree then there is a greater probability of taking

a longer step in the next iteration. Thus one expects that in spatial scale-free

networks the efficient algorithm should combine the direction of travel, quantified

by di, and the degree of the neighbor, ki, into one measure. Since the units of di

and ki are different, there is no trivial way of composition that is optimal. The

aim of the measure is to choose a neighbor with smaller di and larger ki with an

intuition that a higher degree node should effectively decrease the distance from

the target – a goal which can be achieved in many different ways. One could give

an incentive g(ki), and then subtract it from the distance di; one could also divide

di either by ki or by any increasing function of ki. We investigated the following

search algorithms, which cover a broad spectrum of possibilities:
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1. Random walk : The node attempts to reach the target by passing the message

to a randomly selected neighbor.

2. High degree search: The node passes the message to the neighbor with the

highest degree. The idea here is that by choosing a neighbor that is well-

connected, there is a higher probability of reaching the target node. Note

that this algorithm requires the fewest number of hops to reach the target in

non-spatial networks [6].

3. Greedy search: The node passes the message to the neighbor i with the

smallest di. This will ensure that the message is always going to the neighbor

closest to the target node.

4. Algorithm 4 : The node passes the message to the neighbor i with the smallest

measure di−g(ki). The function g(ki) is an incentive for choosing a neighbor

of higher degree. Ideally, g(ki) should be the expected maximum length of

an edge from a node with degree ki.

5. Algorithm 5 : The node passes the message to the neighbor i that has the

smallest measure ( di

dm
)ki, where dm is the Euclidian distance between the

most spatially distant nodes in the network, and is used for normalizing di.

We assume that dm is known to all the nodes in the network. Note that the

algorithm prefers the neighbor that has lower di and higher ki.

6. Algorithm 6 : The node passes the message to the neighbor i that has the

smallest measure di

ki
. Here, again, the algorithm prefers the neighbor that

has lower di and higher ki.

7. Algorithm 7 : The node passes the message to the neighbor i that has the

smallest measure ( di

dm
)lnki+1. This is a conservative version of algorithm 5

with respect to ki.

8. Algorithm 8 : The node passes the message to the neighbor i that has the

smallest measure di

lnki+1
. This algorithm is weaker version of algorithm 6 with

respect to ki.
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Algorithms from 4 to 8 aim to capture both the direction of travel and the

neighbors’ degree. Thus, we expect these algorithms to give smaller path lengths

than other algorithms. In case of algorithm 4, it would be extremely difficult to

define a function independent of the parameters of the network. Hence, it may

not be realistic to use this form of composition for direction of travel and degree

of neighbor. Even greedy search has a slight preference for high degree nodes,

since the probability of reaching a node with degree k is ∼ kpk [125], where pk

is the fraction of nodes with degree k. Hence, the proposed algorithms have to

be extremely competitive to perform better than greedy search. The algorithms

described above are mainly based on intuition. However, as we discuss later in this

chapter, the successful strategies are not restricted to these functional forms.

5.2 Spatial network models: Simulation and Anal-

ysis

We investigate the search algorithms by simulating them on the networks generated

by the spatial network model detailed in chapter 3. The network is generated

on a two dimensional grid with length a = 1000, breadth b = 500, and m =

1 for different values of N , p, and different functions F . Once the network is

formed, we randomly choose K pairs (source and target) of nodes and simulate the

search algorithms. The source, and consecutively each node receiving the message,

passes the message to one of its neighbors, according to the search algorithm. For

algorithm 4, we assume the incentive function g(ki) to be the expected maximum

distance a node with degree ki can take for the next hop, that is, the expected

maximum length of an edge from a node with degree ki. Empirically we found

that this function follows the form c1 ∗ ln ki + c2 for all the spatial networks. For

algorithms 5 and 7, we let dm be
√

a2 + b2, the largest distance between two points

in the considered space. We assume that it is sufficient if the message reaches a

small neighborhood of the target node defined by a circle with radius D. This is

a realistic assumption in many real-world networks, e.g. it is sufficient if we reach

one of the airports in the close neighborhood of a destination city (especially when

the city has multiple airports). The search process continues until the message
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reaches a neighbor of the target node or a node within a circle of radius D = 50

centered around the target node. In order to avoid passing the message to a

neighbor that has already received the message, a list L is maintained. During the

search process, if the message reaches a node i whose neighbors are all in the list

L, then the message is passed to one of the neighbors using the same algorithm.

In the case of random walk or high degree search, the message is routed back to

the previous node and this particular neighbor i is marked to note that it cannot

pass the message any further. If the number of hops exceeds N/2, then the search

process stops, noting that the path was not found. For each search algorithm, the

average path length, l, measured as the number of edges in the path, the average

physical distance traveled along the path, dpath, and the percentage of times the

search algorithm is unable to find a path, c, are computed from the search results

obtained for K pairs in 10 instances of the network model. The lower the value

of l, dpath and c, the better the performance of the search algorithm. We use

the shortest average path length and average physical distance obtained by global

breadth-first-search (BFS) algorithm and Dijkstra’s algorithm [48] respectively, as

a benchmark for comparing the performance of the search algorithms.

Table 5.1 compares the performance of different search algorithms for the spa-

tial network, G(1000, 0.72, 1, dr, 2) with r = 1, 2, and 3. We find that the de-

centralized search algorithms 5, 6, 7, and 8 perform as well as the shortest path

obtained using global information of the network. Specifically, the difference be-

tween the shortest path and the path obtained by algorithms 6 and 7 is less than a

hop. These results are surprising because the latter algorithms only use the local

information in the network, yet they perform as well as the BFS algorithm. This

behavior is mainly due to the power-law nature of the spatial network: the few

nodes with high degree are allowing the algorithms to make big jumps during the

search process (see Table 5.1). This conclusion is corroborated by the fact that an

increase in r, meaning a decrease in the power-law regime in the degree distribution

[31], induces an increase in the path length. Greedy search which uses only the

direction of travel is able to find short paths (compare l’s in Table 5.1) but for a

few node pairs it is unable to find a path (compare c’s in Table 5.1). Greedy search

does not consider the degree of the nodes and sometimes the algorithm gets stuck

in a loop in sparsely connected regions of the network. In the case of algorithm
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4, the composition was not very effective. It is likely that the values of the coef-

ficients, which are difficult to compute, were not optimal. Moreover, the optimal

values are highly dependent on the parameters and the configuration of the spatial

network. Hence, it would be difficult to generalize the algorithm for all networks

and we will not consider it further in our analysis. Random-walk and high-degree

search do not consider the direction of travel and hence take an exorbitantly large

number of hops. Further, we found that the search algorithms’ performance with

respect to the path length l and physical distance metric dpath was similar. Hence,

in the rest of our analysis, we do not discuss these two algorithms and the physical

distance metric since the results do not add significant new information.
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Table 5.1. Comparison of search algorithms on a spatial scale-free network of 1000 nodes in a two dimensional space with length
and breadth equal to 1000 and 500, respectively. l is the average path length for the paths found by the search algorithm, dpath

is the average physical distance for the paths found by each search algorithm and c is the percentage number of times the path
was not found. The table summarizes the average of l, dpath and c obtained from 10 simulations of the network with parameters
p = 0.72 and r for 2000 pairs. Note that the decentralized algorithms 5, 6, 7, and 8 perform as well as the shortest paths found by
using global information. Even though the greedy search performs well for the paths found (l and dpath), it is sometimes unable
to find a path (c).

r = 1 r = 2 r = 3
l dpath c (%) l dpath c (%) l dpath c (%)

Random walk 41.68 10957 0 70.47 9414 0 138.07 9024 0
High-degree search 28.35 8032 0 54.85 8805 0 120.15 9848 0
Greedy search 3.37 787 0.17 3.59 600 0.83 4.53 537 2.11
Algorithm 4 10.22 2303 0.12 14.07 1987 0.46 20.08 1806 1.87
Algorithm 5 2.47 646 0 2.97 594 0 4.51 677 0.02
Algorithm 6 2.45 636 0 2.85 565 0 3.73 573 0.02
Algorithm 7 2.54 631 0 2.80 539 0 3.52 527 0.02
Algorithm 8 2.66 646 0 2.87 537 < 0.01 3.54 514 0.07
Shortest path length 2.27 531 NA 2.55 435 NA 3.05 403 NA
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Table 5.2. Comparison of search algorithms on spatial scale-free networks with different parameters. l is the average path
length for the paths found by each search algorithm and c is the percentage number of times the path was not found. The table
summarizes the average of l and c obtained from 10 simulations of the network with parameters N , p, r, and dchar. Note that
the decentralized algorithms 5, 6, 7, and 8 perform as well as the shortest path found by using global information. Even though
the greedy search performs well for the paths found (l), it is sometimes unable to find a path (c).

N = 1000, r = 1 p = 0.72, r = 1 N = 1000, p = 0.72
p = 0.30 p = 0.80 N = 500 N = 1500 dchar = 0.5 dchar = 2.0
l c(%) l c(%) l c(%) l c(%) l c(%) l c(%)

Greedy search 6.55 7.93 2.90 0.09 4.09 0.24 3.10 0.44 3.64 0.18 3.92 0.1
Algorithm 5 3.41 0.02 2.35 0 2.83 0 2.40 0 2.46 0.03 2.55 0
Algorithm 6 3.38 0.04 2.38 0 2.81 0 2.38 0 2.49 0 2.59 0
Algorithm 7 3.59 0.19 2.40 0 2.95 0 2.43 0.01 2.66 0.02 2.78 0
Algorithm 8 4.12 0.73 2.49 < 0.01 3.16 < 0.01 2.54 0 2.79 0.04 3.01 0.01
Shortest path length 2.91 NA 2.16 NA 2.30 NA 2.26 NA 2.23 NA 2.23 NA
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Similar results are obtained for a wide range of parameters for the spatial

network model. Table 5.2 summarizes the results for some of these parameter

values. This parameter space covers a broad range of power-law networks with

different properties. For example, as the value of p changes from 0.3 to 0.8, the

power-law exponent of the degree distribution changes from 2.4 to 1.7 (see figure

5.2(a)), which is the usual range of many real-world networks [14, 33, 56, 122].

Hence we can affirm that the spatial network model belongs to a general class

of searchable networks. Although we have restricted our results to a discussion of

two-dimensional spatial networks, it is easy to verify that these results will be valid

for higher dimensions. Further, a large number of decentralized search algorithms

are efficient. For instance, in algorithm 6 we divide di by ki, whereas in algorithm

8 we divide di by ln ki + 1 which scales logarithmically with ki. Both algorithms

are found to be efficient. This implies that a wide range of functions f(x) that

scale between x and ln x can be used for decentralized search. Hence, we find that

the dependence of the search algorithms on the functional forms is weak and the

searchability of these networks lies in their heterogeneous structure rather than

the functional forms used in the search algorithm.

5.3 Search in the U.S. airline network

Let us consider the U.S. airline network, where nodes are the airports and two

nodes are connected by an edge if there is a direct flight from one airport to

another. In this network, navigating along an edge from one node to another

represents flying from one airport to another. Suppose our objective is to travel

from one place to another using the U.S. airline network. In real life, one can

obtain a choice of itineraries from the closest airport to the departure location

(departure airport) to the closest airport to the destination location (destination

airport) using various sources such as travel agents, airline offices or the World

Wide Web. These sources have global information about the network and one

can choose the itinerary based on different criteria, such as travel fare, number

of stopovers, or total time of travel. Now consider a different scenario – one in

which we do not have access to the global information of the network, and each

airport has only local information. In other words, each airport has information
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about the location of the airports it can fly to and how well these neighboring

airports are connected (their degree). We do know the location of the departure

airport and the destination airport. The objective is to find a path with the

fewest stopovers from the departure airport to the destination. From the departure

airport, and consecutively from each intermediate airport, we choose to fly to one

of its neighbors based on the degree of the neighboring airport, its location and

the location of the destination airport. This process continues until we reach

the destination airport or any other airport within a small neighborhood of the

destination airport. In real life, it is sufficient if we reach one of the airports near

the destination airport. For example, it is sufficient to reach LaGuardia Airport

(LGA), New York City if the objective is to reach John F. Kennedy International

Airport (JFK), New York City. In our study, as a first order approximation we

do not consider the type of airline or travel fare as important parameters. Even

though this method of travel is unrealistic, it provides insights on the performance

of decentralized search algorithms on real world networks.

5.3.1 Properties of the U.S. airline network

The Bureau of Transportation Statistics [2] has a well-documented database on the

departure schedule, number of passengers, flight type etc, for all the flights in the

United States of America. We considered the data collected for the service class

F (scheduled passenger service) flights during the month of January 2006 to form

the U.S. airline network. Each airport is represented as a node and a direct flight

connection from one airport to another is depicted as a directed edge. We filtered

the data to remove the anomalous edges formed due to redirected flights caused

by environmental disturbances or random failures. Further, one would expect to

have a flight from airport A to airport B if there is one from B to A; but for a

small number of instances this was not true. To simplify the analysis, we added

edges to make the network un-directed.

After filtering the data, the airline network had 710 nodes and 3414 edges. The

number of nodes and edges in the largest connected component (LCC) were 690

and 3412 respectively. The rest of the analysis in the chapter considers only the

LCC of the network. Not surprisingly, the properties of the U.S. airline network are
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very similar to the properties of the world wide airline network (WWN) [76]. The

average path length for the airline network, which is the average minimum number

of flights one has to take to go from one airport to any other, is 3.6. The clustering

coefficient, which quantifies local order of the network measured in terms of the

number of triangles (3-cliques) present, is 0.41. Hence, the U.S. airline network is

also a small-world network [169]. The degree distribution of the network follows

a power-law p(k) ∼ k−γ with exponent γ = 1.9 ± 0.1 (see figure 5.2(b)), which

is close to the exponent of the WWN, 2.0 ± 0.1 [76]. Further, as observed in

the WWN, we find that the most connected airports are not necessarily the most

central airports. Figure 5.2(c) plots the normalized betweenness centrality (BC)

of a node i, (bi/ < b >), where < b > is the average BC of the network, versus its

scaled degree ki/ < k >, where < k > is the average degree of the network. The

geopolitical considerations used to explain this phenomenon in the WWN [73] do

not apply to the U.S. airline network, as it belongs to a single country. In fact, this

behavior is due to Alaska which contains a significant percentage of the airports

(255 of 690, close to 34%) yet only a few (around 6) are connected to airports

outside of Alaska. For instance, the BC of Anchorage, Alaska is significantly

higher than its degree (see figure 5.2(c)). If we remove the Alaska airports from

the network, then we observe better correlation between the degree of a node and

its BC (see figure 5.2(d)).

If an area is separated from the U.S. mainland (such as Alaska and Hawaii),

then very few airports connect it to the mainland and it may be difficult for search

algorithms to capture these connections between the mainland and the other areas.

To investigate the effects of this property on the search process, we simulate the

algorithms on three different networks, namely, the U.S. airline network, the U.S.

airline network without Alaska, and the U.S. mainland airline network without

Alaska, Hawaii, Puerto Rico, the U.S. Virgin Islands, and the U.S. Pacific Trust

Territories and Possessions (U.S. mainland network). The latter two networks have

statistical properties similar to those of the U.S. airline network. The U.S. airline

network without Alaska has 459 nodes and 2857 edges with 455 nodes and 2856

edges in the LCC; the U.S. mainland network has 431 nodes and 2729 edges with

427 nodes and 2728 edges in the LCC.
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Figure 5.2. (a) Cumulative degree distribution of the networks generated by the spatial
network model for different values of p. The symbols represent p = 0.3 (•), 0.4 (�), 0.6
(N), and 0.8 (�). The power-law exponent of the network can be tuned by changing the
value of p. (b) Cumulative degree distribution of the U.S. airline network. (c) Scaling of
normalized BC of a node i with its scaled degree for the U.S. airline network. Note that
unlike random graphs, there exists no scaling between BC and degree of the node. (d)
Scaling of normalized BC of a node i with its scaled degree for the U.S. airline network
without Alaska. Note that there is better correlation between BC and degree of the node
when compared with the U.S. airline network.

5.3.2 Search results and analysis

We simulated the search algorithms for all N ∗ (N − 1) pairs in each network,

where N is the number of nodes. The U.S. airline network, the U.S. airline net-

work without Alaska, and the U.S. mainland network had 475410, 206570, and

181902 pairs, respectively. We chose dm to be the largest distance between two

airports in the network and the neighborhood distance D to be 100 miles. Table

5.3 summarizes the results obtained by each search algorithm. l is the average path

length obtained for the paths found by the search algorithm, and c is the number
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of times the search algorithm was unable to find a path. The results are similar

to the results obtained for the spatial scale-free network model. Algorithms 6, 7,

and 8 are able to find paths as short as the paths obtained by the BFS algorithm.

Again, greedy search is able to give short paths when it is able to find paths, but

there were instances in which it was unable to find any path. In the case of the US

airline network without Alaska and the U.S. mainland network, the performance

of the search algorithms is even better, especially for algorithm 5 which did not

perform well for the complete U.S. airline network. Figure 5.3 visualizes the paths

obtained in a characteristic case when greedy search takes a higher number of hops.

Often the greedy search reaches the nodes which are near to the destination node

but are not well-connected. Hence, it results in traveling many hops within that

region before reaching the destination. The proposed search algorithms avoid the

low-connected nodes and reach the destination node in fewer hops.

When we looked at the search results in more detail we found a few more

interesting behaviors. The greedy search and algorithm 5 were unable to find paths

for approximately the same number of pairs in the U.S. airline network (3.54% in

the case of the former and 2.92% for the latter). However, there is a difference in

the type of paths these search algorithms could not find. The paths not found by

greedy search were distributed uniformly for all departure and destination nodes;

the paths not found by algorithm 5 were due predominantly to the 18 airports

in Alaska, which were unreachable, almost regardless of the starting point. It

was interesting to see that even if we start from Anchorage International Airport

(ANC), the most connected airport in Alaska, these airports were not reachable.

This is mainly due to the high affinity of the algorithm 5 for high degree nodes. The

degree of neighbors of ANC which are in Alaska is small compared to the degree

of neighbors on the U.S. mainland. Hence, when we start from an airport, the

algorithm was able to reach Anchorage but afterward selected one of the highly-

connected airports on the U.S. mainland. From that point on, it is difficult to

return to Alaska, since the search algorithm is self-avoiding and since the only

other airport that flies to Alaska, excluding ANC, is Seattle-Tacoma International

Airport (SEA). The U.S. airline network without Alaska and the U.S. mainland

network do not have these constraints, and hence algorithm 5 was able to perform

better.



87

Among the 475410 pairs of source and destination nodes searched, algorithms 6

and 7 could not reach the destination node 752 and 688 times, respectively. Again,

it turns out that the failure to reach the destination was mainly due to a particular

airport, namely, Havre City-County Airport (HVR) in Montana. Similar behavior

was observed for these algorithms in the U.S. airline network without Alaska and

the U.S. mainland network. HVR is a single-degree node that is connected to

Lewistown Airport (LWT), Montana and the only other airport to which LWT

is connected is Billings Logan International Airport (BIL), Montana which is a

well-connected airport. Hence, the only way to reach HVR would be to reach BIL

first and then to fly to LWT. Unfortunately, none of the algorithms, other than the

greedy search, can choose LWT from BIL when the destination is HVR. Here again,

even though the algorithms 5, 6, 7, and 8 are able to reach BIL, they do not choose

LWT as the first choice. Moreover, once they fly out of BIL, they take many hops

to reach BIL again due to the self-avoiding nature of the algorithms. For instance,

when the destination is HVR, algorithms 7 and 8 take, on an average, only 2.5 and

3.44 hops respectively to reach BIL. However, to reach HVR they take around 170

and 102 hops, respectively. The reason why this behavior is not observed for other

single-degree nodes in the U.S. mainland network is that single-degree nodes are

usually connected to high degree nodes. The average degree of the neighbors of

the single-degree nodes was found to be 82.86, which is significantly higher than

the average degree in the network (12.78). In addition, the only airport (LWT)

that flies to HVR (or to a neighborhood of HVR) is not chosen by the only other

airport (BIL) that can fly to LWT.

Table 5.4 gives the percentage of times the path length found by the search

algorithms is the same as the shortest path length. In approximately 90% of the

pairs, the path length found by algorithms 6, 7, and 8 was the same as the shortest

path length. Further, in 97% of the pairs, the path length found was more than the

shortest path by a maximum of two hops. Given that the search algorithms use

only local information these results on the airline networks are quite fascinating.

Note that this behavior is due mainly to the inherent structure of the U.S. airline

network, which can be considered a “searchable network”.
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Figure 5.3. Visualization of the paths obtained in a characteristic case when greedy
search takes a higher number of hops. In this case, the departure airport is State College,
PA (node 1) and the destination airport is Laredo, Texas (node 9). The airline codes
and degrees corresponding to the nodes are: 1, SCE, degree 5; 2, CVG, degree 118; 3,
SAT, degree 29; 4, HRL, degree 6; 5, CRP, degree 5; 6, HOU, degree 31; 7, AUS, degree
34; 8, IAH, degree 118; 9, LRD, degree 2. The path obtained for the greedy search is
1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 and for the algorithms 5, 6, and 7 is 1 →
2 → 8 → 9. Algorithm 8, not shown on the map, takes 4 hops (1 → 2 → 3 → 8 →
9). Often the greedy search reaches the nodes which are near to the destination node
but are not well-connected. Hence, it ends up traveling many hops within that region
before it reaches the destination. Whereas, the proposed search algorithms avoid the
low-connected nodes and reach the destination node in a lesser number of hops.
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Table 5.3. Comparison of search algorithms on the U.S. airline network, the U.S. network without Alaska, and the U.S. mainland
network. l is the average path length for the paths found by the search algorithms and c is the number of times the path was
not found. The table summarizes the average of l and c obtained for all the possible pairs in the network. In the U.S. airline
network, algorithms 6, 7, and 8 give paths close to the shortest path length. In the other two networks, algorithms 5, 6, 7, and 8
give short paths. Here again, the greedy search performs well for the paths found (l) but it is sometimes unable to find a path
(c).

U.S. airline network U.S. network without Alaska U.S. mainland network
(N = 690, Pairs = 475410) (N = 455, Pairs = 206570) (N = 427, Pairs = 181902)

l c l c l c
Greedy search 3.93 16806 (3.54%) 2.83 4015 (1.94%) 2.74 3729 (2.05%)
Algorithm 5 5.53 13870 (2.92%) 3.75 456 (0.22%) 2.85 425 (0.23%)
Algorithm 6 4.01 752 (0.16%) 3.17 454 (0.22%) 2.68 425 (0.23%)
Algorithm 7 3.37 688 (0.14%) 2.68 453 (0.22%) 2.93 1 (<< 0.01%)
Algorithm 8 3.37 41 ( < 0.01%) 2.76 38 (0.02%) 2.75 39 (0.02%)
Shortest path length 3.02 NA 2.39 NA 2.32 NA
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Table 5.4. Comparison of search algorithms on the U.S. airline network, the U.S. network without Alaska, and the U.S. mainland
network. “Diff = 0” is the percentage of pairs for which the path length found by the search algorithms is the same as the shortest
path length. Algorithms 6, 7, and 8 are able find the shortest paths in more than 90% of the pairs. “Diff ≤ 2” is the percentage
of pairs for which the path length found was more than the shortest path by a maximum of two hops. Given that the search
algorithms use only local information, these results on the U.S. airline network are quite fascinating.

U.S. airline network U.S. network without Alaska U.S. mainland network
Diff = 0 (%) Diff ≤ 2 (%) Diff = 0 (%) Diff ≤ 2 (%) Diff = 0 (%) Diff ≤ 2 (%)

Greedy search 66.3 85.8 75.3 92.3 75.8 92.7
Algorithm 5 66.9 72.1 88.2 93.7 90.8 96.0
Algorithm 6 88.8 96.6 90.8 95.6 92.2 96.8
Algorithm 7 91.3 98.0 92.0 97.6 92.4 98.1
Algorithm 8 88.4 97.5 89.5 97.8 89.0 97.6



CHAPTER

SIX

Conclusions and Future work

Complex networks abound today’s world and are continuously evolving. The sheer

size and complexity of these networks pose unique challenges in their design and

analysis. Such unordered networks are so pervasive that there is an immediate need

to develop new analytical approaches. In this thesis, we presented significant find-

ings and developments in recent years that led to a new field of inter-disciplinary

research, Network Science. We discussed how network approaches and optimiza-

tion problems are different in network science than traditional OR algorithms. The

fundamental difference is that due to the size of the network with no pre-specified

order, these are characterized based on macroscopic properties such as degree dis-

tribution and clustering coefficient rather than the individual properties of the

nodes and edges. Importantly, these macroscopic or statistical properties have a

huge influence on the dynamic processes taking place on the network. Therefore,

to optimize a process on a given configuration, it is important to understand the

interactions between the macroscopic properties and the process. This will fur-

ther help in the design of optimal network configurations for various processes. In

this thesis, we mainly focused on search and routing, which is the most important

and prevalent process in many real-world networks. In specific, we concentrated

on search and routing in the network when the available information is limited.

We broadly classified the problem of search as search in non-spatial networks and

search in spatial networks. The conclusions obtained from the study of decentral-
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ized search problem on these two types of networks are summarized below.

6.1 Search and routing in non-spatial networks

For non-spatial networks, we gave a new direction for decentralized search in net-

works with heterogeneous edge weights. We proposed a decentralized search al-

gorithm based on a new local measure called local betweenness centrality. We

studied complex tradeoffs presented by efficient decentralized search and showed

that heterogeneity in edge weights has huge impact on search. Moreover, the im-

pact of edge weights on search strategies increases as the heterogeneity of the edge

weights increase. We also demonstrated that the search strategy based on LBC

utilizes the heterogeneity in both the node degree and edge weight to perform the

best in power-law weighted networks. We observed that the performance of LBC

search is similar to BC search, which utilizes the maximum information about a

neighbor. However, when tested in a peer-to-peer network, Gnutella, the results

were not consistent with the results obtained from simulation. The reasons for

this behavior are not completely clear. Further investigation of this unexpected

behavior is a topic of future work.

Further, we observed that the exponent for the scaling of LBC search with

network size decreases as the heterogeneity in edge weights increase. Whereas,

the exponent for scaling of high degree search remains the same. This implies

that when the heterogeneity in edge-weights is high, the LBC search exploits low

weight edges for navigation. Since many studies [17, 18, 28, 29, 30, 38, 57, 65,

70, 72, 76, 89, 100, 105, 106, 120, 126, 129, 137, 139, 174], have shown that there

exists large heterogeneity in the capacity and strengths of the interconnections in

the real networks, it is important that local search is based on LBC rather than

high degree as shown by Adamic et. al. [6]. Further, we demonstrated that in

unweighted power-law networks, the neighbor with the highest degree is usually the

same as the neighbor with the highest LBC. Hence, our proposed search algorithm

based on LBC is universal and is efficient in a larger class of complex networks.
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6.2 Search and routing in spatial networks

In this thesis, we studied decentralized search in spatial scale-free networks. We

proposed different search algorithms that combine the direction of travel and the

degree of the neighbor and illustrated that some of these algorithms can find short

paths by using the local information alone. We demonstrated that a family of

parameterized spatial network model belongs to a class of searchable networks

for a wide range of parameter space. Further, we tested these algorithms on the

U.S. airline network. Surprisingly, we found that one can travel from one place to

another in fewer than four hops while using only local information. This implies

that searchability is a generic property of the U.S. airline network, as is also the

case for social networks.

In addition, the spatial network model and the airline network are searchable

for a wide range of search algorithms. For example, algorithms 6 and 8 are both

able to find short paths in these networks. Hence, any search algorithm with a

function f(x) that scales between x and ln x should give short paths. Moreover,

the algorithms can be extended to other power-law networks if we can embed the

network in an n-dimensional metric space in which nodes are connected based on

the metric distance. The algorithms are relevant to other networks such as the

Internet and road networks. As demonstrated in [173], the Internet can be de-

scribed by the family of spatial network models considered in this thesis and hence

we expect that these search algorithms can find short paths in the Internet. How-

ever, road networks do not follow a power-law degree distribution. Investigating

the algorithms on the dual form of the road networks, which do exhibit scale-free

properties [90], is a topic of future work.

We notice that algorithm 8, the most conservative with respect to degree, per-

forms the best in the U.S. airline network. This implies that direction plays the

most important role in efficient search, and even slight blending of direction with

degree is sufficient to drastically improve the efficiency of search algorithms. In

other words, a search algorithm which traverses based on direction and that cau-

tiously avoids low-degree nodes should give short paths. As observed with algo-

rithm 5, sometimes high preference for degree may lead the algorithm to the nodes

far away from the destination node. Further, we can conclude that searchability is
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a property of the network rather than of the functional forms used for the search

algorithm.

The difference between the results obtained on the U.S. airline network and the

U.S. mainland network is not significant (especially for algorithms 7 and 8). This

implies that the results can probably be extended to the world-wide airline network

(WWN) [76] which has a very similar structure to the U.S. airline network. In the

U.S. airline network, we have separated areas which are connected to the mainland

by only a few airports. Algorithms 7 and 8 are able to capture these connections

in order to travel from one separated area to another. The WWN will have many

more of these separated areas which are well-connected locally but are sparsely

inter-connected. We feel that algorithms 7 and 8 would be able to find short paths

in WWN; verification would be subject to the availability of data on the WWN.

Probably, the results obtained for the U.S. airline network are intuitive. For

instance, in real life if one is asked to travel with local information, he/she can

always find a short path – if not always the shortest path. But the significance of

the results lies in capturing this phenomenon/intuition in an algorithm. Definitely,

the structure of the network facilitates its searchability. As conjectured by others,

the results presented in this thesis support the hypothesis [6, 98] that many real-

world networks evolve to inherently facilitate decentralized search. Furthermore,

these results provide insights for designing the structure of decentralized networks

that need effective search algorithms.

6.3 Uniqueness and significance of the thesis

In this thesis, we consider a fundamentally new approach for design and analysis

of complex engineering systems which can be realized as networks. As detailed

below, this research is unique in many ways:

1. It addresses the issues due to the increasing scale of many engineering sys-

tems. These large-scale networks have become pervasive in the real world

and there is an immediate need to develop new analytical approaches that

can handle the complexity of these systems. We are one among the first

people to apply tools and techniques offered by this approach for engineering
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systems. We published a paper [158], studying supply chains as complex

networks.

2. Many problems in complex networks are similar to the research issues in

traditional OR. Recently, we wrote a book chapter “Complexity and Large-

scale networks” [144] that explains the similarities and differences between

these two research fields. Further, we addressed the need and opportunity

for the OR community to contribute to this fast-growing research field.

3. Traditional routing algorithms assume global information of the network.

We are one among the few who consider decentralized algorithms for search

and routing. The nodes interact collectively and achieve a desired global

objective. These algorithms became extremely pertinent and significant due

to new emerging areas such as wireless sensor networks.

4. Even though it is widely argued that complex networks have unequal edge

weights, all the previous research on decentralized search have considered

equal edge weights. We are the first ones to design local search algorithms

for complex networks with heterogeneous edge weights.

5. We demonstrated that a family of parameterized spatial network model be-

longs to a class of searchable networks for a wide range of parameter space.

Many real-world networks such as the Internet [173] and the worldwide air-

line network [73], can be described by this family of spatial network models.

These results provide insights on designing the structure of distributed net-

works that need effective decentralized search algorithms.

6.4 Future work

The field of Network Science is still in its infancy. The last few years has witnessed

an intense amount of activity across different disciplines such as Computer Science,

Biology, Mathematics, Sociology, Physics, Political Science etc. However, the tools

and techniques developed so far are not sufficient to completely understand and

characterize the structure and function of real-world networks. Most of the results

so far have been empirical and there is significant need to develop a systematic
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approach and a general mathematical framework for modeling and predicting the

behavior of these networks. Here we will focus on the discussion of future work in

decentralized search. The following are a few potential areas for further study in

decentralized search:

6.4.1 Embedding non-spatial networks

We noticed that decentralized search in non-spatial networks gives a path with

large distance. This is mainly because during the search process, it is difficult to

know whether we are going towards the target node or away from the target node.

However, in real-world networks, especially, social networks there does exist some

hidden structure which guides the search process to the specific target node. For

example, consider the problem of decentralized search for a specific researcher in

the acquaintance network of a scientific community. Say, a researcher S would

like to send a message to another researcher T using local information and the

acquaintances of this network. The researcher S, and subsequently each researcher

who receives the message forward the message to one of their acquaintance whom

they judged to be closer (than themselves) to the target T. The search process stops

when the message reaches one of the acquaintance of the target researcher T. Table

6.1 summarizes the average path length taken by different algorithms for search in

scientific collaboration network formed from the papers in the Los Alamos e-print

archive with condensed matter speciality. Each author in the paper is considered

as a node and two authors are connected by an edge if they coauthor a paper. This

network consists of 16726 nodes with 13861 in the largest connected component.

We observe that the search algorithms take an astonishingly large number of steps

to reach the target node. However, if experimented in the real-world, sufficient

studies exist to suggest that one can reach the target node in far less number of

hops (note that the average number of hops taken in Milgram’s experiment [111] is

6). This is mainly due to the hidden structure present in the network that guides

the search process to reach the target node. The nodes in the network would be

aware of this structure as in Milgram’s experiment. One would wonder what could

be the hidden structure of the network that the nodes are aware off. Kleinberg [95]

and later Watts et al. [168] proposed different models to explain the emergence of
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Table 6.1. Comparison of search algorithms in the scientific collaboration network
formed from the papers in the Los Alamos e-print archive with condensed matter special-
ity. The network consists of 16726 nodes with 13861 in the largest connected component.
The values in the table are the average number of hops taken by each search algorithm
in this network.

Search algorithm Average number of hops

Random walk 5284.5
Highest degree 4054.8
Highest LBC 3745.0

such phenomenon.

Unfortunately, the model given by Kleinberg [95] is too constrained and rep-

resents only a small subset of complex networks. Whereas, in many real-world

networks, it may not be possible to divide the nodes into sets of groups in a hier-

archy depending on the properties of the nodes as in the Watts et al. model [168].

We need a generalized approach that can capture the hidden structure of the net-

work. Recently, it was proposed that many real networks could be embedded in an

Euclidean space of low dimension (see figure 6.1). In Euclidean space, the distance

between the nodes would be proportional to the dissimilarities between the nodes.

Since there is higher probability of similar nodes being connected, in Euclidean

space, the nodes have higher probability of being connected if they are closer to

each other. This implies that the embedded network would be similar to the spatial

network generated from the model described in chapter 3. Also, once we embed

the network, we have a metric which tells us whether we are going towards the

target node or away from the target node during the search process. Hence, we

strongly feel that the proposed search algorithms would result in short paths for the

network embedded in Euclidean space. Navigating in the actual network knowing

the hidden structure would be similar to the navigating in the embedded network

using the distance metric. Demonstrating this phenomenon would help us under-

stand the hidden structure of the networks and why they are searchable. Further,

these results could be applied to vast research areas from designing decentralized

wireless sensor networks to understanding the information retrieval process in the

spatial brain networks [33].
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Embedding non-
spatial networks 
in a metric space

Figure 6.1. Illustration for embedding a non-spatial network in a metric space. (a)
Non-spatial network. There could be an hidden structure in the network which the
nodes are aware of during the search process. (b) Non-spatial network embedded in a
metric space (2-dimensional Euclidian space). Here a distance metric is defined which
can guide us during the search process. Navigating in the actual network knowing the
hidden structure would be similar to the navigating in the embedded network using the
distance metric.

6.4.2 Behavior of Gnutella

In section 4.4, we observed that the performance of the search algorithms in

Gnutella network is inconsistent with the results obtained by simulation on ran-

dom power-law networks (see tables 4.6 and 4.7). In specific, we notice that search

algorithms that utilize the high-degree nodes in the network did not perform well.

This observation is particularly surprising because the properties of the simulated

network is same as the Gnutella with respect to the number of nodes, edges,

and power-law exponent of the degree distribution. Even though the clustering

co-efficient of Gnutella is higher than the simulated network, it is not clear its in-

fluence on high degree affinity search algorithms. Further, other properties such as

degree correlations (assortative vs. disassortative) are also found to be similar for

both the simulated and the Gnutella network. The Pearson correlation coefficient

[121] for both the networks is close to 0.25. If we observe closely, the performance

of the search algorithms in Gnutella is similar to the performance of the algorithms

in Poisson random network (compare tables 4.2 and 4.6). This implies that even

though Gnutella has power-law degree distribution, the heterogeneity in node de-

gree did not help high degree and high LBC search to perform better. Possibly,

there are not sufficient high degree nodes due to exponential cutoff observed in

the degree distribution of Gnutella (see figure 4.8). Further investigation of this

interesting behavior is a good topic of future research. At the same time, we would

like to note that the weights on the edges of the Gnutella for the above results are
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simulated. Testing the algorithms on the Gnutella with actual edge-weights may

lead to different behaviors.

6.4.3 Analytical results

Most of the results in decentralized search have been empirical. To strengthen

the claims obtained from these results, we need analytical bounds on the search

algorithms. Even though Kleinberg provided analytical bounds for a class of com-

plex network models, they are too constrained and represent only a small subset

of complex networks. Most of the study on decentralized search did not address

the issue of proving the analytical bounds for the efficiency of the algorithms. This

is a promising area of research where there is much to be done. So far, there do

not exist a rigorous mathematical framework for analyzing these complex networks

and hence it was a difficult task to obtain analytical bounds. However, as Network

Science becomes a more mature field, it will offer a lot more promising tools and

techniques.

6.4.4 Extension to road networks

Road networks can be represented as a network where intersections are represented

as nodes and road segments as the edges (see figure 6.2). This representation leads

to a network with homogenous degree distribution since most of the nodes will have

degree 4. Now consider the problem of routing from one intersection to another

using the road network. When global information is available, one can always

calculate the shortest path from one intersection to another with respect to either

time or distance. Many services such as Google Maps or MapQuest do the same to

provide the directions for the optimal path. However, if the information available

is only local, such services may not be useful. Decentralized routing problem in

the road networks is to go from one intersection to another along the segments of

the road using local information. One simple algorithm is greedy search where the

algorithm always choose to go the intersection which is closet to the destination.

However, as demonstrated for spatial networks this algorithm may not be optimal

and the algorithms proposed in this thesis may perform better in road networks as

well. Unfortunately, road networks are not heterogenous in node degree and hence
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Figure 6.2. Illustration for the graphical representation of a road network on a geo-
graphical area. (a) Structural representation of the geographical area consisting of the
road network. (b) Graphical representation of the road network in its primal form. The
intersections are represented as nodes and road segments as the edges. The numbers on
the road segments represent the name of the road.

the algorithms are not directly applicable.

Recently, there has been a body of research [90, 147] that considers road net-

works in dual form, which do exhibit scale-free properties. In the dual form, a

node represents a single road of a given name, and two nodes are connected if

the corresponding roads ever meet at an intersection (see figure 6.3). The degree

distributions of the road networks in the dual form for United States, England,

and Denmark are found to follow power-law, with exponents between 2.2 and 2.4

[90]. This heterogeneity if due to few roads (national highways) which span across

large area and have high degree and large number of roads (local streets) that

have low degree. Although the algorithms proposed for spatial network are ap-

plicable for the dual form of the network, many questions have to be addressed

before implementation. For instance, one question would be how to represent the

destination point in the dual form of the network? A good methodology would be

to navigate in the primal form of the network using the local information from the

dual network. We strongly feel that this is a promising area for future research.

6.4.5 Heterogenous wireless sensor networks

As discussed in chapter 3, wireless sensor networks (WSN) promise to revolutionize

sensing in wide range of applications. Some of the possible applications are ana-
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Figure 6.3. Illustration for the primal and dual representation of a road network.
(a) Graphical representation of the road network in its primal form. The intersections
are represented as nodes and road segments as the edges. The numbers on the road
segments represent the name of the road. (b) Dual representation of the road network.
A node represents a single road of a given name, and two nodes are connected if the
corresponding roads ever meet at an intersection

lyzing the movement of tornadoes, detect forest fires at early stages, alert border

guards to activity in remote areas, increase alertness to potential terrorist attacks

etc. Early research on WSNs are focused on designing network with sensors of

homogenous battery power and equal capabilities. Main advantage of such ho-

mogenous design is resilience to individual failures. However, the life-time and

reliability of the WSN is found to be highly constrained if we use homogenous

sensors [172]. The distribution of resources in many real networks is not homoge-

nous. It has been shown that heterogeneity in the system gives rise to an optimal

configuration with respect to many properties such as robustness, routing etc.

Recently, it was demonstrated that using heterogenous sensors, i.e. sensors

with different battery powers would significantly improve the life-time of the sen-

sor network [110, 172]. This configuration would have few sensors with a large

amount of battery power and large number of sensors with small battery power

in WSNs (see figure 6.4). Mhatre et al. [110] considered a heterogenous sensor

network with two types of sensor nodes; one type is deployed with intensity λ0,

another type that has higher energy and communication capability with intensity

λ1. They demonstrated that the lifetime of the sensor network is maximized when

λ1 scales with the square root of λ0. Similarly, different other configurations could

be considered for heterogenous sensor networks. In fact, the presence of hetero-
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Figure 6.4. Illustration for homogenous and heterogenous wireless sensor networks (a)
Wireless sensor network with homogenous power capacity. (b) Wireless sensor network
with heterogeneous power capacity. The size of the node represents the amount of battery
power and communication capabilities.

geneity in the sensor network will lead to a new class of analytical problems [172].

This heterogeneity could also be utilized for more efficient routing. In this thesis,

we demonstrated that the performance of search and routing algorithms is sig-

nificantly improved when they exploit the heterogeneity present in the network.

Hence, we believe that these algorithms could be easily extended for heterogenous

wireless sensor networks as well.
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[85] R. Ferrer i Cancho and R. V. Solé. Statistical mechanics of complex networks,
chapter Optimization in complex networks, pages 114–126. Springer-Verlag,
Berlin, 2003.

[86] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scal-
able and robust communication paradigm for sensor networks. Proceedings
of ACM MobiCom ’00, Boston, MA, pages 174–185, 2000.

[87] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The
large-scale organization of metabolic networks. Nature, 407:651–654, 2000.

[88] D. J. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiabil-
ity: Second DIMACS Implementation Challenge, Workshop, October 11-13,
1993. American Mathematical Society, Boston, USA, 1996.

[89] Y.C. Lai K. Park and N. Ye. Characterization of weighted complex networks.
Phys. Rev. E, 70(2):026109, 2004.

[90] V. Kalapala, V. Sanwalani, A. Clauset, and C. Moore. Scale invariance in
road networks. Phys. Rev. E, 73:026130, 2006.

[91] G. Kan. Peer-to-Peer Harnessing the Power of Disruptive Technologies,
chapter Gnutella. O’Reilly, Beijing, 2001.



110

[92] A.-M. Kermarrec, L. Massoulie, and A. J. Ganesh. Probabilistic reliable dis-
semination in large-scale systems. IEEE Trans. on Parallel and Distributed
Sys, 14(3):248–258, 2003.

[93] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49:291–307, 1970.

[94] R. Kinney, P. Crucitti, R. Albert, and V. Latora. Modeling cascading failures
in the north american power grid. The European Physical Journal B, 46:101–
107, 2005.

[95] J. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.

[96] J. Kleinberg. The small-world phenomenon: An algorithmic perspective.
Proc. 32nd ACM Symposium on Theory of Computing, pages 163–170, 2000.

[97] J. Kleinberg. Small-world phenomena and the dynamics of information.
Advances in Neural Information Processing Systems, 14:431–438, 2001.

[98] J. Kleinberg. Complex networks and decentralized search algorithms. Pro-
ceedings of the International Congress of Mathematicians, 3:1019–1044, 2006.
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