
 

The Pennsylvania State University  

The Graduate School 

ADAPTATION TO CLIMATE IN JUGLANS NIGRA: EXPLORING HOW HOME 

CLIMATE SHAPES GROWTH PATTERNS OF NATURAL POPULATIONS 

A Thesis in  

Ecology 

by  

Lauren Onofrio 

 

© 2020 Lauren Onofrio 

 

Submitted in Partial Fulfillment  

of the Requirements 

for the Degree of 

 

Master of Science 

 

August 2020 



ii 
 

 

The thesis of Lauren Onofrio was reviewed and approved by the following: 

 

Laura Leites 

Associate Research Professor of Quantitative Forest Ecology 

Thesis Advisor 

 

Kim Steiner 

Professor of Forest Biology 

 

John Carlson 

Professor of Forest Genetics 

 

Margot Kaye 

Associate Professor of Forest Ecology 

 

Jason Kaye 

Professor of Soil Biogeochemistry 

Chair of the Intercollege Graduate Degree Program in Ecology 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

Many autochthonous tree species are distributed across extensive geographic ranges. To survive, 

tree populations must adapt to both spatial and temporal climate heterogeneity through 

evolutionary processes, such as natural selection, which act on genetic variation. Most tree 

species combine adaptation to the local climate (i.e. specialization) with phenotypic plasticity. 

Adaptation to local climate is common in wide ranging tree species and fitness clines driven by 

climate have been documented for many tree species. This thesis focuses on adaptation to 

climate in black walnut (Juglans nigra L.) and explores how home climate shapes growth 

patterns of natural populations. Chapter 1 evaluates population differentiation in adaptation to 

spatial and temporal climate variability using average annual scaled growth, annual ring width 

increment, and the coefficient of variation in average annual scaled growth. We found evidence 

of specialization, and thus adaptation to spatial climate variability, in populations’ average scaled 

radial growth as a function of climate transfer distance. We also found that temporal variability 

of populations’ home climate was linked to phenotypic plasticity and populations from more 

temporally variable climates exhibited less interannual growth variability. Chapter 2 evaluates 

height growth up to age 10 from planting of black walnut populations to elucidate differences in 

early growth patterns. We found that populations from warmer climates had the highest 

cumulative growth and reached maximum absolute growth earlier in time. Populations from 

colder climates had a smaller size (cumulative growth), reached maximum absolute growth later 

in time, and had higher relative grow rates at any given age within our study’s age range.  The 

results from this thesis highlight the role natural selection and temporal/spatial climate variability 

may play in driving growth patterns among black walnut populations.  
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CHAPTER 1 

Spatial and temporal variability of home climate shape genetic differences in diameter 

growth responses of Juglans nigra populations 

ABSTRACT 

Many tree species are distributed across extensive ranges of spatial and temporal climate 

heterogeneity. To accommodate this heterogeneity, most species combine adaptation to the local 

climate (i.e. specialization) with phenotypic plasticity. Therefore, genetic differences among 

populations within a species range are shaped by both spatial and temporal climate variability. In 

this study, we evaluate the effect of spatial and temporal climate variability in determining 

differentiation in growth responses of 33 black walnut (Juglans nigra) natural populations 

growing in a common garden (provenance tests) for 40 years. Common gardens provide 

evidence of local adaptation to climate when associations between fitness traits and the 

populations’ home climates are observed. We evaluate population differentiation in average 

annual scaled diameter increment to assess local adaptation to climate. We also use the 

coefficient of variation in average annual scaled growth to assess population differentiation in 

phenotypic plasticity. We found that genetic differences among populations and the resulting 

growth patterns are shaped by both spatial and temporal climate variability. We found evidence 

of specialization, and thus adaptation to spatial climate variability, in populations’ average scaled 

radial growth as a function of climate transfer distance. We also found that temporal variability 

of populations’ home climate was linked to phenotypic plasticity and populations from more 

temporally variable climates exhibited less interannual growth variability. These findings 

indicate that both spatial and temporal climate variability are critical in understanding genetic 

differences among populations. 
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INTRODUCTION 

Many tree species are distributed across extensive ranges of spatial and temporal climate 

heterogeneity. Spatial climate variability is defined as climate gradients in space while temporal 

climate variability involves annual, seasonal, or daily climate fluctuations in a given location. To 

survive, tree populations must adapt to both spatial and temporal climate heterogeneity through 

evolutionary processes, such as natural selection, which act on genetic variation (Morgenstern 

1996). Most tree species combine adaptation to the local climate (i.e. specialization) with 

phenotypic plasticity (Alfaro et al 2014). Adaptation to local climate can occur when spatial 

climate variability influences natural selection, which results in populations adapted to a segment 

of climate within the species range (Rehfeldt 1984; Alberto et al 2013; Aitken and Bemmels 

2016). Phenotypic plasticity is an evolutionary strategy that allows a single genotype to modify 

its expression under different environmental stimuli and thus allows long-lived and sessile 

organisms to accommodate temporal variability (Via 1993; Via et al 1995; Sultan and Spencer 

2007) 

Adaptation to local climate is common in wide ranging tree species and fitness clines 

driven by climate have been documented for many tree species (Langlet, 1971; Campbell 1974;  

Rehfeldt 1999; St Clair et al 2005; Rehfeldt et al 2014; Aitken and Bemmels 2016; Leites et al 

2019). Common garden studies (provenance testing) demonstrate that, in general, populations 

growing close to their home climate achieve maximum values in several quantitative traits, and 

decrease growth as the climate becomes more dissimilar to home climate (Matyas 1994; Carter 

1996; Rehfeldt et al 1999; Wang et al 2006; Thompson and Parker 2008; Leites et al 2012ab; 

Saenz-Romero et al 2017). It is important to recognize that adaptation to climate does not 

necessarily indicate that populations exhibit local adaptation. Only populations that achieve 
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highest fitness in their home climate are considered to exhibit local adaption. However, in 

several tree species, populations from the edge of the species range have been found to improve 

fitness when moved a small distance from their home climate (Namkoong 1969; Rehfeldt et al 

1999, 2018; Wang et al 2010; Leites et al 2012ab; Saenz-Romero et al 2017). Populations’ 

fitness in different climates can be evaluated when they are tested in several common gardens. 

Their response to departures from home climate can be modeled by calculating a climate transfer 

distance between the population home climate and the common garden climate (hereafter climate 

transfer distance). There is evidence of adaptation to local climate when maximum growth is 

achieved at or near transfer distance zero. 

Phenotypic plasticity is ample in tree species that withstand centuries of climate variation 

(Berg and Ellers 2010; Nicotra et al 2010; Richter et al 2012). However, not all phenotypic 

plasticity enhances fitness; when it does, the term adaptive plasticity is used (Sultan 1995). When 

organisms are only passively responding to a stressful environment and fitness is not enhanced, 

the term inevitable plasticity is used (Sultan 1995, Ghalambor et al 2007). For this reason, all of 

the phenotypic change associated with different environmental conditions cannot be assumed to 

represent adaptive plasticity (Stearns 1982; Taylor and Aarssen 1988). Phenotypic plasticity is 

trait specific and phenotypic plasticity in one or several traits could result in homeostasis in 

another trait (Bradshaw 1965; Van Tienderen 1991). Adaptive phenotypic plasticity is an 

important strategy in environments with significant temporal heterogeneity over the course of an 

organism’s lifetime (Van Tienderen 1991; Balaguer et al 2001; Valladares et al 2007, 

Valladares et al 2014). Conversely, specialization by adapting to local climate is an 

advantageous strategy in temporally stable and spatially variable climates (Rehfeldt, 1984). This 

is because phenotypic plasticity is costly, more plastic genotypes have lower average fitness 

https://link-springer-com.ezaccess.libraries.psu.edu/article/10.1007/s00442-011-2191-x#ref-CR5
https://link-springer-com.ezaccess.libraries.psu.edu/article/10.1007/s00442-011-2191-x#ref-CR29
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12348#ele12348-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12348#ele12348-bib-0075
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regardless of their expressed phenotype (Van Tienderen 1991; Dewitt et al 1998; Van Buskirk 

and Steiner 2009; Chevin et al 2013).  

Genetic differences among populations and the resulting growth patterns are then shaped 

by both temporal and spatial variability. In this study, we evaluate their effects in determining 

differentiation in average and annual radial growth responses of 33 black walnut (Juglans nigra) 

natural populations growing in a common garden for 40 years. First, we test for evidence of 

specialization, i.e. adaptation to spatial climate variability, by modeling populations’ average 

scaled radial growth as a function of climate transfer distance. Then, we evaluate the relationship 

between temporal home climate variability and phenotypic plasticity by modeling the coefficient 

of variation of scaled annual radial growth as a function of the variability of home climate 

variables. We also evaluate the contributions of home climate characteristics and weather 

experienced at the test site to annual scaled radial growth. We use black walnut as a study 

organism because it is a species with strong intraspecific genetic differentiation related to climate 

(Wright and Lemmien, 1972; Bey, 1973; Bey, 1979, Leites et al 2019). 

We hypothesize the following: 

1. Adaptation to local climate will be reflected in the maximum average annual 

growth occurring at, or close to, home climate (climate transfer distance = 0). 

Populations transferred farther from their home climate will exhibit less average 

annual growth. 

2. Temporal variability of home climate will be linked to phenotypic plasticity, with 

populations from more temporally variable climates exhibiting less interannual 

growth variability. 
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3. Interacting characteristics of spatial and temporal home climate variability will be 

an important determinant of a population’s annual radial growth. 

 

METHODS 

Data                                

We used data from a provenance test (common garden) established in 1980 in 

Pennsylvania, USA. This test site evaluated 33 natural populations from the black walnut range 

(Figure 1) using a randomized complete block design with 5 blocks. The common garden is set 

up with four-tree row plots within blocks (trees were planted 3 m apart). At the test site, the trees 

on the outside of the plot have reduced competition from other trees and the trees on the inner 

rows have competition from other trees in all sides (Figure 2). Therefore, we only used data from 

trees on the outside edge of a row (green arrow in Figure 2) to remove some of the impacts of 

inter-tree competition on the results. Inter-tree competition would obscure the expression of 

genetic differences and likely decrease existing differences among populations (e.g. Franklin 

1979; Foster 1986; Rehfeldt et al 1991). In total, 144 trees were evaluated from the 33 

populations. The maximum number of trees representing a population was 7 and the minimum 

was 2.  
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Figure 1. Populations (orange circles) planted at the test site (black triangle) in relation to the 

geographic range of black walnut (gray).  
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Figure 2. Image of one block in the test site that shows outer vs inner row trees. Trees in the 

same row as the green arrow are examples of outer row trees and are under reduced competition. 

Trees in the same row as the blue arrow are examples of inner row trees that were subjected to 

competition. 

Annual radial growth 

In the fall of 2018, one core (from bark to pith), 0.3 meters from the base of the east 

facing aspect of each tree was extracted using a 4.3 mm increment borer. All cores were dried, 

mounted and sanded following Stokes & Smiley, 1968. Next, cores were scanned to a resolution 

of 2400 dpi and ring widths were measured to a resolution of 0.01 mm using the software Coo-

Recorder (Cybis, Saltsjobaden, Sweden). Trees with extremely faint and suppressed rings were 
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measured under a light microscope at 45x magnification using a Velmex tree-ring measuring 

system and the Telervo software. All cores were cross-dated and validated using 6-year segments 

with the “corr.rwl.seg” function from the ‘DPLR’ 1.6.3 package in R (Bunn 2008). Cores with a 

segment correlation of below 0.5 were flagged and raw ring-width measurement were re-

evaluated to check for potential measurement errors. If no measurement mistakes were found, we 

kept the original reading. The age of each tree at the time it was cored was known; therefore, any 

segments with low correlations and no measurement errors were assumed to be due to growth 

differentiation among populations.  

To test our hypothesis, we calculated scaled annual ring widths (SRW) instead of 

detrending with traditional methods. For each tree, each year’s raw ring width was scaled by 

dividing it by the test site’s mean raw ring width in that year. The test site’s mean raw ring width 

in a given year was calculated by averaging the raw ring width of all trees in that year. Scaling in 

this way removed the age trend without removing population or block effects because all trees 

were the same age. In addition, it helped identify whether the growth of a tree in a given year 

was above or below the test-site average. A SRW value ≥1 indicates the tree grew average or 

above average in that year; a value <1 indicates the tree grew below average.  

Climate Data 

 Annual and seasonal climate normals for the 1951–1980 period, and annual climate 

averages for the 1900-1980 period, were obtained using the latitude, longitude, and elevation of 

each population. Annual and seasonal climate data was obtained from the 1980 – 2018 at the test 

site. All climate data was obtained at an 800 m resolution from ClimateNA (Wang et al 2016). 

The time period for the climate normals represents the climate prior to seed collection. The 

climate transfer distance (clim.trds) for each population was calculated by subtracting the climate 

https://onlinelibrary.wiley.com/doi/full/10.1111/eva.12871#eva12871-bib-0080
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normal of the population from the climate normal of the test site. The period used to calculate 

temporal variability of home climate was 1900 to 1980. The annual climate from 1890 to 2018 

was used to characterize the weather experienced at the test site.  

Analysis 

To assess for evidence of adaptation to local climate the mean scaled ring width 

(SRWMean) for each tree was modeled as a function of the populations’ clim.trds using a linear 

mixed effects model (Equation 1). 

𝑆𝑅𝑊̅̅ ̅̅ ̅̅
𝑖̅𝑗 = (β0 + 𝑢𝑗) + β1 ∗ 𝐶𝐿𝐼𝑀. 𝑡𝑟𝑑𝑠𝑖 + β2 ∗ 𝐶𝐿𝐼𝑀. 𝑡𝑟𝑑𝑠𝑖

2 + 𝜀𝑖𝑗                                               (1) 

Where 𝑆𝑅𝑊̅̅ ̅̅ ̅̅
𝑖̅𝑗 is the SRWMean for tree i in block j, 𝑢𝑗  is the random effect for block, β1 and β2 are 

fixed effects parameters, and 𝜀𝑖𝑗 is the error term. If climate transfer distance was a significant 

predictor (α = 0.1), and SRWMean was maximum at or near climate transfer distance = 0, we 

interpreted it as evidence of adaptation to local climate. 

To evaluate whether populations from more temporally variable home climates differ in 

phenotypic plasticity of annual radial growth, we calculated the coefficient of variation of the 

SRW across all years for each tree (SRW_CV). To do this, we calculated the standard deviation of 

the SRW across all years for a given tree and divided it by the SRWMean for that same tree. We 

then model SRW_CV as a function of the standard deviation of the population home climate 

(clim.stdv) and of clim.trds as fixed effects, and block as a random effect (Equation 2).  

SRW_cv𝑖𝑗 = (β0 + 𝑢𝑗) + β1 ∗ 𝐶𝐿𝐼𝑀. 𝑆𝑇𝐷𝑉𝑖 ∗ β2 ∗ 𝐶𝐿𝐼𝑀. 𝑡𝑟𝑑𝑠𝑖 + β3 ∗ 𝐶𝐿𝐼𝑀. 𝑡𝑟𝑑𝑠𝑖
2 + 𝜀𝑖𝑗     (2) 

Where SRW_cv𝑖𝑗 is the coefficient of variation of the SRW for tree i in block j, 𝑢𝑗  is the random 

effect for block, β1, β2 and β3 are fixed effects parameters, and 𝜀𝑖𝑗 is the error term. If 
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climate.stdv was a statistically significant predictor of population’s CV (α = 0.1), we interpreted 

this as evidence of temporal home climate variability  affecting phenotypic plasticity.   

Each model was fit with one of 11 different climate variables that represented the 

mildness of climate (e.g. mean annual temperature), the coldness of winter (e.g. mean 

temperature of the coldest month), the moisture balance of summer (e.g. summer heat moisture 

index), and the length of the growing season (e.g. frost free period, Appendix A). To select the 

best univariate model, we chose the model with the lowest Akaike’s Information Criterion (AIC; 

Akaike 1974) that also had fixed effect parameters different from zero (t-test, α = 0.1). To fit 

mixed effects models, we used the package lme4 (Bates et al 2015). 

Finally, to evaluate whether the characteristics of home climate are an important 

determinant of a population’s annual radial growth, we model raw annual ring width increment. 

In this model, clim.trds, age, and the weather experienced at the site the year under consideration 

and the previous year were included. To determine what weather variables to include in the 

model (see Appendix B), we evaluated the Pearson correlation coefficient (r) between the mean 

raw annual ring width increment (calculated across all trees in the test for a given year) 

(𝑅𝑅𝑊𝐼̅̅ ̅̅ ̅̅ ̅̅
𝑇𝑒𝑠𝑡), and the weather variables in that year, and the year before. If the weather variable 

had a r ≥ |0.25| with 𝑅𝑅𝑊𝐼̅̅ ̅̅ ̅̅ ̅̅
𝑇𝑒𝑠𝑡, it was kept for further consideration. The selected weather 

variables were then correlated amongst themselves and only those with r < 0.7 (between 

themselves) were included in the model. The final weather variables selected were: summer 

relative humidity, growing degree-days above 50C, and Julian day of the beginning of the frost-

free period of the current year. The variables selected to be analyzed in the previous year were: 

summer relative humidity, mean coldest month temperature, and the Julian day of the beginning 

of the frost-free period. We consider age, clim.trds, and weather variables as fixed effects, and 
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block and tree nested within block as a random effects (Equation 3). To remove 

heteroskedasticity, the variance was modeled as power function of the fitted values. This model 

was fit using the nlme package in R (Pinheiro et al 2013). 

𝑅𝐴𝑊𝑖𝑗𝑘 = (β0 + 𝑢𝑗 + 𝑢𝑖(𝑗)) + β1 ∗ 𝐴𝑔𝑒𝑘 + β2 ∗ 𝐶𝐿𝐼𝑀. 𝑡𝑟𝑑𝑠𝑖 + β3 ∗ 𝐶𝐿𝐼𝑀. 𝑡𝑟𝑑𝑠𝑖
2 +

                     ∑ β𝑖
6
4 ∗ 𝑃𝐴. 𝑐𝑙𝑖𝑚𝑘 + ∑ β𝑖

9
7 ∗ 𝑃𝐴. 𝑐𝑙𝑖𝑚𝑘−1 + 𝜀𝑖𝑗𝑘                                                          (3) 

Where 𝑅𝐴𝑊𝑖𝑗𝑘 is the raw growth for tree i in block j at year k, 𝑢𝑗  is the random effect for block, 

𝑢𝑖(𝑗) is the random effect for tree nested within block, β1 −  𝛽9 are fixed effects parameters, and 

𝜀𝑖𝑗𝑘 is the error term.  

 

RESULTS 

Adaptation to local climate 

 Of the climate variables evaluated, mean annual temperature transfer distance 

(MAT.trds) resulted in the model with the lowest AIC. This model had a marginal R2 of 3% and 

a conditional R2 of 10%. The model illustrates that the maximum SRWMean is close to a transfer 

distance of 0 and that on average, populations grew more when close to home and less when 

transferred farther from home (Table 1 and Figure 3). 
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Table 1. Parameter estimates, standard errors, and 90% bootstrapped confidence intervals (C.I.)  

for the model predicting SRWMean from mean annual temperature transfer distance (MAT.trds, 

Equation 1).  

Variable Estimate Standard error C.I. 

Intercept 1.15 0.049 1.066, 1.228 

MAT.trds -0.00082 0.012 -0.0223, 0.0194 

MAT.trds2  -0.0068 0.0036 -0.0127, -0.0010 

σ Block 0.082   

σ Residual 0.29   
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Figure 3. Marginal (fixed effects only) predictions of mean scaled ring width (SRWMean) as a 

function of mean annual temperature (MAT) transfer distance (black line, Table 1). Gray circles 

are observed SRWMean where the block effect have been removed using the block random effects 

estimates. 

Phenotypic plasticity and temporal variability of home climate  

Of the climate variables evaluated, the model including mean annual temperature had the 

lowest AIC. When predicting, SRW_CV, both the standard deviation of the mean annual 

temperature characterizing population home climate (MAT.stdev) and MAT.trds were 

statistically significant (α = 0.1), including the interaction term. The quadric term for MAT.trds 

was not significantly different from 0 (α = 0.1) and was removed from the final model. We note 

that in this model MAT.trds is confounded with population MAT because each population was 
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only tested in one site. The effects of transfer distance are apparent in this test site and show the 

characteristic quadratic relationship with growth (Figure 3); thus, we continue the discussion 

focusing on MAT.trds but the confounding effect with population MAT should be kept in mind. 

The block random effect was not necessary in the model and removed; as a result, the final 

model was fit using multiple linear regression (Table 2). 

Table 2. Parameter estimates, standard errors, and 90% confidence intervals (C.I.) for the model 

predicting SRWCV from the standard deviation of the mean annual temperature characterizing the 

populations’ home climate (MAT.stdev) and mean annual temperature transfer distance 

(MAT.trds, Equation 2).  

Variable Estimate Standard 

error 

C.I. 

Intercept  0.75 0.090 0.60, 0.90 

MAT.trds 0.091 0.051 0.0056, 0.18 

MAT.stdev -0.48 0.13 -0.69, -0.27 

MAT.trds x MAT.stdev  -0.13 0.074 -0.25, -0.0079 

 

The parameter estimate for the population MAT.stdev was negative indicating that 

populations with less variability in their annual ring width increment originated from climates 

with larger temporal climate variability (Table 2, Figure 4 at MAT.trds = 0). Population 

MAT.stdev interacted with MAT.trds. In general, populations from more variable climates were 

more stable in their interannual ring width increment (Figure 4). The effects of MAT.stdev on 

the SRWCV was small for populations with negative MAT.trds values. In general, populations 

with negative MAT.trds also have higher MAT’s (Figure 1); therefore, an alternative explanation 
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is that the effect of MAT.stdev is smaller in populations from warmer climates. For populations 

with positive MAT.trds (moved to warmer climates), the MAT.stdev had a large impact on the 

SRWCV. Again, the alternative interpretation is that MAT.stdev is more important in populations 

adapted to colder climates (which were in general transferred a warmer climate, Figure 10).  

Each SRWCV is a measure of the phenotypic plasticity in annual ring width increment; 

however, it does not indicate whether the phenotypic plasticity is adaptive or inevitable. To 

better distinguish between the two, Figure 5 illustrates the relationship between SRWCV and 

SRWMean. Recall that if SRWMean is ≥ 1, the annual ring width increments were at least as good 

as the average growth for the test in the corresponding year. Interestingly, the highest SRWCV 

values were for populations either growing well above average (SRWMean much greater than 1 

and thus higher fitness), or well below average (SRWMean much less than 1). Combining the 

information in Figures 4 and 5, the performance of populations transferred to much warmer 

climates (positive MAT.trds values), had the highest SRWCV and both the highest and lowest 

values of SRWMean; populations that had a SRWMean ≥ 1 originated in climates with a slightly 

higher MAT.stdev. We would also like to note that we found no correlation between 

populations’ home climate MAT and populations home climate MAT standard deviation (r = -

0.026). This suggests that these results are not confounded with evidence for adaptation to spatial 

climate.  
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Figure 4. Contour plot for the model predicting SRWCV from mean annual temperature transfer 

distance and mean annual temperature standard deviation (Table 2). The variation in color and 

labeled contour lines indicate the levels of SRWCV. 
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Figure 5. CV of the scaled ring width as a function of the raw average scaled ring width for each 

tree. The blue line is a polynomial regression line and the gray band is the 95% prediction 

interval. 

Model of annual radial growth  

The final model for the annual ring width increment (ARWI) had a marginal R2 of 57% 

and a conditional R2 of 91%. As expected, both MAT.trds and the experienced weather were 

important predictors of ARWI (Table 3). However, their effects were additive; the interaction 

terms between both types of variables were not statistically significant (α = 0.1). Climate transfer 

distance had the same effect in ARWI as in SRWMean; the maximum ARWI was achieved by the 

populations closest to home. The weather variables in the model are related to the beginning of 

the growing season in the current and previous year, and summer relative humidity of the current 

year. The positive coefficients for the beginning of the growing season indicate that later starts of 
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the growing season potentially avoided late spring frost injuries. Higher relative humidity in 

summer correlates with lower water stress and thus larger ring width increments. To evaluate the 

relative importance of home climate characteristics and weather variables, we predicted ARWI at 

age 9. Then, we varied each variable within its observed range while keeping the other fixed 

effects at their observed mean value (Figure 6). The range of MAT.trds produced the largest 

range of ARWI predictions. This range was the same as the range of marginal predictions, 

highlighting its relative importance in the model predictions. 

Table 3. Parameter estimates, standard errors, and 90% confidence intervals (C.I.), for the model 

predicting annual ring width increment (Equation 3). 

Variable Estimate Standard error C.I. 

Intercept -2.22 1.01 -3.88, -0.56 

Age -0.93 0.0019 -0.096, -0.90 

MAT.trds 0.0013 0.032 -0.052, 0.054 

MAT.trds2 -0.016 0.0093 -0.031, -0.00019 

Summer relative humidity 0.039 0.069 0.028, 0.050 

Start date of the frost-free period 0.023 0.0045 0.015, 0.031 

Start date of the frost-free period of 

previous year  

0.017 0.0048 0.0096, 0.025 

σ Block 0.20   

σ Tree (Block) 0.73   

σ Residuals 0.39   
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Figure 6. Range of predictions for the ARWI model calculated by varying each variable within 

its observed range, while keeping the others at their observed mean value and using the age 9. 

 

DISCUSSION 

We found evidence of adaptation to local climate among black walnut populations. 

Studies evaluating radial growth responses among populations also found evidence of genetic 

differentiation related to climate gradients in other tree species (Savva et al 2002, 2007; McLane 

et al 2011ab; Taeger et al 2013; Leland et al 2016; Chhin et al 2018; Housset et al 2019). Our 

models indicate that populations had the maximum SRWMean closer to home climate (climate 

transfer distance = 0) and decreased growth as the difference between test and home climate 

increased. For example, our model predicts that populations growing in their home climate grow 

17% more per year compared to populations transferred 5 degrees warmer. Although this percent 

difference may seem small, it could result in a diameter at breast height difference of 30 versus 
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25 inches after many years of growth. These size differences are ecologically important because 

biomass and other allometric relationships with stem diameter are exponential. As expected, the 

marginal and conditional R2 values for the model were low (3% and 10% respectively). This is 

likely because diameter growth is sensitive to interannual climate variability and competition 

dynamics (Alberto et al 2013). For this reason, tree height is typically used as a proxy for fitness 

in provenance tests to asses population differentiation in growth responses (e.g. Rehfeldt 1989, 

1990, 1991; St Clair et al 2005; Thompson and Parker 2008; Rehfeldt et al 2014; Aitken and 

Bemmels 2016; Saenz-Romero et al 2017; Leites et al 2019). This was confirmed later in our 

results when we evaluated annual radial growth. These models had significantly higher R2 values 

when climate experienced at the test site was included in the model.  

Due to the limitations imposed by using data from only one test site, we were unable to 

model population-level responses to climate transfer. As a result, we could not test whether 

populations differ in their response to climate transfer distance and thus, whether there are 

differences in their adaptation to local climate (e.g. Rehfeldt et al 2018). Previous studies have 

demonstrated that in some species populations achieve maximum growth a short distance from 

the home climate and thus a lag in adaptation to climate exists, most commonly in populations 

from the colder front of the species range (e.g. Rehfeldt et al 1999; Savolainen et al 2007). On 

average, however, our results suggest that there is evidence of adaptation to local climate in these 

black walnut populations. 

In our analyses, we found a relationship between temporal climate variability of home 

climate and phenotypic plasticity. We found that populations from more variable climates exhibit 

less phenotypic plasticity in annual radial growth. Phenotypic plasticity is trait specific, for 

diameter growth to be stable across years, other physiological and morphological traits need to 
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be more plastic (Bradshaw, 1965). We interpret this as evidence that in temporally variable 

climates, phenotypic plasticity in diameter growth may have adaptive value to ensure high 

fitness. A more stable diameter growth may confer higher fitness as larger black walnut trees 

compete better and produce seed earlier in time (Landt and Phares 1973). As previously 

highlighted, we found no correlation between populations’ home climate MAT and populations 

home climate MAT standard deviation (r = -0.026), suggesting that these results are not 

confounded with evidence for adaptation to spatial climate.  

The interaction between temporal home climate variability and climate transfer distance 

indicates that the effect of temporal home climate variability in SRWCV when populations were 

moved to colder climates was less than its effect when populations were transferred to warmer 

climates. As populations were transferred farther from their home climate, and to warmer 

climates, the effect of temporal home climate variability in phenotypic plasticity becomes more 

important (Figure 4). In addition, when populations are moved to colder climates (MAT.trds < -

4) the relationship between temporal home climate variability and phenotypic plasticity reverses. 

However, we note that only a few observations were available at that transfer distance (MAT.trds 

< -4) which makes the model less reliable in that region. The effects of temporal home climate 

variability on phenotypic plasticity when populations are moved to warmer climates, however, is 

clear and highlights the relevance of accounting for phenotypic plasticity when evaluating 

species and populations responses to climate change.  

Phenotypic plasticity is beneficial if it results in better fitness (adaptive) and 

understanding results in that context is important. We found an inverse quadratic relationship 

between populations’ SRWMean and its phenotypic plasticity (SRWCV). The SRWMean serves as an 

indicator of fitness in black walnut because individuals that grow more per year typically reach 
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reproductive maturity earlier in time (Landt and Phares 1973). The highest and lowest SRWMean 

values were for populations with the highest phenotypic plasticity, indicating that there were two 

distinct types of phenotypic plasticity at play: adaptive leading to SRWMean ≥ 1, and inevitable 

leading to SRWMean < than 1. Populations with the highest SRWMean and SRWCV occurred at 

transfer distance = 0 (Figures 3 and 5), those with the lowest SRWMean and highest SRWCV 

occurred when transferred to warmer climates (Figures 3, 4, 5). A low SRWCV was correlated 

with SRWMean of approximately 1 (Figure 5), and a low SRWCV was correlated with higher 

temporal home climate variability (Table 2), which indicates that there is likely an adaptive value 

in a stable annual radial growth. However, our results also suggest that high phenotypic plasticity 

in annual radial growth may also be of adaptive value in some cases (e.g. SRWMean > 1.5 and 

SRWCV > 0.5, Figure 5), while in others it just reflects inevitable plasticity (e.g. SRWMean  < 0.5 

and SRWCV > 0.6, Figure 5). Within the context of a warming climate, populations from more 

variable climates may have an advantage in maintaining higher fitness as climate warms. At 

MAT.trds of greater than 3, populations originating in climates with high MAT.stdv’s had low 

SRWCV’s, which was related to a SRWMean close to 1 (Figures 4 and 5). 

We also tested the effects of home climate characteristics in annual ring width increment 

(ARWI) and found that the maximum ARWI was achieved by the populations closest to home. 

The significant weather variables in the model were related to the beginning of the growing 

season in the current and previous year, and summer relative humidity of the current year. The 

positive coefficients for the beginning of the growing season indicate that later starts of the 

growing season potentially resulted in larger ARWI. A probable reason for this relationship is 

that later starts of the growing season avoided late spring frost injuries. Daily probabilities of 

frost at the test site location indicate that the earliest start of the frost-free period during the 
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experiment period was April 28th. The average 50-year probability of spring frost on April 28th is 

27%. This percent drops dramatically (to 6%) after May 14th, the latest start of the frost-free 

period during the experiment period (Pennsylvania State Climatologist, 2020). The positive 

coefficient of summer relative humidity indicates that higher relative humidity resulted in larger 

ARWI. A high relative humidity during summer is indicative of lower water stress and higher 

carbon uptake by trees, resulting in increased growth. At the test site, summer relative humidity 

and summer precipitation were highly correlated (r = 0.66). Upon further analyses of the relative 

importance of home climate characteristics and experienced climate, we found that the range of 

MAT transfer distance produced the largest range of predictions. This range was the same as the 

range of marginal predictions, highlighting its relative importance in explaining variation among 

populations’ annual growth.  

In summary, the results suggest that genetic differences among populations and the 

resulting growth patterns are shaped by both spatial and temporal climate variability. We found 

evidence of specialization, and thus adaptation to spatial climate variability, in populations’ 

average scaled radial growth as a function of climate transfer distance. We also found that 

temporal variability of populations’ home climate was linked to phenotypic plasticity and 

populations from more temporally variable climates exhibited less interannual growth variability. 

These findings indicate that both spatial and temporal climate variability are critical in 

understanding genetic differences among populations. We also highlight the importance of 

assessing adaptive versus inevitable phenotypic plasticity among populations in future studies.   
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CHAPTER TWO 

Genetic differences in early growth patterns of black walnut populations: one size does not 

fit all  

ABSTRACT 

Many boreal and temperate forest tree species distributed across large geographic ranges are 

composed of genetically distinct populations that are adapted to the climate they inhabit. Forestry 

provenance studies and common gardens provide evidence of local adaptation to climate when 

associations between fitness traits and the populations’ home climates are observed. Most studies 

that evaluate tree height as a fitness trait do so at a specific point in time (i.e. they focus on 

cumulative growth at a given age). In this study, we model height growth from planting to age 10 

to elucidate differences in early growth patterns in Juglans nigra populations. The data 

comprised tree height measurements for 52 natural populations planted in one or more of 3 

common gardens, totaling 342 observations. We use the Chapman-Richards growth model in a 

mixed-effects framework and test whether populations differ in growth patterns by incorporating 

populations’ home climate into the model. We found that populations from warmer climates had 

the highest cumulative growth and reached maximum absolute growth earlier in time; 

populations from colder climates had a smaller size (cumulative growth), reached maximum 

absolute growth later in time, and had faster relative grow rates at any given age within our 

study’s age range.  Our results highlight the role natural selection may play in driving early 

growth patterns among populations within a tree species. They suggest that fast early growth 

rates are likely selected for in relatively mild environments that are presumably more 

competitive. Conversely, natural selection likely acts on cold tolerance rather than fast growth 

rates in harsh/cold sites. 
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INTRODUCTION 

Boreal and temperate tree species with extensive geographic ranges encounter high 

spatial climatic variability; they accommodate this variability by forming genetically distinct 

populations that are adapted to a segment of the climate within the species range. Specifically, 

natural populations synchronize their annual growth cycle, defined as alternating periods of 

active growth and winter dormancy, with the frost-free period of their respective localities 

(Morgentsern 1996; Howe et al 2003; Bennie et al 2010). When grown in common gardens, 

populations exhibit differences in phenology that result in differences in the length of the growth 

period.  Populations from colder climates, adapted to shorter frost-free periods, generally exhibit 

shorter growing seasons and are thus smaller. However, a shorter growing season in these 

environments confers them frost-hardiness and thus better cold tolerance. Conversely, 

populations from warmer climates, adapted to longer frost-free periods, are taller but more 

susceptible to late spring and early autumn frosts making them less cold tolerant (Campbell and 

Sorensen 1978; Rehfeldt et al 2004, 2018; Howe et al 2003; Aitken and Bemmels 2016).  

Genetic differences along climatic gradients in cumulative growth at a given age have 

been well documented for populations in many tree species (e.g. Rehfeldt 1988, 1989, 1990, 

1991; St Clair et al 2005; Thompson and Parker 2008; Rehfeldt et al 2014; Aitken and Bemmels 

2016; Saenz-Romero et al 2017; Leites et al 2019); however, few studies have modeled or 

described the early growth patterns that lead to those differences among tree populations. For 

many tree species, early growth patterns are crucial in determining the likelihood of tree survival 

(Petit and Hampe 2006). In a regenerating forest, trees must compete not only with other tree 

seedlings but with herbaceous plants and woody shrubs; therefore, rapid juvenile growth is 

critical in early stages of forest regeneration. In addition, when trees arrive at the stem exclusion 
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stage (when canopy closure occurs and density dependent mortality begins) with a competitive 

advantage, they are more likely to survive subsequent competition and to occupy a dominant or 

co-dominant position in the new canopy (Oliver and Larson 1996); therefore, the taller a tree is 

by stem exclusion stage, the more likely it is to outcompete neighboring individuals (Weiner 

1990; Oliver and Larson 1996).  

Early growth rates are more important in climatically mild sites where competition with 

other vegetation is high and stem exclusion stage is reached earlier. Populations from 

climatically milder sites grow more per year due to their longer growing seasons; however, it 

also likely that natural selection may favor faster early growth rates at these sites. Previous 

studies indicate that selection for growth rate in plants is related to environmental factors that 

influence productivity and competition dynamics (Rosielle and Hamblin 1981; Rose et al 2009; 

Dmitriew 2011). Slow growth rates are favored in climatically stressful environments, while fast 

growth rates are favored in resource-rich, or climatically-mild environments where competition 

is likely to be higher (Chapin et al 1993; Weis et al 2000; Kimball et al 2013). The combination 

of longer growing seasons with potentially higher growth rates would result in populations from 

mild climates displaying rapid growth early on, and reaching the inflection point on the 

sigmoidal curve that characterizes tree growth over time earlier than populations from colder 

environments.  

In this study, we model differences in early growth patterns of natural black walnut 

(Juglans nigra L.) populations grown in common gardens. Previous studies have found that this 

species exhibits significant patterns of genetic variation in height growth along climatic gradients 

(Leites et al 2019), and strong differentiation among populations in several other fitness traits 

(Wright and Lemmien 1972; Bey 1973,1979). Additionally, early growth patterns are very 
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important for this shade intolerant species (Baker 1949). In mixed forest stands, trees must reach 

a dominant position by stem exclusion phase to survive (Burns and Honkala 1990).  

To assess differences among populations’ early growth patterns, we model cumulative 

height growth, absolute growth rate, and relative growth rates of 52 natural populations between 

ages 1 and 10 following classical growth analyses (e.g. Pienaar and Turnbull 1973; Paine et al 

2012; Pommerening and Muszta 2016). Ultimately, these models will allow us to better 

understand tree species strategies to adapt to climate and their potential responses to climate 

change. We use data from provenance trials (common gardens), where differences among 

populations can be attributed to genetic differences (Davis et al 2005; Kremer et al 2014; 

Etterson et al 2016), and where clinal association between growth traits and the natural 

populations’ home climate can be interpreted as evidence for genetic adaptation to climate 

(Campbell and Sorensen 1978, Rehfeldt 1984, Aitken et al 2008; Alberto et al 2013). 

 

METHODS 

Data 

We used published and unpublished data from two provenance tests (common gardens) 

series, one established in 1967 (Bey 1973; Bey and Williams 1974) and another established in 

1980 (Waite et al 1988). These experimental series comprised three test sites located in Indiana, 

Pennsylvania, and Vermont, USA, and evaluated a total of 92 natural populations from the black 

walnut range (Little 1971). Each test site followed a randomized complete block design (6 blocks 

in Indiana and Vermont, and 5 in Pennsylvania), with four-tree row plots. Trees were planted 3.7 

meters (m) apart in Indiana, 3 m apart in Pennsylvania, and 2.5 m apart in Vermont. At each site, 
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total tree height was recorded at several ages between 1 to 10 years for all populations. We used 

the average tree height of each population at each age and test site. Climate normals for mean 

annual temperature for the period of 1961–1990 for all populations and test sites were obtained 

from Rehfeldt’s climate surfaces for North America at 1 km resolution (Rehfeldt 2006; data 

available at http://charcoal.cnre.vt.edu/climate;); this time period represents the climate prior to 

seed collection, and thus is a good representation of the population’s home climate as well as the 

climate during the test period. In this study, we used observations where populations were 

transferred to a test site within +/-2 0C of the population home climate to minimize the effect of 

transfer distance in the expression of innate growth potential for each population (Rehfeldt 1990; 

Rehfeldt et al 1999). Several studies have demonstrated the negative effect of transfer distance 

on growth potential, with maximum growth occurring close to home climate and decreasing as 

transfer distance increases in absolute terms (e.g. Carter, 1996, Rehfeldt et al 1999, Wang et al., 

2006, Leites et al, 2012). Accounting for climatic transfer distance (difference between the 

climate of origin and test site) was not possible due to the number of observations available and 

the model complexity. In total, 52 natural populations and 342 observations were used in this 

study (Figure 7 and Table 4). 

http://charcoal.cnre.vt.edu/climate
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Figure 7. Distribution of evaluated populations and test sites in relation to the mean annual 

temperature of the species range.  
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Table 4. Test establishment year, number of populations tested, test site MAT, population MAT 

range, and ages measured at each test site.  

Site Year 

established 

No. of 

populations 

MAT (0C) Pop. MAT 

range (0C) 

Ages 

Measured 

(years) 

Vermont 1980 29 7.1 5.4 – 8.9 1 – 6 

Pennsylvania  1980 19 9.4 7.7 – 10.9 1 – 10 

Indiana  1967 10 11.8 10.4 – 13.7 1 – 10 

 

Analysis 

To model populations non-linear height growth with age, we utilized the Chapman-

Richards (Richards 1959) growth function in a mixed effects framework (Equation 1); we 

considered test site and population as random effects affecting the asymptote, and age as a fixed 

effect. We chose to incorporate the test site as a random effect on the asymptote (β00) because 

site productivity is a strong determinant of maximum tree height (Oliver and Larson 1996). To 

test for population differences in growth patterns related to their adaptation to climate, we added 

mean annual temperature of the population’s home climate (MAT) as a fixed effect affecting the 

rate-related (β10) and shape-related (β20) parameters of Equation 1. In a common garden, 

observed clines in fitness traits along home climate gradients are interpreted as evidence for 

genetic differentiation in adaptation to climate (Campbell and Sorensen 1978; Rehfeldt 1984; 

Davis et al 2005; Etterson et al 2016). We use MAT because of previously observed clines with 

tree height in black walnut (Leites et al 2019), and in many tree species (reviewed by Aitken and 

Bremmels 2016).  If populations’ MAT improved model fit and its parameter was statistically 

different from zero, we interpreted it as evidence that early growth patterns differ among 

populations and that such differentiation is likely driven by adaptation to climate. We did not 
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incorporate MAT affecting the asymptote parameter to avoid overparameterization and to reflect 

the aforementioned relationship between maximum height and site quality.   

We evaluated models where population MAT affected either the rate-related (β10) or the 

shape-related (β20), and both simultaneously (full model presented in Equation 2). To evaluate 

the improvement to model fit, we used Akaike’s Information Criterion (AIC; Akaike 1974) and 

to evaluate the statistical significance of the fixed effect parameters we used a t-test with an α-

level of 0.05).   

𝐻𝑡𝑖𝑗k = (β00 + 𝑢𝑗 + 𝑢𝑖(𝑗)) ∗ (1 − 𝑒β10∗𝐴𝑔𝑒𝑘)
β20

+ 𝜀𝑖𝑗k                                                              (1) 

𝐻𝑡𝑖𝑗k = (β00 + 𝑢𝑗 + 𝑢𝑖(𝑗)) ∗ (1 − 𝑒(β10+β11∗MAT𝑖)∗𝐴𝑔𝑒𝑘)
β20+β21∗MAT𝑖

+ 𝜀𝑖𝑗k                             (2) 

Where Equation 1 is the baseline model and Equation 2 is the model with MAT affecting both 

the rate-related (β10) or the shape-related (β20) parameters. 𝐻𝑡𝑖𝑗𝑘 is the average height in 

decimeters (dm) of population i in site j at age k. β00,  β10 + β11 ,  and β20+ β21 are parameters 

for the asymptote, rate related, and shape related, respectively. MAT𝑖 is the mean annual 

temperature of population’s home climate i, 𝐴𝑔𝑒𝑘 is the population age, 𝑢𝑗  and 𝑢𝑖(𝑗) are the 

random effects for site and population nested within site, and 𝜀𝑖𝑗𝑘 is the error term.  

We constructed bootstrapped 95% prediction confidence intervals for the final model by 

using the variance-covariance matrix of the parameter estimates and resampling (n=1000) 

parameter estimates from the multivariate normal distribution to produce a range of predictions. 

We then used the 2.5 and 97.5 percentiles of the resampled predictions to get the upper and 

lower bounds for the interval.  The final model form was used to calculate absolute and relative 

growth rates through time (Appendix C; Pommerening and Muszta 2016). All analyses were 
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performed in the statistical environment R (v.1.2.1335 RStudio Team 2018). To fit mixed effects 

models, we used the package lme4 (Bates et al 2015). 

RESULTS 

The parameter estimates for the evaluated models are presented in Table 5. MAT was a 

statistically significant parameter and improved model fit when added to the rate-related 

parameter β10 (Table 5, model 2), to the shape-related parameter β20 (Table 5, model 3), and 

when added to both the shape-related parameter β20 and the rate-related parameter β10 (Table 5, 

model 4). However, model 3 had one of the lowest AIC and all parameters were significantly 

different from zero and was chosen as the final model (Figure 8, diagnostic plots and statistical 

summaries for the final model are presented in Appendix D and E). 

Table 5. Parameter estimates, model AIC, and standard deviation (S) of the residuals for models 

tested. Parameter significance at alpha = 0.05 is indicated by *. Final selected model is indicated 

by **. 

 Parameter   

Model Tested β00 β10 β11 β20 β21 Model 

AIC 

S 

Residuals 

1) Base 96.16* -0.17*  1.92*  1679 2.36 

2) Rate 

Related 

97.33* -0.085* -0.0093* 

 

1.95*  1631 2.05 

3) Shape 

Related** 

103.36* -0.16*  2.58* -0.076* 1617 2.06 

4) Rate and 

Shape Related 

105.73* -0.18* 0.0035 2.77* -0.099* 1617 2.08 
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Figure 8. Final model plots, (a) conditional predicted heights (using fixed and random effects) vs 

observed heights, (b) marginal predicted heights (using only fixed effects) vs observed heights. 

Site effects on the asymptote were accounted for in the random effect and were likely 

driven by differences in site quality and management, not climate (Figure 9). Although the 

Indiana test-site has the highest mean annual temperature (11.8 0C), it preformed similarly to the 

Vermont test site that has a mean annual temperature of 7.1 0C, while the Pennsylvania 

performed best having a mean annual temperature of 9.4 0C. Additionally, because we only used 

observations where populations were transferred within +/-2 0C of the population home climate, 

the impact of test site climate was likely diminished. 
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Figure 9. Differences in predicted height growth for each test site. Each line represents the 

predicted average height trajectory for each test site. Gray circles represent raw observations. 
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Figure 10. a) Predicted population tree height using the selected model for three hypothetical 

populations originating in cold (7 0C MAT), mild (10 0C MAT), and warm (13 0C MAT) 

climates. The 95% prediction confidence interval is represented by the gray band. Gray circles 

represent observations. (b) Calculated absolute, and (c) calculated relative growth rates for the 

same three hypothetical populations. 

Cumulative growth. Compared to populations from cold climates, populations from warm 

climates exhibit faster growth from an early age; but, these relative differences among 

populations decrease through time. At age 2, populations with a MAT of 13 0C are predicted to 

be 83% taller than populations with a MAT of 7 0C, by age 5 they are predicted to be 33% taller, 

and by age 10 they are predicted to be 11% taller (Table 6 and Figure 10a). 

Absolute growth rates (AGR). Populations from warm climates have higher maximum 

AGR and reach it much earlier in age compared to populations from cold climates. Populations 

with a MAT of 130 C are predicted to reach their maximum AGR of 8.97 dm/year by age 3, 

whereas populations with a MAT of 7 0C will not reach their maximum AGR of 7.97 dm/year 

until age 4.6. The age of maximum AGR decreases by 0.27 years for each additional degree 

Celsius in MAT. The maximum AGR decreases by 0.17 dm/year for each decreased degree 

Celsius in MAT (Table 6 and Figure 10b). After age 5, the higher absolute growth rate of 

populations from cold climates is the result of their faster relative growth rates.  

Relative growth rates. Given their larger size, populations from warm climates exhibit 

slightly slower relative growth rates per unit area through time. At age 2, populations with a 

MAT of 7 0C are predicted to grow 1.12 times their size while populations with a MAT of 13 0C 

grow 0.92 times their size. The difference in relative growth rate decreases with age and by age 5 
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the difference in relative growth rate between these populations is of 0.9 (Table 6 and Figure 

10c). 

Table 6. Predicted growth responses for hypothetical populations originating in cold (7 0C) and 

warm climates (13 0C). For mean height and absolute growth rate, percent change was calculated 

using the value at MAT 7 0C as the baseline ((the value at MAT of 13 0C – the value at MAT of 

7 0C) / the value at MAT of 7 0C).  

  Hypothetical Home Climate 

Predicted Response Age 7 0C 13 0C Percent 

Change (%) 

Mean Height, dm 2 7.0  12.8 82.8 

5 29.3 38.9 32.5 

10 63.6 70.3 11.5 

Absolute growth 

rate, dm/year 

2 6.1 8.6 41.9 

5 8.0 8.2 2.9 

10 5.4 4.7 -13.5 

Relative growth rate  2 1.19 0.92  

5 0.59 0.46  

10 0.40 0.31  

Age of Maximum 

Absolute Growth 

Rate (years) 

 4.6 3.0 

 

 

 

DISCUSSION 

In this study we model the early growth patterns of natural black walnut populations and 

find evidence of genetic differentiation related to population home climate. We use data from 

three test sites and include populations with MAT ≤ |2| oC of the test site MAT to reduce the 
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effect of climate transfer distance. As a result, the tests and populations are not fully crossed (i.e. 

each population is not tested in each test site). However, there is a small overlap in the MAT 

among populations tested in the three sites (Table 4). Some populations adapted to colder 

climates were tested in both the Vermont (cold climate) and Pennsylvania (mild climate) test 

sites. Similarly, populations adapted to warm climates were tested in the Pennsylvania (mild 

climate) and Indiana (warm climate) test sites. In general, populations from warmer climates 

were tested in the warmer test site, while populations from the colder climates were tested in the 

coldest test site. This limitation presents the possibility that effects attributed to MAT could be 

partly confounded with the test effect. However, we believe that the confounded test effect may 

not be important for two reasons. First, the magnitude of the test effect on the overall growth 

does not correlate with the test MAT. If these differences were confounded with test site climate, 

we would expect populations to perform best at the warmest test site. Although the Indiana test 

site has the highest mean annual temperature (11.8 0C), it performed similarly to the coldest test 

site in Vermont (7.1 0C). The Pennsylvania site actually performed best with a mean annual 

temperature of 9.4 0C. Second, diagnostic plots (Appendix E) show that the model fits all tests 

and populations equally well, making the confounding effect less likely to exist. If it existed, 

differences in residual distribution by site would likely be observed.  

Our models indicate that populations with the highest cumulative growth originate in 

warmer climates (as measured by MAT), while populations from colder climates are smaller. In 

fact, this difference is present at age 1, which is the start of the measurement period and the 

models we created. Yet surprisingly, populations from colder climates exhibit slightly faster 

relative growth rates at each observed age within the study’s range; these differences decrease 

through time. One possible explanation is that populations differ in phenotypic plasticity and 
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acclimation. However, the populations from colder climates were not tested in environments 

different from their home climate so there would be no reason for acclimation. Another possible 

explanation is that populations adapted to colder climates may grow more per day compared to 

populations from warmer climates to account for their shorter window of favorable growing 

conditions (reviewed in Alberto et al 2013). In either case, this result warrants further 

investigation. Despite the higher relative growth rates in early growth, populations from cold 

climates do not compensate for the cumulative growth difference observed at age 1, where our 

models start. 

 We also find evidence of a cline between the age of maximum absolute growth and 

home climate, although the shape of the cline is not discernible from these models’ predictions. 

In general, populations from warmer climates achieve maximum absolute growth earlier than 

those from colder climates (4.6 vs 3 years), which would provide a competitive advantage early 

on to populations from warmer climates. Additionally, part of the modeled differences in early 

growth patterns can be explained by the well-documented differences in phenology among 

populations of several tree species. These phenological differences, such as differences in bud 

break and bud set, translate partly into differences in growing season lengths and thus differences 

in cumulative growth (reviewed by Aitken et al 2016). The importance of competition during 

seedling and sapling stage, and differences in competition levels in climatically disparate sites 

are factors that also likely play a role in these early growth patterns. After a stand replacing 

disturbance, the rapid height growth of seedlings in a regenerating forest is critical for seedling 

survival as it competes for light with other vegetation; furthermore, the size of the sapling during 

the stem exclusion stage of forest development is a determinant of tree survival as density-

dependent mortality occurs (Oliver and Larson 1996). Therefore, patterns of fast early height 
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growth rates lead to taller trees better able to capture light resources and survive competition. 

Biophysical models of site productivity (e.g. Monserud 2006; Weiskittel et al 2011) indicate that 

climatically milder sites are on average more productive than climatically harsher sites. 

Competition is thus higher in these sites and stem exclusion stage is likely reached earlier (Oliver 

and Larson 1996). In these sites, natural selection is likely driven, at least in part, by competition 

dynamics.  

Conversely, it is likely that for populations adapted to cold climates, survival is more 

dependent on cold tolerance than overcoming competition (Hanninen 2016). A shorter growing 

season allows cold adapted populations to avoid late spring and early autumn frosts; therefore, 

they are more cold tolerant but exhibit less cumulative growth (Morgensten 1996). Natural 

selection may also favor slower early growth rates in harsh environments (Chapin et al 1993; 

Weis et al 2000; Kimball et al 2013). The trade-off between selection for cold tolerance and 

growth potential has been well documented in tree species (Rehfeldt 1991; Howe et al 2003; 

Aitken and Bemmels, 2016; Leites et al 2019) and more generally as an ecological strategy in all 

plant species (Grime 2006). For trees, the cline of the age of maximum absolute growth with 

home climate has received less attention (but see Rehfeldt et al 1991 for an example) and could 

provide insights on the tradeoff between competition and stress-tolerance driven selection. We 

also found that population differences in cumulative, absolute, and relative growth rates diminish 

through time. This is likely due to the initiation of competition among trees in the common 

gardens as they approached age 10. This competition would obscure the expression of genetic 

differences and likely decrease observed differences (e.g. Franklin 1979; Foster 1986; Rehfeldt 

et al 1991). Tree level mortality data, which could also explain decreased differences through 

time, is not available at all test sites.  However, original testing at the Vermont and Indiana sites 
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indicate that mortality rates were distributed randomly across populations and likely does not 

impact observed differences among populations (Bey and Williams 1974; Waite et al 1988).  

The differences we observed in early growth patterns support that intraspecific 

competition may be responsible for the displacement of populations from their optimal climate to 

colder climates within the species geographic range (Namkoong 1969; Matyas and Yeatman 

1992; Rehfeldt et al 2004; Rehfeldt et al 2018). For many tree species, populations inhabit 

climates slightly colder than optimal, with populations adapted to colder climates having a larger 

lag between their ecological and physiological optima (Rehfeldt et al 2018). The large 

differences in size as well as the earlier age of maximum absolute growth for populations from 

warmer climates, could lead to populations from colder climates being competitively excluded 

by those with higher growth rates. The mechanism behind this is well explained in Rehfeldt et al 

2004; in each new generation, the balance between competitive exclusiveness and stress 

tolerance needs to be re-established. At this point, asymmetric gene flow from the center of the 

distribution to the periphery, and competition-driven selection interact generating populations 

that do not inhabit their physiological climate optimum. Therefore, the distribution of 

populations within a species range, is the result of a balance between selection for competitive 

ability and for stress tolerance (e.g. Loehle 1998; Howe et al 2003; Rehfeldt, 2004; Bennie et al 

2010). 

In summary, populations originating in warmer climates exhibit faster cumulative growth 

rates through time compared to cold adapted populations (83% more at age 2). Populations 

originating in warm climates achieve maximum absolute height growth at an earlier age. Our 

results highlight the role that natural selection may play in driving differences in early height 

growth patterns among populations within a species. Competition driven selection is likely more 
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important in climatically mild environments and achieving a large size fast is critical. In 

climatically harsh environments, cold tolerance rather than large size is more important for 

survival. These results highlight that populations’ distribution within their range is the result of a 

balance between competition ability and stress tolerance.  
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APPENDIX A 

List of population home climate variables evaluated in Equation 1, 2, and 3. 

Climate variable Acronym 

Mean annual temperature, C MAT 

Mean annual warmest month 

temperature, C 

MWMT 

Mean annual coldest month 

temperature, C 

MCMT 

Frost free period FFP 

Degree-days below 0°C DD0 

Degree-days above 5°C DD5 

Summer heat moisture index SHM 

Hargreaves climatic moisture 

deficit, mm 

 

CMD 

Precipitation as snow, mm PAS 

Mean annual precipitation, mm MAP 

May to September precipitation, 

mm 

MSP 
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APPENDIX B 

List of annual weather variables at the test site evaluated to be used in Equation 3. Both the year 

evaluated and the year before were used in the correlation matrix for each weather variable. 

Climate variable Acronym 

Mean annual temperature, C MAT 

Mean annual warmest month temperature, C MWMT 

Mean annual coldest month temperature, C MCMT 

Annual relative humidity RH 

Mean annual precipitation, mm MAP 

May to September precipitation, mm MSP 

Degree-days above 5°C DD5 

Degree-days below 0°C DD0 

Summer heat moisture index SHM 

Annual heat moisture index AHM 

Hargreaves climatic moisture deficit, mm 

 

CMD 

Temperature difference between MWMT and MCMT, C TD 

Frost free period FFP 

Beginning of the frost-free period bFFP 

End of the frost-free period eFFP 

Mean annual solar radiation, MJ m‐2 d‐1 MAR 
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Hargreaves reference evaporation, mm 

 

EREF 

Winter degree-days below 0°C DD0_wt 

Spring degree-days below 0°C DD0_sp 

Average winter temperature, C Tave_wt 

Average spring temperature, C Tave_sp 

Average summer temperature, C Tave_sm 

Summer relative humidity, % RH_sm 

Summer Hargreaves climatic moisture deficit, mm 

 

CMD_sm 

Spring Hargreaves climatic moisture deficit, mm 

 

CMD_sp 

Spring precipitation, mm PPT_sp 

Winter precipitation, mm PPT_wt 

Winter precipitation as snow, mm PAS_wt 

Spring precipitation as snow, mm PAS_sp 
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APPENDIX C 

Model forms used to calculate absolute (A) and relative (B) growth rates from Equation 3 

(Pommerening and Muszta 2016).  

𝐻𝑡′ = β00 ∗ β10 ∗ (β20 + (β21 ∗ MAT)) ∗ (𝑒β10∗𝐴𝑔𝑒) ∗ (1 − 𝑒β10∗𝐴𝑔𝑒)((β20+β21∗MAT)−1)                   (A)        

𝐻𝑡′′ =  β10 ∗ (β20 + β21 ∗ MAT) ∗ ((1 − 𝑒β10∗𝐴𝑔𝑒)−1)                                                                (B) 

In Equation C, 𝐻𝑡′ is the absolute growth rate in dm. In Equation b, 𝐻𝑡′′ is the relative growth 

rate.  β00,  β10,  and β20+ β21 are parameters for the asymptote, rate related, and shape related, 

respectively. MAT is the mean annual temperature of the population, 𝐴𝑔𝑒 is the population age.  
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APPENDIX D 

Statistical summary and diagnostic plots for the selected model (Table 5, Model 3). 

Parameter Estimate SE Sum of 

Squares 

Proportion 

of 

Explained 

Variation 

β00 103.4 8.74   

β10 -0.16 0.0098   

β20 2.58 0.11   

β21 -0.076 0.0089   

σ Site 13.26    

σ Population within Site 8.41    

σ Residual 2.06    

Observed   131826.99  

Predicted (Fixed Effects)   115637.00 0.88 

Predicted (Complete 

Model) 

  128453.52 0.97 
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APPENDIX E 

 

 

Diagnostic plots for final model, (a) residual vs predicted height, (b) residual vs population home 

climate colored by test site, (c) normal quantiles plot for the residuals, (d) residual variation by 

site, and (e) residual variation by population within site. 

 


