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Abstract

Ferroelectric is a large group of functional materials that has outstanding ferroelectric,
piezoelectric, dielectric properties, and a wide range of applications, such as capacitors,
actuators, transducers, random access memories, waveguides, etc. One of the defining
features of the ferroelectric materials is the appearance of a complex switchable spontaneous
polarization domain structure, which determines the effective properties of the studied
material that leads to usage in different applications. In recent years, due to the increasing
demand for novel nanoelectronic devices, scientists have been working on nanoscale
domain engineering, which means understanding and manipulating the polarization
domain structures at the nanoscale, to search for potential answers to the next generation
semiconductors from a materials science perspective. In this dissertation, we study how
defect engineering, particularly, dislocations in SrTiO3 and non-stoichiometric charged
defects in BiFeO3, may contribute to the control of both local and long-range polarization
distribution at the nanoscale.

There is a long-standing interest in creating and stabilizing ferroelectric polarity
in non-polar crystals such as SrTiO3. Recently, measurable electrical polarization as
large as ∼ 28µC/cm2 has been reported at the dislocation cores in SrTiO3 bicrystals
[1]. The origin of this polarity was attributed to the flexoelectric effect, i.e., induced
polarization due to strain gradients. In this work, we systematically study the role
of flexoelectricity on inducing polarization around three types of dislocation cores in
SrTiO3, b = a(100) edge dislocation, b = a

2 (110) edge dislocation, and b = a(010) screw
dislocation. We demonstrate that, in the two edge dislocation cases, flexoelectricity has a
significant influence on both the polarization’s magnitude and distribution. It increases the
average polarization value and drives the polarization into a symmetric distribution. For
b = a(100) edge dislocation, the ferroelectric phase is mainly tetragonal and can exist even
without flexoelectricity, relying purely on the electrostrictive effect. For b = a

2 (110) edge
dislocation, electrostriction alone is not sufficient to stabilize the ferroelectric phases, and
flexoelectricity is essential for the presence of the orthorhombic polarization in this case.
Moreover, through tuning of the three flexoelectric coefficients, we recognize the shear
flexoelectric coefficient V1212 to have the largest effect on the stable polarization pattern
and magnitude for both types of edge dislocations. In contrast, in the b = a(010) screw
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dislocation cases, we learn that neither electrostriction nor flexoelectricity will be able to
stabilize any polar state in SrTiO3. Our findings provide an in-depth understanding of
the flexoelectric effects on the induced polarization around three dislocation cores, which
may potentially bring new insights into the defect engineering of ferroic materials using
dislocations.

A discussion about the role of dislocation core’s electric effect on polarization distribu-
tion and the comparison with the elastic contribution is also crucial for the comprehensive
understanding and prediction of polarization patterns near the dislocation cores in SrTiO3.
We explore the influence of defect charges on local polarization in room temperature
SrTiO3 of three types of dislocations, b = a(100) edge dislocation, b = a

2(110) edge dis-
location, and b = a(010) screw dislocation. We find that for edge dislocations, defect
charges have a shorter interaction range compares to the flexoelectric effect. The charge
induced polarization has a highly anisotropic distribution that is directly related to the
local stress state of the system. Defect charges, in the edge dislocation cases, lead to larger
polarization value at the dislocation core comparing to the flexoelectric and electrostrictive
effect, while the defect’s elastic effects have a broader impact region and larger magnitude
than the electric ones. Similar polarization distribution can be observed in experimental
characterization of regions around b = a(100) edge dislocations in SrTiO3 [1]. In the screw
dislocation case, the defect charges induce an almost isotropic polarization distribution
around the dislocation core. At the same time, flexoelectricity has no influence on the
polarization due to the contrary contribution of the non-zero shear stress to the flexoelec-
tric field. Overall, the pure electric effect of the defect charges leads to a nearly isotropic
distribution of local polarization within 1 nm around the dislocation core for all three
types of dislocations. The flexoelectric effect has a much larger impact on polarization
in the two edge dislocation cases than the screw dislocation case. The electrostrictive
effect only affects the polarization distribution in the two edge dislocation cases since
the location of the total free energy minima is shifted by the local normal stresses while
remaining almost unchanged with the presence of the shear stress components. These
results provide a comprehensive understanding of how the elastic and electric effects
of dislocations in ferroic materials help to stabilize the local polarization around the
dislocation cores.

Another type of defect engineering system that we investigate to control the ferroelectric
domain structures is the non-stoichiometric charged defect in BiFeO3. The differences
between this type of defect and the dislocation are, first, it has no lattice mismatch with
the matrix (zero eigenstrain); second, it is a two-dimensional defect. We study how the
planar non-stoichiometric charged defect configurations, including defect width, interval,
and location, may determine the thermodynamically most stable domain structure inside
the thin film. We perform high-throughput simulations varying the defect width, interval,
and height within a 200 nm BiFeO3 thin film. The trends for every energy term with
respect to the defect configurations are explained and analyzed. The stability of the 71°
domain strips above the charged defects is explained through the competition between
elastic and domain wall energy. We obtain an empirical formula that relates the defect
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width, position, and thin film thickness with the final domain pattern, which can be used
as a predictive tool for the occurrence of the 71° domain strips above the defects in similar
BiFeO3 thin film systems. Our conclusion is that there exists a minimal defect width that
favors 71° domain above the charged defect over a single domain state. The threshold
value is determined by the thin film thickness and the defect configuration. This result
provides a novel route to precisely control the 71° domain pattern formation in BiFeO3.

The planar non-stoichiometric charged defect in BiFeO3 of a smaller dimension (less
than 10 nm) may also affect the equilibrium domain structures in a ferroelectric thin film.
We perform high-throughput simulations varying the defect width, location, shape, charge
state, electric boundary condition, and initial domain structure within a 100 nm BiFeO3
thin film. We identify the factors that have significant influences on the polarization
distribution and several configurations that can stabilize the 109° domain wall, thus
applicable as a novel nanoscale domain engineering method. Under the short circuit
boundary condition, for a negatively charged defect, we found that the defect thickness
(or shape) determines whether we can get a local hedgehog state around the defect or
not. Varying the defect thickness also leads to a preference for either 180° or 109° domain
pattern below the defect. On the other hand, defect width and defect location have limited
influence on the final domain pattern. For neutrally charged defects, the domain pattern
is relatively insensitive to defect location and defect thickness. It favors a 109° domain
above the defect, except when the defect width is too small, and a single domain state is
preferred over the 109° domain pattern for the final polarization state. In the open circuit
cases, we observe smaller domains, in other words, a higher density of domain walls, and
more interaction between the charged defect and the 109° domain wall, comparing to
their short circuit counterparts. We discover that the initial domain structure, whether it
is random noise or a single domain, will affect the equilibrium polarization, indicating the
possibility of experimental tricks such as small miscut angle or introduction of built-in
potential may also contribute to the control of the as-grown domain pattern around the
defect. These results illustrate how we can utilize the defects as a novel method to control
the occurrence 109° domain wall in future nanoscale domain engineering applications.

This work presents in-depth understandings of the local and long-range polarization
pattern formation within two defect systems, which provides a solid basis for future
experimental design and validation. We discuss the flexoelectric, electrostrictive, and
defect charges contribution to local polarization around edge and screw dislocations in
SrTiO3. Further, we perform a series of high-throughput simulations to explore the
influences of non-stoichiometric charged defect configurations on long-range 71° and 109°
domain pattern stability in defect engineered BiFeO3. This work clearly demonstrates the
possibility and capability of precise domain pattern control through defect engineering,
which could be a viable route to the design and fabrication of more complicated ferroelectric
nano-devices.
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Chapter 1 |

Introduction

1.1 Overview

Ferroelectrics are a group of functional materials that exhibit ferroelectricity over a temper-

ature range. The defining characteristics are a complex microstructure of the spontaneous

polarization domain, which can be switched by applying an external electric field. Accord-

ing to symmetry, only 10 out of the 32 point groups are allowed to have ferroelectricity,

and all ferroelectric materials are automatically pyroelectric and piezoelectric. Thus,

ferroelectrics are one of the most widely used functional materials in many of our daily

applications. Ferroelectrics are old and young. It has a long history since researchers found

the first ferroelectric material almost a century ago in Rochelle salt [4] and KH2PO4 [5].

Since then, scientists have discovered various materials systems including BaTiO3 [6],

Pb(Zr,Ti)O3 [7], BiFeO3 [8], PbMg1/3Nb2/3O3PbTiO3 [9], etc., and have been studying

the physics of ferroelectrics, such as the phenomenological theory of ferroelectrics [10], the

lattice dynamics theory and phonon mode softening of ferroelectrics [11], morphotropic

phase boundaries in ferroelectrics [12], domain engineering of periodic polarization pat-
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terns within bulk single crystal [13]. Over the years, people have utilized ferroelectrics in

many applications, for example, the usage of BaTiO3 as high-dielectric constant ceramics

in capacitors [14], piezoelectric generator used in fuel igniter, piezoelectric motor and

actuator used in Microelectromechanical Systems (MEMS), ultrasonic transducer used in

medical ultrasonography, PbTiO3 pyroelectric thin-film infrared sensors [15], etc. On the

other hand, ferroelectric is also young because it is an active field of research, scientists

are still discovering and fabricating new materials in the recent decade, such as halide

perovskite ferroelectrics for photovoltaic applications [16], metal-free three-dimensional

perovskite ferroelectrics for flexible devices [17], the domain wall nanoelectronics [18],

transparent ferroelectric single crystal [19], etc.

From the materials science perspective, studying and controlling the material’s mi-

crostructure is always one of the most critical tasks, and within the context of ferroelectric

materials, microstructure means the spontaneous polarization domain pattern. In this

dissertation, we explore how do defects, such as dislocations and non-stoichiometric

charged defects, influence the polarization domain patterns.

1.2 Background of SrTiO3

SrTiO3 was first synthesized along with several other titanates in the 1950s. The natural

source of SrTiO3 was discoverd decades later, in an extremely rare mineral called tausonite.

At room temperature, strontium titanate (SrTiO3) is a perovskite paraelectric material,

with a cubic space group of Pm3̄m, lattice parameter of 3.9053 Å, and relative dielectric

permittivity of about 300. It is a wide band gap semiconductor, with an indirect band

gap of 3.25 eV and a direct gap of 3.75 eV [20]. Thus, SrTiO3 is a better insulator

compare to other perovskite complex oxides, such as BiFeO3, BaTiO3, LiNbO3, etc. At
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low temperature (105 K), SrTiO3 undergoes a structural transition, also known as the

antiferrodistortive transition [21], from cubic (space group Pm3̄m, point group m3̄m) to

tetragonal (space group I4/mcm, point group 4/mmm). The zone boundary phonon mode

softens, as the TiO6 cage (oxygen octahedra) in SrTiO3 rotates, and forms the oxygen

octahedral tilt domains structures [22,23]. According to Glazer [24], the tilt system for

SrTiO3 is a0a0c−, so only out-of-phase tilt along the c axis exists. The three letters of

glazer notation represent tilting along the pseudocubic [001], [010] and [001] axis, and

the superscript, which could be either -, +, or 0, represents whether the tilting angle of

neighbouring octahedra along that specific direction is the same, opposite or no tilting.

The glazer notation a0a0c− for SrTiO3 means no oxygen octahedra tilt along the a and b

axis, and out-of-phase tilt along the c axis which is the "elongated axis" in a tetragonal

system. The octahedra rotation angle is usually small, about 1° ∼ 2° according to [23,25].

The transition from cubic to tetragonal phase will lead to three degenerated phases, in

which the c axis of the tetragonal phase lies along the three perpendicular cubic axes.

Thus, in the phase-field modeling for SrTiO3, three out-of-phase tilting order parameters,

each describing the tilting along one of the three axes, is enough to represent all 6 of the

possible oxygen octahedral tiling phases. Figure 1.1 shows the crystal structure of the

cubic and tetragonal phases of SrTiO3, and illustrates the out-of-phase tilting along the c

axis in SrTiO3.

In SrTiO3, as the temperature decreases, there is another phonon softening mode

at the zone center Γ point (Γ15 mode) [26, 27], which is related to the ferroelectric

phase transition. This phonon softening is never fully completed, and such a tendency of

displacive ferroelectric phase transition gives SrTiO3 two new names, quantum paraelectric

and incipient ferroelectrics. These names come from researchers’ belief that it is the
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Figure 1.1. Blue spheres are Ti atoms, red spheres are O atoms, and green spheres are Sr
atoms. Left, the high temperature (>105K) cubic paraelectric phase. Middle, the low temperature
(<105K) tetragonal antiferrodistortive phase. Right, illustration of the out-of-phase oxygen
octahedral tilt of the antiferrodistortive phase in a pseudocubic manner. The octahedra in the
upper layer is rotated counterclockwisely around c axis, and the oxtahedra in the lower layer is
rotated clockwisely.

large quantum fluctuation that prevents SrTiO3’s transitioning from paraelectric phase to

ferroelectric phase [28,29]. Experimental evidence for the suppression of ferroelectricity

due to quantum fluctuation shows that as SrTiO3 deviates away from the Curie law below

35.5K, the dielectric constant reaches a plateau with value more than 10,000 as shown in

Figure 1.2.

A natural question to ask within the context of SrTiO3 quantum paraelectric is that

how we can break the central symmetry and stabilize the polar states. There are several

popular ways to achieve this goal, first, inducing local random field by doping, for example

substituting a small amount of Sr by Ca [31], Bi [32], Pr [33], etc.; second, inducing local

strain field through chemical substitution, for example, Fe [34]; third, isotope substitution

of the oxygen element from O16 to O18 [35] which stabilize a normal ferroelectric static

rather than the relaxor states in doped SrTiO3 due to local random field; fourth, utilizing

the mechanical effect, such as application of external stress [36] or clamping of the SrTiO3

lattice through epitaxial thin film growth [37]; fifth, applying giant external electric

field [38].
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Figure 1.2. Dielectric constants of monodomain SrTiO3 from [30].

There are many other interesting properties of SrTiO3, for example, it becomes

superconductor at 0.35 K [39], it is widely used as a substrate for epitaxial growth of other

perovskite thin films [40], it is a novel photocatalyst for the water splitting process [41],

and the LaAlO3/SrTiO3 heterostructures interface exhibits behaviors of 2 dimensional

electron gas [40].

1.2.1 Dislocations in SrTiO3

The plastic deformation of SrTiO3 exhibits an interesting three stages transition, from

ductile to brittle around 1000K, and then back to ductile again at higher temperature (this

temperature is different for various types of dislocations, 1500K for <100> dislocation,

and about 1300K for the others) [42]. For a cubic perovskite structure, we can obtain

all possible slip systems of dislocations as shown in table (1.1) [3], from which we can

calculate the Peierls stress τ using the equation (1.1). µ is the shear modulus, v is the
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Table 1.1. Possible slip system and their corresponding Peierls stress. [3]

Slip plane b d/b τ/µ

{001} <100> 0.5 3× 10−2

<110> 0.29 2× 10−1

{011} <100> 0.35 1× 10−1

<011> 0.25 3× 10−1

1
2<110> 0.50 3× 10−2

{111} <110> 0.2 5× 10−1

1
3<112> 0.35 10−1

Poisson’s ratio, b is the burgers vector, d is the interplanar spacing of the corresponding

slip plane.

τ

µ
=

2

1− v
e
− 2πd

(1−v)b (1.1)

Clearly, the full dislocation in <100>-{100} slip system and the partial dislocation in

1
2<110>-{110} slip system have the smallest Peierls stress, and thus are the easiest ones to

activate. According to experiment, in the high temperature regime the a<100>100 system

is activated, while in the low temperature regime the a<110>110 system is activated [42].

In experiment, researches have verified the existence of the partial edge dislocation pairs

of 1
2<110> [43], <100> edge dislocation [44] and <100> screw dislocation [45].

1.2.2 SrTiO3 parameters for phase-field modeling

Table 1.2: SrTiO3 coefficients for phase-field simulation

Name Meaning Value Unit

α1, α2, α3 Landau coefficient 4.05× 107 × [coth(54
T )− coth(54

30)] N ·m2

C2

α11, α22, α33 Landau coefficient 1.70× 109 N ·m6

C4
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Table 1.2: SrTiO3 coefficients for phase-field simulation

Name Meaning Value Unit

α12, α13, α23

α21, α32, α31

Landau coefficient 1.96× 109 N ·m6

C4

β1, β2, β3 Landau coefficient 1.32× 1029 × [coth(145
T )− coth(145

105)] N
m4

β11, β22, β33 Landau coefficient 1.69× 1050 N
m6

β12, β13, β23

β21, β32, β31

Landau coefficient 1.94× 1050 N
m6

γ1111, γ2222, γ3333

p, q coupling

coefficient
−1.74× 1029 N

C2

γ1122, γ1133, γ2233

γ2211, γ3311, γ3322

p, q coupling

coefficient
−0.755× 1029 N

C2

γ1212, γ2323, γ1313

γ1221, γ2332, γ1331

γ2112, γ3223, γ3113

γ2121, γ3232, γ3131

p, q coupling

coefficient
0.733× 1029 N

C2

C1111, C2222, C3333

Elastic stiffness

tensor
3.36× 1011 N

m2

C1122, C1133, C2233

C2211, C3322, C3311

Elastic stiffness

tensor
1.07× 1011 N

m2
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Table 1.2: SrTiO3 coefficients for phase-field simulation

Name Meaning Value Unit

C1212, C2323, C1313

C1221, C2332, C1331

C2112, C3223, C3113

C2121, C3232, C3131

Elastic stiffness

tensor
1.27× 1011 N

m2

Q1111, Q2222, Q3333

Electrostrictive

tensor
0.0457 m4

C2

Q1122, Q1133, Q2233

Q2211, Q3311, Q3322

Electrostrictive

tensor
−0.0135 m4

C2

Q1212, Q2323, Q1313

Q1221, Q2332, Q1331

Q2112, Q3223, Q3113

Q2121, Q3232, Q3131

Electrostrictive

tensor
0.0023925 m4

C2

R1111, R2222, R3333

Rotostrictive

tensor
8.7× 1018 m−2

R1122, R2233, R1133

R2211, R3322, R3311

Rotostrictive

tensor
−7.8× 1018 m−2

R1212, R2323, R1313

R1221, R2332, R1331

R2112, R3223, R3113

R2121, R3232, R3131

Rotoostrictive

tensor
−2.3× 1018 m−2

8



Table 1.2: SrTiO3 coefficients for phase-field simulation

Name Meaning Value Unit

V1111, V2222, V3333

Flexoelectric

coefficient
0.08 V

V1122, V1133, V2233

V2211, V3311, V3322

Flexoelectric

coefficient
2.6 V

V1212, V2323, V1313

V1221, V2332, V1331

V2112, V3223, V3113

V2121, V3232, V3131

Flexoelectric

coefficient
2.2 V

Gp1111, G
p
2222, G

p
3333

Gradient energy

coefficient for p
7.3266× 10−11 N ·m4

C2

Gp1122, G
p
2233, G

p
1133

Gp2211, G
p
3322, G

p
3311

Gradient energy

coefficient for p
-7.3266× 10−11 N ·m4

C2

Gp1212, G
p
2323, G

p
1313

Gp1221, G
p
2332, G

p
1331

Gp2112, G
p
3223, G

p
3113

Gp2121, G
p
3232, G

p
3131

Gradient energy

coefficient for p
7.3266× 10−11 N ·m4

C2

Gq1111, G
q
2222, G

q
3333

Gradient energy

coefficient for q
7.3266× 10−13 N

m2

Gq1122, G
q
2233, G

q
1133

Gq2211, G
q
3322, G

q
3311

Gradient energy

coefficient for q
-7.3266× 10−13 N

m2
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Table 1.2: SrTiO3 coefficients for phase-field simulation

Name Meaning Value Unit

Gq1212, G
q
2323, G

q
1313

Gq1221, G
q
2332, G

q
1331

Gq2112, G
q
3223, G

q
3113

Gq2121, G
q
3232, G

q
3131

Gradient energy

coefficient for q
7.3266× 10−13 N

m2

1 We have cubic symmetry for the parent phase, and only non-zero coefficients are

listed here. The conversions of tensor to voigt notation, which are also commonly

used in other literature [46, 47] are listed below.

2 γ11 = γ1111, γ12 = γ1122, γ44 = 4γ1212

3 C11 = C1111, C12 = C1122, C44 = C1212

4 Q11 = Q1111, Q12 = Q1122, Q44 = 4Q1212

5 R11 = R1111, R12 = R1122, R44 = 4R1212

6 V11 = V1111, V12 = V1122, V44 = V1212

7 G11 = G1111, G12 = G1122, G44 = G1212

1.3 Background of BiFeO3

BiFeO3, bismuth ferrite, is one of the most studied multiferroic materials. It has both

ferroelectricity and antiferromagnetism (a cycloidal spin order) [8,48]. At high temperature

(above 1203K), due to the structural instability, it is difficult to determine the crystal

structure, thus researchers proposed BiFeO3 has the cubic perovskite structure of space

group Pm3̄m in this range [49]. For temperature between 1093K and 1198K, the high

temperature cubic structure transforms into an Pnma orthorhombic paraelectric phase,
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Figure 1.3. The rhombohedral structure of BiFeO3 with oxygen octahedral tilt. Left, a primitive
cell. Right, two pseudocubic cells. Purple spheres are Bi atoms, red spheres are O atoms, and
brown spheres are Fe atoms.

which features a a−a−a+ oxygen octahedral tilt pattern. At about 1093K, there is

a paraelectric to ferroelectric transition, and BiFeO3 transforms into a rhombohedral

structure of R3c space group [50]. At room temperature the lattice parameter of BiFeO3 is

3.965Å, and the rhombohedral angle is measured to be 89.3° to 89.4° [51], with polarization

of 100µC/cm2 along the body diagonal direction [111] of the pseudocubic lattice. The

band gap of BiFeO3 is calculated to be about 2.3 to 2.8 eV [52], which means BiFeO3 is

much more conductive than SrTiO3.

Given the ionic radius of Bi, O and Fe, we can calculate the Goldschmid tolerance

factor t = rBi+rO√
2(rFe+rO)

= 0.88. The value is less than 1 meaning the oxygen octahedra

chain must buckle to squeeze into the lattice. In BiFeO3 the calculated octahedra rotation

angle along the polar axis is around 11°-14° [53], And the the Fe-O-Fe angle is about

154°-156° [54]. According to Glazer [24], the tilt system for BiFeO3 is a−a−a−, similar to

the SrTiO3 case, only out-of-phase components exists, thus three order parameters are

enough to describe the oxygen octahedral tilt in BiFeO3.

BiFeO3 is a G-type antiferromagnet (Néel temperature is calculated to be 643 K [55–
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57]), which means each Fe+3 spin is surrounded by six anti-parallel spins at Fe neighbors.

The preferred Fe magnetic moment orientation is perpendicular to the polar [111] direction,

and it may exhibit weak magnetism due to the canting of the antiferromagnetic sublattices

[58]. The antiferromagnetic spin order is inhomogeneous inside BiFeO3 bulk single crystal,

as researchers have found a 62-64 nm periodic, the antiferromagnetic incommensurate

spin cycloidal, along [110] direction in bulk system [59,60]. Such a cycloidal structure can

be destroyed and transform into a homogeneous state under a large external magnetic

field [61], or preparing the sample through epitaxial thin film growth [62]. Besides from

the ferroelectric and antiferromagnetic properties, BiFeO3 has some interesting optical

properties, for example, it is a photovoltaic material that absorbs near the violet edge

of the visible range [63]. BiFeO3 is also a photoelectrolysis that can potentially achieve

unassisted water splitting [64].

Similar to SrTiO3, BiFeO3 was first synthesized in the 1950s. In the early days, it was

difficult to obtain a single phase BiFeO3, since kinetically many impurity phases, such as

Bi2Fe4O9, Bi2O3, would also form [65]. It was also very difficult to a grow single crystal,

and the BiFeO3 ceramic was too leaky for any practical usage. Thus, back in history,

BiFeO3 was not as popular as it is now. The recent surge of interest in BiFeO3 starts from

the highly cited work from R. Ramesh et al. in 2003 that huge spontaneous polarization

(more than 10 times larger than the previously observed bulk value) was first reported in

epitaxial thin film [8]. Then, D. Lebeugle et al. were able to grow single crystal in 2007

and confirm the large polarization found in an epitaxial thin film to be intrinsic [66]. And

in the same year, even larger polarization value of 100µC/cm2 was observed [67].

The capability of growing a high quality epitaxial thin film and the coupling of optical,

ferroelectric, magnetic properties at room temperature enable scientists to design and
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envision the usage of BiFeO3 in various multifunctional nano-devices, such as electronics,

spintronics, photonics, etc. [48].

1.3.1 Charged defects in BiFeO3

Several types of charged defects are available in BiFeO3, among which the most widely

studied one is definitely oxygen vacancy. The defect is well known for contributing to

the leaky behavior of BiFeO3 at room temperature as Qi et. al found that Ni2+ doped

BiFeO3 becomes more conductive due to the higher level of oxygen vacancies and thus

higher density of carrier concentration [68]. Oxygen vacancies also play a major row in

the inhibition of BiFeO3 domain wall movement as the defects can migrate to their stable

configuration and form acceptor-oxygen-vacancy dipole pairs. Researchers have found

that methods which can prevent the formation of such dipole pairs, such as quenching

from above the Curie temperature that freezes the disorder defect state or re-oxidation

annealing that dissociates the defect pairs, are able to de-pin the domain wall, thus

significantly improve the domain wall mobility and ferroelectric performance [69,70]. The

relationship between oxygen vacancy and fatigue behavior of BiFeO3 is still under debate.

Some claim mobile carriers, such as oxygen vacancies, will stabilize and pin the charged

domain walls which lead to a fatigue behavior during multistep 180° switching [71], others

claim that the charged domain wall can still be switched under alternating field and it is

the charges injected from the electrode that pin the domains and lead to fatigue [72].

The second type of charged defect in BiFeO3 is the locally charged nonstoichiometric

nano-defects. For example, in the Nd, Ti co-doped BiFeO3, (Bi0.85Nd0.15)(Fe0.9Ti0.1)O0.3,

defects of a single unit cell Nd, O rich rode [73] and planar or stepped antiphase boundaries

(APBs) are formed [74]. These defects have a structure of edge sharing BO6 octahedra,
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and a negatively charged defect core that will induce local tetragonally distorted region

and thus stabilize a polar state within the originally antiferroelectric matrix [75,76]. A

second example is a planar defect embedded in BiFeO3, Bi2FeO6−x, which resembles an

Aurivillius phase with a single layer of FeO6 octahedra sandwiched by two layers of Bi2O2.

The defect is always perfectly epitaxial along the film growing direction, with no mismatch

for the in-plane direction but huge out-of-plane lattice shrinkage compares to the BiFeO3

matrix. This will induce out-of-plane lattice expansion in the neighboring ferroelectric

layer and, thus, enhancement in the magnitude of the polarization. Both the flexoelectric

effect due to the strong strain gradient near the defect and the negative charges due to

local non-stoichiometry will stabilize a head-to-head charged domain wall [77]. Another

example is a planar or stepped defect in un-doped BiFeO3 that structurally resembles the

charged defect in the Nb, Ti co-doped antiferroelectric BiFeO3. The stepped units are

formed by one pair of Bi atoms alternating with two pairs of Fe atoms, and the planar

units (normal vector parallel to <001>) are one pair of Bi atoms alternating with one pair

of Fe atoms. There is no mismatch between this type of defect and the BiFeO3 matrix,

but it possesses charges with an estimated charge density of −1.1Cm−2. The negative

defect charges will result in a head-to-head charged domain wall configuration [2]. This

defect is the one that we are mainly concerned in this dissertation. With the development

of thin film growth techniques, researchers are able to roughly control the shape, size, and

location of these charged defects [2, 78], and thus a new dimension of defect engineering

that will help to manipulate the domain and domain wall structure is awaiting us to

explore.

1.3.2 BiFeO3 parameters for phase-field modeling
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Table 1.3: BiFeO3 coefficients for phase-field simulation

Name Meaning Value Unit

α1, α2, α3 Landau coefficient 4.64385× 105 × (T − 1103) N ·m2

C2

α11, α22, α33 Landau coefficient 2.2905× 108 N ·m6

C4

α12, α13, α23

α21, α32, α31

Landau coefficient 3.0636× 108 N ·m6

C4

α111, α222, α333 Landau coefficient 5.9919× 107 N ·m10
C6

α112, α113, α221

α223, α331, α332

Landau coefficient −3.3398× 105 N ·m10
C6

α123, α132, α213

α231, α321, α312

Landau coefficient −1.7775× 108 N ·m10
C6

C1111, C2222, C3333

Elastic stiffness

tensor
2.280× 1011 N

m2

C1122, C1133, C2233

C2211, C3322, C3311

Elastic stiffness

tensor
1.28× 1011 N

m2

C1212, C2323, C1313

C1221, C2332, C1331

C2112, C3223, C3113

C2121, C3232, C3131

Elastic stiffness

tensor
0.65× 1011 N

m2

Q1111, Q2222, Q3333

Electrostrictive

tensor
0.032 m4

C2

Q1122, Q1133, Q2233

Q2211, Q3311, Q3322

Electrostrictive

tensor
−0.016 m4

C2

15



Table 1.3: BiFeO3 coefficients for phase-field simulation

Name Meaning Value Unit

Q1212, Q2323, Q1313

Q1221, Q2332, Q1331

Q2112, Q3223, Q3113

Q2121, Q3232, Q3131

Electrostrictive

tensor
0.010075 m4

C2

Gp1111, G
p
2222, G

p
3333

Gradient energy

coefficient for p
7.3266× 10−11 N ·m4

C2

Gp1122, G
p
2233, G

p
1133

Gp2211, G
p
3322, G

p
3311

Gradient energy

coefficient for p
-7.3266× 10−11 N ·m4

C2

Gp1212, G
p
2323, G

p
1313

Gp1221, G
p
2332, G

p
1331

Gp2112, G
p
3223, G

p
3113

Gp2121, G
p
3232, G

p
3131

Gradient energy

coefficient for p
7.3266× 10−11 N ·m4

C2

1 We have cubic symmetry for the parent phase, and only non-zero coefficients

are listed here. The conversions of tensor to voigt notation, which are also

commonly used in other literature [79] are listed below.

2 γ11 = γ1111, γ12 = γ1122, γ44 = 4γ1212

3 C11 = C1111, C12 = C1122, C44 = C1212

4 Q11 = Q1111, Q12 = Q1122, Q44 = 4Q1212

5 R11 = R1111, R12 = R1122, R44 = 4R1212

6 V11 = V1111, V12 = V1122, V44 = V1212

7 G11 = G1111, G12 = G1122, G44 = G1212
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1.4 Computational method

1.4.1 Phase-field model

Phase-field simulation is a powerful mesoscale computational materials science tool

for predicting microstructure evolution. It is suitable for a wide range of materials

science phenomenon, including solidification, solid state phase transition, grain growth,

dislocation dynamics, crack propagation, metallic insulator transition, superconductor

phase transition, ferromagnetic, ferroelectric and ferroelastic domain evolution, etc. The

usage of so-called order parameter to describe phase distribution with a continuous diffused

description of phase boundaries differentiate phase-field model from many other sharp

interface models. In a phase-field model, the interface is tracked automatically as the

order parameters evolve, while in other models interfaces are tracked manually which

consumes a large portion of the computation time.

Order parameter is the most important concept in phase-field modeling. It is a variable

(or a set of variables) that describes how the "phases" are distributed in your simulation

system. Such distribution (or "field") of order parameter gives us information about the

morphology of the microstructure that we are interested in. Thus obtaining the evolution

of the order parameter is equivalent of knowing the whole process of microstructure

development. There are two types of order parameters, one is conservative, which means

the change of order parameter at any location equals to the net flow into the voxel. This

type of order parameter is usually related to mass, thus obey the mass conservation law

and is governed by the Cahn-Hilliard diffusion equation, for example, concentration of

solutes in the solid solution. The other type is non-conservative, which is governed by

the Allen-Cahn type relaxation equation, for example, polarization in ferroelectric and ,
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magnetization ferromagnetic materials.

Before we get to the evolution of order parameter, I need to point out that there are two

types of phase-field models. The first one uses order parameters with physical meanings,

and provides a physical description of the total free energy for the simulation system

based on thermodynamics. The governing equation can then be obtained by minimizing

the total free energy. The second one uses abstract order parameter whose only purpose is

to represent the different phases in the system and to utilize the convenience of automatic

interface tracking, thus no free energy function can be provided, and people start the

modeling by directly write out the governing equation. Here we will only focus on the first

type of phase-field model, since this is the one that our ferroelectric model belongs to.

To get the equilibrium microstructure in our simulation, we need to minimize the

total free energy in the whole system. This is a calculus of variations problem that

requires performing functional derivative to solve. To be more precise and mathematical,

knowing the total free energy functional, F [η(rrr), η′(rrr)] =
∫

Ω f [η(rrr), η′(rrr)]dΩ, of the order

parameter η(rrr), which itself is a function of space, we want to solve for the function

(distribution of order parameter η(rrr)) that minimize the functional (total free energy F ).

rrr is the coordinate in space, and Ω is the domain of simulation. To obtain the evolution of

the order parameters, we can use the gradient descent method, which relates the change

of order parameter with respect time to the negative functional derivative of total free

energy with respect to order parameter, ∂η∂t = −L δFδη . The L in this equation is the kinetic

coefficient, which controls how fast the system evolves.

Now the problem becomes how we can express the total free energy using the given

order parameter. The answer will be completely different from case to case, but we can

say for sure there will be at least two parts, one related to the bulk energy and another
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one related to the interfacial energy. The bulk energy, also called the Landau free energy,

should have multiple minima in the order parameter space, each describing one of the

possible stable phases of the system. The interfacial energy is related to the gradient terms

of order parameters (these gradient terms are the reason for automatic interface tracking),

which we may call them gradient energy. Notice, gradient energy only contributes half of

the interfacial energy, the other half comes from the bulk or Landau terms. From now on,

we will focus on the ferroelectric materials and discuss the specific free energy terms in

our ferroelectric phase-field model. [46, 47,80–84].

The total free energy of ferroelectric includes the following four parts, Landau, gradient,

mechanical and electrical. There are a total of six order parameters in our model,

three for polarization vector ppp = (p1, p2, p3), usually on the order of 0.1 ∼ 1C/m2,

and the other three for oxygen octahedral tilt qqq = (q1, q2, q3), usually on the order of

10−12 ∼ 10−11m. The total free enery functioanl will be F (ppp(rrr), qqq(rrr), ppp′(rrr), qqq′(rrr), εεε,EEE) =

∫
Ω

(fland(ppp,qqq) + fgrad(ppp
′, qqq′) + felas(ppp,qqq, εεε) + fflex(ppp,ppp′, εεε, εεε′) + felec(ppp,qqq,EEE))dΩ. All lower case f is

the energy density and Ω is the volume of 3D simulation space. Details for each term will

be explained below.

The Landau free energy, equation (1.4), contain three parts, the polarization terms,

the oxygen octahedral tilt terms, and the coupling terms between ppp and qqq, all of which

has a simple polynomial form. The polarization and oxygen octahedral tilt parts are even

powered terms because due to symmetry, positive and negative order parameters states

should be degenerated. The highest order of the Landau free energy is determined by

the materials and the physics problems we are simulating, for example, first order phase

transition must have at least 6th order terms, while for second order phase transition the

minimum rank is 4. α, β, γ are the landau coefficients for polarization, oxygen octahedral
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rotation and coupling terms between ppp and qqq, respectively.

The subscript i, j, k, l in the following equations represent ranks of the tensor which is

related to the dimension of the simulation domain, thus in our 3D simulation they can

take values of 1, 2, 3. These equations are written in the Einstein notation, also known as

the Einstein summation convention. The rule is as follows, whenever an index appears

twice, a summation of all possible value for that terms is performed. The full form of the

equations can be found in the numerical method part, Section 1.4.2.

The gradient energy, equation (1.8), contains ppp′ terms for the polarization domain

wall , and qqq′ terms for the oxygen octahedral tilt domain wall. Similar to the Landau

energy, only even power terms exists, since the wall from lower to higher order parameter

and the wall from higher to lower order parameter must have the same amount of energy.

The electric energy, equation (1.5), is the electrostatic potential energy. κ here is the

relative dielectric constant, EEE in these equations is the electric field including contribution

from both external applied field and depolarization field. The electric field can be

calculated by solving the Poisson equation (1.10). The right hand side of Poisson equation

is negative of local charge density, through which the bound charge due to polarization is

considered. Equation (1.12) shows how we can consider the defect charges that in this

dissertation comes from two sources, first due to non-stoichiometry at dislocation cores in

SrTiO3, and second, due to non-stoichiometric nanoregions (NSNRs) in BiFeO3. More

details are discussed in the corresponding chapters.

The flexoelectric effect is the phenomena that strain gradient will contribute to the

final polarization distribution within the material. The flexoelectric coefficient, VVV , is

a 4th rank tensor which means it is allow to exist in materials of any point group by

symmetry. This is similar to the electrostriction, which is also described by a 4th rank
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tensor, and in contrast to the piezoelectric effect, which is a 3rd rank tensor that is only

allowed by symmetry in the 21 non-centrosymmetric point groups. The flexoelectric

energy, equation (1.7), couples the strain gradient with polarization and polarization

gradient with strain. Notice the strain ε here is the total strain of the system, including

both the elastic strain and eigenstrain. Please refer to these references [83,85] for more

details of why the flexoelectric energy is in such formation.

For the elastic energy, equation (1.6), ε is the total strain, ε0 is the eigenstrain

also known as the stress free strain. The total strain can be obtained by solving the

mechanical equilibrium equation (1.9). The eigenstrain, ε0, has multiple source. There

is the electrostrictive contribution Qijklpkpl, the rotostrictive contribution Rijklqkql, the

flexoelectric contribution vijklpk,l, and the defect (dislocation) contribution 1
2d0

(binj+bjni).

v here is the reverse flexoelectric strain coefficient that vijkl = SijmnVmnkl where Sijmn is

the elastic compliance. b is the burgers vector of our studied dislocation, and n is the

normal direction of slip plane. Please refer to these references for more details on the

phase-field model of dislocations.

By solving the equations (1.2, 1.10 and 1.9) together, we can get the evolution of

polarization and oxygen octahedral tilt domain structure, along with the strain/stress,

electric potential distribution, etc.

∂η

∂t
= −LδF

δη
(1.2)

F =

∫
Ω

(fland + felec + felas + fflex + fgrad)dΩ (1.3)

fland(p, q) = αip
2
i + αijp

2
i p

2
j + βiq

2
i + βijq

2
i q

2
j + γijklpipjqkql (1.4)

felec(p,E) = −1

2
Eiε0κijEj − Eipi (1.5)

21



felas(p, q, ε) =
1

2
Cijkl(εij − ε0ij)(εkl − ε0kl) (1.6)

fflexo(p, ε) =
1

2
Vijkl(

∂pk
∂xl

εij −
∂εij
∂xl

pk) (1.7)

fgrad(p) =
1

2
Gpijklpi,jpk,l +

1

2
Gqijklqi,jqk,l (1.8)

Cijkl(εkl,j − ε0kl,j) = 0 (1.9)

ε0κiiφ,ii = −ρ (1.10)

ε0ij = Qijklpkpl +Rijklqkql − vijklpk,l +
1

2d0
(binj + bjni) (1.11)

ρ = −pi,i + ρdefect (1.12)

1.4.2 Numerical method of the phase-field model for ferroelectric

In the previous section, we explained all of the necessary equations that make up our

phase-field model for ferroelectrics. In this section, we will discuss how to solve the

problem numerically.

First thing is to calculate the driving force for order parameters, which is the negative

of the functional derivative for energy density, dfη = − δf
δη , plug it back into equation (1.2)

so that we can obtain the actual PDE that we are solving.

Landau driving force

dfpiland = −2α1pi − 4α11p
3
i − 2α12pipjpj

df qiland = −2β1qi − 4β11q
3
i − 2β12qiqjqj (1.13)

The electric driving force is simply electric field. dfp1

elec = E1, df
p2

elec = E2, df
p3

elec = E3.

The elastic driving force is −2Cijkl(εij − ε0ij)Qklmnpn and −2Cijkl(εij − ε0ij)Rklmnqn

for polarization and oxygen octahedral tilt respectively. It is tedious and unnecessary
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to write out every terms, since we can use several nested for loops to easily calculate

the summation of repeating indices, thus the elastic driving force can be simplified as

equation (1.14).

[
Ap

]
3×3

=

[
C

]
3×3×3×3

[
Q

]
3×3×3×3

[
ε− ε0

]
3×3

(1.14)

[
Aq

]
3×3

=

[
C

]
3×3×3×3

[
R

]
3×3×3×3

[
ε− ε0

]
3×3

(1.15)

dfpielas = −2Apijpj

df qielas = −2Aqijqj (1.16)

Since the flexoelectric energy terms involve polarization gradient, we need to use the

Euler-Lagrange equation to calculate the flexoelectric driving force.

δfflex
δpi

=
∂fflex
∂pi

− ∂

∂xj
(
∂fflex
∂pi,j

) = −Vijklεkl,j (1.17)

→ dfpiflex = Vijkl
∂εkl
∂xj

(1.18)

For the gradient driving force term, similar to the flexoelectric part, we also need to

use the EulerâĂŞLagrange equation.

δfgrad
δpi

=
∂fgrad
∂pi

− ∂

∂xj
(
∂fgrad
∂pi,j

) = −Gpijklpk,lj (1.19)

δfgrad
δqi

=
∂fgrad
∂qi

− ∂

∂xj
(
∂fgrad
∂qi,j

) = −Gqijklqk,lj (1.20)
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So now the TDGL becomes

∂pi
∂t

= LGpijklpk,lj + L(dfpiland + dfpielec + dfpielas + dfpiflex) (1.21)

∂qi
∂t

= LGqijklqk,lj + L(df qiland + dfpielas) (1.22)

The flow chart, Figure (1.4), illustrate the procedure of our program. From the driving

force equations above, we know that the elastic driving force and flexoelectric driving force

depends on the strain distribution, and the electric driving force depends on the electrical

potential distribution. Thus, we need to solve the mechanical equilibrium equation and

Poisson equation before we can calculate those driving forces. Please see the appendix

for more details of solving the mechanical equilibrium and the Poisson equation under

various boundary conditions using fourier spectral method. Here we will only discuss how

the last step, solving TDGL is been done.

Equation (1.21) and (1.22) are the time dependent PDEs for ferroelectric phase-field

model that we are trying to solve. The method that we are using is call semi-implicit

Fourier spectral method.

Semi-implicit is the numerical algorithm that we are using to transform the time

dependent PDE into an iterative form. Other algorithms are explicit method, which treats

all of the order parameters on the right hand side of equation (1.21, 1.22) as known value

from previous time step, and implicit method, which treats all of the order parameters

on the right hand side as unknown value from current time step. Explicit method is

simple and fast, but not very stable and suffers from small time step size. Implicit method

has better stability, larger time step, but more difficult to solve, especially when there

is non-linear terms involved. Semi-implicit method treats part of the right hand side

from current time step (the gradient energy related terms), and rest of the terms as from
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Figure 1.4. Flowchart of the phase-field program
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the previous time step. Applying the semi-implicit method, gives us the set of equations

(1.23)



pn+1
1 − L∆t(G1j1lp

n+1
1,lj +G1j2lp

n+1
2,lj +G1j3lp

n+1
3,lj ) = pn1 + L∆tdfp

n
1

pn+1
2 − L∆t(G2j1lp

n+1
1,lj +G2j2lp

n+1
2,lj +G2j3lp

n+1
3,lj ) = pn2 + L∆tdfp

n
2

pn+1
3 − L∆t(G3j1lp

n+1
1,lj +G3j2lp

n+1
2,lj +G3j3lp

n+1
3,lj ) = pn3 + L∆tdfp

n
3

(1.23)

Fourier spectral method is the solver that we are using to solve the equation at each

time step. Other methods include, finite element method, finite difference method, finite

volume method, etc. Often, people may misunderstand finite element as a simulation

method similar to phase-field, but at a larger length scale. Finite element is a mathematical

solver for PDE regardless of the scale, and phase-field is a physics based theoretical model

which will utilize solvers such as fourier spectral method and finite element method to

obtain the solution. The benefit of spectral solver over finite element is its efficiency, since

fourier transform is a O(NlogN) algorithm, while finite element is a O(N3) algorithm.

On the other hand, the advantage of finite element compared to fourier spectral method

is the scalability, as the communication overhead of fast fourier transform is higher than

finite element in parallel computing.

Performing fourier transform to equations (1.23), we will get equations (1.24), from

which we can obtain the solution of ppp in reciprocal space by multiplying the inverse matrix,

and thus the final solution of polarization distribution in real space after a backward

fourier transformation.
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→


1 + ξjξlL∆tG1j1l ξjξlL∆tG1j2l ξjξlL∆tG1j3l

ξjξlL∆tG1j1l 1 + ξjξlL∆tG1j2l ξjξlL∆tG1j3l

ξjξlL∆tG1j1l ξjξlL∆tG1j2l 1 + ξjξlL∆tG1j3l




p̃n+1

1

p̃n+1
2

p̃n+1
3

 =


p̃n1

p̃n2

p̃n3

 + L∆t


d̃f
pn1

d̃f
pn2

d̃f
pn3

 (1.24)

As shown in Figure 1.4, we need to repeat the solving procedures above to push the

simulation system down the total free energy hill to an energy minima, in other word to

evolve order parameter and obtain the equilibrium state.

1.5 Objectives

As discussed in the previous sections, domain engineering is crucial for ferroelectrics in

real applications, and understanding the role of defects in polarization domain pattern

formation of ferroelectrics is an essential task for designing the domain or domain wall

microstructures and predicting the ferroelectric thin film properties. However, in the

experiment, it is impossible to have full control over the experimental conditions, such

as defect density, geometry, location, dimension, etc. On the other hand, the defects are

not only interacting with the local polarization but also with each other and the external

electric or mechanic excitation. Every complication related to domain pattern formation is

unavoidably included, such as the flexoelectric contribution, the electric contribution, the

electrostrictive contribution, defect distribution, the surface compensation, charge injection,

oxygen vacancies, etc. It would be challenging to elucidate the effect of each defect since

what we can measure and characterize in the sample is an effective value considering all the

above-mentioned complexity of the system. The power of computer simulation based on

the phase-field model is clearly demonstrated here that we have full control over the defect
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configurations, and we are capable of isolation contribution from individual free energy

terms. A detailed description of the single defect effect is important because it would allow

us to identify which types of defects undermine the properties and what configurations are

most suitable for stabilizing a specific type of domain patterns. The main objective of this

dissertation is to develop a theoretical model and study the polarization defect interaction

in ferroelectric materials from a simulation point of view to understand the details of how

the defect is affecting domain structure and to provide guidance to the defect engineering

for nanoscale domain engineering. We focus on two types of defects, the dislocation in

SrTiO3 and nonstoichiometric charged defect in BiFeO3 as the example systems to be

studied in this dissertation. The flexoelectric, electrostrictive, and electric contributions

to the local and long-range most stable polarization distribution are investigated within

our current ferroelectric phase-field model as described previously. However, the defect

dynamics, such as dislocation dynamics and oxygen vacancies migration, and the defect’s

interaction with each other, are not studied in this work.

The detailed objectives of this dissertation are as follows:

1. Investigate and compare the role of electrostrictive and flexoelectric effects on

stabilizing local polarizations in vincinity of b = a(100) edge dislocation, b = a
2 (110)

edge dislocation, b = a(010) screw dislocation cores in SrTiO3.

2. Investigate the influence of defect charges on the local polarization patern around

the three types of dislocations core, b = a(100) edge dislocation, b = a
2 (110) edge

dislocation, b = a(010) screw dislocation, in SrTiO3.

3. Explore the identify configurations of the nonstoichiometric charged nano defects in

BiFeO3 that stabilize 71° domain patterns.
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4. Explore the identify configurations of the nonstoichiometric charged nano defects in

BiFeO3 that stabilize 109° domain walls.

1.6 Dissertation structure

The objectives are addressed through four chapters, from chapter two to chapter five, in

this dissertation.

In Chapter 2 and 3, we set up ferroelectric phase-field simulations for SrTiO3 as

described in Chapter 1 with the presence of three types of dislocations, b = a(100) edge

dislocation, b = a
2 (110) edge dislocation, b = a(010) screw dislocation, and considering

both the energy contribution from oxygen octahedral tilt and flexoelectricity. First,

we focus on investigating the elastic effect of dislocation, which is studying how the

electrostrictive and flexoelectric effect due to the specific stress distribution around each

type of dislocation cores would affect the local polarization distribution. It is shown that

in the two edge dislocation cases, the flexoelectric contribution dominates and leads to a

mirrored polarization pattern with respect to the dislocation, while in the screw dislocation

case, neither electrostriction nor flexoelectricity has any influence on the surrounding

polarization. Then, we introduce an experimentally estimated amount of defect charges

at the three dislocation cores to consider the electric contribution of dislocations to the

locally induced polarization. Through the comparison with the elastic effects, we learn

that the defect charges lead to a smaller impacting region than the elastic effect, but a

larger polarization value at the dislocation core.

In Chapter 4 and 5, we study the second type of defect, the nonstoichiometric charged

defect in BiFeO3, and focus on how it may interact with the thin film BiFeO3 to stabilize

781° and 109° domain and domain walls. This defect has no lattice mismatch with the
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matrix, but it is charged due to the crystal structure. First, we explore the influence of

defect configurations, including defect width, height, and interval, on the stabilization of

71° domain patterns. We find a criterion that can determine whether a specific defect

configuration favors a single domain state or 71° strips state above the defect. Next, we

reduce the defect dimension down to around 10 nm and incorporate additional parameters,

including defect charge distribution, initial domain structure, defect shape, and electric

boundary condition, to find the defect and thin film configurations that can stabilize and

control the location of the 109° domain wall. We find that a neutrally charged defect (half

negative, half positive) that is larger than 3.2 nm within a short circuit thin film is the

optimum setup to achieve our goal.

In Chapter 6, conclusion of this work is summarized and possible directions for future

works, which I discussed interesting topics to continue down the route of my simulations.

And finally, there is an appendix, in which I derive in great detail of different elastic

solvers for several different boundary conditions using the Fourier spectral method.
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Chapter 2 |

Role of flexoelectric effect on

polarization around disloca-

tion in SrTiO3

2.1 Introduction

SrTiO3 is a quantum paraelectric, which structurally transform from cubic to tetragonal

at 105K (antiferrodistortive transition), and the transverse optical mode softens near 0k

while no ferroelectric transition can be observed [22,25,30,86]. There is a long-standing

interest in creating and stabilizing ferroelectric polarity in non-polar crystals such as

SrTiO3. Researchers have managed to find multiple ways to introduce ferroelectricity into

the normally paraelectric SrTiO3 at room temperature, such as non-stoichiometry [87,88],

thin film strain engineering [37,89,90], isotope [91], etc. Recently, measurable electrical

polarization as large as ∼ 28µC/cm2 has been reported at the dislocation cores in SrTiO3

bicrystals [1].
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Flexoelectricity, which is the coupling between polarization and strain gradient, indi-

cates that polarization can be induced deterministically given a strain gradient [92–94].

As a 4th rank tensor, flexoelectricity is presented in all symmetry, in contrast to piezo-

electricity which is absent in central-symmetric materials. Though universal, only in

materials of large dielectric permittivity, the flexoelectric coupling coefficient will be large

enough to result in observable polarization changes due to the strain gradient [85, 94–97].

The locally distorted region around dislocation core in dielectric material, such as SrTiO3

is definitely a spot that flexoelectricity will play an important role. And since SrTiO3

is not a ferroelectric material, at least it rules out the contribution to polarization from

piezoelectricity. However, at this point, we cannot conclude that flexoelectricity deter-

mines the polarization pattern around a dislocation core, because based on our prior

simulations [80], and literature results [98] a pure electrostrictive effect can also stabilize

ferroelectric phases. Unfortunately, it is impossible to explicitly identify the contribution

to polarization from the two effects through experiments. Thus in this work, we used

phase-field simulation to investigate the flexoelectric and electrostrictive influence on

polarization around dislocations in SrTiO3. Our phase-field ferroelectric model provides

a self-consistent way to isolate each of the flexoelectric coefficients that enables us to

identify and compare the effect for each one of them.

It is worth noting that dislocation in SrTiO3 itself is a complex topic [99]. It has rich

physical phenomena, that can significantly influence the material’s properties [99]. For

example, the interaction of dislocation cores with oxygen vacancies that leads to resistive

switching [100–102], the stabilization of local polarization [1], the dislocation reactions and

dynamics [3, 103,104], and etc. In this work, we focused on the mechanical effect of three

common types of dislocations, b = a(100) edge dislocation, which is widely seen at small
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angle grain boundary [1, 102] or in plastic deformation at high temperature [105, 106],

b = a
2 (110) edge dislocation, and b = a(010) screw dislocation, which can be observed

in SrTiO3 that undergoes plastic deformation at low temperature [42,105,106]. For the

b = a(100) edge dislocation, the atomic and electronic structure has been characterized

using the modern high-resolution STEM and EELS, which gives us information including

polarization. local charges, and strain mapping [1, 102]. For the b = a
2 (110) edge

dislocation and b = a(010) screw dislocation, no atomic resolution experimental data is

available. Thus, our phase-field ferroelectric simulation will be useful for understanding

the polarization distribution and role of flexoelectricity around b = a(100) edge dislocation

and predicting the polarization arrangement in b = a
2 (110) edge dislocation and b = a(010)

screw dislocation. For a fair comparison between the three types of dislocations, only

one single dislocation is introduced in all cases. In real world, however, b = a
2 (110) edge

dislocation always comes in pairs, but that is beyond the discussion of this dissertation,

and will be addressed in our future researches.

We systematically study the role of flexoelectricity on inducing polarization around

three types of dislocation cores in SrTiO3, b = a(100) edge dislocation, b = a
2 (110)

edge dislocation, and b = a(010) screw dislocation. We demonstrate that, in both edge

dislocation cases, flexoelectricity has a significant influence on both the polarization’s

magnitude and distribution. It increases the average polarization value and forces the

polarization into a symmetric distribution. For b = a(100) edge dislocations, the ferroelec-

tric phase is mainly tetragonal and can exist even without flexoelectricity and rely on

purely the electrostrictive effect. For b = a
2 (110) edge dislocations, electrostriction alone

is not sufficient to stabilize the ferroelectric phases, and flexoelectricity is essential for the

presence of orthorhombic polarization in this case. Moreover, through tuning of the three
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flexoelectric coefficients, we recognize the shear flexoelectric coefficient V1212 to have the

largest effect on the stable polarization pattern and magnitude for both types of edge

dislocations. In contrast, in the b = a(010) screw dislocation cases, we learn that neither

electrostriction nor flexoelectricity will be able to stabilize any polar state in SrTiO3.

Our findings provide an in-depth understanding of the flexoelectric effects on the induced

polarization around three dislocation cores which may potentially bring new insights into

the defect engineering of ferroic materials using dislocations.

2.2 Materials and Methods

Phase-field method, a phenomenological diffused interface model, is employed to simulate

the polarization distribution of bulk SrTiO3 with the presence of dislocation [80,81]. The

temporal evolution of local polarization and oxygen octahedral tilt can be described by

the time-dependent Ginzburg Landau equation (1.2) for two sets of order parameters P,

polarization, and Q, oxygen octahedral tilt. Detail forms for each free energy term is

shown in Einstein notation in the introduction chapter from Equation 1.4 to 1.8.

A self consistent distribution of order parameters can be obtained by solving the

TDGL equation (1.2), mechanical equilibrium equation (S1.9), and Poisson equation (1.10)

together. All of the coefficients that we used are listed in the Chapter 1 table (1.2).

The mechanical effect of dislocation is considered through the introduction of additional

dislocation eigenstrain into the system. The eigenstrain can be expressed as εdisij = binj ,

where b is the Burgers vector, n is the unit vector normal of the dislocation half plane [82].

In our simulation instead of a δ function, the Burgers vector is treated as a diffused value

to avoid numerical issues. We applied a normal distribution with variance equals to 0.5

around the dislocation loop. In this work, three types of dislocations are considered, an
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Figure 2.1. Comparison of stress distribution around (100) dislocation core between analytical
and simulation results. All data in comparison are taken from the stress profile along a line 1 nm
to the right of the dislocation core. (a), σ11 (b), σ13 (c) σ33. Subscript 1 means the horizontal
x direction. 2 means the y direction that goes into the paper which is invisible. 3 means the
vertical z direction.

edge dislocation b = a(100), n = (100), a partial edge dislocation b = a
2 (110), n = 1√

2
(110),

and a screw dislocation b = a(010), n = (100).

To demonstrate our model correctly capture the stress distribution around dislocation

core, we compared our simulation result with the analytical solutions, as shown in Figure

S2.1.

The flexoelectric effect is considered through the introduction of fflexo term in the total

free energy and an additional converse flexoelectric term for calculating eigenstrain [83,84].

We can make an analogy between electric field and flexoelectric field, which can be

calculated using the expression Vijkl ∂εkl∂xj
. The flexoelectric field distribution is an important

result that will help us to understand the role of flexoelectricity in affecting polarization.

SrTiO3 at room temperature has cubic symmetry, thus only 21 non-zero coefficients survive,

with three independent values, V1111, V1122, V1212. We must be aware that even though

flexoelectric coefficient is a 4th rank tensor, it is different from other more commonly seen

4th rank tensor, such as electrostrictive tensor, since the first two indices of flexoelectric

tensor are not commutable, which will lead to more independent variables within the
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Figure 2.2. The simulation setup. (a) A total of 75 jobs, with 5 sets of flexoelectric coefficient, 3
sets of Burgers vector, and 5 different random seeds, are calculated. (b) The (100) edge dislocation
setup, (c) (110) partial edge dislocation setup. (d) (010) screw dislocation setup.

tensor after symmetry analysis. It is coincidental that for cubic system, the amount of

independent variables happens to be the same for flexoelectric coefficient and other 4th

rank tensors.

3D bulk simulation of 512× 1× 512 grids (0.4 nm per grid) with periodic conditions

and stress-free boundary condition is set up. One pair of edge dislocations of opposite

Burgers vector are placed inside the simulation system, which form a closure inclusion

plane for dislocation so that the periodic boundary condition is fulfilled. In this work, we

have three groups of simulations. In two of them, b = a(100) edge dislocation (Figure

2.2(b)) and b = a(010) screw dislocation (Figure 2.2(d)), the two dislocations are put

at 1
4 and 3

4 of the vertical center line. The third type of dislocation is b = a
2 (110) edge

dislocation (Figure 2.2(c)), that the two dislocations are at 1
4 and 3

4 of the diagonal line.

The distance between the two imaging dislocations are 102.4 nm and 144.8 nm respectively,
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which should be enough to eliminate the interaction between each other. Besides from

the comparison between no-flexoelectricity and with-flexoelectricity (using experimentally

measured coefficients, V1111 = 0.08(V ), V1122 = 2.6(V ), V1212 = 2.2(V ) [85, 107]) to

demonstrate and explain the flexoelectric effect of edge dislocations, we also isolate each

of the independent flexoelectric coefficients and studied their individual’s effect because

the value for the flexoelectric coefficient is a controversial topic. There exists a huge

discrepancy between experimental measurements and theoretical calculations. So in the

future, even if more accurate measurement or calculation shows that the flexoelectric

coefficients of SrTiO3 are different from what we are using in this work, our data should

still be meaningful to the community.

2.3 Results and Discussion

The stress distribution and strain gradient distribution around b = a(100) edge dislocation

is shown in Figure 2.3. σ11 has the largest magnitude because it is directly affected by

the eigenstrain distribution due to the additional atomic plane inside the dislocation

loop. Electrostriction, as a quadruple relationship between polarization and strain, can

affect the shape of total free energy in Equation 1.3 and thus the equilibrium polarization

value [108]. This is illustrated in Figure 2.4 that tensile stress will favor the ferroelectric

phase along the tensile direction and compressive stress still favors the paraelectric phase

(not large enough to stabilize the ferroelectric state). As a result, polarization will be

suppressed inside the compressive stress region and enhanced inside the tensile stress

region.

The flexoelectric effect, on the other hand, correlates polarization’s orientation to the

strain gradient, which breaks the central symmetry and stabilize the ferroelectric phases
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Figure 2.3. Stress and strain gradient distribution around b = a(100) edge dislocation core. (a)
σ11, (b) σ33, (c) σ13, (d) ∇ε11, (e) ∇ε33, (f) ∇ε13. Subscript 1 means the horizontal axis to the
right, subscript 3 means the vertical axis to the up, and 2 is the axis goes into the paper plane.
Dislocation core is located at the center of the region labeled by the green marker.

directly. The strain gradient distributions in Figure 2.3(d), (e), and (f), show that gradient

of ε11 and ε33 are mainly along (001) direction while ε13 gradient is along (100) direction.

The ε11 gradient has the largest magnitude, nearly 3 times of ε33 and ε13 gradient. To

activate the flexoelectric effect, significant strain gradient and large flexoelectric coefficient

are the two necessities.

For a qualitative understanding of the contribution to the flexoelectric field from

each of the strain gradient, we multiply the maximum value of each strain gradient with

the corresponding flexoelectric coefficient and calculate the value of each flexoelectric

field component according to the following equations, Eflexo1 = V1111ε11,1 + V1133ε33,1 +

2V1313ε13,3, and E
flexo
3 = V3333ε33,3 + V3311ε11,3 + 2V3113ε13,1. The results are shown in

Figure 2.5. The area of the shapes in Figure 2.5 is proportional to the magnitude of the
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Figure 2.4. The total free energy landscape of SrTiO3 under various conditions. (a) stress
free. (b) 3% tensile strain along vertical y direction. (c) 3% compressive strain along vertical y
direction. (d) 3% shear strain.

value they are representing.

Since ε11,3 dominates, and flexoelectric field along z have the largest value, we will

naturally expect polarization to align along z direction. Surprisingly, the simulation result

proves our intuition is wrong. The reason will become clear as we discuss the results in

Figure 2.6 and 2.7.

The polarization distribution with and without flexoelectric contribution is shown in

Figure 2.6. Result in Figure 2.6(a) is consistent with the analysis in Figure 2.3(a) and

Figure 2.4(b,c) that if only consider electrostriction, it is possible to stabilize the polar

state in the tensile region below the dislocation core with the polarization distribution

along the tensile stress direction, and also remains in paraelectric phase in the compressive

region above the dislocation core. The reason polarization in Figure 2.3(a) is pointing
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Figure 2.5. Illustration of each strain gradient component’s contribution to the final flexoelectric
field for case 8. The light green column is strain gradient, the area of each circle is proportional to
the maximum value of that strain gradient component. The dark green column is the flexoelectric
coefficients for case 8, the area of which is proportional to the value of each flexoelectric coefficent.
The two rectangles in the right column represent the x and z component of flexoelectric field
vector. The area of each color shows the contribution from each strain gradient.

towards left is merely due to the initial random noise, as we have also observed the other

degenerate state with polarization pointing towards right, if starting from a different

noise distribution. Figure 2.6(b) shows that if flexoelectricity is taken into consideration

(case 2 setup), the polarization becomes mirrored with respect to z axis. The flexoelectric

field plotted in Figure 2.6(d) demonstrate more clearly the symmetric relationship of

the flexoelectric driving force for polarization around the dislocation core. But the

final polarization distribution is totally different from the flexoelectric field, indicating

that though there is a significant change in polarization pattern when flexoelectricity is

considered, electrostrictive effect still plays an important role in determining the final

polar state of Figure 2.6(b). We can draw the same conclusion based on the fact that

polarization distribution in Figure 2.6(b) has a much larger magnitude in the tensile

region below the defect compare to the compressive region above the dislocation. The bar
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Figure 2.6. Comparison of polarization distribution with and without flexoelectric effect.
(a) Polarization distribution without flexoelectricity. (b) Polarization distribution considering
flexoelectricity. The quivers in (a),(b) indicate the polarization vector, and the background heat
plot illustrates the magnitude of polarization. (c) Statistics of average and maximum Px, Pz and
P total magnitude. (d) Flexoelectric field distribution, quivers indicate the flexoelectric field and
background heat plot shows the magnitude of flexoelectric field.

plot in Figure 2.6(c) shows that flexoelectricity significantly boost the average polarization

magnitude within the plotted region as in Figure 2.6(b) that flexoelectricity has a much

larger influential region electrostriction. On the other hand, in terms of the maximum

polarization, flexoelectricity has limited effect, since the maximum value always appear

below the dislocation in the tensile region where the role of flexoelectricity is more of
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Figure 2.7. The polarization and flexoelectric field distribution using different flexoelectric
coefficients for b = a(100) edge dislocation. White quiver represent the plotted vector field, and
background heat plot shows the magnitude of the vector.(a, b, c) Polarization distribution. (d,
e, f) Flexoelectric field distribution. (a, d) non-zero longitudinal flexoelectric coefficient. (b, e)
non-zero transverse flexoelectric coefficient. (c, f) non-zero shear flexoelectric coefficient.

reorienting the electrostrictively stabilized polarization. The larger increase in maximum

Pz value is because in the pure electrostriction case, the tensile strain along x direction

suppress the occurance of polarization along z axis.

To further understand the influence of flexoelectricity, we took the advantage of

simulation and performed a series of calculation varying the flexoelectric coefficients.

Figure 2.7 shows the polarization and flexoelectric field distribution for three sets of

flexoelectric coefficient. Comparing the polarization pattern in Figure 2.7 (a), (b), and (c)

with the ones in Figure 2.6(a) and (b), we found that Figure 2.7(c) resembles Figure 2.6(b),

both of which has the mirrored shape, while Figure 2.7(a) and (b) roughly maintain the

uni-direcitonal distribution as in the without flexoelectricity case in Figure 2.6(a). This
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tells us that for the b = a(100) edge dislocation case, the shear flexoelectric coefficient

V1212 plays a more important role in shaping the polarization distribution than the

longitudinal and transverse flexoelectric coefficient. As shown in the analysis of Figure 2.3

and 2.5, non-zero V1111 activates ε11,1 and ε33,3, but because both strain gradients and the

coefficient are small, the magnitude of flexoelectric field in Figure 2.7(d) is small and thus

the polarization pattern is only slightly changed compared to the without flexoelectricity

case. Non-zero V1122 value leads to huge z component in the flexoelectric field due

to the large ε11,3 value, but such large driving force did not transform into enhanced

polarization along z axis. Similar to how strain engineering works in the epitaxial thin

film, tensile strain here favors polarization along the same tensile direction, and suppress

polarization in the perpendicular direction [80, 108]. At the dislocation core, even though

large flexoelectric field exists, it can only induce small vertical polarization because on one

hand the vertical polarization is not favored, and on the other hand the polarization needs

to try to align with the horizontal domain below the dislocation so that the electrical and

gradient energy can be reduced. For V1212, the combination of V1212 and ε13,3 result in the

largest flexoelectric field along x (Figure 2.5), thus a symmetric polarization distribution

with respect to the dislocation inclusion plane along the x direction is stabilized. And

for a similar reason as in the V1122 case, the flexoelectric field along z direction at the

dislocation core have no obvious effect on the final polarization pattern.

To understand how the magnitude of flexoelectric coefficient affect the final polarization

pattern, we did some additional simulations using flexoelectric coefficients equal to 2V,

as shown in Figure 2.8. The flexoelectric field scales linearly compared to the 1V cases

in Figure 2.7, but the polarization patterns are clearly different for the longitudinal and

transverse coefficient cases in Figure 2.8(a,b). For these larger coefficients, the flexoelectric
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Figure 2.8. The polarization and flexoelectric field distribution using different flexoelectric
coefficients for b = a(100) edge dislocation. White quiver represent the plotted vector field, and
background heat plot shows the magnitude of the vector.(a, b, c) Polarization distribution. (d, e,
f) Flexoelectric field distribution. (a, d) 2V non-zero longitudinal coefficient. (b, e) 2V, non-zero
transverse coefficient. (c, f) 2V, non-zero shear coefficient.

field is large enough to break out the local minima created by electrostriction and align

the polarization with the field direction. The uncertainty of the flexoelectric coefficients

is one of the problem for the study of flexoelectricity. There are discrepancies between

experiment and theory, as well as between different experimental measurements. These

uncertainties make the discussion of flexoelectricity more difficult as we have shown in

Figure 2.7 and 2.8 that the polarization pattern may be completely different when the

coefficients are only one time larger.

From Figure 2.3, 2.6, and 2.7, we learned several things, first, both polarization

magnitude and pattern could be significantly affected by the flexoelectric effect. Second,

though strain gradient and flexoelectric field may be large in some cases, it does not
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necessarily mean polarization will follow the flexoelectric field direction.

Figure 2.9. The changes in overall polarization with small increment in the flexoelectric coefficient.
Simulations in this graph are performed with only one non-zero flexoelectric coefficient while
keeping the other two zero, and the varying range of each coefficient is from 0 V to 3 V with an
increment of 0.1 V. For the percentage value of y axis, we need to first subtract the polarization
of smaller coefficient setup from the setup that the coefficient is larger by 0.1 V, and then sum
the magnitude of such polarization difference over the whole simulation system to obtain a scalar
value representing the total changes in polarization, then normalize it by the total polarization of
the smaller flexoelectric coefficient case. Peak on this graph means a small change in flexoelectric
coefficient will lead to large variation in the polarization distribution.

Since, on one hand, the magnitude of flexoelectric coefficients are extremely important

in terms of determining the polarization distribution, and on the other hand, accurate

coefficients are still undetermined in literature with only knowledge of the order’s of

magnitude. To get a better understanding of the effect for each flexoelectric coefficient, we

must discuss how does the magnitude of the coefficient will affect the polarization. Figure

2.9 shows the relative changes in polarization for every 0.1 V changes in the flexoelectric

coefficient. When the flexoelectric coefficients are small, the polarization distribution

and magnitude are mainly determined by the electrostrictive effect. While when the

flexoelectric coefficients are large enough to overtake electrostriction, the polarization

pattern will change greatly as the domain reoriented towards the flexoelectric field

directions, and peaks in Figure 2.9 occurs. When we further increase the flexoelectric
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Figure 2.10. Stress and strain gradient distribution around (110) partial dislocation core. The
dimension of the plotted region is 10nm by 10nm, and the dislocation is located at the center,
labeled by the green T shape marker.

coefficient, the polarization distribution is mostly unchanges and only the magnitude

becomes larger, thus the percentage of changing drops quickly. Figure 2.9 clearly indicates

that the polarization distribution is most sensitive to the shear flexoelectric coefficient, as

the peak comes at the lowest coefficient value but highest percentage magnitude.

Next, we performed the same set of calculation and analysis for b = a
2 (110) edge

dislocation. To our surprise, the results are vastly different from the b = a(100) edge

dislocation case. For b = a
2 (110) edge dislocation, the stress/strain tensor is rotated

by 45° compared to the b = a(100) edge dislocation, which means smaller maximum

stress/strain components and totally different strain/strain gradient distribution, both

have a significant influence on the polarization distribution. From the comparison of

Figure 2.10(a,b,c) and Figure 2.3(a,b,c), we can see that only σ11 has a similar distribution
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Figure 2.11. The polarization distribution using different flexoelectric coefficients for b = a
2 (110)

edge dislocation. (a) no-flexo. (b) case 2 flexoelectric coefficient (d) non-zero longitudinal
coefficient (e) non-zero transverse coefficient (f) non-zero shear coefficient. (c) Sum of total
polarization for each orientation angle with respect to the (100) direction. Peak means more
polarization is aligned along such direction.

in the two cases, while sigma33 and σ13 are completely different. As a result, the strain

gradient vector of ∇ε33 and ∇ε13 varies vastly in the b = a(100) edge dislocation and

b = a
2 (110) edge dislocation cases, which leads to different flexoelectric field distribution

and the induced polarization pattern.

As shown in Figure 2.11(a), no ferroelectric phase can be stabilized by b = a
2 (110) edge

dislocation without flexoelectricity. When flexoelectricity is considered, Figure 2.11(b),

similar to the analysis for b = a(100) edge dislocation, flexoelectric effect dominates the

polarization pattern, which leads to a symmetric distribution of polarization with respect

to the dislocation inclusion plane. There is no clear difference in polarization magnitude

above and below the dislocation, which is different from b = a(100) edge dislocation.
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Figure 2.12. Flexoelectric field distribution of case 2, 3, 4, 5 for (110) partial edge dislocation.

To get a better idea of the difference between b = a(100) edge dislocation and

b = a
2 (110) edge dislocation, we plot the angular total polarization in Figure 2.11(c),

in which x axis means the angle between polarization and the (100) direction and

y axis means the summation of polarization, higher y value means more noticeable

polarizations along such direction. The result shows that in b = a(100) edge dislocation

case, polarization is mainly along tetragonal direction as the angle is mostly 0° or 180° no

matter what flexoelectric coefficients are used. While for the b = a
2 (110) edge dislocation

case polarization is mainly along the orthorhombic direction, as peak angle appears at

about 45° and 135°.

In Figure 2.11 (d), (e), and (f) we isolate the contribution from each of the flexoelectric

coefficient and identify that still the shear flexoelectric coefficient V1212 has the largest

effect on polarization among all three coefficients. Due to the non-existence of polarization

under no-flexo condition, V1111 and V1122 are also capable of shaping polarization to follow

the flexoelectric field direction, which is different from the b = a(100) edge dislocation

case.

We may also plot the flexoelectric field distribution for b = a
2 (110) edge dislocation,

shown in Figure 2.12. As it is discussed in Figure 2.10, the fleoxelectric field of the partial

edge dislocation is not a simple rotation of the full edge dislocation case. Due to the smaller
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Figure 2.13. The results for b = a(010) screw dislocation. (a), (b) polarization distribution
without flexoelectricity and with case 2 flexoelectric coefficients, white dots are actually quivers
for polarization and the background color is the magnitude of the polarization.

magnitude of stress magnitude for b = a
2 (110) edge dislocation, the electrostrictive effect

is less significant compared to the b = a(100) edge dislocation case, thus the polarization

pattern in Figure 2.11 (b,d,e,f) roughly follows the direction flexoelectric field in Figure

2.12, with some minor differences in order to the reduce some of the electrostatic and

gradient energy. While in the b = a(100) edge dislocation case, the polarization pattern is

heavily influenced by the electrostrictive effect.

Figure 2.13 shows the results of polarization distribution around b = a(010) screw

dislocation core. From Figure 2.13 (a) and (b), we can drawe the conclusion that neither

electrostriction nor flexoelectricity will be able to stabilize any polar state in SrTiO3

around the screw dislocation.

As shown Figure 2.14 (a, b), b = a(010) screw dislocation will only introduce shear

strain/stress into the system. From Figure 2.4(d), we known that the electrostrictive effect

of shear strain can not stabilize the ferroelectric phases. For the flexoelectric effect of shear

strain related to b = a(010) screw dislocation, only the term Eflexo2 = 2V1212(ε12,1 + ε23,3)

survives. But from Figure 2.14 (c) and (d), we know that ε12,1 and ε23,3 will cancel each

other, thus lead to a net zero flexoelectric field and no induced polarization.

49



Figure 2.14. The results for b = a(010) screw dislocation. (a) σ12 distribution. (b) σ23
distribution. (c), (d) White quiver shows ∇ε12 and ∇ε23 respectively, background color is
distribution of ∂ε12∂x and ∂ε23

∂z , respectively.

2.4 Conclusion

In summary, we studied the role of flexoelectricity in stabilizing polarization at the

dislocation core in SrTiO3. Three types of dislocations, b = a(100) edge dislocation,

b = a
2 (110) edge dislocation, and b = a(010) screw dislocation, are investigated. The

effect of electrostriction and flexoelectricity is compared, and the contribution from the

longitudinal, transverse, and shear flexoelectric coefficients are also discussed.

We found that in the case of b = a(100) edge dislocation, both electrostriction and

flexoelectricity are able to stabilize tetragonal polar phases. While in the b = a
2 (110) edge

dislocation case, the electrostrictive effect is not large enough to induce any ferroelectric

state and flexoelectricity is essential to the final orthorhombic + tetragonal polar state. For

the b = a(010) screw dislocations, neither the electrostrictive effect nor the flexoelectricity

is able to stabilize any polar phases.
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In both edge dislocation cases, flexoelectricity dominates and leads to a similar mirrored

polarization distribution with respect to the dislocation inclusion plane. Maximum

polarization value of about 0.18C/m2 and 0.14C/m2 can be obtained for the b = a(100)

edge dislocation and b = a
2 (110) edge dislocation cases respectively. A minor difference

between the two cases is that for b = a(100) edge dislocation, polarization below the

dislocation is significantly larger than those above, while in the b = a
2 (110) edge dislocation

case, the difference in polarization magnitude above and below the dislocation is negligible.

Our study also identifies the shear component of flexoelectric tensor contributes the most

to the flexoelectric induce polarization around the dislocation core.

Further simulations of how the charged dislocation core due to non-stoichiometry,

may affect the local polarization distribution, and the interaction of multiple dislocations

within SrTiO3 are needed.

51



Chapter 3 |

Role of defect charge on po-

larization around dislocation

in SrTiO3

3.1 Introduction

Dislocations are the most common type of 1D defects in crystalline materials. It can

significantly influence various properties of the material, such as plasticity [42], electric

conductivity [43, 109, 110], magnetoresistivity [111], etc. Besides from the dislocation

stresses due to lattice mismatch at the core, dislocation in ferroelectric or dielectric

materials may also introduce defect charges into the system as the dislocation core has a

distorted lattice which breaks local charge neutrality [101]. Many researches have explored

the behavior of charges at dislocation core [43,112], and demonstrate that dislocations

can be considered as conducting filament which is particularly useful at the device level,

such as in the nanoionics-based resistive switching memories [113]. Other researches
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have shown that these dislocations in electroceramics will also lead to changes in the

polarization distribution around the core region [1, 114], attributed to multiple causes

including flexoelectric effect and local defect charges.

In perovskite electroceramics, such as SrTiO3, PbTiO3, dislocations may interact

with the polarization through three effects, the strain or electrostrictive effect, the strain

gradient or flexoelectric effect and the defect charges or the electric effect. Researchers

have studied how the presence of dislocations in ferroelectric materials will influence

properties, such as the transition temperature [115,116], piezoelectric [117] and dielectric

properties [118], but few have investigated how the three effects are affecting the local

polarization distribution and identify the contribution for each one of them. In the

past few decades, thanks to the advancement in electron microscopy and spectroscopy

techniques, we are now able to map polarization and local chemistry directly from EELS

and atomic resolution TEM image, but it is still very challenging to calculate the atomic

displacement around distorted lattice region such as dislocation. Due to the limitations

in both sample preparation and characterization techniques, researchers can only get

those extreme quality HRTEM images for the b = a(100) edge dislocation at the small

angle grain boundary. Thus phase-field simulation is needed to explore and isolate the

contribution to polarization from different sources and for various types of dislocations.

A discussion about the role of dislocation core’s electric effect on polarization distribu-

tion and the comparison with the elastic contribution will be crucial for the comprehensive

understanding and prediction of polarization patterns near the dislocation core in SrTiO3.

In Chapter 2, we have already discussed the mechanical effect of dislocation core and

studied the flexoelectric effect of the defect. In this chapter, we will further extend our

model and explore the role of defect charges in creating local polarization.
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We explore the influence of defect charges on local polarization in room tempera-

ture SrTiO3 of three types of dislocation, b = a(100) edge dislocation, b = a
2(110) edge

dislocation, and b = a(010) screw dislocation. We find that for edge dislocations, de-

fect charges have a shorter interaction range compares to the flexoelectric effect. The

charge induced polarization has a highly anisotropic distribution that is directly related

to the local stress state of the system. Defect charges, in the edge dislocation cases,

lead to larger polarization value at the dislocation core comparing to the flexoelectric

and electrostrictive effect, while the defect’s elastic effects have a broader impact region

and larger magnitude than the electric ones. Similar polarization distribution can be

observed in experimental characterization of regions around b = a(100) edge dislocations

in SrTiO3 [1]. In the screw dislocation case, the defect charges induce an almost isotropic

polarization distribution around the dislocation core. At the same time, flexoelectricity

does not influence the polarization due to the contrary contribution of the non-zero shear

stress to the flexoelectric field. Overall, the pure electric effect of the defect charges leads

to a nearly isotropic distribution of local polarization within 1 nm around the dislocation

core for all three types of dislocation. The flexoelectric effect has a much larger impact

on polarization in the two edge dislocation cases than the screw dislocation case. The

electrostrictive effect only affects the polarization distribution in the two edge dislocation

cases since the location of the total free energy minima is shifted by the local normal

stress while remaining almost unchanged with the presence of shear stress. These results

provide a comprehensive understanding of the elastic and electric effect of dislocations in

ferroic materials on stabilizing the local polarization around the dislocation cores.
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3.2 Materials and methods

We are using the phase-field method to simulate the polarization distribution around

dislocation within bulk SrTiO3, considering both the elastic and electric effect of the

defect [80,81]. In our current model, we have two sets of order parameters, the polarization

p, and the oxygen octahedral tilt, q, whose behaviors are described by the time-dependent

Ginzburg Landau equation (TDGL 1.2). Equation 1.4 through 1.12 exhibit a self consistent

thermodynamic based phase-field model whose coefficients are shown in table (1.2). Our

model takes the defect charge due to non-stoichiometry, dislocation stress, and flexoelectric

effect of non-uniform straind distribution into consideration by solving the TDGL (1.2),

mechanical equilibrium (1.9) and poisson equation (1.10) in a coupled manner.

The mechanical effect of the dislocation is introduced through the eigenstrain terms in

the equations [119,120]. In our simulation, instead of a δ function, the Burgers vector is

treated as a normal distribution with variance equals to 0.5 around the dislocation loop.

The electrical effect of the dislocation is considered by manually adding some defect

charges, qD, at the dislocation core which ends up on the right-hand side of the Pois-

son equation (1.10) [2, 78]. The amount of charges added is determined based on the

reported range of charges due to oxygen deficiency in high resolution STEM and EELS

characterization [102], and we picked an intermediate value of 0.96× 10−10C/m.

The flexoelectric effect is considered in the same fashion as in Chapter 2, with additional

terms in both the free energy and eigenstrain [83,84]. Though flexoelectric effect is not

the major concern of this chapter, it provides a reference for us to evaluate the effect of

defect charges.

3D bulk simulation of 512× 1× 512 grids (0.4 nm per grid) with periodic boundary

55



conditions and stress-free boundary condition is set up. One pair of dislocations with

opposite Burgers vector are placed inside the simulation system, which form a dislocation

inclusion plane so that the periodic boundary condition is fulfilled.

Among all of the possible dislocations in SrTiO3 [3], we focus on three of them,

b = a(100) edge dislocation, b = a
2(110) edge dislocation, b = a(010) screw dislocation.

To clarify the role of defect charges in term of inducing local polarization, we conduct

three groups of simulations, first, the main simulation that 0.96× 10−10C/m of charges

are added to the dislocation core and flexoelectricity is also considered, second, control

group 1 in which defect charges are still considered but without flexoelectricity, and

third, control group 2, 0 defect charges but with flexoelectric effect (using the following

coefficients, V1111 = 0.08(V ), V1122 = 2.6(V ), V1212 = 2.2(V ) [85, 107]).

3.3 Results and discussion

Through the comparison of polarization for different dislocation charge state in Figure 3.1,

we find that the polarization pattern for cases with and without defect charges are rather

qualitatively similar to each other in the two edge dislocation setups. In contrast, the

polarization distribution is vastly different in the screw dislocation case. This is due to

the fact that flexoelectricity, which plays a dominant role in shaping the polarization for

edge dislocations, has a negligible effect on screw dislocation, as it is shown in Chapter 2.

A more careful examination of the results in Figure 3.1 shows that in the edge

dislocation zero defect charge cases, there is a "hole" at the dislocation core where the

polarization magnitude is smaller than the surroundings, while non-zero defect charges

lead to an increased polarization magnitude at the core, thus filling the "hole". This

indicates that electrical effect due to defect charge and the mechanical effect, including

56



Figure 3.1. Comparison of polarization distribution with and without defect charges. White
quivers represent polarization vectors, background heat map shows the polarization magnitude,
and green crosses mark the location of dislocations. In all cases flexoelectricity are considered. (a),
(b), (c) with 0.96× 10−10C/m defect charge at dislocation core. (d), (e), (f) 0 defect charge. (a),
(d) b = a(100) edge dislocation. (b), (c) b = a

2 (110) edge dislocation. (c), (f) b = a(010) screw
dislocation.

electrostriction and flexoelectricit, have a different interaction length with polarization.

To quantitatively study how the interaction length is different, we plot the radial

distribution of maximum polarization around the dislocation core for the two control

groups of simulation that considers flexoelectricity and defect charge separately. In the

upper panel of Figure 3.2 in which only flexoelectricity are considered, the peak appears

around 5 to 6 nm, with a value of 0.175C/m2 for the b = a(100) edge case, 0.144C/m2

for the b = a
2(110) edge case. While in the lower panel of Figure 3.2 which is when

0.96 × 10−10C/m of defect charge is considered, the peak appears at around 1 to 2

nm, with peak value of 0.104C/m2 and 0.114C/m2 for the edge dislocation case and

0.079C/m2 for the screw dislocation case. This result demonstrates that the interaction

range of electric coupling between dislocation and the surrounding polarization is about 4
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Figure 3.2. Radial distribution of maximum polarization around the dislocation core. Lower
panel is for control group 1, when flexoelectricity is ignored, and defect charge is considered. The
upper panel is for control group 2, in which flexoelectricity is taken into account but without
defect charge.

nm shorter compared to the interaction range for strain gradient and local polarization

coupling.

Another phenomenon we notice in Figure 3.1 is that in the two edge dislocation cases,

the magnitude is slightly larger in certain regions when the charge is considered. This tells

us that the charges at the edge dislocation core will lead to a none uniform polarization

distribution. Result in Figure 3.3 shows how the polarization varies in all three dislocation

cases for our control group 1, in which flexoelectricity is turned off, and only defect charge

is considered. Such distribution is related to the tensile stress within the system, as you

can see in the Figure 2.3, Figure 2.10, and Figure 2.14 the tensile stress patterns match

with the charged induced polarization region in Figure 3.3.

The reasoning behind this is straight forward. For simulations in Figure 3.3(a,b,c),

there is only the quadratic electrostrictive coupling between polarization and stress, which
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Figure 3.3. Polarization distribution for control group 1 (a) b = a(100) edge, (b) b = a
2 (110)

edge, (c) b = a(010) screw. (d) Experimental polarization mapping around a b = a(100) edge
dislocation in 10° SrTiO3 bicrystal, the direction of polarization is indicate by the illustration
arrows on top, and the magnitude is shown by the color. The white trapezoid represents the
dislocation core. (e) Illustration of the free energy profile with respect to the polarization value
under different conditions. Red dash line shows energy profile of strong electrostrictive coupling.
Solid green line shows the energy profile when both external electric field and applied strain exists.
And the dot purple line shows the landau part of the total free energy, which can be considered
as a reference for the other two curves.

will modify the depth of free energy well, so the stress distribution will lead to non-uniform

changes of the free energy profile at different positions relative to the dislocation core. The

quadratic relationship will not break the symmetry of the paraelectric phase. However,

when it is coupled with the external field, in our case, the centrifugal electric field due to

the charges at dislocation core, the result is a local transition from paraelectric phase to

ferroelectric phase in a deterministic manner. This can only happen at locations where

the free energy barrier is lowered enough by the electrostrictive coupling. Figure 3.3(e)
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Figure 3.4. Angular distribution for the summation of total polarization for every 10° of
orientational angle. X axis is the angle between polarization and (100) direction. Left green axis
is for the results of control group 1, in which there is non zero defect charge but no flexoelectricity,
and right blue axis is for the results of control group 2, in which flexoelectricity is considered but
without defect charge. The three panels correspond to the three types of dislocation, as shown on
the right of the figure.

illustrate how the electric field and electrostrictive coupling contributes to modifying

the free energy profile. Figure 3.3(d) shows the experimental mapping of polarization.

This HAADF-STEM image is overlaid by the unit scale mapping of polarization value

perpendicular to the grain boundary from the extracted atomic positions. Clearly, the

plotted x component of polarization around the dislocation is mirrored with respect to

the dislocation inclusion plane, and the magnitude is significantly larger in the tensile

region below the defect compared to the compressive region above the defect.

surprisingly, our simulation result in Figure 3.3(a) matches very well with experiment.

The experimental image shows three features that are all qualitatively captured our

simulation results, first, polarization is mirrored over (100) plane around the b = a(100)
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edge dislocation core which sits on the small angle grain boundary in a bi-crystal setup.

Second, the maximum polarization appears below the dislocation in the tensile region of

about 0.1C/m2. Third, the maximum induced polarization appears in close vicinity to

the dislocation core, about or less than 1nm. While in contrast, the simulation result that

considered flexoelectricity in Figure 3.1(a) is quite different from the experiment, as the

influential region is much larger, and the direction of polarization above the dislocation

is the opposite compared to experiment. This indicates that in the experiment, at least

around the dislocation core, the flexoelectric effect is not as strong as we expected. A

possible explanation is that the flexoelectric coefficients may not be as accurate as we

wanted, since the three coefficients are from a different batch of measurements [85,107].

From Figure 2.8, we know that V1111 and V1212 have an opposite effect on induced

polarization. Thus it is possible that a variation in the flexoelectric coefficient may lead

to a different polarization distribution which resembles the experiment observation. In

order to study whether flexoelectricity or electric effect dominates around the dislocation

core, more experiments results for the b = a
2(110) edge and b = a(010) screw are needed,

but that’s beyond the scope of this simulation work.

The angular total polarization in Figure 3.4 shows the quantitative orientation dis-

tribution of polarization, in which peak means more noticeable polarization is aligned

along such direction. For the charged b = a(010) screw dislocation results in the upper

panel, the profile tells us that the seemingly isotropic pattern of Figure 3.3(c) is actually

larger along the diagonal direction and has a D4 symmetry in 2D point group. For

b = a(100) edge, the peaks appear around 0° and 180°, which are the tensile direction

for this dislocation. In the b = a
2(110) edge cases, the peaks show up at different angles

from the two control groups, as the polarization is reoriented towards the dislocation core
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Figure 3.5. Electric field and flexoelectric field distribution for the three types of dislocations.
(a), (b) and (c) electric field of control group 1, with defect charge, no flexoelectricity. (d), (e)
and (f) the flexoelectric field of control group 2, with flexoelectricity, but 0 defect charge.

rather than the tensile direction when only defect charge is considered. For both the two

edge dislocation cases, we can observe that the magnitude of total polarization for the

peak orientation is 4 times larger when the flexoelectric effect is considered compared to

cases only consider the defect charge. This again shows the dominance of flexoelectricity

over defect charge around edge dislocations in SrTiO3, confirming the results in Figure

3.1 (d).

The minimum value, on the other hand is rather similar for control groups 1 and 2,

which leads to a smaller peak to trough ratio for defect charges compared to flexoelectricity.

The results show that the combination of defect charge and electrostriction is more

permissive than flexoelectricity plus electrostriction in terms of the induced polarization

orientation. This can be explained by Figure (3.5) using the following two arguments,

first, defect charge is a point charge (in this 2D view, and line charge in 3D) which creates
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a centrifugal electric field, while flexoelectricity can be considered as a highly anisotropic

effective electric field, second, the effective electric field of flexoelectric effect is almost

2 times larger than the magnitude of defect charges’ electric field with a vastly larger

influential region.

There is a limitation of our current model. That is, we ignore the existence of free

carriers in the system. Though SrTiO3 is a very good insulator, some experiments have

shown that threaded dislocation in SrTiO3 may be considered as conduction filaments,

indicating that higher local free carrier density is available around the dislocation core,

which means charge screening of the dislocation nonstoichiometry will appear. This will

definitely affect the defect charge induced electric field and thus the local polarization

distribution, but due to lack of information for the band structure of dislocation core, we

cannot have a good estimation of the screening charges and do an ad hoc simulation. This

is something we need to address in the future by developing a new self-consistent model

that includes both the ferroelectric polarization and the migration and recombination of

free carriers in the system, which is beyond the scope of this dissertation and probably

deserves a dedicated thesis work.

3.4 Conclusion

In summary, we studied the defect charges effects on local polarization around three

types of dislocations in SrTiO3 single crystal, b = a(100) edge, b = a
2(110) edge, and

b = a(010) screw. We found that the charge induced polarization exists mainly within

5 nm region around the dislocation core, and peaks in less than 2 nm distance from

the core. The distribution of defect charge induced polarization is highly anisotropic

in the two edge dislocation cases, whose pattern is related to the tensile stress region
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around the edge dislocation. In the screw dislocation case, the defect charge leads to a

D4 symmetric pattern, with slightly larger polarization magnitude along the diagonal

directions. In our simulation, the charge effect dominates in the screw dislocation case,

while flexoelectricity plays a more important role in the two edge dislocation scenarios.

But a comparison between our simulation result and the experimental characterization

for b = a(100) edge indicated that the polarization distribution is mainly due to defect

charge, and flexoelectricity has a very limited effect around dislocation core. To obtain a

more accurate estimation of the flexoelectric effect and the coefficients, more experimental

measurements, especially the polarization mapping for the b = a
2(110) edge and b = a(010)

screw, are needed.

These results provide a comprehensive understanding of the elastic and electric effect of

dislocations in ferroic materials on stabilizing the local polarization around the dislocation

cores.
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Chapter 4 |

Control the 71° domain pat-

terns in BiFeO3 through de-

fect engineering

4.1 Introduction

Ferroelectrics are materials with spontaneous polarization that can be switched by exter-

nally applied electric field. One of the most interesting properties of ferroelectric materials

are the rich amount of polarization domain patterns and the evolution of them. After

decades of exploration, various applications have been proposed utilizing the domain

patterns in ferroelectrics that can be categorized into two categories, one using properties

of the domain walls and the other using properties of the domain itself. The physics

properties of domain walls are usually completely different from the bulk domain part,

for example, the ferroelectric domain walls are in many cases electrically more conductive

than the bulk part. Researchers have observed various levels of conductivity at the domain
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wall in BiFeO3 [121], anisotropic conductance depending on the domain wall orientation

in YMnO3 [122] and anisotropic conductance in terms of the measuring orientation in

BiFeO3 [123]. Several concepts for nanoelectronic devices have been proposed based

on these domain wall properties, such as nonvolatile resistance switching ferroelectric

memory that allows a non-destructive read-out through the highly conducting domain

walls in BiFeO3 [124, 125], and conformational domain wall switch that can transform

between three states which enable new logic possibilities in nanoelectronic devices [126].

Another example of the domain wall property that is vastly different from the bulk is the

thermoelectric conductivity [127], ferroelectric domain wall phonon polarizer has been

predicted in PbTiO3 that suppress transverse phonons and permit longitudinal phonons

due to the huge structural inhomogeneity at the domain wall [128], significant phonon

scattering has also been observed in BiFeO3 and KH2PO4 that decreases the effective

thermoconductivity of the material [129,130].

On the other hand, bulk domains also have a variety of interesting properties, for

example in BiFeO3, the unassisted photocatalytic water splitting due to the local electric

field induced by polarization bound charges at the interface/surface which facilitate the

carrier separation and diffusion [64]. Another example is the spatially selective reduction

of Ag on BiFeO3 surface as the reaction only happens in regions with upward domains

due to the difference in band bending of positive and negative domain at surface [131]. A

more popular example is the switchable ferroelectric diode of single domain BiFeO3 and

the photovoltaic effect within visible light wavelength range [132].

A common demerit of ferroelectric domain wall devices is the scalability issue due to

the physical limitation of minimum domain size. And one benefit of defect engineering

is that the domain location is strongly affected by the defect configuration, which helps
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to break the domain size limits imposed by domain wall energy in a predictable manner.

Though it is still not able to compete with the Si based solution used in CPUs and

memories that can scale down to several nanometers, it does broaden our possible choices

of building nano devices on the scale of 10 to 100 nm.

In order to utilize the functionalities of the domain walls and domains stated above,

researchers need to have full control over the domain patterns. The capability to control

the polarization domain in ferroelectrics and thus obtaining the desired properties, thus,

has always been one of the primary goals for ferroelectric researchers. Possible routes to

achieve such a goal include domain engineering in bulk single-crystal and ceramic, strain

engineering in epitaxial thin-film, defect engineering, etc. Chu et al. tried to control

the as-grown state of BiFeO3, whether it is 71° or 109° domain strips, by varying the

bottom electrode type and thickness [133]. Hong et al. constrained the dimension of the

ferroelectric materials using a superlattices setup and stabilize the complex topological

domain structures, such as vortices [134] and skymions [135]. Recently, a novel defect

engineering method for BiFeO3 has demonstrated its potential in controlling 71° domain

strips through the introduction of charged defect during epitaxial thin film growth [2].

Experiments in [2] were done by our collaborator, Dr. Linzi Li, from Professor Xiaoqing

Pan’s group in University of California at Irvine, which inspired us to further investigate

the defect engineering in BiFeO3 thin film that is discussed in this chapter.

In this chapter, we will explore and explain in a more systematic manner how the

defect configurations will result in different domain patterns in BiFeO3 thin film. We

study how defect engineering in BiFeO3, more specifically, controlling parameters of

the non-stoichiometric charged defect such as defect width, interval, and location, may

determine the thermodynamically most stable domain structure inside the thin film. From
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Figure 4.1. Experimental results. (a) Cross-sectional bright-field TEM image and corresponding
schematic of polarization structures showing ordered 71° and 109° domains separated by an array
of defects in a 400 nm BiFeO3 film. (b) PFM phase image showing the same periodically ordered
domain patterns in the same BiFeO3 film. [2]

the transmission electron microscopy and piezoelectric force microscopy results in Figure

4.1 (a) and (b), we observe the defects have an average dimension of tens of nm, locating

at the same height inside the BiFeO3 thin film. They always have a planar shape, either

parallel to a small angle to the film surface, and the 71° domain strip only appears above

some of the defects, while remaining in a single domain state above others. We perform

high-throughput simulations varying the defect width, defect interval, and defect height
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Domain setup Defect Width Defect Interval Defect Position

Case 0 (Base)

Case 1

Case 2

Case 3

Case 4

×

40 nm

60 nm

80 nm

100 nm

120 nm

×

40 nm

60 nm

80 nm

100 nm

120 nm

×

25 nm

50 nm

75 nm

100 nm

= 500 jobs

Figure 4.2. The parameter space that is explored with our high-throughput simulations.

within a 200 nm BiFeO3 thin film. The stability of the 71° domain strips above the

charged defects is explained through the competition between elastic and domain wall

energy. The trends for every energy term with respect to the defect configurations are

explained and analyzed. From which, we obtained an empirical formula that relates the

defect width, defect position, and thin film thickness with the final domain pattern, which

can be used as a predictive tool for the occurrence of the 71° domain strips above the

defects in BiFeO3 thin film. Our conclusion is that there exists a minimal defect width

that can stabilize 71° domain above the charged defect in favor of a single domain state.

The threshold value is determined by the thin film thickness and the defect location.

4.2 Materials and method

The simulation method that we use to relax the domain structures that we prepared

is called phase-field method. It is a mesoscale phenomenological model whose major

feature or advantage over other model is the introduction of a diffused interface between

phases instead of a sharp one, thus eliminating the needs to track the interface evolution

explicitly.

For the phase-field model of ferroelectrics, we are using polarization as our order
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parameter to describe the simulation system and differentiate between various polarization

domains. We solve the TDGL equation (4.1) using a semi-implicit fourier spectral method

along with the poisson equation (4.3) with short circuit boundary condition for thin film

surface and film/substrate interface, and the mechanical equilibrium equation (4.4) with

traction free boundary conditions on film surface and zero displacement somewhere inside

the substrate. The parameters of BiFeO3 that we are using can be found in Chapter 1.

∂Pi
∂t

=
δF

δPi
, (i = 1, 2, 3) (4.1)

F =

∫
V

(flandau + felec + felas + fgrad)dV (4.2)

∇ · (κ · ∇φ) =
−Pi,i + qD

ε0
φ|sur = 0, φ|int = 0 (4.3)

Cijkl(uk,lj − ε0kl,j) = 0, σi3|sur = 0, ui|bot = 0 (4.4)

Charged defects are introduced into the simulation system by adding a fixed source of

charges for the defect, qD, in the Poisson equation (4.3). The amount of defect charges

that we used is −1.1× 109C/m3, which is determined based on estimation of published

experimental HRTEM observations [2].

Our simulations have periodic boundary condition for the in-plane directions, and thin

film boundary conditions (stated above) for the out-of-plane direction, with a thin film

thickness of 200 nm. As it is shown in Figure 4.2, we performed a total of 500 simulations

jobs, considering 5 different defect width, 40nm, 60nm, 80nm, 100nm, 120nm, 5 different

defect intervals, 40nm, 60nm, 80nm, 100nm, 120nm, 4 different defect positions, 25nm,

50nm, 75nm, 100nm, for all 5 domain configurations in Figure 4.3. The meaning of width,

interval and height are illustrated in Figure 4.3a. The arrows and text in Figure 4.3c
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Figure 4.3. The 5 preset domain structures that we have studied. (a) Case 0, (b) Case 4, (c)
Case 3, (d) Case 2, (e) Case 1. Case number means one 71 domain strip every nth of defects.
The meaning of width, interval and height are marked in (a). Each color represent one type of
polarization domain, gray represents substrate, and the polarization directions are labeled in (c).
All four types of domain walls are labeled in (b).

illustrates the polarization vector direction, green domain is R2- domain (+,-,-), blue

domain is R1+ domain (+,+,+), pink domain is R3- domain (+,+,-), and gray part is

substrate. There are a total of 4 types of domain walls in our setup, marked in Figure

4.3b, type 1 is 71° neutral domain wall, type 2 is a 71° charged domain wall stabilized by

the charged defect along the wall, type 3 is a 109° neutral domain wall, type 4 is a 109°

charged domain wall also stabilized by the defect.
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Figure 4.4. Free energy components for Case 2 (Figure 4.3d) varying defect width and interval.
The defect height is fixed at 100 nm. (a) Elastic energy density. (b) Gradient energy. (c) Landau
energy density.

4.3 Results and discussion

It is impossible and unnecessary to show all of the results for every case since the difference

between the two setups is mainly the periodicity of the 71° domain above the charged defect.

We will use the analysis of Case 2 as an example, and then summarize the relationship

between elastic energy reduction, gradient energy, and the defects configurations based on

all 500 simulations.

In Figure 4.4, we examine the different energy components for Case 2 with a defect

height of 100 nm. Since the elastic and landau energy depend on the bulk volume of

the domains, which means they will scale with size, energy density instead of energy is

plotted for the comparison. While for the gradient energy, it only depends on the domain

wall area and domain wall type, irrelevant to the size of the system, thus the energy

rather than energy density is visualized. For a zero mismatch thin film setup, 71° or 109°
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domain strips are always elastically more favorable compared to a single domain state.

The reduction in elastic energy is related to the number of domain strips added to the

system. The elastic energy reduction reaches a maximum value when the alternating

domain strips are equal in width. This means for case 2, elastic energy will rise with the

increase of defect interval, while keeping the defect width constant. Thus the highest

elastic energy density is the case when the smallest amount of 71° domain exists. The

reason curve in Figure 4.4a is not monotonous is because the elastic energy is related to

not only the 71° domain above the defect, but also the 109° domains below the defect.

Elastic energy favors thinner domain strips, since thinner strips will match the substrate

lattice better, leading to a lower energy.

As shown in Figure 4.3b, there are 4 types of domain wall in the system, type 1 (71°

charge neutral) and type 3 (109° charge neutral) walls depend on the defect height, while

type 2 (71° charged) and type 4 (109° charged) walls depend on the defect width. Thus,

at a given defect height, as shown in Figure 4.3b, the gradient energy increases as the

defect becomes longer, while it remains unchanged when the defect interval varies. It is

important to point out that gradient energy alone only accounts for half of the domain

wall energy. The other half comes from the bulk part, the landau energy. This helps to

explain the result of landau energy density in Figure 4.3c. As the defect interval increases

under the same defect width and height, the bulk part of domain wall energy is constant.

But, since the total system size increases, the landau energy density decreases. The reason

that at a given defect interval and defect height, the landau energy density declines as the

defect width expands is that type 1 and type 3 domain wall contribute a major part to

the total domain wall energy which is a constant for all simulations in Figure 4.3c, so even

though type 2 and type 4 domain wall has a linear relationship with the defect width,
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Figure 4.5. Free energy components for Case 2 varying defect height and width. The defect
interval is chosen to be the same as defect width. (a) Elastic energy density. (b) Gradient energy.
(c) Landau energy density.

the overall domain wall energy normalized by the system volume is still decreasing. We

observe that the relative change of landau energy density is much smaller than the elastic

and electric ones because except the domain wall parts, the majority of the simulation

system are domains at their equilibrium.

Figure 4.5 shows results when defect heights and defect width are varying while keeping

the defect interval the same as the defect width. The lowest elastic energy density in

Figure 4.5a appears when defect width is the smallest and height is the largest. There are

two reasons for this. First, the higher defect position is, the larger 109° domains are below

the charged defect, which helps to release the elastic energy of single domain state. Second,

elastic energy favors finer domains as thinner domain strips have smaller misfit with the

substrate. For the gradient energy, since both defect height and width are changing, all 4

types of domain wall will vary under different conditions. The lowest energy case is when

both defect height and width are the smallest, because in such setup, the area of type 3
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domain wall is minimized (type 3 domain walls have larger total gradient energy than

type 1 domain wall) and the area of type 2 and type 4 domain walls are also minimized.

Analysis for the landau energy density is similar to Figure 4.5c, that it contributes to

part of the domain wall energy and the relative changes are small due to that most of the

domains are at equilibrium. The highest landau energy density is the case when defect

width is the smallest while the defect height is the largest, because this condition gives us

the finest domain strips and largest amount of 109° domain walls.

Figure 4.6. The elastic and gradient energy difference between Case 2 and Case 0.(a), (b) have
the same setup as in Figure 4.4. (c), (d) have the same setup as in Figure 4.5.

The above analysis is for the domain setup Case 2, but to compare the relative stability

of different domain configurations, we need to select a reference state and calculate the

difference in energy between each of the configuration and the reference. The reference we

choose is Case 0, in which no 71° domain appears above the charged defects. A subtraction

of all other cases with Case 0 will give us the amount of elastic energy reduction due to

the 71° strips over single domain state, as well as the amount of gradient energy increase
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due to the type 1 and type 2 domain walls. Figure 4.6 shows the changes in elastic and

gradient energy for Case 2 compared to Case 0. At a constant defect height, more elastic

energy is released as the proportion of 71° domain increases. Thus the largest elastic

energy reduction appears when width equals 120 nm, and interval equals 40 nm, as shown

in Figure 4.6a. The energy difference in gradient part, as shown in Figure 4.6 b and d, is

related to the two type 1, 71°, domain wall and one substitution of type 4, 109°, with type

2, 71°, charged domain wall. The gradient energy for type 1 domain wall is invariant as

long as defect height is fixed, but the energies of type 4 and type 2 domain wall depend

on the defect width. Since energy of type 2 wall is lower than type 4 wall, the lowest

gradient energy in Figure 4.6b appears when defect width is the largest. In Figure 4.6c,

when the defect width and interval ratio is kept constant, the elastic energy reduction

is the same for a specific defect height, because the percentage of 71° domain is fixed.

As the defect height increases, the volume of 71° above domain decreases, thus smaller

elastic energy reduction. In Figure 4.6d, the trend in changes of gradient energy with

defect width is the same as in Figure 4.6b. When defect height increases, the area of type

1 domain wall declines, thus the domain wall energy in Figure 4.6b becomes smaller.

Based on the previous analysis of different energy components and the difference

between various setups with respect to the reference, there is a clear and direct relationship

between the elastic energy, gradient energy and the defect width, interval, and height. To

parameterize such relationships, we plot and fit all of the energies in Figure 4.7. In Figure

4.7a, a categorical scatter plot of all elastic energy difference between the studied cases

(Case 1 to 4) and the reference state (Case 0). The fitting in the graph omits part of the

data for Case 1, because some of the defect widths to interval ratio is larger than 1 which

means the R3- (+,+,-) domain occupies more than 50% of the total width in x direction,
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Figure 4.7. Linear fitting of energies for all simulation setups. (a) The linear relationship
between elastic energy density and 71° domain percentage. (b) The gradient energy’s relationship
with defect width at various defect height. (c) The relationship between the gradient energy and
the defect height at various defect width.

under which circumstances the elastic energy will increase as the defect width further

rises. Thus, those blue points that represent cases when defect width is larger than half of

the total width in Case 1 are not taken into account in our fitting. The function for the

fitted line in Figure 4.7a is ∆EE = −7.65× 106 ∗ p(J/m3) , in which ∆E is the difference

of elastic energy density with respect to the reference case and p is the percentage of R3-

(+,+,-) domain in the system, the percentage is calculated by dividing the area of R3-

domain with the cross-section area of the whole thin film. Figure 4.7b and c show the

relationship between the gradient energy and the defect width and height, respectively.
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The uniform shift between fitted lines in FIG 4.7b and c indicate that gradient energy is

depending on both the width and the height linearly. If we plot the gradient energy on to

the defect width and height coordinate, they should align on one plane. The expression

for that plane is, ∆EG = −0.685×10−19 ∗w+ 2.715×10−19 ∗ (hf −h)(J) , in which ∆EG

is the difference of gradient energy between the current configuration and the reference

one, w is the defect width, h is the defect height, and hf is the thickness of the thin film.

Notice, the actual domain wall energy is twice of the gradient energy.

Knowing how the elastic energy, and domain wall energy changes with the defect

configurations, we can easily predict what is the necessary defect setups that can lead to a

71° domain strip above the defect instead of a single domain, or vice versa. For example,

if we want to obtain a 71° domain structure in a 200 nm BiFeO3 thin film, what are the

proper parameters for the defect? Let us assume the defect width and height is w and h,

and we know film thickness is hf = 200. Then −7.65× 106 ∗w× 10−9 ∗ (200−h)× 10−9 +

2 ∗ (−0.685× 10−19 ∗w + 2.715× 10−19 ∗ (200− h)) = 0 will give you the condition when

the elastic energy reduction equals the energy increase cause by additional 71° domain

walls. The solution w = −1.34407∗(200−h)
−0.0189195∗(200−h)−0.339988 tells us that for a given defect height,

which could be controlled by tuning the growth condition in the experiment, what is the

minimal defect width to allow a 71° domain strips. If in experiment, we can control the

defect to appear at the height of 100 nm, then the minimal defect width is about 60 nm,

to allow the appearance of 71° domain above the defect.

We may also evaluate this problem based on a purely analytical model. To calculate

the elastic energy release due to the introduction of 71° domain, we need to calculate the

elastic energy for a single domain and 71° domain state and do a subtraction. The elastic

energy reduction can be expressed as equation 4.5, capital W means the total width of
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the whole system, Ps is the equilibrium polarization, for BiFeO3 Ps = 0.52.

(
1

2
C44(2Q44P

2
s )2(W − w)(hf − h)− 1

2
C44(2Q44P

2
s )2w(hf − h))

− 1

2
C44(2Q44P

2
s )2W (hf − h)

= −1

2
∗ C44 ∗ (2Q44P

2
s )2 ∗ 2w ∗ (hf − h) (4.5)

Then, we can get energy density by normalizing the elastic energy with system size.

Furthermore, if we put numerical values of the coefficients into the equation 4.5, we will

get −7.08× 106 ∗ p(J/m3), which is qualitatively consistent with the fitted equation from

our simulation results.

For the domain wall energy increase due to the 71° domain, we can assume the domain

wall thickness is 0.5 nm, and the energy can be expressed as equation 4.6.

2 ∗ [2 ∗ 1

2
(G2323(2Ps)

2 +G1212(2Ps)
2)
√

2(hf − h)× 10−9 − 1

2
(G2323(2Ps)

2)2w × 10−9]

= 2 ∗G(2Ps)
2(2
√

2(hf − h)− w) (4.6)

If we put the numbers for the coefficients into equation 4.6, we will get −1.465× 10−19 ∗

w+ 4.439× 10−19 ∗ (hf − h)(J). This is also qualitatively consistent with the relationship

we fitted from phase-field calculations. The primary reason for the difference is that

the domain wall thickness we used in the analytical model is oversimplified as previous

publications have shown that the 71° domain wall may be thinner than 0.5 nm [136].
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4.4 Conclusion

In summary, we perform high-throughput simulations varying the defect width, defect

interval, and defect height within a 200 nm BiFeO3 thin film. We explain the competition

between elastic and domain wall energy through examining the difference for each free

energy terms between various setups. We find that there is a linear relationship between

the amount of elastic energy reduced, due to the introduction of twinning 71° domains

above the defects, and the size of the 71° twinning domains, which is related to the defect

width, interval, height, and film thickness. The gradient energy increase, that is due to the

appearance of a pair of 71° domain walls between the twinning domains and the switching

of 109° charged domain wall to 71° charged domain wall at the defect, is proportional to

the area of the relevant domain walls, which is linearly depending on the defect height

and width.

We obtain a criterion of defect configurations for the 71° domain strips to be stabilized

above the planar charged defects in BiFeO3 thin film, in other words, using the obtained

equation, we can determine whether the system is dominated by elastic or domain wall

energy given a specific defect width, interval, height, and film thickness. This work clearly

demonstrates the possibility and capability of precise domain pattern control through

defect engineering, which could be a viable route to the design and fabrication of more

complicated ferroelectric nano-devices.
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Chapter 5 |

The influence of defect topol-

ogy on polarization distribu-

tion

5.1 Introduction

The primary characteristic of the ferroelectric material is a spontaneous polarization

that can be switched by external applied field. Polarization domain structures can be

formed in all ferroelectric materials, which determines the macroscopic piezoelectric and

dielectric properties. This is a perfect example illustrating the microstructure and property

relationship, and researchers have been testing a wide variety of techniques to obtain

the correct polarization microstructure that has the optimum performance. Domain

engineering, thus, becomes an important aspect for the usage of ferroelectric materials in

real-life applications. Traditionally, domain engineering requires specific poling procedures

at the macroscopic level [137]. Recently, researchers are exploring domain engineering at
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nano-scale due to the increasing demand for novel nano-devices, as the semiconductor

industry is approaching the physical limitation [2, 78]. For a similar reason, domain

wall engineering is also proposed due to the domain wall’s unique properties that are

functionally different from the domains, such as the enhanced conductivity, photovoltaic,

and ferroelectricity, etc. [121,126,138,139]. The properties of different types of domain

walls are also different. For example, in BiFeO3, the 71° domain wall is less conductive

than the 109° domain wall [123], while 109° domain wall has a lower open circuit voltage

in photovoltaic measurements [140]. To take the full advantage of the rich properties of

the various domain walls, researchers are working on controlling the domain wall and the

domain patterns as precisely as possible.

Among the multiple ways to perform domain or domain wall engineering at nano-

scale, the one we focus on in this chapter is defect engineering [2, 78]. Defect exists

universally across all materials, and according to the published researches, most defects

have a significant influence on the performance of the ferroelectric material. For example,

dislocations may interact and pin the domain walls leading to an increase in coercive

field [120, 141–143], point defects may pin the domain wall [69, 144] and also may migrate

according to the ferroelastic domain distribution and cause a shape change in P-E loop

from single loop to double loop pattern [145], impurity defect or nonstoichiometry nano-

regions may stabilize head-to-head domain wall and cause a complete change of the most

stable domain patterns in thin film [2,73]. The charged defect may not only influence the

normal 109° and 71° domain wall, but also some novel topological polarization features,

such as vortex, anti-vortex, hedgehog and anti-hedgehog [78]. These emergent domain

states are previously only found to be stabilized through careful design of heterostructures

and application of external electric field, and they exhibit novel properties different from

82



Figure 5.1. Comparison of polarization distribution around defects in experiment and simulation.
(a, b, c, d) Polarization vector mapped from experimental HRTEM images. (e, f, g, h) the
corresponding phase-field simulation results with the same setup as experimental observations.

a conventional domain wall [135,146,147].

This work is inspired by one of my collaborations with Dr. Linze Li from Dr. Xiaoqing

Pan’s group, in which they manage to obtain HRTEM images with polarization mapping

around several different charged nonstoichiometric nano-region, as it is shown in Figure

5.1. Through tuning of various parameters, I was able to verify our hypothesis about

the charge distribution in experiment and reproduce almost perfectly results from the

HRTEM data. It is during this process that I found polarization is very sensitive to some

parameters, such as defect charge distribution, defect shape, electric boundary conditions,

while insensitive to many other parameters, such as defect size and defect location.

Thus in this chapter, we investigate how the nonstoichiometry nano-region in BiFeO3

thin film influences the local polarization distribution and try to answer the question of

whether this is a viable way to control or engineer the occurrence of 109° domain and

domain wall. We perform high-throughput simulations varying the defect width, defect

location, defect thickness, electric boundary condition, and initial domain structure within

a 100 nm BiFeO3 thin film. We identify the factors that have the most significant effect on
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polarization distribution and several configurations that can manipulate the 109° domain

wall, thus could be useful for nanoscale domain engineering. Under the short circuit

boundary condition, for a negative charged defect, we found that the defect thickness

determines whether you can get a local hedgehog state around the defect. Varying the

defect thickness also leads to a preference for the 180° or 109° domain below the defect. On

the other hand, defect width and defect location have limited change on the final domain

pattern. For net neutral charged defects, the domain pattern is relatively insensitive to

defect location and defect thickness. It almost always favors a 109° domain above the

defect except when the defect width is too small, and the final polarization state favors a

single domain state. For those configurations that 109° domain wall is stabilized, the wall

will be located precisely at the negative and positive junction of the defect, In the open

circuit cases, we observe smaller domains and high density of domain walls compared

to their short circuit counterparts, and interaction between the charged defect and the

109° domain wall or the flux closure triangular domain at the interface, We discovered

that the initial domain structure, whether it is random noise or single domain, will affect

the equilibrium polarization, indicating a possibility of experimental tricks such as small

miscut angle or introduction of built-in potential may also contribute to the control of

the as-grown domain pattern around the defect.

5.2 Materials and method

We used the phase-field method to evolve the polarization in BiFeO3 thin film considering

the existence of various types of charged defects. Phase-field is a mesoscale phenomeno-

logical model that excels in simulating microstructure evolution for all kinds of materials

systems.
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Figure 5.2. The 4 defect shapes that we have studied. Color represent the amount of defect
charges we added, navy blue means negative charge, bright yellow means positive charge. (a)
Case 1, loop shape, negatively charged defect. (b) Case 2, loop shape, neutrally charged defect.
(c) Case 3, planar shape, negatively charged defect. (d) Case 4, planar shape, neutrally charged
defect.

In the phase-field model for ferroelectrics, polarization is used as the order parameter

that describes the whole simulation system. The Time Dependent Ginzburg Landau

(TDGL) equation (5.1), Poisson equation (5.3), and mechanical equilibrium (5.5) are

solved together considering the thin-film electrical and mechanical boundary conditions.

All equations are solved using a semi-implicit fourier spectral method, and the boundary

conditions are considered through a superposition method. We introduce charged defects

into the simulation by adding a fixed source of charges, qD, at the defect location to the

right hand side of the Poisson equation (5.3). The amount of negative defect charges

that we used is −1.1× 109C/m3. The defect is also a non-polar structure, so that the

polarization within the defects are fixed as zero. Other BiFeO3 materials coefficents that
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we used can be found in Chapter 1.

∂Pi
∂t

=
δF

δPi
, (i = 1, 2, 3) (5.1)

F =

∫
V

(flandau + felec + felas + fgrad)dV (5.2)

∇ · (κ · ∇φ) =
−Pi,i + qD

ε0
(5.3)

Short : φ|sur = 0, φ|int = 0; Open : D|sur = 0, D|int = 0 (5.4)

Cijkl(uk,lj − ε0kl,j) = 0, σi3|sur = 0, ui|bot = 0 (5.5)

In this work, the simulated thin film dimension is lx = 102.4nm, ly = 0.4nm, lz =

100nm, with a substrate thickness of 16nm, and each the grid size used in simulation is

0.4nm. We consider there is zero mismatch strain between the substrate and thin film

with no built-in potential. As it is illustrated in Figure 5.2, we have a total of 4 different

defect setups. Each defect is described by its type, position (distance from the interface),

and width. For defect type 2 and 4 in Figure 5.2, the positive charged is chosen to be the

same as the negative value which results in an overall zero charge for the whole defect.

We performed a total of 360 high-throughput simulations varying the initial domain

structure (random distribution with 3 different random seeds, and two single domain

states, R1+(+,+,+) and R2-(+,-,-)), defect position (3.2nm, 6.4nm, 9.6nm), defect width

(6.4nm, 9.6nm, 12.8nm), defect type (4 types), and the electric boundary condition (open,

short boundary condition, equation 5.4). All combinations are listed in Figure 5.3
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Domain setup Initial structure Defect width Defect position Electric BC

Case 1

Case 2

Case 3

Case 4

×

Random 1

Random 2

Random 3

R1+ (+,+,+)

R2- (+,-,-)

×

6.4 nm

9.6 nm

12.8 nm

×

3.2 nm

6.4 nm

9.6 nm

×

Open

Short = 360 jobs

Figure 5.3. The parameter space that is explored with high-throughput simulations.

5.3 Results and discussion

The result in Figure 5.4 shows the influence of these defects on polarization under open

and short electric boundary conditions. In general, due to the depolarization field, open

circuit electric boundary condition will lead to 109° domain patterns with flux closure

triangles near the surface and interface, while short circuit boundary condition will lead

to a much large domain size. Thus we may expect to observe more domains in the

open circuit cases than in the short circuit cases. For defect case 1, Figure 5.2(a), the

polarization distribution for different initial random distribution of the same electric

boundary condition resemble (or mirror with respect to [100] plane) each other. Clearly,

the upward and downward domain states are no longer degenerated, and the downward

one is favored since the defect has a net negative charge. In the vicinity, a hedgehog type

polarization pattern is formed in both open and short circuit case. In the open circuit

case, the defect always appears between two 109° domain wall. In Figure 5.4 (a1, a2) the

vortex formed by the 109° domain wall and triangle domain junction is 15 nm away from

the defect. In the short circuit case, an anti-vortex core appears about 2 nm away from

the defect, which is a byproduct of the hedgehog pattern.

For defect case 2, a loop defect with half positive and half negative charges, the most
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obvious feature is the stabilization of a 109° domain wall right at the negative and positive

charge junction. The stabilized 109° domain wall is universal in open circuit case, and

occasional in the short circuit case. Depending on the initial random distribution, the

109° domain wall may not be able to go through to the top of the film, as shown in Figure

5.4(b4).

The results of defect case 3 and 4 under open circuit electric boundary condition also

show some interaction with the 109° domain wall and the flux closure triangle domain near

the interface but in a much less deterministic manner compared to the case 1 and 2. In

the short circuit cases of defect type 3, due to the reduced defect thickness the hedgehog

pattern and the anti-vortex core is no longer present, instead, only domain switching below

the defect can be observed. While for defect type 4 short circuit condition, the domain

around the defect remains approximately single domain with only local polarization

rotation in the vicinity.

Figure 5.5 shows the results of all four defects with different initial polarization. For

type 1 defect, the results can be classified into two groups, one is the R1+(+,+,+) initial

type, that the defect causes domain on the left/right side and above the defect to switch,

and an anti-vortex core appears above the defect. The other type is when starting from

R2-(+,-,-) and random noises that the switched domain is below the defect with an

anti-vortex core on its side. For defect case 2, the results can also be divided into two

groups, one is starting from random initial, a 109° domain wall will be stabilized at the

center above the defect and three 109° domain walls below the defect. Another group

is starting from single domains and the polarization pattern will remain mostly single

domain above the defect and a thin strip of 109° switched domain below the defect.

For defect case 3, the classification is similar to case 1, but due to the reduced thickness
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Figure 5.4. Simulation results under open circuit and short circuit electric boundary conditions.
All other defect configurations are controlled to be the same. Defect width is 6.4 nm. Defect
location is 3.2 nm away from the interface. All simulations are starting from random but with
different random seeds. The arrows illustrate the direction and magnitude of the polarization,
and the background color represent the defect charges.

of the defect, now in the R1+ case, polarization remains mostly in a single domain state.

For other initial setups, the switched domain is strictly below the defect with no hedgehog

or anti-vortex state. These results indicate that the thickness of the defect plays an

important role which we will discuss later. For the defect case 4, the polarization is always

in a single domain state for both above and below the defect in all different types of initial

domain structure.

Figure 5.6 shows how the defect location, that is the distance from interface, is affecting

the final domain structure. In all short circuit cases, there are no difference between

various defect height except for the fact that everything is shifted upward when the
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Figure 5.5. Phase-field simulation results starting from different initial conditions, two random
polarization distribution, initial R1+ (+,+,+) domain, and initial R2- (+,-,-). All other defect
configurations are controlled to be the same. Defect width is 9.6 nm. Defect height is 9.6 nm.
Electric boundary condition is the short circuit boundary condition.

distance is larger. In the open circuit cases, for the thicker defects, type 1 and 2, the

differences are still in the region below the defect that the switched domain becomes

larger as the defect location rises. While for the two thinner defect cases, some more

complicated changes appears. For defect case 3, it is clear that the negative defect is

interacting with the flux closure triangle of 109° domain wall at the bottom interface, and

when the defect location rises, it pushes the vortex core higher. For defect case 4, the

109° domain wall and the defect decoupled as the defect location decreases to 3.2 nm.

Figure 5.7 illustrates the role of defect width on determining the polarization dis-

tribution. For defect case 1, both short and long defect lead to a pattern qualitatively

resemble each other. Under the open circuit condition, the flux closure core is about 4
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Figure 5.6. Polarization distribution for defects at various heights, 3.2 nm and 9.6 nm, and
either open or short circuit electric boundary conditions. All simulations are starting from random
initial polarization, with a defect width of 9.6 nm.

,

nm closer to the longer defect, and a small tetragonal region towards the defect can be

observed below the defect in the 9.6 nm defect case. Under short circuit conditions, the

difference is more trivial that longer defect simply leads to a wider 180° switched domain

below the defect. For defect case 2, the primary feature, namely the 109° domain wall

that is stabilized by the defect, can be observed regardless of the defect width and electric

boundary condition. For defect case 3, open circuit condition, the 109° domain wall and

the vortex core are fully decoupled with the defect as the it becomes longer. While under

short circuit boundary condition, the polarization patterns near the defect are the same

for the short and long defect. For defect case 4, open circuit condition, both the short and

long defect can stabilize a 109° domain wall above them, while the 6.4 nm wide defect
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Figure 5.7. Polarization distribution for different defect width, 6.4 nm and 12.8 nm, and either
open or short electric boundary conditions. All simulations are starting from random noise, with
a defect height of 6.4 nm.

coincides with the flux closure core of the triangular domain and stabilize two sets of 109°

domains, R2-(+,-,-)/R1+(+,+,+) and R1-(-,-,-)/R2+(-,+,+). In the short circuit cases,

12.8 nm defect can stabilize a 109° domain wall above at the negative to positive charge

junction, while 6.4 nm defect can only lead to local polarization rotation.

Another thing we would like to discuss is how the defect thickness is influencing the

polarization distribution. Among all cases, the influence on polarization distribution

is always stronger when the defect is thicker, features such as hedgehog domain state,

anti-vortex core, and 109° domain wall are all strongly coupled to the thick defects. Thin

defects, such as defect type 3 and 4, generally lead to a simpler domain states, without

much topological polarization patterns. In the net negative charge cases, thick defect
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results in a hedgehog pattern in the vicinity that is absent around the thin defect. In the

open circuit cases, thicker defect has a more deterministic effect on the final polarization

distribution, while in the short circuit cases, thick defect leads to both 180° and 109°

domain switching and thin defect leads to only 109° domain switching. For the net zero

charge cases, thickness of the defect doesn’t affect the primary feature of the 109° domain

wall above the defect, except for the 6.4 nm wide defect under short circuit conditions in

which single domain is the most stable setup.

5.4 Conclusion

In summary, we have performed high-throughput simulations varying the defect width,

defect location, defect thickness, electric boundary conditon and initial domain structure

within a 100 nm BiFeO3 thin film. We identify the factors that has the most significant

affect on local polarization distribution and overall domain patterns. These findings

should be useful for nanoscale domain engineering in nano devices.

For net negative charged defect, type 1 and type 3, we found defect thickness determines

whether you can get a locally hedgehog state around the defect. It also leads to different

type of switching below the defect, 180° or 109° domain switching for the thick defect,

and only 109° switching for the thin defect. The defect width and defect location have

limited influence on the final domain pattern in the thick defect cases. While in the thin

defect cases, the polarization distribution is completely different varying the defect width

and location.

For net neutral charged defects, type 2 and 4, the domain pattern is relatively

insensitive to defect location and defect thickness, while if the defect width is below some

critical value, such as in the 3.2 nm cases, the final polarization states favors a single
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domain rather than 109° domains.

We found that open circuit boundary condition will result in smaller domains and more

domain walls than the short circuit counterpart. The initial domain structure will affect

the equilibrium polarization, indicating the experimental tricks such as small miscut angle

or introduction of built in potential may also help to obtain the desired local polarization

distribution.

We have identified multiple ways to achieve the control of long range 109° domain

walls, such as defect type 1 with open circuit boundary condition, defect type 2 under

both open or short circuit condition, and defect type 4 that are longer than 6.4 nm under

both open or short circuit condition. For defect type 1, the 109° domain wall is located

at 5 to 15 nm away from the defect, while for defect type 2 and 4, the 109° domain

wall always appears at the negative to positive charge junction of the defect. Thus, our

simulation results of defect engineering enable researchers to gain control over the location

of 109° domain wall which potentially could be one the tools for nanoscale domain and

domain wall engineering.
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Chapter 6 |

Conclusions and Future works

6.1 Conclusion

In this dissertation, we explore the polarization distribution with the presence of two types

of defects in ferroelectrics, more specifically, dislocations in SrTiO3 and nonstoichiometric

nanoregion in BiFeO3. We study how the elastic and electric effects due to the defects

may contribute to the control of both local and long-range polarization distribution at

the nanoscale, which will provide useful guidance to the future experimental studies of

using defect to achieve domain and domain wall engineering in ferroelectric materials.

We study the role of flexoelectricity in inducing polarization at the dislocation core

in SrTiO3. Three types of dislocations, b = a(100) edge dislocation, b = a
2 (110) edge

dislocation, and b = a(010) screw dislocation are considered. We find that flexoelectricity

can stabilize orthorhombic-type polarization around b = a
2 (110) edge dislocation, and

enhance the magnitude of the already existing tetragonal-type polarization in b = a(100)

edge dislocation case. Polarization value of about 0.18C/m2 and 0.14C/m2 can be obtained

for the b = a(100) edge dislocation and b = a
2 (110) edge dislocation case respectively. Our
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study identifies the shear component of flexoelectric tensor contributes the most to the

flexoelectric induce polarization around the edge dislocation cores. For b = a(010) screw

dislocation, we find neither electrostriction nor flexoelectricity is able to stabilize any

polar state. Our simulation results complement existing experimental works for b = a(100)

edge dislocation by demonstrating explicitly the contribution of flexoelectricity and

electrostriction and predict the polarization pattern around b = a
2 (110) edge dislocation

and b = a(010) screw dislocation that awaits future experimental verification.

We then study the defect charges effects on local polarization around the same three

types of dislocations in SrTiO3 single crystal. Using a negative defect charge estimated

by experimental observations, we find that the charge induced polarization exists mainly

within 5 nm region around the dislocation core, and peaks in less than 2 nm distance from

the core. In the two edge dislocation cases, the flexoelectric and electrostrictive effects

dominate over the defect charge’s influences with a much large impacting region and

large induced polarization magnitude. We find that the distribution of the defect charge

induced polarization is highly anisotropic whose pattern is related to the tensile stress

region around the edge dislocation. In the screw dislocation case, the situation reverses,

as neither electrostriction nor flexoelectricity is able to stabilize any polar state, while the

defect charges have similar effects as in the two edge dislocation cases. Since the screw

dislocation stress only has shear components, the induced polarization pattern becomes

almost isotropic D4 symmetric pattern, with slightly larger polarization magnitude along

the diagonal directions.

For the research of nonstoichiometric nano-region in BiFeO3, we perform high-

throughput simulations varying the defect width, defect interval, and defect height

within a 200 nm BiFeO3 thin film. We explain the reason why 71° domain strips may
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form above the charged defect through a competition between elastic and domain wall

energy. An empirical formula that describes the criteria of defect configurations for the

71° domain strips to appear above the defects in BiFeO3 thin film is obtained. These

simulations demonstrate the possibility of precise 71° domain pattern control through

defect engineering, which could be a viable route to the design and fabrication of more

ferroelectric nano-devices.

Next, we extend our simulation with more nonstoichiometric charged defect config-

urations, including the defect shape, such as planar defect and loop defect, the defect

charge distribution, such as net negatively charged and neutrally charged, the initial

domain structures, and the electric boundary conditions of the thin film. We investigate

the domain patterns of the whole parameter space and identify multiple setups that

stabilize 109° domain strips in thin film, such as thick negative charged defect with open

circuit boundary condition, thick neutral charged defect under both open or short circuit

condition, and planar neutral charged defect longer than 6.4 nm under both open or

short circuit condition. These findings provide insights into the control of the location of

109° domain wall and thus may potentially be used as a building block towards the more

complicated domain engineered nanoelectronic device.

Based on these simulation results, this dissertation expands the researcher’s under-

standing of the nanoscale domain engineering through defects in ferroic materials. We

demonstrate the possibilities of using dislocations in SrTiO3 to stabilize a polar state and

nonstoichiometric charged defects in BiFeO3 to obtain either 71° or 109° domain patterns.

We discuss the mechanism behind the defect’s interaction with local and long-range polar-

ization, thus providing a solid basis for designing more complicated domain engineering

approaches. This work also demonstrates the capability of precise domain pattern control
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through defect engineering, which could be a viable route to the design and fabrication of

future ferroelectric nanoelectronic devices.

6.2 Future works

The current phase-field model and simulation provide a solid basis for the study of defect

engineering in ferroelectrics. However, there is still a large room for improvement in terms

of additional physical phenomenon, more complex defect setups, and switching dynamics.

Several future directions are discussed below.

6.2.1 Dislocation dynamics in SrTiO3

In our current model, we deliberately isolate a single static dislocation and study its

influence on local polar states in SrTiO3. Such simplification is based on the assumption

that dislocations density in SrTiO3 is low and immobile. This is fine in usual cases since

SrTiO3 is brittle, which means it will break if the dislocation can easily be generated,

and the density becomes high. Our collaborators in Germany are now trying to make

SrTiO3 ductile and introduce more dislocations into the system. Nevertheless, our

collaborators from Dr. Peng Gao’s group at Peking University, Beijing, China, have

confirmed in HRTEM that the dislocation due to plastic deformation (<110> partial

dislocation) always comes in pairs. All of these experimental efforts urge us to extend our

current phase-field model to include dislocation dynamics and couple with the polarization

evolution. Researchers have proposed a phase-field model for dislocation dynamics of

metal [119], but nobody has applied it to ferroelectric complex oxide yet. In situ temporal

observation of 3D dislocation dynamics is already very difficult and can only be achieved

using dark-field XRD according to several very recent publications [148]. The task to
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characterize the dislocation movement and polarization evolution at the same time is

currently impossible. Thus, the mesoscale phase-field simulation will play an important

role in investigating this problem. It is interesting to know how the dislocations multiply,

migrate, and react with each other in SrTiO3 while the local polarization also coupled

with the dislocation evolution through both electrostrictive and flexoelectric effect.

6.2.2 Free carrier evolution in SrTiO3

In this dissertation, we considered the bound charges due to nonstoichiometry at the

dislocation core and studied its interaction with local polarization. Here we made an

assumption that the dislocation core is as insulating as the bulk crystal, which is not

very accurate since several experimental works have claimed that the dislocation core

can be viewed as a conducting filament in the insulating matrix. A more physically

accurate and comprehensive phase-field model will need to take the free carrier generation,

recombination, and migration into consideration. For SrTiO3, the free carrier species

include electron, hole, and oxygen vacancy, all of which will interact with the dislocation

core since the defects have both a charged core and locally distorted lattices. It will be

very interesting if we can study how the defect’s mechanical effect may affect the defect

local charge density and thus the conductivity at dislocation core in SrTiO3.
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Appendix |

Bulk, thin film and membrane

elastic solver

1 Bulk homogeneous system

For a system that contains eigenstrains, the stress and strain relationship is as follows

σij = Cijklεkl = Cijkl(ε
tot
kl − ε0kl) (.1)

And the mechanical equilibrium conditions are

σij,j = 0 (.2)

These are 3 sets of equations with 6 unknowns (stresses).

We separate the solution into two parts, a homogeneous part that correspond to the

macroscopic deformations, and a heterogeneous part correspond to the local deformation,
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which means integration of η over space should equals to 0.

εtotkl = ε̄kl + ηij (.3)

σij = σ̄ij + sij (.4)

Write out the expression for the homogeneous and heterogeneous stress

σ̄ij = Cijklε̄kl (.5)

sij = Cijkl(ηkl − ε0kl) (.6)

The orignal mechanical equilibrium equation (.2) becomes two.

Cijkl ¯εkl,j = 0 (.7)

Cijkl(ηkl,j − ε0kl,j) = 0 (.8)

The equation (.7) is the homogeneous part, and equation (.8) is the heterogeneous part.

1.1 The homogeneous(macroscopic) part

If user is controlling the average strain of the bulk system, then nothing needs to be solved.

If user is controlling the average stress of the bulk system, then the homogeneous strain

needs to be calculated by applying the elastic compliance tensor to the homogeneous

stress and plus the average eigenstrain.

101



1.2 The heterogeneous(microscopic) part

For the heterogeneous part, we substitute the strain with displacement, ηkl = 1
2(uk,l+ul,k),

to make it easier for us to solve. So now the equation that we are solving becomes:

Cijkluk,lj(x, y, z) =Cijklε
0
kl,j(x, y, z) (.9)

⇒ −ζlζjCijklũk(qx, qy, qz) =IζjCijklε̃
0
kl(qx, qy, qz) (.10)

To solve it numerically, we need to write out the matrix form of equation (.9)

g3×3


ũA1

ũA2

ũA3

 = T3×3×3


˜ε011

˜ε012
˜ε013

˜ε022
˜ε022

˜ε023

˜ε033
˜ε032

˜ε033

 (.11)

In which g3×3 is gik = ζlζjCijkl using the einstein summation. T3×3×3 is Tikl = −IζjCijkl

using einstein summation.

For those cases g matrix is invertable.


ũ1

ũ2

ũ3

 = (g3×3)−1T3×3×3


˜ε011

˜ε012
˜ε013

˜ε022
˜ε022

˜ε023

˜ε033
˜ε032

˜ε033

 (.12)

Notice that the blue and red 3s are different. We may define a tensor H3×3×3 that

Hikl = g−1
ij Tjkl, which is only related to stiffness, so can be calculated ahead of the main

loop and save some time.

H3×3×3 = g−1
3×3T3×3×3 (.13)
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Since the strain tensor is symmetric, we may reduce it to a 6 component vector, and


ũA1

ũA2

ũA3

 = H3×6



˜ε011

˜ε022

˜ε033

˜ε023

˜ε013

˜ε012



(.14)

H3×6 =


gi1ζjCij11 gi1ζjCij22 gi1ζjCij33 2gi1ζjCij23 2gi1ζjCij13 2gi1ζjCij12

gi2ζjCij11 gi2ζjCij22 gi2ζjCij33 2gi2ζjCij23 2gi2ζjCij13 2gi2ζjCij12

gi3ζjCij11 gi3ζjCij22 gi3ζjCij33 2gi3ζjCij23 2gi3ζjCij13 2gi3ζjCij12

 (.15)

Once the value of u in fourier space is obtained, the final result can be easily calculated

with a backward fourier transformation.

When at the origin point in the reciprocal space ζ2
1 + ζ2

2 + ζ2
3 = 0, the g matrix is not

invertable, we need to treat it slightly differently. Since for the reciprocal origin point, it

correspond to the uniform displacement of the whole object, which we already considered

in the homogeneous (macroscopic) part, so here we will directly considered the ũuu = 0

2 Thin film homogeneous system

The thin film solver is an extension of the bulk solver, which is also made up of homogeneous

and heterogeneous parts. The only difference is that for the heterogeneous part, now we

need to have some boundary condition in the out-of-plane direction.
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And the mechanical equilibrium condition along with boundary conditions are



σij,j = 0

σi3|x3=hf = σappi3

ui|x3=−hs = 0

(.16)

2.1 The homogeneous(macroscopic) part

Different from the bulk case, in thin film secenario the homogeneous part must also satisfy

the stress free boundary condition for free surface. Thus


Cijkl ¯εkl,j = 0

Ci3klε̄kl = 0

(.17)

The first equation of equation (.17) in always satisified since the strain is uniform, so we

only need to find a solution for the second equation. To solve it in computer, we need the

matrix form and equation (.17) becomes


C1313 C1323 C1333

C2313 C2323 C2333

C3313 C3323 C3333




¯ε13

¯ε23

¯ε33

 = −


C1311 ¯ε11 + C1322 ¯ε22 + 2C1312 ¯ε12

C2311 ¯ε11 + C2322 ¯ε22 + 2C2312 ¯ε12

C3311 ¯ε11 + C3322 ¯ε22 + 2C3312 ¯ε12

 (.18)

Since we already know ¯ε11 = ¯ε22 =
as−af
as

and ¯ε12 = 0. We can easily solve it by multiplying

the matrix inverse.
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2.2 The heterogeneous(microscopic) part

Next is the heterogeneous part, equation (.9) plus the boundary conditions is what we

are solving



Cijkluk,lj = Cijklε
0
kl,j

Ci3kl(uk,l − ε0kl)|x3=hf = σappi3

ui|x3=−hs = 0

(.19)

Equation (.19) are 3 sets of equations with 3 unknowns. To solve it, we will use

the superposition method that split the equation and solution into two parts, first part

takes care of the none-zero right-hand-size with 3D periodic boundary conditions that we

are going to use 3D fourier transform to solve which we may call is part A, and second

part with zero right-hand-side which we will apply 2D fourier transform of the in-plane

direction and keep the third direction in real space to takes care of the specific thin film

boundary conditions, and we may call it part B.

2.2.1 Part A: Non-zero rhs, periodic BC

For part A, it is simple, the equation to be solved is exactly the same as equation (.9), so

we may reuse the code and results of the bulk heterogeneous part.

2.2.2 Part B: Zero-rhs, thin film BC

For part B, the boundary condition is now depending on the solution of part A.
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

Cijklu
B
k,lj = 0

Ci3klu
B
k,l|x3=hf = σappi3 − Ci3kl(uAk,l − ε0kl)|x3=hf

uBi |x3=−hs = −uAi |x3=−hs

(.20)

We perform a 2D fourier transform to the equation, i, k = 1, 2, 3 and m,n = 1, 2

Ci3k3
˜uBk,33 + IζmCi3km

˜uBk,3 + IζnCink3
˜uBk,3 − ζmζnCinkmũBk = 0 (.21)

This is a second order equation. When at the origin point of reciprocal space, the

equation will have different general solution compared to not origin points. Here let’s first

dicuss when not at the origin point, what the solution will be. For each coordinate, since uuu

is a 3 dimension vector, so we are expecting a total of 6 solutions, and we need 6 boundary

conditions. The general solutions to this equation are ũBk (q1, q2, x3) = ake
Ipζx3 , ζ =√

ζ2
1 + ζ2

2 . If we put the general solution back into the equation (.21) we will get the

following equation, an eigenvalue problem, from which we can find the value for a and p.

These are 3 independent equations of i = 1, 2, 3.

(−p2ζ2Ci3k3 − pζζmCi3km − pζζnCink3 − ζmζnCinkm)aaaeIpζx3 = 0 (.22)

⇒ (p2Ci3k3 + p
ζm
ζ
Ci3km + p

ζn
ζ
Cink3 +

ζm
ζ

ζn
ζ
Cinkm)aaa = 0 (.23)

The part before aaa is a 3 by 3 matrix. Solving its determinant equals 0 gives you the 6

eigenvalues.

There are other relatively easier way to solve this eigen value problem by introducing a

second unknown that is related to the derivative of ũuu, thus augmenting the 3 by 3 matrix

to 6 by 6 and treat it as a normal first order eigenvalue problem, which we can easily

106



solve using lapack.

There are multiple ways you can use to create the second unknown, and the most

common one is simply define the new variable as s̃ss = ∂ũuuB

∂x3
, then you can establish the

following equations, in which A = Ci3k3, B = I(ζmCi3km+ζnCink3), and C = −ζmζnCinkm

∂ũuuB

∂x3

∂s̃ss
∂x3

 =

 0 I

A−1C −A−1B


ũuuB
s̃ss

 (.24)

This is just y′ = Ay, which you can insert the general solution into it and transform it

into an eigenvalue problem.

The second way to create the unknown is to use a more meaningful value, that is the

stress, which is also related to the derivative of displacement, and this is what we did in

the program as well as Dr. Li’s 2002 paper. Subscript i, k = 1, 2, 3 and m,n = 1, 2

σBi3 = Ci3k3u
B
k,3 + Ci3k1u

B
k,1 + Ci3k2u

B
k,2 (.25)

⇒ σ̃Bi3 = Ci3k3
˜uBk,3 + IζmCi3kmũ

B
k (.26)

⇒ ˜uBk,3 = C−1
i3k3σ̃

B
i3 − IC

−1
i3k3ζmCi3kmũ

B
k (.27)

And the derivative of σi3 is

σBi3,3 = Ci3k3u
B
k,33 + Ci3k1u

B
k,13 + Ci3k2u

B
k,23 (.28)

⇒ ˜σBi3,3 = Ci3k3
˜uBk,33 + IζmCi3km

˜uBk,3 (.29)

⇒ ˜σBi3,3 = −(IζmCi3km
˜uBk,3 + IζnCink3

˜uBk,3 − ζmζnCinkmũBk )

+ IζmCi3km
˜uBk,3 (.30)

⇒ ˜σBi3,3 = ζmζnCinkmũ
B
k − IζnCink3

˜uBk,3 (.31)
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⇒ ˜σBi3,3 = ζmζnCinkmũ
B
k − IζnCink3(C−1

i3k3σ̃
B
13 − IC

−1
i3k3ζmCi3kmũ

B
k ) (.32)

⇒ ˜σBi3,3 = (ζmζnCinkm − ζnCink3C
−1
i3k3ζmCi3km)ũBk − IζnCink3C

−1
i3k3σ̃

B
i3 (.33)

Combining equation (.27) and equation (.33) gives us

∂ũuuB

∂x3

∂σ̃σσB

∂x3

 =

 −IC−1
13k3ζmCi3km C−1

i3k3

ζmζnCinkm − ζnCink3C
−1
i3k3ζmCi3km −IζnCink3C

−1
i3k3


ũuuB
σ̃σσB

 (.34)

Insert the general solution of ũBk (q1, q2, x3) = ake
Ipζx3 , ζ =

√
ζ2

1 + ζ2
2 into the expres-

sion of σ̃Bi3and we will get

σ̃Bi3 = (pCi3k3 +
ζm
ζ
Ci3km)Iζake

Ipζx3 (.35)

σ̃Bi3 = Iζbie
Ipζx3 , bi = (pCi3k3 +

ζm
ζ
Ci3km)ak (.36)

We may use W, R, U to represent those tensor coefficients for our convenience.

Uik = Ci3k3, Rik = Cink3
ζn
ζ , Wik = Cinkm

ζm
ζ
ζn
ζ .

Insert the general solution for ũuuB and σ̃σσB into equation (.34)

 Ipζaaa

−pζ2bbb

 =

 −IU−1RT ζ U−1

(Wζ2 − ζRU−1ζRT ) −IζRU−1


 ãaa

˜Iζbbb

 (.37)

p

ãaa
b̃bb

 =

 −U−1RT U−1

−W +RU−1RT −RU−1


ãaa
b̃bb

 (.38)

For better numerical accuracy, you may want to rescale the W, R and U matrix before

solving for eigenvalues and eigenvectors, than scale the solution back at the end. We choose
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1
C44

or 1
C2323

as the rescaling factor. WD = W/C2323, UD = U/C2323, RD = R/C2323 and

equation (.38) becomes

p

 ãaa

C2323b̃bb

 =

 −U−1
D RTD U−1

D

−WD +RDU
−1
D RTD −RDU−1

D


 ãaa

C2323b̃bb

 (.39)

b is related to a, b̃bb = (pU +RT )ãaa. This is a normal eigenvalue problem, which we can

call lapack to solve. Since it is a second order three component equation, we know the 6

sets of eigenvalues and eigenvectors, must be three pairs of conjugated complex numbers

and vectors.

Solution to this eigenvalue problem is something we can do ahead of main loop. Now

suppose we have got the eigenvalue pi and eigenvector vivivi = (aiaiai, bibibi). Linear combination

of the general solutions gives you the final solution for equation (.34)

ũuuB =
3∑
i=1

qiaiaiaie
Iζpix3 (.40)

s̃ssB =

6∑
i=4

qiIζC2323bibibie
Iζpix3 (.41)

Put the boundary conditions into it, and we consider x3 = 0 is at the interface of

substrate and thin film, so thin film surface is at x3 = hf , and the boundary in substrate
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is at x3 = −hs. 

ũB1 |x3=−hs

ũB2 |x3=−hs

ũB3 |x3=−hs
˜σB13

IζC2323
|x3=hf

˜σB23
IζC2323

|x3=hf

˜σB33
IζC2323

|x3=hf



= PPP



q1

q2

q3

q4

q5

q6



(.42)

Expression of PPP is as follows, ai(j) is the jth component of the the ith eigenvector
(but only part of the eigenvector, b is the other part).



a1(1)e−IζP1hs a2(1)e−IζP2hs a3(1)e−IζP3hs a4(1)e−IζP4hs a5(1)e−IζP5hs a6(1)e−IζP6hs

a1(2)e−IζP1hs a2(2)e−IζP2hs a3(2)e−IζP3hs a4(2)e−IζP4hs a5(2)e−IζP5hs a6(2)e−IζP6hs

a1(3)e−IζP1hs a2(3)e−IζP2hs a3(3)e−IζP3hs a4(3)e−IζP4hs a5(3)e−IζP5hs a6(3)e−IζP6hs

b1(1)e
IζP1hf b2(1)e

IζP2hf b3(1)e
IζP3hf b4(1)e

IζP4hf b5(1)e
IζP5hf b6(1)e

IζP6hf

b1(2)e
IζP1hf b2(2)e

IζP2hf b3(2)e
IζP3hf b4(2)e

IζP4hf b5(2)e
IζP5hf b6(2)e

IζP6hf

b1(3)e
IζP1hf b2(3)e

IζP2hf b3(3)e
IζP3hf b4(3)e

IζP4hf b5(3)e
IζP5hf b6(3)e

IζP6hf


(.43)

In real practice, you may need to rescale matrix PPP for numerically better accuracy,

and then after the matrix inversion times the scaling factor back to get the real answer.

The one we used is e−ζhw0 in which h = max(hs, hf ), w0 = max(|pi|). Now we may use

lapack to solve for value of q. We can create the e−ζhw0PPP matrix in the setup phase, and

only solve for the inverse inside main loop.
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

q′1

q′2

q′3

q′4

q′5

q′6



= (e−ζhw0PPP )−1



ũB1

ũB2

ũB3
˜σB13

IζC2323

˜σB23
IζC2323

˜σB33
IζC2323



(.44)

Once we get the coefficient q, we can put it back into equation (.40) and derivative of

(.40), also don’t forget to apply the rescaling factor back.



ũB1

ũB2

ũB3

˜uB1,3

˜uB2,3

˜uB3,3



= e−ζhw0QQQ



q1

q2

q3

q4

q5

q6



(.45)

Expression for QQQ is as follows, x3 is the coordinate in out-of-plane direction with
substrate and film interface as 0.



a1(1)eIζp1x3 a2(1)eIζP2x3 a3(1)eIζP3x3 a4(1)eIζP4x3 a5(1)eIζP5x3 a6(1)eIζP6x3

a1(2)eIζP1x3 a2(2)eIζP2x3 a3(2)eIζP3x3 a4(2)eIζP4x3 a5(2)eIζP5x3 a6(2)eIζP6x3

a1(3)eIζP1x3 a2(3)eIζP2x3 a3(3)eIζP3x3 a4(3)eIζP4x3 a5(3)eIζP5x3 a6(3)eIζP6x3

Iζp1a1(1)eIζp1x3 Iζp2a2(1)eIζP2x3 Iζp3a3(1)eIζP3x3 Iζp4a4(1)eIζP4x3 Iζp5a5(1)eIζP5x3 Iζp6a6(1)eIζP6x3

Iζp1a1(2)eIζP1x3 Iζp2a2(2)eIζP2x3 Iζp3a3(2)eIζP3x3 Iζp4a4(2)eIζP4x3 Iζp5a5(2)eIζP5x3 Iζp6a6(2)eIζP6x3

Iζp1a1(3)eIζP1x3 Iζp2a2(3)eIζP2x3 Iζp3a3(3)eIζP3x3 Iζp4a4(3)eIζP4x3 Iζp5a5(3)eIζP5x3 Iζp6a6(3)eIζP6x3


(.46)
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The full strain tensor in reciprocal space is

˜εB11 = Iζ1ũB1 (.47)

˜εB22 = Iζ2ũB2 (.48)

˜εB33 = ˜uB3,3 (.49)

˜εB23 = 0.5( ˜uB2,3 + Iζ2ũB3 ) (.50)

˜εB13 = 0.5( ˜uB1,3 + Iζ1ũB3 ) (.51)

˜εB12 = 0.5(Iζ2ũB1 + Iζ1ũB2 ) (.52)

Above is only solution for cases not at the fourier space origin point. If at the origin

point, things are a lot more easier. The equation (.21) becomes

Ci3k3
˜uBk,33 = 0 (.53)

The general solution for equation (.53) is a linear function ũBk = Akx3 +Bk. Apply

the boundary conditions in (.20), BCuBCuBCu is the displacement boundary condition and BCσBCσBCσ

is the stress boundary condition.
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

˜BCu1 = A1(−hs) +B1

˜BCu2 = A2(−hs) +B2

˜BCu3 = A3(−hs) +B3

˜BCσ13 = C1313A1 + C1323A2 + C1333A3

˜BCσ23 = C2313A1 + C2323A2 + C2333A3

˜BCσ33 = C3313A1 + C3323A2 + C3333A3

(.54)

⇒


A1

A2

A3

 = U−1


˜BCσ13

˜BCσ23

˜BCσ33

 (.55)

⇒



B1 = ˜BCu1 −A1(−hs)

B2 = ˜BCu2 −A2(−hs)

B3 = ˜BCu3 −A3(−hs)

(.56)

Put the values back into the general solution, and we get


ũB1

ũB2

ũB3

 =
U−1
D

C2323


˜BCσ13

˜BCσ23

˜BCσ33

 (x3 − hs) +


˜BCu1

˜BCu2

˜BCu3

 (.57)

The strain is

˜εB11 = 0 (.58)
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˜εB22 = 0 (.59)

˜εB12 = 0 (.60)
˜εB33

˜εB23

˜εB13

 = U−1


˜BCσ13

˜BCσ23

˜BCσ33

 =
U−1
D

C2323


˜BCσ13

˜BCσ23

˜BCσ33

 (.61)

Perform a inverse fourier transform, and we get the part B of the heterogeneous

displacement. Adding up all three parts, the homogeneous part, the heterogeneous part

A and heterogeneous part B will give us the final solution. Notice, if you’re using the

denominated UD, then remember to time the denominator back.

3 Membrane homogeneous system

For a membrane, the procedure of how to solve mechanical equilibrium is very similar to

the thin film case, split the whole system into homogeneous and heterogeneous part, and

then further separate the heterogeneous part into A and B.

Membrane is different from thin film in that there is either no substrate (free standing)

or the substrate is not bonded to the film and only for a supporting purpose. From

coding or solver point of view, the major differences lies in the homogeneous part, and

the heterogeneous part B.

3.1 The homogeneous(macroscopic) part

Different from the thin film case, which we use the three mismatch strain as input to

calculate the macroscopic deformation(strain), for membrane (or beam) it is a lot more

complicated. In order to keep a good generality for our library solver, I think pass in the
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deflection distribution is a good choice, as we can use it to further calculate the stress

and strain distribution.

Suppose we have the plate deflection of w, for thin membrane (thickness less than 1/5

of the curvature), we can use the Kirchhoff-love plate theory, with the two assumption, a

material segment which is initially normal to the mid-surface remains straight and normal

to the deformed middle surface; and the plate is inextensible in the z direction.



ε11 = −z ∂2w
∂x2

ε22 = −z ∂2w
∂y2

ε33 = 0

ε23 = 0

ε13 = 0

ε12 = −2z ∂
2w

∂x∂y

(.62)

For the thick plate case, there is the Mindlin theory, which extends the Kirchhoff-love

theory but requires more input, deflection w, rotation of cross-section along x and y axes

θx, θy. You may notice that (.62) is a special case of (.63) that θx = ∂w
∂y and θy = −∂w

∂x ,

which is true when the curvature of the bended plate is very large.
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

ε11 = z
∂θy
∂x

ε22 = −z ∂θx∂y

ε33 = 0

ε23 = −θx + ∂w
∂y

ε13 = θy + ∂w
∂x

ε12 = z(
∂θy
∂y −

∂θx
∂x )

(.63)

Use the simply supported center load beam as an example

δ = − Fx

48EI
(3L2 − 4x2) (.64)

θy = − F

16EI
(L2 − 4x2) (.65)

θx = 0 (.66)

3.2 The heterogeneous(microscopic) part

Next is the heterogeneous part, The reason we still define the boundary at −hs and hf is

for the purpose of reusing most part of our thin film solver.



Cijkluk,lj = Cijklε
0
kl,j

Ci3kl(uk,l − ε0kl)|x3=hf = σappi3

Ci3kl(uk,l − ε0kl)|x3=−hs = 0

(.67)

To solve equation (.67), we will use the superposition method that split the equation

and solution into two parts exactly the same way as in the thin film case. Notice the σappi3

is not what cause the macroscopic deformation, it is the part in addition to any load that
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cause the macroscopic deformation.

3.2.1 Part A: Zero rhs, periodic BC

Exactly the same as in the thin film case.

3.2.2 Part B: Non-zero rhs, membrane BC

Same until equation (.42), since the boundary conditions are different, so now the following

equations are needed to solve for the linear combination coefficients.



˜σB13
IζC2323

|x3=−hs
˜σB23

IζC2323
|x3=−hs

˜σB33
IζC2323

|x3=−hs
˜σB13

IζC2323
|x3=hf

˜σB23
IζC2323

|x3=hf

˜σB33
IζC2323

|x3=hf



= PPP



q1

q2

q3

q4

q5

q6



(.68)

Expression of PPP is as follows, bi(j) is the jth component of the the ith eigenvector.



b1(1)eIζP1−hs b2(1)eIζP2−hs b3(1)eIζP3−hs b4(1)eIζP4−hs b5(1)eIζP5−hs b6(1)eIζP6−hs

b1(2)eIζP1−hs b2(2)eIζP2−hs b3(2)eIζP3−hs b4(2)eIζP4−hs b5(2)eIζP5−hs b6(2)eIζP6−hs

b1(3)eIζP1−hs b2(3)eIζP2−hs b3(3)eIζP3−hs b4(3)eIζP4−hs b5(3)eIζP5−hs b6(3)eIζP6−hs

b1(1)e
IζP1hf b2(1)e

IζP2hf b3(1)e
IζP3hf b4(1)e

IζP4hf b5(1)e
IζP5hf b6(1)e

IζP6hf

b1(2)e
IζP1hf b2(2)e

IζP2hf b3(2)e
IζP3hf b4(2)e

IζP4hf b5(2)e
IζP5hf b6(2)e

IζP6hf

b1(3)e
IζP1hf b2(3)e

IζP2hf b3(3)e
IζP3hf b4(3)e

IζP4hf b5(3)e
IζP5hf b6(3)e

IζP6hf


(.69)

In real practice, you may need to rescale matrix PPP for numerically better accuracy,

and then after the matrix inversion times the scaling factor back to get the real answer.

The one we used is e−ζhw0 in which h = max(hs, hf ), w0 = max(|pi|). Now we may use

lapack to solve for value of q. We can create the e−ζhw0PPP matrix in the setup phase, and
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only solve for the inverse inside main loop.



q′1

q′2

q′3

q′4

q′5

q′6



= (e−ζhw0PPP )−1



˜σB13
IζC2323

|x3=−hs
˜σB23

IζC2323
|x3=−hs

˜σB33
IζC2323

|x3=−hs
˜σB13

IζC2323
|x3=hf

˜σB23
IζC2323

|x3=hf

˜σB33
IζC2323

|x3=hf



(.70)

Then everything afterwards are exactly the same as the thin film heterogeneous part

B, that is put the coefficient q back to calculation the displacement and strain expression.

q′i = e−ζhw0qi, so remember to time the scaling factor back for the final answer.

Notice for the origin point of fourier space, we also need to treat it separately. The

equation (.21) becomes

Ci3k3
˜uBk,33 = 0 (.71)

The general solution for equation (.71) is a linear function ũBk = Akx3 +Bk. Apply

the boundary conditions in (.20), BCσBCσBCσ is the stress boundary condition, since now both

two boundaries are Neumann condition, the constant Bk cannot be determined, thus

solution is not unique, meaning any translation in 3D space is acceptable, and we can

simply use Bk = 0 as our result.



˜BCσ13 = C1313A1 + C1323A2 + C1333A3

˜BCσ23 = C2313A1 + C2323A2 + C2333A3

˜BCσ33 = C3313A1 + C3323A2 + C3333A3

(.72)
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⇒


A1

A2

A3

 = U−1


˜BCσ13

˜BCσ23

˜BCσ33

 (.73)

Put the values back into the general solution, and we get


ũB1

ũB2

ũB3

 =
U−1
D

C2323


˜BCσ13

˜BCσ23

˜BCσ33

x3 (.74)

The strain is

˜εB11 = 0 (.75)

˜εB22 = 0 (.76)

˜εB12 = 0 (.77)
˜εB33

˜εB23

˜εB13

 = U−1


˜BCσ13

˜BCσ23

˜BCσ33

 =
U−1
D

C2323


˜BCσ13

˜BCσ23

˜BCσ33

 (.78)

Perform a inverse fourier transform, and we get the part B of the heterogeneous

displacement. Adding up all three parts, the homogeneous part, the heterogeneous part

A and heterogeneous part B will give us the final solution. Notice, if you’re using the

denominated UD, then remember to time the denominator back.
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4 Bulk inhomogeneous system

We call a system inhomogeneous, indicating that the elastic modulus is no longer a

constant but a spatial distribution. In this case, if we still want to use the fourier spectral

method to solve the mechanical equilibrium equation, then an iterative method will be

needed.

We are still solving for this equation

σij,j = 0 (.79)

and the stress strain relationship is still valid.

σij = Cijklεkl = Cijkl(ε
tot
kl − ε0kl) (.80)

We still need to split the solution into two parts the macroscopic and microscopic

part.

εtotkl = ε̄kl + ηij (.81)

σij = σ̄ij + sij (.82)

But now the Cijkl is no longer a number (or tensor) but a distribution, and the way

we split the problem into homogeneous and heterogeneous part is different from the bulk

homogeneous system in section (1).

Cijkl = C0
ijkl + δCijkl (.83)
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σ̄ij = C0
ijklε̄kl (.84)

sij = Cijkl(ηkl − ε0kl) + δCijklε̄kl (.85)

The (.79) becomes

C0
ijkl ¯εkl,j = 0 (.86)

C0
ijkl(ηkl,j − ε0kl,j) = −

∂[δCijkl(ε̄kl + ηkl − ε0kl)]
∂xj

(.87)

For the bulk inhomogeneous system, choosing C0
ijkl is a tricky task, you can choose

what ever you want, but it will influence the stability of your solver. Two common choice

of C0
ijkl is the averge and maximum value.

4.1 The homogeneous (macroscopic) part

Similar to section (1.1), you don’t really need to solve for the homogeneous part for this

bulk case. One thing we need to pay attention is that integration of our heterogeneous

solution η no longer guarantee to be 0, which means each time we get the solution of total

strain and we need to modify it so that constraint of average strain or stress still holds

valid.

If we are controlling the average strain, then we need to calculate the current average

total strain, compute its difference from the constraint value, and add such difference to

the current total strain. If we are controlling the average stress, we need to calculate the

current average stress, compute its difference from the constraint stress and calculate the

corresponding changes of strain needed to keep average stress at the constraint value, then

modify the total strain accordingly. Notice here the elastic modulus used is the average
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value, which could be different from the C0
ijkl.

δσij = σappij − σ̄ij (.88)

δεkl = ( ¯Cijkl)
−1δσij (.89)

εtotkl = εtotkl + δεkl (.90)

4.2 The heterogeneous (microscopic) part

For the heterogeneous part, we will also substitute the strain with displacement in (.87),

ηkl = 1
2(uk,l + ul,k), and we get:

C0
ijkluk,lj =C0

ijklε
0
kl,j −

∂[δCijkl(ε̄kl + uk,lj − ε0kl)]
∂xj

(.91)

C0
ijkluk,lj =

∂[Cijklε
0
kl − δCijkl(ε̄kl + uk,lj)]

∂xj
(.92)

⇒ −ζlζjC0
ijklũk =Iζj σ̃

†
ij (.93)

σ†ij =Cijklε
0
kl − δCijkl(ε̄kl + uk,lj) (.94)

The u on the left side is unknown of current iteration, and the u on the right side is

the displacement from last iteration. To write it more clearly:

−ζlζjC0
ijklũ

n
k = Iζj σ̃

†,n−1
ij (.95)

σ†,n−1
ij = Cijklε

0
kl − δCijkl(ε̄kl + un−1

k,lj ) (.96)

We can write out the matrix form of equation (.91)
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g3×3


ũA1

ũA2

ũA3

 = T1×3


σ̃†11 σ̃†12 σ̃†13

σ̃†21 σ̃†22 σ̃†23

σ̃†31 σ̃†32 σ̃†33

 (.97)

In which g3×3 is gik = ζlζjC
0
ijkl using the einstein summation. T1×3 = −I[ζ1, ζ2, ζ3].

For those cases g matrix that is invertable.


ũ1

ũ2

ũ3

 = (g3×3)−1T1×3


σ̃†11 σ̃†12 σ̃†13

σ̃†21 σ̃†22 σ̃†23

σ̃†31 σ̃†32 σ̃†33

 (.98)

We may define a tensor H3×3×3 that Hikl = g−1
ij Tk, which can be calculated ahead of the

main loop and save some time.

H3×3×3 = g−1
3×3T3 (.99)

Since the strain tensor is symmetric, we may reduce it to a 6 component vector, and


ũA1

ũA2

ũA3

 = H3×6



σ̃†11

σ̃†22

σ̃†33

σ̃†23

σ̃†13

σ̃†12



(.100)
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H3×6 =


g11ζ1 g12ζ2 g13ζ3 2g12ζ3 2g11ζ3 2g11ζ2

g21ζ1 g22ζ2 g23ζ3 2g22ζ3 2g21ζ3 2g21ζ2

g31ζ1 g32ζ2 g33ζ3 2g32ζ3 2g31ζ3 2g31ζ2

 (.101)

Once the value of u in fourier space is obtained, the final result can be easily calculated

with a backward fourier transformation.

When at the origin point in the reciprocal space ζ2
1 + ζ2

2 + ζ2
3 = 0, the g matrix is not

invertable, we need to treat it slightly differently. Similar to the bulk homogeneous case,

we have ũuu = 0

This is only one iteration of the iterative solver, we need to loop until the solution

converge.

5 Thin film inhomogeneous system

The equation and boundary condition that we are solving are the Same as the thin film

homogeneous case. And we will split the homogeneous and heterogeneous strain in the

same fashion as the bulk inhomogeneous case.

5.1 The homogeneous (macroscopic) part

Solving


C0
ijkl ¯εkl,j = 0

C0
i3klε̄kl = 0

(.102)

is exactly in the same way as section (2.1), except using C0
ijkl instead of Cijkl.
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5.2 The heterogeneous (microscopic) part

Equation is the same as the bulk inhomogeneous case but with two boundary conditions,

and remeber we need to solve things iteratively



C0
ijklu

n
kl = Cijklε

0
kl − δCijkl(ε̄kl + un−1

k,lj )

Ci3kl(ε̄kl + uk,l − ε0kl)|x3=hf = σappi3

ui|x3=−hs = 0

(.103)

5.2.1 Part A: Non-zero rhs, periodic BC

This is the same as bulk inhomogeneous case, section (4.2).

5.2.2 Part B: Zero rhs, thin film BC



C0
ijklu

B
k,lj = 0

Ci3klu
B
k,l|x3=hf = σappi3 − Ci3kl(uAk,l − ε0kl)|x3=hf

uBi |x3=−hs = −uAi |x3=−hs

(.104)

⇒



C0
ijklu

B,n
k,lj = 0

C0
i3klu

B,n
k,l |x3=hf = σappi3 − δCi3klu

B,n−1
k,l − Ci3kl(uAk,l − ε0kl) + δCi3klε̄kl|x3=hf

uBi |x3=−hs = −uAi |x3=−hs

(.105)

In our code, there is a special treatment that we split Ci3kluAk,l into C
0
i3klu

A,n
k,l and
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δCi3klu
A,n−1
k,l and thus the above equations becomes



C0
ijklu

B,n
k,lj = 0

C0
i3klu

B,n
k,l |x3=hf = σappi3 + Ci3klε

0
kl − δCi3klu

n−1
k,l − C

0
i3klu

A,n
k,l + δCi3klε̄kl|x3=hf

uBi |x3=−hs = −uAi |x3=−hs

(.106)

The way we solve this is exactly the same as thin film homogeneous case Part B.

6 Membrane inhomogeneous system

6.1 The homogeneous (macroscropic) part

The same as homogeneous membrane in section (3.1), and nothing needs to be solved.

6.2 The heterogeneous (microscopic) part

Cijklε
0
kl − δCijkl(ε̄kl + un−1

k,lj )

Ci3kl(uk,l − ε0kl)|x3=hf = σappi3

Ci3kl(uk,l − ε0kl)|x3=−hs = 0

(.107)

6.2.1 Part A: None-zero rhs, periodic BC

The same as bulk inhomogeneous case, section (4.2)
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6.2.2 Part B: Zero rhs, membrane BC

Similar to the thin film case,



C0
ijklu

B,n
k,lj = 0

C0
i3klu

B,n
k,l |x3=hf = σappi3 + Ci3klε

0
kl − δCi3klu

n−1
k,l − C

0
i3klu

A,n
k,l + δCi3klε̄kl|x3=hf

C0
i3klu

B,n
k,l |x3=−hs = Ci3klε

0
kl − δCi3klu

n−1
k,l − C

0
i3klu

A,n
k,l + δCi3klε̄kl|x3=−hs

(.108)

And then we can solve it using the same solver for homogeneous membrane case,

heterogeneous part B, section (3.2.2)
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