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Abstract
Advanced sensing is increasingly invested in modern manufacturing systems to cope
with the complexity and enhance information visibility, thereby leading to data-rich
environments. Generated data provide unprecedented opportunities to investigate
system dynamics and further improve quality monitoring and control for advanced
manufacturing in real-time. However, high-dimensionality and complex structures
of sensing data pose significant challenges. Realizing full potentials of sensing data
depends to a great extent on the development of novel analytical methods and tools
for effective modeling, monitoring, and control of manufacturing systems.

The research objective of this dissertation is to develop new learning method-
ologies for real-time quality monitoring and control of complex manufacturing
systems. This body of research will enable and assist in 1) understanding the
effect of process conditions on quality of manufacturing builds, 2) extracting sen-
sitive features and characterizing patterns of image data, 3) diagnosing defects
in low-volume and highly-customized production settings, and 4) handling high
dimensional spatiotemporal data. My research accomplishments include:

• Process mapping and monitoring of porosity in additive manufacturing (AM):
In Chapter 2, spectral graph theory and multifractal analysis are developed
to quantify the effect of process conditions on lack of fusion porosity in builds
made using AM process, and subsequently, to detect the onset of process
conditions that lead to lack of fusion porosity from in-process sensor data.

• Multifractal and lacunarity analysis for nonlinear pattern characterization:
In Chapter 3, the joint multifractal and lacunarity analysis is designed to
resolve local densities and characterize the filling patterns in image profiles.
Further, we derive the composite quality index by computing Hotelling T 2

statistics from multifractal and lacunarity features for defect detection and
characterization in ultra precision machining (UPM) and AM image profiles.

• Image-guided variant geometry analysis of layerwise build quality: In Chapter
4, we develop a tailored deep neural network (DNN) framework that learns
the broad geometrical diversity of images from builds made with AM. The
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proposed methodology leverages the computer-aided design (CAD) file to
register the region of interest (ROI) in each layerwise image. Next, we
propose a dyadic partitioning method to delineate variant ROI into distinctive
regions with the same size and in multiple scales. Then, we leverage the
semiparametric spatial model to characterize the complex spatial patterns
in subregion ROIs. Finally, a DNN is designed to learn incipient flaws from
spatial characterization images.

• Spatiotemporal Gaussian process for AM quality monitoring: In Chapter 5, a
novel spatiotemporal Gaussian process (STGP) is introduced to model the
standard geometric profile within ROIs and capture layer-to-layer spatiotem-
poral deviations for quality monitoring. Finally, we leverage the STGP model
to develop new monitoring charts, namely, the STT2 and STLR tests, for
the anomaly detection in AM processes. This framework enables on-the-fly
assessment of AM build quality.
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Chapter 1 |
Introduction

1.1 Motivation
Modern manufacturing industries are increasingly investing in sensing technologies
to cope with the ever-increasing complexity of systems and improve information
visibility. As a result, large amounts of data are readily available, which facilitate
the effective in-situ modeling, monitoring, and control of advanced manufacturing
systems. For example, high-resolution imaging systems are increasingly developed
for real-time monitoring of the printing in additive manufacturing (AM) processes.
The in-situ layerwise images enable the investigation of how process conditions
impact the microstructures of fabricated builds and provide critical information to
improve AM build quality. Also, microscopic images have been utilized in ultra
precision machining (UPM) to detect the onset of surface defects for assuring product
quality and minimizing subsequent reworks. As a result, sensing data provide an
unprecedented opportunity to realize smart and automated manufacturing and are
becoming a key enabler for enhancing competitiveness.

However, value of data does not hinge only on the volume, but also on hidden
information and knowledge. Realizing full potentials of sensing data depends to
a great extent on novel analytical methods and tools with effective information-
processing capabilities, which requires addressing the following challenges posed by
large and complex-structured data in advanced manufacturing:

• The presence of extraneous noise and uncertainty factors prevents the direct
estimation of system dynamics. New data-driven approaches are urgently
needed to capture systems evolution from sensing data.
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• Advanced imaging technology brings a large amount of data with nonlinear
and nonhomogeneous patterns, which calls for effective analytical methods
to exploit the acquired information and extract sensitive features for process
monitoring and control.

• State-of-the-art monitoring methodologies are not designed to leverage gener-
ated sensing data in modern manufacturing environments (e.g., the dearth
of image data for a build due to the one-of-a-kind manufacturing process).
There is a dire need for customized analytical methods that perform real-time
anomaly detection in advanced manufacturing.

• Advanced sensing brings the proliferation of spatiotemporal data that are
distributed in space and evolving over time. Both spatial and temporal
correlations need to be effectively addressed for high-dimensional monitoring.

Figure 1.1. The overview of the proposed research.

As shown in Figure 1.1, the objective of this dissertation is to advance the knowl-
edge on sensor-based modeling, monitoring, and control of advanced manufacturing
for in-situ quality improvements.
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1.2 Research Background
Modern manufacturing industries face increasing demands to provide highly person-
alized products and services to gain competitive advantages in the global market.
This trend calls for the next-generation manufacturing system that is highly flexible
and adaptive to complex and customized designs [3]. For example, AM is a group
of processes that produce a 3D part layer by layer from computer-aided design
(CAD) models. It enables the creation of complex, freeform geometries that are
difficult, if not impossible, to realize using subtractive and formative manufacturing
techniques [4]. Despite the great potential of AM to revolutionize manufacturing,
process repeatability, and build consistency remain ongoing challenges [5].

Note that microstructure and mechanical properties of AM builds are signifi-
cantly influenced by process variations and uncertain factors (e.g., materials with
temperature dependency, transmission and absorption of laser energy, complicated
cooling phenomena and materials, materials evaporation, thermal effects, hatch-
ing pattern, scanning velocity, and extraneous noises). This, in turn, causes the
formation of various type of defects such as porosity (i.e., lack of fusion or en-
trapped gas), geometrical anomalies (e.g., curling, dimensional inaccuracy, and
surface roughness), anisotropy and compromised phase stability, balling, cracks,
and delamination (i.e., separation of consecutive layers) [6]. Defects substantially
deteriorate build’s strength, fatigue life, residual stress, and hardness, thereby flaw
removal is critical to elongate mechanical properties of AM build.

Post-treatment techniques (e.g., machining and heat treatment) are conducive
to rectify particular defects including trivial cracks, dimensional inaccuracy, and
surface roughness on the exterior areas of finish build [7]. However, these expensive
correction actions tend to be limited in addressing different types of anomalies and
meeting challenging and stringent industrial requirements. Therefore, real-time
quality monitoring becomes an urgent need for AM applications.

UPM is another type of advanced manufacturing processes and is widely used
in fabrication of mirror finish surfaces for diverse engineering applications such as
precision aluminum mirrors in lasers, hard drives, memory discs in the computer
industry, rotating mirrors in copy machines, and optical elements of defense and
aerospace industries [8]. Although UPM enables the production of surface finish in
nanoscale, high variations due to machine precision, thermal instabilities, and tool
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vibration impact the stability of process. Previous research efforts have focused on
mechanisms of material removal in UPM. However, there is a dire need to leverage
advanced sensing for effective data-driven quality control that improves process
stability and reduces reworks [9].

1.2.1 In-situ sensing in advanced manufacturing

Advanced sensing provides an unprecedented opportunity to cope with the process
complexity and enable in-situ quality control of AM processes. Recent developments
in communication and electronics have improved the design and development of
low-cost and miniaturized sensors for use in AM settings that are previously not
possible. In the state of the art, a variety of in-situ sensors (e.g., infrared sensors,
video imaging, pyrometers, and photodiodes) have been used to capture information
for advanced manufacturing process monitoring and control.

For instance, infrared camera has been utilized to capture the thermal distribu-
tion of AM builds, and provide information on residual stress and microstructures
of 3D products. Krauss et al. [10] detected material discontinuities and process
deviations by monitoring the temperature distribution of AM layers using an in-
frared camera in the selective laser melting (SLM) process. Rodriguez et al. [11]
developed the in-situ thermography to identify absolute thermal non-uniformity in
layer surfaces of AM parts for quality control. In a series of related works, Craeghs
et al. [12–14] describe optical-based approaches for monitoring build quality in AM
by imaging the thermal behavior at the meltpool. Craeghs et al. were able to
detect process defects, such as deformation and overheating [13].

High-resolution cameras with visible wave-length also play an important role in
monitoring the quality information of AM layers to identify material discontinuities
and process errors. The CIMP-3D at the Penn State developed an in-chamber
imaging system with high-definition 36.3 megapixel single-lens reflex (DSLR) 164
AQ4 camera (Nikon D800E) with multiple flash modules [15]. In this context, the
use of optical imaging for quality monitoring and control is a novel contribution
of this work. Optical imaging cameras are significantly less expensive than their
thermal and high-speed counterparts.

4



1.2.2 Sensor-based quality monitoring and control of advanced
manufacturing

In-situ sensing systems bring large amounts of complex structured data that
call upon the development of new quality monitoring and control methodologies.
In the past few years, sensor-based learning methods for process control have
attracted increasing interests. For example, Grobert et al. [16] implemented the
support vector machine as a binary classification technique to differentiate two
types of build structures, namely, flaw and normal build conditions in powder
bed fusion using optical imaging. Francis et al. [17] developed a geometric error
compensation framework using a convolutional neural network (CNN) model that
predicts distortion for LPBF process. Scime et al. [18] studied an unsupervised
learning technique (i.e., K-means) to specify eight different types of anomalies of
powder recoating in LPBF process.

However, current investigations are still far from maturity and mainly focused
on the sensing system design and utilization with anomaly detection. The practical
sensor-based analysis is limited, thus data-driven methodologies for real-time
processing parameters optimization, defect detection, quality control are still
insufficient. Especially, key shortcomings of the current practices are the lack
of effective feature extraction (i.e., management of large amounts of data with
the high sampling frequency) as well as the dearth of customized monitoring
strategies (i.e., absence of training samples in the presence of one-of-a-kind and
highly customized builds). Overcoming these limitations enables capturing the
most critical information, quantifying process dynamics, and performing effective
quality monitoring and control.

1.3 Research Objectives
My research goal is to develop innovative methodologies using sensing data and
for real-time quality monitoring and control in advanced manufacturing systems.
Specifically, the objectives of this dissertation include:

1. Studying a hybrid spectral graph theory and multifractal and lacunarity
analysis to capture the most informative features for analyzing the process
condition that leads to the porosity defect in AM process.
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2. Developing an efficient method to investigate the nonlinear and non-homogeneity
patterns in image profiles for defects identification and characterization in
UPM and AM processes.

3. Designing methodology of deep learning of variant geometry for layerwise
image-guided quality control in AM. Our methodology is divided into the
following steps: 1) layerwise ROI estimation, 2) freeform geometry analysis
by hierarchical dyadic partitioning, 3) spatial characterization, and 4) DNN
learning of incipient flaws.

4. Introducing a novel spatiotemporal Gaussian Process to model the evolv-
ing dynamics within ROIs of layerwise images for AM process monitoring
and control. Also, we design statistical control charts to effectively detect
anomalies in layerwise images.

Figure 1.2. The overall structure of proposed research methodologies in this dissertation.
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As shown in Figure 1.2, the proposed research will enable and assist in 1)
mapping impact of process conditions on quality of build; 2) extracting pertinent
information about system dynamics from complex sensing data; 3) designing a
new methodology to learn defects from layerwise images with variant geometry;
4) introducing real-time quality monitoring with incorporating spatiotemporal
dynamics in AM processes.

1.4 Organization of the Dissertation
The outline of this dissertation is illustrated in Figure 1.2. This dissertation is
organized based on multiple manuscripts. Each of chapters 2-5 is written as a
research paper (first three published and last paper is under review). The remainder
of the dissertation is organized as follows:

In Chapter 2, we present the modeling and analysis of in-process layerwise
images in LPBF to investigate the effect of LPBF process conditions on the severity,
size, and location of porosity, and further connects the process conditions to sensor
signatures. Online visible spectrum images of the part were acquired as they are
built using a still camera. These images were analyzed using multifractal and
graph-theoretic approaches.

In Chapter 3, we propose the joint multifractal and lacunarity analysis of image
profiles in UPM and AM processes for manufacturing quality control. The multi-
fractal spectrum resolves local densities and captures nonhomogeneous variations of
image profiles. Lacunarity complements multifractal analysis by characterizing the
filling patterns in image profiles. Further, we derive the composite quality index
by computing Hotelling T 2 statistics from multifractal and lacunarity features for
defect detection and characterization in UPM and AM image profiles.

In Chapter 4, we investigate the CAD file to perform shape-to-image registra-
tion and to delineate the ROIs in layerwise images. Next, a hierarchical dyadic
partitioning methodology is developed to split layer-to-layer ROIs into subregions
with the same number of pixels to provide freeform geometry analysis. Then, we
propose a semiparametric model to characterize the complex spatial patterns in
each customized subregion and boost the computational speed. Finally, a DNN
model is designed to learn variant geometry in layerwise imaging profiles and detect
fine-grained information of flaws.
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In Chapter 5, we address the challenge of spatiotemporal data. We develop
the spatiotemporal Gaussian process for high-dimensional AM quality monitoring.
This model not only captures the standard layerwise AM mages in ROIs but
also incorporates layer to layer spatial and temporal deviation to improve the
performance of quality monitoring.

In the end, Chapter 6 concludes the dissertation and summarizes the contribu-
tions. Future research directions are also discussed in this chapter.
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Chapter 2 |
Characterization of Process Con-
ditions in AM

Process Mapping and In-Process Monitoring of
Porosity in Laser Powder Bed Fusion using

Layerwise Optical Imaging
Abstract

The goal of this work is to understand the effect of process conditions on
part porosity in LPBF process, and subsequently, to detect the onset of
process conditions that lead to porosity from in-process sensor data. In
pursuit of this goal, the objectives of this work are two-fold: (1) quan-
tify the count (number), size and location of pores as a function of three
LPBF process parameters, namely, the hatch spacing (H), laser velocity
(V ), and laser power (P ); and (2) monitor and identify process conditions
that are liable to cause porosity through analysis of in-process layer-by-
layer optical images of the build invoking multifractal and spectral graph
theoretic features. These objectives are important because porosity has
a significant impact on the functional integrity of LPBF parts, such as
fatigue life. Furthermore, linking process conditions to defects via sen-
sor signatures is the first-step towards in-process quality assurance in
LPBF. To achieve the first objective, titanium alloy (Ti-6Al-4V) test
cylinders of 10 mm diameter ×25 mm height were built under differing
H, V , and P settings on a commercial LPBF machine (EOS M280). The
effect of these process parameters on count, size and location of pores
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was quantified based on X-ray computed tomography (XCT) images.
To achieve the second objective, layerwise optical images of the powder
bed were acquired as the parts were being built. Spectral graph the-
oretic and multifractal features were extracted from the layer-by-layer
images for each test part. Subsequently, these features were linked to
the process parameters using machine learning approaches. Through
these image-based features, process conditions under which the parts
were built was identified with the statistical fidelity over 80% (F-score).

2.1 Introduction

2.1.1 Background

Powder bed fusion (PBF) refers to a family of AM processes in which thermal
energy selectively fuses regions of a powder bed [19]. Figure 2.1 shows the schematic
of the PBF process. A layer of powder material is spread across a build plate.
Certain areas of this layer of powder are then selectively melted (fused) with an
energy source, such as a laser or electron beam. The bed is lowered and another
layer of powder is spread over it and melted [20]. This cycle continues until the
part is built. The PBF process embodied in Figure 2.1 depicts a laser power source
for melting the material, accordingly, the convention is to refer to the process as
LPBF.

A galvanic mirror scans the laser across the powder bed. The laser is focused on
the bed with a spot size on the order of 50µm - 100µm in diameter, the laser power
is typically maintained in the range of 200 W to 400 W, the linear scan velocity of
the laser is varied in the 200 mm/s to 2000 mm/s range, and the distance between
each stripe of the laser, called the hatch spacing, is maintained in the range of
100 µm to 200 µm. The distance through which the bed is lowered is termed the
layer height and is typically in the range of 30 to 50 µm [20]. Close to 50 other
parameters are involved in the melting and solidification process in LPBF [21].

2.1.2 Motivation

The ability of LPBF to produce intricate geometry parts from hard-to-process
materials, such as cobalt-chrome and nickel-based super alloys has been conclusively
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Figure 2.1. The schematic diagram of the LPBF process.

demonstrated for a variety of demanding applications ranging from biomedical
to aerospace [22,23]. Process repeatability and product quality, however, remain
imposing barriers towards scaling LPBF to production environments [24]. Given
the layer-by-layer nature of the process, a defect in a layer, if not averted, will be
permanently sealed in by subsequent layers. These trapped defects adversely affect
key functional properties of the part, such as its fatigue life and strength [25,26].

A major gap in the current research lies in the lack of quantitative models to
correlate the effect of process conditions on specific defects, such as porosity via
the data acquired from in-situ sensors. Addressing this gap is the first-step towards
in-process quality assurance in LPBF. Therefore, there is an urgent need to: 1)
understand and quantify the effect of LPBF process conditions on defects, and 2)
institute in-process sensing and monitoring to capture the onset of defects.

The following types of LPBF defects have attracted the most attention: porosity,
surface finish, cracking, layer delamination, and geometric distortion. These defects
are tracked to the following four root causes [27,28]:

• Poor part design, such as inadequately supported features [29].

• Machine and environmental factors, such as poor calibration of the bed and
optics.

• Inconsistencies in the input powder material, such as contamination and
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deviations in particle distributions.

• Improper process parameter settings, for example, inordinately high laser
power causes vaporization of the material leading to keyhole porosity, while
insufficient laser power prevents powder particles from fusing together leading
to large acicular pores [30,31]. This work specifically focuses on characteriz-
ing and detecting porosity in-situ due to the improper selection of process
parameters.

2.1.3 Objectives

The goal of this work is to quantify the effect of process conditions on part porosity
in the LPBF process, and subsequently, detect the onset of porosity due to deviation
in process conditions based on in-process sensor data. An example of such a possible
deviation is the occlusion of the optics due to vaporization of the material during
melting and its eventual condensation on the focusing lens. The gradual coating
of residue on the laser will lead to loss of laser focus, and hence reduce the power
delivered to the substrate without the knowledge of the operator. In extreme
instances, because the residue deposited on the lens absorbs a significant portion of
the incident energy, damage to the lens and optical train can occur [32].

In pursuit of this goal, the objectives of this work are two-fold:

1. Quantify the effect of three LPBF process parameters, namely, laser power
(P ), hatch spacing (H), and velocity (V ) on the size, count, and location of
pores using X-ray computed tomography (XCT) scan data of the part.

2. Monitor and discriminate process deviations that are liable to cause porosity
using in-process optical images of the powder bed invoking multifractal and
spectral graph theoretic analysis.

The first objective is realized by simultaneously building nine titanium alloy
cylinders on a commercial LPBF machine (EOS M280) at varying P , H, and V
conditions, and quantifying their effect on the pore spatial distribution count, size
and location are quantified using XCT images.

The second objective is achieved by acquiring layer-by-layer optical images of
the parts while they are being built, and then extracting statistical, multifractal and
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spectral graph theoretic features from these images. These features are subsequently
used in various classification approaches such as neural networks to ascertain their
ability to isolate process conditions that are liable to produce parts with severe
pores.

The rest of this chapter is structured as follows. A brief review of the literature
focusing on porosity and in-process sensing in LPBF is presented in Section 2.2;
Section 2.3 describes the experimental conditions and layer-by-layer acquisition
of part images; Section 2.4 explains the spectral graph theory and multifractal
analysis of in-process image data for feature extraction and process modeling; and
conclusions and avenues for future work are presented in Section 2.5.

2.2 Review of the Relevant Literature
The literature concerning the reasons and mechanisms of porosity formation and
in-process sensing are summarized in Section 2.2.1 and Section 2.2.2, respectively.

2.2.1 Effect of LPBF process parameters on porosity

Of the various multi-scale defects in LPBF, porosity and its attendant causes have
garnered the most attention [28, 33–35]. According to Rao et al., voids or pores
are empty spaces in a material and porosity is a measure of the volume occupied
by these empty spaces over the total part volume [36]. Mechanical properties such
as strength and fatigue performance LPBF-processed parts are severely affected
by porosity; pores cause high-stress concentration, which in turn results in crack
formation [37–40].

The formation of porosity is closely tied to and governed by the thermal
phenomena at the meltpool-level [41]. Gong et al. have identified four distinctive
regimes of melting contingent on the laser power (P ) and velocity (V ) process
parameter settings. These regimes are demarcated as Zone I (fully dense); Zone II
(over melting); Zone III (incomplete melting); and Overheating Zone (OH) [38, 42].
Visualizing a process map of laser power plotted on the ordinate axis, and the
velocity on the abscissa, the region along the 45 degree slope falls under Zone I, also
termed as the conduction mode. In this region, parts with least porosity-related
defects were obtained. Zone II is to the left of Zone I, herein the laser power is
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higher for a given velocity compared to Zone I. This region is home to the so-called
keyhole mode melting, where, as experimentally and theoretically elucidated by
King et al. material vaporization occurs due to excessive energy input [43]. Zone
III is to the right of Zone I, and is characterized by relatively higher velocity for a
given power setting compared to Zone I. In this zone (Zone III), there is inadequate
energy for the material to completely fuse.

While Gong et al. found that parts can be made in either of Zones I, II, and III,
however, parts could not be built in the OH Zone, which is mapped to the left of
Zone II, because the layers tend to deform to such a high degree during the build
that the deposition of subsequent layers is impeded. Gong et al. report that in
their experiments the recoater jams occurred in the OH zone due to contact with
the part [38,42]. Similar process mapping results for other AM processes, such as
powder and wire-fed directed energy deposition, and electron beam powder bed
fusion are reported by Beuth et al. [44–46]. Within the three melting zones, Zone
I-III, the mechanism, and nature of pores formed are distinctive.

Lack of fusion porosity occurs in Zone III because the laser energy supplied is
insufficient to fuse the adjacent tracks, and the current and previously deposited
layers. Lack of fusion porosity results in the formation of large acicular pores of
size in the range of 30 µm - 100 µm [22]. From an experimental perspective for
Titanium alloy Ti-6Al-4V, Gong et al. correlate areal energy density EA = P

(H×V )
J/mm2 with porosity and observed the onset of lack of fusion porosity typically
occurs for EA < 1.1 (approximately). Considering also the layer thickness T as
a factor (maintained constant at 30 µm the equivalent threshold for volumetric
energy density EV = P

(H×V×T ) is ≈ 36 J/mm3.
Keyhole-collapse porosity in Zone II occurs due to vaporization of powder mate-

rial [20–22]. King et al. elucidate through theoretical simulations and experimental
studies that when the energy supplied by the laser is inordinately high, the laser
melts through several layers of the powder vaporizing material in its path. The
vapor cavity eventually collapses thus forming pores deep within the meltpool [43].
The pores resulting from operating in the keyhole melting mode are uniform and
circular in shape and are typically on the scale of 10-20 µm [30]. Gong et al.’s
studies indicate that as the energy density in the processing of Ti-6Al-4V increases
beyond a threshold value (typically EA > 2, EV > 66) the process enters the keyhole
melting mode [38,42].
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To avoid oxidation of the powder, the LPBF process is carried out in a chamber
filled with inert gas (usually argon or nitrogen) depending upon the material to be
processed. The argon or nitrogen gas may get trapped in the powder and lead to the
formation of gas pores [47]. Additionally, gas pores are also formed when bubbles
are trapped in the meltpool during the solidification process [36]. Gong et al. also
explain the formation of voids and pits due to the ejection of powder material as
spatter on account of the thermal energy [38,42]. The ejected particles may settle
within the boundary of the part, and on cooling may adhere to the surface of the
powder bed. Further, as the next layer is being deposited, the adhered particles
may subsequently be removed by the recoater leaving a pit or void in its place.
Lastly, lower melting impurities and constituents may vaporize given a sufficiently
high energy density (and not due to keyhole collapse) leaving voids in the part [48].
Such types of pores are not restricted to one type melting zone and are stochastic
in nature.

From the extensive experimental work of Gong et al. it is surmised that for
Ti-6Al-4V material, the conduction melting mode typically occurs in the range
of 1.1 < EA < 2 J/mm2; or equivalently 36 < EV < 66 J/mm3. Aboulkhair et
al. [30, 37] and Stucker et al. [49–51] report extensive process optimization studies
related to porosity in LPBF with conclusions in line with findings by Beuth et
al [44–46]. While most of the existing process maps relate the effect of areal or
volumetric energy density to porosity with the aid of XCT, a conspicuous gap
remains in relating pore size, density and location simultaneously with EA. This
work addresses the foregoing gap through objective 1.

In closing this section, we note that the process zones and concomitant types
of porosity reported in the literature are contingent on the presumptions of stable
process operation and that the part geometry and its location on the build plate
have negligible effect.

2.2.2 Sensing and monitoring in LPBF

Comprehensive review articles for in-process sensing are available in Refs. [27,52–55].
Significant research in process sensing and control for metal AM processes is being
done in academe and national laboratories [15, 56–60]. Nassar et al. experimented
with imaging of the LPBF powder bed under various illumination conditions
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[1, 15, 60]. The resulting layer data was analyzed, and defects, such as voids caused
by improper raking of the powder across the bed were identified. Lane et al. at
NIST integrated an LPBF machine (EOS M270) with thermal and high-speed
cameras, and a photodetector [56]. NIST and Edison Welding Institute (EWI)
are currently building a customized LPBF testbed instrumented with multiple
sensors [59, 61]. A large body of work in sensing and monitoring in LPBF is
reported by the Kruth group [12–14] and Witt group [62–65] in Europe. Recent
breakthroughs with in-situ X-ray imaging of the LPBF process has been reported
by scientists at Lawrence Livermore National Laboratories [66].

To detect evolving process anomalies researchers have sought to incorporate
sensing techniques such as vibration, charge-coupled device (CCD) video imaging,
infrared and ultraviolet imaging, pyrometers, photodiodes, ultrasonic wave genera-
tors in AM machines [10, 62, 67–72]. An early example was presented by Melwin et
al. [73], who used a video-micrography apparatus bearing band pass and polarizing
filters for observing the meltpool in polymer LPBF.

In a series of related works, Craeghs et al. [12–14] describe optical-based ap-
proaches for monitoring build quality in PBF by imaging the thermal behavior at
the meltpool. Craeghs et al. were able to detect process defects, such as deformation
and overheating using their optical system [13]. Bartkowiak [74] describes a PBF
apparatus integrated with a spectrometer for in situ measurements of the layer melt
characteristics, such as emissivity. Other researchers, e.g., Chivel et al. [75], and
Jacobsmuhlen et al. [62] have also developed optical imaging systems for process
monitoring in AM [75]. In a recent work, Rieder et al. [69] used an ultrasonic
sensing system for tracking build status in PBF. A broadband ultrasonic sensor
mounted on the underside of the build plate is used to detect voids, akin to acoustic
microscopy.

Craeghs et al. [13, 76, 77] report that the amplitude of the photodiode signal
is correlated with the melt-pool area and the melt-pool temperature. They sub-
sequently use this information to identify process failures, such as detection of
deformation due to thermal stresses and overheating at overhang structures, in
each build layer. Further, they developed a feedback control sensor based on
optical images. Chivel and Smurov [75] use two different wavelengths and selected
temperature profiles to extract information of the bed temperature distribution,
and the size of the meltpool for process monitoring.

16



Regarding the fidelity of the different sensing approaches for detecting de-
fects specific to PBF AM processes, the viability of thermal imaging and optical
spectroscopy-based techniques has been demonstrated in the literature. Recent
work done by researchers at NIST aims to comprehensively capture the effect of
meltpool shape and thermal gradients to defects. From the meltpool monitoring
vista, a fast response thermal camera with a high framerate (> 1000 frames/second)
and resolution in the micrometer range is typically used to circumvent blurring
effects [78]. In recent work by EWI researchers the meltpool-level thermal camera is
coupled with another thermal camera that monitors the heat flux over the entire bed
to detect large macro-scale defects, such as warping [61]. However, such high-fidelity
thermal cameras are exceeding expensive, and moreover, they are appropriate for
capturing thermal trends rather than the exact temperature of the target because
the emissivity of the meltpool remains to be established. Dual color pyrometers
can be used to circumvent the lack of emissivity information.

A far less expensive alternative to thermal imaging for detection of micrometer-
level defects is through the use of photodetectors and spectrometers. Nassar et al.
in a series of articles demonstrate the use of such optical emission spectroscopy-
based sensing [58, 79, 80]. The key idea is to measure the intensity (amplitude)
of the line-to-continuum ratio emission spectra of the material being processed
and relate the readings to part defects. For this purpose, two photodetectors are
coupled through a 50:50 beam splitter, and focused upon the entire bed area. Each
of the photodetectors is fitted with an optical bandpass filter that captures light
corresponding to the emission spectra of a particular element in the alloy being
processed. For instance, for detecting anomalies in LPBF of Inconel 718, Nassar et
al. used a 520± 5 nm and 530± 5 nm optical bandpass filters corresponding to the
continuum and line spectra, respectively, of Cr I emissions [79].

Instead of using two photodetectors to capture formation of porosity, Montazeri
et al. in two articles published in this journal, have used a single photodetector to
capture the onset of material contamination, and also to distinguish the process
signatures emanating for different feature geometries, such as overhang-related
features [48, 81]. While photodetectors and spectrometers present a cost advantage
over thermal imaging, and are capable of sampling rates nearing 1 MHz, their main
drawback is that the output is in terms of a time series or frequency spectrum
which have far limited information compared to thermal imaging.

17



In this context, the use of optical imaging for detection of conditions liable to
produce porosity is a novel contribution of this work. Optical imaging cameras
are significantly less expensive than their thermal and high-speed counterparts.
However, the challenge of capturing pores directly from the layerwise optical images,
as opposed, to the anomalous process conditions has not yet been attempted. In
closure, we note that Abdelrahman et al. [1] have used optical imaging data to
capture the large-scale (> 100 µm) defects which were deliberately introduced
during the build.

The main drawback in most of these studies is that they do not connect practical
process conditions to defects, but rather focus on artificially inducing flaws by way
of catastrophic process anomalies. Furthermore, the analytical techniques rely on
classical time-series signal processing techniques, which may not be effective in
capturing subtle defects. Recent progress to overcome this limitation is reported
by the Clare group at Nottingham University who have used spatially resolved
acoustic spectroscopy to detect porosity ex situ in LPBF, wherein the amplitude
of a surface acoustic wave generated by laser is correlated with the location and
severity of porosity at different laser power settings [82, 83]. The current work
addresses this extant gap through objective 2.

2.3 Experimental Setup and Data Acquisition
Experiments were conducted on an EOS M280 LPBF machine. The input material
was a Titanium alloy, ASTM B348 Grade 23 Ti-6Al-4V powder material whose
particle size ranges from 14 µm to 45 µm. The parts analyzed in this study are
cylinders which were printed by varying the hatch spacing (H), scan velocity (V )
and laser power (P ). The cylinders are 25 mm in length and 10 mm in diameter
shows the seven process parameter settings which were used to print these cylinders.
The nominal settings are labeled as H0 = 0.12 mm, V 0 = 1250 mm/s, and
P0 = 340 W. The layer height is maintained is constant at T = 60 µm. Hatch
spacing and laser print velocity are increased by 25% and 50%, and laser powder
has been decreased by 25% and 50% from their nominal settings. The three process
settings are aggregated in terms of the areal energy density applied for melting
called the Andrew number: EA = P

H×V J/mm2 or the volumetric energy density
EV = P

H×V×T J/mm3. Comparing the EV values reported in Table 2.1 with the
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experimental results of Gong et al. [38,42], we note that barring the nominal settings,
which is set in the conduction regime (Zone I), all other experimental treatment
combinations fall within the lack of fusion (Zone III) regime where acicular pores
are expected (EV < 36).

A digital single-lens reflex camera (DSLR, Nikon D800E) along with multiple
flash-lamps placed inside the build chamber is used to capture the layer-by-layer
powder bed images. Images are captured at two instances in every layer, namely,
post laser scan and post re-coat. The camera shutter is controlled by a proximity
sensor that registers the location of the recoater blade. Five images of the powder
bed images are captured under bright-field and dark-field flash settings. The
layout of the camera and flash-lamp location are shown in Figure 2.2, and the
representative images under the five light schemes are shown in Figure 2.3. In
this work, images from the bright-field light scheme in Figure 2.3(a) are analyzed.
Details of the experimental setup are available in Ref. [1].

Table 2.1. The combination of power (P ), hatch spacing (H), scan velocity (V ), and
layer height (T ) process conditions used for making the titanium alloy parts.

Process Condition
(P,H, V, T = 0.060) [W, mm, mm/s, mm] EA [J.mm−2] EV [J.mm−3]

P0, H0, V0 (340, 0.12, 1250,0.06) 2.27 37.8
P -25%, H0, V0 (255, 0.12, 1250,0.06) 1.70 28.3
P-50%, H0, V0 (170, 0.12, 1250,0.06) 1.13 18.8
P0, H +25%, V0 (170, 0.15, 1250,0.06) 1.81 30.1
P0, H +50%, V0 (170, 0.18, 1250,0.06) 1.51 25.1
P0, H0, V +25% (170, 0.12, 1562,0.06) 1.81 30.1
P0, H0, V +50% (170, 0.12, 1875,0.06) 1.51 25.1

2.4 Methodology and Results
As shown in Figure 2.4, the LPBF process data is analyzed in two phases, namely,
(1) offline analysis of XCT data in Section 2.4.1; and (2) analysis of in-situ images
of the powder bed in Section 2.4.2.
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Figure 2.2. Schematic diagram of the location of flash-lamps and camera used to capture
in-situ powder bed images [1]

Figure 2.3. Cropped image of the powder bed in different light schemes.

2.4.1 Phase 1: offline analysis of porosity

This section aims to analyze the effect of hatch spacing (H), laser velocity (V ),
and laser power (P ) on the count, size, and location of pores. Representative XCT
images of parts under different P , H and V conditions are shown in Figure 2.5. A
visual inspection of the XCT scans shows that the size and number (count) of the
pore is inversely proportional to the areal energy density (EA).

As the areal energy density (Andrew’s number, EA) is reduced, we observed
that the size and number of the pores become larger. However we caution that,
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Figure 2.4. An overview of the methodology for analysis of offline computed tomography
data, and in-situ images of powder bed fusion process.

although, the critical process parameters, such as laser power (P, W), hatch spacing
(H,mm), scan velocity (V, mm/s), and layer height (mm) can be optimized for
certain part geometries, and aggregated in terms of the global volumetric energy
density (EA) pores can still occur. This is because, (EA) does not account for the
thermal aspects in the part (heat flux), which is contingent on the part geometry,
orientation, and its location on the build plate. For instance, parts in the far edge
of the build platen (near the end of the recoater action) may suffer from insufficient
powder feed (powder shorting), likewise, the laser spot size is liable to change as the
laser tends to defocus on the outer edge of the build platen leading to lack-of-fusion
related porosity.

Furthermore, there is the possibility of a complex, nonlinear interaction between
P , V , and H which remains as yet undiscovered and therefore not captured in the
relationship representing the areal energy density. For instance, in the equation
for EA, all terms are assumed to be equal in weight, i.e., the exponent P , V ,
and H is unity (=1) and therefore the relationship between EA and the process
parameters is implicitly assumed to be a simple linear relationship. The following
inference is made based on Figure 2.5. For instance, while the severity of pores is
influenced by all three process parameters. However, laser power (P ) seems to have
an inordinately high effect. This observation is further quantified by extracting
count, size and location attributes by analyzing the XCT scan images through the
steps shown in Figure 2.6.

• Figure 2.6(a) – XCT scans for 30 randomly chosen cross-sectional areas are
analyzed.
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• Figure 2.6(b) and (c) – The XCT scan images are binarized based on a heuris-
tically determined threshold. Some information is inevitably compromised
during the binarization process. A complement of the binary image is taken
to return a black background, which makes computation easier as the image
matrix becomes sparse.

• Figure 2.6(d) – To reduce noise induced due to binarization the nearest
neighborhood approach is used [84]. We note that while it is customary to
refer to voxels in the context of XCT, because the images are converted to
binary images (binarized), we revert to using the term pixel. In this procedure,
a binarized XCT pixel is labeled as a defect only if it is connected to the
8-nearest pixels. In other words, if the 8 nearest neighboring pixels of a
particular pixel are also bright (i.e., 1), then the pixel is deemed to represent
part of a defect.

Next, the pore count, size and location are extracted as follows:

• Pore count - The number of 8-connected binarized XCT pixel over a layer
translates to the pore count.

• Size of pores - The size of a pore is grouped into one of 5 classes contingent on
its radius. Each pore is considered as an annular structure on the noise reduced
image, and then, the number of pixels within each annulus is calculated.
Depending on the number of pixels in the annulus, the pores are classified
into various radii, namely 1-5 pixel radii. A radius of one-pixel unit equates
to a pore radius of 16 µm on the part.

• Pore Location - The pore location is determined by segmenting the XCT scan
image into 5 concentric areas as shown in 2.7. The number of pores in each
1 mm thick segment of the XCT scan image is then counted. This establishes
the distance of the pores from the center of the cylinder.

(a) Effect of process parameters on count and size of pores

Analysis of the XCT scan images shows that decrease in the areal energy
density (EA) leads to an increase in the count (number of pores) and size
of pores. This effect of laser power (P ), hatch spacing (H), and laser print
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Figure 2.5. Effect of process conditions on the parts as seen in XCT scan images. Pore
count increases as process conditions drift from nominal conditions. Highest number of
pores are seen in the part printed at P -50% (c3).

velocity (V ) on pore count and size are exemplified in Figure 2.8 from which
the following inferences are drawn. In Figure 2.8, the x-axis is the pore size,
and the y-axis is the mean count (or number) of the pore observed on 30
randomly selected slices of the XCT scan. These results are also detailed in
Table 2.2, which reports the mean number of pores, rounded to the nearest
integer, along with the standard deviation for 30 randomly chosen layers.

(a) Referring to Figure 2.8(a), the pore distribution in terms of count vs.
pore size is plotted for different levels of laser power (P ). The decrease
in laser power by 50% (170 W) leads to almost a 100-fold increase in
the number of pores. Further, parts produced under P -50% (170 W)
have pores ranging from 1 pixel to 4 pixels in size, i.e., 16 µm to 64 µm,
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Figure 2.6. An overview of the image processing methodology used to analyze the XCT
scan images. (a) XCT scan image of part printed with P -50%, (b) binarization of the
XCT scan image of the part, (c) complemented binary image of the XCT scan image,
and (d) noise reduced XCT scan image which is used for the spatial distribution analysis.

Figure 2.7. An example of the procedure followed to divide XCT scan image of a part
into concentric segments. (a) First segment 0 mm – 1 mm of the XCT scan image (L1),
i.e., the segment that encompasses the center of the XCT scan image, (b) second segment
1 mm – 2 mm of the XCT scan image (L2), (c) third segment 2 mm – 3 mm of the XCT
scan image (L3), (d) fourth segment 3 mm – 4 mm of the XCT scan image (L4), and
(e) last segment 4 mm – 5 mm of the XCT scan image (L5), i.e., the segment which is
farthest from the center of the XCT scan image.

whereas parts produced under nominal power (P0= 340 W) and P -25%
(270 W) have pores of radius 2 pixels (∼ 32 µm at most).

(b) Referring to Figure 2.8(b), increasing the hatch spacing (H) leads to an
increase in both the count and size of pores. The magnitude of the effect
of laser hatch spacing is significantly smaller than that of laser power.
In case of varying hatch spacing (Figure 2.8(b)), the highest number of
pores are seen in the cylinder which is printed with H +50%, i.e., 0.18
mm hatch spacing. From Figure 2.8(b), for all the three levels of hatch
spacing, the largest pore radius observed is 2 pixels.

(c) Referring to Figure 2.8(c), akin to hatch spacing, increase in laser print
velocity (V ) leads to increase in count and size of pores. The largest
pore size of radius 3 pixels (∼48µm was recorded in the cylinder printed
with V +50% (1875 mm/s). The effect of velocity on porosity is least
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consequential of the three factors studied in this work.

Figure 2.8. Count of pores vs. pore size in varying process conditions. (a) In P -50%
printing condition highest number of pores are seen of size R1 (16 µm), and in P0 and P
-25% printing condition, very few pores of size R1 (16 µm) are seen. (b) In parts printed
with varying hatch spacing only pores of size R1 (16 µm) and R2 (32 µm) are seen, and
the highest number of pores is seen in H +50% printing condition. (c) In comparison
with other printing conditions, the lowest number of pores is seen in parts printed with
varying velocity. Pores of size R1 (16 µm) are highest in number in V0, V +25%, and V
+50% printing conditions.

Table 2.2. Mean count of pores and its standard deviation (in brackets) of various sizes
in the XCT scan image slice in various printing conditions obtained from 30 randomly
sampled layers.

Mean count of pores

Size

H0, V0, P0
(Nominal
condition)
(0.12 mm,
1250 mm/s,
340 W)

H + 25%
(0.15
mm)

H + 55%
(0.18 mm)

V + 25%
(1562.5
mm/s)

V + 50%
(1875
mm/s)

P -25%
(255 W)

P - 50%
(170 W)

R1 ∼ 16 µm 1(1) 3(2) 42(22) 3(2) 10(5) 1(1) 132(31)
R2 ∼ 32 µm 1(1) 1(1) 6(4) 2(2) 4(3) 1(1) 30(12)
R3 ∼ 48 µm 0 0 0 1(1) 1(1) 0 3(2)
R4 ∼ 64 µm 0 0 0 0 1(1) 0 1(1)

(b) Effect of process parameters on the location of pores

The location of pores in the test cylinders is determined by segmenting the
XCT scan image of a cylinder into 5 concentric parts as described previously
in the context of Figure 2.7. This establishes the distance of the pores from
the center of the cylinder. The mean and standard deviation of pores in each
segment of the part for 30 randomly chosen layers are reported in Table 2.3
and depicted in Figure 2.9, from which the following inferences are drawn:
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• Referring to Figure 2.9(a), it is evident that as the laser power decreases,
more number of pores are recorded in the L2 (1 - 2 mm) to L4 (3 - 4
mm) segment, of the cylinder. Figure 2.9(a) further reveals that the
cylinder printed with nominal laser power (340 W) has most number
of pores in the first two annular segments of length L1 (0 - 1 mm) and
L2 (1 - 2 mm), which indicates that the pores are located close to the
center. This trend is also observed in the cylinder printed with P -25%
laser power (270 W). In contrast, the cylinder printed with -50% laser
power has most number of pores in the third segment (2 - 3 mm).

• Referring to Figure 2.9(b) and (c), in cylinders printed with varying
hatch spacing (H) and laser print velocity (V ), respectively it is observed
that parts produced at +50% hatch spacing (0.18 mm) and laser print
velocity 1875 mm/s) have the highest number of pores at the radial
distance with L3 (2 - 3 mm). Pores in the cylinders printed with +25%
and nominal hatch spacing and laser print velocity are mainly located
in the first two segments 0 - 1 mm and 1 - 2 mm.

The sharp drop in porosity in L5 is likely due to the reason that the external
boundary of the part is scanned with increased EA after the rest of the part
(post-contour melting). The added heat at the periphery mitigates porosity in
L5. Further, the concentration of heat in the core of the part may explain the
reduced porosity towards the center (L1). Lastly, the effect of thresholding
to convert may lead to a loss of information, this last reason can be largely
discounted in the light of Figure 2.6 (a and d), wherein pores in the boundaries
are captured appreciably.

2.4.2 Phase 2: analysis of online data of LPBF process

This section aims to link the process conditions to the layer-by-layer images of the
parts as they are melted. This will allow detection of process drifts in their early
stages. For this purpose, two methods are proposed, the first based on spectral
graph theory, and the second using multifractal and lacunarity analysis.

(a) Application of spectral graph theory for part image analysis
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Figure 2.9. Mean pore count vs. radius from center of image at varying process
conditions. (a) Parts printed with laser power of P -50% have highest number of pores
in the third segment (L3 = 2-3 mm) of the XCT scan image. Parts printed with P 0
(nominal condition), and P -25% have pores located in second segment (L2 = 1-2 mm) of
the XCT scan image. (b) In parts printed with varying hatch spacing highest number
of pores are seen in the third segment (L3 = 2-3 mm) of the XCT scan image in all
conditions. (c) In parts printed with varying velocity highest number of pores are seen in
V +50% in the third segment (L3 = 2-3mm), and in V0 and V +25% conditions, highest
number of pores are seen in the second segment (L2 = 1-2 mm) of the XCT scan images.

Table 2.3. Mean counts of pores and its standard deviation (in brackets) at various
locations of the XCT scan image in various printing conditions.

Mean count of pores

Radial
distance

from center
of

image

H0, V0, P0
(Nominal
condition)
(0.12 mm,
1250 mm/s,
340 W)

H + 25%
(0.15
mm)

H + 55%
(0.18 mm)

V + 25%
(1562.5
mm/s)

V + 50%
(1875
mm/s)

P +25%
(255 W)

P + 50%
(340 W)

L1 = 0-1 mm 1(1) 1(1) 9(6) 1(2) 3(3) 1(1) 19(9)
L2 = 1-2 mm 1(1) 1(1) 18(8) 2(2) 5(4) 1(1) 50(22)
L3 = 2-3 mm 1(1) 2(1) 19(10) 2(2) 7(5) 1(1) 56(22)
L4 = 3-4 mm 1(1) 1(1) 6(4) 1(1) 2(2) 1(1) 31(13)
L5 = 4-5 mm 1(1) 1(1) 0 1(1) 1(1) 1(1) 1(2)

Spectral graph theoretic Laplacian eigenvalues extracted from online images
are used to identify the process conditions under which a part is produced.
The approach has the following two steps.

Step 1: Representing the image of each part as a graph.
A layer-wise image obtained from the DSLR camera for a laser sintered
cylinder layer with M ×N pixels can be represented by a matrix XM×N .
As shown in Figure 2.10, each row of the matrix X is considered as
a row vector and it represents a node or vertex (V ) of an undirected
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graph which is denoted as G ≡ (V,E), where E is the edges in the
graph [85]. The M row vectors of the matrix are represented as αK ,
K = {1, 2, ...,M}.

Figure 2.10. An in-situ image of part depicting the row vectors which are used for
pairwise comparison.

Further, a pairwise comparison is performed between each of the row
vectors through a kernel function Ω [86]. A pairwise comparison along
the columns has been shown to lead to similar results as long as the
image is homogeneous [87].

wpq = Ω(−→ap ,−→aq ) ∀ p, q ∈ K (2.1)

The kernel function Ω used in this study to compute the pairwise
comparison is the radial basis kernel function (Eq. 2.2 and 2.3) .

wpq = e
−[ E

σX
]2 (2.2)

E = [‖−→ap −−→aq‖2] (2.3)

where, σX is the overall standard deviation of E. Next, a binary similarity
matrix S = [wpq] is created with help of a threshold function. This
threshold function θ when applied to wpq converts it into binary form [88].
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Θ(wpq) = wpq = (0, 1) (2.4)

This threshold function facilitates in determining whether there is a
connection between two nodes [88]. wpq = 1 if there is a connection and
otherwise it is zero.

Θ(wpq) = wpq =
(

1, wpq ≤ r

0, wpq > r
(2.5)

Here r is given by,

r =
Pp=M

p=1
Pq=M

q=1 wpq

M2 (2.6)

Step 2: Extracting features from the graph.
Once a graph is formulated from the image, topological features are
extracted from the graph. These features are useful in classification of
parts which are made with different process parameters. The first step
towards feature extraction is computing the degree dp of a node p, i.e.,
the number of edges that pass through the node p. The degree of node
p is computed by summing each row in the similarity matrix S. From
the degree of node dp, a diagonal degree matrix D is formed as follows:

D(d1, ..., dM) (2.7)

Now, with the help of the degree D matrix and the similarity matrix S,
the normalized Laplacian L of the graph is defined as follows,

LD−
1
2 × (D − S)×D− 1

2 (2.8)

where, D− 1
2 = ( 1√

d1
, ..., 1√

dM
).

Finally, the Eigen spectra of the Laplacian is computed as follows [89].

Lv = λ∗v (2.9)

The eigenvalues (λ) of the Laplacian are used in the classification of
LPBF parts per their processing conditions. In this work, the first five
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smallest non-zero eigenvalues are used. Also, the Kirchhoff index for
each graph is computed as follows, where λi are the non-zero eigen values
of the Laplacian.

Kf = 2× ε×
MX
i=2

λ−1
i (2.10)

where ε =
∑i=M
i=1

∑j=M
j=1 sij

2 .
The non-irradiated part of the part image i.e. the un-sintered powder,
is fairly homogenous, so when it the image undergoes a row-wise com-
parison, the distance kernel function becomes zero. The nodes which
are far apart from each other are connected on the graph.

(b) Multifractal and lacunarity analysis of part images

The fractal dimension has been extensively used to characterize the texture
and patterns of manufactured surfaces [35,90–92]. This work goes beyond the
traditional methods that extract a single fractal dimension from the surface
image, but rather assume the irregularity and non-homogeneity of image data
are due to the presence of several fractal dimensions [92]. As such, we extract
a spectrum of multifractal features to characterize the layer-by-layer images
obtained in LPBF. A fractal is defined as a shape that embodies geometric
similarity across multiple scales [9, 93, 94]. Assuming that a fractal object
occupies a limited area in the Euclidean space, then the object can be covered
by N measure elements with size as follows,

N(l) = l−D (2.11)

where D is the fractal dimension. The box-counting method is widely used
to estimate the fractal dimension of an irregular object. This method covers
a fractal set with measure elements (e.g., box) at different sizes and observes
how the number of boxes varies with its size [95]. This procedure is repeated
using different boxes of size l. Once the l becomes sufficiently small, N(l)
being the number of boxes that are needed to cover a fractal object with the
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size l, then the box-counting dimension D0 is defined as,

D0 = lim
l→0

lnN(l)
ln 1

l

(2.12)

Figure 2.11. An in-situ image of part depicting the row vectors which are used for
pairwise comparison.

For example, Figure 2.11 shows three types of fractal objects called multifractal
trees that are constructed with the iterated function systems (IFS) method.
These fractal trees are labeled T1, T2, and T3. The estimates of fractal
dimension (D0) using the box-counting method in Figure 2.11 are D0 = 2.0449
for all three fractal trees. However, three trees show high levels of self-
similarity, irrgularity and heterogeneity due to the presence of a spectrum
of fractal dimensions. This demonstrates that the traditional box-counting
fractal dimension is limited in the ability to fully characterize the patterns of
multifractal objects [96]. Multifractal analysis provides a means to overcome
this limitation of traditional fractal dimensions. The procedure to estimate
the multifractal spectrum from image data is as follows:

Step 1: Estimating the local densities function (Pi(L)).

Pi(l) = Ni(l)
NT

(2.13)

where Ni(l) is the number of mass or pixels in the ith box of size l, NT

is the total mass of a set and Pi(l) is the probability in the ith box.

Step 2: Calculating singularity strength exponent (lαi).
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Pi(l) ∼ lαi (2.14)

where αi reflects the local behavior of Pi(l) in the ith box with size l
and it can be derived as

αi = lim
l→0

lnPi(l)
ln l (2.15)

Step 3: Estimating multifractal spectrum (f(α)).
The multifractal spectrum f(α) is the fractal dimension of the set of
locations that have same values for singularity strength exponents αi.
Given the number of boxesN(α) where the probability Pi(l) has exponent
values between α and α + dα the multifractal spectrum f(α) can be
calculated as follows,

f(α) = lim
l→0

lnN(α)
ln 1

l

(2.16)

Step 4: Characterizing multifractal measures (Dq).
Multifractal measures are characterized by the scaling of the qth moments
of Pi(l) distributions as,

N(l)X
i=1

P q
i (l) = lτ(q) (2.17)

where τ(q) is called the mass exponent of qth order moment. Then, the
generalized fractal dimensions Dq can be written as,

Dq = τ(q)
q − 1 (2.18)

Then, the Legendre transformation is used to derive the multifractal spectrum
as

f(α(q)) = qα(q)− τ(q) (2.19)

α(q) = dτ(q)
dq

(2.20)

However, Legendre transformations are computationally demanding in the
calculation of f(α). Also, this approach requires smoothing the Dq curve the
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which causes errors in the estimated f(α) [97]. To overcome this limitation
and bypass intermediate smoothing steps in estimating f(α), a family of
normalized measures µi(q, l) as qth moments of mass probability Pi(l) are
introduced in Eq. 2.21. A constant l range is also used to avoid multifractal
properties over a small interval of scales.

µi(q, l) = P q
i (l)PN(l)

i=1 P
q
i (l)

(2.21)

As such, the multifractal spectrum f(α) and the average singularity strength
exponent α(q) can be written as,

f(α(q)) = lim
l→0

PN(l)
i=1 µi(q, l) ln[µi(q, l)]

ln l (2.22)

α(q) = lim
l→0

PN(l)
i=1 µi(q, l) ln[P q

i (l)]
ln l (2.23)

Figure 2.12 shows the multifractal spectra for three IFS trees in Figure 2.11.
It is evident that multifractal features effectively distinguish the differences
in the three IFS trees that were not captured using the traditional fractal
dimension. Note that the tail of the third IFS tree T3 is longer than other two
IFS trees. Because T3 has more pixels with lower values (value towards 0 or
black pixels) in comparison to the other two trees and the f(α(q)) spectrum
intensifies the effect of pixels with lower values.

Furthermore, lacunarity complements multifractal analysis by characterizing
the manner or distribution in which the fractal objects fill the space [98,99].
Lacunarity and multifractal analysis jointly describe the irregularity and non-
homogeneity in fractal objects as well as how they fill the space that cannot
be otherwise achieved by traditional box-counting dimension or statistical
features. To obtain the lacunarity measure, a unit box of size l is placed
over the object and the number of set points s (black pixels) in the image
is counted - this is called the box mass. Next, the box is translated one
space along the set, and the box mass is again determined. This process
is repeated over the entire set, creating a frequency distribution of the box
masses represented as N(s, l). This frequency distribution is converted into a
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Figure 2.12. Multifractal spectra of IFS trees shows the self-similarity, irregularity, and
non-homogeneity of fractal objects that cannot be adequately characterized using a single
fractal dimension.

probability distribution Q(s, l) by dividing by the total number of boxes N(l)
of a given size l [100].

Q(s, l) = N(s, l)
N(l) (2.24)

The first and second moments of this distribution can be written respectively
as:

Z(1) =
X

sQ(s, l) (2.25)

Z(2) =
X

s2Q(s, l) (2.26)

The lacunarity method with box size l can be computed as:

Λ(l) = Z(2)
(Z(1))2 (2.27)

In Eq. 2.24, Λ(l) represents the lacunarity for the box size l. This procedure
is repeated for different box sizes, and a log-log plot of the lacunarity versus
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the size of the box is traced. Figure 2.13 shows T3 has higher lacunarity
values in comparison to the two other trees. The distribution of gap sizes is
termed as lacunarity.

Figure 2.14 shows the singularity strength exponent (q) and multifractal
spectrum f(α(q)) estimated from 3132 layerwise images in the LPBF process.
There are 1044 images in EA = 2.27; 696 in EA = 1.81; 348 in EA = 1.70;
696 in EA = 1.51; and 348 in EA = 1.13. Note that multifractal spectra of
these images show significant variations with respect to the different Andrew’s
numbers.

Figure 2.13. Lacunarity analysis of IFS trees describes how fractal objects fill the space
that cannot be adequately captured using traditional fractal analysis.

2.4.3 Application of multifractal and spectral graph theory to
online images

Further, the parts built under the different EA conditions described in Table 2.1
were classified using different machine learning approaches with various types of
input features. A 70%-15%-15% split for training, testing, and validation data were
imposed. The classification fidelity is reported in terms of the F-score, which is an
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Figure 2.14. The variations of multifractal spectra with respect to the the Andrew's
Number for 3132 layerwise images in the LPBF process.

aggregate of the Type I and Type II statistical errors. The results are summarized

in Table 2.4.

Table 2.4. Mean counts of pores and its standard deviation (in brackets) at various
locations of the XCT scan image in various printing conditions.

Classi�er
Statistical
features

(A) Spectral graph
theoretic features

(B) Multifractal and
lacunarity features

Combined
features

A+B
Support Vector

Machine
55.58% (0.58) 71.94% (0.20) 76.16% (0.30) 89.36% (0.21)

Complex Tree 54.10% (0.14) 68.02% (0.50) 68.60% (0.30) 79.98% (0.23)
Linear Discriminant

Analysis
52.72% (0.34) 63.22% (0.49) 63.02% (0.08) 82.16% (0.21)

K-Nearest Neighbor 56.62% (0.50) 67.66% (0.25) 70.38% (0.27) 78.60% (0.34)
Ensemble

(Bagged Trees)
51.06% (0.58) 72.50% (0.10) 72.68% (0.61) 85.86% (0.30)

Feed Forward
Neural Network

49.66% (1.99) 64.62% (1.70) 66.54% (1.76) 84.40% (1.67)

Three types of input features are used: (1) statistical image features, namely,

intensity (mean) of an image, and local standard deviation of an image in3 � 3

neighborhood, (2) spectral graph theoretic features, namely, the �rst �ve non-

zero Eigenvalues and the Kirchho� index, and (3) the multifractal and lacunarity

features. It is observed that irrespective of the classi�cation approaches used, the

spectral graph and multifractal and lacunarity features outperform the conventional

statistical features. Furthermore, combining the spectral graph and multifractal
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features results in F-score around 80%. The results reported in Table 2.4 show

that the spectral graph theoretic and multifractal features discriminate the part

quality with higher �delity than traditional statistical analysis. This is valuable

from the in-process quality monitoring viewpoint. In a practical scenario, images of

the parts can be used to conclude whether the process within an optimal window.

2.5 Conclusions

This paper presents the modeling and analysis of in-process layerwise images in

LPBF to investigate the e�ect of LPBF process conditions on the severity, size,

and location of porosity, and further connects the process conditions to sensor

signatures. This is an indirect way to monitor the LPBF process. The speci�c

outcomes of the work are as follows:

1. Three process parameters, namely, laser power(P), hatch spacing(H ), and

scan velocity(V) were varied during the LPBF of Ti-6Al-4V powder material.

The e�ect of varying these parameters on porosity was characterized o�ine

using X-ray computed tomography (XCT). Based on analysis of the XCT

images the following inference is tendered. Decreasing the laser power by 50%

from 340 W to 170 W leads to almost a three-fold increase in the average

number of pores, compared to an equivalent percentage increase in hatch

spacing, and ten-fold increase compared to scan velocity. Hence, the control

of laser power is most consequential for avoiding porosity.

2. Online visible spectrum images of the part were acquired as they are built

using a still camera. These images were analyzed using multifractal and graph

theoretic approaches. The features extracted by applying these approaches

were subsequently used within various machine learning techniques. The aim

was to distinguish the process conditions under which the parts were built

given an image of the part. It is observed that combining multifractal and

graph theoretic analysis leads to as much as 30% increase in the accuracy of

discriminating process conditions compared to using traditional statistical

measurements. Using this approach, the process conditions can be isolated

with F-score approaching 80%. From a practical perspective, although the

P, H , and V settings are predetermined for each material in terms of the
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Andrew number (EA ), the laser power, particularly, is liable to drift due to

occlusion of the focusing optics; the vaporized material tends to condense on

the lens especially during long builds.

3. There is the possibility of a complex, nonlinear interaction betweenP, V,

and H which remains as yet undiscovered and therefore not captured in

the relationship representing the areal energy density. For instance, in the

equation for EA , all terms are assumed to be equal in weight, i.e., the

exponentP, V, and H is unity (=1) and therefore the relationship between

EA and the process parameters is implicitly assumed to be a simple linear

relationship. The observed nonlinear relationship leads to the considerable

distance among the 5 group of classes as a function ofP. This in turn impacts

more pronounced di�erentiation in classi�cation results.
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Chapter 3 |
Multifractal and Lacunarity Anal-
ysis

Joint Multifractal and Lacunarity Analysis of
Image Pro�les for Manufacturing Quality

Control

Abstract

The modern manufacturing industry faces increasing demands to cus-

tomize products according to personal needs, thereby leading to the

proliferation of complex designs. To cope with design complexity, manu-

facturing systems are increasingly equipped with advanced sensing and

imaging capabilities. However, traditional statistical process control

methods are not concerned with the stream of in-process imaging data.

Also, very little has been done to investigate nonlinearity, irregularity,

and inhomogeneity in the image stream collected from manufacturing

processes. This paper presents the joint multifractal and lacunarity

analysis to characterize irregular and inhomogeneous patterns of image

pro�les, as well as detect the hidden dynamics in the manufacturing

process. Experimental studies show that the proposed method not only

e�ectively characterizes surface �nishes for quality control of ultra pre-

cision machining but also provides an e�ective model to link process

parameters with fractal characteristics of in-process images acquired

from additive manufacturing. This, in turn, will allow a swift response

to processes changes and consequently reduce the number of defective

39



products. The proposed multifractal method shows strong potentials to

be applied for process monitoring and control in a variety of domains

such as ultra precision machining and additive manufacturing.

3.1 Introduction

Fierce competition in global market leads manufacturing companies to o�er highly

personalized products with complex designs according to the customers' needs

[101,102]. This trend calls for the development of a next-generation manufacturing

system that is highly �exible and adaptive to complex and customized designs

according to personal needs and requirements. However, quality control of such

complex products depends on advanced sensing, process monitoring and control.

For example, UPM is a commonly used manufacturing process to produce optical

discs, photoreceptor components, and aircraft engines [103]. Such applications

require mirror surface �nishes with extremely high geometrical accuracies and

smooth surfaces (i.e., surface roughness< 50nm). Also, AM provides a higher level

of �exibility to print a 3D product with the complex geometry layer by layer [3].

The LPBF process spreads the material powder over previous layers, and then use

a laser or electron beam energy source to melt the material powder to print a new

layer of the product [104]. Qualifying complex builds is extremely challenging. It

was reported that among seven parts built simultaneously on a commercial LPBF

machine, only two out of seven are defect free. Therefore, there is an urgent need

to develop advanced quality control methods for monitoring surface �nishes as we

move into a more complex and high-precision manufacturing [105].

Figure 3.1. (a) UPM experimental setup, and (b) the schematic diagram of the LPBF
process.

Most of the complexity in the data arises from the complex products as well as
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nonlinear and nonstationary dynamics in the manufacturing processes. Prior work

showed the characterization of nonlinear dynamics in manufacturing systems and

the resulted variations in products and systems performances [106]. Traditional SPC

methods mainly focus on key characteristics of the product and the conformance to

speci�cation, but they are less concerned about high-dimensional image data and

nonlinear dynamics in manufacturing processes. Manufacturing system dynamics,

con�ned by the evolution of states of the underlying process, exhibit aperiodic,

strange and irregular behaviors. Gültekin et al. [107] and Singer and Ben-Gal [108]

showed that engineering control implementations often bring nonlinear dynamics

of sensor observations in manufacturing processes.

There is a critical gap in the knowledge base that pertains to integrating

nonlinear dynamics research with manufacturing quality control. Available nonlinear

dynamics techniques are either not concerned with quality control objectives or fail

to e�ectively analyze big data (e.g., high-dimension image data) to extract useful

information for process control. There is an urgent need to harness and exploit

nonlinear dynamics for creating new products (or services) with exceptional features

such as adaptation, customization, responsiveness, and quality in unprecedented

scales. The nonlinear dynamics theory focuses on the geometric properties of the

state space of dynamical systems. For example, the fractal dimension is commonly

used to describe the complex geometries of fractal objects (e.g., time series, 2D or

3D images) that are self-similar and scale invariant. The fractal dimension can be

a non-integer value that exceeds the topological dimension of the object.

However, a single fractal dimension focuses on the self-similarity (scale invariant)

behavior of the fractal object and is limited in the ability to completely describe

the multifractal patterns (i.e., nonlinearity, irregularity, and inhomogeneity) in

complex real-world objects. For example, image data from real-world manufacturing

processes often do not show perfect self-similarity but are formed by subsets with

inhomogeneous scaling properties. The multifractal analysis is an e�ective tool

to characterize inhomogeneity and nonlinear patterns of real-world images using

an interwoven set of fractals with di�erent dimensions. Furthermore, lacunarity

complements multifractal analysis by characterizing the manner or distribution in

which the fractal objects �ll the space. Lacunarity and multifractal analysis jointly

describe the irregularity and non-homogeneity of fractal objects as well as how they

�ll the space that cannot be otherwise achieved by traditional fractal dimension or
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statistical features.

This chapter presents the multifractal and lacunarity analysis of image pro�les

in UPM and AM processes for manufacturing process and monitoring and quality

control. The multifractal spectrum resolves local densities and captures nonhomo-

geneous variations of image pro�les. Lacunarity complements multifractal analysis

by characterizing the �lling patterns in image pro�les. Further, we derive the

composite quality index by computing Hotelling'sT2 statistics from multifractal

and lacunarity features for defect detection and characterization in UPM and AM

image pro�les. Finally, we investigated the correlation between the Hotelling'sT2

statistics and process parameters (i.e., hatch spacing, scan velocity, and laser power)

in AM using multivariate regression analysis. Experimental results on real-world

UPM and AM applications show that the proposed approach not only e�ectively

detects and characterizes defects in image pro�les, but also provides an e�ective

prediction model to link process parameters with image characteristics in AM

processes.

The remainder of this chapter is organized as follows: 3.2 introduces research

background of nonlinear dynamics in manufacturing systems, imaging technology,

and fractal theory. 3.3 presents the research methodology of multifractal and

lacunarity analysis of image pro�les from manufacturing processes. Case studies

and experimental results are provided in 3.4. 3.5 discusses and concludes the present

research.

3.2 Research Background

3.2.1 Manufacturing processes and advanced imaging technol-

ogy

As shown in Figure 3.1, UPM and AM processes are advanced manufacturing

technologies that o�er unique capabilities such as high precision and �exible cus-

tomization that cannot be matched by traditional manufacturing techniques. UPM

is equipped with air-bearing spindles and diamond tools to produce optical surface

�nishes (i.e., roughness< 50 nm). Also, the LPBF process employs a laser power

source for melting the material. A scanning galvanic mirror assembly scans rasters

the laser across the powder bed. The laser is focused on the bed with a spot size
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on the order of50� m to 100� m in diameter. Its power is typically maintained in

the range of 200 W to 400 W, and the linear scan speed of the laser is varied in the

200 mm/s to 2000 mm/s range [33]

Advanced sensing brings the increasing availability of high-dimensional images,

which are critical to quality inspection and process improvement. For examples,

Figure 3.1(a) shows the UPM surface extracted by high resolution optical laser

interference microscope (MicroXAM®) and a stylus-based pro�lometer (TalySurf®).

Figure 3.1(b) shows the industrial X-ray computed tomography (XCT) image for

quality inspection of complex builds from LPBF process.

Although UPM and AM o�er exceptional capabilities, qualifying complex

products are still challenging. Very little has been done to study nonlinear and

fractal patterns in real-world images and further exploit the useful information

from high-resolution image data for the purpose of quality inspection.

3.2.2 Fractal Theory

In the natural world, there exist many irregular objects that show self-similarity

to some degrees. For example, the human heart is formed of a fractal network of

myocardium cells [109� 111]. They are often referred to be the fractal geometry.

The fractal theory has found many applications in many domains such as health

informatics and manufacturing. Ruschin-Rimini et al. [112] developed a fractal-SPC

method that uses the fractal dimension to measure the probability of the occurrence

of correlated data sequences for process monitoring and change detection.

Further, manufactured surface �nishes often exhibit fractal characteristics [93,

113]. For example, UPM surface �nishes seem to have smooth surfaces with

the visual inspection. However, �ne-grained surface textures in the microscope

demonstrate fractal behaviors over a range of scales. Fractal models provide insights

on various functional and operational behaviors of manufacturing processes. In

the literature, a single fractal dimension has been utilized to investigate the scale

e�ect in surface metrology and consequently process monitoring [114,115]. Note

that prior works showed that a single fractal dimension is limited in the ability

to fully characterize heterogeneous and irregular patterns in the surface �nishes

from the manufacturing process. The surface �nishes of manufacturing parts often

comprise of complex characteristics that are due to the existence of spectrum
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of fractal dimensions that interact with each other to generate highly nonlinear

behaviors. In addition, lacunarity analysis complements the multifractal analysis

by describing how the fractal object �lls the space. Very little has been done to

integrate multifractal analysis with lacunarity patterns in image pro�les for the

purpose of quality monitoring and control of UPM and AM processes.

3.3 Research Methodology

As shown in Figure 3.2, this paper presents a joint multifractal and lacunarity

analysis for the characterization and modeling of image pro�les in manufactur-

ing process and further link fractal characteristics with manufacturing process

parameters. First, we extract the multifractal spectrum and lacunarity measures

to characterize the heterogeneous and irregular patterns of UPM and AM image

pro�les. Second, we compute the composite quality index, i.e., the Hotelling'sT2

statistic of multifractal and lacunarity features. In other words, this composite

index helps summarize the variations in the multi-dimensional features. Third,

we utilize the Hotelling's T2 control chart to monitor the quality of UPM surface

�nishes, as well as develop a regression model to link the composite index with

process settings in AM.

Figure 3.2. Flow diagram of the research methodology.
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3.3.1 Multifractal analysis

The fractal object shows self-similarity across multiple scales. In other words, if one

zooms in or out the fractal set, there will be a similar appearance in the geometry.

Fractal are irregular geometric objects that cannot be fully characterized by the

topological dimensions. Therefore, the fractals dimension is introduced to describe

scale-invariance properties of the fractal object by measuring the changes of covering

relative to the scaling factor and characterizing the �lling space capacity.

The box-counting method is widely utilized to estimate the fractal dimension

of an irregular object. For example, if we cover the fractal object byN measure

elements (e.g., boxes) with sizel as follows,

N (l) = l � D (3.1)

whereD is the box-counting fractal dimension, then Eq. 3.1 provides the scaling

law to demonstrate the distribution size of objects. This method covers a fractal

set with measure elements (e.g., boxes) at di�erent sizes and observes how the

number of boxes with respect to the size [96]. This procedure is repeated using

di�erent size of l . Once thel becomes su�ciently small, the number of boxesN (l)

is increased to cover a fractal object. Then, the box-counting dimension is de�ned

as follows,

D0 = lim
l ! 0

ln N (l)
ln 1

l

(3.2)

To illustrate the self-similarity and irregularity in surface �nishes, we used the

Voronoi tessellation to iteratively divide a plane with points into convex polygons

such that each polygon holds just one generating point and each point in a speci�ed

polygon is closer to its generating point than to any other (See Figure 3.3 (a-c)).

The dual of the Voronoi tessellation has been denoted as Delaunay triangulation.

Figure 3.3 (d-f) show the Delaunay triangulation that is the dual of Voronoi

tessellation. As shown in Figure 3.3 the surface of Voronoi tessellation and Delaunay

triangulation undergo signi�cant changes when the number of cells is increased

from 100 to 1000. The box-counting method shows the fractal dimension is for

both Voronoi and Delaunay surfaces in Figure 3. This indicates that a single fractal

dimension just represents the average fractality in an image and is not su�cient

enough to describe nonlinear and irregular behaviors. The box-counting method
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Figure 3.3. Voronoi tessellation with di�erent number of cells: (a) 100 cells; (b) 1000
cells; (c) 10000 cells; and Delaunay triangulation with di�erent number of cells: (d) 100
cells; (e) 1000 cells; (f) 10000 cells.

assumes that the number of boxes has a linear relationship with the ruler length

of each box when both are logarithmically transformed. In other words, it is very

rare to have perfect self-similarity in the real world.

To overcome the limitation of single fractal dimension, multifractal analysis

splits the fractal set with the complex statistics into the various homogeneous sets

with di�erent fractal dimensions. As a result, multifractal spectrum provides a

more complete and intuitive description of the irregular object with an interwoven

set of fractal dimensions. The procedure for calculating the multifractal spectrum

is as follows,

a. Estimating the local density function. In practice, one way to quantify local

densities is by estimating the mass probability in thei th box as:

Pi (l ) =
N i (l )
NT

(3.3)

b. Calculating the singularity strength exponent. For the inhomogeneous set,

we can de�ne the singularity strength exponent� i as,

Pi (l ) � l � i (3.4)
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Where � i re�ects the local behavior ofPi (l) in the i th box with size l and it

can be estimated as

� i = lim
l ! 0

ln Pi (l )
ln l

(3.5)

c. Estimating the multifractal spectrum. The multifractal spectrum f (� ) char-

acterizes the variations and provides statistical distribution of singularity

exponents� i . The number of boxesN (� ) where the probability Pi (l) has

exponent values between� and � + d� also follows the scaling law with the

sizel and multifractal spectrum f (� ). It can be shown as follows.

N (� ) � l � f (� ) (3.6)

The multifractal spectrum is a concave downward function due to two ex-

treme properties of the measure (i.e., sparser or denser measure) and can be

estimated from Eq. 3.6 as

f (� ) = lim
l ! 0

ln N (� )
ln 1

l

(3.7)

The scaling of theqth moments ofPi (l ) distributions can be expressed as,

N (l )X

i =1

Pq
i (l ) = l � (q) (3.8)

where� (q) is called the mass exponent ofqth order moment. Thus, the fractal

dimensionsDq can be written as:

Dq =
� (q)
q � 1

(3.9)

When q = 0 , Eq. 3.8 becomesN (L) = l � D 0 which is similar to Eq. 3.1. In

other words, the generalized fractal dimensionDq is the same as box-counting

dimensionD0. The Legendre transformation is a conventional method used to

estimate multifractal spectra:

f (� (q)) = q� (q) � � (q) (3.10)
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� (q) =
d� (q)

dq
(3.11)

However, computingf (� (q)) via Legendre transformation is complex and needs

to smoothn Dq curve that causes errors to the estimatedf (� . Eq. 3.12 introduces a

family of normalized measures asqth moments of mass probabilityPi (l ). A constant

range of l is utilized to estimate multifractal properties over a small interval of

scales.

� i (q; l) =
Pq

i (l )
P N (l )

i =1 Pq
i (l )

(3.12)

As a result, multifractal spectrum f (� (q)) and average singularity strength

exponent � (q) can be formulated respectively as:

f (� (q)) = lim
l ! 0

P N (l )
i =1 � i (q; l) ln[� i (q; l)]

ln l
(3.13)

� (q) = lim
l ! 0

P N (l )
i =1 � i (q; l) ln[Pq

i (l )]
ln l

(3.14)

wheref (� (q)) and � (q) are the function of the momentsq. These two curves are

tangent to each other atq = 1. Figure 3.4 shows the multifractal spectrum and its

major characteristics. The values in the right and left ofD0 represent negative and

positive q values. Momentsq > 0 signify the contribution of boxes with higher-value

pixels in the estimates off (� (q)) and � (q). On the other hand, momentsq < 0

signify the contribution of boxes with lower-value pixels in the estimation. It may

be noted that the right tail of f (� (q)) is longer than the left side. This is mainly

due to the fact that the variation of f (� (q)) and � (q) with respect to q is more

sensitive when and the probabilityPi (l ) are between 0 and 1.

3.3.2 Lacunarity

Further, lacunarity helps measure the �lling-space capacity of fractals and textures

that have the same fractal dimension and a very di�erent visual appearance [116].

Lacunarity complements fractal dimension by determining how the fractal objects �ll

the space and thereby allows di�erentiating spatial patterns in di�erent scales [117].

If we de�ne the gaps in an image as pixels with a speci�c value or a speci�c interval

of values, the higher lacunarity value is, the more variability is expected to be in
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Figure 3.4. Characteristic points in the multifractal spectrum.

an image.

Gliding-Box and Di�erential Box-Counting are two main algorithms to calculate

lacunarity of an image. We implement the computationally tractable �gliding box�

method to compare the lacunarity [118]. A box of sizel is placed in the image

to counts the number of set pointss (black pixels). Then, this box is moved to

another spot in the image, and the box mass is again counted. This process is

repeated over the entire image, creating a frequency distribution of the box masses

N (s; l). This distribution is converted into a probability distribution Q(s; l) by

dividing by the total number of boxes sizel, N (l) [117].

Q(s; l) =
N (s; l)
N (l)

(3.15)

The �rst and second moments of this distribution and lacunarity for the gliding

box method can be written respectively as:

Z (1) =
X

sQ(s; l) (3.16)

Z (2) =
X

s2Q(s; l) (3.17)

�( l ) =
Z (2)

(Z (1))2
(3.18)
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where�( l) represents the lacunarity for the box sizel. This procedure is repeated

for di�erent box sizes. The box size varies in the range of21; :::; 2b whereb is the

number of box sizes. Then we obtain the log-scale plot of the lacunarity versus the

box sizes.

Figure 3.5(a) shows the estimated multifractal spectrum for Voronoi tessella-

tion and Delaunay triangulation with 10000 cells (see Figure 3.3). Figure 3.5(b)

illustrates lacunarity spectra of the Voronoi tessellation with di�erent cells number

in Figure 3.3.

Figure 3.5. Multifractal spectra of the Voronoi tessellation and Delaunay triangulation
in Figure 3.3; (b) lacunarity spectra of the Voronoi tessellation with di�erent cells number
in Figure 3.3.

Figure 3.5(a) shows that the single fractal dimension, i.e., the maximum values

of f (� (q)) is the same for both images. However, their multifractal spectra are

signi�cantly di�erent from each other. The right tail of the Delaunay triangulation

is longer than the dual Voronoi tessellation. This is due to the fact that Delaunay

triangulation has more pixels with lower values (value towards 0 or black pixels)

in comparison with the Voronoi tessellation. Figure 3.5(b) shows the Voronoi

tessellation with 100 cells has higher lacunarity values than the other two. This

mainly because lacunarity is related to the size distribution of the holes and

deviation of an image from translational invariance. In other words, an object

is very lacunar if its holes tend to be large and large gaps exist in an image. If

there is a homogeneous image that has the same pixels per box, then the standard

deviation, for a box count at the length scalel, will be close to the zero, and

therefore lacunarity has a value close to the zero.
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3.3.3 Multifractal-based Hotelling's T2 control charts

The multifractal spectrum and lacunarity analysis provide a set of quality features

relevant to the characteristics of surface �nishes. When multiple variables require

simultaneous monitoring, a univariate approach to monitor each feature is usually

neither e�ective nor e�cient. The hypothesis testing is to determine whether there

is a signi�cant mean shift in the feature vector as follows:

x(i ) = f [� (qj ); f (� (qj )) ; �( lw)8w=1 :::b](i )g 8i = 1; :::; m (3.19)

wherek is the length ofq-vector, qj 2 [� 1; 1] and bis the number of box sizes utilized

in lacunarity calculation. If m is the number of images andp is the dimensionality

or number of features which is determined byf (� (q)) , � (q) and �( l), then the

feature matrix will be X m� p = [ x (1) ; x (2) ; :::; x (m) ]T with both multifractal and

lacunarity quanti�ers. To increase the sensitivity to small changes in each direction

of multi-dimensional feature vector, we compute the Hotelling'sT2 statistics for

the i th image as

T2(i ) = ( x (i ) � �x )S � 1(x (i ) � �x ) (3.20)

where the sample mean vector�x and sample covariance matrixS are estimated

from in-control or nominal data. The upper control limit of Hoteling T2 control

chart is

UCL =
p(m + 1)( m � 1)

m(m � p)
F�;p;m � p (3.21)

wherep is the number of features of the dimensionality ofx (i ) and m is the number

of images,F�;p;m � p is the upper (1 � � )% point of F distribution with p and m � p

degree of freedom. The Hotelling'sT2 statistics are utilized to characterize the

di�erences in multifractal and lacunarity spectrum of UPM and LPBF image pro�les.

The proposed approach of multifractal analysis will be validated in experimental

studies in the next section.

3.4 Experimental Design and Results

We evaluate and validate the proposed multifractal methodology in two real-

world case studies UPM and LPBF image characterization for process monitoring
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and quality control. In the �rst case study, we aim to detect defects in the

surface �nishes of products from UPM process. In the second case study, we focus

on modeling the relationship between process parameters with multifractal and

lacunarity characteristics of XCT image pro�les in LPBF process.

3.4.1 UPM application

This case study is aimed at evaluating the performance of multifractal and lacunarity

for quality inspection of image pro�les from the UPM process. In UPM process

monitoring and control, Ra is one of the commonly used parameters which is the

arithmetic average of absolute distance from each point of the roughness trace to

the mean. However, this single parameter is restricted in its ability to represent

and characterize the surface. It is possible that two surfaces have sameRa value,

but they have di�erent morphology.

Figure 3.6. UPM images with smooth surfaces (in-control) with (a)Ra = 43:81 nm,
(b) Ra = 43:83 nm and rough surfaces (out-of-control), (c) Ra = 297:58 nm, and (d)
Ra = 296:92nm.
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