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ABSTRACT 

This body of work introduces and forwards a Boolean network-based method for 

studying psychological dynamics, both within-person and between-persons. I outline the Boolean 

network method, provide a guide for implementation, and illustrate how the method is applied in 

two empirical settings – study of children’s self-regulation, and study of group-therapy 

processes. The work highlights the utility of the method for obtaining intuitive descriptions of 

individual or group processes and deriving strategies for directing the individual or group 

towards desired outcomes.  

Developmental science is making use of dynamical system methods to explain the 

mechanisms of change driving human development and to predict how and when individuals or 

groups will change. A natural next step is to understand how to intervene when problematic 

patterns or change arise. Although psychological researchers have proposed and explored use of 

network methods to design interventions, applications are sparse. My aim is to enrich the 

repertoire of methods researchers can use to learn about and direct individuals’ and groups’ 

psychological functioning, and in doing so to prompt further use of network methods for 

modeling behavior change.  

In Chapter 1, I outline the motivation for introducing a Boolean network method that 

can be used to describe psychological systems and design interventions that may optimize how 

those systems function. Although a number of researchers have outlined the possibility of using 

dynamical system methods to guide psychological processes to desired levels, methods for 

deriving control strategies have remained theoretical. In this chapter, I identify a gap in the 

research on methods for analysis of developmental and psychological change processes – 

specifically, the sparsity of empirical applications of control system design despite its theoretical 

importance – and introduce how a Boolean network control method (Kauffman, 1969; 1993) can 

address this gap. Second, I briefly explain why network control is useful for guiding 

developmental processes, and how methods at the overlap between dynamical systems methods 

and network analysis can be used to develop that guidance. Third, I clarify how within- and 

between-person dynamics are conceptualized in this project, and how the definitions used here 

are analogous to other terms used in psychology. Fourth, I explain why the same dynamical 

system method can be used to describe both within- and between-person dynamics. I then briefly 

outline two empirical studies where I demonstrate how the Boolean network method can be 

applied to study and control of both within- and between-person dynamics. 

In Chapter 2, I revisit how dynamical system methods are used to model the nonlinear 

dynamics of multivariate systems. Despite the interest and advancement of control theory to 

direct psychological dynamics toward desired goals, control has been less studied and rarely 

applied in nonlinear psychological systems.  

We introduce the Boolean network method to address this gap. This method is useful 

because it can be used to model the nonlinear dynamics in multivariate systems and to develop 

network control strategies that might be used to manage the system toward a desired state. The 

Boolean network method is a discrete-time dynamical system method, and we introduce this 

method in three steps: (1) inference of the temporal relations between multiple binary variables 

as Boolean functions and construction of Boolean networks in which the binary variables are 

nodes and the Boolean functions are edges, (2) extraction of attractors based on the inferred 

dynamics and assignment of desirability for each attractor, and (3) design of network control to 

direct a psychological system toward a desired attractor by identifying how the Boolean network 

needs to be updated. 
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To demonstrate how the Boolean network can describe and prescribe control for emotion 

regulation dynamics, we applied this method to an observational dataset of children’s regulation 

of anger using bidding and/or distraction behavior (N = 120, T = 480 seconds). Network control 

strategies were designed to move the child into attractors where anger is OFF. The sample shows 

heterogeneous emotion regulation dynamics across children in 22 distinct Boolean networks, and 

heterogeneous control strategies regarding which behavior to perturb and how to perturb it.  

The presentation and illustration forward the Boolean network method as a novel method 

to describe nonlinear dynamics in multivariate psychological systems and a control method to 

guide nonlinear psychological systems toward desired goals.  

In Chapter 3, I revisit theories suggesting group processes can induce desired or 

undesired behavior change in individuals in a group because they are under social influence. 

Empirical modeling of group processes often assumes the social influence is assimilative only, 

and network-based interventions that aim to manage group processes and promote desired 

behavior change does not apply when the social network is fully connected.  

We introduce the Boolean network method to address these two gaps because it allows 

both assimilative and repulsive social influence to be modeled simultaneously, and prescribes 

network control strategies by changing a few group members’ behavior regardless of network 

topology. The Boolean network method is a dynamical system method that models the group-

specific temporal relations between group members’ behavior as a Boolean network, and also 

allows for control theory to design group management strategies and direct the groups toward 

desired behavior.  

The Boolean network method is applied to empirical data of individuals’ self-disclosure 

behavior in multi-week therapy groups (N = 155, 18 groups, T = 10~16 weeks), to model and 

manage group-specific processes of self-disclosure. Results show the method can estimate each 

group member’s self-disclosure with error rate of 0.14 (SD = 0.10). Both assimilative and 

repulsive social influence are found in 14 out of 18 groups. Group-specific network control 

strategies were designed to elicit the majority of the group self-disclose by encouraging a few 

group members’ self-disclose behavior.  

This example illustrates the Boolean network as a flexible method that allows for 

modeling of assimilative and repulsive social influences that simultaneously operate in a group 

process and design of strategies that can be used to direct the group process to desired states 

(without manipulating the social ties).  

This dissertation introduces and forwards the Boolean network method as a method that 

can be used to describe and control a system’s trajectory. The final chapter, Chapter 4, 

summarizes the contribution of this dissertation in terms of method innovation, theory, data, and 

potential applications, and begins to elaborate how the method might be extended further. To our 

knowledge, this is the first application of the Boolean network method in describing and 

controlling nonlinear psychological processes. The Boolean network method follows the long-

standing tradition of using dynamical system methods to explain, model, and predict how 

complex psychological systems operate and change over time. This dissertation adds to that 

literature by providing the methodological steps and empirical examples that will enable control 

system design for nonlinear within- and between-person dynamics. Our demonstration 

emphasizes the appeal of this method for both theory and practice – providing simple 

descriptions and explanations of system dynamics and system control strategies. Altogether, this 

dissertation forwards and provides access to a useful tool that can help researchers discover, 

understand, and shape many different kinds of psychological dynamics.   
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Chapter 1 INTRODUCTION 

In this introduction chapter, I will first discuss a gap in the methodology used to study 

developmental and psychological change processes – sparsity of empirical applications of 

control system design despite its theoretical importance – and introduce how a Boolean network 

control method (Kauffman, 1969; 1993) can address this gap. Second, I will briefly explain why 

network control is useful for guiding developmental processes, and how methods at the overlap 

between dynamical systems methods and network analysis can be used to develop that guidance. 

Third, I will clarify how within- and between-person dynamics are conceptualized in this project, 

and how the definitions used here are analogous to other terms used in psychology. Fourth, I will 

explain why a single dynamical system method can be used to describe both within- and 

between-person dynamics. I then briefly outline the content of two empirical studies where I 

demonstrate how the Boolean network method can be applied to study and control of both 

within- and between-person dynamics. 

 

Gap in the Methodology  

Dynamical system methods have been instrumental in researchers’ attempts to explain 

mechanisms of change and predict future trajectories and states of psychological systems (Boker 

& Graham, 1998; Chow, Ferrer, & Hsieh, 2010). A natural next step is to use these methods to 

design control strategies and guide system trajectories toward desired states and outcomes 

(Carver & Scheier, 1998; Molenaar & Nesselroade, 2015). So far, only a few empirical studies 

published in psychology journals have actually attempted to design control strategies using 

dynamical system methods (Wang et al., 2014).  

In this dissertation, I will fill this gap by introducing a Boolean network method 

(Kauffman, 1969; 1993) into the psychology literature. Compared to other dynamical system 

methods, the Boolean network method provides an intuitive and parsimonious representation of 

system dynamics using only AND (multiplicative), OR (additive), and NOT (negation) rules. 

The Boolean network method is able to recover complex patterns (e.g., oscillatory) in the time-

series simulated from the true model or the shape of the time-series using experiment data, 

despite the lack of detailed kinetics information (Berestovsky & Nakhleh, 2013). Benefits of 

having an intuitive representation of the dynamics include ease of interpretation and simplified 

design and communication of interventions that might optimize the system’s progression toward 

desirable.  

In the core of the dissertation (Chapters 2 and 3), I will apply this Boolean network 

method in studies of within- and between-person dynamics (clarified later in this chapter), and 

design network control in the form of edge perturbation (revising the dynamics) or node 

perturbation (manipulating the states of nodes). Since this dissertation is, to my knowledge, the 

first application of Boolean network in psychology, I will also introduce the Boolean network 

method in detail, as preparation and foundation for the introduction of network control design, 

including inference of the Boolean functions, extraction of attractors.  

 

Overlap Between Dynamical System Method and Network  

Human development – how a person changes over their life span – can be conceptualized 

and quantified as the product of a dynamical system. Individual development has been conceived 

as the product of multiple components (e.g., biology, emotions, thoughts, behaviors) that interact 

with each other at multiple time-scales and across multiple levels of analysis (Baltes, 

Lindenberger, & Staudinger, 2006; Ford & Lerner, 1992; Magnusson & Cairns, 1996). 
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Dynamical system methods use a variety of quantitative methods to model the temporal 

dependencies exhibited by one or multiple components, where the future value of these 

components are predicted by prior values (Thelen & Smith, 1994; Carver & Scheier, 2002; 

Boker & Bisconti, 2006). In principle and practice, the temporal relations captured by dynamical 

system methods can be used to describe the interactions among multiple components described 

by developmental theory.  

Development is not the result of one psychological component or sums of multiple 

components, but rather is the result of ongoing, mutual influence among multiple processes or 

components of an interdependent network. Network science and methodology has been gradually 

adopted in the psychology literature in recent years to study psychological dynamics as networks 

(Borsboom & Cramer, 2013), including emotion network within a person (Bringmann, Vissers, 

Ceaulemans, Borsboom, Vanpaemel, Tuerlinckx, & Kuppens, 2016), and affect/behavior 

network between persons (Beltz, Beekman, Molenaar, & Buss, 2013). In all of the network 

representations of patterns embedded in longitudinal data, the nodes are the 

components/variables in the psychological system, and the edges are the temporal relations 

among those nodes – the dynamics. That is, the networks are constructed using multivariate 

dynamical system methods (Bringmann, et al., 2016; Yang, Ram, Gest, Lydon, Conroy, Pincus, 

& Molenaar, 2018) – meaning that when it comes to studying multivariate dynamical systems, 

network science and multivariate dynamical system methods have become synonymous.  

Despite the overlaps in conception and application, the network literature in psychology 

and the dynamic systems literature in psychology have emerged separately. The primary 

advantage of viewing the dynamical system as a network is to operationalize, explore, and test, 

the view that different components of the system are connected and influence one another. When 

researchers adopt the idea that the phenomena of interest can be conceived as a network, an 

abundance of network theories (or graph theories) and network analysis methods (Barabasi, 

2016) can be used to explore and test psychological theory about those phenomena. Indeed, 

psychologists are advancing understanding of a variety of phenomena by using the network 

metrics (e.g., density, centrality) to summarize and interpret observed behavior (Bringmann, et 

al., 2016). A lot more network theories and analytical methods have yet to be explored, and hold 

great potential of new discoveries. This dissertation, for example, adapts and uses network 

control methods from biology (Zanudo & Albert, 2015) to model and increase understanding of 

individual-level and group-level psychological systems.  

 

Within- and Between-Person Dynamics 

This dissertation project, which is built around two empirical examinations of dynamics, 

demonstrates the value of using the Boolean network method to examine different types of 

psychological processes. I use the terms within-person dynamics and between-person dynamics 

to distinguish the two substantive research questions that are explored using the Boolean network 

method. Within-person dynamics is used to refer to the research questions that mostly concern 

the dynamics that occur within a person, such as emotion regulation dynamics. Social behaviors, 

which happen between people, can be part of the within-person dynamics, but the research 

question is focused on analysis of the individual person, with the aim to describe, explain, and 

predict interindividual differences and intraindividual variability. Between-person dynamics is 

used to refer to the social dynamics that manifest as multiple persons interact in a shared 

environment. This kind of between-person or social network dynamics is the focus of study in, 

for example, studies of social influence and how that influences, at the micro-level, individuals’ 
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behavioral development (e.g., aggression, substance use), and, at the macro-level, spread of 

behavior across persons.  

 

Modeling Multivariate Dynamics 

In this dissertation, I use the same Boolean network method to study both within- and 

between-person dynamics. Here, I explain why the same dynamical system method can be 

applied to the two types of dynamics by first comparing the research questions and data 

structure, and then explaining why the same analytical method can be used in both settings.   

When studying within-person dynamics, our goal is to describe and explain the 

interactions between psychological components and use a network-based representation of the 

within-person dynamics to explain how an individual changes over time. When studying 

between-person dynamics, our goal is to describe and explain the spread of behavior from 

individuals to their peers and use a network-based representation of the dynamics to explain how 

a group of individuals changes over time. These two types of research questions use different 

types of data, and may or may not focus on the same mechanism or psychological components.  

Methodological separation of within-person and between-person dynamics makes use of 

terminologies created by Cattell (Cattell, 1952) to refer to the data structures used in different 

applications. Cattell’s data box consists of three dimensions, namely person (or participants), 

occasion, and variable. Answering different research questions requires slicing the databox in 

different ways, as shown in Figure 1.1a. For within-person dynamics, since we focus on the 

mechanistic interaction between psychological components (i.e., variables) within a person, we 

usually take the P-data – a slice of one person’s data in the databox (N =1, p = multiple variables; 

and T = multiple ordered occasions), as shown in Figure 1.1b. P-data, sometimes called intensive 

longitudinal data (when there are many occasions), could be modeled by dynamical system 

methods. For between-person dynamics, since we focus on the social interaction and behavior 

influence between people, we usually take the T-data – a slice of one (behavior) variable’s data 

in the databox (p = 1, N = multiple people, T = multiple ordered occasions), as shown in Figure 

1.1c. This type of data is often seen in social network studies, where a variable of interest is 

collected from each member in the network longitudinally (e.g., prosocial and antisocial 

behavior, Osgood et al., 2013).   

The data structures supporting examination of within-person and between-person 

dynamics provide for different kinds of substantive inferences, the same analytical methods can 

be used in both cases. This is because P-data and T-data slices both have an “occasions” 

dimension where T = many occasions are temporally ordered. The essence of dynamical system 

methods is to utilize the temporal dependencies in the data – information obtained from 

temporally ordered observations.  

Dynamical system methods use the temporally ordered observations (occasion 

dimension) to set up models and infer how variables/persons are related to each other over time, 

relations between state at time t and state at time t+1. For within-person dynamics, the analytical 

method to analyze P-data generally need to estimate the temporal relations between variables – 

how variables predict each other from time t to time t+1. This is often written in equation from 

as,  

𝑣𝑡+1 = 𝜱𝑣𝑡 + 𝜁𝑡  
where 𝑣𝑡 and 𝑣𝑡+1 are the vectors of variables at time t and time t+1, 𝜱 is a matrix of temporal 

relations between 𝑣𝑡 and 𝑣𝑡+1, 𝜁𝑡 are the innovations coming from external environment into the 

system. We can depict this model as a network, where the nodes are the variables in 𝑣, and the 
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edges are the temporal relations between nodes in 𝜱. For example, we show in Figure 1.1d how 

a 3-node network look like, and the temporal relations could be expressed in the matrix form 

𝜱 = [
0 0.5 0.4
0.6 0 0
0 0.3 0

] or as a network of edges from the predictor to the outcome. For example, 

the edge from 𝑣3,𝑡 to 𝑣1,𝑡+1 indicates 𝑣3,𝑡 influenced 𝑣1,𝑡+1 and the magnitude of this temporal 

influence is 0.4. Inference from networks derived from a single slide of P-data apply to a single 

individual. 

For between-person dynamics, the same analytical method could be used on T-data. We 

can apply the dynamical system method on the T-data to analyze behavior dynamics in a social 

network, so that we know which peers significantly influenced each individual. Here, we need to 

estimate the temporal relations between persons (of the same variable) – how one person’s 

behavior predicts each other’s behavior from time t to time t+1. This can be written as, 

𝑝𝑡+1 = 𝜱𝑝𝑡 + 𝜁𝑡 
where 𝑝𝑡+1 and 𝑝𝑡 are the vectors of different persons at time t and time t+1, 𝜱 is a matrix of 

temporal relations between 𝑝𝑡 and 𝑝𝑡+1, 𝜁𝑡 are the innovations coming from external 

environment into the social network system. We can depict this model as a network, where the 

nodes are the persons in 𝑝, and the edges are the temporal relations between nodes in 𝜱. For 

example, we show in Figure 1.1d how a 3-node network look like, and the temporal relations 

could be expressed in the matrix form 𝜱 = [
0 0.5 0.4
0.6 0 0
0 0.3 0

] or as a network of edges from the 

predictor to the outcome (e.g., the temporal relation from 𝑝3,𝑡 to 𝑝1,𝑡+1 is 0.4). Here the edges are 

the temporal relations between people’s behavior, which is conceptualized as the social 

influence, as shown in Figure 1.1e.  Inference from networks derived from a single slide of T-

data apply to a group of individuals. 

From the panels in Figure 1.1, we can see clearly the data structure (Figure 1.1b and 1.1c) 

share the occasions dimension and dynamical system applied on this data structure (Figure 1.1d 

and 1e) can be the same; the primary difference between the two the two slices of data are the 

content of the rows – variables or persons – each of which is mapped to a specific type of 

research question, either how variables influence each other in within-person dynamics (Figure 

1.1b, 1.1d), or how people influence each other in between-person dynamics (Figure 1.1c, 1.1e). 

This is analogous to the comparison between P-technique and R-technique factor analysis. The 

analytical procedure is exactly the same – factor analysis (Ram, Brose, & Molenaar, 2013) – but 

in P-technique, the procedure is applied to P-data (single person, multiple variables, multiple 

occasions), while in R-technique, the procedure is applied to R-data (single occasion, multiple 

variables, multiple persons). The same technique can be used to answer different research 

questions, namely whether the observed differences, within-person across occasions or between-

persons at one occasion, explained by a smaller number of latent constructs. There is however, a 

minor difference in how model constraints are used in the two settings. In between-person 

dynamics, it is usually assumed the social influence only exists when there are social ties. Thus, 

the constraints on how individuals can influence each other should be applied when fitting such a 

model. In my applications of the Boolean network method, I will highlight when such constraints 

are needed.  

To summarize, understanding the connections of analytical procedure between the two 

research questions explains why the same method can be used to operationalize and answer 

different kinds of research questions with different kinds of data.   
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Content of Dissertation Studies 

In this dissertation, I include two papers that demonstrate the value of using and how to 

use the Boolean network method to model the dynamics embedded in multivariate binary time-

series.  

In Chapter 2, I introduce and forward the Boolean network method as a method that can 

provide intuitive explanation of psychological dynamics that are useful for theorists and 

suggestions for network control that are useful for practitioners. A Boolean network 𝐺(𝑉, 𝐵) 
consists of a set of binary variables 𝑉 = {𝑥1, … , 𝑥𝑛} as nodes and corresponding Boolean 

functions 𝐵 = {𝑓1, … , 𝑓𝑛} as edges. The Boolean functions consist of predictors connected by 

Boolean operators “AND” and “OR” and are inferred to find the best prediction for the outcome 

variable by an algorithmic search. Attractors can be derived based on the inferred Boolean 

functions by permutation of all states as initial condition, and they can be classified as desirable 

or undesirable guided by theoretical or practical reasons. Based on the desirability of attractors, 

control strategies can be designed to direct the system out of undesired attractors by revising the 

dynamics.  

The utility of the Boolean network method for study of within-person dynamics is 

illustrated using multivariate binary time-series data (T=480 second) obtained in a study of 

children’s self-regulatory strategy (N = 120, age 36-month-old). Our example illustrates how the 

Boolean network method can identify the behavior that (dys)regulates each child’s anger and 

provide personalized advice that would improve each child’s emotion regulation skills. This 

study provides a novel method to analyze psychological dynamics and to designs control for 

multivariate psychological systems. 

In Chapter 3, I introduce and forward the Boolean network method as a method that can 

be used to model social influence dynamics and to identify strategies that can be used to manage 

the spread of behavior. I propose Boolean network method to address the tension between social 

influence theory and previous methods because it allows both assimilative and repulsive social 

influence to be modeled. Then attractors can be extracted and desirability can be assigned to each 

attractor, regarding the spread of (un)desirable behavior. The Boolean network method can 

prescribe network control, by identifying the subset of nodes and associated states to perturb.  

The utility of the Boolean network method for study of between-person dynamics is 

illustrated using empirical data obtained from individuals participating in multi-week therapy 

groups (N = 155, mean group size =6.6, T = 10~16 weeks). Results show evidence of both 

assimilative and repulsive social influence in each group. Some group processes have two 

attractors. One attractor, an undesirable one from a therapeutic perspective, is characterized by a 

pattern where only one or two participants self-disclose constantly. The other attractor, a more 

desirable one, is characterized by a pattern where most participants self-disclose in a rotating 

manner. Using these maps, network control strategies were designed that might prevent the 

multi-person systems from moving into the less desirable attractor. The analysis illustrates how 

the Boolean network method can be used to analyze group processes and to make suggestions on 

how to avoid the group getting stuck in undesirable scenarios.  

The dissertation closes, Chapter 4, with a general discussion about how the work 

contributes in terms of method innovation, theory, data, outlines other potential applications, and 

begins to elaborate how the method might be extended further.  
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Figure 1.1 From Cattell’s databox to the data structure and corresponding network illustration for within- 

and between-person dynamics. 

Panel A: Cattell’s data box with occasions, variables, and participants as 3 dimensions. Panel B: P-data as 

a slice of a single person’s data. Panel C: T-data as a slice of data of a single variable. Panel D: Estimated 

dynamical system (3-variable example) depicted as a network, where nodes are variables, and directed 

edges correspond to the directional temporal relations. Panel E: Estimated dynamical system (3-person 

example) depicted as a network, where nodes are persons, and directed edges correspond to the 

directional temporal relations. 
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Chapter 2 DESCRIBING AND CONTROLLING MULTIVARAITE NONLINEAR 

DYNAMICS: A BOOLEAN NETWORK APPROACH 

 

Introduction 

In this paper, I introduce and forward the Boolean network method as a method that can 

model and describe nonlinear psychological dynamics from multivariate binary time-series and 

provide network control to ensure the dynamical system stays in desired state(s).  

A Boolean network 𝐺(𝑿,𝑩) consists of a set of binary variables 𝑿 = {𝑥1, … , 𝑥𝑛} as 

nodes and corresponding Boolean functions 𝑩 = {𝑓1, … , 𝑓𝑛} as edges. The Boolean functions 

consist of predictors connected by Boolean operators “AND”, “OR”, and “NOT”, and are 

inferred to find the best prediction for the outcome variable by an algorithmic search. Attractors 

are extracted based on the inferred Boolean functions by permutation of all states as initial 

condition, and they can be classified as desirable or undesirable guided by practical reasons. 

Based on the desirability of attractors, control strategies can be designed to direct the system out 

of undesired attractors by revising the dynamics.  

The utility of the Boolean network method for study of within-person dynamics is 

illustrated using multivariate binary time-series data (T=480 second) obtained in a study of 

children’s self-regulatory strategy (N = 120, age 36-month-old). Our example illustrates how the 

Boolean network method can identify the behavior that (dys)regulates each child’s anger and 

provide personalized advice that would improve each child’s emotion regulation skills. This 

study provides a novel method to analyze psychological dynamics and to design control for 

multivariate psychological systems. 

Motivating Problem: Development of Emotion Regulation  

Emotion regulation is conceptualized as a dynamic, interactive process between 

prepotent responses and executive process (Cole, Ram, & English, 2018). Prepotent response 

(PR) refers to “highly probable actions that take priority over other response options under 

specific conditions (Arnold, 1960)”; an example of PR is intensifying effort to overcome an 

obstacle (e.g., pounding on a vending machine for a jammed snack). Executive process (EP) 

refers to “cognitive processes aid in regulating whether and who a prepotent response is enacted 

– attention, memory, language, and reasoning”; an example of EP is shifting attention away from 

desired object (e.g., walking away from a vending machine that jammed a snack). Emotion 

regulation is defined as “the influence of strategies that recruit the executing capacities of human 

cognition to alter the intrinsic dynamics of prepotent response” (Cole, Martin, & Dennis, 2004; 

Kopp, 1982). In other words, emotion regulation is in the temporal dynamics between PR and 

EP.    

From a developmental perspective, the emotion regulation dynamics also develop with 

age and are expected to change over time (Cole et al., 2018; Morales et al., 2018). By the time 

they enter school, children are expected to have sufficient regulatory skills to delay their own 

goals while focusing on teacher-defined activities (Cole, Tan, Hall, Zhang, Crnic, Blair, & Li, 

2012). For example, children should be able to regulate their negative emotions (e.g., frustration 

and anger) when they are asked to wait for a desired object or fun activity. In the context of 

children’s waiting tasks, the dynamic relation between negative emotion and attention focus 

could be summarized as this: when attention is shifted away from a desired object (e.g., a toy that 

they are told to wait to open), then anger is reduced; when attention is focused on the desired 

object, then anger is perpetuated. Consequently, children are expected to learn to use behaviors 

that shift attention away from the desired object (e.g., distraction) in order to reduce anger, and 
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learn to avoid behaviors that shift attention toward the desired object (e.g., bidding about the 

object) and perpetuate anger. The developmental goal of emotion regulation is not to erase 

negative emotions, but to effectively engage executive control and enact behaviors that reduce 

negative emotions.  

In sum, successful development of emotion regulation requires both a dynamic process 

wherein negative emotions are altered by regulatory strategies, and a control strategy wherein 

specific regulatory strategies are invoked when they are needed.   

Binary Time-Series and Methods to Describe and Control Multivariate Dynamical System 

Studies of children’s emotion regulation often make use of laboratory based experimental 

and observation research paradigms (e.g., delayed gratification; Mischel, Shoda, Rodriguez, 

1989). Binary coding is a common practice to identify the moment-to-moment presence or 

absence of psychological states and behaviors (e.g., emotions and regulatory behaviors; Cole et 

al., 2012). The experimental paradigm and behavioral coding produce abundant binary time-

series data that is used to study a wide variety of phenomena, including children’s emotion 

regulation.    

To describe the emotion regulation dynamics in the binary behavioral codes, we need a 

dynamical system model that can model the temporal dynamics in binary time-series. There have 

been a few methods proposed to study binary time-series and applied in psychology, such as 

Ising model (Ising, 1925) and Markov chain method (Meyn & Tweedie, 2005). The Ising model 

focuses on describing the interactive dynamics in a system of binary nodes, and estimates node-

specific activation thresholds and node-pairwise interactions. Psychologists have applied the 

Ising model on psychopathology symptom networks to model the (de)activation of symptoms, 

while accounting for the reinforcing relations between symptoms (van Borkulo et al., 2015; 

Cramer et al., 2016; Epskamp, Maris, Wardorp, Borsboom, 2018). The Markov chain method 

focuses on the transition probabilities between different states from t to t+1. This method can be 

applied to study the state transition in a binary system, where the states are vectors of the binary 

variables. Psychologists have applied more advanced variations of the Markov chain method to 

model state transition probabilities between observed and latent psychological states, e.g., 

reciprocal Markov modeling; Lu, Pan, Zhang, Dube, & Ip, 2015), mixed Markov modeling (de 

Haan-Rietdijk, Kuppens, Bergeman, Sheeber, Allen, Hamaker, 2017). In this paper we forward 

the Boolean network as an alternative to these methods to model temporal dynamics. 

To achieve the developmental goal of emotion regulation, children often require at least 

some guidance on how to modify their behaviors so that they can effectively regulate emotions. 

Control theory (or control system design), a subfield of mathematics and engineering, focuses on 

moving dynamic systems toward desired goals. For example, engineers and mathematicians have 

developed control systems to guide planes so that they land successfully by adjusting engine 

thrust and steering in real time to accommodate on-going changes in the environment (e.g., 

wind). A variety of mathematical tools and algorithms have been developed to determine the 

specific actions (control input) that will guide the behavior of a dynamical system so that it 

follows a desired trajectory or settles into a desired state (Lewis, Vrabie, Syrmos, 2012; Liu & 

Barabasi, 2016).  

Psychology researchers have, for decades, proposed to use control theory in 

psychological systems (Carver & Scheier, 1998; Molenaar & Ram, 2010; Molenaar & 

Nesselroade, 2015). There have been a few advanced applications of linear control theory into 

psychological systems. Prior work by Sinclair & Molenaar (2008) introduced an advanced 

optimal control technique, receding horizon feedback-feedforward control, to prescribe optimal 
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amount of intervention (insulin input) for Type I diabetes patients. Each patient’s bivariate 

dynamical system consists of concentration of insulin and glucose. This receding horizon 

feedback-feedforward control method combines an estimator of the dynamical system and a 

controller to direct the dynamical system. The estimator uses Extended Kalman filtering with 

Iteration and Smoothing (EKFIS) to estimate the state-space models with time-varying 

parameters in the bivariate system. The controller uses recursive optimal control techniques to 

control a single person’s glucose at the desired level while minimizing the fluctuations in the 

glucose during  dynamic control process. This receding horizon feedback-feedforward control 

method later was empirically applied to Type I diabetes patients’ data and performed well in 

both estimation and control (Wang et al., 2014). Other recent empirical work creatively uses 

controllability as a network metric to inform therapists about how to optimally select symptom(s) 

as intervention targets, and uses linear quadratic regulator (LQR) to evaluate the efficacy of 

interventions (Henry, Robinaugh, & Fried, in press). Despite the interest and advancement of 

control theory methods, the empirical applications of control conducted in psychology remains 

scarce, and even fewer control methods introduced to guide nonlinear psychological systems. 

In this paper, I aim to accomplish both describing and controlling nonlinear dynamics by 

the Boolean network method. The Boolean network method describes the temporal dynamics by 

Boolean operators, including AND, OR, and NOT; and the Boolean network method can also 

design network control to ensure the dynamical system stays in desired states. 

Boolean Network  

The Boolean networks (BN) method, originally introduced by Kauffman (1969, 1993) to 

study gene regulatory networks, has been extensively applied in systems biology to model and 

prescribe control for nonlinear dynamical systems (Cheng & Qi 2009; Zanudo & Albert, 2015).  

A Boolean network 𝐺(𝑋(𝑡), 𝐵) is defined by a set of nodes 𝑿(𝑡) =
{𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)}, where 𝑥𝑖 is the 𝑖𝑡ℎ node, and a set of Boolean functions 𝐵 =
{𝑓1, 𝑓2, … , 𝑓𝑛 }, where each Boolean function 𝑓𝑖(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘) with k specific input nodes for 

node xi is used to determine the state of xi at time t+1. When xi = 1, the node is in an activated 

state (i.e., behavior occurring), and when 𝑥𝑖 = 0, the node is dormant (i.e., behavior not 

occurring). The vector formed by the current state of all i = 1 to n nodes, 𝑿(𝑡), describes the 

current state of the system, and the set of Boolean functions, B, describe the dynamics of the 

system, how the states change from 𝑿(𝑡) to 𝑿(𝑡 + 1). The Boolean functions represent the 

temporal dynamics between nodes (i.e., how the nodes are influenced by other nodes), and 

consist of three Boolean operators (AND ∧, OR ∨, NOT �̅�) that can be combined together to 

express complex relations.  

Here we give a quick definition of each Boolean operator. The AND (∧) operator is 

defined as all input variables have to be ON to turn the outcome ON; the OR (∨) operator is 

defined as any input variables being ON can turn the outcome ON; the NOT (�̅�) operator simply 

takes the opposite state of the input variable. Table 1 shows how these rules produce different 

outcome based on the input of two variables.  

The nonlinear dynamics in a Boolean network are reflected by the Boolean operators. 

When a Boolean function contains two variables connected with an AND operator, it represents 

a multiplicative relation between the two input variables, e.g., z = x AND y is similar to z = x × 

y. This kind of multiplicative relation is a nonlinear relation between the input variables and the 

outcome variable. Given that the AND operator and OR operator can be transformed to each 

other, the OR operator can also capture nonlinear dynamics. And, when combined together with 
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the NOT operator, lots of different kinds of nonlinear dynamics can be captured (Whitesitt, 

2010). 

To give an intuitive illustration of the Boolean dynamic network, we use a two-node 

network consisting of 𝑥1 and 𝑥2. The observed time-series of 𝑥1 and 𝑥2 are shown in Figure 2.1a, 

where the states of 𝑥1 and 𝑥2are ordered by time-steps t1, t2, t3, t4…. From this observed binary 

time-series, we can infer the Boolean functions  

𝑥1(𝑡 + 1) = 𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 𝑥2(𝑡) 

(the details of how rules are inferred will be outlined later in the Boolean Network 

Implementation section). 𝑥1(𝑡 + 1) = 𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ indicates 𝑥1 at t+1 depends on both 𝑥1 and 

𝑥2 at t. The state of 𝑥1(𝑡 + 1) is predicted by both 𝑥1 and 𝑥2 at t after taking the AND operation 

aforementioned, e.g., if 𝑥1 is ON and 𝑥2 is also ON at t, 𝑥1 will be turned OFF at t+1. 

𝑥2(𝑡 + 1) = 𝑥1(𝑡) indicates 𝑥2 at t+1 depends on 𝑥2 itself at t. The state of 𝑥2(𝑡 + 1) is 

predicted by 𝑥2 at t, e.g., when 𝑥2 is ON at t, 𝑥2 will continue to be ON at t+1.  

The network graph of these Boolean functions is shown in Figure 2.1b, where the first 

function “𝑥1(𝑡 + 1) = 𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅” is expressed using an expanded Boolean network diagram 

(Wang & Albert, 2011). In expanded Boolean network diagrams, AND operator will be 

expressed using a composite node; so 𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ is plotted as a composite node separately 

from 𝑥1 and 𝑥2 as a separate node, indicating it is an AND operator connecting 𝑥1 and 𝑥2. The 

composite node has a green edge from 𝑥1 and a red edge from 𝑥2, indicating equal and negative 

relation respectively. Then this composite node has a green edge pointing to 𝑥1, indicating the 

equal relation between the composite node to 𝑥1.  

The second function “𝑥2(𝑡 + 1) = 𝑥2(𝑡)” is indicated by a green edge from 𝑥2 to 

𝑥2 representing the effect of 𝑥2(𝑡) on 𝑥2(𝑡 + 1).   
We can use the above Boolean network to describe emotion regulation dynamics. 

Suppose 𝑥1 and 𝑥2 represent a child’s anger and distraction. From the first Boolean function, we 

know that anger is regulated by distraction because whenever distraction is ON at t, anger will be 

turned OFF at t+1. From the second Boolean function, we know distraction is not activated by 

anger. Altogether, the Boolean network provides a dynamical system model that can be used to 

describe the emotion regulation dynamics embedded in the binary time-series data. 

Attractors and Their Desirability  

Once the temporal dynamics are described by Boolean functions, attractors can be 

extracted based on the dynamics. The purpose of extracting attractors is to articulate what 

persistent patterns individuals get stuck in and determines whether to intervene. Researchers can 

determine the desirability of each attractor based on domain knowledge and practical concerns. 

For example, we define an undesirable attractor as anger is persistently activated. If a child does 

not have this kind of attractor, then the child does not need external help to regulate anger; if a 

child does have this kind of attractor, maybe only as one of the child’s many attractors, the child 

needs external help only when he gets stuck in this attractor.  

Attractors of a dynamical system indicate the long-term behavior of the system, and a 

dynamical system can have various types of attractors and multiple attractors. A working 

definition of attractor is an area of phase space – the set of possible states of the system – the 

system occupies or approaches more frequently than others (Carver & Scheier, 2002). If a 

dynamical system is thought as a physical object whose movement is governed by the dynamical 

rules, then an attractor is where the dynamical system prefers to stay in this physical space 

(Thelen & Smith, 2005). It is worth noting there are many forms of attractors, such as fixed-point 
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attractor, limit cycle, saddle, cusp, etc. In this paper, we will only need to use fixed-point 

attractor and limit cycle; the other forms of attractors are beyond the scope of this paper (for a 

review of various attractors, see Thelen & Smith, 2005). A fixed-point attractor means the 

attractor has a single fixed value, e.g., a pendulum with friction eventually returns to a stable 

point. A limit cycle attractor means the attractor has a set of states with different values and the 

system will cycle through these states, e.g., a pendulum without friction oscillates (Thelen & 

Smith, 2005). It is also worth noting nonlinear dynamical system can have multiple attractors 

(Boker & Graham, 1998). A dynamical system with multiple fixed-point attractors is also called 

multi-stable, as it has multiple stable points. Take smoking behavior as an example, smokers 

who are trying to quit might have multi-stable dynamical system with smoking and quitting as 

two attractors. On some days, smokers who try to quit can put in efforts to maintain non-smoking 

and stay in the quitting attractor; but on other days when cravings are strong, they can be pulled 

back to the smoking attractor.    

The desirability of attractors depends on the domain knowledge of a dynamical system 

and the (un)desirability of attractors can inform when a dynamical system needs external help. 

For example, cancerous attractor is undesirable for a biological system (Campbell & Albert, 

2019), behavior habits like smoking is an undesirable attractor of behavior for smokers (Boker & 

Graham, 1998), coactivation of many depressive symptoms is an undesirable attractor of mental 

activities for depressed patients (Cramer et al., 2016). Sometimes attractors change within the 

same developmental system and the desirability also changes according to the developmental 

context. For example, crawling is an attractor of locomotion for children before they develop 

abilities to walk (Thelen & Smith, 2005), which means crawling maybe desirable for a younger 

age but undesirable when children are expected to walk.  

The Boolean network method can extract multi-stability of a dynamical system and 

various kinds of attractors. Continuing with the two-node Boolean network as an illustrative 

example, we can extract attractors from state transition graph using these Boolean functions (the 

details of how derivation works will be introduced in the Data Analysis section). If we represent 

the state of 𝑥1 and 𝑥2 as a tuple of the two variables (𝑥1, 𝑥2), e.g., (0,0) means both 𝑥1 and 𝑥2 are 

OFF, we can express the state transition as a graph, shown in Figure 2.1c. For the given Boolean 

network in Figure 2.1b, the state of system will transition from (1,1) to (0,1), and then from (0,1) 

to (0,1), indicating (0,1) is an attractor as the system will not transition to any other states once it 

is in (0,1). Similarly, we can know from the state transition graph in Figure 2.1c that (0,0) and 

(1,0) are also fixed-point attractors. Using the above Boolean network to describe emotion 

regulation dynamics, where 𝑥1 and 𝑥2 represent a child’s anger and distraction, then we can 

define (0,0) and (0,1) are both desirable attractors because anger (the first element in the tuple of 

two states) is OFF, and (1,0) is an undesirable attractor. Thus, using the Boolean network 

method, we discover the system has three attractors, and one of them is an undesirable attractor. 

The child will be emotionally neutral for a long time if the child goes into the desirable 

attractors; but when the child gets stuck in the undesirable attractor, the child will be angry for a 

long time and need external help to be regulated. We demonstrate in this example the Boolean 

network extracts three attractors, all of which are fixed-point attractors, and the Boolean network 

has been used to study limit cycle attractors from previous research (Kauffman, 1993; Aracena, 

Gomez, Salinas, 2013).  

Boolean Network Control and Emotion Regulation  

The Boolean network method utilizes the differential desirability of attractors within the 

same dynamical system and design network control strategies to move the dynamical system 
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from an undesirable attractor to a desirable attractor. Because not all attractors are desirable with 

a dynamical system, we can assign desirability to each attractor based on practical concerns. For 

example, an attractor in which negative emotion is OFF is desirable; on the contrary, an attractor 

in which negative emotion is ON is undesirable.  

Control strategy can be derived based on the distance from undesirable attractor to 

desirable attractor basin (the details of how derivation works will be introduced in the Data 

Analysis section). Continuing with the two-node Boolean network as an illustrative example, we 

can design network control based on the extracted attractors, and one network control strategy is 

to perturb 𝑥2 when 𝑥1 is ON as shown in Figure 2.1d, so that the system will transition from 

(1,0) to (1,1), and then goes to (0,1) because 𝑥2 can turn 𝑥1 OFF. This new state transition is also 

depicted in Figure 2.1d.  

If we continue to use the above Boolean network to control emotion regulation dynamics, 

where 𝑥1 and 𝑥2 represent a child’s anger and distraction. Based on the extracted attractors in 

Figure 2.1c, we already know attractor (1,0) is undesirable, and attractors (0,0) and (0,1) are 

desirable, based on the state of anger (the first element in the tuple). To move the system from 

attractor (1,0) to attractor (0,1), we can turn distraction ON when anger is ON, and anger will 

eventually be turned OFF. Therefore, the control strategy is to turn distraction ON when anger is 

ON.  

Intermediate Summary 

To circle back to the developmental goal of emotion regulation, which requires not only 

the dynamic process wherein negative emotions are altered by regulatory strategies, but also the 

effective use of behaviors as regulatory strategies to reduce negative emotions when they occur. 

This example illustrates exactly how network control design fulfills the developmental goal. The 

emotion regulation dynamics in our illustrative example can be summarized as anger is regulated 

by distraction but distraction is not activated by anger, and the network control strategy suggests 

to turn distraction ON when anger is ON. If parent or teacher can help children develop this 

control strategy, then the control strategy will help fulfill the developmental goal of “effective 

use of behaviors as regulatory strategies to reduce negative emotions when they occur”. 

Boolean Network Implementation 

Because the Boolean network method is new to the psychology literature, we synthesized 

the Boolean network method introduced in system biology literature, to cover the essential 

concepts and methodological details to enable readers to have a solid understanding of the 

Boolean network method as a method for network modeling and network control.  

The Boolean network method we introduce here has three major steps: (1) inference of 

the temporal relations between multiple binary variables as Boolean functions and construction 

of a Boolean network in which the binary variables are nodes and the Boolean functions are 

edges, (2) extraction of attractors based on the inferred dynamics and assignment of desirability 

for each attractor, and (3) design of network control to direct a psychological system toward a 

desired attractor by identifying how the Boolean network needs to be updated. 

Inference of Boolean Functions and Construction of Boolean Networks 

The Boolean functions can be inferred from the observed time-series of all the variables 

using a variety of algorithms (Lähdesmäki, Shmulevich, & Yli-Harja, 2003). Simulation studies 

provide good evidence that these algorithms can accurately recover the key features of 

continuous-scale dynamics (e.g., oscillation) in a variety of settings (Berestovsky & Nakhleh, 

2013). To illustrate how the inference proceeds, we describe a Boolean computation algorithm 

introduced by Akutsu and colleagues (Akutsu, Miyano, & Kuhara, 2000). Input variable refers to 
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the variables that produce the outcome variable, similar to predictors. Number of input variable 

used to infer Boolean functions is denoted by K, and the size of the network is denoted by N, so 

the Boolean network with size N and input K is sometimes called a NK Boolean network. When 

K is higher it increases the complexity of the system and decreases parsimony; thus a lower K is 

preferred when no improvement is found. The inference proceeds iteratively, starting with K = 1, 

then with K = 2, and so on to the pre-selected level of complexity.  

Inference when K = 1. When K = 1, Boolean functions are inferred by comparing the 

time-series of the outcome variable and one input variable. In the case of K = 1, the Boolean 

functions can be the following categories: 

CONSTANT: 0, 1 

UNARY: 𝑥, �̅� 

where expression �̅� means the negative of 𝑥 or NOT 𝑥. By simply comparing the target variable 

(or outcome variable) with the Boolean function (CONSTANT or UNARY, meaning there is one 

input variable) of the input variable.  We identify the Boolean function that has the minimal 

error. Error is defined as the sum of false positive (type 1 error) and false negative (type 2 error) 

(Lähdesmäki et al., 2003). For example, for each 𝑥𝑗 (𝑗 could be any variable in the system, 

including i), we test the following four functions, and select the function that has the minimal 

error rate as the inferred Boolean function.  

𝑥𝑖(𝑡 + 1) = 0 

𝑥𝑖(𝑡 + 1) = 1 

𝑥𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) 

𝑥𝑖(𝑡 + 1) = 𝑥�̅�(𝑡) 

Inference when K = 2. When K = 2, Boolean functions are inferred by comparing the 

time-series of the outcome variable and two input variables, and these two input variables can be 

combined by any Boolean operators, including AND, OR, NOT. The inference uses matrix 

multiplication and become building blocks for Boolean function inference when K > 2. In the 

case of K = 2, the search for Boolean functions are conducted in the following order:  

AND: 𝑥𝑖 ∧ 𝑥𝑗 , 𝑥𝑖 ∧ 𝑥�̅�, 𝑥�̅� ∧ 𝑥𝑗,  𝑥�̅� ∧ 𝑥�̅� 

OR: 𝑥𝑖 ∨ 𝑥𝑗 , 𝑥𝑖 ∨ 𝑥�̅�, 𝑥�̅� ∨ 𝑥𝑗 , 𝑥�̅� ∨ 𝑥�̅� 

XOR: 𝑥𝑖⊕𝑥𝑗, 𝑥𝑖⊕𝑥�̅�, 𝑥𝑖⊕𝑥𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ 

where the XOR rule means only when the two input variables have opposite values, the outcome 

is 1. XOR is a succinct way to describe the rule 𝑥𝑖⊕𝑥𝑗 = 𝑥�̅� ∧ 𝑥𝑗 ∨ (𝑥𝑖 ∧ 𝑥�̅�). We describe 

inference of each kind of function in turn. 

First, we explain the inference of AND rules. The essence of the algorithm is to compare 

the multiplication product of each pair of two variables in the system at time t and the outcome 

variable at time t+1, then select the two variables with the product that is the closest match to the 

outcome variable.  

The multiplication product of each two input variables in the system at time t is computed 

as a matrix 𝒁, which is a multiplication product of two matrices 𝑿 and 𝒀. The first matrix 𝑿 is 

defined as 𝑿𝑖,𝑡 = 𝑥𝑖(𝑡 = 𝑡) ∙ 2
𝑡−1𝑚𝑜𝑑 𝑝, and the second matrix 𝒀 is the time-series 

[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)]. The multiplication of these two matrices 𝒁 = 𝑿𝑻𝒀  has the 

multiplication of two variables, in such a way that  𝒁𝑖,𝑗 = ∑ 𝑥𝑖 ∧ 𝑥𝑗 ∙ 2
𝑡−1𝑇

𝑡=1 𝑚𝑜𝑑 𝑝. The 

fingerprint function of outcome variable 𝑥𝑘(𝑡 + 1) is defined as 𝐹𝑝(𝑥𝑘(𝑡 + 1)) =

∑ 𝑥𝑘(𝑡 + 1) ∙ 2
𝑡−1𝑇

𝑡=1 𝑚𝑜𝑑 𝑝. Note here the multiplier in 𝐹𝑝(𝑥𝑘(𝑡 + 1)) is still 2𝑡−1 to align with 

the index of time in 𝑿. Then we compare the elements in the product of these two matrices 𝒁𝑖,𝑗 
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with the fingerprint function of the outcome variable 𝐹𝑝(𝑥𝑘(𝑡 + 1)). If a particular element 𝒁𝑖,𝑗 

and the fingerprint function of outcome variable 𝑥𝑘(𝑡 + 1) has a minimal mismatch, then 𝑥𝑖 and 

𝑥𝑗 will be selected as the best fit for the AND rule, or 𝑥𝑘 = 𝑥𝑖 ∧ 𝑥𝑗.  

Here, we show this computation in a 3-node network as example, the observed times-

series is 𝒀 = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) =  (

0 1 0
1 0 1
1 1 0
0 1 0

), then 𝑿 =  (

0 20 0
21 0 21

22 22 0
0 23 0

)  𝑚𝑜𝑑 𝑝. Suppose 

the outcome we want to predict is 𝑥1(𝑡 + 1), and 𝑥1(𝑡 + 1)=(

1
1
0
0

). 𝒁 = 𝑿𝑻𝒀 =

(
0 21 22 0
20 0 22 23

0 21 0 0

)(

0 1 0
1 0 1
1 1 0
0 1 0

) = (
21 + 22 22 21

22 20 + 22 + 23 0
21 0 21

), and the finger print 

function of 𝐹𝑝(𝑥1(𝑡 + 1)) = (20 21 22 23)(

1
1
0
0

)=20 + 21. This 𝐹𝑝(𝑥1(𝑡 + 1)) matches 

𝑍1,3 most closely, with 1 mismatch –  20. Hence, 𝑥1 ∧ 𝑥3 is selected as the best fit for this rule. 

Note here, we did not consider the diagonal line of 𝒁 because they will collapse as a unary rule, 

as  𝑥𝑖 ∧ 𝑥𝑖 = 𝑥𝑖.  
Second, we explain the inference of OR rules. Since any OR rules could be rewritten as 

AND rules, using 𝑎 ∨ 𝑏 =  �̅� ∧ �̅�̅̅ ̅̅ ̅̅ ̅, so the inference of OR rules can utilize the same computation s 

AND rules with proper transformation, e.g., the search of 𝑥𝑖 ∨ 𝑥𝑗 is the same as search for 

𝑥�̅� ∧ 𝑥�̅�̅̅ ̅̅ ̅̅ ̅̅ , which is the negation of 𝑥�̅� ∧ 𝑥�̅�. This could be achieved by the same algorithm 

introduced for AND rules, adding the negation to 𝒁.  

Third, we explain the inference of 𝑦 = 𝑥𝑖⊕𝑥𝑗 type of functions. First note that 𝑥𝑖⊕

𝑥𝑗 = 𝑦 if 𝑥𝑖⊕𝑦 = 𝑥𝑗. So to find the 𝑥𝑗 that satisfies 𝑦 = 𝑥𝑖⊕𝑥𝑗 , we simply compare the time-

series of 𝑥𝑖⊕𝑦 with the time series of every 𝑥𝑗, and the best matching time-series is the 𝑥𝑗 that 

satisfies 𝑦 = 𝑥𝑖⊕𝑥𝑗. The inference of 𝑥𝑖⊕𝑥�̅� will follow a similar procedure with the input 𝑥�̅�.  

When the unary rule has equal error rate with K = 2, the unary rule would be chosen for 

parsimony reasons. The other two types of AND rules, namely 𝑥𝑖 ∧ 𝑥�̅�, 𝑥�̅� ∧ 𝑥�̅�, can be searched 

by replacing either 𝒀 or both 𝑿 and 𝒀 matrix with the negation of the matrix itself. 

Inference when K > 2. When K > 2, the inference can be done recursively with the input 

of two variables as the foundation. In the case of K ≥ 2, a recursive algorithm is used to build 

the inference upon the case of K = 2. Let us consider a case of three input variables. We can infer 

the Boolean functions 𝑓(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) in the following way. First, infer the rules of two input 

variables, 𝑥𝑖 , 𝑥𝑗, denoted as 𝑓1(𝑥𝑖 , 𝑥𝑗), that that matches the value of the outcome 𝑦 when 

𝑥𝑘(𝑡) = 1, and then infer the rules of two input variables, denoted as 𝑓2(𝑥𝑖, 𝑥𝑗), that matches the 

value of the outcome 𝑦 when 𝑥𝑘(𝑡) = 0.  

The inferred Boolean function is as follows:  

𝑓(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) = (𝑥𝑘 ∧ 𝑓1(𝑥𝑖, 𝑥𝑗)) ∨ (𝑥𝑘̅̅ ̅ ∧ 𝑓2(𝑥𝑖, 𝑥𝑗))                               (1) 
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Here is the proof. When 𝑥𝑘(𝑡) = 1, Equation 1 can be transformed in the following equation:  

𝑓(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) = (1 ∧ 𝑓1(𝑥𝑖 , 𝑥𝑗)) ∨ (0 ∧ 𝑓2(𝑥𝑖 , 𝑥𝑗)) 

= (1 ∧ 𝑓1(𝑥𝑖, 𝑥𝑗)) = 𝑓1(𝑥𝑖 , 𝑥𝑗)                                            (2) 

Since we inferred 𝑓1(𝑥𝑖 , 𝑥𝑗) by matching to the outcome 𝑦, when 𝑥𝑘(𝑡) = 1, thus 𝑓(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) =

𝑦. Similarly, we consider when 𝑥𝑘(𝑡) = 0, Equation 1 can be transformed as the following 

equation: 

𝑓(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) = (0 ∧ 𝑓1(𝑥𝑖 , 𝑥𝑗)) ∨ (1 ∧ 𝑓2(𝑥𝑖, 𝑥𝑗)) 

= 1 ∧ 𝑓2(𝑥𝑖, 𝑥𝑗) = 𝑓2(𝑥𝑖, 𝑥𝑗)                                             (3) 

Given that 𝑦 = 𝑓2(𝑥𝑖, 𝑥𝑗) when 𝑥𝑘(𝑡) = 0, 𝑓(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) = 𝑦. Note here 𝑓1 and 𝑓2 have to have 

the same input variables 𝑥𝑖 , 𝑥𝑗, so that the number of input variables is kept at 3 after adding 𝑥𝑘.  

Any higher number of input variables could be inferred by the similar principle 

recursively. For example, when the number of input variable is 4, we can infer the Boolean 

functions 𝑓(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 , 𝑥𝑙) for fixed 𝑥𝑙 in the following way. First, infer the rules of three input 

variables, denoted as 𝑓1(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘), that matches the value of the outcome 𝑦 when 𝑥𝑙(𝑡) = 1, and 

then infer the rules of three input variables, denoted as 𝑓2(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘), that matches the value of 

the outcome 𝑦 when 𝑥𝑙(𝑡) = 0. The new rules are the different combinations of 𝑓1 and 𝑓2 in the 

form of (𝑥𝑙 ∧ 𝑓1(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘)) ∨ (𝑥�̅� ∧ 𝑓2(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘)). 

Choice of K. We inferred the Boolean functions and constructed the Boolean network 

using the R package BoolNet (Müssel, Hopfensitz, & Kestler, 2010). When inferring the 

Boolean functions, we specify the number of input variables (K) and search algorithm. In this 

paper, we specify K = 2, this is because when K > 2, the system will likely to be chaotic and not 

able to extract meaningful attractors to facilitate control design. We identify the Boolean 

function that has the minimum error, where error is defined as the sum of false positives (type 1 

error) and false negatives (type 2 error) (Lähdesmäki et al., 2003). 

The construction of Boolean network is putting all the inferred Boolean functions 

together. As a hypothetical example, Figure 2.1b shows the construction of a two-node Boolean 

network based on the inferred Boolean functions of the three nodes.  

Extraction of Attractors 

After the Boolean functions are inferred, a state transition graph can be constructed by 

exhaustively search all the state transition sequence from each permutation of initial conditions. 

The attractors are identified by constructing the state transition graph and finding the absorbing 

states, that is, states that will transition back to itself.  

We demonstrate this procedure using the two-node network introduced above in Figure 

2.1,  

𝑥1(𝑡 + 1) = 𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 𝑥2(𝑡)                                           (4) 

There are 2𝑁 = 22 = 4 possible initial conditions (x1, x2) for the 2-node network, (0,0), 

(0,1), (1,0), (1,1). From each initial condition, we can use the set of inferred Boolean functions, 

B, to compute the state of the system at all subsequent time steps. For example, when the system 

starts with initial condition (0,0), meaning 𝑥1=0, 𝑥2= 0 at t = 1, then 𝑥1(𝑡 = 2)=𝑥1(𝑡 = 1) ∧
𝑥2(𝑡 = 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 ∧ 0̅= 0 ∧ 1 = 0, and 𝑥1(𝑡 = 2) =𝑥1(𝑡 = 1) = 0. We then know (0,0) will transition 



18 
 

to (0,0). Similarly, we can compute the subsequent state of the system for all the other initial 

conditions: (0,1), (1,0), and (1,1). The collection of state transitions are shown in Table 2.  

The state transitions described by the Boolean functions can be drawn as a state transition 

graph as shown in Figure 2.1c. All the possible states of the system, (x1, x2), are represented as 

circles, and the arrows indicate what state will follow at time t + 1 when the system is in a 

particular state at time t. The arrows that point back to the same state indicate the absorbing 

states where once the system is in that state it will remain in that state. Here, (0,0), (0,1), and 

(1,0) are all transitioning back to themselves, and thus are the attractors of this dynamical 

system. 

Design of Network Control  

The purpose of network control is to direct the system from undesirable attractors to 

desirable attractors (Shmulevich & Dougherty, 2010; Campbell & Albert, 2019). In our 

substantive example, we use network control to suggest behavior modification that will help 

children develop regulatory skill and not get stuck in negative emotions.  

Network control in this paper focuses on modifying the state space transition graph in a 

Boolean network. The output of control system design should include three pieces of 

information: (1) which node(s) or Boolean function(s) needs to be changed, (2) which states 

node(s) need to be changed to – the specific strategy of network control, and (3) what is the 

condition to change – the context of deploying network control. These three pieces of 

information will be useful to drive the system into more desirable states.  

The general procedure for identifying control strategy is as follows: 

1. Formulate the goal of network control in terms of the desirable attractor(s) and 

undesirable attractor(s). Then the goal of network control is to move the system out of 

the undesirable attractor, and into the desirable attractor. Assignment of desirability to 

each attractor could be done based on practical concerns.  

2. Compute the Hamming distance from an undesirable attractor to the states in a desirable 

attractor basin. An attractor basin is defined as the set of states that will eventually go to 

the same attractor. We consider moving the system from an undesirable attractor to the 

basin of a desirable attractor because the system will eventually go to the desirable 

attractor once the system is in the desirable attractor basin. The distance from undesirable 

attractor to each state in the desirable basin then can the number of nodes and their 

Boolean functions we need to manipulate. Distance here is computed using Hamming 

distance (Hamming, 1950), where we compare two states digit by digit, and then sum the 

number of digits that differ from each other as the distance. For example, a state (0,0,1) 

has distance of 2 from another state (1,0,0) because the first and third digits differ from 

each other.  

3. Identify the control strategy. Suppose there the undesirable attractor has a Hamming 

distance of 1 to a state in the desirable attractor basin, and the 1 difference is caused by 

node xi. Suppose xi is OFF in the undesirable attractor. Then “turning node xi ON when 

the system is in the undesirable attractor” is our control strategy. There could be multiple 

states that have distance of 1 to the undesirable attractor, indicating multiple control 

strategies. It is also possible there is no state that has distance of 1 to the undesirable 

attractor, indicating more nodes need be to manipulated to control the system.  

4. Formulate the new Boolean function for node xi. After the node xi needs to be perturbed 

is identified, the new form of this node’s function should obey the following equations  
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𝑓𝑥𝑗 = {

𝑓𝑥𝑗 , 𝑖𝑓 (𝑥1, 𝑥2, … ) ≠ 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒

𝑓𝑥𝑗
̅̅̅̅ , 𝑖𝑓 (𝑥1, 𝑥2, … ) = 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒

                         (5) 

So far, we have introduced how to identify which node to perturb, and under what 

circumstances we should perturb it. We now use an example to demonstrate the network control 

with Boolean functions and state transition graph before and after network control, shown in 

Figure 2.2. The original Boolean functions are in equation 4. We know the attractors based on 

the state transition graph are (0,0), (1,0), (0,1) from Figure 2.2b. Suppose we define 𝑥1= 1 is 

undesirable, then attractor (1,0) is undesirable, and the other two are desirable. Therefore, the 

control strategy is to perturb 𝑥2 when the system is in state (1,0), because the distance from (1,0) 

to (1,1) is 1, and (1,1) belongs to the desirable attractor basin. The new function of 𝑓𝑥2 is as 

follows: 

𝑓𝑥2 = {
𝑥2,   𝑖𝑓 (𝑥1, 𝑥2) ≠ (1,0)

𝑥2̅̅ ̅,   𝑖𝑓 (𝑥1, 𝑥2) = (1,0)
                                                             (6) 

The function under specific condition can be expressed as a product of the function and 

the condition with an AND operator, e.g., 𝑥2,   𝑖𝑓 (𝑥1, 𝑥2) ≠ (1,0) can be expressed as 𝑥2 ∧ (𝑥1 ∧

𝑥2̅̅ ̅). The two conditions can be combined by an OR operator, e.g., 𝑓𝑥2 = (𝑥2 ∧ (𝑥1 ∧ 𝑥2̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∨

(𝑥2̅̅ ̅ ∧ (𝑥1 ∧ 𝑥2̅̅ ̅))= 𝑥2(𝑡) ∨ (𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅). Comparing this new Boolean function with the 

original inferred Boolean function of 𝑥2, we see that 𝑥1 ∧ 𝑥2̅̅ ̅ is added to the original function 

with an OR operator, and this function means to turn 𝑥2 ON when 𝑥1 is ON and 𝑥2 is OFF – the 

undesirable attractor state.  

To confirm the new Boolean function can direct the system from undesirable attractor to 

desirable attractor basin, we plot the state transition graph after perturbation in Figure 2.3d.   

In sum, we have introduced the Boolean network method, focusing on how to model and 

control a multivariate dynamical system. Specifically, we have synthesized the Boolean network 

method into three steps, (1) inference of the Boolean functions and construction of the Boolean 

network; (2) extraction of attractors; and (3) design of network control that can direct the system 

into the researcher-defined desirable attractors. Following these three steps, we can describe the 

dynamics underlying multivariate time-series data as a Boolean network, and identify network 

control strategies that can move the system into desirable states. In principle, the network control 

strategy is the basis for designing behavior modification programs and interventions that can 

help individuals achieve desirable developmental goals.  

  

Empirical Example 

We illustrate how the Boolean network method can be used to examine emotion 

regulation dynamics and support development of effective emotion regulation using data from a 

study of how children regulate their emotions during a frustration-inducing wait task at age 36 

months, an age when children are developing the ability to regulate emotions (Kopp, 1989). 

Comprehensive information about the Development of Toddlers Study can be found in Cole et 

al., 2012. Details relevant to the present study are given below. 

Participants  

The analysis sample consisted of 117 children (64 boys) described by their mother as 

White (92%) or biracial (8%) (see also Cole et al., 2011 for complete demographic information). 

All procedures were approved by the Pennsylvania State University’s Institutional Review Board 

(IRB protocol #18993 and #45013). 
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Procedure 

We examined the dynamics of children’s emotion regulation in the context of a 

frustration-inducing wait task (Vaugh, Kopp, & Krakow, 1984). During the task, the child and 

mother were seated in an observation room. A research assistant provided the child with a boring 

toy (e.g., broken car) and a gift wrapped in shiny paper, and the mother with questionnaires to 

complete. The children were instructed by their mother to wait until she finishes her work to 

open the gift. Mothers were instructed in advance that the experiment was to see how children 

develop the ability to wait and that while she completed the questionnaires, she should do 

whatever she ordinarily does when her child needed to wait for something. After 8 minutes, the 

research assistant returned and the mother let the child open the gift.  

Measures 

The procedure was video recorded, and the videos were then coded for the child’s 

expression of emotion and behavior. Here, we examine the dynamics of a specific negative 

emotion, anger, and two regulatory strategies, bidding to mother and focused distraction.  

Anger expressions. Children’s anger expressions were coded second by second using a 

system based on facial expressions and vocal quality (Cole, Zahn-Waxler, & Smith, 1994). 

Anger intensity was coded for each second on a 0-4 scale (0 = not present, 1 = low intensity, 2 = 

moderate intensity, 3 = high intensity). Interrater reliability was good (Cohen’s 𝜅= .86). For the 

purpose of demonstrating the Boolean network method, we simplified the codes as binary data 0 

and 1 with all codes above 0 as 1. 

Regulatory strategies.   Two regulatory strategies were of interest: bids to mother about 

demands of the wait (e.g., asking how much longer the wait is) and focused distraction that was 

initiated by the child and not done in a disruptive manner (e.g., becoming absorbed in an 

alternate activity, such as playing with the boring toy). Interrater reliability for strategies were 

good (Cohen’s 𝜅= .84). Like anger, bids and focused distraction were coded as binary variables 

that indicated whether the behavior had not (=0) or had (=1) occurred in each second.  

Results 

I will introduce the results in two parts. The first part uses analysis of one person to 

illustrate how the three steps are applied and interpreted. The second part summarizes the 

analysis of all 117 individuals in the sample.  

Person-Specific Analysis: Identifying a Behavior Modification Strategy 

Following the procedures outlined above, we (1) inferred the Boolean functions and 

constructed the Boolean network, (2) extracted the attractors, and (3) designed network control 

strategy for each of the 117 children.  

To further illustrate the model results, we also go through one child’s example to explain 

the data analysis results in three steps.  

Inference of Boolean functions and construction of Boolean networks. For network 

construction, the time-series of anger, distraction, and bidding were entered in the BoolNet R 

package to construct a person-specific Boolean network. The R package will find the best fit for 

each variable at time t+1 in the form of a Boolean function that use the same three variables as 

input variables at time t. All the Boolean functions together consist the Boolean network of the 

given child.  

As an example, we show a particular child’s binary time-series data, and the inferred 

Boolean functions in Figure 2.3a and 2.3b. The inferred Boolean functions are as follows: 

𝑎𝑛𝑔𝑒𝑟(𝑡 + 1) = 𝑎𝑛𝑔𝑒𝑟(𝑡) ∧ 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              (7) 

𝑏𝑖𝑑𝑑𝑖𝑛𝑔(𝑡 + 1) = 𝑏𝑖𝑑𝑑𝑖𝑛𝑔(𝑡)                                     (8) 
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𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡 + 1) = 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)                         (9) 

We can see distraction can regulate anger, because if distraction is ON (1), then 

𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is OFF (0), and anger will become OFF (0) because of the AND (∧) operator. It 

is also worth noting distraction is not affected by anger yet, and bidding is independent from 

anger and distraction.  

Extraction of attractors. For each child, we then used the person-specific Boolean 

networks to make a state-transition graph and identify attractors – the states that transition back 

to themselves. Based on the general developmental goal that children will eventually be able to 

wait without expressing anger, we formally defined attractor states where anger = ON as 

undesirable attractors and attractor states where anger = OFF as desirable attractors.  

The state transition for our example child is shown in Figure 2.3c, where each dot 

represents a state of the system, which is a 3-digit string ordered as anger, bidding, and 

distraction. Six attractors are identified and each attractor basin is highlighted by a different color 

in. The desirable attractors (0,0,0), (0,1,0), (0,0,1), and (0,1,1), where anger is OFF. The 

undesirable attractors are (1,0,0) and (1,1,0) where anger is ON.  

Design of network control. For network control design, we search control strategies 

using the algorithm introduced earlier in the Boolean Network Implementation section.  

In our example child, one behavior modification strategy is found to move the system 

from attractor (1,0,0) to attractor (0,0,1) and from attractor (1,1,0) to attractor (0,1,0), and the 

new Boolean function of distraction, shown in Figure 2.3d. The new Boolean function of 

distraction means to maintain the same state as distraction at t-1, which is expressed as 

𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)), or take the opposite state of distraction when anger is ON, which is expressed 

as 𝑎𝑛𝑔𝑒𝑟(𝑡) ∧ 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. According to this new Boolean function, when the system is in 

the state of anger = ON and distraction = OFF at t, distraction will become ON at t+1, as it is 

taking the opposite state of distraction; then, anger will be turned OFF at t+2, as we know 

distraction can regulate anger based on Equation 4. Figure 2.3e shows the updated the state 

transition graph and how the system will transition from its previously undesirable attractor to a 

desirable attractor basin, e.g., the undesirable attractor state (1,0,0), which used to be an 

undesirable attractor, now transitions to (1,0,1) (highlighted by a green arrow), and then 

transitions to (0,0,1), which is a desirable attractor.  

Between-Person Differences: Different Network, Attractors, and Control Strategies 

After conducting analysis for each of the 117 children separately, we can summarize the 

findings for the whole sample in Table 3 and Figure 2.4. Table 3 shows the result of the 3 

analytical steps, namely inferred Boolean functions, state transition graph with attractors 

depicted, and control strategy (showing count of participants for each row).  

We did not find guidelines for a cutoff of acceptable error rate from the literature 

introducing inference of Boolean functions (Akutsu, et al. 2000), so we report the empirical 

distribution of error rate in our sample. Error rate for Boolean function inference is on average 

0.04 (SD = 0.03); error rate by variable are: error rate of inferring Boolean function of anger is 

on average 0.03 (SD = 0.04), error rate of bidding is on average 0.06(SD = 0.03, error rate of 

distraction is on average 0.03 (SD = 0.02). 

Overall, there are 22 different Boolean networks found, based on the Boolean function 

expressions, as show in Table 3. Subsequently, each Boolean network will have their own unique 

state transition graph with associated attractors, and their own associated control strategy, shown 

in Table 3 and Figure 2.4.  
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There are totally 40 children whose anger is predicted to be 0/OFF with different 

functions for bidding and/or distraction (row 1 to row 4 in Table 3), and all the attractors has 

anger = 0/OFF (in Figure 2.4a-d), hence no control strategy is needed.  

There are totally 8 children whose bidding is regulating anger with different functions 

for bidding and/or distraction (row 5 to row 9 in Table 3). The regulating effect of bidding is 

indicated by the Boolean function: anger(t+1) = anger(t) AND NOT bid(t). These networks have 

both desirable and undesirable attractors except one (in Figure 2.4e-i except 4g), and the 

corresponding control strategy is to turn bidding ON when anger is ON. There is one network 

(row 7 in Table 3, Figure 2.4g) does not have control strategy available. This is because bidding 

is 0/OFF in the Boolean function inference; therefore, there is no bidding = ON in the state 

transition graph. The search algorithm for control strategy cannot find a state transition to turn  

bidding ON.   

There are totally 7 children whose distraction is regulating anger with different functions 

for bidding and distraction (row 10 to 12 in Table 3). The regulating effect of distraction is 

indicated by the Boolean function: anger(t+1) = anger(t) AND NOT distraction(t). These 

networks have both desirable and undesirable attractors (in Figure 2.4j-l), and the corresponding 

control strategy is to turn distraction ON when anger is ON.  

There are totally 9 children whose bidding is dysregulating anger (row 13 in Table 3). 

The dysregulating effect of bidding is indicated by the Boolean function: anger(t+1) = anger(t) 

AND bidding(t). These networks have both desirable and undesirable attractors (in Figure 2.4m), 

and the corresponding control strategy is to turn bidding OFF when anger is ON.  

There are totally 2 children whose distraction is dysregulating anger with different 

functions for bidding and distraction (row 14 to 15 in Table 3). The dysregulating effect of 

distraction is indicated by the Boolean function: anger(t+1) = anger(t) AND distraction(t). One 

network has both desirable and undesirable attractors (in Figure 2.4n), and the corresponding 

control strategy is to turn distraction OFF when anger is ON. The other network has only 

desirable attractor (in Figure 2.4o), so no control strategy is needed.  

There are totally 53 children whose anger is not affected by neither bidding nor 

distraction with different functions for bidding and distraction (row 16 to 22 in Table 3). The no 

effect on anger is indicated by the Boolean function: anger(t+1) = anger(t). These networks have 

both desirable and undesirable attractors (in Figure 2.4p-v), but there is no control strategy 

available because anger is not affected by either of the behavior, so modifying either behavior 

will not turn anger OFF.  

Substantive Interpretations. I want to highlight several important findings in the 

results. First, there is striking heterogeneity within the sample in terms of the Boolean networks, 

and their associated attractors and control design. One network can differ from another network 

in at least one Boolean function for one node (e.g., row 1 versus row 2), or they can differ by all 

three Boolean functions for all three nodes (e.g., row 4 versus row 5). Correspondingly, the state 

transition graph shows heterogeneous trajectories of each child’s emotion system in the binary 

state space. Depending on the initial state of a system, the system can end up in one attractor 

(Figure 2.4d), two attractors (Figure 2.4c), three attractors (Figure 2.4a, f), four attractors (Figure 

2.4b, g, h, o, r, t), five attractors (Figure 2.4k, l, n), six attractors (Figure 2.4e, i, j, m, p, s, u, v), 

and eight attractors (Figure 2.4q).  

The second important finding is control strategy depends on the regulatory dynamics 

between behavior (bidding or distraction) and anger. When a behavior, being it distraction or 

bidding, is regulating anger, the control strategy is turning that behavior ON when anger is ON. 
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when a behavior, being it distraction or bidding, is dysregulating anger, the control strategy is 

turning that behavior OFF when anger is ON.  

The third important finding is not every network is controllable. The lack of 

controllability of the Boolean networks in this empirical example is due to anger is not affected 

by any behavior, and the state of anger determines desirability. We also constrained the control 

strategy could be only turning the behavior variable, because turning anger ON/OFF is not 

considered a feasible strategy.   

From a substantive perspective, we can summarize the children into three types 

concerning their emotion regulation ability: underdeveloped, developing, and well-developed. 

The underdeveloped type is referring to the networks with no available control strategy (row 7 

and row 16 to 22 in Table 3). The developing type is referring to the networks with available 

control strategy (row 5 to 6 and 8 to 14 in Table 3). The well-developed type is referring to the 

networks that do not need control strategy (row 1 to row 4 and row 15 in Table 3).  

 

Discussion 

This paper introduces the Boolean network method as a method to describe and prescribe 

control strategy for nonlinear, multivariate psychological dynamics. This method provides a 

novel method to model the nonlinear dynamics in multivariate psychological systems, and it also 

provides a control method to prescribe control strategies for nonlinear dynamical systems.  

A Novel Method to Describe Nonlinear Dynamics 

The Boolean network method provides a novel method to model and describe nonlinear 

dynamics for binary time-series, and I will compare the Boolean network method and the 

commonly used methods for binary nonlinear dynamics – Ising model and Markov Chain 

method – to discuss the unique contribution of the Boolean network method.  

Comparison with Ising. The first and foremost difference is the mathematical expression 

of dynamics are different. A Boolean function that contains two input variables connected with 

an AND operator, it represents a multiplicative relation between the two input variables, e.g., z = 

x AND y is similar to z = x × y. This kind of multiplicative relation is a nonlinear relation 

between the input variables and the outcome variable. The Ising model uses a form of 

exponential function, similar to logistic regression, to link the input variables/nodes and the 

outcome/node 𝑥𝑗 (van Borkulo et al., 2015).  

𝑃(𝑥𝑗,𝑡+1|𝑥\𝑗,𝑡) =
exp [𝜏𝑗𝑥𝑗+𝑥𝑗∑ 𝛽𝑗𝑘𝑥𝑘𝑘∈𝑉\𝑗

]

1+exp [𝜏𝑗𝑥𝑗+𝑥𝑗∑ 𝛽𝑗𝑘𝑥𝑘𝑘∈𝑉\𝑗
]
      (11) 

where 𝑥𝑗 represent the jth node in a network, 𝜏𝑗 is the threshold of activation for node 𝑥𝑗, and 𝛽𝑗𝑘 

is the pairwise interaction (also called weight) between 𝑥𝑗 and another node 𝑥𝑘 (Note: \𝑗 

indicates all indices but 𝑗). In the Ising model, the nonlinear dynamics are expressed in the 

pairwise interactions. The Boolean network method and the Ising model both provide important 

information to describe the nonlinear dynamics, but with different mathematical expressions. 

Depending on the need for interpreting dynamics, researchers can choose which method to use.  

Comparison with Markov Chain. The Boolean network method also has strong 

similarity with the Markov chain method, and the unique contribution of the Boolean network 

method is it provides explicit information about the dynamics between variables. Using the 

emotion regulation example, we can learn distraction is a regulatory behavior if distraction turns 

anger OFF, and we can also learn distraction has no effect on anger if anger does not depend on 

distraction. The information regulatory dynamics is modeled and identified in the Boolean 

functions. As a contrast, the Markov Chain method only focuses on estimating the state transition 
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probability from t to t+1 (Meyn & Tweedie, 2005). The state here is the state of a system, which 

is a vector of all the variables in the system. The state transition in Markov chain is similar to the 

state transition graph in the Boolean network method, except the Boolean network method 

assumes the probability is 1 when there is a state transition, and 0 when there is not state 

transition. Even though the dynamics between variables are embedded in the state transition 

probability in the Markov chain method, but the dynamics are not modeled or reported explicitly. 

Take a 3-node network as an example, this network/system has 23 = 8 distinct states, e.g., 000, 

001, …, 111, the Markov chain focuses on estimating the transition probability matrix between 

any two states, e.g., from state 000 to state 001, but does not provide an explicit interpretation of 

which variable led the third node to be turned ON. In sum, an advantage of the Boolean network 

method is it provides explicit explanation of the dynamics between variables and help 

researchers understand the psychological dynamics.  

Boolean Network Control of Nonlinear Dynamics 

In this paper, we introduced the Boolean network method as a method to control 

nonlinear dynamics. Specifically, we introduced a kind of Boolean network control method by 

finding the attractors first for a nonlinear system and moving the system from an undesirable 

attractor to a desirable attractor basin by designing new Boolean functions.  

There is an important clarification about this network control method. The desired states 

are constrained to the dynamical systems’ naturally occurring attractors in the network control 

method we introduced in this paper (Campbell & Albert, 2019). The reason is this kind of control 

method was proposed because control for biological, social, or technological systems tend to 

involve only naturally occurring attractors, so relaxing the definition of full control, which refers 

to the ability to control the system to any desired state in the state-space, is more realistic while 

still incorporating the nonlinear dynamics (Mochizuki, Fiedler, Kurosawa, Saito, 2013; Zanudo 

& Albert, 2015). Other Boolean network control methods are available to search for control 

strategies to find a sequence of 0-1 vectors such that the system is directed to any desired state 

(Akutsu, Hayashida, & Tamura, 2008). In other words, there are available Boolean network 

control methods that can direct the system to non-naturally occurring attractors; we can choose to 

use these methods if there is such a need.  

The Boolean network control methods contributes a method that can tackle the 

complexity of nonlinear dynamical systems, compared with linear control theory methods. 

Linear control theory methods focuses on stabilizing the dynamics in the system using linear 

algebra, designing an input/control into the system to place the real part of the eigen values of the 

dynamics matrix to negative values, so that the discrepancy between the system state and the 

goal state will exponentially decrease to zero (Lewis et al., 2012; Brunton & Kutz, 2017). But 

linear control theory essentially assumes there is only one equilibrium point, which does not 

fully capture the complexity of the nonlinear dynamics, which are often marked by multi-

stability, limit cycle, and even transitions between different regimes (Tang & Bassett, 2018). 

Hence, the Boolean network method introduced in this paper accommodates the nonlinear 

dynamics by accounting for multiple attractors and provides control strategies that can direct the 

system from an undesirable attractor to a desirable attractor.  

Fuzzy logic control (FLC) is an alternative approach to control nonlinear dynamical 

systems (Yager & Zadeh, 1992) using if-then rules. The commonality between the Boolean 

network control and FLC is they both use logic rules to make decisions about control (e.g., if 

anger is ON, then distraction should be ON). FLC is traditionally model-free and requires 

humans’ creating a set of rules as the controller. Take driving for example, the fuzzy logic 
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controller could be a set of rules created from human’s expert opinion to decide to hit brake at 

different degrees (e.g., hard, a little hard, not at all), according to the distance from another car is 

(e.g., very close, medium close, not close). Some later development began to extend fuzzy logic 

control into model-based controllers (Palm, Driankov, & Hallendoorn, 1997). Future work can 

explore in more detail the overlaps and various benefits of the Boolean network approach in 

relation to the FLC approach.  

Reducing Burden of Applying Control in Psychological Systems 

We have demonstrated the simplicity of the control strategy produced by the Boolean 

network, which requires switching a node ON or OFF in the system to move it out of an 

undesirable attractor. This kind of control strategy will reduce burden of applying control in 

psychological systems.  

Now let us go through a hypothetical control implementation to explain why the Boolean 

network method reduces the burden of applying control in psychological systems. A control 

system requires the controller of a system to at least know what input variables they should 

manipulate and how to manipulate them according to the state of the system (Molenaar & 

Nesselroade, 2015). A univariate discrete-time control system can be expressed as: 

𝑢∗(𝑡) = [𝑦∗ − 𝛽𝑦(𝑡)]/𝜙      (10) 

where 𝑦(𝑡) is the observed univariate developmental process, and 𝑢∗(𝑡) is the univariate external 

input that needs to be manipulated in order to control the system.  

For a psychological system, if a human is put in the control system to be in charge of 

enacting control, e.g., a parent is put in the position to help regulate a child’s negative emotion, 

the human must know the input variable 𝑢∗(𝑡) and how to manipulate them when 𝑦(𝑡) changes 

over time, e.g., 𝑦(𝑡) could be the expression of anger of a child. For a continuous-scale system, 

the input variable 𝑢∗(𝑡) is a continuous-scale variable, and that means the control strategy will 

vary according to the states of the system 𝑦(𝑡). In other words, the human controller must adapt 

to the state of the system 𝑦(𝑡) and change their control strategy 𝑢∗(𝑡) accordingly. This is 

cognitively demanding and might be a major reason contributing to the sparsity of application of 

control in psychology.  

The advantage of the Boolean network method is it reduced the variation of input 

variable to a binary switch-like strategy (e.g., ON/OFF) and the state of the system to a specific 

context (e.g., stuck in undesirable attractor). When applied to emotion regulation dynamics, the 

network control is in the form of behavior modification, if available. The switch-like control 

strategy reduces the burden from the controller (e.g., parent, teacher) to memorize and 

implement control in the child’s emotion regulation process. This advantage of reducing 

cognitive burden on human controllers will remove barriers of applying control to psychological 

dynamical systems, and encourage more empirical research in application of control.  

Using Network Control Strategy to Assess Person-Specific Developmental Goal  

In our empirical example of 3-year-old toddlers, which is the developmental age when 

children exhibit tremendous individual differences in emotion regulation abilities (Kopp, 1989). 

We applied the three steps of the Boolean network method for each child’s data, constructed 

person-specific Boolean network and designed person-specific network control. The person-

specific network control also can assess person- specific developmental goals.  

Based on the need and availability of control strategy, we defined 3 types of emotion 

regulation ability: under-developed, developing, and well-developed emotion regulation. The 

under-developed type has no control strategy, indicating the child can get stuck in anger and 

behavior modification cannot prevent the child from getting stuck; the developing type has 
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control strategies available which can prevent the child from getting stuck in anger; the well-

developed type does not need control strategies, indicating the child can regulate anger 

effectively during the waiting task. 

The developing emotion regulation indicates children need to activate behavior after 

anger is activated, even when regulatory behavior already emerges. This highlights the person-

specific developmental goal, which is the effective use of appropriate regulatory behavior when 

negative emotions occur. The well-developed type indicates the child might have already learned 

how to use regulatory behavior effectively, and this implies the formerly stated goal – effective 

use of appropriate regulatory behavior when negative emotions occur – is already fulfilled and 

the child is ready for more advanced developmental goals. On the other hand, the developmental 

goal for the under-developed type is a behavior need to have an effect on anger, and then 

network control will identify which behavior can affect anger (being it regulating or 

dysregulating) and the child can then develop skills to effectively use the particular behavior.  

In sum, the person-specific network control can provide person-specific behavior 

modification advices that matches the developmental goal of emotion regulation, and it can also 

provide information to re-assess what is the appropriate developmental goal for a particular 

child.  

Limitations and Outlooks 

Identification of Boolean functions. The identification of Boolean functions uses the 

criteria of minimal error rate. The error rate is the sum of false positive and false negative. False 

positive means predicting the outcome to be 1 but the observed value is 0, and false negative 

means predicting the outcome to be 0 but the observed value is 1. When the observed data can 

have unbalanced classes, e.g., fewer observations of anger = 1 than that of anger = 0, the error 

rate will bias the identification by weighting the false positive and false negative equally. In 

other words, because there are fewer positive cases than negative cases (e.g., 15 seconds of angry 

compared to 465 seconds of not angry), the false negative (predicting the case to be negative 

when it is actually positive) cases might be subsequently fewer than false positive (predicting the 

case to be positive when it is actually negative). Therefore, the false negative should be more 

heavily weighted to balance with the false positive. The original biology literature, where 

Boolean network method has been applied, did not take this into account, possibly because 

unbalanced cases are not an issue in biology data. Further research can implement the weighted 

error rate to identify the Boolean functions. 

The choice of number of input variables, denoted as K in this paper, is another issue. 

Preselecting K is based on the time complexity of computation if K is not a constant, which is a 

nondeterministic polynomial hard (NP-hard) problem (Akutsu, et al. 2000). The choice of K = 2 

specifically is because when K = 3, the system will likely to be chaotic, meaning attractors would 

not be periodic like a limit cycle. This K = 3 case is also called the edge of chaos (Derrida & 

Pomeau, 1986). The K = 2 might limit the number of behaviors that can affect emotion by only 

identifying 1 or 2 behavior that can affect emotion, but it has the benefit of extracting attractors 

that can inform network control system design and intervention. Hence, it is a tolerable 

compromise of the accuracy of identifying system dynamics and practical purpose.  

Probabilistic Boolean Network. An important limitation of the Boolean network method 

introduced in this paper is the assumption that the dynamics of the system are fully deterministic. 

This assumption is useful to simplify the modeling process, but is not always the most realistic or 

accurate assumption. Probabilistic Boolean network method (Shmulevich & Dougherty, 2010) 

has been developed which assigns probabilities for multiple Boolean functions with an equal 
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error rate. This is one way to model a stochastic dynamical system. Another way to model the 

stochasticity in a dynamical system would be a method to incorporate and model a noise term in 

Boolean functions, e.g., a Boolean function like z = x AND y can have a noise with a probability. 

No such method has been developed to my knowledge.  

Discrete-time Dynamical System Modeling. The Boolean network method is a discrete-

time dynamical system modeling, so inherently it has the flaws of discrete-time modeling (Ryan, 

Kuiper, Hamaker, 2019). For example, when the true time-scale of psychological processes is 

unclear (e.g., how fast can children regulate anger), we usually assume the time-scale is equal 

with the time-scale measurement, 1 second in the empirical example in this paper, and this 

assumption dictates how the discrete-time modeling discover temporal dynamics between 

emotion and behavior. The problem of this assumption is if the true time-scale is slower (e.g., 5 

second), then we will miss the temporal dynamics between behavior and emotion. This problem 

can be alleviated by allowing the state transition to be updated asynchronously, meaning not 

strictly from t to t+1 (Albert, Robeva, 2015). This will allow for attractors of multiple time-

scales to be discovered. It is worth noting we are not modeling the temporal dynamics with 

multi-scales though, but allowing the time-scale to be changed from 1s to 2s, 3s, …. by updating 

the states asynchronously.  

Empirical Example. The empirical example in this paper is from an early childhood 

emotion regulation study. The participants in this sample are somewhat homogeneous in 

ethnicity. Before generalizing to larger population and to contribute to child emotional 

development theories, it is useful to engage with other population, including children with other 

ethnicity and cultural background. In terms of variables, we select anger, bidding, and distraction 

as the minimal set of variables to study emotion regulation dynamics, where bidding is expected 

to dysregulate anger and distraction is expected to regulate anger as emotion regulation 

development literature suggested. There are more emotion and behavior variables (e.g., sad, self-

soothing) coded for the experiment, which could have affected anger or be affected by anger, but 

for demonstrative purposes, we did not include these variables. The three variables were 

manually coded second by second, and we have totally 480 seconds as 480 observations, and this 

is often considered a long psychological time-series. Dynamical system models, including the 

Boolean network method, usually requires long time-series to allow for a good fit; and we were 

fortunate to have a time-series dataset with 480 observations. For time-series data that are 

shorter, a comprehensive simulation study will be needed to provide guidelines of the minimal 

number of observations, with respect to complexity of the network model.   

Conclusion  

We introduced the Boolean network method as a method to model and control 

multivariate dynamical systems in psychology. We synthesized the Boolean network method 

from the system biology literature, to cover the essential concepts and three steps with 

methodological details, including inference of Boolean functions and construction of Boolean 

network, extraction of attractors, design of network control. This introduction will enable readers 

to have a solid understanding of Boolean network method. We also used an empirical dataset of 

children’s emotion regulation to demonstrate the utility of the Boolean network method to 

prescribe regulatory strategies. This is the first application of Boolean network in psychology 

literature to our knowledge. Our hope is that the detailed introduction of the methodological 

steps and empirical demonstration will open up discussions and invite more empirical studies of 

network control system design for psychological systems. 
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Table 2.1 Table of input variable(s) and the outcome of AND (∧), OR (∨), and NOT rule (�̅�) 

𝒙(𝒕) 𝒚(𝒕) 𝒙(𝒕) ∧ 𝒚 (𝒕) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

𝒙(𝒕) 𝒚(𝒕) 𝒙(𝒕) ∨ 𝒚(𝒕) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

𝒙(𝒕) 𝒙(𝒕) 

0 1 

1 0 
 

Table 2.2 Table of state transition 

(𝑥1, 𝑥2) 
t t+1 

(0,0) (0,0) 

(0,1) (0,1) 

(1,0) (1,0) 

(1,1) (0,1) 
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Table 2.3 Twenty-two types of Boolean networks, their associated state transition graph with attractor information, and network 

control strategies 

Ind

ex 

Boolean Functions 

Attractor* 

Control Strategy 

anger bidding distraction 

Perturb 

bidding 

(Strategy, 

count) 

Perturb 

distraction 

(Strategy, 

count) 

Not 

Available 

(Count) 

Not 

needed 

(Count) 

1 0 
bid AND  NOT 

distraction 
distraction A    4 

2 0 bid distraction B    30 

3 0 0 distraction C    4 

4 0 0 0 D    1 

5 
anger AND  NOT 

bid 
bid distraction E 

Turn bidding 

ON when 

anger is ON, 4 

   

6 
anger AND  NOT 

bid 
bid 0 F 

Turn bidding 

ON when 

anger is ON, 1 

   

7 
anger AND NOT 

bid 
0 distraction G   1  

8 
anger AND  NOT 

bid 
anger AND  bid distraction H 

Turn bidding 

ON when 

anger is ON, 1 

   

9 
anger AND  NOT 

bid 

NOT anger AND  

bid 
distraction I 

Turn bidding 

ON when 

anger is ON, 1 

   

10 
anger AND  NOT 

distraction 
bid distraction J  

Turn 

distraction 

ON when 

anger is 

ON, 5 

  

11 
anger AND  NOT 

distraction 
bid 

NOT bid AND  

distraction 
K  

Turn 

distraction 

ON when 
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anger is 

ON,1 

12 
anger AND  NOT 

distraction 

NOT anger AND  

bid 
distraction L  

Turn 

distraction 

ON when 

anger is 

ON, 1 

  

13 anger AND  bid bid distraction M 

Turn bidding 

OFF when 

anger is ON, 9 

   

14 
anger AND  

distraction 

bid AND  

distraction 
distraction N  

Turn 

distraction 

OFF when 

anger is 

ON, 1 

  

15 
anger AND  

distraction 
bid OR anger 

NOT anger AND  

distraction 
O    1 

16 anger 
bid AND  NOT 

distraction 
distraction P   2  

17 anger bid distraction Q   39  

18 anger 0 distraction R   2  

19 anger 
NOT anger AND  

bid 
distraction S   4  

20 anger bid 0 T   3  

21 anger bid 
NOT bid AND  

distraction 
U   1  

22 anger bid 
NOT anger AND  

distraction 
V   1  

Total (117 participants) 16 8 53 40 

*Attractors will be represented in the form of state transition graph in Figure 2.4, labeled with character from A to V in Table 3, with the matching 

state transition graph in Figure 2.4 Panel A to Panel V. For example, if column “Attractor” is “C”, then the state transition graph is Figure 2.4 

Panel C.  
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Figure 2.1 Example of a two-node network, consisting of 𝑥1 and 𝑥2.  

Panel A is the observed binary time-series of 𝑥1 and 𝑥2 across time. Panel B is the Boolean network and 

Boolean functions inferred from the binary time-series in Panel A. Panel C is the state transition graph 

derived from the Boolean functions in Panel B. Panel D is the network control strategy, which is to 

perturb 𝑥2 when 𝑥1 is ON, and the updated state transition graph from Panel C, where the updated state 

transition is highlighted by a red arrow. Two-state tuple indicates the state of (𝑥1, 𝑥2), e.g., (0,1) means 

(𝑥1=0, 𝑥2=1). 

 
Figure 2.2 Illustration of design of network control 
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Panel A is the original Boolean network. Panel B is the associated state transition graph before network 

perturbation. Panel C is the updated Boolean network using the network control strategy. Panel D is the 

associated state transition graph if the network control is implemented.  

 

 
Figure 2.3 Illustration of a child’s model results. 

Panel A: Binary Time-Series of Emotion System. Binary time-series of anger, bidding, and distraction 

(colored bars = anger/bidding/distraction = ON, white space = anger/bidding/distraction = OFF). Panel B: 

Inferred Boolean functions. Inferred Boolean functions based on the time-series in Panel A. Panel C: 

State Transition Graph and Attractors. Each dot represents a state of the system (a 3-digit string ordered 

as anger, bidding, and distraction). Six attractors were extracted, which has a self-loop on the dot, e.g., 

000 has a self-loop indicating it is an attractor. Different colors indicate different attractors and its basin 

(if applicable). Panel D: Network Control Strategies. One control strategy is found, to modify the 

behavior of distraction with a new Boolean function. Panel E: The updated state transition graph shows 

how undesirable attractor are eliminated and the state transition from an undesirable state to a desirable 

attractor basin, e.g., an undesirable attractor 100 (anger is ON, highlighted in green) will transition to the 

state 101 and eventually go to attractor 001 (anger is OFF).  
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Figure 2.4 Illustration of twenty-two state-transition graphs. 

In each panel, each color indicates a different attractor and its basin, and the self-loop indicates an attractor and dashed arrows indicate direction of 

state transition, e.g., Panel A show a state transition graph with three attractors (0,1,0) in green, (0,0,1) in red, (0,0,0) in blue, and (0,1,1) 

transitions to (0,0,1). The variables in the tuple/parenthesis are anger, bid, distraction.   
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Chapter 3 MODELING AND MANAGING BEHAVIOR CHANGE IN GROUPS: A 

BOOLEAN NETWORK METHOD 

 

Introduction 

Individuals often modify their behavior according to their observation of how other 

individuals in their social circle behave. Individuals may choose to conform to other’s behavior 

because they feel safer to mimic their social peers’ behaviors (e.g., conformity, Asch, 1956; 

group norm, Festinger, Schachter & Back, 1950); or they may choose to act differently from 

their peers because they disagree with their peers’ behavior (Rosenbaum , 1986). Some 

individuals might be very consistent in their behavior and, although not changing their own 

behavior, might still influence their peers’ behavior (Moscovici & Zavalloni, 1969 ). Because 

social influence facilitates individuals’ behavior change in social group settings, the behavior 

changes among the individuals due to social influence can be conceptualized as a group process. 

The outcome of the group process of behavior change are often emergence of roles, group 

structures, group norms (Nowak, Szamrej, Latene, 1990; Arrow, 2010).  

Theorists seeking to understand behavior change desire methods that can model social 

influence, and practitioners seeking to induce behavior change desire methods that can manage 

social influence. In this paper we introduce and forward a Boolean network method (Kauffman, 

1969; 1993) that can estimate the presence of social influence and how it changes behavior 

within the same group, and provide strategies for network management that can promote desired 

behavior or prevent undesired behavior. Using empirical data from a longitudinal study of self-

disclosing behavior in therapy groups on college campus, we demonstrate how the Boolean 

network method can be applied to longitudinal behavioral data to infer social influence and to 

manage the group toward a desired goal – the majority of group members will self-disclose.  

Social Influence and Behavior Change in Social Groups 

Theories of behavior change suggest individuals modify their behaviors according to the 

behaviors of their social peers. There are mainly two different types of social influence regarding 

behavior change, and each type of social influence has several corresponding mechanisms to 

explain why and how the social influences affects behavior change. Social influence can be 

broadly categorized as either assimilative or repulsive (Flache et al., 2017). When people are 

under assimilative social influence of their social peers, they tend to modify behavior to be more 

similar to peers’ behavior. There are several possible mechanisms of assimilative social 

influence. The integrative theory of planned behavior (Yzer, 2012) suggests that perceived social 

norms (and social pressures to perform specific behaviors) motivate behavior change. Similarly, 

social learning theory suggests individuals imitate others’ behaviors though observation learning, 

and can do so even without direct reinforcement (Bandura, 1963), and when there is uncertainty 

about the consequences (Bikhchandani, Hirshleifer, & Welch, 1992). In contrast, when people 

are under repulsive social influence of their social peers, they tend to modify behavior to be 

different from peers’ behavior. There are several mechanisms for repulsive social influence. 

First, repulsive social influence could also be social learning when a specific behavior is 

associated with subsequent punishment (Bandura, 1963; 1977). Second, another mechanism of 

repulsive social influence is negative social ties, which refer to social ties that carry negative 

connotation between two persons, e.g., dislike (Veenstra, Dijkstra, Steglich, & Van Zalk, 2013; 

Harrigan, Labianca, & Agneessens, 2020). For example, if person A dislikes person B’s 

behavior, then person A’s behavior is more likely to move against person B’s behavior. Third, 
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dominance can also explain repulsive social influence, particularly in groups that have limited 

resources (Sade & Dow, 2013). Dominance explains why group members modify their behaviors 

– often related to occupation of resources – when in the presence of a more dominant peer. A 

group member may give up the resources voluntarily to a more dominant peer; the more 

dominant member can also actively fight and prevent the less dominant member from occupying 

resources, e.g., food (Senior, Lihoreau, Buhl, Raubenheimer, & Simpson, 2016), social status 

(Martin, 2009). Quantitatively, the behavior of less dominant member moves in the opposite 

direction from the behavior of the more dominant member, e.g., if the more dominant member 

occupies resources, then the less dominant member will not occupy resources.  

Although many theories suggest that there are both assimilative and repulsive social 

influence, empirical studies of social influence based on behavior change dynamics often make 

assumption that social influence can only be assimilative. Prior empirical studies often studies 

social influence by examining the relation between the likelihood of adopting a behavior 

(behavior change) and the number of peers that already adopted that behavior (amount of peers 

that already have behavior change) (State & Adamic, 2015; Shameli, Althoff, Saberi, & 

Leskovec, 2017). The focus on the number of peers adopted a behavior is rooted in the threshold 

theory (Granovetter, 1978) which posits that the likelihood of adopting a novel behavior 

increases when the number of peers who adopted the novel behavior increase. This modeling 

approach assumes each dyad has assimilative social influence, so the effect of social influence on 

behavior from each peer can be summed up to measure the total social influence. Simulation 

Investigation of Empirical Network Analysis (SIENA; Snijders, 2017), another method to model 

behavior dynamics, also focus on only similarity effect (Veenstra et al., 2013), e.g., average 

similarity effect models a person’s preference to be similar in behavior to their peers, total 

similarity effect models a person’s preference to be similar in behavior to their peers in such a 

way that the total influence is proportional to total number of peers; average alter effect models 

when a person’s have peers (called alter in SIENA) with higher values of a behavior, the person 

also has a higher value of the behavior.  

There is no theoretical reason to assume only assimilative social influence exists in a 

social group; the lack of empirical studies focus on both assimilative and repulsive social 

influence might be due to a lack of available methods. Dynamical system method can fill this 

gap by estimating the dyad-level social influence based on the dyad’s social time-series, without 

assuming the dyad-level social influence is uniform (Arrow, 2010). In a dynamical system, each 

group member’s behavior is modeled as a set of temporal relations where the behavior at the 

current time is an outcome of their own and the other group members’ behavior at a previous 

time point. The social influence can be inferred from the temporal relations between each dyad in 

the group, e.g., if person A’s behavior at t has a temporal relation with person B’s behavior at 

t+1, then person A’s behavior influences person B’s behavior. Depending on the direction of the 

temporal relation, we can infer whether it is assimilative or repulsive, e.g., if person A’s behavior 

at t has a positive temporal relation with person B’s behavior at t+1, then person A’s behavior 

has assimilative influence on person B’s behavior; otherwise, person A’s behavior has repulsive 

influence on person B’s behavior. Therefore, the dynamical system method can simultaneously 

accommodate both assimilative and repulsive social influence in one group.  

Managing the Group Process of Behavior Change  

Because individuals are under social influence and likely to modify their behavior due to 

other group members’ behavior, the process of behavior change due to social influence in the 

social group context can be conceptualized as a group process of behavior change. Then there is 
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potential to manage the group process, so that the majority of the group will adopt a desired 

behavior, or as many group members as possible will.    

Previous literature suggests managing group process can utilize social influence from the 

central nodes to prevent undesirable behavior (e.g., aggression) from being spread via the social 

network (Osgood et al., 2013; Borek et al., 2019). The central nodes are the group members that 

receive the most friend nominations from others. The specific group management strategy is to 

intervene on the peer selection process, specifically to encourage group members to befriend 

those group members who show desired behavior (e.g., no substance use) and discourage group 

members to befriend those group members who show undesired behavior (e.g., substance use).   

There are two important assumptions made for this group management strategy. The first 

important assumption is the social influence is only assimilative among group members. Given 

this assumption, a person with higher friend nominations (also more central nodes in the social 

network) is in the position to influence more people in the group, so positioning group members 

with desired behavior as the central nodes subsequently increase the number of group members 

that adopt desired behavior. On the other hand, positioning group members with undesired 

behavior as less central nodes will allow less people being influenced by them, and subsequently 

decrease the number of group members that adopt undesired behavior. The second important 

assumption of this group management strategy is the network cannot be fully connected. A fully 

connected network means every group member has a social tie with any other group member in 

the same network. Only when a group is not fully connected, it will be possible to change the 

friend nomination, to allow some group members have more friend nominations than others. This 

assumption is valid for large networks, because it is unrealistic to know everyone on large social 

networks (e.g., schools, corporations, the internet). But in small groups (e.g., therapy groups, 

sport teams, coauthor groups), this assumption is invalid because the small size of the group 

allows group members to share a social tie with any other group member.  

When at least one of the two above assumptions are violated, we need a more flexible 

group management method. Once we can model the group process using dynamical system 

methods as previously introduced to relax the first assumption, we can also design network 

management strategies using control theory to relax the second assumption. Control theory (or 

control system design), a subfield of mathematics and engineering, focuses on moving dynamic 

systems toward desired goals. For example, engineers and mathematicians have developed 

automated systems to direct planes follow a designated trajectory and land at a designated lane 

by adjusting velocity and direction in real time to accommodate on-going changes in the 

environment (e.g., wind). A variety of mathematical tools and algorithms have been developed to 

determine the specific actions that will influence the behavior of a dynamical system so that it 

follows a desired trajectory or settles into a desired state (Lewis, et al., 2012; Molenaar & 

Nesselroade, 2015; Liu & Barabasi, 2016). In the context of group management, control theory 

methods focus on changing the behavior of specific group members instead of changing the 

social ties, which can relax the second assumption about social network topology. In this paper, 

we will apply the Boolean network method to model the group process, and then use the network 

control method based on the Boolean network method to identify specific ways to manage group 

processes.  

Boolean Network  

The Boolean network method provides a more realistic solution for both modeling and 

managing group process for two reasons. First, the Boolean network method does not impose 

social influence is only assimilative and can also model repulsive social influence or dominance. 
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Second, the Boolean network method can manage the group process, even for fully connected 

networks, by looking at the attractor states of a group.  

Here, we introduce a Boolean network method that can: (1) allow both assimilative and 

repulsive social influence to be modeled for the same group, and (2) design network 

management strategy (also called network control; Shmulevich & Dougherty, 2010; Campbell & 

Albert, 2019) based on the dynamics of social influence and does not rely on manipulating the 

social ties.  

Background. The Boolean networks (BN) model was originally introduced by Kauffman 

(Kauffman, 1969, 1993). In brief, a Boolean network 𝐺(𝑋(𝑡), 𝐵) is defined by a set of nodes 

𝑋(𝑡) = {𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)}, where 𝑥𝑖 is the 𝑖th node, and a set of Boolean functions 𝐵 =
{𝑓1, 𝑓2, … , 𝑓𝑛 }, where each Boolean function 𝑓𝑖(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘) with K specific input nodes for 

node 𝑥𝑖 determines the value of 𝑥𝑖 at time t+1. In this paper, the nodes represent a group 

member’s behavior variable which is binary (1=ON, 0=OFF), e.g., self-disclosure behavior in a 

group setting. The Boolean functions represent the temporal dynamics between group members, 

i.e., how the group members’ behavior (nodes) influence each other’s behavior over time.  

The Boolean functions are written using the Boolean operators: AND ∧, OR ∨, NOT �̅�. 

The AND (∧) operator is defined as all input variables have to be ON to turn the outcome ON; 

the OR (∨) operator is defined as any input variables being ON can turn the outcome ON; the 

NOT (�̅�) operator simply takes the opposite state of the input variable. Table 1 shows how these 

rules produce different outcome based on the input of two variables.  

Modeling Assimilative and Repulsive Influence Simultaneously. To give an intuitive 

illustration of how the Boolean network method can be used to describe groups where 

assimilative and repulsive social influence operate simultaneously, we use a simple, fully 

connected three-person network. Member 1, member 2, and member 3’s behaviors at multiple 

occasions are represented as 𝑥1, 𝑥2, and 𝑥3, respectively. The observed time-series of each 

person’s behavior  𝑥1, 𝑥2, and 𝑥3 are shown in Figure 3.1a, where the states of 𝑥1, 𝑥2, and 𝑥3 are 

ordered by time-steps 𝑡1, 𝑡2, 𝑡3,…. From this observed binary time-series, we can infer the 

Boolean functions that have assimilative and repulsive social influence in the same group as 

follows: 

𝑥1(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅                                                         (1) 

𝑥2(𝑡 + 1) = 𝑥1(𝑡)                                                         (2) 

𝑥3(𝑡 + 1) = 𝑥3(𝑡)                                                         (3) 

(the details of how rules are inferred will be introduced in the Data Analysis section).  

1. 𝑥1(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ indicates repulsive social influence from person 𝑥3 to person 𝑥1: when 

𝑥3 is turned OFF at time t, 𝑥1 will be turned ON at time t+1; when 𝑥3 is turned ON at 

time t, 𝑥1 will be turned OFF at time t+1. This can also be explained by dominance, 

member 3 dominates member 1: whenever member 3’s self-disclosure is ON at time t, 

member 1’s self-disclosure behavior is turned OFF at time t; only when member 3’s self-

disclosure is OFF, member 1’s self-disclosure can be ON. 

2. 𝑥2(𝑡 + 1) = 𝑥1(𝑡)  indicates assimilative social influence from member 1 to member 2: 

when 𝑥1 is turned ON at time t, 𝑥2 will be turned ON at time t+1; when 𝑥1 is turned OFF 

at time t, 𝑥2 can be turned OFF at time t+1.  

3. 𝑥3(𝑡 + 1) = 𝑥3(𝑡) indicates member 3’s behavior depends on him/herself: when 𝑥3 is 

turned ON at time t, 𝑥3 will continue to be turned ON at time t+1; when 𝑥3 is turned OFF 

at time t, 𝑥3 will continue to be turned OFF at time t+1. 
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The Boolean functions in Equations 1 to 3 are used to construct a Boolean network, a graph of 

which is shown in Figure 3.1b. The first function “𝑥1(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ ” is expressed by a red 

edge from 𝑥3 to 𝑥1 representing the NOT effect of  𝑥3(𝑡) on 𝑥1(𝑡 + 1). The second function 

“𝑥2(𝑡 + 1) = 𝑥1(𝑡)” is indicated by a green edge from 𝑥1 to 𝑥2 representing 𝑥2(𝑡 + 1) depends 

on 𝑥1(𝑡). The third function “𝑥3(𝑡 + 1) = 𝑥3(𝑡)” is indicated a green edge pointing from 

𝑥3 back to itself – a self-loop. 

In sum, this example illustrates that a Boolean network method can have both 

assimilative and repulsive social influence to be modeled for the same group. If we use another 

modeling framework rather than dynamical system method, such as multilevel modeling, then 

we will need to make assumptions that there is a prototypical value and direction (either positive 

or negative) of social influence. In other words, using multilevel modeling would only allow for 

either assimilative or repulsive social influence to be modeled. The Boolean network method, 

however, allows for cases where assimilative and repulsive social influences operate 

simultaneously in the same group.    

Designing Network Control Without Manipulating Social Ties. Methodologically, 

network control focuses on modifying the state space transition graph that is derived from a 

Boolean network. Three pieces of information need to be identified: (1) which node needs to be 

perturbed, (2) which states to perturb the nodes to, and (3) what is the condition to perturb the 

node. These three pieces of information will be useful in diagnosing when and how to drive the 

system (social groups or social networks) into more desirable states. 

We can extract attractors from state transition graph using these Boolean functions (the 

details of how derivation works will be introduced in the Data Analysis section). If we represent 

the state of 𝑥1, 𝑥2, and 𝑥3 as a tuple of the three variables (𝑥1, 𝑥2, 𝑥3), e.g., (0,0,0) means all 

𝑥1, 𝑥2, and 𝑥3 are OFF, we can express the state transition as a graph, shown in Figure 3.1c. For 

the Boolean network in Figure 3.1c, where the arrows indicate the direction of transitions, the 

state of the system will transition from (0,0,0) to (1,0,0), and then from (1,0,0) to (1,1,0). Once 

the system enters (1,1,0), it will be absorbed in this state and it will not transition to other states. 

This kind of state, where the system stays, is an attractor.  

The Boolean network method utilizes the differential desirability of attractors within the 

same dynamical system and design network control strategies to move the dynamical system 

from an undesirable attractor to a desirable attractor. Because not all attractors are desirable with 

a dynamical system, we can assign desirability to each attractor based on practical concerns. In 

our example, we define desirable as the majority of group members’ self-disclosure are ON. For 

example, an attractor in which two group members’ self-disclosure are ON, e.g., (1,1,0), is 

desirable; on the contrary, an attractor in which only one group members’ self-disclosure is ON, 

e.g., (0,0,1), is undesirable.  

Control strategy can be derived based on the distance from undesirable attractor to 

desirable attractor basin (the details of how derivation works will be introduced in the Data 

Analysis section). We can design network control based on the extracted attractors, and one 

network control strategy is to perturb 𝑥3 when only 𝑥3 is ON as shown in Figure 3.1d, so that the 

system will transition from (0,0,1) to (0,0,0) indicated by a red arrow, then goes to (1,0,0), and 

eventually (1,1,0), the desirable attractor. This new state transition is also depicted in Figure 

3.1d. In sum, this example illustrates that a Boolean network method can design network 

management strategies based on the dynamics of social influence and does not rely on 

manipulating the social ties.   
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The Present Study 

In the present study, we model social influence processes driving week-to-week 

disclosure behaviors of all members of a therapy groups. In doing so, we construct Boolean 

networks that simultaneously estimate assimilative and repulsive social influence from the 

Boolean functions. The assimilative social influence is shown in a function form like 

𝑥𝑗(𝑡 + 1) = 𝑥𝑖(𝑡), and a repulsive social influence is shown in a function form like 𝑥𝑗(𝑡 + 1) =

𝑥𝑖(𝑡)̅̅ ̅̅ ̅̅ . Then based on the Boolean network of each group, we can extract attractors for each 

group, and assign desirability to the attractors. When there are both desirable and undesirable 

attractors for the same group, control strategy will be searched and specific group members will 

be identified that can move the group into a desirable attractor. The strength and novelty of this 

Boolean network method includes (a) simultaneously estimating assimilative and repulsive social 

influence from dynamics of group members’ behavior data, and (b) providing group 

management strategy by applying network control on the dynamics of group members’ behavior 

data.  

Method 

Data for our empirical inquiry are drawn from a longitudinal study of how dynamics of 

on-campus counseling therapy groups that met weekly, and the health of individuals within those 

groups changed over 10 to 16 weeks. Comprehensive description of the larger study can be 

found in Molloy (2012). Details relevant to the present analysis are given below. 
Participants and Procedure 

Weekly data collection was done in a counseling setting where university students seek 

mental health services at the University’s Center for Counseling and Psychological Services 

(CAPS) and get assigned to therapy groups that ranged in size from 5 to 8 persons, and met 

weekly for between 10 and 16 weeks. Participants were 119 individuals recruited from18 therapy 

groups (mean group size = 6.6, not including the therapists). Of the 18 groups, 17 were “general 

process” groups (e.g., no specific disorder or topic; 9 for undergraduate students, 8 for graduate 

students) and 1 was a substance abuse group (for both undergraduate and graduate students).  

Measures 

Measures for the present study were drawn from the American Group Psychotherapy 

Association’s (AGPA) CORE-R Battery (Clinical Outcome Results Standardized Measures, 

Revised; see Burlingame et al., 2006; Strauss, Burlingame, & Bormann, 2008): a manual of 

evidence-based instruments that serve as a standardized “toolbox” for clinicians to systematically 

monitor and evaluate groups and their members. Since the original scale was often not 

administered on a weekly basis, many of the items were re-worded to be present-focused by 

adding, for example, the phrases “during today’s session” or “today.”  

Participants’ Weekly Self-Disclosure. To demonstrate the Boolean network modeling 

approach, we use a self-disclosure item from the Group Evaluation Scale (GES; Hess, 1966), a 

seven-item measure assessing the overall benefit that a client experienced during a given session. 

Traditional Likert-type response scales (e.g., 1 = ‘strongly disagree’ to 7 = ‘strongly agree”) 

were converted to “touch-point continuum” (slider-type) response scales (0 to 100) with end-

point anchors. Examples of item stems include “Within the group today, I was … to self-

disclose”, with a response scale with end-point anchors “very uncomfortable” and “very 

comfortable”. To prepare the variable for analysis using the Boolean network method, the 

interval-scale variable was binarized separately for each individual using their person-specific 

mean score across the repeated measures. Specifically, responses above the person-mean were 

coded as = 1, and responses equal to or below the person-mean were coded = 0. Thus, for each 
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person in a group we obtained a binary time-series that is interpreted as indicating whether or not 

that individual did or did not engage in self-disclosure during each session. 

Data Analysis 

Because the Boolean network method is new to the psychology literature, we synthesized 

the Boolean network method introduced in system biology literature, to cover the essential 

concepts and methodological details to enable readers to have a solid understanding of the 

Boolean network method as a method for network modeling and network control.  

The Boolean network method we introduce here has three major steps: (1) inference of 

Boolean functions and construction of a Boolean network, (2) extraction of attractors based on 

the inferred dynamics and assignment of desirability for each attractor, and (3) design of network 

control to direct a group toward a desired attractor and identify how the Boolean network needs 

to be updated. 

Inference of Boolean Functions and Construction of Boolean Network  

The Boolean functions can be inferred from the observed time-series of all the variables. 

Input variable refers to the variables that produce the outcome variable, similar to predictors. 

Number of input variable is usually denoted by k, and the size of the network is denoted by N, so 

the Boolean network with size N and input k is sometimes called a NK Boolean network.  

Algorithms have been developed to infer Boolean functions (Lähdesmäki, Shmulevich, & 

Yli-Harja, 2003; Akutsu et al., 2000). The goals of inferring Boolean functions is to find the 

combination of input variables connected by the AND, OR, and NOT Boolean operators, that is 

the best fit of an outcome variable. The inference procedure utilized the matrix multiplication 

and finger print function to compare the time-series of outcome variable and the time-series of 

combinations of different input variables. The technical details of inference can be found in 

Chapter 2 “Data Analysis” section.  

For network construction, each group member’s self-disclosure measure within a group 

were entered in the BoolNet R package to construct a group-specific Boolean network. The R 

package will find the best fit for each variable – each member’s self-disclosure – at time t in the 

form of a Boolean function that use the variables of the same group – group members’ self-

disclosure – as input variables at time t-1. All the Boolean functions together consist the Boolean 

network of the given therapy group.  

Selection of number of input variable k. In this paper, we select k = 1, meaning each 

node is only predicted by one other node. The main reason for selecting k = 1 is due to the 

relatively short time-series (10~16 weeks), selecting k = 1 can avoid overfitting the data. 

Besides, selecting k=1 can also provide straightforward interpretation of the group process – 

assimilative or repulsive – that match more closely to the theory of social influence.  

The Boolean network is the constructed by putting all the inferred Boolean functions 

together. As a hypothetical example, Figure 3.2a shows how the three-node Boolean network 

introduced earlier is constructed.   

Extraction of Attractors 

After the Boolean functions are inferred, the state transition graph can be constructed by 

exhaustive search of all possible state transition sequences from each permutation of initial 

conditions. The attractors are identified by constructing the state transition graph and finding the 

absorbing states, which are the states that will transition to itself due to the dynamics.  

We will go through the same example of three-node network to demonstrate this 

procedure, using the Boolean network mentioned earlier in Figure 3.1 and Equation 1 to 3,  

𝑥1(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅                                                         (1) 
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𝑥2(𝑡 + 1) = 𝑥1(𝑡)                                                         (2) 

𝑥3(𝑡 + 1) = 𝑥3(𝑡)                                                         (3)                         

For the 3-node network, there are 2𝑁 = 23 = 8 possible initial conditions: (0,0,0), 

(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Using the Boolean functions, we can 

compute the state of the system for the next time point, t = 0 + 1. For example, when the system 

starts with initial condition at t = 1 of (0,0,0), meaning 𝑥1=0, 𝑥2= 0 , 𝑥3= 0 at t = 1, then 𝑥1(𝑡 =
2)=𝑥3(𝑡 = 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 1, 𝑥2(𝑡 = 2) =𝑥1(𝑡 = 1) = 0, 𝑥3(𝑡 = 2) =𝑥3(𝑡) = 0. We then know (0,0,0) will 

transition to (1,0,0). Similarly, we can compute the state when the system starts at the rest of the 

seven states. We have put the initial state and state at the next moment in Table 2.  

The overall state transitions from Table 2 can be plotted as a state transition graph. 

Shown in Figure 3.2b, the states are represented in circles, and the arrows indicate the direction 

of change between different states. Attractors are identified as the states where the state at t+1 is 

identical to the state at t. One attractor (highlighted in blue) is (1,1,0), having two nodes 𝑥1, 

𝑥2 turned ON. The other attractor (highlighted in orange) is (0,0,1), having one node 𝑥3 turned 

ON. 

It is worth mentioning attractors can take multiple forms. In this paper, we will have two 

forms, the fixed-point attractor when the system stays in one state, and a complex attractor when 

the system cycles through a finite set of states. The complex attractor is also called limit cycle. 

The limit cycle can be identified by visually checking the state transition graph, and if the system 

transitions/cycles through a set of states, there is a limit cycle with the set of states.  

Design of Network Control  

For this paper, we aim to suggest change to particular members’ behavior so that a 

therapy group will not get stuck with only a few people self-disclosing all the time, but instead 

elicit more diverse participation in self-disclosure. Generally speaking, self-disclosure is a 

desirable behavior in therapy groups because it can strengthen the therapeutic process and group 

members’ self-evaluation can enhance their own healing and change (Farber, 2006)  

We introduce how to identify three pieces of information in this section: (1) which node 

needs to be perturbed, (2) which state to perturb them to, and (3) what is the condition to perturb 

the node. These three pieces of information will be useful in diagnosing when and how to drive 

the system into more desirable states for social groups. The procedure for identifying control 

strategy is as follows: 

1. Formulate the goal of network control. This is based on practical concern. For this 

paper, the goal is to promote the desired behavior – self-disclosure, and the desirability of 

attractors is determined by the number of participants who have self-disclosure ON at 

least once in the attractor. The desirability of an attractor is determined by the number of 

group members’ self-disclosure ON. When there is only one attractor found, the attractor 

is desirable if at least half of the group have self-disclosure ON in the attractor; otherwise 

the attractor is undesirable. When there are multiple attractors found, the attractor is 

desirable on two conditions: (1) if at least half of the group have self-disclosure ON in 

the attractor, and (2) if more group members’ have self-disclosure ON compared to the 

other attractors.  

2. Compute the Hamming distance from an undesirable attractor to the states in a 

desirable attractor basin. An attractor basin is defined as the set of states that will 

eventually go to a given attractor state. Because the system will eventually go to the 

desirable attractor once the system is in any state belonging to the desirable attractor 

basin, we can consider what actions are necessary to move the system from an 
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undesirable attractor state into a desirable attractor basin. Ideally, we would like to move 

the system from an undesirable attractor state to the closest state in the desirable attractor 

basin. The distance from an undesirable attractor state to each state in the desirable basin 

will be the number of nodes that need to be perturbed, thus shortest distance indicates 

fewest nodes to be perturbed. Formally, these distances are computed using Hamming 

distance (Hamming, 1950), which compares two binary strings of equal length and counts 

the number of bit positions in which the two bits are different. For example, the distance 

between state (0,0,1) and state (1,0,0) is 2 because two elements (x1 and x3) in the string 

are different, and need to be changed to move the system from one state to the other state.  

3. Formulation of control strategy. Once all of the Hamming distances are computed, we 

formulate control strategies from those that have the shortest distance. The Hamming 

distance indicate the number of nodes needs to be perturbed. So, the shortest Hamming 

distance indicate a control strategy with minimal number of nodes perturbed, which is 

what we choose as the control strategy. The nodes to be perturbed are the nodes that 

differ between the undesirable attractor state and the state in the desirable attractor basin 

state; the undesirable attractor state is the condition to perturb the node, the state in the 

desirable attractor basin state is the state these nodes should be perturbed to.   

An example is shown in Figure 3.2. A three-node Boolean network and its state transition 

graph are given in Figure 3.2a and 3.2b. The state transition has one desirable attractor (1,1,0) in 

blue and one undesirable attractor (0,0,1) in orange, because the (1,1,0) has 2 group members’ 

self-disclosure ON, compared with (0,0,1). The goal of network control is to move the system 

out of the undesirable attractor (0,0,1), and direct the system into the desirable attractor (1,1,0).  

We compute the Hamming distances between the undesirable attractor (0,0,1) and every 

state in the attractor basin that includes the desirable attractor state (1,1,0). We then find the 

shortest distance, which in this case is from (0,0,1) to (0,0,0), and develop a control strategy that 

would facilitate that move.  

Figure 3.2c shows the control strategy – turning node x3 OFF – that when invoked can 

move the system towards the desirable attractor. The node to perturb is node x3 because the 

undesirable attractor state (0,0,1) and the state in the desirable attractor basin that has the shortest 

Hamming distance (0,0,0) differ by the third node. The condition to perturb is when the system 

is stuck in the undesirable attractor (0,0,1), the state to perturb x3 to is to turn x3 to 0 (OFF), then 

the system goes to (0,0,0), and the state transition is highlighted as a red arrow in Figure 3.2c. 

The system will then transition to (1,0,0), and then to the desirable attractor (1,1,0), highlighted 

by blue, where two group members will have the desirable behavior = ON. It is worth noting 

there could be multiple states that have distance of 1 to the undesirable attractor, indicating 

multiple control strategies. It is also possible there is no state that has distance of 1 to the 

undesirable attractor, indicating no simple control strategy could be found. 
 

Results 

We used the Boolean network method to describe the group process of each of the 18 

therapy groups self-disclosure, and to design a control strategy that would move each group 

towards a desirable outcome – where the majority of group members engage in self-disclosure. 

Results are reported in two parts. First, we go step-by-step through results obtained for an 

exemplar group. Then we summarize and identify patterns in the findings across all 18 groups.  
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Group-Specific Analysis: Identifying a Management Strategy 

In this section we illustrate how the analyses proceeded for one exemplar group, Group 

#17 in Table 3. Group #17 consisted of 6 persons, x1 to x6, who participated in group therapy for 

10 weeks. The self-disclosure behavior of each member is shown in Figure 3.3a, where the 

colored blocks indicate the weeks that each individual self-disclosed and the white spaces 

indicate the weeks they did not self-disclose. 

Inference of Boolean functions and construction of Boolean networks. The Boolean 

functions inferred from this 6-dimensional binary time-series were, as also shown in Figure 3.3b,   

𝑥1(𝑡 + 1) = 𝑥4(𝑡)              (4) 

𝑥2(𝑡 + 1) = 𝑥6(𝑡)              (5) 

𝑥3(𝑡 + 1) = 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅              (6) 

𝑥4(𝑡 + 1) = 𝑥4(𝑡)              (7) 

𝑥5(𝑡 + 1) = 0                     (8) 

𝑥6(𝑡 + 1) = 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅              (9) 

These functions indicate that the group process included both assimilative and repulsive social 

influences. Specifically, Equation 4 indicates an assimilative social influence from 𝑥4 to 𝑥1, in 

that 𝑥1 always does what 𝑥4 did the previous week. In contrast, Equation 6 indicates a repulsive 

social influence from 𝑥6 to 𝑥3, in that 𝑥3 always does the opposite of what 𝑥6 did the previous 

week. Collected together, the six Boolean functions form the Boolean network for Group #17 

Altogether the group process demonstrates both assimilative and repulsive social influence co-

exist in the same group. 

Extraction of attractors. Based on the group-specific Boolean network, we then 

computed how the system evolved from t to t+1 (e.g., as in Table 2), which is shown graphically 

in Figure 3.3c. The state transition graph in Figure 3.3c is obtained in the same way as 

introduced in the “Extraction of Attractors” section, but each state is depicted using dots in 

Figure 3.3c, instead of circles with states in Figure 3.2b, due to the lack of space.  

Attractors – the states that transition back to itself – can be extracted. In our example 

group, two attractors are identified and each attractor basin is highlighted by a different color. 

Attractor basin 1 (highlighted in blue) has three nodes with self-disclosure = ON when it cycles 

through four different states. Attractor basin 2 (highlighted in green) has five nodes with self-

disclosure ON when it cycles through four different states. As aforementioned, when the system 

cycles through a finite set of states, the attractor is a complex attractor or a limit cycle attractor. 

Based on the number of group members that have self-disclosure ON, Attractor 2 is desirable 

and Attractor 1 is undesirable.  

Design of network control. Using the control strategy search algorithm described above 

we identified 4 strategies that might be used to move the system from Attractor 1 to Attractor 2. 

Hamming distance was calculated between the undesirable attractor to all states in desirable 

attractor basin. Figure 3.3d shows there are four states that have the minimal Hamming distance 

– one. The node that differ from the undesirable attractor to the desirable attractor basin is node 

4, or 𝑥4. These are shown in Figure 3.3d along with an indication of the fourth group member 𝑥4 

should be encourage to self-disclose. The first row in the table indicates that when person 4 self-

discloses (1 = ON), the system will be moved from the state of (0,1,0,0,0,0) in Attractor 1 (3 

members ON) to one state  (0,1,0,1,0,0) in the desirable attractor basin, and eventually to 

Attractor 2 (5 members ON). The second row in the table indicates that when person 4 self-

discloses (1 = ON), the system will be moved from the state of (0,0,1,0,0,0) in Attractor 1 (3 

members ON) to one state (0,0,1,1,0,0) in the desirable attractor basin, and eventually to 
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Attractor 2 (5 members ON).  The third row in the table indicates that when person 4 self-

discloses (1 = ON), the system will be moved from the state of (0,1,0,0,0,1) in Attractor 1 (3 

members ON) to one state  (0,1,0,1,0,1) in the desirable attractor basin, and eventually to 

Attractor 2 (5 members ON).  The fourth row in the table indicates that when person 4 self-

discloses (1 = ON), the system will be moved from the state of (0,0,1,0,0,1) in Attractor 1 (3 

members ON) to one state  (0,0,1,1,0,1) in the desirable attractor basin, and eventually to 

Attractor 2 (5 members ON).  In sum, all strategies indicate by turning the fourth node ON, the 

network can be moved from Attractor 1 to Attractor 2. 

Between-Group Differences: Different Management Strategies 

The above analysis was done for each of the 18 groups. Results are summarized in Table 

3 (inferred Boolean functions, state transition graph, attractors, and control strategy) and Figure 

3.4 (state transition graphs). As seen in the Boolean function expressions column of Table 3, 

each group had its own unique dynamics. All the Boolean networks were different. And thus, the 

state transition graphs derived from each Boolean network are unique. As seen in Figure 3.4, 

each group had a unique set of attractors, and as seen in Table 3, each group had a unique control 

strategy.  

We did not find guidelines for a cutoff of acceptable error rate from the literature 

introducing inference of Boolean functions (Akutsu, et al. 2000), so we report the empirical 

distribution of error rate in our sample. Error rate of inference of Boolean function for individual 

group member’s self-disclosure is on average 0.14 (SD = 0.10).  

Assimilative and Repulsive Social Influences. Of the 18 groups, 14 included both 

assimilative and repulsive social influences. Specifically each of these groups’ Boolean functions 

included a function with form of 𝑥𝑗(𝑡 + 1) = 𝑥𝑖(𝑡) which indicates assimilative social influence 

where 𝑥𝑗 moves toward 𝑥𝑖; and a function with form of 𝑥𝑗(𝑡 + 1) = 𝑥𝑖(𝑡) ̅̅ ̅̅ ̅̅ ̅ which indicates 

repulsive social influence with 𝑥𝑗 is moving away from 𝑥𝑖. The co-existence of these Boolean 

functions in the same network indicates that social influence in therapy groups are not always 

assimilative. In all these groups it appears that some group members dominate the group 

discussion time and prevent other group members from participating. The other 4 groups had 

only assimilative social influence dynamics (Group 12) or only repulsive social influence 

dynamics (Groups 2, 8, and 16). When a Boolean function is fixed at 0, e.g., 𝑥1(𝑡 + 1) = 0 that 

indicates the behavior of the ith group member is always OFF, and such members could be 

conceptualized as not affected by social influence (neither assimilative or repulsive), and never 

self-discloses in the group. When a Boolean function is fixed at 1, e.g., 𝑥𝑖(𝑡 + 1) = 1 that 

indicates the behavior of the ith group member is always ON and such members could be 

conceptualized as not affected by social influence either, and they are committed to self-

disclosure every week.  

Attractor States. The state transition graphs in Figure 3.4 show that most groups have 

only one attractor, and 4 groups have two attractors (Figure 3.4i, n, q, r). The state transition 

graph is obtained in the same way as introduced in the “Extraction of Attractors” section, and it 

is depicted using dots to represent states in Figure 3.4, instead of circles with state in Figure 3.2b, 

due to the lack of space. Attractors in the state transition graph are indicated by self-loops. It is 

worth noting when a group have a member whose behavior is fixed at 0 or 1, the number of 

states in the state transition graph will reduce by a half. This reduction is because only half of the 

initial states are permutated in the extraction of attractor step, with one node fixed at either 0 or 

1. Thus, some state transition graphs have fewer states, e.g., Figure 3.4b only have two states, 

and the corresponding group 12 has 4 nodes being fixed at 1, and only one node 𝑥4 is free to 
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change its state. It is also worth noting some attractors are complex attractors (or limit cycle), 

indicating the system cycles through a set of states, e.g., Figure 3.4q shows two attractors and 

both are complex attractors.  

Number and Desirability of Attractors. For groups that has only one attractor, we 

determine whether control strategy is needed based on the desirability of the attractor. If the 

attractor is a desirable attractor, meaning there are at least half of the group members’ self-

disclosure ON in the attractor, then we consider group members are doing well in terms of self-

disclosure, so we labeled these groups as control strategy not needed, e.g., Group 1; otherwise, 

we label the groups as control strategy not available, since there is no more desirable attractor to 

move the system to, e.g., Group 10. 

For groups that have two attractors with differential desirability, we search for the control 

strategy; otherwise, for groups that have two attractors without differential desirability, we 

determine whether the control strategy is needed based on the desirability to these attractors. 

Group 17 and 18 have two attractors with one desirable and the other undesirable, and we found 

control strategies for both groups. Group 7 and 14 both have two attractors with equal 

desirability, so whether the control strategy is needed is determined using the same principle as 

the one-attractor groups: the number of groups members = ON. As a result, group 7 does not 

need control strategy as the majority has self-disclosure ON and group 14 does not have 

available control strategy as the majority has self-disclosure OFF. 

Control Strategies. Examination of the structure of groups’ attractor basins and control 

strategies led us develop a typology of groups. Specifically, we identified three types of groups. 

These are described in Table 4. The first type is the well-functioning group. These groups (N = 

9) had one or two attractors, and each attractor was desirable where the majority of the group 

members’ self-disclosure = ON. Thus, these groups were already functioning well and no control 

strategy is needed. The second type is the unmanageable groups. These groups (N=7) had one or 

two attractors, but in each attractor the majority of the group members’ self-disclosure = OFF, 

yet no control strategy is available because there is no alternative attractor to direct the system to. 

The third type is the manageable groups. These groups (N = 2) had two attractors which had 

differential desirability, and a control strategy was available to move the system into a more 

desirable attractor.  
 

Discussion 

In this paper, I have introduced the Boolean network as a method to model and manage 

group processes. The Boolean network method provides a more realistic solution for both 

modeling and managing group processes for two reasons. First, the Boolean network method can 

model both assimilative and repulsive social influence and does not impose a specific kind of 

social influence. Second, the Boolean network method can manage the group processes, even for 

social networks with both assimilative and repulsive social influence.  

The utility of the Boolean network method is demonstrated through application of this 

method to empirical data about when individual’s self-disclose in therapy groups (4 to 8 

participants) over 10 to 16 consecutive weeks. In the model results, we found both assimilative 

and repulsive social influence recovered in the same group, and network control strategies can be 

designed for this group with both assimilative and repulsive social influence, to ensure more 

group members turning on the desirable behavior. The detailed introduction of the Boolean 

network method with accompanied tutorial and the empirical application together contribute to 

our knowledge and analytical repertoire about how to model and manage group processes 

realistically.   
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Assimilative and Repulsive Social Influence   

The Boolean network method allows for estimation of assimilative and repulsive social 

influence, because social groups can have both positive and negative ties between group 

members (Harrigan, Labianca, & Agneessens, 2020). We found both assimilative and repulsive 

social influence in the same group, confirming our expectation of both types of social influence 

can co-exist. The empirical results demonstrate the Boolean network method can model group 

processes in a flexible and realistic way.  

Uncovering repulsive social influence can facilitate therapist’s understanding of group 

process. If only assimilative social influence is assumed and modeled, then even though there is 

repulsive social influence in the group, it remains undiscovered. As introduced earlier, the 

underlying mechanisms of repulsive social influence could be due to negative ties (Veenstra et 

al., 2013; Harrigan, Labianca, & Agneessens, 2020), social learning of negative consequences of 

self-disclosure (Bandura, 1977), or dominance (Martin, 2009; Sade & Dow, 2013). Identification 

of the dyad that has repulsive social influence can therefore inform therapist that some of the 

underlying mechanisms might exist in the group and allow intervention to target the repulsive 

social influence that the therapist considers harmful for the group process. For example, if the 

therapist considers the repulsive social influence from member A to member B is caused by 

dominance, the therapist can intervene by shortening the self-disclosure of member A and 

encouraging member B to take the opportunity to self-disclose.   

An alternative explanation of what manifests as “repulsive” social influence in a can be 

obtained when the system is instead viewed as a manifestation of  “cooperative” turn-taking. In 

this paper, we considered the NOT operator as an indicator of repulsive social influence, and 

used dominance, social learning, or negative ties to provide a potential explanation of why such 

group process would occur. An alternative interpretation is the NOT operator implies 

cooperative turn-taking behavior. For example, if group member 1’s behavior at t+1 is predicted 

to be NOT group member 2’s behavior at t, then that means when group member 2 speaks at t, 

then group member 1 will not self-disclose at t+1, which could be interpreted as group member 1 

wants to give group member 2 the opportunity to continue self-disclosure. Further work can be 

done to identify the specific types of systems and settings where similar temporal dynamics 

indicate competitive and/or cooperative behavior patterns.  

Network Control to Manage Group Processes   

The Boolean network control method does not make assumptions about social influence 

and the network control design does not rely on manipulating social ties like previous network-

based interventions. We demonstrated how the Boolean network methods allows for 

identification and design of group management strategies for groups with both assimilative and 

repulsive social influence. The dynamical system modeling framework enables extraction of 

attractors by deriving state transitions from t to t + 1 and identifying the state(s) the system 

moved toward and is absorbed in. As a result, the control system design is based on the extracted 

attractors and their differential desirability and the control design provides group management 

strategy, which focuses on changing a few group member’s behavior. The network control 

design shows even if the network is fully connected, like the therapy groups in our empirical 

example, the control method can still find strategies to direct the majority of the group self-

disclose.  

This network control method can help group therapists manage group processes. In 

counseling practice, therapists can use the network control strategy to guide group therapy 

practice and to encourage specific group members to self-disclose when the group is stuck when 
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only a few members self-disclose, which is an undesirable attractor, and then the group can be 

moved out of the undesirable attractor and have more members self-disclose. By managing the 

group and allowing more group members to self-disclosure, the therapy group is expected to 

have more effective counseling, as self-disclosure can strengthen the therapeutic process and the 

self-evaluation in self-disclosure can enhance healing and change (Farber, 2006).  

The application of the Boolean network method is not limited to only therapy groups, nor 

the particular behavior (e.g., self-disclosure). The Boolean network method can be applied to a 

wide range of group processes that rely on social influence. Take prevention of substance use 

among adolescents as an example, the Boolean network control method can provide suggestions 

for school teachers or community stakeholders.  In an adolescent social network within a 

school/community, the Boolean network control method will find strategies on how to reduce the 

number of adolescents that adopt substance use as a regular behavior, which corresponds to 

adolescents’ substance use being ON in an attractor state. The strategies will require changing a 

few adolescents’ substance use behavior, so that the whole social network will be moved to an 

attractor with less adolescents using substance.  

Limitations and Outlooks 

Controllability. The desirability of attractors, in this paper, was assigned in a relative 

sense. An attractor with more group members having desirable behavior is more desirable, 

compared to another attractor with less group members having desirable behavior. We found in 

our empirical dataset that not all groups have multiple attractors, nor do they always have 

differential desirability. This indicates some groups are not controllable with the current control 

system design method. Further methods to assess controllability of a Boolean network can 

provide quick evaluation of whether group is manageable (Cheng & Qi, 2009).  

Efficiency of Attractor Extraction for Larger Networks. We presented the Boolean 

network method and an empirical application on modeling and controlling for dynamics of social 

influence. The empirical example here has the main goal to encourage a diverse participation of 

group dialogue. The size of network in the empirical example is relatively small (4 to 8), and 

some social networks are much larger, ranging from a classroom to the online social networks. 

The large size of the network will create challenge for attractor extraction, as it requires 

enumeration of all initial conditions, which is at the scale of 2𝑛, and 𝑛 is the network size (Liu & 

Barabasi, 2016). Computational algorithms that can efficiently extract attractor are needed and 

will facilitate controlling the dynamics of large networks (Zanudo, Yang, Albert, 2017).    

Complex Social Influence. In this paper, we preselect the number of input variables 

included in each Boolean function as k = 1 for the purpose of not overfitting short time-series 

and match the theory about assimilative and repulsive social influence. When we have more 

observations in the time-series, we can fit more complex social influence, e.g., k = 2. This has the 

advantage to model complex social influence in a multi-person group setting. For example, if 

two persons team up and dominate a third person, it can be modeled using k = 2, and the Boolean 

function will be in the form of 𝑥3(𝑡 + 1) = 𝑥1(𝑡) ∧ 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, meaning only when both 𝑥1 and 𝑥2 

are ON – occupying resources, 𝑥3 will be turned OFF – not occupying resources. To understand 

complex social influence, we also need theories about social influence to pinpoint specific forms 

and mechanisms of social influence.  

Peer Selection. In this study, we did not consider the process of peer selection also 

because we assumed no peer selection – befriending or stop befriending certain group members – 

occurs that would impact the effect of social influence on self-disclosure in the therapy group 

setting. For social influence problem that is intertwined with peer selection, more sophisticated 
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model, e.g., stochastic actor-based models (Snijders, van de Bunt, & Steglich, 2010), is needed to 

properly model group processes. Ideally, a stochastic actor-based model that can model peer 

selection and peer/social influence and the social influence can be assimilative or repulsive 

would be an ideal model framework.     

Empirical Example. The participants in this paper were young adults, and for privacy 

reasons, their demographic information and severity of psychopathology was not included or 

analyzed. Before generalizing to larger populations, it will be useful to examine the group 

process with other populations, including individuals with various degrees of psychopathology, 

and with both younger and older individuals. In terms of variables, we select self-disclosure over 

some other measures in the progress survey, such as self-efficacy, because one person’s self-

disclosure could be observed more easily by other group members, and generate social influence 

in the group process of therapy. A caveat with this measure is the exact questionnaire item was 

ease of self-disclosure, which may have some discrepancy from the actual self-disclosure 

behavior. For lack of a more precise measure of self-disclosure behavior, we use ease of self-

disclosure as a proxy of self-disclosure behavior. The measurement in our dataset of self-

disclosure behavior has 10 ~ 16 weeks/observations, and this is often considered a short time-

series for dynamical system models. To avoid overfitting the data, we selected the number of 

input variable k = 1. For more complex social influence, such as higher number of input 

variables, more repeated measures of behavior data are required. Longer measurements of 

behavior data would be helpful to identify more complex social influence.    

Conclusion  

In this paper, we introduced the Boolean network method as a method to model and 

manage group processes.  To demonstrate the utility of this method, we applied this method on 

an empirical dataset, focusing on managing self-disclosure behavior in group therapy settings. 

Our modeling approach addresses gaps in previous network-based intervention literature through 

construction of networks that simultaneously accommodate both assimilative and repulsive 

social influence, and that provision of design network control strategies for networks in which 

both types of social influence dynamics are operating. The Boolean network method is a more 

flexible, realistic, and precise method to design network-based intervention. We hope that this 

first application and demonstration of Boolean networks to repeated measurement of fully 

connected groups will open up discussions and invite more empirical studies of network control 

system design for social networks.   
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Table 3.1 Table of input variable(s) and the outcome of AND, OR, and NOT rule 

𝒙 𝒚 𝒙 ∧ 𝒚 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

𝒙 𝒚 𝒙 ∨ 𝒚 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

𝒙 �̅� 

0 1 

1 0 

 
Table 3.2 Table of state transition 

(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) 

𝒕 𝒕 + 𝟏 

(0,0,0) (1,0,0) 

(0,0,1) (0,0,1) 

(0,1,0) (1,0,0) 

(0,1,1) (0,0,1) 

(1,0,0) (1,1,0) 

(1,0,1) (0,1,1) 

(1,1,0) (1,1,0) 

(1,1,1) (0,1,1) 
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Table 3.3 Each group’s model result, including Boolean functions, state transition graph, attractors, and 

control strategy (totally 18 groups) 

Index 
Boolean 

functions  

State transition 

graph 
Attractor* 

Control 

strategy 

1 

𝑥1(𝑡 + 1) = 0 

𝑥2(𝑡 + 1) = 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥3(𝑡 + 1) = 0 

𝑥4(𝑡 + 1) = 𝑥2(𝑡) 

𝑥5(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥6(𝑡 + 1) = 0 

𝑥7(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 

A 𝑥2, 𝑥4, 𝑥5, 𝑥7 Not needed* 

2 

𝑥1(𝑡 + 1) = 1 

𝑥2(𝑡 + 1) = 1 

𝑥3(𝑡 + 1) = 1 

𝑥4(𝑡 + 1) = 𝑥4(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥5(𝑡 + 1) = 1 

B 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5  Not needed 

3 

𝑥1(𝑡 + 1)
= 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 𝑥1(𝑡) 
𝑥3(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥4(𝑡 + 1) = 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) =  

𝑥8(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥7(𝑡 + 1) = 0 

𝑥8(𝑡 + 1) = 0 

C 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6 Not needed 

4 

𝑥1(𝑡 + 1)

= 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 0 

𝑥3(𝑡 + 1) = 1 

𝑥4(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥5(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥6(𝑡 + 1) = 1 

𝑥7(𝑡 + 1) = 0 

𝑥8(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 

D 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥8 Not needed 

5 

𝑥1(𝑡 + 1)
= 𝑥1(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 0 

𝑥3(𝑡 + 1) = 0 

𝑥4(𝑡 + 1) = 0 

𝑥5(𝑡 + 1) = 𝑥1(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥6(𝑡 + 1) =  

𝑥1(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥7(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅ 

E 𝑥1, 𝑥5, 𝑥6, 𝑥7 Not needed 

6 

𝑥1(𝑡 + 1)
= 𝑥6(𝑡) 

𝑥2(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥3(𝑡 + 1) = 1 

F 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6 Not needed 
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𝑥4(𝑡 + 1) = 𝑥6(𝑡) 
𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅ 

7 

𝑥1(𝑡 + 1) = 1 

𝑥2(𝑡 + 1) = 𝑥5(𝑡) 
𝑥3(𝑡 + 1) = 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥4(𝑡 + 1) = 

 𝑥5(𝑡) 
𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) =  

𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 

G 𝑥1, 𝑥3, 𝑥6 Not available 

8 

𝑥1(𝑡 + 1)
= 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥3(𝑡 + 1) = 𝑥6(𝑡) 
𝑥4(𝑡 + 1) = 𝑥6(𝑡) 
𝑥5(𝑡 + 1) = 1 

𝑥6(𝑡 + 1) =  0 

H 𝑥1, 𝑥2, 𝑥5 Not available 

9 

𝑥1(𝑡 + 1) = 0 

𝑥2(𝑡 + 1) = 𝑥5(𝑡) 
𝑥3(𝑡 + 1) 
=  𝑥8(𝑡) 
𝑥4(𝑡 + 1) = 0 

𝑥5(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥6(𝑡 + 1) =  0 

𝑥7(𝑡 + 1) = 0 

𝑥8(𝑡 + 1) = 

 𝑥5(𝑡) 

I 
Attractor 1: 𝑥2, 𝑥3, 𝑥5, 𝑥8   

Attractor 2*: 𝑥2, 𝑥3, 𝑥5, 𝑥8 
Not available 

10 

𝑥1(𝑡 + 1) = 0  

𝑥2(𝑡 + 1) = 𝑥4(𝑡)̅̅ ̅̅ ̅̅ ̅  
𝑥3(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥4(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅  
𝑥5(𝑡 + 1) = 𝑥6(𝑡)  
𝑥6(𝑡 + 1) = 0  

𝑥7(𝑡 + 1) = 𝑥6(𝑡)  

J 𝑥3, 𝑥4 No available 

11 

𝑥1(𝑡 + 1)
= 𝑥6(𝑡) 
𝑥2(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥3(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥4(𝑡 + 1) = 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥5(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥6(𝑡 + 1) = 𝑥3(𝑡) 
𝑥7(𝑡 + 1) = 0 

K 𝑥4, 𝑥5 Not available 

12 

𝑥1(𝑡 + 1)
= 𝑥3(𝑡) 
𝑥2(𝑡 + 1) = 𝑥5(𝑡) 
𝑥3(𝑡 + 1) = 0 

L No node is ON in the attractor Not available 
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𝑥4(𝑡 + 1) = 𝑥8(𝑡) 
𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) = 𝑥1(𝑡) 
𝑥7(𝑡 + 1) = 𝑥1(𝑡) 
𝑥8(𝑡 + 1) = 𝑥7(𝑡) 

13 

𝑥1(𝑡 + 1)
= 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 0 

𝑥3(𝑡 + 1) =  

𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥4(𝑡 + 1) = 0 

𝑥5(𝑡 + 1) = 𝑥6(𝑡) 
𝑥6(𝑡 + 1) = 𝑥4(𝑡) 

M 𝑥1, 𝑥3 Not Available  

14 

𝑥1(𝑡 + 1) = 0 

𝑥2(𝑡 + 1) = 𝑥1(𝑡) 
𝑥3(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥4(𝑡 + 1) = 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) = 0 

𝑥7(𝑡 + 1) = 𝑥7(𝑡) 

N 
Attractor 1: 𝑥3, 𝑥4  

Attractor 2: 𝑥4, 𝑥7 
Not available 

15 

𝑥1(𝑡 + 1)

= 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 0 

𝑥3(𝑡 + 1) 
=  𝑥6(𝑡) 
𝑥4(𝑡 + 1) = 0 

𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) = 𝑥4(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥7(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 

O 𝑥3, 𝑥6, 𝑥7 Not available 

16 

𝑥1(𝑡 + 1)

= 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥2(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥3(𝑡 + 1) = 𝑥5(𝑡)̅̅ ̅̅ ̅̅ ̅ 

𝑥4(𝑡 + 1) = 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥5(𝑡 + 1) = 0 

P 𝑥2, 𝑥3 Not available 

17 

𝑥1(𝑡 + 1) =
𝑥4(𝑡)  
𝑥2(𝑡 + 1) = 𝑥6(𝑡) 
𝑥3(𝑡 + 1) = 𝑥6(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥4(𝑡 + 1) = 𝑥4(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥5(𝑡 + 1) = 0 

𝑥6(𝑡 + 1) = 𝑥2(𝑡)̅̅ ̅̅ ̅̅ ̅ 

Q 
Attractor 1: 𝑥2, 𝑥3, 𝑥6  

Attractor 2: 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6 
Turn 𝑥4 ON 

18 

𝑥1(𝑡 + 1)
= 𝑥3(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥2(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥3(𝑡 + 1) = 𝑥1(𝑡) 

R 

Attractor 1: 𝑥1, 𝑥2, 𝑥3, 𝑥5  

Attractor 2: 𝑥1, 𝑥2, 

𝑥3, 𝑥4, 𝑥5, 𝑥6 

Turn 𝑥6 ON 
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𝑥4(𝑡 + 1) = 𝑥6(𝑡) 

𝑥5(𝑡 + 1) = 𝑥7(𝑡)̅̅ ̅̅ ̅̅ ̅ 
𝑥6(𝑡 + 1) = 𝑥6(𝑡) 
𝑥7(𝑡 + 1) = 0 

Attractor*: Here we only list the nodes that have self-disclosure ON in the attractor. 

Not needed*:  Defined as at least half of the group members have self-disclosure ON.  
Attractor 2*: Since only active nodes are listed here, we are not able to show attractor 1 and 2 have 

different states (Figure 3.3n shows one attractor 1 rotates between 2 states, while attractor 2 rotates 

between 6 states).    

 
Table 3.4 Three scenarios of attractors and network control strategies (totally 18 groups) 

Index Type Attractors and Network Control Strategy Count (Groups) 

1 Well-functioning 

groups 

Has one or two attractors, no control strategy 

needed  

6 

2 Unmanageable 

groups 

Has one or two attractors, no control strategy 

available 

10 

3 Manageable groups Has two attractors with differential desirability, 

control strategy available 

2 
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Figure 3.1 Example of a three-node network, consisting of 𝑥1, 𝑥2, and  𝑥3. 

Panel A is the observed binary time-series of 𝑥1, 𝑥2, and  𝑥3 across time, Panel B is the Boolean network 

and Boolean functions inferred from the binary time-series in Panel A, and Panel C is the state transition 

graph derived from the Boolean functions in Panel B. Three-state tuple, e.g., (0,1,0) indicates the state of 

(𝑥1, 𝑥2, 𝑥3). Panel D. Design of network management. One strategy as an example is to turn x3 OFF 

when only x3 is ON, and this strategy will induce change in state transition graph highlighted by the red 

arrow.  

 

 
Figure 3.2 Illustration of design of network control 

Panel A: Boolean network. The Boolean network and Boolean functions of a system. Panel B: State 

transition graph. The state transitions of all the states from t to t+1 are described as a state transition 
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graph, where each circle represents a state, and each arrow represents a state transition and its direction. 

Panel C: Design of network management. One strategy as an example is to turn x3 OFF when only x3 is 

ON, and this strategy will induce change in state transition graph highlighted by the red arrow.  

 

 

 
Figure 3.3 Illustration of a seven-member group’s model results. 

Panel A: Binary Time-Series of Self-Disclosure. Binary time-series of each group member’s weekly self-

disclosure behavior (colored bars indicate self-disclosure = ON, white space = self-disclosure = OFF). 

Panel B: Inferred Boolean functions and Boolean Network. Inferred Boolean functions based on the time-

series in Panel A. The Boolean network represent the Boolean functions as edges and variables as nodes. 

Panel C: State Transition Graph and Attractors. Each dot represents a state, and two complex attractors 

were extracted (highlighted in blue and green). The Attractor 1 has 3 nodes ON and Attractor 2 has 5 

nodes ON, both in a cyclic manner. Panel D: Network Management Strategies. Four strategies are found 

for this group. All strategies indicate by turning the fourth node ON, the network can be moved from 

Attractor 1 to Attractor 2.  
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Figure 3.4 Illustration of eighteen state-transition graphs. 

In each panel, each color indicates a different attractor and its basin, and the self-loop indicates an attractor and dashed arrows indicate direction of 

state transition, e.g., Panel H shows a state transition graph with one fixed point attractor, with a self-loop, Panel A shows a state transition graph 

with one limit cycle attractor where the system cycles through two states, Panel I shows a state transition graph with two limit cycle attractors 

labeled with different colors.   
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Chapter 4 DISCUSSION 

Overview 

The overarching goal of this dissertation is to introduce the Boolean network method as a 

method to model and develop control strategies for multivariate dynamical systems using binary 

time-series data. To my knowledge, this work is the first introduction and empirical application 

of the Boolean network method in psychological systems. Because the Boolean network method 

is new to the psychology literature, I synthesized the Boolean network method that was 

developed in system biology literature for this new audience, and reviewed the essential concepts 

and methodological details that enable psychologically-oriented readers to obtain a solid 

understanding of the method about network modeling and network control. To demonstrate the 

utility of the Boolean network method for study of psychological dynamical systems, I applied 

the method to two empirical data from two studies. The first example illustrated how the method 

can be used to study within-person dynamics of emotion regulation. The second example 

illustrated how the method can be used to study between-person dynamics of social influence.  

Qualification about the Impetus for Studying Network Control   

For clarification, my interest in exploring models that facilitate design of network control 

for psychological systems was to facilitate individual development in either within-person 

systems or between-person systems. The network control for a developmental system is designed 

according to the desirable goals for individual development in its specific context. For example, 

a desirable goal for early childhood emotion development is to be able to manage negative 

emotions when children are asked to wait, specifically to deploy a regulatory behavior to alter 

negative emotion when it occurs. In social groups, a desirable goal is to promote desirable 

behaviors to spread among group members to improve each individual’s development.  

From a methodology standpoint, we focus on dynamical system-based control design to 

achieve desirable goals. Control design is a subdiscipline of mathematics, and not to be confused 

with interventions about constructs related to “self-control” or “effortful control”. The control 

design in this dissertation focuses on identifying specific dynamics to manipulate, so that a 

person’s (or a group’s) dynamical system can move from an undesirable attractor to a desirable 

attractor, which is also a desirable goal as aforementioned.  

In this chapter, I summarize the contribution of this dissertation to our knowledge of 

modeling and controlling multivariate dynamical systems in psychology. In the following 

sections I address how the Boolean network method contributed to methods innovation and to 

theory, what the data requirements are, and point to other potential empirical applications. I 

finish with discussion of the limitations of the method and some exciting future directions.  

 Method Innovation 

A Novel Method to Describe Nonlinear Multivariate Dynamics 

The Boolean network method is a method for modeling dynamical systems in discrete-

time with binary time-series data. In Chapter 2, I discussed the differences between the Boolean 

network method and other discrete-time dynamical system methods to model the dynamics 

driving changes in multiple variables with binary states, including the Ising model and Markov 

chain models.  

In summary, the Boolean network method provides novelty that is complementary to 

these other methods. First,  the Boolean network method provides a new form to express 

temporal relations. The Ising model expresses the temporal relations in the form of exponential 

functions, similar to logistic regression, that link the input variables/nodes and the outcome/node; 

and the Boolean network method expresses the temporal relations in Boolean operators, 
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including AND, OR, and NOT. Both forms of expression can explain nonlinear dynamics and 

provide for interpretation.   

Second, the Boolean network method provides explicit explanation of the dynamics. For 

example, in the empirical example in Chapter 2, regulatory dynamics where anger is regulated 

by distraction can be expressed as anger(t+1) = anger(t) AND NOT distraction(t). The 

expression indicates when distraction is ON, anger at the next time point will be OFF. That is 

how we identified anger is regulated by distraction. In Markov chain method, the state of the 

system is expressed as a vector of all variables. Take the anger-distraction relation as a two-node 

network example, there are four states of the system, which are (anger = 0, distraction = 0), 

(anger = 0, distraction = 1), (anger = 1, distraction = 0), and (anger = 1, distraction = 1). The 

Markov chain will focus on estimating the transition probability between any of the two states, 

e.g., the probability from (anger = 1, distraction = 1) at t to (anger = 0, distraction = 1) at t +1 

has probability of 1. Even though this implies distraction can turn anger OFF, the Markov chain 

method does not formally verify this temporal relation or report it.  

With the novelties coming with the Boolean network method, there are also some 

limitations. A major limitation is that the Boolean network method simplifies the dynamics into 

Boolean/logic dynamics, and also assumes the state transition is deterministic (either 0 or 1). In 

other words, the Boolean network does not provide detailed information about the dynamics like 

the Ising model, nor does it provide detailed estimation of the state transition probability like the 

Markov chain.    

In sum, the Boolean network method provides a novel method to describe nonlinear 

multivariate dynamics. Choosing the Boolean network method should consider a few factors, 

including hypothesis about interactions between multiple input variables, direct test and 

interpretation of the dynamics, and the level of detail in the analysis.  

Boolean Network Control of Nonlinear Dynamics 

The Boolean network method provides a novel control method for nonlinear dynamics. In 

the discussion of Chapter 2, we clarified the rationales for choosing a function perturbation 

control method (Shmulevich & Dougherty, 2010; Campbell & Albert, 2019), and the rationale 

for only considering the naturally occurring attractors as desirable states. We also discussed why 

the Boolean network method provides a useful control method for nonlinear dynamics.  

I will reiterate a clarification briefly as a background for the subsequent discussion. The 

desired states are constrained to the dynamical systems’ naturally occurring attractors. We chose 

this method because it is more realistic to design control based on the naturally occurring 

attractors (Mochizuki, Fiedler, Kurosawa, Saito, 2013; Zanudo & Albert, 2015). 

The Boolean network control methods contributes a method that can tackle the 

complexity of nonlinear dynamical systems, compared with linear control theory methods. 

Linear control theory methods focus on stabilizing the dynamics in the system using matrix 

algebra, designing an input/control into the system so that the discrepancy between the system 

state and the goal state will exponentially decrease to zero (Lewis et al., 2012). Linear control 

theory methods essentially assumes there is only one equilibrium point, which does not fully 

capture the complexity of the nonlinear dynamics, which are often marked by multiple equilibria, 

limit cycle, and even transitions between different regimes (Tang & Bassett, 2018). Hence, the 

Boolean network method provides control strategies that accommodates the nonlinear dynamics 

by accounting for multiple attractors.  
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Reducing Burden of Applying Control in Psychological Systems 

Although advanced methods in control theory have been introduced by psychologists 

with empirical examples (receding horizon control, Sinclair & Molenaar, 2008; linear quadratic 

Gaussian control, Molenaar & Ram, 2010; linear quadratic regulator, Henry et al., in press) and 

obtained superb performance (Wang et al., 2014), the application of control methods in study of 

psychological systems remains quite sparse (Molenaar & Nesselroade, 2015). This dissertation 

pushes the possibility for applying control in psychological systems forward. 

There are a few advantages of using the Boolean network method (as a network control 

method) to design control of psychological systems. The most prominent advantage is that the 

Boolean logic embedded in the network representation, and the design of control in Boolean 

logic terms, makes it easy to implement control in terms of simple (perhaps easy to remember) 

rules or heuristics (Gigerenzer, Goldstein, 1996). In Chapter 2, I discussed how control 

implementation requires an individual to at least know the input into a control system. A 

univariate discrete-time control system can be expressed as: 

𝑢∗(𝑡) = [𝑦∗ − 𝛽𝑦(𝑡)]/𝜙       

where 𝑦(𝑡) is the state of the system, and 𝑢∗(𝑡) is the univariate external input that needs to be 

manipulated in order to control the system. As it is seen in the equation, the input 𝑢∗(𝑡) changes 

as the state of the system 𝑦(𝑡) changes. That means the individual or caretaker needs to be able 

to compute this equation or memorize the mapping between 𝑦(𝑡) and 𝑢∗(𝑡). It can be quite 

challenging when the individual needs to make a quick decision with time-pressing issues, or 

simply does not have the luxury to compute 𝑢∗(𝑡) in real-time. The Boolean network method 

circumvents this practical burden by using a simplified mapping. For example, we showed in our 

study of children’s emotion regulation dynamics, that Boolean networks could be used to 

identify specific control strategies where turning specific behaviors ON or OFF would invoke 

regulation. These strategies were stated as simple if-then rules of the form, “if the child is stuck 

in anger, then turn [a specific behavior] [ON]/[OFF]”. The simplicity of the control strategy can 

reduce the parent’s burden to memorize complex mapping relations between the child’s 

emotional states and the control strategy. In contrast, control designed using a continuous-scale 

dynamical system method would be much more complicated. Similarly, in Chapter 3, we suggest 

that in group settings, and the therapy group setting in particular, the Boolean network method 

can reduce the burden on group leaders’ memorization of complex control strategies and make it 

easy for them to manage group dynamics.  

It is worth highlighting that, like other methods, the Boolean network method relies on a 

stationary assumption. The dynamics of the system are assumed to be stationary, meaning the 

Boolean functions are not changing with time. Subsequently, the control strategy could be used 

at any time to guide the system into desired states. However, take the control strategy in Chapter 

2 as an example, if the child develops new regulatory skills, it will change the emotion regulation 

dynamic. In that paper we found when anger is regulated by distraction, and distraction is only 

predicted by itself from previous time points, the control strategy indicated by the updated 

Boolean function is that distraction should be activated by anger. We assume the emotion 

regulation dynamics do not change for a period of time, so that the control strategy could be 

implemented and accomplish the desired goal. In the emotion regulation example, when the child 

learns to voluntarily use a regulatory strategy, meaning the control strategy is accomplished by 

the child without external/parental control input, the child’s emotion regulation dynamics will be 

changed to a new Boolean function.  
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The Boolean network method provides a novel method to describe interactive dynamics 

among multiple predictors. The Boolean network method also provides a network control 

method that can identify how to direct nonlinear dynamics to a desired state and reduce cognitive 

burden when applying the control on psychological dynamics.  

Theory Contribution: Heterogeneity in Psychological Dynamics 

Based on the empirical example of children’s emotion regulation in Chapter 2 and young 

adults’ self-disclosure in therapy groups in Chapter 3, we found striking heterogeneity in 

psychological dynamics between children and between groups.  

Heterogeneity of Emotion Regulation Dynamics and Control Strategies  

In Chapter 2, with 117 children’s emotion regulation dynamics, even when they were 

given the exactly same experimental task, we found 22 distinct Boolean networks consisting of 

anger, distraction, and bidding. And, the behavior that can regulate anger differs from child to 

child; there are children whose distraction can turn anger OFF, and there are also children whose 

bidding can turn anger OFF. This provides new insights to the emotion regulation development 

theory (Cole et al., 2012), which posits behaviors that shift attention away from desired object – 

here it is distraction rather than bidding – can regulate anger. A possible explanation is the 

empirical support for emotion regulation development theory has taken a nomothetic approach, 

aggregating a sample of children’s data and assuming the data conform to the prototypical 

dynamic. In Chapter 2, I took the person-specific approach, and let each child’s data be modeled 

separately, and observe whether the estimated dynamics do conform to the same dynamics. The 

results in Chapter 2 shows they do not. Thus, as pointed out by Molenaar (2004), caution is 

warranted when interpreting results derived from nomothetic analyses.  

The heterogeneous networks correspond to heterogeneous control strategies. Some 

children need to turn distraction ON when they are angry, and some others need to turn bidding 

ON when they are angry. Which behavior is to be turned ON depends on whether it can regulate 

anger. Again, this result of control strategy also warrants caution when taking the nomothetic 

approach when making recommendations of how to improve children’s emotion regulation 

skills, as the same advice, e.g., shifting attention away from the desired object, will only work for 

children whose distraction can regulate anger, but will not work for children whose distraction 

cannot regulate anger.  

In sum, the Boolean network method provides person-specific/personalized advice, 

specifically which behavior is regulatory/dysregulatory and whether to turn this behavior 

ON/OFF, for parents and teachers to improve children’s emotion regulation skills.  

Heterogeneity of Group Dynamics and Group Management Strategies  

In Chapter 3, the Boolean network that describes group dynamics and models whether 

group members’ self-disclosure behavior will elicit or prevent others’ self-disclosure behavior; if 

eliciting other’s self-disclosure, it is considered an assimilative social influence, and if 

preventing other’s self-disclosure, it is considered a repulsive social influence.  

We observe heterogeneity in the Boolean networks when comparing across groups. The 

result shows 14 groups had both assimilative and repulsive social influence, while only 4 groups 

only had assimilative or repulsive social influence. No two groups had the same network 

configuration, which could be observed from the 18 heterogeneous state transition graphs.  

Based on the information of attractors, we can see some group has zero group members’ 

self-disclosure ON in the attractor, while some have all group members’ self-disclosure ON in 

the attractor. That indicates in some groups where zero member had self-disclosure ON, group 

members had trouble self-disclosing, and maybe these groups have more punishing atmosphere 
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in the group; in other groups where all members had self-disclosure ON, group members were 

motivated to self-disclose, and maybe these groups have more encouraging atmosphere in the 

group. Subsequently, the control strategy differs group by group. The Boolean network method 

provides group-specific suggestions for group therapists, specifically which group members can 

move the whole system into a desirable attractor.  

Theories of group dynamics and social influence should take into account of both 

assimilative and repulsive social influence, which is a more accurate and realistic way to analyze 

the social influence and its impact on group-level behavior change. Omitting the repulsive social 

influence might be easier to conceptualize the system, but it will not be able to explain complex 

phenomenon, such as multi-stability or limit cycle, which we have found in our empirical data of 

self-disclosure in therapy groups. Furthermore, without accounting for both types of social 

influence, intervention would only focus on assimilative social influence and how to optimize the 

group process using assimilative social influence, while the Boolean network method and other 

nonlinear system control methods could contribute to the knowledge of how to manage group 

processes.    

Data Requirement: Intensive Longitudinal Data 

As with other dynamical system methods, use of the Boolean network method requires 

intensive longitudinal data. The minimal number of observations per Boolean network model 

depends on both the complexity of the Boolean functions (governed by selection of k = number 

of input variables) and network size N. When k is higher, more complex Boolean functions can 

be inferred. However, this complexity could lead to overfitting. Higher number of observations 

are needed to support the complexity and to avoid overfitting.  Larger network size N indicates 

more potential input variables will be searched in the inference of Boolean functions, so it also 

requires higher number of observations (T) to avoid misidentification. Let us go through a 

hypothetical example to elaborate this point. Imagine there are 100 people in a social network 

(N=100), but only 3 measurements are taken (T=3), then the sequence of each individuals 

behavior has 3 digits of 0 or 1, which has 23 = 8 possible combinations. There are at least 12, 

which is the round down number of 100 people divided by 8 possible combinations, sharing the 

same sequence for each possible combination. If we were to infer one target person’s Boolean 

function (number of input variable k=1) as an outcome of other group member’s behavior, then 

there will be at least 12 tied Boolean functions that can equally match the target person’s 

behavior. More complex model (higher number of input variables k) and larger network size will 

require more intensive data to fit the Boolean network model, and a comprehensive simulation 

study to examine the minimal requirement of number of observations will provide useful 

guidance to analysis.   

In both of the empirical examples, we applied the Boolean network method to 

multivariate binary time-series data. In Chapter 2, we applied the method to binary time-series 

data of a type that has been obtained in many observational studies that make used of behavioral 

coding. However, it is possible to apply the Boolean network method to continuous-scale time 

series data, albeit after these data have been binarized, As demonstrated in Chapter 3, we 

binarized the self-disclosure variable from a continuous-scale variable into a binary variable 

before inferring the Boolean functions. Previous research has studied the effect of such 

binarization on the model results and provided evidence that the key characteristics of time-

series are in some cases maintained and can be discovered in the binarized data. For example, 

oscillation patterns present in continuous-scale time-series may be reflected by a sequence of ON 

and OFF in the binary time-series (Berestovsky & Nakhleh, 2013). Thus, there is some evidence 
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that the Boolean network method may be useful in analysis of other types of intensive 

longitudinal data, including experience sampling data, and physiological data (e.g., wearable 

sensors, EEG, fMRI).  

Potential Empirical Applications in Psychology 

This dissertation provides the first demonstrations of how the Boolean network control 

method can be applied to study and control within-person and between-person psychological 

dynamics. Chapter 2 demonstrated how control design can facilitate children’s development of 

emotion-regulation, and Chapter 3 demonstrated how control design can promote spread of 

desirable behaviors in a social group. Beyond these two demonstrations, the Boolean network 

method offers opportunities for many practical applications.  

One important potential application is to use the Boolean network method to assist 

diagnosis or treatment of psychopathology.  Evidence from a large body of work has shown that 

emotion regulation dynamics are associated with a variety of mental health outcomes (Cole, 

Ramsook, & Ram, 2019). There has been an increasing interest in using network models to 

understand emotion dynamics and to inform diagnosis and intervention from a clinical 

perspective (Bringmann et al. 2016; Cramer et al., 2016; Yang et al., 2018; Yang et al., 2019). 

The Boolean network method can be used to identify network control strategies that move an 

individual’s emotion dynamics to a more desirable attractor and subsequently influence their 

long-term mental health. The person-specific approach also allows for designing personalized 

interventions. Additionally, the prescribed control strategy could be used as a data-driven 

approach to inform or confirm therapist’s diagnosis about a patient’s treatment plan. With the 

increasing use of smartphones and mental health improvement applications, the Boolean network 

method can be implemented on smartphones to model psychological dynamics and provide 

control strategies as a mobile health tool. 

Another important future potential application is to model and control social dynamics. In 

Chapter 3, we focused on small therapy groups of 5 to 8 group members. The Boolean network 

method can also be applied on other social dynamics that are under the social influence, e.g., in a 

high-school classroom, the Boolean network control method can be used to identify strategies 

that will facilitate desired behavior such as academic performance (DeLay et al., 2016), or will 

help prevent undesired behavior such as substance use (Rulison, Gest, Osgood, 2015). Another 

possibility is the group dynamics that manifest on public social media platforms (e.g., twitter). 

Commonly studied topics related to individual development includes dissemination of health-

related information (Guilbeault & Centola, 2019). Because the opinion dynamics on social media 

platforms are also susceptible to social influence, we can apply the Boolean network method to 

model the social influence based on the observed opinion, like how we modeled it in Chapter 3 

based on self-disclosure behavior.  

In sum, there are a wide range of empirical problems in individual development, from 

psychopathology treatment to adopting health-related behavior in the social group context, can 

use the Boolean network method. The dynamics in each kind of network can be uncovered by 

the Boolean functions, and control strategy to move the person toward a healthier state or 

adopting a healthier behavior can be prescribed.   

Limitations and Future Directions 

Modeling Uncertainty in the Boolean Network Method  

An important limitation of the Boolean network method introduced in this dissertation is 

it assumes the dynamics in the system are deterministic. This means that the uncertainty in a 

dynamical system is not incorporated. I propose there are three ways uncertainty can be 
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incorporated into Boolean networks through incorporation of the concepts of measurement error, 

process error (Deboeck & Boker, 2010), and regime-switching (Yang & Chow, 2010; Chow & 

Zhang, 2013).  

For measurement error, we consider the uncertainty is caused by errors when measuring 

the outcome (e.g., anger is not coded correctly for a few seconds), and the error only affects the 

outcome while the dynamic process is not affected. Mathematically, the measurement error could 

be set up as such: there is a probability of error coming into the system, the probability conforms 

to a Bernoulli distribution at each time point, where the probability of occurrence of an error 

denoted as p. When the error occurs, the value of the outcome variable is taking the opposite 

value of the Boolean function expression of the outcome variable. A Boolean function equation 

is shown as follows to express measurement error: 

𝑥𝑖,𝑜𝑏𝑠(𝑡 + 1) =  𝑥𝑖(𝑡 + 1) ⊕ 𝑒(𝑡) 

𝑥𝑖(𝑡 + 1) =  𝑓𝑖 (𝑥𝑗(𝑡)) 

𝑒(𝑡) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑝) 

where𝑥𝑖,𝑜𝑏𝑠 is the observed value of 𝑥𝑖, 𝑥𝑖 is the true value of the outcome variable, 𝑓𝑖(𝑥𝑗(𝑡)) is 

the Boolean function to predict 𝑥𝑖, 𝑒(𝑡) is the measurement error that follows a Bernoulli 

distribution with parameter 𝑝. ⊕ represents the XOR operator, meaning only when the two input 

variables have opposite values, the outcome is 1. So whenever e(𝑡) is 1, meaning there is a 

measurement error, the value of  𝑥𝑖(𝑡 + 1) is taking the opposite value, e.g., if 𝑥𝑖(𝑡 + 1) =1, 

𝑥𝑖,𝑜𝑏𝑠(𝑡 + 1) = 1⊕ 1 = 0; if 𝑥𝑖(𝑡 + 1) =0, 𝑥𝑖,𝑜𝑏𝑠(𝑡 + 1) = 0⊕ 1 = 1. whenever 𝑟(𝑡) is 0, 

meaning there is no measurement error, the value of  𝑥𝑖(𝑡 + 1) does not change its value, e.g., if 

𝑥𝑖(𝑡 + 1) =1, 𝑥𝑖,𝑜𝑏𝑠(𝑡 + 1) = 1⊕ 0 = 1; if 𝑥𝑖(𝑡 + 1)=0, 𝑥𝑖,𝑜𝑏𝑠(𝑡 + 1) = 0⊕ 0 = 0. 

 For process error, we consider the uncertainty is caused by noise going into the dynamic 

process (e.g., a child gets angry at one point because his mom ignored him for a little bit during 

the experiment). The difference between process error and measurement error is the process error 

can be added into any timestep with a given probability, and gets iterated into future time-series 

timestep by timestep. A Boolean function equation is shown as follows to express process error: 

𝑥𝑖(𝑡 + 1) =  𝑓𝑖(𝑥𝑗(𝑡)) ⊕ 𝑒(𝑡) 

𝑒(𝑡) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑝) 
where 𝑓𝑖(𝑥𝑗(𝑡)) is the Boolean function to predict 𝑥𝑖, 𝑒(𝑡) is the process error that follows a 

Bernoulli distribution with parameter 𝑝. Similarly, the noise can change the value of 𝑥𝑖 using the 

XOR operator, and the noise gets iterated into all the following timesteps. 

For regime-switching, we consider the uncertainty is caused by multiple regimes 

switching between each other probabilistically (e.g., a child gets angry when he focuses on the 

desired object, but he can also regulate himself if distracted). The probabilistic Boolean network 

(Shmulevich & Dougherty, 2010) estimates multiple Boolean functions when the error rate (here 

is estimation error, not measurement error) ties, and assign the probability equally across the 

Boolean functions. The multiple Boolean functions can be considered as multiple regimes. A 

Boolean function equation is shown as follows to express process error: 
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𝑓𝑥𝑖 =

{
  
 

  
 𝑓𝑥𝑖1 , 𝑝 =

1

𝑛

𝑓𝑥𝑖2 , 𝑝 =
1

𝑛
…
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where 𝑓𝑥𝑖1 , 𝑓𝑥𝑖2 , … , 𝑓𝑥𝑖𝑛 are 𝑛 Boolean function that can predict 𝑥𝑖 with equal probability 𝑝. The 

transition probability between regimes are not modeled based on the previous state like the 

regime-switch models (Yang & Chow, 2010; Chow & Zhang, 2013), instead it is evenly split by 

the number of regimes in the probabilistic Boolean network method.  

The advantage of incorporating uncertainty into the Boolean network method is to allow 

for more realistic inference of the dynamics. Then, in the subsequent steps such as extraction of 

attractors, the uncertainty incorporated in the inference step can derive the probability 

distribution of the system going into different attractors and control strategies. Future work can 

investigate the estimation procedure associated with each kind of uncertainty mechanism. The 

probabilistic Boolean network method provides a solution when the uncertainty-generating 

mechanism is regime-switch. The estimation of the other two uncertainty-generating 

mechanisms is yet to be developed to my knowledge.  

Scalability of the Boolean Network Method  

Another important limitation of the Boolean network method introduced in this 

dissertation is time complexity of attractor extraction. In Chapter 2, I introduced the attractor 

extraction, which requires searching through all combinations of initial states. Thus, given a 

network of N nodes, the time complexity will be 𝑂(2𝑁) and the computation time will be 

unscalable when the network size N increases, which is especially common for social network 

applications. Fortunately, network scientists began solving this problem and have suggested 

using structure-based search algorithm to reduce time complexity (Liu & Barabasi, 2016; 

Zanudo, Yang, Albert, 2017). The structure-based control design relies on the identification of 

specific network structures – motifs. Stable motifs are identified in the Boolean network 

structure, which are defined as structures in the network that are not affected by external inputs 

once they are activated, e.g., anger at t+1 predicted by itself at t is a stable motif. This structure-

based control design will be a valuable future direction to take to enhance the applicability of the 

Boolean network method on larger networks.  

Timescale: Psychological Process, Measurement, and Models 

We assumed the timescale of underlying process is the same with measurement 

timescale, e.g., Chapter 2 used second-by-second as the timescale, and Chapter 3 used week-by-

week as the timescale. However, the time-scales embedded in the data (i.e., through 

measurement decisions) may not necessarily match the actual time-scale on which the underlying 

psychological and social processes actually proceed. To elaborate this point, two scenarios are 

discussed. The first scenario is when the underlying process has a faster time-scale than the 

measurement time-scale, e.g., the behavior change process in group settings happen within each 

week’s session, rather than from one week to the next week, then the dynamics within each 

weekly session might be missed by the model. The second scenario is when the underlying 

process has a slower time-scale than the measurement time-scale, e.g., the emotion regulation 

dynamics happen every ten seconds, rather than every second, then the dynamics captured by the 

model might be overwhelmed by the auto-regression, e.g., anger(t+1)=anger(t). Both scenarios 

can lead to misrepresentations of the actual dynamics. A potential solution for the second 
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scenario, when the underlying process has a slower timescale than the measurement timescale, is 

to test multiple timescales and compare estimation errors when from multiple timescales from a 

model comparison perspective. For the first scenario, when the measurement is slower than 

actual process, there is not yet a solution to test the true timescale using multiple timescales, 

because the data collected missed psychological process between measurements, so we cannot 

model the psychological process where we do not measure. Future work can include a systematic 

analysis of how collections of models might be used to identify the most likely time-scale and 

representation of the dynamic system.  

 

Conclusion 

This dissertation introduces and forwards a Boolean network-based method for studying 

psychological dynamics, both within-person and between-persons. I outline the Boolean network 

method, provide a guide for implementation, and illustrate how the method is applied in two 

empirical settings – study of children’s self-regulation, and study of group-therapy processes. 

The work highlights the utility of the method for obtaining intuitive descriptions of individual or 

group dynamics and deriving strategies for directing the individual or group towards desired 

outcomes. To our knowledge, this is the first application of the Boolean network method in study 

of psychological processes. Our demonstration emphasizes the appeal of this method for both 

theory and practice – providing simple descriptions and explanations of system dynamics and 

system control strategies. Altogether, this dissertation forwards and provides access to a useful 

tool that can help researchers discover, understand, and shape many different kinds of 

psychological dynamics.   



73 
 

References 

Chow, S-M, & Zhang, G. (2013). Regime-switching nonlinear dynamic factor analysis models. 

Psychometrika, 78(4), 740-768. 

DeLay, D., Zhagn, L., Hanish, L.D., Miller, C.F., Fabes, R.A., Martin, C.L., Kochel, K.P., 

Updegraff, K.A. (2016). Peer influence on academic performance: A social network 

analysis of social-emotional intervention effects. Prevention Science, 17, 903-913 

Deboeck, P.R., & Boker, S.M. (2010). Unbiased, smoothing-corrected estimation of oscillators 

in psychology. In S. Chow, E. Ferrer, & F. Hsieh (Eds) Statistical Methods for Modeling 

Human Dynamics: An Interdisciplinary Dialogue (Notre Dame Series on Quantitative 

Methodology, Vol 4) (pp. 179-212). New York, NY: Taylor & Francis.  

Gigerenzer, G., & Goldstein, D.G. (1996). Reasoning the fast and frugal way: Models of 

bounded rationality. Psychological Review, 103(4), 650-669.  

Guilbeault, D., & Centola, D. (2019). Networked collective intelligence improves dissemination 

of scientific information regarding smoking risks. PLoSONE, 15(2), e0227813. 

Henry, T.R., Robinaugh, D.J., & Fried, E.I. (in press). On the control of psychological networks. 

Psychometrika.  

Liu, Y.Y., Barabasi, A.L. (2016). Control principles of complex networks. Reviews of Modern 

Physics, 88 (3), 3-58 

Liu, Y.Y., Slotine, J.J., Barabasi, A.L. (2011). Control ability of complex networks. Nature, 473, 

167-173 

Molenaar, P.C.M., Ram, N. (2010). Dynamic modeling and optimal control of intraindividual 

variation: A computational paradigm for nonergodic psychological processes. In S.M. 

Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical Methods for Modeling Human Dynamics 

(pp. 13-37).  New York, NY: Routledge.  

Rulison, K.L., Gest, S.D., & Osgood, D.W. (2015). Adolescent peer networks and the potential 

for the diffusion of intervention effects. Prevention Science, 16, 133-144.  

Shmulevich, I. & Dougherty, E.R. (2010). Probabilistic Boolean Networks: The Modeling and 

Control of Gene Regulatory Networks. Society for Industrial and Applied Mathematics. 

van Borkulo, C., Borsboom, D., Epskamp, S. Blanken, T.F., Boschloo, L., Schoevers, R.A., 

Waldorp, L.J. (2015). A new method for constructing networks from binary data. 

Scientific Reports, 4, 5918. doi: 10.1038/srep05918 

Yang, M., & Chow, S-M. (2010) Using state-space model with regime switching to represent the 

dynamics of facial electromyography (EMG) data. Psychometrika, 75(4), 744-771.  

Zanudo, J.G.T., Yang, G., Albert, R., (2017). Structure-based control of complex networks with 

nonlinear dynamics. Proceedings of the National Academy of Sciences of the United 

States of America, 114(28), 7234-7239.   

 

 

 

 

 

 

 



 
 

VITA 

 

Xiao Yang 

 

EDUCATION 

2020, Ph.D., Human Development and Family Studies, The Pennsylvania State University, 

University Park, PA 

2009, M.A., Statistics, Columbia University, New York, NY 

2007, M.E., Computer Engineering, Tsinghua University, Beijing, China 

2004, B.S., Automation, Tsinghua University, Beijing, China 

 

FELLOWSHIPS AND AWARDS 

2018-2020   National Institute of Health (NIH) T32 Psychosocial Determinants and Biological 

Pathway to Healthy Aging (award #AG049676) Trainee ($108,000)                              

 

2016-2017   National Science Foundation (NSF) Student Scholar of Center for Health 

Organization Transformation (CHOT, I/UCRC award #1624727) ($54,000)                                         

 

2019 Fall    Hintz Dissertation Award ($4,000)   

 

2019 Fall    SMEP (Society of Multivariate Experimental Psychology) Travel Award ($1500)               

 

2015 Fall Graham Endowed Fellowship, Pennsylvania State University ($18,495) 

 

PUBLICATIONS 

Yang, X., & Ram, N. (2020) Describing and controlling multivariate dynamical systems: A 

Boolean network method. Multivariate Behavioral Research, 55(1), 163-164. DOI: 

10.1080/00273171.2019.1702497 (Abstract) 

 

Yang, X., Ram, N., Lougheed, J. P., Molenaar, P. C. M., & Hollenstein, T. (2019). Adolescents’ 

emotion system dynamics: Network-based analysis of physiological and emotional 

experience. Developmental Psychology, 55(9), 1982-1993. DOI: 10.1037/dev0000690 

 

Yang, X., Ram, N., Robinson, T., & Reeves, B. (2019). Using screenshots to predict task 

switching on smartphones. ACM Conference on Human Factors in Computing Systems 

(CHI ’19 Late Breaking Work). Glasgow, UK. May 2019. DOI: 10.1145/3290607.3313089 

 

Yang, X., Ram, N., Gest, S., Lydon, D., Conroy, D. E., Pincus, A. L., & Molenaar, P. C. M. 

(2018). Socioemotional dynamics of emotion regulation and depressive symptoms: A 

person-specific network approach. Complexity, 2018, Article ID 5094179. DOI: 

10.1155/2018/5094179  


